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A 2-D Riemann problem is designed to study the development and dynamics of

the slow shocks that are thought to form at the boundaries of reconnection exhausts.

Simulations are carried out for various ratios of normal magnetic field to the trans-

verse upstream magnetic field (i.e., propagation angle with respect to the upstream

magnetic field). When the angle is sufficiently oblique, the simulations reveal a large

firehose-sense (P‖ > P⊥) temperature anisotropy in the downstream region, accom-

panied by a transition from a coplanar slow shock to a non-coplanar rotational mode.

In the downstream region the firehose stability parameter ε = 1− µ0(P‖ − P⊥)/B2

tends to plateau at 0.25. This balance arises from the competition between coun-

terstreaming ions, which drives ε down, and the scattering due to ion inertial scale

waves, which are driven unstable by the downstream rotational wave. At very

oblique propagating angles, 2-D turbulence also develops in the downstream region.

An explanation for the critical value 0.25 is proposed by examining anisotropic

fluid theories, in particular the Anisotropic Derivative Nonlinear-Schrödinger-Burgers



equations, with an intuitive model of the energy closure for the downstream counter-

streaming ions. The anisotropy value of 0.25 is significant because it is closely related

to the degeneracy point of the slow and intermediate modes, and corresponds to the

lower bound of the transition point in a compound slow shock(SS)/rotational dis-

continuity(RD) wave. This work implies that it is a pair of compound SS/RD waves

that bounds the reconnection outflow, instead of a pair of switch-off slow shocks as

in Petschek’s model.
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Chapter 1

Introduction

1.1 Magnetic Reconnection: General

The complex interaction of charged particles and electromagnetic fields drives a

nontrivial phenomenon called magnetic reconnection. The simple cartoon in Fig. 1.1

shows the basic idea. Magnetic reconnection takes place in a thin current sheet

sandwiched by oppositely directed ambient magnetic fields. Whenever the ambient

magnetic fields (blue) approach each other, they reconnect inside a narrow dissipa-

tion region (the intense current region). The reconnected fields (red) act like rubber

bands that release their tension force to drive high-speed hot outflows away from

the reconnection site, since magnetic fields and the plasma are tied together (the

frozen-in phenomenon) outside the central dissipation region. Once the reconnected

hot plasma shoots out, the pressure in the central region drops, and therefore sucks

in more plasma and magnetic flux from the upper and lower ambient regions to

reconnect. This process is self-driven.

Magnetic reconnection is the primary mechanism for converting magnetic en-

ergy into kinetic and thermal energy in collisionless plasma. It also acts as a major

transport mechanism in collisionless plasmas. In addition, by coupling small- and

large-scale physics — electron-scale kinetic processes break the frozen-in condition

tying the field lines to the plasma, while the overall energy release reshapes the global

1



Figure 1.1: A cartoon of reconnection

environment — reconnection provides an excellent example of coupling across dis-

parate spatial scales. Since 99% of visible matter in the universe is in the plasma

state [37], magnetic reconnection is ubiquitous. It occurs in a wide variety of en-

vironments ranging from sawtooth crashes in fusion experiments [35, 49, 122, 58],

geo-magnetic storms [2, 55, 90], solar flares [91, 63, 64], and the solar dynamo to

various astrophysical phenomena such as Gamma Ray Bursts [76], pulsar winds

[18, 73, 87] and astrophysical jets [75, 6]. We point out its active roles in the follow-

ing cosmic plasma systems.

The most well established examples of astrophysical reconnection are found, as

predicted by Dungy (1953, 1958) [30, 31], at the terrestrial magnetotail and magne-

topause when southward interplanetary magnetic field (IMF) from the Sun smashes

into Earth’s magnetosphere. In Fig. 1.2 the solar wind comes from the left. The

reconnection sites are marked by the symbol
⊗

, one on the dayside and one on the

night side about 20 Re away from the Earth. Once the southward IMF encounters

the Earth’s northward dipole field, reconnection takes place at the magnetopause,

and then the reconnected field lines are dragged by the solar wind over the poles and
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Figure 1.2: A cartoon of reconnections at Earth’s magnetopause and
magnetotail. Reconnection locations are denoted by the symbol

⊗
.

The distance from Earth to the tail reconnection site is around 20Re.
(image from http://journalinformationalmedicine.org/cr1.htm)

stretch out on the night side of the Earth, where magnetotail reconnection then oc-

curs. Tail reconnection is thought to trigger magnetic substorms ([2] and references

therein) and also the formation of polar aurorae when reconnected plasma traces

the magnetic field lines (the red arrows) back to the north and south poles of the

Earth and interacts with the atmosphere. In between the Sun and Earth, gigantic

reconnection current sheets in the turbulent solar wind are also observed [89, 36].

On the Sun, coronal mass ejections (CMEs) in large solar flares are driven by the

topological change caused by reconnection [3, 63, 91]. Similar mechanisms apply to

stellar flares and coronas of astrophysical accretion disks [25, 111].

Recently, reconnection was suggested to take place in the “sectored” field re-

gion between the termination shock of the solar wind and the heliopause, about 100
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AU away from the Sun [26, 82]. If the rotational axis and magnetic dipole axis of

the Sun were aligned, a heliospheric current sheet would form in the Sun’s equato-

rial plane between the spiral-shaped magnetic fields in the northern and southern

hemispheres [84]. However, these two axes are not aligned in reality, and therefore

the current sheet flaps in the latitudinal (vertical) direction, creating a sectored

region near the equator where the heliospheric field periodically reverses sign. As

the sectored current sheet approaches the heliopause, the sectors narrow and trigger

magnetic reconnection. In Fig. 1.3 Opher et al. (2011) [82] show a high resolution

global magnetohydrodynamic (MHD) simulation performed to study the interac-

tion between the interstellar medium (on the left) and the solar wind. The total

strength of the magnetic field is color-coded and the flow streamlines are shown in

black arrowed curves. The simulation shows that the heliosheath in between the

heliopause and the termination shock is filled with a “sectored” field. The current

sheets that separate the “sectored” field appear as vertical black striped structures

which can be more clearly seen close to the right side (upstream) of the termina-

tion shock. Downstream of the termination shock, the striped structure is too fine

scale to be resolved and so magnetic field dissipation occurs at the grid scale. As a

result, the strength of the magnetic field around the downstream “sectored” region

is weak (denoted by blue-black color). In order to better understand kinetic effects

inside this region, the small red box displays the occurrence of reconnection and

the formation of magnetic islands between reconnection sites in a Particle-in-Cell

(PIC) simulation with parameters based on the global MHD run. A redder color

represents a higher strength of magnetic field. This study aims to explain the source
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Figure 1.3: The magnetic islands formed by multiple reconnection sites
in the sector fields between the Sun’s termination shock and heliopause.
The left panel is from a global MHD simulation, and the color repre-
sents the strength of the total magnetic field. The right panel is from a
PIC simulation, and the redder color represents a larger magnetic field.
(Adapted with permission from Ref. [Opher et al., 2011] c©2011 by the
American Astronomical Society).

of anomalous cosmic ray (ACRs) and energetic electrons generated during reconnec-

tion and posits that they are accelerated by a first-order Fermi mechanism inside

contracting magnetic islands [27, 26]. A similar “sectored” field could also form in

pulsar winds driven by spinning neutron stars [18, 73, 87].

Magnetic reconnection also potentially plays an important dynamic role in

the astrophysical jets from spinning black holes and the surrounding accretion disks

[6, 75]. In Fig. 1.4 we show the results of a fully general relativistic MHD simulation

by Beckwith et al. (2008) [6]. The left panel shows the initial state of a spinning

black hole located at (0, 0) with a vertical rotational axis, and the cross section of
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Figure 1.4: The formation of the accretion disk and jets of a spinning
black hole under the influence of magnetic reconnection. The spatial unit
is normalized to the black hole mass and the speed of light. The color
represents plasma β. (Adapted with permission from Ref. [Beckwith et
al., 2008]. c©2008 by the American Astronomical Society)

6



a toroidal accretion disk with seeded magnetic fields. The plasma β (the ratio of

thermal pressure to magnetic pressure) is color coded and magnetic field lines are

white contours where solid and dashed curves represent opposite parity. In the right

panel, the magnetic field has been amplified by the magnetorotational instability

and is carried by the inflowing plasma into the black hole. Once the magnetic

field has been attached to the event horizon of the spinning black hole, jets are

rapidly launched upward and downward from the black hole. The jets are marked

by the strong vertical magnetic field (dark blue), and the jet formation mechanism

presented here is a combination of models from Blandford & Znajek (1977) [11] and

Blandford & Payne (1982) [10]. We notice the turbulent nature in the interface

between the jet field and the accretion disk. Many magnetic islands are formed,

which provides direct evidence that magnetic reconnection has occurred. Magnetic

reconnection plays a role in changing the global topology of the magnetic field

and hindering the formation of highly aligned jets [6]. Therefore, the reconnection

rate must be considered as a critical dynamic time scale in constraining theoretical

models.

1.2 Magnetic Reconnection: Theory

We write down the resistive-MHD equations here, Eqs. (1.1) to (1.7). All the

theories presented throughout the rest of this thesis are sourced from these equations

and its anisotropic extension. Ideal MHD uses the same equations, but neglects the

resistivity in Ohm’s law, Eq. (1.6).

7



Continuity equation:

∂ρ

∂t
+∇ · (ρV) = 0 (1.1)

Momentum equation:

ρ
dV

dt
= J×B−∇P (1.2)

Energy equation:

∂

∂t

[
ρV 2

2
+
B2

2µ0

+
3

2
P

]
+∇ ·

[(
ρV 2

2
+

5

2
P

)
V +

E×B

µ0

+ Q

]
= 0 (1.3)

Faraday’s law:

∂B

∂t
= −∇× E (1.4)

Ampére’s law:

∇×B = µ0J (1.5)

Ohm’s law:

E = −V ×B + ηrJ (1.6)

The absence of magnetic monopoles:

∇ ·B = 0 (1.7)

P , ρ, V, B, E, J, Q and ηr are the plasma pressure, mass density, velocity of the

bulk flow, magnetic field, electric field, current density, heat flux, and the magnetic

resistivity (assumed constant). Note that J × B = −∇(B2/2µ0) + (B · ∇)B/µ0.

Hence the J × B force in the momentum equation (Eq. (1.2)) is usually expressed

as the sum of a magnetic pressure gradient force and a magnetic tension force.
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From Eq. (1.2), (1.4), (1.5), (1.6) and (1.7) under the assumptions of incom-

pressibility (∇ ·V = 0) and 2-D (∂y = 0), we can write the simpler reduced-MHD

equations, which are ideally compact for the purpose of explaining the basic recon-

nection model.

∂

∂t
∇2φ+ V · ∇∇2φ =

B

µ0ρ
· ∇∇2ψ (1.8)

∂

∂t
ψ + V · ∇ψ =

ηr
µ0

∇2ψ (1.9)

V = ŷ ×∇φ, B = ŷ ×∇ψ +Byŷ. (1.10)

Here φ is the in-plane (x-z plane) stream function and ψ is the in-plane magnetic flux.

Eq. (1.8) comes from the momentum equation with the right hand side being the

J×B force. Eq. (1.9) comes from Faraday’s law and Ohm’s law with the right hand

side being the resistive term. Eqs. (1.10) follow directly from the incompressibility

limit and ∇ · B = 0. We keep the resistivity term since it is essential for breaking

the frozen-in condition inside the dissipation region, and therefore the occurrence of

reconnection. Note that ∂ψ/∂t = Ey is a spatially uniform constant in stationary

2-D solutions (according to Faraday’s law), while ∂∇2φ/∂t = 0.

1.2.1 Sweet-Parker Model

Sweet (1958) [106] and Parker (1957) [83] offered the first theory as to how

reconnection occurs. In Fig. 1.5, we show a cartoon of the Sweet-Parker model. The

dissipation region (the hatched box) has dimensions L × w where L is the system

size in the z-direction and w is the width in the x-direction. Based on the symmetry
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Figure 1.5: The Sweet-Parker model of reconnection.

of this 2-D model, a scaling analysis gives us ∂x ∼ 1/w, ∂z ∼ 1/L and Eq. (1.10)

becomes,

Vu = Vinx̂ ∼
∆φ

L
x̂, Vd = Voutẑ ∼

∆φ

w
ẑ (1.11)

Bu = Bz,uẑ ∼
∆ψ

w
ẑ, Bd = Bx,dx̂ ∼

∆ψ

L
x̂ (1.12)

where the subscripts “u” and “d” denote upstream and downstream respectively.

These also give us the relations,

Vin

Vout

=
Bx,d

Bz,u

=
w

L
(1.13)

Since we are looking for a steady state solution, from Eq. (1.8) V · ∇∇2φ =

B/(µ0ρ) · ∇∇2ψ, and hence the plasma convection term and the J × B force are

balanced. With the relations Eq. (1.11) and (1.12), we obtain

Vout ∼
Bz,u√
µ0ρ
≡ CAz (1.14)

Vin ∼
Bx,d√
µ0ρ

(1.15)

From Eq. (1.9) Ey ∼ V · ∇ψ outside the dissipation region, Ey ∼ (ηr/µ0)∇2ψ

inside the dissipation region. We equate them in the boundary of the dissipation
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region, V ·∇ψ ∼ (ηr/µ0)∇2ψ, since Ey is spatially uniform in a stationary solution.

Therefore the convection of magnetic flux and the dissipation of magnetic flux are

balanced. With (1.13) and (1.14), we obtain the reconnection rate,

Vin

CAz
∼
√

ηr
µ0CAzL

(1.16)

Note that the reconnection rate is defined as Vin/CAz, which is also equal to Vin/Vout =

w/L, the aspect ratio of the dissipation region. In this model, the energy of the re-

connecting magnetic fields is dissipated by the magnetic resistivity and convected

to Alfvénic flow. The biggest problem of this model is the predicted reconnection

rate. A large system size (L) and small resistivity (ηr) will make the reconnection

rate, Eq. (1.16), extremely small. Using values observed in solar flares in the for-

mula yields predicts time scales of reconnection energy release of months, which

contradicts the observed time scale of minutes.

1.2.2 Petschek Model- the Role of Slow Shocks

Following the publication of the MHD reconnection scenario of Sweet and

Parker [106, 83], Petschek [88] noted that a pair of back-to-back slow shocks bound-

ing the reconnection outflow could significantly raise the efficiency of the process by

acting as a transition between the inflowing and reconnected outflowing plasma.

Petschek’s primary insight is that waves from the singular dissipation region

tend to propagate out in the x-direction, therefore changing the morphology of

reconnection into an open outflow fan as shown in Fig. 1.6. First, we derive the

properties of the external configuration (outside of the hatched box) where the
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Figure 1.6: The Petschek model of reconnection.

dissipation of the magnetic field is negligible. We jump to the shock frame, denoted

by the solid black line at the upper-right quadrant, with “n” and “T” being the

normal and tangential direction respectively. From Eq. (1.10),

Vt = ∂nφ, Vn = −∂Tφ (1.17)

Bt = ∂nψ, Bn = −∂Tψ (1.18)

In the stationary shock frame, this is essentially a 1-D problem along the normal

direction since the upstream and downstream are assumed to be uniform, and there-

fore ∂T (V or B)=0. From Eq. (1.8), V · ∇∇2φ = B/(µ0ρ) · ∇∇2ψ, and therefore

the plasma convection term and the J×B force are again balanced.

Vn∂
3
nφ =

Bn

µ0ρ
∂3
nψ (1.19)

Integrating over n twice, using Eqs. (1.17), (1.18) and the fact that Vn and Bn are
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constant, we obtain a jump relation,

Vn[Vt]
d
u =

Bn

µ0ρ
[Bt]

d
u (1.20)

where [Q]du ≡ Qdown − Qup. From Eq. (1.9) Ey + V · ∇ψ = 0 (note that we do not

need to consider the resistivity in this outer region), we use the constancy of Ey, Vn

and Bn to get another relation,

Vn[Bt]
d
u = Bn[Vt]

d
u (1.21)

From Eq. (1.20) and (1.21), we obtain the inflow speed in the shock frame,

Vn =
Bn√
µ0ρ

(1.22)

In order to get a standing shock wave, the wave propagation speed needs to equal the

velocity of the inflowing plasma. Based on this velocity constraint and the overall

magnetic field configuration downstream, the only possible MHD shock wave is a

switch-off slow shock (SSS). A SSS is the fastest and strongest slow shock, and has

propagation speed equal to Eq. (1.22) (see Sec. 1.4.1).

In the θ1 � 1 limit, Bd ' Bnn̂ and Vu ' Vnn̂, then Eq. (1.21) becomes

VnBt,u ' BnVt,d. Combined with Eq. (1.22), we obtain the tangential plasma speed

in the downstream region,

Vt,d '
Bt,u√
µ0ρ

(1.23)

Therefore the slow shock directly converts the tangential magnetic field into plasma

bulk flow velocity and, unlike the Sweet-Parker configuration, the conversion is not

limited to slow dissipation by small ηr. In addition, in the θ1 � 1 and θ2 � 1 limit,

θ1 ' w/l, and θ2 ' Bn/Bt,u ∼ Bx,d/Bz,u = w/l. Therefore θ1 ∼ θ2.
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The flow speeds Eq. (1.23) and (1.22) are very similar to those inner solutions

Eq. (1.14) and Eq. (1.15), and so one can smoothly match this external standing

shock solution to the interior dissipation region to obtain a possible maximum re-

connection rate (see Petschek (1964) for details) ,

Vin

CAz
∼
(

ln
L

l

)−1

∼
(

ln
L

ηr

)−1

(1.24)

The logarithmic dependence on (ηr/L) largely eliminate the reduction of the re-

connection rate for small ηr and large L (which is the case for most astrophysical

systems of interest). Regardless of the matching details, the reconnection rate will

naturally be much higher since the dissipation region is significantly shortened in

the Petschek configuration (l� L).

However, Biskamp (1986) [9] tested the Petschek solution by conducting re-

connection simulations with the resistive-MHD model and a uniform resistivity. He

found that reconnections sites collapse into elongated Sweet-Parker current sheets,

instead of developing Petschek configurations. This calls into question the claim

that Petschek’s model is a valid stationary solution. The Petschek picture can be

realized if the resistivity is allowed to vary with position, and in particular increase

in regions of stronger current [94, 110, 96]. This locally enhanced anomalous re-

sistivity could be generated by micro-scale instabilities [44, 29, 15], but conclusive

proof of its existence has, to date, not been presented.

There is strong numerical evidence, however, that two-fluid effects, arising

from the mass difference between ions and electrons in the reconnection dissipation

region can open the reconnection outflow jet. This effect can be incorporated by
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adding the Hall term (J × B/ne) into Ohm’s law (Eq. (1.6)). The resulting equa-

tion describes the dynamics of dispersive whistler waves that rotate the out-of-plane

current into the outflow direction, and therefore open the reconnection nozzle into a

Petscheck-like configuration [74, 92]. The GEM challenge [8] compared reconnection

simulations performed with resistive-MHD, Hall-MHD, hybrid and Particle-in-Cell

models. Only reconnection in the latter three models (all of which include two-fluid

effects) spontaneously developed into Petschek-like configurations with a localized

current sheet and, therefore, a fast reconnection rate. This finding supports the im-

portance of two-fluid effects. By balancing the convection of magnetic flux with the

Hall term (instead of the resistive term as in Sweet-Parker analysis) in a generalized

Ohm’s law, V × B ∼ J × B/ne, then Vin ∼ Jy/ne. Using Eq. (1.15), (1.5) and

(1.13) we obtain w ∼
√
mi/µ0ne2 ≡ di. The current sheet width w is determined to

be the ion-inertial scale, with a nested smaller electron-inertial scale region where

the frozen-in condition is broken. A fast reconnection rate ∼ O(0.1) is observed in

simulations to be insensitive to ηr and L [101, 102, 13].

No matter how complicated the real physics in the inner region however,

Petschek’s work showed that for fast reconnection to occur the outer, ideal MHD-

dominated region must connect to the reconnection outflow via a pair of standing

switch-off slow shocks.
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Figure 1.7: A soft X-ray image of solar corona loops on November 6,
1999. The major loop spans around 60Re, and are of the same type as
the soft X-ray loops shown in Fig. 1.8. Courtesy of TRACE, a satellite
mission of NASA.

.

1.3 The Structure of the Magnetic Reconnection Exhaust

In this section we show some examples of the kinetic structure of reconnection

exhausts observed in space and in simulations, and discuss unsolved issues.

1.3.1 Solar Flare Heating by Slow Shocks

One of the important reasons for trying to understand the exhaust structure of

reconnection is to study its potential heating ability. Ion heating by these Petschek-

reconnection-associated slow shocks is one of the mechanisms that has been proposed

for solar flares [109, 70] and the solar wind.

In Fig. 1.7, we show a soft X-ray image of solar corona loops. There is a

long standing “Coronal Heating Problem”, which asks why the temperature of the
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Figure 1.8: An observation of a solar flare exhibits heating by
reconnection-associated slow shocks. Data from Y ohkoh satellite on
February 21, 1992. (Adapted with permission from Ref. [Tsuneta, 1996].
c©1996 by the American Astronomical Society)

corona is a thousand times hotter than the photosphere (∼ 6000K). As a possible

solution, Parker (1983, 1988 ) [85, 86] suggested that the energy release from many

nano-flares (which are triggered by reconnection), is adequate to heat the corona to

several million degrees.

Another possible mechanism for producing a hot corona is the heating by

slow shocks [109, 69]. In Fig. 1.8 Tsuneta (1996) [109] shows a large flare event

that occurred on February 21, 1992. The left panel is a 2-D cartoon of solar flares

where the arrowed curves represent magnetic fields, and the reconnection takes

place at the top X-point where the slow shocks meet. The upper magnetic loop (not

shown) becomes a coronal mass ejection (CME), and the post-flare corona loop is
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snapping downward toward the photosphere. The corresponding observational data

is shown on the right. The temperature along the separatrix has reached 10 million

degrees, while intense X-ray emission extends along the reconnection nozzle to the

top of the lower corona loop anchored on the photosphere. The emission measure

measures the density of electrons. Since the observed X-rays are mainly emitted

by the bremsstrahlung process associated with electrons, the high electron density

region coincides with the intense X-ray region. The plasma pressure is high between

the pair of separatrices. Tseuneta suggested that these high temperature ridges are

heated by the standing slow shocks, while the soft-X ray loops are reconnected flux

tubes filled with evaporated plasma from the photosphere.

1.3.2 In-situ Satellite Crossing

Ever since the proposal of Petschek’s reconnection model, various satellite

missions have tried to resolve the reconnection-associated slow shocks in Earth’s

magnetotail and magnetopause with in-situ observations [32, 33, 103, 99, 100, 79,

42, 112]. In Fig. 1.9 we show a slow shock structure documented in Seon et al.

(1996). It is data collected from time 2145 UT to 2205 UT March 9 1993, when the

Geotail satellite flew across the distant magnetotail from the plasma sheet (yellow

region in Fig. 1.2) to the tail lobe (white region of Fig. 1.2) at (−181.8, 27.2, 25.0)Re

in GSM coordinates (to the right of the tail
⊗

of Fig. 1.2). Profiles of the electron

density, ion velocity in the x, y, z directions, ion and electron temperatures, x, y, z

magnetic field components, and the total magnetic field are shown.
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Figure 1.9: An in-situ observation of a slow shock crossing. Data
from the GEOTAIL satellite on March 9, 1993 at GSM coordinate
(−181.8, 27.2, 25.0)Re (Adapted with permission from Ref. [Seon et al.,
1996]. c©1996 by the American Geophysical Union.)
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The shock upstream and downstream regions are bounded by the dashed verti-

cal lines, and the Rankine-Hugoniot jump relations were tested. The most significant

features are the high |Vix| and Ti seen between 2145 and 2150 UT, associated with

the dramatic decrease in Bx (the reconnecting field) and |B|. Note that this slow

shock is not a switch-off slow shock, since the downstream |B| ∼ 4nT . There is a

long wavelength large-amplitude sinusoidal By ∼ 4nT component (the out-of-plane

field) in the downstream region, that appears turbulent with many small-scale waves

sitting on it.

However, although in-situ observations of slow shocks in the magnetotail exist,

they are relatively rare and mostly non-switch-off, suggesting that the MHD picture

of Petschek may not tell the complete story.

1.3.3 Large-Scale Kinetic Simulations

In-situ observations of switch-off slow shocks in space are rare when satellites

traverse reconnection exhausts. The same is true in hybrid and PIC simulations of

reconnection. Unlike resistive-MHD simulations (with localized resistivity), switch-

off slow shocks do not appear in large-scale kinetic reconnection simulations [66, 71,

78].

In Fig. 1.10 we show results from 2-D hybrid simulations conducted by Lot-

termoser et al. (1998). The left panel shows the reconnection outflow structure that

reaches 480λ0 away from the reconnection site, where λ0 is the upstream ion-inertial

scale. The reconnection site is at (x/λ0, y/λ0) = (0, 0), and the contours represent
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Figure 1.10: A large-scale hybrid reconnection simulation. λ0 is the ion-
inertial scale. (Adapted with permission from Ref. [Lottermoser et al.,
1998] c©1998 by the American Geophysical Union.)
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the in-plane magnetic field. The right panels show cuts along the red line in the

2-D picture. We see the Alfvénic reconnection outflow (Vx, top right) as expected,

but several unexpected features are also prominent. There is no switch-off behavior

in the reconnecting magnetic field (Bx, top left), the downstream has a large out-

of-plane component (Bz, 3rd down on left), and a strong firehose-sense temperature

anisotropy (T‖ > T⊥, bottom right) exists inside the exhaust. In the 2-D picture,

a clear warping behavior of the in-plane magnetic field within the exhaust is seen.

These authors attribute the disappearance of switch-off slow shocks to the firehose-

like or kink-like instability that causes this warping. They have also pointed out the

existence of a “step-like” slow shock (non-switch-off) as seen in the Bx component

from Bx = 0.5 to 1.0 (normalized to the upstream field).

No signature of Petscheck’s switch-off slow shocks has been seen in PIC recon-

nection simulations as well (see Fig. 1.11) [28]. A contributing factor may be to the

relatively small domain sizes in the shock normal direction (x̂), which only extends

for 10 di in this simulation, where di is, again, the ion-inertial scale. In Fig. 1.11,

panel (a) shows the out-of-plane electron current density, with the reconnection site

at (x/di, z/di) ∼ (0, 20). The plasma downstream of the reconnection site exhibits

large firehose-sense temperature anisotropies. In panels (b) and (c), we see turbu-

lence in the Bx component correlated with the unstable firehose region where ε < 0;

a cut of the firehose stability parameter ε = 1 − µ0(P‖ − P⊥)/B2 at z = −35di is

shown in (d).
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Figure 1.11: The exhaust from steady reconnection in a PIC simulation.
Panel (a): The out-of-plane electron current density Jez; Panel (b): B2ε,
where positive values have been set to 0. The colored region is firehose
unstable; Panel (c): The magnitude of Bx showing the development of
2-D turbulence; Panel (d): A cut of ε at x/di = −35 (the vertical line in
(b)). The horizontal lines demarcate ε = 0.25 and ε = 0.
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1.3.4 Summary of Unsolved Issues and Motivation

The firehose-sense temperature anisotropy is notable since in-situ observations

of the solar wind clearly show that the proton temperature anisotropy is bounded

by the marginal firehose and mirror mode stability boundaries [4]. Hence, it is of

interest to study the fully self-consistent generation of temperature anisotropy dis-

tributions across the reconnection exhaust more closely, and their feedback on the

propagation and steepening of slow shocks. We particular wish to answer the fol-

lowing questions that naturally arise from the discussions of the previous sections.

Why are the observations of Petschek-reconnection-associated switch-off slow shocks

rare? Is the downstream 2-D turbulence in the reconnection outflow region asso-

ciated with the firehose instability? Does the temperature anisotropy itself affect

the formation of slow shocks? Can the reconnection exhaust boundary accelerate

particles to super-thermal energies?

1.4 Our Approach: The Riemann Problem

We are interested in the exhaust structure far downstream of the x-line (re-

connection site). Instead of simulating reconnection in a very large domain, we

perform simulations in narrow boxes with dimensions lz � lx. The strategy is to

use time as a proxy for space in order to reduce the computational burden. As in

Fig. 1.12, and unlike the initial set-up for reconnection, we begin with oppositely

directed reconnecting fields plus a uniform normal field Bx at time t0. The existence

of Bx induces a unbalanced tension force that shoots plasma downward, and also
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Figure 1.12: A cartoon showing the relationship between our Riemann
problem simulation and the structure of an X-line.
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drives waves away (via, the kinked magnetic field) from the current sheet in the

x-direction. As time goes on (for instance, from t0, t1, t2 to t3 in the diagram),

the simulation box will correspond to locations farther and farther away from the

x-line. Therefore a stacked time sequence of plots would show the 2-D structure

of the reconnection exhaust, which is similar to the idea of “Computerized Tomog-

raphy” used in scanning the full structure of the human brain. When θBN ∼ 83◦,

the simulation will closely correspond to a reconnection exhaust with a normalized

reconnection rate Bx/Bz,up ∼ 0.1 [101, 102].

When lz is small our simulations are essentially 1-D, although we do perform

runs with larger lz to investigate the possibility of developing 2-D turbulence. In

this Riemann formulation, waves (e.g., fast, intermediate, and slow modes in the

fluid model) will propagate away from the reconnection current sheet, at their char-

acteristic speeds, and steepen into shocks, spread into rarefactions, or maintain their

initial shapes based on their own nonlinearities.

Before we introduce the full kinetic results in the next chapter, we need to

outline some background knowledge of waves and the 1-D Riemann problem in

ideal MHD.

1.4.1 Linear and Nonlinear MHD Waves

There are seven equations in 1-D ideal-MHD (Eq.(1.1)-(1.7) without the ηr

term and ∂y = ∂z = 0) that include partial derivatives on both time and space.

Therefore there are seven waves: two fast (F) modes that propagate in the positive
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and negative normal direction (x̂ here), two intermediate (I) modes, two slow (SL)

modes, and a non-propagating entropy (E) mode. By linearizing the 1-D ideal-MHD

equation, we obtain their speeds,

CE = 0 (1.25)

CI = CA cos θ (1.26)

CF,SL =

{
1

2

[
(C2

S + C2
A)±

√
(C2

S + C2
A)2 − 4C2

SC
2
I

]}1/2

(1.27)

where the sound speed CS =
√
γP/ρ with γ being the adiabatic index which is

5/3 in monatomic plasmas when the heat flux Q vanishes, and the Alfvén speed

CA = B/
√
µ0ρ. The plus (minus) sign of Eq. (1.27) corresponds to the fast (slow)

mode. The Friedrich diagrams in Fig. 1.13 show the dependence of these phase

speeds on propagation angle (θ). The magnetic field is in the vertical direction, a

radial vector from the origin to a given point on a curve measures the speed and

the propagation angle. It is apparent that the three propagating waves always have

the speed ordering CF ≥ CI ≥ CSL in both the plasma β < 1 and β > 1 cases.

Therefore we expect to see waves propagate out from a central discontinuity in the

order shown in Fig. 1.14. Note that the structures of the Friedrich diagrams differ

when β crosses unity. For β < 1, the fast mode and intermediate mode propagate

at the same speed (are degenerate) in the parallel direction, while the slow mode

propagates at the sound speed. When β > 1, the slow mode and intermediate mode

degenerate in the parallel direction, while the fast mode propagates at the sound

speed.

There are nonlinear waves related to each of these linear MHD modes. By
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Figure 1.13: The Friedrich diagrams display the phase speeds of MHD
modes as a function of propagation angle. The direction of the ambient
magnetic field is upward. (Reprinted with permission from Ref. [Lin
and Lee, 1993] c©1993 by the Kluwer Academic Publishers)

Figure 1.14: MHD waves that propagate out from a central interface.

28



Table 1.1: Overview of MHD nonlinear waves (Ref. [Lin and Lee, 1993]).

type wave properties

shock FS: [Vn] < 0, [|Bt|] > 0, [ρ] > 0, [P ] > 0
SS: [Vn] < 0, [|Bt|] < 0, [ρ] > 0, [P ] > 0
IS: [Vn] < 0, [|Bt|] 6= 0, [ρ] > 0, [P ] > 0

discontinuity RD: Vn = Bn/
√
µ0ρ, [Vt] = [Bt]/

√
µ0ρ, [ρ] = 0, [P ] = 0

CD: Vn = 0, Bn 6= 0, [Vt] = 0, [Bt] = 0, [ρ] 6= 0, [P ] = 0
TD: Vn = 0, Bn = 0, [Bt] 6= 0, [ρ] 6= 0, [P +B2/(2µ0)] = 0

rarefaction FR: [Vn] > 0, [|Bt|] < 0, [ρ] < 0, [P ] < 0
SR: [Vn] > 0, [|Bt|] > 0, [ρ] > 0, [P ] < 0

Subsrcipts “n” and “t” denote the normal and tangential components with respect to the shock front.

writing the 1-D ideal MHD equations in conservative form, we can easily write

down the Rankine-Hugoniot jump relations (these are the ε = 1 limit of Appendix

A. 4). From the Rankine-Hugoniot (RH) jump conditions we can identify all possible

shocks and discontinuities. These are presented in Table 1.1 (note that [Bn] = 0

always holds). A fast shock (FS) requires a super-fast to sub-fast transition, which

means the upstream fast Mach number Mu,F ≡ Vn,u/CF,u > 1 and the downstream

fast Mach number Md,F ≡ Vn,d/CF,d < 1 where Vn,u and Vn,d are measured in the

shock frame. This is a transition from region 1 to region 2 in the Friedrich diagram in

Fig. 1.13, therefore the FS is also conventionally called a 1-2 FS. Similarly, the slow

shock (SS) requires a super-slow to sub-slow transition and therefore is called a 3-4

SS. The intermediate shock (IS) requires a super-intermediate to sub-intermediate

transition, and there are four possible solutions 1-3 IS, 1-4 IS, 2-3 IS and 2-4 IS. A

rotational discontinuity (RD) is the weak limit of an IS, with both the upstream and

downstream intermediate Mach number being unity. The contact discontinuity (CD)

originates from the non-propagating entropy mode, with the density changing on the
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two sides of the discontinuity. The tangential discontinuity (TD) is just a stationary

solution where nothing occurs, since the two different states are pressure balanced

and peacefully sit side by side. Note that a shock always requires a compression

ratio, ρd/ρu, larger than unity. Depending on the circumstances, the fast and slow

modes can also spread out as fast rarefactions (FR) and slow rarefactions (SR)

in which the density decreases (ρd/ρu < 1). Instead of steepening into a sharp

transition as in shocks, the transition regions of rarefactions become broader with

time. The weak rarefaction solutions can be found by replacing the energy jump

relation in the RH jump conditions with the conservation of entropy, [Pρ−γ] = 0.

The basic configurations of the magnetic field for these shocks and disconti-

nuities are shown in Fig. 1.15. In the lower right, we introduce the basic format

with the magnetic field denoted as blue arrowed lines (the arrow direction can be

reversed), and shock front as a black vertical line. The right (left) side is the up-

stream (downstream). One important property of MHD shocks and discontinuities

is their coplanar behavior, which means that upstream magnetic field, downstream

magnetic field and the shock normal all lie in the same plane.

Across a FS the magnetic field bends away from the normal, and therefore the

strength of the magnetic field increases (|B| is proportional to the magnetic field

line density). In contrast, across a SS the downstream magnetic field bends toward

the normal, and therefore the strength of magnetic field decreases. The tangential

magnetic field across fast and show shocks never changes sign. The RD only reverses

the tangential direction of the magnetic field, without changing the thermal state.

The IS also changes the sign of tangential magnetic field, the magnitude of the total
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Figure 1.15: The basic magnetic field structures (thin blue arrowed
lines) of MHD shocks and discontinuities. (Q‖ means quasi-parallel,
Q⊥ means quasi-perpendicular. When the downstream is super-sonic,
the fast shock is also termed supercritical.)
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magnetic field, and the thermal state. The field does not change across a CD. The

existence of a TD requires zero normal direction magnetic field.

The kinetic structure of fast shocks has been intensely studied (see the review

article [108] and references therein), since, for instance, the heliospheric termination

shock, the Earth’s bow shock, and shocks associated with coronal mass ejections,

supernova explosions, Gamma Ray Bursts and astrophysical jets are all fast shocks.

Compared to fast shocks, kinetic slow and intermediate shocks are not as well un-

derstood. The downstream region of oblique slow shocks is expected to have high

β, strong temperature anisotropy, kinetic streaming effects, strong damping, etc.,

that greatly complicate the analysis. In addition, the slow propagation, and there-

fore slow formation, of oblique slow shocks requires substantially more computer

resources to explore.

1.4.2 MHD Riemann Problems

The general Riemann problem addresses the question of how characteristic

nonlinear waves connect to each other as they propagate out from an interface

between two uniform states that initially adjoin. As in Fig. 1.14, a way to solve the

Riemann problem is to numerically find a set of nonlinear solutions of the seven MHD

waves (shocks or rarefactions) that connect regions I to VIII. The two ambient sides

(regions I and VIII) of reconnection vary in different physical systems, Hence we

expect to see different structures propagating out from the central narrow current

sheet. We examine three different Riemann problems in 1-D ideal-MHD systems
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Figure 1.16: A Riemann problem with a symmetric antiparallel ambient
state. (Adapted with permission from Ref. [Lin and Lee, 1993]. c©1993
by the Kluwer Academic Publishers)

that are most relevant to basic reconnection theory (all adapted from Lin and Lee’s

review paper (1993) [65]).

Fig. 1.16 shows a case with most of the physical parameters being equal across

the interface, with the only difference being the direction of Bz. A uniform nonzero

Bx is chosen. This case directly corresponds to the case of symmetric anti-parallel

reconnection, which should develop into a Petschek-like structure. As time goes on,

waves propagate out of the center, x = 0, as shown in the right panel. A pair of weak

FR have already propagated out of the domain at the time shown in the left panels,

and what remains is a pair of switch-off slow shocks (SSS), as expected. Jumps of

various physical quantities across the SSS are documented. A switch-off slow shock

is the strongest slow shock, with a maximum compression ratio, and its downstream
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Figure 1.17: The same Riemann problem as Fig. 1.16, but with a initial
uniform guide field. (Reprinted with permission from Ref. [Lin and Lee,
1993] c©1993 by the Kluwer Academic Publishers)

tangential magnetic field (Bz) vanishes. It propagates at the intermediate speed of

the upstream state, and therefore the presence of a nonlinear intermediate mode

in front of the SSS is unnecessary. The SSS has converted most of the upstream

magnetic field energy (Bz) into Alfvénic outflows (Vz) and thermal energy (T ).

Fig. 1.17 is the same as Fig. 1.16 but with an initial out-of-plane field By 6= 0.

This case is directly related to the case of guide field reconnection with a constant

initial out-of-plane magnetic field. We can see that the pair of SSS’s in Fig. 1.16

are now replaced by a pair of RD’s and SS’s. The RD’s rotate the Bz out to By

while maintaining Bt constant, and are responsible for the switch-off behavior of Bz

in this case. The SS’s slightly decrease By.

Fig. 1.18 is the same as Fig. 1.16 but with an initially strong asymmetry in
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Figure 1.18: The same Riemann problem as Fig. 1.16, but with a strong
asymmetry in the ambient plasma density. (Adapted with permission
from Ref. [Lin and Lee, 1993] c©1993 by the Kluwer Academic Publish-
ers)

the plasma density, where the density on the left side is higher than the density

on the right side. The left SSS in Fig. 1.16 is replaced by a RD and a SR (its

transition region broadens with time) now. In addition, there is a CD between the

slow modes propagating to the right. This structure is closely related to Levy et

al.’s (1964) [62] asymmetric reconnection model, which applies to magnetopause

reconnection, with the left-hand side being solar wind plasma and the right-hand

side being magnetosphere plasma.

In the next two chapters, we primarily focus on the kinetic version of the

symmetric case shown in Fig. 1.16, and we will see how kinetic effects alter the

picture predicted by ideal MHD. Some of the unsolved issues discussed in Sec. 1.3.4

will also be addressed.
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1.5 Anisotropic MHD

Since they will be used in the following chapters, we document the anisotropic

version of resistive-MHD here. The first three equations are derived from moment

integrations of the Vlasov equation and the off-diagonal components of the pressure

tensor are neglected [14, 45]. These equations are not closed, since an energy closure

is undetermined.

∂ρ

∂t
+∇ · (ρV) = 0 (1.28)

ρ
dV

dt
= −∇

(
P⊥ +

B2

2µ0

)
+∇ ·

{[
1−

µ0(P‖ − P⊥)

B2

]
BB

µ0

}
(1.29)

∂

∂t

(
ρV 2

2
+
B2

2µ0

+
3

2
P

)
+∇·

[(
ρV 2

2
+

3

2
P

)
V + P ·V +

E×B

µ0

+ Q

]
= 0 (1.30)

∂B

∂t
= −∇× E (1.31)

∇×B = µ0J (1.32)

E = −V ×B + ηrJ +
1

ne
(J×B) (1.33)

∇ ·B = 0 (1.34)

where P‖, P⊥ are the pressure parallel and perpendicular to local magnetic field,

respectively. P ≡ (P‖ + 2P⊥)/3, P ≡ P⊥I + (P‖ − P⊥)BB/B2 where I is the unit

tensor, and Q ≡
∫
d3v(1

2
mδv2δv)f (where δv ≡ v − 〈v〉) is the heat flux in the

energy equation, Eq. (1.30). We have also included the Hall term J×B/ne in the

generalized Ohm’s law, Eq. (1.33). This is the same Hall term that induces whistler

waves to open the reconnection nozzle. It also causes shocks to radiate rotational

dispersive wavetrains in the upstream or downstream regions, which will be briefly

commented on later in this work.
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Chapter 2

PIC simulations of Riemann Problem

2.1 Overview

Unanswered questions remain concerning the kinetic structure of slow shocks

in a collisionless plasma and the associated mechanisms leading to particle heating.

In previous work, kinetic slow shocks were studied numerically in hybrid codes

by initializing the system with the slow shock jumps predicted by MHD [107] or,

later, by the piston [118] and flow-flow methods [81]. Some of the main focuses of

these works were the backstreaming beam-driven electromagnetic ion-ion cyclotron

instability (EMIIC) [118, 81], which has been suggested to as the cause of the

nonsteady behavior of slow shocks, and the formation and damping of downstream

large amplitude dispersive wavetrains [107, 65]. Recently, the dissipation due to

electrons and kinetic Alfvén waves (KAWs) exited by the EMIIC instability was

studied by the piston method in particle-in-cell (PIC) simulations [22, 125, 123].

To address this issue, we perform 2-D PIC simulations that extend the sim-

ulation size in the normal direction to ∼ 800di by ignoring the X-line and instead

examining the conceptually simpler Riemann problem. This set-up as discussed in

Sec. 1.4 more closely resembles the reconnection outflow exhaust than that pro-

duced by other methods of generating shocks. Similar kinetic simulations of these

Riemann problems have been carried out with a 1-D hybrid model [66]. 2-D Riemann
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problems have also been carried out in hybrid simulations [98] where the 2-D down-

stream turbulence appeared to diminish the downstream wavetrains associated with

switch-off slow shocks. Upstream perpendicular heating from the by EMIIC insta-

bility and the subsequent excitation of anisotropic (Alfvén/ion cyclotron (AIC)-like)

instability and the resultant parallel AIC waves have also been studied in similar

2-D Riemann problems [19, 20].

In Sec. 2.2 we introduce our simulation model and the initial set-up of the

Riemann problem. In Sec. 2.3 we discuss the general profiles of a run with θBN =

75◦ (the angle between the upstream magnetic field and the normal direction (x̂)).

Section 2.4 points out that the counterstreaming ions drive the firehose stability

parameter ε ≡ 1 − µ0(P‖ − P⊥)/B2 down (increase the firehose-sense temperature

anisotropy) in the downstream region. In Sec. 2.5 we show that a more oblique

shock results in a lower ε in the downstream region. The structure of the magnetic

field performs a transition from a coplanar decrease to a non-coplanar rotation at

ε ∼ 0.25, which differs from the traditional slow shock transition with dispersive

wavetrains. In Sec. 2.6 the stability of the downstream rotational wave is studied

with numerical experiments. The tendency for a spatially modulated rotational

wave to radiate di-scale waves is identified. The resulting di-scale waves counter-

balance the ε decrease driven by the counterstreaming ions. Finally, we summarize

the results and discuss potential implications in Sec. 2.7.
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2.2 Simulation Models and Details

Most of our PIC simulations use a narrow computational domain, lz × lx =

1.6di × 1638.4di to capture the nonlinear wave propagation (mainly the slow shock

pair in Petscheck’s reconnection model) far downstream from the reconnection site.

The simulations presented here are two-dimensional, i.e., ∂/∂y = 0, and periodic

in the z − x plane. The initial equilibrium consists of a double Harris-like current

sheet (although we only focus on a single current sheet) superimposed on an ambient

population of uniform density na:

Bz = Bz,a tanh(x/wi); np,e = nhsech2(x/wi) + na, (2.1)

where Bz,a, nh, na are constants, the subscript “a” stands for the asymptotic (far

upstream) values, “h” stands for Harris and wi is the initial half-width of the current

sheet (this is the symmetric case corresponding to Fig. 1.16). We initialize both the

Harris plasma and background plasma with an isotropic Maxwellian distribution.

Unlike the initial set-up for reconnection, we begin with a constant normal field

Bx. Although the initial total pressure is balanced, the existence of Bx causes a

tension force that drives wave propagation away from the current sheet in the x-

direction. Again, the Bx,a/Bz,a = 0.1 case (i.e., θBN ∼ 83◦ with cos θBN ≡ Bx,a/Ba)

corresponds to a reconnection exhaust with a normalized reconnection rate of 0.1

[101, 102].

In our particle-in-cell code p3d [126], the electromagnetic fields are defined on

gridpoints and advanced in time with an explicit trapezoidal-leapfrog method using

second-order spatial derivatives. The Lorentz equation of motion for each particle
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is evolved by a Boris algorithm where the velocity v is accelerated by E for half a

timestep, rotated by B, and accelerated by E for the final half timestep. To ensure

that ∇ · E = ρ/ε0 a correction electric field is calculated by inverting Poisson’s

equation with a multigrid algorithm.

The magnetic field is normalized to the asymptotic magnetic field Ba, the den-

sity to the asymptotic density na, velocities to the Alfvén speed CA ≡ Ba/
√
µ0mina,

lengths to the ion inertial length di ≡
√
mi/µ0nae2, times to the inverse ion cyclotron

frequency Ω−1
ci ≡ mi/Bae, and temperatures to miC

2
A. Other important parameters

are mi/me = 25, c/CA = 15, na = 1, nh = 1.5, Ba = 1, and the asymptotic value

of initial Ti,e = 0.1, which imply that βa = 0.4. The initial electron temperature is

uniform, while the ion temperature varies so as to ensure pressure balance in the

x-direction. We take the time step ∆t = 0.0025 and grid size ∆ = 0.025. We usually

take wi = di since the thickness of the dissipation region during reconnection is on

the di scale [101, 13]. There are ∼ 4× 108 particles in a single run. Table 2.1 gives

further details of the various runs.

Runs a, b, c, d, f , g, h and k (all have lz = 1.6di, except the θBN = 83◦

case) will be further discussed in this work. Even though the 75◦ case with a larger

lz = 6.4di (Run i) shows downstream 2-D turbulence, the evolution is quite similar

to the narrow Run f . As can be seen in Table 2.1, 2-D turbulence tends to occur

for oblique (θBN > 75◦) cases when lz is large enough. Curves plotted throughout

the rest of this chapter are quantities averaged in the z-direction, since most runs

discussed here do not have any significant variation in the z-direction. The 2-D

turbulence of θBN = 83◦(Run k) will also be discussed.
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Table 2.1: Overview of runs.

Run θBN wi Bg
1 Domain Size (lz × lx) Gridpoints →2 2-D turbulence

a 30◦ 1 0 1.6× 1638.4 64× 65536 x
b 45◦ 1 0 1.6× 1638.4 64× 65536 x
c 52◦ 1 0 1.6× 1638.4 64× 65536 x
d 60◦ 1 0 1.6× 1638.4 64× 65536 x
e 60◦ 1 0 6.4× 819.2 256× 32768 x
f 75◦ 1 0 1.6× 1638.4 64× 65536 x
g 75◦ 10 0 1.6× 1638.4 64× 65536 x
h 75◦ 1 0.2 1.6× 1638.4 64× 65536 x
i 75◦ 1 0 6.4× 1638.4 256× 65536

√

j 83◦ 1 0 1.6× 819.2 64× 32768 x
k 83◦ 1 0 6.4× 819.2 256× 32768

√

1 Bg is an initial uniform guide field in the y-direction.
2 “→” means “resulting in”.

2.3 General Features of the 75◦ Case

A representative case of θBN = 75◦, wi = 1di, Bg = 0 (Run f ; hereafter re-

ferred to as the “75◦ run”) at time 200/Ωci is documented in Fig. 2.1. As soon as

the simulation begins, a pair of fast rarefaction waves propagate out from the discon-

tinuity with speed ∼ 1.1CA, while the slow shocks with their downstream rotational

waves have speed ∼ 0.15CA. As in ideal MHD with a symmetric initial condition

and zero guide field, a pair of switch-off slow shocks are expected to follow the fast

rarefaction waves, as shown in Fig. 2.1(b) [65]. A switch-off slow shock (i.e., the

strongest slow shock, whose tangential magnetic field vanishes downstream of the

shock) propagates at the upstream intermediate speed, while the downstream linear

slow mode speed equals the downstream linear intermediate speed. The linear slow

mode and intermediate mode are known to become degenerate at parallel propa-
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Figure 2.1: The evolution of a system with θBN = 75◦ (Run f). Panel
(a): The evolution of B from time 0−200/Ωci. A pair of fast rarefactions
(FR) propagate out from the symmetry line, followed by a pair of slow
shocks (SS). Each curve has been shifted so that it intersects the vertical
axis at the given time. The time between the yellow curves is 100/Ωci;
Panel (b): The predicted FR and switch-off slow shock (SSS) from ideal
MHD theory; Panel (c): The same as (a) but with the vertical axis
measuring B; Panel (d): The evolution of Bz from time 0− 200/Ωci.

gation when the plasma β (plasma thermal pressure/magnetic pressure) exceeds 1.

The downstream rotational waves are often identified as dispersive wavetrains. The

essential physics of this wavetrain can be described by a two-fluid model [17], or by

Hall-MHD [40].

Further details of the slow shock pair are shown in Fig. 2.2. The most signif-

icant feature differing from the ideal MHD model is the presence of a large down-

stream temperature anisotropy ε ≡ 1 − µ0(P‖ − P⊥)/B2 shown in panel (a). The

corresponding magnetic field structure is shown in panel (b), where the left-hand-
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Figure 2.2: Parameters from the run with θBN = 75◦ (Run f) at time
200/Ωci. Panel (a): Temperature anisotropy ε and x-direction heat flux
Qx; Panel (b): Magnetic field components; Panel (c): Parallel and per-
pendicular temperatures (the off-diagonal components Tixy, Tixz, Tiyz are
plotted together in green, denoted as Toff, and are small) ; Panel (d):
Total plasma pressure components and Px + B2/2µ0. Panel (e): The
plasma β and local θBN = cos−1(Bx/B); Panel (f): Plasma density. The
dotted curves in each panel are the predicted magnitude and position of
the switch-off slow shocks (SSS) from isotropic MHD for Bz in (b), T in
(c), P in (d), β in (e), and n in (f).
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polarized rotational wave is clearly seen (the polarization will be discussed further

in the hodograms of Fig. 2.6). The value of ε drops from 1.0 upstream of the

slow shock to ∼ 0.25 around the nearly constant-magnitude rotational waves found

downstream. The anisotropy factor ε affects the strength of the tension force, which

in the fluid theory is proportional to ε[(B · ∇)B/µ0]⊥ [95] (see the last term of

Eq. (1.29)). When ε is positive, the magnetic field has a restoring tension force,

while a negative value makes the tension force operate in the opposite way, driv-

ing the firehose instability. Viewed another way, the phase speed of an intermediate

mode is CI ≡
√
εCA cos(θBN). Therefore, as ε drops the intermediate mode becomes

slower, or even stops propagating, going firehose unstable for ε < 0. The x-direction

heat flux Qx ≡
∫
d3v(1

2
mδv2δvx)f , where δv ≡ v − 〈v〉, is also documented in (a).

The heat flux peaks inside the transition from upstream of the slow shock to the

downstream rotational waves, and then becomes negligible. This fact is used in the

next chapter. In panel (c), the parallel ion temperature increases sharply in the

weak field region, while the perpendicular ion temperature is nearly constant. The

electrons are nearly isotropic across the shock. In panel (d), the parallel plasma

pressure and perpendicular plasma pressure are shown, and the nearly constant

normal direction pressure balance Px +B2/2µ0 indicates the absence of fast modes

in the reversal region. Panel (e) shows the associated variations in β and the local

θBN and panel (f) documents the density profiles. For comparison, the black dotted

curves in each panel show the predicted jumps and positions of slow shocks in the

ideal MHD version of this global Riemann problem [65].

Within the MHD predicted switch-off slow shock (SSS) jump (Bz from ∼ 0.9
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to 0) shown in panel (b), a coplanar transition decreases the upstream Bz (black

solid curve) from ∼ 0.9 to ∼ 0.5. After this, the magnetic field structure rotates

in the non-coplanar direction and exhibits nearly constant |B| ∼ 0.5 inside the

downstream rotational waves. The tangential magnetic field eventually drops to zero

in the center, as the symmetry of the initial conditions demands. We identify the

coplanar transition as a slow shock transition, where the major enhancements of the

temperatures, pressures, and densities and the decrease in |B| occur. Note the jumps

of |B| and Bz from ∼ 0.9 to ∼ 0.5 are well maintained from the beginning to the later

time in Fig. 2.1(c) and (d), which suggests that this transition is associated with one

of the MHD nonlinear waves with a jump determined by the initial condition. The

constancy of the total magnetic field (∼ 0.5), density (∼ 1.5) and β (∼ 4.0) inside

the downstream rotational wave and the fact that it propagates at the intermediate

speed (
√
εBx/

√
µ0ρ) suggest an intermediate-wave-like behavior. A similar step-like

decrease in |B| identified as a slow shock was also reported in the downstream of a

large-scale hybrid reconnection simulation [71].

2.4 The Source of Temperature Anisotropy: Alfvénic Counter-Streaming

Ions

Using the Walén relation Vt,d − Vt,u = ±
√
ρuεu/µ0(Bt,d/ρd − Bt,u/ρu) for

switch-off slow shocks or rotational discontinuities (“t” for tangential, “u” for up-

stream and “d” for downstream), an outflow in the z-direction with Alfvénic velocity,

Bz,u/
√
µ0ρu ∼ CAz ≡ Bz,a/

√
µ0mina is predicted [104]. The energy source of the
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Figure 2.3: A cartoon showing the mechanism of forming counter-streaming ions

downstream outflow is the difference in the tangential component of the magnetic

field across the discontinuity. If we jump to the outflow frame (the deHoffmann-

Teller frame) as schematized in Fig. 2.3, there will be inflowing Alfvénic streaming

ion beams from both discontinuities along the downstream magnetic field as ob-

served by Gosling in the solar wind [36] and in kinetic reconnection simulations

[56, 71, 43, 78, 28]. These counter-streaming ions cause an enhancement in the

downstream parallel ion temperature (Ti‖ ∼ O(miC
2
Az)) and, therefore, the temper-

ature anisotropy.

In the phase space of the 75◦ case at time 200/Ωci (see Fig. 2.4) a signature of

the counter-streaming beams is not obvious in the downstream region (since the ion

distribution does not peak in the upper and lower parts of a single wave oscillation),

perhaps because of the large-amplitude rotational wave. However, Alfvénic back-

streaming ions in the z-direction (close to the parallel direction in the upstream
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Figure 2.4: The phase space of the run with θBN = 75◦ (Run f) at time
200/Ωci. From top to bottom the left column shows the ion distribution
in: Vz − x space, where the backstreaming ions from the discontinuities
are clearly seen; Vy − x space; Vx − x space. The right column is the
electron distribution in Vz−x space, Vy−x space and Vx−x space. The
white dashed lines indicate the locations of the velocity distributions
shown in Fig. 2.5. The color bar is normalized to the maximum value in
each panel.
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Figure 2.5: The ion velocity distributions measured at locations 409.1−
410.1di, 415−416di and 430−431di of Fig. 2.4 (the white dashed lines).
From top to bottom are Vz − Vx, Vz − Vy and Vx − Vy distributions.
The distributions are color coded and the white contours help identify
different ion parcels. The local magnetic field is denoted by blue arrowed
lines beginning at origin. The axis scales, when cut by a factor of 2, also
measure the magnitude of the field. Ions that stream along the magnetic
field are clearly seen at these locations.
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region) are observed in Fig. 2.4. The time-of-flight effect (faster ions escape far-

ther upstream) slowly broadens the transition region of slow shocks with time. The

nearly uniform electron distribution in all directions is due to their high thermal

conductivity and much lighter mass compared to the ions.

In Fig. 2.5, we show the ion distributions at the three locations demarcated

by the white dashed lines in Fig. 2.4. Ions that stream along local magnetic fields

(blue arrowed lines) are seen at these locations. Closer to the symmetry line, the

drifting speed between these two ion parcels appears to be reduced, perhaps due

to mixing by the rotational waves and some small-scale waves excited downstream.

However, a complete thermalization at the symmetry line previously reported in

2-D low β . 0.01 hybrid simulations [19, 20] is not seen, a discrepancy perhaps

explained by additional instabilities allowed by the lower β and their wider box

(lz ∼ 50di). The Vx − Vy distribution at the symmetry line (409.1 − 410.1di) is a

complex non-Maxwellian, which indicates the ions undergo complicated meandering

motions. The distributions of electrons at this time and locations appear Maxwellian

without a clear signature of the backstreaming beam as reported before [22, 123],

and are therefore not shown.

2.5 Temperature Anisotropy vs. Propagation Angles

In order to understand how the temperature anisotropy varies with other pa-

rameters, we perform runs with different upstream angles θBN . Fig. 2.6 documents

the results of Runs a, b, c, d, f and k. From the first column, the downstream ε
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Figure 2.6: From top to bottom are runs with θBN = 30◦ (Run a) at
100/Ωci, 45◦ (Run b) at 200/Ωci, 52◦ (Run c) at 100/Ωci, 60◦ (Run d)
at 250/Ωci, 75◦ (Run f) at 400/Ωci, and 83◦ (Run k) at 700/Ωci. The
first column shows the temperature anisotropy, and the second column
the magnetic field components as a function of x. The third column
displays hodograms taken from the right half of the simulation domains.
The dotted curves in the second column are the predicted magnitudes
and positions of switch-off slow shocks (SSS) and fast rarefactions (FR)
from isotropic MHD theory for Bz.
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tends to lower values in the more oblique cases and the plasma becomes turbulent

once ε is comparable to or lower than ∼ 0.25. We can estimate at which θBN the

downstream ε will drop below 0.25 as follows. In the cold plasma limit, the temper-

ature anisotropy due to the Alfvénic counter-streaming ions at the symmetry line is

(where P‖ − P⊥ ∼ namiC
2
Az and |B| ∼ Bx,a),

εdown ∼ 0.25 ∼ 1−
B2
z,a

B2
x,a

→ tan2θBN,c ∼ 0.75 → θBN,c ∼ 40◦ (2.2)

This argument qualitatively shows the tendency to develop stronger firehose-sense

temperature anisotropies for higher obliquities. The difference between θBN,c and

the observed value of 60◦ is probably due to the simplified assumptions, such as a

cold streaming plasma.

In the second column of Fig. 2.6, the corresponding magnetic structures are

shown. When the obliquity is large enough, especially when ε < 0.25, the down-

stream magnetic field rotates into the out-of-plane direction and becomes turbulent.

Combined with the hodograms in the third column, we can deduce that the dom-

inant downstream rotational waves are all left-handed (LH, counter-clockwise in

our hodogram). When the wavelength of the primary LH wave is large, as in the

θBN = 60◦ case, its front part breaks into finer right-handed (RH) waves with scale

∼ 6di. In the 75◦ case, the scale of the primary LH wave is already as small as

6di, and so it is more stable than the 60◦ case, albeit still turbulent. (A 75◦ case

with a wider initial current layer is discussed in the next section. It exhibits wave-

generation phenomena similar to the 60◦ case). In the 83◦ case, we observe RH

small-scale waves in front of the downstream primary LH wave.
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For comparison, the dotted curves in the second column of Fig. 2.6 are the

predicted Bz structure from MHD theory [65]. The overall predictions agree well

for the oblique cases (see, for instance, the upstream Bz of the slow shocks in the

60◦ and 75◦ cases), although the reflected weak fast rarefactions from our boundary

have caused a discrepancy in the slow shock upstream Bz for the 83◦ case. In less

oblique cases, the intermediate and fast characteristic speeds approach one another

just upstream of the switch-off slow shock according to MHD theory. Therefore there

is no clear separation between the slow shocks upstream and the fast rarefactions,

as can be seen in the simulations. We treat the place where the inflow speed Vx (not

shown) starts to decrease as the upstream of the slow shocks, which corresponds

to the beginning of the LH rotational wavetrains in the 30◦ and 45◦ cases. Their

upstream will hence correspond to Bz ∼ 0.15 and Bz ∼ 0.2 respectively. Therefore

the stable small amplitude rotational waves in the θBN = 30◦ and 45◦ cases are

more similar to the conventional dispersive stationary downstream wavetrains, which

immediately follow the slow shock upstream. (We note that the model in Lin and

Lee [65] approximates the rarefactions by replacing the energy jump condition in

the Rankine-Hugoniot relations by [Pρ−γ] = 0, arguing that the entropy across a

weak rarefaction does not change. This is only valid for weak rarefaction waves, but

the overall tendency as the propagation angle becomes more parallel should be in

the correct sense).

An interesting feature in the oblique cases is the coincidence between the

start of the primary LH magnetic rotation and the location where the anisotropy

parameter ε ∼ 0.25. The anisotropy parameter seems to be locked to this critical

52



Figure 2.7: Evolution of ε for the case with θBN = 60◦(Run d) for equally
spaced times between 100− 500/Ωci from lighter grey to darker grey in
(a), the θBN = 75◦ case (Run f) for time 100 − 500/Ωci in (b), and the
θBN = 83◦ case (Run k) for time 100 − 700/Ωci in (c). The bottom is
a plot of Bx for the θBN = 83◦ case at time 700/Ωci showing the 2-D
turbulence that develops.
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Figure 2.8: The ε distributions of runs θBN = 60◦ (Run d) at 500/Ωci,
75◦ (Run f) at 200/Ωci, 83◦ (Run k) at 700/Ωci. (The 83◦ case is shifted
to the right by 204.8di)

value for long periods of time, as is shown in Fig. 2.7. Moreover, this is also the

location where turbulence develops. Given these coincidences the following questions

naturally arise. If the rotational wave is really a normal dispersive wavetrain, why

does it appear in the middle of the MHD predicted switch-off slow shocks? Why do

the dispersive waves not start directly from the slow shock upstream? Is it not more

similar to a new transition at Bz ∼ 0.3 for θBN = 60◦, or Bz ∼ 0.5 for θBN = 75◦

and 83◦? What is special about ε = 0.25? (The importance of ε ∼ 0.25 is shown for

different obliquities in Fig. 2.8.) Are there other instabilities associated with this

anisotropy value? Or is it due to the nonlinear structure of a system with a large

temperature anisotropy that cannot be explained by ideal MHD?

We describe a possible theoretical explanation for why ε ∼ 0.25 in the next
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chapter. In short, ε = 0.25 represents a transition where the slow and intermediate

mode speeds become degenerate. Unlike the conventional picture, the downstream

rotational waves can not then be explained by slow dispersive waves, but instead

take the form of rotational intermediate modes. The coplanar and non-coplanar

part will later be identified as a single nonlinear wave, called a compound SS/RD

wave.

2.6 The Downstream Turbulent Waves and Particle Scattering

The region downstream of oblique (θBN ≥ 60◦) slow shocks is turbulent. High

wavenumber waves are continually excited whenever the Bz component begins to

rotate into the out-of-plane direction, as can be seen for the 60◦, 75◦ and 83◦ cases in

Fig. 2.6, and more clearly in the evolution of the B field for the case 75◦, wi = 10di

(Run g) in Fig. 2.9. The downstream LH rotational parent waves break into λx ∼

6di-scale waves. The large oscillation in ε at later times is due to the small magnetic

field magnitude near the symmetry line, where both Bz and By vanish. The particle

scattering associated with these small-scale waves plays a role in counter-balancing

the decrease in ε due to the streaming ions and keeping the temperature anisotropy

around the value 0.25, as is seen in the time evolution of the oblique cases in Fig. 2.7.

In order to understand the downstream turbulent di-scale waves (∼ 6di), we

tried to systematically pin down the possible drivers and energy sources via numeri-

cal experiments. We separately checked the temperature anisotropy, counterstream-

ing beams, and rotational parent waves (such as the larger LH wave in Fig. 2.9) to
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Figure 2.9: Panel (a): The evolution of ε, Bz and By for equally spaced
times between 50 − 500/Ωci (from left to right) in the θBN = 75◦, wi =
10di case (Run g). The downstream larger-scale rotational wave breaks
into waves of wavelength ∼ 6di. Panel (b): A blowup of the downstream
By at time 450/Ωci.

determine which factors are responsible for generating the di-scale waves.

We carried out spatially homogeneous simulations with an initial wave struc-

ture of the following form:

Bz = Bcir cos(2πx/λp) +Bz,oblique; By = P ×Bcir sin(2πx/λp) (2.3)

When Bcir 6= 0, there is a rotational field with P = +1 for LH, −1 for RH, and 0 for

planar polarizations. The constant Bz,oblique controls the obliquity of this circularly

polarized wave and provides a spatial modulation in the magnitude of the total

magnetic field. The general expression for the initial ion distribution is

fi ∝ exp

(
−
mi(v‖ − u)2

2Ti‖
− miv

2
⊥

Ti⊥

)
+ exp

(
−
mi(v‖ + u)2

2Ti‖
− miv

2
⊥

Ti⊥

)
(2.4)

which has bi-Maxwellian counterstreaming beams for u 6= 0. Note that Ti‖,eff =

Ti‖+miu
2, so both u 6= 0 and Ti‖ 6= Ti⊥ can contribute to the temperature anisotropy

ε. The initial plasma density varies so as to ensure a constant value of P⊥+B2/(2µ0).
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Since the small-scale waves that interest us do not induce variation in the z-direction,

they are intrinsically 1-D waves along the x-direction. The common parameters used

here are a domain size of 1.6 × 51.2di, with grid 64 × 2048, λp = 51.2di, uniform

Ti,e⊥ = Te‖ = 0.15, Bx = 0.25 and ni,e = 1.5 at x = 0. The resultant β in

the following case is always > 1. These parameters are meant to represent those

observed in the downstream of the 75◦ case.

Table 2.2: Overview of runs

Run Bcir Polar. (P) Bz,oblique Ti‖ Beams (u) →1 Ti‖,eff → ε → 1-D waves2

1 0.25 +1 0.25 0.15 0.5 0.4 -0.2 ∼ -7
√

2 0.25 +1 0.25 0.4 0 0.4 -0.2 ∼ -7
√

3 0.25 +1 0 0.15 0.5 0.4 -2 x
4 0.25 +1 0 0.4 0 0.4 -2 x
5 0.25 +1 0.25 0.15 0 0.15 1

√

6 0.25 0 0.25 0.15 0 0.15 1 x
1 “→” means “resulting in”.
2 di-scale waves generated within time 100/Ωci.

Run 1 of Table 2.2 is a representative example of the downstream structure

seen in the Riemann simulations. The initial obliquely propagating LH polarized

waves with Alfvénic counter-streaming ions along the local magnetic field break

into ∼ 6di small-scale waves, as shown in Fig. 2.10(a). In Run 2, we replace the

counter-streaming ions with a bi-Maxwellian plasma with the same effective parallel

temperature, therefore the same temperature anisotropy ε, and find similar wave-

generation phenomena. In Runs 3 and 4, we remove the obliquity (Bz,oblique) from

Runs 1 and 2 respectively. No di-scale waves are excited within a time of 100/Ωci

in Run 3, as is shown in Fig. 2.10(b). This indicates the importance of spatial
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modulation for the development of the turbulence.

In Run 5, we replace the beams or anisotropic plasma of Runs 1 and 2, respec-

tively, with a Maxwellian isotropic plasma. Waves with scale ∼ 6di are excited and

are shown in Fig. 2.10(c). However, if we further remove the initial out-of-plane mag-

netic field of the parent wave (Run 6), no small-scale waves appear; see Fig. 2.10(d).

This indicates that a necessary condition for producing these small-scale waves is

the existence of circularly polarized parent waves. From this suite of runs we con-

clude that the presence of a spatially modulated rotational wave is the major driver

of di-scale coherent waves seen downstream of the shock (see Fig. 2.9(b)). Although

not shown, we see similar behvior for RH (P = −1) parent waves.

A non-modulated, constant-amplitude, circularly polarized Alfvén wave is a

known stationary solution of the MHD equations. Although it is subject to a long-

wavelength modulational instability under some conditions [77], simulations show

that it is also stable in a collisionless plasma. Spangler & Plapp [105] explored

a similar wave-generation phenomena, as well as the formation of solitary waves

with a system with initial conditions similar to our Run 5. He cast his system in

terms of the Derivative-Nonlinear-Schrödinger-Equations, which are simplified MHD

equations that possess the MHD nonlinearity and dispersion terms. This suggests

the importance of both the nonlinearity and the Hall dispersion term for these di-

scale waves. We also note that the time of onset of these waves is proportional to

λp and inversely proportional to the amplitude Bcir, which are closely related to

the steepening time scale of finite amplitude waves, Ts ∼ (τwave/2π)(B/∆B), with

τwave ∝ λp (the gradient scale of the finite amplitude wave) [5]. Although a firehose-
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Figure 2.10: The evolution of By, Bz and B for equally spaced times be-
tween 0− 100/Ωci. The red curve indicates the time 100/Ωci. Panel (a):
Run 1 with both initial streaming ions and modulated rotational parent
wave. Panel (b): The same as panel (a) without the initial spatial mod-
ulation (Run 3). Panel (c): The same as panel (a) without initial beams
(Run 5). Panel (d): The same as panel (c) without initial polarization
(Run 6).
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sense temperature anisotropy (ε < 1) would weaken the nonlinearity, the spatial

variation of ε enhances the nonlinearity, as will be shown in the next chapter [68].

Runs 3 and 4 suggest that temperature anisotropy and Alfvénic beams are not,

by themselves, sufficient for generating the small-scale waves seen in the downstream

region. The time scale for these parent rotational waves to break into smaller-scale

waves is faster than the beam driven EMIIC instability, which excites oblique AIC

waves in hybrid models [117], or oblique KAWs in PIC models [124]. Perhaps the

higher β in our simulations (e.g., upstream βi = βe = 0.2) has slowed or suppressed

the development of the EMIIC instability [21]. We also note that the KAWs in Yin

et al. [123] are generated upstream of the rotational front where the beam effect

is stronger (T‖ peaks), while our small-scale waves coexist with the rotational part

as clearly seen in Fig. 2.9, where the local β’s of both ion parcels are higher. This

further suggests a mechanism other than the EMIIC instability. In addition, we

have not observed clear perpendicular heating in both ion parcels [124, 19, 20] and

parallel heating in electrons [124, 123] by oblique KAWs (if present), since these

heating effects could also be suppressed by higher β. As for the growth rate of the

anisotropy driven firehose instability, γ2 ∼ −εk2C2
A [23]. The unstable wavelength

that interests us is k ∼ 1, and anisotropy ε = −2 (in Run 3, 4), then a small growth

rate of the firehose instability is due to a small CA based on the local magnetic field

Bx ∼ 0.25. However, these beam/anisotropy-driven waves are still potential players

in the downstream turbulence at late time. By comparing Fig. 2.10(a) to (c), we

see that the interplay of the steepening process and the free-streaming beams makes

the wave more turbulent. In Fig. 2.11, the ion temperature anisotropy Ti‖ − Ti⊥ of
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Figure 2.11: The evolution of Ti‖−Ti⊥ for equally spaced times between
0−100/Ωci(from lighter grey to darker grey) of Run 1 (Fig. 2.10(a)). The
temperature anisotropy of the ions is reduced, which indicates particle
scattering is taking place.

Run 1 (which corresponds to Fig. 2.10(a)) decreases. This confirms the ability of

these smaller-scale dispersive waves to scatter ions.

The polarization of a linear wave can be determined by the phase between the

tangential magnetic field variations δBz and δBy. In the fluid model iδBz/δBy =

(C2
I −(ω/k)2)/(ωdiCAcos(θBN)) [112]. A wave has a LH polarization when (ω/k)2 <

C2
I , and RH otherwise. As observed in our oblique shock simulations (discussed in

Sec. 2.5), the small-scale waves at the upstream of the rotational front are mostly

RH, while the downstream waves are mostly LH. This suggests that the primary

rotational front propagates at the local intermediate speed (as also measured in the

simulations). We do not address which modes are responsible for these fine-scale

waves here, since the polarization of the linear mode in kinetic theory is very com-

plicated. Both temperature anisotropy and high plasma β play roles in changing the

linear wave properties [57]. A better understanding of the nature of these turbulent
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waves could be gained by comparing the downstream spectrum to the dispersion

relation calculated from linear Vlasov theory. With a larger lz and very oblique

propagation angle, as in the 83◦ case, 2-D turbulence with λz ∼ 6di is excited

around the firehose-unstable region. Its signature is most clear in Bx, as can be

seen in the bottom plot of Fig. 2.7. A similar mechanism is postulated to excite

2-D turbulence in the firehose-unstable region seen in the reconnection simulation

of Fig. 1.11(c) (and, perhaps, the 2-D turbulence previously reported [98]). This

2-D turbulence could be driven by temperature anisotropy (firehose-like) or by the

sharp front of the primary rotational wave. It does not appear to be similar to the

parallel AIC waves driven by the AIC-like instability observed in Cremer & Scholer

[19, 20], since no significant perpendicular heating in both ion parcels is seen in the

simulation of Fig. 1.11.

2.7 Summary and Discussion

We have studied the temperature anisotropy distribution across slow shocks

with different obliquities in PIC simulations. An abnormal transition and an anisotropy

ε = 0.25 locking phenomena downstream of the MHD predicted switch-off slow

shocks is documented. The Alfvénic counter-streaming ions serve as the driver for

decreasing ε (increasing the firehose-sense temperature anisotropy) in the down-

stream region, while downstream di-scale turbulent waves scatter particles and raise

ε. This dynamical balance makes the downstream ε plateau at a value of ε = 0.25

and not the marginal firehose criterion ε = 0. The theoretical significance of ε = 0.25
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will be addressed in the next chapter. By means of PIC numerical experiments we

show that the turbulent di-scale waves are radiated from a spatially modulated

rotational parent wave .

The Riemann problem for the θBN = 83◦ case is closely related to that of

reconnection exhausts with normalized reconnection rates of 0.1. The very center is

a firehose-unstable region where a Bx variation is observed, as in the reconnection

simulations discussed in Fig. 1.11(c). Although we cannot confidently identify the

0.25 plateau in present PIC reconnection simulations (since the spatial extension in

the normal direction (x̂), is ∼ 10di; see Fig. 1.11(d)), we expect to see the signature

of a ε = 0.25 plateau outside the firehose unstable region in very large kinetic anti-

parallel reconnection simulations and in-situ satellite observations of anti-parallel

magnetic reconnection outflows.

In reconnection with lower upstream β (. 0.1), it has been suggested that

backstreaming ions drive the electromagnetic ion-ion cyclotron instability, which

excites oblique kinetic-Alfvén waves (or Alfvén/ion cyclotron waves in a hybrid

model) that propagate to the upstream region. Oblique propagating KAWs then

heat ions in the perpendicular direction while heating electrons in the parallel di-

rection [116, 117, 124, 123]. The resultant higher perpendicular temperature of

each ion parcel (i.e., the backstreaming ions and inflowing ions) can further drive

an anisotropic (AIC-like) instability, which excites parallel propagating AIC waves

in the upstream region [19, 20]. It could be of interest to investigate how these

processes affect the ε distribution and the critical ε = 0.25 plateau observed here.
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Chapter 3

Anisotropic Fluid Theory

3.1 Overview

The structures of shock transitions in isotropic MHD have been intensively

studied, including the existence of intermediate shocks (IS) ([12, 119, 52, 120] and

references therein), the occurrence of dispersive wavetrains [17, 40, 121], and the

nested subshocks inside shocks predicted by the Rankine-Hugoniot jump condi-

tions [51, 69]. In a collisionless plasma, the effects of temperature anisotropy need

to be considered, which can be done for linear waves with the Chew-Goldberger-

Low (CGL) framework [1, 41]. Hau and Sonnerup [41] have pointed out the ab-

normal properties of the linear slow mode under the influence of a firehose-sense

(P‖ > P⊥) pressure anisotropy, including a faster phase speed compared to the in-

termediate mode, a fast-mode-like positive correlation between magnetic field and

density, and the steepening of the slow expansion wave. In kinetic theory both

anisotropy and high β can greatly alter the linear mode behavior [57, 50]. The

anisotropic Rankine-Hugoniot jump conditions have been explored while taking the

downstream anisotropy as a free parameter [14, 45, 46, 47]. Hudson [46] calculated

the possible anisotropy jumps across an anisotropic rotational discontinuity, while

Karimabadi et al. [50] noticed the existence of a slow shock whose upstream and

downstream are both super-intermediate. But, a comprehensive nonlinear theory
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describing the coupling between slow and intermediate shocks under the influence

of temperature anisotropy has not yet been presented.

In Petschek’s description of magnetic reconnection, the reconnection exhaust

is bounded by a pair of back-to-back standing switch-off slow shocks. Particle-

in-cell (PIC) simulations of such shocks [67, 123] exhibit large downstream tem-

perature anisotropies. In chapter 2 we show that when the parameter ε = 1 −

µ0(P‖ − P⊥)/B2 = 0.25, the behavior of the coplanar shock undergoes a transition

to non-coplanar rotation. This firehose-sense temperature anisotropy slows the lin-

ear intermediate mode and speeds up the linear slow mode enough so that, at some

point, their relative velocities can be reversed [1, 41]. This reversal is reflected in

the structure of the Sagdeev potential (also called the pseudo-potential) [93], which

characterizes the nonlinearity of the system. In this chapter a simplified theoretical

model is developed to explore the effect of temperature anisotropy on the structure

of the Sagdeev potential and to provide an explanation for the extra transition inside

the switch-off slow shock (SSS) predicted by isotropic MHD. The theory suggests

that in PIC simulations a compound slow shock (SS)/ rotational discontinuity (RD)

is formed instead of a switch-off slow shock. This work may help to explain satellite

observations of compound SS/RD waves [115, 114], anomalous slow shocks [112] and

the trapping of an RD by the internal temperature anisotropy of a slow shock in

hybrid simulations [59].

In Sec. 3.2 of this chapter we introduce our model equations for studying the

nonlinear coupling of slow and intermediate waves under the influence of a tempera-

ture anisotropy. In Sec. 3.3 we calculate the speeds and the eigenmodes of slow and
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intermediate waves. Sec. 3.4 points out the existence of extra degeneracy points be-

tween slow and intermediate modes introduced by the temperature anisotropy, and

comments on the consequences (in the context of the Riemann problem) of having

the slow wave faster than the intermediate wave. In Sec. 3.5 we introduce a simple

energy closure. In Sec. 3.6.1 we calculate the pseudo-potential of stationary solu-

tions, and apply the equal-area rule to identify the existence of compound SS/RD

waves and compound SS/IS waves. In Sec. 3.6.2 we demonstrate the significance of

ε = 0.25 as being the lower bound of the SS to RD transition in compound SS/RD

waves. In Sec. 3.7 we discuss the time-dependent dynamics that help keep ε = 0.25.

In Sec. 3.8 we provide more evidence from PIC simulations to support the existence

of compound SS/RD waves at the boundaries of reconnection exhausts. In Sec. 3.9,

we summarize the results and point out the relation between compound SS/RD

waves and anisotropic rotational discontinuities [46].

3.2 The Anisotropic Derivative Nonlinear Schrödinger-Burgers Equa-

tion

Instead of analyzing the anisotropic MHD equations, which have seven char-

acteristics (waves), we simplify the system into a model equation that possesses

only two characteristics. This model equation will be ideal for demonstrating the

underlying coupling between the nonlinear slow and intermediate modes. Beginning

with the anisotropic MHD equations [14], we follow the procedure of Kennel et al.

[52, 53] to derive the Anisotropic Derivative Nonlinear Schrödinger-Burgers equation
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(ADNLSB) (see Appendix A.1 for details),

∂τbt + ∂η[αbt(b
2
t − b2

t0) + Ωbt(ε− ε0)] = ∂η(R∂ηbt)−
1

2
√
ε0

di∂
2
η(x̂× bt) (3.1)

This equation describes waves that propagate in the x-direction in the upstream

intermediate speed frame. In this frame η ≡ x′ −√ε0CAnt is the spatial coordinate

with C2
An ≡ B2

x/(µ0ρ0), and τ ≡ √ε0CAnt is the time used to measure the slow

variations (such as steepening processes). bt = Bt/Bx, where the subscript “t”

represents the component tangential to the wave-vector and here will be in the y-

z plane. The anisotropy parameter ε = 1 − µ0(P‖ − P⊥)/B2. The subscript “0”

denotes the upstream parameters. The right hand side term proportional to the

ion inertial length, di ≡
√
mi/(µ0ne2), represents dispersion (which can be viewed

as the spreading tendency of Fourier decomposed waves of different wavenumbers),

while the term containing R describes dissipation from magnetic resistivity. Here R

is a constant. The terms proportional to α and Ω are the nonlinearities of this wave

equation, where

α ≡ (4ε0 − 1)C2
An

12[(ε0 − A)C2
An − C2

S]
(3.2)

Ω ≡ (b2
t0 − 2)C2

An

6[(ε0 − A)C2
An − C2

S]
+

1

2ε0

(3.3)

and

A ≡ 4

9
(1− ε0)(1 + b2

t0) (3.4)

Here C2
S ≡ (5/3)P0/ρ0. Since we are studying reconnection exhausts, θ0 (the

angle between the upstream magnetic field and x̂) is typically large (∼ 80◦). There-

fore βn ≡ β/ cos2 θ0 = C2
S/C

2
An � 1, and (ε0 − A)C2

An − C2
S ∼ −C2

S < 0. Hence
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this equation describes only the slow and intermediate modes [52] (this is shown ex-

plicitly in the next section). This fact relates to the degeneracy properties of ideal

MHD for parallel propagating waves, namely that the fast and intermediate modes

degenerate in β < 1 plasmas, while the slow and intermediate mode degenerate in

β > 1 plasmas. Finally, we note that Eq. (3.1) is applicable in the weak nonlinearity

limit.

3.3 The Conservative Form- Wave Propagation

In order to explore the structure of the reconnection exhaust, a comprehensive

understanding of how waves connect to each other across a transition is required.

This is called a Riemann problem. Neglecting the source terms on the right hand side

(RHS), the left hand side (LHS) of Eq. (3.1) is a hyperbolic equation in conservative

form.

Letting ε− ε0 ≡ δε(bz, by), and bt0 = bz0ẑ, we obtain,

∂τq + ∂ηf(q) = 0, (3.5)

with

q ≡

 q1

q2

 =

 bz

by

 , f ≡

 f1

f2

 =

 αbz(b
2
z + b2

y − b2
z0) + Ωbzδε

αby(b
2
z + b2

y − b2
z0) + Ωbyδε

 . (3.6)

We can obtain the characteristics (waves) of this equation by analyzing its flux

function, f. Its Jacobian is

∂qf =

 α(3b2
z + b2

y − b2
z0) + Ω(δε+ bzδεbz) 2αbzby + Ωbzδεby

2αbzby + Ωbyδεbz α(3b2
y + b2

z − b2
z0 + Ω(δε+ byδεby))

 ,
(3.7)
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where δεbz ≡ ∂(δε)/∂bz, δεby ≡ ∂(δε)/∂by. One eigenvalue (also called the charac-

teristic speed) is

λSL = α(3b2
t − b2

t0) + Ω(δε+ bzδεbz + byδεby) (3.8)

with eigenvector

rSL =
1

bt

 bz

by

 . (3.9)

In isotropic ideal MHD, where the (ε− ε0) term is dropped, the eigenvalue in

the infinitesimal limit (bt → bt0) is λSL = 2αb2
t0, which is the phase speed of the

linear slow mode in the intermediate mode frame [52]. The subscript “SL” means

the slow mode. The eigenvector indicates that slow mode is coplanar (i.e., in the

radial direction in bz − by space).

The other mode has eigenvalue

λI = α(b2
t − b2

t0) + Ωδε (3.10)

and eigenvector

rI ∝

 αby + Ωδεby/2

−αbz − Ωδεbz/2

 . (3.11)

In isotropic ideal MHD, where the (ε − ε0) term is dropped, the eigenvalue in the

infinitesimal limit is λI = 0, which is the phase speed of the linear intermediate mode

in the intermediate mode frame [52]. The subscript “I” means the intermediate

mode. The eigenvector indicates that this intermediate mode is non-coplanar (i.e.,

in a non-radial direction).

It can be shown that ∇qλI(q) · rI(q) = 0 for all q. This means that along

the eigen-direction of the intermediate mode the characteristic speed is constant,
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and thus the mode exhibits no steepening or spreading, just as is the case for its

counterpart in isotropic MHD. (This behavior is also confirmed by the anisotropic

MHD simple wave calculation; see Appendix A.2). Therefore the intermediate mode

is termed “linearly degenerate”. If we are looking for a transition in the −rSL

direction (toward bt = 0), then the portion of the slow mode with ∇qλSL(q) ·

rSL(q) < 0 will steepen into a slow shock. When λSL at the downstream of a

transition is larger than that at the upstream, the downstream wave will catch up

with the upstream wave and thus steepen.

3.4 A New Degeneracy Point due to the Temperature Anisotropy

In the Riemann problem for our two mode system, we seek to determine the

middle state qm that connects the faster “2-wave” from a given state qr, to the

slower “1-wave” from a given state ql (see Fig. 3.1 (a); the subscripts “r” and “l”

mean right and left respectively). In order to determine the path that connects qr

to ql in the state space (bz−by space, in this case), the Hugoniot locus that connects

ql or qr to a possible asymptotic state by shock waves needs to be calculated, as

do the integral curves for possible rarefaction waves (see, for example, [61]). The

Hugoniot locus in state space is a curve formed by allowing one of the parameters

in the standard Rankine-Hugoniot jump condition to vary. The integral curve is

formed by following the eigenvector from a given state in state space.

In order to proceed we further assume a gyrotropic energy closure, δε = δε(bt),
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which allows us to write

rSL =
1

bt

 bz

by

 rI =
1

bt

 by

−bz

 λSL − λI = 2αb2
t + Ωδεbtbt (3.12)

The Hugoniot locus and integral curves of the intermediate mode are identical in

our system. This is also the case for the slow mode (we perform the calculation

in Appendix A.3). For a given state, qr = bt0 = (bz0, 0), the Hugoniot locus and

integral curve of the slow mode are

by = 0 (3.13)

which is in the radial direction in state space. This direction implies that the slow

shock is coplanar, even in the presence of temperature anisotropy, just as is the case

for its counterpart in full anisotropic MHD [14]. In the isotropic case, this curve

forms a slow shock if the path is toward the origin, and a slow rarefaction if the

path is away from the origin. For the intermediate mode, the Hugoniot locus and

integral curve are

b2
y = b2

z0 − b2
z (3.14)

which is a circle in state space. Note that even though we can calculate the Hugoniot

locus and integral curve for the intermediate mode, the solution is the same as for

a finite amplitude intermediate mode that does not steepen into a shock or spread

into a rarefaction.

The state qr can connect to ql = (0, 0) by following the Hugoniot locus of a

slow mode that starts from qr, as shown in Fig. 3.1(b). In isotropic MHD this forms a

switch-off slow shock. However, a strong enough temperature anisotropy introduces
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Figure 3.1: Panel (a): An initial discontinuity between qr and ql results
in two waves, the “1-wave” and “2-wave”, that propagate in the η direc-
tion along time τ . The middle state qm needs to be determined; Panel
(b): The state space plot in the (bz, by) plane. The value qr = (bz0, 0)
is chosen since there is no out-of-plane By upstream of the slow shocks
in chapter 2. qr straightly connects to ql and forms a switch-off slow
shock; Panel (c): In order to connect qr to ql, it is necessary to cross the
degeneracy band into the reversal region, which could cause the path to
rotate at qm.

72



new degeneracy points (which occur where λSL − λI = 0) when 2αbt + Ωδεbt = 0,

other than the traditional degeneracy point at bt = 0. These points form a band

circling the origin as shown in Fig. 3.1(c). Inside the band, the intermediate mode

is slower than the slow mode. Physically, this implies that a rotational intermediate

mode can arise downstream of a slow mode, something which is not allowed in a

Riemann problem in isotropic MHD. This effect is realized when the path along the

Hugoniot locus (−rSL direction) of the slow mode from qr switches to the solution

of the intermediate mode (circular direction) somewhere (qm) inside the degeneracy

band.

This behavior can explain the morphological differences between the shock

simulations in the cases θBN = 30◦, 45◦ and those for θBN = 60◦, 75◦, 83◦ of Fig. 2.6.

The latter has an extra transition to the rotational direction that is similar to the

path in Fig. 3.1(c). We now look for a similar effect in state space and a way of

determining qm in a more detailed analytical model.

3.5 An Energy Closure based on Counter-Streaming Ions

In order to close the ADNLSB equations, we need a energy closure ε(bt).

The modeling of the energy closure for a collisionless plasma has historically been

difficult. The Chew-Goldberger-Low (CGL) condition [16] is one choice, but it does

not work well when streaming ions are present. Since we are here just trying to

qualitatively demonstrate the underlying physics, we will assume that we have a
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Figure 3.2: The ε distribution vs. 1/B2 for the cases θBN = 30◦(yellow),
45◦(magenta), 52◦(green), 60◦(blue), 75◦(red) and 83◦(black) from
Fig. 2.6. The dashed line has slope -0.5. In comparison, the dia-
mond curve is the theoretical prediction with the CGL condition for
the θBN = 75◦ case.

ε(bt), where ε and |B| are simply related by

ε = c1 −
c2

B2
(3.15)

with positive constants c1 and c2 and the condition c1−c2/B
2
0 = ε0 is imposed. This

functional form is motivated by the nearly constant parallel pressure maintained by

free-streaming ions (c2 ∼ P‖). Although Eq. (3.15) is strictly empirical, results

from PIC simulations (see Fig. 3.2) suggest that c2 = 0.5 provides a reasonable first

approximation and will be used in the following calculations.

We take the variation,

δε = ε− ε0 ∼
c2

B2
xb

4
δ(b2

t ) =
c2

B2
xb

4
(b2
t − b2

t0) (3.16)

where b2 = 1 + b2
t . This parameterization will be valid whenever δε(bt) � ε0.
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Therefore, an effective nonlinearity in Eq. (3.1) can be written as,

αeff(bt) = α + Ω
c2

B2
xb

4
(3.17)

The most important conclusions in the remainder of this work do not depend on

the details of the closure, but only that ε decreases as |B| decreases. Note that

Ω ∼ 1/2ε0 is mostly positive in the limit in which we are interested. This fact will

be used in the following section.

3.6 The Pseudo-Potential: Looking for a Stationary Solution

3.6.1 The Formation of Compound SS/RD Waves and SS/IS Waves

In order to determine both where the path in the state space of Fig. 3.1(c)

will turn to the intermediate rotation and the nontrivial coupling of the slow and

intermediate modes when temperature anisotropies are present, we construct the

pseudo-potential of a stationary solution. We will look for a equation that possesses

traveling stationary waves, by substituting bt = bt[ξ(η − VSτ)] (where VS is the

speed of the stationary wave observed in the upstream intermediate frame) into

Eq. (3.1) and integrating over ξ once. We obtain

R∂ξbt−
1

2
√
ε0

di∂ξ(x̂×bt) = −VS(bt−bt0)+αeff(bt)bt(b
2
t−b2

t0) ≡ −F ≡ ∂btΨ. (3.18)

In this formulation we can treat bt as a spatial coordinate, and ξ as time. The

terms on the LHS of Eq. (3.18) behave analogously to, respectively, a frictional

force and a Coriolis force with rotational frequency di/
√
ε0 and rotational axis x̂.
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A pseudo-potential Ψ that characterizes the nonlinearity is uniquely defined be-

cause ∂Fz/∂by = ∂Fy/∂bz. We are only interested in the small VS limit, because

the upstream values with subscript “0” are expected to be the upstream values of

a switch-off slow shock in ideal isotropic MHD, which propagates at the upstream

intermediate speed. The anisotropy in our PIC simulations does not seem to signif-

icantly change this behavior as shown in chapter 2.

Calculating the pseudo-work done on the pseudo-particle,
∫

[Eq.(3.18)]·∂ξbtdξ,

we obtain

Ψ|down
up = R

∫ down

up

(∂ξbt)
2dξ < 0 (3.19)

Note that from upstream to downstream is in the negative ξ direction. The pseudo-

particle will move to a lower potential, while its total energy is dissipated by the

resistivity and the rate of the drop depends on the strength of the resistivity. Ken-

nel et al. [52] have shown that when pseudo-particles move toward lower pseudo-

potentials, the entropy increases and so the resulting shock is admissible. Note that

the Coriolis-like force does not do work. It only drives rotation of the pseudo-particle

on the iso-surface of the pseudo-potential and hence causes stable nodes to become

stable spiral nodes and unstable nodes to become unstable spiral nodes, thus leading

to the formation of dispersive wavetrains [40, 121]. We will neglect its effect in the

following discussion.

The pseudo-potential is shown in Fig. 3.3(a) for the parameters θ0 = 42◦,

β0 = 1, ε0 = 1, c2 = 0.5 and VS = 0. The temperature anisotropy has turned the

origin from a local minimum of the pseudo-potential in the isotropic MHD model to
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Figure 3.3: Panel (a): A pseudo-potential Ψ with VS = 0. Upstream
(point qr), θ0 = 42◦, β0 = 1, ε0 = 1, c2 = 0.5 and we choose Ψ(qr) = 0.
Since the transition occurs within the radius bt = bz0, we set Ψ = 0
for bt > bz0 for a better visualization. The potential for negative By is
mirror symmetric to the part shown here; Panel (b): ε(bt); Panel (c):
Cuts of Ψ, Fz, and αeff along the Bz axis with By = 0; Panel (d): λI and
λSL along the Bz axis with By = 0. The vertical axis measures speed
(normalized to CAn). “D” stands for degeneracy. The red area above VS
(zero here) equals the red area below VS, and the same rule applies to
the blue area.
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a local maximum. We term this the “reversal behavior”. A pseudo-particle initially

at point qr will slide down the hill in the slow mode eigen-direction, and then follow

the circular valley in the intermediate eigen-direction. Without the reversal behavior

(e.g., in isotropic MHD) the pseudo-particle will slide down to the origin and form

a switch-off slow shock. The trajectory of the pseudo-particle can also be calculated

by numerically integrating Eq. (3.18) with respect to ξ. In (b) the variation of the

temperature anisotropy is shown. Similar reversal behaviors can be found in fully

anisotropic MHD with the energy closure used here, or with the CGL closure (see

Appendix A.4.1).

In Fig. 3.3 (c), we plot a cut of the pseudo-force, Fz, effective αeff and the

pseudo-potential Ψ along the bz axis (by = 0), which is the eigen-direction of a slow

mode beginning at qr = (bz0, 0). Here

Fz = −αeff(bz)bz(b
2
z − b2

z0) + VS(bz − bz0). (3.20)

It is clear that Ψmin occurs at Fz = 0 in Fig. 3.3(c), since Ψ is constructed by

integrating the pseudo-force F. In Fig. 3.3 (d) we plot cuts of the characteristics of

the slow and intermediate modes along the bz axis.

λSL = α(3b2
z − b2

z0) + Ω
c2

B2
x

[(
1

b4
− 4

b2
z

b6

)
(b2
z − b2

z0) + 2
b2
z

b4

]
(3.21)

λI = αeff(bz)(b
2
z − b2

z0) (3.22)

The temperature anisotropy has changed the structure of these characteristics. As

a result, there are new degeneracy points (λSL = λI) between slow and intermediate

waves such as the point “D”. The slow characteristic shows extra nonconvexity
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points, where no steepening and spreading occurs (i.e., ∇qλSL(q) · rSL(q) = 0),

such as the point a (the local maximum of λSL). This is clearer when we compare

the slow characteristic here to that in the isotropic case shown in Fig. A.2, where

bt = 0 is the only degeneracy point and the nonconvexity point of the slow mode.

In order to identify the nonlinear waves determined by the route of the pseudo-

particle, we apply the equal-area rule, which tells how shocks are steepened from

characteristics. The equal-area rule (see Appendix A.5 for more details) applied

to λSL shows that the sliding route (point qr to qm) forms a slow shock. Since

∇qλSL(q) · rSL(q) < 0 therefore λSL|qm > λSL|qr , and thus the slow mode will

steepen until the red area above the horizontal line VS = 0 equals the red area

below VS = 0. The slow shock transition immediately connects to the intermediate

mode (point qm to b, which is also from the equal-area rule on λSL) in the valley.

The fact that both the upstream (point qm) and downstream (point b) travel at

the local λI makes the intermediate discontinuity a RD. By comparing (c) and (d),

we note that the potential minimum is exactly the location of qm as expected and

it is below the degeneracy point (bz|D > bz|qm). This fact is consistent with the

comment in section 3.4, which predicts that qm will be inside the degeneracy band.

The horizontal lines qr − qm and qm − b measure the propagation speed of the SS

and the RD, which in this case are both zero in the upstream intermediate frame.

They therefore form a compound SS/RD wave. The downstream of the slow shock

(point qm) is not able to connect to the slow rarefaction (SR) wave (point a) and

thus not able to form a compound SS/SR, since the rarefaction is faster than the

shock itself. This model gives an theoretical explanation for the possible satellite
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Figure 3.4: Same format as Fig. 3.3 but with VS = 0.015 & 0.

observations of compound SS/RD [115, 114], and the “compound SS/RD/SS waves”

seen in hybrid simulations [59].

When VS & 0 the potential tilts down in the negative bz direction (see Fig. 3.4).

In this case, the slow shock (point qr to qm in Fig. 3.4(d)) with shock speed VS is

connected by an intermediate shock (IS) (point qm to b) with shock speed VS,

whose upstream is super-intermediate (VS > λI |qm) while the downstream is sub-

intermediate (VS < λI |b). This forms a compound SS/IS wave. Note that the

intermediate shock is not steepened from the intermediate mode (which is consistent

with the discussion in Sec. 3.4), but is steepened from the slow mode. The slow shock

is abnormal with both upstream (point qr) and downstream (point qm) being super-

intermediate. Karimabadi et al. [50] call a similar kind of slow shock an anomalous

slow shock. When VS . 0 the potential tilts up in the negative bz direction and
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there is no extra transition at the SS downstream, since Ψ(b) > Ψ(qm) in this case

and is therefore not accessible.

These conclusions are independent of the details of ε(bt), but only require

the reversal behavior somewhere downstream of the slow shock. This fact can be

inferred from a simple relation: VS − λI(bz) = (bz0/bz)VS for bz = bz|qm or bz|b,

regardless of the detail of ε(bt) (from Eq. (3.20) and (3.22)). When VS = 0, this

relation ensures that the SS can always connect to a RD since VS − λI = 0 at both

points qm and b. When VS & 0, the SS can always connect to an IS since VS − λI

is positive (super-intermediate) at qm and negative (sub-intermediate) at b. We

therefore conclude that the abnormal transitions of magnetic field structures seen

in the PIC simulations of chapter 2 are most likely the transitions from the SS to

the RD in a compound SS/RD wave or the SS to the IS in an SS/IS wave. We can

hardly distinguish between these two compound waves in our PIC simulation, since

VS is small and the time-dependent dynamics add uncertainties in measuring the

exact value. We focus on further analyzing the compound SS/RD wave.

3.6.2 The Significance of ε = 0.25

For SS/RD waves (VS = 0), the stationary points along bz,s are the roots of

Fz = 0,

αeff(bz,s)bz,s(b
2
z,s − b2

z0) = 0 (3.23)

Here the subscript “s” represents “stationary”. We have three traditional stationary

points, bz,s = bz0 (point qr), −bz0 and 0, as well as a new stationary point due to the
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Figure 3.5: The pseudo-potential with ε0 = 0.24 < 0.25, while other
parameters are the same as Fig. 3.3.

temperature anisotropy, bz,m (the transition point qm) determined by αeff(bz,m) = 0.

The fixed-point analysis of the first three points in isotropic fluid theory can be

found in the literature [52, 121, 39, 40].

As shown in Fig. 3.5, there is no slow mode transition if

ε0 <
1

4
= 0.25 (3.24)

(note that this relation is independent of θBN and β), which occurs when the non-

linearity α of Eq. (3.1) changes sign from α < 0 to α > 0. A positive α will

result in a positive αeff in Eq. (3.17), and therefore no solution for bz,m. Only ro-

tation of the magnetic field is thus allowed. If ε0 > 0.25, we can further show that

ε0 ≥ εm(≡ ε|qm) ≥ 0.25 is always true for a slow shock transition from ε0 to εm

in this compound wave by the full jump conditions of anisotropic-MHD (Appendix

A.4.2). Therefore, the nonlinear fluid theory provides a lower bound of εm ≥ 0.25

at the SS to RD transition inside these compound waves, regardless of the details
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of ε(bt). In other words, the downstream magnetic field cannot exhibit switch-off

behavior if the firehose-sense temperature anisotropy is strong enough. This fact

explains the non-switch-off slow shocks often seen in kinetic simulations discussed

in Sec. 1.3.3 [71] and satellite crossings discussed in Sec. 1.3.2 [100]. Once it tran-

sitions to the intermediate mode, a gyrotropic ε(bt) will stay close to εm, since the

intermediate-rotation nearly preserves the magnitude of the B field and therefore ε.

Note the assumption of gyrotropic ε(bt) is expected to be valid only in length scale

larger than local ion inertial length and ion gyro-radius.

In these demonstrations we use shocks with moderate parameters, such as

θBN = 42◦ and β0 = 1. In general, larger θBN , β0, and smaller ε0 will make the ratio

|Ω|/|α| larger, and therefore generate a stronger reversal tendency. An analysis

with full anisotropic MHD (Appendix A.4) should be used for strong slow shock

transitions, due to the limits of the ADNLSB, although the underlying physical

picture will be similar.

3.7 Toward the Critical ε = 0.25: Time-Dependent Dynamics

The initial conditions that characterize the exhaust of anti-parallel reconnec-

tion (initial by = 0) require bt = 0 at the symmetry line at later time. This

eventually forces the pseudo-particle to climb up the potential hill to the local max-

imum (bz = 0, by = 0), which implies an intrinsic time-dependent process at the

symmetry line since Eq. (3.18) does not yield such a solution. Meanwhile, the fact

that bt needs to go to zero at the symmetry line provides a spatial modulation on
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the amplitude of the rotational intermediate mode. Note that the transition point

from SS to RD in compound SS/RD waves could potentially induce modulation too.

As suggested in Sec. 2.6, a spatially modulated rotational wave tends to break into

di-scale dispersive waves, which can make the rotational component of the transition

very turbulent.

As pointed out in Sec. 3.6.2, the nonlinear fluid theory of the time-independent

stationary solutions only provides a lower bound εm > 0.25 for the transition point

inside these compound SS/RD waves. Counter-streaming ions, by raising P‖, push

εm lower. Once εm is lower than 0.25, the magnetic field rotates, generates di-scale

waves, and scatters P‖ into P⊥. This raises εm, changing the functional form of

δε and driving it toward 0, which self-consistently results in a transition at the

potential minimum where αeff = α = 0, and thus ε = 0.25. This argument explains

the ε = 0.25 plateau observed in the PIC simulations for different shock angles (see

Fig. 2.8). With δε = 0, this point is exactly the degenerate point of the slow and

intermediate modes.

3.8 The Supporting Evidence from Numerical Experiments

The evidence for a slow mode connecting to rotational waves can be seen in

the PIC simulations that are discussed in detail in chapter 2. In previous kinetic

simulations, the downstream rotational waves were often identified as slow dispersive

wavetrains arising from, for instance, the second term in the RHS of Eq. (3.1). Here

we present further evidence, in addition to the numerical evidence that ε = 0.25, to
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Figure 3.6: Results of PIC simulations (runs f , g and h of chapter 2).
Row (a): A case with θBN = 75◦, β0 = 0.4 and initial width wi = 1di
at time 200/Ωci. ε is shown on the left, different magnetic components
in the middle, Bz-By hodogram on the right; Row (b): A similar case
with a wider initial width wi = 10di at time 450/Ωci; Row (c): A similar
case to (a), but with a weak guide field By0 = 0.2B0 at time 200/Ωci.
The dotted curves in the center column are the predicted Bz magnitudes
and positions of switch-off slow shocks (SSS) or rotational discontinuities
(RD) from isotropic MHD theory [65].
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support the idea that the downstream rotational mode is tied to the intermediate

mode. Fig. 3.6 shows the results from three PIC simulations that were designed to

explore the structure of reconnection exhausts in the normal direction. The format

is the same as for Fig. 2.6, with the first column showing ε, the second column the

magnetic field components, and the third column a hodogram of the fields. The

dashed curves in the second column (the predicted Bz by ideal isotropic MHD [65])

indicate that a pair of switch-off slow shocks or a pair of rotational discontinuities

will propagate out from the center. All three cases show the correlation between

ε = 0.25 and the transition from coplanar to non-coplanr rotation of the downstream

magnetic fields. The hodograms are readily comparable to the state space plots such

as Fig. 3.1 (c). In Fig. 3.6(a), the downstream region of a slow shock shows a high

wavenumber (∼ 6di) left-handed (LH) polarized rotational wave, which is difficult to

distinguish from the predicted downstream ion inertial scale dispersive slow mode

wavetrain [17]. Fig. 3.6(b) shows results from a simulation with a larger initial

current sheet width and exhibits a longer wavelength (∼ 30di) LH rotational wave

which can be identified as an intermediate mode The intermediate mode breaks into

smaller ion inertial scale waves, which have been identified as dispersive waves in

Sec. 2.6. By comparing (a) and (b), we note that the downstream primary rotational

wave tends to maintain its spatial scale as an intermediate mode with non-steepening

and non-spreading properties. Another way to distinguish the dispersive behavior

from the non-dispersive rotation is by including a weak guide field. In Fig. 3.6(c),

the front of the rotational downstream wave turns into a well-defined RD when a

weak guide field is included. Its amplitude is about the same as that of the large
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amplitude rotational waves in (a). Most importantly, there is a clear slow shock

ahead of the RD. Because the symmetry of the initial condition is broken by the

guide field, the downstream RD does not need to end at by = 0; instead it ends

inside the potential valley at bt = (0, bz,m) (see the hodogram of (c)), as expected.

3.9 Conclusion and Discussion

The existence of compound SS/RD, SS/IS waves arising from firehose-sense

and |B|-correlated ε (temperature anisotropies) are theoretically demonstrated by

analyzing the anisotropy-caused reversal of a pseudo-potential. The pseudo-potential

is known to characterize the nonlinearity of hyperbolic wave equations. Extra de-

generacy points between slow and intermediate modes as well as extra non-convexity

points in the slow characteristics are introduced by the temperature anisotropy. The

slow shock portion of a compound SS/IS wave is an anomalous slow shock with both

up and downstream being super-intermediate. The nonlinear fluid theory provides

a lower bound of ε = 0.25 for the SS to RD transition, regardless of the details

of the energy closure ε(bt). The wave generation from the rotational intermediate

mode discussed here and in Sec. 2.6 helps keep ε = 0.25. This explains the critical

anisotropy plateau observed in the oblique slow shock PIC simulations documented

in chapter 2. The critical ε value 0.25 is calculated from the degree of freedom of

monatomic plasmas. A general expression of this value is (6 − Dfree)/(6 + 2Dfree)

where the degree of freedom Dfree = 3 for monatomic plasmas, and Dfree = 5 for

diatomic plasmas. This study also suggests that it is a pair of compound SS/RD
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Figure 3.7: In panel (a), the possible jumps of ε of an anisotropic-RD,
are constrained by requiring positive P⊥d, P‖d and B2

d . The red region is
forbidden. In panel (b), the plot is further constrained by the require-
ment that entropy increases (with an entropy from the H-theorem defined

as ln(P
1/3
‖ P

2/3
⊥ /ρ5/3) for a bi-Maxwellian distribution). The constraint

of increasing entropy has eliminated the region above the diagonal line
when εup > 0.25, and the region below the diagonal line when εup < 0.25.
Here β0 = 1; a higher β0 would collapse the valid region into a narrower
region along the diagonal line.

waves that bound the antiparallel reconnection outflow, instead of a pair of switch-

off slow shocks as in Petschek’s reconnection model. In previous hybrid and PIC

simulations, the downstream sharp rotational waves were often identified as slow

dispersive waves of a switch-off slow shock. Instead, we propose that they are the

intermediate portion of the compound SS/RD wave. The slow shock portion be-

comes less steep due to the time-of-flight effect of backstreaming ions.

The singularity of ε = 0.25 was also noticed by P. D. Hudson (1971) [46] in

his study on the anisotropic rotational discontinuity (A-RD). Unlike the RD in a

compound SS/RD wave, an A-RD changes ε, magnetic field strength and thermal

states. Through the constraint of the positivity of P‖, P⊥ and B2, he derived all
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of the possible jumps (independent of the energy closure used) of the temperature

anisotropy across an A-RD, as shown in Fig. 3.7(a). The ADNLSB inherits most of

the hyperbolic properties (such as the extra nonconvexity and degeneracy points)

of anisotropic MHD and also the singular behavior, ∆ε = εup − εdown → 0 when

ε → 0.25. We can tell this by searching for stationary solutions where the pseudo-

force Fz = 0 (the general form of Eq. (3.20)). Again,

VS(bz − bz0)− αbz(b2
z − b2

z0)− Ωbz(ε− ε0) = 0 (3.25)

A stationary A-RD exists at ε0 = 0.25 (i.e., VS = 0, α = 0 and bz 6= 0), only if we

require ε − ε0 = 0. An arbitrary magnetic field magnitude and rotation are then

allowed, as shown by Hudson. After further constraining the possible jumps by

requiring that entropy increase, the solution above the diagonal line in Fig. 3.7(b) is

eliminated when εup > 0.25 while the solution below the diagonal line is eliminated

when εup < 0.25. He also noticed that the jump behavior of an A-RD for εup > 0.25

is slow-mode-like (i.e. δn and δB are anti-correlated), while it is fast-mode-like (i.e.

δn and δB are correlated) for εup < 0.25. This directly relates to the fact that the

jump of an A-RD equals the jump of the compound SS/RD wave (see Appendix

A.4.3), and a slow mode turns fast-mode-like when α > 0 [52].
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Chapter 4

Summary

4.1 Summary of Results

The physics of plasmas has played increasingly important role in modern space

physics and astronomy. The topological change of magnetic fields and the plasma

heating caused by reconnection and associated shocks play an important role in

many macro-scale plasma systems. Therefore a better understanding of the de-

tailed kinetic behavior of these processes can make a profound contribution to these

fields. Fast magnetic reconnection takes the form of a Petschek-like configuration

with opened reconnection nozzles. The well-accepted Petschek model predicts the

existence of a pair of switch-of-slow shocks that bound the reconnection exhausts

and help convert magnetic energy into plasma kinetic and thermal energy. However,

a self-generated firehose-sense temperature anisotropy caused by kinetic streaming

ions slows the propagation of intermediate modes and speeds up the propagation of

slow shocks. As a consequence, a rotational intermediate mode can arise downstream

of a slow shock. The nontrivial coupling of these modes forms a single nonlinear

wave that is a mixture of both slow and intermediate modes. We call it a compound

SS/RD wave. Under some circumstances, a compound SS/IS can also form. When

the firehose stability parameter ε ≡ 1 − µ0(P‖ − P⊥)/B2 reaches the critical value

of 0.25, the slow-to-intermediate transition inside these compound waves occurs, a
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transition closely associated with the degenerate behavior of these two characteristic

MHD modes.

4.2 Implications and Unsolved Issues

The results of this thesis provide a theoretical explanation of the observations

of “Double Discontinuity” by Whang et al. [115, 114, 113] in GEOTAIL and WIND

data. In Fig. 4.1, Whang shows the results of an in-situ observation with high

temporal resolution (62.5 millisecond compared to a standard 3-12 seconds) of the

boundary of the tail lobe (on the left) and the plasma sheet (on the right) on

February 14, 1994. Here the “S” on the top denotes a suspected slow shock (SS)

and “R” denotes a suspected rotational discontinuity (RD). A major decrease in the

total magnetic field (B) and the tangential magnetic field (Bt) are seen, while the

electron and ion densities (Ne and Ni) increase. These transitions fit the profiles of a

SS. φ measures the rotation angle of the tangential magnetic field with the rotation

axis pointing in the normal direction (x̂). Note the large rotation in the tangential

magnetic field while the total magnetic field remains constant downstream of the SS,

which is the signature of a RD. These “Double Discontinuities” strongly resemble

the compound SS/RD waves theoretically identified in this thesis. The existence

of these compound waves also potentially explains the in-situ observations by Seon

(1996). As mentioned in Sec. 1.3.2, the non-switch-off slow shock is likely to be

followed by a large-amplitude and long-wavelength intermediate rotational wave that

radiates ion-inertial scale dispersive waves. We see the similarity in the structure of
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Figure 4.1: An observation of “Double Discontinuity” at Earth’s mag-
netotail by GEOTAIL on February 14, 1994 at XGSM = −54Re.
(Reprinted with permission from Ref. [Whang, 2004]. c©2004 by the
European Geosciences Union)
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the magnetic fields when we compare Fig. 2.9 to Fig. 1.9. A satellite mission that

highly resolves both ε and the magnetic fields across the tail reconnection exhaust

would help judge the validity of our theory.

A larger PIC reconnection simulation with a reconnection outflow that reaches

∼ 100di downstream from the X-line is shown in Fig. 4.2. The outflow length is

about twice that of the simulation shown in Fig. 1.11. Panel (a) shows the out-

of-plane current density, and vertical cuts coded with different colors. The firehose

stability parameter ε along each cut is plotted in panel (b). ε shows a clear tendency

towards forming a plateau at ε = 0.25 in the farthest downstream cut. However,

convincing evidence of the SS to RD transition in compound SS/RD waves requires

even larger simulations. The compound wave also explains the “step-like” slow

shocks seen in Lottermoser et al.’s large-scale hybrid reconnection simulation [71] as

mentioned in Sec. 1.3.3. The smooth non-switch-off transition in the reconnecting

magnetic field component of kinetic simulations is the intermediate portion of the

compound wave.

Compared to slow shocks, fast shocks have been intensively studied (see, for

instance, the review article [108]). The formation of shocklet and short, large-

amplitude magnetic structures (SLAMs) in the upstream region of Earth’s quasi-

parallel bow shock has been observed [72] and simulated [80, 97]. The formation

mechanism of SLAMs could be similar to that of the turbulent waves observed at

our simulations. In our slow shock simulations, the downstream rotational parent

waves break into SLAMs-like structures, as in Fig. 2.9(b). Since the transition of the

magnetic field across the front in a fast shock is opposite to that in a slow shock, any
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Figure 4.2: A larger PIC reconnection simulation shows a clearer ε ∼
0.25 plateau at farther downstream. Panel (a) is the out-of-plane current
density; Panel (b) are the distributions of firehose stability parameter ε
along cuts (coded by colors) in (a).
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SLAMs associated with a slow shock are expected to exist in the downstream region,

especially since the downstream of a switch-off slow shock is locally quasi-parallel.

Other than the 1-D waves generated by the competition between the nonlinear

steepening and the dispersion, we also observe 2-D turbulence that develops in the

firehose unstable region of the reconnection outflow, and whose signatures are clear

in the Jy component of Fig. 4.2, and the Jey and Bx components of Fig. 1.11.

However, we are not able to definitively identify it as the firehose instability at this

stage, because in this highly inhomogeneous plasma factors such as magnetic field

gradients or shear flows could also potentially act as instability drivers.

As to the question of the heating ability of these compound waves, we have

not seen super-thermal particles other than Alfvénic streaming ions in our shock

simulations. However, it is still an open question whether particles could be ac-

celerated by slow shock associated reconnection exhausts in larger 2-D systems via

mechanisms recognized in fast shocks such as the 1st-order Fermi mechanism [7],

diffusive shock acceleration (DSA) [60, 34], and those possible injection mechanisms

for DSA such as shock-drift [24], or shock surfing [93]. In addition, Drake et al.

(2009) [28] studied the pick-up process by the reconnection outflow which is also

relevant to accelerating particles.

This thesis work will help observers explain in-situ satellite data of anti-parallel

reconnection, and help guide future satellite missions such as the Magnetospheric

Multiscale Mission (MMS) and Solar Probe Plus. With a strong guide field, even

though streaming ions still persist, the firehose stability parameter ε will stay close

to unity. We therefore expect the Riemann solution of Fig. 1.18 in isotropic MHD to
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do a better job of explaining the overall wave structures of reconnection exhausts. In

this case, a pair of rotational discontinuities will be responsible for switching off the

downstream reconnecting magnetic field, not a pair of switch-off slow shocks. This

fact has already been observed in kinetic simulations [66], and may help explain the

structure of reconnection in the solar wind, where strong guide fields usually exist.
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Appendix A

Overview

A.1 From Anisotropic MHD to the Anisotropic DNLSB Equation

From moment integrations of the Vlasov equation that neglect the off-diagonal

components of the pressure tensor (the empirical validity of this approximation

for our system is shown in Fig. 2.2(c)), we can write down the anisotropic MHD

(AMHD) equations, as documented in Sec. 1.5 [14, 45]. The energy closure is unde-

termined.

In Lagrangian form,

d

dt
ρ+ ρ∂xVx = 0, (A.1)

ρ
d

dt
Vx + ∂xP + ∂x

[
1

3

(
ε+

1

2

)
B2
t

µ0

]
− 2

3

B2
x

µ0

∂xε = 0, (A.2)

ρ
d

dt
Vt −

Bx

µ0

∂x(εBt) = 0, (A.3)

d

dt
Bt −Bx∂xVt + Bt∂xVx = ∂x(ηr∂xBt)− ∂x

(
Bx

µ0ne
x̂× ∂xBt

)
, (A.4)

d

dt
P − γP

ρ

d

dt
ρ+ (γ − 1)

[
1

3
(ε+ 2)

B2

µ0

− εB
2
x

µ0

− B2
t

µ0

]
∂xVx

+(γ − 1)(1− ε)BxBt

µ0

· ∂xVt + (γ − 1)∂xQx = 0,

(A.5)

where

ε ≡ 1−
P‖ − P⊥
B2/µ0

, P ≡
P‖ + 2P⊥

3
. (A.6)

γ = 5/3 or 7/5 for monatomic or diatomic plasma, respectively [38]. ε, P‖, P⊥, ρ,

Vx, Vt, Bx, Bt, Qx and ηr are the temperature anisotropy factor, pressure parallel
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to the local magnetic field, pressure perpendicular to the local magnetic field, mass

density, velocity of the bulk flow in the normal direction (êx), velocity of the bulk

flow in the tangential direction (y-z plane), normal component of the magnetic field,

tangential components of the magnetic field, the heat flux in the x-direction and

the magnetic resistivity (assumed constant). The first and the second term on the

RHS of Eq. (A.4) are from the magnetic dissipation and the Hall term respectively.

We follow the procedure of Kennel et al. [52]. We ignore the resistivity and

dispersion terms in our derivation first; they will be added back in the end. Using

Lagrangian mass spatial coordinates,

d

dt
→ ∂t, x′ ≡

∫
ρ

ρ0

dx, (A.7)

and definitions U ≡ ρ0/ρ, bT ≡ Bt/Bx and C2
An ≡ B2

x/(µ0ρ0), then Eq.(A.1) to

(A.4) (without the resistivity and dispersion) become

∂tU = ∂x′Vx, (A.8)

∂tVx + ∂x′

[
P

ρ0

+
1

3

(
ε+

1

2

)
C2
Anb

2
T

]
− 2

3
C2
An∂x′ε = 0, (A.9)

∂tVt − εC2
An∂x′bT − C2

AnbT∂x′ε = 0, (A.10)

∂tbT +
bT
U
∂x′Vx −

1

U
∂x′Vt = 0. (A.11)

Combined with Eq.(A.8) and (A.11), Eq.(A.5) becomes

U

ρ0

∂tP = −
{
γP

ρ0

+ (γ − 1)

[
2

3
(1− ε)C2

An +
1

3
(ε− 1)C2

Anb
2
T

]}
∂tU

−(γ − 1)(1− ε)C2
AnbT∂t(UbT )− γ − 1

ρ0

∂x′Qx.

(A.12)

By ∂x′(Eq.(A.9)), we obtain

∂2
tU + ∂2

x′

[
P

ρ0

+
1

3

(
ε+

1

2

)
C2
Anb

2
T

]
− 2

3
C2
An∂

2
x′ε = 0. (A.13)
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By ∂x′(Eq.(A.10))+∂t(U Eq.(A.11)), we obtain

∂2
t (UbT )− C2

An∂
2
x′(εbT ) = 0. (A.14)

Jumping to the upstream (subscripted by “0”) intermediate frame in order to

separate the slow and fast variations, we take

τ ≡
√
ε0CAnt, η ≡ x′ −

√
ε0CAnt, (A.15)

with the approximation ∂τ � ∂η to separate slow and fast variation. Then

∂x′ = ∂η, ∂t = −
√
ε0CAn(∂η − ∂τ ), ∂2

t = ε0C
2
An(∂2

η − 2∂η∂τ ). (A.16)

By substituting Eq.(A.16) into Eq.(A.12) and assuming δb2
T � b2

T0, δε� ε0, δU �

U0 and δP � P0 (where δ means variation),
∫
dη once, we obtain

δP

ρ0

= −
[
γP0

ρ0

+ (γ − 1)
2

3
(1− ε0)(1 + b2

T0)C2
An

]
δU

−1

2
(γ − 1)(1− ε0)C2

Anδb
2
T +

γ − 1

ρ0
√
ε0CAn

δQx.

(A.17)

By substituting Eq.(A.16) into Eq.(A.13),
∫
dη twice, then assuming δb2

T � b2
T0, we

obtain

ε0C
2
AnδU +

δP

ρ0

+
1

3
C2
An

(
ε0 +

1

2

)
δb2
T +

1

3
C2
Anb

2
T0δε−

2

3
C2
Anδε = 0. (A.18)

By substituting Eq.(A.16) into Eq.(A.14), assuming δU � U0, then
∫
dη once, we

obtain

∂η(δUbT )− ∂η
(
δε

ε0

bT

)
− 2∂τbT = 0. (A.19)

By combining Eq.(A.17),(A.18) and (A.19) and adding the resistivity and dispersion

back, we finally arrive at,

∂τbt+∂η[αbt(b
2
t−b2

t0)+Ωbt(ε−ε0)+Λbt(Q̄x−Q̄x0)] = ∂η(R∂ηbt)−
1

2
√
ε0

di∂
2
η(x̂×bt)

(A.20)
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with

α ≡ [(3γ − 1)ε0 − (3γ − 4)]C2
An

12[(ε0 − A)C2
An − C2

S]
, Ω ≡ (b2

t0 − 2)C2
An

6[(ε0 − A)C2
An − C2

S]
+

1

2ε0

, (A.21)

Λ ≡ (γ − 1)C2
An

2
√
ε0[(ε0 − A)C2

An − C2
S]
, A ≡ 2

3
(γ − 1)(1− ε0)(1 + b2

t0), (A.22)

where C2
S ≡ γP0/ρ0, R ≡ ηr/(2

√
ε0CAn), di ≡

√
mi/(µ0ne2) and Q̄x ≡ Qx/(ρ0C

3
An).

In summary, the approximations used are:

∂τ � ∂η; δb2
t � b2

t0; δε� ε0; δρ� ρ0; δP � P0. (A.23)

Since the heat flux Qx is approximately proportional to ∇|B| (as pointed

out in Fig. 2.2(a)), it should enter the source term on the RHS as −Λ∂2
η |bt|. In

plasmas with βn > 1, Λ is negative and hence the heat flux helps shocks dissipate

energy. We implicitly incorporate it into the resistivity R (as, for instance, is done

for the shear and longitudinal viscosities discussed in [52]). We then arrive at the

anisotropic DNLSB equation, Eq. (3.1). This equation can also be derived from

regular reductive perturbation methods with a proper ordering scheme. For instance,

a DNLS equation with the CGL condition and more corrections, including finite ion

Larmor radius effects and electron pressure, was derived using regular reductive

perturbation methods [54].

A.2 Non-Steepening and Non-Spreading of the Intermediate Mode

Beginning with the anisotropic MHD equations in Lagrangian form in Ap-

pendix A.1, we neglect the dissipation and the Hall term on the RHS of Eq. (A.4).

Then the simple wave solution can be obtained by substituting d/dt → −Cδ,
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∂x → x̂δ, where C is the wave speed and δ means variation. [48]

−Cδρ+ ρδVx = 0 (A.24)

−CρδVx + δP⊥ −
B2
x

µ0

δε+
Bz

µ0

δBz = 0 (A.25)

−CρδVz − ε
Bx

µ0

δBz −
BxBz

µ0

δε = 0 (A.26)

−CρδVy − ε
Bx

µ0

δBy = 0 (A.27)

−CδBz +BzδVx −BxδVz = 0 (A.28)

−CδBy −BxδVy = 0 (A.29)

Eq. (A.27) and Eq. (A.29) give us the intermediate speed CI =
√
εBx/

√
µ0ρ.

Combined with Eq. (A.24), the steepening tendency of an intermediate mode can

then be expressed as,

δ(CI + Vx) =
CI
2

(
δρ

ρ
+
δε

ε

)
(A.30)

Using Eqs. (A.24), (A.25), (A.26) and (A.28), we get δ(CI +Vx) = 0. Therefore, the

intermediate mode in anisotropic MHD does not steepen or spread, no matter what

energy closure is used. It is linearly degenerate, as is its counterpart in isotropic

MHD.

A.3 The Integral Curves and Hugoniot Locus

To find the integral curves, we follow the eigenvector of the slow mode to form

a curve,

dbz
dζ

= bz,
dby
dζ

= by, (A.31)
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where ζ is a dummy variable. The integral curve is by = (by0/bz0)bz.

For the intermediate mode,

dbz
dζ

= by,
dby
dζ

= −bz. (A.32)

Therefore, the integral curve is b2
t = b2

t0.

As to the Hugoniot locus, we need to compute the shock speed S = (fi(q) −

fi(q0))/(qi − q0i) where fi is the flux of Eq. (3.6) and i = 1 or 2.

S(bz − bz0) = αbz(b
2
t − b2

t0) + Ωbzδε

S(by − by0) = αby(b
2
t − b2

t0) + Ωbyδε

(A.33)

These can be combined to give,

(bz0by − by0bz)[α(b2
t − b2

t0) + Ωδε] = 0. (A.34)

The first root is the Hugoniot locus of the slow mode: by = (by0/bz0)bz. For ε(bt), so

that δε ' [∂(δε)/∂(b2
t )](b

2
t − b2

t0), the second root gives us the Hugoniot locus of the

intermediate mode: b2
t = b2

t0. Although these results are the same as derived from

the integral curves, this is not generally the case.

A.4 The Pseudo-Potential of Anisotropic MHD (AMHD)

In the de Hoffmann-Teller frame, the jump conditions can be written as (fol-

lowing Hau and Sonnerup’s procedure [39, 40]),

[ρVx]
0 = 0 (A.35)

[
ρV 2

x + P +
1

3

(
ε+

1

2

)
B2

µ0

− εB
2
x

µ0

]0

= 0 (A.36)
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[
ρVxVt − ε

BxBt

µ0

]0

= 0 (A.37)[(
1

2
ρV 2 +

γ

γ − 1
P +

1

3
(ε− 1)

B2

µ0

)
Vx − (ε− 1)

BxBt

µ0

·Vt − (ε− 1)
B2
x

µ0

Vx

]0

= 0

(A.38)

where we define a jump relation [Q]0 ≡ Q0 − Q, with Q0 the upstream value and

Q the value inside the transition region. γ = 5/3 or 7/5 for monatomic or diatomic

plasma, respectively. From Eq. (A.35)-(A.38), we can derive

A2
x ≡

V 2
x

B2
x/(µ0ρ)

=
−b±

√
b2 − 4ac

2a
(A.39)

where

a =1− γ − 1

2γ
, (A.40)

b =− A2
x0 −

[
β0

2
+

1

3

(
ε0 +

1

2

)]
sec2θ0 + ε0 +

1

3

(
ε+

1

2

)
B2

B2
x

− ε+
2γ − 2

3γ
(ε− 1)− γ − 1

3γ
(ε− 1)

B2
t

B2
x

,

(A.41)

c =
γ − 1

2γ
sec2θ0A

4
x0 +

[
β0

2
− 2γ − 2

3γ
(ε0 − 1)

]
sec2θ0A

2
x0

− γ − 1

2γ

[
(A2

x0 − ε0)tanθ0 + ε
Bt

Bx

]2

+
γ − 1

γ
(ε− 1)

Bt

Bx

[
(A2

x0 − ε0)tanθ0 + ε
Bt

Bx

] (A.42)

with cos θ0 ≡ Bx/B0.

The generalized Ohm’s law is

E + V ×B = ηrJ +
1

ne
(J×B), (A.43)

where the first and the second terms on the RHS are the magnetic dissipation and
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the Hall term respectively. With the final jump condition [Et]
0 = 0, we obtain

Ax0

h0

di0(1+h2)
dBy

dx
= (A2

x−ε)(By−hBz)+(A2
x0−ε0)(hBz0−By0) ≡ Fy,AMHD ≡

∂ΨAMHD

∂By

(A.44)

Ax0

h0

di0(1+h2)
dBz

dx
= (A2

x−ε)(Bz+hBy)−(A2
x0−ε0)(hBy0+Bz0) ≡ Fz,AMHD ≡

∂ΨAMHD

∂Bz

(A.45)

where h ≡ Bx/neηr measures the ratio of the dispersion to the resistivity. The

pseudo-potential ΨAMHD is uniquely defined since ∂Fz,AMHD/∂By = ∂Fy,AMHD/∂Bz.

A.4.1: Fig. A.1(a) shows the pseudo-potential of AMHD for the same pa-

rameters as Fig. 3.3(a) (which was calculated based on the reduced ADNLSB for-

mulation). If VS = 0 then A2
x0 = ε0, and thus the potential minimum (where

Fz,AMHD = 0) occurs at A2
x = ε. This implies that in the shock frame (also the

upstream intermediate frame), λI,AMHD = −Vx + CI = (−Ax +
√
ε)Bx/

√
µ0ρ = 0

at the potential minimum. This is essentially the same point qm (where λI = 0) of

Fig. 3.3(d) with ADNLSB. Fig. A.1(b) shows a similar reversal with the CGL clo-

sure. We note that the CGL closure exhibits an even stronger tendency to reverse

the pseudo-potential. In Fig. A.1(c), the pseudo-potential for θBN = 75◦, β0 = 0.4

and c2 = 0.2 is shown, these parameters are more similar to those seen in our PIC

simulation.

A.4.2: Now we consider the jump conditions to an asymptotic downstream

by neglecting the LHS and terms with h of Eqs. (A.44) and (A.45). The relation

Bt,d/Bx = tanθ0(A2
x0 − ε0)/(A2

x,d − εd) can be derived where we label quantities

Q → Qd (“d” for downstream). We can eventually invert A2
x0 as a function of
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Figure A.1: Results with fully anisotropic MHD. Panel (a) is the pseudo-
potential Ψ with our closure, Eq. (3.15). Upstream (point qr), VS = 0,
θ0 = 42◦, β0 = 1, ε0 = 1 and c2 = 0.5; Panel (b) is Ψ with the CGL
closure. Upstream (point qr), VS = 0, θ0 = 42◦, β0 = 1 and ε0 = 1.5;
Panel (c) is Ψ for VS = 0, θ0 = 75◦, β0 = 0.4, ε0 = 1, and c2 = 0.2
with our closure; Panel (d) is the shock curve with upstream parameters
θ0 = 42◦, β0 = 1 and ε0 = 1. In the green curve (εd = ε0 case), the
portion from A-RD (anisotropic-RD) to SSS is the IS branch, from SSS
to LS (linear slow mode) is the SS branch. Different curves represent
cases with different εd of values 1, 0.95, 0.9, 0.85 (from outer curve to
inner curve). Other than the A-RD, a new SS exists at (1,1) when
εd < ε0. Both the IS and SS branches shrink toward the point (1,1) as
εd decreases.
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A2
x,d from Eq. (A.39). The result is plotted in Fig. A.1(d) which shows possible

shock solutions as functions of the downstream intermediate Mach number M2
I,d ≡

V 2
x,d/C

2
I,d = A2

x,d/εd [50]. In the green curve (εd = ε0 case), the portion from A-RD

(anisotropic-RD) to SSS is the IS branch, from SSS to LS (linear slow mode) is the

SS branch. When εd < ε0, a new slow-shock transition from A2
x0 = ε0 > 0.25 to

A2
x,d = εd is noted at the point (1,1). This new SS constitutes the slow shock portion

of a compound SS/RD wave. For a given ε0, the smallest possible εd,min shrinks the

SS and IS branches to the point (1,1). It can be shown that εd,min > 0.25 is always

true for ε0 > 0.25. Therefore the existence of the new slow shock requires εd > 0.25.

In other words, ε0 > εm(= εd) > 0.25 is always true for a SS/RD compound wave

in full anisotropic MHD.

A.4.3: From Fig. A.1(d) and further investigations, it can be shown that the

anisotropic-RD(A-RD) at (1,1) has the same jump as that of the new SS at (1,1)

plus a RD that does not change ε and thermal states. Therefore an A-RD and the

corresponding compound SS/RD wave have the same jump relations.

A.5 The Equal-Area Rule and Intermediate Shocks

The equal-area rule applies to conserved quantities in hyperbolic equations,

which in our case is bz. From Eq. (3.6) and the general form of Eq. (3.20), we find

a simple relation between the pseudo-force and the flux function,

Fz|by=0 = −αbz(b2
z−b2

z0)−Ωbzδε(bz, by)+VS(bz−bz0) = −f1|by=0+VS(bz−bz0) (A.46)

From Eq. (3.6) and Eq. (3.8), a simple relation between the slow characteristic

106



and the flux function is

λSL|by=0 =
∂f1

∂bz

∣∣∣
by=0

, (A.47)

It is then easy to show that,

∫ bz

bz0

(λSL|by=0 − VS)dbz = −Fz|by=0 (A.48)

This indicates that a stationary point bz, where Fz = 0, will be located where

the integral on the LHS is zero. This is called the equal-area rule. From this re-

lation, with a given bz0 and bz, we can determine the shock speed VS that causes

the integral to vanish. Or for a given bz0 and VS, we can determine the possible

downstream state bz. We apply it to the following examples to demonstrate the for-

mation of intermediate shocks (which have a super-intermediate to sub-intermediate

transition) in isotropic MHD.

When the upstream qr = (bz0, 0) is given and fixed, we can vary ql = (bz, 0)

to see the effect on possible shock solutions. In Fig. A.2(a), when ql is chosen

above bz = 0, a slow shock solution is found by determining a proper horizontal line

(qr−ql; note that the vertical position measures the shock speed VS), which makes

the red area below the line qr − ql equal the red area above. The shock speed is

slower than the upstream intermediate speed (black horizontal line across 0), the

upstream (point qr) is super-slow and sub-intermediate (VS > λSL|qr , VS < λI |qr .

Since λ is equivalent to C − u where C is the phase speed and u is the bulk flow

speed measured in upstream intermediate frame, VS ≷ λ implies that the Mach

number measured in shock frame M ≡ (VS +u)/C ≷ 1) and the downstream (point

ql) is sub-slow (VS < λSL|ql
). Traditionally in isotropic MHD, the super-fast state is
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Figure A.2: Application of equal-area rules with cases in ideal (isotropic)
MHD. The λI and λSL along bz are measured in the upstream intermedi-
ate frame with upstream (point qr) parameters, θ0 = 42◦, β0 = 1, ε0 = 1.
The vertical axis measures speed (normalized to CAn). Once the ql is
chosen, the shock speed VS (measured by the red horizontal line) can be
determined by equating area (between the λSL and the red line) above
the red line to area below the red line. This rule results in shock speeds
(a) VS = −0.1; (b) VS = 0.05; (c) VS = 0.05; (d) VS = 0.0958.
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termed number 1, sub-fast and super-intermediate is 2, sub-intermediate and super-

slow is 3, and sub-slow is 4. Therefore a slow shock is also called a 3-4 SS (as

mentioned in Sec. 1.4.1).

In Fig. A.2 (b), if ql is chosen below the point bz = 0, a 2-4 intermediate shock

(qr−ql) is formed, with upstream being super-intermediate and downstream being

sub-intermediate and sub-slow. In Fig. A.2(c), with the same shock speed, a 2-3 IS

transitions to a ql with a more negative value is also possible. Note that the jump

cross a compound 2-3 IS/ 3-4 SS (from this ql to the ql in (b) ) equals to that of the

2-4 IS in (b). In Fig. A.2(d), with the same ql of Fig. A.2(c), a 2-3=4 IS (qr − qm)

with the maximum IS speed could be formed and attached by a slow rarefaction

(qm− ql). This is a compound IS/SR wave, with bz|qm = −bz0/2 which can also be

determined by λSL(bz|qm) = [f1(bz0)−f1(bz|qm)]/(bz0−bz|qm), as shown by Brio and

Wu [12]. Similar arguments can be made in a system with fast and intermediate

modes.

Therefore, an intermediate shock is not directly associated with an interme-

diate mode. It is steepened by magneto-sonic waves (slow or fast modes), not by

intermediate mode itself. This was first justified by Wu’s (1987) coplanar simula-

tions [119] (i.e., no out-of-plane magnetic field is allowed), where the intermediate

shock forms even though the intermediate mode is not included (since the out-of-

plane δBy is necessary for nontrivial solutions of the intermediate mode, as shown in

Appendix A.2). The coupling of intermediate and magneto-sonic waves and the ad-

missibility of intermediate shocks in the ideal MHD system was discussed by Kennel

et al. [52].
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