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Ample evidence from micro data suggests that productivity at establishment

level is dominated by idiosyncratic factors. The productivity differences across es-

tablishments are very large and persistent even with the narrowest definition of

industries. There is an attempt to identify sources of frictions that cause such pro-

ductivity dispersion and negatively affect the average productivity of industries.

This dissertation contemplates a non-monotonic relationship between productiv-

ity and input size and studies its importance in shaping the relationship between

productivity dispersion and the producer size, a fact that is presented along with

supportive empirical results. The role of market structure is then elaborated in

creating the observed behavior.

The US Census of Manufactures reveals significant productivity dispersion at

any employment level. Moreover, this productivity dispersion falls with employment

size within most manufacturing industries. This pattern is considerably strong for

establishments in industries whose products are primarily locally traded. It will

be shown that general approaches such as industry selection and simple statistical

aggregation do not explain this pattern convincingly, while sector-specific factors

such as market localization can mimic this behavior much more closely.

Based on these results, a market structure model is introduced that uses de-



mand size and market localization as constraining forces to generate a bell-shaped

relationship between input size and productivity within a market and for locally

traded goods. The non-monotonicity of the relationship is a clear departure from

most economic models where input size of plants is monotonically increasing with

their productivity in the long-run. Because of the bell-shaped relationship, the

proposed model predicts significant long-run productivity dispersion at any level of

input size. Also this dispersion decreases with input size, in the same way as is

observed in the data.

The model is calibrated and then simulated using data on Ready-Mix Con-

crete. First, the relationship between productivity and input size in the data is of

a similar bell-shaped form. The effect of market size is also shown to be consistent

with model predictions. Second, simulated results produce productivity dispersions

that fall with input size with almost the same slope as observed in the data. This,

in turn, suggests that the difference between simulated and actual productivity dis-

persions, summarizing the effect of other frictions, is almost uniform across sizes.

Finally the robustness of the results is demonstrated through various tests.

Throughout the discussion, a distinction is made between physical and revenue

productivities and the theoretical implications of both measures are shown to be

qualitatively the same.
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Chapter 1

Introduction

Ample evidence from micro data suggests that productivity, i.e. the amount of

output produced per unit input, at the establishment level is dominated by idiosyn-

cratic factors. Recent studies of productivity are increasingly dependent on models

of heterogeneous producers and less reliant on representative firm models. The

importance of studying heterogeneity among producers is underlined by a growing

body of literature in economics that emphasizes the role of reallocation of resources

from less productive units to more productive ones, both within and across indus-

tries, as a significant source of growth in aggregate productivity. Reducing trade

barriers or deregulating certain aspects of industries, for instance, makes markets

more competitive and, as a result, drives out less productive units out of the market

and causes the average productivity to rise. These findings are in contrast to earlier

models where technology advancement entirely accounted for productivity growth.

Speculations abound about why productivity differences should exist. One

possibility is that remarkable differences are observed in productivity because ob-

servations are being pooled across a wide range of industries and products, so that

at some level of industry disaggregation the differences would disappear. Many at-

tempts have been made to test this presumption by narrowing down the definition
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of industry. The collective results strongly suggest a persisting dispersion of pro-

ductivity even with the narrowest definition of industry and even within industries

with observed homogeneity of products. The data also points to the fact that most

of the observed heterogeneity is real and not a result of measurement error. Wages

also display much dispersion and they are less likely to suffer from mismeasurement.

The strong correlation between the dispersions of productivity and wages across

industries also suggests that differences in productivity are real, not an artifact of

noisy data.

The appropriate public policy response to productivity dispersion depends on

correctly identifying the causes of productivity dispersion. In a perfectly competitive

market, the most productive unit can always eliminate competition by undercutting

others in price and driving them out of the market. The existence of large differences

in productivity implies market imperfections or frictions that give the less productive

units the possibility to continue producing by slowing down reallocation of resources

or stopping it altogether. In addition, decreasing returns to scale in production also

prevents infinite growth of the more productive producers, giving a productivity

advantage to smaller less productive units. The outcome is an industry with lower

average productivity that operates below optimum capacity. The magnitude of

productivity dispersion provides a sense of the level of imperfections or frictions that

plague a given industry. A combination of supply-side and demand-side frictions

contribute to this effect. Understanding the nature of these frictions could help

in devising policies that reduce barriers to creative-destruction and raise aggregate

productivity. Even if a certain friction cannot be addressed by policy measures,

understanding the extent of its effects still provides an estimate of how much average

productivity could, theoretically, be improved.

To explain the observed long-run distribution of productivity and size, most

economic models generate a monotonically increasing relationship between produc-

2
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Figure 1.1: The relationship between productivity and employment as predicted by
theory and observed in the data.

tivity and input size. In the absence of any shocks or uncertainties, frictions slow

down growth, but more productive units still grow faster than other units and end

up being larger in equilibrium. This monotonic size ranking of producers by their

productivity is typical of most existing models. It is most commonly reasoned that

if producer A is more productive than B, then A must be larger than B in the long

run (Figure 1.1). This one-to-one relationship between input size and productivity

generates zero long-run productivity dispersion at a given size level, or a limited

amount of productivity dispersion when shocks and uncertainties are present. In

view of such results, these models are more suitable for the analysis of mean pro-

ductivity than for explaining the extent of productivity dispersion within plants of

a given size.

The data, however, provides a contrasting picture of the productivity-employment

relationship, where monotonicity of the relationship does not hold consistently at

all levels of productivity. Within lower productivity plants, employment size mostly

responds monotonically to productivity, so that higher productivity means higher

size. This trend breaks down for high productivity plants, for which employment

sizes are expected to be dominantly large but are mostly small to medium size

(Figure 1.1-dashed lines). Restricting attention to old plants does not change the
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picture. This non-monotonicity can cause large productivity differences at lower

levels of employment. Several reasons can be cited for why a highly-productive

plant should choose a small employment level in the long-run. Prima facie, convex

costs of labor and capital adjustment prevent rapid changes in size, making growth

a gradual process. But modeling size growth as a process that depends simultane-

ously on production and demand conditions offers more interesting insight into a

non-monotonic relationship between employment size and productivity.

This dissertation studies the importance of demand and supply conditions as

constraints on size growth. I postulate that producers can grow rapidly in their

employment only when favorable conditions hold in both supply technology and de-

mand structure. Such a dual requirement for employment growth is reflected in the

pattern of productivity dispersion, as producers with totally different productivities

can still have the same long-run input sizes because they are subject to different

demand conditions. This notion is a departure from the more conventional view

that size growth is only a function of a firm’s underlying productivity. Market lo-

calization is an aspect of demand structure that will be elaborated in this study

by a theoretical model, as well as empirical tests, and shown to exhibit satisfactory

explanatory power for the observed size distribution and patterns of productivity

dispersion. Localized-market industries are actually a distinctive group of industries

whose productivity dispersion falls at a considerable rate with employment size.

This dissertation also expands the understanding of productivity dispersion

by examining its relationship with input size. Initial observations on the behav-

ior of productivity dispersion have been the main motivation in contemplating a

non-monotonic relationship between productivity and input size as an important

source of productivity dispersion. In fact, data findings suggest that productivity

dispersion is significant at every level of employment. Moreover, productivity dis-

persion falls with employment for many manufacturing industries. this finding is
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consistent with earlier work that noticed a similar relationship for wage dispersion

among manufacturing plants. As will be shown in both theoretical and empirical

results, a bell-shaped relationship between productivity and input size is capable of

explaining such pattern convincingly.

In building up a case for the role of market structure, the roles of establishment-

level dynamics and industry selection in shaping and trimming the distribution of

productivity are also studied. Industry selection is shown not to play a considerable

role in creating the observed pattern of productivity dispersion by employment size.

After taking out young plants, thereby eliminating births and much of the dynamic

volatility, the behavior of productivity dispersion by employment size is barely af-

fected. I also find much persistence in productivity and employment size at the

establishment level, especially within older plants. Manufacturing plants are fairly

sluggish in adjusting their employment size, causing the distribution of productivity

at each employment level to be mostly caused by a fixed subset of plants with a

rather time-invariant distribution of size and productivity. Summarizing, longer-

run factors such as demand structure are better suited to account for most of the

observed behavior.

Simple statistical aggregation is one of the explanation with long-run impli-

cations that could generate a falling productivity dispersion by employment size.

Larger plants are supposedly a collection of several smaller production units; conse-

quently, they can average over a larger number of arriving productivity shocks and

should perform closer to their mean productivity. However, the additivity of plant

behavior is not supported either theoretically or empirically. The conditions under

which production functions are additive are very restrictive and are rarely satisfied

in practice. I will demonstrate the inability of statistical aggregation in explaining

the observed pattern of productivity dispersion by running a counter-factual test,

where larger plants are simulated by aggregating an appropriate number of smaller

5



plants randomly chosen from the pool of all small plants. Comparing the results,

this approach fails mostly because productivity dispersion falls much faster in the

simulated plants than among the actual plants.

Recent works indeed suggest that market structure is a considerable force

in shaping the distribution of productivity. Product substitutability, market size

and trade possibilities have been show to account for a significant part of observed

productivity differences within and across industries. A producer’s profit depends

on both its efficiency of production and its demand structure. The plants that

survive are not necessarily those that are more productive, but also those that

face more favorable demand conditions. This is true especially when markets are

localized. I posit that when an industry faces localized markets, then market size

becomes an important parameter in the determination of plant behavior. In response

to limited demand, high productivity plants must choose low input levels to stay

profitable. This behavior, in turn, creates a productivity-size relationship similar to

the dashed line in Figure 1.1. As a result, the range of productivities at small-sized

plants increases dramatically. Only when demand becomes large or inelastic enough

can the top productivity plants grow large and make enough profit to justify their

growth. This assertion is supported by the empirical observation that productivity

dispersion falls at a considerable rate within localized market industries.

For my theoretical approach, I use a differentiated-product framework with

localized demand markets. The main implication of such an approach is that it can

endogenously create a bell-shaped relationship between a plant’s productivity and

its size defined in terms of a composite input factor. This relationship, in turn,

produces more productivity dispersion for plants with lower input levels. Allowing

for a distribution of markets with different sizes (say a segmentation of a national

market) helps to make the productivity distribution denser at any given input size

and to bring the results closer to reality.
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To test my model, I use data on Ready-Mix Concrete, an industry that fea-

tures both market localization and spatial product differentiation. In addition, the

homogeneity of its output helps me reduce productivity variations caused by dif-

ferences in taste and quality. Estimated moments from the data for the concrete

industry show bell-shaped relationships between employment size and productivity

that closely resemble model predictions. Using these moments, the model is then

calibrated and simulated to create productivity dispersions at different levels of em-

ployment. The model is successful in simulating productivity dispersions that fall

with employment size at roughly the same rate as is observed in the data. As a re-

sult, the gap between the actual and simulated dispersion curves is mostly uniform

and can be attributed to an additive variation caused by a combination of other

frictions affecting the industry.

To begin with, the next chapter reviews the related literature on productivity

dispersion and wage dispersion. Earlier works on the differentiated-product model

are discussed, and their relevance to my analysis is pointed out. The data and the

productivity specifications that will lead me through my analysis are then discussed

in Chapter 3.

In building the case for the role of market localization in forming productivity

dispersions, Chapter 4 looks at patterns of productivity dispersion in overall man-

ufacturing and across industries. Industry selection and statistical aggregation are

both tested for their explanatory power, and both are rejected for failing to offer

a convincing explanation of the observed behavior of productivity dispersion. The

dynamics of plants contributing to the observed distribution are then investigated

using transition matrices among productivity-size states, and particularly the high

persistence of both productivity and employment size among old plants is demon-

strated. I then shift attention to four-digit industries, and it is shown that the

relation between productivity dispersion’s and employment is very different across
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four-digit industries.

Market localization will be the focus for the rest of the dissertation. Using

average shipment distance for four-digit industries, it is possible to classify indus-

tries roughly into localized versus non-localized, with localized-market industries

being those whose market reach is most limited compared to the rest. Empirical

observations and more rigorous tests show that productivity dispersion falls at a

considerable rate within the localized-market industries and on average much faster

than in the industries with non-localized markets. Further tests actually show that

the degree of market localization is strongly related to the slope by which their

productivity dispersion falls with employment.

Motivated by the results of Chapter 4, Chapter 5 introduces a differentiated-

product model in which plants are subject to localized markets, i.e. any interaction

among markets is ruled out by assuming that the cost of trading among markets is

infinity. With differentiated products, plants will act as monopolists, making it easy

to define the shape and the size of the demand curve for each producer. Market

localization, in effect, creates a cap on how much output can be delivered by each

plant, depending on the size of the corresponding market. Less productive plants

will be unrestricted in deciding how much output they are going to produce. How-

ever, more productive plants with potentially larger output capacity than the cap,

and the inability to improve their demand by trading with other markets, have to

hire smaller input sizes to produce the output cap. This constraint keeps plants

smaller and smaller as their productivities get higher. In this way, the relationship

between productivity and input size will not be monotonic as in previous models,

but will take a bell-shaped form. The bell-shaped relationship , in turn, generates

significant productivity dispersion that varies by input size. The model is calibrated

and simulated with Ready-Mix Concrete and the similarity of outcomes is demon-

strated. Additional robustness tests are undertaken to demonstrate the insensitivity

8



of the model implications to structural change in the model composition and market

definition.

Finally, Chapter 6 summarizes the results of the study.
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Chapter 2

Literature Review

A host of works have documented the existence and the extent of productivity

dispersion within different industries. Bartelsman & Doms (2000) review several

works and emphasize the role of individual producers in creating productivity dis-

persion. Based on empirical observations, they argue that most of the observed

heterogeneity is real and not a result of measurement error. Relative productivi-

ties, wages and technology usage are shown to be highly correlated, pointing to the

fact that heterogeneities among plants, and not measurement error, are driving the

observed differences in productivities (Dunne, Foster, Haltiwanger & Troske 2000).

More recently, Haltiwanger, Lane & Spletzer (2000) find significant wage and pro-

ductivity dispersion among narrowly defined universes of restaurants and plumbing

in Maryland, US. At the lowest possible level of disaggregation, Chew, Clark &

Bresnahan (1990) look at plants belonging to the same multi-plant firm where the

same technology and the same input is used to produce the same output. The dif-

ference between the most and least productive plants is an astounding 3:1 ratio1.

They contemplate reasons why these plants do not converge in productivity as a

result of the managerial and information networks that are supposed to exist within

1As case study, they choose a food manufacturing chain with plants spread around different
cities in the US.
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establishments belonging to the same firm. They hypothesize that most of the man-

agerial decisions are decentralized and depend on the establishment-level quality of

manager-job matches. In close relation, Abowd, Kramarz & Margolis (1999) show

that productivity differences among firms can be attributed to heterogeneity in both

technology and labor skills, so that the idiosyncratic factor of productivity can be

partially accounted for by each.

However, the distribution of productivity is not static. The cross-sectional

distribution of productivity is constantly altered as establishments enter or exit the

market. Establishment-level productivity is also constantly churning as a result of

idiosyncratic productivity shocks. Some prominent works that address dynamics

of productivity in a theoretical context are those of Jovanovic (1982), Hopenhayn

(1992), and Ericson & Pakes (1995). In a general setting, plants enter the market

randomly drawing their productivities from the full range of a known distribution.

Plants do not observe their exact productivity ex post and are hit by productivity

shocks every period. Alternatively, they form a Bayesian estimate of how productive

they are from the past string of noisy observations and make growth or exit decisions

based on that estimate. More productive plants, or plants hit by a string of favorable

shocks, stay and grow. On the other hand, less productive plants, or those hit

by a string of unfavorable shocks, exit the market. These models differ in the

persistence and mechanisms of productivity shocks. Jovanovic does not assume any

shock persistence, while Hopenhayn argues that favorable or adverse shocks last for

longer periods of time. Ericson & Pakes add more structure to the shock mechanism

by attributing shocks to uncertain outcomes of technology investment.

Baily, Hulten, Campbell, Bresnahan & Caves (1992) were probably the first

to use data to look at the dynamics of productivity and their implications for pro-

ductivity dispersion. Together with Bartelsman & Dhrymes (1998), they provide a

very helpful insight into the evolution of an industry from an empirical perspective.
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Their papers find not only a wide range of productivity differences among four-

digit manufacturing industries, but also a rather time-invariant distribution. Most

notably, establishment-level productivities show considerable amount of persistence

over time, contrasting Jovanovic’s vision and supporting Hopenhayn’s idea of corre-

lated shocks. A high-productivity plant most probably stays high-productivity even

after several years, and the same can be said about other levels of productivity.

The importance of productivity dispersion is demonstrated by Haltiwanger

(1997) and Foster, Haltiwanger & Krizan (1998) who show that a considerable part

of aggregate productivity growth within industries is caused by micro-level reallo-

cation of resources from less productive producers to more productive ones. This

result suggests that policies targeted at reducing excess productivity dispersion can

be important. In a particular example, Olley & Pakes (1996) demonstrate that

during the deregulation of telecommunication industry in 1980s, a large fraction of

aggregate productivity growth in that sector occurred because of lower productivity

plants getting out of the market and their resources being reallocated to other plants

within the same sector.

This dissertation examines the relationship between productivity dispersion

and employment size in an effort to identify frictions that produce matching behavior

of productivity dispersion with what is observed in the data. Previous works has

shown that plants of different sizes behave differently. Hall (1987) shows that larger

plants grow more slowly and are less likely to fail, while Brown & Medoff (1989) show

that larger plants offer higher wages on average. Also larger plants generally have

their own research division and spend more on R&D activity (Acs & Audretsch 1991)

and have more sophisticated management and organizational structures (Churchill

& Lewis 1983, Greiner 1998). In the economic literature, however, there has not been

much discussion about how productivity dispersion should be shaped by employment

size. Davis & Haltiwanger (1991) provide some clue by showing that wage dispersion
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among manufacturing plants is significant at any employment level and falls with

employment for both production and non-production workers. My studies show that

a similar relationship holds between size and productivity dispersion.

In this study, market localization is used to build a non-monotonic relationship

between productivity and input size that will be the source of sustained long-run

productivity dispersion. In comparison, most economic models generate a mono-

tonically increasing relationship between productivity and input size in the absence

of shocks and uncertainties. For example, Bertola & Garibaldi (2001) and Bon-

temps, Robin & Van Den Berg (2000) use job matching and job search frictions,

respectively, to produce the monotonic relationship between productivity and size.

In presence of shocks and uncertainties, a limited distribution of productivity can

be sustained at each size level. Good examples of such frictions are costs of labor

adjustment (Hamermesh 1995) or costs of capital adjustment (Abel & Eberly 1996)

that cause firms within some range of productivity not to make any adjustment

decisions. However, as long as adjustment costs are independent of size and scale of

operation, there is no reason to believe that such frictions would generate different

productivity dispersions at different sizes.

From a different point of view, Churchill & Lewis (1983) and Greiner (1998)

study costs of reorganization and restructuring as firms and their establishments go

through several stages of growth. Fixed costs associated with transition between

two stages of growth can divide firms into two groups: those who pay the fixed cost

and grow beyond the barrier, and those who are unable to overcome the cost and

whose growth ends there. Another way of thinking about this is to assume that

plants must have accumulated a certain amount of “managerial capital” or must

have achieved a certain level of “marketing skill” to be able to pass this barrier.

Only recently has it been known that market structure can play a major role in

shaping productivity dispersion. Syverson (2003) noticed that product substitutabil-
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ity within an industry can affect the dispersion of productivity for that industry.

As products become more substitutable, it gets harder for less productive plants

to compete with more productive ones in price, forcing them to exit. With more

differentiated products, the less productive units can still fill a niche in the market,

and as a result, they get the chance to stay in the market and continue producing.

Substitutability, in this context, is not limited to product diversity, but can also be

caused by the degree of spatial differentiation, as is the case for the concrete industry

(Syverson 2004). Due to the high transportation cost of concrete, customers make

purchase decisions based on physical distances as well as prices. In this setting, the

lower productivity plants can still survive because it is costlier for customers close

to them to buy from farther plants, even if the prices are lower. The role of demand

market in industry selection is also emphasized in Foster, Haltiwanger & Syverson

(2008), who show that both profitability and productivity affect the selection pro-

cess. The plants that survive are not necessarily those that are more productive,

but also those that face more favorable demand conditions.

Several recent works have demonstrated that market size can also affect indus-

try conduct. Melitz & Ottaviano (2005) show that enlarging market size or lowering

trade costs reduce productivity dispersion of the operating firms by making compe-

tition more intense, thereby driving out the less productive firms out of the market.

Some empirical evidence for the effect of market size is provided by Berry & Wald-

fogel (2003), who show that for restaurants and daily newspapers, both the average

quality of service and the number of establishments rise with market size. Similarly,

Asplund & Sandin (1999) show the same relation between number of establishments

and market size for Swedish driving schools. The size of operating retail stores is also

shown to be positively correlated with their market size (Campbell & Hopenhayn

2002).

For my theoretical model, I borrow from both Syverson (2003) and Melitz
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& Ottaviano (2005) to build a differentiated-product model that can address both

plant behavior and market size by offering flexibility in the definition of production

function and consumption utility. This type of model is based on Dixit & Stiglitz

(1977), who studied optimality of product diversification within a social welfare

system. The model produces tractable solutions. Size and elasticity of demand can

also be easily incorporated into the model.
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Chapter 3

Productivity

Below, the Census of Manufactures (CM) is described in some detail as the

main source of data. I supplement and enhance the CM with other datasets to

provide complete sets of measures for production and market analysis. Measures

of productivity that will be the basis for analysis throughout this dissertation are

also defined below, and practical issues concerning those measures are discussed.

In particular the measures of productivity used in this dissertation are “revenue”

measures, computed using the deflated values of sales and cost-shares of input,

instead of physical inputs and output.

3.1 Data

The main source of data in this dissertation is the US Center for Economic

Studies’ Census of Manufactures (CM). McGuckin & George A. Pascoe (1988) pro-

vide a detailed discussion of how the CM is composed and conducted. Briefly, the

CM is conducted quinquennially in years ending with “2” and “7” and is the census

of about 360,000 manufacturing plants in the United States.

The unit of observation in the CM is plant, defined as an individual physical

location of production and identified by a Plant Permanent Number (PPN). This
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identifier is useful in building longitudinal links to study the dynamics of produc-

tivity and size.

The CM also provides information on plant observables and performance.

Some of the reported variables are the total shipment value, employment for produc-

tion and non-production workers and total hours worked, book values of machinery

and structures and costs of materials and energy. For each plant the four-digit

Standard Industry Classification (SIC), product class, and location (state-county)

are also reported in the CM. The location information, especially, enables me to

link each plant to its corresponding market for analyzing supply-demand relations.

I use the real values for inputs and output constructed by Chiang (2005). Chiang

uses the 4-digit deflators available from NBER/CES Productivity Database1 and

estimates real equipment and structure capital using a perpetual inventory model.2.

In a later stage, I separate young and old plants and specifically look at the

distribution of productivity within old plants. This will be useful in eliminating

the effect of births on productivity dispersion and focussing on long-run behavior of

plants. Jarmin & Miranda (2002) provide estimates for the age of plants in the CM

using the US Center for Economic Studies’ Longitudinal Business database (LBD).

These estimates are linked to the CM and are used for age classification. A small

fraction of assigned ages suffer from some estimation error, but age estimates are

merely used here to distinguish old plants from young ones, thus minimizing the

possibility of any major bias.

Some of the plants in the CM have missing or invalid state-county data. The

Standard Statistical Establishment List (SSEL) is used to correct the geographical

1Refer to J.Bartelsman & Gray (1996) for more details.
2The perpetual inventory model assumes that capital evolves in the following form

Kt = (1 − δt)Kt−1 + It,

where Kt is the real capital stock (equipment or structure) at time t, and It is the real capital
investment. δt is the depreciation rate of capital.
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information for those plants.

I use Total Employment (TE) defined by Davis, Haltiwanger & Schuh (1996,

Appendix A.3.1) as my main measure of employment size. The CM reports the

number of Production Workers (PW) in four quarters and the annual number of

Other Employees (OE) 3 for each plant. Total Employment for plant j is defined as

TEj = OEj +
1

4

4
∑

t=1

PWj(t). (3.1)

Here t is the index for quarters within a year. This measure corresponds to an

average annual employment size rather than a point in time estimate.

3.2 Selection Criteria

A weighted subset of about 60,000 plants from the CM also appear in the

Annual Survey of Manufactures (ASM). The weights are the reciprocal of the prob-

ability with which each plant is selected into the ASM. For most of the unweighted

plants in the CM, the majority of whom are plants with small employments, all data

other than employment size are imputed from administrative records. The quality

of these imputes is in doubt and can adversely affect the accuracy of statistics for

small plants. Since identifying those imputes is not completely obvious, I only use

the ASM plants for my analysis to avoid serious errors.

Some plants in the data have excessive sizes and are believed to be adminis-

trative errors. For that reason, I exclude plants larger than 50000 employees and

also those plants whose industry code is other than manufacturing from my analysis.

Also, to limit myself to well-defined industries, I drop plants belonging to any four-

digit SIC code ending in 9. These codes collect plants that could not be classified

under any other detailed classification in the same two-digit or three-digit industry

3Every other employee that is on payroll in the pay period including March 12.

18



code.

I also exclude plants belonging to the two-digit SIC code 21 (Tobacco) from

my analysis. Tobacco plants are disproportionately larger than their other manu-

facturing counterparts4. Because of that, tobacco does not seem to be an interesting

industry for size analysis.

Finally, only plants located in the US 50 states are kept in my dataset5. This

reduces the data set used for my analysis to 397 industries and a total of 202593

establishments belonging to the four census years included.

3.3 Measures of Productivity

I lead my study of productivity dispersion using revenue Total Factor Produc-

tivity (rTFP) based on a Cobb-Douglas production function. Since the CM lacks

plant-level information on the prices of input and output, the productivity measures

are computed using input cost shares and using deflated revenue as real output.

Some recent literature has emphasized the distinction between revenue productivity

and physical output productivity6.

In particular, revenue measures of productivity are driven not only by the

efficiency of production, but also by variations in input and output prices, and

differences in product quality and taste across plants. While revenue productivity is

generally intended to compare physical performance of different plants in the same

industry, when applied to industries with large diversity of products, the revenue

productivity is more a measure of revenue per unit input expenditure (Katayama et

al. 2003). A partial solution to this issue is often to do analysis on industries with

observed homogeneity of products, some of which are listed by Foster et al. (2008).

4Tobacco plants are about 6 times larger than an average manufacturing plant and about 7
times larger than a median manufacturing plant.

5Plants in other US territorial regions such as American Samoa,, Guam, Porto Rico, and Virgin
Islands were excluded, while plants belonging to Alaska and Hawaii are still kept in the data.

6See Katayama, Lu & Tybout (2003) or Foster et al. (2008).
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In general, to make the distinction clear, I use the term “revenue productivity”

to address the computed measures of productivity using real values of inputs and

outputs.

For a plant j belonging to industry i at time t, rTFP is defined as

rtfpijt = qijt − αh
i hijt − αeq

i k
eq
ijt − αst

i k
st
ijt − αe

i eijt − αm
i mijt, (3.2)

where lower case letters here label variables in logs. Here q is the nominal output

deflated by industry-specific price indices. h is labor input (total hours worked),

and keq and kst are the equipment and structures capital stocks, respectively. e is

energy and m is material input. The α coefficients are computed for each industry

sector using the cost share indices described by Chiang (2005). rTFP provides

a detailed measure of productivity taking into account various productive factors.

However, it produces relatively noisy estimates due to inaccuracies in, or in some

cases unreported, data on capital stock or other input factors. This problem is

more common with smaller plants, causing the level of measurement error to be

nonuniform across sizes.

For robustness, I also compute revenue Labor Productivity (rLP), which fol-

lows the standard definition

rlpijt = qijt − hijt. (3.3)

Again, lower case letters denote variables in logs. A small number of rLP estimates

are missing, mostly due to unreported total hours worked (hijt). I impute those

values by regressing the log of available hours worked on industry dummies, log of

total employment, and log of output size. With the CM data, the regression model

produces an R2 of 0.957, rendering the level of imputation noise insignificant and

making the imputes a practical addition. The imputed information, in turn, enables

me to estimate some of the missing rTFPs too, those missing only total hours. No
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further effort was made to impute other missing rTFP’s when estimates of capital

stock or energy and material were missing. This is partly due to the noisier nature of

reported capital, energy and material that causes most models to accumulate noise

when imputing, casting doubt on how well the imputed values can be trusted.

I also need both productivity measures, rTFP and rLP, to be comparable over

a range of industries and years. Hence, I construct and use residual productivities

by regressing logs of rTFP and rLP on year and year by industry dummies.

In comparison to rTFP, rLP is less detailed in assessing the contribution of

different inputs, but it is also less prone to measurement error because total hours

worked is easier to measure. It is also reported by almost all plants and easily

imputed for the missing ones. Over time, most plants show a strong correlation be-

tween their rTFP and rLP estimates. The qualitative similarity of the two measures

enables me to argue that the observed behaviors are not a result of measurement

error or selection bias on rTFP, but a reflection of an underlying real effect.
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Chapter 4

Employment and Productivity

Dispersion

Numerous supply-side and demand-side frictions are believed to be the reason

behind the observed range of productivities in the data. Most of these frictions

are sector specific. Subjecting disaggregate industries to different types or levels of

frictions can then explain the differences in the dispersion of productivity among

different industries.

In this chapter I look at the distribution of productivity within manufacturing

and then within four-digit industries in manufacturing. The goal of my study is to

investigate the existence of an empirical relationship between productivity disper-

sion and employment size. The relationships between average wage and size and

between average productivity and size are already well documented, with both av-

erage wage and average productivity rising with employment size. On the other

hand, existing literature is mostly silent as to whether there should be any long-run

difference in the distribution of productivity across different levels of employment

and if that relation should be influenced by certain frictions. Apart from models

of industry selection, in which selection trims the distribution of productivity as
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plants entering the market survive and grow, there is little reason a priori to believe

that the distribution of productivity must respond to the size and the scale of op-

eration. However, Davis & Haltiwanger (1991) offer empirical evidence that wage

dispersion among manufacturing plants responds to employment size. Particularly,

they observed that wage dispersion is large at any employment level and falls with

employment. These results hold for both production and non-production workers.

With Dunne et al. (2000) showing a strong link between the dispersion of wages

and that of productivity, it is reasonable to think that productivity dispersion will

also fall with employment. In fact, initial observations presented in this chapter are

consistent with this picture. I also show that simple explanations such as indus-

try selection and statistical aggregation are inadequate in explaining the range of

observed productivity dispersion and the associated behavior with employment size.

Further tests show strong persistence in productivity at the plant-level over

considerable lengths of time, consistent with prior work. In addition, a high level of

persistence in employment size is also observed. Furthermore, I find that the rela-

tionship between productivity and employment size does not seem to be monotonic

even in the long run.

In light of these facts, I search for sector-specific factors to explain the behavior

of productivity dispersion. In fact, at a more disaggregate level, industries can

be totally different in how their productivity dispersion changes with employment.

Though, productivity dispersion falls with employment for a majority of four-digit

industries, for some industries productivity dispersion rises with employment. I

explore the role of sector-specific factors, in affecting the slope by which productivity

dispersion falls with employment size. Emphasis will be given to testing the role of

market localization, and I find that localized-market industries show a distinctive

picture where productivity dispersion falls much faster with employment than in

other manufacturing industries.
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4.1 Pattern of Productivity Dispersion

To describe the relationship between productivity dispersion and employment,

I start by breaking the range of employment size into classes. I use 95-5 inter-

percentile range (denoted in the results by ∆) to compute productivity dispersion.

Compared to standard deviation and other inter-percentile ranges, the 95-5 range

keeps the fullest range of useful observations while effectively eliminating outliers,

especially at lower employment levels. The range is computed for log revenue pro-

ductivity within each class. The CM sample weights are used in all computations.

I am borrowing my size classification from Baily, E.J.Bartelsman & J.Haltiwanger

(1994) as listed in Table 4.1. This size classification has the benefit that it can

effectively capture the behavior of productivity dispersion on the full range of em-

ployment sizes. The table also shows the average employment and summary statis-

tics about revenue productivity within each class. Both rTFP and rLP are used as

measures of productivity. Also, for better visualization, productivity dispersions are

plotted in Figure 4.1.

The trend of mean productivity with employment size follows prior findings

that larger plants are more productive on average. Both measures of productivity

mostly agree on this. At the same time, productivity dispersion seems to show

a consistent pattern with employment size too. Two important points about the

relationship between productivity dispersion and employment size can be noticed

which are:

1. Productivity dispersion does not vanish at any employment level and remains

markedly large at any given employment size. For employment class 1-19, the

most productive and the least productive producers show a remarkable 12:1

productivity difference for rTFP 1. This range is much larger with rLP. For

1Productivity range is actually computed for 1 and 99 percentiles of productivity to prevent
outliers from inflating the range.
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(a)

(b)

Figure 4.1: Inter-percentile range of log revenue productivities by employment size
classes.
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Employment #Obs Emp log(rTFP ) ∆ log(rTFP ) log(rLP ) ∆ log(rLP )
1-19 48034 9 0.009 1.196 -0.022 2.129

20-49 36918 32 -0.013 1.133 -0.070 1.934

50-99 32711 70 -0.009 1.089 -0.003 1.966

100-249 43487 155 -0.010 1.031 0.087 1.975

250-499 23911 348 0.017 1.086 0.162 1.932

500-999 11328 681 0.042 1.097 0.269 1.905

1000-2499 4671 1477 0.070 1.073 0.313 1.880

2500-4999 1032 3350 0.087 1.031 0.494 1.978

5000-9999 375 6706 0.038 0.982 0.394 1.695

10000+ 125 16726 0.007 0.726 0.396 1.382

Table 4.1: Employment classes and summary statistics for each class.

plants with more than 10000 employees, the range of observed rTFP’s reduced

but is still a significant 4:1 ratio.

2. Both panels of Figure 4.1 imply that productivity dispersion gradually falls

with employment at most levels. At largest levels of employment, productivity

dispersion falls more rapidly.

Above all, there is a consensus between both measures of productivity about how

productivity dispersion behaves with employment size. At the same time, the ob-

served relationship is consistent with the results for wage dispersion and employment

size found in Davis & Haltiwanger (1991).

Employment is not the only way to measure plant size. Output size is also

an indicator of the scale of operation at plants. Commonly, a plant’s market share

of output is seen as a measure of plant’s influence on the market and the economy
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as a whole. Nevertheless, there are some difficulties interpreting results when using

output size instead of input size. Due to lack of information on physical output, out-

put is measured as the deflated value of shipments. Manufacturing plants are very

diverse in their product mix and when pooling across all manufacturing industries,

one must decide how much of the observed variation in productivity dispersion is

related to actual size differences and how much is the distortion caused by product

diversity. On the contrary, labor is relatively homogeneous across plants, so that

employment size is a relatively consistent way of comparing different plants, even

if those plants do not produce the same product2. Furthermore, Davis & Halti-

wanger (1991) did not consider output size, so there is no prior expectation of how

productivity dispersion should behave with output size.

To explore the behavior of productivity dispersion by output size, I proceed

as before by classifying the size of output and computing productivity dispersions

using the 95-5 inter-percentile range of log revenue productivity. The results are

listed in Table 4.2 and plotted in Figure 4.2. Again, the range of productivities

observed at any output level is very large. But productivity dispersion does not

seem to fall monotonically with output size. In fact productivity dispersion mostly

increases with output. The interpretation of these results is also clouded by the fact

that the shape of curves is rather different with rTFP and rLP. As explained in the

previous chapter, rTFP takes into account the effect of different input factors that

could capture the composition and texture of output in a better way than employ-

ment only. This detailed specification of production may explain the difference in

the relationship between productivity dispersion and output size between the two

measures of productivity.

Returning to the results with employment, the observed relationship for pro-

ductivity dispersion triggers speculation about the type and extent of frictions that

2In practice, accumulation of plant-specific human capital can still differentiated among different
groups of laborers.
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(a)

(b)

Figure 4.2: Inter-percentile range of log revenue productivities by output size classes.
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Output Output

(×1000) #Obs (×1000) log(rTFP ) ∆ log(rTFP ) log(rLP ) ∆ log(rLP )
0-0.5 21477 0.25 -0.035 1.381 -0.286 2.032

0.5-1 14517 0.73 -0.002 1.258 -0.148 1.772

1-5 49304 2.4 -0.001 1.095 -0.029 1.818

5-10 27841 7.1 -0.008 0.983 0.118 1.893

10-50 62493 22.0 0.015 0.946 0.296 1.964

50-100 24870 125.3 0.095 1.060 0.565 2.068

100-500 1218 685.3 0.164 1.210 0.819 2.267

500+ 872 2596.3 0.115 1.184 0.842 2.202

Table 4.2: Output classes and summary statistics for each class.

can generate such a pattern. Some obvious answers lie in industry selection and

statistical aggregation. In the next sections, I scrutinize each of these explanations

and find that neither industry selection nor statistical aggregation can account for

much of the decline in dispersion with size. Looking at the joint plant-level size

and productivity dynamics, much persistence is observed in both, irregardless of

how productive those units are. This leads me to consider longer-run explanations

for the observed pattern. I will then look at the effect of sector-specific factors,

especially market structure, in explaining the behavior of productivity dispersion.

4.2 The Role of Industry Selection

A natural way to explain the observed pattern of productivity dispersion is that

declining dispersion with size is an outcome of industry evolution, as first described

by Jovanovic (1982). In a Jovanovic type model, plants entering market feature

the full range of possible productivities. As plants get older, the selection process
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claims the low productivity plants and forces them out of the market. As a result,

the lower tail of the productivity distribution is trimmed out at larger employment

levels, leaving a narrower range of productivities that survive at those sizes. Under

such conditions, the pattern of productivity dispersion with employment size should

resemble the observed one. It remains to be seen how much of a fall in productivity

dispersion can actually be achieved by selection process alone.

To test the role of industry selection in shaping the behavior of productivity

dispersion, I compare the existing picture to that achieved when restricting my at-

tention to plants that are older than 6 years. This age restriction still provides me

with a rich enough set of plants, about three-quarters of all plants. This restriction

also eliminates births and dynamically volatile young plants, thus leaving me with a

more stable set of plants3. At the same time, the effect of deaths on my analysis is

not completely eliminated by setting this age limit, but it is certainly reduced sig-

nificantly, as older plants are much less likely to fail than their younger counterparts

(Evans 1987, Hall 1987)4. The effect of deaths on the distribution of productivity

will come into more light in the next section where plant level dynamics are studied

in more detail.

Figure 4.1 also shows productivity dispersion curves computed using only

plants that are at least 6 years old (the dashed lines) along with those computed

pooling over all plants. The discrepancy is clearly minimal, confirming that the

observed behavior of productivity dispersion by employment is mostly unaffected

by industry selection. This effect is shown to be the same when output size is used

instead of input size. Figure 4.2 is the depiction of this latter result.

3By Davis et al. (1996) classification, such plants are “middle-aged” to “old” plants.
4Hall (1987) shows that plants older than 6 years were about 30% less likely to fail than plants

younger than 6 years.
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4.3 Testing Statistical Aggregation

In this section, I test the role of statistical aggregation in accounting for the

observed slope by which productivity dispersion falls with employment. Declining

productivity dispersion by size raises the possibility of an aggregation effect. With

such a mechanism, larger plants are hit by a larger number of productivity shocks

arriving at each production unit within the plant. Assuming that these shocks

are imperfectly correlated and that plant’s performance is an employment weighted

mean of all these shocks, by the law of large numbers, larger plants should suffer from

less variance in their productivities and perform closer to their mean productivity5.

For this argument to be applicable in practice, it is required that plant behavior

be additive, i.e. it should be possible to think of a large plant as collection of several

smaller plants bound together. On theoretical grounds, Fisher (1993) shows that this

additivity holds only under very restrictive conditions on the production process.

To elaborate, assume output is produced using labor and capital as the only two

factors of production. In addition assume that labor is homogeneous across plants,

while capital is plant-specific. Leontief states the condition for possibility of capital

aggregation as:

Theorem 1 (Leontief) Let K be a vector of N variables K1, K2, . . . , KN . Suppose

f(., .) is a function of K and L, continuously differentiable with respect to K with

∂f(., .)/∂K1 > 0. Then the following two conditions are equivalent:

1. There exist functions g(.) and h(., .) such that f(K,L) = h(g(K), L).

2. ∂f(K,L)/∂Ki

∂f(K,L)/∂K1

is independent of L for i = 2, . . . , N .

For N plants, the above theorem says that their operation can be replicated

by a larger plant if the marginal rates of substitution among each capital input

5To be rigorous, no finite number of production unit should dominate the total production
within a plant so that the law of large numbers holds in this case.
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used by different plants are independent from the level of total employed labor. A

special production function with such a property is an additively separable function

in capital and labor such as

f(K,L) = ψ(K) + φ(L), (4.1)

and with the assumption on homogeneity of labor it should further be that φ(L) is

linear in L. Note that the role of intangibles such as human capital or worker-to-job

match quality is totally ignored in this setting. With those heterogeneities present,

the possibility of aggregation will be under even more strain.

In case technologies are different, Fisher finds the condition for possible aggre-

gation of N plants with production functions fi(., .), i = 1, . . . , N as

∂fi

∂K∂L
∂fi

∂K
∂2fi

∂L2

= g

(

∂fi

∂L

)

, (4.2)

where function g is the same for all plants. Notice that the functional form of (4.1)

satisfies this condition when g ≡ 0. Condition (4.2) is not generally very intuitive,

but under constant returns to scale production it can be interpreted in an economic

context.

Theorem 2 (Fisher) In a two factor, constant returns case, production can be

aggregated if and only if all technical difference is capital augmenting.

In other words, if differences among technologies and intangibles can be ap-

proximated by a capital augmenting effect, still there is some hope of production

aggregation. However, this condition limits the range of technical diversities that can

be present and modeled. The matter gets even worse when the production function

is not constant returns to scale. Heterogeneity of products and labor would make

the aggregation conditions even more complicated and restrictive. The bottom line
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is that an assumption of additivity of plant operation imposes very restrictive con-

ditions on how plants perform and produce. In practice, these conditions are hardly

ever satisfied and simulation of larger plants by bundling small units is not expected

to be realistic.

Bartelsman & Dhrymes (1998) also demonstrate the fallacy of aggregation in

an empirical light. They consider a measure of aggregate productivity obtained

by summing up contributions of input and output. They show that movements of

this productivity measure show large deviations from the mean of individual plant

productivity in the period 1974 to 1984. In particular, aggregate productivity shows

constant growth over this period while mean productivity is actually falling for much

of that duration. Adding to that, I further cement the impracticality of aggregation

by testing a model of statistical aggregation. As will be shown, the results suggest

that productivity dispersions that are a result of statistical aggregation fall much

faster with size than what is seen in the data and hit the bottom quickly, suggesting

that statistical aggregation is not responsible for the observed pattern.

I investigate statistical aggregation by performing a counter-factual experiment

in which I bootstrap distributions of larger artificial plants by aggregating actual

plants of 1-19 employees, representing the smallest units of production. 100 boot-

strapped distributions are created for each employment class. 95-5 inter-percentile

range of log-productivity is used again to measure dispersion for both actual and

simulated plants6. Results for both measures of productivity are shown in Fig-

ure 4.3. As the plots show, statistical aggregation results in a very steep decline in

productivity dispersion as employment size gets larger7. Statistical aggregation ba-

sically drives productivity dispersion to zero too fast to be a convincing explanation

6The percentiles from the bootstrapped distribution are shown to be asymptotic to the actual
ones (Hall 1992).

7This is not surprising as pure statistical aggregation predicts that the standard deviation must
fall at a rate 1/

√
l1, with l1 being the number of labor units employed at a plant
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for the observed slope8.

Using statistical aggregation to explain productivity dispersion also poses an-

other problem. As will be shown later, the behavior of productivity dispersion by

employment very much different across industries with dispersion declining both at

positive and negative slopes for different industries. Statistical aggregation does not

seem to be able to account for such wide range of differences.

4.4 Persistence of Size and Productivity

The dispersion of productivity at any given level of employment was shown

above to be large and negatively related to the employment level. Is this dispersion

at a given employment level caused by transitory short-run adjustment costs in labor

or capital? Or is it that there are quite a large number of plants that permanently

differ in their productivity and at the same employment level, causing the range of

productivity differences observed in the data?

It is certain that plant-level employment and productivity are not constant

over time. Productivity of a plant changes over time as a result of technology

change and exogenous shocks. Plants are commonly thought to adjust their input

sizes according to their observed productivity level: plants receiving favorable pro-

ductivity outcomes grow and move out of a particular employment level, and plants

getting hit by unfavorable outcomes downsize to move to a lower employment level.

As a result, size dynamics are expected to follow productivity dynamics closely. How

fast entry and exit into an employment level happen depends to a great extent on

how fast productivity changes.

In answer to the above question, dynamics of productivity have been stud-

8The counter-factual curve in Figure 4.3(d) does not converge to near zero as the number of
aggregated units goes up. This is perhaps due to presence of other productive factors in residual
rLP, hence leaving some covariation between productivities. Assuming uniform weighting of shocks,
the limit dispersion will be ζ in this case, where ζ is the covariance between idiosyncratic rLP’s.
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σlog(rLP )
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Figure 4.3: Comparing the actual dispersion of productivity by size (solid line) with
the counter-factual one (dashed line).
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ied by Baily et al. (1992) and Bartelsman & Dhrymes (1998) and shown to be a

rather low frequency process pointing to slow and gradual changes of productiv-

ity. These works study the transition among the productivity ranks in the context

of a discrete-time Markov process, with productivity rank normally defined as the

quintile or decile to which a plant’s productivity belongs. Given the estimated

transition matrix, productivity rank reversals and jumps to non-neighboring pro-

ductivity ranks are rarities, even in time periods as long as five or ten years. In a

more recent work, Foster et al. (2008) use a simple one-lag auto-regressive model to

estimate the persistence of productivity for continuing plants belonging to a subset

of manufacturing industries. The novelty of their approach is that they show high

persistence in physical productivity as well as in previously used revenue productiv-

ity. Their findings suggest a correlation coefficient of about 0.8 between plant-level

physical productivities of two consecutive years. Additional results from Baily et

al. (1992) show that the distribution of productivity is mostly time-invariant within

four-digit manufacturing industries, indicative of a long-run distribution rather than

a transient one.

It remains to see whether employment size is as persistent as productivity. My

conjecture is that because of adjustment costs, size changes should be less frequent

than productivity changes, so that employment should show more persistence than

productivity. How much size persistence is really present? If employment is infre-

quently adjusted, then the distribution of productivity at any employment level is

mostly composed of a steady subset of plants over fairly long periods of time. If

employment size is adjusted rapidly, then a larger fraction of that distribution will

consist of plants that are moving in and out. In turn, if most of the productivity

distribution at a given employment level is caused by a steady set of plants, a long-

run explanation for productivity dispersion and its relationship to employment size

is warranted.
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I explore persistence in employment and productivity by defining combined

size-productivity states. Comparing dynamics of each variable is then easily achieved

by looking at the implications of the combined dynamics along each dimension, be

it productivity or size. For this experiment, I want to reduce the effect of industry

selection among new plants, so that I can focus on the dynamic behavior of mature

plants. Therefore, in what follows, I limit my set of plants to those that are at least

6 years old. This eliminate births and early age volatilities. Figure 4.1 suggests that

the effect of such selection on the overall productivity dispersion is minimized.

Table 4.3 shows the distribution of plants that are older than 6 years in each

census year, listed jointly by productivity and employment. Productivities are bro-

ken into three classes using quartiles of rTFP from all plants in the manufacturing

sector9. Plants belonging to the top quartile are high-productivity, those belonging

to the lower quartile are low-productivity, and those belonging to the middle half

are medium-productivity. Likewise, employment is broken into three classes. How-

ever, different industries have different scales of employment. To make the scaling

uniform, I divide employment sizes in each industry by the 90th percentile employ-

ment size in that industry10. Then I proceed by assigning the top quartile of this

normalized employment as large, the bottom quartile as small, and the middle half

as medium-sized plants.

A look at the distribution for different years confirms that the distribution

of plants by employment and productivity is almost time-invariant. But more no-

tably, the distribution does not suggest a monotonic relationship between employ-

ment and productivity. In most models, more productive plants are supposed to be

larger in the long-run. Among old plants, this monotonicity seems to be present for

9As explained in the previous chapter, rTFPs are purged of their time and time by industry
effects.

10Ideally, employment in each industry must be divided by the maximum employment size in
that industry to make the scaling exactly uniform. But, in most industries, the maximum size
is normally exceedingly large and an outlier. Dividing by the maximum employment size would
cause serious distortion in scaling. Therefore I use 90th percentile employment size.
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Distribution
Size Productivity 1982 1987 1992 1997

Low 0.109 0.098 0.088 0.089

Small Medium 0.087 0.091 0.102 0.101

High 0.053 0.059 0.059 0.056

Low 0.138 0.149 0.154 0.155

Medium Medium 0.247 0.242 0.234 0.238

High 0.115 0.110 0.113 0.111

Low 0.062 0.060 0.064 0.068

Large Medium 0.126 0.129 0.127 0.119

High 0.063 0.062 0.059 0.063

Sum of Weights 114453 114713 134717 171206

Table 4.3: Distribution of plants by productivity and employment.

low- and medium-productivity plants. But monotonicity starts to break down for

high-productivity plants, whose average size seems to be lower than their medium-

productivity counterparts. Theoretically, I approach this paradox by emphasizing

the role of demand structure, where growth in size is dependent on favorable demand

conditions, which is potentially achieved through accumulation of enough intangi-

ble capital - e.g. managerial or marketing capital. Assuming that accumulation

of such capital comes through a very slow, costly, or uncertain process, then even

high-productivity plants may grow sluggishly. In the theoretical model of the next

chapter, I will show the influence of market size by looking at market localization

as a force that inevitably affects size growth in all plants whose products are traded

locally.
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To investigate the relative persistence of employment and productivity, I form

discrete-time transition matrices for the above defined joint productivity-employment

states between consecutive census years (five years apart). These matrices will fea-

ture transitions among 9 possible states plus exit. Entry is also included in the

transition table and is defined as younger plants turning 6 years or older during

the transition period. The availability of age estimates makes identifying entrants

a trivial task. I use only the CM weighted sample to track plants longitudinally,

because productivity measures are available and more reliable for those plants. But,

care must be taken when forming the transition probabilities: The weighted panel

changes every five years, so in two consecutive census years most of the smaller

plants are replaced. To avoid including spurious exits, I use the full CM panel for

the destination year. Plants are linked longitudinally by their PPN. Tables 4.4 to

4.6 show the estimated five-year transition probabilities starting from census years

1982, 1987, and 1992, respectively.

The exit rates mostly show a consistent pattern where the probability of exit

falls with both the level of productivity and the level of employment in all the tran-

sition matrices. This pattern is in agreement with the findings Evans (1987) and

Hall (1987). Dynamically, both productivity and employment size show much persis-

tence. Looking at the transition probabilities, size persistence is implied by diagonal

blocks having larger entries than non-diagonal blocks, especially among medium to

high productivity plants. Also, size growth is slow and gradual as very few plants

make the transition from small to large size or vice versa in a five-year period. The

same thing can be said about productivity, where large productivity changes are

not frequently seen in the data. At the same time, persistence of productivity is not

perfect as the block matrices are far from being diagonally dominant11. This latter

finding is consistent with the results of Baily et al. (1992) for manufacturing sector.

11Diagonal dominance means that the diagonal elements of the matrix are the strongest ones
and for a square matrix A = [aij ] is formally defined |aii| >

∑

j 6=i |aij | for each diagonal element.
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1987
1982 Small Size Medium Size Large Size

Size Productivity Low Medium High Low Medium High Low Medium High Exit

Low 0.18 0.14 0.03 0.07 0.07 0.02 0 0.01 0 0.48

Small Medium 0.16 0.24 0.05 0.10 0.18 0.03 0 0.01 0 0.23

High 0.09 0.20 0.09 0.07 0.19 0.06 0.01 0.01 0 0.28

Low 0.12 0.05 0.02 0.21 0.24 0.06 0.04 0.05 0.01 0.20

Medium Medium 0.07 0.07 0.02 0.15 0.34 0.07 0.03 0.07 0.02 0.16

High 0.06 0.07 0.06 0.10 0.26 0.17 0.02 0.05 0.05 0.16

Low 0.01 0.02 0.01 0.16 0.14 0.04 0.21 0.19 0.06 0.16

Large Medium 0.01 0.01 0 0.07 0.18 0.04 0.11 0.36 0.11 0.11

High 0.01 0 0 0.06 0.11 0.08 0.08 0.20 0.31 0.15

Entries 0.16 0.13 0.05 0.12 0.23 0.08 0.06 0.12 0.05 0

Table 4.4: Transition matrix of productivity-size from 1982 to 1987.
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1992
1987 Small Size Medium Size Large Size

Size Productivity Low Medium High Low Medium High Low Medium High Exit

Low 0.15 0.05 0.02 0.16 0.10 0.06 0.01 0.02 0 0.43

Small Medium 0.10 0.11 0.02 0.19 0.21 0.07 0.01 0.02 0.01 0.26

High 0.15 0.06 0.05 0.12 0.12 0.14 0.02 0.01 0.02 0.31

Low 0.04 0.03 0.01 0.22 0.15 0.10 0.09 0.06 0.02 0.28

Medium Medium 0.02 0.02 0.01 0.18 0.23 0.12 0.07 0.12 0.04 0.19

High 0.01 0.04 0.03 0.15 0.17 0.21 0.04 0.08 0.10 0.17

Low 0.02 0.01 0 0.09 0.11 0.05 0.27 0.19 0.07 0.19

Large Medium 0 0 0 0.07 0.09 0.05 0.14 0.39 0.15 0.11

High 0 0 0 0.05 0.06 0.06 0.10 0.22 0.39 0.12

Entries 0.06 0.09 0.01 0.15 0.17 0.11 0.12 0.17 0.11 0

Table 4.5: Transition matrix of productivity-size from 1987 to 1992.
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1997
1992 Small Size Medium Size Large Size

Size Productivity Low Medium High Low Medium High Low Medium High Exit

Low 0.11 0.12 0.02 0.13 0.11 0.02 0.01 0.01 0 0.47

Small Medium 0.10 0.18 0.03 0.12 0.16 0.05 0.02 0.01 0 0.33

High 0.12 0.20 0.05 0.12 0.13 0.10 0.01 0.01 0.01 0.25

Low 0.04 0.08 0.01 0.18 0.18 0.08 0.08 0.05 0.02 0.28

Medium Medium 0.03 0.04 0.01 0.20 0.23 0.08 0.08 0.11 0.04 0.18

High 0.05 0.05 0.02 0.18 0.17 0.13 0.06 0.08 0.07 0.19

Low 0.01 0 0 0.10 0.08 0.04 0.31 0.19 0.06 0.21

Large Medium 0.01 0.01 0 0.07 0.09 0.03 0.21 0.34 0.11 0.13

High 0 0 0 0.07 0.06 0.05 0.17 0.19 0.31 0.15

Entries 0.08 0.08 0.02 0.21 0.20 0.10 0.19 0.08 0.04 0

Table 4.6: Transition matrix of productivity-size from 1992 to 1997.
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A more detailed comparison is possible when I invoke properties of discrete-

time Markov chain to compute T [j|i] = [Tij ], i.e. the expected number of years a

plant spends in a size-productivity state j before exit conditional on having started

from state i 12. The advantage of using matrix T is that it provides an intuitive

way of understanding the speed and path of change for productivity or employment

or both together by expressing quantities in the better interpretable form of time

lengths. A shortcoming of this method is that it does not distinguish between

the time spent in one long spell or several shorter spells. But, at the same time,

this method overcomes short-period transitory shocks and helps to interpret the

dynamics of size and productivity in a more long-term context. The shortcoming is

also alleviated by the fact that transition matrices show the dynamics of size and

productivity to be slow, reducing the possibility of many spells. With this issues in

mind, the computed matrix for this example is

T [j|i] =





















































6.45 1.23 0.32 2.26 2.48 1.02 0.93 1.34 0.64

1.55 6.87 0.44 3.01 3.79 1.46 1.33 1.89 0.95

1.54 1.75 5.60 2.80 3.56 1.73 1.34 1.86 1.01

1.20 1.14 0.33 8.53 4.06 1.75 2.02 2.62 1.30

1.12 1.15 0.35 3.71 9.88 1.99 2.25 3.34 1.66

1.14 1.23 0.49 3.51 4.52 7.44 2.10 3.12 1.93

0.86 0.83 0.25 3.34 3.97 1.71 8.81 4.44 2.15

0.86 0.85 0.25 3.33 4.39 1.85 3.56 11.06 2.91

0.80 0.77 0.24 3.15 4.00 1.97 3.29 5.10 9.31





















































. (4.3)

The order of states is exactly as in the transition matrices (Tables 4.4-4.6). For

instance, the row 4, column 3 element provides the expected number of periods a

12It can be shown that T = 5× (I −S)−1, where I is the identity matrix, and S is the transition
matrix without the entry row and exit column. The multiplier 5 changes the results into annual.
I use the mean average of the three transition matrices for years 1982, 1987, and 1992 as S. More
details on the derivation of this formula can be found in Kemeny & Snell (1983).
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plant starting as a low-productivity medium-sized will spend as a high-productivity

small plant before exiting the market, which is about 4 months from the data.

The persistence of each productivity-employment state readily manifests itself in

the relatively large diagonal elements in (4.3), though the matrix is not diagonally

dominant. For a more detailed analysis, I look at persistence of size and productivity

separately. To look at persistence of size, I add up the expected length of time a

plant stays small, medium-sized, or large by each row of (4.3) to get

T [Size|i] =

Size

Small

Medium

Large









































































Small Medium Large

7.99 5.77 2.92

8.86 8.27 4.17

8.89 8.09 4.21

...................................

2.66 14.33 5.94

2.62 15.58 7.25

2.86 15.47 7.15

...................................

1.95 9.01 15.40

1.96 9.57 17.53

1.80 9.12 17.69









































































. (4.4)

Note that, as before, the first three rows are small plants of different productivities,

the next three are medium-sized, and the last three are large plants. For instance,

row 4 says that a low-productivity medium-sized plant will spend medium-sized for

an expected period of 14 years prior to exit, while it is expected to be small or large

for about 3 and 6 years, respectively. The total expected lifetime for this plant is

about 23 years, adding up the three numbers. With this notion, persistence of size

seems to be much stronger at larger employments, where plants spend as large-sized
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for an average of 17, which is almost 60% of their expected lifetime. But even small

plants spend eight to nine years with their small size, which is slightly less than

50% of their expected lifetime. Remember that only old plants are kept in the data,

therefore the implications refer to long-run behavior of plants and not the industry

selection.

For comparison, I will look at the dynamics of productivity in the same way.

Adding the expected number of periods by productivity class yields

T [Prod.|i] =

Prod.

Low

Medium

High









































































Low Medium High

9.64 5.06 1.98

11.75 7.81 3.38

13.00 9.25 4.11

................................

5.89 12.55 2.85

7.09 14.36 3.99

7.75 16.30 5.01

................................

5.67 7.17 8.34

6.75 8.87 9.85

7.24 9.86 11.51









































































(4.5)

In this case, for easier visualization, I rearranged states so that now the first three

rows are low-productivity plants of different sizes, the next three are medium-

productivity, and the last three are high productivity plants. Sizes are sorted from

small to large within each productivity class. For example row 4 here says that a

small medium-productivity plant spends about 12 years in the same productivity

class, while its productivity will be low or high for expected periods of 6 and 3 years,

respectively.
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The level of persistence in productivity demonstrated in (4.5) is seemingly

high and mostly comparable to the level of persistence observed in employment

size. High-productivity plants show less persistence in productivity than in their

size as they spend less than 50% of their expected lifetime as high-productivity.

The role is reversed in low-productivity plants, which now spend more than 50% of

their expected lifetime as low-productivity.

My overall conclusion is that both productivity and employment size demon-

strate fairly high levels of persistence within plants older than 6 years, underlining

the fact that, in the short to medium run, both productivity and employment can be

thought of as almost constant. In light of this evidence, the distribution of produc-

tivity observed at each employment level can be regarded as created by a fixed set of

plants in fairly long periods of time and treated as resulting from long-run behavior.

The next sections of this chapter rely on this conclusion and examine sector-specific

factors that shape the distribution of productivity at different levels of employment.

In particular, I study whether market localization can generate long-run plant-level

behavior consistent with the distribution already seen in Table 4.3.

4.5 A Cross-Industry Analysis

So far, I have focussed on the behavior of productivity dispersion in man-

ufacturing as an aggregate industry. However, given cross-industry differences in

technology and size, it would be interesting to know if there are differences in the

behavior of productivity dispersion across four-digit industries, and if these dif-

ferences can be related to industry characterizations. To measure how productivity

dispersion relates to the level of employment within a four-digit industry, I construct

the following sector-specific statistics. For industry i I define:

ri = ∆Large/∆Small, (4.6)
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where, as before, ∆ represents 95-5 inter-percentile range of productivity, for either

rTFP or rLP. Large refers to plants in the upper employment decile of their industry.

Similarly, Small refers to plants in the lower employment decile of their industry.

Very small values of ri correspond to industries for which larger plants exhibit much

less productivity dispersion than small plants. As ri grows towards 1, productivity

dispersion is expected to level out across small and large plants.

I compute ri for 397 four-digit manufacturing industries, using both rTFP

and rLP measures. For more comparability, the productivity measures are purged

of year effects within each four-digit industry. To visualize the shape and extent of

heterogeneity of r among industries, I compute the KDE estimate of the obtained ri

values. The estimated distributions with rTFP and rLP are plotted in Figure 4.4.

As pictures show, industries are very diverse in how their productivity dispersion

relates to the level of employment, with r ratios ranging from close to zero to about

1.6. About 75% of all industries have an r ratio less than 1, indicating that falling

dispersion by size is rather common among manufacturing industries but not quite

universal.

4.6 Role of Market Localization

Different sector-specific factors affect large and small plants in different ways,

potentially leading to long-run differences in the productivity dispersions of large

and small plants. In order to explain the pattern of productivity dispersion discussed

earlier in this chapter, I look at several sector-specific factors, and especially market

localization.

As described in the model below, market localization implies the possibility of

high-productivity small plants due to limited demand. These plants will contribute

to an increased productivity dispersion at smaller employment sizes. The idea that
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(a) Using rTFP

(b) Using rLP

Figure 4.4: KDE plot of ri.
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small market size may limit employment is echoed in the work of Campbell &

Hopenhayn (2002) in the case of retail industry. In contrast, it is reasonable to

think that industries with access to national or international markets, through trade

or as a result of low transportation costs, can benefit from serving a wide array of

demand markets, so that they are less constrained in choosing their employment and

output size. For example, the Honda LLC plant in Lincoln, Alabama, USA (with

population of 4577) targets a national market rather than the local one; therefore,

its size and scale of operation does not depend on its local market at all.

I estimate a model specifying the r ratio as a function of several sector-specific

factors that are potentially important determinants of the slope of the relationship

between productivity dispersion and the level of employment. The model has the

general form

ri = β0 +DiB +XiC + ǫi, (4.7)

where Di is a vector of dummies that classify the degree of market localization

in industry i, and Xi is a vector of other industry-specific controls which will be

described below in more detail.

To measure market localization for each sector, I use the US Transportation

Department’s 1997 Commodity Flow Survey (CFS). The survey provides informa-

tion on value, tonnage, ton-miles shipped and average distance shipped for disaggre-

gate commodities. Two different measures of market localization are extracted from

the survey: Average shipment distance in miles (DISTANCE) and value-per-ton

shipped in dollars (VALUE/TON). Commodities that are shipped shorter distances

on average are likely to be sold in local markets. VALUE/TON gives a cruder mea-

sure of market localization; in the presence of transportation costs, commodities

whose value-per-ton is lower are more likely to be shipped locally. The commodity

descriptions are matched to Standard Industry Codes (SIC) as closely as possible
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using US Dept. of Labor descriptions13.

To avoid possible match quality problems, each measure of market localization

is broken into classes. With shipment distance (DISTANCE) the classes are 0-100

(D1i), 100-300 (D2i), with 300+ as the control group. When using value per ton

(VALUE/TON) as measure of localization, the classes are 0-500 (D1i), 500-2000

(D2i), with 2000+ as control group.

Another influence on an industry’s market localization is the amount of expo-

sure to international trade. More export intensive industries have access to larger

markets. In this situation, lower productivity plants specialize in domestic markets,

while larger more productive plants expand their operation in response to trade

possibilities (Melitz 2003). I control for EXPINT defined as the ratio of the value of

industry exports to its output. Larger import penetration also signals greater trade

exposure. The variable IMPPEN is the ratio of the value of industry imports to the

sum of imports and the industry output. Both of these data are described in more

detail by Feenstra (1996) and Feenstra (1997). Both of these variables are included

as industry control variables Xi’s.

Other industry specific controls include variables that may affect small and

large plants differently, and therefore may increase (or decrease) the dispersion gap

between small and large plants. While I cannot control for all possible factors, I

include a variety of variables in Xi that might be important. Due to availability of

data, 1987 data is used for all controls. CLUSTER is an index that measures how

much the industry is geographically concentrated. Clustering is often associated

with knowledge or technology spillovers. In clustered industries, the technology and

experience of larger plants can quickly diffuse to smaller plants who are getting

free ride on this pool of knowledge. This effect can level out productivity and its

dispersion across plants irregardless of size. At the same time, by being able to

13Available at http://www.osha.gov/pls/imis/sic manual.html .
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offer higher wages, larger plants can steal high-skill workers from smaller plants,

adding to the volatility of productivity at small plants. Depending on which one

dominates, we can see a positive or negative coefficient. I use the Ellison & Glaeser

(1997) index of concentration, which combines both natural advantage and spillover

effects of each geographical location into one measure14. As a robustness check, the

R&D intensity of industries is also included. The variable RANDD measures the

ratio of R&D expenditure to total industry output. The data is taken from the

1987 NSF report. The idea is that in R&D intensive industries, plants are more

vulnerable to knowledge spillovers but can also depart as a result of their investing

behavior in new technologies. In this way, RANDD should be able to account for

some of the clustering effect.

When industries produce more diversified products, larger plants normally in-

crease their scale of operation not only by increasing their output, but by introducing

new varieties. Conversely, smaller plants specialize in just one variety, leaving them

more vulnerable to demand and taste shocks. Also in such industries, plants can

respond to demand shocks by changing their production variety. In this process,

introduction of each new product can be thought as a new entry with its sunk cost

(Bernard, Redding & Schott 2006), better afforded by larger plants. The index

DIVINDX measures the product diversity within an industry. I use the diversity

index defined by Gollop & Monahan (1991). This index has the advantage that it

accounts for diversity not only by looking at the number of different products in an

industry, but by how different the products are and how unequal the distribution

of products is across production lines. The PPC product code from the CM is used

here to distinguish different products in each industry.

Fixed costs of operation can also shape the distribution of productivity by

directly controlling the cutoff productivity - i.e. the lowest productivity plant that

14They list a table of clustering measure by 4 digit SIC code in their NBER working paper
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Variable Mean Std.Dev. Min. Median Max.

rLP r 1.004 1.316 0.147 0.763 22.33

rTFP r 1.173 1.090 0.047 0.888 9.488

DISTANCE (miles) 479.9 288.6 31 393 1090

VALUE/TON (×$1000) 12.3 28.5 0.006 3.023 218.3

EXPINT 0.096 0.128 0.0001 0.050 1.052

IMPPEN 0.150 0.158 2e-5 0.101 0.886

FIXEDCOST 0.273 0.113 0.043 0.251 0.818

SUNKCOST 0.003 0.007 3e-6 0.0008 0.073

CLUSTER 0.051 0.071 -0.013 0.027 0.480

DIVINDX 0.490 0.320 0 0.569 1.046

RANDD 2.619 2.518 0.400 1.200 7.500

Table 4.7: Summary statistics on regressor variables.

can survive and continue producing. I use the variable FIXEDCOST, defined in the

same way as Syverson (2003) as the ratio of non-production employment to total

employment. Non-production workers pose an overhead cost to the plant that is

paid every period. Sunk costs also may vary by market size and affect decisions to

introduce new product varieties. SUNKCOST here is measured in the same way as

in Sutton (1991). This measure is the output share of the median plant15 multiplied

by the ratio of capital to output in an industry, with the median plant representing

the minimum efficient scale of production.

Table 4.7 lists summary statistics for the dependent and independent variables.

The primary coefficients of interest are those on the dummies D1 and D2, cor-

15I use the mean output value of plants belonging to the 49th to 51st employment percentile of
an industry and divide it by total output in that industry.
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responding to industries with more localized markets. From earlier discussion, it is

expected that industries subject to localized markets will display a steeper decline of

productivity dispersion with employment size. This hypothesis can be put to test by

observing the ranking among the estimated coefficients for the D1 and D2 dummies.

Remember that D1 indicated the most localized industries, while D2 indicated in-

dustries whose market reach is farther. The control group is all the industries whose

markets are more or less globalized. Let B1 and B2 be the estimated coefficients

on D1 and D2 in each regression, respectively. Table 4.8 lists the estimated model

for market localization with and without other industry controls. The results are

estimated using both rTFP and rLP as measures of productivity. The first column

is the estimated model without any sector-specific controls, using DISTANCE as the

measure of localization. Column two shows the estimated coefficients for the full

model. The role of market localization reflects itself in negative estimated values

for B1 and B2. The slope by which productivity dispersion falls with employment

is found to be steeper when market reach of the industry is less than 300 miles.

Table 4.9 lists the same model but using VALUE/TON as the measure of

market localization. The model is still able to produce supportive results, though the

results are mixed. In this case, estimates are statistically less significant, and some

of the estimated values for B2 are positive. This is probably because VALUE/TON

is not as accurate as DISTANCE in specifying the extent of market reach.

I am also interested in inspecting the values of B1 − B2 to see if a monotonic

rank ordering exists for different degrees of market localization, i.e. if more local-

ization means a steeper negative slope of the productivity dispersion curve. With

B1 < 0 and B2 < 0, a negative value for B1 − B2 suggests such a monotonic rank

ordering. Table 4.10 lists the estimated values and their statistics for each of the

two localization measures. The estimated differences are all negative, with most of

them statistically significant. Together, these two measures of market localization
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Dependent variable : rrLP Dependent variable : rrTFP

(1) (2) (1) (2)
B1 -0.377 -0.278 -0.396 -0.529

(0.222)** (0.231) (0.172)** (0.179)**

B2 -0.348 -0.212 -0.255 -0.323
(0.170)** (0.177) (0.132)** (0.179)**

EXPINT -0.259 -0.323
(0.629) (0.137)

IMPPEN 1.707 0.748
(0.454)** (0.364)**

FIXEDCOST -0.363 1.498
(0.698) (0.542)**

SUNKCOST -1.591 4.875
(9.302) (7.219)

CLUSTER 0.277 -0.652
(0.996) (0.772)

DIVINDX -0.184 -0.229
(0.219) (0.171)

RANDD 0.017 -0.073
(0.033) (0.026)**

R2 0.016 0.060 0.020 0.061
(*) significance with P < 0.1. (**) significance with P < 0.05.

One-tailed test used for estimated coefficients for D1 and D2, two-tailed test used
for the rest.

Table 4.8: Table of coefficients for model (4.6) using average shipment distance as
measure of market localization. Standard deviations appear in the parenthesis.
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Dependent variable : rrLP Dependent variable : rrTFP

(1) (2) (1) (2)
B1 -0.279 -0.089 -0.351 -0.428

(0.199)* (0.210) (0.154)** (0.165)**

B2 0.107 0.406 -0.047 -0.103
(0.160) (0.176)** (0.124) (0.140)

EXPINT -0.302 0.133
(0.633) (0.499)

IMPPEN 1.989 0.766
(0.460)** (0.376)**

FIXEDCOST -0.681 1.237
(0.688) (0.541)**

SUNKCOST -4.165 5.085
(9.314) (7.316)

CLUSTER 0.723 -0.713
(1.005) (0.790)

DIVINDX -0.173 -0.217
(0.216) (0.171)

RANDD 0.056 -0.063
(0.034) (0.027)**

R2 0.008 0.072 0.014 0.049
(*) significance with P < 0.1. (**) significance with P < 0.05.

One-tailed test used for estimated coefficients for D1 and D2, two-tailed test used
for the rest.

Table 4.9: Table of coefficients for model (4.6) using value per ton shipped as mea-
sure of market localization. Standard deviations appear in the parenthesis.
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LP r model TFP r model
Localization Measure Coef. (1) (2) (1) (2)
DISTANCE B1 − B2 -0.029 -0.067 -0.141 -0.207

(0.255) (0.255) (0.198) (0.198)**

VALUE/TON B1 − B2 -0.387 -0.494 -0.304 -0.325
(0.223)** (0.223)** (0.173)** (0.176)**

(*) significance with P < 0.1. (**) significance with P < 0.05.

Table 4.10: Difference in estimated coefficients to test if the degree of market local-
ization ranks ri.

draw a picture where markets are ranked based on their level of trade: Among plants

operating in markets with less possibility of trade, the fall in productivity dispersion

from small to large plants is much deeper.

In addition to DISTANCE and VALUE/TON, I control in some specifications

for EXPINT and IMPPEN, both measuring trade exposure. Higher trade exposure

means larger markets and less constraint on the conduct of plants. In this case, the

gap between productivity dispersions of small and large plants should get narrower.

The estimated coefficients on IMPPEN, especially, are positive and significant, sug-

gesting that the slope of productivity dispersion becomes less steep as intensity of

trade increases.

Other industry controls produce less significant estimates, however, some inter-

esting results are displayed. Coefficients on fixed and sunk costs are more significant

with rrTFP as dependent variable. The estimated positive coefficients in this case

show that within industries that face higher entry or overhead costs, productivity

dispersion falls more slowly with employment. In support of this result note that

with higher sunk and fixed costs, only the more efficient plants will have the incen-

tive to enter the market, causing the dispersion of productivity to be almost the

same even after industry selection has taken place.

The estimated coefficient for CLUSTER is not significant and changes sign

when using rLP or rTFP. However, RANDD quantified some of the effects of industry
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concentration. The significant coefficient estimated on RAND is corresponding to

rrTFP as dependent variable and is negative. It can be argued that in research

intensive industries, the large plants generally invest in several new technologies

at the same time, or acquire them by buying smaller firms, causing them to be

more productive on average. Smaller plants, on the other hand, take more risks by

investing in only one technology and can be very diverse in their productivities as

a result. This difference in behavior can increase the slope by which productivity

dispersion declines from small to large plants, which seems to overtake the industry

clustering effect.

Finally, the estimated coefficient on DIVINDX is negative and significant with

rrTFP as dependent variable. This is the case where higher product diversity differ-

entiates among small and large plants, giving the high productivity plants the chance

to diversify their output in response to demand shocks, therefore, avoid large “rev-

enue” productivity shocks. Smaller plants that generally specialize in production

of one variety will be more affected by demand shocks and will be more dispersed.

The negative estimated coefficient on this variable signifies this fact.

To visualize this “localization effect” I recompute the array of productivity dis-

persions by employment size within different groups of plants. Using CFS, I choose

my localized-market industries as those who shipped their products on average no

more than 100 miles away. 18 industries are selected this way whose list can be

found in Appendix A. Figure 4.5 illustrates the behavior of productivity disper-

sion in localized-market industries using both rTFP and rLP. For plotting purposes,

plants are again grouped into employment classes, and the 95-5 inter-percentile

range was used to measure the range of productivities in each employment class

while eliminating outliers16. For comparison, the productivity dispersion curve for

aggregate manufacturing is also plotted along. All curves are normalized to start

16Employment size classes are again 1-19, 20-49, 50-99, 100-249, 250-499, 500-999, 1000-2499,
2500-4999, 5000-9999 and 10000+.
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from 1, so that slopes can be compared. As pictures show, productivity dispersion

falls more monotonically and at a considerable rate with localized-market indus-

tries. Again both plots with rTFP and rLP agree on this picture. Also, for future

reference, Ready-Mix Concrete (SIC 3273) is singled out and shown on the plots as

a particularly interesting industry and the benchmark for the empirical tests of my

forthcoming model.
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rTFP Inter-percentile Range

(a)

rLP Inter-percentile Range

(b)

Figure 4.5: The behavior of productivity dispersion by employment size for localized-
market industries.
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Chapter 5

A Model of Market Localization

From the analysis of previous chapter, market localization is correlated with

the magnitude of declining productivity dispersion by employment size. This chap-

ter introduces a theoretical framework that can support long-run productivity dis-

persion at any input size, in which productivity dispersion falls with input size as

observed in the data.

5.1 The Theoretical Model

The theoretical framework used here is the same as in Syverson (2003) and

Melitz & Ottaviano (2005). The theory is based on the differentiated product model

developed by Dixit & Stiglitz (1977). Plants are assumed to operate in localized

markets and to have monopoly power over their demand. The model has several

advantages for my analysis. First, market size and the elasticity of demand can

be incorporated into the model easily through the choice of utility function. Also,

the model is static and therefore tractable. Since I am interested in productivity

dispersion as a long-run equilibrium phenomenon, not as a transient process, a long-

run model is both simpler and more appropriate than a model with dynamics.

I add to the model a general single input constant or decreasing returns produc-
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tion function. This production function creates a connection between productivity,

output and input size. The analysis will be more complicated than the regular

framework, where measured productivity is summarized in production cost. The

payoff is that I obtain strong results. Most importantly, the relationship between

plant productivity and its input size is bell-shaped. This result, in turn, offers an

explanation for a declining pattern of productivity dispersion by input size.

5.1.1 Consumers

A market is composed of L identical consumers. There is a continuum of

producers, each producing a distinct variety of product indexed by j. The set of

available products in each market is J , which is a subset of total possible varieties

J∗. Let N be the measure of set J 1. As in Syverson (2003), the representative

consumer’s utility function is

U = y + α

∫

J

qc
jdj −
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2
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(
∫
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∫
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(qc
j − q̄)2dj,

(5.1)

where y is the numeraire consumption, qc
j is the consumption of each variety by

the representative consumer, and q̄c = 1
N

∫

J
qc
jdj. The utility function parameters

α, η, and γ are all non-negative. The utility function has a general quadratic form

with parameters α and η determining the consumption of each variety relative to

numeraire and γ determining the degree of distinction between varieties. For γ = 0,

there is no variety distinction and the consumer cares only about the aggregate

consumption. For higher values of γ, the consumer gains utility by smoothing

consumption across different varieties. Compared to other utility functions in the

differentiated products literature, the utility function of (5.1) has the advantage

1Equivalently, N will be a measure of plants operating in the market, which will be determined
endogenously by the equilibrium conditions discussed later.
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that it generates a linear demand curve whose elasticity varies by market size, and

hence is more suitable for my analysis.

Utility maximization yields the following inverse demand curve per consumer

for each variety

pj = α− ηNq̄ − γqc
j . (5.2)

Total demand for each variety is qj = Lqc
j , so each plant faces the following demand

curve

pj =
αγ + ηNp̄

γ + ηN
− γ

L
qj , (5.3)

where p̄ = 1
N

∫

J
pjdj. Note that (5.2) requires that all prices be bounded above

by α; consequently, we will have p̄ ≤ α. The ratio L/γ in (5.3) will have a direct

controlling effect on the elasticity of demand and many of the theoretical results

discussed in the next sections.

5.1.2 Producers

Plants produce distinct products facing the demand curve (5.3). Upon entry,

each plant makes a random draw of its productivity φj from a known cumulative

distribution G(φ) with support φ ∈ [0, φM ]. There is also a continuous distribution

of markets with different sizes. Plants incorporate randomly in a particular market.

The cost of trading with other markets is assumed to be infinity; thus plants do not

face the possibility of accessing other markets to broaden their demand.

Plants use a single composite input factor xj for production and choose their

input size optimally to maximize profit2. The rental price of input w is assumed

exogenous and constant within each market and also across markets. Section 5.5.1

examines the effect of price variations across markets and shows that most of the

model implications are robust to even a large amount of price variation. Plants

2xj summarizes the contributions of several production factors in a single quantity.
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produce according to a production function of the form

qj = φjx
ν
j , (5.4)

where ν is assumed to be a fixed value in the range (0,1]. A revenue-based measure of

productivity will be useful later to compare the theoretical results to their empirical

counterparts and is defined as

θj =
pjqj
xj

, (5.5)

Each plant faces a profit function of the form

πj = pj(qj)qj − wxj − f, (5.6)

where f is the fixed cost of operation, which is the same for all plants and all

markets. Plants are profit maximizing, and the quantity of output that maximizes

profit for each plant is the solution to the first order condition

2γ

L
qj +

w

νφ
1/ν
j

q
1

ν
−1

j =
αγ + ηNp̄

γ + ηN
. (5.7)

The solution to (5.7) is not trivial in general due to non-linearity. However, the set

of possibilities can be narrowed down to simplify further analysis.

Proposition 1 There exists a unique positive solution to (5.7).

All proofs are in Appendix B. In the coming sections, I assume that qj is the

unique optimal output produced by each plant j.

5.1.3 Free Entry Equilibrium

In equilibrium, plants must be indifferent between entering the market or

staying out. If the fixed cost of entering the market is fE , then the equilibrium
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requires that the expected profit be equal to this entry cost to prevent an influx of

new entry. In presence of fixed costs, only plants operating above a certain cutoff

productivity φ∗ will be profitable and will stay in the market. Put formally, it must

be that
∫ φM

φ∗

πj(φ)dG(φ) = fE . (5.8)

Plants operating at the cutoff productivity φ∗ are earning zero profit, i.e.,

πj(φ∗) = 0. (5.9)

The equilibrium conditions (5.8) and (5.9) together with (5.6) and (5.7) de-

termine an implicit relation between cutoff productivity φ∗ and model parameters.

As one observation, note that φ∗ is always less than φM , since φ∗ = φM is a clear

contradiction to (5.8) when fE > 0.

Finally, N can be determined endogenously when φ∗ is known. Finding a

closed form solution for N has proved to be difficult, although this does not limit

my ability to assess the model’s implications for productivity dispersion. Later, in

Section 5.4, I look at a CRTS production function under which I have closed form

solutions for all endogenous variables in terms of parameters. For that reason, I

defer further discussion of N to that section.

5.1.4 Analytical Results

In this section I seek to describe the plant behavior within a market under the

assumption that markets are localized. Comparative statics are also presented that

define the distribution of input size and productivity within each market and across

markets. For now, without loss of generality, I focus on a single market.

Taking the partial derivatives of (5.7) with respect to φj provides the first
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general result

∂qj
∂φj

=
Lwq

1/ν−1
j

2γν2φ
1/ν−1
j + (1 − ν)Lwφjq

1/ν−2
j

> 0, (5.10)

Proposition 2 More productive plants produce more. However, there is an upper

limit on output size that increases with L.

The existence of an output cap is a direct result of prices having to be non-

negative and bounded by α in (5.3).

Lemma 1 Revenue productivity is increasing in physical productivity, that is dθj/dφj >

0.

In the absence of demand and productivity shocks, revenue productivity is a

monotonic and one-to-one transformation of physical productivity. This transfor-

mation consists of a scaling (non-uniform unless ν = 1) and a shift. This result

proves useful, because any qualitative model implications with respect to physical

productivity can be immediately generalized to revenue productivity too. For this

reason, in the coming propositions, I will refer to both measures of productivity

simply as “productivity”.

Continuing with the analysis, I combine (5.4) and (5.7) to get the following

relation between input and output size:

xj =

(

qj
φj

)1/ν

=
ν

w

(

αγ + ηNp̄

γ + ηN
− 2γ

L
qj

)

qj . (5.11)

Taking partial derivatives in (5.11) with respect to φj and using (5.10), it can be

shown that










∂xj/∂φj ≥ 0 if qj ≤ L(αγ+ηNp̄)
4γ(γ+ηN)

,

∂xj/∂φj < 0 Otherwise.
(5.12)
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Proposition 3 Under the localized market assumption and when γ > 0, the rela-

tionship between input size and productivity is bell-shaped 3.

Proposition 3 follows from continuity of the solutions plus (5.12). This result

is a major departure from standard models, for it asserts that the input size need

not grow monotonically with productivity. In my model, input size inside a market

goes up only to the extent permitted by demand limitations. The maximum value of

input size provides some measure of “size opportunities” in that particular market.

Using (5.11) and (5.12) this maximum value is

xmax =
Lν

8wγ

αγ + ηNp̄

γ + ηN
. (5.13)

Taken at face value, (5.13) suggest that the peak of the bell-shaped curve should

get higher and move to the right as markets get larger, though the endogeneity of N

and p̄ require some caution when making such statements. The simulation results

in Sections 5.4.2 and 5.5.2, nevertheless, are clearly consistent with this assertion.

Given Proposition 3, the bell-shaped relationship between input size and pro-

3This characteristic is not a result of using the utility function (5.1) that yields a linear demand
curve. It is easy to show that the unimodality of the curve holds under much weaker assumptions.
To show this, let p(qj) be a general demand curve with p′(.) and p′′(.) its two first derivatives with
respect to qj . Writing the first order conditions, and after some algebra, gives the equation that
specifies input size as

xj(qj) =
ν

w
qj

(

p′(qj)qj + p(qj)
)

.

The slope of this curve is

x′
j(qj) =

ν

w

(

p′′(qj)q
2
j + 3p′(qj)qj + p(qj)

)

.

Assuming the boundedness of the demand function and its derivatives, it is obvious that x′
j(0) > 0.

Further assuming that p′(.) < 0 and p′′(.) is bounded above by a small enough value (possibly posi-
tive), then x′

j(qj) becomes negative at some output level and stays negative afterwards. Because of
the monotonicity of the relationship between productivity and output, the same deduction equally
applies to the relationship between productivity and input size.

The assumptions on p(.) state that the unimodality property is preserved if demand is not
discontinuous at any point and its elasticity does not increase too fast. With discontinuities or
large increases in demand elasticity, demand size expands very fast with small changes in price, so
that the plants operating at an incrementally lower price enjoy a surge in demand and are inclined
to have larger sizes as a result. Under such conditions, the size-productivity curve might exhibit
positive monotonicity or might have more than one maximum.
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ductivity is no surprise. With output bounded from above, more productive plants

are able to produce the limit output by hiring smaller inputs. The more productive

they get, the less amount of input they need to produce that output (Figure 5.1). It

is also useful to repeat that the localization of markets is essential to Proposition 3.

This assumption makes it impossible for the more productive plants to improve their

demand by trading with other markets, so that market size becomes a parameter

in determining the plant performance. The following proposition characterizes the

behavior of plants when their markets become globalized.

Proposition 4 As L → ∞, the relationship between input size and productivity

converges to a monotonic increasing relationship.

Figure 5.2 shows the limit behavior of plants when L goes to infinity for both

constant and decreasing returns to scale production functions. With decreasing

returns in the production function (ν < 1), the relationship between input size and

productivity converges to a strictly increasing exponential relation. With constant

returns production function (ν = 1), since the marginal productivity is not affected

by size, the input sizes all go to infinity in the limit, rendering a not so strictly

monotonic relation. In both cases, market size does not play a role in the plant

performance anymore. Note that as γ → 0, the implication is not the same as

Proposition 4. With γ = 0, the products are perfectly substitutable, and the most

productive plant in market can offer the lowest price and take over the whole market.

Because of that, we shall have p̄ = 0 and N = 0 and a degenerate distribution of

size and productivity in the market 4.

The bell-shaped relationship between productivity and input size in localized

markets is what allows this model to generate higher productivity dispersion at lower

levels of input size. For any given market, the gap between productivity differences

closes as the level of input goes higher, and at the maximum input level of (5.13) the

4Notice that with a continuous measure, the measure of a singleton is zero.
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Figure 5.1: The bell-shaped relation between (a) output and productivity and (b)
input and productivity. The arrows demonstrate the range of productivity dispersion
in small and large plants.
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Figure 5.2: The limit behavior of plants when L→ ∞.

dispersion goes to zero (Figure 5.1). Later, in Section 5.4, a continuum of markets

of different sizes is used to generate a dense productivity distribution at any given

input size whose dispersion still falls with the level of input5. On the other hand,

at any given output size within a market the productivity dispersion is zero. This

is a direct consequence of the monotonicity of the relationship between output size

and productivity. However, when markets of different sizes are present, productivity

dispersion by output size can still be generated.

The cutoff productivity φ∗ is another variable in this model that affects the

distribution of productivity within a market, especially for plants with lower input

sizes. Therefore, it is useful to know how the cutoff productivity varies by market

size. Let q∗ and x∗ be the output and input size for the plant operating at cutoff

productivity φ∗. With some algebra, it can be shown that

∂φ∗

∂L
=

γ
L2

(

γ
L

2ν−1
ν
q∗ + f

νq∗

)

∫ φM

φ∗

q(q − q∗)dG(φ)

wx∗

ν2φ∗

(

f
q2
∗

+ (2ν − 1) γ
L

)

∫ φM

φ∗

qdG(φ)
. (5.14)

5Unimodality of the bell relationship is not essential in this discussion. As long as the range of
productivities at the top of the curve is lower than its base, a declining productivity dispersion by
input size can still be produced.
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Proposition 5 When ν ≥ 0.5, then ∂φ∗/∂L > 0.

Proposition 5 is in line with the findings of Melitz & Ottaviano (2005), who find

that in larger markets tougher competition drives out the less productive plants and

raises average productivity in the market. It can also be shown that ∂φ∗/∂γ < 0,

consistent with the finding of Syverson (2003) that more product substitutability,

or equivalently smaller γ, leads to higher cutoff productivities.

Summarizing, (5.12) and (5.14) together provide two instruments by which

distributions of productivity across markets can be analyzed and compared. The

generated patterns of productivity dispersion in the later sections of this paper will

be a direct application of both of these findings. As the last comment, it should also

be emphasized that the restriction 1 ≥ ν ≥ 0.5 merely helps to resolve ambiguous

signs on the comparative statics. The model outcome is by no means limited to

decreasing or constant returns to scale. In fact, because of the continuity of all

relations, the propositions and model implications still hold in some neighborhood

of ν = 1, which also includes regions of increasing returns to scale. In practice, there

is little reason to believe that industries’ return to scale is much beyond 1.

5.2 Data Considerations

5.2.1 Data on Plant Performance

I test the model implications by looking at the Ready-Mix Concrete industry

(SIC 3273) as an industry that shows high degrees of market localization and (geo-

graphic) product differentiation, two conditions required by the model to generate

a falling productivity dispersion by input size. Due to high costs of transportation,

concrete plants do not ship their output very far compared to other manufactur-
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ing industries, therefore they qualify as localized market6. The physical output is

mostly homogeneous. As a result, the magnitude of revenue variation due to qual-

ity or taste differences is largely minimized, leaving mostly physical productivity to

drive differences in revenue productivity across plants. Finally, concrete is a highly

differentiated industry not by product variety, but by spatial diversity (Syverson

2004). Due to high costs of transportation, customers make purchase decisions not

only based on efficiency of production but also based on physical distance. As a

result of this diversity, a wide range of productivities are present in the data for my

analysis.

I am including data on concrete plants from the 1982, 1987, 1992, and 1997

CM panels. I use the weighted CM subsamples for my analysis and estimations,

which provides me with a total of 3970 sample concrete plants. I also use the total

number of concrete plants operating in a certain region from the complete list of

CM records. For descriptive results, to make productivities comparable over a range

of years within the concrete industry, I use residuals from regressing productivity

values on year dummies. I then readjust the mean value of residual productivities

so that it is equal to the original mean.

5.2.2 Demand Market

Due to availability of detailed data and required crosswalks, I use Core-Based

Statistical Areas (CBSA) as markets for concrete plants. A CBSA is a functional

region around an urban center. The CBSA system includes a mix of micro- and

metropolitan areas in the United States, providing me with a sufficiently large range

of market sizes7. Economic activity is mostly concentrated within a CBSA, making

6The US Bureau of Transportation Statistics’ Commodity Flow Survey reports that concrete
plants shipped their products to an average radius of 64 miles in 1993 and 82 miles in 1997.

7US Office of Management and Budget’s definition of a metropolitan area is an urban area with
population of at least 50,000. Micropolitan areas are those with population between 10,000 and
50,000.
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it a suitable candidate for market analysis, though the degree of market isolation

can still depend on the physical proximity of CBSA’s.

The demand for concrete in a particular is measured as the population of

construction workers (SIC 15– to 17–) aggregated to the CBSA level. Syverson

(2004) discusses the suitability of such a definition by arguing that the construction

industry is the main consumer of ready-mix concrete, while costs of concrete is

a small share of construction costs. This makes the demand measure reasonably

with respect to productivity shocks to concrete. Construction employment is taken

from the County Business Patterns aggregated to the CBSA level and matched by

CBSA-year8.

There are 667 markets that match to my existing plants. The minimum market

size is 48 construction workers (Yazoo, Mississippi) and maximum market size is

327,397 construction workers (New York, New York). More detailed statistics for

this market definition can be found in Table 5.7 where I will compare different

definitions of market sizes.

5.3 Plant Behavior in Localized Markets

The theoretical model predicts that market localization will affect the behavior

of productivity dispersion. Under market localization, the relationship between

productivity and input size was shown to be bell-shaped, a fact that will be put

to test in the data. In addition, I will also estimate the relationship between the

number of operating plants and market size, something left mostly unexplored above

because of model complexity. These estimates will provide me with moments that

I will use in Section 5.4 to pinpoint the model parameters and simulate results.

8The employment data for some of the counties is suppressed to protect confidentiality of the
data. I follow Syverson’s method to impute those data. Basically, since the number of employers
in several different size groups is being reported, I will multiply the number by mid point of the
size range and sum up to generate the impute.
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Because physical productivity estimates are unavailable from the data, most of the

remaining discussions rely on revenue productivity θ. Both measures rTFP and rLP

are used when appropriate for robustness.

In the coming empirical results, instead of measuring a composite input, I will

measure the input size of plants by their total employment (TE) as defined by Davis

et al. (1996, Appendix A.3.1). Employment is easily observed for each plant and

has reasonably low measurement error compared to estimates of a composite input.

In defense of this shift, note that if the relative intensity of productive factors is

assumed constant within an industry, the optimal choice of each input factor will

be a constant proportion of employment size, so that the composite input will be

a linear function of employment. This enables me to treat the production function

(5.4) as if it depended on labor only.

5.3.1 Employment and Productivity Relationship: The Out-

line

In this section, I seek a basic description of the relationship between produc-

tivity and employment using data on concrete plants, and I further investigate the

effect of market size on the shape of the relationship. At this stage I impose as little

structure as possible, relying on visual investigation of plant concentration along

the employment and productivity axes. These observations are helpful in motivat-

ing the more structured estimation results that will follow. What I am showing

here is the region where plants are mostly concentrated. This is done by detecting

the edges of the scatter plot and plotting them in the form of an outline9. Edge

detection is a popularly used method used in machine vision to recognize objects

9Due to the Census Bureau’s requirements to protect the confidentiality of individual data, it
is not permissible to show the scatter plot in its raw form without enough safeguards.
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in a picture10. In its simplest form, it is implemented by detecting areas where the

intensity of pixels changes abruptly, which I use to detect the points forming the

edges in a scatter plot where the less populated area borders the more populated

area 11. The estimated edges are still rugged and noisy because of outlier effects. To

further suppress individually recognizable information, I smooth the edges by limit-

ing the first derivative of edge curvature and then passing the edge points through

an averaging filter12. The final result is illustrated in Figure 5.3. Plots with both

rTFP and rLP clearly show a bell-shaped area of concentration for concrete plants.

The effect of market size is also put to test by detecting the scatter area for plants

belonging not to the full range of market sizes but to the range of market sizes up

to 3000 construction workers. Figure 5.3 shows that the detected scatter area for

plants belonging to smaller markets still resembles a bell-shape (a smaller one) and

covers the lower section of the whole scatter area. These are the plants tied to more

limited markets, hence they are smaller in size. This is consistent with the general

expectation and with the model’s predictions in particular. Similar to the model,

the data shows that the bell-shaped area grows upwards as a result of expanding

markets.

With this preliminary evidence about the behavior of productivity and employ-

ment in the concrete industry, the next section will use a more structured approach

10Ziou & Tabbone (1998) offer an extensive introduction to popularly used methods and discuss
other practical issues concerning edge detection.

11My approach works in this way: I first divide the productivity-employment plane into a
350×250 grid-map and flag the existence of any plant in each cell area as the intensity. Then
I use Sobel’s mask to estimate partial derivatives of pixel intensity in x and y (productivity and
employment) directions and use the following as a measure of total intensity change

∆ =
√

∆2
x + ∆2

y,

where ∆x and ∆y are the estimates of partial derivatives. Edges are detected by picking points at
which the absolute value of the estimated derivative is larger than some threshold.

12The shape of my averaging filter is

x̃i = 0.3xi−1 + 0.4xi + 0.3xi+1,

where x̃i is the filtered value and i indexes productivity points when sorted in ascending order.
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to estimate a smooth bell-shaped relationship in the data and to investigate the

effect of market size in more detail.

5.3.2 Employment and Productivity Relationship: Semi-

Parametric Model

I will estimate a smooth relationship between productivity and employment in

the data by fitting a semi-parametric model. The relationship between productivity

and employment is characterized precisely in the theoretical model. Hence, I will

use a polynomial of pre-determined degree in logs of variables to approximate that

relationship. However, the effects of time and market size are more obscure in the

model and will be approximated non-parametrically by fitting thin-plate splines

(Moussa & Cheema 1992)13. The general form of my model is

log(ljt) =

P
∑

p=0

αp log(θjt)
p + h(Lj , t) + ǫjt, (5.15)

where ljt and θjt are respectively the employment size and the revenue productivity

for plant j at time t. Lj is the market size for plant j. To minimize the compu-

tational burden and to reduce running time down to a reasonable length, market

size is classified by its log being rounded to the nearest 0.5. P is the degree of the

polynomial term used in the model.

The estimates are computed using a penalized least-squares function that min-

imizes the following function with respect to αp’s and a proper choice of the function

h(., .)

Sλ =
1

sjt

∑

j

ǫ2jt + λJ2

(

h(L, t)
)

. (5.16)

13Moussa & Cheema (1992) survey sets of different basic functions that can be used for this pur-
pose and describe the fitting method. Splines are preferred because they can produce a better and
smoother fit using lower orders when compared to polynomials. The fit is done by approximating
the non-parametric part of the relationship by a linear sum of basic functions up to a finite order.
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Figure 5.3: The outline of the productivity-employment relationship in the data.
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J2

(

h(., .)
)

is a measure for the roughness of the fit and is normally defined as the

integral of the square of the second derivative of h with respect to its arguments.

More formally

J2

(

h(L, t)
)

=

∫

∞

0

∫

∞

0

[

(

∂2h

∂L2

)2

+ 2

(

∂2h

∂L∂t

)2

+

(

∂2h

∂t2

)2
]

dLdt (5.17)

In practice, approximations are used to compute the above integral, so that compu-

tational complexity is kept within reasonable bounds. λ is the penalty parameter,

whose choice is a trade-off between accuracy of the fit and its smoothness. s is the

number of observations used. My actual choice of value for λ proved not to be very

crucial as the estimation result remains practically unchanged for values of λ within

a wide range from 0.1 to 10. I report results when I set λ equal to 1.

The choice of polynomial degree in model (5.15), however, seems critical. A

small value of P will not capture enough curvature, and high values of P will add in

noise and cause instability of estimates. In an experimental stage, I added polyno-

mial powers one by one, until the estimates started to become unstable. The most

stable predictions are achieved when P = 4.

To demonstrate the estimation results, output was produced for three repre-

sentative market sizes: 1000, 10000, and 100000. Care was taken that the sizes form

a geometrical series, so that the results provide a clue as to whether the market-size

effect is linear or non-linear in the data. It is useful to recall that in the theoretical

model market size affects the shape and peak of the bell non-linearly.

The estimated curves are shown in Figure 5.4. The plots are in agreement with

expectations. First, the relationship between productivity and employment within

the concrete industry is of a bell-shaped form. Second, the effect of market size is

shown to be consistent with model prediction, where plants are on average larger and

the width of the bell is wider in larger markets. Third, scaling market size affects the

77



results non-linearly: Going from market size 1,000 to 10,000 increases the peak size

by 28%, while going from market size 10,000 to 100,000 causes a 48% increase (using

the plots with rTFP). This non-uniformity of scaling will be revisited in the later

simulations of the theoretical model where it will be shown that doubling market

size again causes the peak plant size to more than double. It is also noteworthy

that both measures of productivity are mostly similar in their predictions, raising

confidence in the estimated shape and behavior of the productivity-employment

relationship.

5.3.3 Number of Plants per Market

The empirical relationship between the number of plants and market size is

another moment that will be needed in Section 5.4 to estimate the complete set of

model parameters. So this section is dedicated to the empirical estimation of such

a relationship. The theoretical model of Section 5.1 does not provide an analytic

result about the relationship between N should and market size L. In practice,

larger markets offer larger demand and should have the capacity to accommodate

more production plants. This fact seems especially likely under decreasing returns

production, where the production function intrinsically favors a large number of

smaller operators. Asplund & Sandin (1999) offer evidence for a positive effect of

market size on N .

In the data, each plant can be associated with a market size through its geo-

graphical link. The total number of plants operating in that market can be found

from the complete CM panel. A penalized least squares method is again used to

produce a smooth non-parametric relation between the number of plants and market

size in the data. The relation is of the form

nm = v(log(Lm)) + ζm. (5.18)
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Figure 5.4: Estimated productivity-employment relationship in the concrete indus-
try.
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Figure 5.5: Estimated number of concrete plants as a function of construction em-
ployment.

Herem indexes each CBSA, and nm is the number of plants operating in marketm in

log levels. L is the population of construction workers in the corresponding market.

The value of the penalty parameter λ is set to 10 in my preferred specification, and

the result is shown in Figure 5.5. The picture suggests that larger markets are host

to a larger number of plants, as expected. As will be shown in the simulation results

below, the theoretical model can replicate the same relationship very closely under

both constant and decreasing returns to scale production.

5.4 Numerical Simulation

The first-order condition (5.7) simplifies to a linear equation when ν = 0.5 or

ν = 1. In these two special cases, closed form solutions for output and input size are

obtainable, and the solution to each case constitutes an extreme case of the model
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behavior14.

At the same time, existing evidence suggests that most industries produce

with close to constant returns to scale (Basu & Fernald 1997). Concrete is one such

industry, with an estimated returns to scale of 0.996 (Syverson 2004). Therefore,

I treat the case ν = 1 with special attention, while deferring some analysis with

ν = 0.5 to Section 5.5.2 as a robustness check. Also, as in the previous section, the

size of plants are expressed in total employment.

5.4.1 Estimation Methodology

Simulating the theoretical model entails estimating a set of parameters Λ =

{α, η, γ, φM , w, fE, f} that minimizes the weighted squared error between the data

provided moments and the simulated moments from the model. Section 5.3 provided

two sets of data moments that can be of use in the estimation: (1) the relationship

between employment and productivity, and (2) the relationship between number of

plants and the market size.

Before describing the estimation method, it is useful to note that the profit

function (5.6) can be written in the following form15

πj =

(

f

(1 − ν)q∗
− γ

L

2ν − 1

1 − ν
q∗ −

γ

L
qj

)

qj − w
q
1/ν
j

φ
1/ν
j

− f. (5.19)

From (5.9) and (5.19), q∗ depends only on φ∗ and the reduced set of parameters

14Finding the behavior with these two values is sufficient to picture the range of behaviors
generated by ν changing from 0.5 to 1. Proposition 1 states that the solution is unique and does
not bifurcate as ν changes. The solution having a single path as ν changes, combined with the
continuity of (5.7) with respect to ν, guarantees that for two values ν1 and ν2 that are close enough,
their corresponding bell-curve solutions resulting from the model for the same market size will be
close too. In more technical terms

∀ǫ2, ||E(φ, L; ν2) − E(φ, L; ν1)|| < ǫ2 ⇒ ∃ǫ1, |ν2 − ν1| < ǫ1,

where E(φ, L; ν) is a bell-curve solution to the model using ν for a given L and the full range of φ.
15Please refer to the Appendix B for details of how to derive this relation.
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Λ0 = {γ, φM , w, fE, f}. It then follows from (5.8) that φ∗ is implicitly a function of

Λ0. As a result, both output and input size can be written as functions of q∗(φ∗),

φ∗ and Λ0, making it easier first to estimate the reduced set Λ0 using a weighted

nonlinear least squares method, and then use the estimated parameters to pin point

α and η 16. However, the dependency of φ∗ on Λ0 creates an identification problem:

I need to know φ∗ to estimate Λ0, but to compute φ∗ the parameter set Λ0 must be

known. At the same time, the unavailability of data on physical output productivity

makes separate identification of some parameters impossible when φ∗ is not known.

These facts, together, make it impractical to use standard nonlinear least squares

methods to estimate the parameters.

Instead, I use a recursive method of simulated moments estimator described

in the following algorithm.

Algorithm 1

1. An initial Λ0 is assigned,

2. Using Λ0, φ∗ is computed and simulated moments are produced as a function

of revenue productivity θ (not φ).

3. Using a search method, a new parameter set Λ0 is found that reduces the sum

of squared errors between the empirical and simulated moments17.

4. Steps 2 and 3 are repeated until the change in parameter set falls below an

acceptable tolerance18.

16α and η enter the performance measures in a certain form easily replaceable by (B.13) from
Appendix B.

17I use a pattern search with trust region adjustments to perform this search. Due to presence
of implicit and complicated functions, finding analytical gradients and Hessians proved to be non-
trivial. Gradient methods using numerical gradient computations with BFGS adjustments also got
stalled. Alternatively, pattern search is completely insensitive to such irregularities.

18I use 10−12 as tolerance bound.
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The form of the weighted nonlinear least squares problem is

min
Λ0

(Edata − Ê(Λ0))W0(E
data − Ê(Λ0))

′, (5.20)

where Edata is the vector of estimated employment moments from Section 5.3.2

stacked for four market size classes. I use the relationship estimated for rTFP data

in Figure 5.4(a). Ê is the vector of corresponding simulated moments generated by

the model when using Λ0. The moments are simulated using revenue productivities

for each market class separately and plugging the average market size in that class

as L into the model. In this way, the dimension of vectors Edata and Ê is the same.

W0 is a weighting matrix that governs the importance of different moments in

setting the parameters. The estimated productivity-employment relationship from

the data are estimated to be smooth, with much of the noise already filtered out,

therefore I will use uniform weighting. The only irregularity in the shape of the

estimated moment happens when rTFP is larger than 100. This behavior seems to

be a result of truncation error caused by limiting the power of estimated polynomial.

This reasoning is affirmed by the fact that the scatter plot of Figure 5.3 does not

show any mass of observations with large employment and rTFP higher than 100.

For this reason I chose a diagonal W0 in which all diagonal elements are 1 when

rTFP is less than or equal to 100, and zero otherwise. This weighting effectively

prevents the truncation error in the upper tail of the estimated moment to affect

the parameter estimates. As a result, employment size is fitted using 57 points and

for three market sizes, providing a total of 171 points for my parameter estimation.

In the second stage, I take the estimated Λ0 from (5.20) and estimate the

parameters α and η, using nonlinear least squares to minimize the following error
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function

min
α,η

(Ndata − N̂(Λ))W1(N
data − N̂(Λ)) + λ1N̂(Λ)I[N̂(Λ) < 0]N̂(Λ)′. (5.21)

Here, Ndata is the vector of the number of plants operating at each market size. I

use data from Figure 5.5(a), which provides me with 48 point estimates of N over

L. N̂ is the simulated number using the complete set of parameters Λ, where Λ0 are

the estimated values from stage 1 and are fixed. N̂ is estimated for the market size

classes from the data, so thatNdata and N̂ are forced to have the same dimension. W1

is the weighting matrix, and, because of the smoothness of the estimated moment,

I use identity matrix that weights all estimates uniformly. The extra term in (5.21)

is a penalty term that forces the simulated vector N̂ to have non-negative values.

λ1 is the penalty parameter and I[ ] is the diagonal matrix of indicator functions.

By imposing a large penalty parameter λ1, I make sure that the estimated values

for α and η will not result in a negative simulated number of plants for any market.

In my exercise, I set the value of λ1 to 1000.

5.4.2 The Constant Returns Case

With a CRTS production function (ν = 1) a closed form solution to (5.7) can

be found as follows

qj =
L

2γ

(

αγ + ηNp̄

γ + ηN
− w

φj

)

. (5.22)

Using (5.22), the optimal profit can be computed and used in (5.9) to solve for the

cutoff productivity, which yields

φ∗ =
w

αγ+ηNp̄
γ+ηN

−
√

2γf
L

(5.23)
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A feature of the above cutoff productivity is that it summarizes the effects of en-

dogenous variables N and p̄ on the plant behavior. As discussed before, all plant

performance measures can be expressed as a function of φ∗ and model parameters

as follows:

qj =
Lw

2γ

(

1

φ∗

− 1

φj
+K

)

, (5.24)

pj =
w

2

(

1

φ∗

+
1

φj

+K

)

, (5.25)

lj =
Lw

2γφj

(

1

φ∗

− 1

φj

+K

)

, (5.26)

πj =
Lw2

4γ

(

1

φ∗

− 1

φj
+K

)2

− f, (5.27)

N =
2γ

ηw







α− w
φ∗

− wK

1
φ∗

−
(

1
φj

)

+ 1
2
K






, (5.28)

K =
2

w

√

γf

L
.

with lj being the employment size (replacing xj). Also, using the definition (5.5),

the revenue productivity θj can be expressed as

θj =
w

2

(

1 + φj

(

1

φ∗

+K

))

. (5.29)

Obviously, θ is a function of the input price w and the market elasticity of demand

embodied in φ∗ and K, as well as the efficiency of production φ. The analysis of Sec-

tion 5.1.3 together with the definition of K show that larger L or smaller γ decrease

the coefficient multiplying φj in (5.29). That, in turn, causes revenue productivity to

under-represent the efficiency of production, especially in large markets. The disper-

sion of revenue productivity is actually affected by the scaling effects of w, φ∗ and K,

as well as by φ∗ cutting the distribution from below. Since the under-representation

affects larger markets more seriously, the dispersion of revenue productivity should
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fall faster with employment than its physical productivity counterpart.

Also, the revenue cutoff productivity θ∗ can be found by replacing φj with φ∗

in (5.29) so that

θ∗ = w + φ∗

√

γf

L
. (5.30)

In (5.30), w is the cutoff revenue resulting from the input price. The second term

is caused by presence of fixed costs and changes with market size. However, at this

point, it is not clear if the relationship is positive or negative. Later analysis of this

section reveals that φ∗ increases with market size at a lower rate than
√
L, which

causes θ∗ to slowly decline with market size.

Upon entry, plants draw their random productivity from a variant of the Pareto

distribution, whose cumulative distribution function is

G(φ) =
log(1 + φ)

log(1 + φM)
. (5.31)

This distribution has a number of advantages for my analysis. As in the data, it

implies a low probability of high productivity draws. Also, this functional form

reduces the computational burden and improves the convergence of solutions. With

this productivity distribution, the free entry equilibrium condition (5.8) can be

solved for φ∗ as a function of L, w, γ, f , and fE, as elaborated in Section 5.4.1.

Using (5.26) and (5.28) to generate simulated relationships between size and

productivity and between market size and the number of plants, the model parame-

ters are estimated as shown in Table 5.1. The goodness of fit is tested by computing

the corresponding standard deviation of the residual for each estimation stage sep-

arately, displayed in the same table. Figure 5.6 presents over-imposed plots of the

fitted curves and the data moments to demonstrate the degree to which simulation

fits the data.

With these estimated parameters, I simulate my model for several market sizes
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Figure 5.6: Graphical demonstration of goodness of fit with CRTS production func-
tion.
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α η γ φM w fE f
2.724 7.030 1.178 704.69 1.133 21.137 5.649

Stage 1 estimation error σerror,1 = 4.615
Stage 2 estimation error σerror,2 = 0.424

Table 5.1: Parameter estimates with CRTS production function.

ranging from 100 to 327,397, which covers almost all the market sizes observed in the

data19. Figure 5.7 illustrates plant behavior at different productivities and market

sizes. The simulated values for a selection of market sizes are listed in Table 5.2.

The bell-shaped relationship between employment and both revenue and physical

output productivity and the effect of market size is demonstrated in plots (a) and

(b). As expected, in larger markets, plants can get larger and are more productive

on average. The cutoff productivity and number of plants per market are illustrated

in Figure 5.8. As an auxiliary observation, it is interesting to note that both φ∗

and N grow at a slower rate than L 20, although this is somehow due to the fact

that the analysis of Section 5.1.3 proves that φ∗ will eventually hit an upper bound

and therefore cannot grow too fast. Below, it will be convenient to approximate

the φ∗ and N relationships by functional forms a1L
b1 and a2L

b2 . Applying a simple

regression model to the simulated data, I estimate

φ∗ = 0.229L0.413, N = 0.092L0.451. (5.32)

It is also interesting to note that as a consequence of the bell-shaped relation-

ship between employment and productivity, the correlation between employment

and productivity is not necessarily positive as in other economic models. Note that

the linearity of (5.29) causes the correlation between employment size l and revenue

productivity θ within a market to be identical to the correlation using physical pro-

19Using very small market sizes caused convergence problem when computing the cutoff produc-
tivity. Hence, I am starting the market sizes from 100, above the minimum market size observed
in the data.

20Notice that the horizontal axis is in log space.
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Figure 5.7: Productivity-employment relationship with CRTS production function.
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Figure 5.8: Cutoff productivity and number of operating plants with CRTS produc-
tion function.
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L φ∗ N corr(θ, l)
100 1.473 0.4 -0.469

1,009 4.060 1.9 -0.398
5,721 8.449 4.6 -0.290
57,781 21.502 13.3 -0.050
327,397 41.550 27.8 0.212

Table 5.2: Cutoff productivity, variety measure, and size-productivity correlation
by market size.

Population of
construction workers #Obs corr(rLP,TE) corr(rTFP,TE)

Any 3970 -0.122 -0.031
≤ 1st Qrtl. 1348 -0.233 -0.084
≥ 3rd Qrtl. 883 -0.141 -0.048

Table 5.3: Correlation between productivity and employment from the data.

ductivity φ, therefore only the correlations with revenue productivity are reported.

Table 5.2 shows several negative correlations between employment and productivity

for the smaller markets, although the correlation increases toward positive values

as markets get bigger. This is expected, since larger markets give more productive

plants the chance to be larger and still be profitable, hence driving the productivity-

employment relationship toward a more monotonic one. To correspond these results

to those coming from the data, Table 5.3 lists correlations between rLP and Total

Employment (TE) and between rTFP and TE. First row pools plants across con-

crete industry. To see the effect of market size on the correlations, the next two

rows list correlations when selecting plants belonging to the lower and upper quar-

tile of worker population, respectively, representing small and large markets. All

correlations listed in the table are negative, and the correlations seem to increase

from small to large markets.

The simulated productivity dispersion curves are numerically obtained by per-

forming a Monte Carlo simulation of productivity and market size draws. Market

sizes are drawn from a uniform distribution in the range 100 to 327,397. Draws

of φ are independently taken from the distribution (5.31). 100,000 random draws
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of productivity and market size are taken from the resulting joint distribution and

productivity dispersions are computed as ranges of productivity for both φ and θ

and by size classes spaced logarithmically. The curves are illustrated in Figure 5.9

along with the actual rTFP dispersion by employment size in concrete industry. To

compare the slopes, the simulated curves are normalized so that they start from the

same point as the actual curve. The simulated curve shows a very steep decline at

the starting point, where productivities can range from cutoff all the way to the

maximum productivity, causing a very large dispersion. After that, the actual and

simulated curve almost follow the same slope, suggesting that market localization is

able to account for most of the declining productivity dispersion by input size. This

fact leaves a uniform additive variation, probably caused by technology or other

supply-side frictions, to account for the gap in between the two curves.

5.5 Robustness Tests

So far the model of Section 5.1 has proven successful in mimicking the behavior

of productivity dispersion by employment for the concrete industry very closely. In

this section, several different tests are run to check the robustness of model’s results

to various changes in its setting. More specifically, the effect of wage variations,

decreasing returns to scale, use of output as measure of plant size, choice of market

size definition, and finally, the degree of market localization will be studied and

discussed.

5.5.1 The Effect of Wage Variations

A fixed wage within a market is justified in the absence of worker skill het-

erogeneity when homogeneous workers are mobile within a market. In equilibrium,

wages will level across producers to make workers indifferent between staying with
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Figure 5.9: Plots of productivity dispersion by employment size with CRTS produc-
tion function.
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their current employers or changing jobs. However, ruling out worker mobility across

markets creates different labor supply and demand curves in markets of different

sizes. The most likely outcome is wages that vary by market size. The sensitivity

of the model behavior is tested by letting wages vary with the logarithm of market

size as shown below.

w = w0(1 + ∆w log(L)), (5.33)

where w0 is an offset wage and ∆w is a non-negative variation factor. The effect

of this wage variation on the performance of plants can cause changes in cutoff

productivities and the number of operating plants across markets as the cost of

operation now varies from small to large markets. That will be the main effect

causing differences in how productivity dispersion falls with employment.

In the data, the smallest market is Yazoo, Mississippi with a population of 48

construction workers, and the largest one is New York, New York with a population

of 327,397 construction workers. The US Bureau of Labor Statistics (BLS) reports

the 2006 mean annual wage of production workers in Yazoo and New York areas

to be $27,880 and $31,430, respectively21. This amounts to a roughly 13% wage

difference. I will simulate the model with a 5%, 15%, and 25% maximum wage

difference to cover a range of possible variations. Note that from (5.33) the total

percentage difference in wages across markets (∆w) relates to ∆w in the following

way:

∆w =
∆w

log(Lmax) − (1 + ∆w) log(Lmin)
. (5.34)

I am using the number of construction workers from Yazoo and New York as Lmin

and Lmax, respectively. The offset wage w0 is chosen so that the average simulated

wage across markets weighted by number of plants in each market is equal to the

previously estimated w. It is important to note that the number of operating plants

21BLS reports wags for metropolitan areas only. The closest metropolitan area to Yazoo is
Jackson, whose average annual wage is used here.
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Variation of Wages Estimated ∆w Estimated w0 Min. Wage Max. Wage
5% 0.006 1.059 1.083 1.137
15% 0.018 0.929 0.995 1.144
25% 0.032 0.819 0.920 1.150

Table 5.4: Estimated wage variation parameters.

itself is determined endogenously by wage and market size. Therefore, I take a two

step recursive approach to get an estimate for w0. For simplification, I assume that

the distribution of market sizes is uniform which helps me formulate the step 1

estimate of w0 as

w0

∫ Lmax

Lmin

(1 + ∆w log(L))N(L)dL = w

∫ Lmax

Lmin

N(L)dL. (5.35)

Using N = a2L
b2 as an approximation to N(L), (5.35) can be solved analytically to

yield

w0 =
w
(

LmaxN(Lmax) − LminN(Lmin)
)

LmaxN(Lmax)
(

1 + ∆w

(

log(Lmax) − 1

b2+1

))

− LminN(Lmin)
(

1 + ∆w

(

log(Lmin) − 1

b2+1

)) .

(5.36)

The initial values of a2 and b2 are picked from (5.32) and w0 is computed from (5.36)

for a given ∆w. In step 2, the estimated w0 is used to find the relationship between

N and L when the wage varies according to (5.34), and new estimates of a2 and

b2 are computed that are plugged back into (5.36). By repeating these two steps

recursively, the method converges very fast and provides a stable estimate of w0.

For the three levels of variation used in the test runs, the estimated values for ∆w

and w0 are listed in Table 5.4.

Having a full description of the wage equation, I can examine the effect of

different levels of wage variations on the results. Figures 5.10 and 5.11 illustrate the

results for a CRTS production function. The model shows very strong robustness

to even large differences in wages. Since operating in larger markets is now costlier

than operating in smaller markets, the cutoff productivity is expected to rise more
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sharply with L. This is observed in simulation results, except that the difference

is not remarkably large. The same thing happens for the relationship between the

number of plants and market size, where wage variation does not seem to play

a significant part. The differences are more magnified when the dispersion of φ

is plotted against employment. However, the effect on the dispersion of θ is not

significant, so that, except at the starting point in the curve, the simulated curve

still has a slope close to the empirical one. Thus, the predictive power of the model

does not change when wage variation is added.

Note that, similar to the wage, the theoretical model assumes that fixed cost

of operation f is also constant within and across markets. The effect of varying fixed

cost across markets will act in the same way as varying wage. Higher fixed costs in

larger markets raise the cutoff productivity and drive some plants out of the market.

Therefore, I conjecture that the impact of varying fixed costs is similar to that of

varying wages, and for that reason, I will not proceed with separate simulation of

varying fixed costs.

5.5.2 The Decreasing Returns Case

The first-order condition (5.7) can also be solved analytically when ν = 0.5.

Industries are not believed to operate with such low returns to scale production.

But, with the continuity of solutions as ν changes, the behavior of the industry with

ν = 0.5 ensures that the model implications are still in place when return to scale

are slightly below 1. With ν = 0.5 the solution to (5.7) is

qj =
αγ + ηNp̄

γ + ηN

Lφ2
j

2(γφ2
j + Lw)

. (5.37)
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Figure 5.10: Cutoff productivity and the number of plants per market when wage
variations are present and with CRTS production function.
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Figure 5.11: Plots of productivity dispersion by employment size when wage varia-
tions are present and with CRTS production function.
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Plugging (5.37) into the profit function (5.6) and some algebraic simplification of

the profit function yields

πj =
1

2

αγ + ηNp̄

γ + ηN
qj − f. (5.38)

The cutoff productivity is found by setting the above profit function to zero. Define

A2 =
4f(γφ2

∗
+ Lw)

Lφ2
∗

, K =
Lw

γφ2
j + Lw

.

Again, all the plant performance measures can be expressed as a function of the

cutoff productivity embodied in A :

qj =
ALφ2

j

2(γφ2
j + Lw)

, (5.39)

pj =
A

2

(

1 +
Lw

γφ2
j + Lw

)

, (5.40)

lj =
A2L2φ2

j

4(γφ2
j + Lw)2

, (5.41)

πj =
fLw(φ2

j − φ2
∗
)

φ2
∗
(γφ2

j + Lw)
, (5.42)

N =
2γ(α− A)

ηA(1 − K̄)
, (5.43)

where l is the employment size. Using the definition (5.5), the revenue productivity

θj can be expressed as

θj =
γ

L
φ2

j + 2w. (5.44)

Looking at (5.44), again it is clear that a higher elasticity of demand (lower ν)

results in an under-representation of productivities in revenue terms. Therefore,

using revenue productivities will result in steeper productivity dispersion curves.

Noting that the concrete industry shows returns to scale very close to 1, es-

timating model parameters using ν = 0.5 has more rhetorical than practical value.

Using (5.41) and (5.43) to generate the simulated relationships between employment
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α η γ φM w fE f
1.609 2.631 0.483 1672.64 0.629 15.191 6.617

Stage 1 estimation error σerror,1 = 4.148
Stage 2 estimation error σerror,2 = 0.721

Table 5.5: Parameter estimates with decreasing returns to scale production function.

L φ∗ N corr(φ, l) corr(θ, l)
100 5.464 0.6 -0.378 -0.317

1,009 14.321 2.8 -0.094 -0.209
5,721 27.450 6.4 0.360 0.108
57,781 53.022 14.2 0.944 0.810
327,397 67.128 19.1 0.980 0.984

Table 5.6: Cutoff productivity, variety measure, and size-productivity correlation
by market size and with decreasing returns to scale production function.

size and productivity and between market size and the number of operating plants,

the model parameters are estimated in this case as listed in Table 5.5. A look at

the estimated parameters shows that fixed costs of operation are lower and maxi-

mum productivity is higher than estimated with CRTS production. With decreasing

returns to scale production, giving larger plants a production disadvantage, the es-

timated parameters have moved in the right direction. A list of simulated moments

is also listed in Table 5.6. Notice that because of the nonlinear relationship between

φ and θ, the correlations of those productivity measures with size are not identical

as in the CRTS case. The behavior of plants is illustrated in Figures 5.12 and 5.13.

To generate productivity dispersion, a Monte Carlo simulation is performed by

drawing 100,000 random samples from the same distribution in Section 5.4.2, and

productivity dispersion is computed for each employment class. The dispersions of

φ and θ by employment are shown in Figure 5.14. The findings are consistent with

what was observed in Section 5.4.2. Specifically, the slope by which productivity

dispersion falls with employment is again much the same as the actual slope in the

data, except at the starting point. The analysis of this section was conducted to

show that the model’s performance and qualitative implications do not change under
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Figure 5.12: Productivity-employment relationship with decreasing returns to scale
production function.
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Figure 5.13: Cutoff productivity and the number of operating plants with decreasing
returns to scale production function.
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decreasing returns to scale production.

5.5.3 Measuring Market Size

So far, the discussion of market size relied on the population of construction

workers, which strongly relates to the scale of construction activity in a CBSA.

Later, I want to be able to compare the behavior of the concrete industry with that

of other 4-digit industries, and for that, I will need a more universal measure of

demand size, namely the resident population of CBSA. Hence, it is useful to know

whether the relationship between employment and productivity, which affects the

shape of productivity dispersion and employment relationship, shows sensitivity to

such change in the choice of market size.

Moreover, because of high transportation costs, physical distances are impor-

tant in determining the market reach for concrete. Population densities, either with

resident or worker population, take account of the physical extent of an urban area

and demand concentration. However, these measures do not provide an estimate of

the actual demand size in the absence of information on the shipment radius at in-

dividual level, as a result, I had to rely on worker population to calibrate my model.

I will show the insensitivity of this shift by estimating the productivity-employment

relationship using population densities.

The Census Bureau’s City and County Databook provides information on

county population and land areas. When aggregated to CBSA level, three other

measures of market size can be defined for a CBSA: resident population, resident

population density, and construction worker population density. Summary statistics

for each market definition is listed in Table 5.7.

For each of the above mentioned market definitions, I estimate the relationship

between productivity and employment for the corresponding 10 and 90 percentile

market sizes. The choice of those market sizes for demonstration provides a sense of
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Figure 5.14: Productivity dispersion by employment with decreasing returns to scale
production function.
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Population of Population Density of Population
Construction Workers Construction Workers Population Density

Mean 43,173.4 9.14 2,541,081.9 534.4
Std.Dev. 58,022.6 9.79 3,793,412.7 632.2

Min. 48 0.04 12,457 3.6
Median 16,600 5.99 924,786 301.5
Max. 327,397 48.76 18,747,320 2792.2

Table 5.7: Summary statistics for different definitions of market size.

full range of sizes and productivity dispersions achievable by each market definition,

making it easy to picture the effect of each market definition on the slope by which

productivity dispersion falls with employment. Again, to reduce computational

burden, I classify market sizes by rounding the log of populations to the nearest 0.5

and rounding the log of population densities to the nearest 0.1.

Estimation results for 10th percentile market sizes are shown in Figure 5.15,

and results for 90th percentile market sizes are shown in Figure 5.16. The fact that

remains unchanged is that the bell-shaped relationship between productivity dis-

persion and employment and the effect of market size are the same no matter which

definition of market is used. Interestingly enough, using population of construction

workers or residents does not seem to really matter as the estimated plots almost

overlap. The same thing can be said about population densities. Overall, the esti-

mated productivity-size relationship with either of the market definitions are similar

in both their shape and range of values. Since the range of productivities at each

employment level is a direct outcome of the estimated bell-shape, the dispersions of

productivity by employment size will be almost the same at large markets and small

markets, irregardless of which of the four market definitions is used. Therefore, the

average slope by which productivity dispersion declines, i.e. the slope of the line

that connects dispersions in small and large plants, should not vary significantly

when changing market definition among the four presented here.
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Figure 5.15: Comparing different market definitions at 10 percentile market size.
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(b)

Figure 5.16: Comparing different market definitions at 90 percentile market size.
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L φ∗ N corr(θ, pq)
100 1.473 0.4 0.213

1,009 4.060 1.9 0.371
5,721 8.449 4.6 0.477
57,781 21.502 13.3 0.616
327,397 41.550 27.8 0.718

Table 5.8: Cutoff productivity, variety measure, and output-productivity correlation
by market size.

5.5.4 Input versus Output Size

In the literature, both input and output sizes have been used to compare

plants’ scales of operation. So far, all my discussions have been based on input size

and specifically the size of employment. In this section I will look at both empirical

and theoretical implications when using output instead. For clarification, output is

defined as deflated shipment value in the data and equivalently as the simulated rev-

enue pjqj in the model. Using (5.24) and (5.25), the resulting relationship between

this revenue and productivity is monotonic and positive as illustrated in Figure 5.17.

The theoretical and empirical behavior of output with productivity and mar-

ket size can be compared using correlations and also by estimating a model similar

to (5.15). Tables 5.8 and 5.9 report correlations between revenue productivity and

output from the simulation and from the data, respectively. As discussed earlier, us-

ing physical or revenue productivity produce identical theoretical correlations with

CRTS production function, therefore, only the results with revenue productivities

are reported. Similar to theory, the data correlations also show a positive rela-

tionship between output and productivity for small and large markets, though the

correlations are not as strong as those from the theory.

I examine the details about the relationship between output and productivity

by estimating a semi-parametric model similar to (5.15) in which employment size

is replaced with real output from the data. Figure 5.18 illustrates the estimated

relationships. The previously predicted productivity-employment relationships are
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Figure 5.17: The theoretical relationship between revenue and productivity. Arrows
show the range of productivities present at different revenue levels.
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Population of
construction workers #Obs corr(rLP,Q) corr(rTFP,Q)

Any 3970 0.196 0.143
≤ 1st Qrtl. 1348 0.136 0.120
≥ 3rd Qrtl. 883 0.203 0.110

Table 5.9: Correlation between productivity and output (Q) from the data.

also plotted in the same picture (gray dotted lines) for a better understanding of

input size and output size correspondences as seen in the data. The figure shows

that the predicted relationship between output and rLP is rather monotonic, though

not in a strict sense, and the estimated relationship justifies the positive correlation

seen in the data and predicted by the theory.

On the other hand, the predicted relationship between output and rTFP is bell-

shaped. However, one must be careful in interpreting this result as a contradiction

to the theoretical prediction. With the productivity-employment curves present in

the same plot, it is easy to see that output increases for a considerable range of

rTFP for which the employment both rises and then falls. In fact, the rTFP at

which the peak of output curve happens is actually about five times higher than

where the employment curve peaks. It is useful to remark that some very highly

productive concrete plants in the data are so because their listed real capital or

energy and material consumption is very small or close to zero, but their employment

information is more precise. With this fact in mind, it is possible that those plants

could be playing a role in causing a declining upper tail in the predicted productivity-

output curves, while not affecting the relationship with rLP.

The monotonicity of the relationship between productivity and output in the-

ory implies zero productivity dispersion at a given revenue level at a given market

size. However, Figure 5.17 shows that when a continuum of market sizes are present,

it is possible to produce productivity dispersions that are nonzero and declining with

revenue level.
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(a)

(b)

Figure 5.18: The predicted relationship between output and revenue productivity
from the data. The predicted productivity-employment relationship is also plotted
with gray dotted line.
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Figure 5.19 shows the dispersion of productivity by output size, a counterpart

of Figure 5.9 but using output size to classify concrete plants. The starting point of

the simulated dispersions are normalized to be equal to the first point in the data.

In addition, the simulated revenue is not up-to-scale with data values since prices in

the model are normalized to the price of a numeraire consumption good. For that

reason I re-scale all the simulated revenues so that their maximum coincides with

the maximum in the data.

The picture shows that productivity dispersion is practically uniform across

different output sizes. In contrast, the model again predicts a falling productivity

dispersion with employment size in the same way as it did with input size. Notice

that the model was not meant, nor calibrated, to mimic the behavior of productivity

dispersion with output size. So far, the results of this section remain the main point

of deviation between the model and the data implications.

5.5.5 The Effect of Market Structure

When dealing with the concrete industry, two characteristics of the industry

had direct effect on the shape of the bell that was estimated as the relationship

between productivity and employment. The spatial diversity of concrete output

ensured that the range of productivities that are present is large, and an average

shipping distance of 82 miles (from 1997 CFS report) caused many productive plants

to be small. Changing any of these assumptions will change the shape of the bell in

some way or the other. I investigate the effect of market structure on the formation of

the bell-shaped relationship by looking at two other 4-digit industries: Manufactured

Ice (SIC 2097) and Roasted Coffee (SIC 2095). Both of these industries have rather

homogeneous outputs, putting them on par with concrete in reducing the effect

of diversity in driving revenue productivities. In addition, each of these industries

represents a situation where one of the model assumptions is relaxed.

112



Ouput Size

∆
lo

g(
ϕ)

2000 4000 6000 8000 10000 12000 14000 16000
0

0.6

1.2

1.8

2.4

(a)

Output Size

∆
lo

g(
θ)

Simulated

Data

2000 4000 6000 8000 10000 12000 14000 16000
0

0.6

1.2

1.8

2.4

(b)

Figure 5.19: Plots of productivity dispersion by revenue levels.
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Manufactured ice is a very localized-market industry with an average shipment

radius of 35 miles22. However, due to low cost of transportation, the output is

not as spatially differentiated as in concrete. Under this situation, the range of

productivities that survive and stay in the market must be narrower. At the same

time, due to the localization of their markets, the ice plants are expected to have a

low average employment size. In case of roasted coffee, output is shipped 183 miles

away on average, qualifying as an industry with broader market. Here, average sizes

are expected to be larger in response to a farther reaching market.

Summary statistics for each of these industries is shown in Table 5.10. The

listed correlations between productivity and employment for each industry provide

an early look into the behavior of each industry. Most notably, the correlations are

positive for the coffee industry, where employment size is expected to be large for

more productive plants.

The estimation results for each industry, along with concrete as control group,

are shown in Figure 5.20. The results for rTFP and rLP are somewhat different,

especially for the coffee industry. The ice industry shows a bell-shaped relationship

between its productivity and employment similar to that of concrete, but with a

much narrower range of operating productivities, most likely as a result of product

substitutability. In the coffee industry, the average size is obviously higher and

the range of productivities is also more limited in favor of more productive plants.

The estimate with rTFP shows a bell-curve whose tip has moved in the upper-right

direction as a result of more expanded demand market. With rLP, the picture is

rather different, but still the average employment size and average productivity have

both increased.

22The shipment distances are according to 1997 commodity flow survey.
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Concrete Ice Coffee
Statistics (SIC 3273) (SIC 2097) (SIC 2095)

#Obs 3970 128 233

Mean Employment 20.8 15.8 102.1
Std.Dev. Employment 25.3 11.5 128.8

Max. Employment 513 105 999

Mean rTFP 1.574 2.112 1.095
Std.Dev. rTFP 0.285 0.437 0.265

Min. rTFP -2.084 0.839 0.421
Max. rTFP 5.842 3.265 3.557

Mean rLP 4.033 3.291 4.898
Std.Dev. rLP 0.675 0.641 0.946

Min. rLP -0.326 1.300 2.109
Max. rLP 7.710 6.473 7.167

All Markets
corr(rLP,TE) -0.122 -0.094 0.179

corr(rTFP,TE) -0.031 -0.182 0.123

Population≤1st Qrtl.
corr(rLP,TE) -0.250 -0.402 0.103

corr(rTFP,TE) -0.099 -0.350 -0.063

Population≥ 3rd Qrtl.
corr(rLP,TE) -0.177 0.005 0.295

corr(rTFP,TE) -0.060 -0.225 0.103

Table 5.10: Summary statistics on concrete, ice and coffee.
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Figure 5.20: Comparing productivity-employment relationships among concrete, ice,
and coffee.
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5.6 Beyond Ready-Mix Concrete

In light of Proposition 4, industries with completely globalized markets, i.e.

no limit on demand and no trade or transportation costs, should have their employ-

ment size increase monotonically with productivity. In practice, these conditions

are hardly satisfied for any industry. In addition, plants belonging to an industry

are still heterogeneous in their degrees of market reach, so that a large average ship-

ment distance does not necessarily exclude possibility of localized trade among some

plants. However, industries with higher average shipment distances are expected to

show higher average productivities and larger average sizes for their plants.

In this section, I primarily look at different classes of industries with respect to

their average shipment distance and investigate the qualitative relationship between

average shipment distance and the average productivity and size of plants. These

results are meant to be complementary to those of the last section. While the results

of the last section are more exact in the sense that product diversity was not a major

issue there, the results of this section will extend the concept to more industries and

show the universality of the implications.

In my first experiment, I focus on localized-market industries by pooling plants

from those ones whose products are shipped on average no more than 100 miles

away. The list includes 18 industries with a total of 18,529 plants (Appendix A).

This experiment will further test the fact that the bell-shaped relationship between

productivity and employment is not a peculiarity of the concrete or ice industry,

but is common among industries whose markets are primarily localized.

For my purpose, I rerun model (5.15) and further include a non-parametric

term capturing an industry effect in addition to the already present market size and
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time effects, so that the model has the form

log(lijt) =
P
∑

p=0

αp log(θijt)
p + h(i, Lj , t) + ǫijt, (5.45)

where, i indexes industries and other definitions follow as before. The other differ-

ence is that now market size is defined as a CBSA’s resident population, because

the same definition must be applicable to different industries. Results from Sec-

tion 5.5.3 assure that, in the case of concrete, using resident population instead of

worker population causes very little distortion in the final estimates.

The relationship between productivity and employment is estimated using the

same penalized least-squared method discussed in Section 5.3.2, and the predicted

results are shown for three market sizes 100000, 1000000, and 10000000 (resident

population). The pictures are drawn using the concrete industry fixed-effect, to fa-

cilitate comparison with the previously available results from section 5.3.2, but the

main goal is to demonstrate that market localization generates a bell-shaped rela-

tionship between productivity and employment. The estimation results are shown

in Figure 5.21. The sequence of market sizes used here are again chosen to form

a geometric series, so that comparing the estimated relations can offer clues about

the role of market size in affecting the conduct of industry in localized markets.

As can be seen from the figure, the qualitative form of the bell-curve is invariably

present at any market size, while the average size of plants grows with market size

non-linearly, much in the same way as in the concrete industry.

Industries with more globalized markets, on the other hand, should display

higher average productivities and larger average sizes. Section 5.5.5 briefly touches

on this issue by comparing the coffee industry to the concrete industry. In my

second experiment in this section, I will study the effect of market structure in a

broader sense by classifying industries according to their market reach. I still define
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(a)

(b)

Figure 5.21: Bell-shaped relationship between productivity and employment when
pooling across all localized-market plants.
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localized-market industries as those industries with an average shipment distance of

under 100 miles. Industries with average shipment distance of 500 to 550 miles will

be named “mid-range” industries in market reach. Finally, I define industries that

sent their products on average more than 950 miles away as globalized-market. The

list of industries that fall into each group is listed in Appendix A. The mid-range

industries consists of 17 4-digit codes and a total of 92,933 plants. The globalized

industries, in turn, consists of 26 4-digit codes and a total of 59,506 plants. The gaps

in between shipment distances of the defined classes should help to differentiate the

behavior of each group more distinctively.

I use (5.45) to estimate the relationship between productivity and employment

within each class by pooling all plants that belong to the corresponding industries.

The estimation results are shown in Figure 5.22. In the figures, plants in globalized-

market industries have by far the largest average size, while localized-market plants

are the smallest on average, with medium-range plants located in the middle. Having

said that, all industry classes seem to demonstrate some kind of a bell-shaped re-

lationship between productivity and employment. What differentiates among these

classes of industries is mostly the average and the peak size of plants, where more

globalization means that more productive plants are much larger on average.
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(b)

Figure 5.22: Estimated relationship between productivity and employment among
different classes of market structure.
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Chapter 6

Conclusion

Sector-specific factors play an important role in shaping the distribution of pro-

ductivity among operating plants in that sector. Technology differences and market

structure both play roles in decreasing or increasing productivity dispersion within

industries. This study is motivated by the fact that productivity dispersion changes

non-uniformly with the employment level. I find that the behavior of dispersion

is due to long-run behavior of established plants rather than transitory dynamics

and selection on productivity. Particularly, industries whose products are primarily

traded locally show a significantly negative relationship between productivity dis-

persion and employment. This is explained by the fact that, in localized markets,

the behavior of plants is not only influenced by their productivity, but also by their

demand size, causing plants with the same productivity to behave differently in

different markets. This effect was shown by constructing a differentiated-product

model in which markets are assumed to be localized. The main result of the model

is the emergence of a bell-shaped relationship between productivity and input size

whenever market structure puts limits on demand size. This relationship served

as the engine to produce a behavior of productivity dispersion that was consistent

with empirical observations on the Ready-Mix Concrete industry. Particularly, the
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simulated slope by which productivity dispersion falls with employment almost co-

incides with the empirical one, showing the dominant role of market-localization in

explaining such behavior.

The results of this dissertation can also be used in a broader sense to test

the effect of demand structure on the overall conduct of an industry. As both the

theoretical model and cross-industry observations show, more global markets raise

competitiveness of markets, causing less productive plants to exit while more pro-

ductive plants can now grow large without constraint. This reduces productivity

dispersion at lower sizes and raise the average plant size. Therefore, the slope by

which productivity dispersion changes with employment approaches positive val-

ues, a fact that is supported by data implications. Still, a more rigorous study of

productivity dispersion in industries with more global markets would be useful to

characterize in more detail the response of the slope to features of market.
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Appendix A

Industry List

• Descriptions of four-digit industries is obtained from the US Department

of Labor’s SIC manual accessible at http://www.osha.gov/pls/imis/sic

manual.html.

• Description of commodities and their data are reported from 1997 Commodity

Flow Survey.
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Industry Shipment Distance
Description SIC (miles)

Creamery Butter 2021 74

Natural and Processed Cheese 2022 74

Dry, Condense, and Evaporated
Dairy Products 2023 74

Ice Cream and Frozen Desserts 2024 74

Fluid Milk 2026 74

Bread and other Bakery Products 2051 96

Malt beverages 2082 31

Malt 2083 31

Bottled and Canned Soft Drinks
and Carbonated Waters 2086 35

Manufactured ICE 2097 35

Logging 2411 85

Asphalt Paving Mixtures
and Blocks 2951 70

Asphalt Felts and Coatings 2952 70

Hydraulic Cement 3241 82

Concrete Blocks and Bricks 3271 82

Concrete Products, Except Blocks
and Bricks 3272 82

Ready-Mix Concrete 3273 82

Lime 3274 32

Table A.1: List of localized-market industries with shipment distances is less than
100 miles.
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Industry Shipment Distance
Description SIC (miles)

Man-made Fiber and Silk 2221 509

Tire Cord and Fabrics 2296 509

Wooden Boxes and Shook 2441 520

Wood Pallets and Skids 2448 520

Wood Preserving 2491 520

Reconstituted Wood Products 2493 520

Cellulosic Fibers 2823 509

Other Organic Fibers 2824 509

Cosmetics and Toilet Products 2844 522

Adhesives and Sealants 2891 522

Unsupported Plastic Profile Shapes 3082 509

Laminated Plastic Profile Shapes 3083 509

Plastic Bottles 3085 509

Plastic Foam Products 3086 509

Custom Compound of Plastic Resins 3087 509

Screw Machine Products 3451 524

Bolts and Nuts 3452 524

Table A.2: List of medium-range industries with shipment distances between 500
and 550 miles.
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Industry Shipment Distance
Description SIC (miles)

Women Hosiery 2251 956

Hosiery 2252 956

Knit Outerwear Mills 2253 956

Knit underwear Mills 2254 956

Weft Knit Fabric Mills 2257 956

Lace and Warp Knit Fabric Mills 2258 956

Men’s Suits and Coats 2311 956

Men’s Shirts 2321 956

Men’s Underwear and Nightwear 2322 956

Men’s Neckwear 2323 956

Men’s Trousers and Slacks 2325 956

Men’s Work Clothing 2326 956

Women’s Blouses and Shirts 2331 956

Women’s Dresses 2335 956

Women’s Suits, Skirts and Coats 2337 956

Women’s Underwear and Nightwear 2341 956

Brassieres, Girdles, and Allied Garments 2342 956

Hats, Caps, and Milliney 2353 956

Children’s Dresses, Blouses, and Shirts 2361 956

Table A.3: List of globalized-market industries with shipment distances of at least
950 miles.
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(Cont.)

Industry Shipment Distance
Description SIC (miles)

Dress and Work Gloves 2381 956

Robes and Dressing Gowns 2384 956

Waterproof Outerwear 2385 956

Textile Bags 2393 956

Household Audio and Video 3651 1087

Prerecorded Tapes and Disks 3652 1087

Magnetic and Optical Recording Media 3695 1079

Table A.4: List of globalized-market industries with shipment distances of at least
950 miles.
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Appendix B

Technical Appendix

Proof of Proposition 1

For ν = 1 the proof is trivial. Let 0 < ν < 1. Testing (5.7) for two extreme

values qj = 0 and qj → ∞ and with the continuity of ∂πj/∂qj , at least one crossing

point is found in the range qj > 0. Moreover, the second derivative of the profit

function is

∂2πj

∂q2
j

= −2γ

L
− (1 − ν)w

ν2φ
1/ν
j

q
1/ν−2
j , (B.1)

which is always negative for any qj > 0. Since two maxima cannot appear next

to each other without any local minimum in between them, then, there is only one

positive solution to (5.7).

To show that the solution can never be negative, let qj < 0 be the solution to

(5.7). We notice that a negative solution can always be written in complex form as

qj = qeıπ, where q > 0 and q is real. Replacing this in (5.7) results in a left hand

side with nonzero imaginary part for any ν < 1 . Having a real right hand side, this

contradicts the fact that qj is a solution. ♦

Proof of Proposition 2

Since prices must be non-negative, it follows from (5.3) that output size is

bounded above within a certain market. Now if we let φj → ∞ in (5.7) and having
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p̄ ≤ α (and therefore (αγ + ηNp̄)/(γ + ηN) ≤ α), then qj will converge to Lα/2γ.

♦

Proof of Lemma 1

From (5.7) the optimal price for each plant can be written as

pj =
γ

L
qj +

w

ν

x

q
. (B.2)

Therefore, using (B.2) and knowing that qj = φjx
ν
j , the revenue productivity can

be written as

θj =
pjqj
xj

=
γ

L
φ

1/ν
j q

2−1/ν
j +

w

ν
. (B.3)

Taking derivatives with respect to φ results in

dθj

dφj
=

γ

Lν
φ

1

ν
−1

j q
2− 1

ν

j +
γ(2ν − 1)

Lν
φ

1

ν

j q
1− 1

ν

j

dqj
dφj

> 0, (B.4)

and the above result follows because of (5.10). ♦

Proof of Proposition 4

First, I show that the endogenous term αγ+ηNp̄
γ+ηN

can never converge to zero.

If so, then the only possible case is when N → ∞ and p̄ → 0. But it means that

pj → 0, ∀j. In turn, (5.3) implies that qj → 0, ∀j. But this means that all plants

will exit the market, driving N to zero. This contradicts the original assumption

that N → ∞. Hence, 0 < αγ+ηNp̄
γ+ηN

≤ α <∞.

To complete the proof, two cases must be treated separately.

Case 1, ν = 1 : Then using (5.7) and knowing that qj = φjxj , I can write

xj =
L

2γ

(

αγ + ηNp̄

γ + ηN
φj − w

)

. (B.5)

Then since the term αγ+ηNp̄
γ+ηN

is always positive, size of plants with productivities
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above a certain cutoff productivity will go to infinity.

Case 2, ν < 1 : Using (5.7) and with boundedness of the right-hand side, it is clear

that qj cannot grow faster than L. Then as L→ ∞, (5.7) converges to

a0 +
w

νφ
1/ν
j

q
1/ν−1
j = A0, (B.6)

where a0 is a positive constant if L and qj grow at the same rate, and zero

if qj grows slower than L. A0 is the limit value of αγ+ηNp̄
γ+ηN

and non-negative.

Note that (B.6) requires that qj ≥ 0 and a0 ≤ A0. Using qj = φjx
ν
j results in

xj =

(

(A0 − a0)ν

w
φj

)
1

1−ν

. (B.7)

The case where a0 = A0 (qj and L grow at the same rate) can be immediately

rejected here as it implies that qj → 0, and that contradicts the fact that

a0 > 0. Therefore, xj will be exponentially increasing in φj .

From Lemma 1, it also follows that he limit relationship between input size and

revenue productivity is a monotonic one, and that completes the proof. ♦

Algebraic Steps to (5.14): Let’s define

A =
αγ + ηNp̄

γ + ηN
. (B.8)

At this point A is an endogenous variable that will facilitate further algebra. The

cutoff conditions will be

2γ

L
q∗ +

w

νφ
1/ν
∗

q(1−ν)/ν
∗

= A (B.9)

(

A− γ

L
q∗

)

q∗ −
w

φ
1/ν
∗

q1/ν
∗

= f (B.10)
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Eliminating A between (B.9) and (B.10), and substituting q∗ = φ∗x
ν
∗
, gives

γ

L
q2
∗

+
(1 − ν)w

ν
x∗ = f. (B.11)

Equation (B.11) can be rewritten in the following way

q∗

(

2ν − 1

1 − ν

γ

L
q∗ +

2γ

L
q∗ +

w

νφ
1/ν
∗

q(1−ν)/ν
∗

)

=
f

1 − ν
. (B.12)

Looking at (B.12), it is easy to recognize and replace the term from (B.9). Thus,

with some simple algebra, (B.12) yields

A =
f

(1 − ν)q∗
− 2ν − 1

1 − ν

γ

L
q∗. (B.13)

By replacing A in the profit function, a plant’s profit at an optimum can be expressed

as below which is a function of q∗ only:

πj =

(

f

(1 − ν)q∗
− γ

L

2ν − 1

1 − ν
q∗ −

γ

L
qj

)

qj − w
q
1/ν
j

φ
1/ν
j

− f. (B.14)

To find ∂φ∗/∂L, I need to find ∂q∗/∂L first. To find the derivatives, note that a

change in market size affects q∗ both directly and indirectly, through φ∗. With this

in mind, taking partial derivatives of (B.11) with respect to L results in

∂q∗
∂L

=

γ
L2 q

2
∗

+ (1−ν)w
ν2φ∗

x∗
∂φ∗

∂L

2ν−1
ν

γ
L
q∗ + f

νq∗

. (B.15)

Next, insert (B.14) into (5.8) and take partial derivatives with respect to L. Re-

placing ∂q∗/∂L from (B.15) leads to (5.14). ♦

Proof of Proposition 5: Both the nominator and the denominator in the

(5.14) will be unambiguously positive in the light of (5.10) and if ν ≥ 0.5. Therefore,
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it immediately follows that ∂φ∗/∂L > 0. Having a fixed maximum productivity, the

higher the cutoff productivity goes, the smaller the productivity dispersion will

become. ♦
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