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EFFICIENT PRECONDITIONING OF THE LINEARIZEDNAVIER-STOKES EQUATIONSDavid Silvester y, howard elmanz, David Kayx , and Andrew WathenxAbstract. We outline a new class of robust and e�cient methods for solving subproblemsthat arise in the linearization and operator splitting of Navier-Stokes equations. We describe a verygeneral strategy for preconditioning that has two basic building blocks; a multigrid V-cycle for thescalar convection-di�usion operator, and a multigrid V-cycle for a pressure Poisson operator. Wepresent numerical experiments illustrating that a simple implementation of our approach leads to ane�ective and robust solver strategy in that the convergence rate is independent of the grid and thetime-step, and only deteriorates very slowly as the Reynolds number is increased.1. Introduction. The underlying goal here is to compute solutions of incom-pressible 
ow problems modelled by the Navier-Stokes equations in a 
ow domain
 � IRd (d = 2 or 3) with a piecewise smooth boundary @
:@u@t + u � ru� �r2u+rp = 0 inW � 
� (0; T )(1.1) r � u = 0 inW:(1.2)together with boundary and initial conditions of the formu(x; t) = g(x; t) onW � @
� [0; T ];(1.3) u(x; 0) = u0(x) in 
:(1.4)We use standard notation: u is the 
uid velocity, p is the pressure, � > 0 is a speci�edviscosity parameter (in a non-dimensional setting it is the inverse of the Reynoldsnumber), and T > 0 is some �nal time. The initial velocity �eld u0 is assumed tosatisfy the incompressibility constraint, that is, r � u0 = 0. The boundary velocity�eld satis�es R@
 g � n ds = 0 for all time t, where n is the unit vector normal to @
.If g is independent of t then the usual aim is simply to compute steady-statesolutions of (1.1){(1.2). In other cases however, time-accuracy is important and therequirements of the time discretisation will be more demanding; speci�cally, an accu-rate and unconditionally stable time-discretisation method is necessary to adaptivelychange the timestep to re
ect the dynamics of the underlying 
ow. We will not at-tempt to describe the many possibilities|the recent monographs of Gresho & Sani [14]yDepartment of Mathematics, UMIST, Manchester M60 1QDzDepartment of Computer Science and Institute for Advanced Computer Studies, University ofMaryland, College Park, MD 20742.xOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD.1



and Turek [29] are worth consulting in this respect|but will restrict attention hereto the simplest unconditionally stable approach using a one-stage �nite di�erencediscretisation, as given below.Algorithm 1. Given u0, � 2 [1=2; 1], �nd u1, u2, : : :, un via(un+1 � un)�t + u� � run+� � �r2un+� +rpn+� = 0r � un+� = 0 in 
;un+� = gn+� on @
:(1.5)Here un+� = �un+1 + (1� �)un and pn+� = �pn+1 + (1 � �)pn. Note that p0 isrequired if � 6= 1 so the Algorithm 1 is not self-starting in general. In this case anapproximation to p0 must be computed explicitly by manipulation of the continuumproblem, or alternatively it must be approximated by taking one (very small) step ofa self-starting algorithm (e.g. with � = 1 above).Algorithm 1 contains the well known nonlinear schemes of backward Euler andCrank-Nicolson. These methods are given by (un+� = un+1, u� = un+1), (un+� =un+ 12 , u� = un+ 12 ), and are �rst and second order accurate respectively. In eithercase, a nonlinear problem must be solved at every time-level. As a result neitherof these methods is to be recommended if time-accuracy is needed. A well knownlinearization strategy is to set u� = un above. This does not a�ect the stabilityproperties of the time-discretisation, but it does reduce the Crank-Nicolson accuracyto �rst order as �t! 0 (the �rst order accuracy of backward Euler is unchanged). Toretain second order accuracy in a linear scheme the Simo-Armero scheme [24] givenby setting un+� = un+12 with u� = (3un � un�1)=2 in Algorithm 1 is recommended,see Smith & Silvester [26] for further details.Using linearized backward Euler or the Simo-Armero scheme, a frozen-coe�cientNavier-Stokes problem (or generalised Oseen problem) arises at each discrete timestep: given a divergence-free vector �eld w(x) (usually referred to as the \wind"), theaim is to compute u(x) and p(x) such that1�tu+w � ru� �r2u+rp = f in 
(1.6) r � u = 0 in 
;(1.7) u = g on @
:(1.8)Notice that since (1.6){(1.8) represents a linear elliptic PDE problem, the existenceand uniqueness of a solution (u; p) can be established under very general assumptions.The development of e�cient methods for solving discrete analogues of (1.6){(1.8) isthe focal point of this work. 2



An outline is as follows. The spatial discretisation of the generalised Oseen prob-lem is discussed in section 2. Some standard Krylov iteration methods that areapplicable to the (nonsymmetric-) systems that arise after discretisation are brie
yreviewed in section 3. Our general preconditioning approach is then developed in Sec-tion 4. This approach builds on our research e�ort over the last decade on developinge�ective preconditioners for limiting cases of the Oseen problem (1.6){(1.8): speci�-cally steady-state Stokes problems (�t!1 , w ! 0), see Silvester & Wathen [23];generalised Stokes problems (w ! 0), see Silvester & Wathen [22]; and steady Oseenproblems (�t ! 1), Elman & Silvester [6], Elman [5], Kay & Loghin [15]. Somecomputational experiments that demonstrate the practical potential of our solutionmethodology are presented in sections 5. Implementation of \pure" multigrid meth-ods seems to be relatively complicated, and performance seems to be (discretisation-)method dependent by comparison. The derivation of analytic bounds on convergencerates for the general preconditioner is an ongoing project which will be treated in aforthcoming paper [7]; in the �nal section we give a 
avour of the analysis by quotingresults that we have established in two special cases; potential 
ow (w = 0 and � = 0)and generalised Stokes 
ow (w = 0). These cases typically arise using time-steppingmethods for (1.1){(1.2) based on operator splitting|showing the inherent generalityof the preconditioning approach.2. Spatial Discretisation. Given that we would like to solve our model problem(1.6){(1.8) over irregular geometries, the spatial discretisation will be done using�nite element approximation (this also gives us more 
exibility in terms of adaptivere�nement via a posteriori error control, see e.g., Kay & Silvester [16]). We note thatthe algorithm methodology discussed in the paper applies essentially verbatim to�nite di�erence and �nite volume discretisations. In the remainder of this section webrie
y review the error analysis associated with mixed �nite element approximationof (1.6){(1.8). For full details see Girault & Raviart [13].The weak formulation of (1.6){(1.8) is de�ned in terms of the Sobolev spacesH10 (
) (the completion of C10 (
) in the norm k � k1) and L20(
) (the set of functionsin L2(
) with zero mean value on 
). De�ning a velocity space X � (H10 (
))d anda pressure space M � L20(
), it is easy to see that the solution (u; p) of (1.6){(1.8)satis�es 1�t(u;v) + (w � ru;v) + �(ru;rv)� (p;r � v) = (f ;v) 8v 2 X(2.1) (r �u; q) = 0 8q 2M;(2.2)where (�; �) denotes the usual vector or scalar L2(
) inner product. Since 
 is bounded3



and connected there exists a constant � satisfying the continuous inf-sup condition:supw2X (p;r �w)kwk1 � �kpk 8p 2M:(2.3)Furthermore, since w is divergence-free, the bilinear form c(�; �) given byc(u;v) = 1�t(u;v) + (w � ru;v) + �(ru;rv)(2.4)is coercive and bounded over X;c(v;v) � � krvk2 8v 2 X;(2.5) jc(u;v)j �Cw krukkrvk 8u 2 X; 8v 2 X:(2.6)Existence and uniqueness of a solution to (2.1){(2.2) then follows from a generalisationof the usual Lax-Milgram lemma, see [13].To generate a discrete system we take �nite dimensional subspaces Xh � X andMh � L2(
), where h is a representative mesh parameter, and enforce (2.1){(2.2)over the discrete subspaces (again specifying that functions in Mh have zero mean toensure uniqueness). Speci�cally, we look for a function uh satisfying the boundarycondition (1.8), and a function ph 2Mh such that1�t(uh;v) + (wh � ruh;v) + �(ruh;rv)� (ph;r � v) = (f ;v) 8v 2 Xh(2.7) (r � uh; q) = 0 8q 2Mh;(2.8)where wh represents the interpolant of w in Xh. Notice that this approximationmeans that the discrete wind is not actually pointwise divergence-free. From the linearalgebra perspective the point is that the discrete convection matrix corresponding tothe term (wh � ruh;v) is skew-symmetric, see below.The well-posedness of (2.7){(2.8) is not automatic since we do not have an internalapproximation. A su�cient condition for the existence and uniqueness of a solutionto (2.7){(2.8) is that the following discrete inf-sup condition is satis�ed: there existsa constant 
 independent of h such thatsupv2Xh (q;r � v)krvk � 
kqk 8q 2Mh:(2.9)Note that the semi-norm krvk in (2.9) is equivalent to the norm kvk1 for functionsv 2 X. The inf-sup condition also guarantees optimal approximation in the sense ofthe error estimatekr(u� uh)k + kp� phk � C( infv2Xh kr(u� v)k + infq2Mh kp� qk);(2.10)see [13]. Note that the constant C is inversely proportional to the inf-sup constant 
in (2.9). 4



Since we want to use linear algebra tools it is convenient to express the discreteproblem (2.7){(2.8) as a matrix problem. To do this we introduce discrete operatorsF : Xh 7! Xh and B : Xh 7!Mh de�ned via(Fvh; zh) = 1�t(vh; zh) + (wh � rvh; zh) + �(rvh;rzh) 8vh; zh 2 Xh;(2.11) (Bvh ; qh) = (vh;B�qh) = �(r � vh; qh) 8vh 2 Xh; 8qh 2Mh;(2.12)so that B� is the adjoint of B. With these de�nitions the discrete problem (2.7){(2.8)can be rewritten as a matrix system: �nd uh satisfying the boundary condition (1.8)such that �F B�B 0 ��uhph � = � f0� :(2.13)Furthermore, introducing A : Xh 7! Xh, satisfying(Avh; zh) = (rvh;rzh) 8vh; zh 2 Xh;(2.14)the inf-sup inequality (2.9) simpli�es to
kqhk � supvh2Xh (Bvh ; qh)(Avh;vh)1=2 8qh 2Mh:(2.15)It is instructive to express (2.13) and (2.15) in terms of the actual �nite elementmatrices that arise in practice. To this end, let us explicitly introduce the �niteelement basis sets, say,Xh = spanf�igni=1; Mh = spanf jgmj=1;(2.16)and associate the functions uh, ph, with the vectors u 2 IRn, p 2 IRm of generalisedcoe�cients, ph = Pmj=1 pj j etc. De�ning the n � n \convection", \di�usion" and\mass" matrices Nij = (wh � r�i; �j), Aij = (r�i;r�j) and Gij = (�i; �j), and alsothe m � n \divergence matrix" Bij = �(r:�j;  i), gives the �nite element version of(2.13): � 1�tG+N + �A BtB 0 ��up� = � fg � ;(2.17)where the RHS term g arises from enforcement of the (non-homogeneous) boundarycondition on the function uh; see Gresho [14, pp. 440{448 ] for details.Moreover, introducing the m � m pressure \mass" matrix Qij = ( i;  j); leadsto the �nite element version of (2.9): for all p 2 IRm,
(ptQp)1=2 � maxu ptBu(utAu)1=2(2.18) = maxw=A1=2u ptBA�1=2w(wtw)1=2(2.19) = (ptBA�1Btp)1=2;(2.20) 5



since the maximumis attained when w = A�1=2Btp. Thus, we have a characterisationof the inf-sup constant: 
2 = minp 6=0 ptBA�1BtpptQp :(2.21)In simple terms it is precisely the square root of the smallest eigenvalue of the pre-conditioned Schur complement Q�1BA�1Bt. We also have that(q;r � v) � kqk kr � vk � pd kqk krvk(2.22)where 
 � IRd, and so there also exists a constant � � d satisfying�2 = maxp 6=0 ptBA�1BtpptQp :(2.23)Note that the tight bound � � 1 was recently established (valid in the case of aconforming approximation space, Xh � X) by Stoyan [28].In practice, the inf-sup condition (2.9) is extremely restrictive. Problems arise ifthe pressure space Mh is too rich compared to the velocity space Xh. Although manystable methods have been developed, (see [14] for a complete list of possibilities), manynatural low order conforming �nite element methods like Q1{P0 (trilinear/bilinearvelocity with constant pressure) are unstable in the sense that pressure vectors p 2Mhcan be constructed for which the inf-sup constant tends to zero under uniform gridre�nement. This type of instability can be di�cult to detect in practice since theassociated discrete systems (2.17) are all nonsingular|so that every discrete problemis uniquely solvable|however they become rapidly ill-conditioned as h! 0.Another issue, which needs to be addressed when applying multigrid solutiontechniques to convection-di�usion problems of the formc(uh;v) = (fh;v) 8v 2 Xh;(2.24)(with c(�; �) given by (2.4)), is that standard approximation methods may produce anunstable, possibly oscillating, solution if the mesh is too coarse in critical regions. Insuch cases, to give additional stability on coarse meshes used in the multigrid processthe discrete problem (2.24) needs to be stabilised. For example, using a streamline-di�usion method, we replace (2.24) by the regularised problemc(uh;v) + �(wh � ruh;wh � rv) = (fh;v) 8v 2 Xh;(2.25)where � is a locally de�ned stabilisation parameter, see Johnson [17] for further details.The formulation (2.25) clearly has better stability properties than (2.24) sincethere is additional coercivity in the local 
ow direction. The local mesh P�eclet num-ber P eT = kwhk1;ThT=� determines the streamline-di�usion coe�cient �T in a given6



element T via the \optimal" formula, see Fischer et al. [10];�T = ( 12hT (1� 1PeT ) if P eT > 1;0 if P eT � 1;(2.26)where hT is a measure of the element length in the direction of the wind.3. Krylov subspace solvers. Let Lx = f denote a generic linear system ofequations. Krylov subspace solution methods start with a guess x(0) for the solution,with residual r(0) = f � Lx(0), and construct a sequence of approximate solutions ofthe form x(k) = x(0) + p(k)(3.1)where p(k) is in the k-dimensional Krylov spaceKk(r(0);L) = spanfr(0);Lr(0); : : : ;Lk�1r(0)g :In this section, we give a brief overview of properties of Krylov subspace methods forsolving the systems arising from the discretizations discussed in the previous section.The problem (2.17) is nonsymmetric so that algorithms applicable to such prob-lems are of primary concern, but the small Reynolds number limit leads to a symmetricinde�nite Stokes problem, and we �rst brie
y discuss this case. It is well-known thatfor symmetric inde�nite problems, the MINRES algorithm [20] generates iterates ofthe form (3.1) for which the residual r(k) has minimal Euclidean norm. It follows thatthe residuals satisfy kr(k)k2kr(0)k2 � min�k(0)=1 max�2�(L) j�k(�)j ;where the minimum is taken over polynomials �k of degree k satisfying �k(0) = 1.This result leads to the following bound on the relative residual norm [18].Theorem 3.1. If the eigenvalues of L are contained in two intervals [�a;�b][[c; d] with a� b = d� c > 0, then the residuals generated by MINRES satisfykr(k)k2kr(0)k2 � 2�1�p�1 +p��k=2 ;where � = (bc)=(ad).We apply this result to the Stokes equations in the �nal section. We also point out thattighter bounds can be established when a � b 6= d� c and b; d have some asymptoticbehaviour, see Wathen et al. [33], [34]. Each step of the computation entails onlya matrix-vector product together with a small number, independent of the iterationcount, of vector operations (scalar-vector products and inner products), so that thecost per step of the MINRES iteration is low.7



For nonsymmetric problems, there is no Krylov subspace solver that is optimalwith respect to some error norm for which the cost per step is independent of theiteration count [8, 9]. The generalized minimal residual algorithm (GMRES) [21] isthe most e�cient \optimal" solver, producing the unique iterate of the form (3.1) forwhich the Euclidean norm of the residual is smallest. Step k requires one matrix-vector product together with a set of k vector operations, making its cost, in termsof both operation counts and storage, is proportional to kN where N is the problemdimension. We summarize the main convergence properties of GMRES below. See[4, 21] for proofs.Theorem 3.2. Let x(k) denote the iterate generated after k steps of GMRES,with residual r(k) = f � Lx(k).(i) The residual norms satisfy kr(k)k2 = min�k(0)=1 k�k(L)r(0)k2.(ii) If L = X�X�1 is diagonalizable, where � is the diagonal matrix of eigenvaluesof L, then kr(k)k2 � kXk2 kX�1k2 min�k(0)=1max�j j�k(�j)j kr(0)k2:Assertions (i) and (ii) follow from the optimality of GMRES with respect to the resid-ual norm. Assertion (i) guarantees that GMRES will solve any nonsingular problemprovided that the dimensions of the Krylov space is large enough. This di�erentiatesGMRES from most other nonsymmetric Krylov subspace methods.The GMRES iterate is computed as in (3.1) with p(k) of the form p(k) = Vky(k),where Vk is a matrix whose columns form an orthogonal basis forKk. The constructionof the orthogonal basis is what makes the cost per step high, but once such a basisis available, the iterate with smallest residual norm can be computed cheaply. See[21] for details. Nonoptimal methods compromise on these points, reducing the costper step by avoiding the construction of an orthogonal basis, but thereby making theconstruction of an optimal iterate too expensive. (See the discussion of (3.2) below.)Numerous methods of this type have been proposed, see for example, [11, 25, 27, 30],and this remains an active area of research; we outline the properties of one suchapproach, the quasi-minimum residual algorithm (QMR) [11]QMR is a biorthogonalization method: it constructs a basis for Kk(r(0);L), aswell as a basis for an alternative space Kk(r̂(0);Lt), such that the two basis setsare pairwise mutually orthogonal. That is, if the basis vectors for Kk(r(0);L) arestored as the columns of a matrix Vk and the basis for Kk(r̂(0);Lt) is stored in Wk,then V tkWk = Ik. The vector r̂(0) may be arbitrary. The iteration (3.1) again usesp(k) = Vky(k). It can be shown that the residual satis�esr(k) = Vk+1 �kr(0)k2e1 � Tky(k)�(3.2) 8



where e1 is the unit vector of size k + 1 and Tk is a tridiagonal matrix of dimensions(k + 1) � k. Minimizing kr(k)k2 requires the solution of the least squares problemassociated with (3.2), which is prohibitively expensive (O(k2N ) operations). TheQMR iterate is de�ned by the choice of y(k) that solvesminy(k) 


kr(0)k2e1 � Tky(k)


2 ;even though the columns of Vk+1 are not orthogonal.1 Because Tk is tridiagonal,this construction can be done with a �xed number of vector operations at each step,together with matrix-vector products by L and Lt.As described, this algorithm may not be as robust as GMRES. In particular, itmay happen that it is not possible to augment the basis for Kk(r(0);L) at some stepk, even though the solution has not been obtained via (3.1). A more robust versionof QMR that makes breakdown of this type unlikely is given in [11]. If breakdowndoes not occur, then the QMR iterate satis�es the following convergence bound.Theorem 3.3. Let x(k) denote the iterate generated after k steps of QMR, withresidual r(k) = f �Ax(k), and let r(k)GMRES denote the residual produced by k steps ofGMRES. Then kr(k)k2 � kVk+1k2 kr(k)GMRESk2 � pk + 1 kr(k)GMRESk2:The results of Theorems 3.1{3.3 indicate that if the eigenvalues of L are tightlyclustered, then convergence will be rapid. In particular, for MINRES, it is desirablefor the sizes of the two intervals (one on each side of the origin) to be as small aspossible, and well separated from the origin. For GMRES and QMR, Theorem 3.2(ii) suggests that convergence will be fast if the eigenvalues can be enclosed in aregion in the complex plane that is small. The spectra of the discrete problems ofSection 2 are not well-behaved in this sense, and convergence must be enhanced bypreconditioning. That is, we use an operator P � L and solve an equivalent systemsuch as P�1Lx = P�1b, with a more favorable distribution of eigenvalues, by Krylovsubspace iteration.We conclude this section with a few general observations concerning precondi-tioning for both symmetric inde�nite and nonsymmetric problems. Sections 4 and 6discuss and analyze some speci�c strategies suitable for (2.17). First, we note thatpreconditioning increases the cost per step, since the matrix-vector product now re-quires a preconditioning operation, i.e. application of the action of P�1 to a vector.Thus, for the preconditioner to be e�ective, the improved convergence speed must beenough to compensate for the extra cost.1GMRES uses a construction essentially of this type, and optimality is achieved because oforthogonality of the basis. 9



The MINRES algorithm can be combined with preconditioning by a symmetricpositive-de�nite operator P. Formally, MINRES is then applied to the symmetricmatrix L̂ = S�1LS�T , where P = SSt. The error bound analogous to that ofTheorem 3.1 is kr(k)kP�1kr(0)kP�1 � 2�1�p�1 +p��k=2 ;(3.3)where the intervals de�ning � now come from the eigenvalues of the preconditionedoperator L̂. Thus, we seek a preconditioner for which the computation of the action ofP�1 is inexpensive, and for which the eigenvalues of L̂ are tightly clustered, leading tosmaller �. Note also that the norm in (3.3) is now di�erent; for further details see [22].It is also possible to apply QMR to symmetric inde�nite problems and combine thiswith a symmetric inde�nite preconditioner; see [12].For nonsymmetric problems, there is some 
exibility in how the preconditionedproblem may be formulated, with three possible di�erent \orientations":Left orientation [P�1L] [x] = [P�1f ];Two-sided orientation [P�11 LP�12 ] [P2x] = [P�12 f ];Right orientation [LP�1] [Px] = [f ]:The two-sided orientation depends on having an explicit representation of the precon-ditioner in factored form P = P1P2. In our experience, there is little di�erence in thee�ectiveness of these choices. We tend to prefer the \right" variant, especially for usewith GMRES, since the norm being minimized (the Euclidian norm of the residual)is then independent of the choice of the preconditioner.4. Preconditioning strategy. Our starting point is the discrete system Lx = fassociated with (2.17), which we write in the form�F BtB 0 ��up� = � fg �(4.1)so that F = 1�tG+N + �A 2 IRn�n, with B 2 IRm�n. Our preconditioning strategyis based on the assumption that a fast solver (typically based on multigrid) is avail-able for the convection-di�usion system Fu = f . This leads us to consider a blocktriangular preconditioning P�1 = �F�1 R0 �S�1� ;(4.2)with matrix operators R 2 IRn�m and S 2 IRm�m chosen to provide clustering of theeigenvalues �(LP�1) of the right preconditioned systemLP�1 = � In FR�BtS�1BF�1 BR � :(4.3) 10



Theorem 4.1. The speci�c choice of R and S in (4.2) satisfyingFR� BtS�1 = O; BR = Im;that is, R = F�1BtS�1 with S = BF�1Bt, is the optimal choice, see Murphy etal. [19]. For this choice, it follows from (4.3) that �(LP�1) = f1g, and preconditionedGMRES converges to the solution of (4.1) in at most two iterations.Implementation of a right preconditioner for GMRES requires the solution of asystem of the form Py = r at every step. (QMR also requires the solution of a systemwith Pt.) With the optimal choice of R and S we need to compute the vector � vq�satisfying � vq� = �F�1 F�1BtS�10 �S�1 �� rs� ;(4.4)for given vectors r 2 IRn, and s 2 IRm. Rewriting (4.4) shows that the optimalpreconditioner is de�ned by a two-stage process:Solve for q : Sq = �s;Solve for v : Fv = r �Btq:(4.5)To get a practical method, we modify the preconditioning process (4.5) by re-placing the matrix operators S = BF�1Bt and F , by approximations S� and F�respectively, designed so that the preconditioned Oseen operator has a tightly clus-tered spectrum. We are particularly interested in operators S� and F� derived frommultigrid computations such that �(SS�1� ) 2 !S and �(FF�1� ) 2 !F where !S and!F represent small convex sets in the right half of the complex plane; ideally, thesesets would be independent of the problem parameters �, h, and �t.The construction of the operator F� � F is relatively straightforward, see sec-tion 5. The more di�cult issue is the construction of a simple multigrid approximationto the Schur complement BF�1Bt, see e.g. Turek [29, pp. 56]. The approach pre-sented here was developed by Kay & Loghin [15] and represents an improved versionof ideas in Elman & Silvester [6] and Elman [5].To motivate the derivation, suppose for the moment that we have an unboundeddomain, and that di�erential operators arising in (1.6){(1.8) commute:r (1=�t +w � r� �r2)p � (1=�t +w � r � �r2)u r(4.6)where for any operator �, �u represents the vector analogue of the scalar operator �p.If we further assume that a C0 pressure approximation is used (so that Mh � H1(
))then we can construct a discrete pressure convection-di�usion operator Fp :Mh 7!Mhsuch that(Fp qh; rh) = 1�t(qh; rh) + (wh � rqh; rh) + �(rqh;rrh) 8qh; rh 2Mh:(4.7) 11



Introducing the L2-projection operators G : Xh 7! Xh and Q :Mh 7!Mh(Gvh; zh) = (vh; zh) 8vh; zh 2 Xh;(Qqh; rh) = (qh; rh) 8qh; rh 2Mh;then gives the discrete analogue of (4.6)(G�1B�) (Q�1Fp) � (G�1F) (G�1B�):(4.8)A simple rearrangement of (4.8) gives(G�1F)�1 (G�1B�) � (G�1B�) (Q�1Fp)�1F�1B� � G�1B�F�1p Q:Hence, assuming that (4.8) is valid, we have an alternative expression for the Schurcomplement operator BF�1B� :Mh 7!Mh, namelyBF�1B� � BG�1B�F�1p Q:(4.9)For the equivalence (4.9) to hold, it is necessary for the spaces Xh and Mh to bede�ned with periodic boundary conditions. In the case of an enclosed 
ow boundarycondition like (1.8), the discrete operator Fp inherits natural boundary conditions(associated with the space M ), and in this case (4.9) gives us a starting point forapproximating the Schur complement matrix S = BF�1Bt. Using the basis (2.16),we have the approximation BG�1BtF�1p Q = PS � S:(4.10)The goal now is to design an e�cient implementation of a preconditioner based on(4.10). This requires that fast solvers for the underlying operators Q and BG�1B�are available: we seek operators Q� and H� such that there exist constants �, �, �,� independent of h, satisfying�2 � ptQpptQ�p � �2 8p 2 IRm;(4.11)and �2 � ptBG�1BtpptH�p � �2 8p 2 IRm;(4.12)respectively. The practical version of the preconditioner is then de�ned by replacingthe action of S�1 in the �rst step of (4.5) by the so called Fp approximation:S�1� = Q�1� FpH�1� :(4.13) 12



Satisfying (4.11) is straightforward; the simple pressure scaling Q� = diag (Q)does the trick, see Wathen [31]. The upshot is that the action of Q�1 in (4.10) canbe approximated very accurately using a �xed (small) number of steps of diagonallyscaled conjugate gradient iteration applied to the operator Q.The relation (4.12) can also be satis�ed using a multigrid approach. The crucialpoint is that the use of a C0 pressure approximation space is associated with analternative inf-sup condition, see e.g. Bercovier & Pironneau [2]: for a stable mixedapproximation there exists a constant � independent of h, such thatsupv2Xh (v;rq)kvk � �krqk 8q 2Mh:(4.14)Thus, introducing the pressure Laplacian operator Ap :Mh 7!Mh such that(Ap qh; rh) = (rqh;rrh) 8qh; rh 2Mh;we have that (4.14) is equivalent to�(Ap qh; qh)1=2 � supvh2Xh (vh;B�qh)kvhk 8qh 2Mh:Applying the same arguments used to get (2.21) and (2.23), we have a natural char-acterisation in terms of the matrices associated with the �nite element basis (2.16):�2 � ptBG�1BtpptApp � 1 8p 2 IRm:(4.15)In simple terms, for a stable mixed discretisation, the operator BG�1B� is spectrallyequivalent to the Poisson operator Ap de�ned on the pressure space Mh (with in-herited Neumann boundary conditions); see e.g. Gresho and Sani [14, p. 563]. Wenote in passing that an equivalence of the form (4.15) can also hold in cases when adiscontinuous pressure approximation is used (with an appropriately de�ned matrixoperator Ap). For example, in the case of well known MAC discretisation on a squaregrid, we have Ap = h�2BBt where Ap is the standard �ve-point Laplacian de�ned atcell centres.The result (4.15) opens up the possibility of using a multigrid preconditioner. Inparticular, a single multigrid V-cycle with point Jacobi or (symmetric) Gauss-Seidelsmoothing de�nes an approximation H�, with spectral bounds�2 � ptAppptH�p � 1 8p 2 IRm:(4.16)The combination of (4.15) and (4.16) shows that a simple multigrid cycle can be usedas an approximation to BG�1B� in the sense that (4.12) holds with constants � = ��and � = 1. 13



To end this section we would like to emphasise the simplicity of the practicalimplementation of the preconditioner associated with (4.5). The computation of qin the �rst stage entails an approximation of the action of P�1S de�ned by (4.10).This is done in three steps; the �rst is the approximation to the action of the inverseof BG�1Bt using a multigrid iteration applied to a system with coe�cient matrixAp (typically representing a Poisson operator with Neumann boundary conditions),the second step is a matrix-vector product involving the discrete convection-di�usionoperator Fp, and the third step is essentially a scaling step corresponding to thesolution of a system with coe�cient matrix given by the pressure mass matrix Q. Forthe second stage of (4.5), the computation of v is approximated by a multigrid iterationfor the convection-di�usion equation. Clearly, the overall cost of the preconditioneris determined by the cost of a convection-di�usion solve on the velocity space andof a Poisson solve on the pressure space; with multigrid used for each of these, thecomplexity is proportional to the problem size.5. Computational results. We use P2{P1 mixed �nite element approximation(see e.g. [14, pp. 462]), that is, we choose spacesXh = fv 2 H10(
) : vjT 2 IP2(T ) 8T 2 Thg;Mh = fq 2 H1(
) : qjT 2 IP1(T ) 8T 2 Thg;where T is a triangle in the mesh Th. (This mixed method is shown to be inf-supstable by Bercovier & Pironneau [2].) We restrict attention to uniformly re�nedmeshes in this work, analogous results for adaptively re�ned meshes are given in Kay& Loghin [15].We present results for three standard test 
ow problems below. The time discreti-sation is backward Euler, and the linearisation strategy is given by the choice u� = unin Algorithm 1. In all cases we run the time integrator for 15 timesteps, unless thestopping criterion kun+1 � unk2 < 10�6 is satis�ed. We solve the linear system thatarises at each discrete time interval using GMRES with the preconditioner P that isde�ned below. The GMRES starting vector for the nth timestep is always taken to bethe previous timestep solution (un�1, pn�1). GMRES iterations are performed untilthe relative residual is reduced by 10�6.We will denote the action of a single multigrid V-cycle using a point Gauss-Seidelsmoother for the discrete velocity operator F in (2.11), by F�1� ; where we performone smoothing sweep before a �ne to coarse grid transfer of the residual, and onesmoothing sweep after a coarse to �ne grid transfer of the correction. For details seee.g.,Wesseling [32]. Similarlywe letH�1� denote the action of a single multigridV-cycleusing damped Jacobi as a smoother (with damping parameter 0:8) for the pressureLaplacian operator Ap in (4.7) (again with a single sweep of pre- and post-smoothing).14



We comment that although the use of multigrid as a solver for a Laplacian operatoris very robust, using a simple multigrid cycle with point smoothing does not generallylead to an e�cient solver for the convection-di�usion operator F when convectiondominates (although the same strategy can still be an e�ective preconditioner,see [32]).If we let Q�1� denote two diagonally scaled conjugate gradient iterations applied tothe discrete pressure identity, then our inverse preconditioner is of the form:P�1� =  F�1� 00 I ! I BT0 �I ! I 00 Q�1� FpH�1� ! :Within the multigrid process we construct prolongation operators using interpo-lation that is consistent with the order of the velocity/pressure approximation spaces.Furthermore the restriction operator is the usual transpose of the prolongation, andon the coarsest level (h = 1=2 below) we perform an exact solve. Finally, we em-phasise that if the local mesh P�eclet number is greater than unity on any grid, thenstreamline di�usion is included in the discrete system that is solved (as well as thediscrete convection-di�usion problems de�ning the operator F�1� , see (2.26)).To show the robustness of our solver we report below the maximum number ofGMRES iterations required for the tolerance to be satis�ed on a given mesh (with agiven �t) over all time iterations; this maximum iteration count is denoted by Nh�t.5.1. Stokes: Driven cavity 
ow. We �rstly consider the (symmetric{) gener-alised Stokes problem, associated with a standard driven cavity 
ow problem de�nedon a unit domain 
 = (0; 1)� (0; 1). The associated boundary condition is given byu(@
; t) = ( (1; 0) y = 10 otherwise;and we \spin-up" to the steady state from the initial condition u(x; 0) = 0:The performance of our preconditioned method is summarised in Table 5.1. Theseiteration counts are consistent with our expectation that the rate of convergence isindependent of the degree of mesh re�nement, and the size of the timestep. Wenote that in the limit �t ! 1, the system reduces to a stationary Stokes systemin which case we have tight analytic bounds showing the e�ectiveness of the samepreconditioning strategy in a MINRES context, see section 6.5.2. Navier-Stokes: Driven cavity 
ow. We also consider the Navier-Stokesproblem associated with the domain, boundary and initial conditions given above.These results are given in Table 5.2.The obvious point to note here is that, as in the Stokes case, the performance isnot a�ected by mesh re�nement. (The trend is clearly evident even though the meshesare relatively coarse.) In contrast to the results in the Stokes case it can be seen that15



�t h = 1=4 h = 1=8 h = 1=160.001 9 10 120.1 13 14 141 14 15 1510 14 15 151000 14 15 15Table 5.1Nh�t for Stokes driven cavity 
ow� = 1=50 h = 1=4 h = 1=8 h = 1=16�t = 0.1 14 15 14�t = 1 14 15 15�t = 10 17 18 18� = 1=100 h = 1=4 h = 1=8 h = 1=16�t = 0.1 14 15 14�t = 1 14 16 16�t = 10 19 21 21� = 1=200 h = 1=4 h = 1=8 h = 1=16�t = 0.1 14 15 14�t = 1 15 18 18�t = 10 23 24 24Table 5.2Nh�t for Navier-Stokes driven cavity 
owas �t gets larger in Table 5.2, the iteration counts tend to an asymptotic maximumvalue. Moreover this maximumvalue becomes somewhat larger as � is decreased. Thisbehaviour is consistent with our expectations|steady-state iteration counts that arepresented in [15] can be seen to slowly increase as the Reynolds number is increased.A complete theoretical explanation is not yet available, but see Elman et al. [7].5.3. Navier-Stokes: Backward facing step. We �nally consider a Navier-Stokes problem on an L-shaped domain. We start with the coarse (level 0) mesh inFigure 5.1, and generate subsequent meshes (i.e. levels 1{3) by successive uniformre�nement. The total number of degrees of freedom on the respective levels 1, 2and 3 are 309, 1092 and 4089 respectively. We again start from a \no 
ow" initial16
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Fig. 5.1. Coarsest and �nest grid triangulations for the backward facing step.
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condition, and impose the following enclosed 
ow boundary condition;u(@
; t) = 8>><>>: (2y � y2; 0) x = �6;( 827(y + 1)(2� y); 0) x = 16;0 otherwise:The fact that we have a tough out
ow boundary condition is emphasised here. Fig-ure 5.2 illustrates the computed steady 
ow (interpolated from the �nest mesh) inthe case � = 1=200, and shows that the downstream evolution from the in
ow to theout
ow pro�le is physically realistic.� = 1=50 level 1 level 2 level 3�t = 0.1 26 32 33�t = 1 26 32 33�t = 10 26 43 40� = 1=100 level 1 level 2 level 3�t = 0.1 26 32 33�t = 1 26 32 33�t = 10 26 51 47� = 1=200 level 1 level 2 level 3�t = 0.1 26 32 33�t = 1 26 32 33�t = 10 33 64 59Table 5.3Nh�t for Navier-Stokes 
ow over a backward facing step.The maximum iteration counts are given in Table 5.3. These results have thesame general character as those in Table 5.2, although the iteration counts for a given� and �t are increased by a factor of about two. We attribute this di�erence to thefact that the longer 
ow domain means that the local mesh P�eclet number is relativelylarge in this case. We remark that for the largest timestep there is a reduction in theiteration count when going from the second to the third level of re�nement. Indeed theaverage GMRES iteration counts in the case � = 1=200, �t = 10 are 27:3, 52:3 and50:1, respectively. This phenomenon of increased mesh re�nement being correlatedwith faster convergence is also evident in the steady-state results that are presentedin [15].6. Analytic results. For problems where the coe�cient matrix is symmetric,speci�cally whenever N = 0 in (2.17), there is a well-established convergence analysisassociated with preconditioners based on the Schur complement approximation (4.10).We outline this theory in this �nal section.18



As discussed in section 3, MINRES is the optimal Krylov solver in the case of asymmetric coe�cient matrixL, but it can only be used in conjuction with a symmetricpositive de�nite preconditioning operator P. For this reason, in place of the blocktriangular preconditioner (4.2), we introduce the simpler block diagonal variantP�1 = �F�1� 00 S�1� � ;(6.1)and insist that the block-diagonal entries F� and S� are themselves symmetric. Theconvergence analysis is based on the following result, which is established by Silvester& Wathen in [23].Theorem 6.1. Assume that the blocks F� and S� in (6.1) satisfy�F � utFuutF�u � �F 8u 2 Xh;(6.2) �S � ptBF�1BtpptS�p � 1 8p 2Mh;(6.3)then the eigenvalues of the preconditioned problem,�F BtB 0 ��up � = ��F� 00 S���up� ;(6.4)lie in the union of intervalsE � � 12(�F �q�2F + 4�F ); 12(�F �q�2F + 4�S�F ) �[ ��F ; 12(�F +q�2F + 4�F )� :(6.5)We now consider two special cases; corresponding to potential 
ow and generalisedStokes 
ow, respectively.6.1. Potential 
ow. In the simplest case of potential 
ow, � = 0 and N = 0in (2.17) thus in (6.4) we have that F = 1�tG, and the Schur complement matrixis S = �tBG�1Bt. Since F is simply a (scaled) velocity mass matrix, the choiceof F� � 1�tdiag(G) ensures that (6.2) holds with �F and �F independent of h. Forthe Schur complement, we consider a preconditioner corresponding to (4.10) withFp = 1�tQ, and with BG�1Bt replaced by the spectrally equivalent operator Ap, thatis we take PS = BG�1BtF�1p Q ' ApF�1p Q = �tAp:(6.6)The bound (4.16) suggests that a practical choice for the preconditioner in (6.3) isS� = �tH� corresponding to a (symmetric) multigrid approximation to the inverse19



of the pressure Poisson operator Ap. (With this choice of S� the bounds (4.15) and(4.16) show that (6.3) holds with �S = �2�2.) Combining Theorems 3.1 and 6.1 thenleads to the following result.Theorem 6.2. In the case of a potential 
ow problem, MINRES iteration witha velocity scaling together with a simple multigrid preconditioning for the pressurePoisson operator, converges to a �xed tolerance in a number of iterations that isindependent of the mesh size h, and the time step �t.6.2. The Generalised Stokes Equations. We now consider eigenvalue boundsin the case N = 0 in (2.17) so that F = 1�tG + �A in (4.1). Since F is essentially ascaled vector-Laplacian plus an identity operator, it is well-known that multigrid canbe used to generate an approximation F� satisfying (6.2). For the Schur complement,we consider a preconditioner corresponding to (4.10) with Fp = 1�tQ + �Ap, that iswe take P�1S = (BG�1Bt)�1FpQ�1' A�1p FpQ�1� 1�tA�1p + �Q�1:(6.7)The optimality of this combination is well established; see Cahouet & Chabard [3].Using (6.7) we have that the Rayleigh quotient in (6.3) satis�esptBF�1BtpptPsp = ptB( 1�tG+ �A)�1Btppt( 1�tA�1p + �Q�1)�1p :(6.8)This shows the importance of the inf-sup condition (2.21) in the limiting case ofsteady 
ow|for large �t the quotient (6.8) reduces to the quotient in (2.21), (2.23),and it follows that (6.3) is satis�ed with �S = 
2 in the steady-state limit �t!1.Recent work by Bramble and Pasciak [1] has formally established that for �nite �t,the quotient (6.8) is bounded both above and below by constants independent of hand �t, although careful consideration is required in the separate cases ��t < h2 and��t � h2.Our analysis in section 4 suggests that a practical version of the generalised Stokespreconditioner is given by (6.1) with:S� = 1�tH�1� + �Q�1� :(6.9)The point here is that PS is spectrally equivalent to S� so that (6.3) is satis�ed forthe choice (6.9), in which case Theorem 6.1 implies that the intervals de�ning E in(6.5) are independent of h and �t. This fact can be combined with Theorem 3.1to establish the following convergence result (corroborated by the iteration countspresented in section 5.1); 20
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