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Dependence modeling plays a critical role in pricing and hedging multi-asset

derivatives and managing risks with a portfolio of assets. With the emerge of struc-

tured products, it has attracted considerable interest in using multivariate Lévy

processes to model the joint dynamics of multiple financial assets. The traditional

multidimensional extension assumes a common time change for each marginal pro-

cess, which implies limited dependence structure and similar kurtosis on each mar-

gin.

In this thesis, we introduce a new multivariate variance gamma process which

allows arbitrary marginal variance gamma (VG) processes with flexible dependence

structure. Compared with other multivariate Lévy processes recently proposed in

the literature, this model has several advantages when applied to financial modeling.

First, the multivariate process built with any marginal VG process is easy to simulate

and estimate. Second, it has a closed form joint characteristic function which largely

simplifies the computation problem of pricing multi-asset options. Last, it can be

applied to other time changed Lévy processes such as normal inverse gaussian (NIG)



process.

To test whether the multivariate variance gamma model fits the joint distri-

bution of financial returns, we compare the model performance of explaining the

portfolio returns with other popular models and we also develop Fast Fourier Trans-

form (FFT)-based methods in pricing multi-asset options such as exchange options,

basket options and cross-currency foreign exchange options.
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Chapter 1

Introduction

1.1 Background

Dependence modeling plays a central role in pricing multi-asset derivatives

and managing risks exposed to multiple financial assets. Before the emerging of

alternative copula based models, the study of multivariate time series and stochastic

processes hasd been dominated by elliptic models, like multivariate normal or t

distributions. Their popularity only results from their mathematical tractability

and is questioned by empirical financial data.

The classical approach to model dependence is through constructing multi-

variate Brownian motions or diffusion based processes such as log-normal processes.

Using a high-dimensional correlated Brownian motion may be the most natural way

to build the dependence, but it also has many limitations on the generated dis-

tribution. Besides its very limited symmetric dependence structure, the marginal

processes were questioned for many years to explain the dynamics of a single asset.

The well-documented heavy tail phenomena of the stock returns and the volatility

skew effects observed in the option market provided strong evidences to support

the use of non-normal distributions. A vast literature on more sophisticated models

such as stochastic volatility models (e.g. Heston model [29], SABR model [26]) and

Lévy based models (e.g. VG model [42], NIG model [3]) emerged in the last decade
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to incorporate these effects.

Lévy processes have attracted considerable attention amongst practitioners

and academics for the primary reason that the flexibility of their distributions is

well-suited to financial asset returns. Such Lévy models including the variance

gamma model by Madan and Seneta [42], the normal inverse gamma(NIG) model

by Barndorff-Nielsen [3] and the CGMY model by Carr, Geman, Madan and Yor

[9] have been developed over the last decade. In the recent structured products

market, it has become quite usual that the payoff function is determined by more

than one assets. While these models successfully explain the dynamics of a single

price process, modeling a higher dimensional Lévy process is not so straightforward

as the case of multivariate Brownian motion. Recently, there has been an increasing

interest in the multivariate Lévy process modeling. For example, Tankov [59] intro-

duced the Lévy copula model, which characterizes the joint law of multivariate Lévy

processes by applying the idea of copula on the Lévy measure. Cont and Tankov

[12], Luciano and Schoutens [40] studied and tested the multivariate time changed

Brownian motion by a common subordinator. Semeraro [54], Luciano and Semeraro

[39] proposed a similar model with multivariate subordinators.

In this dissertation, we propose a new multivariate VG model based on decom-

position of marginal VG processes into independent components. The model has

arbitrary VG marginal processes and flexible dependence structure. Its closed-form

joint characteristic function simplifies the calculation of multi-asset option pricing

by FFT. The idea can also be applied to other time changed Brownian motions

such as the NIG process. The outline of this thesis is as follows. In chapter one, we
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review the basics of a Lévy process, its use as a financial model and the technique

of change of numeraire in option pricing. We also introduce the Carr-Madan FFT

method as a standard engine of pricing options under Lévy based models. In chap-

ter two, we present the new multivariate variance gamma model and its properties.

We discuss the estimation and simulation scheme of the model. In chapter three,

we study the performance of the multivariate variance gamma model in explaining

the joint dynamics of stock returns. We report the chi-square test statistics on ran-

domly generated portfolio returns and compare the test results with the popular

full-rank Gaussian copula method. In the last chapter, we study the problem of

pricing multi-asset options such as exchange option, spread option, basket option

and cross-currency option.

1.2 Lévy Processes in Finance

1.2.1 Lévy Processes and Lévy-Khintchine Representation

Lévy processes, named after the French mathematician Paul Lévy, have been

used in mathematical finance for a long period of time. Brownian motion, the best

known of all Lévy processes, was introduced as a model for stock prices in early

1900s by Bachelier. Though most of the financial models developed in the follow-

ing several decades were driven by Brownian motions, non-normal Lévy processes

were widely studied and became increasingly popular in the last decade. It was

Mandelbrot [44] who studied the first non-normal exponential Lévy process in 1960s

and introduced the α-stable Lévy motion with index α < 2. Later, models based
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on more general pure jump Lévy processes such as variance gamma(VG), normal

inverse gaussian(NIG) and CGMY, were developed and studied.

Generally speaking, Lévy processes are stochastic processes with independent

and stationary increments. They can be thought of as analogues of random walks

in continuous time. Every Lévy process has a càdlàg (means ”right continuous with

left limits”) modification which is itself a Lévy process. Therefore, we always work

with this càdlàg version of the process. The formal definition can be written as

follows:

Definition 1.1. A càdlàg stochastic process (Xt)t>0 on (Ω,F ,P) with X0 = 0 is

called a Lévy process if it possesses the following properties:

• Independent increments: for any 0 < t0 < t1 < ... < tn, the random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent.

• Stationary increments: the law of Xt+h −Xt does not depend on t.

• Stochastic continuity: ∀ǫ > 0, limh→0 P (|Xt+h −Xt| > ǫ) = 0.

If we sample a Lévy process at any fixed time intervals with equal increments,

we obtain a random walk. Since this can be done for any sampling interval, the dis-

tribution of a Lévy process at any time t has some special properties. This connects

closely to the concept of infinitely divisible distribution.

Definition 1.2. If, for every positive integer n, the characteristic function φX(u)

is also the nth power of a characteristic function, we say that the distribution is
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infinitely divisible.

In other words, an infinitely divisible distribution F can be written as the

distribution of the sum of n independent and identically distributed random variables

for any positive integer n. The following proposition shows the relationship between

Lévy processes and infinitely divisible distributions.

Proposition 1.3. For a Lévy process (Xt)t>0, Xt has an infinitely divisible distri-

bution at any time t. Conversely, if F is an infinitely divisible distribution, then

there exists a Lévy process (Xt) such that the distribution of X1 is given by F .

By the infinitely divisibility, the characteristic function φX(u) of Lévy process

Xt can be expressed in a simple form. If we denote φX(u) = eψX (u), ψX(u) is called

the characteristic exponent of X. We then have the following fact:

φXt
(u) = E(eiuXt) = etψX1

(u) (1.1)

where ψX1(u) is the characteristic exponent of the Levy process at unit time. It

is now possible to characterize all Lévy processes by looking at their characteristic

functions, which leads to the famous Lévy-Khintchine formula.

Theorem 1.4. (Lévy-Khintchine Representation) Let (Xt)t>0 be a Lévy pro-

cess on R. The Lévy-Khintchine formula gives the expression for characteristic

exponent ψX1(u) as follows:

ψX1(u) = bui− 1

2
σ2u2 +

∫

R\{0}
(1 − eiux + iux1|x|<1)ν(dx) (1.2)

with

∫

R\{0}
(1 ∧ x2)ν(dx) <∞. (1.3)
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From Lévy-Khintchine representation, we can easily see that a Lévy process

can be decomposed into three independent components: a deterministic drift with

rate b, a continuous path diffusion with volatility σ and a jump process with the

Lévy measure ν(dx). If the Lévy measure is of the form ν(dx) = k(x)dx, we call

k(x) the Lévy density. Hence, a Lévy process can be fully characterized by the

combined Lévy triplet (b; σ; ν).

The path property of a Lévy process is determined by the Lévy triplet (b; σ; ν).

For example, if b = 0, ν = 0, then the Lévy process becomes a standard Brownian

motion with continuous random paths. In the case of σ2 = 0, the Lévy process

has no diffusion part and becomes a pure jump process. If the Lévy measure also

satisfies ν(dx) = λδ(1), where δ(1) is the Dirac function at 1, then it is a Poisson

process with rate parameter λ.

Lévy processes with only jump components can also be divided into two cat-

egories by the arrival rate of jumps. A Lévy process is called of finite activity if

∫

R\{0} ν(dx) < ∞. If
∫

R\{0} ν(dx) = ∞ instead, then the Lévy process has infinite

activity, which means its arrival rate of jumps is infinity.

1.2.2 Change of measure for Lévy processes

When pricing a contingent claim traded in the financial market, the probability

measure we use is usually different from the statistical measure we observe. In

probability theory, the Girsanov theorem tells how stochastic processes change under

changes in measure. Therefore, it is the key theorem in the Black-Scholes model in
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connecting the physical measure with the risk-neutral one. Since all option pricing

should be done under the risk-neutral measure by non-arbitrage pricing theory, it

can be shown that the Black-Scholes option pricing formula does not depend on the

drift term under the physical measure given the following Girsanov theorem:

Theorem 1.5. (Girsanov theorem for Brownian motion) Let Wt be a Brow-

nian motion on (Ω,FT ,P), and let Xt be a measurable process adapted to the fil-

tration of Wt. Let [X]t be the quadratic variation of the process X. Let Z be the

associated exponential martingale

Zt = exp(Xt −
1

2
[X]t)

If Zt is a martingale under P, then a new probability measure Q, equivalent to P

can be defined by the Radon-Nikodym derivative:

dQ

dP

∣

∣

∣

∣

Ft

= Zt (1.4)

Furthermore if Yt is a P local martingale, then Yt− [W,X]t is a Q local martingale.

To change measures for general Lévy processes, one needs to find equivalent

martingale measures. The detailed discussion of equivalent martingale measures for

Lévy processes can be found in [31, 52]. Here, we only state the results on the

change of measure for pure jump processes. Jacod and Shiryaev [31] show that one

can explicitly compute out the change of the measure given its physical and risk-

neutral Lévy measure. Assume that we have the pure jump processes with Lévy

densities kP(x) and kQ(x) under the P and Q measures, respectively. If they are
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equivalent measures, the Radon-Nikodym derivative is given by

dQ

dP

∣

∣

∣

∣

Ft

= exp(−t
∫ ∞

−∞
(Z(x) − 1)kP(x)dx)

∏

s6t

(∆X(s)) (1.5)

where Z(x) is given by

kQ = Z(x)kP

Given the explicit form of measure change, we may infer the measure change from

both measures.

1.2.3 Lévy-based financial models

There are many reasons to introduce Lévy processes to financial modeling. One

of the most important reasons is that the historical log returns of stocks/indices

are not normally distributed as in the Black-Scholes model. To price and hedge

derivative securities, it is crucial to have a good model of the probability distribution

of the underlying product. Lévy processes have similar nice features, i.e. with

independent and stationary increments, as Brownian motions but with more flexible

distribution. The distributions of most Lévy processes can exhibit various of types

of skewness and excess kurtosis. Examples of such models include the Variance

Gamma (VG), the Normal Inverse Gaussian (NIG), the CGMY, the Generalized

Hyperbolic Model. The stock price models driven by Lévy processes assume the

market consists of one riskless asset with a price process Bt = ert, and one risky

asset. The model for the risky asset is

St = S0e
Xt (1.6)
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where the log returns ln(St/S0) = Xt can be any Lévy process. Lévy models can fit

the distribution very well to the historical returns. However, pricing vanilla options

under these models is not so straightforward as the diffusion-based ones since the

uniqueness of equivalent martingale measures is not kept in most of the realistic

Lévy models. Thus, the Lévy financial models lead to incomplete markets in which

there are infinitely many equivalent martingale meanosurs and perfect hedge exists.

To price an option under these models, one needs to first choose the risk-neutral

measure from many equivalent martingale measures available. There are several

methods proposed in the literature, including Esscher transform, mean-correcting

martingale measure, minimal entropy measure or indifference pricing. One of the

most convenient choices is to use the mean-correcting martingale measure. We

assume:

St = S0e
r eXt

E(eXt)
(1.7)

It is easy to check that St is a martingale given Xt is any Lévy process. It is called

the mean-correcting martingale measure as it is equivalent to Xt is mean-corrected

by Xt + r − lnφ(−i) assuming interest rate r and no dividend yield.

We now discuss two important Lévy processes: the VG process and the NIG

process in details. For other Lévy processes and Lévy based models, we refer the

readers to [53] [12].
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1.3 The Variance Gamma Process

The class of variance gamma distribution was first introduced by Madan and

Seneta in the late 1980s. The symmetric case of VG process was proposed and

developed by Madan and Seneta [42] and Madan and Milne [41] as a model for

studying stock returns and option pricing. The general case with skewness was late

introduced by Madan et al. [43]. Since the original symmetric VG process can be

considered as a special case of the general one with θ = 0, we always refer to the

general case when we talk about the VG process from now on. The VG process has

become one of the most popular Lévy models in both literature and practice.

1.3.1 The VG process and its properties

A VG process can be considered as a drifted Brownian motion time changed

by an independent gamma process. Namely, it can be represented as:

Xt = θGt + σWGt
(1.8)

where W = (Wt; t > 0) is a standard Brownian motion and the independent subor-

dinator (i.e. an increasing, positive Lévy process) Gt is a gamma process with unit

mean rate and variance rate ν.

As a Lévy process, the dynamics of a VG process is determined by the distri-

bution of Xt at unit time. The random variable of a VG process at unit time follows

a 3-parameter VG(θ, σ, ν) probability law with characteristic function in a simple
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form:

φV G(u) = (1 − iuθν +
1

2
u2σ2ν)−1/ν . (1.9)

This distribution is infinitely divisible and the VG process thus has independent and

stationary increments for which the increment Xt+s−Xs follows a V G(σ
√
t, ν/t, tθ)

law.

It is worth noting that the idea of time change has strong economic intuitions.

We know that the financial market does not evolve identically every day. To be more

specific, the trading volume is not uniform during the day and the trading activities

vary a lot from time to time. Intuitively, one can regard the original clock as the

calendar time and a random clock as the business time. A more active business day

implies a faster business clock. Therefore, the concept of business time is used to

distinguish from the calender time and describe the trading activity evolution. A

VG process is thus a Brownian motion run under a random gamma business clock.

An alternative parametrization of the VG model was discussed as a special

case of the CGMY model with Y = 0. With the parametrization in terms of C, G

and M , the characteristic function of XV G(1) reads as follows:

φV G(u) = (
GM

GM + (M −G)iu+ u2
)C . (1.10)

The characterization also allows the Lévy measure of a VG process to be in a

more elegant form:

kV G(x) =















Cexp(Gx)

|x| , x < 0 (1.11a)

Cexp(−Mx)

x
, x > 0 (1.11b)
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where:

C =1/ν,

G =(

√

1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν)−1

M =(

√

1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν)−1

With this parametrization, it is clear that VG process can be decomposed into

two processes with only positive and negative jumps controlled by parameters G

and M respectively. Hence it can be written as the difference of two independent

Gamma processes. This fact leads to a straight-forward simulation algorithm of the

VG process by simulating two independent gamma processes.

XV G = Xgamma(C; 1/M) −Xgamma(C; 1/G) (1.12)

There are some other remarkable properties of the VG process. For instance,

the Lévy measure has infinite mass, and hence a VG process has infinitely many

jumps in any finite time interval. The VG process also has paths of finite variation

with no Brownian component.

The popularity of the VG process lies in its flexibility of handling the skewness

and excess kurtosis exhibited from the historical data of stock prices. While the

parameter σ still plays a similar role to the volatility parameter in Black-Scholes

world, the other parameters add much flexibility to the distribution. Generally

speaking, the parameter θ controls the skewness of the distribution and ν determines

the kurtosis of the distribution. For example, for the vanilla option market, a
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negative θ accounts for the negative slope in the volatility curve. For (C,G,M)

parametrization, C = 1
ν

controls the kurtosis, and both G and M determine the

skewness. In the special case of G = M , the distribution is symmetric.

1.3.2 The VG Stock Price Model

The VG stock price model is constructed by replacing the Brownian motion in

the Black-Scholes model by a VG process. By assuming a VG process on the stock

log-returns, the VG model can capture the well-documented volatility smile/skew

observation. Assume there is no dividend, we choose the risk-neutral measure by

mean correcting the original VG process, and can write the stock price process as:

St = S0exp(rt+Xt + wt) (1.13)

where

w = −logφ(−i) =
1

ν
log(1 − θν − 1

2
σ2ν). (1.14)

The density function of the log return in VG model, like many other pricing

models, can only be expressed in terms of integrals or special function.

Theorem 1.6. The density for the log return zt = ln( St

S0
), where the process follows

(1.8), is given by the following:

f(z) =
2exp(θx/σ2)

νt/νσ
√

2πΓ( t
ν
)
(
x2

2σ2/ν
+ θ2)

t
2ν

− 1
4K t

ν
− 1

2
(

√

x2(2σ2/ν + θ2)

σ2
) (1.15)

where K is the modified Bessel function of the second type,

x = z − rt− t

ν
ln(1 − θν − σ2ν/2). (1.16)
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Madan et al [43] derived a closed-form formula for pricing the European call

option with strike K. The option price formula is of the similar form to the Black-

Scholes formula, but it is numerical demanding to compute the Bessel function of

the second type involved. A more efficient way to compute the option prices using

FFT is now used as the market standard in pricing options under Lévy models. We

will discuss this important pricing method in the next section.

Theorem 1.7. Under the risk-neutral price process, the European call option price

on a stock is

c(S0;K, t) =S0Ψ(d

√

1 − c1
ν

, (α+ s)

√

ν

1 − c1
,
t

ν
)

−Ke−rtΨ(d

√

1 − c2
ν

, (αs)

√

ν

1 − c2
,
t

ν
) (1.17)

where

d =
1

s
[ln(S(0)/K) + rt+

t

ν
ln(

1 − c1
1 − c2

)],

α = − θ

σ
√

1 + ( θ
σ
)2 ν

2

,

c1 =
ν(α + s)2

2
,

c2 =
να2

2
,

the function Ψ is defined in terms of the modified Bessel function of the second kind

and the degenerate hypergeometric function of two variables.
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1.4 The Normal Inverse Gaussian Process

The normal inverse Gaussian model was first introduced by Barndorff-Nielsen

[3, 4] and applied to to option valuation. It is another important class of Lévy

processes which shares many similarities with the VG process. The normal inverse

Gaussian distribution is defined as a variance-mean mixture of a normal distribution

with the inverse Gaussian as the mixing distribution. As an infinitely divisible

distribution, it determines a Lévy process, which can be represented as a time

changed Brownian motion subordinated by the inverse Gaussian process.

Like the VG distribution, the density function of a NIG distribution has com-

plex Bessel functions involved and is hard to work with. However, the characteristic

function of the normal inverse Gaussian distribution NIG(α, β, δ) with parameters

α > 0, β ∈ (−α, α], δ > 0 is given in an elegant form:

φNIG(u) = exp(−δ(
√

α2 − (β + iu)2 −
√

α2 − β2)). (1.18)

From a different point of view, one can generate a NIG process with parameters

α, β and δ by time changing a Brownian motion. We can write:

Xt = βδ2It + δWIt (1.19)

where W = Wt, t > 0 is a standard Brownian motion and I = It, t > 0 is an Inverse

Gaussian process with the mean rate of 1 and shape parameter δ
√

α2 − β2, with

α > 0,−α < β < α and δ > 0. An inverse Gaussian process has independent and

stationary inverse Gaussian distributed increments. It is called ”inverse” in that,

while the Gaussian describes the distribution of distance at fixed time in Brownian
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motion, the inverse Gaussian describes the distribution of the time a Brownian

Motion with positive drift takes to reach a fixed positive level.

Financial models based on the NIG process are pretty much the same as those

based on the VG process. Empirical studies on the stock returns show both two

distributions have significant improvements in explaining stock returns. For more

details of the NIG process, we refer the reader to [3] [4].

1.5 The Fast Fourier Transform Method and Option Pricing

One of the most important problems all Lévy models face is to find an efficient

way of pricing European options. Closed form solutions under these models either

do not exist or involve complicated functions which are difficult to evaluate even

numerically. Since the 1990s, a lot of attention has been paid on the use of char-

acteristic functions and Fourier analysis for understanding the proposed processes.

Given the characteristic function of a stochastic process, Heston [29] showed how

to numerically value standard European options by using Lévy’s inversion formula

for the distribution function. It takes two Fourier transforms to compute two prob-

abilities in the call option pricing formula, which was later improved significantly

by Carr and Madan. By analytically relating the Fourier transform of an option

price to its characteristic function, Carr and Madan [10] showed how to use the Fast

Fourier Transform method to price European options. This method has become a

standard calibration engine due to its fast speed of computation.
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1.5.1 The Carr-Madan FFT Method

The Carr-Madan FFT method evaluates the value of an option by doing an

inverse Fourier transform to the characteristic function of the log price. The method

is much faster than using the analytic formula for VG models in which a numerical

integration of the modified Bessel function of the second type is needed. Since the

only thing required for using this method is the closed-form characteristic function of

the log price, the Carr-Madan FFT method is widely used for most of Lévy models

and stochastic volatility models. We sketch the method as follows:

Let k be the log of the strike price K, and let CT (k) be the value of a call

option with maturity T. Let the φT (u) be the characteristic function of the log price

ST under the chosen risk neutral measure. To solve the problem of the singularity

in the integrand, Carr and Madan included exp(−αk) as a dampening factor. They

considered the Fourier transform of cT = exp(−αk)CT with respect to k defined by:

ψT (ν) =

∫ ∞

−∞
eiνkcT (k)dk.

Since an analytical expression for ψT (ν) can be derived, they obtained call prices

numerically using the inverse transform

CT (k) =
exp(−αk)

π

∫ ∞

0

e−iνkψT (ν)dν (1.20)

where ψT (ν) can be computed in terms of φT (u):

ψT (ν) =
e−rTφT (ν − (α + 1)i)

α2 + α− ν2 + iν(2α + 1)
. (1.21)

To apply for the FFT method to compute the integral in the equation (1.24),

one can approximate it using the trapezoidal rule on a well-defined grid. Let η be
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the step size for the grid of the characteristic function φ. N is chosen to be a power

of 2 to take the full advantage of FFT. Then a = ηN is the upper limit of the

integration. The grid is chosen on νj = (j−1)η, j = 1, 2, ...N . Also let λ be the step

size of the log strike k, then the log strikes change from −b to b and on the grid of

ku = −b+ λ(u− 1), for u = 1, 2, ...N. These parameters satisfy λη = 2π
N

.

We have the following approximation of (1.24).

CT (ku) =
exp(−αk)

π

N
∑

j=1

e−
2πi
N

(j−1)(u−1)eibνjψ(νj)
η

3
[3 + (−1)j − δj−1] (1.22)

where δn is the Kronecker delta function that is unity for n and zero otherwise.

The summation in formula (1.26) can be computed using the FFT. By making the

appropriate choices for η and α, one may compute the option prices very efficiently.

For one single run, the FFT method calculates the option prices across all the strikes,

which makes the calibration of Lévy model to market data incredibly fast.

1.5.2 The Greeks

The Greeks represent the sensitivities of financial derivatives to a change in

underlying parameters. As vital tools in risk management, the Greeks are extremely

important for hedging purpose. Financial portfolios are often rebalanced accordingly

to achieve a desired exposure by using the Greeks. We discuss the calculations for the

Delta (the rate of change of option value with respect to changes in the underlying

asset’s price), the Gamma (the rate of change of the delta with respect to changes

in the underlying asset’s price ) and the Rho(sensitivity to the applicable interest

rate). Other Greeks such as the Vega, the sensitivity of price with respect to its
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implied volatility in Black-Scholes model, are not available in Lévy based models.

It is worth noting that since Lévy models describe incomplete markets, a perfect

hedge no longer exists.

The option price using FFT method is given in (1.24) and (1.25). Differentia-

tion with respect to variables such as S0, and r only has an impact on the function

ψ. Hence the following result can be derived.

Proposition 1.8. The Greeks are computed by FFT in the following form:

exp(−αk)
π

∫ ∞

0

e−iνkψT (ν)dν (1.23)

where

for ∆ = ∂C(K,T )
∂S0

, ψ is given by

ψ∆
T (ν) =

e−rTφT (ν − (α + 1)i)

S0(α+ iν)
,

for Γ = ∂2C(K,T )
∂S2

0
, ψ is given by

ψΓ
T (ν) =

e−rTφT (ν − (α + 1)i)

S2
0

,

for ρ = ∂C(K,T )
∂r

, ψ is given by

ψρT (ν) =
Te−rTφT (ν − (α + 1)i)

α + 1 + iν
.

By changing the corresponding function ψ in formula (1.26), the FFT method

computes the Greeks from the characteristic function across all strikes in one run.

1.6 Change of Numeraire and Option Pricing

Risk-neutral pricing method has become the market standard in pricing finan-

cial derivatives since the celebrated Black-Scholes work. Later, Harrison and Kreps
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[27] completed the non-arbitrage asset pricing theory by arguing that the absence of

arbitrage implies the existence of a risk-adjusted probability Q such that the current

price of any security should equal to its discounted expectation of future values. The

riskless money account B(t) = ert, also referred to as the numeraire, is the relative

benchmark account associated with this measure Q.

However, Geman et al [24] noted that the risk-neutral measure Q is not neces-

sarily the most natural choice for pricing a contingent claim. Changing the bench-

mark account (numeraire) to a more convenient one may largely simplify the option

pricing problem. In such cases, the change of numeraire has surprisingly helped re-

duce the complexity in pricing derivatives, especially in multi-asset option pricing or

models with multiple underlying such as the fixed income and FX market. Although

the idea of numeraire was used in Margrabe’s formula as early as 1970s , Geman

et al [24] formally developed the general framework for the change of numeraire

technique and introduced the following definition.

Definition 1.9. A numeraire is any positive non-dividend-paying asset.

As different numeraires are associated with different equivalent martingale

measures, option prices are invariant under any of these numeraires. Hence, by

choosing the most convenient numeraire, pricing options can be largely simplified.

The main result we will use later in multi-asset option pricing is the following the-

orem which can be found in [49]:

Theorem 1.10. Assume there exists a numeraire N and a probability measure QN

equivalent to the initial measure Q0, such that the price of any traded asset X relative
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to N is a martingale under QN , i.e.,

Xt

Nt

= EN [
XT

NT

|Ft], 0 6 t 6 T. (1.24)

Let U be an arbitrary numeraire. Then there exists a probability measure QU , equiv-

alent to the initial Q0, such that the price of any attainable claim Y normalized by

U is a martingale under QU , i.e.,

Yt
Nt

= EU [
YT
UT

|Ft], 0 6 t 6 T. (1.25)

Moreover, the Radon-Nikodym derivative defining the measure QU is given by

dQU

dQN
=
UTN0

U0NT
. (1.26)

The choice of a convenient numeraire determines the complexity of computa-

tion for many problems. The general rule is conducted as follows. A payoff f(XT )

depending on an underlying variable X at time T is priced under the risk-neutral

numeraire with the money-market account B(t) = exp(rt). By using the above

theorem, the formula under a new numeraire U is given by:

E0(
h(XT )

B(T )
) = U0E

QU

(
h(XT )

UT
) (1.27)

Hence, we look for a numeraire U with the following properties:

• XtUt is a tradable asset.

• The quantity h(XT )
UT

is simple.

The standard applications of the above method are Margrabe’s formula for exchange

options, quanto derivative pricing, caps and swaptions pricing in LIBOR market

model, etc. Change of numeraire is especially useful in yield curve modeling and

interest rate derivative pricing.
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Chapter 2

The New Multivariate Variance Gamma Model

2.1 Correlating Lévy Processes: An Overview

Lévy processes have been increasingly popular in financial modeling due to

their flexibility of incorporating the jump dynamics. Many Lévy models including

variance gamma (VG), normal inverse gaussian (NIG) and CGMY have been de-

veloped over the last decade. While these models successfully explain the dynamics

of a single price process, modeling a multivariate Lévy process usually does not

lead to an elegant form as a multivariate Brownian motion. Madan and Seneta [42]

first introduced the multivariate symmetric VG process by subordinating a multi-

variate Brownian motion without a drift by a common gamma process. Similarly,

Barndorff-Nielsen [4] studied the multivariate case of the NIG process using a com-

mon subordinator. The extension to an asymmetric case is developed in Cont and

Tankov [12], Luciano and Schoutens [40]. They studied multivariate Lévy processes

with VG components in the following settings:

Xi(t) = θiΓ(t) + σiWi(Γ(t)) (2.1)

where Wi and Wj are correlated with correlation ρij .

The linear correlation of Xi, Xj is then:

corr(Xi, Xj) =
θiθjV ar(Γ(t)) + σiσjρijE(Γ(t))

√

V ar(Xi(t))V ar(Xj(t))
(2.2)
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These models are easy to construct and work with. It has been noted, however,

that this model does not accommodate independence, and linear correlation cannot

be fitted once the marginals are fixed. A more serious problem may be, as noted in

[39], that sharing the same parameter ν on all the marginal processes puts a strict

restriction on the joint process. It may cause great difficulty in the joint calibration

to option prices on the marginals.

To allow the dependence built on arbitrary marginal VG processes, Semeraro

[54], Luciano and Semeraro [40] studied the multivariate subordination to multi-

variate Brownian motions. The general model proposed in these papers uses the

following marginal processes:

Xi(t) = θiGi(t) + σiWi(Gi(t)), i = 1..n (2.3)

where W1, ...,Wn are independent Brownian motions and G(t) = (G1(t), ..., Gn(t))

is a multivariate subordinator with the following components:

Gi(t) = Yi(t) + aiZ(t) (2.4)

where, Yi(t) and Z(t) are independent gamma processes.

The correlation of Xi, Xj is then:

corr(Xi, Xj) =
aiajθiθjV ar(Z(t))

√

V ar(Xi(t))V ar(Xj(t))
(2.5)

Luciano and Semeraro built on this formulation in order to extend it to other

time changed Brownian motions, like the NIG process and the CGMY process. Their

model captures the case of full independence, when the subordinators are all inde-

pendent. The correlation can be fitted by choosing the parameters of the common
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component of the subordinator. However, the closed-form joint characteristic func-

tion, which plays a critical role in option pricing and parameter estimation, can only

be found in the case of independent Brownian motions. With independent Brown-

ian motions, the dependence mainly comes from the drift part and is sometimes too

weak for financial modeling purpose.

Eberlein and Madan [17] worked on the model to correlate Lévy processes

by time changing multivariate Brownian motions by independent gamma processes.

This model can be considered as a special case of Semeraro’s multivariate subordi-

nation models. By matching the sample correlation with the theoretical one, the

implied correlation among Brownian motions can be estimated quickly. They then

tested the model on performance of portfolio returns.

Recently, a totally different track of modeling dependence using Lévy processes

is proposed by Kallen and Tankov [35], Tankov [59]. Analogous to the idea of

copula, Tankov introduced the Lévy copula which provides the connection between

the joint Lévy measure and its marginal Lévy measures. It separates the marginal

Lévy measure from the dependence structure of marginal jumps. It is a natural way

to build multi-dimensional Lévy processes since Lévy copula guarantees that the

resulting process is a Lévy process. Despite the elegant theory of the lévy, applying

a Lévy copula to the financial data is so far still a difficult problem. Both estimation

and simulation can be numerically heavy, and we refer readers to [12] [35] for more

details and progress on the Lévy copula.
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2.2 The Multivariate Variance Gamma Process

In this thesis, we introduce a new multi-variate VG process with the following

nice features:

• It is a multidimensional Lévy process with arbitrary VG marginal processes

and flexible dependence structure.

• It is easy to construct and simulate. The joint characteristic function can be

derived in a closed form.

• It can be easily applied to other Lévy processes which are time-changed Brow-

nian motions.

• It fits the empirical joint returns better compared with other popular models.

2.2.1 Definition and Properties

A VG process VG(θ, σ, ν) can be considered as a Brownian motion θt + σBt

time-changed by a gamma process Γ(t; 1, ν). Here, a gamma process Γ(t; 1, ν) with

unit mean rate and variance rate ν has independent gamma increments. The VG

process is one of most popular models in modeling financial asset returns. The

additional parameters in the drift of Brownian motion and volatility of time change

provide control over the skewness and kurtosis of the return distribution, which

makes it more flexible than the classical Black-Scholes model in modeling asset

returns.
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We construct our multi-variate VG process given arbitrary VG marginal pro-

cesses. For simplicity, we first consider the two-dimensional case. We reparameterize

the parameters in the marginal VG process as follows: VG(θ, σ, ν)=vg(a, b, c) where,

a = θν, b2 = σ2ν, c = 1
ν
. Then the characteristic function can be written as

ΦV G(t)(u) = (
1

1 − iau+ (b/2)u2
)tc (2.6)

To interpret the parameters in this new parametrization, we start with a drifted

Brownian motion at+bBt with mean rate a and variance rate b2. The subordinating

gamma process Γ(t; c, c) has mean rate c and variance rate c. Because of the scaling

property of the gamma processes, this particular setting of the subordinating gamma

process does not put any restrictions on the generating VG process. We can derive

the characteristic function of this VG process in terms of (a, b, c) exactly as (2.4).

Now we have the following property: For two independent VG processes

vg(a, b, c1) and vg(a, b, c2),

vg(a, b, c1) + vg(a, b, c2)
D
= vg(a, b, c1 + c2)

The property indicates the sum of two independent VG processes with the

same parameters a, b is still a VG process. The result stems from the addition

property of the gamma distribution and can be easily verified by comparing their

characteristic functions. Now for an arbitrary VG process we can decompose it into

two independent VG components. By correlating one of them using a common time

change, we derive the following result:

Proposition 2.1. Given two marginal VG processes X1 ∼ VG(θ1, σ1, ν1) and X2 ∼
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VG(θ2, σ2, ν2), we can build the dependence with two additional parameters ρ and ν0

as follows:

X1 = A1 + Y (2.7)

X2 = A2 + Z (2.8)

A1 ∼ V G(θ1
ν1

ν0
, σ1

√

ν1

ν0
, ν0), Y ∼ V G(θ1(1 − ν1

ν0
), σ1

√

1 − ν1

ν0
,

1
1
ν1

− 1
ν0

) (2.9)

A2 ∼ V G(θ2
ν2

ν0
, σ2

√

ν2

ν0
, ν0), Z ∼ V G(θ2(1 − ν2

ν0
), σ2

√

1 − ν2

ν0
,

1
1
ν2

− 1
ν0

) (2.10)

where, (A1, A2), Y and Z are independent. (A1, A2) is a 2-dimensional ρ-

correlated Brownian motion with associated mean and covariance matrix subordi-

nated by a common gamma process Γ(t; 1, ν0). The parameter ν0 satisfies ν0 >

max(ν1, ν2).

The two-dimensional process is constructed by decomposing marginal pro-

cesses into two parts. We correlate the parts with common time-change parameter

by subordinating a two-dimensional Brownian motion and leave the other parts in-

dependent. As a process in modeling dependence of asset returns, this setting has

strong economic intuitions. The dependent part (A1, A2) stands for a systematic

factor or a global factor which governs the big co-movements of individual assets,

while the independent part represents the individual factor of each asset. From now

on, we usually refer (A1, A2) as the systematic part and (Y, Z) as the independent

part of the process.

The new two-dimensional process we introduce here has independent and sta-

tionary increments. The distribution of (X1, X2) at any time t is infinitely divisible.
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Since the process can be decomposed into two independent parts with known charac-

teristic functions, we can derive the closed-form joint characteristic function. This

is a very nice aspect of this process in modeling asset returns, as characteristic

functions play a critical role in the option pricing.

Proposition 2.2. The joint characteristic function of the two-dimensional variance

gamma process in is:

φX1(t),X2(t)(u1, u2) =(
1

1 − iu1θ1ν1 − iu2θ2ν2 + uTΣu/2
)

t
ν0

· ( 1

1 − iθ1u1ν1 + (σ2
1ν1/2)u2

1

)
t

ν1
− t

ν0

· ( 1

1 − iθ2u2ν2 + (σ2
2ν2/2)u2

2

)
t

ν2
− t

ν0 (2.11)

where u = (u1, u2)
T ,Σ =









σ2
1ν1 σ1σ2ρ

√
ν1ν2

σ1σ2ρ
√
ν1ν2 σ2

2ν2









Proof. It suffices to derive the joint characteristic function of the systematic part

(A1, A2) of the process. Note this process can be considered as a two-dimensional

Brownian motion subordinated by a common gamma process Γt. We compute the

characteristic function through conditioning on the gamma time change. From (2.7)

and (2.8), we get:

φA1(t),A2(t)(u1, u2) = E(exp(i(u1A1 + u2A2)))

= E(E(exp(i(u1A1 + u2A2)))|γt = z)

= E(exp(iu1θ1
ν1

ν0
z + iu2θ2

ν1

ν0
z + uTΣuz/2ν0))

= (
1

1 − iu1θ1ν1 − iu2θ2ν2 + uTΣu/2
)

t
ν0
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Where, Σ =









σ2
1ν1 σ1σ2ρ

√
ν1ν2

σ1σ2ρ
√
ν1ν2 σ2

2ν2









.

The joint characteristic function of (X1, X2) is just the product of the two

parts by independence.

To derive the Lévy measure of the process, it suffices to find the Lévy measure

of the systematic part (A1, A2), since the independent part is the same as the single

dimesional VG process and the sum of two independent Lévy processes has the Lévy

measure as the sum of two Lévy measures. We use the result for subordination of a

Lévy process (see [12] page 108 for a complete proof):

The Lévy measure ρS for St, which can be written as a two-dimensional Brow-

nian Wt with drift θ and volatility rate Σ time-changed a common subordinator

Γt(1, ν), is given by:

ρS(B) =

∫ ∞

0

pWs (B)ρ(ds), ∀B ∈ B(R2).

where ρ(ds) is the Lévy measure for the subordinator and pWs is the probability

distribution of Ws.

In the VG case, we have the Lévy measure of the gamma process with unit

mean rate and variance rate ν as:

ρ(ds) =
1

ν

e−
s
ν

s
ds.

Then the Lévy density is written in the following integral form:

ρY (dx) = (

∫ ∞

0

fs(x)
1

ν

e−
s
ν

s
ds)dx.
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where fs(x) is the probability density density function of the multivariate normal

distribution with mean θs and variance matrix Σs.

We need the following identity:

e−|x|a =

∫ +∞

0

a
√

2πy3
e−

a2

2y
−x2

2
ydy

Then the Lévy density is:

mY (x) =

∫ ∞

0

1

(2π)n/2
√

|Σ|s
exp(−(x − θs)TΣ−1(x− θs)

2s
)
1

ν

e−
s
ν

s
ds

=
exp(θTΣ−1x)

ν(2π)(n−1)/2
√

|Σ|

∫ ∞

0

1√
2πs3

exp(−x
TΣ−1x

2s
− (θTΣ−1θ + 2

ν
)s

2
)ds

=
exp(θTΣ−1x)

ν(2π)(n−1)/2
√

|Σ|
√
xTΣ−1x

exp(−
√

(θTΣ−1θ +
2

ν
)(xTΣ−1x))

The Lévy density for the two-dimensional multivariate VG process is thus,

mA(x1, x2) + ρY (x1) + ρZ(x2)

where mA is given above with VG parameters described in (2.9)-(2.10), ρY and ρZ

are Lévy measures for single VG processes with VG parameters in (2.9)-(2.10).

To see the flexibility of the dependence structure, we can analyze the impact of

two dependence parameters ν0 and ρ. As ν0 → ∞, X1 and X2 become independent

VG processes. When ν0 = ν1 = ν2 and ρ = 1, X1 and X2 are fully dependent.

In the general case ν1 = ν2 , X1 and X2 achieve the maximal dependence when

ν0 = max(ν1, ν2) and ρ = 1.

Proposition 2.3. The linear dependence between X1 and X2 at any time t is:

Corr(X1, X2) =
θ1θ2

ν1ν2
ν0

+ σ1σ2ρ
√
ν1ν2
ν0

√

θ2
1ν1 + σ2

1

√

θ2
2ν2 + σ2

2

(2.12)
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Proof. To compute the correlation between two random variable, we first derive the

covariance Cov(X1, X2) at time t. Note here (X1, X2) denotes the random variables

of the process at time t, though we did not write t explicitly. We will see the cor-

relation is independent with the time horizon t. For easy use of the notations, we

denote the systematic part (A1, A2) by (θ1
ν1
ν0
t+ σ1

√

ν1
ν0
W 1
t , θ2

ν2
ν0
t+ σ2

√

ν2
ν0
W 2
t ) time

changed by γt. The correlation of W1 and W2 is ρ.

Cov(X1, X2) = E(X1X2) − E(X1)E(X2)

= E((A1 + Y )(A2 + Z)) −E(A1 + Y )E(A2 + Z)

= E(A1A2) − E(A1)E(A2)

= E(E(A1A2|γt = z)) − θ1θ2
ν1ν2

ν2
0

t2

= E(θ1θ2
ν1ν2

ν2
0

z2 + σ1σ2ρ

√
ν1ν2

ν0
z) − θ1θ2

ν1ν2

ν2
0

t2

= θ1θ2
ν1ν2

ν2
0

(t2 + ν0t) + σ1σ2ρ

√
ν1ν2

ν0

t− θ1θ2
ν1ν2

ν2
0

t2

= (θ1θ2
ν1ν2

ν0
+ σ1σ2ρ

√
ν1ν2

ν0
)t

Therefore, the correlation of X1 and X2 is

Corr(X1, X2) =
θ1θ2

ν1ν2
ν0

+ σ1σ2ρ
√
ν1ν2
ν0

√

θ2
1ν1 + σ2

1

√

θ2
2ν2 + σ2

2

2.2.2 Extensions to the High-Dimensional Case

The process can be extended easily to the case of a higher dimension. We can

write the n-dimensional VG process with one systematic part as follows:
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Xi(t) = Ai(t) + Yi(t), i = 1..n (2.13)

where Ai(t) = Wi(Γ(t)) are time-changed n-dimensional Brownian motion by a

common gamma process Γ(t) with parameter ν0. Yi(t), i = 1..n are the independent

VG parts needed to match the marginal process. The parameters for marginal

processes can be arbitrary, but the parameters for dependence need to satisfy the

condition ν0 ≥ max(ν1, ν2, ...νn).

The pairwise correlation between Xi and Xj is:

Corr(Xi, Xj) =
θiθj

νiνj

ν0
+ σiσjρ

√
νiνj

ν0
√

θ2
i νi + σ2

i

√

θ2
jνj + σ2

j

(2.14)

2.3 Estimation

Estimation approaches are based on finding model parameters in order to fit

the observed returns. One of the widely used methods for estimating a parametric

model is the maximum likelihood estimation (MLE) method. The maximum like-

lihood estimators θ̂ are known to be asymptotically unbiased and efficient. Given

a functional form f(x; θ) for the density of the log-returns ri, the idea of MLE is

to choose the model parameters so that the likelihood of the observed data in the

model is maximized:

max
θ

N
∏

i=1

f(ri; θ)

It is thus equivalent to maximizing the sum of the log-likelihood functions:

l(θ) =

N
∑

t=1

lnf(ri; θ).
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The maximum likelihood estimators can be written as

θ̂ = argmaxθ

N
∑

t=1

lnf(ri; θ).

Unlike the normal distribution or other distribution families whose maximum

likelihood estimators can be solved in closed form, for most of the Lévy processes,

the difficulty in implementing this method lies in the fact that the density func-

tion is usually not known analytically. Therefore, the computation must be done

numerically and the optimization is usually computed by a gradient descent based

algorithm. For one dimensional VG process, the density function can be computed

by inverting the characteristic function using FFT to avoid computation of the

Bessel functions. For large datasets, it is also usually a good idea to bin the data

into small intervals to simplify the computation. For example, we bin the log return

data into one hundred equally spaced intervals within five standard deviations of

the return distribution. The MLE procedure can be done fast and efficiently.

For a general high-dimensional estimation problem, the MLE method works in

principle, but may lead to a complicated numerical computation problem especially

when the analytic joint density function is not known. High-dimensional FFT or

numerical integration are numerically demanding to compute which often leads to

inaccurate results as well. Meanwhile, the optimization part of the procedure often

has too many parameters involved. Searching for the optimal value in a high di-

mensional space is very sensitive to the initial point of your optimization algorithm.

Other estimation methods such as generalized methods of moments (GMM) [22],

methods based on empirical characteristic function [32, 56] or Markov chain Monte
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Carlo (MCMC) [38] are popular in many econometrics contexts. Our construction of

the multivariate VG model circumvents this problem by using a two-stage method.

Since adjusting the dependence parameters will not affect the marginal distribution,

we can introduce a two-step procedure which is relatively easy to implement.

First we estimate the marginal VG parameters by MLE as described above

on each marginal distribution. This makes sure the more important and reliable

information on margins is incorporated in the process. Then with fixed marginal

parameters, we estimate the dependence parameter ν0 and the correlation matrix

Σ0. It turns out that the parameter ν0 is hard to estimate out from the model given

that the likelihood function with respect to ν0 is almost flat. This is because a full

rank-n Brownian motion has n independent factors and we are actually using n+ 1

factors to estimate out n variables with the independent factor. Hence, we suggest

that one chooses ν0 = maxi(νi) for most problems in applications and estimates the

matrix Σ0 by matching the pairwise correlations with sample correlations. Since the

pairwise correlations are given in (2.14), Σij in the correlation matrix is given by

Σij =
ρ̃ij

√

θ2
i νi + σ2

i

√

θ2
jνj + σ2

j − θiθj
νiνj

ν0

σiσj
√
νiνj

ν0

(2.15)

where ρ̃ij is the sample correlation between stock i and j.

In chapter 3 and section 4.6.2, we show more results on estimating the process

with this method and the performance on stock portfolio returns compared with

other popular methods.
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2.4 Simulation

Monte Carlo simulation is widely used in financial engineering when an ana-

lytic solution for one problem is not available. Its applications range from pricing,

hedging, risk managing, etc. Compared with other methodologies in option pric-

ing, Monte Carlo simulation is straightforward and easy to implement. Though

Monte Carlo simulation is often considered as the last choice in pricing derivatives,

for derivatives with very complicated payoff structures, such as mountain range

derivatives or hybrid products, it is often the only feasible approach for pricing

purpose. Therefore, to derive an easy and effective simulation scheme for our new

multi-variate VG process is very important.

For a single dimensional VG process, there are several efficient methods in-

cluding sequential sampling and bridge sampling techniques for constructing sample

paths of a VG process. Sequential sampling based methods rely on different rep-

resentations of VG process presented in the previous chapter. One is to write VG

process as time changed Brownian motion and the other is to decompose one VG

process into two independent gamma processes. Bridge sampling based methods

samples the end of the path first, and then fills in the rest of the path as needed.

This technique is based on the theory of Brownian bridge and gamma bridge for

time-changed Brownian motions. For the details of simulating VG process in one-

dimensional case, we refer readers to [21, 25].

To simulate the multivariate VG model, one can again use sequential sampling

and bridge sampling techniques. Though there is no difference between statistical
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properties of random samples generated by these two techniques, the bridge sampling

method has potential advantage when it is used with variance reduction techniques

and low-discrepancy methods. See [51] for a detailed discussion. By considering

systematic part of the process as time-changed Brownian motions, we here first

briefly describe the procedure of simulating the two-dimensional VG process using

sequential sampling. It extends to any higher dimensional case naturally. We use

the same parametrization as (2.7)-(2.10), the simulation scheme is then:

Sequential sampling of Multivariate VG process:

Input: parameters θ1,2, σ1,2, ν1,2, ρ, ν0; time spacing ∆t1,...,∆tn with
∑N

i=1 ti = T .

Initialization: Set X1(0) = X2(0) = 0.

Loop from i=1 to N:

1. Generate ∆G0
i ∼ Γ(∆ti/ν0, ν0),∆G

1
i ∼ Γ( ∆ti

1
ν1

− 1
ν0

, 1
1

ν1
− 1

ν0

),∆G2
i ∼ Γ( ∆ti

1
ν2

− 1
ν0

, 1
1

ν2
− 1

ν0

).

2. Generate multivariate normal vector ∆Wi ∼ N(0,Σ), where Σ is given in (2.1).

3. Generate normal variables Z1i ∼ N(0, σ1

√

1 − ν1
ν0

) and Z2i ∼ N(0, σ2

√

1 − ν2
ν0

).

4. Return:

X1(ti+1) = X1(ti) + θ1ν1
ν0
G0
i +

√

G0
i∆Wi1 + θ1(1 − ν1/ν0)G

1
i +

√

G1
iZ1i

X2(ti+1) = X2(ti) + θ2ν2
ν0
G0
i +

√

G0
i∆Wi2 + θ2(1 − ν2/ν0)G

2
i +

√

G2
iZ12

For higher dimensional simulation scheme, it is the same as the two-dimensional

case following the model (2.7)-(2.10). Given a large correlation matrix, the simplest

way to generate dependent normal distributed vector in step 2 is to use the Cholesky

decomposition on the correlation matrix Σ. Let Σ = LLT . If v is a n-dimensional
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independent normal random vector, then Lv is a normal random vector with corre-

lation matrix Σ.

Bridge sampling can also be used to simulate the multivariate VG model. The

main idea of bridge sampling is to find the conditional distribution of a stochastic

process Xt at time t ∈ (0, T ), given X0 and XT . That leads to the theory of

Brownian bridge and gamma bridge.

Proposition 2.4. Brownian Bridge: For a Brownian motion Bt with drift µ

and volatility σ, the distribution of Bt, 0 ≤ t ≤ T conditional on B0 and BT is:

Bt ∼ N (
T − t

T
B0 +

t

T
BT ,

t(T − t)

T
σ2) (2.16)

Gamma Bridge: For a gamma process γt with mean rate µ and variance rate ν,

the distribution of γt, 0 ≤ t ≤ T conditional on γ0 and γT is written as:

γt ∼ γ0 + (γT − γ0)Y (2.17)

where Y ∼ β(t/ν, (T − t)/ν) is beta distribution with mean t
T

and variance t(T−t)ν
T 2(T+ν)

.

For multivariate Brownian bridge, it is straightforward from the one-dimensional

case. We may construct independent Brownian bridges on each marginal and cor-

relate them through linear transformation. Namely for a multivariate Brownian

motion Xt with mean µ and covariance matrix Σ, it can be written as

Xt ∼ µt+ LZt

where LLT = Σ and Zt are independent normal variables.

In our multivariate VG mode, the independent components can be simulated

via bridge sampling as one dimensional VG processes separately. Thus, it suffices to
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show how to simulate the systematic part of the process using the Brownian bridge.

In the following we describe a simulation scheme in an informal way to explain the

procedure of simulating systematic part Xt. It can be written as θGt +WGt
where

Wt is a multivariate Brownian motion with covariance matrix Σ and θ is the drift

vector term.

1. Generate a gamma bridge γti on the grids ti, i = 0...2N (ti = 0 and t2N = T ).

2. Generate n independent Brownian bridges Zj
i , j = 1...n on the same time

grids.

3. Decompose the covariance matrix by Cholesky decomposition Σ = LLT .

4. For i = 1 to 2N , return Xi = (γti − γti−1
)θ +

√
γti − γti−1

LZi.

In section 2.6, we give the simulated paths the of a pair of stock prices based

on the multivariate VG process.

2.5 The Multivariate NIG Process

The multivariate VG case can be extended to the normal inverse gaussian

(NIG) process and other time-changed Brownian motions. The characteristic func-

tion for NIG(α, β, δ) is:

ΦNIG(u) = exp(−δ(
√

α2 − (β + iu)2 −
√

α2 − β2))

We may decompose the marginal processes into two independent piecesNIG(α, β, δ1)

and NIG(α, β, δ2) satisfying the condition δ = δ1 + δ2. By correlating the ones with
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the same time change parameter to be subordinated Brownian motions, one can

build the dependent part of the processes. The multivariate NIG model shares sim-

ilar properties to the VG case and we only present the basic construction of the

process here.

Theorem 2.5. Given two marginal NIG processes X1 ∼ NIG(α1, β1, δ1) and X2 ∼

NIG(α2, β2, δ2), we can build the dependence with two additional parameters δ0 and

ρ as follows:

X1 = A1 + Y (2.18)

X2 = A2 + Z (2.19)

A1 ∼ NIG(α1, β1, δ0),Y ∼ NIG(α1, β1, δ1 − δ0) (2.20)

A2 ∼ NIG(α2, β2, δ0),Z ∼ NIG(α2, β2, δ2 − δ0) (2.21)

where, (A1, A2), Y and Z are independent. (A1, A2) is a 2-dimensional ρ-correlated

Brownian Motion with associated mean and covariance matrix subordinated by a

common inverse gamma process I(t; 1, δ0
√

α2 − β2). The parameter δ0 satisfies δ0 ≤

min(δ1, δ2).

2.6 The Risk Neutral Multivariate Stock Price Model

In this section, we study a risk neutral multivariate stock price model based on

the multivariate VG process. Under the risk neutral measure, the discounted stock

prices will be martingales by non-arbitrage pricing theory. If we assume n assets

S1...Sn are driven by exponential multivariate VG processes, we have to adjust the
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drift term so that the discounted marginal processes will be martingales. We can

write:

S1 = exp(rt+X1(t) − w1(t)); X1 = A1 + Z1

S2 = exp(rt+X2(t) − w2(t)); X2 = A2 + Z2

...

Sn = exp(rt+Xn(t) − wn(t)); Xn = An + Zn

Where, wi are compensators for exponential VG processes, which can be writ-

ten as wi = 1
νi
log(1 − θiνi − σ2

i νi/2); i = 1...n, Ai and Zi are systematic and inde-

pendent factors, respectively.

The following figures show the two-dimensional simulation paths for multi-

variate VG stock prices with different parameters. The first one has a relatively

stronger correlation as the dependent component of the process plays a major role.

The correlation in the second one is weak and the sample paths behave almost

independently with each other.
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Figure 2.1: Simulation path I
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Figure 2.2: Simulation path II
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Chapter 3

Dependence Modeling with Multivariate Variance Gamma Model

3.1 Overview of Dependence Modeling

Modeling the dependence structure among a number of financial assets is an

important topic in mathematical finance. It plays a critical role in pricing and hedg-

ing multi-asset derivatives, controlling of risk clustering and managing risks with a

portfolio of assets. In the standard framework of Gaussian distribution, the multi-

variate distribution takes the form of an exponential of a quadratic form −XΣ−1X,

where X is the vector of asset returns and Σ is their covariance matrix. The beauty

and simplicity of the Gaussian case is that the symmetric covariance matrix de-

termines the whole joint dynamics of the random vector. Risk is then completely

embodied by the variance of the portfolio return, which is the basis of Markovitz

portfolio theory [47]. However, the reason for the wide use of the Gaussian distri-

bution and Brownian motion is not because it is a good model for financial data

in many cases, but due to its tractability. Ever since Fama [20], it is well known

that asset returns do not follow a normal distribution. The dependence structure

arising from a multi-dimensional Brownian motion is also too simple to capture the

sophisticated comovement dynamics of several assets in the financial market. For in-

stance, multivariate Brownian motions generate very limited symmetric dependence

structure and zero tail dependence, while many empirical studies indicate that one
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needs models with more flexible dependence structures to explain the joint dynamics

of multiple price processes in the financial market. Here, we review one important

stream of dependence modeling approach in the literature: copula methods.

3.1.1 Copula Methods

The concept of copula was introduced by Sklar [57]. A copula is used as a gen-

eral way of formulating a multivariate distribution such that various general types

of dependence can be represented. It is a function which generates a joint distribu-

tion from several marginal distributions. Hence, it makes possible to separate the

dependence structure from the marginal distributions. By using a copula, one can

easily construct a multivariate distribution with any marginal distribution and any

pre-specified dependence structure. This flexibility gains the copula models, which

appear as a natural modeling device in a non-Gaussian world, widely popularity in

financial applications. A copula was first introduced to model default correlation in

credit derivatives side by Li [37]. Later, copula methods were widely used in risk

management [19], in option pricing [14] , in credit derivative pricing such as CDS

and CDO.

Definition 3.1. A copula is a function C: [0, 1]n → [0, 1] such that:

• C(u) = 0 whenever u ∈ [0, 1]n at least one component equal to 0.

• C(u) = ui whenever u ∈ [0, 1]n has all the components equal to 1 except the

i-th one, which is equal to ui.

• C(u) is n-increasing.(Any n-dimensional distribution function is n-increasing)
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The approach of formulating a multivariate distribution using a copula is based

on the idea that a simple transformation can be made of each marginal variable in

such a way that each transformed marginal variable has a uniform distribution. The

following elegant result shows that the study of the dependence of random variables

can be performed independently of the behavior of the marginal distributions.

Theorem 3.2. (Sklar) Let X and Y be random variables with joint distribution

function H and marginal distribution functions F and G, respectively. Then there

exists a copula C such that H(x, y) = C(F(x),G(y)) for all x, y in R. Conversely, if

C is a copula and F and G are distribution functions, then the function H(x, y) =

C(F(x),G(y)) is a joint distribution function with margins F and G.

Copulas of increasing or decreasing transforms of continuous random variables

are easily written in terms of the copula of these variables. In particular, copulas

are invariant with respect to increasing transforms.

Theorem 3.3. Let X1, X2 be continuous random variables with marginal distribu-

tion functions F1 , F2 and copula C. If I1 , I2 are two increasing transformations,

the random variables I1(X1), I2(X2) , which have marginal distribution functions

H1 = F1(I
−1
1 , H2 = F2(I

−1
2 ) and joint one

H(x1, x2) = Pr(I1(X1) ≤ x1, I2(X2) ≤ x2)

has copula C too:

H(x1, x2) = C(H1(x1), H2(x2))

This is also true for more than two random variables.
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The above theorem provides a powerful way of studying scale-invariant mea-

sures of associations. It is also a natural starting point for the construction of

multivariate distributions and provides the theoretical justification of the method

of determination of multivariate distributions that we use below.

To describe the multivariate distribution, we need the measures of the depen-

dence between random variables. The most commonly used one in practice is linear

correlation (Pearson’s correlation). Although correlation works fine for elliptical dis-

tributions, it turns out to be a bad measure when it comes to non-elliptical margins.

Thus, there are other copula-based measures of dependence including concordance

measures and tail dependence. Concordance is used to describe the global trend.

Two popular concordance measures are Kendall’s τ and Spearman’s ρ.

Tail dependence describes asymptotical dependence between extreme events.

It thus studies the dependence in the upper-right-quadrant tail or lower-left-quadrant

tail of a joint distribution. The rigorous definition of tail dependence reads as fol-

lows:

Definition 3.4. Let (X,Y) be a random vector with marginal distributions F and

G. The lower tail dependence index is defined as:

λL = lim
ν→0+

P(Y 6 G−1(ν)|X 6 F−1(ν)),

given the limit λL exists.

Similarly, the upper tail dependence index is defined as;

λU = lim
ν→1−

P(Y > G−1(ν)|X > F−1(ν)),
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given the limit λL exists. X and Y are said to be asymptotically dependent in the

lower(upper) tail if λL ∈ (0, 1](λU ∈ (0, 1]); X and Y are said to be asymptotically

independent in the lower(upper) tail if λL = 0(λU = 0).

Popular examples of copula families applied in finance include the Gaussian

copula, t copula and the Archimedean family of copulas. In the next section, we are

going to discuss more details of the Gaussian copula and the method of implementing

it. For more discussion of other copulas, we refer the readers to [14].

While the copula method provides a simple way of modeling dependence struc-

ture without specifying the marginal distribution, one big restriction in applying it

is the difficulty of generating stochastic processes from random variables. Copula is

constructed and estimated in random variable level at a certain time and it is not

clear so far whether stochastic processes consistent with given random variables can

be easily constructed.

3.1.2 Full-rank Gaussian Copula Method

One of the most popular copulas applied in finance is the Gaussian copula

which is the copula implied by the multivariate Gaussian distribution. Therefore,

the parameters in a n-dimensional Gaussian copula are just n(n − 1)/2 entries in

the symmetric correlation matrix. For a bivariate Gaussian copula, it only has one

parameter ρ, which is commonly known as the correlation coefficient. It can be

represented as:

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)) (3.1)
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where, u, v ∈ [0, 1], Φ denotes the standard normal cumulative distribution function

and Φρ stands for the standard bivariate normal cumulative distribution function

with correlation ρ.

As one of the benchmark models in pricing structured credit derivatives, the

methodology of applying the Gaussian copula to credit derivatives is said to be

one of the reasons behind the global financial crisis of 2008. Despite it is tractable

and simple, the fact that the Gaussian copula has no tail dependence leads to a

serious misestimate of the tail event of a whole portfolio. Empirical studies in

finance indicate that stock pairs from the same industry often has a strong tail

dependence of large negative movements. For example, the big price drop for one

stock usually coincides with the slump of the stock price in the same sector. However,

the Gaussian copula is not able to capture this effect and thus always underestimates

the probability of the big losses of an asset pool significantly. Unfortunately, the rare

events of the huge loss misestimated by the model can cause disasters in the financial

market. A popular article in wired magazine of Feb 2009 named the Gaussian copula

as ”The Formula That Killed Wall Street”

To test the Gaussian copula method with historical stock data and compare

the model performance of explaining portfolio returns with our multivariate VG

model, we here implement the full-rank Gaussian copula (FGC) approach which

follows the idea of Malevergne and Sornette [45, 46].

Given historical returns on n different stocks, we first transform marginal

returns xi, i = 1...n on stock i into the standard normal variables zi, i = 1...n by
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using the following formula.

zi = N−1(Fi(xi)) (3.2)

Where Fi stands for the parametric distribution function estimated from the data

(e.g. VG distribution), N is the cumulative distribution function for standard nor-

mal random variables.

Next, we estimate the correlation matrix Σ of zi by using the sample correlation

matrix. When the sample size is small or matrix dimensional is large, a sample

covariance or correlation matrix may be not positive definite due to mere sampling

fluctuation. In that case, we use Quasi-Newton methods of Qi & Sun [50] to find

the closest correlation matrix.

Last, to derive the joint distribution of the original data series, one just needs

to convert the estimated correlated normal variables zi back to xi.

xi = F−1
i (N(zi)) (3.3)

To derive the cumulative distribution function of the VG distribution in step

one, one may invert the characteristic function by using FFT. Simple integration

leads to the following proposition:

Proposition 3.5. Let X be a random variable with characteristic function φ(x)

and let e−αx be the dampening factor. X has distribution function F (x). Then, the

cumulative distribution function F (x) is given by:

F (x) =
eαx

2π

∫ ∞

−∞
e−iux

φ(u+ iα)

−iu+ α
du (3.4)
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It turns out the generated distribution above is equivalent to arbitrary marginal

distributions glued by a full-rank Gaussian copula by the invariance principle of cop-

ula. The simulation is straightforward given randomly generated correlated Gaus-

sian variables and formula given above. In the next section, we test this method on

stocktak data to using goodness of fit under the full-rank Gaussian copula assump-

tion.

3.2 Performance on Fitting Portfolio Returns

In this section, we implement the multivariate VG model to fit the joint re-

turns of the stock prices. We compare the goodness of fit results with the full-rank

Gaussian model and show the multivariate variance gamma model has a significant

improvement over the Gaussian copula method.

Testing the joint statistical returns of several financial assets is often not easy

to implement. One problem we face is that as the dimension of the distribution

gets higher, the direct goodness of fit test on the joint density function becomes

infeasible. Thus we instead move our attention to the test on the returns of the

portfolios. After all, in financial applications, the joint dynamics is mostly important

when we consider the interaction among a portfolio of assets. The models we are

going to implement and compare are the full-rank Gaussian copula (FGC) approach

described before and the multivariate variance gamma (MVG) model we proposed

in Chapter 2.

The dataset we select include select eight stocks from technology sector and
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seven stocks from the industrial sector. We use time series data on stock prices from

1/1/2002 to 10/1/2008.

The seven industrial stocks we considered as a group are XOM (Exxon Mobil),

SUN (Sunoco), XRX (Xerox), WMT (Wal-mart Stores), VZ (Verizon Communica-

tions), MMM (3M Company), KO(The Coca-Cola Company) and the eight stocks in

the technology sector are AAPL (Apple), AMZN (Amazon.com), CSCO (Cisco Sys-

tems), DELL (Dell), IBM (International Business Machines), INTC (Intel), ORCL

(Oracle), QCOM (Qualcomm).

We first use MLE to estimate the marginal return distribution on each stock

individually with variance gamma distribution. The density function is computed

by inverting the characteristic function using FFT. The estimated parameters are

reported as follows:

We choose ν0 as the largest νi among all margins and simply estimate the

correlation matrix in the Brownian motion by matching correlations of any two

stocks in the portfolio with the sample correlations.

We test the model performance on one thousand randomly generated portfolios

on stock returns. We form for each sector a thousand randomly generated long-only

and long-short portfolios. For the long-short portfolio of n assets we generated n

independent normal variables and scaled them to be on the unit sphere. For the

long only portfolio, we generated n independent normals and scaled the absolute

values by their sum. From the time series we determine the portfolio returns by

taking the linear transformations on the data. For the density of portfolio return

with weight w in the model, we first derive the characteristic functions φ(v) from
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Table 3.1: Estimated VG parameters on marginal laws

TICKER θ in basis points σ ν

XOM -22.34 0.0167 0.6744

SUN -21.84 0.0237 0.6821

XRX 2.37 0.0309 1.2741

WMT 6.85 0.0179 0.8462

VZ 2.76 0.0188 0.8773

MMM 2.98 0.0159 0.9947

KO -3.01 0.0150 1.0625

AAPL 11.06 0.0256 0.5165

AMZN 29.22 0.0288 0.9337

CSCO -8.22 0.0222 0.7667

DELL -1.70 0.0193 0.7990

IBM -1.45 0.0146 0.8132

INTC -6.28 0.0227 0.6967

ORCL 0.19 0.0233 0.8924

QCOM 32.44 0.0241 0.6346

the joint characteristic function Φ(u) by choosing appropriate u = wv, then invert

the characteristic function by FFT.

We construct the chi-square statistics on twenty equally spaced intervals within

the five standard deviations of the returns and compute p-values. We present empir-
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ical complementary distribution function of the p-values across the 1000 portfolios

for each sector and each type of portfolio. The graphs of the complementary distri-

bution functions in the following.

From the results of the graph, one can see that MVG model has a much better

overall performance than FGC model in both sectors. The full rank Gaussian copula

model is especially poor when fitting with long-only portfolios of returns.

3.3 Local Correlation

Correlation, or known as Pearson’s correlation, is an effective way to represent

comovements between variables if they are linked by linear relationships. However,

it sometimes may be misleading when the marginal distributions are non-normal.

The comovements of variables tend to perform differently for different sample values.

To investigate the dependence structure intuitively, we here introduce the idea of

local correlation to examine the local dependence structure of the multivariate VG

model..

For a two dimensional distribution (X1, X2) on R2, we define the local cor-

relation ρl(x1, x2) as the correlation locally spanned at (x1 + ǫ, x2 + ǫ) for small ǫ.

To numerically evaluate this number across the R2 plane, we first derive a closed-

form formula for ρl(x1, x2) by approximating the joint density f(x1, x2) using the

expansion of a joint Gaussian density.

g(x1, x2) := −2logf(x1, x2) = c(gx1x1x
2
1 + 2gx1x2x1x2 + gx2x2x

2
2 + ...)
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Figure 3.1: Industrial sector result
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Figure 3.2: Technology sector result
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ρl =
∂2

∂x1∂x2
(−log(f))

√

∂2

∂2x1
(−log(f))

√

∂2

∂2x2
(−log(f))

which can be also written as

ρl =
fx1x2f − fx1fx2

√

fx1x1f − f 2
x1

√

fx2x2f − f 2
x2

where fx1, fx2 stand for the first derivatives of f with respect to x1 and x2 and

fx1x1 , fx1x2, fx2x2 stand for the second derivatives of f with respect to corresponding

variables.

For the multi-variate VG model and many other Lévy models, we do not have

the closed form for the joint density even for the two dimensional case. Thus, to eval-

uate the joint density and its derivatives, one needs to numerically invert the charac-

teristic function by Fourier transform. By FFT, we can compute fx1x2, fx1x1, fx2x2 , fx1, fx2

in a very efficient way. The following result shows the formulas which compute the

local correlation surface in the whole plane.

f(x1, x2) =
1

(2π)2

∫∫

e−iu1x1−iu2x2Φ(u1, u2)du1du2

fx1(x1, x2) =
1

(2π)2

∫∫

e−iu1x1−iu2x2(−iu1)Φ(u1, u2)du1du2

fx2(x1, x2) =
1

(2π)2

∫∫

e−iu1x1−iu2x2(−iu2)Φ(u1, u2)du1du2

fx1x1(x1, x2) =
1

(2π)2

∫∫

e−iu1x1−iu2x2(−u2
1)Φ(u1, u2)du1du2

fx1x2(x1, x2) =
1

(2π)2

∫∫

e−iu1x1−iu2x2(−u1u2)Φ(u1, u2)du1du2

fx2x2(x1, x2) =
1

(2π)2

∫∫

e−iu1x1−iu2x2(−u2
2)Φ(u1, u2)du1du2

54



Local correlation surface can be used to determine the relative comovement

level of two variables compared with the normal distribution. In the financial market,

it is well-documented that asset prices tend to move together when market has big

movements. The joint dynamics of multivariate Brownian motion or the Gaussian

copula was strongly rejected as a model for comovement of two stock prices. Thus,

we expect the local correlation surface of any reasonable bivariate financial models

to be non-flat and peaked at the corner of first and third quadrants. The multi-

variate VG model shows certain desirable features from the correlation surface we

constructed. We chose the following two sets of parameters which use different

dependence parameters and draw the local correlation surface within the region

[−10%,+10%]2.

Table 3.2: Parameters

θ1 θ2 σ1 σ2 ν1 ν2 ρ ν0

Set 1 -0.05 -0.05 0.3 0.3 0.5 0.5 1 1

Set 2 -0.05 -0.05 0.3 0.3 0.5 0.5 0.6 0.5

While the linear correlation for these marginal variables are 0.5 and 0.6055

respectively, the local correlation surfaces vary significantly over the plane. The

local correlation goes down to a very low level or even negative numbers in the

second and fourth quadrants and peaks in the corner of first and third quadrants.

This also explains why the multivariate VG model shows great performance in fitting

the portfolio returns in the previous section.
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Chapter 4

Applications in Multi-asset Option Pricing

4.1 Overview

Many financial derivatives expose risks to more than one assets, such exam-

ples include spread option, basket option, and most structured products. Using a

reasonable model to model the joint dynamics of these assets is a must to price and

hedge these financial derivatives consistently and correctly. In most of the litera-

ture, pricing multi-asset derivatives relies heavily on using multivariate Brownian

motions. However, the real market deviates largely from Gaussian based model in

two aspects: heavy-tail distributed marginal returns and strong tail dependence.

The copula method provides flexible dependence structure, but the difficulty in con-

structing a process makes pricing and hedging options become difficult. The multi-

variate variance gamma model we introduce in chapter two provides an alternative

to the classic diffusion based model or copula based model.

In this chapter, we discuss the pricing problem of several popular multi-asset

options including exchange option, spread option, basket option, rainbow option and

cross-currency FX derivatives. Although all these problems can be solved by Monte

Carlo simulation, we try to investigate more efficient numerical methods based on

the Fourier transform. We derive the analytic closed form for the Fourier transform

of the prices and use FFT to numerically compute the result. We show in details
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how to price the options and estimate the sensitivities under our multivariate VG

model. The FFT method is proved to be much faster and more accurate than Monte

Carlo simulation. Meanwhile it is worth noting that these numerical methods are

general in the sense that they can be applied to any multivariate model with closed

form characteristic function. Due to the computational burden of high-dimensional

FFT algorithm, we restrict the case of basket option and rainbow option to the

case of only two assets. Though the formula is also given in the context for higher

dimensional cases with more than three assets, it is usually not feasible in practice

by FFT. Monte Carlo simulation with some variance reduction methods is standard

for approaching these products in that case.

4.2 Exchange Option

We start our discussion from one of the simplest multi-asset options: exchange

option. An exchange option allows the holder of the option to exchange one asset

for another and is used commonly in foreign exchange markets, bond markets and

stock markets amongst others. The payoff of an exchange option with assets S1 and

S2 is thus (S1 − S2)
+. It is obvious that exchange option is a special case of spread

option with strike equal to zero.

Margrabe [47], in 1978, first introduced the pricing formula for valuing Euro-

pean exchange options assuming two assets follow two correlated log-normal pro-

cesses. We present this derivation in full for the sake of its importance.

Assume that the risk-neutral dynamics of the two underlying assets are given
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by the following stochastic differential equations.

dS1(t) = rS1(t)dt+ σ1dW1(t) (4.1)

dS2(t) = rS2(t)dt+ σ2dW2(t) (4.2)

E{dW1(t)dW2(t)} = ρdt (4.3)

Using the technique of change of numeraire, Margrabe derived the pricing

formula for European exchange options.

Proposition 4.1. (Margrabe’s formula) The price p of an exchange option with

maturity T is given by

p = S1(0)Φ(d1) − S2(0)Φ(d2) (4.4)

where,

d1 =
ln(S1(0)/S2(0)) + 1

2
σ2T

σ
√
T

,

d2 =
ln(S1(0)/S2(0)) − 1

2
σ2T

σ
√
T

,

σ2 = σ2
1 + σ2

2 − 2ρσ1σ2.

The formula is in a similar form to the Black-Scholes formula. For a complete

proof, we refer readers to [47]. Margrabe’s trick in deriving the formula lies in the use

of change of numeraire. By changing the numeraire from the money account to one of

these two assets, the problem is greatly simplified to a single dimensional problem.

His formula is widely used and can be applied to much more generalized models

besides the Black-Scholes model. With this technique of change of numeraire, we
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may simplify the problem of pricing an exchange option in multi-variate VG models

significantly.

We consider the exchange option pricing problem under the multivariate VG

model, where S1 and S2 follow an exponential two-dimensional VG process. The

joint characteristic function is given by (2.11).

The exchange option price at time 0 is e−rTEQ(S1 − S2)
+. To simply the

calculation, we change the numeraire from the risk free money account to the asset

S2. Let EU2 be the expectation under the measure U2 with numeraire S2. By

theorem 1.10 in chapter 1, the Radon-Nykodym derivative of the numeraire change

is:

dQ

dU2
=
erTS2(0)

S2(T )
(4.5)

By theorem 1.10, the price p becomes:

p = S2(0)EU2(
S1(T )

S2(T )
− 1)+ (4.6)

We now simplify the problem into an option pricing problem with one under-

lying. The price of the exchange option becomes an European call option on S1(T )
S2(T )

under measure U2 with strike 1. To apply the FFT method of Carr and Madan, we

only need to derive the characteristic function of ln(S1(T )
S2(T )

) under measure U2, which

can be derived again by change of numeraire.

60



φ(u) = EU2(e
iuln(

S1(T )
S2(T )

)
)

= EQ(e
iuln(

S1(T )
S2(T )

)dU2

dQ
)

= EQ(exp(−rT + iuln(S1(T )) + (1 − iu)ln(S2(T )) − ln(S2(0))))

= exp(iuln(S1(0)/S2(0)) − iuln(φ(X1,X2)(−i, 0)) − (1 − iu)ln(φ(X1,X2)(0,−i)))

· φ(X1,X2)(u,−i− u) (4.7)

(4.8)

The exchange option price p in (4.6) can now be easily computed by the

Carr-Madan FFT method on European Call options with r = 0 and characteristic

function (4.7).

4.2.1 Numerical Results

To see the advantage of using the FFT method, we compare the computational

results between FFT method and Monte Carlo simulation for exchange options under

the two-dimensional VG model. We tested two groups of VG parameters with a set

of S2(0). The algorithm was implemented in Matlab on the same machine. To get an

accurate estimation from the simulation, we run 10,000,000 simulation paths each

time. The FFT method was much faster compared with Monte Carlo simulation run

on the same computer. Besides the computational speed, we also observe that Monte

Carlo simulation converges very slowly without using variance reduction techniques.

The estimated standard errors are reported in the last column of the table. The

FFT method is also able to compute the option prices across different strikes in one
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run. In all, the FFT method is shown to have a huge advantage over the simulation

method. The results show the accuracy of the FFT method is very reliable.

Table 4.1: Computational Results I for Exchange Options

FFT method Simulation

S2(0) N=2048 N=4096 n=10,000,000 std

80.0 22.4261 22.4260 22.4198 0.0079

90.0 15.0702 15.0688 15.0728 0.0067

100.0 9.5056 9.5056 9.5076 0.0069

110.0 5.9312 5.9300 5.9323 0.0059

120.0 3.7707 3.7701 3.7698 0.0037

T = 1; θ1 = θ2 = −0.05; σ1 = σ2 = 0.3; ν1 = ν2 = 0.5; ν0 = 1; ρ = 0.8.

Table 4.2: Computational Results II for Exchange Options

FFT method Simulation

S2(0) N=2048 N=4096 n=10,000,000 std

80.0 23.7522 23.7519 23.7508 0.0084

90.0 17.3682 17.3668 17.3673 0.0093

100.0 12.6590 12.6590 12.6535 0.0087

110.0 9.3226 9.3219 9.3234 0.0065

120.0 6.9788 6.9684 6.9679 0.0071

T = 1; θ1 = 0.05; θ2 = −0.05; σ1 = 0.4; σ2 = 0.3; ν1 = 0.8; ν2 = 0.5; ν0 = 1; ρ = 1.0
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4.3 Spread Option

Spread options are popular multi-asset derivatives traded across different sec-

tors of the financial market. By definition, a spread option is an option written on

the difference of two asset prices. The payoff function of an European call spread

option on two assets S1 and S2 with strike K is (S1(T ) − S2(T ) −K)+ at maturity

T . Hence, it can be considered as an European call option on the spread of two

assets or indices. Spread options are designed to mitigate adverse movements of

several indexes. Because of their generic nature, they are used in markets as varied

as fixed income markets, currency and foreign exchange markets, commodity futures

markets, and energy markets. The definition of spread options sometimes can also

be loosened to include all kinds of options written on a linear combination of a finite

set of assets.

Pricing spread options is more involved compared with pricing exchange op-

tions. By risk-neutral valuation, the price of an European call spread option can

be written as e−rTEQ(S1 − S2 −K)+. The numeraire change technique can not be

applied due to the existence of the non-zero strike, and the log return distribution

of the difference is usually unknown. It turns out to be a hard problem to derive a

pricing formula even under the Black-Scholes framework for a spread option. The

main obstacle to a clean pricing methodology lies in the lack of knowledge about

the distribution of the difference between two non-trivially correlated stochastic pro-

cesses. For example, the distribution of the difference of two correlated log-normal

processes is no longer log-normal distributed. While various of numerical methods
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such as Monte Carlo simulation, PDE solvers are feasible for pricing purpose (See

[8] for an overview of pricing and hedge spread options), closed form approximation

formulas are much more attractive for practical use. One of the widely-used formu-

las is derived by Kirk [36] under the Black-Scholes’ assumption. Assume two assets

or indices follow two correlated log-normal processes as (4.1)-(4.3), Kirk proposed

the following closed form approximation for pricing a spread option.

Proposition 4.2. (Kirk’s Formula)

pK = x1Φ(
ln( x1

x2+Ke−rT )

σK
+
σK

2
) − (x2 +Ke−rT )Φ(

ln( x1

x2+Ke−rT )

σK
− σK

2
) (4.9)

where,

x1 = S1(0), x2 = S2(0), σK =

√

σ2
2 − 2ρσ1σ2

x2

x2 +Ke−rT
+ σ2

1(
x2

x2 +Ke−rT
)2.

Instead of deriving such numerical approximation under some certain models,

Fourier transform method is considered to be a good candidate to solve more general

cases. For most of the option pricing models, the joint characteristic function for

asset returns is available analytically and we can write out the price of the spread

option as a double integral.

p =

∫∫

Ω

e−rT (es1 − es2 −K)fT (s1, s2)ds2ds1 (4.10)

where the exercise region Ω is defined as:

Ω = {(s1, s2 ∈ R2)|es1 − es2 −K > 0}.

s1 = ln(S1(T )), s2 = ln(S2(T )).
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The exercise region is by nature non-linear, which makes the transformation

method of the FFT method difficult to use. Dempster and Hong [16] described a

FFT method to find the upper and lower bounds of a spread option. They formed

tight upper and lower bounds of the integral by subtracting and collecting pieces on

N ×N different regions and then applied FFT on the regularized region. However,

they did not solve the exact form of the transformed price.

The recent progress of solving the problem was made by Hurd and Zhou [30].

They developed a new numerical integration method for computing spread options in

two or higher dimensions through FFT with closed-form joint characteristic function.

To apply the two-dimensional FFT, they consider the price as a function of initial

log stock prices by scaling the strike into 1. The Fourier transform converts the log

return space into the initial log strike space with closed form integral function. This

formula provided the exact solution of pricing general spread options in terms of a

double integral which can be approximated accurately and efficiently by FFT. It thus

is a perfect method of computing spread option prices under the two-dimensional

VG model. The result stems from the following proposition.

Proposition 4.3. For any real number ǫ = (ǫ1, ǫ2) with ǫ2 > 0 and ǫ1 + ǫ2 < −1

P (x) = (2π)−2

∫∫

R2+iǫ

eiux
′

P̂ (u)d2u (4.11)

where, P̂ (u) =
Γ(i(u1 + u2) − 1)Γ(−iu2)

Γ(iu1 + 1)
. (4.12)

Here Γ(z) is the complex gamma function defined by the integral Γ(z) =
∫ ∞
0
e−ttz−1dt

for Re(z) > 0. u = (u1, u2) and x = (x1, x2).

For any spread option with non-zero strikes, one can assume the strike of the
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spread option equals to 1 without loss of generality. By scaling, the payoff function

can be written as (S1T − S2T − 1)+. Using the result above, the price of this spread

option is converted into the following form:

Proposition 4.4.

P (S0;T ) = e−rTE[(S1T − S2T − 1)+]

= (2π)−2e−rT
∫∫

R2+iǫ

EX0 [e
iuX′

T P̂ (u)d2u]

= (2π)−2e−rT
∫∫

R2+iǫ

eiuX
′

0Φ(u;T )P̂ (u)d2u] (4.13)

Here, Xi = logSi with i = 1, 2. Φ(u;T ) := E0[e
iu(X′

T
−X′

0)] is the joint characteristic

function of the log returns.

The most efficient way to evaluate the above integral is to use numerical in-

tegration by FFT. The double integral can be estimated by a double sum over the

lattice:

{µ(k) = (µ(k1), µ(k2)) = (−Nη/2 + k1η,−Nη/2 + k2η)|k1, k2 = 0, 1...N − 1}

In FFT, N is usually chosen as a power of 2 and lattice spacing η is small in order

to keep the error be acceptable. Finally, choose initial values X0 = logS0 to lie on

the reciprocal lattice with spacing η∗ = 2π/Nη. Compared with Carr-Madan FFT

method, the space of log returns is transformed into the space of initial log prices

other than the space of the log strike. The new grids after the transform will be on

{x(l) = (x(l1), x(l2)) = (−Nη∗/2 + l1η
∗,−Nη∗/2 + l2η

∗)|l1, l2 = 0, 1...N − 1}
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The approximation of the price is written as

P (S0, T ) ≈ η2e−rT

(2π)2

N−1
∑

k1,k2=0

ei(µ(k)+iǫ)x′Φ(µ(k) + iǫ;T )P̂ (µ(k) + iǫ)

= (−1)l1+l2e−rT (
ηN

2π
)2e−ǫx(l)

′

[ifft2(H)](l) (4.14)

where,

H(k) = (−1)l1+l2Φ(µ(k) + iǫ;T )P̂ (µ(k) + iǫ)

In the formula, ifft2 stands for the 2-dimensional inverse discrete Fourier transform,

computed with a Fast Fourier transform algorithm. For the N × N matrix, the

FFT method is shown to have the O(N2logN) complexity, which is a significant

improvement over the normal Fourier transform with complexity of O(N4). With

the computational power of the modern computers, the prices can be computed very

accurately within fractional seconds.

Similar to computing the Greeks by FFT in Chapter 1, the FFT method can

also be applied to approximate the sensitivities for spread options.

4.3.1 Numerical Results

In this section, we compare the computational results between the FFT method

and Monte Carlo simulation for spread options under the two-dimensional VG

model. We tested two groups of VG parameters with a set of strike K. Note

that in the method of Hurd and Zhou, different strikes are equivalent to choosing

different initial S1(0) and S2(0). The experiment was implemented in Matlab on the

same machine. To get an accurate estimation from the simulation, we run 10,00,000
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simulation paths each time to control the simulation error into an acceptable range.

The FFT method was shown to be significantly faster than simulation. In addition

to its fast speed, the FFT method could give the prices with different strike K,

S1(0) and S2(0) in one run once the joint process is determined. In the following

examples, we use r = 0, S1(0) = 100 and S2(0) = 90.

Table 4.3: Computational Results I for Spread Options

FFT method Simulation

K N=512 N=1024 n=10,000,000 std

5.0 11.8189 11.8200 11.8223 0.0062

10.0 9.1048 9.1049 9.1078 0.0054

15.0 6.9512 6.9514 6.9556 0.0057

20.0 5.2897 5.2911 5.2910 0.0040

30.0 3.0764 3.0776 3.0785 0.0027

T = 1; θ1 = θ2 = −0.05; σ1 = σ2 = 0.3; ν1 = ν2 = 0.5; ν0 = 1; ρ = 0.8;

4.4 Basket Option

A basket option is an option whose payoff is linked to a portfolio of stocks,

bond, currencies or other assets. It has become very popular over the last few years

as part of index-linked products traded in the market. A basket call on a portfolio

of n assets S1...Sn with weights w1...wn pays off (w1S1(T ) + ...+wnSn(T )−K)+ at

maturity T . Basket options are often used to protect the risk on the whole portfolio.
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Table 4.4: Computational Results II for Spread Options

FFT method Simulation

K N=512 N=1024 n=10,000,000 std

5.0 14.7606 14.7605 14.7648 0.0124

10.0 12.5799 12.5803 12.5812 0.0117

15.0 10.7734 10.7742 10.7709 0.0101

20.0 9.2816 9.2825 9.2805 0.0136

30.0 7.0326 7.0330 7.0315 0.0107

T = 1; θ1 = 0.05; θ2 = −0.05; σ1 = 0.4; σ2 = 0.3; ν1 = 0.8; ν2 = 0.5; ν0 = 1; ρ = 1.0;

Similar to pricing spread options, to evaluate a basket option is not straight-

forward even under the Black-Scholes lognormal assumption. The reason for this is

that the sum of lognormal random variables is not lognormal. Therefore, many ap-

proximation techniques and ad hoc rules of thumb have arisen to tackle this problem.

Most of the approximation methods rely on either the approximate distribution of

the whole basket returns, which includes the lognormal assumption by Hyunh [28],

the reciprocal gamma assumption by Milevsky and Posner [48], or the numerical

expansion based method as Taylor expansion by Ju [34].

For more complicated option pricing models other than the lognormal assump-

tion, the pricing problem becomes even more complex. Monte Carlo simulation has

been almost the standard method of solving this kind of problems. On the other

hand, for many option pricing models, the characteristic functions instead of the
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density functions are known analytically. Hence, Fourier transform based method

can be extremely efficient when the dimension of the problem is small. Similar to

Hurd and Zhou’s method in pricing spread options, we derive a pricing formula for

basket options given the closed form characteristic functions of the joint dynamics

of assets. For the multi-variate VG model, we then can use the following results

to price the general basket option. The numerical experiments show that the FFT

method yields efficient and accurate results for two or three assets, though it may

be not suited for the problems with assets number greater than four.

We first derive the formula for basket options with two assets. The payoff

function with non zero strike can always be scaled to the following form: (S1T +

S2T −1)+. By the fact that the integration region is not regularized, we use the put-

call parity to transform the payoff into a different form. We first get the following

results:

Theorem 4.5. Consider P (x1, x2) = (1 − ex1 − ex2)+. For any real numbers ǫ =

(ǫ1, ǫ2) with ǫ1 > 0 and ǫ2 > 0

P (x) = (2π)−2

∫∫

R2+iǫ

eiux
′

P̂ (u)d2u (4.15)

where, P̂ (u) =
Γ(−iu1)Γ(−iu2)

Γ(2 − i(u1 + u2))
. (4.16)

Here Γ(z) is the complex gamma function defined by the integral Γ(z) =
∫ ∞
0
e−ttz−1dt

for Re(z) > 0. u = (u1, u2) and x = (x1, x2).

Proof: See Appendix.

By the put-call parity, we may use the relation between the payoff functions
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of call and put options (S1T + S2T − 1)+ − (1− S1T − S2T )+ = S1T + S2T − 1, which

leads to the following integral form.

Proposition 4.6. For a basket option with two assets S1 and S2, the basket option

formula can be written

Bkt(S0;T ) = e−rTE[(S1T + S2T − 1)+]

= e−rTE[S1T + S2T − 1] + e−rTE[(1 − S1T − S2T )+]

= S10 + S20 − e−rT + (2π)−2e−rT
∫∫

R2+iǫ

eiuX
′

0Φ(u;T )P̂ (u)d2u (4.17)

The double integral can again be numerically evaluated using FFT analogous

to a spread option. We can implement the same algorithm as that described in

section 4.2 by replacing P̂ in (4.13). Meanwhile, the ǫ term should also be chosen

to satisfy ǫi > 0, i = 1, 2.

For basket options with more than two assets, the pricing formula can be

derived in theory. However, as the complexity of algorithm grows exponentially

with the number of the assets n, it is impractical to compute the price with very

large n.

Theorem 4.7. For the payoff function P (x1, x2, ..., xn) = (1−ex1 −ex2 − ...−exn)+,

ǫ = (ǫ1, ǫ2, ..., ǫn) with ǫi > 0 for i = 1...n,

P (x) = (2π)−n
∫

· · ·
∫

Rn+iǫ

eiux
′

P̂ (u)dnu (4.18)

where, P̂ (u) =

∏n
i=1 Γ(−iui)

Γ(2 − i
∑n

i=1 ui)
. (4.19)

Proposition 4.8. For a basket option with n assets S1...Sn, the basket option for-
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mula can be written

Bkt(S0;T ) = e−rTE[(S1T + ...+ SnT − 1)+]

= e−rTE[S1T + ...+ SnT − 1] + e−rTE[(1 − S1T − ...− SnT )+]

= S10 + ...+ Sn0 − e−rT + (2π)−ne−rT
∫

· · ·
∫

Rn+iǫ

eiuX
′

0Φ(u;T )P̂ (u)dnu

(4.20)

The implementation of the formula is exactly the same as that of pricing spread

options.

For the following numerical experiment, we use S1(0) = 100, S2(0) = 100,

r = 0 and test the basket option pricing using FFT for different strikes.

Table 4.5: Computational Results I for Basket Options

FFT method Simulation

K N=512 N=1024 n=10,000,000 std

160.0 45.3253 45.3253 45.3210 0.0163

180.0 31.0607 31.0607 31.0567 0.0178

200.0 20.2533 20.2537 20.2627 0.0134

210.0 12.9385 12.9389 12.9243 0.0101

220.0 8.3032 8.3026 8.3069 0.0127

T = 1; θ1 = 0.05; θ2 = −0.05; σ1 = 0.4; σ2 = 0.3; ν1 = 0.8; ν2 = 0.5; ν0 = 1; ρ = 1.0;
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4.5 Rainbow Option

A rainbow option usually refers to a call or put option on the best or worst of

n underlying assets, or options which pay the best or worst of n assets. Sometimes it

is also used as a general name of all options whose payoff depends on more than one

underlying risky assets. Stulz [58] first derived the pricing formula of options on the

maximum or minimum of two assets. It was later generalized to the case of several

assets by Johnson [33]. Their models were both based on correlated lognormal

processes. In this section, we discuss how to price the option on the maximum or

minimum of several assets under general models using FFT method. Again to make

use of the Fourier transform, the only requirement on the joint process is the closed

form joint characteristic function. We first consider the case of two assets.

With two assets, there are four different call/put options on the maximum or

minimum of the prices. While call options on the maximum and put options on

minimum are not easy to evaluate directly, the rest two can be solved by the Fourier

transform. We then apply the put-call parity to derive the formulas for all four

types. The following theorem deals with the payoff functions (min(S1(T ), S2(T ))−

1)+, which is a call option on the minimum of two stock prices at time T , and

(1 − max(S1(T ), S2(T )))+, which is a put option on the maximum of two stock

prices at time T .

Theorem 4.9. Consider P (x1, x2) = (min(ex1 , ex2) − 1)+. For any real numbers

73



ǫ = (ǫ1, ǫ2) with ǫ1 < 0 and ǫ2 < 0

P (x) = (2π)−2

∫∫

R2+iǫ

eiux
′

P̂ (u)d2u (4.21)

where, P̂ (u) = − 1

u1u2(i(u1 + u2) − 1)
. (4.22)

Similarly, consider P (x1, x2) = (1 − max(ex1 , ex2))+. For any real numbers ǫ =

(ǫ1, ǫ2) with ǫ1 > 0 and ǫ2 > 0

P (x) = (2π)−2

∫∫

R2+iǫ

eiux
′

P̂ (u)d2u (4.23)

where, P̂ (u) = − 1

u1u2(i(u1 + u2) − 1)
. (4.24)

Proof: See Appendix.

The value of a call option on the minimum of two stocks can be written as the

double integral (ǫi < 0, i = 1, 2):

C = (2π)−2e−rT
∫∫

R2+iǫ

eiuX
′

0Φ(u;T )P̂ (u)d2u (4.25)

The value of a put option on the maximum of two stocks can be written as the

double integral (ǫi > 0, i = 1, 2):

P = (2π)−2e−rT
∫∫

R2+iǫ

eiuX
′

0Φ(u;T )P̂ (u)d2u (4.26)

For a call option on the max or a put option on the min, we derive the formula

through the put-call parity.

(max(S1(T ), S2(T )) − 1)+ − (1 −max(S1(T ), S2(T )))+ = max(S1(T ), S2(T )) − 1

(min(S1(T ), S2(T )) − 1)+ − (1 −min(S1(T ), S2(T )))+ = min(S1(T ), S2(T )) − 1
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We need an explicit formula for the right side. In other words, we need to

compute the expectation of the minimum or the maximum of two stocks at time T.

We use the following identities,

max(eX1 , eX2) = eX1 + (eX2 − eX1)1X2>X1 (4.27)

min(eX1 , eX2) = eX1 − (eX1 − eX2)1X1>X2 (4.28)

It is shown that the payoff of the minimum or the maximum can be decomposed into

a portfolio of a stock and an exchange option. The pricing formula of an exchange

option is discussed in full in section 4.1.

For rainbow options with n (n > 2) assets, the following results hold:

Theorem 4.10. Consider P (x1, ..., xn) = (min(ex1 , ..., exn) − 1)+. For any real

numbers ǫ = (ǫ1, ..., ǫn) with ǫi < 0 i = 1, ..., n.

P (x) = (2π)−n
∫

· · ·
∫

Rn+iǫ

eiux
′

P̂ (u)dnu (4.29)

where, P̂ (u) =
1

(−i)nu1...un(i(u1 + ...+ un) − 1)
. (4.30)

Similarly, consider P (x1, ..., xn) = (1 − max(ex1 , ..., exn))+. For any real numbers

ǫ = (ǫ1, ..., ǫn) with ǫi > 0 i = 1, ..., n.

P (x) = (2π)−n
∫

· · ·
∫

Rn+iǫ

eiux
′

P̂ (u)dnu (4.31)

where, P̂ (u) =
1

(−i)nu1...un(i(u1 + ...+ un) − 1)
. (4.32)

Proof: See Appendix.
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4.6 Foreign Exchange Option

4.6.1 Overview

The foreign exchange options (commonly shortened to FX options or currency

options) market is the deepest, largest and most liquid market for options in the

world. According to Triennial Central Bank Survey by Bank for International Set-

tlements in December 2007, average daily turnover in OTC (over-the-counter) FX

derivatives was reported to be over $4.2 trillion. Different from most equity options

traded on stock exchange, FX options are mostly traded OTC and lightly regulated.

Market participants are mainly governments, banks, international corporations, mu-

tual and hedge funds and individual investors. With increasing globalization of the

world financial system, the role of foreign exchange assets has become more and

more important. A rigorous and tractable mathematical model for modeling the

FX dynamics is required to price and hedge risks exposed to all kinds of FX rates

and derivatives.

The classic model in pricing currency options is the Garman-Kohlhagen model.

In 1983, Garman and Kohlhagen [23] extended the Black-Scholes model to cope with

the presence of two interest rates (one for each currency). The pricing formula for

an European call option in their model is exactly the same formula as the Black-

Scholes formula with underlying paying continuous yield dividends, except that now

the foreign risk-free interest rate plays the role of dividend rate. Assume the rd is

the risk-free interest rate to expiry of the domestic currency and rf is the foreign

currency risk-free interest rate. The FX rates, both strike K and current spot S,

76



are quoted in terms of ”units of foreign currency per unit of domestic currency”.

Garman and Kohlhagen assume under the risk neutral measure the FX rate follows

the following log-normal process:

dSt = St(rd − rf )dt+ σStdWt
(4.33)

The value of an European call option in the domestic currency is:

C(S,K) = Se−rfTN(d1) −Ke−rdTN(d2) (4.34)

where d1 =
ln(S/K)+(rd−rf +σ2/2)T

σ
√
T

, d2 = d2 − σ
√
T .

The Garman-Kohlhagen model relies on the same assumption of log-normal

distribution as the Black-Scholes model and thus has the same shortcoming. In

many cases, the Black-Scholes formula is too idealized and does not capture cer-

tain features of the market. One of the most critical features is the non-lognormal

distribution of the underlying FX rates. To overcome this drawback and incor-

porate the well-observed jump dynamics of FX rates, many modified models with

stochastic volatility, jump-diffusion and pure jump processes are developed in re-

cent years. Among those pure jump models, the variance gamma option-pricing

model was applied to FX options by Daal and Madan [15] and is shown to out-

perform the Black-Scholes and jump-diffusion model in fitting the implied volatility

curves of FX options. One challenging problem that these models face in the FX

market is how to model the dependence of currency rates since all main FX rates

are naturally correlated. In particular, illiquid currency pairs are often largely af-

fected by other major currencies in the world. For example, AUD-CAD (Australian
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Dollar-Canadian Dollar) is mainly governed by the change of two rates USD-AUD

and USD-CAD. Other currency derivatives involving two or more currencies are all

sensitive to the dependence structure of these FX rates. In the following section, we

will use the multivariate VG model to solve some of these pricing problems.

4.6.2 Performance on Joint Dynamics of Multiple FX Rates

Before we proceed to get the pricing formula for FX options, we first use the

multivariate VG model to analyze the joint return of the foreign exchange rates

under the statistical measure. We will also see why the log-normal processes are

not ideal building bricks for FX rate models. Due to the triangular relationship

among three currencies, the dynamics of one relatively illiquid pair cross-currency

rate is mainly determined by the joint dynamics of the other liquid two. Here, we

use the historical data on the exchange rates and compute the daily log-return of

these rates over years. The performance of the model explaining the joint dynamics

is thus under the physical measure.

The exchange rates data employed was 4684 daily observations of USD-JPY

and USD-GBP from 1990 to 2008 taken from WRDS. The marginal distribution

is estimated by maximum likelihood estimation of a VG process on the demeaned

log return of the exchange rate. We bin the data into 100 equally spaced intervals

in the range of ±5 standard deviation of the distribution. The return of both

FX rates shows highly non-normal pattern with an excess kurtosis. The following

graphs show the VG fitting results of the log-return of USD-JPY and USD-GBP.
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The red curve and green curve are density functions of the variance gamma and

normal distribution estimated from the data. Both are scaled to compare with the

histogram of the sample return. For the test of goodness-of-fit, we calculate the

chi-square statistic and the p-values using the bins which has probability greater

than 1%. The VG parameters are given as follows:

Table 4.6: Estimation Result

USD-JPY USD-GBP

θ 5.364-e4 -3.857-e4

σ 0.00663 0.00555

ν 0.674 0.654

χ2 36.65 13.04

p-value 0.12 0.99

Notice now the log-return of JPY-GBP is just the difference of that of USD-

JPY and USD-GBP. By using the estimation of the joint distribution method de-

scribed before, we can get the estimator of ν0 as 1.96, which implies the correlation

in the Brownian motion should be 0.97. The chi-square statistic is 23.81 and the

p-value is 0.69. The fitting result is shown below:
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Figure 4.1: Estimation result for USD-JPY daily returns
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Figure 4.2: Estimation result for USD-GBP daily returns
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Figure 4.3: Estimation result of JPY-GBP daily returns

4.6.3 Cross-currency Option Pricing

One interesting problem in the FX market is using options on two liquid cur-

rency pairs to price options on the illiquid cross-currency pair. Because of the

special triangular relationship in the FX market, the dynamics of one illiquid FX

rate is mainly governed by the rates of each currency with major economies. Using

a joint Heston model, Carr and Verma [11] derives the characteristic function of the

cross currency rate and applies the FFT option pricing method of Carr and Madan.

Options on two liquid currency pairs are assumed to be governed by two Heston

processes. To make the process on cross currency rates solvable, they also assume

the two rates share the same variance process. The two-dimensional VG model is, to

my knowledge, the first model with pure jump processes to deal with this problem.

We now use the two-dimensional VG process to price options on an illiquid cross
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FX rate given the market prices on two liquid ones.

We consider the options on the illiquid FX pair k − j (currency j is quoted

in units of currency k.) which may be computed from the prices of options on

liquid pairs i− k and i− j. For example, if we are interested in vanilla options on

CAD-JPY. We can use the market information on USD-JPY and USD-CAD. For

simplicity, we assume deterministic interest rates ri, rj and rk in three economies.

We use Qi to denote the risk-neutral measure with numeraire i which is a money

market account invested in currency i.

Now we define the risk-neutral processes for the two spot FX rates Sij(t),

Sik(t) under measure Qi in terms of two VG processes X1(t), X2(t) by:

Sij(t) = Sij(0)e(ri−rj)t
eX1(t)

EQi[eX1(t)]

Sik(t) = Sik(0)e(ri−rk)t eX2(t)

EQi[eX2(t)]

Here, (X1, X2) is a 2-dimensional VG process with marginal V G(θ1, σ1, ν1),

V G(θ2, σ2, ν2) and dependant parameters ν0 and ρ. The characteristic functions for

the log returns ln(Sij(t)/Sij(0)) and ln(Sik(t)/Sik(0)) are easily written in terms of

the joint characteristic function of X1(t) and X2(t),

φ(X1,X2)(u1, u2) = E(ei(X1(t)u1+X2(t)u2))
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Specifically we have,

E(eiuln(Sij(t)/Sij (0))) = exp[iu((ri − rj)t− ln(φ(X1,X2)(−i, 0))]φ(X1,X2)(u, 0)

E(eiuln(Sik(t)/Sik(0))) = exp[iu((ri − rk)t− ln(φ(X1,X2)(0,−i))]φ(X1,X2)(0, u)

The joint characteristic function of two log returns is then given by:

E(ei(u1ln(Sij(t)/Sij (0))+u2ln(Sik(t)/Sik(0)))) = exp[iu1((ri − rj)t− ln(φ(X1,X2)(−i, 0))]

· exp[iu2((ri − rk)t− ln(φ(X1,X2)(0,−i))]φ(X1,X2)(u1, u2)

Since the marginal process can be calibrated to the market prices of options

on these two FX rates, we may use the physical correlation to build the dependence

and price the cross FX rate options.

Now consider the cross FX rate Skj(t). By the triangular equation,

Skj(t) =
Sij(t)

Sik(t)

Let Qk be the measure equivalent to Qi for which a money market account

invested in currency k is the numeraire. The Radon-Nykodym derivative is given

by the process G:

dQk

dQi
= Gt =

Sik(t)

Sik(0)e(ri−rk)t

We can derive the characteristic function of the log return ln(
Skj(t)

Skj(0)
) under

measure Qk given by:
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Φ(u) = EQk

(e
iuln(

Skj(t)

Skj(0)
)
)

= EQi

(e
iuln(

Skj(t)

Skj(0)
)dQk

dQi
)

= EQi

(e
iuln(

Skj(t)

Skj(0)
)
e
(ri−rk)t+ln(

Sik(t)

Sik(0)
)
)

= EQi

(e
iuln(

Sij (t)

Sij(0)
)−(iu−1)ln(

Sik(t)

Sik(0)
)
e−(ri−rk)t)

= EQi

(e
i(uln(

Sij(t)

Sij (0)
)−(u+i)ln(

Sik(t)

Sik(0)
))
e−(ri−rk)t)

= φX1,X2(u,−(u+ i))eiu(rk−rj)t−iuln(φ(X1,X2)(−i,0))+i(i+u)ln(φ(X1 ,X2)(0,−i))

With the closed form characteristic function of the log return, we can simply

apply the FFT method of Carr and Madan to price an European option written on

cross FX rate Skj(t).

4.6.4 Market Conventions

The foreign exchange options market has its own way to quote and trade

options. FX options are quoted by implied volatilities rather than option prices

probably due to the dominance of the Black-Scholes formula in the market. For

each currency pair, option quotes are provided at a fixed Black-Scholes delta rather

than a fixed strike on a certain expiry date. The liquid options are mainly at five

levels of deltas: 10 δ Put, 25 δ Put, 0 δ Straddle, 25 δ Call and 10 δ Call. Since

different deltas correspond to different strikes, option implied volatilities are usually

available at five strikes. Similar to options in equity and interest rate derivatives
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market, the volatilities are not constant across the strike. This well-documented

observation is called ”Volatility Skew” or ”Volatility Smile”.

Because of the volatility skew observed in options on almost every currency

pair, the market conventions to quote volatilities in FX market is through Risk

Reversals (RR) and Butterflies (BF) or Strangles. In particular, volatilities of FX

options can be decomposed into a symmetric part of the smile reflecting the con-

vexity and a skew-symmetric part of the smile reflecting the skew. A 25 δ Risk

Reversal which reflects the skew of the curve is the difference between 25 δ call and

put options. A 25 δ Butterfly which reflects the convexity is the difference between

the average vol of 25 δ call and put options and the ATM straddle vol. From the

market quotes we may compute the implied volatilities of 25 δ calls and puts by:

σc = ATM +BF +
1

2
RR

σp = ATM +BF − 1

2
RR

(4.35)

For Lévy processes we used here to price options, we need both the strike and

the price of the market option data. To back out the strikes for 10 or 25 δ options,

one needs to solve it by definition of the delta. For example, we have the following

equation to solve the strike K25δp for a 25 δ put.

−e−rfTΦ(−
ln S0

K25δp
+ (rd − rf + 1

2
σ2)T

σ
√
T

) = −0.25

The strike of at-the-money straddle is really the strike which makes the strad-

dle delta neutral rather than the spot price. Therefore, no delta hedge is needed

when trading this straddle. The strike is chosen so that a put and a call have the

same delta but with different signs.
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4.6.5 Numerical Results

We test this model on two different sets of FX rates and report the results

in this section. The option data we use are taken from Bloomberg on the date of

Nov. 18, 2008. All options on each pair have a single maturity of three months. For

the two sets of FX rates, they are chosen from 1) 3 pairs of USD (US dollar), EUR

(Euro) and GBP (Pound sterling); 2) 3 pairs of USD, GBP and NZD (New Zealand

dollar). As US dollar is usually considered as the dominating currency, the cross

rates in the two sets are EUR-GBP and GBP-NZD respectively. While the options

on the cross rate EUR-GBP are still fairly liquid, the bid-ask spread of options on

GBP-NZD, however, is quite big. The implied volatility curves in two sets also show

quite different patterns. We thus want to show the power of this model to explain

these phenomena.

From Bloomberg, we get the Black-Scholes implied volatilities for options with

strikes corresponding to the ATM straddle, 25 δ Call, 25 δ Put, 10 δ Call and 10 δ

Put. Therefore, for each FX rate we have five European option prices, which can

be used to calibrate the model parameters. Apply the multivariate VG model, we

calibrate the model in the following two steps:

1. Calibrate the risk-neutral VG marginal processes to the options on two liquid

pairs (e.g. EUR-USD and GBP-USD in set one). For each pair, we apply

the FFT method to minimize the absolute errors between model and market

prices with three free parameters.

2. Use the marginal processes from step 1 and calibrate two parameters of depen-
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dence to the options on the cross rate (e.g. EUR-GBP on set one). The opti-

mization is again done by the FFT method with constraint ν0 ≥ max(ν1, ν2)

and 0 < ρ < 1.

The objective functions in both steps are thus

∑

alloptions

(σmarket − σmodel)
2

It is shown that, in these two examples, the multivariate VG model successfully

captures the smile dynamics of both the marginal processes and its cross-rate pro-

cess. We report the risk-neutral parameters and fitting RMSE for implied volatilities

in the following tables (The two sets share the same GBP-USD pair.):

Table 4.7: Results on options of liquid pairs

EUR-USD GBP-USD NZD-USD

θ -0.0902 -0.2097 -0.3638

σ 0.2153 0.2424 0.2683

ν 0.1855 0.1656 0.2007

RMSE 0.0015 0.0011 0.0034

The following table reports the calibration result on the cross-rate options in

these two sets.

The model fit of the implied volatilities on the cross-rates:
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Figure 4.4: Marginal calibraion result of set I
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Figure 4.5: Marginal calibraion result of set II
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Figure 4.6: Calibration results on the cross-rate options
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Table 4.8: Results on options of the cross-rate

ν0 ρ RMSE

Set I: EUR-GBP 0.1855 0.3929 0.0032

Set II: GBP-NZD 0.2007 0.6695 0.0077
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Chapter 5

Conclusion and Future Study

In conclusion, we explore how to extend VG processes to multivariate level and

study the properties of this new process in this thesis. Compared with the existing

models, our model has very flexible dependence structure and is easy to work with.

We derive the closed-form joint characteristic function and describe the estimation

procedure and simulation scheme. Because of the systematic factor included in

this process, we test and find that this process has a significant improvement in

explaining the portfolio returns in stock market over the Gaussian copula method.

Finally, we derive pricing methods for multi-asset options using simulation and

Fourier transform method. We also apply the model to the options on FX currency

pairs and show that the multivariate VG model we propose can fit the cross-rate

option prices very closely.

The future study will focus on how to extend this model to the stochastic

volatility version so that it may fit option price surface with different maturities.

Also it will be interesting to investigate the effective methods of pricing multi-asset

options in a high dimensional (n > 4) case.
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Appendix A

Proof of Theorems in Chapter 4

A.1 Proof of Theorem 4.5

Theorem A.1. Consider P (x1, x2) = (1 − ex1 − ex2)+. For any real numbers ǫ =

(ǫ1, ǫ2) with ǫ1 > 0 and ǫ2 > 0

P (x) = (2π)−2

∫∫

R2+iǫ

eiux
′

P̂ (u)d2u

where, P̂ (u) =
Γ(−iu1)Γ(−iu2)

Γ(2 − i(u1 + u2))
.

Here Γ(z) is the complex gamma function defined by the integral Γ(z) =
∫ ∞
0
e−ttz−1dt

for Re(z) > 0. u = (u1, u2) and x = (x1, x2).

Proof: First we compute, P̂ , the inverse Fourier transform of P.

P̂ (u) =

∫∫

R2

e−iuxP (x)d2x

=

∫ 0

−∞
e−iu1x1 [

∫ log(1−ex1)

−∞
e−iu2x2 [1 − ex1 − ex2]dx2]dx1

=

∫ 0

−∞
e−iu1x1(1 − ex1)1−iu2 [

1

−iu2
− 1

1 − iu2
]dx1
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Let z = ex1 and dz = ex1dx1. We have:

P̂ (u) =
1

(1 − iu2)(−iu2)

∫ 1

0

z−iu1−1(1 − z)1−iu2dz

=
1

(1 − iu2)(−iu2)
Beta(−iu1, 2 − iu2)

=
Γ(−iu1)Γ(−iu2)

Γ(2 − (u1 + u2)i)

(u1, u2) will be on the plane R2+iǫ satisfying ǫ1,2 > 0 to make the above computation

valid.

A.2 Proof of Theorem 4.7

Proof: We consider the following multivariate integral, where u = (u1, ..., un), x =

(x1, ..., xn) are n-dimensional vectors.

P̂ (u) =

∫

· · ·
∫

Rn

e−iuxP (x)dnx

=

∫ 0

−∞
e−iu1x1

∫ log(1−ex1 )

−∞
e−iu2x2 ...

∫ log(1−ex1−...−exn)

−∞
e−iunxn[1 − ex1 − ex2 − ...

− exn ]dx1dx2...dxn

=

∫ 0

−∞
e−iu1x1

∫ log(1−ex1 )

−∞
e−iu2x2 ...

∫ log(1−ex1−...−exn−1)

−∞
(1 − ex1 − ex2 − ...

− exn−1)1−iun [
1

−iun
− 1

1 − iun
]dx1dx2...dxn−1

=
1

(1 − iun)(−iun)

∫ 0

−∞
e−iu1x1

∫ log(1−ex1 )

−∞
e−iu2x2...

∫ log(1−ex1−...−exn−1)

−∞
(1 − ex1 − ex2 − ...

− exn−1)1−iundx1dx2...dxn−1
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Let z = exn−1

1−ex1−...−exn−2 , then dz = exn−1

1−ex1−...−exn−2 dxn−1. By substitution, the integral

part of xn can be written as a Beta function.

P̂ (u) =
1

(1 − iun)(−iun)

∫ 0

−∞
e−iu1x1

∫ log(1−ex1 )

−∞
e−iu2x2 ...

∫ 1

0

(1 − ex1 − ex2 − ...

− exn−2)1−iun−iun−1z−1−iun−1xn−1(1 − z)1−iunxndx1dx2...dz

=
β(−iun−1, 2 − iun)

(−iun)(1 − iun)

∫ 0

−∞
e−iu1x1

∫ log(1−ex1)

−∞
e−iu2x2 ...

∫ 1

0

(1 − ex1 − ex2 − ...

− exn−2)1−iun−iun−1dx1dx2...dxn−2

=
Γ(−iun)Γ(−iun−1)

Γ(2 − iun−1 − iun)

∫ 0

−∞
e−iu1x1

∫ log(1−ex1 )

−∞
e−iu2x2...

∫ 1

0

(1 − ex1 − ex2 − ...

− exn−2)1−iun−iun−1dx1dx2...dxn−2

By using substituion recursively, we may write the right side integral again as a

series of beta functions.

P̂ (u) =
Γ(−iun)Γ(−iun−1)

Γ(2 − iun−1 − iun)
× β(−iun−2, 2 − iun−1 − iun)...β(−iu1, 2 − iun − iun−1 − ...iu2)

=
Γ(−iun)Γ(−iun−1)...Γ(−iu1)

Γ(2 − iun − iun−1 − ...iu1)

=

∏n
i=1 Γ(−iui)

Γ(2 − i
∑n

i=1 ui)

(u1, u2, ...un) will be on the plane Rn + iǫ satisfying ǫ1,...,n > 0 to make the above

computation valid.
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A.3 Proof of Theorem 4.9

We compute, P̂ , the inverse Fourier transform of P (x1, x2) = (min(ex1 , ex2)−

1)+.

P̂ (u) =

∫ ∞

0

e−u1x1(ex1 − 1)

∫ ∞

x1

e−iu2x2dx2dx1 +

∫ ∞

0

e−u2x2(ex2 − 1)

∫ ∞

x2

e−iu1x1dx1dx2

=I1 + I2

We only need to compute I1 as two terms are symmetric with (x1, x2). Let z = e−x1 ,

dz = −e−x1dx1.

I1 =
1

iu2

∫ ∞

0

e−iu1x1−iu2x1(ex1 − 1)dx1

=
1

iu2

∫ 1

0

zi(u1+u2)−2(1 − z)dz

= − 1

u2(u1 + u2)(i(u1 + u2) − 1)

By symmetry,

I2 = − 1

u1(u1 + u2)(i(u1 + u2) − 1)

We conclude

P̂ (u) = − 1

u1u2(i(u1 + u2) − 1

(u1, u2) will be on the plane R2+iǫ satisfying ǫ1,2 < 0 to make the above computation

valid.
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Similarly, for P (x1, x2) = (1 − max(ex1 , ex2))+, the computation of inverse

Fourier transform is more or less the same. The result is also the same except

(u1, u2) will be on the plane R2 + iǫ satisfying ǫ1,2 > 0.
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sional Lévy processes using Lévy copulas Journal of Multivariate Analysis Vol.
97, 1551-1572.

[36] Kirk, E. (1995) Correlation in the energy markets, in managing energy price
risk. Risk Publications and Enron.

[37] Li, D. (2000) On Default Correlation: A Copula Function Approach, Journal
of Fixed Income 9, 43-54.

[38] Li, H., Wells, M., Yu, L. (2008) A MCMC Analysis of Time-Changed Lévy
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