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Abstract

Title of Dissertation: Consistent Estimation of the Order for Markov
and Hidden Markov Chains

Lorenzo Finesso, Doctor of Philosphy, 1990

Dissertation Directed by: John S. Baras
Professor
Flectrical Engineering Department

The structural parameters of many statistical models can be estimated maxi-
mizing a penalized version of the likelihood function. We use this idea to construct
strongly consistent estimators of the order for Markov Chains and Hidden Markov
Chain models. The specification of the penalty term requires precise informa-
tion on the rate of growth of the maximized likelihood ratio. For Markov chain
models we determine the rate using the Law of the Iterated Logarithm. For Hid-
den Markov chain models we find an upper bound to the rate using results from
Information Theory. We give sufficient conditions on the penalty term to avoid
overestimation and underestimation of the order. Examples of penalty terms that
generate strongly consistent estimators are also given.
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Chapter O

Introduction

Let {Y;,teZ} be a stationary finitely valued stochastic process that admits a rep-
resentation of the form Y; = f(X,) where {X;,teZ} is a finite Markov chain and f
is a many-to-one function. We call such a process a Hidden Markov Chain (HMC).

Under well known conditions on f a HMC inherits the Markov property of X,
and becomes a finite Markov chain itself, but this case is non-generic. In general
a HMC need not be a Markov chain of any finite order and will therefore exhibit
long-range dependencies of some kind. This fact means that the class of HMC’s is
a very rich one and it comes to no surprise that it is extensively present in many
applications.

We can find HMC’s appear under various disguises in such diverse fields as:
engineering (stochastic automata, speech recognition), biosciences (in ethology to
model the mating behavior of some species, in medicine to study neurotransmis-
sion), economics (stock market predictions), and many others.

On the theoretical side the same fact (lack of the Markov property) makes the
class of HMC’s difficult to work with. The general methods developed for the
study of stationary processes apply but being non-specific they will not give the
best results. Theoretical work on the specific class of HMC’s has proceeded along
two main lines.

The early contributions, inspired by the work of Blackwell and Koopman (1957)
[5], concentrated on the probabilistic aspects. The basic question was the char-
acterization of HMC’s. More specifically the problem analyzed was: among all

finitely valued stationary processes Y; characterize those that admit a HMC repre-
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sentation. This problem was solved by Heller [12] in 1965. To some extent Heller’s
result is not quite satisfactory since his methods are non-constructive. Even if Y}
is known to be representable as a HMC, no algorithm has been devised to produce
a Markov chain X; and a function f such that Y; = f(X.) or at least ¥; ~ f (Xe)
(i.e. they have the same laws). In recent years the problem has attracted the
attention of workers in the area of Stochastic Realization Theory, and while some

of the issues have been clarified a constructive algorithm is still missing.

* The first contributions dealing with statistical aspects were made in the late
sixties. Baum and Petrie [4] studied maximum likelihood estimation of the param-
eters of a HMC proving consistency and asymptotic normality of the MLE. They
also provided an algorithm for the numerical computation of the MLE (of course
there is little hope for an explicit solution in a non-Markovian setting) basically
inventing the EM algorithm that became popular only later thanks to the work of
Dempster, Laird and Rubin [8]. After the mid seventies HMC’s made only spo-
radic appearances in the statistical literature. In 1975 HMC's were proposed by
Baker [2] as models for automatic speech recognition (ASR) and ever since they
have been adopted as one of the models of choice in this field. Computational
" aspects became very important and much work was done on the implementation
of Baum’s algorithm. A good survey of this area of research is [16] which also
includes an extensive bibliography.

Although much work has been dedicated to parameters estimation for HMC’s
only very recently the order estimation problem received some attention. The order
of an HMC Y, is the minimum integer ¢ for which there exists a ¢g-valued Markov
chain X, such that ¥; = f(X.) for some f. The knowledge of the order of an
observed HMC Y; allows the construction of the most economical representations
f(X.) in the sense that the number of parameters (the transition probabilities of
X,) is minimized. The order cannot be estimated using the classical maximum
likelihood because increasing the parameter ¢ automatically increases the likeli-
hood. This is the typical behavior of the likelihood function when the parameter
is structural i.e. the parameter (usually integer valued) indexes the complexity of

the model. As another example of structural parameter we mention the order of a



Markov chain i.e. the smallest integer m such that:
P(X: | X =P(X, | XNy Vi>m+1, VXS

Again the maximum likelihood technique fails when applied to the estimation of
the parameter m.

In this thesis we study the problem of order estimation for Markov chains and
hidden Markov chains. The technique we adopt is based on the compensation of
the likelihood function. A penalty term, decreasing in ¢ (or m), is added to the
maximum likelihood and the resulting compensated likelihood is maximized with
respect to g (or m). Proper choice of the penalty term allows the strongly consistent
estimation of the structural parameter. Accurate information on the almost sure
asymptotic behavior of the maximum likelihood is of critical importance for the
correct choice of the penalty term and the Law of the Iterated Logarithm (LIL) is
therefore the best tool for this study.

The technique that we have just (roughly) described and the same probabilistic
tools have been used for the estimation of the structural parameters of ARMA
processes (see e.g. [1], [L1]), but we are not aware of any previous work that

employs this approach for Markov chains or hidden Markov chains.

We conclude the introduction with a brief summary of the thesis. In Chapter
1 we formally define HMC’s and collect some basic results that will be used in the
sequel. Most of these results are available in the literature to which we refer the
reader for a more detailed treatment. Chapter 2 is dedicated to the proof of the
consistency of the maximum likelihood estimator (MLE) of the parameters of a
HMC. The novelty with respect to Baum and Petrie [4], where consistency was
first proved, is that we do not require the observed process to be a HMC. The
main results of this chapter are new. In Chapter 3 we deal with the estimation
of the order of a Markov chain. First we use the LIL to find delicate bounds on
the asymptotic behavior of the maximum likelihood estimator and then use the
bounds to construct strongly consistent estimators of the order. The main results
of Chapter 3 are new, moreover the chapter is practically self-contained. The final
Chapter 4 is dedicated to the estimation of the order of HMC’s. The behavior

of the maximum likelihood is difficult to evaluate because no explicit expressions



for the estimators are available. The LIL works for one special case, but we must
use other methods to evaluate the asymptotics. We obtain some results with
an approximation technique that uses Markov chains of increasing order m to
approximate the given HMC. These results are too weak to solve the problem
of order determination and we will have to resort to a result from Information
Theory to get the necessary asymptotics of the maximum likelihood. Apart from

this heavy dependence from Information Theory the rest of Chapter 4 is new.



Chapter 1

Hidden Markov Chains

In Section 1 we define formally HMC’s adopting the elegant formalism originated
in Stochastic Realization Theory, show its equivalence to the definition given in
the introduction and present some useful formulas for the computation of probabil-
ities of interest. In Section 2 we review some results from Realization Theory that
demonstrate the elusive nature of the notion of minimality for HMC's. We will
attempt (with modest success) to circumvent the difficulty introducing the class of
regular HMC’s. In Section 3 we give two results on the equivalence of representa-
tions. They are not the best available but will be enough for our purposes. In the
final section we define parametric families of HMC’s that will be used later and a
sufficient condition for their identifiability is given. The results presented in this
chapter are scattered in the literature, our main goal was to bring them together

as coherently as possible.

1.1 HMC fundamentals

There are many equivalent ways of defining HMC’s. We particularly like the
definition that originated in Realization Theory [23] and we will borrow it.

Definition 1.1.1 (SFSS)

A pair {X;, Yi teN} of stochastic processes defined on a probability space Q, F,P)
and taking values in the finite set X x Y is said to be a stationary finite stochastic
system (SFSS) if the following conditions are met:
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i) (X, Y:) are jointly stationary

ii) P(Yt+1 = Yitls X1 = Tt | Yf = yi, X{ = Ii)
= P(Yt+1 = Y+l X1 = Ten1 | X = ?’-'t)

The processes X and Y: are called respectively the state and the output of the SFSS.
The cardinality of X will be called the size of the SFSS.

Definition 1.1.2 (HMC)

A stochastic process Y; with value in the finite set Y is a Hidden Markov Chain
(HMC) if it is equivalent to the output of a SFSS.

(!
i

Recall that two stochastic processes are said to be equivalent if their laws
coincide. Definition 1.1.2 has therefore to be interpreted as follows: the process
Y, is a HMC if its probability distribution function Py(y7) = Pr{Y = y7] can
be represented as Py(y7) = P(Y} = y7) where ¥, takes value in Y and is the
output of a SFSS. Observe that we do not require Y, to be defined on the same
probability space Q, F, P) as 14, they can be completely different objects but
they are indistinguishable from observation. From now on when we refer to Y; as
a HMC we will actually refer to any process Y, in the same equivalence class. We
will refer to any SFSS (Xi, }"t) with Y, equivalent to Y; as a representation of
the HMC Y..

Example (adapted from Ornstein [20])

A box contains a roulette wheel. We look at all possibilities for two consecutive
spins of the wheel and divide these into two classes. Fach time we spin the wheel
(the spins are independent), we look at the last two spins and print out 0 if they
fall in the first class and 1 if the fall the second class. The output of the box is a
HMC. Observe that the probability of printing a 1 at time n cannot be determined



from the observation of the previous values (unless the two classes have trivial

configurations), i.e., the output need not be Markov of any order m.

a

In the introduction we referred to HMC’s as stationary processes of the form Y.
= f(X,) where X; is a stationary Markov Chain, but this is equivalent to definition
1.1.2. Clearly if ¥; = f(X:) with X; stationary Markov, the pair (X, Y1) will be
a SFSS and ¥; a HMC according to 1.1.2. Let now Y; be a HMC according to
1.1.2 and X, be the state process of a SFSS associated with Y;. If we sum 1.1.1
over Yy We get P(Xi41 = T | Xi = o8, Y! = yi) = P(Xi41 = Ter | X = z¢)
and after taking conditional expectations with respect to X! we have P(X¢s1 =
T | X = zt) = P(Xi41 = Tt | X: = z;). Therefore X, is a Markov Chain.
As a direct consequence of 1.1.14i we also have that the process S; = (Xt Y:) is a
Markov Chain. Taking f: X x Y — YV to be the projection map on the second
component i.e., f(z,y) =y we get the representation ¥; = f (S;) as desired.

We insisted on the fact that in general HMC’s do not have finite memory,
nevertheless their laws are completely specified by a finite number of parameters. In
fact to specify the laws of a SFSS it is sufficient to specify the finite set of matrices
{M(y),yeY} whose elements are: mi;(y) == P(Yer1 = g, Xeprp =3 | Xe = 9)
i,j=1,2,--- | X |. Observe that the matrix A == ¥, M(y) is the transition matrix
of the Markov Chain X;. If to the matrices M (y) we add an initial distribution
vector 7 such that # =7A (stationarity) then we have a complete specification of
the laws of the SFSS. Very often in the literature the following “factorization”
hypothesis is made:

P(Yt+1=y,Xt+1=jlXt=i)=P(Y2+1=yIXt+1=j)P(Xt+1=j|Xt=i)

Since the factorization hypothesis always holds for the process S: = (X, Y:) we
will assume it without loss of generality (later we will impose conditions on the
values and therefore the assumption will become restrictive).

Let by := P(Yi =y | Xe =1), B the | X | X | V| matrix of the by,’s, and By =
diag{b1y, b2ys - - - bey} (Where ¢ = | X |). The factorization hypothesis now gives:
M(y) = AB,.



We conclude this section with a collection of formulas. The formulas for the
probability of some cylinders in terms of the parameters are well known and will be
used later. The other formulas are obtained by elementary algebraic manipulations
from 1.1.14i. We present them here because they shed some light on the nature of
the dependencies between the parameters of SFSS.

In the sequel when notationally convenient and not misleading we will identify

random variables with their values e.g. P(y:) will mean P(Y: = ye)-
Lemma 1.1.1
Pyt | Xe=14) = e M(yes) fo(yn)e Vn2t+1
Py, Xe=1) = mM(y1) - M(ys)e:
P(y?) = wM(y1)- - M(yn)e

where e; is the i-th standard basis vector of R° and e = S e;

Proof: everything follows directly from 1.1.14.
]

For future reference let us introduce the followi.ng definitions. For any word
v = y1Yy2 - - - Y define:
M(v) = M(y)M(y2)-- -M(yx) a square matriz of size | X 1.
g(v) = wM(v) a row vector of size | X |.
h(v) := M(v)e a column vector of size | X |.
With ¢ we denote the null word and define g(4) := =, h(¢) :=e.

The formula for the output probability can be written is scalar form as follows:

P =Y. P(yp,2}) = 3 P(ut | 21)P(e1)
Given z7, the sequence y7 is independent in fact:
R amy P(y1,21)
P(yn»%n | Za—) P(e1 307
P(zn | a-1)P(217)
= P(ya|z2)P~" [217)

8



and proceeding by induction we get Py | =7) = [They Py | zx)
Therefore:

PuT) = T PEIP |2) TT Plown |20P (e |2e)

k=2

= Z Ty Doy Gziza brays Grpzs * " Gzno1Za bznyn
xn

For the final part of the section we make the extra assumption that all proba-

bilities are strictly positive (it is actually enough to assume M(y) > 0).

Lemma 1.1.2 The following conditions are equivalent (1 <t < n):

1) P(Xep1, Yorr | X5, Y1) = P(Xo1, Yo | X:)
ii) P(Xt-h Y1 \X?aYtn) = P(Xt-l,Yt-l |Xt)-

Proof: Since the process (X:, Yr) is Markov it is sufficient to check that
P(Xt—h Yio1 | Xt, Yt) = P(Xt—l’ Yi IXt)-
But

P(X.,Ys | Xoot, Yeut ) P(Xio1, Yim1)
P(Xu, YY)
P(X. | Xo-1)P(Xeo1, Yom1)
P(X:)
= P(Yt-l IXt-—l)P(Xt-l |Xt)-

P(Xt—lalft-—l lXta}/t)

This last expression is independent from Y; and therefore equals
P(Xe-1, Yeo1 | Xo)-

Lemma 1.1.3 For (1 <t <n):

i) P(X. | X34, Y7) = P(Xe | Xeer, X7°)
i) P(Xe | X7, Yi) = P(Xe | Xewr, ¥7)



Proof: First we will prove .

The LHS is:
PLYY) PR | XGYOPCKL YY)
P(Xi™hYT) POY | X LY HP(XEH YT
P(Y3, | Xe)
= 2 P(X,, Y| X
BYr | Xoca) (X, Ye | Xim1)

since the last expression does not depend on X$? it must coincide with

P(X: | Xe-1, Y{*). Now we must prove that P(X: | Xe-1,Y7") = P(X: | X1, YT
But '

P(Yl",Xt,Xt._l)
P(}/ln7Xt—1)
P(}/tn7Xt |W-1’Xf—l)P(Y1t—17Xt—l)
P(Y? | X1, YE PV Ximt)
PV, X | Xe-1)
P(Y | Xe-1)
= P(X;|Xem, YY)

P(Xt lXt—th‘) =

This proves i). For ii) use the same technique and Lemma 1.1.2.

0

We next use Lemma 1.1.3 to find an expression for the posterior probability of

the state process X as a function of the filter and the one-step predictor.

Lemma 1.1.4

" P(X: YY)
P(XM\Y) = —r . P(X X
( 1 | 1 ) t];];, P(Xt+1 l}/;.t) ( t+1 l t)

Proof: Requires a little manipulation using 1.1.37i and the easily proved fact
that P(Ylt lXt1Xt+1) = P(lflt lXt)-

a

Again by manipulating the formulas and with the help of Lemma 1.1.3 we find
that:

P(Ye, X | i1, X4, X, Vi) = P(Ye | Xo), P(Xe | Xe-1, Xer1)

which gives us the structure of the neighborhood system for the Markov random

field (Xu, Y3)-

10



1.2 Results from Realization Theory

In [12] Heller characterized the finite valued stationary processes Y; that are HMC’s.
We need some preliminaries to present his results. Y will denote a finite set, J*
the set of finite words from Y, and C* the set of probability distributions on )~.
C* is convex. A convex subset C C C* is polyhedral if C = conv {q1(*), -+, (")}
i.e. C is generated by finitely many distributions ¢;(-)eC*. A convex polyhedral
subset C C C* is stable if C = conv {q1(+), -+, ¢.(+)} and for 1 < : < c and VyeY
the conditional distributions ¢;(- | ¥) := %‘T%%EC. We are now ready to enunciate

the main result.

Theorem 1.2.1 (Heller [12])
Py (-) is the pdf of a HMC if f the set
Cy := conv{Py(- | u) ueY*}

is contained in a polyhedral stable subset of C*.

O

For an elementary and insightful proof of Heller’s theorem, see Picci [23] which
we followed for the presentation of the result. Suppose that a given Py (-) satisfies
the conditions of Heller’s theorem and that the ¥; process is therefore a HMC. Two
questions now arise naturally. We called any SFSS (X, Y;) with Y, equivalent to
Y; a representation of the HMC Y, and showed that the distributions of a SFSS
are completely specified by the set of parameters M := {c,M(y), 7} where ¢ =
| X |. It is therefore natural to identify a representation of the HMC Y; with the
set M. When clear from the context we will omit ¢ from the list of parameters.

The first question is: can the parameters of a representation be determined
directly from Py(-)?

Such a representation of Y; is inherently non-unique and we would like to find
the “simplést” one. Take | X | as a measure of complexity, and for a given HMC
Y, define its order as the minimum of | X | among all representations. A repre-

sentation for which | X | equals the order is said to be a minimal representation.

The second question is: can the order be determined?

11



At present the answer to both questions is in the negative, but there are a few
clues. Unless otherwise noted the following is derived from the works of Gilbert
[10], Carlyle [6] and Paz [21]. Let p(-) be an arbitrary pdf (not necessarily HMC),
and vy -+ - vy V) -+ - U, 27 arbitrary words from V*. The compound sequence matrix
(c.s.m.) P(vy++:n, v3---Vn) i the n x n matrix with %,j element p(v;v;). The
rank of p(-) is defined as the maximum of the ranks of all possible c.s.m. if such
maximum exists or +co otherwise. Suppose now that p(-) is the pdf of a HMC
which admits a representation M = {¢,M (-),7} of size c. Using the definitions
following Lemma 1.1.1 we have that: P(vy -~ copvy s uy) = G(o1 v ) H vy - vy)
where G, H are n X c and ¢ X n matrices respectively. The i-th row of G is g(vi)
and the j-th column of H is h(v;-) in fact: p(vjv_',-) = m\/I(v;v;-)e = = M(vi)M(v)e
= g(v3)h(z}).

It clearly follows that the rank of a HMC cannot exceed the size of any of its

representations and therefore in particular:

Lemma 1.2.1 The rank of a HMC is a lower bound to its order.

O

Remark: The concept of rank of a pdf is only loosely related to the HMC
property because there are examples of pdf's with finite rank that are not HMC.

Also there are examples of HMC'’s whose order is strictly greater than their rank.

A representation M = {c, M (-), 7} of size cis regular if the rank of the corre-
sponding pdf equals c. Regular representations are minimal as a direct consequence
of Lemnma 1.2.1. As explained in the remark not all HMC’s admit regular repre-
sentations, but the following two results will justify our interest in them. The first

result states that it is “easy” to check regularity.

Lemma 1.2.2 A finite number of operations is sufficient to determine the regu-

larity of a given representation M = {c, M(-),7}-

Proof: Let ¢ be the size of M. We must check that there exist 2¢ words
vy -+ - ve v, - - - vl such that the c.s.m. of size ¢: G(vy++-ve) H(vy -+ v') is invertible.

This is equivalent to checking the invertibility of both G and H. To complete the

12



proof it is sufficient to show that rank G(vy - - - vc) attains its maximum for at least
one set of words (v; - - ve) with | vi |[< ¢ (1 <1 <¢)(and similarly for H (v} - - - vc))-

Let Ly := span{g(v) ve)*,| v |= k}, Ly is a linear subspace of the vector
space R°. We will show that for & > c all subspaces L are identical. Since
g(v) = &, g9(vy) we have that Lx C Lg+1, and since gvy) = g(v)M(y) we have
that Ly = Lgs1 = Lkem = LeVm > 1. Let J be the first integer for which
Ly = Ly then dim L,+J<dimL;<c and we conclude that J <c.

The proof for H is analogous.

0

The second result states that almost all representations are regular. Let T’ be
the set of all M := {c, M(:),x} of sizec. T is a compact set in R* for some k
depending on c.

Lemma 1.2.3 The non-regular elements of T are a closed subset of R*-Lebesgue

measure zZ€ro.

Proof: The non-regular points of I' are characterized by the vanishing of the

determinant of a finite number of matrices.

a

We conclude this section with an observation on the structure of the pdf of
HMC’s.

Lemma 1.2.4 IfY; is a HMC known to admit a representation of size ¢ then its
pdf p(-) is completely determined by the values {p(v),| v |< 2c}.

Proof: The existence of a representation of size ¢ implies that the rank of p()
cannot exceed c. Let r be the rank of p(+) and P an rxr c.s.m. of rank . Such a P
exists, moreover the proof of Lemma 1.2.2 shows that the words vy -~ cUp, V) UL
defining P can be chosen of length < c. Let wey™ arbitrary, since P is invertible
we have that: [p(wv}) ---p(wv)] = a(w)P for some row vector a(w) which only

depends on w and P. Construct the c.s.m. P(vy, - vr,w, vy " vl ).

13



Since P is of maximal rank, the rank of P must also be r and therefore:

p(w) = [p(we})---p(wv))]P7 p(vs) - -p(or)l
a(w)([p(v1) - - p(v:)]"

O

We gave the result in this form since it can easily be proved from what we
already presented. The best possible bound on the length of the words determining
p(+) completely is 2¢-1 (see Paz[21]). In Carlyle [6] a recursive algorithm is given
for the computation of p(-) of long strings starting from {p(v),| v |< 2¢c - 1}
Remark: It is always possible to construct a c.s.m. P of maximum rank taking
v, = v} = ¢ this can be seen taking w = ¢ in the proof of Lemma 1.2.4. Expanding
the determinant of P along the last row and along the last column and comparing

we get the result.

1.3 Equivalent representations

In this section we study conditions for the equivalence of representations. Our

results are not the best possible (see [13]) but they are relatively straightforward.

The following is a sufficient condition for equivalence.

Lemma 1.3.1 Let M := {c, M(-),7} and M= {&M(),7}. If X, Y arecXx é

and & X ¢ matrices respectively such that:

My) = YM@yX Wy
# = X
¢ = Ye

XYy = L

then M and M are equivalent.

14



Proof: It is sufficient to verify that for an arbitrary word we)” FM(w)é =
wM (w)e. This follows immediately by substitution.

o

Remark: The condition XY = L implies rank X 2 ¢ and rank Y > c, therefore

the lemma is non-trivial only for ¢ 2 c.

Tf one of the representations is regular we can give a necessary condition for

equivalence as follows.

Lemma 1.3.2 Let M := {¢, M(-),7} and M = {& M(-), 7} and assume M to
be regular. If M is equivalent to M then & > ¢ and there ezist X,Y of dimensions

¢ x & & X c respectively such that:

M(y) = XM(y)Y Vyey

r = 7Y
e = Xé
XY = 1.

Proof: The necessity of é > ¢ follows from the minimality of regular representa-
tions. We will exhibit a pair of matrices X, Y satisfying the conditions.

Since M is regular there exists an invertible c.s.m. P(vy---ve, v} --v:). BY
the last remark of Section 1.2 we can always select v; = v; = #. Therefore
P(, vz Ve, § V" V) = G($, vz -~ ve)H(g,v5 - - - v) where both G and H are
invertible. Observe that the first row of G is « and the first column of H is e.
Since M and M are equivalent they have the same c.s.m. In particular this means

that:
a) G(dyve- v )H($,vh - vl) = G($,v2 - ve) H($,vy - 2)
b) G602 v) (@) E (g5 v)) = G(d,02---v) M@ H (&%) (Wed)

Observe that G, and I are ¢ x & and & x ¢ respectively and each of rank c since

their product is of rank c.
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Define X := G~1G and Y := HH-'. Then by b) M(y) = XM(y)Y. To verify
that = = #Y observe that % is the first row of (@ therefore #Y = (first row of
G)HH-! = first row of (Gﬁ)H‘1= first row of (GH)H™! = =. Analogously it
can be proved that e = X& Finally XY = G-'GCHH'=G'GHH ' =I.

1.4 Families of HMC’s

In this section we introduce the families of HMC’s that will be used as model
classes in the following chapters.

From now on Y will be a fixed finite set with | YV |= 7 The family © of all
HMC’s of all orders (taking values in )) can be identified with the family of all
§ = {cs, Mo(y),me} With ceN. For €O define Py(y7) = mo Mgy )ee, (we will
often drop the subscripts in the RHS and simply write Py(y7) = 7M (y™)e). Define
O, 1= {0e®;¢5 = q}-

Lemma 1.4.1
VY qV8eO, 30eOy41 such that P;(-) = Py(-) or, abusing the notation, ©, C Og41.

Proof: Let § = {q, M(y),7} and construct 4 as follows:

G=q+1, and M(y):= diag{M(y), ™)}

where m(y)e(0,1] and ¥y M(y) = A is a stochastic matrix, # = («,0). It is
immediate to verify that Ps(-) = Ps(")-

O

Statisticians refer to families satisfying Lemma 1.4.1 as nested families. A few
considerations about the identifiability of © are now in order. A point 6€Q, is
identifiable in O if for any &' # 0(8'e®,) Po(-) # Pal’) i-e. for at least one word
w, Py(w) # Pa(w). This definition is too strong and it would give no identifiable
points in any ©,. In fact for a given 8 at least the (finitely many) points §’ obtained
by permutations of the rows and columns of M(y) and 7 give Pa(.) = Pg(). We
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will say that 0e®, is identifiable modulo permutations (i.m.p.) if the only points
9’0, with Py(-) = Pa(-) are obtained by permutation as described above. Regular
points §e@, (i.e. points for which rank Ps = q) are good candidates for being 1.m.p.
but a few (mild) extra conditions must be added. In [22] Petrie proves a theorem

on identifiability that we will adapt to our case.

Definition 1.4.1

§ = {q, M(y), 7} is a Petrie point if

8 is regular

M(y) is invertible Vy

Jye) such that by, (= 1,2,---q), are distinct.

Theorem 1.4.1 (Petrie [22] adapted)

The Petrie points of ©, are identifiable modulo permutation.

Proof: Let @, be a Petrie point. We show that if 9e©, and Ps(") = P5(-)

!
q

such that P(vy---vgvi---vy = G(vr-+- v, )H(v} - --v}) is invertible together with
G(vy - -+ vq) and H(vy -+-vy). Since P;(-) = Ps(-) their c.s.m.’s are identical and
therefore:

(1) G{vy -~ v ) B (v -vy) = G(vr - cvg)H(vy - - vy)-
We conclude that G and f are also invertible. (For convenience we dropped
vy« g, v} -+ v). Analogously Yyey GM(y)H = GM(y)H (since these too are
c.s.m.’s), from which we have: M(y) = G-'GM(y)HH™*. From (1) HAE ' =
G-1G. Let X := G~'G (invertible) then:

(2) M(y) = X" M(y)X.
To conclude it is enough to prove that X is a premutation matrix. Toward this
end sum (2) over Y and get A = X-1AX, substituting into (2) we have AB, =
X-'AXBy = X~'AB,X. Since M(y) = AB, is invertible (6 is a Petrie point) so
must be A. We finally have: B,X = XB,. Let y,cY be such that biyy 1 =14
are distinct. From B,z; = XB; we see that the j-th column of X satisfies:

then § and @ differ by a permutation. By regularity there exists vi---7, CUERRE

B, ; = bjy,Tj- Since By, is diagonal with distinct elements, Z; can only be one
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of the standard basis vectors e, ez - -+ €q- This means that there is at most a 1 in

each column of X. Observing that Xe=¢ concludes the proof.

Lemma 1.4.2

The set of Petrie points is open and of full Lebesgue measure in Q,.

Proof: We already proved this for regular points in Lemma 1.2.3. The added

hypotheses can be dealt with in the same way.

a

It will often be convenient to somewhat restrict the family © in order to simplify

statistical considerations.

Definition 1.4.2
For 0 < § < ¢ define:

@g = {aéeq; aij 2 5; bjy 2 5’ Vz’]’y}
a

Remark: If Ge@g the stochastic matrix Ay is certainly irreducible and aperiodic
and its invariant vector mg is uniquely determined. In this case 6 is completely
specified by {M(y)} or by {A,B}.

The following lemma is simple but it will be essential later. With the abuse of

notation introduced in Lemma 1.4.1 we have:
Lemma 1.4.3
§ /2
e c o

Proof: Let Ge@g. Define X,Y matrices ¢ X (¢ +1) and (¢+1) X¢ respectively

I 00] o _[L
X‘[o }Y‘H

and M(y) = YM(y)X Vyel.

as follows:

18



sily checked that the conditions for the validity of Lemma 1.3.1 are

It is ea
{M(y)} is equivalent to g. The definitions of X and ¥

satisfied and therefore f =

also guarantee that 0e03/2,
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Chapter 2

HMC’s as Models of Stationary
Processes

The consistency of the Maximum Likelihood Estimator (MLE) for HMC’s was es-
tablished in [4] under the assumption that the true distribution of the observations
comes from a HMC. Here we show that, if ¥; is stationary and ergodic, the MLE
taken on a class of HMC’s converges to the model closest to the true distribution in
the divergence sense. The result in [4] is therefore a special case of ours. In Section
9.1 we briefly review the misspecified model approach that we followed here. In
Section 2.2 we present our version of the consistency of the MLE. In Section 2.3
we prove a slightly generalized version of the Shannon-McMillan-Breiman theorem
which is related to the consistency results of the previous section. The final Section
2.4 settles a technical problem.

2.1 The misspecified model approach to para-
meter estimation

Suppose a given series of observations {y1,¥2--yn} is to be modeled for some
specific reason. For example we might want to predict yn41 OT COMPIeESS {y1-Yn}
for storage. Confronted with this problem a statistician would most likely set
up a related parameter estimation problem as follows. He or she would first as-
sume that the sample is generated by some unknown stochastic mechanism, let

us say yr = gr(w),1 < k < n. The observed data sample is now interpreted as
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the initial segment of a realization of an unknown stochastic process. Based on
prior information, insight, and mathematical tractability, a class of models would
then be selected. The models in the class will be denoted {fe(+, 6),0¢©} where
{fi(-,N}ep1 is a stochastic process whose probability law is completely specified
by the parameter §. The modeling problem is now reduced to an estimation prob-
lem. According to some specified criterion of optimality the statistician selects a
model, i.e. estimates the 4, that best fits the data. Let us call the estimator based

" on n observations 8,.

How are we to judge the quality of 8.7 Ideally we should compare Files 8,) to
gx(+) but the latter is unknown. There are two possible solutions. The classical
one is to assume that the unknown process g is actually a member of the selected
class i.e. gr(-) = fx(+,00) for some true (but unknown) fo. The estimator , is
then judged to be good if it behaves well, uniformly with respect to 8pe0. Based
on this idea a great deal of statistical theory has been developed on the asymptotic
properties of various estimators.

The second approach (which we prefer) does not rely on the existence of a
true parameter fp in ©. After all the class of models was chosen more or less
arbitrarily, why should g belong to it? The problem is transformed into one of
best approximation. A distance d(, .) between probability measures is introduced
and 8, is defined as d(P,, Ps.) = ming d(P,, P;). The estimator g, is judged to be
good if it is close to f.. In the statistical literature this is known as the misspecified
model approach. We learned about misspecified models from Nishii [19] which

treats the zid case.

2.9 HMC’s as misspecified models of stationary
processes

In this section we introduce our first statistical result involving HMC's. We observe
the process Y; with values in the finite set . The only assumptions on Y; are
stationarity and ergodicity. Denote by Q the probability distribution on YV*
induced by Y;. The class of models for Y; will be ¥ := @fl with g and & fixed (see

Section 1.4 for the notations). Notice that we do not assume a priori that Q = Pg,
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for some fpe¥. Instead we are adopting the misspecified model approach described

in the previous section.

Our goal is to prove the analog of the consistency of the maximum likelihood

estimator in this set up. Toward this end define:
ha(6,Y) = -17;1og Py(YT) (2.1)

Following the terminology from [19] we define the quasi-maximum likelihood

estimator (q.m.l.e.) f(n) as:

[8%]
()
~—

B(n) := {6e¥; ha(9,Y) = sup ha(6,Y)} (2.

Remark: 6(n) is defined as a set because no unicity is guaranteed for this class

of models. It is easy to see that in (2.2) the sup can be replaced by a max.

We need a notion of “distance” between @ and the Py’s. A reasonable choice
justified by its widespread use in statistics and engineering would be the divergence

rate:

D@ B = Jim, 2Fa [log ool (23)

Clearly we must prove the existence of the limit, for this distance to be well defined.
Refering to the proof given later we state here that indeed 2.3 is a legitimate

definition.

It will also be proved later that:
D(Q || Ps) = Hq — Ho(9) 20 (24)

where Hg := Eq[log Q(Yo | Y-1)] is minus the entropy of Y; under Q, and Hq(f) ==
Eqllog Py(Yo | Y=L )l is a well-defined and continuous function of fe¥.

Next define the quasi-true parameter set as:
N = {fe¥; D(Q I F;) =mip D(@Q [l F)}
A direct consequence of (2.4) is that:
N = {fe¥; Ho() = max Ho(6)} (2-3)
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For the proof of Theorem 2.2.1 we need the following result, proved in Section 2.4.
ha(8,Y) — Hq(8) a.s. Q, uniformly in 9. (2.6)

Remark: We recall the notion of a.s. set convergence that will be used. For
any subset £ C ¥ define the e-fattened set & := {8e¥; p(8,&) < g}, where p
is the euclidean distance. Then d(n) = N as. Qif Ve >0 3 N(e,w) such that
Yn > N(e,w), 8(n) C N

We are now ready to state our result:

Theorem 2.2.1
b(n) =N as. Q

Proof: Recall that ¥ := © is compact. Fix ¢ > 0. . being open, the
complement N is compact. Cover N¢ with euclidean open balls B(6, \g) centered
at 0, and of radius Ag. The radii X¢ can be chosen so that V0, B(8,) C N2
strictly. Let B(8,)\q) be the closure of B(8, )¢). The following chain of inclusions

is easily verified:
Nec | B(8,2) C U B(8,X) C N
feNE BeNE
By the compactness of N7 there exists a finite subcovering:
I I
NecUBiclUBicC Nf2 (where B = B(6;, As;))
i=1 i=1

Let Hp = Hq(0) loev (i.e. the maximum value attained by Hg(-)). By the uniform

convergence of h,(6,Y):

max ha(8,Y)— max Ho(0) = Hy —a;i a.s.Q

for some o; > 0. Therefore for n large enough:

- a;
max ha(6,Y) < Hg 3

Piecing together the I balls B; and letting o := min; o; we have:

(04

max ha(6,Y) < Hg — 5
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On the other hand the uniform convergence of h, also implies that:
sup hn(8,Y)— H(0) = H, a.s.
sup (8,Y)— sup (9) = Hg Q

and therefore for n large enough:

(87
h.(8,Y)> Hy— = 2.8
sup (8,Y) Q73 (2.8)

Comparing (2.7) and (2.8) we conclude that §(n) C Ne.

This proof is even simpler than the one given by Baum and Petrie [4] for the case
of perfect modeling (ie. @ = P;, for some 8qe¥) because it uses the uniform

convergence of hn(8, Y).

2.3 A generalization of the Shannon-McMillan-
Breiman theorem

In this section we present a slightly generalized version of the Shannon-McMillan-
Breiman (SMB) theorem and prove, en passant, (2.3) and (2.4). The SMB theorem,
first introduced by Shannon in 1948, has already a rich history of extensions and
generalizations vestiges of which are found in its very name. The classic version of

the theorem is the following:

Theorem 2.3.1

Let Y; be a finitely valued stationary ergodic process with probability distribution
Q(-). Then:

%log Q(Y) — Eqllog @(Yo | Y1) ae.andin ly
O

In this form the theorem has direct application in Information Theory because it
allows the estimation of the entropy rate of a finite alphabet stationary ergodic
source. Generalizations of theorem 2.3.1 have appeared for the case of real valued

processes. Barron (3] gives the following version.
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Theorem 2.3.2

Let (Q, F) be a sequence space ie. Q=R and F = By where R is a standard
Borel space and B its Borel o-algebra. Let M be a finite order, stationary, Markov
measure on (Q, F) and Y; a stationary ergodic process with values in R and distri-
bution Q. Assume absolute continuity of the n-th order marginal of Q with respect
to the n-th order marginal of M and denote the corresponding density by q(y3™t).
Define the divergence rate of the true distribution Q with respect to the reference

measure M as:
DA(@ | M) i=lim Balloga(¥ | %)
Then Dy(Q || M) is well defined and moreover:
Liogatyp) — Di(@ | M) ae. and in L

O

In this form the theorem becomes very useful in statistics, (see [3] for some appli-
cations).

The requirement that M be Markov for 2.3.2 to obtain seems to be almost
necessary (see Kieffer [14]). Our result generalizes Theorem 2.3.2 to reference

measures M of the HMC type but it applies only to finitely valued processes.

Theorem 2.3.3
Let Y, be a process with values in the finite set Y. AssumeY, to be stationary ergodic
under the probability distribution Q and a HMC under the alternative distribution

Pe@? for some fized q and é. Let g(YF) = QQ’L:) and define:
? 1 P(YY")

D\(@Q || P) := lim Eqllog (¥: | Yo ")

Then D, is well defined and moreover:

1 Q0)

Log 20 - D@ IP) e Q (2.9)

25



The proof will be given through a series of lemmas. First we will prove, with the
help of Lemma 2.3.1, the existence and finiteness of D;. Lemmas 2.3.3 and 2 34
will allow us to find a more explicit expression for D,. Using this new expression
it will be easy to complete the proof, 1.e. show (2.9), applying the ergodic theorem
and the basic inequality for HMC’s (A.3).

Lemma 2.3.1
§<PYi | Y& <1-6  Vk VY, VPeO;
Proof:
PV | Y™ = L P(YXe=1] %)
= Y P(YelXi= i) P(Xe=1|Y3™")
Therefore VY5 ™
min P(Yi | X =1) £ P(Yk lYF1) < m?xP(Yk | Xi = 1)
and under the assumption that Pe©) we have:

VP k YE @ § < PYlYs™ 1) <1-6§

Lemma 2.3.2 D; ezists and is finite

Proof: Define R(Y#¥) := Q(Ya ™) P(¥k | Y*1). 1t is easily verified that R is a
probability measure on o(YF) and that ¢(¥x | Yo = %%9;;- Being a likelihood ra-
tio {q(Yx | Y&, o(Yy)}isan R-martingale and from the convexity of the function
z log z it follows that {g(Yk | Yo “Nlog g(Yz | YEY), o(Ys)}isan R-submartingale.
All of this is trivially verified and it implies that {log Vi | Y&, o(¥F)}is 2

Q-submartingale. This can be seen as follows:
Enlq(Ye | Y& ™) log q(Y | Y& | Yo7
= 0 Ry | Y Na(we | Y8 loga(w" [ ¥57)

Yk

_ E QUYFMP(ye | Yo™') Que 1 Yo 1)
QE P (Yen | Yo D) Plyk | Yo“)

q(Yk—x | Y¢=?)Eqllog a(¥ | Y371 1 Yo'

log q(ye | Yo t)
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Therefore, since glogq is an R-submartingale:

Eq[log q(Yx | Yok_l) l Yok—I]

1 ,
E Y Y -1 1 Y Y -1 Yk—1
q(Yi |Y0‘2) rlg(Yr | Yo Ylog q(Yk L YF1) | Yy ]
g(¥i-1 | Yy %) log g(Yi-1 | Ys %) k-2
2 =log q(Yi_1 | Y,
q(Yi-1 | Y0-2) gq(Ye-1 1Yo )

which proves the assertion.

From the Q-submtg property of log q(Ye | YE-1) we immediately conclude that
D, exists since the expectations Eqllogq(Yr | Yo =1)] increase in k and therefore
have limit (possibly +oc0). The finiteness of D; is obtained as follows. For a fixed

k we have:
Eqllogq(Ys | Y&™)] = Eqllog QY | ¥5™)]
— Eqflog P(Yi| Y5 ™)l
The first term on the RHS equals Eglog Q(Ys | YZ) (by stationarity) and this

converges to minus the entropy of Y; which is bounded by log | ¥ |. The second
term on the RHS is bounded because of Lemma 9.3.4. This concludes the proof of

the lemma.
0
Remark: By stationarity we have that:
Dy(@Q || P) = Jim, Fq [loga(¥e | Y20)] (2.10)
The following Lemmas 2.3.3 and 2.3.4 will allow us to find a more explicit expres-
sion for D;.
Lemma 2.3.3

logq(Yo |YZ) = 2 aee Q and in L,, for some r.v. Z in Ly

Proof: It follows from Barron (3] (equation 2.7 on page 1295) that:
Ba s | ogatts 1 Y20 | < en@ip+Cer)
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Since in our case D1 < oo this proves that the random variables log ¢(¥o | Y23
are dominated by a @-integrable r.v. (and are therefore uniformly integrable). We

also have:

sup Eqllog* ¢(Yo | Yol
< sup Eq[| log ¢(Yo Raral
< Eqlsup |logg(Yo | YZ¢) [l < o0

Since {log (Yo | YY), oY)} isa Q-submtg it follows from standard theory that
logq(Yo | YY) — Z aee. Q. The Q-integrability of Z and the convergence in L1

follow from uniform integrability.

(i

Lemma 2.3.4 P(Yo | Y7l) converges to a limit P(Y, | Y=2) uniformly in Pe@®’
and Y(w)

Proof: Let fi := P(Yo | Y}) then f converges iff Z?=1 fi+1 — fj converges.
From the application of inequality A.0.3 it is easily seen that the last series con-
verges absolutely and therefore it converges. The convergence is uniform in P and

Y (w) because p in A.0.3 is independent from them.
a

What makes Lemma 2.3.4 remarkable is the fact that the convergence of P(Ys |
Y}) is uniform in Y(w). A similar, but weaker, result holds for the stationary
measure Q. In particular Q(yo | Y7}) is a bounded Q-martingale VyoeY and
therefore it converges a.e. @ to the limit Qyo | YoL). Since Y is finite it also
follows that Q(Ya | Y#) — Q(Yo | Y1) ae Q.

Since O(Yo | Y1) = Q(Ye | Y21) ae. Q. and P(Yo | Yol — P(Yo | Yo) for
all Y(w) we bave:

QYo | Yoo

log q(Yo | Y2i) — log AN
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From Lemma 2.3.3 and the unicity of the limit we can identify the r.v.Z as:

QYo | Yoo

Z =1
% P(Yo | Vi)

a.e. @

From the fact that logq(Ye | Y2%) — Z in L, and (2.10) we finally conclude that:

_ QYo | Y=,
To complete the proof of Theorem 2.3.3 it is now sufficient to show (2.9) i.e.,

using the last expression for D, that:

fm L1og 25 QYo | Y=, }

X0 L= Fyllog —————mmr) -
e n By ? {°g P(Y, | Y-1)
This can be obtained from the ergodic theorem with the help of A.0.3. Define:

(2.11)

ge(Y) = logq(Ye | Y)
g(Y) := logq(Yo | Y,

and denote by T the shift operator. Equation (2.11) now becomes:
1 n-1 i
ml S g (Y) = Eo lo¥)] oc.Q
k=0
while the ergodic theorem gives:

n-1

al $ o) = Fa (V)] 0.Q
To finish observe that:
15w - LI
5 e 0 %7 - LS log Qe Y52 1+
|5 e 0 17 - -"z':‘logp(y,, ¥R |

The first term on the RHS equals:
1 1 - -
| Llog@(3) - 2log QUG YD) [ = 0 (2. @)
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Since both % log Q(Y5 ~1) and 2 log Q(Yy™! | YZL) converge (a.e. @) to minus the
entropy.
For the second term on the RHS we have:
13 1
|23 log P(Y | &™) - - log P(¥e | V22 I

k=0

n—1
-rl-z- 3 |log P(Y; | Yg~1) —log P(Y} | Y* 1) |— 0 everywhere.
k=0

The convergence to zero follows from the application of A.0.3 and Lemma 2.3.1.

This completes the proof of Theorem 2.3.3.

Aside:
We prove here (2.3) and (2.4) from Section 2.2. In (2.3) we defined the diver-
gence rate as: D(Q || P) :=lim } Eglog %}};":—:i—;]
0

Clearly D(Q || P) = lim 1 725 Eqllog q(Ys | YZ¥1)]. From the definition of
D1(Q || P) given in Theorem 2.3.3 and the Cesaro convergence theorem it follows
that if D, exists then D exists and D = D;. From Lemma 2.3.2 we therefore

conclude that D is indeed well defined. From what we have just proved we have:

QYo | Y::o)]

Define:
Hq(8) := Eq [log Po(Yo | Y21)]

From Lemma 2.3.4 we know that Ps(Yy | Y=1) is the uniform limit of the se-
quence of continuous functions Py(¥s | Y-}) and is therefore continuous in ECH
Continuity of Hg(0) follows.

Defining Hg := Eqllog Q(Yo | Y21,)] we get D(Q || Py) = Hq — Ho() which is

the decomposition claimed in (2.4).

2.4 Uniform convergence of h,(6,Y)

We prove here (2.6) of Section 2.2, i.e. that:

ha(6,Y) — Hg(8) a.e. @, uniformly in fel
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In (2.1) we defined h(0,Y) := Llog Ps(Y[") and from the results of Section 2.3 we
already have that:

%log Py(YT) — Hg(0) a.e. Q; pointwise in 9e¥

Since ¥ is compact, to conclude that the convergence is uniform it is enough to

show the equicontinuity of the functions ha(8,Y).
Lemma 2.4.1 h,(8,Y) is an equicontinuous sequence

Proof: We will show that Ve > 0 there exists §(€) > 0 such that:
Vn | ha(0,Y) = ka8 Y) IS € i |00 [< ()

This can easily be seen working directly with the Markov process. S = (X, Y2)
which has state space T =X x Y. 6= {g,A,B},s = (4,9),5 = (4,7) then the
transition matrix T of S; has elements 1,5 := Py(Sex1 =3 |5 = 5) = a;;bjg. Since
06@‘; the matrix T is strictly positive and admits a unique invariant vector 7. We
have that:

n
Py(ST = 51{) = Ts H lsisjpr = Ta H e
i=1 (s.3)

where

Neg = Z I(St = 8, Sf+1 = 5)

t=1
Let now ¢’ := {q, A’, B'} be another point in @g. We have:
1 1
| Ba(0,5) — ha(8',59) | < | -;l-log*r,1 - -T;log T, |+
1 1
il logt.s — — logt!.
I n;nulog 55 ngnnlog s

Since 2

IA
o

< -:: | log 74, —1og‘r_:1 | +Z | log tss — logtls
Define

A(8,8") = |logts —log s
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From the expression for t,; given above we have that:

A(6,6) < {Z | log a;; — logalj | +3_ | logbjy —log bss l}

iJ Ty

Since all parameters are > § this shows that for some C > O
A@,0)<C|8-06 |1

Since T is an eigenvalue of T of geometric multiplicity 1 its components are con-

tinuous functions of the components of T and therefore:
1 1 , o
| ~log 7, — ~logT, I<=116-8lh
The final estimate is:
| ha(8,5) — ha(8,S) | < 2C || 8 =6 |

Therefore Ve > 0 there exist N(¢) and &(e) such that for n 2 N(e)

| hn(6,S) = ha(0,5) | < € if 1108 S 8 (212)
To go back to the ¥ process observe that (2.12) can be written as:
| 1 L og Po(ST) ) | <
Pg:(S") -

Therefore from
Py (ST) < exp{ne}Ps(ST)
we get:

Pp(Y7) = Z Py (X7, Y7

= Z Py(ST) < exp{ne} E Py(XT,YT)
= exp{ne}P(YT)
and similarly exchanging the roles of 6 and .

a

Remark: The idea of working directly with the process S, was suggested by
Chuangchun Liu.

32



Chapter 3

Estimation of the Order of a
Markov Chain

As originally planned this should have been a short review chapter on the appli-
cations of the Law of the Iterated Logarithm (LIL) in estimation problems. For
the reasons explained in the introduction to Section 3.4 below, we decided to show
the LIL in action on a real problem: the estimation of the order of a finite order
Markov chain. We will later make use of these results in the context of HMC'’s,

where finite order Markov chains will be useful to approximate the distribution of

the HMC.

In Section 3.1 we briefly present a version of the LIL for square integrable
martingales following Neveu [18]. Section 3.2 shows an application to Markov
chains and gives a result on the estimation of the stationary vector. In Section 3.3
we introduce the notion of finite order Markov chain, give sufficient conditions for
its ergodicity and study the asymptotics of the Maximum Likelihood Estimator
(MLE) of the transition matrix. The delicate rate estimate given in Theorem 3.3.2
is the key to Section 3.4.

We start Section 3.4 clarifying the notion of order as “minimal memory” of
the finite order Markov chain, and then use our asymptotic results to construct an
estimator of the order. The basic idea of Section 3.4 occured to us while reading
the beatiful booklet by Azencott and Dacunha-Castelle [1] on the estimation of the
order of ARMA processes. Another useful source of ideas, especially for Section
3.3, has been Nishii [19] where the iid case is treated.
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3.1 The LIL for Square Integrable Martingales

We sketchily present here the version of the LIL that is more convenient for our
purposes. Everything is standard and can be found in full detail in e.g. Neveu
[18]. Readers familiar with the result announced in the title are advised to only

browse through this section.

The classical version of the Strong Law of Large Numbers (SLLN) asserts that
if X, is a sequence of iid random variables with E | X; | < o0 and EXy = p
then 1S, — p a.e. where S, = Y&, X;. Under the additional hypothesis that
EX? < o the variance 0” := E(Xy — p)? is finite and the rate of convergence of

LS, can be evaluated as follows:
Il.sn_ulz Znﬂ?. 0'21———‘0g10gn
n n

This is the classical Kolmogorov’s LIL. Many versions of the LIL have been

where Im Z, =1 a.s.

developed to extend Kolmogorov’s result to the non iid case. We will be content
with the version for square integrable martingales as given in Neveu [18] pg. 147-
156. The statement of the theorem is followed by a brief comment on its conditions

and implications.

Theorem 3.1.1

Let (X,,neN) be a square integrable martingale such that

sup, | Xnt1 — Xn [Scae. for some finite constant c.

If A, denotes the increasing process associated to the submartingale (X3,neN )
then:

— Xn _ _
hmﬁAnloglogAﬂ =1 a.s. on [Aem =)
) Xa _ _
hmﬁAn Delor . 1 a.s. on [Ae = 9]
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Comments 3.1.2

a) The sequence of r.v.’s X, is a square integrable martingale if:
i) EX? < oo VneN;and
i) E[X, | Fae1] = Xn-1 where F._,is the o-field generated by X7,

b) The increasing process A, (associated to the Doob decomposition of X7).

is given by:
Apir = An = E[X2,, | Fi] - X3
But for every r.v. Y and sub-sigma-field B:
E(Y - E(Y | B)* | Bl = E[Y* | B] - (E[Y | B))®
and therefore we obtain:
Anyy — An = E[(Xnp = Xn)2 | Fal

or:

n

= E[(X:— Xi-1)? | Fre-il

k=1
with the convention that Xy = 0.

c) A weaker form of the result is:

— | Xn |
= .S. 3.1
bm V2 A, loglog An L as (3-1)

This can be immediately inferred from Theorem (3.1.1) and will be used very

often for our results.
d) Definition (Oa.s)
Let Z, be a sequence of r.v.’s and a, > 0 a sequence of positive reals. We say

that Z, = Oa.(a,) if there exists a positive random variable C almost surely finite
such that: | Z, | £ Can Vn.

e) We will often be able to substitute A, in (3.1) with n and get

i B
n"y/nloglogn
" for some constant 8. Which easily gives Xn = O...(v/nloglogn)

=0 a.s.
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3.2 Application to Markov Chains

As a first example of application we will use the LIL to find the rate of convergence
of the maximum likelihood estimators of the parameters of a Markov chain. The
derivation of the results is only sketched because it will be given in full detail, for
a more general case, in Section 3.3, Trivial as it might seem, Theorem 3.2.1 is a
little puzzling because it cannot be derived directly.

Let (X;,teN) be a finite Markov chain with state space & = {1,2,--" ,q} and
assume that the transition matrix A* of X, is strictly positive. This is equivalent to
the existence of a 8§ > 0 such that a;; > 6 (Vi,7). To A* there corresponds a unique
invariant vector m* whose components 7} 2> § (V7). We want to estimate A* from

the trajectory X7. It is convenient to take as parameters 8 := {a;;i=1,"¢;] =

1,---q —1}. The maximum likelihood estimator of § based on n observations is
given by:
\ _ N(i,j,n)
a"J(n) - N(z,n)
where
n—1
N(z,7, n) = Z (X, =1, Xiy1 = 7)
t=1
and
N(i,n) = Zl(Xt =1)
t=1
By the SLLN:

a;;(n) — aj; a.s.

What is the rate of convergence? Observe that:

N * N(iaj>n)'_a:"jN(i’n)
aij(") —a;; = NG )

Define:
Mij(n) = N(Z,],Tl) - a:jN(ivn)
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1t is easily seen that M;;(n) is a square integrable martingale satisfying the condi-

tions of Theorem 3.1.1. The corresponding A, process is given by:

A, = N(i,n) afj(l - a}'j)

By the SLLN M;—"l — 77 a.s. and therefore:

An
» - *
— — T a,-j(l — aij) a.s.

Since by hypothesis the RHES is strictly positive we have:

A, — o0 a.s.

We also have that (defining B;; 1= 7} aj(l - ay;)):
A,loglog An

= nloglogn

= [Pij a.s.

Substitution into (3.1) gives:
— | M) _ pEs .
hyrtn ~Toglog =4/26;; a-s.
Therefore M;j(n) = Oa.s.(v/7 Toglogn)

Dividing numerator and denominator in (3.2) by n we get:

. . loglogn
8:;(n) — aj = Oas.( __g_né—) (3.3)

Theorem 3.2.1

N(i,n) ot = Ous loglogn)
H a.s. 'n' -

n

Proof: First we observe that N(i,n) —n 7} is pot a martingale anymore and

for the determination of the rate cannot be applied.
n) and N°(é,n) denote the counts

as the successor of X).

therefore the previous method
The idea we use is the following. Let N (3,7,
taken with the circular convention (i.e. considering X1

From the asymptotic point of view nothing changes since: N°(3, 7, n) = N(¢,j,n)*l
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and N°¢(i,n) = N(¢,n) =1 but now it is easily verified that defining the vector 7,

and the matrix fln via:

(ﬁn)i == Nc(:;, n)

we have:

~

T An = Tn

From the previous analysis we know that with a, := loglogn

n

a

#n = #n( A" + Oas(@n)) (component wise)
Subtract #* = 7" A* from both sides. Then

Fo =7 = (Fy — 7 AT+ Fn O, (an)
which we can rewrite as:
(g = 77)(I = A7) = Oas. (@)

But A* > 0 by hypothesis and therefore rank (I — A®) = ¢ — 1 (because the
eigenvector =~ of A™ bas geometric multiplicity 1). Let A be a minor of order
g —1 and rank ¢ — 1 of A” and denote by (#n — 7*)a the corresponding (¢ —1)-
subvector of #, — 7#*. Then (7 — 7)a A = Oas. (a,) and since A is invertible
(=) = Ous. ()

Let j the index of the component of #, — 7~ not contained in (#n — ™ )a-

Clearly:

(ﬁ-ﬂ»); =1- Z(*n)] =1- Z (7!']' + Oa.s.(an)) =73 + Oa..:. (an)

JjEA JjEA
and the conclusion is that:
7}71. -7 = Oa..:.(

This is in perfect agreement with (3.3).
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3.3 Rates of convergence of the MLE

The results collected here will be essential in the next section where we solve the

problem of the estimation of the order of a Ma.rkov chain X, from the observations

{X1}-

Definition 3.3.1
The stationary, finitely valued, process (X, t > 1) is a finite order Markov chain

if for some integer m 20
P(X:=) | XY =P(X. =7 | X222) ae Vizm+l, V jeX
where X = {1,2,---,q} is the state space of X:.

a

This is the classical definition (see Doob [9] pg 89) and it is somewhat unsatisfac-
tory because it does not uniquely specify what the order is. For the time being we
will say that a chain has order less than or equal to m if m is any integer satisfying

Definition 3.3.1. A precise definition of the order will be given in Section 3.4 below.

The case m = 0 corresponds to an itd process, and m = 1 to a Markov chain.
The probability distribution of a finite order stationary Markov chain of order £m
is completely specified by the set of transition probabilities (t.p.):

a(i™,j) = P(Xi =7 | Xl =im), imeA™, jeX
and by the initial probabilities (i.p.):
o(i™) == P(XT* =1i™), iTeA™

Observe that X, is stationary only if v(¢™) is an invariant measure.
The probability of the cylinder {Xp=zt},forn2m+ 1, in terms of t.p., and

i.p. is:
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P(Xp=23) = PX7=47) 1l P(Xi =2 | XiZn = %lm

t=m+1
= o(zp) [ a(=iim=)
t=m+1
= v(ep) T a3V (3.4)
imyg
where:
N(im,j,n) = Z 1(Xf'_',ln =" X;=7) (3.5)
t=m+41

Later in this section we will need the SLLN for functionals of X;. The stationary
of X, allows us to use the a.e. version of the ergodic theorem to get the required
SLLN, but to keep matters as simple as possible we will assume ergodicity.
Remarks: If we also assume that the observations consist of the initial segment of
one trajectory then at no extra cost we may assume that there is only one ergodic
class.

Conditions for the ergodicity of X; can easily bé given in terms of the t.p.

a(z™, ), but to express them nicely we need to introduce a new process.

Definition 3.3.2
Let X, be a stationary process. The m-th derived process Y; is defined as: Y. =
(Xt Xegr -+ Xipm-1), t21

O

If X, is a finite order Markov chain of order < m then it is immediately seen that
Y, is a Markov chain.
The transition probability matrix T of Y; is of size ¢™ x ¢™ with at most

g™t elements different from zero since obviously:

tim ;m = 0 unless j1=1d2,0y Jme1 = im

. ) X ) :
tim jm = a(i ,jm) when j1 =iz, Jm-1 = lm.

The following lemma will give a sufficient condition for the ergodicity of X; in

terms of T.
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Lemma 3.3.1
Let X, be any stationary process and Y, its m-th derived process. IfY: 15 ergodic
then X; is ergodic.

Proof: Ergodicity of a stationary finitely valued process Z; is equivalent to
(Walters [24] pg 41): Vu =1, v 21, z¥, 2}
1 = u N k+v v u u v v
;ZP(Z1 =27, Zid = 21) — P(Zy = #1) P(Z; = zj) a.s. (3.6)
k=0
Write (3.6) for Y; = (X, Xewr - - Xt4m—1) then we have V W>1, Vo2l
1= A b1 kiudmel B
i, T3 POGT et KT =

= P(X{"*""'"1 = :z:'i""'"‘"l) P(X{"“"""1 = a:‘l”+m"1) a.s.

This shows that X; satisfies (3.6) Vu 2 m, v 2 m. For the case u < m,v < m

just observe that:

P(Xy =3}, Xyl ==1) =
. Zm P(X} =2}, X7 = Tl X =4, Xeita = Tow)
Tug1r Tutl
Condition (3.6) is verified for each term on the RHS and therefore is satisfied also
by the LHS. For the other cases, (u < m, v >m) and (u > m, v < m) the proof

is analogous.

Remark: The converse of Lemma 3.3.1 is false.

It is well known that for a (finitely valued) Markov chain Y, with t.p.m. T the
following conditions are equivalent:

i) Y; is ergodic

ii) T is irreducible

iii) there exists a unique invariant vector t (¢t = tT)

iv) all elements of ¢ are strictly positive

Applying Lemma 3.3.1 we now have:
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Corollary
A finite order Markov chain of order < m is ergodic if the t.p.m. T of the m-th

derived process Y = (X4, - - Xtym-1) is irreducible
a

Since the initial probabilities of the Y; process are in one-to-one correspondence
with the initial probabilities of the X, process, we conclude that when T is irre-
ducible there is a unique set of strictly positive initial probabilities {7 (¢™),1™eX ™1
corresponding to the t.p. a(i™, 7). The 7 (:™)’s can be found solving the equation
+T = ¢t. When T is irreducible a set of parameters that completely specifies the
probability distribution of the corresponding X chain is:

9 := {a(:™,j) 1"eX™, j=1,2,- ¢~ 1}
We now study the Maximum Likelihood Estimator (MLE) of 6.

Theorem 3.3.1 .

Let X,eX = {1,2,---q} be a finite order Markov chain of order < m and assume
that the m-th derived process Y; is ergodic.

Let 6* := {a*(i™,]),i"eX™ ] S ¢ — 1} be the true parameter of X::

The MLE of 6" is given by:

- N(™, 3,1
(@™, j,n) = —]-\(7(7,1732
where:
N@GE™,j,n) = Z 1(X§:}n=i”‘, X:=17)
t=m+1
n+l
N(@™n) = Z 1(Xf:}n=i”")

t=m+1

The MLE converge as to 0, with rate:

afom .o loglogn
C‘(z 7Jyn)=a (Z ])+Oa.s.( _§';§_—)
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The ezact asymptotics for a*(i™j) # 0 are:

2 e -G
m*(1™)

2 a*(im’j)(l — a*(im7j)) 0.5
*(i™) e

S.

rir?l(l———Oglr‘L’g”)"’"2 (a@™,4,n) —a* (™)) = J

hr_n_(‘———%fg")-‘” (a@™,j,n) —a"(i™, 7)) = —J

Proof: The MLE is obtained by direct computation. The asymptotics follow
from Theorem 3.1.1. First we deal with the trivial cases. If for some (¢™,7) the
t.p. a*(¢™,7) = 0 then N(i"™, 7, n) = 0 with probability 1 for every n and therefore
the rate condition is trivially satisfied.

We now assume a*(:™,7) > 0.

Observe that:

fl(im,j, n) _ a*(z'"‘,j) — N(imaj’n) —1;[?:,,(12";’)]) N(im,n) (37)

The numerator in (3.7) is a martingale, indexed by n, with respect to o{X 1. To
see this define for given (s™,7) and t > m + 1 '

u(t) = 1UXEL =, X, = §) — BLX{Zn = " Xe =) | X7 (3.8)

The process u(t) is centered at the conditional expectation given oc{X{'} and is
therefore automatically a martingale difference. The expectation in (3.8) can be

computed eXplicity:
E[L(XEL =i, X, = 5) | Xi7] = UX{Z = &™) '(™,])
And substituting in (3.8):
u(t) = UXEL =™, Xe=j) —a"(i™,§) UXiZn =17)

Since u(t) is a mtg difference the process M(n) defined for n 2 m +1 by:

n

M(n):= Y, u(t)

t=m+1

is a martingale with respect to o{X?}. M(n) coincides with the numerator of

(3.7) thus proving the claim.
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M(n) is square integrable because it is bounded, moreover
l]VI(n+l)—M(n) | =]u(n) | £2

thus verifying the technical conditions of Theorem 3.1.1.

The increasing process A, is given by (see comment 3.1.2b)

A= S W) | X

t=m+1

The t-th term is:
BR() | X1 = @™, 3)(1 - @™, 5)) UXiTh = 17)
and therefore:
4, = @™, §)(1 - a (i, 5)) NG™m)

Dividing both sides by n:

An

A _ gm0 -, 3) S

n
By the SLLN
N(™,n) . om
—— - (™) a.s.
Define:
(™, §) i= a=(i™,§)(L = a" (™, 3)) 7 ()
Under our hypotheses (i™,j) > 0 and therefore:

im A, = + a.s.

A, loglog A, o
Anlog0En  _ g™ §) a.s.

nie loglogn

Theorem 3.1.1 now gives
—  M(n) _ —
lunﬁm = /28(™,7) a.s.
) M(n) _ —
lim ~Togloen = —y/2B8(™,j) a.s.
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From here minor algebraic computations give the exact asymptotics. The rate

of convergence follows immediately.

0

The following theorem will play a central role in the next section (for the order

estimation problem).

Theorem 3.3.2
Let X, be as in theorem 3.3.1. Then:

loglogn

1 n 1 n
;L-log Pén(Xl )= o log Pa. (X1 )+ Oa.s.( ) (3.9)

n

Moreover the following bounds on the asymptotics hold:

Tm(log log n)~" (log Py, (X7) — log Pau(X)) < Gy 4™ (4 =1)  (3:10)
lim(log log 7)™ (log Ps,(X7) — log Pau(X7)) 2 0 (3.11)

where Cy, := 2% and n := mingm ; {a*(#™, )}

Proof: Expanding in Taylor’s series:

1 1 1 0 A
;log Pén - ;log Pg* = ; Eﬁlog Pg ‘9* (On - 9*)

8zlong

692 |9* (én - 0*) + Tn

1, rl
3 (0. -0~

where 7, = o(]| b, — 0. |2) = o(lesloan)

The derivative wrt a(i™, ;) is (see (3.4)):
N(im7j7n) _ N(im’q, n)
a*(t™,7) a*(i™, q)

d
log Py |6x= mbgw(x{") lox +{ ]

3}
8a(i™, 5)
Asymptotically, after normalization by %, the first term is negligible. Therefore:

N(im,j7 n) _— N(im’ q7 n)
a*(i™,5) a*(i™,q)

————log P |gs=
Ba(i’",j) Og ? |9
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The scalar product of the derivative and g, —0. is given by (we drop the dependence

from n in the N’s):
N(GE™,7) —a (™, 7)N(@E™)
)

im,j<q—-1 (zm)
[N(z’") (N(Z ,§) =@ NGy N(™) (N(m,q) = (Mg NG,
(e, 7) N(™) a (3™, q) N(@™)

(i”‘) N(@E™ ,])—a*(i”‘,j)N(i"‘) 2

e T ) NG )
NG NG 5) — e NG NG™,g) = o™ )V 6™)
SR o NG ) NG )

Where the sums must be taken over all ™eA™ and j < ¢ —1. Sum over j the

second ¥ and add to the first to get:
im N(Z a]) —a (Z 7.7)N(zm) 2
- }: a (z’" ' N(™) )

‘m

where the sum is now extended over all (i™,j)eX m+l,

From Theorem 3.3.1 and the trivial inequality EE(Z) < 5 [im we have:

hm(loglog n)~! 8 long low (6 — 6.)

erms with index j < q¢ — 1, but terms with

Theorem 3.3.1 applies directly to the t
j = q must be dealt with separately. We do the latter first.

a(im,q) —a*(i™q) = — 2 (&™) —a" (1)
j<q-1
and therefore:

(a(i™,q) —a* (™ 9)* = [ > @@, 4) - a‘(i”‘,j))].

i<g—1

<(g-1) ¥ @GEm5) —a (™)

J<g—1

The total contribution to (*) from the terms with 7 = ¢ is therefore:

=y (bgbgn) —"(i,,% (3™, ) — (™, 0)?
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< @-DE ¥ (bglogn) afr((ii)q) @a(i™,5) — a*(i™,9))*
B L (3.12)

im,j<e-1

On the other hand the contribution to (*) from the terms with 7 < g — 1 is upper
bounded by (from Theorem 3.3.1 directly):
P o WGt B )
im 5<q-1 07 (™) (i)

= T 21 —a(i™)) (3.13)

Adding together (3.12) and (3.13) we get the final upper bound:

2(g=1) Sempepn IO iy v a-a@™)

a*(lma q) z"‘,qu—l
2(q —
< Yimj<e-t (#"T% +2)

With 5 := min{a"(¢™,¢)} and C, = 2(9—_—l +1) we get the best possible bound i.e
, ¢"(q—1). Taking C; := =212 C, we get the looser but simpler bound given in
the statement of the Theorem.

We now proceed to the direct evaluation of the quadratic term in Taylor’s
expansion. For the sake of readability notation will be kept to the bare essential.
In particular we will drop the dependence from m on the first index i.e. a(i™,J)
will be denoted a; ;, etc.

We start by observing that:

182

0*
~ 50 —log Py |6 = 892E9,..(1og Py) Jou +o(1)

Where:

i \sgg-1

Es.(log Ps) = > ( > #; af;logai; + 7} a;,log ai,q)

The first derivatives are:

3]
Eg.(log Py) = ajj Th —— — Ghg Th T
ahk apk Qhq
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The second derivatives:

1 1

Es(log By) = — S(h.k)(esm) — —— e
aah,k aae,m ? (og 0) ﬂ-h ahk h.,k (R ) ﬁ.h ahq a;:.,q "
The §’s are Kroneker symbols.
0 1 1
E " 1 .P - r —_— 6 em) P — 6 e
Sy Baim (log Ps) lo== —T% oy e o O

The quadratic form is now:
6.~ 0.7 & EyogP. 8, — 6.
(6, — 0.)" 30 o(log Ps) loa (8 — 6:)

u . \/A . T T
= - Z Z (ane — are)(@em — am) {'.—h"S(hvk)(e,m) + —.h—5h,e}
Ak Ghq

(h,k),k<g-1 (eym),m<q—1 '

Some cumbersome algebraic manipulations give the final form:

== (@ — ahk)

(h.k)
The quadratic form is negative definite, as was to be expected.

Obviously:
T (loglogn)™" (6 (9)’1""’_-135—1i lor (B — 6) <0

and therefore this term does not influence the global upper bound. For the lower
bound (3.11) observe that by definition: |

P;,, (XT) 2 Pax (X7)

from this (3.11) follows trivially.

3.4 Estimation of the order

After the publication of [17] we thought the results of this section would loose some
of their interest, but after careful studying we decided to present them for two

reasons. We have been unable to convince ourselves of the validity of some of the
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arguments given in [17]. Moreover our results do not intersect those given in [17]
and are obtained by a totally different method. The problem can be roughly posed
as follows. We observe the process X which is known to be a finite Markov chain
of order m*, the transition probabilities of X, and the order m* are unknown. Our
goal: construct a consistent estimator of m*. To formulate the problem correctly

we must first define the order of a finite order chain.

Definition 3.4.1

i) The order of a finite order Markov chain X, is the minimum m satisfying
definition 3.3.1

i) A representation of a finite order Markov chain of order m is any set of
transition probabilities and stationary initial probabilities:

{a(i™, ), (™) (™, 5)eX™ )
with m' > m that generate the probability distribution of X,. m' will be called the
memory of the representation.

#i) A minimal representation is a representation whose memory equals the

order.

Remark: The notions of order and minimality introduced here do not coincide
with those of System Theory. Roughly said, in System Theory the order is the
cardinality of the smallest state space that allows a description of the process.
If X, is a stationary (standard) Markov chain then its system theoretical order
would be the cardinality of the set of ergodic states, because no transient state
could ever be observed from any trajectory of the stationary chain (the invariant
probabilities associated to transient states are all zero). In our definition the state

space X is fixed in advance.

Theorem 3.4.1
Let X, be an m-th order Markov chain,

M = {a(i™,5),7(T")}
a minimal representation of X;, and Y, the m-th derived process:

i) There is only one minimal representation if and only if Yy is ergodic.
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it) For allm’ 2 m one representation is given by:

M = {a(i™, §), ™ (™)}
where a'(i"‘l,j) = a(iﬁj_mﬂ,j)

(™) = 7(i™) a(@™,tmt1) - ca(t™ ) i)

i1i) The m’'-th derived process Y, is ergodic for all m' > m if and only if
a(i™,j) > 0 for all (=™, 7).
iv) For any m' > m there is only one representation with memory m' if and

only if a(i™,j) > 0 for all (™, 7).

Proof: i) If Y} is ergodic then from the general fact that two distinct stationary
ergodic processes are mutually singular we conclude that M is unique. On the
other hand if ¥; is not ergodic at least one of the stationary probabilities (™) = 0
and therefore the corresponding “row” of t.p.’s a(i™,j) can be changed without
altering the probability distribution and we may therefore construct infinitely many

representations equivalent to M.

if) For m’ > m we have:

a,(im,,j) P P(Xm:+1 =j I X;TLI = z‘m/)
= P(Xm41=17 l Xl om41 = il’if-mﬂ) = a(i’,?é_mJ,nJ')
S = PX]Y = ™) = P(XDhy = i | X =i™) POXT =i7)

= W(im) a(i’",im+1) a(fznﬂ,imw) ’ "a(i:y:}mim')

It follows from the definition that these are the t.p.’s associated to the m/-th derived
process Y; = (X - - Xi4m-1) when X is generated by M.

iit) If a(s™,7) > 0 V&™, j then for all m’ > m the chain can move between any
two sequences of states, X" and X™, in at most m' + 1 steps. This is more than
required for the ergodicity of the m’-th derived process for all m’ > m.

On the other hand if a(:™,7) = 0 for some (™, 7) then the t.p. matrix of the
(m+1)-th derived process has a “column” of zeros and is therefore not irreducible.
It follows that the (m 4 1)-th derived process is not ergodic.

iv) If a(a™,7) > 0 Vi™,j then for any m’ > m the m’-th derived process Y, is

an ergodic Markov chain of order 1. By i) ¥; has a unique minimal representation
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which must therefore coincide with M’ constructed in ii). If on the other hand
a(i™,7) = 0 for some (i™,j) then the (m + 1)-th derived process is non ergodic
as proved in iii) and therefore its representation of memory m + 1 is non-unique

again by i).
c

For the proof of the consistency of the order estimation procedure we will need the
ergodicity of the m'-th derived processes for all m’ 2 m so that the SLLN will be
valid for all m’ > m. This fact, in view of Theorem 3.4.1, justifies the following

assumption:

Assumption SP:

The observed process is a finite Markov chain, taking valuein X = {1,2---, q},
of unknown order m*, and unknown strictly positive transition probabilities

{a*(™,4)}-

And now we can formulate our:

Problem:

Let X, be a process satisfying assumption SP. From the observation of an
arbitrarily large initial segment of one trajectory of X; construct a strongly
consistent estimator of the unknown order m”.

The most natural parametric model for the process X: is given by the following:

Definition 3.4.2

0, := {all possible a(i™,j) >0 imex™, i =1,2,---¢— 1}
0 = U Om

m2>0

The results of Theorem 3.4.1 now tell us that ©,, contains no representation of X;

if m < m* and only one representation of X, for any m = m”.

Definition 3.4.3

The compensated mazimum log-likelihood is defined as:
C(m,n) := —La(Bn(n)) + a(m)
Where:

Om(n) is the ML estimator of 0€©,, based on observations
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Lu(0m(n)) := % log By ((XT)

6n(m) is a positive, increasing function of m to be specified.
Definition 3.4.4
r(n) = min{arg min C(m,n)}
We will show how to choose the functions &, (m) to guarantee the strong consistency
of Mm(n).
The idea of studying the compensated likelihood and the technique for the

choice of the 6,(m) functions follow Azencott, Dacunha-Castelle [1]. Obviously

our main result (Theorem 3.3.2) and its technique of proof are totally different.

Theorem 3.4.2 Compensators Avoiding Underestimation
If lim, 8,(m)=0 Vm then:

lim (n) > m* FPp —a.s.

Proof: Define L(8) := Llog Py(XT). From Lemma 2.4.1 we have:
Ln(6%) — La(6) — D(Pe: || Po)  ass. and uniformly in §e®,, Vm.

Therefore for m < m™:

Py):=~>0(3.14)

Jof [£a(67) — La(6)] = La(07) - Ly(bn(n)) = jnf D(Psr

(7 > 0 since no point in 0,, is equivalent to X; for m < m*).

Theorem 3.3.1 shows that . (n) — 6" a.s. which implies:
lim [Ln(67) — La(fm-(n))] =0 a.s. (3.15)
From (3.14) and (3.15)
im (La(Ome(n)) = Lo ()] =7 > 0 (3.16)
By the definition of C(m,n) and the condition lim, 6,(m) = 0, (3.16) gives:

lim [C(m,n) —C(m",n)]j=7>0
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for any m < m~. On the other hand [C((n),n) — C(m™,n)] <0 by definition
of m(n) and therefore we conclude that all the limiting values of a(n) must be

> m*. ie. lim m(n) 2 m" as claimed.
c

We now study the conditions to be imposed on the function 6n(m) to avoid over-

estimation. Theorem 3.3.2 will be our main tool.

Lemma 3.4.1

For any m > m~™ we have:

—

(L)1 (£, (G () = Ll ()] < Crd™ (2 =D

Proof:

—

(BB (7, (B (m)) = Ll ()]
< TE(ERER) 1 (1, (n(n) - L(00)]

~ (B (L (1)) = La(02))]
< Chq" (g-1)

To bound Iim and lim we used theorem 3.3.2 which is valid for any m > m~

Theorem 3.4.3 Compensators Avoiding Qverestimation
If the compensator is of the form
8n(m) = p(n) h(m)
where the function @ satisfies:
lim(sEn) =1 (n) > 1
and the function h satifies:
h(m') = h(m) 2 Cy ¢™ (¢ - 1) for allm’ >m 2 0.
Then:

im m(n) £ m* P a.s-
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Proof: We now assume m > m*, and from the form of 6,(m) we have:
C(om,m) = Oy ) = LaBm(m)) = LaBme(m)) + () (o) = ()]
Therefore:
(208 (C(mm) = Clrm, )
< T(2ERER) (L, (B () = Lol ()
+ (BB g(m)[h(m") — h(m)]

The first term is bounded by (Lemma 3.4.1) Cy ¢™ (g —1).
For the second term observe that by hypothesis:

h(m*) —h(m) < -C, ¢" (¢ - 1) (since m >m")
Substitution gives:
— loglogn. _ .
Fm(—2—52) (n) [A(m") = h(m)]

h—-a&-‘ﬁ%g—’i)-l o(n)(=Cy g™ (g = 1))

IN

And therefore:

= (l—g—l—g—"-) " (C(mtym) - Clmy)

-1
<G (a-1 -l (EER) o)

The hypothesis on ¢ makes the bracket strictly negative. We conclude that V.m >

L)

m .
(R8O, ) ~ C(m,m) <0

On the other hand, by definition of h(n), C(m*,n) — C((n),n) 2 0 thus the

conclusion lim rr(n) < m™.
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We must now show that functions h and ¢ satisfying the conditions imposed by
Theorems 3.4.2 and 3.4.3 do exist. The L function is substantially different from
the h function of [1].

Example of h Function

m) = Colg 1) LEDT

~ We must check that forall 0 <m < m/
h(m') — h(m) 2 Cy (g —1) ™

But:

m/+1 \ m+1
h(m') — h(m) = Cy (¢ —1) {(q +1) g+1) ]

q
The condition is satisfied if:

(g+ D)™ _ (@t D™ S

q q

foral0 <m<m

Dividing both sides by g™ we get:

q+1ml+1 _ q+1ml+1 1 >
(Lt - (2 gy 2
q+1 m'+1

kS 1 e——————] 21
- e 2

Since m! > m the term in brackets is greater than (1 — E%I) The inequality 1s
therefore satisfied if:

q+1ml+1 q

— =3 >1
A (37 2
i.e.

(I > 1 vm' 20
g

which is trivially satisfied.
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Example of ¢ Function
¢(n) satisfies both Theorems 3.4.2 and 3.4.3 if it is taken as:
loglogn

p(n) = (1+¢) for somee>0

n

c

The reader that patiently followed us may object that Theorem 3.4.3 is useless
from a practical point of view, since C,, depends on the true distribution. Theorem
3.4.4 will reassure him or her on the practicability of our approach, but first let
us observe that in the ARMA case the b function does not depend on the true

distribution (see [1]). We are investigating the reasons of this discrepancy.

Theorem 3.4.4 Consistent Estimators
The compensator:

6n(m) := h(m) logn

n
where h(m) is any strictly increasing function of m, produces a strongly consistent

estimator of m”.

Proof: 6,(m) — 0 for all m and therefore it avoids underparametrization as

proved in Theorem 3.4.2.

For the case of overparametrization we reason as in the proof of Theorem 3.4.3.

Assume m > m”.

T (2ER) [C(mm) = O]
< TR(ER) ™ (La(fn(m)) = Ln(me(m)] + () = RO7)

Since the difference Ln(0m(n)) — La(fm-(n)) = Oq..(2ERER), and by hypothesis
h(m®) — h(m) < 0, we get for m > m*

logn

Tim( Yy [C(m®,n) — C(m,n)] < h(m") — h(m) < 0.

n
On the other hand C(m*,n)—C(h(n),n) 2 0, by definition of (n), and therefore

im r(n) € m* i.e. m avoids overparametrization too.

a
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Chapter 4

Fstimation of the Order of a
Hidden Markov Chain

The technique that was employed in Chapter 3 for the estimation of the order of
a Markov chain will now be adapted to the estimation of the order of a HMC. As
we have seen in the Markov case, the crucial step is the evaluation of the rate of
growth of the maximized likelihood ratio (MLR). For Markov chains we evaluated
this rate to be Oq.s.(loglogn) (Theorem 3.3.2) and we also had very precise results
for the Tim and the lim of the MLR. For HMC’s we will be able to get the rate
O,.s.(loglog n) only in special cases. For the general case we get O,.s.(logn).

At first the problem of estimating the rate of the MLR for HMC seems easy to
solve. For any y} write: Pa(yT) = Lap Py(y3,2}) = Tap Po(s?) where the process
S, = (X,,Y;) is a Markov chain.

Clearly maxy Ps(y7) < Lop maXg Py(sT).

Since S; is a Markov chain we know from Theorem 3.3.2 that:

maxs Ps(s7) — o
Pay(s1)
where a,, = Oq.,.(loglogn)
Substituting in the previous inequality we find:

max Pa(y7) < D ¢ Puo(s1) = e S Poo(s7) = € Fa (1)

From this we immediately get the desired rate:

maxg Ps(y7)

1
8 TP (7)

= O,.,.(loglogn)
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This idea, or variations of it, has appeared in the literature, but unfortunately it is
wrong. The problem is that Theorem 3.3.2 does not say that an = Oa.s.(loglogn)
uniformly with respect to the realization w.

In Section 4.1 we pose the problem of the order estimation for HMC’s and prove
the analog of Theorem 3.4.2 on estimators that avoid underestimation. In Section
4.2 the MLR is studied for the true order. In this case we get the O,.s.(loglogn)
rate of growth. In Section 4.3 we approximate the MLR using Markov chains of
finite memory and get a rather weak bound on the rate of growth. This result
is more of theoretical than practical interest because the bound depends strongly
from the true distribution. In Section 4.4 we state a result from Information Theory
and use it to find the O, (logn) bound on the rate of the MLR. The final Section

4.5 is dedicated to the construction of strongly consistent estimators of the order.

4.1 Preliminaries

In Section 1.2 we defined the order of a HMC Y, as the minimum integer ¢ for
which there exists a representation of Y; with | X |= ¢. In analogy with Section
3.4 we would like to construct a consistent estimator of the order based on the
compensated maximum likelihood. The HMC case is complicated by the fact that
our knowledge of the set of equivalent representations is only partial (see Sections
1.3 and 1.4). To cope with this difficulty we have to impose restrictions on the
observed process Y; thus limiting the applicability of the results. Fortunately all
of the assumptions are satisfied by a generic HMC and therefore the results are

still widely applicable.

Assumption SP":

The observed process Y; is a HMC taking values in {1,2,-- .7}, of unknown
order qo. One representation of Y; is given by 0y = {q0, Ao, Bo} where §q is a
Petrie point of @go for some 6 > 0.

Petrie’s points are defined in 1.4.1 and ©°% in 1.4.2).
g0

The class of parametric models that will be used is

O .= qulez'
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The results of Sections 1.2, 1.3 and 1.4 guarantee that @‘; contains no point equiv-
alent to 8 if ¢ < go and a finite number of points equivalent to 8o if ¢ = o- For
q > qo there are infinitely many points in @g equivalent to o, as can easily be seen

applying Lemma 1.3.1. In analogy with Section 3.4 the compensated maximum

log-likelihood is defined as:
C(g,n) = —La(f4(n)) + 6n(q)

where:

éq(n) is the MLE of §¢@f based on n observations

Lo (By(n)) = Llog Py (n)(¥71")

6.(q) is a positive increasing function of ¢ and n to be determined.
The estimator of the order is defined by:

§¢(n) = min{arg ming>1 C(g,n)}

The problem of order estimation can now be posed as follows.

Problem:

The HMC Y, satisfying assumption SP' is observed. Find a compensator
sequence 6,(g) such that the estimator §(n) is strongly consistent ie. § —
qo a.S. Pa,.

The analog of Theorem 3.4.2 is valid and we can easily give a sufficient condition

on 6,(q) that avoids underestimation.

Theorem 4.1.1 Compensators avoiding underestimation
Let Y; be a process satisfying conditions SP'.
If limamco 8a(g) =0 (¥ 9)
Then lim,,_..4(n) = ¢ Fo, — a-s.

Proof: The proof is completely analogous to the proof of Theorem 3.4.2 and

based on the essential fact that for ¢ < go there is no point in @‘g equivalent to bg.

This last fact follows easily as a consequence of Lemma 1.3.2. Since 8o = (g0, A, B)

is regular any 8 = (¢, 4, B) equivalent to it must have ¢ 2 go.
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Sufficient conditions on 5.(q) to avoid overestimation are much more difficult to

find. The crucial problem is to determine the a.s. rate of growth of:

lo Péq(n) (}/ln)
& Pa(Y7)

In Section 3.4 we used the LIL to study the a.s. asymptotic behaviour of the ratio
but, as it will become apparent in the next section, for HMC’s this technique
works only for ¢ = go- Theorem 4.5.1 will give sufficient conditions on 6.(q) to

avoid overestimation.

4.2 Rate of Convergence in @‘;0

We study here the rate of growth of the maximized log-likelihood ratio (MLR)

Péqo (n) (y;.l)
Pgo (y{;)

Since qo is fixed, in this Section éqo (n) will be denoted f,. We need one extra

assumption on the HMC Y which will be in force through this section.

Assumption PH:

32
- EOEHOO(B) 190> 0

Recall that: He,(0) := Eg,[log Ps(Yo | Y20l
After giving two preliminary results we will prove that the MLR is 04, (loglogn).
Remember that (Section 2.2):

= {0605, ; Py(y7) = max Po()}

and that in general 4., is not a singleton. Our first result shows that it is always

possible to choose a convergent sequence 0 €ln.
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Lemma 4.2.1 There ezists N >0 finite and a sequence é;teén (Vn>=N) such
that 8, — 6o

Proof: From Theorem 2.2.1 we know that b, — N = {003 ; He(0) =

Hyo(60)}
a.s. Py,. From assumption SP' and Theorem 1.4.1 it follows that N is a finite
subset of ©%. In particular N = {6e0, 5 6 = o(6o)} where o(fo) denotes the
permutation of the matrices (Ao, Bo) induced by the permutation o of the state
space X. As a consequence of these two facts we have that for any € > 0 there
exists an integer N. such that 8, C N, for alln > N.. (Here N, denotes the
fattened set). Since N is finite its points are isolated. Choose ¢ small enough for
M. to be the union of disjoint balls of radius € centered at the points of V' i.e.
N. = U,B(c(8))- Let N =N..

To complete the proof it is enough to show that for all n > N there exists a
point §,-B.(fo) such that Fj; (Yi) = P; (Y7). Let feb, and n 2 N. Then for
some ¢ we have 8eB.(o(6)) and from the identityo(B.(0)) = B:(c(6)) we conclude
that o~1(8)eB:(fo). We can define 0, := o-1(8). From d., — N we now conclude
that §;, — fo.

O

From now on we will suppose that the choice of a sequence of points 9;‘ — 0
has already been made and with slight abuse of notation we will denote by g, the
point &, itself.

The lemma below will be needed for the application of the LIL.

Lemma 4.2.2 For some finite C, Vk, Vi, Vé:

0 -
| o log Po(ye |yt ) IS C a5 P
a6,
Proof: In the statement §; can be any element of § = (A, B). First we prove the

case §; := g;; from some (1,7) with 1 < ¢ < go and 1 < j < g —1. A direct

61



computation of the derivative gives:

<+

o ) o
5—10gPa(yk|y1 )————logPa(yl)———logPe(yl D)

a‘_.,
1 a
P B (bt g

Pg(y1)6 v%k: oo <) = Py(yi~ 1)6%?’: o)

Ni; z% N; o z*
5 (e - 2el®0) et )
a:’l‘ v 190

Nij(zi ) Nig(z3™h) et bt
Z asi; T a Po(zi7 1)
xk—l 17 igo

=1 [ Py(z, = L, Te1 = | yf) Py(z. = 1, Teg1 = G0 l y}f)
Z -

t=1

>

k- (Pe(xt =1, T4l =j ‘ yf—l) _ Pe(xt =1,Tt41 = 4o l ylf_l)>
1

aij Qigo

1
t= a"tJ aiqo

Z Py(zi =1, 3e51 =] | v*) — Py = 4, Te41 = i)

- Qij t—

—Zpe(zt—z $t+1—¢10|y1) Py(zs = 1,041 = Qo0 ly1 ")

Gigo t=1
Py(zg-1 =4, 2k =] | y5) _ Py(zk-1 = 1, Tk = Q0 | y%)

aij Qigg

From Lemma A.0.3 we get form some p <1 :

| Po(z: = 11 Tesr = 2 | y%) — Po(ze =41 T4 = |y )< AR

From the triangle inequality and the bounds § < a;; < 1 — § we have:

0 -
| o= log Paly 917 | < L8 sy LS g2

aij Qij =1 Qigo t=1

2( 1
<———— .
< (i) =c

The proof for 6; = bjy for 1 <j<q,1Ly<sr-1 is very similar and will be

omitted.

We are now ready to study the rate of convergence.
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Theorem 4.2.1

1 L - log logn
oy log Pén (v7) = oy log Pg, (y7) + Oa.s. (T)

Proof: The proof is divided into three steps. In step 1 we use the LIL for mar-
tingales to prove that 2 log Po(y1) loo= Oas.(v/nloglogn). In step 2 we use a
Taylor’s expansion and step 1 to prove that b, — 0y = Oa,s_(\/lﬂilfs-’l). Finally in
step 3 we use another Taylor’s expansion and steps 1, 2 to conclude.

Step 1: .

We first prove that 3 log Py(y?) o= Oa.s.(v/nloglogn) componentwise. For

the generic component 8 we have:

d n i
59‘1105 Po(y?) o= Uk

k=1

where

0
ug 1= _8_0_,10g Polye | v57) loo -

Computing the conditional expectation:
- 1y 0 -
Eao(us |95 ) =2 PuYe =y |91 1)—5—9;1051’0(% =y |y ") o= 0.
Y

We see that {5%7 log Ps(y2) le,0(y1)} s 2 martingale.
Since Y; takes values in a finite set it follows trivially that the martingale
is square integrable. Lemma 4.2.2 guarantees that | uk |< C a.s. Py, for some

constant C and therefore we can apply the LIL for martingales as given in Theorem
3.1.1. In particular

limp—oo

| & log Pa(y7) lao]
A Togloz A =1 a.s.on[A, — ]

The definition of An gives (see comment 3.1.2b)

Ap = Z Eeo(ui \ y],f_l)

k=1

Observe that:

_ o* _ -
Eg(u} |yih) = _E9o(’a-9'?1°gpe(yk |55 lool w7)
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can be proved by direct computation.

To complete the first part of the proof we show that:

lim — = f?
n—oo T
where 32 : -89-;- o (6) lg,> 0 by hy‘pothesm PH.

This is a consequence of the ergodic theorem and of the following bound. (C

is a finite constant and 0 < p < 1):

< C o

Eeo(aezlogl’e(ykly-m) loo] ¥52) = oo (u} 1 9777)

The bound is proved as follows:

Eeo(ag2 log Po(y | v*22) lao] ¥on) — Eoo (i | yl"l)\

mew>%mﬁmwmmom@mwwz Pty 1557 I

< ZPeo('y Ky

ok
892 1°g PG(y l y—co) ‘90 392 73 108 Pg(y l yl 1) 190\

+ Z‘aezlogpe(yly—oo)l%\ Peo(yly— )_Peoyly 1)‘

From Lemma 4.1 of Baum-Petrie (4] we get the desired bound. For 42 we therefore

have:

(aM%MMway)

7 =1

1 & &
<=3
"

taking the limit for n — oo and applying the ergodic theorem we conclude that

éf — f3? and the result of Theorem 3.1.1 becomes

‘ EN 55 log Pe(yl) ‘90
y/nloglogn = V28

As discussed in comment 3.1.2d this is equivalent to saying that 5%— log Ps(y7) leo=

Oq..(v/nloglogn).

limp—co
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Step 2:

Here we determine the order of g, — 6. Clearly:

10 n 19 n
-T;-a—g-long(yl) 5. =0 = ;‘3—0105 Py(y7) leo

o? A
—5g7 108 Po(y7) loo (6 — o)

+ o]l 6 =60 [I")
It follows that:

1 6° A
REANICINORD
10
n 06

Lemma 4.2.1 plays a crucial role here because it guarantees that . — 6y — Oa.s.

log Ps(v7) las +o(|l 6 — 6o |I*)

and therefore o(|| 0, — fo ||} is negligible.
1 6° n 92
——5¢2 18 Py(y7) loo— —5gz e (0) loo> 0
by hypothesis and therefore for n large enough the LHS is invertible and we have:
2

(=00 = [~ Eoa a0 o] 7o P00 b ol 0 5]

From Step 1 we conclude that
(én - 90) = Oa.a. (V log—_;'%ﬁ )

To complete the proof expand Llog B;, (y?) in Taylor’s series around fo:

Step 3

1 n 1 n
'T;logpé,,(%) = -;l-log PGo(?h)

10 n A
+ géglog Ps(y7) loo (8 — o)
A T 1 62 n ~
+ (6 —06o)" —5p7log Py(y7) |z, (6 —f0)
where 8, is a point in @zo such that || 8, — 6o | < I én — 8 || and therefore

, — 6p. The matrix ;lt--aa?z;log Ps(y}) |5, is bounded (it actually converges) and

from the results of Steps 1 and 2 we conclude that
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1 ay L n loglogn
L tog Py () = = 10g P 48) + O =)

4.3 Finite memory approximation

We present here a result on the rate of growth of the MLR obtained using an
approximation technique. The idea is to approximate the HMC process with a
sequence of Markov chains of increasing order m. The result is too weak for our
purpose of estimating the order of the HMC, but we believe the technique of proof
to be interesting in itself. In this section we will not need assumption SP’. The

only hypothesis on Y, will be the following:
Eis an HMC of order ¢ admitting 2 representation o with 006@2}
The standard log-likelihood ratio will be denoted R.(8) i.e.:

R.(0) :=log —————go(é?)

and for 1 <m < n the m order approximation R7'(0) is defined as:

m o Py lui ), v Ps(ye | vETr)
R7(0) == log — = + log —
k; Pao(yx lui ") k§+1 Pao(yx | Yhom

i.e. R™(9) is obtained keepin track of only the m most recent samples. Our first
n g

result gives a bound on how well R™(6) approximates R.(0).
Lemma 4.3.1
2
RO -RI| L 7= ™
| Rul®) ~ BZO) | S 57— " F
for some 0 < p <1

Proof: From the definitions we get:

n

|R.(6) —RZ(6)] £ 2 | log Ps(ye | v5™1) — log Pa(ws | v&=n) |

k=m+1

+ 3 |logPayl(ys | yi™") —log Pas(u | i) |

k=m+1
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For each term of the first sum we have:

| log Pa(ys | y§7) — log Pa(yx | ki) |

k-m-=1

< S |logPa(ye | y5™") —log Palu | Yhe1) |

h=1
Using inequality A.0.3 we have:

-h-1

_ _ 1
| log Ps(y | y£™) —log Pa(ys | yie1) | 3 o

where 0 < p < 1. Observe that the bound does not depend o.n 6 and is therefore
valid also for the terms of the second sum. Adding all the terms we get:

k-m-—1

FRORAUIESS v

h=1
Some minor algebra gives:
n k-m-1

3 T Pl = _1_3_"__‘_ Xn: (1—p™ )

k=m+1 h=1
pm[n—m—1+1—p ' ]S np

It is possible to interpret R™(f) as the log-likelihood ratio of two m order
Markov chains. Define: |
Py(yt) = Ps(yT") T1 Polye Yiim)
k=m+1
and analogously for Pg

The process Y; becomes an m order Markov chain under Py and it is easily

seen that R7'(0) = f:m((yh) Both PJ* and P are elements of the set:

:= { all transition probabilities P(yo | ¥= -1) with elements = 6}.
(Thls is the set that in Section 3.4 was called ©,,, we introduce a new name for it to

avoid confusion with the pa.ra.meter set of the HMC). Let P be the generic element

of P,, and define R™*(P) := ;;#;-Ll)- Clearly {Ps(yo | y=h) ; 0€03} C Pm and
therefore

sup R7'(6) < sup R™(P) := R™(P)

EcH
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where P denotes the maximum likelihood estimator of the transition probabilities

P (yo | y~1). As usual r denotes the cardinality of the set of values of ;.

Lemma 4.3.2

R 2
R.(0,) =7™ Oy, (lo logn) + —— n p™
(6) (log log n) s "’

Proof: Follows from Lemma 4.3.1 and Theorem 3.3.2.

a

Lemma 4.3.2 can be used to estimate the rate of growth of R, (0 ) or the rate of
convergence to zero of 1R, (8,). ldeally we would like to prove that 1R, (0,) =

Oa...(2E2E2) but the bound in 4.3.2 is too weak for this, nevertheless we have:

Lemma 4.3.3

—R (0 )_O“(loglogn

)

for all

(g=1)-8°
10g,. —q—:—l-)—_;?

T1)-62
logr %%3;-}-—52- -1

Proof: From Lemma, 4.3.2 we have for all n large and some finite C:

a<ay =

C!

R.(6,) < C(rmn*' 4 p"

)+1

loglogn log log n
The idea is to choose m as a function of n in such a way that the right hand side
remains bounded for n — 0.

Clearly r™n®! = 1(V n) if we choose m = (1 — @)log, n. (Since m must
be positive for all n we get a < 1). Adopting this value for m the second term

becomes:
ne n(l—a) log, ppp@

P log logn loglogn
na+(l_a) log, p

loglogn
This term remains bounded in n (as n — o) if: @+ (1 —a)log.p =0 ie. for
0<aZl -35-'—3— 1. Using the expression for p obtained in A.0.2 we complete the
proof.

0

63



4.4 Information theoretic approach

In this section we use a result from Information Theory to get a useful bound
on the MLR. valid for all values of ¢. Recall that by Péq(n)(y;‘) we denoted the
maximized probability Pe(yf) for P, a HMC with 9e@®). We denote by Parr, (Y1)
the corresponding maximized probability when §e0,. The next lemma is crucial.

A complete proof is to be found in Csiszar [7]. In this section log denotes log,.

Lemma 4.4.1 There ezists a probability measure Q on Y> such that

Pui,(y7) _ d(g)
lo 1 < logn —c foralln and Y7
ETQ0) T 2 & f .

where ¢ is a constant and d(g) := glg+1 —2)

Sketch of the proof:
First we observe that:
Pur, () = maxPo(y) =pax> Byl | z7)Po(27)
€oq ¢9q =t
< ngx Ps(y7 | 1) - max Py(z7) (4.1)
2

The proof proceeds by showing the existence of probability measures Q, and @
such that:

max Py(y7 | 21) = Qa7 | ep)nt 2 (4.2)

max Py(e}) < Qa(epn™ (43)

Clearly Q(y7) = Lazr Qu(yl | z2)Q2(27) is 2 probability measure on y* and
substituting into (4.1) completes the proof. The existence of @1 and Q2 is proved
directly by actually constructing measures @1 and Q. that satisfy (4.2) and (4.3)

respectively.

a

The following Theorem, based on Lemma 4.4.1, will be essential to finding estima-

tors of the order that avoid overestimation.
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Theorem 4.4.1

PymWt) _ d(q)

< +2 a.s. Py,
P&o(y?) 2

Gim (logn) ™' log

Proof: Introducing the measure @ from Lemma 4.4.1 we have:

Pou®) _ F W) | 1o Q).
Py, (y7) Q(yT) Pao(.ll)

We multiply by (logn)~' and apply the inequality im(an + bn) < fima, + imb,.

log

The first term is evaluated using Lemma 4.4.1:

9q(n)(y1) ()
Qyr) ~ 2

im(logn) ™" log

To evaluate the second term define:

= {y7; (logn)~ log ———~ g(éﬁl)) 2}

Clearly:

Ay = {7 QyF) > nPa(y1)}

It follows that:

Pu(A) = ¥ P € X Q) <

yredn yreAn

Thus 3, Ps,(Ar) < oo and from the easy direction of the Borel-Cantelli lemma we

conclude that Py, (A, 1.0.) = 0. This is equivalent to Im (logn)~!log Pf (?yl)) <2
0

a

4.5 Compensators avoiding overestimation

We are finally able to give a set of sufficient conditions on the compensators of the
maximized likelihood (the sequences 6.(q)) to avoid overestimation of the order.
Theoremn 4.5.1 is complementary to Theorem 4.1.1, together they allow us to con-
struct compensators 6,(g) that guarantee strong consistency of the order estimator
§(n). Theorem 4.5.1 is the analog of Theorem 3.4.3 and should be compared with
it.
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Theorem 4.5.1 Compensators avoiding overestimation
Let Y, be a process satisfying assumptions SP' and PH. If the compensator is of
the form:

5:(q) == (n)A(q)

where the function ¢ satisfies:

-1
ml_l(bi”) o(n) > 1

and the function h satisfies:

M) -h0 2 8 42 > 21

Then:
im §(n) < g a.s. P,

Proof: Let ¢ > go. From the definitions we have:

P; (yl)

Clgorm) - Claym) = 7 log A TR A(2))

Therefore:

Im (“i ”) [Cgo,m) — Clg,m)]

—(logn 1 P; (y7) log -
< __q__— — —_
< (80) tuggpg IR (Th) ww )
The first term on the RHS can be bounded using Theorem 4.4.1 as:

H(loin)'1<1l Py, (1) 110gPeq(y1)> <49 L,

® Po () Py (1) 2

This follows from the fact that L Llog 5757 P9°((y;,,)) =

Theorem 4.2.1 and assumption PH. On the second term on the RHS we use the

Oas.(5E) as a consequence of

hypothesis on the A function (g > qo) to get:

hm(lorgzn) (Clao) — Clarm] (B2 4 2)1 ~ (5™ ()
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The hypothesis on ¢(-) now gives:

Fm (1"5”)_1 [C(goyn) = Clg,m)] < 0

On the other hand [C(g0,n) — C(4(n),n)] = 0 by definition of §(n). We conclude
that Iim 4(n) < go

0

The existence of a strongly consistent estimator §(n) of the order go will be

established by giving examples of functions h(-) and ¢(-) satisfying both the con-
ditions imposed by Theorem 4.1.1 and Theorem 4.5.1.

Theorem 4.5.2 The compensator:

log n

8a(q) = 2d*(q)

n

produces a strongly consistent estimator §(n) of qo.

Proof: Clearly lim §,(g) = 0 Vq thus satisfying the conditions of Theorem 4.1.1.
The function ¢(n) := 262 is such that lim (lE2)-1p(n) = 2 > 1 and therefore
satisfies the condition imposed by Theorem 4.5.1. For the function A(q) := d*(q)

we must check the condition:

+2 Vi>q>1

Recall that d(q) := q(q +r —2). The condition to be verified is equivalent to:
Qi +r-DMd+r—2) —5) 2 Pla+r =2 +2

for all § > ¢ > 1. This is easily established observing that the LHS is increasing
in § and that for § = ¢ +1 the inequality is verified.

12



Appendix A

We collect here some basic inequalities for HMC’s found in Baum-Petrie [4] and
often used in the text. The proofs of these results imitate closely analogous results

tor Markov chains given by Doob [9].

Lemma A.0.1
Let Y, be a HMC with p.d.f. P where Be@g then

Po(Xur =3 | Xe =1, Yo tkeT) 2 Hs
where ps = (1 + %1-)'1 is independent of 0, T, Yi,, %7

Proof: Let j and j' be elements of X and suppose that ty #t+1 for all k;

Pe(Xt+1 =] l X =1, Yt,,)

Pe(Xt+1 =7 | Xe= i,Ytk)

Pa(XH-l = j, X = i, Ytk)

Py(Xerr = 7, Xe =4 Ys,)

Py(Xewr =5Y e 2t + 11X = 1,)

Po(Xt+1 =j',Yt,,tk Zt+1 |Xt = i,)

i Po(Xen = Jo, Xewn = 1, Vet 2 t+1]X:=1)
T Po(Xes2 = jor Xep1 =3 Yyt 2t 41 | Xt = 1)
T P(Yete 2 £ +2 | Xevz = J0)0sje B

T P(Yote 2t +2 | Xer2 = Jo)as joBist

Let aj, = P(Yste 2t + 2| Xip2 = jo)- The last expression is:

% Lo GinBido. _ ()
@ij L jo o Bi'jo
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Since a;; > 6 Vi,J we have

Zjo Q350550 ZJO ®jo 43’0 250 Qjjo
= <max|—
Yo Qo G40 o Qo Bi'jo 0 \ @it

Therefore:

() < 2L max (ﬂ’l> < max <i’i’£’-> < —1;

aijr Jo a0 H,1h3" 0 \ Qij' Q' fo )
since all elements are 2 d.

Let now p; = Psy(Xey1 = il Xe= i,Y, txeT) then 1 = p; + Tz P S
pi+(g+ )G ie p2(1+ =)l

Ift, =t+ 1 for some k the proof needs a minor modification.

O

To introduce the next Lemma we need to introduce some notation. C; denotes

a cylinder set in X 1.
C,={Xy = iy, X, = ig,- Xy, = 1tn wherety >t k=1,2,- --n}
D denotes a cylinder set in Ji° Le.
D= {Y =y,Y, =Y2."" -Y:,. = ym where t, are arbitrary}

Mé*-(d, Ct,D) = rn?.x Pg(ct l Xt—d = l,D)
M;(d,Ce, D) 1= minPy(Ce| Xia=1,D)

Lemma A.0.2
M;(d,C:, D) — My (d, C.,D) < p**
where p =1 — 25

Proof: (Follows closely the proof of an analogous result for Markov chains given
in Lamperti [15]). We simplify notation to MF,M; moreover let v := Po(Ce |
X,—q = k, D), Bix = Pi(Xi-a = k | Xi—g—1 = i, D) and define io and ko by:
Mf, = Po(Ct | Xima1 = i0, D) and My = Tko-

T4



With the new notation we have:

Mf, = Pi(Xi—a=Fk|Xiea1 = Zo,D) Z'Ykﬂzok

:uMd_ + (:Bioko - ,u)Md— + Z "Ykﬂiok
kKo
UM+ Bk — o+ 3 WM = My + (1 — )M
k#ko

IN

Similary we get:
Mg, 2 (1 —p)Mg, + I‘MI+1
Together the last two inequalities give:
M;+1 - Mz, <1 - 2u)(MF — M7)

The result follows immediately

Lemma A.0.3

| Po(Ce | ) = Po(Ce | o) IS P
for allk and alln <t —1
Proof:

Po(Ce | ¥2) = L RalC I, X1 = §)Po(Xn1 = 3 1Y)
and therefore:
M1 < Po(Ce | Y5y < MY
On the other hand
Py(Cy | Yad) = EPe(Ct | Y¥)Po(Ya | Y1)
is an average of the Py(Y;, | Y}¥,,) probabilities and therefore:
M1 S Po(Ce | Yia) S MiZnia

The result now follows from Lemma A0.2

5
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