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Solitons are localized persistent waves that behave like particles, preserving 

their properties (shape, velocity, etc.) over long distances and through collisions with 

other solitons. They have practical applications and are of interest to many disciplines 

such as condensed matter physics, plasma physics, beam physics, optics, biology and 

medicine. Whereas solitons in electron beams have been predicted on theoretical 

grounds decades ago, they have been observed experimentally only recently by 

Thangaraj at the University of Maryland Electron Ring (UMER). In this thesis, I 

report on the first systematic characterization of solitons in electron beams and 

confirm the soliton’s particle-like behavior.  

  The transient longitudinal space charge force on the beam bunch can launch 

large-amplitude waves, for example from imperfections in matching the focusing 

force to the beam bunch.  By introducing a pulsed laser beam on a thermionic 

cathode, an electron beam with a narrow density perturbation is generated. The 



  

perturbation then evolves into longitudinal space charge waves that propagate along 

the beam.  For large-amplitude initial perturbations, a soliton wave train is observed. 

The experimental results are reproduced by simulations with the WARP particle-in-

cell (PIC) code. 
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Chapter 1: Introduction 

1.1 Motivation 

Particle accelerators physics have traditionally focused on the high energy frontier 

for colliding particles, in facilities such as the Large Hadron Collider (LHC) [1], 

Tevatron [2], and the Stanford Linear Collider (SLC) [3]. Nowadays, there is a shift to a 

different type of accelerator where beam quality is important, measured by a high phase 

space density.  Example applications are the 4th-generation light sources [4], free electron 

lasers [5], spallation neutron sources [6] and so on. Such high-quality beams have low 

emittance and high current, meaning space charge forces are dominant, especially near 

the source and low-energy part of the machine.  Since the space charge force is generally 

nonlinear for a non-uniform beam distribution, it is important to understand how much it 

will contribute to beam quality degradation.  Any beam degradation from space charge at 

low energy will be frozen in as the beam is accelerated to relativistic energies, which may 

cause emittance growth and reduce application performance. Longitudinal energy or 

density perturbations at low-energy will propagate as waves along the beam, and the 

modulations thus generated can lead to beam instabilities and microbunching [7]. Studies 

of space charge waves [8-9] suggest that small initial perturbations will split into two 

space charge waves, a slow wave and a fast wave, going opposite directions in the beam 

frame. When the perturbation is large, it is theoretically predicted that solitary waves, 

evolving according to the Korteweg-deVries (KdV) equations (see sec. 1.2.2), can be 

generated on the beam [10-11]. 
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1.2 History and Background 

 Here, we discuss prior work on space charge waves in beams, and on the broader 

topic of solitons in science.   

1.2.1 Space Charge Waves 

The study of space charge waves could be traced back to Simon Ramo and W. C. 

Hahn in the 1930s [12-13], Birdsall and Whinnery in the 1950s [14]. 

At the University of Maryland, J. G. Wang and D. X. Wang [8, 15] initiated 

pioneering studies in which they generated controllable perturbations on an electron 

beam to induce space charge waves In 1990s. The perturbation was generated by 

modulating the cathode grid pulse of the thermionic gun.  Suk [16] extended those studies 

to explore the effect of a resistive pipe on the wave propagation. He observed the growth 

of slow wave and decay of fast wave, consistent with analytical calculations. Inspired by 

the observation of large-amplitude waves, Suk also performed a theoretical analysis of 

possible solitary wave formation in electron beams, and designed and experiment to test 

that, but did not carry it out. 

 Subsequently, at the University of Maryland Electron Ring (UMER), Huo [17] 

demonstrated a new way of generating perturbations by combining thermionic and 

photoemission.  The long-pulse (~100ns) main beam is produced by thermionic emission, 

while a short-pulse (~5ns) ultraviolet laser aimed at the cathode produces an additional 

population of electrons that forms the perturbation. Harris and Neumann [18] extended 

the work to multiple perturbations using a beam splitter and an interferometer on the 

drive laser. Thangaraj [19] continued this work, studying the evolution of one or two 

perturbations over multiple turns around the ring, a distance of over 100 m.  Towards the 
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end of his Ph.D. research, Thangaraj experimented with large-amplitude perturbations 

and was the first to observe solitary waves on electron beams. 

1.2.2 Solitons 

Solitons are localized persistent waves that behave like particles, preserving their 

properties (shape, velocity, etc.) over long distances and through interactions and 

collisions with other solitons. First observed in water waves by John Scott Russell in 

Scotland in 1834 [20], the unchanged propagating wave was named “solitary wave”, and 

was later described by the Korteweg and deVries equation in 1898. In 1965, Zabusky and 

Kruskal solved the KdV equation numerically and observed that the solitary waves 

behave like stable particles [21], naming it “soliton” afterwards. In 1970, Ikezi, Taylor 

and Baker observed ion-acoustic solitons in plasma experimentally [22]. Since 1980s, 

solitons in electron coasting beams were predicted by Bisognano [10] and Davidson [11]. 

Schamel [23] did theoretical work on solitons in proton beams.  In the early 2000s, 

soliton-like longitudinal oscillations were observed from a stable hump on proton 

coasting beams [24-25]. More recently, at the University of Maryland Electron Ring 

(UMER), Thangaraj [19] observed the development of a solitary wave train from large-

amplitude perturbations in electron beams. 

1.3 Focus of Thesis 

In this thesis, we systematically study solitary waves and soliton formation and 

evolution in intense electron beams.  We take advantage of UMER’s long propagation 

distance, and the capability to generate pure density perturbations using the laser 

photoemission technique first developed by Huo [17]. Since the pioneering work by 
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Thangaraj, several improvements have taken place, including a reduction in the amount 

of beam loss over multiple turns, providing more reliable data. Whereas Thangaraj 

focused on a proof-of-principle experiment for soliton formation, I studied soliton 

evolution as a function of beam and perturbation parameters, such as beam current.  I am 

also the first to perform two-soliton interaction experiment, demonstrating their particle-

like behavior.  Finally, I compare the experimental results to self-consistent particle-in-

cell simulations, using the simulation to understand more about the experiment. 

1.4 Relevant Theory 

The classical method for studying space charge waves in electron beams is to 

apply the one-dimensional cold fluid model [26], where a zero longitudinal temperature 

and small-amplitude initial perturbation are assumed. By solving the continuity and 

momentum equations, we get two waves, in the beam frame, propagating in opposite 

directions with the same phase velocity (or sound speed):  

0
s 5

0 0

qg
C

4 m


 

         (1.1)     

In Eqn. (1.1), q and m are the charge and mass of beam particles, λ0 is the unperturbed 

beam line charge density, 0 is the Lorentz factor, 0  is the permittivity, and g is the 

geometry factor [30]:  

2 ln( )
b

g
a

         (1.2) 

where a is the beam radius, and b is the pipe radius.  is a constant from 0 to 1.  For 

space-charge-dominated beams, α=0. 



 

 5 
 

When the perturbation amplitude is large, nonlinear effects cannot be ignored. 

The cold fluid model leads to the Korteweg-deVries (KdV) equation [11, 27]:  

3

3
0

u u u
u

t z z

  
   

  
.       (1.3) 

 
where ( , )u z t  is the density or velocity perturbation amplitude, as a function of 

longitudinal distance z and propagation time t. The second term
u

u
z





 represents the 

nonlinear effect that steepens the perturbation and results in several sub-pulses, while 

3

3

u

z




 is the dispersion term that tends to widen the pulse. The soliton results from the 

cancellation of these two terms. An analytical one-soliton solution is: 

2( , )
1

[ ( )]
2 2

c
sechz ct zu ct  .     (1.4) 

 
The evolution of a known initial perturbation profile ( , 0)u z t   can be found by 

integrating the KdV equation over a time period  to obtain ( , )u z t  . A numerical 

example is shown in Fig. [1.1], where a soliton train forms from a single initial pulse. We 

expect a similar perturbation evolution in experiments. 
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Fig. 1.1: KdV Integration of an initial profile  (top) from t=0 to  =0.00549927 leads to 
the perturbation profile  (bottom) 
 

1.5 Organization of Thesis 

The remainder of the the thesis is organized as follows. In Chapter 2, we 

introduce the experimental setup, including the UMER gun, the drive laser and 

perturbation generation, and the diagnostics used.  In Chapter 3, we present the detailed 

experimental results and analysis, along with the simulation study and its comparison 

with experiments. In Chapter 4, we conclude the work in the thesis and suggest future 

work that can help better understand solitons in electron beams. 
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Chapter 2: Experimental Setup 

This chapter reviews the experimental setup of the perturbation experiments. First 

(Sec. 2.1), we briefly introduce the machine used, the University of Maryland Electron 

Ring (UMER), a storage ring for research on space-charge-dominated beam. Next (Sec. 

2.2), we discuss the UMER electron gun, which we use to generate beams from both 

thermionic emission and photoemission, the photoemission being used to produce 

perturbations of varying strength and width. Section 2.3 discusses the setup of the 

photoemission drive laser.  Sec. 2.4 reviews the beam diagnostics used in this 

experiment, mainly the Bergoz coil and wall current monitor. Finally, Sec. 2.5 

summarizes the chapter. 

2.1 The University of Maryland Electron Ring (UMER) 

UMER [Fig. 2.1] is a scaled world-class facility designed for exploring the physics of 

space charge over a wide range of intensities. It is a circular machine with a 

circumference of 11.52m. The 10 keV electron beam is injected as a single long bunch, 

with a duration that we can vary from 25 to 140 ns.  By means of apertures [Fig. 2.2] 

downstream from the anode, we can vary the peak beam current and rms emittance over 

the range 0.5-100 mA and 0.3-3 µm (normalized), respectively. The basic beam 

parameters of UMER and apeture are shown in Table 2.1 and 2.2. 
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Fig. 2.1: Schematic illustrating the UMER layout (Top view).  The arrows indicate the diagnostics used for 
the experiments described here. 
 

 

Fig. 2.2: Photograph of the aperture wheel for beam selection, downstream from the anode. 
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Table 2.1: Beam Parameters of UMER 

Beam Energy 10 keV 

Beam Velocity (β=v/c) 0.2 

Beam Current 0.5-100 mA 

Bunch Length (thermionic emission) 25 to 140 ns 

Bunch Repetition Rate 10-60 Hz 

Circulation Time 197 ns 

Circumference 11.52 m 

FODO Period 0.32 m 

Zero-current Phase Advance 67 

 

Table 2.2 Aperture Radius and Exiting Beam Current, Emittance 

Aperture Raius (mm) Beam Current (mA) Normalized Emittance (µm) 

0.25 0.6 0.4 

0.875 6 1.3 

1.5 21 1.5 

2.85 78 2.9 

Full Beam 104 3.2 

 

UMER consists of a 36-period FODO lattice in the ring, and an injection section with 

6 quadrupoles and a solenoid for matching.  One of the FODO sections in the ring uses a 

fast pulsed dipole for injection, after which the polarity of that dipole switches for 

recirculation.  The beam current is measured initially using a Bergoz current transformer 

located 64 cm downstream from the gun aperture wheel. Details of the transverse 

distribution are measured in the nearby Diagnostic chamber IC1, as well as at other 

chambers downstream.  IC1 also houses a mirror we use to aim the drive laser onto the 
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cathode. We use a wall-current monitor at RC10, 7.67 m downstream from the Bergoz, to 

measure the beam current profile at each turn. 

2.2 Electron Gun (Thermionic Emission) 

The UMER gun is a gridded Pierce-type gun that has a thermionic dispenser cathode 

[Fig. 2.3], made of a porous tungsten (W), coated with barium oxide and calcium 

aluminate.  The entire cathode/grid assembly as biased to -10 kV relative to the anode 

using a dc high-voltage power supply.  Under normal operation, a negative bias (15 V) on 

the cathode grid suppresses electron emission.  A larger negative, rectangular, pulse (~36 

V), applied on the cathode at a rep rate from 10-60 Hz, is used to extract the electron 

beam. A Pierce electrode (conical electrode surrounding the cathode with a cone angle of 

67.7) is applied to balance the transverse space charge force to make a uniform laminar 

beam. The A/K gap can be changed to vary the gun’s perveance.  For an A/K gap of 25 

mm, the gun produces a space-charge limited current of 100 mA, which we can reduce 

using apertures downstream. For more description about the gun, refer to [28]. 

 
Fig. 2.3: Simplified schematic of UMER gun for thermionic emission. 
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The gun operates in two modes: temperature-limited mode (650-850 Ԩ) and space-

charge limited mode (>1000 Ԩ). In the space-charge limited mode, which is used for 

normal operation, the current is limited by Child-Langmuir law and increasing the heater 

voltage doesn’t affect the current output. For this experiment, I instead operate in the 

temperature-limited mode so that the photo-emitted electrons generated by the drive laser 

lead to a perturbation in the beam density.  Operating in the temperature-limited mode 

further allows us to easily adjust the peak beam current by simply changing the cathode 

temperature. As shown in Fig. 2.4, there is an exponential current growth in the 

temperature-limited mode (heater voltage between 40V to 50V).  Since the temperature-

limited does not have saturation, the gun as a triode to amplify any fluctuations in 

electron density at the cathode.  Hence, the beam pulse tends to be noisier than one finds 

in normal, space-charge-limited operation. 

 
Fig. 2.4: Measured beam current vs heater voltage for the UMER gun (80mA aperture). After 
an exponential growth, the beam saturates. 
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To be exact, in our experiment, we are using the 80mA beam aperture, and cool down 

the cathode (about 40-50V of heater voltage) to produce a beam with peak current in the 

range 20-40mA. The repetition rate is set to 15Hz to synchronize with the laser for 

photoemission (see next section). 

2.3 Laser Setup (Photoemission) 

The UMER gun is also able to generate beams by photoemission [17], which can be 

applied to introduce a perturbation on the beam. We use a 1064 nm-wavelength Nd-YAG 

drive laser and triple its frequency with two nonlinear crystals to a wavelength of 355 nm 

[Fig. 2.5], making the photon energy sufficient to generate photoemission from the 

cathode. The laser is injected into the chamber (IC1), where it will be reflected by a 

mirror towards the photocathode. The beam perturbation measured at Bergoz is usually 

5-8 ns wide. 

 

Fig. 2.5: Experimental setup of beam perturbation by photoemission. 
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The Nd-YAG laser we use is a minilite II model [29]. Table 2.3 lists the basic 

parameters of this laser. The 3rd harmonic temporal profile is measured by a PIN diode, 

which is similar to a Gaussian distribution, as shown in Fig. 2.6. The laser alignment is an 

involved but important process (see Appendix A), which ensures that the laser hits right 

at the cathode. Due to the synchronization between the triggering source of the beam 

bunch and pulsed laser, the perturbation is introduced on every beam bunch. By changing 

the time delay of the laser Q-switch trigger, we can set the perturbation at different 

locations atop of the beam. 

 

Table 2.3: Nd:YAG Laser Parameters 

Wavelength 1064 nm 532 nm 355 nm 266nm 

Energy 50 mJ 25 mJ 8 mJ 4 mJ 

Peak Power 8.3 MW 6.3 MW 2.0 MW 1.0 MW 

Average Power 750 mW 375 mW 120 mW 60 mW 

Pulse width 5-7 ns 3-5 ns 3-5 ns 3-5 ns 

Stability 2% 3% 4% 8% 

Polarization Horz. Vert. Horz. Horz. 

Jitter < +/- 0.5 ns 

Beam Size < 3 mm 

Divergence < 3 mrad 

Repetition Rate 1-15 Hz 
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Fig. 2.6: Temporal profile of the 355nm laser for photoemission. 

 

2.4 Beam Diagnostics 

As mentioned earlier, the two major diagnostics we use are the Bergoz coil and 

wall current monitor.  The Bergoz coil is a fast current transformer, model # FCT-

082-20:1, with a rise time down to 200 ps, enabling fast and accurate measurements 

of the temporal beam current profile.  Basically it is a transformer with the beam as 

the primary. After calibration, the initial beam current is: ( ) 0.8* ( )I mA U mV , 

where ( )U mV  is the output of the transformer.  

The Wall current monitor (WCM) is an in-house device we use to give us 

accurate measurements of the temporal beam current profiles in the ring. It measures 
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the voltage drop ( )U mV  across the resistors cause by the image current excited by 

the beam.  The beam current is: ( ) ( ) / 4.545I mA U mV  for the UMER calibration. 

In addition, we also have beam position monitor (BPM) for beam centroid 

position diagnostics, and (fast) phosphor screen for beam imaging diagnostics, to 

measure the transverse profile and initial emittance [30]. For more details about the 

above diagnostic tools, refer to [31]. 

See Fig 2.7 for the difference the laser makes.  

 

Fig. 2.7: An example output from the Bergoz coil for a beam with and without the perturbation. 
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2.5 Summary 

We discussed the University of Maryland Electron Ring, the two mechanisms of 

generating electron beams from the gun and how the perturbation experiment is set up. 

The beam diagnostics methods are shown at last. 
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Chapter 3: Experimental and Simulation Results 

In this chapter, we show our experimental observation of solitons on electron 

beams and compare the results to simulations.  We start (Sec. 3.1) with a representative 

soliton wave train formed from an initial large-amplitude perturbation.  In Sec. 3.2, we 

discuss the properties of the waves thus formed and demonstrate they are solitons.  In 

Sec. 3.3, we show the soliton dependence on beam parameters like beam current, 

perturbation strength and width. In Sect. 3.4, we study the soliton interaction by initiating 

two solitons from two initial large-amplitude perturbations. In Sec. 3.5, we discuss the 

results of simulations with the WARP code [Appendix B] and compare them with 

experiments.  Section 3.6 addresses some the discrepancies between simulation and 

experiment. Finally, Sec. 3.7 summarizes the chapter. 

3.1 Single Large-Amplitude Initial Perturbation 

From previous studies on the space-charge waves, both theoretical using the one-

dimensional cold-fluid model and experimental, a small-amplitude initial perturbation 

launches into two space charge waves, a slow wave and a fast wave.  In beam frame, the 

two waves propagate with same phase velocity (or sound speed, Eqn. 1.1) but towards 

opposite directions. However, when the perturbation amplitude is large (say >20%), the 

linear approximation for sound speed derivation no longer stands, and the phase velocity 

increases with the perturbation strength [31]. Therefore, particles on the crest travels 

faster than the ones on the trough, and the wave will eventually steepen and develop into 

multiple sub-pulses. Meanwhile, when the pulse width is comparable to the pipe radius, 
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the wave becomes dispersive [10] and it can balance the steepening effect, to maintain 

the pulse shape and lead to solitary wave formation. 

Figs. 3.1 and 3.2 are typical experimental results of a nonlinear density 

perturbation on the beam. In Fig. 3.1, the initial peak current measured at the Bergoz is 

22 mA with an additional 11 mA perturbation (we will hence call it a 50% perturbation). 

The perturbation is introduced near the beam tail to allow the fast wave to propagate 

longer on the flat-top portion of the beam. Fig. 3.2 depicts the turn-by-turn beam current 

measured at RC10. The beam current in each turn is plotted on the same scale (centered 

on the beam pulse), with each turn shifted upward by 20 mA for clarity. For a different 

way of visualization, Fig. 3.3 is a 3D depiction of the same data in Fig. 3.2. The slow 

wave steps off the beam edge after the perturbation splits (in Turn 1).  Meanwhile, the 

fast wave moves towards the beam head (to the left in Fig. 3.2), steepens, and develops 

into several sub-pulses. Starting from about the 4th turn, the sub-pulses maintain their 

shape in the beam frame (see Sec. 3.2), which is a basic property of solitons. Also, the 

sub-pulse width is measured to be ~1ns, which is 6 cm long, comparable to the pipe 

diameter of 5.08 cm. 
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Figure 3.1: Initial beam condition measured at the Bergoz coil, for a 22 mA beam and a 50% 
perturbation. 
 

 
Figure 3.2: Turn-by-turn plot of beam propagation at wall current monitor (RC10), for a 22 mA 
beam and a 50% perturbation. 
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Figure 3.3:  3D Turn-by-turn plot of beam propagation at wall current monitor (RC10) , for a 22 mA beam 
and a 50% perturbation. 
 

3.2 Data Analysis and Comparison to Theory 

In this section, we analyze in detail the results of the experiment presented in Sec. 

3.1 (22 mA, 50% perturbation).  Results of the experiments presented in subsequent 

sections can be similarly analyzed and all show evidence of soliton behavior. A solitary 

wave has the property that it maintains its shape over a long distance, i.e., constant width 

and constant amplitude.  As we illustrate in Fig. 3.4, the sub-pulse maintain its shape, 

within the measurement errors. 
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Figure 3.4:   Soliton width and amplitude at different turns in the ring with both experimental and 
simulation data, from the 1st sub-pulse of the 22mA 25% perturbation experiment. Data points 
from turn 1-4 are dropped since the solitary wave train is not fully generated.  
 
 At the same time, the KdV solitons have a solution in the form of Eqn. 1.4, from 

which we can see that the width (∝ 1/ c ) of the soliton is inversely proportional to the 

square root of its velocity (c), while the soliton velocity is proportional to the amplitude. 

From these two conditions we expect: width2 * amplitude = constant. The experimental 

results agree with this relation, as shown in Figs. 3.5 and 3.6. 
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Figure 3.5: Plot of solitary wave’s width2 vs 1/Amplitude, along with its linear fit. The data points 
are from the 1st and 2nd sub-pulses of the wave train at 5th, 6th and 7th turn of the 22mA 25% 
perturbation, and 22mA 50% perturbation experiment, respectively. 
 

 

Figure 3.6: Plot of soliton velocity vs Amplitude, along with its linear fit.  Same data points with 
the ones in Figure 3.5. 
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Due to the beam mismatch at the injection, there’s about 10% beam loss from 

Bergoz to wall current monitor at the first turn, and 5% loss per turn thereafter. It will 

decrease the sound speed of the perturbation and may cause errors to its amplitude and 

width. Better beam matching and steering solution are expected for future soliton 

experiments. The beam loss profile is shown in Fig. 3.7: 

 

Figure 3.7: Beam current for each turn at wall current monitor (RC10), turn 0 represents the initial 
condition measured at Bergoz. 

 

3.3 Soliton Dependence on Beam and Perturbation Parameters 

In this section, we are interested in addressing the conditions under which solitary 

waves will be generated and how their evolution depends on beam parameters.  We 

therefore systematically vary the beam current, perturbation strength and width.  

In Fig. 3.8, we compare solitary waves for two different beam currents, 23mA vs. 

30mA, keeping the same pulse width (about 5 ns) and relative perturbation level (20%). 
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The 30 mA pulse steepens faster and more sub-pulses are generated.  We expect the 

faster propagation, since, from the linear theory at least, the sound speed is proportional 

to the square root of the line charge density (see Eqn. 1.1).  We observed that, if the beam 

current is below certain threshold value (around 20 mA in UMER), then no solitons could 

be generated. 

 

Figure 3.8: Turn-by-turn plot comparison between 23 mA beam (black) and 30 mA beam (red), 
both with 20% perturbation and 5 ns width. 
 
 
Next, we studied the perturbation amplitude dependence. As can be seen from 

Fig. 3.9, different perturbation levels affect the result. The 50% perturbation case 

propagates faster and gives many more sub-pulses compared with the 20% perturbation 

case. It is consistent with the relation that a stronger pulse leads to a faster propagation 

speed. 
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Figure 3.9: Turn-by-turn plot comparison between a 20% perturbation (black) and a 50% 
perturbation (red), both with 30mA main beam and 8 ns width. 
 

 
In Fig. 3.10, we show different perturbation pulse widths, one 5.6 ns, the other 7.6 

ns. Since they have the same beam current and perturbation level, their sound speed is 

very close. However, the wider pulse results in more sub-pulses, which can be explained 

by a diminished dispersive effect. Also, each of the sub-pulses generated from the wider 

pulse are stronger than the ones from the narrower pulse. 
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Figure 3.10: Turn-by-turn plot comparison between a 6 ns wide perturbation (black) and an 8 ns 
wide perturbation (red), both with a 30 mA beam and a 50% perturbation amplitude. 

 
 

All the results of the soliton dependence experiments agree qualitatively with the 

theory. Additional studies are needed in the future to permit a more quantitative analysis. 

3.4 Soliton Interactions and Two-Perturbation Experiments 

In the above discussion, we have shown that the large amplitude waves we have 

generated satisfy the description of a solitary wave.  In order to demonstrate that they are 

solitons, we need to further show that they behave like particles, i.e., they retain their 

properties after mutual interactions, or “collisions”, except for a phase shift [32]. I have 

conducted experiments with two perturbations. I use two lasers to generate perturbations 

on both sides of the beam, and let the fast wave from one approach the slow wave from 

the other and interact with it [Fig. 3.11]. To allow enough time for the two perturbations 

to propagate and break before they collide, I extend the beam duration from 100 to 140 

ns.  
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Fig. 3.11: The initial conditions for one perturbation (left) and two perturbations (right), with 
identical beam background (40? mA),  and a same perturbation on the right edge. 
 
 
Fig. 3.12 illustrates the evolution of two cases: a single 50% perturbation on a 30 

mA beam (black), and the same perturbation on the same beam with the addition of 

another 50% perturbation on the opposite side (red).  The black curve shows the fast 

wave of the perturbation on the right steepening and forming a soliton wave train, as 

above.  The red curve shows the same soliton wave train going through the wave train 

formed by the slow wave of the perturbation initially on the left.  The fact that the two 

curves are nearly identical for the fast wave past the interaction point is strong evidence 

that it is a soliton.  
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Fig. 3.12: Comparison of two-perturbation experiment and one-perturbation experiment. The fast wave of 
the right perturbation interact with the slow wave of the left perturbation (red), is compared with the fast 
wave propagation of the one perturbation case (black). 
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3.5 Simulation 

In this section, we present the results of simulations and comparison it with the 

experiments. We use the R-Z model of the WARP particle-in-cell (PIC) code [33] to 

simulate the evolution of the beam, including the perturbation.  Take the 22mA 25% 

perturbation case for example. We use uniform transverse focusing to represent the 

FODO lattice, choosing a focusing strength 213.33m   to give us the same phase 

advance per period (see Table 2.1). We load an initial distribution with the same 

measured current profile at the Bergoz. Transversely, we use a semi-Gaussian 

distribution, which is uniform in space and Gaussian in velocity space with uniform 

temperature. The initial transverse beam radius is chosen to be 9.5 mm with zero slope so 

it will be matched to the lattice for the beam parameters. The kinetic energy is 10 keV 

with a longitudinal thermal spread of 5e4 m/s. The thermal spread used is somewhat 

higher than what we expect for the UMER beam, mostly for the purpose of suppressing 

the gridding instability.  However it cannot be too high or else the thermal spread will 

wash out the soliton structure. We found the simulation converges for the following 

numerical settings 4,000,000 macroparticles; a time step of 1 ns; 64 cells in R direction 

and 2048 cells in z direction. The grid size is 0.0254 m in R and 11.52 m in z.  

Due to the beam loss in experiment, the sound speed becomes slower and so is the 

edge erosion rate, which has to be counted in simulation. Variable top.pgoup.sw 

describes the species weight (# of real particles per simulation particle). A beam loss is 

set by decreasing top.pgoup.sw uniformly turn by turn. When doing the calculation of 

beam loss from experimental data, we need to count in the inductance compensation for 
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the current. Check ref. [34] for details. Otherwise, there will be more beam loss than it 

actually is. 

For more numerical settings and a description of the WARP code, see ref. [35]. 

The initial condition (beam density profile) is rather tricky. We start with the beam 

current profile (assuming velocity profile uniform, thus density ∝ current since I v ) 

measured at Bergoz, and barely get any agreement on the pulse propagation. As can been 

seen in fig. 3.17-3.18, with the same initial profile, the fast and slow wave in experiment 

(red) is much stronger than those in simulation (blue), and there’s discrepancy on the 

right beam edge.  

 
Fig. 3.13: the measured initial condition at Bergoz (red) and its smoothed profile that’s 
imported into simulation (blue). 
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Fig. 3.14: the 1st turn comparison at wall current monitor when using the measured 
Bergoz current profile as the input for simulation at cathode. 

Therefore, it’s NOT accurate to use the Bergoz current profile as the beam right out 

of cathode, which could be explained from two aspects. First, there’s Pulse widening 

during 64cm propagation. According to eqn (3.4) of [36]: 2

2

t
Cs v

z




   (3.1) 

Where Cs is the sound speed, δt is the time difference between the fast and slow 

wave, Δz is the distance the beam travelled in lab frame, and v is beam velocity. We get 

2

2 zCs
t

v
 

 ~ 2*0.64*1.25e6/(6e7)^2=0.44ns, which means that the pulse widens about 

0.44ns from cathode to Bergoz. 

Secondly, after 64cm propagation, there comes a velocity modulation on the beam, 

which also contributes to the current profile, and makes it even wider. In other words, the 

density profile for simulation input at the cathode should be narrower. Fig. 3.15 (a-d) 

gives a numerical example of how energy (velocity) perturbation affects the beam pulse. 
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Fig. 3.15a: A numerical example of two Gaussians and their sum, as the current 

waveform at Bergoz. 

 
Fig. 3.15b: Switch the polarity of the slow wave, to get the energy waveforms at Bergoz. 

 

Adjust the base level of the current and energy waveform. Say we have 

20% current perturbation, set the base beam at 3 since the beam peak is 0.6 

(arbitrary unit) in Fig. 2. Move the energy profile upward by 10, then we get 4% 
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energy perturbation (2% velocity perturbation). Dividing the current waveform by 

the energy waveform, we get the density profile. Compared with fig. 3.15a, the 

density profile is narrower than the current profile. Also, the more energy 

perturbation is, the narrower the width of the density profile. 

 
Fig. 3.15c: A numerical example of the density profile when dI/I=20%, dv/v=2%. 

 
Fig. 3.15d: A numerical example of the density profile when dI/I=20%, dv/v=0.4%. 
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Therefore, we should either change the initial profile into some stronger/narrower 

perturbations, or still use the Bergoz profile, but add the velocity modulation into the 

code. Since we do not currently have energy analyzer installed in UMER (is under plan to 

be installed at IC1 in fall 2012), so we resort to starting the simulation from the cathode 

with an adjusted current profile (see Fig. 3.16).  

In Fig. 3.16, the initial condition is assumed to be a rectangular beam with a 

11mA 3.7ns wide pulse atop, compared with ~6mA 5ns perturbation in Bergoz. The intial 

condition adjustment leads to a good agreement between simulation and experiment at 

the wall current monitor. Fig. 3.17 shows the 1st, 2nd, 5th and 8th turns comparison. 

 

 

Fig. 3.16: Initial condition measured at Bergoz (red) and the modified profile (blue) imported into 
the cathode, for the 22 mA and 25% perturbation experiment at Bergoz. 
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Fig. 3.17 (a): Beam current comparison between experiment (red) and simulation (blue) for the 1st 
turn at wall current monitor (RC10). 
 

 
Fig. 3.17 (b): Beam current comparison between experiment (red) and simulation (blue) for the 2nd 
turn at wall current monitor (RC10). 
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Fig. 3.17 (c): Beam current comparison between experiment (red) and simulation (blue) for the 8th 
turn at wall current monitor (RC10). 
 
 

  

Fig. 3.17 (d): Beam current comparison between experiment (red) and simulation (blue) for the 8th 
turn at wall current monitor (RC10). 
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The agreement is not perfect and it depends on several aspects. First, the initial 

beam could be not ideally rectangular due to a response time at the thermionic dispenser, 

which results in a little discrepancy on the edge erosion, as shown in Fig. 3.17(c). 

Secondly, the initial perturbation pulse is not necessarily Gaussian, and the profile 

difference may lead to a slight disagreement on the amplitude and width of the sub-pulses 

in the soliton wave train. Thirdly, the beam loss affects the longitudinal dynamics a lot, 

which we assume to be uniform in simulation but might not be the case in experiment, 

especially right after the injection due to the initial beam mismatch; In addition, there are 

also parameters like beam radius and emittance that we made a reasonable guess based on 

the experimental data taken at different chambers of the alternating-gradient ring, while 

we assume uniform focusing in simulation. Despite all those factors above, the overall 

agreement between simulation and experiment is reasonable. 

 For better guidance in furture simulations, a table describing the beam variables’ 

sensitivity to longtitudinal dynamics is as follows: 

Table 3.1 Variable sensitivity to beam dynamics in WARP 

Variables  Sensitive or not  Affect 

Beam current  Yes  erosion rate, soliton speed 

Average Beam radius  Yes  erosion rate, soliton speed 

Perturbation shape  Yes  soliton speed, wave train form 

Emittance  No  N/A 

Long. Thermal Spread  No  numerical stability 

Env. radi as function of dist.  No  N/A 
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3.6 Summary 

We have shown the formation of soliton wave trains in electron beams, both in 

experiment and simulation. We also explore the soliton dependence on beam current, 

perturbation strength and width. The experimental result reproduced by WARP 

simulation. 
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Chapter 4: Conclusion 

4.1 Summary 

To sum up, I report in this thesis the experimental observation of a soliton wave 

train on intense electron beams by deliberately introducing large-amplitude density 

perturbations. In addition to demonstrating that the observed waves are solitons, I find 

that, to generate solitons, the main conditions are a sufficiently high beam space charge 

intensity, a large perturbation amplitude (usually >20%), a long enough propagation 

distance (~10 times the perturbation length in the beam frame), and a relatively wide 

perturbation pulse (a few times of the pipe radius). An advantage of studying solitons on 

particle beams in UMER is the ability to generate solitons over a wide range of 

parameters, to control the propagation precisely and track them for a long distance. We 

complete the first soliton characterization by modifying beam current and perturbation 

strength and width. 

The results agree reasonably well with theory and simulation, though it is not 

perfect.  We expect the results to improve as ongoing efforts to optimize the UMER 

steering and matching result in reduced beam losses. The results are scalable to larger 

accelerators, provided the relative strengths of space charge to external forces are the 

same. 

4.2 Future Plans 

Worthwhile future investigations can be:  to study soliton reflection at the beam 

end in the presence of induction focusing, currently the wave train will step off the beam 

edge; generation of solitons from initial velocity modulations (using the induction cell to 
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modulate velocities), which could be used for beam cancellation since the velocity 

perturbations lead to negative waves; and taking the wall impedance into consideration. 

Another topic could be the effect of beam transverse distribution on the soliton 

characteristics. The current theoretical/simulation model is based on certain distributions 

like Gaussian, Bessel function, and waterbag distribution. By using the DMD mirror [37] 

to selectively reflect the drive laser, we will be able to generate any transverse 

distribution. 

We suggest that solitons can be used to modulate an electron beam for a tunable, 

coherent THz radiation source.  The bunch spacing can be varied with a velocity tilt or a 

chicane. 



 

 41 
 

Appendix A: Laser Alignment Procedure 
 

This appendix gives the key procedures for doing the laser alignment in the beam 

perturbation experiment using photoemission. 

 

1. Adjust dielectric mirror 2, make sure the eye (E) could see the cathode (K) 

through the center (roughly) of the mirror; 

2. Adjust dielectric mirror 1, reflect the laser to hit around the center (L) of 

mirror 1, and make the 2nd reflection toward the cathode(K)  as close as 

possible by fine adjustment of mirror 1; 

3. Do fine adjustment of mirror 2, make E, L, and K on the same line, which 

ensures that the laser hits right at the cathode. 
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Appendix B: WARP Code for Soliton Simulation 
 
comment  =  """ Soliton Train - 22+11 mA """ 
from warp import *         # --- import warp 
from lwplots import *      # --- import laboratory frame window plots 
from  monitor import *     # --- import ability to change run at execution 
import string 
 
# createmonitor(passwd="mo$job", port = 50008) # --- used for real time monitor 
setup(runcomments=comment, cgmlog=0) 
 
beam_curr     = 0.022 
pert_curr       = 0.011 
 
 
top.ekin         = 10000      # beam energy in volts 
top.ibeam      = 0.033     # not actually used except fort matching 
top.a0            = 0.0095635933729712099  # matched value for dedr at 22mA+11mA  
top.b0           = top.a0 
#top.dedr      = -271976.137 # caculated value for tune=6.67 
top.dedr        = -115576.36079661094 
top.emit        = 35.0e-06 
top.ap0         =  0.   
top.bp0         =  0. 
top.zion        =  1.0e0              # use positive electrons for simplicity 
top.aion        =  top.emass/top.amu  # electron mass 
top.lrelativ    =  false              # nonrelativistic (in beam frame.) 
w3d.xmmax      =  0.0254             # System size in x (actually r) 
w3d.ymmax      =  w3d.xmmax 
top.rwall      =  w3d.xmmax          # Pipe radius 
w3d.solvergeom =  w3d.RZgeom         # Set solver to R-Z gemetry 
 
#  --- calculate beam velocity to set length use same algorithm as in code 
if (top.lrelativ): 
    kk           = top.jperev*top.ekin/(top.aion*top.amu*top.clight**2) 
    gg          =  1.e0 + kk 
    v_beam      =  clight * sqrt((2*kk+kk**2)/gg**2) 
else: 
    v_beam      =  sqrt( (2.e0*top.ekin*top.jperev/top.aion)/top.amu ) 
     
# --- Calculate beam length for a 100ns beam 
     
beamlen        =  100e-09*v_beam 
########################################################################
##### 
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# --- Use envelope integrator to calculate the matched solution. 
# --- Set dedr, the uniform focusing electric field (in the Larmor frame) 
# --- for a matched beam 
 
top.tunelen    =  2*beamlen 
env.zl         =  -0.0 
env.zu         =  3.0*beamlen 
env.dzenv      =  0.001 
 
derivqty() 
 
package("env") 
generate() 
step() 
 
 
#winon()                  # --- turns on plot window when running interaticely 
 
plg(env.aenv,env.zenv) 
 
#raise() 
fma() 
 
#top.dedr=top.dedr*(1+3.*env.deltaa/top.a0);top.dedr; 
#top.a0=top.a0*(1+0.5*env.deltaa/top.a0);top.b0=top.a0;top.a0; 
#generate();step();fma();plg(env.aenv,env.zenv) 
 
 
########################################################################
###### 
 
#top.dt         =  0.1/v_beam    # Set timestep to beam propagating 1 cm 
top.dt         =  1*ns          # Round number convenient for analysis 
w3d.zmmax      =  11.52     # Set max in z 
w3d.zmmin      =  0.             # Set min in z 
top.zimin      =  0 #2.62             # Left edge of beam 
top.zimax      =  11.52 #8.26     # Right edge of beam (Set to whole system 
 
w3d.nx         =  64           # no of cells in R 
w3d.ny         =  1            # note that y direction is not used. 
w3d.nz         =  2048         # no of cells in z       
 
#setup for vzbar vs z plot 
top.nzmmnt     =  w3d.nz 
top.zmmntmax   =  w3d.zmmax 
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top.zmmntmin   =  w3d.zmmin 
                            
#  --- Set parameters for loading Particles 
 
top.npmax      =  4000000    # Number of particles in the simulation 
w3d.distrbtn   =  "semigauss" 
w3d.ldprfile   =  "polar" 
w3d.vtrandom   =  "pseudo" 
w3d.vzrandom   =  "pseudo" 
 
# --- Longitudinal thermal spread. 
top.vthz = 0.5e05                # This number is a guess 
 
# --- this section used only when beam length is less than system length 
#w3d.cigarld=1 
#w3d.distr_l = "gaussian" 
#top.straight = 0.95 
 
 
#  --- Set input current waveform (importing data)- code will automatically load beam in 
z 
 
 
ff = open("initialcondition.csv",'r') 
text = ff.readlines() 
ff.close() 
 
length_=2048 
 
current = []   #Bergoz coil Current. 
 
no_lines = 0 
 
for line in text: 
  no_lines = no_lines + 1 
  items = string.split(line, ",") 
  current.append(float(items[0])) 
 
current = array(current) 
 
 
w3d.nzdist = length_ 
gchange("InPart3d") 
w3d.zdist  = current 
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# --- Set boundary conditions on particles and fields 
 
top.pbound0    = periodic 
top.pboundnz   = periodic 
top.pboundxy   = absorb 
w3d.bound0     = periodic 
w3d.boundnz    = periodic 
 
top.nhist = 1 
top.iflabwn  = 1 
top.itlabwn  = 1 
top.nlabwn   = 1 
top.zlw      = 12.67 #0.5*w3d.zmmax 
print(top.zlw) 
#top.lgridqnt = 1 
 
package("w3d") 
generate() 
 
 
pzcurr()                 # --- plot initial beam-frame current 
fma() 
#savetxt('initial.dat', (top.curr[:,0])) 
 
#plg(top.vzbarz[:,0],top.zmntmesh) 
#fma() 
 
##STOP SIMULATION HERE IF YOU WANT TO TEST INITIAL LOADING 
#kjsdkjskdjk 
 
 
iiimax  = 8 
 
 
#  --- Set up array to hold output currents and zmesh 
 
currents = zeros((w3d.nz+1,iiimax+1),'d') 
meshes   = zeros((w3d.nz+1,iiimax+1),'d') 
 
 
 
#ppzx(color='density',chopped=0.1) 
#fma()   # moved before the main loop, after the envelope radius setting 
 
jjjwcm  = 7.67/(top.dt*top.vbeam)-1 
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jjjmax  = w3d.zmmax/(top.dt*top.vbeam)-1 
 
sw_save = top.pgroup.sw[0] 
sw0=0.9   #right out of Bergoz, a lot of loss due to mismatch?! 
sw1=0.838 #1st turn at RC10 
sw2=0.7773 #2nd turn at RC10 
sw3=0.7091 #6th turn at RC10 
sw4=0.6727 #7th turn at RC10 
sw5=0.65 #8nd turn at RC10 
 
t0=0.24/v_beam 
t1=(7.67+0.64)/v_beam 
t2=(19.19+0.64)/v_beam 
t3=(65.27+0.64)/v_beam 
t4=(76.79+0.64)/v_beam 
t5=(88.31+0.64)/v_beam 
 
 
iii=0 
 
currents[:,iii] = top.curr[:,0] 
meshes[:,iii]  = top.zlmesh[:]+top.zbeam 
 
top.ncolor = 10 # 10 colors in the phase space plots 
 
 
#  --- Simple program to put smoothing into field calculation 
def update_bndrz(): 
   g = frz.basegrid 
   f=g.phi 
#  --- Hardwire in periodic 
#   if g.izlbnd==dirichlet:f[:,0]=2.*f[:,1]-f[:,2] 
#   if g.izlbnd==neumann:f[:,0]=f[:,2] 
#   if g.izlbnd==periodic:f[:,0]=f[:,-2] 
   f[:,0]=f[:,-2]  
#   if g.izrbnd==dirichlet:f[:,-1]=2.*f[:,-2]-f[:,-3] 
#   if g.izrbnd==neumann:f[:,-1]=f[:,-3] 
   f[:,-1]=f[:,1]  
#   if g.izrbnd==periodic:f[:,-1]=f[:,1] 
# w3d.phi[:,0]=w3d.phi[:,-2]  
# w3d.phi[:,-1]=w3d.phi[:,1]  
 
def smoothz(): 
   s=0.5 
   n=3 
   ff = frz.basegrid.phi 
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   for i in range(n): 
      ff[:,1:-1] = s*ff[:,1:-1]+(1.-0.5)*s*(ff[:,:-2]+ff[:,2:]) 
# w3d.phi[:,1:-1] = s*w3d.phi[:,1:-1]+(1.-0.5)*s*(w3d.phi[:,:-2]+w3d.phi[:,2:]) 
      update_bndrz() 
 
#  --- force use of phi to calculate fields so that smoothing works  
frz.l_get_fields_on_grid=false 
 
installafterfs(smoothz) 
 
 
#  ---  Set initial envelope radius (not uniform due to the perturbation) 
 
jj=0 
 
while jj < top.npmax-1: 
        a=(top.pgroup.zp[jj]-top.zimin)/((top.zimax-top.zimin)/length_) 
        top.pgroup.xp[jj] = top.pgroup.xp[jj] * sqrt(w3d.zdist[a]/beam_curr) 
        top.pgroup.yp[jj] = top.pgroup.xp[jj] 
        jj=jj+1 
 
ppzx(color='density',chopped=0.1) 
fma() 
 
 
 
 
 
# --- Main Loop 
 
while iii < iiimax : 
   iii = iii+1 
   jjj = 0 
   if iii == 1: 
      while jjj < jjjwcm : 
       jjj = jjj + 1 
       step() 
       if 0<top.time < t0: 
          top.pgroup.sw =  (1. - (1.-sw0)*top.time/t0)*sw_save 
       if t0 < top.time < t1: 
          top.pgroup.sw = (1. - ((1.-sw1/sw0)*(top.time-t0))/(t1-t0))*sw0*sw_save 
       if top.zbeam > top.zlw: top.zlw = top.zlw + w3d.zmmax 
   if iii > 1: 
      while jjj < jjjmax : 
       jjj = jjj + 1 
       step() 
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       if 0<top.time < t0: 
          top.pgroup.sw = (1. - (1.-sw0)*top.time/t0)*sw_save 
       if t0 < top.time < t1: 
          top.pgroup.sw = (1. - ((1.-sw1/sw0)*(top.time-t0))/(t1-t0))*sw0*sw_save 
       if t1 < top.time < t2: 
          top.pgroup.sw = (1. - ((1.-sw2/sw1)*(top.time-t1))/(t2-t1))*sw1*sw_save 
       if t2 < top.time < t3: 
          top.pgroup.sw = (1. - ((1.-sw3/sw2)*(top.time-t2))/(t3-t2))*sw2*sw_save 
       if t3 < top.time < t4: 
          top.pgroup.sw = (1. - ((1.-sw4/sw3)*(top.time-t3))/(t4-t3))*sw3*sw_save 
       if t4 < top.time < t5: 
          top.pgroup.sw = (1. - ((1.-sw5/sw4)*(top.time-t4))/(t5-t4))*sw4*sw_save 
       if top.zbeam > top.zlw: top.zlw = top.zlw + w3d.zmmax 
 
   fma()  
   pzcurr() 
   fma() 
   pzcurr() 
   limits(top.zbeam+0.66*beamlen,top.zbeam+1.33*beamlen,'e','e') 
   fma() 
   ppzx(color='density',chopped=0.1)  # , contours=10)   # Uncomment if you get only 5 
colors 
   fma() 
   ppzvz(color='density',chopped=0.1) 
   currents[:,iii] = top.curr[:,0] 
   meshes[:,iii]  = top.zlmesh[:]+top.zbeam 
   fma() 
   pcurrlw(ilw=0) 
fma() 
 
# --- Text output 
runid = arraytostr(top.runid) 
ff1 = open(runid+".currout.txt", "w") 
ff2 = open(runid+".meshout.txt", "w") 
for iii in range(0, currents.shape[0]): 
    for jjj in range(0, currents.shape[1]): 
        print >> ff1, '%8.6f'%(currents[iii, jjj],), 
        print >> ff2, '%8.6f'%(meshes[iii, jjj],), 
    print >> ff1 
    print >> ff2 
ff1.close() 
ff2.close() 
 
savetxt('currlw.dat', (top.currlw)) 
savetxt('timelw.dat', (top.timelw)) 
savetxt('vzbarz.dat', (top.vzbarz)) 
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