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 A real-time solids odor monitoring system provides an odor management 

feedback tool for both process control and a biosolids management program. Since 

higher odor levels means higher process costs, as well as greater potential for 

nuisance odors at land application sites, identifying the processes that contribute to 

these elevated levels is critical to responsible, economical, and efficient wastewater 

plant management and biosolids land application programs.  

 A real-time system is currently being utilized to monitor DC Water’s 370 mgd 

plant in Washington, D.C. Each year, DC Water applies biosolids to over 20,000 

acres of agricultural land. Nuisance odors from recycling biosolids on land may drift 

into surrounding neighborhoods and motivate neighboring communities to enact 

legislation to ban land application. Therefore, the reduction of odor emissions from 

biosolids recycled on field sites is a major concern. 



  

 Odors levels generated by dewatered solids and limed biosolids are measured 

by headspace monitoring devices in enclosed conveyance systems. Both total reduced 

sulfur compounds (TRS) and nitrogen (N)-containing compounds are measured with 

online electro-chemical sensors. The system correlates odorant levels of dewatered 

solids and biosolids and utilizes treatment process scenarios and various operational 

parameters throughout the wastewater treatment process. This study uses ordinary 

least squares (OLS) estimation and instrumental variable (IV) estimation to create 

explanatory and predictive models. Furthermore, cross-validation analyses are 

employed to validate both explanatory and predictive models.  

 Data analyses suggest that waste-activated percent solids (WAS %S) and 

dissolved-air flotation total solids (DAF TS) can contribute to mitigating TRS. 

However, all process variables at secondary sedimentation, which are gravity 

thickening percent solids (GT %S), gravity total solids (GT TS), and blend ratio, can 

contribute to increase TRS. The IV estimation indicates that % lime feeding, # 

centrifuges, cake percent solids (Cake %S), temperature at secondary effluent, and 

ambient temperature cannot directly explain TRS post-lime, but they do explain TRS 

levels via post-lime temperature. Additionally, cationic polymer at the secondary and 

dewatering process coupled with post lime temperature can contribute to increase N-

containing compounds at the lime addition process. The accumulated cationic 

polymer inside the sludge of secondary sedimentation can also contribute to high N-

containing compounds at the downstream.  
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5BChapter 1: Introduction 

This research focuses on total reduced sulfur (TRS) and nitrogen (N)-containing 

compounds, two of the main odorous components released from biosolids at 

wastewater treatment plants (WWTP). It is therefore significant to have a basic 

understanding about the sources of those compounds. This chapter provides an 

overview of odors in biosolids of the District of Columbia Water and Sewer 

Authority’s (DC Water), research objectives, previous studies and differences, and 

research hypotheses. In addition, research contributions and a master plan format are 

stated. 

16BU1.1 Odors in Biosolids 

Nuisance odors are considered on public issues associated with wastewater treatment 

plants (WWTP) and from recycling biosolids on land that most affect humans and 

cause the limitation of solids disposal options, especially for the plant employing a 

beneficial land application (Dague 1972; Hwang et al. 1995; USEPA 2000a; Murthy 

et al. 2002b; Turkmen et al. 2004; Visan 2003). Land application is widely used and 

is considered to be one of the most effective methods for biosolids disposal in the 

United States (USEPA 2000c; Chen et al. 2005). A report of the U.S. Environmental 

Protection Agency (USEPA) indicated that in the United States, the demand for 

biosolids land applications will increase from 66% in 2005 to 70% in 2010 (USEPA 

1999; Oleszkiewicz and Mavinic 2002). 

 DC Water generates “Class B” biosolids by utilizing lime stabilization and 

relies on land applications for biosolids disposal (Murthy et al. 2001). Therefore, 
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these biosolids can cause public concerns for the acceptability of their quality. One of 

the biggest considerations is offensive odor. Odorous emissions at the land 

application sites indicated the operating issues of biosolids producers that can cause 

complaints and public opposition from the residents around the application sites. As a 

result, treatment facilities can be banned or shut down. Nonetheless, it is the duty of 

the biosolids producers to improve their quality by controlling and mitigating odors at 

the application fields (USEPA 2000a). For this reason, DC Water, through the 

Department of Wastewater Treatment (DWT) makes strong efforts to accomplish this 

objective. The best and most effective way is to minimize odors at the source (in-

plant) and handle solid waste properly.   

 Odor mitigation in biosolids at the source can diminish odor emission from 

biosolids distributed for land application (Kim et al. 2002). At each step of 

operational treatment, in-plant processes can contribute or promote odor levels in 

biosolids, especially at the solids-handling process (Hwang et al. 1995; Kim et al. 

2001). Both organic and inorganic compounds such as total reduced sulfur (TRS), 

nitrogen (N)-containing compounds (ammonia and amines), and organic fatty acids 

are considered the major odorous compounds emitted from biosolids, which are 

normally produced by heat, aeration and digestion (Dague 1972; Hwang et al. 1995; 

USEPA 2000a; Kim et al. 2001).  

 The DWT tries to maintain and improve the quality of biosolids to meet 

exceed the requirements of the United States Environmental Protection Agency 

(U.S.EPA). However, there are some complaints of odors arising from communities 

around land application fields. Therefore, DWT conducts a leading-edge research 



 

 3 
 

program focusing on odor control in order to get support from communities. It is vital 

to identify and control the factors involved in odor production of limed biosolids at 

the source (in-plant) before transportation to land application sites. By employing 

real-time solids odor monitoring systems and using empirical analysis via statistical 

modeling, this research can identify and explain the causal of odorants production in 

lime-stabilized biosolids. In addition, these systems can forecast the odorants level 

before sending to the application sites.  

17BU1.2 Research Objectives 

There are two overall goals of this research: to improve the treatment process by 

mitigating odor emitted from lime biosolids, and to develop a methodology for 

explaining the causes of odorants production in lime-stabilized biosolids. To achieve 

those goals, the following objectives are defined: 

1. To quantify total reduced sulfur (TRS) concentration and nitrogen (N)-

containing compounds concentration emitting from prior-lime and post-lime 

processes in real-time. 

2. To identify the relationship between the odorants at the prior-lime and post-

lime processes. 

3. To determine and explain what operational process variables and conditions 

(in-plant) contribute to TRS and N-containing compounds. 

4. To investigate and determine all plausible scenarios causing high odorants in 

biosolids at solids treatment processes with a real-time monitoring system. 

5. To establish guidelines and strategies for practical biosolids management. 
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18BU1.3 Previous Studies and How This Study Differs 

In the last two decades, statistical modeling has been used in the environmental area 

including water and wastewater treatment. For instance, statistical modeling has been 

used: to evaluate water quality in a free flowing river (Greenberg et al. 1973); to 

forecast algae biomass in Lake Okeechobee by using ordinary least squares (OLS), a 

generalized additive model, and a regression spline model (Lamon 1995; Lamon et al. 

1996; Lamon and Clyde 2000); to predict biosolids odor emitting from the 

wastewater treatment process by using multiple linear regression (MLR)  (Vilalai 

2003; Gabriel et al. 2006); to forecast the emission of dimethyl disulfide (DMDS) 

using MLR (Gabriel et al. 2005); to predict and connect biosolids odors between 

onsite and offsite by using MLR, logistic regression and discriminant analysis (Vilalai 

2008).  

 In the field of wastewater treatment and biosolids management, especially in 

biosolids odor emission, there are a few studies that have employed statistical 

modeling to find the solutions for mitigating odorous production in biosolids and 

explaining the sources of odorants compounds. To the best of our knowledge, there 

are five studies, Vilalai (2003), Gabriel et al. (2005), Gabriel et al. (2006), Vilalai 

(2008), and Sekyiamah and Kim (2009).    

 In their studies, Vilalai (2003), Gabriel et al. (2005), and Gabriel et al. (2006) 

developed a model by using multiple regression analysis (MLR) to forecast and 

explain biosolids odor. The MLR of Vilalai (2003) and Gabriel et al. (2006) regressed 

the score of odors in the field (dependent variable) on the set of wastewater treatment 

process variables (independent variables). Both studies have found that the sludge 
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blanket depth, the amount of lime additions, the amount of polymer additions at 

dewatering and dissolve air floatation (DAF) process, and the blend ratio are 

statistically significant and can be included in the predicted model.  

 However, Gabriel et al. (2005) had used dimethyl disulfide (DMDS) as a 

dependent variable and regressed it on a set of sludge characteristics variables and a 

set of process parameters variables. The model demonstrated that oxidation-reduction 

potential (ORP), the blend ratio, and the number of centrifuges in services were the 

critical variables promoting the emission of DMDS. Sekyiamah and Kim (2009) also 

employed MLR but they used volatile sulfur compounds (VSCs) as the dependent 

variable and regressed it on a set of process variables that were measured at the 

primary process and at secondary process to identify the formation of VSCs. Their 

model indicated that food to microorganism ratio (F/M ratio), sludge blanket depth, 

and settle sludge volume (SSV60) are statistically significant factors in modeling 

VSCs. 

  The study of Vilalai (2008) attempted to develop models for forecasting 

biosolids odor at wastewater treatment plants and at the land application sites by 

combining two odor measurements, an analytical measurement and a sensory 

measurement. The overall goal of this study is to identify the relationship between 

biosolids odor levels at the treatment plant evaluated by the headspace approach with 

a portable hydrogen sulfide (H2S) analyzer, and an odor panel for sensory analysis 

and a biosolids odor level at application sites evaluated by an olfactometer. This study 

used MLR to develop a biosolids odor prediction model at wastewater treatment 
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plants and used categorical analysis techniques, logistic regression, and discriminant 

analysis to develop models at the application site.  

 Additionally, all five studies collected solids samples from each step of the 

treatment processes or simulated the treatment processes to get the solids samples for 

odor data collection used in the data analysis. 

   The present research differs from the previous five studies in a few aspects. 

First, our study employs a real-time solids odor monitoring system to detect odorants 

directly from an actual WWTP. Second, this study uses ordinary least squares (OLS) 

estimation, instrumental variable (IV), and two-stages least squares (2SLS) estimation 

to explain the causes or sources of total reduced sulfur (TRS) and N-containing 

compounds, as well as  to forecast those two odorants compounds at prior-lime and 

post-lime addition. When we employ OLS estimation in the MLR model with TRS at 

post-lime addition as dependent variable and all upstream processes as independent 

variables, some of the process variables having significant contribution to this 

odorous compound cannot be included in the model. Instead, they are included in the 

residual term, thereby losing the ability to directly quantify their effect on TRS at 

post-lime. To overcome this issue, we use a common method in economics called IV 

and 2SLS are used to identify the process variables having an indirect relationship 

with TRS at post-lime addition and contributing to the emissions. 

 The IV method can also improve the efficiency of the model by increasing the 

overall statistical significance and decreasing the standard error of estimates (SE). 

Additionally, this research focuses on explanatory modeling and predictive modeling 

for biosolids odor at the treatment plant, where it is believed to be the effective 



 

 7 
 

solution for mitigating odor at application sites. Figure 1.1 illustrates an overview of 

our research approaches.  

 

Figure 1.1: Overview of research approaches 

19BU1.4 Research Hypotheses 

From this research, there are four hypotheses to be tested: 

Hypothesis 1: The total reduced sulfur (TRS) at the prior-lime process 

positively correlates with TRS at the post-lime process. 

Hypothesis 2: The causes of TRS at the post-lime process can be explained 

via the relation between upstream processes and the total reduced sulfur (TRS) at the 

prior-lime process. 

Hypothesis 3: High temperature of the secondary effluent and ambient 

temperature can contribute to the emission of TRS and N-containing compounds. 



 

 8 
 

Hypothesis 4: Dewatered solids with high percent solids content can raise the 

temperature of limed biosolids and promote the emission of both N-containing 

compounds and TRS concentration during the lime stabilization. 

20BU1.5 Research Contributions 

All the results from the data analysis and discussion will provide noteworthy 

information for DC water, and especially DWT, to improve the biosolids 

management program and to improve biosolids quality in terms of odor mitigation. 

DWT gains better understanding as to what factors in wastewater treatment processes 

relate to odorous emission in limed biosolids. This research, therefore, provides five 

contributions: 

1.  To provide an odor management real-time feedback tool for a process control 

and biosolids management program. This is the first and the largest 

contribution, and can be applied to any wastewater treatment plant.  

2. To identify and explain what operational processes potentially promote odor 

production in limed biosolids.   

3. To explain the causes or sources of TRS and N-containing compounds 

emitting from lime biosolids. 

4. To suggest how to improve the wastewater treatment process in order to 

mitigate TRS and N-containing compounds. 

5. To achieve cost savings by reducing: polymer usage, post-lime usage, 

quantities of biosolids generated, hauling and land application costs, and 

increasing the biosolids land application program benefits by the reduction of 

nuisance odor biosolids emissions to neighbors of land application sites. 
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21BU1.6 Executive Summary 

Odors are by far the biggest impediment to public acceptance of biosolids recycling. 

No matter how much value there is to a farmer, or how much carbon is sequestered, 

or energy saved, if a product has a malodor, the public will not welcome it into their 

community. The sulfur odors emitted by some biosolids are designed to warn to 

humans of potential pathogens. This is genetically hard wired, and difficult to 

overcome. When DC Water treat the biosolids, the pathogens are reduced to an 

acceptable safe level, but often the odor trigger is still there.  

 The paradigm in their profession is often that biosolids smell and that there is 

little they can do about it. This dissertation has found is that there are specific things 

DC Water can do at the plant to limit the odors, and they can even predict when odors 

might be generated based on a combination of process parameters. The ability to 

improve product quality (odors mitigation) and predict when they may occur will help 

reduce the nuisance complaints and therefore will increase the acceptance of 

biosolids. In addition, real-time solids odor monitoring system has been tested and 

installed equipment that serves as an early warning system for sulfur and ammonia 

based compounds.  

 This system sounds a warning and calls several individuals when an odor 

spike occurs. This warning allows DC Water to contact the field managers to 

determine if they are in a suitable location, where an odorous material will not elicit 

complaints. When DC Water find a product that does not match the suitability of the 

reuse site, DC Water take it to a more remote site, if available, and if no site is 

available, the material is sent to the landfill. As a result of real-time solids odor 
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monitoring system had been initiated and implemented, DC Water have dramatically 

reduced their odor complaints. DC Water have had only three odor complaints in 

2009, which is a drastic reduction from a few years ago. This work is new and has not 

been done anywhere else in the country, to our knowledge, and had placed DC Water 

in a leadership position with respect to odor monitoring and prediction. 

22BU1.7 Master Plan Format 

Chapter 1 – Introduction. A summary of general information about odor in 

biosolids and the scope of work for this dissertation as well as the research objectives 

are presented. The previous studies in the area of odor mitigation for biosolids and the 

difference between this research and those previous studies are summarized together 

with a brief listing. Furthermore, the research hypotheses and research contributions 

are stated. 

Chapter 2 – Background and Literature Review. The background of odorants 

generation and analytical measurement for quantifying odor in limed biosolids are 

summarized. Brief descriptions of each odorous production and each measurement 

performed are also included. 

Chapter 3 – Operational Processes and Data Description. This chapter provides 

detailed descriptions of the following: plant wastewater treatment processes, the 

upstream operational process variables (independent variables) considered to 

contribute to odorants emission, the real-time odor monitoring system, and the 

methodologies used to collect odor data (dependent variable).  

Chapter 4 – Statistical Data Analysis for Biosolids Odorants. Chapter four 

presents methodologies used to identify odor sources and developing statistical 
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models as a tool for explaining and forecasting odorous productions in limed 

biosolids. The steps and strategies for statistical analysis are also incorporated. 

Chapter 5 – Model Analysis, Results, and Discussion. The results from statistical 

models used as a tool in explaining and predicting in-plant odor concentration are 

demonstrated. The potential process variables that contribute to odorous emission in 

biosolids are identified. Also, this chapter concludes with a discussion on how those 

process variables can promote the two main odorous compounds.  

Chapter 6 – Conclusions and Future Work. Conclusions derived from the 

statistical models in Chapter 5 are summarized. Recommendations for odor 

mitigation in biosolids management program and the standard operating procedure 

(SOP) are documented. This chapter concludes with additional recommendations for 

work in odor mitigation in-plant. 
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6BChapter 2: Background and Literature Review 

Biosolids are by-products of wastewater treatment plants, and are naturally associated 

with odor emissions. Those emissions are known as malodorous compounds, “the 

volatile emissions generated from the chemical and microbial decomposition of 

organic nutrients. When inhaled, these odorants interact with the odor sensing 

apparatus (olfactory system) and the person perceives odor” (USEPA 2000b).  

 Many studies indicated that organic and inorganic compounds, such as total 

reduced sulfur (TRS), nitrogen (N)-containing compounds (ammonia and amines), 

and organic fatty acids, are considered the major odorous compounds released from 

biosolids. These compounds normally occur by the mechanism of the treatment 

processes (Dague 1972; Hwang et al. 1995; USEPA 2000a; USEPA 2000b; Kim et al. 

2001; Murthy et al. 2001; Murthy et al. 2002a; Kim et al. 2002; Novak et al. 2002; 

Turkmen et al. 2004; Rosenfield and Suffet 2004; Novak et al. 2004; Chen et al. 

2005). Typically, odorants production in biosolids differ by the type of sludge 

treatment processes and management options used (USEPA 2000a; Visan 2003; 

Higgins et al. 2003; Chen et al. 2005). 

23BU2.1 Odorous Production in Lime-Stabilized Biosolids 

The District of Columbia Water and Sewer Authority (DC Water)’s advanced 

wastewater treatment plant (WWTP) treats an average of 370 million gallons per day 

(mgd) of wastewater with more than 1,200 wet tons per day of biosolids generated 

(DCWASA 2005). For solids handling processes, DC Water employs a lime-
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stabilization process to stabilize dewatered sludge before recycling on the land 

application sites.  

 Many studies indicated that TRS, which includes dimethyl sulfide (DMS), 

dimethyl disulfide (DMDS), carbon disulfide (CS2), and methyl mercaptan (MM) and 

N-containing compounds including ammonia (NH3) and trimethylamines (TMA) are 

the major odorous compounds emitted from lime stabilized biosolids (Murthy et al. 

2001; Kim et al. 2001; Murthy et al. 2002b; Novak et al. 2002; Kim et al. 2002; Kim 

et al. 2005; Schneekloth et al. 2006; Chang et al. 2005; Chen et al. 2005). However, 

many studies showed that lime stabilization can diminish or eliminate hydrogen 

sulfide (H2S) (USEPA 1985; Stuetz and Frechen 2001; Murthy et al. 2001; Kim et al. 

2001), but there are other odorants concentrations that can be detected in limed 

biosolids. The range of odor thresholds of odorants in limed biosolids is presented in 

Table 2.1. 

Table 2.1: The range of odor threshold of odorous production in limed biosolids 

 

Substance 

 

Compound 

 

Formula 

 

Odor Character 

Odor 

Threshold 

Total reduced sulfur    ppb 
 Hydrogen Sulfide H2S Rotten eggs 0.47-1.0 
 Dimethyl Sulfide (CH3)2S Decayed cabbage 0.1-50.8 
 Dimethyl Disulfide (CH3)2S2 Vegetable sulfide 0.1-346.5 
 Carbon Disulfide CS2 Rotten pumpkins 7.7 
 Methyl Mercaptan  CH3SH Sulfidy or Decayed cabbage 0.5-1.6 

N-containing compounds    ppb 
 Ammonia NH3 Pungent, irritating 26.6-46,800 
 Trimethylamine (CH3)N Fishy, pungent 0.2-0.8 

(Hentz 1997; USEPA 2000b; Visan 2003) 

44B2.1.1 Total Reduced Sulfur Compounds 

 Hydrogen sulfide (H2S) is an inorganic sulfur compound, and is the most 

commonly known critical odorant in wastewater treatment processes (Dague 1972; 
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USEPA 1985; Hentz 1997; Gostelow and Parsons 2000; Yongslrl et al. 2004). The 

H2S occurs not only when an anaerobic condition is presented, but also increases its 

emission when the pH is lower than 9. Nevertheless, lime stabilization can raise pH 

levels above 9 and suppress H2S concentration while also causing the production of 

the other odorants in lime stabilized biosolids (Hentz 1997; USEPA 2000b; Stuetz 

and Frechen 2001). 

 Dimethyl disulfide (DMDS) and Dimethyl sulfide (DMS) are organic sulfur 

compounds released from biosolids. DMDS and DMS derive from biodegradation of 

organic sulfur compounds. DMDS is a by-product of protein degradation (Hentz 

1997; Geng et al. 2004). Typically, DMDS is liquid at room temperature and it will 

raise the emission of DMDS whenever temperature is increased (Hentz 1997).  

 Methyl mercaptan (MM) is one of the most general mercaptans emitted 

from odorous production in biosolids.  MM has a low odor detection threshold, which 

can be seen in Table 2.1 (Hentz 1997; USEPA 2000b). Therefore, it can easily cause 

the odor complaints from the residents around the land application sites. 

45B2.1.2 Nitrogen (N)-Containing Compounds 

 Ammonia (NH3) is the most common odorant found in lime stabilization. It 

derives from either aerobic or anaerobic decomposition by the force of pH, 

temperature and sludge characteristics (Chang and Dentel 2001; Visan 2003; North 

2003). Table 2.1 indicates that NH3 has a high odor detection threshold; thus, 

residents can detect it more easily. The high concentration of NH3 can disguise odor 

caused by TRS and lead to misrepresentation of the potential odor complaints at the 

fields (USEPA 2000b). 
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 Trimethylamine (TMA) (CH3)N is one type of amines and the most critical 

odorants emitted from lime-stabilized biosolids. Many studies indicated that the fishy 

odor at land application sites can be characterized as TMA (Murthy et al. 2001; 

Novak et al. 2002; Kim et al. 2005; Schneekloth et al. 2006). Whenever the 

temperature rises above 104 (> 40°C) or pH rises above 12.5, the emission of TMA in 

lime-stabilized biosolids can dramatically rise (Kim et al. 2002). In addition, other 

factors promoting the emission of TMA in lime-stabilized biosolids can include: the 

polymer dose, the time between the addition of polymer and lime stabilization, shear 

conveyed on the sludge in the dewatering process, and dewatered cake solids 

concentration (Schneekloth et al. 2006). The presence of amines is always 

accompanied with the presence of ammonia (USEPA 2000b).   

24BU2.2 Odor Measurement, Determination, and Reduction in Biosolids 

To control and mitigate odor production in biosolids, it is crucial to know how to 

detect, identify, and quantify them by having the appropriate methods and the proper 

designs (Yang and Hobson 2000). Failure to do so can cause misjudgment and 

inaccurate analysis. There are two measurement categories, sensory measurement and 

analytical measurement (Yang and Hobson 2000; Gostelow and Parsons 2000; Stuetz 

and Frechen 2001).  

  In the last decade, many studies tried to detect, identify, and quantify the 

odorous compound concentrations of biosolids via analytical measurement by using 

chemical analyzers, instruments, and methods that can provide the accurate 

information.  
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 There are a number of studies trying to quantify the level and explain the 

source of odorants production in dewatered solids and biosolids or on-site of the 

wastewater treatment processes by simulating the solids treatment processes in order 

to get the biosolids sampling. The studies of Murthy et al. (2001), Murthy et al. 

(2002b), Novak et al. (2002) and Schneekloth et al. (2006) employed the headspace 

approach, which measure a gas sample from the container by using a portable gas 

detector and draw a gas sample by using tedlar bags for analysis. However, Kim et al. 

(2001) and Murthy et al. (2002a) studies used the biosolids sampling from each 

wastewater treatment process and then utilized the headspace approach with solids 

phase microextraction. All of those studies were analyzed by using the gas 

chromatography and also simulated the solids processes to get biosolids sampling.  

 The studies of Vilalai (2003) and Vilalai (2008) employed the headspace 

approach with a portable hydrogen sulfide analyzer (Jerome 631X), but in the study 

of Vilalai (2008), an odor panel for sensory analysis by using the gas sample from 

headspace tedlar bags was used. In addition, some studies employed odor dispersion 

models to do the following: forecast the impact of odor from solid waste landfills 

(Sarkar et al. 2003); identify the impact of odors from composting facilities (Williams 

and Servo 2005), and identify the sources of odors onsite impacting the residential 

communities (Voelz et al. 2006).          

 To the best of our knowledge, none of those above-mentioned studies 

quantifies the odor concentration from an actual WWTP by using a real-time solids 

odor monitoring system. For this reason, this research is employing the real-time 

solids odor monitoring system for odor data collection. However, some of those 
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studies used either the solids sampling from the simulated treatment processes or 

those from each step of the solids treatment processes, and then placed them in the 

containers for headspace analysis. In addition, all of those studies employed the static 

sampling system. 

 One of the most advantages of real-time solids odor system comparing to 

those previous studies is the new insight on the impact of daily activities in upstream 

treatment processes on changing the emission of biosolids odor. The information 

generated by real-time solids odor system can provide WWTP unprecedented control 

over the ways that have been done before. 

25BU2.3 Ordinary Least Squares (OLS) and Instrumental Variable (IV) Estimation 

The ordinary least squares (OLS) estimation and instrumental variable (IV) 

estimation are employed to analyze the empirical data of odorants productions in 

dewatered solids and lime-stabilized biosolids. Many studies indicated that OLS is the 

most effective way to analyze empirical data (Wooldridge 2000; Wooldridge 2002; 

Greene 2003; Kennedy 2008). However, using only OLS estimation for creating a 

statistical model has some weaknesses. For instance: (i) there are measurement error 

issues in independent variables or omitted variables issues in approximation of causal 

relationships; (ii) there are correlations between the independent variables and 

residuals in the model. However, using IV estimation can overcome those issues 

(Angrist and Imbens 1995; Angrist and Krueger 2001).  

 DC Water uses lime stabilization after the dewatering process. Figure 2.1 

presents a schematic of solids handling processes and all locations of odor monitoring 

systems. It was believed that lime stabilization mitigates or eliminates total reduced 
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sulfur (TRS) for prior lime (Y1) to become TRS at post lime (Y2) concentration 

(USEPA 1985; Stuetz and Frechen 2001; Murthy et al. 2001; Kim et al. 2001). 

Therefore, it is difficult to directly identify or explain the relationship between the 

upstream processes and the TRS (Y2) production in biosolids at the post lime process. 

However, by applying the knowledge of OLS and IV estimation via two-stage least 

squares (2SLS), these approaches can assist DC Water to identify the causes or the 

sources of TRS at post lime processes.  

 

Figure 2.1: A schematic of solids handling processes at DC Water 

46B2.3.1 Ordinary Least Squares (OLS) Estimation 

Ordinary least squares (OLS) estimation is a well-known method in econometrics, 

especially in empirical data analysis (Wooldridge 2000; Wooldridge 2002; Greene 

2003; Montgomery et al. 2006; Kennedy 2008). This method is used to estimate the 

unknown parameters in a linear regression model. Additionally, this method can be 

used in either simple linear regression (SLR) or multiple linear regression (MLR) 
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(Wooldridge 2000; Wooldridge 2002; Montgomery et al. 2006; Kennedy 2008). The 

idea of OLS is to minimize the sum of squared deviations between the true observed 

dependent variable values (Y) and the corresponding predicted values (Ŷ). In other 

words, OLS estimators minimize the sum of squared deviations (residuals) (Shmueli 

et al. 2007; Kennedy 2008). The following are OLS Assumptions: 

Consider a regression model of the form  

Υi = α0 + α1Χ1i + α2Χ2i + α3Χ3i+ ……+ αkΧki + ρi    , where ρi is the error term.  

 (i) There is no correlation between the independent variables and the error    

      term, i.e., corr(Χki , ρi) = 0 

 (ii) The expected value of the error term is zero, i.e., E(ρi) = 0 

 (iii) The variance of the error term is constant (homoskedasticity), i.e., E(ρi
2) 

       = σ2 

 (iv) The errors are independent, i.e., E(ρi,ρj) = 0 

 (v) The errors are normally distributed, i.e., ρ~ N(0, σ2) 

According to Wooldridge (2000) and Montgomery et al. (2006), ordinary least 

squares (OLS) estimation method can be briefly described by the following 

statements: 

In real world applications, and especially in biosolids treatment processes, 

there are more than one upstream process variable (independent variable) affecting or 

causing odorants production in biosolids (dependent variable).  

 Wooldridge (2000) stated that “the multiple regression model is still the most 

widely used vehicle for empirical analysis in economics and other sciences. Likewise, 

the method of ordinary least squares is popularly used for estimating the parameters 
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of the multiple regression model.” For this reason, these analyses apply OLS 

estimation via the MLR model to create both explanatory and predictive models for 

total reduced sulfur (TRS) at prior-lime (Y1), TRS at post-lime (Y2), and nitrogen 

(N)-containing compounds (Y3). In other words, the analyses run OLS regressions of 

three different dependent variables (TRS at prior lime, TRS at post lime, and N-

containing compounds) on the set of independent variables (upstream processes). The 

general MLR model can be seen in the following equation (Wooldridge 2000). 

 Υi = α0 + α1Χ1i + α2Χ2i + α3Χ3i+ ……+ αkΧki + ρi                             (2.1) 

where Υi  is the dependent variable (Yi can be either TRS at prior lime (Y1), TRS at 

post lime (Y2), or nitrogen (N)-containing compounds (Y3)), X1i, X2i, X3i,…,Χki  are k 

upstream process variables included in the model, α0 is the intercept, α1,α2, α3…αk are 

the regression coefficients of any independent variable in model, ρi is the error or 

residual including any independent variables that affect Yi  but are not included in the 

model. As equation (2.1) presents MLR with k independent variables and an 

intercept, there will be k+1 unknown parameters. In addition, upstream process 

variables (Xi) are not always the same in each model. 

 In this research, there will be an OLS regression equation for each dependent 

variable (TRS at prior-lime, TRS at post-lime, and N-containing compounds). The 

structural model for each dependent variable can be seen in Table 2.2. 
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Table 2.2: Regression equations for odorous compounds 

Odorants compounds Equations 

TRS at prior lime (ppm) 

Υ1 = α0 + α1Χ1 + α2Χ2 + α3Χ3+ ……+ αkΧk + ρi 
where Υ1 is TRS at prior lime, Χ1, Χ2, Χ3,..,Χk  are upstream process 
variables until dewatering processes, 0α is the constant or intercept, 
α1, α2, α3,…, αk are regression coefficients of any upstream 
processes, ρi  is residual. 

TRS at post lime (ppm) 

2 0 1 1 2 3i i iY Y X Wβ β β β ε= + + + +  
whereΥ2 is TRS at the post lime process,Υ1 is TRS at the prior lime 
process, Χi are any upstream processes variables until the lime 
stabilization process, Wi is the lime addition processes variable, β0 
is the constant or intercept, β1,β2, and β3 are regression coefficients 
of any independent variable included in the model, εi  is residual.

N-containing compounds 
(ppm) 

3 0 1 1 2 2 3... k iY X X Xγ γ γ γ μ= + + + + +   
whereΥ3 is N-containing compounds, Χ1, Χ2, Χ3,..,Χk  are any 
upstream process variables including the lime stabilization process, 

0γ is intercept, 1 2, ,.... kγ γ γ  are regression coefficient of any 
independent variables included in the model, µi is residual. 

 

 The model for TRS prior lime is used for finding what process variables at the 

upstream cause TRS at prior-lime (Y1), because the upstream processes are the direct 

sources ofΥ1. This research encounters a challenge with the model for TRS at post- 

lime (Y2) which includes additional process variable (lime stabilization process, W). 

The problem that arises is that this variable W not only affect the dependent variable 

directly, but also affect one of the independent variables, namely, TRS prior lime. 

This occurs because DC Water employs lime stabilization to generate biosolids by 

maintaining pH above 12 for at least 24 hours, such that the lime addition process 

suppresses the level of TRS at prior-lime which then becomes TRS at post-lime 

(USEPA 1985; Stuetz and Frechen 2001; Murthy et al. 2001; Kim et al. 2001). 

 It was believed that in some of the process variables, especially at the lime 

addition processes, having relationships with odorants cannot be included in the 

regression model for TRS post-lime. Instead, those process variables are included in 
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the error term, and cause a correlation between the error term and some of the 

independent variables. Additionally, there might be some measurement errors to 

quantify of some the process variables at lime addition processes. For this reason, this 

research employs an instrumental variable (IV) coupled with two-stage least squares 

(2SLS) estimation. The next topic will discuss IV and 2SLS estimation. 

47B2.3.2 Instrumental Variable (IV) and Two-Stage Least Squares (2SLS) 

Estimation 

Because the first goal of this research is to explain the causes or the sources of 

odorous productions in biosolids, the analyses must deal with the causality issue 

mentioned above by addressing the weaknesses of the OLS estimation method.  A 

common technique in economics used to overcome the issues of endogeneity and 

measurement error of independent variables in OLS estimation of regression models 

is the construction of an instrumental variable (IV) (Angrist and Imbens 1995; 

Wooldridge 2000; Angrist and Krueger 2001; Wooldridge 2002; Kennedy 2008).  

 Recall that one of the assumptions underlying OLS estimation is 

independence of the right-hand side variables from the error term (corr(Χki , ρi) = 0). 

However, independent variables (covariate) can have correlation with error term. This 

correlation may occur when there are related independent variables which cannot stay 

in the model or when there are some measurement errors in independent variables 

(Angrist and Krueger 2001). Therefore, the independent variable, which is correlated 

with the error term, is endogenous. In contrast, the other independent variables, which 

are not correlated with the error, are called exogenous variables (Wooldridge 2002).  
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 According to the studies of Angrist and Imbens (1995), Angrist and Krueger 

(2001), and Murray (2006), when there is correlation between error terms and one of 

the independent variables in the model, it indicates that one or more independent 

variables cannot be included in the model. This exclusion means those independent 

variables cannot directly explain dependent variable or they do not belong in equation 

and are correlated with endogenous variable. In case of the model for TRS at post 

lime, we can write it as follows: 

 2 0 1 1 2 3Y Y X Wβ β β β= + + +       (2.2) 

where Y2 is TRS at the post lime process, Y1 is TRS at the prior lime process, X is any 

upstream processes variable before the lime stabilization process, and W is any lime 

addition process variable included in the model. 

 According to equation (2.2), if the analyses employed OLS by having one of 

those independent variables correlated with the error term, ρi, it would have caused 

biases in the estimated regression coefficients. In addition, it would have caused our 

conclusions to be misleading when explaining the causes or sources of Y2. Instead, the 

use of an IV and 2SLS estimation can consistently estimate these coefficients, and 

identify what process variables hide in the error term (Angrist and Krueger 2001; 

Wooldridge 2002; Greene 2003; Murray 2006; Kennedy 2008). The following 

example presents how IV assists to solve this issue: 

 Suppose there is one independent variable (Xi) in the regression model: 

 Yi = β0 + β1Xi + ρi                                                    (2.3) 

The ordinary least squares estimator is: 
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For the value of OLSβ , if there is no correlation between X and ρ, OLSβ  will be equal to 

β1. In other words, the OLS estimator is said to be consistent. However, when there is 

correlation between ρ and X (Cov(ρ,X) ≠ 0), OLSβ  does not estimate β1.  

 According to equations 2.3 and 2.4,  if X and ρ are correlated, it can make  

OLSβ  not to estimate β1. Therefore, there is other variable that depends on the 

correlation between X and ρ. In other word, the effect of X on Y can be explained by 

using Z, which is related to X, but not ρ. The variable Z is called instrument variable 

(IV); the following are assumptions (conditions) for IV estimation: 

 (i) There is no correlation between the IV and the error term, i.e., the IV is 

 exogenous or ( )corr , 0Z ρ =   

 (ii) There must be a high correlation between IV and independent variables 

      replaced by that IV, i.e., IV is relevant: ( )corr , 0Z X >>  

Thus,  

 ( )
( )

,ˆ                                                                       (2.5)iv

Cov Y Z
Cov XZ

β =  

The two regression equations can assist to understand the logic of IV: 
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 Yi = β0 + β1Xi + ρi                                                   (2.6) 

 Xi = α0 + α1Zi + θi                                        (2.7) 

Referring to above two assumptions of IV and equations 2.6 and 2.7, ˆ
IVβ  can 

estimate 1β :           
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 As stated earlier in Section 2.2.1 and in Figure 2.1, the lime addition caused 

the change in TRS at prior lime to become TRS at the post lime process. Therefore, a 

lime addition process variable (W), which is monitored as the temperature of the 

limed biosolids, can be an endogenous variable having correlation with the error. 

Having said that, by using the Hausman Test for endogeneity testing, it can verify 

whether or not W is endogenous (Wooldridge 2000; Wooldridge 2002; Greene 2003; 

Kennedy 2008).  

 To verify this, the analyses simply use the set of variables at the lime addition 

processes, denoted as Z, to be the IV. The set of variables at the lime addition 

processes are the percent of lime feeding, the temperature of the secondary effluent, 

the number of centrifuges in service, the ambient temperature, and the dewatered 

percent solids. Thus, if these analyses regress W on the set of lime addition 
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parameters showed in equation (2.9), then the analyses will get the residual of this 

regression, μ.  

 Wi  = γ0 + γ1Zi + μi                                      (2.9) 

where Wi is temperature of limed biosolids, Zi is a set of process variables at the lime 

addition process, γ0 is an intercept, γ1 is regression coefficient of any process variable 

at the lime addition process included in the model, and μi  is residual. 

The analyses again run the regression by using μ, which is gotten from equation (2.9), 

as one of the independent variables on the right-hand side of equation (2.3). It is 

shown in equation (2.10).  

          2 0 1 1 2 3i iY Y X Wβ β β β μ= + + + +Ω                            (2.10) 

If the coefficient, Ω, of μ is not zero and is statistically significant, Wi is endogenous, 

otherwise it is exogenous. The fitted value of Ŵi of equation (2.9), called the first-

stage least squares, will be the average of the temperature of lime biosolids.  

The analyses again replace Wi with Ŵi in equation (2.2) and then run the 

regression to obtain Ŷ2.  

 Ŷ2  = γ + ω Y1 + θ Ŵi + ηXi                            (2.11) 

where Ŷ2  is the fitted value of TRS at post lime process, Y1 is TRS at the prior lime 

process, Ŵi is the fitted value of the lime addition processes, Xi are upstream 

processes, γ is intercept, and η, ω and θ are regression coefficients. Then, the fitted 

value of equation (2.11) is called the second-stage least squares prediction.  

For the model of N-containing compounds (Y3), this analyses use all the 

upstream process variables as independent variables. Because many studies indicate 

that trimethylamine (TMA) is only detected during  post lime stabilization (Kim et al. 
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2001; Murthy et al. 2002a; Novak et al. 2002), the analyses also include the lime-

stabilizing process variables as additional independent variables.  
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7BChapter 3: Operational Processes and Data Description 

This chapter describes in detail the in-plant wastewater treatment processes, DC 

Water’s advanced WWTP, and also provides the details of each upstream operational 

process variable (independent variables) considered to contribute to odorants 

emission. Additionally, this chapter describes how odor monitoring systems are set up 

and how odor data collection used as a dependent variable is determined.  

26BU3.1 Site Overview 

The Blue Plains Advanced Wastewater Treatment Plant (AWTP) has been a pioneer 

environmental warden since it started operations in 1938, as shown by its continual 

development in responding to the requirements, regulations, and community needs 

since that time. The District of Columbia Water and Sewer Authority (DC Water)’s 

advanced wastewater treatment plant (WWTP) treats the combination of storm water 

and untreated wastewater flowing from the sewers of the Washington, DC, metro area 

covering more than 725 square miles, which includes the District of Columbia, 

portions of Montgomery and Prince George’s Counties in Maryland, and portions of 

Fairfax and Loudoun Counties in Virginia.  

 The treated water discharges into the Potomac River. The installed capacity 

treats an average of 370 million gallons per day (mgd) of wastewater, with a 

treatment peak flow of 740 mgd and an excess flow of 336 mgd. The peak wet-

weather capacity treats 1,080 mgd, with more than 1,200 wet tons per day of 

biosolids generated and beneficially used (DCWASA 2005). 
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 The wastewater treatment processes at DC Water are composed of two major 

processes, liquid and solids processes (Figure 3.1). The liquid processes start after the 

influents pass the screening process, where debris and grit, are removed and trucked 

to a landfill. Then, the sewage flows into primary sedimentation tanks by having 

about 50% of the suspended solids separated from the liquid. The primary effluent 

flows into the secondary treatment process, a biological process, by entering aeration 

tanks where microbes break down the organic matter.  

 Next, the secondary effluent enters secondary sedimentation tanks, where 

solids are settled out and returned to the aeration tank. The overflow moves into the 

nitrification and denitrification tanks, and converts ammonia to nitrate and nitrate to 

nitrogen gas. These processes make DC Water an advanced wastewater treatment 

facility. The residual solids are settled out and the water is percolated through sand 

filters. The sand filters remove the remaining suspended solids and associated 

phosphorus. The water is disinfected, dechlorinated, and discharged into the Potomac 

River (DCWASA 2005).  

 In contrast, the solids handling processes for generating biosolids begins at the 

primary sedimentation tanks. In this tank, the solids are pumped to the gravity 

thickener (GT) tanks where gravity causes the solids to settle and thicken. At the 

secondary sedimentation, the settled solids are pumped back to secondary aeration 

tanks to retain a concentration of microorganisms in the aeration tanks (Vesilind 

2003). The remainder of the settled solids will be pumped/wasted to dissolved air 

flotation (DAF) thickeners (likewise for the solids from nitrification sedimentation 
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tanks), and some portion will be pumped back to the nitrification reactor with the rest 

sent to the secondary reactors (Peot and Ramirez 2007).  

 At the DAF thickeners, the combined particles settle at the bottom while air is 

blown in to float these particles to the surface, called flotation-thickened sludge. 

Then, a chained skimmer removes the surface and sends the sludge to the sludge 

blending tank system. In this tank, GT and DAF thickened solids are subsequently 

blended to form a homogeneous sludge with a ratio goal of one-to-one (50% GT 

solids to 50% DAF solids) (Peot and Ramirez 2007).  

 After the blending, the homogeneous sludge is dewatered by high-speed 

centrifuges, where sludge solids are separated from the water. Next, the dewatered 

solid (cake) goes through lime stabilization for reducing pathogens and producing 

biosolids. Finally, the organic biosolids are hauled out for land application. The DC 

Water solids handling processes diagram is presented in Figure 3.2. 
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Figure 3.2: DC Water solids handling processes diagram (DCWASA 2005; 

Janpengpen et al. 2008) 

27BU3.2 Operational Processes Data (Upstream Process Variables) 

Since this research continues from the previous study of Janpengpen (2006), it 

collects all plausible operational wastewater treatment process variables from the 

upstream to the downstream processes for polluted analysis. The duration of 

operational processes data collection started simultaneously with odor data collection 
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in January 2009 to May 2010. For odor monitoring, however, only TRS at prior lime 

and post lime processes were monitored during January 2009 to April 2009.  

 All the below data have been collected from the daily report, the process 

control historian (PCH), and the process control system (PCS). The following 

wastewater treatment process variables (independent variables) are possibly 

considered the sources of odorous production in limed biosolids: 

48B3.2.1 Ferric Chloride (FeCl3) Addition 

Ferric chloride (FeCl3) is a flocculant and added for making tiny particles clump 

together so they can be removed from wastewater. FeCl3 consists of two elements, 

irons (Fe) and chlorine (Cl), and is by-product from a liquid of steel-making 

industries. There are a number of benefits for ferric chloride addition. These include, 

for instance, improving sludge settling, decreasing influent phosphorous 

concentrations, increasing dewatering performance by lowering polymer requirement 

for dewatering operations, and increasing BOD and total suspended solids (TSS) 

removal (WEF 1995(a)). 

 At DC Water, FeCl3 is added to the primary settling process for removing 

nutrients such as phosphorous in order to prevent algae growth in the Potomac River 

and also enhance settling performance (WEF 1996; Peot and Ramirez 2007).  

49B 3.2.2 Waste Pickle Liquid (WPL) Addition 

Waste Pickle liquid (WPL) is a waste product from steel manufacturing for cleaning 

and removing mill scale (WEF 1995(a)). WPL consists of acid concentration with 

varying concentration of heavy metal such as chromium and nickel; however, many 
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other metals can be present. At DC Water, WPL is also added to the primary process 

for eliminating phosphorous, nutrients, and assisting to mitigate hydrogen sulfide at 

the upstream in wastewater system. Occasionally, DC Water utilizes either FeCl3 or 

WPL at the primary process. 

50B3.2.3 Polymer Addition 

There are three types of polymer: anionic, cationic, and non-ionic (WEF 1996). 

Normally, polymers are used for sludge conditioning in separating, thickening, and 

dewatering; improvement of coagulation/flocculation; and expansion of alum, ferric, 

or calcium precipitation of phosphorous in wastewater (Churchill and Rybacki 1997; 

Chang et al. 2005). Cationic and other polymers are coagulant aids used in 

combination with other inorganic coagulants(Chang and Dentel 2001; Chang et al. 

2005). The long chains of positively charged polymers can help to strengthen a floc, 

making it larger, faster settling and easier to filter out. Before 2004, DC Water added 

polymer only at the dewatering process and dissolved air floatation (DAF) processes. 

DC Water, however, now adds polymer in each step of the treatment processes; 

primary process, secondary process, nitrification process, dewatering process and 

dissolved air Floatation (DAF) process each improve clarification or hold sludge 

particles together. Only at primary process is the anionic polymer added. We, 

therefore, have polymer addition at each process as independent variables.    

 Several studies have shown that during and post lime stabilization processes, 

polymer added into sludge is one of the major factors contributing to odorous 

production in biosolids, especially amine product, e.g., Trimethyl Amine (TMA) 

(Kim et al. 2001; Novak et al. 2002; Kim et al. 2005; Chang et al. 2005). We 
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anticipate that polymer addition will have a relationship with odorants production at 

the post lime process. 

51B3.2.4 Gravity Thickening (GT) at Primary Settling 

There are four process variables, gravity thickening (GT) concentration, GT flow, GT 

total solids, and percent solids of GT, involved in this topic. As we stated earlier in 

section 3.1 (site overview) about 50% of the suspended solids separate from the liquid 

by GT and settle at the primary settling tank. These solids are considered as the raw 

sludge called total primary sludge (TPS) and are pumped to blending tanks to 

combine with sludge from the secondary process. DC Water tries to maintain percent 

solids of GT between 6-10% (Peot and Ramirez 2007).  

 This study, however, can calculate GT total solids used for finding blend ratio 

at the blending tank by employing the following formula: 

  

( ) ( )GT flow / *8.345*GT %S*10000
GT TS /                (3.1) 

1000000
gallons day

lbs day
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

      

Note; 1% of solution is 104 mg/L and 1 mg/L is 8.345x10-6 lbs/gallon 

It was believed that the more GT total solids in the blending tank, the more percent 

solids of dewatered solids and the more odorous production in the dewatered solids. 

The details for using GT total solids to calculate blend ratio will be restated in 3.2.11.     

52B3.2.5 Secondary Sludge Blanket Depth 

At the secondary aeration tank, microorganisms consumed organic matter and then 

the wastewater flowed into the secondary settling tank to separate suspended solids 
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by gravity. The depth of the settled solids in this tank is called the sludge blanket 

depth.  The settled solids at the bottom, however, will be called waste activated 

sludge (WAS), if they are wasted or pumped to dissolved air flotation (DAF). 

Additionally, some part of the settled solids (return activated sludge (RAS)) will be 

pumped back to the secondary aeration tank in order to balance microorganisms in 

the biological process (Vilalai 2003). 

 At DC Water, there are two sides of secondary settling tanks, namely, 

secondary east settling tank and secondary west settling tank. There are, however, 

three sources for secondary sludge blanket depth: secondary east blanket depth, 

secondary west even blanket depth, and secondary west odd blanket depth 

(DCWASA 2005; Peot and Ramirez 2007). DC Water tries to maintain and prefers 

secondary sludge blanket depth at 2 feet. 

 Some studies indicated that the greater secondary sludge blanket depth, the 

greater the biosolids odors at the downstream (Sekyiamah and Kim 2006; Sekyiamah 

and Kim 2009). The underlying principle is that higher blanket depth demonstrates 

more retention time for biological activated sludge in the settling tanks and can cause 

the expansion of anaerobic conditions, which lead to the production of total reduced 

sulfur (TRS) compound at the prior lime and post lime addition.  

 Additionally, the study of Janpengpen (2006) and Janpengpen et al. (2007) 

suggested that if DC Water maintained secondary sludge blanket depth higher than 

1.8 feet, it can promote the higher total reduced sulfur (TRS) compounds production 

in dewatered solids and can also cause the higher cost for polymer addition at the 

dewatering process.  
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53B3.2.6 Secondary Waste Activated Sludge 

There are three process variables involved in this topic: waste activated sludge 

(WAS) concentration, WAS flow, and WAS percent solids (WAS %S). WAS is 

biological activated sludge in the secondary sedimentation tank consisting of both 

sludge from the secondary process and the nitrification process. This sludge, called 

total waste activated sludge (TWAS), will be pumped to the dissolved air flotation 

(DAF) tank, and then will be pumped to the blending tank to mix with sludge from 

the primary process (TPS). It was believed that if operators can retain either flow or 

concentration of TWAS higher than TPS, they could assist to mitigate odorants 

production in biosolids at the post lime process. 

54B3.2.7 Dissolved Air Flotation (DAF)   

DAF is TWAS received from the secondary process, the nitrification process, and the 

denitrification process. There are two process variables involved in this topic: DAF 

flow and DAF total solids. DAF also relates to percent solids of WAS because the 

DAF total solids can be gained from the following formula: 

( ) ( )DAF flow / *8.345* WAS %S*10000
DAF TS /       (3.2)

1000000
gallons day

lbs day
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Note; 1% of solution is 104 mg/L and 1 mg/L is 8.345x10-6 lbs/gallon  

The DAF total solids can be used to calculate the blend ratio at the blending tank. 

More details for using DAF total solids to calculate blend ratio will be restated again 

in Section 3.2.11. 
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55B3.2.8 Initial Settling Velocity (ISV) 

The study of Sekyiamah and Kim (2009) defined initial settling velocity (ISV) as “a 

measure of how well a sludge sample settles in the first few minutes of the settling 

process and thus captures the true nature of the settling sludge (i.e., fast settling or 

slow settling).” This means the higher ISV, the better the sludge settling. In contrast, 

the lower the ISV, the poorer the sludge settling. There will be three ISV as process 

variables from three locations, ISV at secondary east, ISV secondary west even, and 

ISV at secondary west odd. 

56B3.2.9 Settle Sludge Volume (SSV60) 

Settle sludge volume (SSV60) has the same function as ISV, however it measures how 

well sludge settles in 60 minutes (Sekyiamah and Kim 2009). Contrariwise for ISV, 

the higher the concentration of SSV60 indicates the poor sludge settle ability. There 

are three locations for SSV60, SSV60 of secondary east, SSV60 of secondary west 

even, and SSV60 of secondary west odd.    

57B3.2.10 Concentration of Return Activated Sludge (RAS) 

RAS consists of settled solids at the bottom of a secondary sedimentation tank that 

are pumped back to a secondary aeration tank to carry on or retain an ample 

concentration of activated sludge in the aeration tank. In general, RAS concentrations 

range from 4,000 to 12,000 mg/L (Metcalf&Eddy 2003). The study of Vilalai (2008), 

however, indicated that high concentration of RAS can be the source of odorants in 

dewatered solids and biosolids because a high concentration of RAS demonstrated a 
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high density of settled solids at the bottom of the secondary sedimentation tank. That 

means these two process variables relate to each other. 

 Likewise for this study, we anticipate that concentration of RAS and 

secondary sludge blanket depth could be the sources of odorants in biosolids and also 

dominate the emission of odorants.      

58B3.2.11 Blend Ratio 

Blend ratio is the mixing between raw sludge from the primary process and activated 

sludge (secondary and nitrification process) from dissolved air flotation. In other 

words, blend ratio is the ratio between total primary sludge (TPS) and total waste 

activated sludge (TWAS). Referring to Sections 3.2.4 and 3.2.7, the formula of blend 

ratio will be:  

  ( )
( )

GT TS /
Blend Ratio                                 (3.3)

DAF TS /
lbs day
lbs day

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 Blend ratio in this study, therefore, indicates the ratio of dry solids of raw 

sludge over dry solids of activated sludge. If blend ratio is higher than 1, it indicates 

that there are more dry solids of GT than DAF. On the other hand, if the blend ratio is 

lower than 1, it indicates that there are less dry solids of GT than DAF. Additionally, 

if blend ratio is 1, it shows that dry solids of GT equal the dry solids of DAF. 

 In contrast, the study of Vilalai (2008) defined the formula of blend ratio 

regarding the volume of TPS and TWAS:

( )
( )

Volume of TPS /
Blend Ratio                  (3.4)

Total Volume (TPS+TWAS) /
gallons day

gallons day
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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 Nonetheless, this study anticipates that blend ratio can be one of the key 

factors for contributing to odorants production in biosolids. 

59B3.2.12 Temperature of secondary effluent 

Temperature is a factor for microorganisms’ activities, especially for microbial 

digestion. The study of Janpengpen et al. (2008) indicated that there were high solids 

content or high percent cake solids during June to September which flow temperature 

is about 23 ⁰C to 28 ⁰C, and low solids content or low percent cake solids during 

December to March which flow temperature is about 10 ⁰C to 15 ⁰C. That means, the 

higher the flow temperature, the higher the secondary sludge blanket depth. 

Additionally, in the process with temperatures more than 30 ⁰C, sulfide production 

rate can be raised 7% per 1 ⁰C (USEPA 1985; Bowker et al. 1989; Vilalai 2008).  

 In this study, this variable is the temperature at the secondary effluent from 

the secondary aeration tank to the secondary settling tank. We also anticipate that 

flow temperature can be one of the significant factors contributing to odorants 

production in biosolids. Additionally, this independent variable is an uncontrolled 

factor. DC Water, however, can use this information from this research to apply to a 

biosolids management perspective. 

60B3.2.13 Cake Solids 

After solids from total primary sludge (TPS) and solids from total waste activated 

sludge (TWAS) mix well together at the blending tank, the blended solids will be 

pumped to dewatering processes to separate water from solids by using high speed 

centrifuges. The products from each high speed centrifuge are dewatered solids. 
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 DC Water by Department of Wastewater Treatment tries to achieve a solids 

content in dewatered solids more than 24%. Increasing 1% of the solids content in 

dewatered solids can reduce the hauling cost for land application up to million dollars 

a year (Peot 2007; Peot and Ramirez 2007).  

 Referring to Section 3.2.11, the blend ratio is one of the main factors 

controlling cake solids. According to experiences and operational point of views from 

operators at DC Water, they suggest that the more TPS in the blend, the higher the 

solids content in the cake solids and the higher the dewatering performance. One of 

the studies at DC Water mentioned that the dewatered solids with higher solids 

content needed more time in the lime mixing process to achieve the minimum 

requirements of lime stabilized biosolids because dry cake solids are more difficult to 

mix with lime (North 2003). In other words, the dewatered solids with high solids 

content have higher viscosity than dewatered solids with lower solids content (ASCE 

2000). 

 Schneekloth et al. (2006) indicated that the dewatered solids with higher 

solids content generated total reduced sulfur (TRS) and trimethylamine (TMA) higher 

than dewatered solids with lower solids content. This research, however, anticipates 

that the dewatered solids with higher solids content could have an indirect 

relationship with odorants production in dewatered solids and biosolids. 

61B3.2.14 Number of Centrifuges in Services 

DC Water employs high speed centrifuges in the dewatering processes to separate 

water from solids. There are 14 centrifuges in total, two sides of centrifuges located at 

the solid processing building (SPB), west side (Sharples) and east side (Westfalia), 



 

 42 
 

and each side has seven centrifuges. Each day the solids supervisor decides how 

many centrifuges will be run based on the inflow of wastewater, the amount of sludge 

in blending tank, and sludge blanket depth. However, if there are some issues 

concerning the machine operations, operators have to shut off centrifuges. For this 

reason, backup of sludge can occur in the processes by increasing retention time, and 

then can consequently cause high odorants emission in dewatered solids and 

biosolids.  

 To make sure that there are a sufficient number of centrifuges in service and 

better in dewatering performance, it is significant for DC Water to improve biosolids 

management program. 

62B3.2.15 Total Flow of Dewatered Sludge 

Referring to Section 3.2.14, the total flow from the blending tank sent to centrifuges 

for dewatering on each day is called total flow of dewatered sludge. This variable 

should relate to other upstream processes especially flow of total primary sludge 

(TPS) and flow of total waste activated sludge (TWAS). It is important to manage the 

number of centrifuges regarding sludge volume. 

63B 3.2.16 Percent of Lime Feeder 

DC Water employs alkaline stabilization by using quick lime (CaO) powder, which is 

the production of limestone in rotary at high temperature (2000-2400 °F), and feeding 

in lime mixer to stabilize dewatered solids to become “Class B” biosolids (Rudolfs 

1995). The percent of lime feeder is the speed of an auger feeding to dewatered solids 

in the lime mixer. Since one of the purposes of lime stabilization is to suppress total 
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reduced sulfur (TRS) in limed biosolids, this study considers that the higher the lime 

feeding speed, the less the TRS emission. However, increasing lime feeding speed 

depends on many factors, such as the required minimum pH (12), the number of 

centrifuges in service, the flow of dewatered solids, the solids content in cake solids, 

etc. We, therefore, anticipate that some of these process variables may be one of the 

factors mitigating odorants production in limed biosolids.  

64B3.2.17 Temperature of Limed Biosolids (Post limed biosolids temperature) 

Post-lime temperature is byproduct of chemical reaction between quick lime (CaO) 

and water in dewatered solids (Rudolfs 1995; North 2003). A high temperature from 

lime stabilization can decrease microbial activities (North 2003). Many studies 

indicated that lime can raise the temperature of dewatered solids during and after lime 

stabilization to become limed biosolids  (USEPA 2000a; Murthy et al. 2001; Kim et 

al. 2001; Murthy et al. 2002a; Murthy et al. 2002b; Kim et al. 2002; Novak et al. 

2002; North 2003; Kim et al. 2005). According to Kim et al. (2002), lime stabilization 

can increase the temperature up to 104 ºF and also raise pH up to 12.5.  

 To monitor and record temperature of limed biosolids, this research uses 

infrared (IR) sensors to achieve those two goals. We anticipate that temperature of 

limed biosolids relates to odorants production in biosolids. Nonetheless, not only can 

lime feeding speed cause higher temperatures in limed biosolids, but so other process 

variables. Therefore, this study has to identify the causes of those variables for 

increasing the temperature. 
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65B3.2.18 Mixed Liquor Suspended Solids (MLSS) 

A mixed liquor suspended solid (MLSS) is generally defined as a concentration of 

suspended solids in a mixture raw activated sludge or settle wastewater in an aeration 

basin.  The MLSS is normally stated in milligrams per liter (mg/L). We will employ 

interaction of concentration of MLSS with secondary blanket levels to find the 

relationship between the interaction and odorous production in solids and biosolids.        

66B3.2.19 Ambient Temperature 

The ambient temperature is the daily temperature at DC Water monitored by Reagan 

National Airport, which is located across the Potomac River from DC Water. 

Referring to Sections 3.2.12 and 3.2.17, the ambient temperature is believed to have a 

high correlation with temperature at secondary effluent and post lime biosolids 

temperature. Additionally, we anticipate that ambient temperature can assist to 

suppress the odor production during the cooler season (fall, winter, and early spring) 

at the wastewater treatment plant. 

28BU3.3 Odor Determination and Experimental Design 

The appropriate odor determination and proper design are the first and foremost steps 

in empirical studies. These can provide a better understanding and reliable 

information for both explaining the causes or sources of total reduced sulfur (TRS) 

and nitrogen (N)-containing compounds and for predicting those odorants. This 

section provides information about odor determination and the design used in this 

research. 
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67B3.3.1 The Importance of Odor Sample Collection 

Odor sample collection is the most crucial part for this research. In order to obtain 

correct analysis of the cause or the source of odorants production in dewatered solids 

and biosolids from the upstream of operation facilities, we must have an appropriate 

odor collecting tool and proper sampling methods relating to the type of odor released 

from limed biosolids. Because this research focuses on the two main components, 

total reduced sulfur (TRS) and nitrogen containing compounds (N-containing 

compounds), it is necessary to find a suitable gas detector and proper measurement 

techniques to collect odors data because the physical and chemical properties 

dominate odorant emissions (Hentz 1997; USEPA 2000a). To prevent  issues causing 

the error in data collection, real-time electro-chemical monitoring is being used in this 

research. 

68B3.3.2 Real-Time Solids Odor Monitoring Systems 

In the last decade, many studies tried to detect, identify, and quantify the odorous 

compound concentrations of biosolids by using a non-technical system (e.g., 

analytical measurement, chemical analyzers, and instrument). This study, however, 

employs a technical system, real-time solids odor monitoring systems. They are 

among the most valuable designs and systems that wastewater industry can apply in 

their wastewater processing systems. There are two types of gas detectors, OdaLog 

TRS Gas Loggers in conjunction with a dedicated sampling system (low-range 

sampling system-2 (LRSS-2)), available from Detection Instruments Corporation, 

Phoenix, AZ and Polytron 7000, available from Drager, are used to detect TRS and 

N-containing compounds, respectively. Both gas detectors, LRSS-2 on the left and 
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Polytron 7000 on the right, can be seen in Figure 3.3. By using a real-time approach 

via a wireless system (Octan-R), which is the best recently available technology, they 

can provide reliable odorants data in actual wastewater operational processes.   

 The LRSS-2 is a sampling system used to facilitate data collection from odor 

control systems. The system works with two OdaLog CEM 51s.  It includes a heater 

that heats the sample stream to assist in removing condensable moisture. This heater 

can prevent changing in chemical characteristics of biosolids odor from moisture. 

Two external moisture removal traps further protect the OdaLogs from over-exposure 

to moisture. A dual-headed pump draws a sample from negative pressure situations, 

and delivers the sample at the proper flow rate in positive pressure situations to the 

OdaLogs. The LRSS contains two OdaLog gas loggers (CEM51) that can detect TRS 

from 0.01 ppm up to 20 ppm. (Instruments 2005).  

 The Polytron 7000 can detect N-containing compounds from 0 ppm to 200 

ppm by having a sensor inside the Polytron 7000. The sensor responds to all N-

containing compounds including ammonia (NH4) and amines (Dräger 2005). The 

Polytron 7000 is placed inside the enclosure with a pump and moisture removal. 
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Figure 3.3: Low Range Sampling System-2 (LRSS-2) and Polytron 7000  

Both devices send the 4-20 mA signals to the transmitter called the Octans-R, 

available from Detection Instruments Corp. The Detection Instruments’ Octan-R can 

monitor up to eight 4-20 mA current loops as shown in Figure 3.4.  The output of the 

Octans-R is transmitted to a central location by a wireless modem.  Additionally, a 

relay output and an isolated, low accuracy, 4-20 mA output is provided. The brief 

functional information of Octans-R is described as below: 

Connection: 

Power: A wall mount, 115 Volt input power supply connects to the Octan-R through 

a front panel barrel type connector. The power supply provides a regulated +15 Volts 

dc at a maximum of 2 amps. 

4-20 mA Inputs: The current loop input connections are made through 6 pin Amp 

CST100 series connectors on the back panel. In addition, these connectors provide 5 

Volts dc. Inputs must be loaded starting at position 1 and should not skip any 

connectors between #1 and the last one used. (The last connector used defines the 

“Top Channel”.)  
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4-20 mA Output: A two pin Amp CST100 series connector provides an isolated, 

non-powered, 4-20 mA output.  The connector is located on back panel.  The 4-20 

mA output pins are not polarity sensitive. 

Relay Output:  

A three pin Amp CST100 series connector provides connection to the output of one 

form C (SPDT) dry contact relay. The connector is located on the front panel. 

Setup Switches: 

Fourteen setup switches are located on the front panel.  These are grouped on one 6 

switch assembly (S1-1 through S1-6) and one 8 switch assembly (S2-1 through S2-8).  

The switch functions are: (NOTE Switch is “ON” when lever is down.) 

S1-1 Network Address 10 

S1-2 Network Address 20 

S1-3 Network Address 40 

Network Address is the total of the address of the switches which are ON. 

S1-4 Frequency Hopping Channel 1 

S1-5 Frequency Hopping Channel 2 

S1-6 Frequency Hopping Channel 4 

Frequency Hopping Channel is the sum of the switches which are ON.  

All switches (S1-4 through S1-6) ON selects the calibrate mode. 

S2-1 Master Reset 

S2-2 Load New Firmware Program 

S2-3 Range Test (Echo received data) 

S2-4 DiCom Communications Mode. 
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S2-5 Communications Retry Mode (Must match the other network 

equipment). 

S2-6 Top Channel + 1 

S2-7 Top Channel + 2 

S2-8 Top Channel + 4 

The top channel starts at 1 (S2-6 through SW2-8) OFF.  Those three switches ON 

yields 8 active channels.  The unit will sequentially scan channel 1 through the top 

channel. 

Indicators: 

Front panel LED indicators are: 

Green:  Indicates power. It flickers when transmitting. 

Amber:  Lights when commands are received. 

Red:  One red led per channel, indicates when the specific channel is 

read. 

Communication Modes: 

DiCom Mode: This mode simulates a DiCom module and works with any software 

which supports the DiCom.  In this mode, the data for each channel is requested by 

the central computer as a separate transaction.  In this mode, the network address 

selected by the dip switches is modified by adding the channel number to the address. 

i.e.:  If the switches select a network address of 50, the actual data addresses are 51 

(for channel 1), 52 (for channel 2)…. 58 (for channel 8).  Only those addresses which 

correspond to active channels are implemented.   I.e. if the top channel is #4, then the 

active addresses would be 51, 52, 53, and 54. 
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Calibration: 

The eight 4-20 mA inputs can be calibrated with the aid of a 4.00 and 20.0 loop 

standard (accurate un-powered transmitter) or process meter.  The calibration 

constants will be stored in non volatile memory. 

The procedure: 

• Attach a cable to the standard, or process meter that is provided with a 

connector that matches the 4-20 connectors on the Octan-R. 

• Set a wireless modem to Network 0 and Frequency Hopping 0 by 

o Cycle power to modem on then off with S1 & 2 both ON (UP) 

o Set S2 OFF and turn on power. 

-or- 

o Use Modem AT commands. 

• Connect a terminal to the modem using 9600, N, 8, 1 parameters.  

• Place Octans S1-4, 5, and 6 all ON.  (ON is down) 

• The “top channel” selected by S2-6, 7, and 8 will be calibrated. 

• Press and release the Reset Switch (S1-1) 

• The corresponding red LED will slowly flash. 
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Figure 3.4 Schematic of current loops in Octan-R 

  The Octans –R transmits the 4-20 mA signal via a radio modem to a modem 

connected to a PC that imports the data into the Flexi Monitor software (available 

from Detection Instruments Corp). Using the Flexi Monitor software, it is possible to 

monitor up to 100 data nodes.  A data node is defined as a single parameter at a single 

location.  For instance, the temperature at a single point in a compost operation would 

be a node.  Note that node numbers are assigned by the program as the unique 

identification of each node.   

The user interface is organized into the following Menus, Pages, and windows: 

 Files Menu, View Menu, and Help Menu 

 Dashboard Window – Frequently needed controls and information. 

 System Setup Page – Settings common to all nodes. 
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 Node Setup Page – Settings for each node. 

 All Data Page – Last data for all nodes. 

 Data Pages 1 through 10 – Current and some historic data for groups of nodes. 

 Graph Page – Line graph of data from selected nodes. 

 Notification Setup Page – enter name and phone number for alarm 

notification.  

 Alarms Page – enter alarm notification information and alarm recipient 

information. Utility Page – Service and troubleshooting tools.  

 The Flexi Monitor software also allows for the generation and conversion of 

log files into an Excel spread sheet format by giving the site name and radio 

frequency. Alarm notification is provided by a dedicated phone line to any landlines 

and cell phones.  The alarm information is user programmable and can notify 

recipients whenever there are high odor levels inside the solids processes. The 

example of the output from the Flexi Monitor is shown in Figure 3.5. 

 Additionally, this research attempts to monitor the temperature of lime 

biosolids (post lime temperature) by using an infrared temperature sensor (IR).  It can 

monitor the temperature from 0 °F to 999 °F. This device also works with the Octan-

R and the Flexi Monitor software.  
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Figure 3.5: Odorants concentration output from the Master Monitor 

69B3.3.3 Design and Odor Monitoring Location 

As described in Sections 3.1 and 3.2, there are two sides of centrifuges located at the 

solid process facility, west side called Sharples and east side called Westfalia, and 

each side has seven centrifuges. At the dewatering process area, however, there are 

four conveyors (trains) used to transfer dewatered solids to the lime stabilization and 

the biosolids load-out facility (bunkers). Most of the time, operators will run two 

conveyors and have another two for backup.  

 For this research project we installed two LRSS-2 Sampling Systems at all 

four conveyors at the location right after the dewatering process by using two LRSS 

(one LRSS has two CEM 51 so each CEM51 for each conveyor) (Janpengpen 2006). 
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Another location is at post lime additions. At the post lime location, we installed two 

LRSS and two enclosures of Polytron 7000 (one enclosure has two Polytron 7000) for 

monitoring TRS and N-containing compounds, respectively. We also installed a 

temperature infrared sensor (IR) to monitor the temperature of lime-stabilized 

biosolids at the post lime location. All devices work with 4-20 mA cable and send the 

signal to the Octan-R. The Octan-R sends the 4-20 mA signal via a radio modem, to a 

modem connected to a PC for importation into the Flexi Monitor software. The 

completed installation diagram can be seen in Figure 3.6 and Figure 3.7. 

 

Figure 3.6: Real-Time solids odors monitoring systems 
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Figure 3.7: Location and devices setup inside solids processing building (SPB) 



 

 56 
 

70B3.3.4 Odors Data Collection of Dewatered Solids and Biosolids 

The two odorants compounds (dependent variable), total reduced sulfur (TRS) and 

nitrogen (N)-containing compounds, were monitored and detected simultaneously 

with operational process variables (January 2009 to May 2010). Only TRS, however, 

was monitored during January 2009 to April 2009. TRS and N-containing compounds 

are measured as odor volume unit, parts per million (ppm). The detailed information 

of those three odorants compounds can be found in Figures 3.8, 3.9, and 3.10. 

 

Figure 3.8: Total reduced sulfur (TRS) (ppm) at prior-lime process 

 

Figure 3.9: Total reduced sulfur (TRS) (ppm) at post-lime process 
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Figure 3.10: Nitrogen (N)-containing compounds (ppm) 
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8BChapter 4: Statistical Data Analysis for Biosolids Odors 

In this chapter, statistical models are used to: (i) explain the sources of total reduced 

sulfur (TRS) and nitrogen (N)-containing compounds; and (ii) forecast those odorants 

levels before transporting to land application sites. The independent variables are 38 

upstream process variables (X1, X2, ……, X38) and the dependent variables are TRS at 

prior lime addition (Y1), TRS at the post lime addition (Y2), and N-containing 

compounds at the post lime addition (Y3).  

 To accomplish these two missions, modeling purposes are defined and then 

exploratory data analyses (EDA) including data summaries data visualization and 

correlation analysis are used. In the modeling processes, this study employs ordinary 

least squares (OLS) estimation and instrumental variables (IV) coupled with two-

stage least squares (2SLS) estimation to analyze and to find the best explanatory and 

predictive models. 

29BU4.1 Defining Modeling Purposes 

According to the stated goals and objectives, this study tries to identify and explain 

the sources of odorant production in dewatered solids and biosolids. In other words, 

we would like to explain the occurrence of odorant production in biosolids caused by 

the upstream process variables and also forecast the level of those odorants 

compounds. Empirical data analyses are used for two statistical modeling purposes: 

(i) modeling for explanatory purpose and (ii) modeling for predictive purposes. As a 

result, two types of models (an explanatory model and a predictive model) are used 

for each odorant compound (TRS at prior lime addition, TRS at post lime addition, 
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and N-containing compounds at post lime addition). Nonetheless, an explanatory 

model can be simultaneously used for explanatory and predictive purposes if it can 

offer sufficient predictive power. The details of this statement will be described more 

in Sections 4.1.1 and 4.2. 

 To establish explanatory models and predictive models, it is necessary to 

distinguish between those two modeling purposes (Shmueli 2010a; Shmueli and 

Koppius 2010). While explanatory modeling is used to elucidate the cause of 

occurrences or phenomena and to test a causal hypothesis, predictive modeling is 

used to forecast upcoming or new observations with of high precision (Gregor 2006; 

Shmueli and Koppius 2007; Wang et al. 2008; Shmueli and Koppius 2009; Shmueli 

and Koppius 2010; Shmueli 2010a; Shmueli 2010b).  

 To develop and get the best of those two types of models, the ordinary least 

squares (OLS) estimation and instrumental variable (IV) method are employed to 

create a model for explaining (explanatory model) the causes or sources of those three 

compounds. Separately, a predictive model is built for forecasting the level of those 

three compounds. 

71B4.1.1 Model Requirements 

The model for explaining and forecasting will employ different prioritized 

requirements. The following statements are requirements used to select the best 

explanatory model in this research.  
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The model with the highest adjusted R2 and the smallest standard error of 

estimate (SEE) 

The adjusted R2 is a modification of R2. R2, the coefficient of determination, can be 

defined as the percent of the variance in the dependent (response) variable explained 

exclusively or mutually by the independent (regressor) variables. In other words, R2 

mirrors the number of errors made when using the regression model to estimate the 

value of the response variable, or R2 is the “explanatory power.” However, the 

problem arises when more independent variables are added in the model increasing 

the value of R2. In addition, R2does not appropriately justify the degree of freedom. 

To overcome this issue, the adjusted R2 can be the replaced R2 (Kennedy 2008; 

Hyndman and Athanasopoulos 2010): 

  ( )2 2 1 1 1                                 (4.1)
1

NAdjusted R R
N K

−⎡ ⎤= − − ⎢ ⎥− −⎣ ⎦
  

where K is the number of independent (regressor) variables and N is number of 

observations. Many studies employed adjusted R2 value to be one of criteria to select 

the best statistical models (Vilalai 2003; Gabriel et al. 2005; Gabriel et al. 2006; 

Janpengpen 2006; Janpengpen et al. 2007; Vilalai 2008; Sekyiamah and Kim 2009). 

Maximizing adjusted R2 value means minimizing standard error of estimate (SEE) 

(Shmueli 2010a; Hyndman and Athanasopoulos 2010).   

Therefore, the standard error of estimate (SEE) is a measure of forecasting 

accuracy for any models. In other words, it is an estimation of the dispersion of the 

prediction error (Winston 2004; Albright et al. 2004). For a sample size of size N, a 

model with K predictors, and a sum of squared errors equal to SSE, the SEE is given 

by: 
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                                                                 (4.2)
1

SSESEE
N K

=
− −

           

Normally, the model with the smallest of SEE will be considered and selected 

because the SEE represents the level of precision of predictions gained from the 

regression equation. Therefore, the smaller magnitude of SEE is, the more accurate 

predictions tend to be (Albright et al. 2004). 

All included variables are statistically significant 

The statistically significant for included variable is very important for the explanatory 

model. The significance level demonstrates the size of the rejection region of the null 

hypothesis (H0), which is the statement about the relation among parameters. 

Therefore, the p-value is the smallest level of significance at which H0 would be 

rejected when a specified test procedure is used on a given data set. If the obtaining p-

value is smaller than the significance level, it can be said that the H0 is false.  

 Choosing the level of significance is a subjective task. The conventional levels 

of significance are 0.01 (1%), 0.05 (5%), and 0.1(10%) (Devore 1987). For example, 

the significance level of 0.1, the largest significance level at which these analyses can 

carry out the test and fail to reject H0 is 10%. If any p-values are larger than 10% 

(such as at 15%), H0 cannot be rejected (fail to reject H0). If any p-values are smaller 

than or equal to10% (such as 8%), H0 can be rejected and it is statistically significant. 

However, using level of significance can relate to Type I and Type II error. In 

general, Type I error is caused by incorrect rejecting H0 when it is true, and Type II 

error is caused by incorrect accepting H0 when it is false. To avoid misleading in 

model selection and interpretation, it is significant to employ the proper level of 
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significance. Therefore, these analyses consider a significance level of 0.1 as 

sufficient.  

Correct sign of each independent variable coefficient 

The correct sign of each included variable is the most important requirement 

especially for explanatory modeling, which can be used to explain the effect of each 

independent variable on the dependent variable. While some independent variables 

might be statistically significant, if their coefficient signs do not follow the domain 

knowledge of environmental engineering or wastewater treatment theories, they 

should not be included in the model. As a result, the coefficient sign of each 

independent variable(s) in explanatory modeling must be explained with regard to the 

wastewater environment knowledge or the previous studies. A positive sign of the 

coefficient means that if that variable is increased, TRS or N-containing compounds 

increase as well. A negative sign for the coefficient means that if that variable 

increases, TRS and N-containing compounds in biosolids decrease.  

 Again, this research employs explanatory modeling to explain the relationship 

between the odorants production in biosolids and all upstream process variables. The 

explanatory model can grant insight into the significance of each upstream process 

variable in the model, and also provide the ranking of the importance of each 

upstream process variable by using the p-value and the coefficient sign (Shmueli and 

Koppius 2007; Shmueli and Koppius 2010; Shmueli 2010b). 

 To evaluate prediction performance, there are a number of criteria that can be 

used. We employ root mean squared error (RMSE), and Akaike’s information 

criterion (AIC) to measure prediction performance and select the best predictive 
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model (Shmueli and Koppius 2007; Kennedy 2008; Shmueli and Koppius 2010; 

Shmueli 2010b). The RMSE is a measure of the differences between the predicted 

value of a model and the observed value for the thing being modeled (Albright et al. 

2004; Shmueli et al. 2007), and the AIC is a measure of predictive accuracy of an 

estimated predictive model (Akaike 1974). In addition, these measures are computed 

from a holdout (validation) dataset that is obtained by partitioning the original data 

into training and validation sets. While the training set is used to fit the model, the 

holdout set is used for evaluating predictive power. The following measures are used 

to select the best predictive model (predictive performance) in this research. 

The model with the smallest prediction root mean squared error (RMSE) 

Prediction RMSE is one of the measures of predictive accuracy (Shmueli and 

Koppius 2007; Kennedy 2008; Shmueli 2010b). Prediction RMSE is similar to the 

standard error of estimate (SEE); however, it is calculated from the validation holdout 

dataset that was not used for estimating the model (Shmueli et al. 2007). Prediction 

RMSE is based on the differences between the predicted values of the observations in 

the holdout set (Ŷ) and the observed values of those observations (Y). For a holdout 

sample of size n, the prediction RMSE is given by: 

 RMSE = 
( )2

1
ˆ

                                                     (4.3)
n

i ii
Y Y

N
=

−∑
 

The RMSE value indicates the magnitude of the predictive power. For instance, if 

RMSE is 0.4, it means that the prediction errors from the model will have 

approximately a standard deviation of 0.4 in the units of the odorous compounds. 
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Therefore, the model with the smallest RMSE value is selected as the best predictive 

model.  

The model with the lowest Akaike’s Information Criterion (AIC) 

AIC is a measure of predictive accuracy of an estimated predictive model and is 

developed to approximate the predictive accuracy by forecasting new data (Akaike 

1974; Foster 2002; Posada and Buckley 2004). It is a tool for model selection. AIC is 

a function of the maximized value of log likelihood (L), the number of parameters (K) 

(upstream process variables) in predictive model, and sum of squared error (SSE). 

 Assuming ( )2
1 2, ,....., ~ , ,nY Y Y N μ σ the likelihood function is: 

( ) ( )2 2
1

1

, ; ,..., ,                                             (4.4)
n

n i
i

L Y Y f Yμ σ μ σ
=

=∏  

In general, the AIC is:  

 AIC = 2K – 2ln(L)                                                            (4.5)   

 or AIC = 2K + N[ln(SSE)]                                                (4.7) 

The magnitude of AIC value is used to rank the competing models and demonstrates 

that which one is the lowest among the models. In addition, the AIC value is a penalty 

for the model, which has more free parameters. Therefore, the best model is the 

model with the lowest AIC value and the minimum free parameter. 

The model with the lowest AIC value is considered the best predictive model.  

 In sum, the model for explaining and forecasting will employ different 

prioritized requirements. Shmueli et al. (2007) stated that, “A good predictive model 

can have a looser fit to the data on which it is based, and a good explanatory model 

can have low prediction accuracy.” In other words, an explanatory model can be 
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created from the observed data and requires that all added variables have statistically 

significant and correct signs with respect to the domain knowledge of wastewater 

treatment theories, or previous studies. In contrast, a predictive model requires 

predictive accuracy, which is reflected by low RMSE and the low AIC. In addition, a 

good predictive model has to follows statistical theory that can make it not to fit the 

data , but an explanatory model can fit to the data better. 

30BU4.2 Statistical Modeling Strategy 

To generate an explanatory and a predictive model for biosolids odors, this research is 

divided into four tasks: (i) exploratory data analysis; (ii) ordinary least squares (OLS) 

estimation; (iii) instrumental variable (IV) estimation; (iv) model validation and 

selection. There are nine steps in the statistical modeling process for this research: 

72B4.2.1 Task I: Exploratory Data Analysis (Data Preparation) (Steps 1 to 3) 

The analyses started monitoring both operational data and odorants data in January 

2009 and completed the monitoring in May 2010. However, for odor monitoring, 

only TRS prior-lime and TRS post-lime addition were considered in January 2009 to 

April 2009.  Furthermore, these analyses collected only data on the date that the 

wastewater treatment processes were operated continuously within 24 hours.  

 Many studies demonstrated that ambient temperature or inflow temperature is 

the major factor for odor emission rates in biosolids (Vilalai 2003; Gabriel et al. 

2005; Gabriel et al. 2006; Sekyiamah and Kim 2006; Vilalai 2008). By considering 

on the critical season affected by the ambient temperature, these analyses partition the 

data into three periods: (1) annual period; (2) summer period; (3) winter period.     
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 Summary statistics (such as frequency, mean, median, maximum value, 

minimum value, and standard deviation) and Box plot are employed to gain essential 

information on each upstream operational process variable and odorant compound 

production in biosolids (total reduced sulfur (TRS) and nitrogen (N)-containing 

compounds. 

 The correlation analysis is employed to identify association between variables. 

In particular, these analyses would like to know what upstream operational process 

variables have a relationship with total reduced sulfur (TRS) and nitrogen (N)-

containing compounds. In the predictive model, comprehending these relationships is 

functional because it can assist us in identifying essential variables to use (Myatt 

2007).  

73B4.2.2 Task II: Ordinary Least Squares (OLS) Estimation (Steps 4 to 5) 

To create the statistical models, this research applied standard OLS estimation via 

multiple linear regression analysis to create both an explanatory and a predictive 

model for total reduced sulfur (TRS) at prior-lime (Y1), TRS at post-lime (Y2), and 

nitrogen (N)-containing compounds (Y3). Nevertheless, this step first focuses on the 

explanatory model. 

 As described in Section 2.3.1, the OLS was applied via multiple linear 

regression analysis to create a predictive model for total reduced sulfur (TRS) at 

prior-lime (Y1), TRS at post-lime (Y2), and nitrogen (N)-containing compounds (Y3). 

To obtain the predictive model, however, the data are partitioned into two data sets: a 

training set for estimating the model and a holdout (validation) set for evaluating the 

performance of this model on unobserved data (Shmueli et al. 2007).  
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74B4.2.3 Task III: Instrumental Variable (IV) Estimation (Steps 6 to 7) 

As described in Section 2.3.2, the Hausman test can be used to identify possible 

endogeneity between the post lime temperature variable and the error term of TRS 

post-lime regression equation (see Equations 2.9 and 2.10) (Wooldridge 2000; 

Wooldridge 2002; Greene 2003; Kennedy 2008). Where endogeneity is indicated, this 

research employs IV estimation to overcome the issue. In addition, the IV provides 

information in the explanatory model of step 4 that there are additional process 

variables indirectly causing those two odorants compounds. The IV estimation and 

two-stage least squares (2SLS) are powerful techniques in the econometric area and 

can be applied to this research (Angrist and Imbens 1995; Angrist and Krueger 2001; 

Wooldridge 2002; Kennedy 2008). 

75B4.2.4 Task IV: Model Validation and Selection (Steps 8 to 9) 

Model Validation: 

Predictive model: 

To evaluate the efficiency of predictive models, Shmueli et al. (2007) suggested 

employing an approach common in data mining. By splitting the observed data into 

two data sets, a training set and a holdout (validation) set, the validation set will be 

used to validate the model whether or not it can precisely forecast new observations. 

The model which yields the smallest predicted RMSE, is then selected as the model 

with highest predictive power. However, when sample sizes are too small (winter and 

summer periods) for partitioning, using predicted RMSE is not effective validation. 

To overcome this issue, cross-validation analysis is employed. 
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 Cross validation (CV) is a statistical validation strategy. It is a statistical 

procedure mainly used to assess predictive power or how precisely a predictive model 

can achieve it (Michaelsen 1987; Hastie et al. 2008; Shmueli 2010a; Shmueli 2010b; 

Shmueli and Koppius 2010). Hastie et al. (2008) suggested that cross-validation is a 

method used to estimate prediction error. One of the simplicity methods is K-fold 

cross-validation. 

 The ideas of K-fold are to divide data evenly into K subsets. Typically, K can 

be either 5 or 10 subsets (Hastie et al. 2008). This research employs a 5-fold cross-

validation (K=5).  Figure 4.1 illustrates how data are divided and used in cross-

validation procedures.  

1 2 3 4 5 

validation training training training training 

 
Figure 4.1: K-fold cross-validation (Hastie et al. 2008) 

The following steps explain how to validate the models by using K-fold cross-

validation: 

1. Split data into five subsets by having one of them as a validation set (such as data 

set #1) and the remaining as training sets (similar to training set and validation sets in 

predictive models estimation). 

2. Fit the model to the four data sets (data sets #2 to #5 ). At this stage, there will be 

four models with different coefficients from the original model that would like to be 

tested. In addition, the prediction error will be calculated.  

3. Repeatedly fit models by having data set # 2 as the validation set, and the rest serve 

as training sets until having data set # 5 as validation set. At that point, there are 
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prediction errors of five models in cross-validation to compare with the prediction 

errors of the original model. 

4. The RMSE will be employed for validation statistics in cross-validation. If an 

average RMSE of five models is lower or close to the RMSE of original model, the 

original is said to be validated. As a result, an explanatory model can be used for 

prediction. In other words, an explanatory model can offer both explanatory purpose 

and predictive purpose at the same time. In contrast, if an average RMSE of cross-

validation is higher than the RMSE of original model, it will indicate that an 

explanatory model is not the best predictive model.  

Explanatory model: 

 As described in Section 4.1.1, the criteria to obtain the best explanatory model 

for each period include: (1) a correct sign of each regression coefficient included in 

the model; (2) statistical significance of each independent variable included in the 

model; and (4) the standard error of the estimate (SEE). Although two of these 

criteria (a correct sign of each regression coefficient and statistical significance of 

each independent variable included in the model) are adequately considered as 

applicable information to validate the explanatory model, but this research still needs 

to access or measure the predictive power of the explanatory models, whether or not 

they can be used for prediction (Shmueli 2010a; Shmueli 2010b; Shmueli and 

Koppius 2010). Therefore, K-fold cross-validation is employed to measure and report 

the predictive power.  

Model Selection:  
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To select the best model with different sets of independent variables, some 

studies choose the model with the lowest value of standard error of estimate (SEE) 

(Winston 2004). Several studies suggested adjusted R2, the correct sign of each 

regression coefficient regarding the wastewater environment and the p-value to 

identify the best equation in a regression model (Vilalai 2003; Sekyiamah and Kim 

2006; Gabriel et al. 2006; Janpengpen 2006; Janpengpen et al. 2007; Shmueli et al. 

2007; Janpengpen et al. 2008; Vilalai 2008; Sekyiamah and Kim 2009).   

Therefore, this research employs the standard error of the estimate (SEE), p-

value of 0.1 for each independent variable, and corrects sign of each regression 

coefficient regarding the wastewater environment knowledge to identify the best 

explanatory model. Additionally, the root mean scared error (RMSE) and the 

Akaike’s information criterion (AIC) are employed to identify the best predictive 

model.  

The following diagram summarizes the procedures for the statistical steps in 

data analysis and modeling. 
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Figure 4.2: Statistical steps in data analysis and modeling process 

31BU4.3 Exploratory Data Analysis (EDA) (Data Preparation) 

Exploratory data analysis requires data preparation. This preparation is the first and 

foremost step in any data analysis (Tukey 1970; Tukey 1977). Furthermore, this 

process will ensure that the raw data have quality and are ready to analyze (Dasu and 

Johnson 2003). Performing statistical analysis without exploring and knowing the raw 

data can be misleading in the data interpretation and misleading in determining the 

logical relationships among data elements. Using exploratory data analysis can assist 

these analyses learn and gain value information about the raw data prior to analyzing 
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them. The key is that exploratory analysis can be another tool used to identify the 

relationship between upstream process variables and odorants production in biosolids. 

 As stated in Chapter 3, this section will offer data summaries (summary 

statistics of all variables), data visualizations (Box plots), and correlation analysis 

(visualizing relationships (graphs) and correlation coefficients (r)). For data displays 

and visualizing relationships, there will be only illustrations of some data in this 

chapter. The remaining plots are shown in Appendices A-1 and A-2. 

76B4.3.1 Data Summaries 

Data summaries indicate summary statistics of each independent variable (process 

variables data) and each dependent variable (odorants data). Summary statistics data 

includes frequency (count), central tendency measures (mean and median), and 

measures of variability of the data (max, min, and standard deviation). Additionally, 

this section also provides variables information including abbreviation, unit, and a 

full description. Table 4.1 and 4.2 present variable descriptions and summary 

statistics of all variables, respectively. 

Table 4.1 Variables description 

Abbreviation Unit Full description 

TRS Pri ppm Total Reduced Sulfur at Prior Lime Addition 

TRS Post ppm Total Reduced Sulfur at Post Lime Addition 

N-Con Comp ppm Nitrogen-Containing Compounds at Post Lime Addition 

Cake % S % Percent of Dewatered Cake solids 

TFW DWSL gal Total Flow of Dewatered Sludge 

% Lime feed % Percent of lime feeder speed 

Post limed temp °F Temperature of limed biosolids 



 

 73 
 

Table 4.1 Variables description (cont) 

 Abbreviation Unit Full description 

Amb Temp °F Ambient temperature (outside temperature) 

FeCl3 gal Ferric Chloride Addition 

WPL gal Waste Pickle Liquid Addition 

Pol_Pri lbs/day Polymer Addition at Primary Process 

Pol_Sec lbs/day Polymer Addition at Secondary Process 

Pol_DAF 

Pol_DW 

lbs/day 

lbs/day 

Polymer Addition at Dissolved Air Flotation 

Polymer Addition at Dewatering 

PolDAF+PolDW lbs/day Sum of Polymer at DAF and at Dewatering process 

Pol_DW/DT solids lbs/day Polymer Addition at Dewatering Per Dry Tons of Solids 

GT FW gal Gravity Thickener Flow 

GT TS lbs/day Gravity Thickener Total Solids 

GT %S % Percent Solids of Gravity Thickener 

SE.BL ft Secondary East Blanket Depth 

SWO.BL ft Secondary West Odd Blanket Depth 
 

SWE.BL ft Secondary West Even Blanket Depth 
 

WAS %S % Percent Solids of Waste Activated Sludge 

DAF FW gal Dissolved Air Flotation Flow 

DAF TS lbs/day Dissolved Air Flotation Total Solids 

Temp °F Temperature at Secondary Effluent 

ISV.E ft/min East Initial Settling Velocity  

ISV.WE ft/min West Even Initial Settling Velocity  

ISV.WO ft/min West Odd Initial Settling Velocity 

SSV60E ml/L East Settled Sludge Volume  

SSV60WE ml/L West East Settled Sludge Volume  

SSV60WO ml/L West Odd Settled Sludge Volume 
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Table 4.1 Variables description (cont) 

 Abbreviation Unit Full description 

RAS.SE mg/L East Secondary Return Activated Sludge  

RAS.SWO mg/L West Odd Secondary Return Activated Sludge  

RAS.SWE mg/L West Even Secondary Return Activated Sludge  

MLSS mg/L Mixed Liquor Suspended Solids 

SE.BL*RAS.SE ftmg/L Interaction between SE.BL and RAS.SE 

SWE.BL*RAS.SWE ftmg/L Interaction between SWE.BL and RAS.SWE 

SWO.BL*RAS.SWO ftmg/L Interaction between SWO.BL and RAS.SWO 

SE.BL*MLSS.SE ftmg/L Interaction between SE.BL and MLSS.SE 

SWE.BL*MLSS.SWE ftmg/L Interaction between SWE.BL and MLSS.SE 

SWO.BL*MLSS.SWO ftmg/L Interaction between SWO.BL and MLSS.SE 

 

Table 4.2 Summary statistics 

Variables Count Max Min Mean Median Std. Dev. 

TRS Pri 259 2.88 0.33 1.15 1 0.53 

TRS Post 259 0.31 0.00 0.06 0.02 0.07 

N-ConComp 259 43.1 0.45 7.7 4.8 7.65 

Pol_Pri 259 1726 569 1022.84 940 203 

Pol_Sec 259 1339 736 1094.05 1077 117.43 

Pol_DAF 259 3422 612 1453.3 1147 731.68 

Pol_DW 259 6530 1358 3406.32 3346 803.73 

PolDAF+PolDW 259 8066 2026 4853.64 4582 1190.35 

Pol_DW/DTS 259 25.3 4.2 10.62 10.4 2.42 

Temp 259 77 50 64.44 64 6.787 

SSV60E 259 455 75 245.56 240 62.64 

SSV60WE 259 343 94 196.06 183 56.4 
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Table 4.2 Summary statistics (cont) 

Variables Count Max Min Mean Median Std. Dev. 

SSV60WO 259 458 141 230.98 214 69.96 

RAS.SE 259 5307 2296 3479.48 3507 613.14 

RAS.SWO 259 11900 2843 5622.69 5107 1897 

RAS.SWE 259 11779 3390 6103.77 5494 2054.61 

SE.BL*RAS.SE 259 14850 3830 8465.29 8425 2508.41 

SWE.BL*RAS.SWE 259 47000 7682 17890 16464 8723.72 

SWO.BL*RAS.SWO 259 54240 6635 17613 16094 8562.92 

SE.BL*MLSS.SE 259 9874 2170 4622.20 4600 1453.87 

SWE.BL*MLSS.SWE 259 19705 2711 7605.34 6443 3486.87 

SWO.BL*MLSS.SWO 259 26731 2993 9379.96 8365 4301.38 

Blend(Pri:Sec) 259 2.69 0.82 1.55 1.57 0.36 

Cake %S  259 31.27 24.1 27.74 27.74 1.64 

MLSS.SE 259 3657 1117 1900.73 1857 389.86 

MLSS.SWE 259 4529 1291 2592.26 2526 790.43 

MLSS.SWO 259 6026 1583 3002.63 2866 977.65 

# Centf Serv 259 6 3 5 5 1 

TFW DWSL 259 1068400 615400 827642 819552 104018.34 

% Lime feed 259 18 9 13.47 13 1.6 

Post limed temp 259 139.75 53.65 94.06 94.47 20.98 

Amb Temp 259 87 15 54.62 55 17.5 

FeCl3+WPL 259 63922 9652 22477.85 21678 6706.21 

GT FW 259 1265453 852163 1134442 1138574 77738 

GT TS 259 491434 294687 380182 376746 32106 

GT %S 259 5.05 3.34 4.03 4 0.31 

S.E.BL 259 3.4 1.6 2.41 2.4 0.47 
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Table 4.2 Summary statistics (cont) 

Variables Count Max Min Mean Median Std. Dev. 

S.W.O.BL 259 5.4 1.8 3.04 2.9 0.74 

S.W.E.BL 259 5.7 1.9 2.8 2.7 0.63 

WAS %S 259 5.38 3.9 4.66 4.65 0.35 

DAF FW 259 967292 400654 681792.12 647342 120001.62 

DAF TS 259 423679 151761 267025.86 253987 62048.39 

ISV.E 259 0.25 0.03 0.118 0.11 0.04 

ISV.WE 259 0.33 0.060 0.173 0.18 0.06 

ISV.WO 259 0.26 0.03 0.134 0.13 0.05 

 

77B4.3.2 Data Visualization 

Data visualization is a useful and straightforward tool for representing data. It can 

also offer the different perspective information of each variable that numerical 

summaries cannot provide, such as elucidating features, measurement errors, and 

unreasonable data recording. This section, therefore, employs Box plots to explore 

each independent variable and each dependent variable. Figures 4.3 and  4.4 present 

examples of Box plots of annual gravity total solids (GT TS) and dissolved air 

flotation total solids (DAF TS), and secondary blanket level, respectively.  Plots for 

each of the other independent variables (upstream process variables) and each 

dependent variable (odorous compounds) can be seen in Appendix A-1. 
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Figure 4.3: Gravity total solids (GT TS) (lbs/day) and dissolved air flotation total 

solids (DAF TS) (lbs/day) 

 

Figure 4.4: Secondary blanket level SE.BL (ft), SWO.BL (ft), and SWE.BL (ft) 

 A Box plot is one of important tools in exploratory data analysis (EDA). It is 

used to demonstrate the shape of the distribution, its central value, and spread. The 

information consists of the most extreme values in the data set (i.e., maximum and 

minimum values), the lower and upper quartiles, and the median. In addition, the 

unusual observations (outliers) are shown in the Box plot. 

  According to the Box plots of Figures 4.3, it illustrates the mean of GT TS 

and DAF TS at 390,000 lbs/day and 280,000 lbs/day, respectively. The median and 

the mean of GT are almost the same level. The maximum and minimum values of GT 

TS are about 450,000 lbs/day and 310,000 lbs/day, respectively. However, the 

maximum and minimum values of DAF TS are 410,000 lbs/day and 150,000 lbs/day, 

respectively. There are outliers of GT TS above the maximum and below the 

minimum values, but DAF TS only has the outliers above the maximum value. 
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 Box plot of Figure 4.4 shows information of the annual secondary blanket 

level at SE.BL, SWO.BL, and SWE.BL. The Box plot demonstrates that the mean of 

blanket level at both SWO.BL and SWE.BL are higher than SE.BL, and the values 

are 2.8 ft, 2.6 ft, and 2.4, respectively. The median and the mean of blanket level at 

SE.BL are at the same level, but the median of blanket level at SWO.BL and 

SWE.BL are 3.0 ft and 2.8 ft, respectively. The maximum and minimum blanket 

levels at SWO.BL are 4.4 ft and 1.8 ft, respectively. The maximum and minimum 

blanket levels at SWE.BL are 4.4 ft and 1.9 ft, respectively. However, the maximum 

and minimum of blanket levels at SE.BL (i.e., 3.5 ft and 1.6 ft, respectively) are lower 

than SWO.BL and SWE.BL. There are outliers above the maximum value of both 

SWO.BL and SWE.BL. However, there are no outliers on the SE.BL. 

78B4.3.3 Correlation Analysis 

After gaining information from numerical summaries and data visualization, this 

research can start examining the relationships between odorants compounds and all 

upstream process variables. The most effective way to examine the relationship 

between a pair of variables is correlation analysis or association analysis. 

Understanding the correlation between odorants production in biosolids and all 

upstream process variables is very useful for a number of reasons. For instance, in the 

predictive model, it can help to recognize which upstream process variables might be 

useful predictors.  

 To identify the relationship between dependent variable and independent 

variables, these analyses use two simple techniques correlation coefficients and 

graphical analysis. The correlation coefficient (r) is a value indicating the strength of 
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the linear relationship between two variables (Albright et al. 2004; Winston 2004; 

Shmueli et al. 2007). This number measures the linear relationships and its value can 

range between -1 and 1 (Winston 2004; Myatt 2007; Shmueli et al. 2007). These 

analyses compute the correlation coefficient between the dependent variable and each 

of the independent variables. A positive sign of the correlation coefficient means that 

when the value of upstream process variable increases the odorant variable is likely to 

increase. In contrast, a negative sign of the correlation coefficient means that when 

the value of upstream process variable increases the odorant variable is likely to 

decrease.  

 When the value of the correlation coefficient is close to -1 or 1, it suggests 

that there is either a strong negative or positive correlation between the pair of 

variables. When the value of the correlation coefficient is close to 0, it is suggested 

that there is a weak correlation or no relationships between the pair of variables 

(Winston 2004; Myatt 2007). This research uses a statistical software package (Stat 

Tools 5.5 of Palisade Corporation) to run and generate the correlation coefficient (r) 

between dependent and independent variables.  

 To decide what value of the correlation coefficient is significant and 

appropriate, this research employs the following rule of thumb at the 0.05 level of 

significance (Krehbiel 2004):  

  2                                                         (4.8)xyr N>   

where N is number of observations. 

For instance, there are 250 data point in the annual period, so the value of the 

correlation coefficient to be considered as significance is 2 259 0.12.=  In the 
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summer the value of the correlation coefficient to be considered as significance is 

2 70 0.24,= and the value of the correlation coefficient to be considered as 

significance is 2 50 0.28.= Table 4.3, Table 4.4, and Table 4.5 show only the 

significant correlation coefficients ( )0.3xyr >  between odorants production in 

biosolids and upstream process variables in each period. 
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Table 4.3: Significant correlation coefficients between TRS prior-lime (ppm) and upstream processes 

Annual Summer Winter 
Process Variables TRS Prior lime Process Variables TRS Prior lime Process Variables TRS Prior lime 

WAS %S -0.388 SWO.BL 0.373 Temp of Sec Effluent 0.498 
DAF TS -0.377 SWE.BL 0.583 Ambient Temp 0.658 

Blend Ratio 0.317 RAS.SE 0.308 SWO.BL*MLSS 0.316 
Temp at Sec Effluent 0.512 RAS.SWE 0.384   

Ambient Temp 0.439 RAS.SWO 0.44   
DAF FW -0.320 Ambient 0.343   

  SWO.BL*RAS.SWO 0.46   
  SWE.BL*RAS.SWE 0.631   
  SWO.BL*MLSS.SWO 0.547   
  SWE.BL*MLSS.SWE 0.616   
  SE.BL*MLSS.SE 0.303   

 

Table 4.4: Significant correlation coefficients between TRS at post lime and upstream processes 

Annual Summer Winter 
Process Variables TRS Post lime Process Variables TRS Post lime Process Variables TRS Post lime 

WAS %S -0.416 SE.BL 0.334 WAS %S  -0.567 
DAF TS -0.394 SWE.BL 0.483 DAF TS   -0.309 

Blend Ratio 0.385 RAS.SE 0.554  Blend Ratio  0.451 
Temp at Sec Eff 0.544 RAS.SWE 0.372  Cake %S  0.423 

Amb Temp 0.528 AmbTemp 0.306 Post Lime Temp 0.63 
DAF FW -0.336 SWE.BL*RAS.SWE 0.535 Temp of Sec Effluent 0.511 

Post lime Temp 0.425 SE.BL*RAS.SE 0.474 Amb Temp 0.532 
TRS Prior Lime 0.65 SWO.BL*MLSS 0.507 GT %S 0.422 

  SWE.BL*MLSS 0.504 GT TS 0.331 
  SE.BL*MLSS 0.586 TRS Prior 0.376 
  GT %S 0.309   
  GT TS 0.316   
  TRS Prior lime 0.553   
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Table 4.5: Significant correlation coefficients between N-containing compounds and upstream processes 

Annual Summer Winter 
Process Variables N-containing compounds Process Variables N-containing compounds Process Variables N-containing compounds 

Post lime Temp 0.396 WAS %S -0.308 Post lime Temp 0.206 
Pol_Sec 0.544 SWO.BL 0.339 RAS.SE 0.389 

Temp at Sec Eff 0.383 SWE.BL 0.373 RAS.SWO 0.301 
Amb Temp 0.516 Post lime Temp 0.243 Pol_DW/DT solids 0.296 

  Pol_DW 0.344   
  Pol_DW/DT Solids 0.317   
  PolDW+PolDAF 0.343   
  SE.BL*RAS.SE 0.354   
  SWO.BL*MLSS 0.394   
  SE.BL*MLSS 0.354   
  Amb Temp 0.368   
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 In order to observe which process variables have associations with total 

reduced sulfur (TRS) and nitrogen (N)-containing compounds, this research employs 

graphical analysis to compare with the correlation coefficients (r). Graphical analysis 

is the straightforward way to find associations between odorant production 

compounds and each process variable by plotting two variables (TRS VS each 

process variable or N-containing compounds VS each process variable) in the same 

graph.  

 On the graph, there are two main axes, the X-axis, which shows the date of 

monitoring, and the Y-axis, which shows odorant compounds or process variables. 

The Y-axis consists of a left axis and a right axis, which are odorant compounds and 

process variables, respectively. In addition, this research also plots dependent variable 

on the Y-axis and each independent on the X-axis. Figures 4.5 and 4.6 illustrate the 

association between dependent variable and independent variable. Similar graphical 

analysis for the other variables can be seen in Appendix A-2. 

 
 

Figure 4.5: TRS Prior-lime (ppm) VS SWE.BL (ft) During Summer Period 
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Figure 4.6: TRS Prior-Lime (ppm)VS Temp Sec Eff (°F) During Annual Period 

 The Figures 4.5 and 4.6 demonstrate the association between TRS prior-lime 

and two process variables (SWE.BL and Temp Sec Eff) during summer and annual 

periods, respectively. The Figure 4.5 indicates the strong association between TRS 

prior-lime and SWE.BL. When the SWE.BL increases, the TRS prior-lime tends to be 

increased. In addition, the correlation coefficient between these two variables is 

0.583, so that the Figure 4.5 verifies the strong association between TRS prior-lime 

and SWE.BL.  

 The Figure 4.6 indicates that when the Temp Sec Eff increases, the TRS prior-

lime tend to be increased. It also indicates that there is a linear relationship between 

TRS prior-lime and Temp Sec Eff. The correlation coefficient between TRS prior-

lime and Temp Sec Eff is 0.512, so it confirms the association on Figure 4.6.  

 The most important information that this research learn from graphical 

analysis is the association between odorant compounds and process variables. Graphs 

can illustrate how odorant compounds change when process variables have been 

increased or decreased. Additionally, correlation coefficients (r) are not enough to 
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verify the associations because more often some outliers can dominate the association 

and cause artificially high values for r.  

79B4.3.4 Summary Results of Exploratory Data Analysis 

As this research stated earlier, knowing the correlation between odorant production in 

biosolids and all upstream process variables can assist to determine which upstream 

process variables are potentially significant and should be used in the explanatory and 

predictive models. Tables 4.6 to 4.14 show the upstream process variables considered 

to be essential in this research. 
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Table 4.6: The essential process variables relating to TRS prior-lime (ppm) during annual  

WAS %S DAF TS Blend Cake %S Temp Sec Eff Ambient Temp DAF FW TRS Pri 

Correlation Table (%) (lbs/day) (Pri:Sec) (%) (F) (F) (gallons/day) (ppm) 

WAS %S 1.000 

DAF TS 0.763 1.000 

Blend(Pri:Sec) -0.624 -0.892 1.000 

Cake %S -0.498 -0.826 0.782 1.000 

Temp Sec Eff -0.546 -0.629 0.492 0.667 1.000 

Ambient Temp -0.497 -0.549 0.408 0.564 0.898 1.000 

DAF FW 0.551 0.958 -0.890 -0.856 -0.573 -0.487 1.000 

TRS Prior-lime -0.388 -0.377 0.317 0.278 0.512 0.439 -0.320 1.000 

 

Table 4.7: The essential process variables relating to TRS post-lime (ppm) during annual 

WAS %S DAF TS Blend Cake %S Post lime Temp Temp(F) Ambient Temp DAF FW TRS Post 

Correlation Table (%) lbs/day) (Pri:Sec) (%) (°F) (°F) (°F) (gallons/day) (ppm) 

WAS %S 1.000                 

DAF TS 0.763 1.000               

Blend(Pri:Sec) -0.624 -0.892 1.000             

Cake %S -0.498 -0.826 0.782 1.000           

Post lime Temp -0.367 -0.458 0.367 0.535 1.000         

Temp Sec Eff -0.546 -0.629 0.492 0.667 0.777 1.000       

Ambient Temp -0.497 -0.549 0.408 0.564 0.811 0.898 1.000     

DAF FW 0.551 0.958 -0.890 -0.856 -0.427 -0.573 -0.487 1.000   

TRS Post-lime -0.416 -0.394 0.385 0.291 0.425 0.544 0.528 -0.336 1.000 
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Table 4.8: The essential process variables relating to N-containing compounds (ppm) during annual   

Cake %S Post lime Temp Pol_Sec Temp Sec Eff Ambient Temp N-containing

Correlation Table (%) (°F) (lbs/day) (°F) (°F) (ppm) 

Cake %S 1.000 

Post lime Temp 0.529 1.000 

Pol_Sec 0.166 0.194 1.000 

Temp(F) 0.640 0.773 0.216 1.000 

Ambient Temp 0.561 0.780 0.383 0.821 1.000 

N-containing 0.246 0.396 0.544 0.383 0.516 1.000 

 

Table 4.9: The essential process variables relating to TRS prior-lime (ppm) during winter  

MLSS.SWO Temp Sec Eff Ambient Temp S.W.O. BL*MLSS.SWO TRS Prior-lime 

Correlation Table (mg/L) (°F) (°F) (ftmg/L) (ppm) 

MLSS.SWO 1.000 

Temp Sec Eff 0.071 1.000 

Ambient Temp 0.142 0.813 1.000 

SWO. BL*MLSS.SWO 0.822 -0.164 -0.016 1.000 

TRS Prior-lime 0.445 0.498 0.658 0.316 1.000 
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Table 4.10: The essential process variables relating to TRS post-lime (ppm) during winter  

WAS %S DAF TS Blend Cake %S Post lime Temp Temp Sec Eff Ambient Temp GT %S GT TS TRS Post-lime

Correlation Table (%) (lbs/day) (Pri:Sec) (%) (°F) (°F) (°F) (%) (lbs/day) (ppm) 

WAS %S 1.000 

DAF TS 0.704 1.000 

Blend(Pri:Sec) -0.650 -0.835 1.000 

Cake %S -0.565 -0.618 0.767 1.000 

Post lime Temp -0.327 -0.175 0.450 0.512 1.000 

Temp Sec Eff -0.237 -0.144 0.298 0.341 0.417 1.000 

Ambient Temp -0.175 -0.153 0.246 0.338 0.566 0.813 1.000 

GT %S -0.599 -0.474 0.787 0.667 0.443 0.327 0.196 1.000 

GT TS -0.313 -0.228 0.603 0.491 0.537 0.331 0.248 0.831 1.000 

TRS Post-lime -0.567 -0.309 0.451 0.423 0.630 0.511 0.532 0.422 0.331 1.000 

 

Table 4.11: The essential process variables relating to N-containing compounds (ppm) during winter  

Post lime Temp RAS.SE RAS.SWO Pol_DW/DTS N-containing 

Correlation Table (°F) (mg/L) (mg/L) (lbs/ton) (ppm) 

Post lime Temp 1.000 

RAS.SE -0.187 1.000 

RAS.SWO -0.340 0.757 1.000 

Pol_DW/DTS -0.084 0.280 0.107 1.000 

N-containing 0.206 0.389 0.301 0.296 1.000 
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Table 4.12: The essential process variables relating to TRS prior-lime (ppm) during summer  

SWO.BL SWE.BL RAS.S.E RAS.SWE RAS.SWO SWO*RAS SWE*RAS Ambient Temp SWO.BL*MLSS SWE.BL*MLSS SE. BL*MLSS TRS Prior-lime

Correlation Table (ft) (ft) (mg/L) (mg/L) (mg/L) (ftmg/L) (mg/L) (°F) (ftmg/L) (ftmg/L) (ftmg/L) (ppm) 

SWO.BL 1.000 

SWE.BL 0.545 1.000 

RAS.S.E 0.235 0.214 1.000 

RAS.SWE -0.079 0.243 0.362 1.000 

RAS.SWO 0.156 0.158 0.176 0.657 1.000 

SWO*RAS 0.955 0.529 0.256 0.115 0.434 1.000 

SWE*RAS 0.272 0.786 0.343 0.787 0.521 0.389 1.000 

Ambient Temp 0.370 0.306 0.369 -0.065 0.123 0.370 0.152 1.000 

SWO.BL*MLSS 0.820 0.784 0.382 0.148 0.120 0.776 0.576 0.343 1.000 

SWE.BL*MLSS 0.449 0.791 0.208 0.304 0.243 0.473 0.689 0.175 0.794 1.000 

SE. BL*MLSS 0.176 0.574 0.530 0.098 -0.308 0.056 0.418 0.159 0.596 0.540 1.000 

TRS Prior-lime 0.373 0.583 0.308 0.384 0.440 0.460 0.613 0.343 0.547 0.616 0.303 1.000 
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Table 4.13: The essential process variables relating to TRS post-lime (ppm) during summer  

SE.BL SWE.BL RAS.SE RAS.SWE SWE*RAS SE*RAS Ambient Temp SWO. BL*MLSS SWE.BL*MLSS SE.BL*MLSS GT %S GT TS TRS Post-lime

Correlation Table (ft) (ft) (mg/L) (mg/L) (ftmg/L) (ftmg/L) (°F) (ftmg/L) (ftmg/L) (ftmg/L) (%) (lbs/day) (ppm) 

SE.BL 1.000 

SWE.BL 0.342 1.000 

RAS.SE 0.482 0.214 1.000 

RAS.SWE -0.056 0.243 0.362 1.000 

SWE*RAS 0.175 0.786 0.343 0.787 1.000 

SE*RAS 0.912 0.317 0.788 0.117 0.263 1.000 

Ambient Temp 0.177 0.306 0.369 -0.065 0.152 0.279 1.000 

SWO.BL*MLSS 0.308 0.784 0.382 0.148 0.576 0.372 0.343 1.000 

SWE.BL*MLSS 0.018 0.791 0.208 0.304 0.689 0.092 0.175 0.794 1.000 

SE.BL*MLSS 0.777 0.574 0.530 0.098 0.418 0.780 0.159 0.596 0.540 1.000 

GT %S -0.006 -0.005 0.537 0.582 0.351 0.256 0.020 0.082 0.188 0.161 1.000 

GT TS 0.568 0.158 0.347 0.377 0.344 0.561 -0.182 0.151 -0.034 0.452 0.321 1.000 

TRS Post-lime 0.334 0.483 0.554 0.372 0.535 0.474 0.306 0.507 0.504 0.586 0.309 0.316 1.000 
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Table 4.14: The essential process variables relating to N-containing compounds (ppm) during summer  

WAS %S SWO.BL Post lime Temp SWE.BL SWO.BL*MLSS Pol_DW Pol_DAF+Pol_DW Pol_DW/DTS SE.BL*MLSS SE*RAS Ambient Temp N-containing 

Correlation Table (%) (ft) (°F) (ft) (ftmg/L) (lbs/day) (lbs/day) (lbs/ton) (ftmg/L) (ftmg/L) (°F) (ppm) 

WAS %S 1.000 

SWO.BL -0.304 1.000 

Post lime Temp 0.008 -0.038 1.000 

SWE.BL -0.414 0.558 0.119 1.000 

SWO.BL*MLSS -0.321 0.806 0.030 0.803 1.000 

Pol_DW -0.257 0.181 0.089 0.194 0.151 1.000 

Pol_DAF+Pol_DW -0.134 0.200 0.156 0.205 0.120 0.919 1.000 

Pol_DW/DTS -0.241 0.130 -0.019 0.065 0.075 0.726 0.561 1.000 

SE.BL*MLSS -0.349 0.223 0.190 0.610 0.641 0.096 0.028 -0.021 1.000 

SE*RAS -0.389 0.234 0.179 0.395 0.422 0.030 0.035 -0.106 0.790 1.000 

Ambient Temp -0.408 0.364 0.087 0.345 0.334 0.119 0.178 0.192 0.166 0.267 1.000 

N-containing -0.308 0.339 0.243 0.373 0.394 0.344 0.343 0.317 0.354 0.330 0.368 1.000 
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32BU4.4 Additional Techniques 

To gain a better understanding and to obtain more accuracy in forecasting, two 

techniques, dummy variables and interaction variables, are employed. In the 

regression model, using dummy variables and interaction variables will give us 

differences in intercepts and differences in slopes, respectively. Additionally, using 

dummy variables and interaction variables in empirical analysis can provide us with 

qualitative information (Wooldridge 2000). 

As described in Section 4.2, there are separated statistical model for each 

period (annual, winter, and summer). However, if this research would like to employ 

annual models as the main model, the dummy variables and interaction variables 

techniques can assist this research to obtain the differences among seasons.    

80B4.4.1 Dummy Variables 

Dummy variables are used in regression models to represent categorical information. 

A dummy variable (D) is a binary variable that denotes whether an observation 

belongs to a certain category or not. For instance, if these analyses would like to 

categorize the data into two groups, the analyses can simplify it by using a 0 or a 1 for 

the value of the dummy variable. Basically, these analyses define a value of 0 if the 

condition is not met and a value of 1 if the condition is met. Given Di as the dummy 

variable, Di can be denoted as the following the condition:
                            

 

  
1    if condition is present for observation i
0   otherwiseiD ⎧

= ⎨
⎩

 

 As stated earlier, the research anticipates that including categorical 

independent variables via dummy variables can improve the statistical models in 
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Chapter 5. Equation 4.9 demonstrates how a dummy variable can be incorporated into 

the regression model. 

 Υi  = β0 + β1Χ1i + β2Χ2i +  γDi……+ βkΧki           (4.9) 

With a dummy variable presented in Eq. (4.9), the intercept will be different for each 

of the two categories: 

    
⎩
⎨
⎧ +

otherwise          
present iscondition  if    

0

0

β
γβ

 

81B4.4.2 Interaction Variables 

An interaction variable is the outcome of multiplying two or more variables. It assists 

these analyses to model different intercepts and different coefficients for different 

categories. In the wastewater treatment perspective, only one process variable 

occasionally cannot be used to explain the source of odor production in solids and 

biosolids. However, using the interaction of two variables can provide different 

information to clarify the odorous issues. Equation 4.10 shows how interaction 

variable Χ1Χ2  is used in a regression model. 

Υi  = β0 + β1Χ1i + β2Χ2i +  θΧ1Χ2……+ βkΧki                                     (4.10) 

As described earlier in Sections 4.4.1 and 4.4.2, these two techniques can be 

incorporated into the OLS equation to provide qualitative information and to allow 

differences in intercepts and slopes. 

 After establishing the statistical processes and the approaches used in this 

research, the next chapter will provide modeling analysis by demonstrating how to 

obtain the best statistical biosolids odorant model for each compound. It will also 



 

 94 
 

provide the resulting models. Then, there will be a concluding discussion of the 

contribution in this research.  
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9BChapter 5:  Data Analysis, Results, and Discussion 

By using the advanced wastewater treatment plant (WWTP) of the District of 

Columbia Water and Sewer Authority (DC Water) as a case study, this chapter 

presents data analysis and the results of developing statistical models for odor. There 

are two types of models, explanatory and predictive. As described in Chapter 4, each 

type of model employs different requirements to select the best explanatory and 

predictive models. 

 This research presents general statistical models for each type, which are 

annual models. However, to gain a better understanding of odorous phenomena and to 

obtain precise odorous forecasts, this research studies and presents two additional 

statistical models: winter, and summer. Therefore, each odorants compound consists 

of three seasonal statistical models: an annual statistical model, a winter model, and a 

summer model. 

 For each seasonal period, we present and discuss only the best statistical 

model. Nonetheless, the remaining candidate statistical models for each odorant 

compound will be presented in Appendix B. 

33BU5.1 Modeling Analysis 

As mentioned in the previous chapter, we employ ordinary least squares (OLS) 

estimation as well as use an instrumental variable (IV) and 2SLS estimation to create 

explanatory and predictive models by using the data from DC Water’s advanced 

WWTP. We follow the 9 steps of statistical strategies (Section 4.2) by starting from 

step 4. Prior to starting, we state the anticipated significant upstream process 
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variables, which are assumed to contribute to those three odor compounds, obtained 

from steps 1 to 3: 

Table 5.1: The anticipated significant upstream process variables 

Annual Summer Winter 
TRS (ppm) N-con (ppm) TRS (ppm) N-con (ppm) TRS (ppm) N-con (ppm) 
WAS %S Post lime 

temp 
GT %S WAS %S WAS %S Post lime 

temp 
DAF TS Pol_Sec GT TS SWO.BL DAF TS RAS.SE 

Blend Ratio Temp Sec Eff Post lime temp SWE.BL Blend Ratio RAS.SWO 
Cake %S Ambient temp Ambient temp Post lime temp Cake %S Pol_DW/dry 

solids 
Temp Sec Eff  SE.BL Pol_DW GT %S  
Ambient temp  SWE.BL Pol_DW/dry solids GT TS  

DAF FW  SWO.BL PolDW+PolDAF Post lime temp  
Post lime 

temp 
 RAS.SE SE.BL*RAS.SE Temp of Sec  

GT %S  RAS.SWE SWO.BL*MLSS Ambient temp  
  RAS.SWO SE.BL*MLSS SWOBL*MLSS  
  SE.BL*MLSS Ambient Temp   
  SWE.BL*MLSS    
  SWO.BL*MLSS    
  SE.BL*RAS    
  SWE.BL*RAS    
  SWO.BL*RAS    

 

 After employing exploratory data analysis (EDA) and correlation analysis, 

one significant result showed an important relationship between temperature at 

secondary effluent and ambient temperature. Figure 5.1 illustrates the relationship 

between temperature at secondary effluent and ambient temperature. According to 

Figure 5.1, even when the ambient temperature was freezing (lower than 32 ˚F) 

during the winter period, the temperature at the secondary effluent was about 48 ˚F. In 

other words, the temperature of wastewater will not be that much lower during winter, 

nor will it be that much higher during summer.  

 We also compared the correlation coefficient (r) between temperatures at the 

secondary effluent and ambient temperature during winter and summer periods. We 

found the following correlations: 
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Annual: Temp at secondary effluent VS Ambient temp (r = 0.898) 

Winter: Temp at secondary effluent VS Ambient temp (r = 0.813) 

Summer: Temp at secondary effluent VS Ambient temp (r = 0.285) 

 The above information is crucial because it demonstrates the relationship 

between ambient temperature and temperature at the secondary effluent especially 

during summer period. In other words, it does not matter that the ambient temperature 

in summer will be higher or warmer, because it will not affect emission of odors in 

dewatered solids and biosolids. Conversely, during the winter period, ambient 

temperature has more of an effect on temperature at the secondary effluent and can 

assist in mitigating the emission in dewatered solids and biosolids. Furthermore, total 

reduced sulfur (TRS) at prior-lime (Y1) and at post-lime (Y2) have weak correlation 

coefficients (r) with temperatures at the secondary and ambient temperature in the 

summer period:  

 (Y1): r = 0.15 and r = 0.34, respectively 

 (Y2): r = -0.024 and r = 0.306, respectively 

 In contrast, during annual and winter periods, the correlation coefficient (r) of 

(Y1) and (Y2) with both temperatures is very high, which is above 0.6. 
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Figure 5.1: Temp Sec Eff (°F) vs. Ambient Temp (°F)  

 As stated in Section 4.5, employing dummy and interaction variables, can 

assist in quantifying the differences between winter periods and summer periods. 

  Given; 

  

 where; DT is dummy variable. 

This research, therefore, anticipates obtaining the different slopes and intercepts 

between the winter and summer periods. 

For instance, the difference between winter and summer can be seen by writing out 

the regression models for the separate seasons:

( ) ( )
( ) ( )( )

( )

1 0 1 2 3

1 0 3 1 2

1 0 1

Annual : * ( )

Winter :

Summer :

T TY Temp D Temp D

Y Temp

Y Temp

β β β β

β β β β

β β

= + + +

= + + +

= +

 

 We also include interaction variables between secondary blanket level and 

mix liquor suspended solids (MLSS) and secondary blanket level and return activated 

sludge (RAS) concentration. Many studies cited in Chapter 1, including the previous 

5
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⎩
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study by Janpengpen (2006), indicated that the secondary blanket level was one of the 

essential process variables contributing to TRS at prior lime. Additionally, by using 

the product of interaction between secondary blanket level and MLSS, and interaction 

between secondary blanket level and RAS, can provide more information about the 

sources of TRS at prior-lime and post-lime addition. In other words, if there was 

normally a high blanket level at the secondary settling tank, it would indicate that 

there was a high concentration of MLSS and RAS. But, this level is not necessarily 

indicated because the low blanket level can have higher concentration than the high 

blanket level, as the suspended solids are settling better or they are more compacted.  

 Therefore, there are six additional process variables added to this model: 

Secondary east blanket level*Mix liquor suspended solids (SE.BL*MLSS) 

Secondary west odd blanket level*Mix liquor suspended solids (SWO.BL*MLSS) 

Secondary west even blanket level*Mix liquor suspended solids (SWE.BL*MLSS) 

Secondary east blanket level*Return activated sludge (SE.BL*RAS) 

Secondary west odd blanket level*Return activated sludge (SWO.BL*RAS) 

Secondary west even blanket level*Return activated sludge (SWE.BL*RAS) 

The unit for each above interaction is ft*mg/L, which is a mass unit. 

34BU5.2 Explanatory Models 

82B5.2.1 Explanatory Model for TRS at Prior-Lime 

This section will employ the ordinary least square estimation to gain the best 

explanatory model for TRS prior-lime (Y1).  
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Case I: Annual Model for TRS Prior-lime (January 2009 to January 2010) 

Table 5.2: Statistical model for TRS prior-lime (ppm) during annual period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.6466 0.4181 0.4066 0.405120486 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 29.83147587 5.966295174 36.3527 < 0.0001 

Unexplained 253 41.52301988 0.164122608 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -2.023725624 0.680571888 -2.9736 0.0032 -3.364033558 -0.68341769 

WAS %S -0.388862351 0.094880373 -4.0984 < 0.0001 -0.575718316 -0.202006385 

Temp Sec Eff 0.05838969 0.005826328 10.0217 < 0.0001 0.046915408 0.069863972 

SWO. BL*MLSS. SWO 2.6907E-05 7.71915E-06 3.4857 0.0006 1.1705E-05 4.2109E-05 

GT %S 0.164807583 0.085661938 1.9239 0.0555 -0.003893737 0.333508902 

DT*Temp 0.007622134 0.001137213 6.7025 < 0.0001 0.005382523 0.009861745 
 
 The best explanatory model for TRS at prior-lime (Y1) in the annual model is 

shown in Table 5.2. All independent variables or process variables including 

interaction variables have correct signs of wastewater treatment and follow the 

theories of environmental engineering. The model explains about 42% of variation in 

Y1 and all process variables on the right-hand side are statistically significant. Let us 

interpret the variables in this model. 

Waste activated percent solids (WAS %S): This variable has a negative coefficient, 

implying that high percent solids of WAS can mitigate Y1 concentration. In other 

words, by holding all the other variables fixed, changing WAS %S by 1% of solids 

can cause an average change in Y1 of -0.39 ppm. Similarly, the correlation coefficient 

(r) between Y1 and WAS %S also has a negative sign, which is -0.39. This 

information strongly supports the model in Table 5.2. 
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 As described in Section 3.2.6, WAS %S is the biologically activated solids at 

the secondary settling tank. In other words, these solids are aerated before passing 

through the secondary sedimentation process, and then pass through the dissolved air 

flotation (DAF) tank. In fact, there is not only just WAS % S represented at this point 

because WAS %S can be used to form dissolved air flotation total solids (DAF TS) 

by associating it with the waste activated (WAS) flow, which is described by the 

following formula: 

 ( ) ( )DAF flow / *8.43*WAS %S*10000
DAF TS /

1000000
gallons day

lbs day
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 Furthermore, the correlation coefficients (r) between Y1 and DAF TS and 

between Y1 and DAF flow are -0.377 and -0.322, respectively. However, DAF TS 

cannot be included in the model because DAF TS is the product between WAS %S 

and DAF flow, so there is multicollinearity. These confirm that WAS %S can assist in 

decreasing Y1 in dewatered solids. 

Gravity thickener percent solids (GT %S): This variable has a positive coefficient, 

in contrast to the negative WAS %S coefficient. This difference implies that high 

percent solids of GT can contribute to increased Y1 concentration in dewatered solids. 

In other words, by holding all the other variables fixed, changing GT %S by 1% of 

solids can cause an average change in Y1 of 0.16 ppm. Unlike WAS %S, GT %S is 

the raw settling sludge at primary settling tank as stated in Section 3.2.4. Therefore, it 

is easier for GT %S to cause septicity in sludge passing to the blending tank since 

they are not aerated solids. Additionally, a higher GT %S indicates a higher 

proportion of food source for microorganisms that can contribute to a greater 
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production of odors in dewatered solids and biosolids as well (Peot and Ramirez 

2007).   

 Therefore, to decrease the level of Y1, this model suggests that DC Water 

should maintain GT %S at a lower level. However, using only this information to 

draw a suggestion is inadequate and can be misleading. As DC Water ultimately 

prefers the dewatered cake with high solids content (Cake %S), it was believed that if 

there were high GT %S and high GT flow at the blending tank, they could provide 

high percent solids in dewatered solids. This statement can be confirmed by the 

following formula: 

 

( )
( )
( )
( )

GT TS /
Blend Ratio

DAF TS /

GT flow / *8.34*GT %S*10000/1000000
                   

DAF flow / *8.34*WAS %S*10000/1000000

lbs day
lbs day

gallons day
gallons day

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    

 Practically, it was believed that having high GT %S and high GT TS could 

increase the dewatering process performance because they are both raw sludge 

without any chemical addition. However, the model suggests that operators should 

keep GT %S lower. Maintaining the ultimate requirement of high cake %S at the final 

product can be seen as a tradeoff.  If WAS %S and DAF flow are increased, they can 

obtain the same cake %S at the final product. 

SWO.BL*MLSS: This process variable is new information for the secondary 

sedimentation process. According to Sekyiamah and Kim (2006), Janpengpen (2006), 

Janpengpen (2007), and Sekyiamah and Kim (2009), the greater the secondary sludge 

blanket depth, the greater the biosolids odors at the downstream. In other words, a 
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higher secondary blanket level can promote TRS concentration of dewatered solids 

and biosolids.  

 We investigate a different aspect, because using only a blanket level does not 

provide ample information. A high secondary blanket level sometimes does not 

indicate the high odors downstream; instead, a low secondary blanket level more 

often indicates high odors at downstream. That means the poor settling suspended 

solids at the secondary sedimentation process can show an error reading for a high 

number of secondary blanket level. In contrast, the better settling suspended solids 

can compact more easily and can give the low secondary blanket level. For this 

reason, we use the mass unit (ft*mg/L), which is the product between height and 

concentration.  

 In the model, this process variable has a positive coefficient sign, implying 

that high mass of SWO.BL*MLSS can contribute to an increase of Y1 concentration 

in dewatered solids. By holding all the other variables fixed, a change in 

SWO.BL*MLSS by 1 ft*mg/L can cause an average change in Y1 of 2.6907x10-5 

ppm. While the statistical significance of coefficients is relatively low, the graph in 

Figures 5.2 indicates that an average mass of SWO.BL*MLSS is approximately 

10,000 ft*mg/L. Therefore, if there are any changes, for instance, from 10,000 

ft*mg/L to 15,000 ft*Mg/L, it will significantly affect Y1 concentration (e.g., 

5,000x2.6907x10-5 = 0.13 ppm). 
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Figure 5.2: SWO.BL*MLSS.SWO (ft*mg/L) (January 2009 to May 2010) 

Temperature at the secondary effluent (Temp Sec Eff): This is one of significant 

variables causing the changes in TRS prior-lime (Y1) (see Figures 5.3 and 5.4). Both 

Figures indicate that increasing in temperature of effluent at the secondary process 

can contribute to level of Y1 at the downstream after dewatering process. Figure 5.4 

demonstrates the trend of Y1 when Temp sec Eff increases. 

 

Figure 5.3: TRS prior-lime (ppm) vs. Temp Sec Eff (°F) 
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Figure 5.4: Relationship between TRS prior-lime (ppm) and Temp Sec Eff (˚F) 

 Additionally, the correlation coefficient (r) between temperature at the 

secondary effluent and Y1 is 0.512, which is a strong correlation. Furthermore, this 

correlation is higher than the correlation between ambient temperature and Y1, which 

is just 0.439. Temp Sec Eff has a positive coefficient sign indicating that increasing 

temperature at the secondary effluent can accelerate the Y1 concentration in 

dewatering solids. By holding all the other variables fixed, changing Temp Sec Eff by 

one degree Fahrenheit (1 ˚F) can cause an average change in Y1 of 0.06 ppm.  

 In short, temperature at the secondary effluent dramatically contribute to 

increase Y1.  For this reason, we use a dummy variable, as stated in Section 5.1 in the 

annual model of Y1, to distinguish the difference between the winter and the summer.  

Temp* DT =1: The variable DT =1 means it is a winter period. This variable is 

interaction variable  between Temp Sec Eff and dummy variable. It implies that 

temperature at the secondary effluent can naturally assist in decreasing Y1 

concentration during the winter period. By holding all the other variables fixed, if it is 
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the winter period, it can cause an average change in Y1 of 0.008 ppm. The regression 

equations for winter and summer periods can be rewritten as follows: 

Winter: 

( ) ( )
( ) ( )

1

5

ˆ 2.0161 0.3889 WAS %S 0.0584 Temp Sec Eff

2.6907*10 SWO.BL*MLSS 0.1648 GT %S

Y
−

= − − + +

+
 

Summer: 

( ) ( )
( ) ( )

1

5

ˆ 2.0237 0.3889 WAS %S 0.0584 Temp Sec Eff

2.6907*10 SWO.BL*MLSS 0.1648 GT %S

Y
−

= − − + +

+
 

 In both above regression equations, as in the output from Table 5.2, the 

intercepts are negative. These intercepts can lead to misinterpretation and raise the 

question of whether both equations can be applied to any wastewater treatment plants 

without exceptional weather conditions (e.g., Alaska and Bangkok). These two 

equations can definitely be employed in any weather conditions. As described in 

Section 5.1, these equations verify that even though ambient temperature is below 

freezing point (i.e., 15 ˚F), temperature at the secondary effluent is 48 ˚F. In addition, 

even if it is the case that all independent variables are close to zero, for instance, the 

wastewater treatment plant is shut downF

1
F, the temperature at the secondary effluent or 

temperature of the wastewater never becomes zero. Therefore, the negative intercept 

does not contradict domain knowledge and does not extrapolate into ranges of 

independent variable values that do not exist. To give a better understanding, as well 

as to offer information about an annual explanatory model, the next two cases, (case 

II: winter period and case III: summer period), are provided.  

                                                 
1 When the wastewater treatment plant is shut down, all the treatment processes are stopped, so that 
those process data will not be used in the analyses.   
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CASE II: Winter Model for TRS Prior-lime (January 2009 to March 2009)   

 The correlation analysis indicates that there are four process variables having 

a relatively high positive correlation with TRS prior-lime (Y1), which are MLSS.SWO 

(r = 0.445), SWO.BL*MLSS (r = 0.316), temperature at the secondary effluent (r = 

0.498), and ambient temperature (r = 0.658). Table 5.3 presents the statistical model 

output for the winter period. 

Table 5.3: Statistical model for TRS prior-lime (ppm) during the winter period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7476 0.5589 0.5401 0.173475978 

Degrees of Sum of Mean of  
p-Value 

ANOVA Table Freedom Squares Squares 

Explained 2 1.792274003 0.896137002 29.7780 < 0.0001 

Unexplained 47 1.414413997 0.030093915 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.283899873 0.15693682 -1.8090 0.0768 -0.599616031 0.031816285 

MLSS.SWO 0.000110959 3.02443E-05 3.6688 0.0006 5.01151E-05 0.000171803 

Ambient Temp 0.015049725 0.002427339 6.2001 < 0.0001 0.010166549 0.019932902 
 
  
 The model in Table 5.3 is the best explanatory model for TRS prior-lime (Y1) 

during the winter period and consists of two upstream process variables, which are 

mix liquor suspended solids at secondary west odd (MLSS.SWO) and ambient 

temperature (Ambient Temp). Both process variables including intercepts are 

statistically significant. The explanatory power of this model suggests that about 56% 

of variation in Y1 can be explained by those two process variables during the winter 

period.  
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MLSS.SWO: This process variable has a positive coefficient, implying that 

increasing MLSS.SWO concentration can contribute to an increase in Y1 

concentration. By holding all the other variables fixed, changing MLSS.SWO by 1 

mg/L can cause an average change in Y1 of 1.1x10-4ppm. This information verifies 

that if operators keep more concentration of MLSS then it can contribute to 

production of Y1 in dewatered solids. 

Ambient temperature (Amb Temp): This variable, known as the outside 

temperature, is an uncontrollable variable, but it has relatively high correlation (r = 

0.658) with the TRS prior-lime (Y1) during the winter period. Like Temp Sec Eff 

process variable, ambient temperature has a positive coefficient. This implies that 

ambient temperature can naturally assist in decreasing Y1 concentration during the 

winter period. By holding all the other variables fixed, changing ambient temperature 

by 1 ˚F can cause an average change in Y1 of 0.015 ppm. 

 Therefore, this information can assist the DC Water biosolids management 

section in cost saving for the land application program. That means DC Water can 

diminish the payment of hauling costs during the winter period because the 

contractors can distribute biosolids to any land application site that is close to a 

wastewater treatment plant. In other words, DC Water can transport biosolids to 

nearby residents or the most sensitive areas during the winter period. However, it is 

still necessary for DC Water to have backup application sites in case that there are 

any odor incidents occurred. 
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Case III: Summer Model for TRS Prior-Lime (June 2009 to September 2009) 

Table 5.4: Statistical model for TRS prior-lime (ppm) during the summer period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7688 0.5911 0.5591 0.366718913 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 12.44056186 2.488112372 18.5013 < 0.0001 

Unexplained 64 8.606896711 0.134482761 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant 4.869238295 2.045571422 2.3804 0.0203 0.782739605 8.955736985 

DAF TS -6.29232E-06 2.51552E-06 -2.5014 0.0149 -1.13177E-05 -1.26698E-06 

Cake %S -0.237370938 0.055436952 -4.2818 < 0.0001 -0.348118981 -0.126622895 

SWE.BL 0.63003452 0.148290202 4.2487 < 0.0001 0.333790785 0.926278254 

RAS.SWO 0.000596106 0.000132375 4.5031 < 0.0001 0.000331655 0.000860556 

GT %S 0.21122279 0.145349169 1.4532 0.1511 -0.079145554 0.501591135 
 
  
 Table 5.4 represents the best explanatory model of TRS prior-lime (Y1) during 

the summer period with R2 of 0.59. All five process variables included in the model 

are statistically significant, and these include: dissolved air flotation total solids (DAF 

TS), cake percent solids (Cake %S), secondary west even blanket level (SWE.BL), 

return activated sludge at secondary west odd (RAS.SWO), and gravity thickener 

percent solids (GT %S). This means that about 59% of variation in TRS prior-lime 

(Y1) can be explained by those five process variables. 

Dissolved air flotation total solids (DAF TS): This process variable has a negative 

coefficient, implying that high DAF TS can assist mitigating Y1 concentration. As 

described in Case I, DAF TS is a product of DAF flow and WAS %S, and its unit is 

lbs/day. The following is the formula for DAF TS: 
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( ) ( )DAF flow *8.43*WAS %S*10000
DAF TS /

1000000
gallons

lbs day
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

By holding all the other variables fixed, changing DAF TS by 1 lbs/day can 

cause an average change in Y1 of -6.292x10-6 ppm. Although the coefficient of DAF 

TS is minimal and is seem practically insignificant to affect Y1 concentration, note 

that the average daily of DAF TS is about 220,000 lbs/day (see Figure 5.5) and DAF 

TS is in fact very vital for decreasing Y1. Therefore, if DC Water maintains a high 

level of DAF TS (i.e., higher than GT TS), it will effectively mitigate Y1 

concentration. 

 

Figure 5.5: DAF TS (lbs/day) during the summer 

In addition, the DAF TS is the total solids gained from WAS %S, which 

consist of biologically activated solids, and DAF flow, which consists of flotation-

thickened sludge blown by air. As a result, DAF TS is made up of aerated total solids. 

Unlike GT TS, it contains raw total solids gained from a gravity thickener of primary 

process, which is more septic as explained in Case I. It has been previously 

understood that if there are GT TS higher than DAF TS then they could increase the 

dewatering performance. In other words, centrifuges can easily separate solids from 

water. For this reason, DC Water generally maintains GT TS higher than DAF TS. 
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Gravity thickener percent solids (GT %S): This process variable has a positive 

coefficient, implying that high GT %S can increase Y1 concentration. Like GT %S of 

Case I, it is the raw settling sludge at the primary settling tank and can be considered 

a critical source of Y1. By holding all the other variables fixed, changing GT %S by 

1% of solids can cause an average change in Y1 of 0.21 ppm. As described in Case I, 

it is easy for GT %S to become septic because it is a raw sludge without any aeration. 

This variable is a vital variable used to calculate GT TS in blending tank. Therefore, 

this variable directly relates to blend ratio and ultimately relates to cake %S in 

dewatered solids and biosolids. 

Cake percent solids (Cake %S): Cake %S consists of dewatered solids before they 

pass through the lime stabilization process. This is one of the most essential process 

variables because Cake %S relates to other process variables that can contribute to 

TRS prior-lime (Y1).  Before discussing this further, this research will demonstrate the 

sources of Cake %S and other process variables, i.e., GT %S, GT Flow, GT TS, WAS 

%S, DAF Flow, DAF TS, and Blend Ratio, that have relationships with Cake %S. 

 

Figure 5.6: Sources of Cake percent solids (Cake %S) 
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According to the model, Cake %S has a negative coefficient, implying that 

high Cake %S can decrease Y1 concentration. Technically, to gain a higher Cake %S 

or to gain more dry cake downstream, DC Water maintains an amount of GT TS 

higher than that amount of DAF TS in the blending tanks. In other words, operators 

generally keep the Blend Ratio (ratio between GT TS and DAF TS as shown in 

Figure 5.6) more than 1, which is to say there are GT TS more than DAF TS in the 

blend. As a result, there is more raw sludge than aerated sludge (GT TS = GT %S*GT 

Flow and DAF TS = WAS %S*DAF Flow). This can cause Cake %S to have a 

positive coefficient sign with Y1. 

     

Figure 5.7: Amount of GT TS (lbs/day), DAF TS (lbs/day), and Blend Ratio 

(Pri:Sec) during summer period 

 According to this model, however, Cake %S has a negative coefficient sign 

because the DAF TS, which has a negative coefficient sign, is also included into the 

model. The model suggests that DC Waster must maintain DAF TS higher than GT 

TS to mitigate Y1 concentration. That means if DC Water keeps DAF TS higher then 

it will cause a lower Blend Ratio or have more biological activated sludge (i.e., 

aerated sludge). The mass balance below illustrates how to gain Cake %S: 

Total solids (Dry cake or Cake %S) = GT TS + DAF TS 
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Increasing DAF TS or decreasing the Blend Ratio does not mean a decrease in Cake 

%S. Ultimately, DC Water needs a dryer cake or high Cake %S for the final product. 

Therefore, to maintain that goal, operators must have more DAF TS than GT TS. To 

increase DAF TS, operators can increase either WAS %S or DAF Flow. 

 Vilalai (2008) stated that “ A low percent solid indicates septic conditions of 

the sludge that is usually retained in the tanks for a long time and making it hard to 

remove the water content. However, a high percent solid was corresponding to a high 

dewatering capacity of the centrifuges on that day. Sufficient centrifuges running can 

reduce the dewatering load on each centrifuge as well as reduce the retention time of 

sludge in the blend and sedimentation tank.” Thus,  this comment supports the 

negative coefficient sign in this model. 

 In sum, Cake %S is the product between DAF TS and GT TS. Therefore, the 

negative coefficient of Cake %S in the model is caused by increasing of DAF TS to 

minimize Y1 concentration and to maintain higher Cake %S. In addition, a negative 

coefficient of Cake %S means longer retention at sedimentation and greater septicity. 

Secondary west east blanket level (SWE.BL): According to the correlation 

coefficient (r), SWE.BL has the highest r (r = 0.583) among those three secondary 

blanket variables (i.e., SE.BL (r = 0.026), SWO.BL (r = 0.373), and SWE.BL(r = 

0.583)). In fact, as shown in Figure 5.8, the blanket level at both sides of the 

secondary west has blanket depth higher than the blanket level at secondary east. DC 

Water usually tries to split flows to each side of secondary settling evenly. However, 

there were some constructions and some mechanical problems at the aerated tanks of 

the east side during May 2009 to July 2009; therefore, more flows went to the 
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secondary west side and caused a higher blanket level at the west side. Both SWE.BL 

and SWO.BL have almost the same average blanket level, therefore SWE.BL can be 

represented by the blanket level at the secondary west side.   

 

Figure 5.8: Secondary blanket level (ft) during the summer period 

 In the model, only SWE.BL can be included into the right-hand side of the 

regression equation, and it is also statistically significant to Y1. SWE.BL has a 

positive coefficient, implying that a high level of SWE.BL can contribute to the 

increasing of Y1 concentration in dewatered solids. By holding all the other variables 

fixed, changing SWE.BL by 1 ft can cause an average change in Y1 of 0.63 ppm, 

which is very high.  

 Many studies indicated that the greater the blanket level, the greater the 

production of Y1 concentration inside dewatered solids and biosolids. In addition, the 

higher secondary west blanket level couples with longer retention time at the bottom 

of the settling tank, indicating more septicity inside the sludge passing to the 

dewatering process. Therefore, it is crucial for DC Water to properly maintain the 

secondary west blanket level so as not to exceed 1.8 ft (Janpengpen 2006). 

Furthermore, as described in Case II, maintenance and mechanical problems also play 

important roles to cause backup or a higher secondary west blanket level. To avoid 

those issues leading to high Y1 concentration in dewatered solids, DC Water must 

0

1

2

3

4

5

6

ft

Summer

S.E.BL
S.W.O.BL
S.W.E.BL



 

 115 
 

have effective management plans with functional organization from the upper level to 

the bottom level. The details of the standard operating procedure (SOP) will be stated 

more explicitly in Chapter 6.  

Return activated sludge of secondary west odd (RAS.SWO): This variable has a 

positive coefficient, implying that high RAS.SWO can contribute to increased Y1 

concentration. By holding all the other variables fixed, changing RAS.SWO by 1 

mg/L can cause an average change in Y1 of 0.0006 ppm. However, an average value 

of RAS.SWO is about 4,000 mg/L. Therefore, any changes in RAS.SWO can 

significantly affect Y1 concentration. In addition, correlation coefficient (r) between 

RAS.SWO and Y1 is the highest among those three return activated sludge (i.e., r = 

0.44).   

 As described in Section 3.2.10, a high concentration of RAS.SWO can be the 

source of odorants in dewatered solids and biosolids because a high concentration of 

RAS.SWO demonstrates a high density of settled solids at the bottom of the 

secondary sedimentation tank. In addition, this variable is not present in the statistical 

model of Case II (winter period) because the properties of RAS.SWO relate to the 

temperature of wastewater, especially the temperature at the secondary process. 

Therefore, high RAS.SWO concentration coupled with high temperature can 

contribute to an increased Y1 concentration. In other words, there are more septic 

conditions in RAS concentration during the summer period than the winter period.  

83B5.2.2 Explanatory Models for TRS at Post-Lime 

In this section, ordinary least squares (OLS) estimation, instrumental variable (IV), 

and two stage least squares (2SLS) estimation are employed to gain the best 
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explanatory model for TRS post-lime (Y2). Additionally, dummy variables and 

interaction terms will be used in this analysis as well. There are three cases to be 

discussed, which include, Case IV, Case V, and Case VI.  

 As described in Chapter 3, DC Water employs a lime stabilization process to 

transform dewatered solids to biosolids. Theoretically, limed addition suppresses TRS 

at prior-lime (Y1) concentration. In other words, lime stabilization changes TRS at 

prior-lime (Y1) to TRS at post-lime (Y2) as stated in one of hypotheses in this research. 

In addition, this research defines that greater Y1 concentration can cause the greater of 

Y2 concentration after lime addition process as well. 

 Before presenting results and discussions for Y2 in all those three cases, Figure 

5.9 represents processes diagram and how Y2 relates to Y1. 

 

 

Figure 5.9: Relationship between odor at prior-lime and post-lime process 
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Case IV: Annual Model for TRS Post-lime (Y2)  

Ordinary least squares (OLS) estimation 

We first use ordinary least squares (OLS) estimation in multiple linear 

regression (MLR) to estimate TRS post-lime (Y2). At this process, there are four 

additional process variables, including percent lime feeding rate, number of 

centrifuges in service, dewatered cake percent solids, and post lime temperature. 

Furthermore, there are two variables carrying over from dewatering process, which 

include temperature at secondary effluent and ambient temperature, and are to be 

added at lime stabilization process as well. We know that the lime stabilization 

process can suppress Y1 to b Y2, so we will regress Y2 on the upstream process 

variables and those six additional variables at the lime stabilization process to get 

statistical model for Y2, as shown in Table 5.5. 

Table 5.5: Statistical model for TRS post-lime (ppm) during the Annual period 

 Multiple 
R-Square 

Adjusted StErr of    

Summary R R-Square Estimate   

 0.7396 0.5470 0.5381 0.04624257   

 Degrees of Sum of  Mean of  
F-Ratio p-Value 

 

ANOVA Table Freedom Squares Squares  

Explained 5 0.653374066 0.130674813 61.1094 < 0.0001  

Unexplained 253 0.541008945 0.002138375    

 
Coefficient 

Standard 
t-Value p-Value 

Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.140766718 0.024538068 -5.7367 < 0.0001 -0.189091616 -0.09244182 

Blend Ratio 0.03898684 0.009223219 4.2270 < 0.0001 0.020822773 0.057150906 

UPost lime temp 0.000275202 0.000194641 1.4139 0.1586 -0.00010812 0.000658525 

SE. BL*MLSS 1.01345E-05 2.10161E-06 4.8222 < 0.0001 5.99558E-06 1.42734E-05 

(DT = 1) -0.025740412 0.008102973 -3.1767 0.0017 -0.041698283 -0.009782541 

TRS Prior-lime 0.070068507 0.005924878 11.8262 < 0.0001 0.058400142 0.081736872 
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The model from Table 5.5 is an explanatory model for TRS post-lime (Y2). 

There are five variables, which are Blend Ratio, Post lime temperature, 

SE.BL*MLSS, (DT =1), and TRS prior-lime (Y1), included in the model to explain Y2. 

In other words, about 55% of variation in Y2 can be explained by those five variables, 

and all of them are statistically significant. In addition, all coefficient signs are correct 

based on earlier discussion. 

Note that, only one of six additional process variables at lime stabilization 

process, namely post lime temperature (post lime temp), is statistically significant, 

has a correct coefficient sign, and can be included in the model. In contrast, the other 

five variables, (% lime feeding, # centrifuges, Cake %S, temperature at secondary 

effluent, and ambient temperature) are not statistically significant and have incorrect 

coefficient sign with respect to domain knowledge of wastewater treatment. In other 

words, they cannot be included in the model. Instead, they are included in the residual 

or error term of the regression equation on Y2, or they cannot directly explain Y2.  

In order to overcome this issue, to gain a better understanding of the sources 

of Y2, and to identify those variables hidden in the error term, we employ an 

instrumental variable (IV) as a way to address those statements. The post lime temp is 

a byproduct of the reaction between lime feeding rate and dewatered solids, so we 

regress post lime temp on the variables at lime stabilization process considered to 

contribute to temperature increase of limed biosolids. 
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Table 5.6: Statistical model for Post lime temperature (°F) to create IV 

Multiple 
R-Square 

Adjusted StErr of  

Summary R R-Square Estimate 

0.8238 0.6787 0.6724 12.01149963

Degrees of Sum of  Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 77112.82734 15422.56547 106.8962 < 0.0001 

Unexplained 253 36501.85918 144.2761232 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -30.00763808 18.57902221 -1.6151 0.1075 -66.5968821 6.581605932 

% of lime feed 0.537839971 0.506377945 1.0621 0.2892 -0.459413059 1.535093002 

Cake %S 0.931279837 0.620707391 1.5004 0.1348 -0.291131868 2.153691541 

# Cent Serv 1.795134369 1.183741575 1.5165 0.1306 -0.536108301 4.126377039 

Temp Sec Eff 0.700633801 0.283943932 2.4675 0.0143 0.141438937 1.259828665 

Amb Temp 0.683685206 0.099159961 6.8948 < 0.0001 0.488401086 0.878969326 
 
  
 The model from Table 5.6 confirms that all those five variables at lime 

stabilization can explain about 68 % of variation in Post lime temp (Ŵ), and they are 

all statistically significant with correct coefficient signs according to wastewater 

treatment theory.  

Percent lime feeder (%lime feed): Lime used in lime stabilization process at DC 

Water is quick lime (CaO) powder. It is fed in lime mixer to stabilize dewatered 

solids by maintaining pH above 12 for up to 2 hours. DC Water, however, maintains 

pH above 12.2 for up to 24 hours to produces so-called Class B biosolids. The percent 

of lime feeder is the speed of an auger feeding to dewatered solids in the lime mixer. 

Adding lime causes not only changes in pH but also in temperature. Therefore, % 

lime feeding is one of the variables expected to cause changes in post lime temp. In 

addition, % lime feeding has a positive coefficient, implying that high % lime feeding 
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can contribute to increase post lime temp. By holding all the other variables fixed, 

changing % lime feeding by 1 % can cause an average change in Ŵ of 0.54 °F. 

Cake percent solids (Cake %S): This variable can provide an answer to one of the 

hypotheses in Chapter 1. Cake %S has positive coefficient, implying that high Cake 

%S or dryer cake can contribute to increase post lime temp more easily than less 

Cake %S or wet cake. In other words, with the same of % lime feeding, the higher 

Cake %S can give higher temperature than lower cake %S. By holding all the other 

variables fixed, changing Cake %S by 1 % can cause an average change in Ŵ of 0.93 

°F. 

Number Centrifuges in service (# Cent Serv):  This variable has a positive 

coefficient, implying that a high # of centrifuges in service can contribute to increase 

post lime temperature. By holding all the other variables fixed, increasing # Cent Serv 

by 1 centrifuge can cause an average increase in Ŵ of 1.79 °F. Section 5.6 will further 

discuss this variable and how it affects post lime temperature in the case that there are 

a  lower # of centrifuges in service, but operators still keep the same % lime feeding 

rate. 

Temp Sec Eff and Amb Temp: Naturally and theoretically, these two variables are 

the main variables affecting post lime temp. These two variables have positive 

coefficients implying that high Temp Sec Eff and Amb Temp can contribute to 

increase Ŵ. By holding all the other variables fixed, changing Temp Sec Eff by 1°F 

can cause an average change in Ŵ of 0.7 °F. Similarly, holding all the other variables 

fixed, changing Amb Temp by 1 °F can cause an average change in Ŵ of 0.68 °F, 

which is very close to Temp Sec Eff. 
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 To verify that all of that above five variables are included in the error term of 

the regression equation of Y2, we employ a Hausman Test for endogeneity testing, as 

described in Section 2.3.2. Therefore, we first use the residuals from Ŵ as an 

independent variable in the regression equation of Y2. This means that we regress Y2 

on Blend Ratio, post lime Temp, SE.BL*MLSS, TRS prior-lime, and on the residual 

of post lime temp. If the estimated model indicates that residual of post lime temp is 

statistically significant and the coefficient is not zero, it thus verifies that Ŵ is 

endogenous. 

Table 5.7: Hausman test for endogeneity of post lime temp (°F) 

Multiple 
R-Square 

Adjusted StErr of  

Summary R R-Square Estimate 

0.7397 0.5471 0.5381 0.046239526

Degrees of Sum of  Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 0.653445296 0.130689059 61.1241 < 0.0001 

Unexplained 253 0.540937715 0.002138094

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.215889163 0.022422524 -9.6282 < 0.0001 -0.26004774 -0.171730586

Blend(Pri:Sec) 0.030665326 0.009416107 3.2567 0.0013 0.012121388 0.049209263

Post lime Temp 0.001113986 0.000206498 5.3947 < 0.0001 0.000707311 0.00152066 

SE.BL*MLSS  1.04811E-05 2.12246E-06 4.9382 < 0.0001 6.30111E-06 1.4661E-05 

UResidual of Post lime temp U-0.00108089 0.000339678 -3.1821 U0.0016 -0.00174985 -0.000411936

TRS Pri 0.061771759 0.006324019 9.7678 < 0.0001 0.049317331 0.074226186
 
 The output in Table 5.7 indicates that the residual of post lime temp is 

statistically significant. Therefore, post lime temp (W) is endogenous. As a result, all 

five variables at lime stabilization (% lime feeder, Cake %S, # centrifuges in service, 

temp at secondary effluent, and ambient temperature) can be defined as the 

instrumental variable (IV) in this analysis. 



 

 122 
 

 After we verified that post lime temp (W) is endogenous with the error term of 

the regression equation of Y2, the fitted value of post lime temp (Ŵ), which is 

obtained using the estimated model shown in Table 5.6, is used as an independent 

variable in the regression equation of Y2. In other words, we again regress Y2 on 

Blend ratio, SE.BL*MLSS, TRS prior-lime, and predict post lime temp (Ŵ). The new 

result after replacing IV into the model of Table 5.5 is presented in Table 5.8: 

Table 5.8: Explanatory model for TRS post-lime (ppm) with IV during Annual 

period 

Multiple 
R-Square 

Adjusted StErr of  

Summary R R-Square Estimate 

0.7421 0.5507 0.5418 0.046055898

Degrees of Sum of  Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 0.657733134 0.131546627 62.0168 < 0.0001 

Unexplained 253 0.536649878 0.002121146

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.177903592 0.034821302 -5.1090 < 0.0001 -0.246480135 -0.109327048

Blend(Pri:Sec) 0.034349804 0.009725666 3.5319 0.0005 0.015196226 0.053503382

SE.BL*MLSS 1.06533E-05 2.07664E-06 5.1301 < 0.0001 6.56364E-06 1.4743E-05 

U Predicted Post lime temp 0.000708878 0.000351361 2.0175 0.0447 1.69139E-05 0.001400842

(DT = 1) -0.015346898 0.0107471 -1.4280 0.1545 -0.036512074 0.005818278

TRS Pri 0.065067996 0.006662666 9.7661 < 0.0001 0.051946642 0.07818935 
 
 Consequently, we can compare output of Table 5.5 to output of Table 5.8. The 

output of Table 5.8 indicates that according to domain knowledge of wastewater 

treatment, all independent variables, including the predicted post lime temp, are 

statistically significant with the correct coefficient sign. Furthermore, all independent 

variables in Table 5.8 can explain 55 % of variation in TRS post –lime (Y2).   
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 However, using IV improves the adjusted R2 by about 0.4% (i.e., the adjusted 

R2of Table 5.8 =54.18% and adjusted R2of Table 5.5 =53.81%). Although using IV 

has less of an impact on adjusted R2, using IV can provide valuable information, 

especially on the missing relationship between Y1 and Y2 with the process variables at 

lime stabilization processes. For this reason, employing an IV can provide us more 

information and increase the efficiency of not only the explanatory but also the 

predictive model. The following is a discussion of the results in Table 5.8. 

Blend Ratio (Blend (Pri:Sec)): As described in all cases of Section 5.2.1, and 

especially in Figure 5.6, Blend Ratio is a ratio between GT TS and DAF TS. Hence, if 

Bend Ratio is larger than 1, it indicates that there are more GT TS than DAF TS. In 

the model shown in Table 5.8, Blend Ratio has a positive coefficient, implying that 

high Blend Ratio can contribute to increasing Y2. In other words, if Blend Ratio is 

larger than1, it is most likely to cause high Y2 concentration after lime stabilization 

process. By holding all the other variables fixed, changing Blend Ratio by 1 can cause 

an average change in Y2 of 0.03 ppm. 

 To mitigate Y2 concentration and to maintain high Cake %S at the downstream 

process, Section 5.2.1 suggests that DC Water ought to increase DAF %S and DAF 

flow in order to increase DAF TS. As a result, DC Water can still produce high Cake 

%S with less Y2 in biosolids. 

SE.BL*MLSS: This variable is and interaction between secondary east blanket level 

(SE.BL) and mix liquor suspended solids (MLSS). As in Case I and Case II, this 

variable has a positive coefficient, implying that high interaction of SE.BL*MLSS 

can contribute to increase Y2 concentration. By holding all the other variables fixed, 
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changing SE.BL*MLSS by 1 ft*mg/L can cause an average change in Y2 of 

1.0653x10-5 ppm.  Even though the coefficient of SE.BL*MLSS is a small number, 

an average amount of SE.BL*MLSS is approximately 5000 ft*mg/L. Therefore, any 

changes in SE.BL*MLSS will impact Y2 concentration. 

 As described in Case I of Section 5.2.1, SE.BL*MLSS is mass unit. Using 

only information of secondary blanket depth is not quite adequate. However using an 

interaction can provide another dimension in terms of mass product. A lower blanket 

level with a higher concentration of MLSS indicates that there is more impact on Y2 

than a high blanket level with a lower concentration of MLSS. In addition, high 

SE.BL*MLSS coupled with longer retention time of sludge at sedimentation tank can 

cause more septicity in sludge. As a result, it can cause more production of Y2 

concentration at the downstream of the process. 

 To avoid high Y2 concentration after lime stabilization process, DC Water 

should closely monitor to assure that all equipments function properly regardless of 

natural incident (e.g., rain storm, snow storm, etc.). More importantly, DC Water 

must have a functional management plan to deal with all kinds of issues. 

The predicted post lime temperature: This variable is a predicted value of post lime 

temp in Table 5.6. It represents all five process variables at lime stabilization that 

cannot be included in the regression model of TRS post-lime (Y2). Instead, all those 

variables are included in the error term of Y2. Therefore, all five process variables are 

called instrument variables (IV). The predicted post lime temp has a positive 

coefficient, implying that high predicted post lime temp can contribute to increase Y2 
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concentration. By holding all the other variables fixed, changing fitted post lime temp 

by 1 °F can cause an average change in Y2 of 0.0007 ppm. 

 This variable has less impact on Y2 relative to coefficient value. However, it is 

important in terms of explanatory information. In addition, it can verify that high cake 

%S directly relates to post lime temp rather than to Y2 concentration. In other words, 

cake %S has an indirect affect on Y2 concentration. 

Dummy variable when it is winter (DT =1): This variable is used to represent the 

difference between winter and summer period by giving differences in intercepts. 

Winter model: 

( ) ( )
( ) ( )

2

5

ˆ 0.19325 0.03435 Blend Ratio 0.00071 Fitted Post lime temp

1.06533*10 SE.BL*MLSS 0.06507 TRS Prior lime

Y
−

= − + + +

+  

Summer model: 

( ) ( )
( ) ( )

2

5

ˆ 0.1779 0.03435 Blend Ratio 0.00071 Fitted post lime temp

1.06533*10 SE.BL*MLSS 0.06507 TRS Prior lime

Y
−

= − + + +

+
 

TRS Prior-lime (Y1): Originally, this variable is the source of TRS post-lime (Y2). 

Having said that, it is nonetheless crucial to identify any upstream process variables 

relating to Y1. In this model, Y1 has a positive coefficient, implying that high Y1 can 

contribute to increase Y2 concentration. This statement can firmly verify Hypothesis # 

1 in Chapter 1, which states that there is a high relationship between Y1 and Y2. In 

other words, part of the causes or the sources of Y2 can be explained through Y1. By 

holding all the other variables fixed, changing Y1 by 1 ppm can cause an average 

change in Y2 of 0.07 ppm. 
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 As stated in contributions of this analysis, mitigating Y1 is most likely to have 

an impact on decreasing of Y2 concentration. However, not only Y1 should be 

considered as the main process variable contributing to increase Y2 concentration. 

There are also a number of process variables that can cause Y2, as described in 

previous statements. 

Case V: Winter Model for TRS Post-lime (Y2) (January 2009 to March 2009) 

Table 5.9: Explanatory model for TRS post-lime (ppm) w/o IV during winter 

period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7953 0.6325 0.6085 0.008055422 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 3 0.005137068 0.001712356 26.3887 < 0.0001 

Unexplained 46 0.002984932 6.48898E-05 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant 0.248256568 0.05510444 4.5052 < 0.0001 0.137337084 0.359176052 

WAS %S -0.052073517 0.010238671 -5.0860 < 0.0001 -0.072682893 -0.031464142 

UPost lime Temp 0.000304345 9.06485E-05 3.3574 0.0016 0.000121879 0.000486811 

TRS Prior-lime 0.016791306 0.005024577 3.3418 0.0017 0.006677357 0.026905254 
  
 As in the previous case, we start the analysis with standard ordinary least 

squares (OLS) to obtain an explanatory model. There are three process variables, 

which are WAS %S, Post lime temp, and TRS prior-lime (Y1), to be included in the 

model. All three variables can explain about 63.25 % of variation in TRS post-lime 

(Y2), and all of them are statistically significant. However, we an employ an 

instrument variable (IV) and replaces post lime temp (see Table 5.9), to obtain the 

model shown in Table 5.10. 
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Table 5.10: Explanatory model for TRS post-lime (ppm) with IV during winter 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7583 0.5750 0.5472 0.008663018 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 3 0.004669797 0.001556599 20.7414 < 0.0001 

Unexplained 46 0.003452203 7.50479E-05 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant 0.26473271 0.065204705 4.0600 0.0002 0.133482447 0.395982973 

WAS %S -0.05501787 0.011670193 -4.7144 < 0.0001 -0.07850875 -0.03152699 

UPredicted Post lime temp 0.000276997 0.000147635 1.8762 0.0670 -2.01772E-05 0.00057417 

TRS Prior-lime 0.017966929 0.005835715 3.0788 0.0035 0.006220245 0.029713614 
 
 
 The output in Table 5.10 is the result of a regression model with an 

instrumental variable (IV). All of the three variables including the predicted post lime 

temp are still statistically significant with all coefficient signs correct according to 

domain knowledge of wastewater treatment. However, all three process variables can 

explain about 57.5% of variation in TRS post-lime (Y2), which is less than the model 

in Table 5.9 (i.e., 63.25%). However, both models have almost identical coefficient 

values for each of the independent variables. 

 However, we use the model of Table 5.9 to represent statistical model for Y2 

during winter period due to a smaller standard error of estimates (SEE) (i.e., 0.0081 

and 0.0087 for Table 5.9 and Table 5.10, respectively). 

Waste activated sludge percent solids (WAS %S): As described in Case I of 

Section 5.2.1, WAS %S is biological activated sludge or aerated solids. Therefore, 

WAS %S can assist with mitigating TRS post-lime (Y2) concentration. Furthermore, it 

can be confirmed by this model that WAS %S has a negative coefficient, implying 
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that high WAS %S can help to decrease (Y2) concentration. By holding all the other 

variables fixed, changing WAS %S by 1 percent can cause an average change in Y2 of 

-0.05 ppm. Therefore, it is considered that WAS %S is one of significant process 

variables to mitigate not only TRS prior-lime (Y1) but also TRS post-lime (Y2). 

Post lime temp: This process variable is a result of physical and chemical reaction 

from lime stabilization that is believed to cause the change of TRS prior-lime (Y1) 

becoming TRS prior-lime (Y2). As described in Case IV, post lime temp is used to 

represent all process variables at the lime stabilization process that cannot be included 

in the right hand-side of Y2. According to the above output, post lime temp has a 

positive coefficient with Y2 and also has high correlation with Y2 (r = 0.63), as shown 

in Figures 5.10 and 5.11. 

 

Figure 5.10: Relationship between TRS post-lime (ppm) and post lime temp (°F) 
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Figure 5.11: Relationship between post lime temp (°F) and TRS post-lime (ppm)  

The positive coefficient implies that high post lime temp during winter can contribute 

to increase Y2 concentration. However, high post lime temp can be explained by 

another aspect. The high temperature at lime stabilization can decrease microbial 

activities. In other words, adequate high temperature at post-lime has a pasteurizing 

effect on dewatered solids. By holding all the other variables fixed, changes post lime 

temp by 1 °F can cause an average change in Y2 of 0.0003 ppm. With regard to the 

coefficient value comparing winter and annual period, the coefficient of winter period 

is less significant than the annual period in affecting Y2 concentration (i.e., annual = 

0.001 and winter = 0.0003).  Therefore, it is confirmed that both ambient and 

temperature at secondary effluent naturally help to decrease Y2 concentration during 

winter period.  

 In other words, it is most likely to have low Y2 concentration during winter. 

This can be verified by visually examining the relationship between ambient 

temperature and Y2 (r = 0.532) and the relationship between temperature at secondary 

effluent and Y2 (r = 0.511) as shown in Figures 5.12 and 5.13, respectively. 
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Figure 5.12: Relationship between TRS post-lime (ppm) and Amb Temp (°F) 

(January 2009 – March 2009) 

 

Figure 5.13: Relationship between TRS post-lime (ppm) and Temp Sec Eff (°F) 

(January 2009 – March 2009) 
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variables fixed, changing Y1 by 1 ppm can cause an average change in Y2 of 0.02 
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mitigating Y1 is an effective direction to decrease Y2 concentration after the lime 

stabilization process. 

Case VI: Summer Model for TRS Post-lime (Y2) (June 2009 to September 2009) 

Table 5.11: Explanatory model for TRS post-lime (ppm) during summer period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7407 0.5486 0.5208 0.055351281 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 4 0.242032462 0.060508116 19.7496 < 0.0001 

Unexplained 65 0.19914468 0.003063764 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.452628502 0.09391427 -4.8196 < 0.0001 -0.64018825 -0.265068754 

RAS.SE 6.19441E-05 1.75389E-05 3.5318 0.0008 2.69165E-05 9.69718E-05 

SW.E. BL*MLSS S.W.E 1.34304E-05 5.48136E-06 2.4502 0.0170 2.48339E-06 2.43775E-05 

GT TS 6.35973E-07 2.63697E-07 2.4118 0.0187 1.09334E-07 1.16261E-06 

TRS Prior-lime 0.042975773 0.015835827 2.7138 0.0085 0.011349443 0.074602104 
 
 
 Table 5.11 represents the best explanatory model for TRS post-lime (Y2) 

during the summer (June 2009 to September 2009). There are four process variables 

in the model: return activated sludge at secondary east (RAS.SE), interaction of 

SWE.BL*MLSS, gravity thickener total solids (GT TS), and TRS prior-lime. All four 

variables are statistically significant and have correct coefficient signs corresponding 

to domain knowledge of wastewater treatment. Furthermore, about 55% of the 

variation in TRS post-lime (Y2) can be explained by those four variables. 

 However, post lime temperature cannot be included in this model. Referring 

to Table 4.4, which illustrates correlation outputs between significant process 

variables and TRS post-lime (Y2), there is no correlation between post lime temp and 
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Y2. Furthermore, correlation between ambient temperature and Y2 is not quite strong 

as well (r = 0.306). Therefore, instrumental variables (IV) will not be used in this 

analysis. Instead, only standard ordinary least squares (OLS) will be employed to 

obtain the best explanatory model. 

Return activated sludge at secondary east (RAS.SE): Like Case III of the summer 

model for TRS prior-lime (Y1), the activated sludge has a positive coefficient, 

implying that high RAS.SE can contribute to increase Y2 concentration. By holding all 

the other variables fixed, changing RAS.SE by 1 mg/L can cause an average change 

in Y2 by 0.000062 ppm. 

 As described in Section 3.2.10 and Case III of Section 5.2.1, high 

concentration of RAS.SE can be the source of odorants in dewatered solids and 

biosolids because a high concentration of RAS.SE demonstrates a high density of 

settled solids at the bottom of the secondary sedimentation tank. Again, this variable 

is not present in the statistical model of Case V (winter period) similar to the 

discussion in Case III of Section 5.2.1. Therefore, high RAS.SE concentration 

coupled with high temperature can contribute to increase Y2 concentration. In other 

words, there are more septic conditions in RAS concentration during summer than 

winter. 

Interaction of SWE.BL*MLSS: This variable has a positive coefficient, implying 

that high SWE.BL*MLSS can contribute to increase Y2 concentration. By holding all 

the other variables fixed, changing SWE.BL*MLSS by 1 ft*mg/L can cause an 

average change in Y2 of 0.000013 ppm. While the coefficient value makes 

SWE.BL*MLSS seem to have less impact on Y2 concentration, the average value of 
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SWE.BL*MLSS is 10,000 ft*mg/L. Therefore, even small changes in 

SWE.BL*MLSS can have a significant effect on Y2 concentration.  

 Like the discussion in Case I, Case II, and Case IV, this information verifies 

that if operators keep the blanket level high coupled with more concentration of 

MLSS, it can contribute to production of Y2 in biosolids. Again, using 

SWE.BL*MLSS as an interaction can provide another dimension to explain the 

potential of secondary blanket level and concentration of MLSS impacting to Y2 

concentration. In addition, high SWE.BL*MLSS together with longer retention time 

of sludge at sedimentation tank can cause more septicity in sludge. As a result, this 

can cause more production of Y2 concentration at the downstream of the process. 

Additionally this analysis can offer more information regarding management 

perspective in Section 5.6 and in Chapter 6. 

Gravity thickener total solids (GT TS): GT TS is a product between GT %S and 

GT Flow as described in Case III and Figure 5.6. It has positive coefficient, implying 

that high GT TS can contribute to increase Y2 concentration as expected. By holding 

all the other variables fixed, changing GT TS by 1 lb can cause the change in Y2 of 

6.4x10-7 ppm. 

( ) ( )GT flow / *8.43*GT %S*10000
GT TS /

1000000
gallons day

lbs day
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

    

The above formula illustrates how to calculate GT TS. As GT %S and GT flow are 

the main process variables to form GT TS. Therefore, GT TS is raw total solids. In 

other words, GT TS can potentially contribute to high concentration of Y2. In 

addition, if there are higher GT TS than DAF TS in blending tank, it will cause a 

blend Ratio higher than 1. Consequently, this can cause a high Y2 concentration at 
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lime stabilization. Practically, operators prefer higher GT TS than DAF TS in blend 

because it is believed that higher GT TS can provide higher Cake %S and easily to 

dewater. 

 In summary, it is mandatory for operators to maintain GT TS amounts that are 

not higher than DAF TS amounts (i.e., Blend Ratio = 1) without lower Cake %S at 

the final product. In other words, operators can compensate by increasing the DAF 

TS amount (i.e., increasing WAS %S and DAF flow) in order to attain the same Cake 

%S. 

84B5.2.3 Explanatory Models for N-containing Compounds 

Unlike TRS post-lime (Y2), our model for N-containing compounds (Y3) employs only 

ordinary least squares (OLS) estimation to obtain the best explanatory model for all 

three cases: Case VII (annual period), Case VIII (winter period), and Case IX 

(summer period). Many studies stated that N-containing compounds (i.e., ammonia 

and amines) can be found during and after lime stabilization process (Murthy et al. 

2001; Kim et al. 2001; Murthy et al. 2002b; Novak et al. 2002; Kim et al. 2002; Kim 

et al. 2005; Schneekloth et al. 2006). However, this analysis identifies any potential 

process variables contributing to N-containing compound from upstream to the lime 

stabilization processes. 
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Case VII: Annual Model for N-containing compounds (Y3) 

Table 5.12: Explanatory model for N-containing (ppm) during annual period 

Multiple 
R-Square 

Adjusted StErr of  

Summary R R-Square Estimate 

0.6533 0.4268 0.4154 5.852027964 

Degrees of Sum of  Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 4 5124.994883 1281.248721 37.4128 < 0.0001 

Unexplained 201 6883.492491 34.2462313 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -21.03751731 4.36162886 -4.8233 < 0.0001 -29.63793632 -12.43709829 

(DT = 1) -2.556762953 1.202867381 -2.1256 0.0348 -4.928620767 -0.184905139 

Post lime Temp 0.077582307 0.029715833 2.6108 0.0097 0.018987542 0.136177072 

Pol_Sec 0.01445052 0.001583192 9.1275 < 0.0001 0.011328723 0.017572316 

Pol_DW/DT S 0.497290039 0.179679273 2.7677 0.0062 0.142991889 0.851588189 
 
 According to the model in Table 5.12, there are three process variables, which 

are polymer at secondary process (Pol_Sec), polymer of dewatering per dry ton of 

solids (Pol_DW/DTS), and post lime temperature (Post lime temp), and one dummy 

variable for winter (DT =1). All are statistically significant and have correct 

coefficient signs. This model suggests that about 43% of variation in N-containing 

compound can be explained by these four independent variables. 

 As described in Chapter 2, an N-containing compound (i.e., ammonia and 

amines) is produced by decomposition of nitrogen containing compounds under both 

aerobic and anaerobic conditions. Generally, amino acid in protein is the original 

source for ammonia. Bacteria known as ammonification remove or break down these 

amino acids to produce ammonia. Furthermore, amines are produced by microbial 

decomposition by relating to decarboxylation of amino acids and proteins degradation 
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(Novak et al. 2002; Visan 2003). However, the concentration of ammonia and amines 

emitted mainly depend on pH, temperature, characteristics of solids. 

 The reason to restate how ammonia and amines can be formed in dewatered 

solids and biosolids in the previous paragraph is to use this statement as the main 

knowledge or theory leading to the next discussion of all process variables. In 

addition, the statement in the previous paragraph can be used to support the output of 

the explanatory models for N-containing compound (Y3). 

Polymer addition at secondary process (Pol_Sec): DC Water adds cationic 

polymers at the secondary process to enhance sludge coagulant performance by 

making suspended solids coagulate easily then faster settling at secondary 

sedimentation tank. The cationic polymers used by DC Water are copolymer of 

acrylamide and the methyl chloride quat of dimethylaminoethyacrylate (a cationic 

ester of acrylic acid). However, many studies indicate that cationic polymer or 

cationic polyelectrolyte, which consists of cationic monomer and amino acid base, 

can be the source of N-containing compounds for lime stabilization process (Kim et 

al. 2001; Chang and Dentel 2001; Chang et al. 2005). 

 The study of Chang et al. (2005) indicates that copolymerizing acrylamide 

(AM) and acryloyloxyethyltrimethylammonium chloride (AETAC), which is 

quaternized from dimethylaminoethylacrylate, are significant sources of N-containing 

compounds (e.g., amine, trimethylamines) at lime addition process. Therefore, this 

statement supports and verifies the model of Table 5.12 that presents essential result.    

 According to correlation analysis and visual inspection, it can be verified that 

Pol_Sec can contribute to increase N-containing compound (Y3) (r = 0.54). 
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Figure 5.14: Relationship between N-containing (ppm) and Pol_Sec (lbs/day)  

 Furthermore, the output of Table 5.12 indicates that Pol_Sec has a positive 

coefficient, implying that high Pol_Sec amount added at secondary process can 

contribute to increase Y3 concentration. By holding all the other variables fixed, 

changing Pol_Sec by 1 lb/day can cause an average change in Y3 of 0.014 ppm. 

 Theoretically, when the pH is higher than 9.8 caused by the lime addition 

process (e.g., pH above 12), the ammonium inside the sludge can change to become 

ammonia (NH3). In addition, high post lime temperature (e.g., above 104 °F) can 

maximize the emission of N-containing compounds (Kim et al. 2002). Therefore, one 

of the reasons that the Pol_Sec is one of process variables causing higher Y3 is 

cationic polymers at secondary carry over from secondary process to lime 

stabilization process. In other words, when operators add those polymers to enhance 

settling performance, they can stay inside settling solids and those solid will be 

pumped to blend tank, then are passed through the dewatering process and lime 

stabilization. When there is a lime addition process with pH above 12 coupled with 

high post lime temperature (e.g., above 104 °F), these can be cause high value of Y3 

in biosolids. 
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 Additionally, this discussion can be supported by Figure 5.15, which 

illustrates the relationship between polymer at the secondary process and waste-

activated sludge percent solids (WAS %S) (r = 0.565). Results from Figure 5.15 can 

verify that cationic polymer at secondary process can stay inside sludge and it can 

cause high Y3 concentration by polymer degradation, especially at lime stabilization 

when high pH is occurred. 

 

Figure 5.15: Relationship between Pol_Sec (lbs/day) and WAS %S (%) 

 To avoid and control high concentration of Y3 concentration, DC Water can 

alternatively use another cationic polymer that can prevent degradation. In addition, 

operators have to assure that amount of polymers added at secondary process does not 

overdose.  

Polymer at Dewatering per dry ton solids (Plo_DW/DTS): Like polymer at the 

secondary process, polymer in the dewatering process is a cationic polymer and has 

the same properties and chemical structure. This polymer is added to the dewatering 

process to enhance thickening and to increase dewatering performance. This research, 

however, analyzes this polymer by calculating the usages per total dry solids 
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produced. This calculation can provide more accurate information than can be found 

by only employing the amount of polymer added to dewatering process.  

 According to model output in Table 5.12, Pol_DW/DTS has a positive 

coefficient, implying that high Pol_DW/DTS amounts added at dewatering process 

can contribute to increase Y3 concentration. By holding all the other variables fixed, 

changing Pol_DW/DTS by 1 lb/DTS can cause an average change in Y3 of 0.5 ppm. 

Additionally, the previous statement of polymer at secondary confirms that cationic 

polymer can cause high Y3 concentration. That means that excessive amount of 

polymers or overdose polymers added by operators can considerably contribute to 

high Y3 concentration at after lime addition process.    

 Furthermore, an average amount of polymer for DC Water to add to 

dewatering process is about 12 lbs/DTS as shown in Figure 5.16. Therefore, it is 

essential for DC Water to consider and assure that operators do not overdose amount 

of polymers. Case VIII and Case IX will present amount of polymer at dewatering 

used during winter and summer period. 

 

Figure 5.16: Amount of Pol_DW (lbs/DTS) added in annual period 
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mitigate Y3 concentration. Holding all the other variables fixed, when it is the winter 

season, Y3 is lower by an average of -2.6 ppm. Here are the models for the winter and 

summer periods: 

Winter period: 

( ) ( )
( )

3̂ 23.59427 0.07758 Post lime temp 0.014451 Pol_Sec

       0.49729 Pol_DW/DTS

Y = − + + +

 

Summer period: 

( ) ( )
( )

3̂ 21.03751 0.07758 Post lime temp 0.014451 Pol_Sec

       0.49729 Pol_DW/DTS

Y = − + + +
 

Post lime temperature (Post lime temp): As stated in the discussion in Sections 

5.2.1 and 5.2.2, post lime temp is a byproduct of the chemical reaction between quick 

lime and dewatered solids. However, many studies (see Chapters 2 and 3) confirm 

that post lime temp at lime stabilization process is the key to increasing the emission 

of N-containing compounds (Y3). Theoretically, whenever the temperature is above 

80 °F (27 °C), N-containing compounds (Y3) can easily be volatile. Figure 5.17 

presents the relationship between Y3 and post lime temp. This indicates that the 

average of post lime temp was about 95 °F in 2009.  

 Therefore, as long as DC Water employs a lime addition process to stabilize 

dewatered solids, N-containing compounds (Y3) are always present. However, Figure 

5.17 illustrates that during winter the post lime temperature noticeably drops to about 

55 °F. As a result, Y3 concentration is lower when compared to summer. This 

information can confirm that it is most likely to have lower Y3 concentration during 

the winter period.  
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Figure 5.17: Relationship between N-containing (ppm) VS post lime temp (°F)  

 Post lime temp has a positive coefficient, implying that high post lime 

temperature can contribute to increase emission of Y3. By holding all the other 

variables fixed, changes post lime temp by 1 °F can cause an average change in Y3 of 

0.08 ppm. 

Case VIII: Winter Model for N-containing compounds (Y3) (December 2009 to 

March 2010) 

Table 5.13: Explanatory model for N-containing (ppm) during winter period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.5228 0.2733 0.2344 1.654450718 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 3 57.6562163 19.21873877 7.0213 0.0004 

Unexplained 56 153.283602 2.737207179 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -7.724369172 2.350857946 -3.2858 0.0018 -12.43370353 -3.015034809 

Post lime Temp 0.046262438 0.018160085 2.5475 0.0136 0.009883415 0.08264146 

RAS.S.E 0.001230162 0.000385603 3.1902 0.0023 0.000457706 0.002002618 

Pol_DW/DTS 0.197215755 0.109774633 1.7966 0.0778 -0.02268926 0.417120771 
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 There are three process variables in this model: post lime temperature, return 

activated sludge at secondary east (RAS.SE), and polymer at dewatering process per 

dry ton solids (Pol_DW/DTS). All process variables are statistically significant and 

have correct coefficient signs with N-containing compounds (Y3) with regard to 

domain knowledge of wastewater treatment.  

 The model, however, suggests that only 27.3 % of variation in N-containing 

compounds (Y3) can be explained by these three process variables. Like Case VII, two 

of those process variables, which are post lime temp and Pol_DW/DTS, are included 

in an explanatory model. 

Post lime temperature (Post lime temp): As described in Case VII, this variable is 

one of the key process variables that can contribute to increase N-containing 

compounds (Y3) concentration. In this model, post lime temp has a positive 

coefficient, implying that high post lime temp can contribute to increase Y3 

concentration. By holding all the other variables fixed, changing post lime temp by 1 

°F can cause an average change in Y3 of 0.05 ppm. However, the post lime temp is 

insignificant to impact emission of Y3 because ambient temperature naturally assist to 

prevent volatile in limed biosolids. This means that DC Water can distribute biosolids 

to sensitive application site or close to resident areas. 

Polymer at dewatering per dry ton solids (Pol_DW/DTS): As stated in Case VII, 

Pol_DW/DTS can be considerably anticipated the source of N-containing compounds 

(Y3). In this model, Pol_DW/DTS has a positive coefficient sign with Y3. This implies 

that high Pol_DW/DTS amounts added in dewatering process can contribute to 

increase Y3. By holding all the other variables fixed, changing Pol_DW/DTS by 1 



 

 143 
 

lb/DTS can cause an average change in Y3 by 0.2 ppm. This is another piece of 

information that confirms that polymer at dewatering significantly contributes to 

emission of Y3.  

Return activated sludge at secondary east (RAS.SE): This process variable has 

positive coefficient, implying that a high concentration of RAS.SE can contribute to 

increase Y3. By holding all the other variables fixed, changing the concentration of 

RAS.SE by 1 mg/L can cause an average change in Y3 of 0.0012 ppm. 

 This research tries to identify how this process variable relates to Y3. The 

exploratory data analysis (EDA) provided vital information. Since DC Water adds 

cationic polymers at secondary process, these polymers can accumulate inside the 

sludge at the sedimentation tank. Therefore, there are most likely relationships 

between cationic polymer and process variables at secondary sedimentation process 

(e.g., RAS.SE, RAS.SWO, RAS.SWE, SE.BL, SWE.BL, SWO.BL, etc). Considering 

correlation coefficient (r) and visualization analysis (graphs), we have found the 

following crucial information. There is positive correlation (r) between polymer at 

secondary process and RAS.SE (r = 0.201). 

 

Figure 5.18: Relationship between Pol_Sec (lbs/day) and RAS.SE (mg/L) 
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 Therefore, EDA confirms the relationship between polymer at secondary and 

RAS.SE. As a result, this information can clarify why RAS.SE is included in the 

model to explain N-containing compounds (Y3). Due to polymers at secondary 

process that accumulate inside sludge of RAS.SE, some of this sludge will be wasted 

to dissolved air floatation (DAF) and blending tank, respectively. The accumulated 

polymers can be possibly carried over from secondary process to lime stabilization 

process. When they reach lime addition and the condition is right, these can cause the 

emission of Y3 as stated in Case VII about polymer at secondary process. 

 In short, RAS.SE does not directly contribute to increase Y3 concentration. 

Instead, the accumulated cationic polymers inside the sludge cause and contribute to 

increase emissions of Y3. Again, it is mandatory that operators do not overdose 

polymer at secondary process in order to avoid higher emission of Y3. 

Case IX: Summer Model for N-containing compounds (Y3) (June 2009 to 

September 2009) 

Table 5.14: Explanatory model for N-containing (ppm) during summer period 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.5678 0.3224 0.2787 6.554906995 
Degrees of Sum of Mean of  

F-Ratio p-Value 
ANOVA Table Freedom Squares Squares 

Explained 4 1267.621144 316.9052861 7.3756 < 0.0001 
Unexplained 62 2663.941954 42.96680571 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -24.1874781 9.012854084 -2.6837 0.0093 -42.2039167 -6.171039498
S.W.O.BL 2.481853264 1.079104403 2.2999 0.0248 0.324754299 4.63895223 
Post lime Temp 0.137201887 0.070421295 1.9483 0.0559 -0.003568277 0.27797205 
Pol_DW/DTS 0.745779805 0.267703264 2.7858 0.0071 0.210648605 1.280911005 
S.E. BL*MLSS 0.001147703 0.000474962 2.4164 0.0186 0.000198267 0.002097138 
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 There are four process variables in the model shown in Table 5.14: secondary 

west odd blanket level (SWO.BL), post lime temperature, polymer at dewatering per 

dry ton solids (Pol_DW/DTS), and interaction of SE.BL*MLSS. All four variables 

are statistically significant and have correct coefficient sign with regard to domain 

knowledge of wastewater treatment. The model, however, suggests that only about 

32% of variation in N-containing compounds (Y3) can be explained by these four 

process variables. 

 As stated in Case VII and Case VIII, it is confirmed that post lime temp, 

Pol_DW/DTS can contribute to increase of Y3. However, SWO.BL and 

SE.BL*MLSS are new process variables found to affect on Y3. 

Secondary west odd blanket level (SWO.BL) and Interaction of SE.BL*MLSS): 

Both process variables have positive coefficient, implying that high blanket level of 

SWO.BL and high mass of SE.BL*MLSS can contribute to increase Y3. By holding 

all the other variables fixed, changing blanket level of SWO.BL by 1 ft and changing 

mass of SE.BL*MLSS by 1 ft*mg/L can cause average change in Y3 of 2.48 ppm and 

0.001 ppm, respectively. 

 As shown in Case VIII, both SWO.BL and SE.BL*MLSS are process 

variables at secondary process. Therefore, they could relate to cationic polymer at 

secondary process for some extents, and they do not directly affect on Y3 as stated in 

Case VIII. Correlation coefficient (r) and visualization analysis show that there are no 

correlation between polymer and SWO.BL and between polymer and SE.BL*MLSS. 

However, there is strong correlation between polymer and RAS.SWO (r = 0.498) as 

shown in Figure 5.19. 
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Figure 5.19: Relationship between Pol_Sec (lbs/day) and RAS.SWO (mg/L) 

during summer period 

 Figure 3.1 in Chapter 3 represents DC Water treatment process and illustrates 

the relationship between SWO.BL and RAS.SWO. Inside secondary west odd 

sedimentation, there is secondary west odd blanket level (i.e., settling concentrated 

sludge). Part of this settling concentrated sludge will be wasted to dissolved air 

flotation (DAF) and another part, which is returns activated sludge and (RAS) will be 

pumped back to secondary aerated tank to maintain microorganisms. Therefore, this 

can confirm that RAS.SWO is part of concentrated sludge at SWO.BL.  

 We, however, cannot find any relationships or any links between polymer at 

secondary and SE.BL*MLSS to support why SE.BL*MLSS can be included in the 

model. However, there is a possibility that SE.BL*MLLSS can relate to cationic 

polymer at secondary process even though it does not show any correlation. Like 

RAS.SWO, SE.BL is settling concentrated sludge at secondary east sedimentation 

tank, and MLSS is concentration of total suspended solids inside secondary east 

aerated tank that can overflow to secondary east sedimentation. Therefore, it is 

possible that any amount of cationic polymer added to the process can accumulate 

inside the sludge or mass of SE.BL*MLSS. 
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 In summary, we can draw conclusions of how SWO.BL and SE.BL*MLSS 

relate to increasing of N-containing compounds (Y3). Similar to Case VIII of RAS.SE 

and RAS.SWO, the accumulated cationic polymers inside the sludge of SWO.BL and 

SE.BL*MLSS can be carried over to the downstream. When these accumulated 

polymers pass through lime addition with pH above 9.8 and temperature above 80 °F, 

they can easily drive Y3 emission from biosolids. 

35BU5.3 Predictive Models 

As in Section 5.2, there are three cases (i.e., annual, winter, and summer) of 

predictive models for each odorant compound. In total, there are nine predictive 

models. As described in Section 4.1.1, there are two requirements or two criteria 

employed to select the best predictive model: (i) model with the smallest root mean 

squared error (RMSE) on holdout set and (ii) model with the lowest AIC. 

 To gain the best explanatory model for each case, we employ the software 

XLMiner to create the predictive models. The most unique advantage of XLMiner is 

that it can build a predictive model using a training set, as well as provide accessible 

predictive power measure on a holdout (validation) set, simultaneously. XLMiner 

conventionally splits data 60/40 (i.e., 60% of the data for training data set and 40% 

for a validation set).  

 Splitting data can lead to an ineffective model if there are not ample data to 

split and to create a model; for instance, there are about 55 data points during the 

winter and summer periods. Therefore, the predictive model for the annual period of 

each odorant compound (i.e., Case I, Case IV, and Case VII) will have both a training 

set and a validation set. In contrast, there will only be a training set for the winter and 
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summer period of each odorant compound. Nevertheless, to assess the predictive 

power of each predictive model in winter and summer period, we employ cross-

validation analysis. The results and discussions of cross-validation will be described 

again in Section 5.4 (Model Validation). Additionally, this section will present only 

the best predictive model for each case. The other candidate predictive models will be 

presented in Appendix B. 

85B5.3.1 Predictive Models for TRS at Prior-Lime (Y1) 

Case I: Predictive model for annual period of TRS prior-lime (Y1) 

Table 5.15: Predictive model for TRS prior-lime (ppm) during annual period 

Input variables Coefficient Std. Error p-value SS     

Constant term 2.5260975 1.1519859 0.0298818 202.00839 Residual df 148 

GT FW -1.85E-06 4.6E-07 9.826E-05 2.2398329 Multiple R-squared 0.435544 

WAS %S -0.4256331 0.1177421 0.0004111 7.1748996 Std. Dev. estimate 0.4030708 

SE.BL*RAS.SE -6.049E-05 2.092E-05 0.0044149 0.5851115 Residual SS 24.044977 

Temp Sec Eff 0.0365479 0.0077 4.84E-06 1.7907034 AIC 835.6 
SE. BL*MLSS 0.00012 3.214E-05 0.0002694 2.2039928   
(Temp*DT = 1) 0.0075206 0.0014197 4.2E-07 4.558979   

 
 This is the best predictive annual model for TRS prior-lime (Y1). There are 

six process variables, which consist of gravity thickener flow (GT FW), waste 

activated sludge percent solids (WAS %S), interaction of SE.BL*RAS.SE, 

temperature at secondary effluent (Temp Sec Eff), interaction of SE.BL*MLSS, and 

interaction of TempSecEff*DT =1, included in this predictive model.  

 Additionally, the model provides the lowest validation RMSE (RMSE = 

0.375) and the lowest AIC (AIC=835.6). For the annual model we have both RMSE 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of squared errors RMS Error Average Error Total sum of squared errors RMS Error Average Error 

24.04575862 0.393870444 -0.002239371 14.60075105 0.374689 0.01894817 
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of training data set and RMSE of validation set (i.e., 0.3939 and 0.3747, respectively). 

The RMSE of validation set is lower than RMSE of training set (0.3747<0.3939). 

Verifying that the annual predictive model for TRS prior-lime (Y1) does not overfit 

the training data.  Furthermore, this model is parsimonious compared to another 

candidate models in Appendix B. 

Case II: Predictive model for winter period of TRS prior-lime (Y1) 

Table 5.16:  Predictive model for TRS prior-lime (ppm) during winter period 

Input variables Coefficient Std. Error p-value SS   
Constant term 0.02792609 0.2463826 0.9102731 32.256512 Residual df 44 

SE.BL 0.33644986 0.1638628 0.0460234 0.1855095 Multiple R-squared 0.6417519 

RAS.SE -0.00014061 4.723E-05 0.004717 0.2603906 Std. Dev. estimate 0.1615824 

Amb Temp 0.01455642 0.002347 1.7E-07 1.1900514 Residual SS 1.14879 

S.WO. BL*MLSS 0.00002952 7.36E-06 0.0002328 0.3524687 AIC 16.94 
SE.BL*MLSS -0.00009392 5.758E-05 0.1099693 0.0694777   

 
 The model in Table 5.16 is the best predictive model for winter period of TRS 

prior-lime (Y1). There are five process variables, which include secondary east 

blanket level (SE.BL), return activated sludge at secondary east (RAS.SE), ambient 

temperature (Amb Temp), interaction of SWO.BL*MLSS, and interaction of 

SE.BL*MLSS. The model provides the smallest RMSE (0.1515) and the smallest 

AIC (16.94).  
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Case III: Predictive model for summer period of TRS prior-lime (Y1) 

Table 5.17: Predictive model for TRS prior-lime (ppm) during summer period 

Input variables Coefficient Std. Error p-value SS     

Constant term 3.64457941 2.236974 0.10825169 119.7866516 Residual df 63 

GT %S 0.25450373 0.14822559 0.09089159 1.04515743 Multiple R-squared 0.6020018 

DAF TS -0.00000629 0.0000025 0.01453312 0.57240433 Std. Dev. estimate 0.3646449 

Cake %S -0.25128782 0.05612963 0.00003242 3.94246984 Residual SS 8.3768501 

S.W.E.BL 0.58212888 0.15188292 0.00029498 4.15345144 AIC 160.783 

RAS.S.W.O 0.00057573 0.00013253 0.00005182 2.72708106  
Temp Sec Eff 0.0228566 0.01737705 0.19316527 0.23004428  
 
 This model in Table 5.17 is the best predictive model for summer period of 

TRS prior-lime (Y1). There are six process variables, including gravity thickener 

percent solids (GT %S), dissolved air flotation total solids (DAF TS), cake percent 

solids (Cake %S), secondary west even blanket level (SWE.BL), return activates 

sludge at secondary west odd (RAS.SWO), and temperature at secondary effluent 

(Temp Sec Eff). The model provides the smallest AIC (160.783) and the smallest 

RMSE (0.346).  
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86B5.3.2 Predictive Models for TRS at Post-lime (Y2) 

Case IV: Predictive model for annual period of TRS post-lime (Y2) 

Table 5.18: Predictive model for TRS post-lime (ppm) during annual period 

Input variables Coefficient Std. Error p-value SS     

Constant term -0.2130059 0.0455867 6.55E-06 0.5896361 Residual df 149 

TRS Pri 0.0659544 0.0087952 0 0.3409052 Multiple R-squared 0.5780572 

Blend(Pri:Sec) 0.0305947 0.0137123 0.0271624 0.0351426 Std. Dev. estimate 0.0492163 

S.E. BL*MLSS S.E 1.207E-05 2.76E-06 2.296E-05 0.0287148 Residual SS 0.3609146 

Fitted Post lime temp 0.0011472 0.0004799 0.0180696 0.0845526 AIC -253.954 
(DT = 1) -0.020767 0.0142643 0.1475329 0.0051341   

 
 

 

  
 The model in Table 5.18 is the best annual predictive for TRS post-lime (Y2). 

There are five process variables including TRS prior-lime, blend ratio, interaction of 

SE.BL*MLSS, fitted post lime temperature, and dummy variable when it is winter 

(DT =1). This model provides the smallest validation RMSE (RMSE = 0.044133) and 

the smallest AIC (AIC=-253.954). Similar to Case I, this research can access 

predictive power of this model by comparing RMSE of training set and RMSE of 

validation set. Output of validation set suggests that the model for annual period of 

TRS post-lime (Y2) does not overfit the training data (RMSE of validation is less than 

RMSE of training set: 0.044132<0.048254). 

  

 

 

 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of 
squared errors RMS Error Average Error Total sum of 

squared errors RMS Error Average Error 

0.360914657 0.04825434 1.75401E-05 0.202561964 0.044132881 -0.01066482 
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Case V: Predictive model for winter period of TRS post-lime (Y2) 

Table 5.19: Predictive model for TRS post-lime (ppm) during winter period 

Input variables Coefficient Std. Error p-value SS     

Constant term 0.2867726 0.0590205 1.535E-05 0.013778 Residual df 44 

TRS Pri 0.0116767 0.0066711 0.0870302 0.0011469 Multiple R-squared 0.6317336 

WAS %S -0.0593135 0.0105097 1.12E-06 0.0032587 Std. Dev. estimate 0.0082449 

S.W.O.BL 0.0077809 0.0029327 0.0110519 0.0001113 Residual SS 0.0029911 

RAS.S.W.E -0.0000026 1.47E-06 0.0848898 0.0003808 AIC -280.624 

Fitted Post lime temp 0.0003485 0.0001882 0.0707076 0.0002332   
 
 The model in Table 5.19 is the best predictive model for the winter period of 

TRS post-lime (Y2). There are five process variables including TRS prior-lime, waste 

activated percent solids (WAS %S), secondary west odd blanket level (SWO.BL), 

return activated sludge at secondary west even (RAS.SWE), and fitted post lime 

temperature. This model provides the smallest RMSE (0.00773) and the smallest AIC 

(-280.624).  

Case VI: Predictive model for summer period of TRS post-lime (Y2) 

Table 5.20: Predictive model for TRS post-lime (ppm) during summer period 

Input variables Coefficient Std. Error p-value SS   
Constant term -0.17571084 0.0467413 0.0003674 0.5742228 Residual df 65 

TRS Pri 0.05332687 0.0140151 0.0003161 0.1351165 Multiple R-squared 0.5827369

RAS.S.E 0.00006615 1.628E-05 0.0001322 0.0718594 Std. Dev. estimate 0.0532175

SWO.BL*RAS -0.00001047 2.74E-06 0.0002975 0.0063159 Residual SS 0.1840869

SWO.BL*MLSS S 0.00001758 4.47E-06 0.0002067 0.0437984 AIC -110.464 

 
 The model in Table 5.20 has four process variables including TRS prior-lime, 

return activated sludge at secondary east (RAS.SE), interaction of SWO.BL*RAS, 

and interaction of SWO.BL*MLSS. This model provides the smallest RMSE 

(0.0513) and the smallest AIC (-110.464).  
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87B5.3.3 Predictive Models for N-containing Compounds (Y3) 

Case VII: Predictive model for annual period of N-containing compounds (Y3) 

Table 5.21: Predictive model for N-containing (ppm) during annual period 

Input variables Coefficient Std. Error p-value SS   
Constant term -26.581068 5.9264584 1.701E-05 7671.8359 Residual df 118 

Blend(Pri:Sec) 3.75422859 1.8682782 0.0467703 161.21564 Multiple R-squared 0.4360306 

Pol_Sec 0.01555401 0.0018966 0 2413.6448 Std. Dev. estimate 6.0208659 

Pol_DAF+Pol_DW 0.00136673 0.0008619 0.1154837 283.43039 Residual SS 4277.5977 

Pol_DW/DTS 0.47099641 0.2808827 0.0962203 126.53569 AIC 1732.4 

(DT = 1) -3.48496151 1.1686184 0.0034784 322.38025   
 
 

 

 
 There are four process variables, which include the blend ratio, polymer at 

secondary process (Pol_Sec), sum of polymer at dissolved air flotation and polymer 

at dewatering (Pol_DAF+Pol_DW), and polymer at dewatering per dry ton solids 

(Pol_DW/DTS), and one dummy variable for winter (DT =1). This model is 

considered to be the best predictive model for N-containing compounds (Y3) during 

annual period. The model gives the smallest validation RMSE (5.74804) and the 

smallest AIC (1732.4). 

 Nevertheless, RMSE of validation set of this model verifies that model for 

annual period of N-containing compounds (Y3) is validated. Because the RMSE of 

validation set is less than RMSE of training set (5.74804<5.8734), the model is likely 

not overfitting the training data. 

 

 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of 
squared errors RMS Error Average Error Total sum of 

squared errors RMS Error Average Error 

4277.597855 5.873393985 2.66803E-05 2709.280652 5.7480438 1.074029007 
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Case VIII: Predictive model for winter period of N-containing compounds (Y3) 

Table 5.22: Predictive model for N-containing (ppm) during winter period 

Input variables Coefficient Std. Error p-value SS   
Constant term -8.95781898 2.249253 0.0002054 460.76184 Residual df 54 

Post lime Temp 0.06529341 0.0172074 0.0003759 8.9302416 Multiple R-squared 0.4354948 

RAS.S.W.O 0.00096194 0.0002004 0.000013 32.835461 Std. Dev. estimate 1.4849654 

Pol_DW/DTS 0.19674 0.1061232 0.0692212 16.826542 Residual SS 119.07661 

SWO.BL*MLSS -0.00037296 9.627E-05 0.0002917 19.832117 AIC 296.786 

SE.BL*MLSS 0.00049883 0.0002021 0.0167575 13.438837   
 
 This model is the best predictive model for winter period of N-containing 

compounds (Y3). There are five process variables included in the model. These 

process variables are post lime temperature, return activated sludge at secondary west 

odd (RAS.SWO), polymer at dewatering per dry ton solids (Pol_DW/DTS), 

interaction of SWO.BL*MLSS, and interaction of SE.BL*MLSS. In addition, this 

model provides the smallest RMSE (1.4088) and smallest AIC (296.786). 

Case IX: Predictive model for summer period of N-containing compounds (Y3) 

Table 5.23: Predictive model for N-containing (ppm) during summer period 

Input variables Coefficient Std. Error p-value SS Residual df 63 

Constant term -18.11300278 8.9057169 0.04618162 8600.490234 Multiple R-squared 0.264612982 
Post lime Temp 0.12375169 0.07252789 0.09288455 232.6981964 Std. Dev. estimate 6.77439213 
Pol_DW/DTS 0.83004338 0.27406377 0.00355824 407.0157471 Residual SS 2891.220459 

SE.BL*MLSS 0.00140841 0.00047668 0.00439817 400.6286926 AIC 539.952 

 
 This model is the best predictive model for summer period of -containing 

compounds (Y3). There are three process variables, which are post lime temperatures, 

polymer at dewatering per dry ton solids (Pol_DW/DTS), and interaction of 

SE.BL*MLSS. This model also provides the smallest RMSE (6.5691) and the 

smallest AIC (539.952).  
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 The next section will present how to validate both explanatory models of 

Section 5.2 and predictive models of Section 5.3. Furthermore, the next section also 

accesses predictive power of explanatory models and uses the results to compare the 

predictive models and determine whether or not those explanatory models can be use 

as predictive models. 

36BU5.4 Model Validation 

To validate both explanatory and predictive models, we employ cross-validation 

analysis. Cross-validation (like a validation set) is mainly used to access or estimate 

how precisely a predictive model will perform in practice, but it can be useful when t 

measuring and reporting the predictive power of all explanatory models. Evidently, 

explanatory models are considered to be valid because all independent variables 

included in models are statistically significant and have correct coefficient sign 

regarding to domain knowledge of wastewater treatment (theory-driven). But, they 

need to access predictive power regardless of whether or not they can be used as 

practical predictive models.  

Cross-validation (CV) analysis: cross-validation is one of many validation strategies 

used to validate predictive models. The idea of this analysis is to test the model by 

using data that are not used to fit the model, similar to validation set in Section 5.3.  

 Section 4.2 describes how to employ cross-validation analysis, and Sections 

5.4.1 to 5.4.6 will present validation of explanatory models and validation of 

predictive models. Table 5.24 summarizes the validation results between the root 

mean squared error (RMSE) of training data and RMSE of validation data for both 

explanatory and predictive models in each period. Therefore, the discussion in 
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Sections 5.4.1to 5.4.6 will refer to Table 5.24. However, the details how to obtain 

RMSE of training set and validation set for each model are illustrated in Appendix C. 
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Table 5.24: Summary of validation results  

Model 

Explanatory Models Predictive Models 

RMSE of Training RMSE of Cross-Validation RMSE of Training RMSE of Cross-Validation 

Annual TRS Prior-lime (Y1) 0.4004 0.41233 0.39387 0.374689 

Winter TRS Prior-lime (Y1) 0.168191 0.176497 0.151578 0.184483 

Summer TRS Prior-lime (Y1) 0.350651 0.384728 0.345933 0.382111 

Annual TRS Post-lime (Y2) 0.045519 0.046633 0.048254 0.044133 

Winter TRS Post-lime (Y2) 0.008331 0.008954 0.007734 0.013933 

Summer TRS Post-lime (Y2) 0.053358 0.059449 0.0512817 0.058819 

Annual  N-containing (Y3) 5.78057 6.02966 5.873394 5.7480438 

Winter  N-containing (Y3) 1.59835 1.72006 1.408762 1.55932 

Summer N-containing (Y3) 6.305579 7.38086 6.56906 7.26188 
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88B5.4.1 Validation of Explanatory Models of TRS Prior-Lime 

Validation of explanatory model of TRS prior-lime (Y1) during annual period: 

 The results of the RMSE of the training data and validation data (see Table 

5.24) confirm that the explanatory model of TRS prior-lime (Y1) during annual period 

can be used as a predictive model and does not overfit the training data. Because the 

difference between RMSE of original model and RMSE of validation is practically 

insignificant (i.e., 0.412327-0.400400476 = 0.011927), the model is said to be 

validated. In other words, the explanatory model of Y1 during annual period is said to 

have predictive power. Therefore, this model can be used for a prediction. As a result, 

this explanatory model can also be used for prediction.  

 In addition, the magnitude of the RMSE of validation is 0.412, so it means 

that the prediction errors from the explanatory model of Y1 during annual period will 

have approximately a standard deviation of 0.412 ppm of Y1. 

Validation of explanatory model of TRS prior-lime (Y1) during winter period: 

 The results of the RMSE of training data and validation data (see Table 5.24) 

confirm that the explanatory model of TRS prior-lime (Y1) during the winter period 

can be used as a predictive model. Because the difference between the RMSE of the 

original model and RMSE of validation is practically insignificant (i.e., 0.176497-

0.168191201 = 0.008306), the model is said to be validated. In other words, the 

explanatory model of Y1 during winter period is said to verify well or to have 

predictive power. Therefore this model can be used as a practical prediction. 

Furthermore, this model is said to serve the two goals of this research, which are 

explaining and forecasting. The magnitude of the RMSE of validation is 0.176, so it 
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means that the prediction errors from the explanatory model of Y1 during winter 

period will have approximately a standard deviation of 0.176 ppm of Y1. 

Validation of explanatory model of TRS prior-lime (Y1) during summer period: 

 The RMSE of training data and the RMSE of validation (see Table 5.24) 

indicate that the explanatory model of the TRS prior-lime (Y1) during the summer 

period has slightly greater differences (i.e., 0.384728-0.350651 = 0.034077) than in 

the previous two periods. However, the difference in RMSE is the difference between 

predicted values and actual values of Y1 the summer. That means that a RMSE of 

0.034077 equals mean square error (MSE) of 0.001161. In other words, an average of 

the errors between predicted values and actual values of Y1 is 0.001161 ppm, which is 

practically small. Therefore, this difference is insignificant. 

 As a result, the model is shown to be validated. In other words, the 

explanatory model of Y1 during the summer period is said to be verified or to have 

predictive power. Therefore, this model can be used prediction. In addition, the 

magnitude of the RMSE of validation is 0.385, so it means that the prediction errors 

from the explanatory model of Y1 during summer period will have approximately a 

standard deviation of 0.385 ppm of Y1. 

89B5.4.2 Validation of Explanatory Models of TRS Post-Lime 

Validation of explanatory model of TRS post-lime (Y2) during annual period: 

 The results of Table 5.24 verifies that there a minimal difference between 

RMSE of training data and RMSE of validation data (i.e., 0.046633-0.045519 = 

0.001114). Therefore, the model is said to be validated and can be used as predictive 

model or practical prediction. In other words, an explanatory model of TRS post-lime 



 

 160 
 

(Y2) during the annual can provide not only explaining function but also predicting 

function as well. In addition, the magnitude of the RMSE of validation is 0.047, so it 

means that the prediction errors from the explanatory model of Y2 during annual 

period will have approximately a standard deviation of 0.047 ppm of Y2. 

Validation of explanatory model of TRS post-lime (Y2) during winter period: 

 The difference between RMSE of training data and RMSE of validation data 

in Table 5.24, which is 0.000623 (0.008954-0.008331), verifies that an explanatory 

model of TRS post-lime (Y2) during winter is validated .Therefore, we can verify that 

the model has strong predictive power. In addition, the magnitude of the RMSE of 

validation data is 0.009, so it means that the prediction errors from the explanatory 

model of Y2 during winter period will have approximately a standard deviation of 

0.009 ppm of Y2. 

Validation of explanatory model of TRS post-lime (Y2) during summer period: 
 

According to the RMSE of training data and RMSE of validation data (see 

Table 5.24), there is a small difference in the value of the RMSE (0.00609). 

Therefore, the model is said to be validated and can be successfully verified. In other 

words, this model can be practically used as predictive model. In addition, the 

magnitude of the RMSE of validation is 0.059, so it means that the prediction errors 

from the explanatory model of TRS post-lime (Y2) during summer period will have 

approximately a standard deviation of 0.059 ppm of Y2. 
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90B5.4.3 Validation of Explanatory Models of N-containing Compounds 

Validation of explanatory model of N-containing (Y3) during annual period: 

 The result of RMSE of training data and validation data (see Table 5.24) 

illustrate that the difference of RMSE is about 0.24909 (6.02966 - 5.78057). Based on 

our judgment, this RMSE value is acceptable. Because the RMSE of 0.249088 equals 

MSE of 0.062045, it indicates that there are no significant differences between 

predicted values and actual value of N-containing compounds (Y3) during annual 

period. In other words, an explanatory model of Y3 works very well in predictive 

function. Therefore, the model is said to be validated and can be used as prediction. 

The magnitude of the RMSE of validation is 6.03, so it means that the prediction 

errors from the explanatory model of Y3 during annual period will have approximately 

a standard deviation of 6.03 ppm of Y3. 

Validation of explanatory model of N-containing (Y3) during winter period: 

 The difference between the RMSE of training data and the RMSE of 

validation data suggests that an explanatory model of N-containing compounds (Y3) 

during the winter period is validated. Because the difference value of RMSE is 

0.12171 (1.72006 – 1.59835), there is an insignificant difference between the original 

model and validation model. Therefore, the explanatory model of Y3 during the winter 

period is not only the best explanatory model but also the most practical predictive 

model. In addition, the magnitude of the RMSE of validation is 1.72, so it means that 

the prediction errors from the explanatory model of Y3 during winter period will have 

approximately a standard deviation of 1.72 ppm of Y3. 
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Validation of explanatory model of N-containing (Y3) during summer period: 

 According to the RMSE of training data and RMSE of validation (see Table 

5.24), the difference between both values is 1.07528 (7.38086 – 6.30558). This is the 

biggest difference of RMSE in validation section. It suggests that the model is not 

quite validated and that it might be overfitting the training data. In other words, an 

explanation of N-containing compounds (Y3) during the summer period cannot serve 

as practical prediction or it has low predictive power. Therefore, this model is used 

only for explanatory purpose. In addition, the magnitude of the RMSE of validation is 

7.381, so it means that the prediction errors from the explanatory model of Y3 during 

summer period will have approximately a standard deviation of 7.381 ppm of Y3. 

 The next three sections present the validation of predictive models. As 

mentioned in Section 5.3, the annual model of each odorous compound contains 

ample data to split into two parts, training data set and holdout (validation) data set. 

Therefore, the fit model from training data set can be validated by the hold out data 

set called validation data set. As a result, if the RMSE of validation set smaller than 

the RMSE of training data set, the model is said to be validated.  

 However, there are inadequate data points during winter and summer to split 

into two parts. Therefore, to validate those predictive models during the winter and 

summer, a cross-validation analysis similar to the validation of all explanatory models 

in Sections 5.4.1 to 5.4.3 is employed. 
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91B5.4.4 Validation of Predictive Models of TRS Prior-Lime 

Validation of predictive model of TRS prior-lime (Y1) during annual period: 

 The RMSE outputs (Table 5.24) illustrate that the annual predictive model of 

TRS prior-lime (Y1) has the RMSE of validation set smaller than the RMSE of the 

training set (0.374689 < 0.39387). Therefore, the annual predictive model of Y1 is 

said to be validated. The magnitude of the RMSE of validation is 0.375, so it means 

that the prediction errors from the predictive model of Y1 during annual period will 

have approximately a standard deviation of 0.375 ppm of Y1. 

Validation of predictive model of TRS prior-lime (Y1) during winter period: 

 According to Table 5.24, the difference between the RMSE of training model 

and validation model of winter predictive model of TRS prior-lime (Y1) is 0.032905, 

which is very small. Therefore, this model is said to be validated and to verify well. 

In other words, this model can be fully used as a predictive model of Y1 during the 

winter period. The magnitude of the RMSE of validation is 0.184, so it means that the 

prediction errors from the predictive model of Y1 during winter period will have 

approximately a standard deviation of 0.184 ppm of Y1. 

Validation of predictive model of TRS prior-lime (Y1) during summer period: 

 The difference between the RMSE of training data and the RMSE of the 

validation data is 0.036178 (0.382111-0.345933) (see Table 5.24). This difference is 

insignificant. In other words, RMSE of original model and RMSE of validation model 

are close together. Therefore, the model is said to be validated and can be used as a 

predictive model in this research. In addition, the magnitude of the RMSE of 

validation is 0.382, so it means that the prediction errors from the predictive model of 
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TRS prior-lime (Y1) during summer period will have approximately a standard 

deviation of 0.382 ppm of Y1. 

92B5.4.5 Validation of Predictive Models of TRS Post-Lime 

Validation of predictive model of TRS post-lime (Y2) during annual period: 

 Like the annual predictive model of the TRS prior-lime (Y1), the annual 

predictive model of the TRS post-lime (Y2) has both a training set and validation set, 

in which the RMSE of validation set is smaller than RMSE of training set (0.044133 

< 0.04825). Therefore, the model is said to be validated and can be employed as a 

predictive model in this research. The magnitude of the RMSE of validation is 0.044, 

so it means that the prediction errors from the predictive model of Y2 during annual 

period will have approximately a standard deviation of 0.044 ppm of Y2. 

Validation of predictive model of TRS post-lime (Y2) during winter period: 

 According to the output of the RMSE, the difference between the RMSE of 

the training data and the RMSE of validation data is 0.006199 (see Table 5.24), which 

is of minimal value. Therefore, there is a practically insignificant difference between 

the RMSE of original model and the RMSEv of validation. The summer predictive 

model of TRS post-lime (Y2) is said to be validated and to verify successfully. The 

magnitude of the RMSE of validation is 0.014, so it means that the prediction errors 

from the predictive model of Y2 during winter period will have approximately a 

standard deviation of 0.014 ppm of Y2. 

Validation of predictive model of TRS post-lime (Y2) during summer period: 

The summer predictive model of TRS post-lime (Y2) has the RMSE of training data 

smaller than the RMSE of the validation data (see Table 5.24) (0.0512817 < 
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0.058819). However, the difference is practically insignificant (0.007537). In other 

words, the model is said to be validated and can be used for practical prediction in 

this research. In addition, the magnitude of the RMSE of validation is 0.059, so it 

means that the prediction errors from the predictive model of Y2 during summer 

period will have approximately a standard deviation of 0.059 ppm of Y2. 

93B5.4.6 Validation of Predictive Models of N-containing Compounds 

Validation of predictive model of N-containing (Y3) during annual period:  

 Like the annual predictive model of the TRS prior-lime and the annual 

predictive model of TRS post-lime, the annual predictive model of N-containing 

compounds (Y3) has a training data set to fit the model, and also has validation set to 

validate the model as well. The outputs in Table 5.24 indicate that the RMSE of 

validation set is smaller than the RMSE of training set (5.7480438 < 5.873394). 

Therefore, the annual predictive model of Y3 is said to be validated and to verify well. 

In addition, the magnitude of the RMSE of validation is 5.748 so it means that the 

prediction errors from the predictive model of Y3 during annual period will have 

approximately a standard deviation of 5.748 ppm of Y3. 

Validation of predictive model of N-containing (Y3) during winter period: 

 The results of RMSE indicate that the RMSE of the validation data is higher 

than the RMSE of the training data (see Table 5.24), which is 1.55932 > 1.408762. 

However, the difference is practically small or insignificant (0.150558). Therefore, 

the winter predictive model of N-containing compounds (Y3) is said to be validated. 

The magnitude of the RMSE of validation is 1.559 so it means that the prediction 
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errors from the predictive model of Y3 during winter period will have approximately a 

standard deviation of 1.559 ppm of Y3. 

Validation of predictive model of N-containing (Y3) during summer period: 

 The difference between the RMSE of the validation data and the training data 

for summer predictive model of N-containing compounds (Y3) in Table 5.24 is 

0.69282 (7.26188 – 6.56906), which is the biggest difference among those predictive 

models. This suggests that the summer predictive model of Y3 is invalidated. The 

magnitude of the RMSE of validation is 7.262 so it means that the prediction errors 

from the predictive model of Y3 during summer period will have approximately a 

standard deviation of 7.262 ppm of Y3.  

 The next section presents the best explanatory and predictive models for each 

odorant compound in each period. However, explanatory models can be predictive 

models if they have higher predictive powers than those of the original predictive 

models. 

37BU5.5 Model Selection 

This section first presents the best explanatory models for each odorous compounds 

based on model requirements of Section 4.1. More importantly, all the best 

explanatory models are theory-driven with regard to domain knowledge of 

wastewater treatment. Selection of the best predictive models, however, we compare 

the validation results of both explanatory and predictive models to identify the best 

predictive models. As we employ cross-validation to access predictive power of all 

the best explanatory models, some of them can be the best predictive models if they 
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have more predictive powers than those of other predictive models. The details for all 

explanatory and predictive models are shown in Appendix D. 

A. The best explanatory model for TRS prior-lime (Y1) 

Annual explanatory model of TRS prior-lime:   

( ) ( )
( ) ( ) ( )

1

5

ˆ 2.02373 0.38889 WAS %S 0.0584 TempSecEff

2.691*10 SWO.BL*MLSS 0.1648 GT%S 0.0076 TempSecEff*D    (5.1)T

Y
−

= − − + +

+ +
 

 
Winter explanatory model of TRS prior-lime:   

( ) ( )1̂ 0.2839 0.00011 MLSS.SWO 0.01504 AmbTemp                           (5.2)Y = − + +  

Summer explanatory model of TRS prior-lime:
  

( ) ( ) ( )
( ) ( )

6
1̂ 4.8692 6.2923*10 DAF TS 0.23734 Cake %S 0.630 SWE.BL

    0.0006 RASS.SWO 0.2112 GT %S                                                     (5.3)

Y −= − − +

+ +
 

B. The best explanatory model for TRS post-lime (Y2)  

Annual explanatory model of TRS post-lime:
   

( ) ( )
( ) ( ) ( )

2

5

ˆ 0.1779 0.0344 Blend Ratio 0.0007 Predicted Post lime temp

      1.0653*10 SE.BL*MLSS 0.0154 D 1 0.0651 TRS Prior lime      (5.4)T

Y
−

= − + + +

− = +
 

Winter explanatory model of TRS post-lime: 
   

( ) ( )
( )

2̂ 0.2647 0.0550 WAS %S 0.00028 Predicted Post lime temp

       0.01387 TRS Prior lime                                                                               (5.5)

Y = − + +
 

Summer explanatory model of TRS post-lime:   

( ) ( )
( ) ( )

5 5
2

7

ˆ 0.4526 6.194*10 RAS.SE 1.343*10 SWE.BL*MLSS

  6.3597 *10 GT TS 0.04298 TRS Prior                                                   (5.6)

Y − −

−

= − + +

+ +
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C. The best explanatory model for N-Containing compounds (Y3) 

Annual explanatory model of N-containing compounds:   

( ) ( ) ( )
( )

3̂ 21.03751 2.55676 D 1 0.07758 Post lime temp 0.014451 Pol_Sec

     0.49729 Pol_DW/Dry ton solids                                                                (5.7)     
TY = − − = + +

+
 
Winter explanatory model of N-containing compounds:

 
( ) ( )

( )
3̂ 7.7244 0.0463 Post lime temp 0.0012 RAS.SE

       +0.1972 Pol_DW/DT solids                                                                        (5.8)    

Y = − + +

 
Summer explanatory model of N-containing compounds: 

( ) ( )
( ) ( )

3̂ 24.1875 2.4819 SWO.BL 0.1372 Post lime temp

       +0.7458 Pol_DW/DT solids +0.0011 SE.BL*MLSS                               (5.9)

Y = − + +
 

D. The best predictive model for TRS prior-lime (Y1) 

Annual predictive model of TRS prior-lime 

( ) ( ) ( )
( ) ( ) ( )

6 5
1̂ 2.5261 1.85*10 GTFW 0.426 WAS%S 6.05*10 SE.BL*RAS.SE

0.0366 TempSecEff 0.0001 SE.BL*MLSS 0.0075 Temp Sec Eff*D  (5.10)T

Y − −= − − −

+ + +
 
Winter predictive model of TRS prior-lime 

( ) ( ) ( )
( ) ( )

1̂ 0.02793 0.33645 SE.BL 0.00014 RAS.SE 0.01456 Amb Temp

     0.00003 SWO.BL*MLSS 0.00009 SE.BL*MLSS                              (5.11)

Y = + − +

+ −
 

Summer predictive model of TRS prior-lime 

( ) ( ) ( )
( ) ( ) ( )

1̂ 3.6446 0.2545 GT%S 0.000006 DAF TS 0.25129 Cake%S

     0.58213 SWE.BL 0.00058 RAS.SWO 0.0229 TempSecEff           (5.12)

Y = + − −

+ + +
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E. The best predictive model for TRS post-lime (Y2) 

Annual predictive model of TRS post-lime 

( ) ( )
( ) ( ) ( )

2

5

ˆ 0.21301 0.065954 TRS Prior 0.030595 Blend Ratio

1.207*10 SE.BL*MLSS 0.00035 Fitted Post lime -0.02077 D =1          (5.13)
       

T

Y
−

= − + + +

+  

Winter predictive model of TRS post-lime 
 

( ) ( ) ( )
( ) ( )

2̂ 0.28677 0.01168 TRS Prior 0.059314 WAS %S 0.00778 SWO.BL

     -0.000003 RAS.SWE 0.00035 Fitted Post lime                                      (5.14)
       

Y = + − +

+  

Summer predictive model of TRS post-lime 
 

( ) ( ) ( )
( )

2̂ 0.17571 0.05333 TRS Prior 0.00007 RAS.SE 0.00001 SWO.BL*RAS

     0.000018 SWO.BL*MLSS                                                                        (5.15)
       

Y = − + + −

+  

F. The best predictive model for N-containing compounds (Y3) 

Annual predictive model of N-containing compounds 

( ) ( )
( ) ( ) ( )

3̂ 26.5811 3.75423 Blend Ratio 0.01555 Pol_Sec

0.00137 Pol_DAF+Pol_DW 0.471 Pol_DW/DTsolids 3.485 D 1      (5.16)
       

T

Y = − + + +

+ − =  

Winter predictive model of N-containing compounds 
 

( ) ( ) ( )
( ) ( )

3̂ 8.9578 0.0653 Post lime temp 0.001 RAS.SWO 0.197 Pol_DW/solids

0.0004 SWO.BL*MLSS 0.001 SE.BL*MLSS                                            (5.17)
       

Y = − + + +

− +  

Summer predictive model of N-containing compounds 

( ) ( )
( )

3̂ 18.113 0.12375 Post lime temp 0.83004 Pol_DW/DTsolids

      0.00141 SE.BL*MLSS                                                                               (5.18)
       

Y = − + + +

 

 In general, both explanatory and predictive models mostly have the same 

included process variables on the right-hand side. Table 5.24 verifies that all 

predictive models are useful for setting the benchmark of good prediction. In 
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addition, RMSE of validation models for all predictive models are smaller than 

RMSE of validation models for predictive models. However, all explanatory models 

except summer explanatory model of N-containing compounds can be used for 

prediction, because the differences between validations RMSE and training RMSE of 

explanatory models are insignificant. 

 The next section presents and discusses feedback gained from real-time solids 

odors monitoring. The information includes unusual or incident events that caused 

odors to spike in both the dewatering process (prior-lime addition) and lime 

stabilization process (post-lime addition).  

38BU5.6 Special Cases of Operations 

Real-time feedback of odors incidents is one of the objectives in this research. As 

described in Section 3.3.3, real-time solids odors monitoring systems are installed 

inside solids processing building (SPB) at prior-lime and post-lime addition. The 

entirely of the discussions in this section refer to Figure 5.20.  
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Figure 5.20: Dewatering and lime stabilization process inside SPB 

 Inside SPB, there are two sides of centrifuges, west side (Sharples) and east 

side (Westfalia), and each side has seven centrifuges as shown in Figure 5.20. At the 

dewatering process area, however, there are four conveyors (trains) used to transfer 

dewatered solids to the lime stabilization and the biosolids load-out facility (bunkers 

and silos). Most of the time, operators will run two conveyors and have another two 

for backup. The following are the plausible conditions that cause odors incidents and 

post lime temperature incidents. 

 In this case, if there are any problems in dewatering and lime stabilization at 

solids processing building (SPB), real-time solids odors monitoring can provide 

decisive information and evidence to prove that the high odors incidents have 

occurred. For instance, Figure 5.20 illustrates activities of conveyor # 3 on June 3rd, 
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2010 and the following are feedback information and discussions gained from real-

time odors monitoring;   

 

 Figure 5.21: Odors (ppm) incidents during dewatering problems 

94B5.6.1 Odor Incidents When Dewatering Processes having Problems 

According to Figure 5.21, the blue line represents TRS prior-lime, red line represents 

TRS post-lime, green line represents N-containing compounds, and purple line 

represents % lime feeding at lime addition process. Conveyor # 3 has operated 

continuously until 10:40 AM, when it was out of service. The % lime feeding had 

completely stopped, which indicates no dewatered sludge fed or passed lime mixer. 

However, in case conveyor # 3 had suddenly stopped regarding to any unexpected 

circumstances, there might be some limed biosolids left over inside conveyor between 

LSTC-3 and TC-3. 
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 After conveyor # 3 has been stopped for several hours, there are a few 

incidents have been occurred inside conveyor # 3. 

High TRS prior-lime has been occurred (blue line) 

Before 10:40 AM, TRS prior-level was about 1.8 ppm, which was an usual level. 

However, when conveyor # 3 had stopped working, it started dropping to almost 0 

ppm because no sludge moved passed this point. But, there were some solids still 

inside conveyor and those solids were dewatered solids. This took about 8 hours 

(10:40 AM to 18:20 PM); TRS prior-lime started climbing up and reached the highest 

level at14 ppm for several points. When conveyor # 3 was off for a day and a half, the 

level of TRS prior-lime was between 4 ppm and 10 ppm.  

 This evidence verifies that whenever the conveyor has been stopped for 

several hours, solids left over inside conveyor can become septic. In addition, when 

operators suddenly started putting conveyor # 3 back in service, the TRS prior-lime 

level jumped from 2 ppm to 18 ppm within the first 10 minutes of operating, as 

shown in Figure 5.21. This circumstance is crucial because all the old solids that had 

sat inside conveyor # 3 right after centrifuges until the TRS prior-lime gas detector 

location (LSTC-3) are high septicity solids.  

 As soon as the screw conveyor starts pushing all those old solids pass the gas 

detector, these can cause high TRS prior-lime for several minutes. Then, TRS prior-

lime will be back to normal. This finding is one of the most practical contributions of 

this research and valuable of real-time feedback information. Ignorance of this 

information can cause a significant issue for DC Water. Because those amounts of 

solids are the most septic solids, they can still cause high odors of TRS post-lime (red 
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line), even they are limed by a lime stabilization process with pH above 12. 

Therefore, operators have to aware that if they start operating any conveyor that 

contains old solids left inside, they have to make sure that they feed an adequate % of 

lime to those solids. 

 In addition, operators have to report to Solids Foreman and General Foreman 

on that day to be aware of this circumstance. The Solids Foreman has to know what 

bunker of those old solids went to so that he can inform the Foreman at the sludge 

loading station to avoid that bunker. Therefore, the Foreman at sludge loading station 

can assign a contractor to send those solids to composting sites or remote sites. 

However, if operators or Foremen are unaware of these incidents, those solids can 

provoke complaints of high odor and lead to rejection from inspectors. Consequently, 

DC Water has to pay extra money for a contractor to haul biosolids to another remote 

location away from the residents. 

High TRS post-lime has been occurred (red line) 

If there is an incident happening, it will cause high odors not only the TRS prior-lime 

but also the TRS post-lime. The TRS post-lime has a relationship with the TRS prior-

lime, which can be confirmed by Figure 5.21 when conveyor # 3 was restarted on 

June 5th at 03:20 AM. However, when conveyor # 3 was out of service on June 3rd, 

there was no high TRS post lime occurring. This can be clarified by process diagram 

of Figure 5.20.  

 The locations of all TRS post-lime and N-containing compounds gas detectors 

are located after lime mixers and before being dropped in all four bunkers distribution 

facilities. For this reason, all dewater solids passing through all these gas detectors are 
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limed by the lime mixer. In other words, all solids have been passed through the lime 

stabilization process. As a result, there are no high odors incidents of TRS post-lime 

that occurred when the conveyor # 3 was out of service. 

  However, when operators started putting conveyors # 3 back in service, the 

TRS post-lime jumped from 0.1 to almost 9 ppm. This phenomenon can be explained 

again by using Figure 5.20 and some of the previous discussion. As stated earlier in 

this section, any old dewatered solids after lime mixer were limed biosolids. But, the 

main concern was of the existence of any old dewatered solids between after 

centrifuges and before lime mixers. Those old dewatered solids were septic solids and 

they were unknown how many left in conveyor # 3.  Despite being limed by lime 

mixer, the high pH cannot completely suppress all of the TRS because of the high 

septic solids and high TRS prior-lime. For this reason, the TRS post-lime was high 

after starting the conveyor # 3. 

 Like TRS prior-lime, the incident of the TRS post-lime will not last long. 

After about 10 minutes, level of TRS post-lime goes back to normal level, which is 

about 0.1 ppm. This incident suggests that when operators started using a conveyor 

that was out of service for some period of time (like this case only one day and a 

half), the leftover dewatered solids inside that conveyor can cause high TRS post-

lime in spite of high % of limes were fed in lime mixer. Therefore, operators, 

Foreman, and General Foreman have to be made aware of this incident. All operators, 

the Foreman, and the General Foreman have to know what bunker received these 

biosolids. Therefore, as soon as it can be identified, operators have to change the 

destination of new biosolids output to another bunker distribution and inform 
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Foreman of loading station about all the incidents and what bunker distribution 

receive those high odor biosolids. 

High N-containing compounds has been occurred (green line) 

As in the TRS prior-lime and the TRS post-lime, right after conveyor # 3 was 

stopped, the N-containing level was dropped from 15 ppm to about 7 ppm. However, 

an average N-containing concentration constantly maintains about 7 ppm. This may 

be caused by the limed biosolids that were leftover inside conveyor # 3. An important 

incident occurred when operators started using conveyor # 3 again.  

 Similar to TRS prior-lime and TRS post-lime, the N-containing concentration 

jumped from 10 ppm to about 60 ppm within about 10 minutes. This happened when 

operators start putting conveyor # 3 back on service, and the lime mixer will be work 

as soon as the lime feeder sensor can detect dewatered solids; otherwise, it will be 

whiteoutF

2
F. Therefore, the operator cannot start lime speed before starting the 

conveyor. However, when the operators started conveyor # 3 and then started the lime 

feeder, there were some old dewatered solids left inside. For this reason, if operators 

increase the speed % of lime when there is a small amount of dewatered solid that 

sensor can be detected, it will cause high N-containing concentration by swiftly 

changing of pHs. 

 Nevertheless, the level of N-containing concentration will be back to normal 

within 10 minutes, just like other odorant compounds. It is necessary for operators to 

add more lime at the beginning of the startup of the conveyor. They have to ensure 

that there is an ample lime amount added to those dewatered solids that are left inside 

                                                 
2 Whiteout happens when the lime feeder starts feeding lime to the lime mixer without dewatered 
solids passing through the mixer. 
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the conveyer. But, it is difficult to avoid high N-containing compounds concentration 

incident because changing pH rapidly can force biosolids to emit N-containing 

compound, especially ammonia (NH3). 

95B5.6.2 Post Lime Temperature Incidents 

Referring to Figure 5.20, there are six post lime temperature sensors installed on each 

conveyor and on two bunker distribution conveyor (BDC-1 and BDC-2), and they are 

located after TRS post-lime and N-containing compounds gas detectors. The 

following are considered to cause high and low of post lime temperature incidents. 

 

Figure 5.22: Post lime incidents 

 Figure 5.22 illustrates significant information on low and high post lime 

incidents. The operators put 3 centrifuges from Sharples to conveyor # 1on June 9th, 

2009 at 16:30 PM. Before post lime incidents happened, operators employed 14 % of 

lime feeding and then increased it to 15% in the next 2 hours at 18:50 PM. They 
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maintained 15 % of lime feeding for 5 hours and then changed to 16% at 23:50 PM. 

They kept 16% of lime feeding all day on June 10th. In the meantime, they have put 

one more centrifuge on service at 21:50 PM, so total number was 4 centrifuges. They 

added one more centrifuge to become 5 centrifuges, but it was just about 10 minutes 

before it went back to 4 centrifuges again. 

 The post lime temp incidents began declining when operators put more 

centrifuges to conveyor # 1, but they maintained the same % of lime feeding. Another 

incident of post lime dropping was when operators added one more centrifuge to 

become 5 centrifuges and increase one percent more. Both incidents suggest that 

whenever operators add number centrifuges in service and keep the same amount of 

lime, it can cause dropping on post lime temperature. Conversely, when operators 

lowered number of centrifuges but maintained the same % of lime feeding, this could 

cause high post lime temperature incident. This suggests that operators overdose the 

amount of lime to dewatered solids. As the model of post lime temp has found that # 

centrifuge in service is one of independent variables contributing to increase of post 

lime temp, it has become necessary for operators to avoid high temperature incidents 

like those in this case. 

 Apparently, an overdose % of lime can make DC Water waste a high amount 

of lime and will cost in lime stock. In addition, DC Water has to pay more for hauling 

costs because adding more amounts of lime can increase the weight of biosolids. 

Therefore, contractors have to use more trucks to haul biosolids. In other words, 

contractors’ trucks haul not only biosolids but also haul extra lime with them. Once 
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again, this feedback is essential information similar to the feedback of solids odors 

monitoring. 

96B5.6.3 Implication of Special Cases of Operations 

Real-time solids odors feedback is a vital approach that any wastewater industry can 

duplicate and apply to their processes. The first and foremost benefit of contribution 

from this research is that it is cost effective. Real-time solids odors monitoring 

verifies that odors incidents will be happened when operators start a conveyor that 

has been out of service for a long time. Therefore, the DC Water by Biosolids 

Management Section can inform contractors to send those septic biosolids to 

composting sites or remote areas without any complaints or rejection from inspectors.  

 But, without that vital information and awareness of those odors incidents, 

and if contractors send septic biosolids to application sites where are surrounded by 

residents and randomly inspect by inspectors, DC Water can get complaints from 

residents and septic biosolids will be denied by inspectors. As a result, DC Water has 

to pay extra money for contractors to put applied biosolids back on a truck and haul 

them back to the plant or send them to composting sites. That can be a lot of works 

and place a strain budgets. Therefore, real-time solids odors feedback can grant the 

decisive contributions and are cost-effective for DC Water. To implement real-time 

solids odors feedback to solids handling process and biosolids management program, 

however, we will provide more details in Chapter 6.  

 The next chapter provides conclusions and suggestions for future research, 

especially regarding how DC Water can deal with any odor incidents or improve 

solids handling process in order to mitigate biosolids odors.  
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10BChapter 6:  Conclusions and Future Work 

In this dissertation, statistical analyses were employed to identify process variables 

influencing odorous compounds emitted from dewatered solids and biosolids. 

Additionally, they were used to develop statistical models to explain relationship 

between biosolids odor production and upstream process variables. By using DC 

Water as the case study, any wastewater treatment plants with similar type of unit 

operations can apply the decisive conclusion from this dissertation to improve their 

biosolids management program. Furthermore, the standard operating procedure (SOP) 

and future work are stated. 

39BU6.1Conclusions 

This dissertation focuses on two missions: (i) identifying and explaining associations 

between upstream process variables and three odorous compounds, which are the 

total reduced sulfur at prior-lime addition (TRS prior-lime), the total reduced sulfur at 

post-lime addition (TRS post-lime), and nitrogen containing compounds at post lime 

addition (N-containing compounds); and (ii) predicting odorants levels of those three 

compounds before hauling biosolids to land application sites. Additionally, this 

dissertation will provide practical conclusions about odors of real-time solids 

monitoring systems to benefit the biosolids management program of DC Water. 

 First, data analyses have found that all process variables at secondary process 

(i.e., secondary blanket level, return activated sludge, gravity thickening solids, waste 

activated sludge, dissolved air flotation, and blend ratio) associate with both TRS at 

prior-lime and TRS at post-lime. During the annual period, WAS %S, DAF Flow, and 
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DAF TS can assist DC Water to mitigate TRS at prior lime and post lime addition. In 

other words, increasing DAF TS in blend ratio can help to mitigate odors in 

dewatered solids and biosolids at the downstream process. In addition, temperature of 

flow at secondary effluent and ambient temperature can naturally assist to decrease 

both TRS at prior-lime and post-lime. Conversely, temperature at the secondary 

effluent, ambient temperature, and post lime temperature have positive correlation 

with N-containing compounds. This means that all three temperatures contribute to 

increases of N-containing compounds emissions in biosolids at the downstream 

processes. However, cationic polymers at the secondary and cationic polymers in the 

dewatering process are the main process variables that have strong association with 

N-containing compounds. 

 During the winter period, ambient temperature is a key variable. It has a 

strong association with all three odorants compounds. Again, WAS %S and DAF TS 

have negative correlations with TRS. On the contrary, Blend Ratio, GT %S, and GT 

TS are positively correlated with TRS. As during the annual period, polymer addition 

at secondary process and polymer addition at dewatering process also dominate N-

containing compounds during the winter; only polymer at the dewatering process has 

a correlation with N-containing compounds. In addition, RAS.SE and RAS.SWO 

have positive correlation with N-containing compounds. Theses suggested that 

accumulated polymer added at secondary process can be carried over by sludge from 

the secondary process to downstream process and can cause the emission of N-

containing compounds. 
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During the summer period, all process variables at the secondary 

sedimentation process coupled with ambient temperature dominate the emission of 

TRS prior-lime and TRS post-lime. Those process variables at secondary 

sedimentation are SE.BL, SWO.BL, SWE.BL, RAS.SE, RAS.SWO, and RAS.SWE. 

Nevertheless, using only the secondary blanket level does not offer ample information 

to explain association. Therefore, the other six interaction variables at secondary 

sedimentation including the interaction of SE.BL*RASS, interaction of 

SWE.BL*RASS, interaction of SWO.BL*RASS, interaction of SE.BL*MLSS, 

interaction of SWE.BL*MLSS, and interaction of SWO.BL*MLSS have a strong 

relationship with TRS prior-lime and TRS post-lime. Like N-containing compounds 

during the annual period, polymer addition at secondary process and polymer addition 

at dewatering process have strong positive correlation with N-containing compounds 

during the summer period. 

In addition, the following conclusions can be clarified all four hypotheses:  

Hypothesis 1: The total reduced sulfur (TRS) at the prior-lime process 

positively correlates with TRS at the post-lime process. This hypothesis was 

confirmed by the results of correlation between TRS at prior-lime and TRS at post-

lime process. Additionally, the results of the statistical models in Chapter 5, 

demonstrate that the higher TRS at prior-lime, the higher are TRS levels at post-lime. 

Hypothesis 2: The causes of TRS at the post-lime process can be explained 

via the relation between upstream processes and the total reduced sulfur (TRS) at the 

prior-lime process. This hypothesis can be verified by the outputs of all explanatory 

models in Chapter 5, especially in Sections 5.2.1 and 5.2.2. The explanatory models 
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of TRS at prior-lime confirm that any upstream process variables included in the 

models of TRS at prior-lime also have high correlation with TRS at post-lime. 

However, some of them cannot be included in explanatory models of TRS at post-

lime. To explain relationship between upstream process variables and TRS at post-

lime, therefore, we can explain by using relationship between upstream process 

variables and TRS at prior-lime process.   

Hypothesis 3: High temperature of the secondary effluent and ambient 

temperature can contribute to the emission of TRS and N-containing compounds. The 

correlation analysis and statistical models in Chapter 5 for both TRS compounds and 

N-containing compounds confirmed this hypothesis. All statistical models indicated 

that both secondary effluent and ambient temperatures are among the significant 

process variables to contribute to the emission of TRS compounds and N-containing 

compounds. As a result, there are more chances to have higher emission of those 

odorous compounds during summer periods compared to winter periods. 

Furthermore, the ambient temperature can affect the temperature at secondary 

effluent as well. However, although winter periods have below-freezing temperatures, 

the temperature at secondary effluent is always warmer. In contrast, while summer 

periods have an average temperature of above 90 ˚F, the temperature at secondary 

effluent is always cooler by 20 ˚F. 

Hypothesis 4: Dewatered solids with high percent solids content can raise the 

temperature of limed biosolids and promote the emission of both N-containing 

compounds and TRS concentration during the lime stabilization. By employing a 

correlation analysis, we found that there are high positive correlations between cake 
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percent solids and the post-lime temperature of biosolids. Statistical models of post-

lime temperature of biosolids especially indicated that cake percent solids (Cake %S) 

is one of the process variables contributing to high temperatures in limed biosolids. In 

other words, by measuring the temperature of limed biosolids with the same amount 

of lime feeding, the dewatered cake with high percent solids shows a higher 

temperature than the dewatered cake with low percent solids. 

40BU6.2 Explanatory Models for DC Water 

For explanatory and predictive models, ordinary least squares (OLS) estimation, 

instrumental variable (IV), and two-stages least squared (2SLS) were used to create 

both explanatory and predictive models. In addition, IV estimation was found to be an 

effective statistical tool to be used to clarify the relationship between lime 

stabilization processes and TRS post-lime. The following are the best models; 

A. Explanatory models of TRS prior-lime 

Annual explanatory model of TRS prior-lime:   

( ) ( )
( ) ( ) ( )

1

5

ˆ 2.02373 0.38889 WAS %S 0.0584 TempSecEff

2.691*10 SWO.BL*MLSS 0.1648 GT%S 0.0076 TempSecEff*D    (6.1)T

Y
−

= − − + +

+ +
 

 
Winter explanatory model of TRS prior-lime:   

( ) ( )1̂ 0.2839 0.00011 MLSS.SWO 0.01504 AmbTemp                           (6.2)Y = − + +  

Summer explanatory model of TRS prior-lime:
  

( ) ( ) ( )
( ) ( )

6
1̂ 4.8692 6.2923*10 DAF TS 0.23734 Cake %S 0.630 SWE.BL

    0.0006 RASS.SWO 0.2112 GT %S                                                     (6.3)

Y −= − − +

+ +
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 WAS %S and DAF TS are the key factors in mitigating TRS prior-lime. 

Increasing WAS %S and DAF TS inside the blending tank automatically decreases 

the blend ratio and decreases the percent solids (cake %S) in biosolids. DC Water, 

however, can maintain the same target of high cake %S by increasing more WAS %S 

and DAF Flow. As a result, DC Water not only gains higher cake %S but also 

mitigates TRS after the dewatering process. In addition, employment of dummy 

variables can provide the differences between winter and summer season by giving 

differences interceptors. 

 All the above models suggest that process variable at the secondary 

sedimentation (i.e., SWE.BL, SWO.BL*MLSS, MLSS.SWO, and RAS.SWO) are 

sources that can contribute to increase TRS at prior-lime. To practically avoid high 

TRS prior-lime concentrations at the downstream location, operators have to control 

secondary blanket levels to not exceed 1.8 ft and ensure that all equipment (e.g., 

pumps stations, centrifuges in service, etc) functions properly in order to prevent 

longer retention times of settling sludge. In addition, mechanical problems are one of 

the factors that cause backup and longer retention times of secondary blanket inside 

sedimentation tanks. As a result, there are more septicities, high biosolids odors 

production at downstream location, and lower cake %S.  

 It is mandatory for operators to handle all equipment properly by following all 

maintenance rules of equipment use. In addition, it is necessary for all foremen to 

communicate with upper level management by reporting any unusual circumstances 

that can cause equipment to be out of service. However, there can be uncontrollable 

circumstances, such as rain and snow storms, that can cause high secondary blanket 
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levels, high concentrations of mixed liquor suspended solids (MLSS), and high 

concentrations of return activated solids (RAS). Therefore, these can contribute to 

TRS prior-lime, as well. 

 Accessing the predictive power of all three explanatory models by using 

cross-validation analyses verified that all three explanatory models have been 

validated and can be used for prediction. 

B. Explanatory models of TRS post-lime 

Annual explanatory model of TRS post-lime:
   

( ) ( )
( ) ( ) ( )

2

5

ˆ 0.1779 0.0344 Blend Ratio 0.0007 Predicted Post lime temp

      1.0653*10 SE.BL*MLSS 0.0154 D 1 0.0651 TRS Prior lime      (6.4)T

Y
−

= − + + +

− = +
 

Winter explanatory model of TRS post-lime: 
   

( ) ( )
( )

2̂ 0.2647 0.0550 WAS %S 0.00028 Predicted Post lime temp

       0.01387 TRS Prior lime                                                                               (6.5)

Y = − + +
 

Summer explanatory model of TRS post-lime:   

( ) ( )
( ) ( )

5 5
2

7

ˆ 0.4526 6.194*10 RAS.SE 1.343*10 SWE.BL*MLSS

  6.3597 *10 GT TS 0.04298 TRS Prior                                                   (6.6)

Y − −

−

= − + +

+ +
 

Post lime temperature model: 

( ) ( )
( ) ( ) ( )

ˆ 30.00764 0.53784 %lime feed 0.93128 Cake %S

       1.79513 # Cent Serv 0.70063 Temp Sec Eff 0.68369 Amb Temp      (6.7)

W = − + + +

+ +
  

 
 All information gained from models of TRS post-lime is decisive for DC 

Water. The models suggested that TRS prior-lime has a strong relationship with TRS 

post-lime. In other words, higher TRS of dewatered solids at the prior lime addition 

process can cause higher TRS of limed biosolids at the post lime addition process.  
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 The instrumental variable (IV) provides practical information to explain the 

relationship between the lime addition process and TRS post-lime. The IV estimation 

clarifies that six process variables at the lime addition process cannot be included in 

the model to explain TRS at post-lime except post lime temperature. Instead, all five 

process variables, which are percent of lime feeding (% lime feeding), number of 

centrifuges in service (# centrifuges), Cake %S, temperature of flow at secondary 

effluent, and ambient temperature, are included in the error term of TRS post-lime 

model. In addition, theses five process variables are statistically significant in the 

model of post lime temperature. Therefore, they can explain TRS at post-lime via 

post lime temperature.  

 The post lime temperature has no direct effect on the TRS post-lime even 

though it has a strong correlation with the TRS post-lime (r = 0.63). Instead, five 

process variables at the lime addition process have the potential to increase TRS at 

post-lime, but they cannot directly explain the TRS at post-lime because they were 

not statistically significant when they were included in model of TRS at post-lime. 

Therefore, the employment of IV can provide more information and increase the 

efficiency of explanatory modeling. Like the TRS prior-lime, cross-validation 

analysis confirms that all three explanatory models of the TRS post-lime are said to 

be validated and can be used for prediction. 

C. Explanatory models of N-containing compounds 

Annual explanatory model of N-containing compounds:   

( ) ( ) ( )
( )

3̂ 21.03751 2.55676 D 1 0.07758 Post lime temp 0.014451 Pol_Sec

     0.49729 Pol_DW/Dry ton solids                                                                (6.8)     
TY = − − = + +

+
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Winter explanatory model of N-containing compounds:
 

( ) ( )
( )

3̂ 7.7244 0.0463 Post lime temp 0.0012 RAS.SE

       +0.1972 Pol_DW/DT solids                                                                        (6.9)    

Y = − + +

 
Summer explanatory model of N-containing compounds: 

( ) ( )
( ) ( )

3̂ 24.1875 2.4819 SWO.BL 0.1372 Post lime temp

       +0.7458 Pol_DW/DT solids +0.0011 SE.BL*MLSS                               (6.10)

Y = − + +
 

 
Cationic polymer at the secondary process (Pol_Sec) and the cationic polymer 

at dewatering per dry ton solids (Pol_DW/DT solids) coupled with post lime 

temperature are the sources of emission of N-containing compounds. Changing the 

pH of limed biosolids (pH >9.8) and increasing the post lime temperature (post lime 

temp > 80 °F) are the factors that contribute to increase emission of N-containing 

compounds, especially ammonia. The models also verified that cationic polymer 

agents for thickening and dewatering were the sources of N-containing compounds. 

 The process variables at the secondary sedimentation process, which are 

RAS.SE, SWO.BL, and SE.BL*MLSS, have no direct effect on N-containing 

compounds, but the accumulated cationic polymers inside the sludge of RAS and the 

sludge of the secondary blanket level cause correlations between those process 

variables and N-containing compounds. In addition, they can contribute to increase 

the emission of N-containing compounds at the lime addition process. This is the 

decisive information gained from these three explanatory models of N-containing 

compounds.  

 The Equations 6.9 and 6.10 verified that the higher secondary blanket level 

and higher concentration of RAS not only contribute to increases in the TRS prior-
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lime and TRS post-lime, but also contribute to increases in the N-containing 

compounds at the downstream. In other words, the higher secondary blanket level, the 

more polymers were added into the process. Consequently, the accumulated polymer 

in secondary sedimentation sludge can contribute to increases in the emission of N-

containing compounds. Therefore, proper management of all process variables at the 

secondary sedimentation process is mandatory for DC Water. 

 Similar to TRS prior-lime and TRS post-lime, cross-validation analyses  

confirms that only annual and winter explanatory models of N-containing compounds 

are valid and can be used for prediction. The summer explanatory model cannot be 

used for prediction. 

41BU6.3 Predictive Models for Dissertation and DC WaterU  

D. Predictive models of TRS prior-lime 

Annual predictive model of TRS prior-lime 

( ) ( ) ( )
( ) ( ) ( )

6 5
1̂ 2.5261 1.85*10 GTFW 0.426 WAS%S 6.05*10 SE.BL*RAS.SE

0.0366 TempSecEff 0.0001 SE.BL*MLSS 0.0075 Temp Sec Eff*D  (6.11)T

Y − −= − − −

+ + +
 
Winter predictive model of TRS prior-lime 

( ) ( ) ( )
( ) ( )

1̂ 0.02793 0.33645 SE.BL 0.00014 RAS.SE 0.01456 Amb Temp

     0.00003 SWO.BL*MLSS 0.00009 SE.BL*MLSS                              (6.12)

Y = + − +

+ −
 

Summer predictive model of TRS prior-lime 

( ) ( ) ( )
( ) ( ) ( )

1̂ 3.6446 0.2545 GT%S 0.000006 DAF TS 0.25129 Cake%S

     0.58213 SWE.BL 0.00058 RAS.SWO 0.0229 TempSecEff           (6.13)

Y = + − −

+ + +
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E. Predictive models of TRS post-lime 

Annual predictive model of TRS post-lime 

( ) ( )
( ) ( ) ( )

2

5

ˆ 0.21301 0.065954 TRS Prior 0.030595 Blend Ratio

1.207*10 SE.BL*MLSS 0.00035 Fitted Post lime -0.02077 D =1          (6.14)
       

T

Y
−

= − + + +

+  

Winter predictive model of TRS post-lime 
 

( ) ( ) ( )
( ) ( )

2̂ 0.28677 0.01168 TRS Prior 0.059314 WAS %S 0.00778 SWO.BL

     -0.000003 RAS.SWE 0.00035 Fitted Post lime                                      (6.15)
       

Y = + − +

+  

Summer predictive model of TRS post-lime 
 

( ) ( ) ( )
( )

2̂ 0.17571 0.05333 TRS Prior 0.00007 RAS.SE 0.00001 SWO.BL*RAS

     0.000018 SWO.BL*MLSS                                                                        (6.16)
       

Y = − + + −

+  

 
F. Predictive models of N-containing compounds 

Annual predictive model of N-containing compounds 

( ) ( )
( ) ( ) ( )

3̂ 26.5811 3.75423 Blend Ratio 0.01555 Pol_Sec

0.00137 Pol_DAF+Pol_DW 0.471 Pol_DW/DTsolids 3.485 D 1      (6.17)
       

T

Y = − + + +

+ − =  

Winter predictive model of N-containing compounds 
 

( ) ( ) ( )
( ) ( )

3̂ 8.9578 0.0653 Post lime temp 0.001 RAS.SWO 0.197 Pol_DW/solids

0.0004 SWO.BL*MLSS 0.001 SE.BL*MLSS                                            (6.18)
       

Y = − + + +

− +  

Summer predictive model of N-containing compounds 

( ) ( )
( )

3̂ 18.113 0.12375 Post lime temp 0.83004 Pol_DW/DTsolids

      0.00141 SE.BL*MLSS                                                                               (6.19)
       

Y = − + + +

 

 
 All predictive models of TRS prior-lime, TRS post-lime and N-containing 

compounds were validated. Therefore, DC Water can employ these models to 
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forecast daily concentrations of those odorants compounds before hauling biosolids to 

the application sites. 

 All of the above conclusions verify that a real-time solids odor monitoring 

system can be applied to any type of wastewater treatment industry that would like to 

improve biosolids quality in terms of odor reduction. Furthermore, this system can 

practically offer a cost-effective biosolids management program. For example, when 

odor incidents have occurred due to mechanical problems in the dewatering process 

of DC Water, feedback information sent from real-time solids odors, monitoring can 

identify high odors caused by septic of old dewatered solids or septic of old biosolids. 

Operators can identify a destination of old biosolids, so those septic biosolids do not 

mix with other biosolids. Nevertheless, lacking feedback information from real-time 

solids odor monitoring can require DC Water to increase expenditure for hauling 

those biosolids back to the plants or back to composting sites in the event that they 

get rejected by inspectors. 

 Additionally, real-time solids odor system can provide feedback information 

and respond to high post lime temperature incidents. High post lime temperature 

incidents means that the operators have overdosed the % lime feeding to dewatered 

solids to gain limed biosolids with a pH above 12. For example, when operators 

operate a fewer number of centrifuges (e.g., 3 centrifuges in service), they still 

maintain the % lime feeding at the same rate as when 5 centrifuges are in service. For 

this reason, a smaller number of centrifuges running with a high % of lime feeding 

can cause a high post lime temperature incident. Therefore, real-time solids odor 



 

 192 
 

system can send feedback to operators to adjust % lime feeding to the proper speed. 

However, they have to ensure that the pH of lime biosolids is higher than 12.  

 As a result, employment of a real-time solids odor monitoring system by DC 

Water can save budgets in hauling costs and lime addition costs. Furthermore, it can 

help DC Water to save costs in the cationic polymer addition at both the secondary 

process and the dewatering process as well. 

42BU6.4 DC Water Standard Operating Procedure (SOP) 

Standard Operating Procedure (SOP) is one of the contributions generated from this 

research. By using the District of Columbia Water and Sewer Authority (DC Water)’s 

advanced wastewater treatment plant (WWTP) as the case study, this SOP can be 

applied directly to DC Water. 

 This SOP covers odor incidents occurring at both the prior lime and the post 

lime addition processes. The SOP will be associated with centrifuges dewatering 

operation, sludge cake conveyance system, dewatered sludge loading facilities 

(DSLF), and DSLF lime feed system. A real-time solids odor system evaluates the 

treatment plant solids for elevated emissions of odorants emitted from dewatered 

solids and limed biosolids. The odor monitoring system measures when either 

increased or decreases solids odors are present. This measurement can be related to 

either process changes in the upstream processes or chemical dose changes within the 

WWTP.  

The following procedures should be used by operators of solids process treatment: 

1. When centrifuge dewatering systems and cake conveyance systems are stopped by 

mechanical problems, operators have to inform the Solids Foreman and the General 



 

 193 
 

Foreman as soon as possible, as well as record the date, time, and conveyor number 

that had been operated before the mechanical problems took place. 

2. After centrifuge dewatering systems and cake conveyance systems are stopped, 

operators have to randomly sample the old lime biosolids remaining inside of the 

conveyor at the location beyond the lime mixer to ensure that those limed biosolids 

have a pH above 12. 

3. When the problem due to centrifuge dewatering and cake conveyance systems are 

fixed, the operators should operate blank conveyors using screw conveyors to push 

any leftover dewatered solids passing to the lime mixer. More importantly, the Solids 

Foreman has to ensure that there is adequate amount of lime feeding because these 

dewatered solids are high septic solids. 

4. After running a blank conveyor, operators have to randomly sample the solids at 

the point beyond the lime mixer to ensure pH above 12. 

5. Operators have to record the number that bunker receives the left over biosolids, 

and then inform the Solids Foreman of all necessary information. 

6. The Solids Foreman has to inform the General Foreman of all information gained 

from operators and also submit a daily report log sheet. In addition, the Solids 

Foreman has to communicate with the Foreman at the loading station to ensure that 

the old leftover biosolids are hauled to the composting site or applied at remote sites. 

7. The General Forman has to inform the Biosolids Manager of any incidents. 

Therefore, the Biosolids Manager should communicate with all inspectors to be aware 

of odors complaints from those biosolids. 
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8. When a high post lime temperature has occurred, operators have to sample lime 

biosolids to measure pH. If the pH is higher than 12.2, they have to decrease the lime 

feeding speed until a pH of 12.2 is reached.  

9. Normally, operators try to maintain the same operating system as the previous 

shift. However, when the number centrifuges in service decreases, they still keep the 

same lime feeding speed. For this reason, high post lime temperature incidents can 

occur. 

 In sum, real-time odors solids monitoring is a useful and decisive system that 

can practically assist DC Water to improve the treatment process, to improve 

biosolids quality, and to reduce process costs.  

43BU6.5 Future Work 

Recommendations of future work are as follows: 

 1. According to the explanatory models of N-containing compounds, DC Water has 

to quantify the proper doses of cationic polymer in the secondary process that can 

provide the best settling performance. 

2. Optimizing of the lime feeding speed regarding Cake %S can also be done by DC 

Water. The results in Section 5.2 indicate that an increase in the percent of cake solids 

(Cake %S) can contribute to an increase in post lime temperature. Since DC Water 

produces “class B” biosolids by using lime stabilization, temperatures caused by 

chemical reactions can have a pasteurizing effect on microorganisms. With the same 

of lime feeding speed, therefore, a higher percent of cake solids (Cake %S) can 

provide a high post lime temperature more easily than a lower Cake %S. 
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3. Referring to # 8 of SOP and # 2 of future work, high post lime temperatures  are 

not only caused by an overdose of % lime feeding but also by a higher percent of 

cake solids (Cake %S). Therefore, it is necessary for DC Water to install real-time 

Cake %S monitoring or real-time density of solids monitoring to measure the quality 

of dry cake and measure Cake %S. 

4. Real-time pH monitoring or online pH monitoring should also be done by DC 

Water. This can provide insight and accurate information of limed biosolids. 

Therefore, DC Water can employ this feedback information to ensure that the pH of 

limed biosolids is always above 12.2 and can reduce the cost of the lime addition 

process. 

5. The employment only ordinary least squares (OLS) might not be explained some of 

unobserved dependent variables data. The censored regression model can be another 

approach to create statistical model in data analyses because the real-time solids odor 

system observed odorous compounds only if it above cutoff level. For instance, the 

minimum level of TRS and N-containing compounds that can be detected by the 

system is 0.01 ppm. Thus, any odors level below 0.01 ppm will be censored at zero. 

The familiar censored regression model is the tobit model. 
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11BAppendix A 

Exploratory Data Analysis (EDA) 

Appendix A-1: Box plot of dependent and independent variables 
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Appendix A-2: Visualization analysis for the significant correlations 
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12BAppendix B 

Candidate Predictive Models 

Candidate predictive models for TRS Prior-lime during annual period 

Input variables Coefficient Std. Error p-value SS   
Constant term 3.78029752 1.4408797 0.0096248 202.00839 Residual df 146 

GT FW -0.0000018 4.6E-07 0.0001561 2.2398329 Multiple R-squared 0.4435422 

DAF FW -0.00000027 3.8E-07 0.4866484 4.8521428 Std. Dev. estimate 0.4029367 

WAS %S -0.36707926 0.1269891 0.004432 2.9992158 Residual SS 23.704268 

S.E*RAS S.E -0.00006307 2.099E-05 0.0031292 0.2927136 AIC 835.902 
Temp(F) 0.01676291 0.0156893 0.2870912 1.4338033   
S.E. BL*MLSS S.E 0.00012443 3.282E-05 0.0002184 2.3982768   
(DT = 1) -1.58757186 1.1441728 0.167395 4.1339955   
(Temp*DT = 1) 0.03034921 0.0165762 0.0691559 0.5442494   

 

Candidate predictive models for TRS Prior-lime during winter period 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.34992853 0.3481922 0.3206583 32.256512 Residual df 42 

SE.BL 0.13709851 0.0776971 0.0849154 0.1855095 Multiple R-squared 0.6637187 

SWE.BL 0.15937284 0.0997161 0.117481 0.1424843 Std. Dev. estimate 0.1602341 

RAS.SE -0.00025692 7.184E-05 0.000894 0.1179105 Residual SS 1.0783491 

RAS.S.W.E 0.00010569 4.945E-05 0.038432 0.0696217 AIC 17.755 
RAS.SWO -0.00005363 3.362E-05 0.1181219 0.6136962 

Amb Temp 0.01550165 0.0028505 2.54E-06 0.9606406 

SWO.BL*MLSS 0.00001072 8.75E-06 0.227713 0.038476 

 
Total sum of squared 
errors RMS Error Average Error 

1.078349604 0.146857046 -8.85967E-05 

 

 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of 
squared errors RMS Error Average Error Total sum of squared 

errors RMS Error Average Error 

23.70498814 0.391069568 0.002094211 14.9141416 0.3786888 0.025865828 
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Candidate predictive models for TRS Prior-lime during summer period 

Input variables Coefficient Std. Error p-value SS  
Constant term 4.24493027 2.25407672 0.06443998 119.7866516 Residual df 61 

GT %S 0.34499928 0.1557508 0.03049928 1.04515743 Multiple R-squared 0.6211376 

DAF TS -0.00000629 0.00000249 0.01413679 0.57240433 Std. Dev. estimate 0.3615561 

Cake %S -0.27148885 0.05699603 0.00001212 3.94246984 Residual SS 7.9740901 

S.E.BL -0.18433464 0.12166237 0.13490374 0.53699291 AIC 161.334 
S.W.O.BL 0.05794982 0.06435493 0.37141037 2.28315639  
S.W.E.BL 0.58860487 0.18309699 0.00208868 3.01883602  
RAS.S.W.O 0.00043885 0.00015557 0.00645189 1.32945597  
Temp(F) 0.02846573 0.01752483 0.10946672 0.3448959  
 
Total sum of squared 
errors RMS Error Average Error 

7.974149236 0.337515063 0.000896779 

 

Candidate predictive models for TRS Post-lime during annual period 

Input variables Coefficient Std. Error p-value SS     

Constant term -0.1366453 0.0959672 0.1565875 0.5896361 Residual df 148 

TRS Pri 0.0642399 0.0090024 0 0.3409052 Multiple R-squared 0.5803763 

WAS %S -0.0143538 0.0158713 0.3672595 0.0308247 Std. Dev. estimate 0.0492464 

Blend(Pri:Sec) 0.0238281 0.0156281 0.1294674 0.0112432 Residual SS 0.358931 

S.E. BL*MLSS S.E 1.243E-05 2.79E-06 1.656E-05 0.0354587 AIC -253.378 
Predicted Post lime temp 0.0011477 0.0004802 0.0181056 0.0740025   
(DT = 1) -0.0185868 0.0144752 0.201132 0.0039986   

 

 

 

 

 

 

 

 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of squared 
errors RMS Error Average Error Total sum of 

squared errors RMS Error Average Error 

0.358931009 0.04812155 1.23389E-05 0.202991198 0.044179616 -0.010980631 
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Candidate predictive models for TRS Post-lime during winter period 

Input variables Coefficient Std. Error p-value SS     

Constant term 0.2873996 0.0586773 1.409E-05 0.013778 Residual df 43 

TRS Pri 0.0155411 0.0073356 0.0399427 0.0011469 Multiple R-squared 0.6443044 

WAS %S -0.059228 0.0104484 1.06E-06 0.0032587 Std. Dev. estimate 0.0081967 

S.W.O.BL 0.0054113 0.0034922 0.1285761 0.0001113 Residual SS 0.002889 

RAS.S.E 4.45E-06 3.61E-06 0.2243733 2.316E-05 AIC -280.342 

RAS.S.W.E -0.0000035 1.64E-06 0.0383005 0.0005438   
Fitted Post lime temp 0.0002881 0.0001934 0.1435917 0.0001491   

 
Total sum of 
squared errors RMS Error Average Error

0.002889029 0.007601354 -3.71074E-05 

 
Candidate predictive models for TRS Post-lime during summer period 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.26951048 0.0971871 0.0072656 0.5742228 Residual df 64 

TRS Pri 0.05598473 0.0141994 0.0002023 0.1351165 Multiple R-squared 0.5904834 

GT TS 0.0000003 2.7E-07 0.2753301 0.0483704 Std. Dev. estimate 0.0531315 

RAS.S.E 0.00005985 1.723E-05 0.0009265 0.0401524 Residual SS 0.1806694 

S.W.O*RAS S.W.O -0.00000947 2.88E-06 0.0016372 0.0037671 AIC -109.776 
S.W.O. BL*MLSS S.W.O 0.00001602 4.68E-06 0.0010804 0.0331014  
 
Total sum of squared 
errors RMS Error Average Error 

0.180905401 0.0508366 -0.001831578 

 
Candidate predictive models for TRS N-containing during annual period 

Input variables Coefficient Std. Error p-value SS  
Constant term -22.0163326 5.2132139 4.734E-05 7671.8359 Residual df 119 

Blend(Pri:Sec) 3.20669842 1.8477393 0.085246 161.21564 Multiple R-squared 0.424013 

Pol_Sec 0.01565635 0.0019075 0 2413.6448 Std. Dev. estimate 6.0590572 

Pol_DW/Dry ton solids 0.67670655 0.2507101 0.0079635 315.74268 Residual SS 4368.7485 

(DT = 1) -3.50139284 1.175985 0.0035229 325.45297 AIC 1734.74 

 
Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of squared 
errors RMS Error Average Error Total sum of squared 

errors RMS Error Average Error 

4368.748524 5.935641746 -4.44754E-06 2767.081113 5.8090353 1.228680016 
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Candidate predictive models for TRS N-containing during winter period 

Input variables Coefficient Std. Error p-value SS  
Constant term -9.55229282 2.4299016 0.0002467 460.76184 Residual df 53 

Post lime Temp 0.06700663 0.0174857 0.0003387 8.9302416 Multiple R-squared 0.440203 

RAS.S.W.E 0.0002351 0.0003521 0.5072567 15.127789 Std. Dev. estimate 1.4926454 

RAS.S.W.O 0.00078726 0.0003302 0.0207413 22.687103 Residual SS 118.08348 

Pol_DW/Dry ton 
solids 0.20741624 0.107864 0.0598676 13.947087  AIC 298.284 

S.W.O. BL*MLSS 
S.W.O -0.00040159 0.0001059 0.0003821 17.771725     
S.E. BL*MLSS S.E 0.00054344 0.0002138 0.0139949 14.392384  
 
Total sum of squared 
errors RMS Error Average Error 

118.0834882 1.402875 -2.48804E-05 

 

Candidate predictive models for TRS N-containing during summer period 

Input variables Coefficient Std. Error p-value SS 

Constant term -27.06305313 10.35056591 0.01123803 8600.490234 Residual df 61 
Post lime Temp 0.14050624 0.07313239 0.05937511 232.6981964 Multiple R-squared 0.299154857

Pol_DW/DT solids 0.95264608 0.28560275 0.00145262 407.0157471 Std. Dev. estimate 6.72092009 
S.W.E*RAS 0.00088235 0.0005305 0.1013918 354.8959961 Residual SS 2755.416748

S.W.E. BL*MLSS -0.00053535 0.0008497 0.53102034 2.54366541 AIC 540.727 
S.E. BL*MLSS 0.00117053 0.00058802 0.05100794 178.9925232

 
Total sum of squared errors RMS Error Average Error 

2755.416946 6.412926482 5.49249E-05 
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13BAppendix C 

Cross-Validation Outputs for Explanatory and Predictive Models 

Validation of explanatory model of TRS prior-lime (Y1) during annual period: 

RMSE of explanatory model of TRS prior-lime (Y1) during annual 

Total sum of squared errors RMS Error Average Error 
41.52302014 0.400400476 -2.8491E-05 

 
Cross-validation output of explanatory model of TRS prior-lime (Y1) during annual 
 
 

 

 

 

 
Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 
Constant term -1.6136272 0.72598064 0.02735128 258.3632507 
GT %S 0.14644508 0.08846668 0.09940994 0.45670193 
WAS %S -0.34105667 0.10004644 0.00078778 6.73980379 
Temp(F) 0.05063755 0.00635092 0 4.43061018 
S.W.O. BL*MLSS S.W.O 0.00002098 0.00000847 0.01412733 0.45927268 
Interaction(Temp(F),DT = 1) 0.00698714 0.00120843 0 4.9686327 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 
Constant term -2.26721835 0.74412119 0.00262292 283.7602539 
GT %S 0.21727198 0.09693497 0.02609211 1.17859936 
WAS %S -0.47557858 0.10251185 0.00000625 12.54754448 
Temp(F) 0.0637417 0.00627967 0 7.59533358 
S.W.O. BL*MLSS S.W.O 0.00003385 0.00000823 0.00005716 1.29712641 
Interaction(Temp(F),DT = 1) 0.00861129 0.0012379 0 7.60559511 

 
 

 

 

Validation of Sub Data SSE ( )( )2

1
ˆn

ii
σ

=∑  

Sub Data #1 12.251103 
Sub Data #2 10.425415 
Sub Data #3 8.268828 
Sub Data #4 6.5313182 
Sub Data #5 6.556915 

RMSE 
( )

1
22

1
ˆn

ii

vn
σ

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑  0.412327 
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Validation set of sub data #3 

Input variables Coefficient Std. Error p-value SS 
Constant term -2.19273925 0.7769196 0.00524386 283.8193359 
GT %S 0.1408702 0.09562531 0.14226775 0.78024191 
WAS %S -0.37850687 0.10985524 0.00069321 10.76668167 
Temp(F) 0.06202289 0.0064058 0 8.58029747 
S.W.O. BL*MLSS S.W.O 0.00002577 0.00000879 0.00376367 0.73114675 
Interaction(Temp(F),DT = 1) 0.00790401 0.0012604 0 6.51773691 

 
Validation set of sub data #4 

Input variables Coefficient Std. Error p-value SS 
Constant term -2.05498695 0.76959652 0.00820056 274.9548035 
GT %S 0.13708495 0.09891956 0.16733675 0.41286451 
WAS %S -0.3637116 0.11028954 0.00115232 8.68247128 
Temp(F) 0.05880776 0.00658696 0 7.48102474 
S.W.O. BL*MLSS S.W.O 0.00002608 0.00000852 0.0025115 0.75766402 
Interaction(Temp(F),DT = 1) 0.00754293 0.00130786 0 5.79257345 

 
Validation set of sub data #5 

Input variables Coefficient Std. Error p-value SS 
Constant term -1.88215089 0.7927559 0.01852934 274.2867737 
GT %S 0.18540752 0.1004192 0.06631388 1.10388517 
WAS %S -0.38281474 0.10901658 0.00055002 10.42708206 
Temp(F) 0.05498722 0.00703591 0 5.42697954 
S.W.O. BL*MLSS S.W.O 0.00002614 0.00000926 0.00522917 0.68040162 
Interaction(Temp(F),DT = 1) 0.00695778 0.00135184 0.00000058 4.61981249 

 

Validation of explanatory model of TRS prior-lime (Y1) during winter period: 

RMSE of explanatory model of TRS prior-lime (Y1) during winter 

Total sum of squared errors RMS Error Average Error 
1.414413998 0.168191201 -4.8632E-06 

 
Cross-validation output of explanatory model of TRS prior-lime (Y1) during winter 
 
 
 
 
 
 
 
 

Validation of Sub Data SSE ( )( )2

1
ˆn

ii
σ

=∑  

Sub Data #1 0.3644875 
Sub Data #2 0.4124564 
Sub Data #3 0.4718112 
Sub Data #4 0.1024846 
Sub Data #5 0.2063163 

RMSE 
( )

1
22

1
ˆn

ii

vn
σ

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑  0.176497 
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Validation set of sub data #1 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.18278824 0.17557548 0.30459338 26.0822506 
MLSS.S.W.O 0.00009329 0.00003483 0.01096709 0.38285899 
Ambient Temp 0.0144603 0.00241948 0.00000063 1.02684629 

 
Validation set of sub data #2 

Input variables Coefficient Std. Error p-value SS
Constant term -0.33320093 0.17411365 0.06341894 28.25761032
MLSS.S.W.O 0.00010966 0.00003274 0.00187273 0.5890727
Ambient Temp 0.01685336 0.00308603 0.00000333 0.83179593

 
Validation set of sub data #3 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.30440477 0.16736732 0.07704589 23.34783936 
MLSS.S.W.O 0.00012037 0.00003114 0.00043298 0.49998513 
Ambient Temp 0.0140189 0.00270923 0.00000817 0.70086968 

 
Validation set of sub data #4 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.31880328 0.18328953 0.09028897 26.16306114 
MLSS.S.W.O 0.00011026 0.00003411 0.00258114 0.54152602 
Ambient Temp 0.01608912 0.00289334 0.00000243 1.10104394 

 
Validation set of sub data #5 

Input variables Coefficient Std. Error p-value SS
Constant term -0.28039205 0.18534093 0.13881466 25.2969017
MLSS.S.W.O 0.00011925 0.00003746 0.0029478 0.5333761
Ambient Temp 0.0140128 0.0026769 0.00000677 0.90042037

 
Validation of explanatory model of TRS prior-lime (Y1) during summer period: 

RMSE of explanatory model of TRS prior-lime (Y1) during summer 

Total sum of squared errors RMS Error Average Error 
8.606915865 0.350650739 -0.000520196 
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Cross-validation output of explanatory model of TRS prior-lime (Y1) during summer 

 
 

 
Validation set of sub data #1 

Input variables Coefficient Std. Error p-value SS
Constant term 4.07743692 1.94832778 0.04146343 89.38504028
GT %S 0.26842105 0.14143457 0.06349725 0.62512231
DAF TS -0.0000061 0.0000023 0.01064226 0.29687461
Cake %S -0.21396916 0.05633853 0.00039623 2.81380486
S.W.E.BL 0.65783286 0.14763661 0.0000472 3.47191978
RAS.S.W.O 0.00052445 0.00012028 0.00006484 1.81935406

 
Validation set of sub data #2 

Input variables Coefficient Std. Error p-value SS
Constant term 5.04576254 2.35608649 0.03712338 98.20903015
GT %S 0.21614027 0.16556452 0.19770664 1.66917765
DAF TS -0.00000713 0.0000029 0.01764224 0.191725
Cake %S -0.24067767 0.06244401 0.00033204 3.3757422
S.W.E.BL 0.59291601 0.17019744 0.00103768 3.38233209
RAS.S.W.O 0.00064084 0.00014621 0.0000601 2.73143172

 
Validation set of sub data #3 

Input variables Coefficient Std. Error p-value SS
Constant term 4.22544765 2.5977447 0.11011249 97.75928497
GT %S 0.24293453 0.17708831 0.17624164 0.79603672
DAF TS -0.0000049 0.00000321 0.13311797 1.09552646
Cake %S -0.23080185 0.0708054 0.00201015 2.65591264
S.W.E.BL 0.6284048 0.17228112 0.00063117 3.79931736
RAS.S.W.O 0.00060447 0.00015615 0.00031493 2.31934333

 
 

 

 

Validation of Sub Data SSE ( )( )2

1
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σ

=∑  

Sub Data #1 4.1260648 
Sub Data #2 1.5412812 
Sub Data #3 0.9498785 
Sub Data #4 2.1607459 
Sub Data #5 1.5831385 

RMSE 
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=
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⎢ ⎥⎣ ⎦
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Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS
Constant term 5.50553226 2.24062419 0.01751743 96.04921722
GT %S 0.13731353 0.15825543 0.38972023 0.7122215
DAF TS -0.0000083 0.00000272 0.00359829 0.3311477
Cake %S -0.25889418 0.06114365 0.00009809 2.8430779
S.W.E.BL 0.7385568 0.16910659 0.00006329 3.38752317
RAS.S.W.O 0.00071623 0.0001548 0.0000266 2.90575624

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS
Constant term 5.76188707 2.3824172 0.01926773 97.8914566
GT %S 0.19348839 0.17812788 0.28258508 0.64679593
DAF TS -0.00000532 0.00000307 0.08942114 0.59359938
Cake %S -0.25242814 0.06192075 0.00016359 4.17119551
S.W.E.BL 0.545165 0.17498171 0.00303869 2.39170408
RAS.S.W.O 0.00050806 0.0001687 0.00406826 1.31987321

 
Validation of explanatory model of TRS post-lime (Y2) during annual period: 

RMSE of explanatory model of TRS post-lime (Y2) during annual 
 

 

 
Cross-validation output of explanatory model of TRS post-lime (Y2) during annual 

 

 

 

 

 

Validation set of sub data #1 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.17249058 0.04005617 0.00002591 0.56347823 
TRS Pri 0.05940421 0.0081301 0 0.27357507 
Blend(Pri:Sec) 0.04141361 0.01080362 0.00016903 0.04600448 
S.E. BL*MLSS S.E 0.00001127 0.00000249 0.00001029 0.03614472 
Predicted Post lime temp 0.00058982 0.0004062 0.14804594 0.04762288 
(DT = 1) -0.01856329 0.01253622 0.140233 0.00491618 

Total sum of squared errors RMS Error Average Error
0.536649945 0.045519309 1.5313E-05 

Validation of Sub Data SSE ( )( )2

1
ˆn

ii
σ

=∑  

Sub Data #1 0.089403 
Sub Data #2 0.131075 
Sub Data #3 0.082616 
Sub Data #4 0.161287 
Sub Data #5 0.09885125 

RMSE 
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1
22

1
ˆn
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=
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∑  0.046633 



 

 259 
 

Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.14034623 0.04019396 0.00058991 0.66243529 
TRS Pri 0.07183505 0.00739948 0 0.4751215 
Blend(Pri:Sec) 0.03204269 0.01082543 0.00344667 0.02459708 
S.E. BL*MLSS S.E 0.00000948 0.00000231 0.00005901 0.02404776 
Predicted Post lime temp 0.00037159 0.00040197 0.35637438 0.03996858 
(DT = 1) -0.02328327 0.01223534 0.05847597 0.00737496 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.17193806 0.04018134 0.00002897 0.71089232 
TRS Pri 0.06862083 0.00749449 0 0.4581989 
Blend(Pri:Sec) 0.03543651 0.01114014 0.00169922 0.03318158 
S.E. BL*MLSS S.E 0.00001073 0.00000235 0.00000872 0.03970831 
Predicted Post lime temp 0.00062234 0.0003991 0.12047368 0.05431617 
(DT = 1) -0.01969476 0.01236859 0.11287638 0.00571597 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 
Constant term -0.18605813 0.03598293 0.00000052 0.64445651 
TRS Pri 0.06051498 0.00690788 0 0.37281477 
Blend(Pri:Sec) 0.0332864 0.01034553 0.00150751 0.03339111 
S.E. BL*MLSS S.E 0.00001032 0.00000218 0.00000396 0.03520977 
Predicted Post lime temp 0.00082622 0.0003587 0.02228056 0.04415446 
(DT = 1) -0.00800728 0.01105537 0.46973065 0.00098626 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.21242036 0.03891534 0.0000001 0.67951494 
TRS Pri 0.06475236 0.00751115 0 0.4407638 
Blend(Pri:Sec) 0.027857 0.01138921 0.01530887 0.0345581 
S.E. BL*MLSS S.E 0.00001136 0.00000232 0.00000191 0.03632364 
Predicted Post lime temp 0.00110495 0.00040492 0.00692021 0.06784793 
(DT = 1) -0.00824984 0.01202761 0.49356091 0.00103447 

 
Validation of explanatory model of TRS post-lime (Y2) during winter period: 

RMSE of explanatory model of TRS post-lime (Y2) during winter 

Total sum of squared errors RMS Error Average Error 

0.003470104 0.008330791 3.36304E-07 
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Cross-validation output of explanatory model of TRS post-lime (Y2) during winter  
 
 

 

 

 

 
Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 
Constant term 0.35590735 0.06511521 0.0000036 0.01089 
TRS Pri 0.01316214 0.00736791 0.08245696 0.00103313 
WAS %S -0.07263096 0.01170774 0.00000037 0.00372412 
Predicted Post lime temp 0.00033971 0.00018251 0.07087398 0.00022411 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 
Constant term 0.28483838 0.06856921 0.00019186 0.0133225 
TRS Pri 0.01904802 0.00824111 0.02665034 0.00075858 
WAS %S -0.05898215 0.01236141 0.00003014 0.00238985 
Predicted Post lime temp 0.00027905 0.00023751 0.24776015 0.00011185 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS
Constant term 0.23391238 0.06808797 0.0015066 0.009
TRS Pri 0.01501349 0.00782772 0.06307148 0.00090056
WAS %S -0.04970548 0.01207143 0.00021358 0.00214793
Predicted Post lime temp 0.0003561 0.00020584 0.09220044 0.00022654

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS
Constant term 0.2549901 0.07362349 0.00139398 0.0119025
TRS Pri 0.01581494 0.00720472 0.03468985 0.00113892
WAS %S -0.05391682 0.01333292 0.00026518 0.00213385
Predicted Post lime temp 0.00035929 0.00019929 0.0797931 0.00025875

 
 

 

 

Validation of Sub Data SSE ( )( )2
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Sub Data #1 0.001345 
Sub Data #2 0.0005749 
Sub Data #3 0.0007973 
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Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 
Constant term 0.27706403 0.07007175 0.00034472 0.01024 
TRS Pri 0.0141349 0.00745182 0.06589467 0.000645 
WAS %S -0.05704153 0.01249792 0.00005645 0.00271819 
Predicted Post lime temp 0.00030121 0.0001985 0.13789558 0.00018015 

 
Validation of explanatory model of TRS post-lime (Y2) during summer period: 

RMSE of explanatory model of TRS post-lime (Y2) during summer 

Total sum of squared errors RMS Error Average Error 
0.1992954 0.053358009 -0.00146334 

 
Cross-validation output of explanatory model of TRS post-lime (Y2) during summer 

 
 

  

 

 

 
Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS
Constant term -0.44319564 0.10259682 0.0000722 0.40800714
TRS Pri 0.03106434 0.01930756 0.11380704 0.08748905
GT TS 0.00000064 0.00000029 0.03396073 0.036032
RAS.S.E 0.00005766 0.00001948 0.00465641 0.02871277
S.W.E. BL*MLSS S.W.E 0.0000163 0.00000605 0.00955092 0.02238384

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS
Constant term -0.38431886 0.11294568 0.00130585 0.49971607
TRS Pri 0.03852218 0.01850338 0.04238814 0.11791269
GT TS 0.00000042 0.00000031 0.187894 0.02401834
RAS.S.E 0.00006714 0.00002007 0.00155109 0.03720866
S.W.E. BL*MLSS S.W.E 0.00001455 0.00000637 0.02654988 0.018326

 
 

 

Validation of Sub Data SSE ( )( )2
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Sub Data #3 0.0537814 
Sub Data #4 0.0354636 
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Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS
Constant term -0.52127182 0.10180665 0.00000466 0.45359996
TRS Pri 0.03666688 0.01643579 0.03011162 0.08889505
GT TS 0.00000092 0.00000029 0.00260831 0.06315182
RAS.S.E 0.00004924 0.00001957 0.0150793 0.0215973
S.W.E. BL*MLSS S.W.E 0.0000152 0.00000564 0.00948295 0.02147508

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS
Constant term -0.3784458 0.10768083 0.00093356 0.51111603
TRS Pri 0.04646393 0.01923585 0.01933589 0.1165152
GT TS 0.00000042 0.0000003 0.15914239 0.02468498
RAS.S.E 0.00005988 0.00001946 0.00335647 0.03185174
S.W.E. BL*MLSS S.W.E 0.0000151 0.00000796 0.06344637 0.01182423

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS
Constant term -0.55654055 0.09961392 0.00000086 0.42874998
TRS Pri 0.05663443 0.01600486 0.00086791 0.13205446
GT TS 0.00000081 0.00000028 0.00567107 0.05321962
RAS.S.E 0.00007967 0.00001958 0.00016444 0.04230213
S.W.E. BL*MLSS S.W.E 0.00000756 0.0000052 0.15213044 0.00501677

 
Validation of explanatory model of N-containing (Y3) during annual period: 

  RMSE of explanatory model of N-containing (Y3) during annual 

 
  

 Cross-validation output of explanatory model of N-containing (Y3) during annual  

 
 

 

 

 

 

 

Total sum of squared errors RMS Error Average Error 

6883.492491 5.780571952 -1.22428E-07 

Validation of Sub Data SSE ( )( )2

1
ˆn
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σ
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Sub Data #1 1652.7688 
Sub Data #2 1912.2285 
Sub Data #3 1075.4709 
Sub Data #4 1067.507 
Sub Data #5 1781.5208 
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Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 
Constant term -19.622757 4.86293697 0.00008452 10303.92773 
Post lime Temp 0.07458825 0.0335843 0.02776915 1283.177368 
Pol_Sec 0.01291948 0.00172118 0 1796.430664 
Pol_DW/Dry ton solids 0.57217956 0.1876936 0.00269452 404.8916626 
(DT = 1) -2.5766778 1.32084501 0.05284127 126.22789 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 
Constant term -16.2872715 4.86356354 0.001012 9745.15625 
Post lime Temp 0.06765807 0.03113895 0.03126813 1578.484619 
Pol_Sec 0.01537322 0.0017107 0 2476.460938 
Pol_DW/Dry ton solids 0.10818642 0.22018027 0.62384957 28.11370277 
(DT = 1) -3.28561211 1.30156195 0.01256507 205.2554169 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 
Constant term -23.9482098 4.87384892 0.00000219 9862.475586 
Post lime Temp 0.08358901 0.03405543 0.01517948 1958.323853 
Pol_Sec 0.01589398 0.0019803 0 2277.056396 
Pol_DW/Dry ton solids 0.57066441 0.20060802 0.00502713 408.4032288 
(DT = 1) -2.46164536 1.38035035 0.07642537 116.5712051 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 
Constant term -20.56046677 5.00239992 0.00006302 9510.042969 
Post lime Temp 0.07813048 0.03458369 0.02522304 1480.271973 
Pol_Sec 0.01387061 0.00179438 0 2081.130127 
Pol_DW/Dry ton solids 0.5049749 0.19583386 0.0108214 332.0267334 
(DT = 1) -2.63143563 1.40931237 0.0637063 126.9289475 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 
Constant term -23.68843651 4.86697245 0.00000269 9360.46875 
Post lime Temp 0.08061138 0.03301869 0.01572089 1255.030029 
Pol_Sec 0.01436236 0.00166382 0 2333.821777 
Pol_DW/Dry ton solids 0.65051007 0.2057998 0.00188162 403.297821 
(DT = 1) -1.88220775 1.31691253 0.15487963 65.92568207 
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Validation of explanatory model of N-containing (Y3) during winter period: 

  RMSE of explanatory model of N-containing (Y3) during winter 

Total sum of squared errors RMS Error Average Error
153.283602 1.598351244 8.41104E-06 

 
  Cross-validation output of explanatory model of N-containing (Y3) during winter 

 
 

 

 

 

 
Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 
Constant term -8.67798805 2.77228069 0.00309896 366.9155273 
Post lime Temp 0.04666851 0.02160704 0.03627175 6.41247129 
RAS.S.E 0.00171669 0.00048464 0.00095297 52.78307724 
Pol_DW/Dry ton solids 0.12164825 0.15839763 0.44659367 1.77487302 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 
Constant term -7.97980642 1.90004337 0.00012812 316.1106873 
Post lime Temp 0.05575303 0.01547796 0.00079839 14.02059746 
RAS.S.E 0.00102902 0.00030925 0.00177737 28.93017006 
Pol_DW/Dry ton solids 0.20569523 0.08942139 0.02623189 8.66257 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 
Constant term -7.64728355 2.64262199 0.00590016 351.4877319 
Post lime Temp 0.05059863 0.02087076 0.01951065 13.33826637 
RAS.S.E 0.00108753 0.00045359 0.02081246 23.21550751 
Pol_DW/Dry ton solids 0.20893879 0.12382349 0.09860579 8.15744972 

 
 

 

Validation of Sub Data SSE ( )( )2
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Sub Data #2 86.005759 
Sub Data #3 27.874329 
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Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 
Constant term -5.83759308 2.9796977 0.05645397 385.2200317 
Post lime Temp 0.03368986 0.02094302 0.11484692 1.90995574 
RAS.S.E 0.00102817 0.00048245 0.03870164 18.60653687 
Pol_DW/Dry ton solids 0.19057095 0.12236442 0.12653881 7.20480633 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 
Constant term -8.17711163 2.99088979 0.00898032 427.929657 
Post lime Temp 0.0447272 0.02302514 0.05848901 3.74225926 
RAS.S.E 0.00133645 0.00045322 0.00509161 38.37176514 
Pol_DW/Dry ton solids 0.21644875 0.12876609 0.09986003 9.10062504 

 
Validation of explanatory model of N-containing (Y3) during summer period: 

RMSE of explanatory model of N-containing (Y3) during summer 

Total sum of squared errors RMS Error Average Error 
2663.941954 6.305579091 9.99169E-06 

 
Cross-validation output of explanatory model of N-containing (Y3) during summer 
 
 
 
 
 

 

 

 

Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 
Constant term -27.06731415 10.05653286 0.00970362 7884.617188 
Post lime Temp 0.16368711 0.07886629 0.04321032 254.7974091 
S.W.O.BL 3.33703351 1.31698322 0.0145297 672.5153809 
Pol_DW/Dry ton solids 0.65633905 0.31046861 0.03962643 168.1104431 
S.E. BL*MLSS S.E 0.00090351 0.00051596 0.08618593 142.2775574 

 
 

Validation of Sub Data 
SSE ( )( )2
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Sub Data #1 439.50598 
Sub Data #2 729.74109 
Sub Data #3 890.94924 
Sub Data #4 325.55432 
Sub Data #5 1264.2154 
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Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 
Constant term -18.59605789 10.53304672 0.08384097 6439.206055 
Post lime Temp 0.07114482 0.08645198 0.41461176 64.78304291 
S.W.O.BL 3.41354465 1.25588226 0.00910953 603.7216187 
Pol_DW/Dry ton solids 0.76503158 0.27967173 0.00870369 294.0295715 
S.E. BL*MLSS S.E 0.00094656 0.0005523 0.09300707 123.7935715 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 
Constant term -27.3769207 9.38144398 0.00530276 6929.20166 
Post lime Temp 0.15548363 0.07412478 0.04112214 209.8670044 
S.W.O.BL 2.55813932 1.00905693 0.0144811 452.0293579 
Pol_DW/Dry ton solids 0.86416513 0.25813276 0.00157206 408.4367981 
S.E. BL*MLSS S.E 0.00093856 0.00048112 0.05681286 139.97052 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 
Constant term -26.46740913 10.66418266 0.01662069 7103.172852 
Post lime Temp 0.14385492 0.08223621 0.0866329 228.150528 
S.W.O.BL 2.60166717 1.35376203 0.06057769 431.5637512 
Pol_DW/Dry ton solids 0.88973743 0.35106117 0.01457956 299.8216858 
S.E. BL*MLSS S.E 0.00109781 0.00054213 0.04844886 201.2860565 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 
Constant term -16.06728363 10.06443787 0.11682028 6110.551758 
Post lime Temp 0.13237143 0.07266811 0.07462461 172.5416107 
S.W.O.BL 0.30035964 1.16687644 0.79794419 33.03540039 
Pol_DW/Dry ton solids 0.27445114 0.32346112 0.40029529 19.70939636 
S.E. BL*MLSS S.E 0.00198342 0.00057752 0.00121768 443.5253296 

 
Validation of predictive model of TRS prior-lime (Y1) during annual period: 

RMSE of predictive model of TRS prior-lime (Y1) during annual 

 
 

 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of squared errors RMS Error Average Error Total sum of squared errors RMS Error Average Error 

24.04575862 0.393870444 -0.002239371 14.60075105 0.374689 0.01894817 
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Validation of predictive model of TRS prior-lime (Y1) during winter period: 

RMSE of predictive model of TRS prior-lime (Y1) during winter 
 

Total sum of squared errors RMS Error Average Error 

1.148790121 0.151577711 -5.03604E-05 

 
  Cross-validation output of predictive model of TRS prior-lime (Y1) during winter  
 
 
 
 

 

 

 
Validation set of sub data # 1 
 
Input variables Coefficient Std. Error p-value SS 

Constant term -0.05874452 0.26596686 0.82651347 26.0822506 
S.E.BL 0.39635867 0.17752446 0.03226065 0.13340688 
RAS.S.E -0.00010847 0.00005187 0.04404362 0.20917533 
Ambient Temp 0.01460141 0.00237059 0.00000054 1.04730177 
S.W.O. BL*MLSS S.W.O 0.00002326 0.00000798 0.00626148 0.14711303 
S.E. BL*MLSS S.E -0.00010965 0.00006458 0.09867546 0.07318256 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.024817 0.28173894 0.93032581 28.25761032 
S.E.BL 0.36226723 0.17402887 0.04497369 0.10342547 
RAS.S.E -0.0001413 0.00005133 0.00940696 0.25676274 
Ambient Temp 0.01652887 0.00306331 0.00000526 0.92458194 
S.W.O. BL*MLSS S.W.O 0.00002676 0.00000739 0.00094172 0.26472694 
S.E. BL*MLSS S.E -0.00009881 0.00006305 0.12629554 0.06086689 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.3450534 0.28262055 0.23052068 23.34783936 
S.E.BL 0.03905203 0.19073832 0.83899492 0.07386089 
RAS.S.E -0.00015266 0.00004979 0.00423589 0.19477518 
Ambient Temp 0.01340984 0.00264309 0.00001379 0.71560788 
S.W.O. BL*MLSS S.W.O 0.00002741 0.00000794 0.001501 0.37596649 
S.E. BL*MLSS S.E -0.00000117 0.00006666 0.9861173 0.00000731 

 

Validation of Sub Data SSE ( )( )2
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Validation set of sub data # 4 
 
Input variables Coefficient Std. Error p-value SS 

Constant term 0.05228124 0.28810164 0.85707772 26.16306114 
S.E.BL 0.51677704 0.20745333 0.01777985 0.2161732 
RAS.S.E -0.00020528 0.00006691 0.00421264 0.25451833 
Ambient Temp 0.0139587 0.00285562 0.00002397 1.02538681 
S.W.O. BL*MLSS S.W.O 0.00003868 0.00000965 0.00031553 0.33422691 
S.E. BL*MLSS S.E -0.00015753 0.00007244 0.03670711 0.1379492 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.06478707 0.27497694 0.81514949 25.2969017 
S.E.BL 0.39898172 0.18055588 0.03395838 0.27613273 
RAS.S.E -0.00013506 0.00005194 0.01368234 0.1584762 
Ambient Temp 0.01389134 0.00244962 0.00000231 0.94445848 
S.W.O. BL*MLSS S.W.O 0.00003553 0.00000931 0.00054928 0.28743148 
S.E. BL*MLSS S.E -0.00011853 0.00006263 0.06697404 0.09368367 

 
Validation of predictive model of TRS prior-lime (Y1) during summer period: 

RMSE of predictive model of TRS prior-lime (Y1) during summer 

  
 
 
Cross-validation output of predictive model of TRS prior-lime (Y1) during summer 
 
 

 
Validation set of sub data # 1 
Input variables Coefficient Std. Error p-value SS 

Constant term 1.99286532 2.15535164 0.35969868 89.38504028 
GT %S 0.32071081 0.13971643 0.02602754 0.62512231 
DAF TS -0.00000592 0.00000223 0.01071688 0.29687461 
Cake %S -0.22334045 0.05488417 0.00017108 2.81380486 
S.W.E.BL 0.63002801 0.14397073 0.00006313 3.47191978 
RAS.S.W.O 0.00047777 0.00011903 0.00020424 1.81935406 
Temp(F) 0.03264007 0.01618798 0.04926579 0.3666088 

 

Total sum of squared errors RMS Error Average Error 

8.376898669 0.345933492 0.000806436 

Validation of Sub Data SSE ( )( )2

1
ˆn

ii
σ

=∑  

Sub Data #1 4.3884027 
Sub Data #2 1.4793374 
Sub Data #3 0.8173868 
Sub Data #4 2.1343542 
Sub Data #5 1.4011608 

RMSE 
( )

1
22

1
ˆn

ii

vn
σ

=
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑  0.382111 
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Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 

Constant term 3.80242658 2.61268878 0.15194422 98.20903015 
GT %S 0.2439815 0.1672018 0.15089032 1.66917765 
DAF TS -0.00000701 0.0000029 0.01936081 0.191725 
Cake %S -0.25533095 0.06375225 0.00021004 3.3757422 
S.W.E.BL 0.53017664 0.17932306 0.00477476 3.38233209 
RAS.S.W.O 0.00063097 0.00014621 0.000077 2.73143172 
Temp(F) 0.02378284 0.02177845 0.28015789 0.16890419 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 

Constant term 3.45153379 2.85146546 0.23191586 97.75928497 
GT %S 0.27435952 0.18401551 0.14238228 0.79603672 
DAF TS -0.00000499 0.00000323 0.12914681 1.09552646 
Cake %S -0.24057478 0.07264329 0.0017466 2.65591264 
S.W.E.BL 0.61030275 0.17527737 0.00105691 3.79931736 
RAS.S.W.O 0.00058842 0.00015878 0.0005361 2.31934333 
Temp(F) 0.01461799 0.02160706 0.50188059 0.07161708 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 

Constant term 4.53050661 2.46948028 0.07263999 96.04921722 
GT %S 0.17034969 0.16224793 0.29889911 0.7122215 
DAF TS -0.00000816 0.00000273 0.00430942 0.3311477 
Cake %S -0.26696989 0.0618054 0.00007602 2.8430779 
S.W.E.BL 0.68980116 0.17699552 0.00029539 3.38752317 
RAS.S.W.O 0.00069723 0.00015627 0.00004758 2.90575624 
Temp(F) 0.01715119 0.01816996 0.34983608 0.12120697 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term 4.46453381 2.52744675 0.08355424 97.8914566 
GT %S 0.271346 0.18456767 0.14790787 0.64679593 
DAF TS -0.00000571 0.00000305 0.06707462 0.59359938 
Cake %S -0.27932385 0.06412439 0.00006745 4.17119551 
S.W.E.BL 0.46213657 0.18271741 0.01469889 2.39170408 
RAS.S.W.O 0.00049042 0.00016744 0.00514943 1.31987321 
Temp(F) 0.02959743 0.02074874 0.16007392 0.29010886 
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Validation of predictive model of TRS post-lime (Y2) during annual period: 

RMSE of predictive model of TRS post-lime (Y2) during annual 

 
Validation of predictive model of TRS post-lime (Y2) during winter period: 

RMSE of predictive model of TRS post-lime (Y2) during winter 
  

 

 Cross-validation output of predictive model of TRS post-lime (Y2) during winter 

 
 

 
Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.32699418 0.06337424 0.00001066 0.01089 
TRS Pri 0.00738912 0.0073573 0.32231644 0.00103313 
WAS %S -0.07040627 0.0111922 0.00000036 0.00372412 
S.W.O.BL 0.00658568 0.00301163 0.03573798 0.00012092 
RAS.S.W.E -0.00000107 0.00000164 0.51984566 0.00009679 
Predicted Post lime temp 0.0004827 0.00019315 0.01744486 0.00036236 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.29091328 0.06500649 0.00008141 0.0133225 
TRS Pri 0.01590706 0.00790952 0.05229409 0.00075858 
WAS %S -0.05938454 0.01176874 0.00001498 0.00238985 
S.W.O.BL 0.00866769 0.00338111 0.01495392 0.00015024 
RAS.S.W.E -0.00000316 0.00000172 0.07443172 0.00032639 
Predicted Post lime temp 0.00028796 0.00023487 0.22861192 0.00010807 

 
 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of squared errors RMS Error Average Error Total sum of squared errors RMS Error Average Error 
0.360914657 0.04825434 1.75401E-05 0.202561964 0.044132881 -0.01066482 

Total sum of squared errors RMS Error Average Error 

0.002991057 0.007734413 5.7367E-06 

Validation of Sub Data SSE ( )( )2

1
ˆn

ii
σ

=∑  

Sub Data #1 0.00128333 
Sub Data #2 0.0005978 
Sub Data #3 0.0006556 
Sub Data #4 0.0004325 
Sub Data #5 0.0008373 

RMSE ( )
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1
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σ

=
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⎢ ⎥
⎢ ⎥⎣ ⎦

∑  0.013933 
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Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.25665611 0.0668454 0.00051161 0.009 
TRS Pri 0.0131534 0.00784007 0.10257355 0.00090056 
WAS %S -0.05159394 0.01195453 0.00012982 0.00214793 
S.W.O.BL 0.0069372 0.00345101 0.0523977 0.00002944 
RAS.S.W.E -0.00000301 0.00000168 0.08176975 0.00038913 
Predicted Post lime temp 0.00028863 0.000217 0.19234742 0.00012528 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.27095062 0.07413749 0.00086046 0.0119025 
TRS Pri 0.01276927 0.00745891 0.09601482 0.00113892 
WAS %S -0.05699927 0.01311402 0.00011872 0.00213385 
S.W.O.BL 0.00666221 0.00342684 0.06019244 0.00003138 
RAS.S.W.E -0.00000221 0.00000171 0.20570485 0.00029115 
Predicted Post lime temp 0.00038243 0.00022267 0.09498502 0.00022371 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.29385769 0.0648398 0.00006886 0.01024 
TRS Pri 0.00870764 0.00720426 0.23512533 0.000645 
WAS %S -0.05923011 0.01162259 0.00001289 0.00271819 
S.W.O.BL 0.0099088 0.0033464 0.00555675 0.00013102 
RAS.S.W.E -0.00000344 0.00000158 0.03631308 0.00048337 
Predicted Post lime temp 0.00029762 0.00019941 0.14478281 0.0001465 

 
Validation of predictive model of TRS post-lime (Y2) during summer period: 

RMSE of predictive model of TRS post-lime (Y2) during summer 

 
 
 

Cross-validation output of predictive model of TRS post-lime (Y2) during summer 

 

 

 

 

Total sum of squared errors RMS Error Average Error 

0.18408697 0.0512817 -2.54089E-05 

Validation of Sub Data SSE ( )( )2

1
ˆn

ii
σ

=∑  

Sub Data #1 0.0423658 
Sub Data #2 0.0190541 
Sub Data #3 0.0369723 
Sub Data #4 0.0607363 
Sub Data #5 0.0830447 

RMSE 
( )
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=
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Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.15217446 0.05064283 0.00411292 0.40800714 
TRS Pri 0.0445551 0.01701416 0.0115932 0.08748905 
RAS.S.E 0.00005832 0.00001774 0.00183213 0.05219924 
S.W.O*RAS S.W.O -0.00001126 0.00000284 0.00022691 0.00592907 
S.W.O. BL*MLSS S.W.O 0.00001994 0.00000475 0.00010888 0.04781482 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.16354738 0.0551777 0.00460674 0.49971607 
TRS Pri 0.05352212 0.01643313 0.00200534 0.11791269 
RAS.S.E 0.00006432 0.00001864 0.00113201 0.05483054 
S.W.O*RAS S.W.O -0.00001097 0.00000401 0.00858096 0.00223765 
S.W.O. BL*MLSS S.W.O 0.00001758 0.00000521 0.00143093 0.03675106 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.15509735 0.05388933 0.0058314 0.45359996 
TRS Pri 0.04675478 0.01476082 0.00259685 0.08889505 
RAS.S.E 0.00005998 0.00001871 0.00233164 0.0550212 
S.W.O*RAS S.W.O -0.00001086 0.00000282 0.00032887 0.00545227 
S.W.O. BL*MLSS S.W.O 0.00001902 0.00000464 0.00014726 0.04874091 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.15551254 0.05381637 0.0056498 0.51111603 
TRS Pri 0.06100557 0.01684879 0.00067532 0.1165152 
RAS.S.E 0.00005723 0.00001817 0.00273287 0.0506326 
S.W.O*RAS S.W.O -0.00001112 0.00000362 0.00343471 0.00527889 
S.W.O. BL*MLSS S.W.O 0.00001887 0.0000065 0.00543266 0.02553549 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.25734371 0.04963407 0.00000371 0.42874998 
TRS Pri 0.05534116 0.01433386 0.00031953 0.13205446 
RAS.S.E 0.0000958 0.00001828 0.00000303 0.07674418 
S.W.O*RAS S.W.O -0.00000891 0.0000026 0.00121893 0.00684106 
S.W.O. BL*MLSS S.W.O 0.00001351 0.00000439 0.00336995 0.02159626 
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Validation of predictive model of N-containing (Y3) during annual period: 

RMSE of predictive model of N-containing (Y3) during annual 
 

 
Validation of predictive model of N-containing (Y3) during winter period: 

RMSE of predictive model of N-containing (Y3) during winter 
 
 
 
 

Cross-validation output of predictive model of N-containing (Y3) during winter 

 

 

 

 

 

Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 

Constant term -9.81142616 2.85579443 0.00136669 369.4326172 
Post lime Temp 0.06332319 0.02140568 0.00511761 6.00860834 
RAS.S.W.O 0.00101248 0.0002354 0.00010255 35.63976669 
Pol_DW/Dry ton solids 0.2625013 0.15465687 0.09721694 12.61915493 
S.W.O. BL*MLSS S.W.O -0.0003762 0.00011232 0.00174716 18.76857376 
S.E. BL*MLSS S.E 0.00051965 0.00025964 0.05199272 10.40822792 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 

Constant term -8.49135685 1.97599804 0.00009711 314.4035645 
Post lime Temp 0.06656916 0.01517155 0.00007295 14.69402504 
RAS.S.W.O 0.00068846 0.00018424 0.00054484 15.54042721 
Pol_DW/Dry ton solids 0.23146655 0.09126958 0.0149245 16.41931725 
S.W.O. BL*MLSS S.W.O -0.00028005 0.00008549 0.00208786 8.60968781 
S.E. BL*MLSS S.E 0.00042406 0.00018343 0.02564154 7.84639883 

Training Data scoring - Summary Report Validation Data scoring - Summary Report 

Total sum of squared errors RMS Error Average Error Total sum of squared errors RMS Error Average Error

4277.597855 5.873393985 2.66803E-05 2709.280652 5.7480438 1.074029007 

Total sum of squared errors RMS Error Average Error 

119.0766169 1.408762 -6.44517E-06 

Validation of Sub Data SSE ( )( )2

1
ˆn
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σ

=∑  

Sub Data #1 14.668108 
Sub Data #2 62.897187 
Sub Data #3 26.616443 
Sub Data #4 19.595084 
Sub Data #5 22.111341 
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Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 

Constant term -9.28103447 2.40089297 0.00037822 351.4877319 
Post lime Temp 0.06863222 0.01933898 0.00096802 13.33826637 
RAS.S.W.O 0.00090472 0.00022084 0.00018695 25.94114113 
Pol_DW/Dry ton solids 0.20327428 0.11520455 0.08492578 12.05634594 
S.W.O. BL*MLSS S.W.O -0.00036639 0.00010924 0.00169637 11.31712341 
S.E. BL*MLSS S.E 0.0005694 0.00022035 0.01333429 14.83060837 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 

Constant term -8.22279835 2.83878851 0.00596708 385.2200317 
Post lime Temp 0.06318911 0.02068965 0.00390898 1.90995574 
RAS.S.W.O 0.00103742 0.00025323 0.00018702 20.26739883 
Pol_DW/Dry ton solids 0.14690812 0.11965648 0.22637787 10.19570541 
S.W.O. BL*MLSS S.W.O -0.00037767 0.00011681 0.00238487 18.78800011 
S.E. BL*MLSS S.E 0.00039199 0.0002383 0.10743925 6.4921627 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term -8.97561359 2.73662305 0.00209303 427.929657 
Post lime Temp 0.06612473 0.02099786 0.00301314 3.74225926 
RAS.S.W.O 0.00116515 0.00023693 0.0000139 34.76968765 
Pol_DW/Dry ton solids 0.13857614 0.12525623 0.27487558 15.7131958 
S.W.O. BL*MLSS S.W.O -0.00047319 0.0001195 0.00028454 23.69659615 
S.E. BL*MLSS S.E 0.00058495 0.0002423 0.02020729 14.01468182 

 
Validation of predictive model of N-containing (Y3) during summer period: 

RMSE of predictive model of N-containing (Y3) during summer 
 

Total sum of squared errors RMS Error Average Error 

2891.220447 6.569059597 -2.58462E-06 

 
  Cross-validation output of predictive model of N-containing (Y3) during summer 

 

 

 

 

Validation of Sub Data SSEv ( )( )2

1
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σ

=∑  

Sub Data #1 364.00717 
Sub Data #2 558.8245 
Sub Data #3 901.81471 
Sub Data #4 380.04765 
Sub Data #5 1328.5441 

RMSEv 
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Validation set of sub data # 1 

Input variables Coefficient Std. Error p-value SS 

Constant term -18.7894726 10.54402828 0.08107539 7612.352051 
Post lime Temp 0.13057736 0.08470499 0.12974936 197.126236 
Pol_DW/Dry ton solids 0.88159162 0.32226831 0.00870095 339.9533691 
S.E. BL*MLSS S.E 0.0013454 0.00054733 0.01762695 320.2048035 

 
Validation set of sub data # 2 

Input variables Coefficient Std. Error p-value SS 

Constant term -15.4128695 10.51010227 0.14865653 6710.99707 
Post lime Temp 0.0947485 0.08838063 0.28874421 107.9253998 
Pol_DW/Dry ton solids 0.91947818 0.28426504 0.00214007 502.4208984 
S.E. BL*MLSS S.E 0.00125902 0.00053792 0.02320474 253.1344299 

 
Validation set of sub data # 3 

Input variables Coefficient Std. Error p-value SS 

Constant term -20.9177246 9.50623322 0.03242452 6929.20166 
Post lime Temp 0.1405312 0.07779657 0.07687722 209.8670044 
Pol_DW/Dry ton solids 0.95484078 0.26915956 0.00085619 528.3829346 
S.E. BL*MLSS S.E 0.00119138 0.00049555 0.0199573 235.6619568 

 
Validation set of sub data # 4 

Input variables Coefficient Std. Error p-value SS 

Constant term -20.19968605 10.42854691 0.0585268 7103.172852 
Post lime Temp 0.12863187 0.08407332 0.13244841 228.150528 
Pol_DW/Dry ton solids 1.01137185 0.3546719 0.00635135 429.9729004 
S.E. BL*MLSS S.E 0.00134697 0.00054067 0.01616286 321.4047546 

 
Validation set of sub data # 5 

Input variables Coefficient Std. Error p-value SS 

Constant term -14.9698105 9.03118992 0.10366684 6110.551758 
Post lime Temp 0.1296912 0.07124355 0.07468709 172.5416107 
Pol_DW/Dry ton solids 0.26243696 0.3170732 0.41178161 12.15908432 
S.E. BL*MLSS S.E 0.00201614 0.00055807 0.00070218 481.6195679 
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14BAppendix D 

The Best Explanatory and Predictive Models 
 

A. The best explanatory model for TRS prior-lime (Y1)  

The best annual explanatory models of TRS prior-lime (Y1) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.6466 0.4181 0.4066 0.405120486 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 29.83147587 5.966295174 36.3527 < 0.0001 

Unexplained 253 41.52301988 0.164122608 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -2.023725624 0.680571888 -2.9736 0.0032 -3.364033558 -0.68341769 

WAS %S -0.388862351 0.094880373 -4.0984 < 0.0001 -0.575718316 -0.202006385 

Temp Sec Eff 0.05838969 0.005826328 10.0217 < 0.0001 0.046915408 0.069863972 
SWO. BL*MLSS. 
SWO 2.6907E-05 7.71915E-06 3.4857 0.0006 1.1705E-05 4.2109E-05 

GT %S 0.164807583 0.085661938 1.9239 0.0555 -0.003893737 0.333508902 

DT*Temp 0.007622134 0.001137213 6.7025 < 0.0001 0.005382523 0.009861745 
 

The best winter explanatory models of TRS prior-lime (Y1) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7476 0.5589 0.5401 0.173475978 

Degrees of Sum of Mean of  
p-Value 

ANOVA Table Freedom Squares Squares 

Explained 2 1.792274003 0.896137002 29.7780 < 0.0001 

Unexplained 47 1.414413997 0.030093915 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.283899873 0.15693682 -1.8090 0.0768 -0.599616031 0.031816285 

MLSS.SWO 0.000110959 3.02443E-05 3.6688 0.0006 5.01151E-05 0.000171803 

Ambient Temp 0.015049725 0.002427339 6.2001 < 0.0001 0.010166549 0.019932902 
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The best summer explanatory models of TRS prior-lime (Y1) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7688 0.5911 0.5591 0.366718913 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 12.44056186 2.488112372 18.5013 < 0.0001 

Unexplained 64 8.606896711 0.134482761 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant 4.869238295 2.045571422 2.3804 0.0203 0.782739605 8.955736985 

DAF TS -6.29232E-06 2.51552E-06 -2.5014 0.0149 -1.13177E-05 -1.26698E-06 

Cake %S -0.237370938 0.055436952 -4.2818 < 0.0001 -0.348118981 -0.126622895 

SWE.BL 0.63003452 0.148290202 4.2487 < 0.0001 0.333790785 0.926278254 

RAS.SWO 0.000596106 0.000132375 4.5031 < 0.0001 0.000331655 0.000860556 

GT %S 0.21122279 0.145349169 1.4532 0.1511 -0.079145554 0.501591135 
 

B. The best explanatory model for TRS post-lime (Y2)  

The best annual explanatory models of TRS post-lime (Y2) 

Multiple 
R-Square 

Adjusted StErr of  

Summary R R-Square Estimate 

0.7421 0.5507 0.5418 0.046055898

Degrees of Sum of  Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 5 0.657733134 0.131546627 62.0168 < 0.0001 

Unexplained 253 0.536649878 0.002121146

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.177903592 0.034821302 -5.1090 < 0.0001 -0.246480135 -0.109327048

Blend(Pri:Sec) 0.034349804 0.009725666 3.5319 0.0005 0.015196226 0.053503382

SE.BL*MLSS 1.06533E-05 2.07664E-06 5.1301 < 0.0001 6.56364E-06 1.4743E-05 

U Predicted Post lime temp 0.000708878 0.000351361 2.0175 0.0447 1.69139E-05 0.001400842

(DT = 1) -0.015346898 0.0107471 -1.4280 0.1545 -0.036512074 0.005818278

TRS Pri 0.065067996 0.006662666 9.7661 < 0.0001 0.051946642 0.07818935 
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The best winter explanatory models of TRS post-lime (Y2) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7583 0.5750 0.5472 0.008663018 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 3 0.004669797 0.001556599 20.7414 < 0.0001 

Unexplained 46 0.003452203 7.50479E-05 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant 0.26473271 0.065204705 4.0600 0.0002 0.133482447 0.395982973 

WAS %S -0.05501787 0.011670193 -4.7144 < 0.0001 -0.07850875 -0.03152699 

UPredicted Post lime temp 0.000276997 0.000147635 1.8762 0.0670 -2.01772E-05 0.00057417 

TRS Prior-lime 0.017966929 0.005835715 3.0788 0.0035 0.006220245 0.029713614 
 

The best summer explanatory models of TRS post-lime (Y2) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.7407 0.5486 0.5208 0.055351281

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 4 0.242032462 0.060508116 19.7496 < 0.0001 

Unexplained 65 0.19914468 0.003063764

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -0.452628502 0.09391427 -4.8196 < 0.0001 -0.64018825 -0.265068754 

RAS.SE 6.19441E-05 1.75389E-05 3.5318 0.0008 2.69165E-05 9.69718E-05 

SW.E. BL*MLSS S.W.E 1.34304E-05 5.48136E-06 2.4502 0.0170 2.48339E-06 2.43775E-05 

GT TS 6.35973E-07 2.63697E-07 2.4118 0.0187 1.09334E-07 1.16261E-06 

TRS Prior-lime 0.042975773 0.015835827 2.7138 0.0085 0.011349443 0.074602104 
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C. The best explanatory model for N-Containing compounds (Y3) 

The best annual explanatory models of N-containing (Y3) 

Multiple 
R-Square 

Adjusted StErr of  

Summary R R-Square Estimate 

0.6533 0.4268 0.4154 5.852027964 

Degrees of Sum of  Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 4 5124.994883 1281.248721 37.4128 < 0.0001 

Unexplained 201 6883.492491 34.2462313 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -21.03751731 4.36162886 -4.8233 < 0.0001 -29.63793632 -12.43709829

(DT = 1) -2.556762953 1.202867381 -2.1256 0.0348 -4.928620767 -0.184905139

Post lime Temp 0.077582307 0.029715833 2.6108 0.0097 0.018987542 0.136177072 

Pol_Sec 0.01445052 0.001583192 9.1275 < 0.0001 0.011328723 0.017572316 

Pol_DW/DT solids 0.497290039 0.179679273 2.7677 0.0062 0.142991889 0.851588189 
 

The best winter explanatory models of N-containing (Y3) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.5228 0.2733 0.2344 1.654450718 

Degrees of Sum of Mean of  
F-Ratio p-Value 

ANOVA Table Freedom Squares Squares 

Explained 3 57.6562163 19.21873877 7.0213 0.0004 

Unexplained 56 153.283602 2.737207179 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -7.724369172 2.350857946 -3.2858 0.0018 -12.43370353 -3.015034809 

Post lime Temp 0.046262438 0.018160085 2.5475 0.0136 0.009883415 0.08264146 

RAS.S.E 0.001230162 0.000385603 3.1902 0.0023 0.000457706 0.002002618 

Pol_DW/Dry ton solids 0.197215755 0.109774633 1.7966 0.0778 -0.02268926 0.417120771 
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The best summer explanatory models of N-containing (Y3) 

Multiple 
R-Square 

Adjusted StErr of 

Summary R R-Square Estimate 

0.5678 0.3224 0.2787 6.554906995 
Degrees of Sum of Mean of  

F-Ratio p-Value 
ANOVA Table Freedom Squares Squares 

Explained 4 1267.621144 316.9052861 7.3756 < 0.0001 
Unexplained 62 2663.941954 42.96680571 

Coefficient 
Standard 

t-Value p-Value 
Confidence Interval 95% 

Regression Table Error Lower Upper 

Constant -24.1874781 9.012854084 -2.6837 0.0093 -42.2039167 -6.171039498 
S.W.O.BL 2.481853264 1.079104403 2.2999 0.0248 0.324754299 4.63895223 
Post lime Temp 0.137201887 0.070421295 1.9483 0.0559 -0.003568277 0.27797205 
Pol_DW/DTS 0.745779805 0.267703264 2.7858 0.0071 0.210648605 1.280911005 
S.E. BL*MLSS S.E 0.001147703 0.000474962 2.4164 0.0186 0.000198267 0.002097138 
 

D. The best predictive model for TRS prior-lime (Y1) 

The best annual predictive model for TRS prior-lime (Y1) 

Input variables Coefficient Std. Error p-value SS 

Constant term 2.52609754 1.1519859 0.0298818 202.00839 

GT FW -0.00000185 4.6E-07 9.826E-05 2.2398329 

WAS %S -0.42563313 0.1177421 0.0004111 7.1748996 

S.E*RAS S.E -0.00006049 2.092E-05 0.0044149 0.5851115 

Temp(F) 0.03654794 0.0077 4.84E-06 1.7907034 

S.E. BL*MLSS S.E 0.00011997 3.214E-05 0.0002694 2.2039928 

(Temp*DT = 1) 0.00752061 0.0014197 4.2E-07 4.558979 

 

The best winter predictive model for TRS prior-lime (Y1) 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.02792609 0.2463826 0.9102731 32.256512 

SE.BL 0.33644986 0.1638628 0.0460234 0.1855095 

RAS.SE -0.00014061 4.723E-05 0.004717 0.2603906 

Amb Temp 0.01455642 0.002347 1.7E-07 1.1900514 

S.WO. BL*MLSS 0.00002952 7.36E-06 0.0002328 0.3524687 

SE.BL*MLSS -0.00009392 5.758E-05 0.1099693 0.0694777 
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The best summer predictive model for TRS prior-lime (Y1) 

Input variables Coefficient Std. Error p-value SS 

Constant term 3.64457941 2.236974 0.10825169 119.7866516 

GT %S 0.25450373 0.14822559 0.09089159 1.04515743 

DAF TS -0.00000629 0.0000025 0.01453312 0.57240433 

Cake %S -0.25128782 0.05612963 0.00003242 3.94246984 

S.W.E.BL 0.58212888 0.15188292 0.00029498 4.15345144 

RAS.S.W.O 0.00057573 0.00013253 0.00005182 2.72708106 

Temp Sec Eff 0.0228566 0.01737705 0.19316527 0.23004428 

 

E. The best predictive model for TRS post-lime (Y2) 

The best annual predictive model for TRS post-lime (Y2) 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.2130059 0.0455867 6.55E-06 0.5896361 

TRS Pri 0.0659544 0.0087952 0 0.3409052 

Blend(Pri:Sec) 0.0305947 0.0137123 0.0271624 0.0351426 

S.E. BL*MLSS 1.207E-05 2.76E-06 2.296E-05 0.0287148 

Fitted Post lime temp 0.0011472 0.0004799 0.0180696 0.0845526 

(DT = 1) -0.020767 0.0142643 0.1475329 0.0051341 

 

The best winter predictive model for TRS post-lime (Y2) 

Input variables Coefficient Std. Error p-value SS 

Constant term 0.2867726 0.0590205 1.535E-05 0.013778 

TRS Pri 0.0116767 0.0066711 0.0870302 0.0011469 

WAS %S -0.0593135 0.0105097 1.12E-06 0.0032587 

S.W.O.BL 0.0077809 0.0029327 0.0110519 0.0001113 

RAS.S.W.E -0.0000026 1.47E-06 0.0848898 0.0003808 

Fitted Post lime temp 0.0003485 0.0001882 0.0707076 0.0002332 
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The best summer predictive model for TRS post-lime (Y2) 

Input variables Coefficient Std. Error p-value SS 

Constant term -0.17571084 0.0467413 0.0003674 0.5742228 

TRS Pri 0.05332687 0.0140151 0.0003161 0.1351165 

RAS.S.E 0.00006615 1.628E-05 0.0001322 0.0718594 

S.W.O*RAS S.W.O -0.00001047 2.74E-06 0.0002975 0.0063159 
S.W.O. BL*MLSS 
S.W.O 0.00001758 4.47E-06 0.0002067 0.0437984 

 

F. The best predictive model for N-containing compounds (Y3) 

The best annual predictive model for N-containing compounds (Y3) 

Input variables Coefficient Std. Error p-value SS 

Constant term -26.581068 5.9264584 1.701E-05 7671.8359 

Blend(Pri:Sec) 3.75422859 1.8682782 0.0467703 161.21564 

Pol_Sec 0.01555401 0.0018966 0 2413.6448 

Pol_DAF+Pol_DW 0.00136673 0.0008619 0.1154837 283.43039 

Pol_DW/DT solids 0.47099641 0.2808827 0.0962203 126.53569 

(DT = 1) -3.48496151 1.1686184 0.0034784 322.38025 

 

The best winter predictive model for N-containing compounds (Y3) 

Input variables Coefficient Std. Error p-value SS 

Constant term -8.95781898 2.249253 0.0002054 460.76184 

Post lime Temp 0.06529341 0.0172074 0.0003759 8.9302416 

RAS.S.W.O 0.00096194 0.0002004 0.000013 32.835461 

Pol_DW/DT solids 0.19674 0.1061232 0.0692212 16.826542 

SWO.BL*MLSS -0.00037296 9.627E-05 0.0002917 19.832117 

SE.BL*MLSS 0.00049883 0.0002021 0.0167575 13.438837 

 

The best summer predictive model for N-containing compounds (Y3) 

Input variables Coefficient Std. Error p-value SS 
Constant term -18.11300278 8.9057169 0.04618162 8600.490234 
Post lime Temp 0.12375169 0.07252789 0.09288455 232.6981964 
Pol_DW/DT solids 0.83004338 0.27406377 0.00355824 407.0157471 
SE.BL*MLSS 0.00140841 0.00047668 0.00439817 400.6286926 
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