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Abstract

Asymmetric information imposes costs on a wide range of markets and may explain
why some important markets, such as most agricultural insurance markets, have failed
to develop. It is hard to empirically identify the different dimensions of asymmetric
information but doing so is crucial for improving efficiency and solving market fail-
ures. I develop a new experimental methodology and apply it to study asymmetric
information in crop insurance in the Philippines. Using a combination of preference
elicitation, a two-level randomized allocation of insurance and detailed data collection,
I test for and find evidence of adverse selection, moral hazard and their interaction –
that is, selection on anticipated moral hazard behavior. I conclude that information
asymmetry problems are substantial in this context and that they are unlikely to be
reduced appreciably through contract redesign alone.
JEL: O1; D82; G22; C9
Keywords: insurance, adverse selection, moral hazard, selection on moral hazard, in-
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1 Introduction
Small-scale farmers in developing countries are exposed to great financial risks from weather
variations, pests and crop diseases that can be only partly addressed through informal risk
sharing arrangements resulting in depressed investment and important short and long term
negative welfare consequences for households(Maccini and Yang, 2009; Currie and Vogl,
2013; Rose, 1999). Formal insurance programs to address this risk fall primarily into two
categories: traditional insurance that indemnifies based on farm-specific realizations and
index-based insurance products that pay out based on an index such as the local rainfall
or the average regional yield. Neither approach has evolved into well-functioning private
markets for insuring major crops. In the traditional approach, payouts are highly correlated
with farm-specific losses but verification of losses is costly and a high potential exists for ad-
verse selection and moral hazard. Large-scale programs, such as the Federal Crop Insurance
Program in the United States, rely on substantial government subsidies. The index-based
approach is free of adverse selection and moral hazard but basis risk – the risk that insured
farmers are not compensated for losses because those losses were not reflected in the index –
is a major challenge. Index insurance typically has a positive impact on agricultural produc-
tion by allowing households to increase investment and shift production to riskier but higher
return crops (Karlan et al., 2014; Cole, Giné and Vickery, 2013; Cai et al., 2015; Cai, 2016;
Carter et al., 2014). Despite these positive effects, demand has generally been low (Gine and
Yang, 2009; Cole et al., 2013; Cole, Stein and Tobacman, 2014; Carter et al., 2014).1 Low
demand may be explained by risk averse consumers being driven away by basis risk (Clarke,
2016) or by lack of trust or understanding among farmers (Cole et al., 2013). Index insurance
with substantial basis risk may also simply fall into a marketing “dead zone.” Because the
premiums for small-scale farms are low, financially sustainable sales and marketing would
require high purchase and repurchase rates, as well as positive word-of-mouth (Cole, Stein
and Tobacman, 2014), but high basis risk hinders all of these channels. For these or other
reasons, index insurance for small-scale farmers is not currently a financially sustainable
product with substantial market demand (Carter et al., 2014).

Given the current status, what are the ways forward in developing insurance for small-
scale farmers? Future progress could occur through technological innovation, such as drones,
satellite data or other new measurement strategies that reduce basis risk in index insurance
or improve loss verification and pricing models in traditional insurance. Another avenue
could be innovative contracts that meld index insurance with some degree of loss verification
(Carter et al., 2014). To make progress in developing financially sustainable insurance for

1The index insurance studied by Karlan et al. (2014) is an exception in that demand was high.
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small-scale farmers, absent technological innovations that substantially solve the preceding
problems, it is critical to understand the degree and type of asymmetric information in
traditional crop insurance. This understanding can be leveraged to improve traditional crop
insurance and develop novel products that strike a new balance between basis risk and
problems with asymmetric information.

In this paper I contribute to this understanding by studying information asymmetries
in a traditional crop insurance contract in the Philippines using a series of randomized
field experiments. In the Philippines a government-owned insurance company offers crop
insurance for rice crops. This insurance covers crop losses due to specific natural hazards
(such as typhoons, pests, and crop diseases). Payments are based on an ex post damage
assessment by an agent of the insurance company. Since the insurance pays out based on the
harvest losses from each particular plot, it is reasonable to expect substantial asymmetric
information. I show that both adverse selection and moral hazard are substantial in this
context and that the adverse selection is based both on selection on the inherent riskiness
of plots and on the farmers anticipated moral hazard response to insurance. This is rare
evidence of such information problems in a developing-country financial services market and
among the first papers to identify selection on moral hazard. In this context, an important
precursor paper, Karlan and Zinman (2009) found evidence of moral hazard but only weak
evidence of adverse selection in a consumer credit market in South Africa. Similarly, Giné,
Goldberg and Yang (2012) also found evidence of asymmetric information problems in an
agricultural input loan market in Malawi (although they can not clearly separate moral
hazard and adverse selection, the effect appears driven by moral hazard).

The design of the experiment was influenced by key challenges inherent in insurance (par-
ticularly issues of trust and insurance demand as discussed in Section 3) and opportunities
presented by the local context, in particular the fact that farmers in this area routinely farm
multiple plots. The experiment was conducted in two stages. In the first stage, I elicited
farmers’ preference ranking for insurance on plots in their portfolio by asking them to rank
the top three plots for which they would prefer to have insurance. The farmers were told
their first-choice plot would have a higher chance of receiving free insurance in a lottery. In
the second stage, I randomly chose farmers to receive free insurance for a subset of their
plots. I randomly selected which plots received insurance, but allowed their first-choice plots
to have a higher chance of being covered. This approach generated across- and within-farmer
variation in which plots were insured and provided an incentive for truth-telling (about the
first-choice plot) in the first stage. Finally, I combined the data generated through this pro-
cess with geospatial data on plot locations and environmental characteristics, administrative
data from the insurance company and comprehensive survey data.
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In Section 4, I model the joint determination of the plot choice decision and the farmers’
allocation of preventative effort across plots. I allow for heterogeneity in both the inherent
riskiness of plots and in the plot-specific cost of effort. Farmers select plots, taking into
account their endogenous effort response to both plot characteristics and insurance. If the
cost of effort is prohibitively large on all plots, then farmers select plots that are large and
have high inherent riskiness. If the cost of effort is lower, allowing for a sizable effort response
by the farmer, then a tradeoff exists between choosing plots that have high expected damages
and those on which a relatively large effort cost can be saved if insured. The model therefore
implies that, in addition to classic moral hazard, two types of adverse selection may be
present. First, selection on “baseline risk”; that is, selection on the expected damages on
a plot, taking into account the endogenous effort response to plot characteristics but not
the endogenous response to insurance. And second, “selection on moral hazard”; that is,
selection on the plot-specific anticipated effort response to insurance.

The paper contains three empirical sections (Sections 6 - 8). In the first, I separately
estimate adverse selection in plot choice and classic moral hazard. I estimate moral hazard
by comparing the damage experience on randomly insured and uninsured plots of the same
farmer and estimate adverse selection by comparing damages on the farmer’s first-choice plot
to damages on other plots of the same farmer. I find strong evidence for moral hazard and
adverse selection. Farmers select plots that are prone to flooding and crop diseases and this
selection leads to about 20% higher damages on first choice plots compared with the farmers’
other plots. To investigate moral hazard, I separate the harvest losses into two components:
loss due to typhoons and floods, and loss due to pests and crop diseases. This distinction is
motivated by expectations at the start of the project that pests and crop diseases are more
preventable than typhoons and floods.2 I find evidence for moral hazard in the prevention of
pests and crop diseases. Harvest loss due to these causes is about 22% higher on randomly
insured plots compared to uninsured plots. In contrast, I find no evidence of moral hazard
in the prevention of typhoon and flood damage.

In the second, I investigate the effect of insurance on investment (as measured by fertilizer
expenditures) and use the across-farm randomization to investigate whether insurance on one
plot has implications for farming decisions on other plots. I find evidence that farmers use
less fertilizer on insured plots, although this effect is small (3-5%). This finding is consistent
with moral hazard because under moral hazard insured plots are higher risk than uninsured
plots. This finding provides further confidence that the observed moral hazard effect is indeed

2The insurance company makes the same distinction and offers an insurance package that covers only
typhoons and floods as well as a comprehensive package (used in this study) that also includes coverage for
pests and crop diseases.
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identifying moral hazard. It also implies that subsidies for this type of insurance may reduce
aggregate investment but any such effect would be small. I do not find any evidence that
insurance on one plot alters investment on the farmers’ other plots. The possible mechanisms
for such an effect, such as scale economies (such as in fixed costs of obtaining inputs), wealth
effects (from the reduced investment on insured plots) or important background risk effects
(that is, incentives for greater investment on uninsured plots through reduced background
risk from insured plots), appear to either be small or cancel each other out.

In the third, I develop an empirical strategy to disentangle selection on what I have
termed “baseline risk” from “selection on moral hazard.” The strategy uses plot characteris-
tics collected at baseline, which predict about 30% of the observed adverse selection effect,
to construct measures of predicted damages separately for randomly insured and uninsured
plots. I then study whether selection is based on the predicted values for uninsured plots
(i.e., baseline risk) or on the difference (i.e., selection on moral hazard). The difference is
computed by subtracting predicted values on control plots from predicted values on insured
plots and it represents the predicted moral hazard based on baseline characteristics. I find
that farmers appear to select on both of these dimensions.

This paper primarily contributes to the literature on agricultural insurance for small-scale
farmers in developing countries by complementing the recent literature on index insurance3

and supplementing the existing literature on crop insurance (see L Hueth and Hartley Fur-
tan (1994); Miranda and Glauber (1997); Just, Calvin and Quiggin (1999) and Makki and
Somwaru (2001)). In designing an insurance product an insurer must choose its devil by
trading off high basis risk against problems with asymmetric information. To design effec-
tive policies, it is essential to understand the implications of this tradeoff. I contribute to
this understanding in two ways. The key contribution is to identify and quantify the sepa-
rate dimensions of asymmetric information in a crop insurance product in the Philippines.
This evidence can be used to improve traditional crop insurance products and to develop
new products that minimize both basis risk and problems with asymmetric information. A
second contribution is that I study how this type of insurance affects investment. In contrast
to the index insurance literature, I do not find increased investment; in fact the evidence
supports a small decrease in fertilizer use. I interpret this outcome as being due to the moral
hazard inherent in the insurance for pests and crop diseases. Removing this coverage and
focusing only on weather related risk may result in an insurance that provides incentives for

3See Gine and Yang (2009); Cole, Giné and Vickery (2013); Karlan et al. (2014); Mobarak and Rosenzweig
(2013, 2012); Cole et al. (2013); Cole, Stein and Tobacman (2014); Cai et al. (2015); Cai, de Janvry and
Sadoulet (2015); Dercon et al. (2014); Hill, Robles and Ceballos (2016); Cai (2016) and citations within
Carter et al. (2014), who provide a recent review of this literature.
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investment.4

The paper also makes several contributions to the more general literature on asymmetric
information, both in the context of developing countries and more generally. First, because
farmers in this study control multiple insurable units (plots) I am able to study their rel-
ative demand for insurance based on their understanding of the relative risk of loss across
their plots. This approach allows a certain separation between risk on the one hand and the
farmers’ individual preferences and constraints on the other. This separation is important
because adverse selection based on heterogeneity in risk can be offset by advantageous selec-
tion (de Meza and Webb, 2001) induced by interactions between risk and risk preferences.5

Second, I study the issue of selection on moral hazard, where consumers demand insurance
based in part on their anticipated moral hazard response, which has been done in only one
existing paper (Einav et al., 2013). This effect can be identified directly from the experi-
ment but with low statistical power and I rely on an alternative test that takes advantage
of baseline data.

Finally, the paper contributes to a recent literature on enhancing the information pro-
duced by randomized experiments. The design in this paper can be generalized as a two-step
procedure in which incentivized choices are obtained in the first step and treatment is al-
located according to preferences in the second step. This procedure is related to the one
developed in Chassang, Padró i Miquel and Snowberg (2012), but it focuses on the choice
between two alternative treatments rather than on the willingness-to-pay for a single treat-
ment or program.

The paper proceeds as follows. I first provide background on the economic environment
and previous literature on asymmetric information in Section 2. Next, I describe the design
of the experiment in Section 3. I then present the model and derive empirical implications
in Section 4. In Section 5, I discuss the implementation, describe the data and examine the
integrity of the experiments. Next, I present the three empirical sections. In Section 6 I
separately estimate adverse selection and moral hazard; in Section 7 I investigate resource
allocation over the farmers’ portfolio of plots and mechanisms of moral hazard; and in Section
8, I disentangle selection on baseline risk from selection on moral hazard. Finally, I conclude

4Since this type of insurance is tied to a particular type of crop and a particular tract of land, incentives
would only be provided for intensifying production (such as through fertilizer use) as opposed to the type
of investment response often associated with weather-index insurance, which is typically based on extending
production to a larger area and shifting to higher risk but higher return crops (Karlan et al., 2014; Cole,
Giné and Vickery, 2013; Cai et al., 2015; Cai, 2016; Carter et al., 2014).

5A sizable body of literature confirms the possibility of advantageous selection with results largely di-
verging by insurance type. Health insurance and annuity markets tend to show adverse selection while the
evidence points to advantageous selection in life and long-term care insurance. See Cutler, Finkelstein and
McGarry (2008) and references within, e.g., Cawley and Philipson (1999); Finkelstein and Poterba (2004);
Finkelstein and McGarry (2006); and Fang, Keane and Silverman (2008).
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in Section 9.

2 Background

2.1 Economic Environment

Rice is the staple crop in the Philippines, and the major crop in the study area’s region. All
farmers participating in this study are growing rice within the Tigman Hinagyaan Inarihan
Regional Irrigation System north of Naga City in the Bicol region. The study area is located
on low-lying plains and is characterized by a high density of contiguous, usually irrigated rice
plots. The yield per hectare is typical for the Philippines. Production in this area is at risk
because of floods, droughts, pests, crop diseases and, most importantly, typhoons (tropical
cyclones) that hit the Philippines at a rate of about 15 per year.

Farmers in the area use a variety of income and consumption smoothing strategies to
manage production risk. As in other contexts, it is very common to till multiple parcels
and to engage in other income generating activities, such as driving tricycles, operating
shops or having family members work in a nearby town or city as income-smoothing strate-
gies(Rosenzweig and Binswanger, 1993; Dercon, 1996; Morduch, 1995). In a different region
of the Philippines, Fafchamps and Lund (2003) document a substantial role of gifts and
informal loans as a way to smooth consumption. Extensive literature describes how such
income and consumption smoothing strategies are employed elsewhere.6 However, these
strategies typically do not allow households to fully smooth their consumption7 and they
can be unreliable, offering little or no protection when communities experience large shocks
such as widespread drought (Kazianga and Udry, 2006; Porter, 2012).

To address this uninsured risk the Government of the Philippines established the Philip-
pines Crop Insurance Corporation (PCIC). Among its products is multi-peril crop insurance
for rice farmers. PCIC is fully owned by the government and the insurance is generally
offered to farmers with a premium subsidy of about 55% but during this experiment the
participating farmers got the insurance for free through an additional 45% subsidy paid by
research funds. The insurance contract offered by PCIC covers rice production on a partic-
ular field and pays out in the event of damages to that specific field from one of the covered
causes. These causes include typhoons, floods, droughts, various pests (rats and insects) and

6See Morduch (1995); Rosenzweig and Binswanger (1993); Dercon (1996); Kochar (1999, 1995); Deaton
(1992); Udry (1994).

7Townsend (1994); Attanasio and Davis (1996); Fafchamps and Lund (2003); Rosenzweig and Binswanger
(1993); Rose (1999); Maccini and Yang (2009)
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crop diseases (especially tungro, which is spread by insects).8 Any particular damage event
must cause at least 10% loss of harvest to be eligible for a claim. If a damage event causes
more than 10% damage, an insured farmer files a notice of loss to the company, which sends
an insurance adjuster to verify damages. The contracts have a maximum per-hectare payout
(in this study, 20,000 pesos or about $430) and they pay out based on the share of harvest
lost and the timing of loss (farmers can often plant again if damages occur early in the sea-
son). In addition, if losses from pests and crop diseases are localized and not due to a wider
outbreak affecting many farmers (as determined by the local government agricultural office),
then the payouts are capped at 30% of the policy value. A copy of PCIC’s informational
flier for the rice crop insurance is included in the Online Appendix.

The fact that payouts are based on the percent of harvest lost rather than an evaluation
of the absolute loss is important. It means that payouts are unrelated to underlying produc-
tivity or marginal investment (such as fertilizer). A total loss on a relatively unproductive
plot that was minimally fertilized would bring the same payment as a fully fertilized and pro-
ductive plot provided they are the same size and both had full standing crops of rice before
the damage. This approach makes verification easier because the adjuster only has to assess
the share of crops that are damaged rather than the value of counterfactual harvest. But,
as I discuss later, it has potential adverse effects on investment and demand for insurance.

Even with the government premium subsidy, demand for this insurance is limited (Reyes
and Domingo, 2009). In the 2000’s about 30,000 rice and corn farmers were covered each
year. In early 1990’s, when premium subsidies were even higher, these programs covered
over 300,000 farmers. In the next section I describe the experiments that I designed and
implemented to understand the degree to which asymmetric information increases the costs
of providing this insurance, leading to lower demand and necessitating public subsidies.

2.2 Identification of Asymmetric Information

An extensive literature analyzes the reasons for the absence or underperformance of financial
markets in developing countries (see e.g., Hoff and Stiglitz (1990); Besley (1994); Conning
and Udry (2007)). In particular, the seminal contributions of Stiglitz and Weiss (1981) and
Rothschild and Stiglitz (1976) show how adverse selection can cause market failures in credit
and insurance markets. In the case of crop insurance, previous research (mostly based on
markets in the United States and Canada) has identified adverse selection, moral hazard,

8The insurance also covers rare events such as volcanic eruptions and earthquakes but it excludes some
minor pests such as birds and snails. We ignore damages from birds and snails in the analysis. The amount
of damages from birds is trivial. Losses from snails are nontrivial, but they are small and primarily occur
when plants are seedlings (before transplanting), so it is impossible to assign per-plot damage rates.
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and spatial co-variability of risk as the main reasons for the failure of private markets and
public schemes (L Hueth and Hartley Furtan, 1994; Miranda and Glauber, 1997; Just, Calvin
and Quiggin, 1999; Makki and Somwaru, 2001).

Empirical identification of information asymmetries is difficult using data normally avail-
able to insurance companies and researchers. It is particularly challenging to separately
identify the role of each dimension of this asymmetric information, such as that based on
heterogeneity in individual preferences, inherent risk, or cost of effort. First, it is very chal-
lenging to identify moral hazard without some exogenous shift in coverage. Second, since
both preferences and risk type are (at least partly) unobserved, it is hard to identify the
degree to which selection is based on private information on risk type versus private infor-
mation on preferences. This difference has crucial implications for the insurance provider
and for market development. Selection on risk type leads to higher payouts and can cause
the market to break down (Rothschild and Stiglitz, 1976), while selection on preferences is
less likely to be a cause for higher payouts. In fact, in many markets (such as automobile
insurance and life insurance), selection on risk preferences is likely to offset selection on risk
type (de Meza and Webb, 2001; Cutler, Finkelstein and McGarry, 2008). Third, identify-
ing selection on private information that influences the degree of ex post moral hazard is
very difficult; Einav et al. (2013) term this mechanism “selection on moral hazard.” This
mechanism would be operating in our context if a farmer chooses to buy insurance on a plot
that is, for example, close to residential areas (hence susceptible to rats), next to a plot of a
neighbor with lax pest management practices (hence susceptible to insects and other pests),
or far from her home (high fixed cost of monitoring), explicitly because, once the plot is
insured, she can save a substantial amount of effort in preventing damages.

A positive correlation between choice of insurance coverage and accident occurrence con-
ditional on data that an insurance provider can observe has been shown to be a robust test
of the presence of information asymmetries, but it cannot distinguish between different di-
mensions of asymmetric information (Chiappori and Salanie, 2000; Chiappori et al., 2006).
Recent contributions have used dynamic data, difference-in-difference techniques, direct data
on subjective beliefs, and structural estimation in attempts to better identify specific com-
ponents of asymmetric information (Abbring et al., 2003; Finkelstein, McGarry and Sufi,
2005; Cardon and Hendel, 2001; Cohen and Einav, 2005; Einav et al., 2013; Finkelstein and
McGarry, 2006).

A potential solution to these challenges (and the one employed here) is to use experi-
mental methods. The Rand Health Insurance Experiment pioneered work in this area by
identifying moral hazard (but not adverse selection) in health insurance by randomly allo-
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cating families to different coverage levels.9 To study adverse selection and moral hazard
together requires a multi-step experimental design, which has not been implemented previ-
ously for an insurance market. Karlan and Zinman (2009) used a two step design to identify
both of these dimensions in a consumer credit market in South Africa by randomizing inter-
est rate offers and then surprising some consumers with a better contract interest rate. It
would be appealing to build on this experimental design to study insurance by randomizing
the premium offered to consumers and then in a second step implement an exogenous shift
in coverage by increasing policy value, reducing deductibles or providing free insurance.10

Several features of agricultural insurance in developing countries make this approach chal-
lenging in our context. First, insurance and credit are diametrically opposite in terms of the
trust required to sustain a market. An insurance company must gain the trust of a consumer
while it is the bank that must decide on the trustworthiness of the consumer seeking credit.
As a result, take-up is likely to be low as it tends to be for crop (or index) insurance products
in developing countries, which would necessitate extending offers to a very large universe of
farmers. In addition, it may be necessary to build trust through repeated engagement with
a population, which would complicated designs based on the element of surprise. Second,
with a large initial universe of participants, engagement becomes logistically challenging. In
particular, implementing agricultural surveys among a large sample of farmers over a vast
geographic area is very expensive.

3 Experimental Design
In light of these challenges I designed the experiments with the goal of maximizing the infor-
mation that they would provide about asymmetric information in this insurance market and
the behavior of farmers when engaging with a crop insurance contract of this type without
requiring that the farmers purchase insurance with their own funds. To disentangle many of
the relevant information asymmetries, I incorporate three key features in the experimental
design: (1) I take advantage of the fact that farmers in this context routinely till multiple
plots of land, and designed the experiment and data collection to consider the plot as the
base unit of analysis, (2) I introduce experimental variation across plots within the same farm
and obtain incentivized choices at the plot level and (3) I introduce experimental variation
in insurance coverage across farms.

The study design for each season was as follows:
9Key references include Manning et al. (1987) and Newhouse and Rand Corporation. Insurance Experi-

ments group (eds.) (1993).
10In fact, early designs of these experiments were based on this approach.
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Step 1: Each farmer was asked to rank the top three plots within their portfolio of
plots that they would prefer to have insured. The farmers were told that their top
choice plot would have a higher chance of receiving free insurance in the lottery.

Step 2: Baseline survey (if not completed in earlier seasons).

Step 3: Farmers were entered into a lottery and randomly allocated to three groups:

Group A (66.5%; Full Randomization): Received insurance on a random half of
plots.

Group B (3.5%; Choice): Received insurance on first-choice plot and a random
half of remaining plots.

Group C (30%: Control): Received no insurance.

Step 4: Two follow-up surveys were conducted, one after planting and another after
harvest.

The farmers were not informed of the exact randomization probabilities, but they were told
that their first-choice plot would have a higher chance of receiving insurance coverage. This
(Group B) is a truth-telling mechanism. It ensures that it is incentive compatible for farmers
to reveal their true preference for their first-choice plot. The farmer-level randomization was
stratified by geographic location.11 Insurance was allocated to plots in Group A using block
randomization within the farm such that half of the farmers’ plots were insured. Farmers
with an odd number of plots, n, were randomly selected to receive insurance on n−1

2
or n+1

2

plots. After insurance had been allocated to the first-choice plots of farmers in Group B,
their remaining plots were randomly allocated insurance using the same procedure as in
Group A.

Figure 1a depicts the basic identification strategy used to separately identify adverse
selection and moral hazard. To identify adverse selection, I compare the farmer’s first-choice
plot to her other plots, excluding first-choice plots of farmers in the Choice Group. Since
insurance coverage is random in this sample of plots, this provides a test for adverse selection.
I will test this both by comparing measures of predicted damages, actual damages and
payouts. To identify moral hazard, I compare randomly insured and uninsured plots within
and across farmers. In principle, the design allows me to identify moral hazard separately for
first-choice plots and for other plots and therefore identify whether the farmer selects a plot
based in part on anticipated moral hazard behavior. Figure 1b depicts how this test would

11In the first season, the experiments were conducted in a relatively small geographic area and we stratified
by the number of plots instead.
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(a) Identification of adverse selection and moral hazard
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on 1st choice
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(a)
(b)

(c)

(d)

(b) Identification of selection on baseline risk
Figure 1: This figure shows the basic identification strategies

be carried out (here I also exclude first-choice plots of the Choice Group so insurance choice
and insurance status are orthogonal). Comparing first-choice plots and other plots in the
subsample that were not allocated insurance (comparison (b) in Figure 1b) identifies what I
term selection on baseline risk, that is, selection on risk characteristics of plots that do not
interact with moral hazard. A similar comparison among insured plots (comparison (a) in
Figure 1b) identifies the full degree of adverse selection, including the former effect and any
interactions with moral hazard. This interaction exists if farmers choose plots based in part
on their anticipated moral hazard behavior. In terms of the effects depicted in Figure 1b, we
have effect (a) = effect (b) + (effect (c) - effect(d)). I do not have enough statistical power
in practice to carry out this test directly but I develop and conduct a modified test of the
selection on moral hazard effect in Section 8.

4 A Model of Preventative Effort and Choice of Plot
for Insurance

4.1 Setup and Maximization Problem

In this section I develop a model of the decision problem that the farmers face in the ex-
periments. In the model, farmers face the possibility that they may lose part of each plot’s
harvest to a natural hazard. Farmers make two decisions. First, they select one plot to
designate as their “first choice.” Next, they allocate preventative effort for reducing crop loss
from natural hazards to each of their plots. The major feature of the experiment’s design
is that the insurance choice is only probabilistic. The plot chosen may or may not receive
insurance and the insurance is randomly allocated to plots. Given this feature of the data,
I model insurance choice and effort as a joint decision for the purpose of studying insurance
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choice. I then consider the insurance to be exogenously determined to study moral hazard,
and extend the model to consider the farmer’s effort and variable investment decisions.

Consider a farmer with a portfolio of plots, Ω = ((A1, θ1), ..., (AN , θN)), indexed by j.
Each plot, j, is of size Aj hectares, has risk characteristics θj, and is assumed to produce
a maximum output of 1 per hectare (I relax this last assumption in Section A.4). Some
of this output may be lost to natural hazards. The share of harvest lost, Sj, is a random
variable that I assume is uniformly distributed on [0, θj(1− ej)] where θj ∈ (0, 1] indexes the
risk characteristics of the plot and ej ∈ [0, 1] is the effort expended to reduce damages. Let
θ = (θj)

N
j=1 be the vector of plot risk characteristics and e = (ej)

N
j=1 the vector of effort levels

across plots. I assume that the insurance provider does not observe plot characteristics and
effort levels.12 I also assume that, conditional on θ and e (which determine the support of
the distribution of losses), the harvest losses are independent random draws across plots.13

This implies that effort and investment decisions on plot j of farmer i are independent of
whether plot j′ of the same farmer is insured.

When a plot is insured the farmer receives a payout of LSj per hectare, where L < 1

is the per hectare insurance coverage.14 I denote the indicator for insurance coverage with
αj ∈ {0, 1} and define α = (αj)

N
j=1. This is now a choice variable, with the restriction that∑N

j=1 αj = 1, representing the choice that the farmer faces in choosing one plot as their first
choice (later on I replace α with αassigned to represent the exogenously assigned insurance
allocation).15

12This assumption is consistent with the context: per-hectare prices only depend on the season and the
geographic area; furthermore, no monitoring of farm practices (such as pesticide or insecticide use) takes
place. The study area is fully contained in one pricing area, so all farmers face the same per-hectare prices.
Since all insurance is free in the experiment, the tradeoff that the farmer faces in selecting a plot for insurance
is the opportunity cost of not insuring a different plot.

13This assumption provides tractability, but of course shocks are not uncorrelated across plots. Rather,
they are typically positively correlated, particularly for aggregate shocks such as typhoons. If farmers take
into account the likely positive correlation between shocks then they are likely to shift in some cases to
choosing the largest plot rather than the plot with the highest expected damages to maximize their payment
if, for instance, they experience total loss on all plots. This would lead to some downward bias in the adverse
selection estimates reported later. In the empirical section, this issue is also addressed through the design
of the experiment (the plot randomization) and through data collection (especially the collection of spatial
coordinates of plots, allowing spatially corrected standard errors). Even if shocks are independent across
plots, the farmers’ input decisions on plot j are not independent of whether plot j′ is insured for general
utility functions. The design of the experiment, in particular the two-stage randomization procedure, allows
testing these implications of the model – that is, whether reducing production risk on plot j has implications
for production decisions on plot j′.

14I define L < 1 for simplicity, but this can be thought of as the maximum payout divided by the typical
harvest if no damages occur. The average harvest is valued at 47.3 thousand pesos, the value of the average
damages are 15.5 thousand pesos, and the maximum payout in the experiments is 20 thousand pesos. These
numbers yield an L = 20

15.5+14.7 = 0.32.
15The farmer’s choice is only probabilistic but I assume that the farmer chooses a plot in the same way as

she would do if insurance was to be assigned with probability 1.
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The total farm profits are stochastic and given by Π(α, e) =
∑

j{Aj((1−Sj)+αjLSj)}−
C(e) where C is the cost-of-effort function. Given their stochastic nature, the resulting
utility derived by the farmer is based on her risk aversion and the degree of other risk-sharing
arrangements that are in place. I assume the farmers’ preferences can be represented by a
mean-variance utility over total future profits: E [U(Π)] = E [Π] − ρ(1 − τ)V ar(Π). In
this setup, the variability in profits cause a utility penalty (according to the farmer’s risk
aversion) but this penalty is tempered by the degree of informal risk sharing that the farmer
is engaged in. A farmer whose risk-sharing network allows full informal risk sharing (τ = 1)
would only derive utility from the first term.

Aside from the farmer’s portfolio of plots, I model two other factors that are likely to
have first-order importance in the effort and insurance choice decisions of farmers. First, each
farmer has a degree of risk aversion that I model with the parameter ρ. Second, given the
well-documented role of informal risk sharing in a context such as this, I index the strength
of each farmer’s risk-sharing network with the parameter τ ∈ [0, 1]. A farmer with τ = 1 is
fully insured informally and only cares about expected profits whereas the utility of a farmer
with τ = 0 is fully penalized (according to her risk aversion) for variability in farm profits.
The farmers maximization problem is to choose one plot as the preferred plot for insurance
and then choose effort level on each plot conditional on its insurance coverage to maximize
expected utility:

max
α,e

E [Π]− ρ(1− τ)V ar(Π) (1)

subject to
∑N

j=1 αj = 1, αj ∈ {0, 1} and ej ∈ [0, 1]. The core of the research design is
that the experiment allows breaking this maximization problem into two parts, identifying
the two choice variables separately – that is, identifying insurance choice based on inherent
plot characteristics and anticipated effort allocation, and then separately (from selection)
identifying effort and investment responses to insurance. In the next section I first analyze
the optimal effort allocation as a function of insurance coverage. This serves as both an
analysis of optimal behavior after the insurance allocation in the experiment is known and
as input into the first-stage choice problem.

4.2 Optimal Effort

To derive the optimal effort, I assume that the per-hectare cost-of-effort function is separable
and takes the form c(ej) = ψjej where ψj represents the plot-specific cost of effort. Here
the ψ’s may, for example, represent plot-specific features that hinder prevention of pests or
insects, or they may represent the ease or difficulty of draining the plot after heavy rains.
They may also incorporate other sources of the cost of effort, such as distance from home or
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scale economies (since they are per-hectare costs). In the case of distance from home, the
ψ’s are not characteristics of the plot per se, but from the perspective of the farmer, they
can be treated as plot characteristics.16 Total effort costs are assumed to be separable and
additive: C(e) =

∑N
j=1Ajψjej. Given this setup, the effort of farmer i on plot j is a function

of the farmers’ risk aversion (ρ, omitting the farmer subscript i) and plot-level attributes: the
insurance coverage (αj), the inherent riskiness of the plot (θj), the cost function parameter
(ψj) and plot size (Aj). I show in Appendix A that optimal effort is given by:

êj(αj, θj, ψj, Aj, ρ, τ) =


0 if ψj ≥ wj +

2
3
ρ(1− τ)Ajw

2
j

1− 3
2

ψj−wj

ρ(1−τ)Ajw2
j

if wj < ψj < wj +
2
3
ρ(1− τ)Ajw

2
j

1 if ψj ≤ wj

(2)

where wj = 1
2
(1−αjL)θj. Figure I.1 illustrates optimal effort as a function of the plot-specific

cost of effort (ψ) for insured and uninsured plots. Effort is lower on insured plots in the range
where (1) cost of effort is large enough that effort is less than 1 if the plot is insured but
(2) small enough that effort is positive if the plot is uninsured – that is, if ψ ∈ (w1, ŵ0)) in
Figure I.1. The model therefore implies moral hazard over this range.

In this section I have assumed that the αj’s are given. These findings therefore describe
both (1) the maximization problem the farmer faces after learning of the insurance allocation
in the experiment and (2) the problem that the farmer expects to face during the cropping
season when taking the insurance choice decision. In the experiment, after the farmer is
informed of the insurance allocation, the problem simplifies. Instead of the farmer’s problem
in Section 4.1 she now maximizes only over e (effort). Then, α (insurance) is no longer a
choice variable but is replaced by αassigned, which is exogenous and is not limited to adding
up to one over all plots. I discuss the empirical implications for analyzing moral hazard in
Subsection 4.4. First, I use this characterization of optimal effort allocation to derive the
optimal insurance choice.

4.3 Insurance Choice

To characterize the optimal insurance choice of farmers in the experiment, I consider and
contrast two different levels of sophistication on the part of the farmer. First I consider the

16Scale economies can be due to different plot sizes or due to the same farmer having two plots close to
each other. About 35% of the plots in the sample are adjacent to at least one other plot of the same farmer.
Although the model considers only one type of damage, in reality farmers face multiple natural hazards,
each associated with a different plot-specific cost of preventative effort. The primary distinction in the paper
will be between cost of effort in preventing typhoons and floods versus pests and crop diseases. A priori,
one might expect ψ to be very high for all plots in the case of typhoons and floods, but lower (and possibly
variable across plots) for pests and crop diseases.
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insurance choice of a farmer that is partially myopic in that the anticipated effort response
to insurance is not taken into account, and the farmer instead chooses insurance with the
assumption that the plot will be farmed in the same manner as would normally be done
without insurance.17 Based on the utility output of plot j (see Appendix A), the perceived
utility gain from insurance on plot j for a farmer constrained by myopia of this type is

∆umyopic
j = umyopic

j (1, θj, ψj, Aj, ρ, τ)− umyopic
j (0, θj, ψj, Aj, ρ, τ)

=
1

2
AjθjL(1− ê0j)−

ρ(1− τ)

12
A2
jθ

2
j ((1− L)2 − 1)(1− ê0j)

2 (3)

The first term is the expected payout on plot j if the farmer applies effort as she would
without insurance. The second term is the expected gain in utility from the reduction in
the variance of profits that the insurance provides (it contributes positively to utility since
(1 − L)2 − 1 < 0). In this case, the only utility gain from insurance is the payout received
and this payout is maximized by choosing the plot that has the highest expected damages –
that is, the highest product of area and expected damages per hectare (a proof can be found
in the Online Appendix).18

Now contrast this choice with the insurance choice of a more sophisticated farmer who
anticipates her effort response to insurance and makes an optimal decision with this in mind.
The perceived utility gain from insurance in this case is

∆usophisticated
j =

1

2
Ajθj

[
(1− ê0j)− (1− L)(1− ê1j)

]
(4)

+
ρ(1− τ)

12
A2
jθ

2
j

[
(1− ê0j)

2 − (1− L)2(1− ê1j)
2
]

+ Ajψj(ê
0
j − ê1j)

As before, the farmer derives utility gain from the increase in expected profits inclusive
of insurance payouts (the first term above) and the decrease in the variance of profits (the
second term) but in contrast to the myopic farmer she anticipates her moral hazard behavior
when evaluating these terms. In contrast to the earlier case the farmer also takes into account
the third term, which captures the utility gain from the effort that the farmer saves when
the plot is insured. Therefore, in this case the farmer balances the gains from an insurance

17The farmer does, on the other hand, anticipate how the effort level is influenced by plot characteristics.
For example, if a plot has a high risk of floods but this risk is easily prevented by low-cost effort, the farmer
may prefer insurance on a plot that has a medium risk of damage but for which no low-cost preventative
solution is available.

18Note that the expectations of damages are conditional on expected efforts, which are in turn based on
all aspects of the model other than insurance status. In particular, the farmer anticipates any effect that
plot characteristics may have on her effort.
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payout against the gains from saved effort. This version implies that farmers may select not
only on the inherent riskiness of plots but also on the ability to engage in moral hazard.
This effect was termed selection on moral hazard by Einav et al. (2013), who identified it by
using a structural model and data on health insurance in the United States.

4.4 Empirical Implications

The data allows me to test various features of the model. Some of these are not specific to
this model (almost any model would for example predict adverse selection and moral hazard
in this data) but they are listed here for completeness. The model predicts that farmers
prefer insurance on plots that are large and risky, which results in adverse selection unless
there is a strong negative correlation between plot size and risk of damage. Empirically this
correlation seems to be small and positive (plot size and total damages have a correlation of
about 0.05). Nevertheless, I condition on plot size in the specification later on to prevent a
false-positive test of adverse selection. An important feature of the model is the possibility
that farmers choose not only according to the risk profile of their plots, but they may also
select on plot-specific heterogeneity in cost of effort, inducing a “selection on moral hazard”
effect. In Section 8 I empirically investigate whether the data fit better with a model in
which farmers select only on the risk profiles of plots (and their area) or whether they are
more sophisticated, anticipating their effort response to insurance and choosing in part on
this basis.

The model predicts that we will observe moral hazard behavior for hazards that can be
prevented at a cost that falls within a specific range (see Figure I.1). Actions that carry a
negligible or prohibitively large cost are unlikely to be affected by insurance status but many
actions, such as using pesticides or insecticide, or removing infected plants, could fall within
this range. In Section A.4 in the Appendix I extend the model to allow for a productive
investment input (rather than assuming a fixed harvest when there are no damages) and show
that farmers have an incentive to reduce the use of non-preventative productive investment
(such as fertilizer) on insured plots. This highlights a negative implication of the insurance
contract design, which does not insure marginal productive investment since payouts are
based on the percentage of harvest lost (rather than absolute loss).19 It also provides another
test for moral hazard.

The mean-variance utility assumed in characterizing the optimal effort and the insurance
choice decision implies that getting insurance on one plot does not influence a farmer’s
decisions on other plots. This assumption does not hold for general utility functions and

19This design feature is likely not there by mistake but rather due to the difficulty that insurance adjusters
would face in evaluating expected yields, particularly for damage that occurs early in the cropping season.
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it may not fit the data well, for example if the farmer puts more weight on preventing
outcomes below a certain threshold. This approach could be the case if the farmer is close
to subsistence level or if, as is common in the study area, the farmer takes out an informal
production loan with high penalties for late payment. By removing some risk to income
from an insured plot, the insurance coverage may allow a farmer to take more risk on an
uninsured plot. 20 In Section 7, I test which of these different predictions fit the data better.

5 Sample, Experimental Integrity and a Description of
the Data

Under my direction, Innovations for Poverty Action (IPA)22 conducted the experiments
and data collection from the spring of 2010 through mid-2012. IPA staff invited farmers
in the study area who fulfilled certain eligibility criteria (described below) to participate.
The implementation started in the 2010 wet season (June - September) with a small pilot
experiment with 52 farmers, followed by full-scale experiments and data collection during
the following three cropping seasons. The sample was gradually expanded, from 106 farmers
with 291 plots in the dry season (December - April) of 2010-2011, to 285 farmers with 806
plots in the wet season of 2011 and 447 farmers with 1302 plots in the dry season of 2011-
2012. After each round, farmers were invited to participate in subsequent rounds. Figure
I.2 shows parcels that were part of the study in at least one of the seasons.

Rice is grown in this area by owner-operators or through a variety of informal contractual
arrangements between tillers and owners. This context necessitated a clear definition of
“farmer.” We defined a person to be the farmer of an agricultural plot only if that person
was both (1) the principal decision maker for farming decisions, and (2) the bearer of a
majority of the production risk. Because of the design of the experiment (involving within-
farm plot randomization) we focused only on farmers with two or more agricultural plots. We
attempted to recruit as many farmers as possible in the sample area who satisfied the eligibly
criteria of farming two eligible plots within the geographic area of the study. Plots in the
study area were eligible if they were irrigated, traditionally rice-growing plots, and between

20This concept of background risk and the related concept of risk vulnerability have been studied extensively
in the theoretical literature (Gollier and Pratt, 1996; Christian, 2006; Heaton and Lucas, 2000; Eeckhoudt,
Gollier and Schlesinger, 1996) but the empirical evidence is more limited.21 Cardak and Wilkins (2009) find
that background risk due to volatile labor income or health status is important for the financial portfolio
choice of Australian households. This concept has also been studied in laboratory experiments by Harrison,
List and Towe (2007), Lee (2008) and Herberich and List (2012).

22Innovations for Poverty Action (IPA) is a US-based non-profit organization that specializes in conducting
impact evaluations that aim to inform programs and policies to reduce poverty and improve well-being,
primarily in developing countries. See more at www.poverty-action.org.
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0.25 and 2.5 hectares.23 We recruited farmers principally through door-to-door canvassing
and, to a lesser extent, at regular farmer meetings. Although we do not have a full census of
farmers in the area, based on reports from field staff, we enrolled a large majority of farmers
in the target areas who fulfilled the eligibility criteria.

Appendix Section C contains detail about attrition in the experiments. Attrition of
farmers overall is greater in the control group (21%) than the treatment group (14%). The
attrition improved over time and in the largest and final season, it was 15% in the control
group and 8% in the treatment group. This attrition is not trivial and may affect estimates
based on the farmer-level randomization. Most of the analyses in this paper are based on
within-farmer comparisons taking advantage of the plot-level randomization and the farm-
ers’ preferences for insurance over their portfolio. For farmers in the analysis sample, I have
damage and output data for 90% of plots and this share is balanced across treatment (90.5%)
and control (89.5%) plots (Table H.3 shows the breakdown of plot attrition by season and
treatment status). Table 2 shows balance checks across the two stages of randomization.
In both cases the randomization is well balanced on baseline observables both at random-
ization and for the sample of farmers and plots for which we have harvest data. The plot
randomization is also clearly orthogonal to the choice of a first-choice plot.

The data come from the following sources: (1) plot choices obtained at enrollment in the
study (if a farmer participated in multiple seasons, a new choice was obtained before each
season); (2) plot characteristics from a baseline survey; (3) input data from mid-season and
follow-up surveys; (4) output and damage data from a follow-up survey; (5) administrative
data from the insurance provider; and (6) geospatial data collected by research staff. To
obtain a survey measure of the share of harvest lost to the various causes, we asked each
farmer how much they lost on each plot to each cause. Because most farmers do not have
a good grasp of percentages, we asked about damages in terms of number of sacks of palay
(unmilled rice) lost. The most direct way to construct measures that correspond to the
model is to compute the percentage of harvest lost to the insured events. I call this the
“damage ratio” and define it as damages (total or due to specific causes) divided by harvest
plus total damages.24 In this way, harvest plus total damages are thought of as representing
the counterfactual harvest (i.e., the harvest if no damages had occurred). I separate all-cause
harvest losses into two components: loss due to typhoons and floods, and loss due to pests

23The vast majority of plots fall into this range. The lower bound is an eligibility requirement of the
insurance company. Some exceptions from this lower bound were given in the first season. We chose to
have an upper bound both because we did not want a large amount of our funds for insurance premiums
to be used for a small set of plots and because this seemed more acceptable to the community based on
conversations during the pilot phase.

24These measures follow naturally from the model. Given that AG is the harvest and AGD is the loss, a
natural measure for D is D = AGD

AG = AGD
AGD+AG(1−D) =

Total loss
Total loss+Harvest .
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and crop diseases. This distinction is motivated by expectations at the start of the project –
that pests and crop diseases would be more preventable than typhoons and floods – and by
the fact that the company already uses this categorization.25 Appendix Section D contains
details on the construction of the damage measures and Appendix Section E shows that the
findings presented later are robust to variations in the way these measures are constructed.

Table 1 presents summary statistics of the key outcome variables (Table 2 shows summary
statistics of baseline variables). Harvest losses due to the various natural hazards are large
in this context. During the three seasons of experiments, all-cause harvest losses were 24%
on average, with 16% due to typhoons and floods and 8% due to pests and crop diseases.
The typical farmer has two to three plots of size 0.6 hectares, with a harvest value of 47,000
pesos per hectare. Per-hectare insurance payouts were about 5000 pesos ($108) on average,
or about 650 pesos ($14) per hectare for all insured plots. Conditional on a payout, the
average payout amount was 10.3% of the average harvest value.

The baseline survey contains a series of questions on plot characteristics that are used
in Section 8 to construct measures of predicted damages by plot. These questions asked,
“Compared to your other plots, does this plot have low, medium, or high risk of ____?,”
where I ask separately for floods, strong wind, rats, and the crop disease tungro. In addition,
we asked questions on whether the plot is easy, medium, or hard to drain after heavy rains,
compared to the farmer’s other plots, and whether the plot is low-, medium-, or high-lying,
compared to the farmer’s other plots.26 I combine the questions pertaining to floods (flood
risk, low-lying, and hard to drain) into an index (hereafter “the flooding index”) by taking
the first principal component from a principal components analysis of three binary variables
that signify that the plot is high risk for floods, is low-lying, and is hard to drain after floods.
Table 1 shows summary statistics of these variables where I have recoded the rat and tungro
variables into indicators for medium and high risk and I’ve omitted the variable on risk of
strong wind because it showed very little variation.

6 Results on Adverse Selection and Moral Hazard
In this section I first describe how farmers in the study made their plot choice decisions
(based on baseline data). I then empirically estimate the magnitude of moral hazard using
data on harvest losses (self reported) and test for adverse selection using data on both harvest
losses (again, self reported) and payouts (from administrative data).

25The insurance company offers two types of coverage: basic coverage that covers only typhoons and
floods, and comprehensive coverage that also includes coverage for pests and crop diseases. The insurance
studied in this paper is the comprehensive coverage.

26These characteristics were only collected for seasons 2 and 3.
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Table 1: Summary statistics of baseline and outcome variables
Variable Mean (Std. Dev.) N

Damages
All cause harvest loss

Damage ratio 23.93 (26.9) 1774
Value of damages per hectare 15.5 (19.38) 1774

Harvest loss to typhoons and floods
Damage ratio 15.94 (23.57) 1774
Value of damages per hectare 10.65 (17.2) 1774

Harvest loss to pests and crop diseases
Damage ratio 7.98 (17.47) 1774
Value of damages per hectare 4.85 (10.78) 1774

Value of Harvest and Payouts
Value of harvest per hectare 47.32 (23.08) 1774
Payouts per hectare

For the sample of insured plots 0.68 (1.9) 690
For the sample of plots with any payout 4.88 (2.32) 96

Payouts as share of average harvest
For the sample of insured plots 1.44 (4.01) 690
For the sample of plots with any payout 10.32 (4.91) 96

Inputs
Plot-level expenses for chemicals per hectare (missing set to zero) 0.21 (0.46) 1774
Used pest or disease resistant seeds on plot 0.15 (0.35) 1311
Plot-level fertilizer expenses per hectare 5.23 (3.29) 1238
Fertilizer expenditure with farm-level imputation 5.08 (3.08) 1751

Plot Risk Characteristics
Flooding index -0.03 (0.99) 1667
Medium rat risk 0.41 (0.49) 1774
High rat risk 0.2 (0.4) 1774
Medium tungro risk 0.38 (0.49) 1774
High tungro risk 0.14 (0.35) 1774

Other
Plot size (hectares) 0.59 (0.39) 1774
Owner of plot 0.23 (0.42) 1453
Number of plots (one observation per farmer-season) 2.63 (1.29) 641
The table presents summary statistics of key outcome variables. All variables that indicate value are in
1000’s of pesos. In the second fertilizer measure (with farm-level imputation) I impute plot level fertilizer
use from farm-level totals by assigning farm-level amounts to plots using the ratio of the plot size to the
total farm size as weights.
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Table 2: Summary Statistics and Treatment Balance

A. Randomization of farmers
At Randomization Analysis sample
Mean Difference Mean Difference

In Insurance In Control In Insurance In Control
Group (A+B) Group (C) (p-value) Group (A+B) Group (C) (p-value)

Total enrolled area (hectares) 1.72 1.57 0.15 1.72 1.58 0.13
(0.09) (0.18)

Number of enrolled plots 2.89 2.84 0.05 2.89 2.82 0.06
(0.66) (0.60)

Education (years) 10.21 10.47 −0.26 10.16 10.45 −0.29
(0.40) (0.39)

Age (years) 53.89 52.95 0.94 53.82 53.14 0.67
(0.34) (0.54)

Gender (1 = female) 0.17 0.16 0.00 0.17 0.15 0.01
(0.87) (0.65)

Observations 606 233 518 179

B. Randomization of plots
(excludes plots not randomized (Group C and first-choice plots of Group B))

At Randomization Analysis sample
Mean Difference Mean Difference

Insured Control (p-value) Insured Control (p-value)
Is first choice plot (1 = yes) 0.33 0.33 0.00 0.34 0.34 0.00

(0.84) (0.86)
Area (hectares) 0.59 0.60 −0.02 0.59 0.60 −0.01

(0.39) (0.60)
Owns plot (1 = yes) 0.23 0.25 −0.02 0.20 0.22 −0.02

(0.36) (0.47)
Flooding index (unit SD) 0.02 −0.03 0.05 −0.02 −0.05 0.04

(0.37) (0.49)
High Rat Risk (1 = yes) 0.19 0.22 −0.02 0.19 0.21 −0.02

(0.21) (0.44)
High Tungro Risk (1 = yes) 0.15 0.14 0.01 0.15 0.14 0.01

(0.68) (0.64)
High Wind Risk (1 = yes) 0.04 0.04 0.00 0.05 0.05 0.00

(0.91) (0.83)
Observations 852 852 662 656

This table shows summary statistics by treatment condition and tests for treatment balance. At the farmer
level the right hand part of the table (the analysis sample) is those farmers that did not drop out. At the
plot level the right hand part is those plots that have a non-missing value for total damages. Observations
are given for the full sample. Some rows are based on a smaller sample due to missing values of the specific
variable.
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Figure 2: Average share of harvest lost by preference ranking for insurance. The left panel shows the mean and the right panel
the standard deviation of the share of harvest lost.

6.1 Preference Ranking of Plots for Insurance

The empirical tests for adverse selection use the fact that by design the farmers were in-
centivized to reveal their top choice for insurance. The data also include their ranking for
their top three choices for insurance. Even though the second and third choices are not
incentivized the farmers have little reason to not reveal their preference, so it is instructive
to examine how they made these choices. In Figure 2 I investigate these choices (In this
figure I exclude first-choice plots of farmers in the choice group so that choice and insurance
status are independent). In the first four panels I use baseline survey data, while the last
two panels are based on damage data reported after harvest. In the top left panel I report
average values of the flooding index by preference rank ordering. It is clear that farmers
strongly prefer insurance on plots that they deem at high risk of floods, as indicated by the
monotonic relationship from +.17 for first-choice plots down to -.29 for plots outside the
top three. In the top right panel I see no pattern of plot ranking based on the risk of rat
infestations (even though this risk was reported as being very important in qualitative inter-
views). In the middle panel on the left I plot the average values of an indicator of the plot
having a high risk of harvest losses due to the crop disease tungro, which spread by insects
and often brings devastating harvest losses in this area. This risk is clearly an important
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characteristic that farmers use in their choice: 17% of first-choice plots are deemed (by the
farmer) to be at high risk of a tungro infestation compared with 14% and 13% for the second
and third choices, and only 10% of the plots outside the top 3. The middle panel on the
right shows that, due to the features of the experiment, plot size is an important attribute
that farmers use in their choice. This affecs how we understand the estimates of adverse
selection later in this section, and I discuss those implications in Section 6.3. In the last
two panels I use follow-up data on self-reported damages to plot the average and standard
deviation of damages by plot ranking. These panels suggest that farmers indeed know which
plots are likely to be damaged and can successfully rank them in order. Both panels show
a monotonic relationship from first-choice plots with an average harvest loss of 27% (and
standard deviation (SD) of 28) to second- and third-choice plots with harvest losses of 24.4%
(SD 27.2) and 21.2% (SD 25.5), and finally to harvest losses of 20.7% (SD 23.1) for plots
that are not ranked among the top three.

6.2 Baseline Predictors of Insurance Choice

To get a fuller picture of how farmers in the study select their first-choice plot I estimate
a conditional logit model of insurance choice. The outcome variable is a binary indicator
of whether the plot was chosen as the farmers’ first choice, and the choice is conditional
on the portfolio of plots the farmer is tilling in that season. I include the size of the plot
(standardized to zero mean and unit standard deviation) and the following risk character-
istics of the plot: the flooding index (a standardized variable) and indicators denoting that
the farmer evaluated the plot as being at high risk from rats or tungro. Aside from the
risk characteristics of the plot, whether the farmer owns the plot, or if not, the type of con-
tractual arrangements the farmer has with its owner, could be an important determinant of
plot choice. I capture this dimension by including indicators for land ownership and land
contractual arrangements. The categories included are sharecropping, mortgaged in, lent for
free and owned.27 The remaining plots, those under fixed rent contracts, are the reference
category in the estimation. In the first season the baseline survey did not include questions
on risk characteristics of plots, so data from that season are excluded from the analysis and
the estimation is performed on 486 farmer-season portfolios with a total of 1263 plots.

Figure 3 summarizes the results of the estimation. The figure shows parameter estimates
as odds ratios and gives 95% confidence intervals. Significance at the 5% level can be visually
assessed from the figure by whether the confidence interval includes 1. Three characteristics
of the plot are statistically significant in predicting the plot choice: (1) the flooding index,

27When a plot is ’mortgaged in’ it is tilled by this farmer as interest payment for an outstanding loan to
another farmer. Plots are lent for free primarily within families, such as children tilling their parents plots.
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Figure 3: This figure summarizes results of a conditional logit model of plot choice based on baseline predictors.

(2) the size of the plot and (3) whether the farmer owns the plot. I estimate that a plot
with a higher flooding index value than another plot by 1 SD is 1.57 times more likely to be
chosen, but other risk characteristics are not related to plot choice in a statistically significant
way. Likewise, a plot that is 1 SD (0.4 hectares) larger than another plot is more likely to
be chosen by a factor of 2.2. Plots that are tilled under fixed rent, sharecropping, or are
mortgaged in are chosen at similar rates but those owned by the farmer are clearly favored
(the estimated odds ratio is 2.2). Plots lent in for free also seem to be favored but this effect
is statistically insignificant.

The strong association between the flooding index and insurance choice is additional
evidence that the farmers are engaged in a substantial amount of adverse selection. In the
next section, I confirm this finding using data on damages and payouts and test for and
estimate the degree of moral hazard.

6.3 Main Empirical Specification and Results

The main empirical specification is a within-farm specification (that is, including farm-season
fixed effects) with indicators for insurance status and first-choice plot:

Dij = β0 + β1αij + β2Cij + β4Aij + λi + ϵij (5)
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The outcome variables (damages, payouts, or plot characteristics) are described in the next
section. Here α is an indicator for insurance coverage, and C is an indicator for the plot
chosen as the farmer’s first-choice plot. A is the area (size) of the plot in hectares (centered
at the sample mean), and λi is a farm-season fixed effect. The reason for the additional
area control is a possible correlation between area and plot risk characteristics. If A is
positively correlated with θij (inherent riskiness) or ψij (cost of effort), the additional control
for area guards against the mistake of attributing selection on area to selection on other
characteristics.28

I estimate this equation excluding first-choice plots of farmers that were in the choice
group. This approach means, given the randomization of insurance, that plot choice (and
the indicator Cij) is independent of the insurance allocation (αij).29 This approach provides
unique variation in the data that can be used to separately identify adverse selection and
moral hazard. Given the randomized allocation of insurance in this sample, the β1 coefficient
captures the effect of insurance on a plot relative to uninsured plots in the farmer’s portfolio
(since farmer-season fixed effects are included). When the outcome variable is damages,
a positive β1 coefficient suggests moral hazard behavior in preventing damages on insured
plots. The β2 coefficient likewise captures the degree to which damages (or payouts) are
higher on first-choice plots relative to other plots in the farmer’s portfolio (or, in the case of
plot characteristics, more adverse). I can therefore test for adverse selection by evaluating
whether this coefficient is positive.

Figure 4 summarizes the results of empirically estimating Equation 5. The figure reports
parameter estimates and 95% confidence intervals for β1 (left panel) and β2 (right panel) for
four outcome variables (listed to the left of the figure). In each case the confidence interval
is constructed using standard errors that are corrected for spatial correlation according to
the spatial GMM method in Conley (1999). These results are also reported in Columns 1,
3, 5 and 7 in Table 3.

The specification above implicitly assumes a constant treatment effect of the insurance
28Empirically, whether the plot size is included as a control has very little impact on the results (adverse

selection estimates are about 5% higher without this control) and adding higher order terms of plot size has
no effect. The effects reported are also not driven by a large shift in per-hectare harvest: if I replace the
outcome variable with per-hectare harvest then I find that first-choice plots have 1.8% lower, and insured
plots 0.6% higher, harvest than other plots (these specifications include a control for area). In theory, we
would expect the harvest to be lower on insured plots due to moral hazard but in practice (with finite sample
sizes) it is hard to detect this effect given that damages due to pests and crop diseases are only a small part
of the process that determines overall harvest.

29As a reminder, for those not in the choice group the insurance is allocated at random using block
randomization within the farm. Farmers in the choice group get insurance on their first-choice plot and
the rest of the plots are allocated insurance as though their farm consisted only of the plots excluding the
first-choice plot. Therefore, excluding the first-choice plot of the choice group provides a sample of plots for
which insurance status is allocated at random.
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Main Adverse Selection and Moral Hazard Results

Figure 4: This figure summarizes results of regressions based on Equation 5. Each row represents a separate regression, differing
only in the outcome variable. Estimated coefficients and 95% confidence intervals for β1 (insurance) are shown in the left panel
scaled as a percentage of non-insured plots and for β2 (first choice) in the right panel scaled as a percentage of non-first-choice
plots. The estimations with damages as an outcome variable (the first three rows) are based on 1739 observations with 695
farm-season fixed effects in which I use the full sample except that I exclude first-choice plots of farmers in the choice group.
The last estimation (payout per hectare) is based on 691 insured plots and, although all 492 farmers with some insurance are
included in the regression, the identification is based on only 92 farmers who had both their first choice plot and at least one
other plot insured. Standard errors are corrected for spatial dependence using the method developed by Conley (1999).

coverage across first-choice and other plots. I can relax this by including interactions between
choice and insurance coverage. Given the design of the experiment, this interaction terms
identifies selection on moral hazard since it estimates how much greater the moral hazard
effect is on first choice plots compared to other plots. Columns 2, 4 and 6 in Table 3 report
on models with these interactions included. Unfortunately the data has low statistical power
to test whether these interactions are present but I develop and perform an alternative test
for this effect in Section 8.

6.3.1 Moral Hazard Results

I first describe the findings in the left side panel of Figure 4, which reports the coefficient
on insurance allocation for a plot in the preceding regressions. The coefficient on insurance
identifies the causal effect of insurance on the difference in farming practices between insured
and uninsured plots. I find evidence for moral hazard in preventing pest and crop disease
damage but not in preventing typhoon and flood damage. Damages from pests and crop
diseases are on average 1.66 percentage points (21.5%) larger on insured plots compared
to uninsured plots of the same farmer. This finding is robust to using alternative outcome
variables (such as using the value of harvest lost due to these specific causes, or using the
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log of this value) and to including of the full set of plot controls. These findings suggest
that moral hazard accounts for 21.5

100+21.5
= 18% of insurance payouts under the pest and crop

disease coverage and 7% of all payouts under the comprehensive insurance coverage. This
moral hazard effect is observed even though the insurance coverage is far from complete,
suggesting that moral hazard is a significant constraint to offering insurance contracts with
higher coverage levels.

There are at least two issues to consider in interpreting these findings. First, since the
damages are self-reported farmers may overstate damages on insured plots. The fact that we
do not see any moral hazard effect on typhoons and floods is evidence against this hypothesis
since there is no reason to expect farmers to overstate less on that dimension. In addition,
as we will see in Section 7, farmers appear to use less fertilizer on insured plots, which
(as we saw in the model) is consistent with moral hazard behavior. Second, this estimate
may overstate the moral hazard effect if there are important spillovers to other plots in the
farmers portfolio. These are discussed in Section 7.3.

6.3.2 Adverse Selection Results

In the results reported in the right panel, I estimate that total damages are 4.6 percentage
points (20%) greater on first-choice plots compared to other plots, which have a damage rate
of 22.2%. This outcome is in equal parts due to higher damages from typhoons and floods
(2.45 percentage points) and pests and crop diseases (2.1 percentage points). Both of these
estimates are statistically significant and suggest that first-choice plots have 16.3% higher
damages from typhoons and floods and 29.2% higher damages from pests and crop diseases.
Finally, in the last row of Figure 4 (and Column 7 of Table 3), I report estimates of Equation
5 on the sample of insured plots using payouts as an outcome variable. The outcome variable
here is payouts per hectare as a share of the average harvest value per hectare (for all plots).
I find a statistically significant difference, with first-choice plots having 72% greater payout
than other plots.

The evidence on damages and payouts, along with the evidence from the last section
on the associations between baseline variables and insurance choice, shows that the farmers
have substantial private information about the risk profiles of their land and are able to
leverage this information in their relationship with the insurance provider. To interpret
the magnitudes and understand better how farmers are making these decisions it is worth
considering several key factors that influence the plot choice decision, namely risk preferences,
geographic heterogeneity and the tradeoff between plot size and risk of damage.

First, because farmers in the study do not purchase insurance they may, as a group, be
less risk averse than those farmers who would purchase insurance in the market. This may
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complicate interpretation if individuals with a high degree of risk aversion, and therefore
higher demand for insurance, tend to farm low-risk land or work harder to prevent damages.
This could possibly result in what de Meza and Webb (2001) term advantageous selection.

To investigate how the findings might apply to a more risk averse group, I use a question
from the baseline survey that asked farmers how willing they are, on a scale from 1 to 7,
to take risks on their farms. I categorized 27% of the farmers as having relatively high risk
aversion based on this measure. I use this measure in two ways. First, I estimated a simple
regression of damages on risk aversion, reported in Table H.6. The risk aversion measure is
not correlated with typhoon and flood damages, but pest and crop disease damage is lower
on the farms of more risk-averse farmers. This relationship holds and is almost identical
after controlling for age, education, and the number of plots. This outcome is likely due
to risk-averse farmers taking greater care to prevent damages from pests and crop diseases.
Although this simple analysis is subject to bias due to omitted variables, this pattern is
consistent with the potential for risk preferences to reduce or eliminate the adverse selection
in the insurance for pests and crop diseases or even to induce advantageous selection. This
could be the case if, for instance, the true effect of risk aversion is much stronger but I
estimate a smaller effect because of measurement error in risk aversion. At the same time,
there appears to be little evidence of a risk preference effect in the insurance for typhoons
and floods. Next, I estimated models of the form

Dij = β0 + β1Cij + β2Cij × Zi + β3Aij + λi + ηij (6)

where Dij, Cij, Aij and λi are as before, but I now include an interaction term between first
choice and a farmer- or farm-level variable Zi. I estimate three models, varying the outcome
between overall damages, typhoon and flood damage or pest and disease damage, and here
Zi is the risk aversion measure above. Here ηij is a disturbance term, and I cluster standard
errors at the level of the farm-season (rather than using the spatial clustering since the
variation of the interaction variables is at the farmer level make within-farm correlations a
greater concern).

The findings are reported in Figure 5. In the three graphs on top, no interaction with
risk aversion is apparent for typhoon and flood damage but a substantial negative (and
statistically significant) interaction effect is present for pest and disease damage. That is, I
find less adverse selection in pest and disease damage among the more risk-averse farmers.
In fact, this negative interaction effect is large enough to cancel out the previous adverse
selection findings so that I find no adverse selection in pest and disease damage for risk-
averse farmers. This pattern again supports the view that advantageous selection based on
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Figure 5: This figure summarizes results of regressions based on Equation 6. The outcome variable are the usual share of
harvest losses due to all causes (left), typhoons and floods (middle) and pests and crop diseases (right). The risk aversion
measure is an indicator based on a baseline question of how willing the farmer is in taking risks on her farm. The “Distance”
variable is an indicator that is one if largest distance between two plots on the farm falls above the median for such distances
across all farms. The top three panels are based on 670 farmers with 1654 plots and the bottom three on 612 farmers with 1497
plots (due to missing observations in the risk aversion and distance measures). The confidence intervals are at the 95% level.
Standard errors are corrected for spatial dependence using the method developed by Conley (1999).

risk preferences may ameliorate the adverse selection problem for insurance against pests
and crop diseases but not for insuring typhoon and flood damage.

An important heterogeneity in the data is that some farmers have plots in close proximity
to each other while others have more spread out farms. We can use this to get a sense of
the risk heterogeneity that the farmers are able to take advantage of in selecting plots for
insurance. To investigate, I again use the specification in Equation 6 but replace the Zi
variable with an indicator for how spread out the farm is (it is equal to one if the distance
between the two plots furthest apart is larger than the median for the sample). In the three
graphs at the bottom of Figure 5 I show that there is greater adverse selection on farms that
are more spread out. I estimate that for farms that are less spread-out, the adverse selection
effect in total damages is 1.8 versus 7.4 on more spread-out farms. This suggests that the
risk heterogeneity that the farmers can take advantage of is larger across different parts of
the pricing area than it is across the plots of the typical farm. A natural question here is
whether the insurance company can collect better information and price these contracts at
a finer level (or even at the plot level). Data on how much it would cost to obtain such
information are not available but the type of information that can be collected profitably is
substantially constrained by the small size of the premium payments for a typical plot.
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Finally, an important issue derives from the fact that the insurance was given for free
for a specific plot rather than a specific acreage (The latter would have either necessitated
a revised insurance contract and altered procedures by the company, adding substantial
complexity, or it would have required matching payments from the farmers, requiring a
much larger experiment). The farmers therefore have an incentive to select a large plot as
their first choice so the tradeoff between size and risk of damage may influence the adverse
selection estimates reported in Figure 4. To get a sense of how the tradeoff between risk
and plot size affects the adverse selection estimates I performed a simple simulation exercise.
The details and results are described in Appendix F. The results imply that if the insurance
had been awarded in a way that did not reward choosing a larger plot then we would expect
the difference in damages between first choice plots and other plots to be in the range of
38-56% larger.

6.4 Contract Redesign

One possible adjustment in the contract would be to focus on catastrophic losses, for example,
to only pay out if losses exceed 2

3
of the expected harvest. This approach would save on

verification costs and possibly improve demand through lower prices and focus on the events
with the highest utility cost. This approach would, unfortunately, likely lead to even more
adverse selection. In fact, using the specification in Equation 5 I estimate (see Table 4) that
6.7% of first choice plots versus 4.2% of other plots have catastrophic typhoon or flood losses
(above 2

3
). The first-choice plots therefore have 60% higher chance of such catastrophic loss.

This is compared to only a 7% higher chance of typhoon or flood loss above 10%. The same
pattern can be seen in the pest and crop disease insurance. Looking only at catastrophic
losses, which I now define as losses above 1

3
since the average is much lower, I find that first-

choice plots are 36% more likely to have such damage and insured plots are 34% more likely.
This is in contrast to 24% and 11% for damage above 10%, respectively. Taken together it is
clear that the company faces a very difficult adverse selection problem and that shifting to
a more catastrophic coverage would exacerbate both the adverse selection and moral hazard
problems.

7 Moral Hazard and Investment
In this section I examine the impact of insurance on farming decisions using measures on
inputs (fertilizer, pesticides, seeds), outputs and damages. I start by estimating models
similar to these in the last section with an indicator for insurance coverage and farmer-
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Figure 6: This figure shows the estimated β1 (insurance) coefficients and 95% confidence intervals from estimating Equation
7 for a series of outcome variables (listed on the left). When outcome variables are marked as winsorized they have been
winsorized at the 95th percentile (one sided). Each outcome variable is standardized. Standard errors are corrected for spatial
dependence using the method developed by Conley (1999).

season fixed effects. These models show how farmers treated their insured and uninsured
plots differently. But, since the uninsured plots may be affected by insurance coverage on
other plots in the portfolio, I also estimate models in which I drop the farmer-season fixed
effect and include indicators for insurance at the plot level and for getting any insurance (at
the farmer-season level). These models allow me to test whether decisions on an uninsured
plot are affected by insurance coverage on one of the farmer’s other plots.

7.1 Investment

An important feature of the insurance contract is that it does not provide coverage for
yield-enhancing investment such as fertilizer because the payout is based on the share of
the harvest lost instead of the absolute loss. Total loss for two farmers, one headed for a
bumper crop due to heavy fertilizer use and the other for a lackluster harvest because of low
investment, would yield the same payout on a per-hectare basis. As I show in the model
section, given the moral hazard incentives in the insurance contract, this feature implies that
farmers have an incentive to use less variable investment such as fertilizer on insured plots.
We might therefore expect to see lower fertilizer use on insured plots and, because of this
and because of increased damages due to moral hazard, we might also expect lower output.
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I Figure 6 I report results of regressions of the form

Oij = β0 + β1αij + β2Aij + λi + ϵij (7)

where Oij is the outcome (or input) on plot j on farm i, α is insurance coverage, and λi’s are
farm-season fixed effects. For easier reporting I standardized all outcome variables reported
in this figure. For each outcome variable, I give the point estimate (in standard deviation
units) and 95% confidence intervals computed using spatially clustered standard errors.

I find no effect of insurance on the value of harvest, but I find a 5% reduction in average
fertilizer use (p = 0.04). To temper the effect of possible outliers, I also estimated these
models after winsorizing the outcome variables. When winsorizing at the 95th (shown) and
90th percentiles, I find a reduction of 3.6% and 3%, respectively, both significant at the 10%
level. The insurance appears to cause a small reduction in fertilizer use. In contrast to recent
findings for index insurance, the data are clearly inconsistent with insurance resulting in an
increase in variable investment.

7.2 Mechanisms of Moral Hazard

Farmers can manage damages from pests and crop diseases in multiple ways, both individ-
ually and together with neighboring farmers. Individually, the farmer can choose pest- or
disease-resistant seeds and monitor plots closely, removing infected or infested plants and
using pesticides, insecticides, rat poison and other chemicals to both prevent or respond to
an outbreak. Collectively neighboring farmers can limit pest and disease damage through
coordination, including synchronization of planting dates.

Looking at Figure 6 again, the next to last outcome variable is total expenditure on
chemicals (pesticides, insecticides and rat poison) to prevent insured damages due to pests
and crop diseases. Because of moral hazard, farmers might be expected to reduce these
expenditures on insured plots, at least to the degree that they are used to prevent outbreaks.
Once an outbreak is observed, given that the insurance is partial, farmers likely have strong
incentives for applying these chemicals regardless of whether the plot is insured. I find no
difference in this expenditure between insured and uninsured plots.30 This finding could
be either because this is not an important mechanisms for moral hazard in this context or
because the measured expenditures are underestimated because of recall bias.31 The final

30I similarly find (but do not show) no difference when limiting this measure to expenses applied as a
preventative (before any outbreak is observed).

31Some farmers could only give expenditure at the farm rather than plot level and these expenditures are
not included in the measure reported in Column 3. The expenses reported by plot are about 0.5% of the
average harvest value.
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outcome variable in the figure is an indicator variable that is 1 if the farmer reported in a
mid-season survey (right after planting and before realizing damages or harvest amounts)
that the seed used on this plot was chosen in part because it is resistant to pests, insects or
diseases. This measure has some limitations compared to a more objective measure of pest
and disease resistance of the seed chosen, but it has the advantage of being a measure of
the farmers’ beliefs about the seed type chosen. I find that farmers report choosing pest-
and disease-resistant seeds on 15% of control plots but 13% of insured plots, a statistically
significant reduction of 14%.

The reduction in pest- and disease-resistant seeds is one additional piece of evidence
suggesting that the increase in pest and crop disease damage on insured plots observed in
the last section arises from moral hazard and not chance or reporting bias. However, given
the small absolute change in the type of seeds used, this mechanism is unlikely to be the
main driver for the observed moral hazard effect.

Perhaps the most important mechanism – the day-to-day care, managing water and
fertilizer, monitoring for outbreaks and removing infected and infested plants – is very hard
to measure. The agricultural surveys included modules for labor allocation and the available
data allows estimates of large labor costs such as those for planting and harvesting, applying
fertilizer and chemicals, and general monitoring, but these modules were not sufficient to
measure adequately day-to-day care and I therefore omit testing directly for changes in labor
allocation.

7.3 Farm-level Insurance and Background Risk

Insurance was allocated at two levels in the experiments (across farms and across plots within
farms). This design permits testing for whether insurance on one plot affects investments on
other (uninsured) plots on the farm. This can happen through, for instance, scale economies
or reduction in background risk.32

In Figure 7, I report results of regressions of the form

Oijs = β0 + β1αijs + β2Tis + β3Aijs + ωs + ϵijs (8)

where Oijs is the outcome (or input) on plot j on farm i in strata s, αijs is insurance coverage
on plot j, Tis is an indicator for farmer j in strata s being in the insurance group, and ωs’s
are (farm-level) randomization strata fixed effects. For easier reporting, I standardized all

32One example of the scale economies channel is if there is a fixed cost to going to market and purchasing
inputs. If one plot is insured and the farmer consequently does not use pesticides or fertilizer on that plot,
then the fixed cost of purchase is no longer shared across the two plots. As a result, in some cases, the farmer
might also omit these inputs on the uninsured plot.
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Figure 7: This figure reports estimations of Equation 8. Estimates and 95% confidence intervals for β1 are reported in the left
panel and for β2 in the right panel. When outcome variables are marked as winsorized they have been winsorized at the 95th
percentile (one sided). These regressions include 87 (in some cases 86) fixed effects for randomization strata. Standard errors
are clustered at the farm-season level.

outcome variables reported in this figure. Because the variation in T is at the farm-season
level, I am more concerned about correlated outcomes within farms than spatial correlation
so I cluster standard errors at the randomization strata level. The figure reports the point
estimate (in standard deviations) and the 95% confidence interval for each outcome variable.
In principle we might also want to apply a spatial standard error correction but there are
currently no methods to do both at the same time.

Since T is randomized within the strata and α within the farm, β2 identifies the difference
in the outcome of uninsured plots of treatment (insured) farmers versus the plots of control
(uninsured) farmers. It therefore identifies the effect of any insurance at the farm level
on uninsured plots. Likewise, β2 + β1 identifies the difference in the outcome of insured
plots compared to plots of the control (uninsured) farmers, identifying the combined effect
of (some) farm-level insurance coverage and insurance on this specific plot. However, the
identification of β2 is complicated by nontrivial attrition of farmers in the experiments and
particularly by the control group having higher attrition (21%) than the treatment group
(14%). This attrition is not correlated with farmer demographics (see Table 2) but a key
concern is whether it is based on realizations of damages.

The first three models of Figure 7 (from the top) report the results of estimating equation
8 with damages (total, typhoon and flood, pest and crop diseases) as outcome variables. The
estimates for β1 are in the left panel and those for β2 are in the right panel. I estimate β2
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to be close to zero for all damages but positive for typhoon and flood damage, and negative
for pest and crop disease damage. Both of these estimates are statistically significant. The
typhoon and flood effect does not fit with a moral hazard interpretation given the findings
of no within-farm differences across insured and uninsured plots and given that much of this
damage is hard or impossible to prevent. The negative effect on pests and crop diseases is
also hard to explain based on theory. An important possible interpretation of these findings
is that some farmers allocated to the control group who suffered high losses from typhoons
and floods refused the follow up surveys out of disappointment. This possibility may explain
the estimated β2 coefficient for typhoons and floods. It may also partly explain the pest and
crop disease effect since these are negatively correlated (the raw correlation in the control
group is -0.15). Another possibility is that the standard errors for β2 are underestimated,
for instance because I do not correct for spatial dependence in these models (since methods
to do that while also clustering errors within the farm are not currently available).

Because of the above suspicion of differential attrition (at the farm level) based on realized
damages I estimate equation 8 for output and fertilizer inputs in two samples. Models 4
through 7 (from the top) in Figure 7 use the full sample while the next four models use a
sample that is limited to farmers in the bottom three quarters on the distribution of typhoon
and flood damage on their farm (loosing less than 38%). If farmers with very high typhoon
and flood damage are attritting because of disappointment, then this sample would exclude
many farmers in the treatment group that would have attritted had they been allocated to
the control group.

It was quite common for framers to be unable to report fertilizer use by plot. In these
cases we recorded total fertilizer use on the farm. For the analysis in this section we use
a measure of fertilizer use that includes an imputation where I assign fertilizer use to plots
using the ratio of plot size to total farm size as weights when the farmer could only give total
fertilizer expenditure.

For the full sample, all estimates for harvest value and fertilizer expenditure of β2 are close
to zero. For the restricted sample, none of the estimates is statistically significant compared
to zero but the point estimates for fertilizer are negative (about 0.07-0.10SD below zero).
Taking these together, I do not have evidence to reject the hypothesis that farming decisions
on uninsured plots of treatment farmers are unaffected by the treatment. However, this
conclusion could be due to lack of power, particularly if we look at the fertilizer expenditure in
the restricted sample. Interestingly, in the restricted sample β1+β2 is statistically significant
(at the 10% level) compared to zero for fertilizer expenditure both using the raw measure
and after winsorizing at the 95th percentile (p = 0.059 in the former and p = 0.048 for
the latter). This finding is consistent with the interpretation that the insurance coverage
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reduces fertilizer investment. However, these conclusions must come with the caveat that
the β2 estimates (even in the restricted sample) may be biased due to attrition based on
realized damages.

8 Selection on Moral Hazard
In this section, I test for overall adverse selection and separately for selection on “baseline
risk” and for “selection on moral hazard” using measures of predicted damages. The main
idea for the decomposition is presented in Figure 1b. I first compute predicted damages
based on baseline information separately for insured and uninsured plots (for farmers in the
fully random group). Then, I identify overall adverse selection by comparing the predicted
damages for insured first-choice plots to other insured plots of the same farmer – that is, effect
(a) in Figure 1b. I can disentangle adverse selection into two effects: (1) selection on baseline
risk by comparing predicted damages on uninsured first-choice plots to predicted damages
on uninsured other plots – that is, effect (b) in Figure 1b, and (2) selection on intended
moral hazard by taking the difference in predicted change in damages, when moving from
being uninsured to being insured (moral hazard), between first-choice plots and other plots
– that is, effect (c) minus effect (d) in Figure 1b.

In Table H.8 I show that plot characteristics observed by me through a baseline survey
predict 30% of harvest losses (these plot characteristics are described in Section 5). These
characteristics are not observed by the insurance company, and in this section I use them
as a proxy for the full information set that the farmer has about each plot. Some of these
characteristics (or their proxies) might in principle be observable by the insurance company.
However, the company currently does not condition prices on any plot characteristics, likely
because they are too expensive to collect. Instead the company sets prices regionally and
excludes high-risk areas. Although the insurance contract studied is not developed in a
competitive market, the fact that these characteristics are not collected is suggestive evidence
that they are expensive to collect compared to the premiums that could be sustained in this
market.

8.1 Empirical Approach

I now use these variables to construct a measure of predicted damages, which I then use to
decompose the selection into the two conceptually distinct components.
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8.1.1 Adverse Selection without Selection on Moral Hazard

First, I consider the case in which the farmer does not anticipate changes in effort due
to insurance coverage, either because the cost of effort is very high (low) and the farmer
therefore exerts no (full) effort in any scenario, or because the farmer is myopic and does
not take the anticipated effort response into account when selecting a plot for insurance. In
Section 4.3, I found that in this case the farmer chooses the plot that maximizes expected
payouts. That is, given that expected damages according to the model when no effort is
applied are 1

2
Ajθj, the farmer chooses the plot that has the highest Ajθj (area times baseline

risk). I will test for adverse selection by comparing this model to the null hypothesis of
no adverse selection, where farmers instead simply choose their largest plot. Based on the
per-plot utility output derived in the model (Equation 16), the utility of insurance on plot j
is v∗j = uj(αj = 1)− uj(αj = 0) = cAjθj where c = 1

2
L is constant. Let θ̄ = 1

N

∑N
j=1 θj. We

can then decompose this utility into

v∗j = cAj θ̄ + cAj(θj − θ̄) (9)

Now, under the assumption that the farmer ignores any effort response to insurance, the
farmer chooses insurance based on E [Dj|θj] = 1

2
Ajθj and I can empirically proxy for the

utility by ûj = AjÊ
[
Dj|θobsj

]
where θobsj is the portion of risk observable to me based on the

baseline characteristics. To empirically estimate 9, I use a conditional logit with the choice
conditioned to the portfolio of each farmer (McFadden, 1974). The estimation equation is

Prob(Cij = 1) = Λ(α0 + α1Ê [D|X, I = 1] + α2Aij) (10)

where Λ is the conditional logit function and Cij = 1 if farmer i chose plot j as her first
choice.33 To test the model I include a term for area because if no adverse selection is present,
farmers are predicted to choose their largest plot. Here α1 > 0 provides a test for adverse
selection.

8.1.2 Decomposition of Selection on Baseline Characteristics

I now allow that farmers may be sophisticated and take into account their endogenous
provision of effort on insured plots. Let êIj be the farmer’s optimal choice of effort on plot j
if the plot is insured, and likewise ê0j for an uninsured plot. Now, again based on Equation

33Strictly the third term should be multiplied by the expected damages for the average plot,
Ê
[
D|X̄, I = 1

]
, but this does not affect the estimate of α1.
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16, the utility of insurance coverage on plot j can in this case be written as

v∗∗j = uj(αj = 1)− uj(αj = 0) =

Utility from coverage of inherent risk︷ ︸︸ ︷
1

2
Ajθj(1− ê0j)L︸ ︷︷ ︸

vb

− ρ

12

[
(1− L)2 − 1

]
A2
jθ

2
j (1− ê0j)

2

+

vm︷ ︸︸ ︷
1

2
Ajθj(ê

0
j − ê1j)L︸ ︷︷ ︸

Utility of coverage

for moral hazard

+
ρ

12
A2
jθ

2
j (1− L)2

[
(1− ê0j)

2 − (1− ê1j)
2
]

︸ ︷︷ ︸
Utility loss due to higher

variance through lower effort

+ Ajψj(ê
0
j − ê1j)︸ ︷︷ ︸

Utility gain from

saved effort

(11)

I can proxy for the first and third terms (labelled vb and vm above) in this utility from data
and use this to test for the presence of selection on the ability to engage in moral hazard.
That is, if I define vb = 1

2
Ajθj(1− ê0j)L and vm = 1

2
Ajθj(ê

0
j− ê1j)L then the empirical analog of

these expressions are: v̂b = AijÊ [D|X, I = 0] and v̂m = Aij(Ê [D|X, I = 1]−Ê [D|X, I = 0]).
To test separately for the two types of selection I estimate a conditional logit of the form:

Λ(Cij) = α0 + α1v̂b + α2v̂m + α3Aij + ϵij

= α0 + α1Ê [D|X, I = 0] + α2(Ê [D|X, I = 1]− Ê [D|X, I = 0])

+ α3Aij + ϵij. (12)

Now α1 > 0 provides a test for selection based on what could be called baseline risk, that
is, on 1

2
θj(1− ê0j) = E [D|I = 0]. The last term in the Equation 11 is positive if and only if

α2 > 0. Therefore, given that the cost of effort is positive (ψ > 0), α2 > 0 provides a test
for selection based on the plot-specific utility of saved effort.

8.1.3 Predicted Damages Based on Baseline Characteristics

To empirically estimate 10 and 12, I must first obtain empirical estimates of predicted
damages Ê [D|X, I = 0] (for uninsured plots) and Ê [D|X, I = 1] (for insured plots). In
Table H.9 I estimate models of the form:34

Dij = β0 + β1Xij + β2Xij1(dry season) + λi + ηij (13)

separately for insured and uninsured plots of farmers in the pure randomization group (Group
A). Here X indicates the baseline characteristics used for prediction (the flood index and

34The estimates given in this table are for the full sample, but to obtain bootstrapped standard errors,
this prediction is repeated for each bootstrap sample.
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indicators for medium or high risk from rats or tungro), λi’s are farmer-season fixed effects
and ηij is an error term. I then use the predicted values from these two regressions as my
measures of Ê [D|X, I = 1] and Ê [D|X, I = 0].

8.2 Results on Estimated Selection Effects

Using these predicted damages, I can now empirically estimate equations 10 and 12. Table
5 presents these results. In each case, I estimate a conditional logit model with controls for
plot size, land ownership and contractual arrangements. For all estimations in this table, I
perform 500 bootstrap replications to estimate the predicted damages and the choice models.
Although I use only farmers who were in the full randomization group (Group A: Received
insurance on half of plots at random) to estimate the predicted damages, I use the full sample
when estimating the choice models presented in this table (since the choice is made ahead
of the randomization).

In Column 1, I estimate equation 10 and find strong evidence for adverse selection. A 1
percentage point increase in predicted damages increases the odds of a plot being chosen by
8%. In Column 2, I estimate equation 12 and find strong evidence for adverse selection on
baseline risk (suggesting again 8% increased odds). The estimate in the third row of Column
2 is consistent with selection on moral hazard. Farmers are estimated to have a 7% increased
odds (significant at the 10% level) of choosing a plot for each percentage point increase in
the difference of expected damages between insured and uninsured plots.

These findings imply that farmers select not only on the baseline risk of plots (that is,
θ(1− ê0) in the model) but also on the cost of effort since a positive α3 coefficient in Equation
12 implies that farmers also take into account the potential of saved effort when choosing
plots for insurance.35

9 Conclusions
In contrast to the setup of a typical randomized experiment, the experiment in this paper in-
volved a two-step procedure in which farmers made a choice in the first stage that determined
randomization probabilities in the second stage. Chassang, Padró i Miquel and Snowberg
(2012) studied a similar mechanism that they term selective trials in which agents in an
experiment make probabilistic choices. In contrast to Chassang, Padró i Miquel and Snow-
berg (2012), where agents choose how much to pay for participation in a program (though
elicitation of willingness-to-pay), the farmers in this experiment chose between alternative

35In the framework of the model, farmers prefer plots with high Ajψj(ê
0
j − ê1j ).
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(free) treatments.36 The experiments studied by Chassang, Padró i Miquel and Snowberg
(2012) can in theory identify the full distribution of marginal treatment effects (MTE’s)37,
including the degree of essential heterogeneity, while the experimental setup here only iden-
tifies essential heterogeneity (manifesting as selection on moral hazard) in a relative sense.
This approach is nevertheless a new experimental setup that may be useful (and potentially
more practical) in some settings.

The empirical results show that farmers can leverage a great deal of private information
when engaging with the crop insurance provider. This private information includes land
features, actions, and anticipated actions, giving rise to adverse selection, moral hazard, and
selection on moral hazard. I find strong evidence for adverse selection in both the insurance
for typhoons and floods and the insurance for pests and crop diseases. I also find that the
pest and crop disease coverage leads to moral hazard and selection on moral hazard, and
it provides (small) disincentives for investment. Interestingly, I find none of these moral
hazard effects among the subsample of risk averse farmers suggesting that these effects may
be limited among paying customers who would tend to be the more risk averse. However,
this may not apply to customers in PCIC’s portfolio who often carry insurance coverage
through combined credit and insurance contracts, which may draw in the less risk averse.

For a well-functioning market (even if it includes some subsidies), the insurance contracts
need to either separate the low- and high-risk types into different contracts or the low-risk
types must be willing to enter into a pooling contract. The large differences in risk that are
evident from the data make the latter difficult. This is particularly true since the contract
is covering risk that is relatively routine (13.6% of insured plots get some payout) and often
nowhere close to catastrophic (23% of payouts are for less than 33% total loss). Assuming
that farmers are substantially risk averse, such a contract is less valuable (dollar-for-dollar)
than one that exclusively covers catastrophic losses. Adjusting this contract towards covering
only the catastrophic losses would reduce verification costs (per unit of premium) and may,
through a lower price and greater coverage of events with high utility cost, improve demand.
But, based on the empirical findings, this change in design is likely to result in even greater
adverse selection and moral hazard problems.

To make progress on designing insurance products for small scale farmers it is important
to find the right balance between basis risk and asymmetric information problems and at the

36Here I think of a farmer with two plots being given the choice between two treatments. In treatment A,
the farmer receives insurance on plot 1 but not on plot 2 and in treatment B the farmer receives insurance
on plot 2 but not on plot 1.

37In the recent literature the concept of the MTE was introduced and developed in Heckman and Vytlacil
(2005). According to Heckman (2010), this concept was first introduced by Bjorklund and Moffitt (1987)
and further developed in Heckman and Vytlacil (2007).
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same time expand the frontier of what is possible (e.g., through better data that can reduce
one or both of these). This paper has shown that there are very substantial asymmetric
information problems with the crop insurance for rice in the Philippines and that efforts to
redesign the program by focusing only on specific hazards (such as only typhoons or floods, or
only pests and crop diseases), or on covering only catastrophic losses, would lead to similar or
worse problems with asymmetric information. The results on catastrophic losses show that
new products that combine index insurance with catastrophic coverage through traditional
crop insurance are unlikely to work. The most promising path forward is likely improved
data collection through technology.
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Table 5: Empirical Estimates of a Selection Model Based on Predicted Damages
Outcome: Indicator for first choice plot

Odds-ratio Odds-ratio
[95% CI] [95% CI]
(p-value) (p-value)

Predicted Total Damages:
If Insured 1.08 ∗ ∗∗

[1.04, 1.12]
0.00026

If Not Insured 1.08 ∗ ∗∗
[1.04, 1.13]
0.00031

Difference (Insured - Not Insured) 1.07∗
[0.99, 1.14]
0.073

Land Arrangement (ref. = Sharecropping)
Owner of plot 2.09 ∗ ∗ 2.10 ∗ ∗

[1.06, 4.10] [1.08, 4.07]
Land under fixed rent 0.84 0.85

[0.42, 1.69] [0.39, 1.83]
Land mortaged in 0.61 0.62

[0.27, 1.40] [0.27, 1.39]
Land lent for free 1.53 1.56

[0.46, 5.12] [0.45, 5.40]
Other predictors of choice

Plot size 7.55 ∗ ∗∗ 7.48 ∗ ∗∗
[3.72, 15.3] [3.71, 15.1]

Number of farmer-seasons 484 484
Observations 1259 1259
Columns 1 and 3 present empirical estimates of Equation (10). The coefficients reported are odds ratios
and in the brackets below I report 95% confidence intervals. I use the full sample for the choice models but
predict damages only using the sample of farmers in the full randomization group (except that I exclude
the data from the first season since the plot characteristics were not collected in that season). All models
are calculated using a cluster bootstrap procedure (clustering at the farm-season level) with 500 repetitions
of the prediction and choice estimation (to account for the fact that the predicted damages are computed
values). Significance stars: * < 0.1; ** < 0.05; *** < 0.01.
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ONLINE APPENDIX

A Additional Results on the Model
This section includes additional model derivations and extensions that were not included
in the main paper due to space limitations. First, I present the farmers problem and then
derive the optimal effort. Next, I present the value function for insurance choice (but,
again due to space constraints, the proof of optimal insurance choices are presented in the
Online Appendix). Finally, I extend the model to include a productive investment input to
understand possible interactions between moral hazard and fertilizer investments.

A.1 Farmers maximization problem

Given the uniform distribution for the share of harvest lost, S, we have: E [Sj|ej] = 1
2
θj(1−ej)

and V ar [Sj|ej] = 1
12
θ2j (1− ej)

2. This implies that

E [Π|(α, e)] =
N∑
j=1

Aj

(
1− 1

2
(1− αjL)θj(1− ej)

)
− C(e)

and V ar [Π|(α, e)] = 1
12

∑N
j=1A

2
j(1 − αjL)

2θ2j (1 − ej)
2. The farmers maximization problem

is to choose one plot as her preferred plot for insurance and then choose effort level on each
plot conditional on its insurance coverage:

max
α,e

N∑
j=1

[
Aj

(
1− 1

2
(1− αjL)θj(1− ej)

)
− ρ(1− τ)

1

12
A2
j(1− αjL)

2θ2j (1− ej)
2

]
− C(e)

A.2 Optimal Effort

Optimal effort given insurance coverage is given by the solution to:

ê(α) = arg max
e

N∑
j=1

[ Aj

(
1− 1

2
(1− αjL)θj(1− ej)

)

− ρ(1− τ)
1

12

N∑
j=1

A2
j(1− αjL)

2θ2j (1− ej)
2 ]− C(e)
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The first order condition for effort is

∂C

∂ej
= Aj

[
(1− αjL)θj

2
− ρ(1− τ)Aj(1− αjL)

2θ2j
−2(1− ej)

12

]
= Aj(1− αjL)θj

[
1

2
+ ρ(1− τ)Aj(1− αjL)θj

1− ej
6

]
= Wj

[
1 + ρ(1− τ)Wj

2(1− ej)

3

]
= 0

where Wj = Ajwj, and I define wj = 1
2
(1− αjL)θj as the per-hectare harvest at risk on plot

j (i.e., the expected monetary loss if no effort is applied).38 This amount will be prominent
in the calculations below and I use it as a convenient shorthand.

The first order condition for effort implies that:

Ajψj =Wj

[
1 + ρ(1− τ)Wj

2(1− ej)

3

]
⇔ ρ(1− τ)Wj

2(1− ej)

3
=
Ajψj
Wj

− 1

⇔ 1− ej =
3Ajψj

2ρ(1− τ)W 2
j

− 3

2ρ(1− τ)Wj

⇔ ej = 1− 3Ajψj
2ρ(1− τ)W 2

j

+
3

2ρ(1− τ)Wj

⇔ ej = 1− 3

2

ψj − wj
ρ(1− τ)Ajw2

j

(14)

For an interior solution we must have ej ∈ (0, 1). This implies for an interior solution we
must have ej > 0 ⇔ ψj < wj +

2
3
ρ(1 − τ)A2

jw
2
j and ej < 1 ⇔ wj < ψj. This implies that

optimal effort is given by:

êj(αj, θj, ψj, Aj, ρ, τ) =


0 if ψj ≥ wj +

2
3
ρ(1− τ)Ajw

2
j

1− 3
2

ψj−wj

ρ(1−τ)Ajw2
j

if wj < ψj < wj +
2
3
ρ(1− τ)Ajw

2
j

1 if ψj ≤ wj

(15)

Figure I.1 depicts this function for a given plot, both when it is insured and when it is not
insured.

38The second order condition for a local maximum is −ρ(1− τ)
W 2

j

6 < 0, which is always satisfied.

54



A.3 Value Function for Insurance Choice

Given the optimal effort êj(αj, θj, ψj, Aj, ρ, τ), the utility output on plot j is:

uj(αj, θj, ψj, Aj, ρ) = Aj − Ajwj(1− ê(αj, ψj, ρ, Aj, wj))

− ρ(1− τ)

3
A2
jw

2
j (1− ê(αj, ψj, ρ, Aj, wj))

2

− Ajψj ê(αj, ψj, ρ, Aj, wj) (16)

Therefore, the correct value function for insurance choice used by the fully sophisticated
farmer is V (α) =

∑N
j=1 uj(αj, θj, ψj, Aj, ρ) and her maximization problem when choosing the

plot to designate as first choice is maxα V (α) subject to αj ∈ {0, 1} and
∑N

j=1 αj = 1. In
contrast, the less sophisticated (partially myopic) farmer bases her insurance choice decision
on plot specific utility that does not take into account the effect of insurance on effort – that
is, she assumes an effort function êmyopic(θj, ψj, Aj, ρ) = ê(0, θj, ψj, Aj, ρ) and an associated
utility (umyopicj ) and value function (V myopic), obtained by substituting êmyopic for ê in the
utility output (equation 16) and substituting umyopicj for uj in the value function.

A.4 Extending the Model with Productive Investment

Farmers expend effort and resources not only to prevent damages but also to increase yield
through other means. I now extend the model to allow for the use of a productive investment
input, such as fertilizer. In this section α (insurance) is not a choice variable because the goal
is to understand how effort and investment interact in response to exogenous insurance provi-
sion and to empirically test these implications using the randomized experiment. Output on
a plot when no damages occur is now assumed to be G(fj) instead of 1, where G is increasing
and concave and fj is the amount of investment input applied to plot j. I assume the price of
the investment input is pf so that the cost function for investment is F (f) = pf

∑N
j fj. The

farmer jointly determines the level of effort and investment across a portfolio of plots. The
profit function is now defined as Π(e, f) =

∑N
j {G(fj)Aj(1−Sj) +αjLSjAj}−C(e)−F (f).

Using the properties of the exponential utility as before the farmers maximization problem
becomes:

max
e,f

N∑
j

Aj

[
G(fj)−

1

2
(G(fj)− αjL)θj(1− ej)

]
− ρ(1− τ)

1

12
A2
j(G(fj)− αjL)

2θ2j (1− ej)
2 − C(e)− F (f) (17)
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Because of how the insurance contract is structured, insurance coverage does not affect the
marginal expected return to the investment input except through changes in effort provi-
sion.39 However, insurance coverage can affect investment through the joint determination
of effort and investment. The insurance coverage incentivizes less effort to prevent damages
which in turn makes additional productive investments (such as fertilizer) less cost effective
and more risky. Under plausible assumptions, this model yields the prediction that insurance
coverage reduces productive investment.40

B Additional Model Results

B.1 Comparative Statics for Effort

If the solution for effort is interior, the comparative statics are the following:

∂e

∂θj
=

∂e

∂Wj

∂Wj

∂θj

=

[
−(−2)

3Ajψj
2ρ(1− τ)W 2

j

− 3

2ρ(1− τ)W 2
j

]
(
1

2
Aj(1− αjL))

=
6Ajψj − 3Wj

2ρ(1− τ)W 3
j

(
1

2
Aj(1− αjL)) > 0 (by ??) ∂e

∂ψj
= − 3Aj

2ρ(1− τ)W 2
j

< 0

∂ê

∂Aj
> 0

∂e

∂ρ(1− τ)
=

3(Ajψj −Wj)

4ρ2(1− τ)2W 2
j

> 0

That is:
39Insurance coverage does reduce the variance of returns and can therefore impact investment directly

(i.e., not through incentives for less effort provision). Given farmers risk aversion, this direct effect provides
incentives for more investment.

40To illustrate this prediction, first note that the first-order condition with respect to investment is pf =
G′(fj){Aj

[
1− 1

2θ(1− e)
]
− 1

6ρ(1−τ)A
2
j (G(fj)−αjL)θ

2
j (1−ej)2}. Now, taking the derivative of this equation

with respect to effort, we have:

∂2G

∂f2
∂f

∂e
=

−pf{

>0︷ ︸︸ ︷
1

2
θjAj − 1

12ρ(1− τ)θ2jA
2
j


assumed small︷ ︸︸ ︷

2
∂G

∂f

∂f

∂e
(1− ej)

2 −
>0︷ ︸︸ ︷

2(G(f)− αjL)2(1− ej)

}
(Aj

[
1− 1

2θj(1− ej)
]
− 1

6ρ(1− τ)A2
j (G(fj)− αjL)θ2j (1− ej)2)2

< 0

To obtain the final inequality I assume the first term in the bracket is small relative to the second term.
This assumption seems reasonable since the first term is the product of two marginal effects (on G and f)
whereas the second term includes the level of G(f)−αjL and insurance coverage is far from complete. Given
that G is assumed concave, we have ∂f

∂e > 0; that is, reduced preventative effort reduces investment.
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1. ∂ê
∂θj

> 0 (effort is increasing in the inherent riskiness)

2. ∂ê
∂ψj

< 0 (effort is decreasing in cost of effort)

3. ∂ê
∂Aj

> 0 (effort is increasing in area)

4. ∂ê
∂ρ
> 0 (effort is increasing in risk aversion)

5. ∂ê
∂τ
< 0 (effort is decreasing in informal risk sharing)41

These comparative statics also apply at the lower corner – that is, for the probability that
effort is positive. More formally, if ψ follows a distribution F , we define ψ̄j =

3Wj+2ρ(1−τ)W 2
j

3Aj

and pj = Prob(êj > 0) = Prob(ψj < ψ̄j) = F (ψ̄j), then ∂pj
∂θj

> 0, ∂pj
∂ρ(1−τ) > 0 and ∂pj

∂Aj
> 0.

Then

∂p

∂w
=
∂F

∂w
= F ′(ψ̄)

3 + 4ρ(1− τ)W

3A
> 0

∂p

∂θ
= F ′(ψ̄)

3 + 4ρ(1− τ)W

3A

1

2
A(1− αL) > 0

∂p

∂ρ(1− τ)
= F ′(ψ̄)

2W 2

3A
> 0

∂p

∂A
= F ′(ψ̄)

1

6
ρ(1− τ)θ2(1− αL)2 > 0

At the upper corner, the probability that êj = 1 is increasing in θj and wj but unaffected
by ρ or Aj. Then

∂q

∂w
= F ′(ψ̂) > 0

∂q

∂θ
= F ′(ψ̂)

1

2
A(1− αL) > 0

∂q

∂ρ
= 0

∂q

∂A
= 0

B.2 Derivation of Optimal Insurance Choice for a Partially My-
opic Farmer

In this section I show that the optimal insurance choice of a farmer that does not anticipate
her endogenous effort response to insurance is to choose the plot that has the highest expected

41The model assumes that effort is hidden to the informal insurance network, otherwise there may be no
effect here.
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payout. I first define a loss function, Λ, that represents the total harvest losses net of
insurance payouts and net of effort costs used to prevent damages. Define

Λ(α, θ, ψ,A, ρ(1− τ)) =
N∑
j=1

Ajwj(1− ê(αj, θj, ψj, Aj, ρ(1− τ)))

+
ρ(1− τ)

3
A2
jw

2
j (1− ê(αj, θj, ψj, Aj, ρ(1− τ)))2

+ Ajψj(ê(αj, θj, ψj, Aj, ρ(1− τ))) (18)

With this definition, total profits are equal to potential harvest less total losses: Π(α, θ, ψ,A, ρ(1−
τ)) =

∑N
j=1Aj −Λ(α, θ, ψ,A, ρ(1− τ)). Since the first term is not impacted by the farmers’

actions, she chooses insurance to minimize costs (effort and damages) from natural hazards:

α̂ = arg min
α

Λ(α, ψj, ,ρ(1− τ),A,w) (19)

Since the farmer does not take into account her anticipated moral hazard response to
insurance then she chooses a plot for insurance assuming she will apply effort equal to
ê(0, ψj, ρ(1 − τ), Aj, wj) on plot j (i.e., effort as if the plot will not be insured). Be-
low I will use êj0 as a shorthand for ê(0, ψj, ρ(1 − τ), Aj, wj). I define the function λ by
λ(x, y) = 1

2
xy + ρ(1−τ)

12
x2y2. Then

Λ(α, θ, ψ,A, ρ(1− τ)) =
N∑
j=1

Aj

{
Ajwj(1− êj0) +

ρ(1− τ)

3
A2
jw

2
j (1− êj0)

2 + Ajψj ê
j
0

}

≡
N∑
j=1

λ(Ajθj(1− êj0), (1− αjL))−
N∑
j=1

Ajψj ê
j
0

Since
∑N

j=1Ajψj ê
j
0 is independent of the insurance choice the λ function will determine the

plot chosen. Now consider two plots, h and l with Ahθh(1− êh0) > Alθl(1− êl0). I will show
that plot h is chosen as first choice plot if this inequality holds for all other plots l in the
portfolio. Let Λ((αh = 1, α−h = 0)) represent the total loss if plot h is insured but all other
plots are not insured. Now the difference in total losses between choosing plot h and plot l
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for insurance is

Λ((αh = 1, α−h = 0))− Λ((αl = 1, α−l = 0))

= λ(Ahθh(1− êh0), (1− L))− λ(Alθl(1− êl0), (1− L))

+ λ(Alθl(1− êl0), 1)− λ(Ahθh(1− êh0), 1)

≡ M(Ahθh(1− êh0)) (20)

where I define the function M relative to a given plot l. Now to show that plot h will be
chosen I must show that M(Ahθh(1− êh0) < 0. Now we have

∂λ(Aθ(1− ê0), (1− αL))

∂Aθ(1− ê0)
=

1

4
(1− αL) +

ρ(1− τ)

6
Aθ(1− ê0)(1− αL)2 > 0

∂λ(Aθ, (1− αL))

∂(1− αL)
=

1

4
Aθ(1− ê0) +

ρ(1− τ)

6
(Aθ(1− ê0))

2(1− αL) > 0

∂2λ(Aθ, (1− αL))

∂Aθ∂(1− αL)
=

1

4
+
ρ(1− τ)

3
(Aθ(1− ê0))(1− αL) > 0 (21)

Given that M(Alθl(1− ê0)) = 0 we have

M(Ahθh(1− êh0)) =M(Ahθh(1− êh0))−M(Alθl(1− êl0))

=

∫ Ahθh(1−êh0 )

Alθl(1−êl0)

∂M(s)

∂Aθ(1− ê0)
ds

=

∫ Ahθh(1−êh0 )

Alθl(1−êl0)

(
∂λ(s, 1− L)

∂Aθ(1− ê0)
− ∂λ(s, 1)

∂Aθ(1− ê0)

)
ds

= −
∫ Ahθh(1−êh0 )

Alθl(1−êl0)

(
∂λ(s, 1)

∂Aθ(1− ê0)
− ∂λ(s, 1− L)

∂Aθ(1− ê0)

)
ds

= −
∫ Ahθh(1−êh0 )

Alθl(1−êl0)

∫ 1

1−L

λ(s,m)

∂s∂m︸ ︷︷ ︸
>0 (by 21)

dmds

< 0

Therefore farmers prefer the plot with the largest Aθ(1−ê0). That is, since expected damages
per hectare on the plot when not insured are equal to 1

2
θ(1− ê0) this implies that the farmer

chooses the plot that has the highest expected payout (area times expected damages per
hectare).
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C Attrition
A total of 839 farmers were enrolled in any of the three experimental seasons (counting repeat
enrollees multiple times).42 Of those, 10 farmers fell out of the experiment before farmers
were informed of their insurance status because of sickness, death, mistake in enrollment
or (in four cases) because they were already insured by the company (see Table H.2 in
the Appendix for the breakdown by season). These farmers are left out of the intent-to-
treat sample. Of the remaining 829 farmers, 698 are in the final analysis sample. Of the 131
farmers outside of the sample, 87 dropped out and 44 participated through the end (and were
surveyed) but were unable to give information about output or damages. These 87 farmers
dropped out because they refused surveys (44); because of sickness, death or migration (14);
because they did not plant that season (16); or for unknown reasons (13). Table H.2 gives
a breakdown of the reasons for attrition for each season.

D Damage Measure Construction
Collecting a panel of plot-specific information can bring certain practical challenges, such
as misunderstandings between the farmer and the surveyor about which plot is which and
whether specific information refers to a plot or the whole farm. The survey team employed
various measures to minimize this risk. This included collecting information, for each plot,
on the farmers tilling neighboring plots, and then reminding the farmer in subsequent survey
rounds of the neighbors to the plot being discussed. Nevertheless, it seems clear from the
data that some errors were made. To limit the impact of these errors on the estimates, I
defined damage ratio observations as missing in the main sample if they were either more
than 10 SD above the mean damage or if the damage reported was more than three times
the mean output in the sample. In both of these cases, the damage reported likely refers to
the larger farm but was mistakenly assigned to a specific plot. One observation of pest and
disease damage fits both criteria. In addition, five observations of pest and disease damage
and six observations of typhoon and flood damage fit the second criteria.43 Section E shows
that the findings are robust with respect to including these outliers.

The way the damage data was collected, where farmers were asked about total damages
42I use the term ’farmer’ for farmer-season observations. That is, a farmer in multiple seasons is treated

here as a separate observation in each case.
43These exclusions affect the parameter estimates primarily through the one observation that fits both

criteria. This observation is for an unusually small plot (0.15 hectares) that doesn’t satisfy the normal
eligibility criteria (requiring plots to be more than 0.25 hectares) but was included by exception early on in
the study.

60



(over the cropping season) due to a specific cause rather than specifying damages for each
’damage event’, also presents challenges in comparing damages with payouts. Among insured
plots, the correlation of total damages and payouts per hectare is 0.51; for typhoon and flood
damages versus payouts for typhoons and floods, it is 0.49; and for pest and crop diseases,
0.37. One issue is that a series of small-scale crop losses could add up to a substantial total
loss over the course of the cropping season, but this type of damage would not be covered
by the insurance contract and could partly explain these low correlations. We also do not
know the specific timing of each loss event. Both issues prevent us from creating damage
measures that should correlate more strongly with the actual payouts.44

E Robustness of Adverse Selection and Moral Hazard
Results

In Tables H.4 and H.5, I investigate the robustness of the above evidence on adverse selection
and moral hazard. I estimate an equation of the same form as 5, but (in even columns) add
controls for plot characteristics. The characteristics included are an index of flooding risk
and indicators for the plot being at high risk from rats, tungro (a crop disease) or strong
winds.45 I perform the estimation for three different outcome variables in two separate
samples. The outcome variables are (1) the damage ratio (as before), (2) the damage ratio
winsorized at the 97.5th percentile, and (3) the log of the damage ratio. The sample used
in the top panels is the full sample in which, in contrast to the sample used for the main
results, I do not exclude the outliers discussed in Section ??. In the bottom panels of the
two tables I restrict the earlier sample to plots that fall in the middle 95% of a per hectare
counterfactual harvest distribution, defined as the value of harvest plus damages divided by
the plot size. This approach is one way to home in on the sample of plots that are more
likely to give accurate results since it excludes very marginal plots or plots that the farmer
did not seriously attempt to farm (the bottom 2.5%) and plots for which the harvest and
damage data together suggest that either one may be inaccurate, for example when a farmer
responds to a question about a particular plot with figures for the whole farm (the top 2.5%).

Columns 1, 3 and 5 in the top panel of Table H.4 show very strong evidence for adverse
selection even if these outliers are included. The same is true for pests and crop diseases

44There are also some errors or irregularities in the damage and payout data. In particular, we have 7
plots (out of 756 randomly insured plots) that have positive payout even though recorded total damages are
less than 10%.

45These baseline characteristics were not collected in the small first-season experiments and are missing for
some plots in the later two seasons. In those cases I replace the indicator values with zero and the flooding
index value with the sample mean.
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(see Columns 1, 3 and 5 of Table H.5), but including these outliers slightly reduces the
adverse selection estimate. Interestingly, the even columns of these two tables show that
the observable characteristics can account for almost all of the adverse selection based on
typhoon and flood damage but essentially none for pest and crop disease damage. These
observables are self-reported by the farmer and are generally not available to the insurance
company. Some related data (such as whether the plot lies low relative to surroundings)
could be collected, but as discussed earlier, that may be prohibitively expensive given the
contract value for typical plot. The first row in the bottom panels of the two tables show
that the adverse selection estimates are robust to the sample restriction used. The estimate
for typhoons and floods is slightly lower, but for pests and crop diseases, the estimate is
slightly larger.

The second line of the top panel of Table H.5 shows that, even with these extreme
outliers included, the moral hazard estimates are statistically significant at the 10% level
for both the damage ratio and the log of the damage ratio. If we look at the corresponding
line for the second sample, the results are robust to this restriction and in fact somewhat
more statistically significant. In each case, as we would expect given the randomization, the
coefficient estimates are essentially unchanged by including plot-level covariates.

F Simulation of Tradeoff Between Plot Size and Risk
In this section I describe the simulations I did to study the tradeoff between plot size and
risk that was inherent in the plot choice decisions of farmers in the experiments. In the
simulation we focus on the simpler case in which farmers do not take their effort response to
insurance into account in their plot selection. In this case, the farmer chooses plot j if it has
the largest value of Ajθj (area times risk) among the plots in the portfolio. The simulation
exercise is designed to answer the question: What difference in damages would we observe
between the first-choice plot and other plots if farmers instead choose the most risky plot
(the one with the largest θj)? I simulated a portfolio of plots, ranging from two to five
plots, in which each plot consists of a pair (Aj, θj) that is drawn from a bivariate uniform
distribution with correlation ρ (between Aj and θj). I then simulated per-hectare damages,
Dj, by drawing from a distribution that is uniform from zero to θj. For each portfolio, I
identify the plot with the largest Ajθj and compute the difference in damages between this
plot and (the average for) the other plots, denoting this amount ∆D1

j . Likewise, I identify
the plot with the largest θj and compute the difference in damages in the same way to obtain
∆D2

j . The results for two and three plots are reported in Table H.7.
The first column gives the correlation that is assumed between plot size and risk. The
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second and fifth column provide the average difference in damages (in the simulations) be-
tween first-choice plots and other plots if farmers choose the plot with the largest Ajθj (as
we expect to be the case in the data) whereas Columns 3 and 6 give the average difference
in damages between first-choice plots and other plots if the farmer always chooses the plot
with the largest θj. Columns 4 and 7 give the ratio between the earlier two columns. This
ratio represents the counterfactual damages (in the simulation) that we would have observed
if farmers selected without regard for the plot size. In the data, farmers have 2.6 plots on
average and the empirical correlation between the share of harvest lost to all causes and plot
size is 0.05. Therefore, Rows 3 and 4 may be the most relevant. I find that ¯∆D2

¯∆D1 goes from
1.377 for ρ = 0.1 and three plots to 1.562 for ρ = 0 and two plots. These results suggest
that, if the insurance had been given in a way that did not reward choosing a larger plot
(e.g., if all farmers got insurance on a specific acreage), then the adverse selection estimates
reported here would be on the order of 38-56% larger. 46

G Share of Adverse Selection Predicted by Baseline
Characteristics

In Table H.8 I estimate equations of the form

Dij = β0 + β1Cij + β2Xij + β3Xij1(dry season) + λi + ηij. (22)

I only use seasons 2 and 3 for this estimation since the relevant baseline characteristics were
not collected in the first season. The estimated selection effect in Column 2 is 30% lower
than in Column 1, where β2 and β3 are constrained to zero suggesting the observables explain
a significant part of the observed selection effect.

46The model and the simulations above assume no correlation in shocks between plots. In reality these
shocks are positively correlated (particularly for typhoon damage), which might shift some farmers away
from choosing the plot with the largest expected damages and towards simply selecting the largest plot to
maximize the payout after large shocks, such as total harvest loss on all plots. This reality would suggest
that the main adverse selection estimates are further biased downwards. However, to evaluate this bias I am
limited by the fact that I do not have good measures of this correlation over time (since I only have three
cropping seasons).
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H Appendix Tables

Table H.1: Farmer level intent-to-treat sample

ITT Status Season 1 Season 2 Season 3 Total
Informed: In ITT sample 107 279 443 829
Not informed because already insured 1 3 0 4
Sick/dead/moved before he/she was informed 0 2 0 2
Mistake in enrollment / Not eligible 0 1 3 4
Total 108 285 446 839
This table reports on the construction of the ITT sample (number of farmers in each
cell). A few farmers were randomized but never informed of their randomization allo-
cation and didn’t receive insurance through the experiment.
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Table H.2: Farmer level attrition in the experiment

Season 1 Season 2 Season 3
Dropout Status CT TX CT TX CT TX Total
Not dropped: in final analysis sample 24 62 61 150 94 307 698
Died/sick/moved 0 0 4 2 4 4 14
Refused 5 3 7 12 6 11 44
Did not plant this season 1 1 2 5 1 6 16
Could not give output on any plot 0 0 5 11 5 5 26
Could not give any data on damages 0 2 2 14 0 0 18
Unknown 5 4 2 2 0 0 13
Total 35 72 83 196 110 333 829
Comparison p = 0.53 p = 0.92 p = 0.69
This table reports attrition (number of farmers) by season and (farmer level)
treatment status (CT = Control, TX = Treatment). The last row presents p-
values from a Chi-square test of the difference in attrition rates across treatment
and control groups (for each phase).
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Table H.3: Plot-level attrition in the experiment

Season 1 Season 2 Season 3
Dropout Status CT TX CT TX CT TX Total
In sample 63 70 188 184 402 403 1,310
Could not report output or damages 7 9 25 18 37 35 131
Is worker on this plot, not farmer 0 0 0 1 3 1 5
Other 0 0 5 5 0 0 10
Total 70 79 218 208 442 439 1,456
Comparison p = 1.00 p = .89 p = .96
This table reports attrition (number of plots) by season and plot-level treatment
status for plots included in the plot randomization (that is, excluding the pure
control group and excluding first choice plots of farmers in the choice group),
excluding plots of farmers that dropped out completely. The last row presents p-
values from a Chi-square test of the difference in attrition rates across treatment
and control groups (for each phase).
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Table H.4: Robustness of the Adverse Selection and Moral Hazard Estimates on Typhoon and Flood
Damage

Harvest losses due to typhoons and floods measured as:
Raw Proportion Log of

Proportion Winsorized at the Proportion
top 2.5%

Sample: Full

First-choice 2.46 ∗ ∗∗ 0.82 2.42 ∗ ∗∗ 0.79 0.19 ∗ ∗∗ 0.057
(0.82) (0.82) (0.81) (0.82) (0.068) (0.069)

Insurance −0.53 −0.81 −0.58 −0.86 −0.054 −0.077
(0.78) (0.77) (0.78) (0.77) (0.065) (0.065)

Flooding index 5.00 ∗ ∗∗ 4.98 ∗ ∗∗ 0.35 ∗ ∗∗
(0.69) (0.69) (0.051)

High risk from winds 2.47 2.44 −0.053
(2.63) (2.63) (0.18)

High risk of rats −3.57 ∗ ∗∗ −3.60 ∗ ∗∗ −0.32 ∗ ∗∗
(1.29) (1.28) (0.11)

High risk of tungro 0.083 0.078 0.19
(1.87) (1.86) (0.15)

Area (hectares, centered) 0.83 1.33 0.83 1.33 0.033 0.070
(1.12) (1.08) (1.12) (1.07) (0.11) (0.10)

Mean of control plots 14.9 14.9 14.9 14.9 1.7 1.7
Num FE’s 697 697 697 697 697 697
Observations 1744 1744 1744 1744 1744 1744

Sample: Omitting top and bottom 2.5% of the potential harvest distribution

First-choice 2.01 ∗ ∗ 0.43 2.00 ∗ ∗ 0.43 0.16 ∗ ∗ 0.027
(0.84) (0.83) (0.83) (0.83) (0.069) (0.070)

Insurance −0.26 −0.53 −0.25 −0.53 −0.041 −0.063
(0.81) (0.79) (0.80) (0.79) (0.067) (0.067)

Flooding index 4.82 ∗ ∗∗ 4.80 ∗ ∗∗ 0.35 ∗ ∗∗
(0.68) (0.67) (0.051)

High risk from winds 0.40 0.37 −0.14
(2.16) (2.15) (0.17)

High risk of rats −4.50 ∗ ∗∗ −4.48 ∗ ∗∗ −0.39 ∗ ∗∗
(1.38) (1.36) (0.12)

High risk of tungro −0.019 −0.053 0.19
(1.87) (1.86) (0.16)

Area (hectares, centered) 1.29 1.75∗ 1.28 1.74∗ 0.100 0.13
(1.10) (1.04) (1.09) (1.04) (0.11) (0.10)

Mean of control plots 14.6 14.6 14.6 14.6 1.7 1.7
Num FE’s 686 686 686 686 686 686
Observations 1659 1659 1659 1659 1659 1659
This table explores the robustness of the adverse selection and moral hazard findings on typhoon and flood damage. In this table, I
use all available data, including the outliers discussed in Section ??. The three outcome variables are (1) the raw damage ratio; (2)
the damage ratio constructed by winsorizing the damages and harvest the 97.5th percentile before constructing the ratio; and (3) the
inverse hyperbolic sine transformation of the damage ratio. The inverse hyperbolic sine transformation (f(x) = log(x +

√
(x2 + 1));

see e.g., Burbidge, Magee and Robb (1988)) can be interpreted in a similar way as a log transformation but has the advantage of
being defined and differentiable at zero. In the lower panel I exclude plots in the top and bottom 2.5% of the counterfactual harvest
distribution (harvest plus total damages) per hectare. The regressions include farmer-season fixed effects. Standard errors are corrected
for spatial dependence using the method developed by Conley (1999). Significance stars: * < 0.1; ** < 0.05; *** < 0.01.
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Table H.5: Robustness of the Adverse Selection and Moral Hazard Estimates on Pest and Crop Disease
Damage

Harvest losses due to pests and crop diseases measured as:
Raw Proportion Log of

Proportion Winsorized at the Proportion
top 2.5%

Sample: Full

First-choice 1.98 ∗ ∗∗ 1.98 ∗ ∗∗ 1.98 ∗ ∗∗ 1.99 ∗ ∗∗ 0.25 ∗ ∗∗ 0.27 ∗ ∗∗
(0.67) (0.69) (0.66) (0.67) (0.065) (0.066)

Insurance 1.26∗ 1.24∗ 1.30 ∗ ∗ 1.29 ∗ ∗ 0.12∗ 0.12∗
(0.66) (0.67) (0.65) (0.65) (0.063) (0.064)

Flooding index 0.15 0.10 −0.022
(0.49) (0.46) (0.044)

High risk from winds 2.25 2.27 0.30∗
(1.44) (1.45) (0.17)

High risk of rats 0.47 0.49 0.13
(1.08) (1.03) (0.099)

High risk of tungro 0.42 0.46 0.092
(1.64) (1.62) (0.14)

Area (hectares, centered) 0.64 0.66 0.74 0.76 0.10 0.10
(1.23) (1.23) (1.21) (1.21) (0.11) (0.11)

Mean of control plots 7.5 7.5 7.3 7.3 1.0 1.0
Num FE’s 697 697 697 697 697 697
Observations 1744 1744 1744 1744 1744 1744

Sample: Omitting top and bottom 2.5% of the potential harvest distribution

First-choice 2.13 ∗ ∗∗ 2.19 ∗ ∗∗ 2.07 ∗ ∗∗ 2.14 ∗ ∗∗ 0.26 ∗ ∗∗ 0.28 ∗ ∗∗
(0.67) (0.69) (0.66) (0.67) (0.067) (0.068)

Insurance 1.40 ∗ ∗ 1.40 ∗ ∗ 1.41 ∗ ∗ 1.41 ∗ ∗ 0.14 ∗ ∗ 0.14 ∗ ∗
(0.68) (0.68) (0.66) (0.66) (0.065) (0.066)

Flooding index 0.037 −0.032 −0.041
(0.50) (0.48) (0.045)

High risk from winds 1.97 1.87 0.25
(1.57) (1.57) (0.18)

High risk of rats 1.34 1.22 0.19∗
(1.07) (1.02) (0.100)

High risk of tungro 0.58 0.64 0.12
(1.52) (1.49) (0.14)

Area (hectares, centered) −0.10 −0.12 −0.029 −0.050 0.059 0.052
(1.24) (1.24) (1.22) (1.22) (0.12) (0.12)

Mean of control plots 7.5 7.5 7.4 7.4 1.0 1.0
Num FE’s 686 686 686 686 686 686
Observations 1659 1659 1659 1659 1659 1659
This table explores the robustness of the adverse selection and moral hazard findings on pest and crop disease damage. In this table,
I use all available data, including the outliers discussed in Section ??. The three outcome variables are (1) the raw damage ratio; (2)
the damage ratio constructed by winsorizing the damages and harvest the 97.5th percentile before constructing the ratio; and (3) the
inverse hyperbolic sine transformation of the damage ratio. The inverse hyperbolic sine transformation (f(x) = log(x +

√
(x2 + 1));

see e.g., Burbidge, Magee and Robb (1988)) can be interpreted in a similar way as a log transformation but has the advantage of
being defined and differentiable at zero. In the lower panel I exclude plots in the top and bottom 2.5% of the counterfactual harvest
distribution (harvest plus total damages) per hectare. The regressions include farmer-season fixed effects. Standard errors are corrected
for spatial dependence using the method developed by Conley (1999). Significance stars: * < 0.1; ** < 0.05; *** < 0.01.
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Table H.6: Average Damages by Risk Aversion
Harvest Loss (percent) Due to:

Typhoons Pests and
and floods diseases

Risk averse −0.36 −2.80 ∗ ∗
(1.99) (1.17)

Constant 15.8 ∗ ∗∗ 8.85 ∗ ∗∗
(0.91) (0.77)

Observations 1654 1654
This table reports estimates of a simple regression of damages, for typhoons
and floods in Column 1 and pests and crop diseases in Column 2, on the risk
aversion measure. Standard errors are clustered at the farm-season level.
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Table H.7: Simulation Results
Two plots Three plots

ρ ¯∆D1 ¯∆D2 ¯∆D2

¯∆D1
¯∆D1 ¯∆D2 ¯∆D2

¯∆D1

-0.2 0.093 0.166 1.776 0.113 0.189 1.776
-0.1 0.100 0.167 1.662 0.123 0.190 1.551
0.0 0.106 0.166 1.562 0.131 0.191 1.459
0.1 0.113 0.165 1.458 0.139 0.191 1.377
0.2 0.120 0.165 1.378 0.145 0.191 1.319

This table reports the simulation results. The first row gives
the correlation that is assumed between plot size (Aj) and risk
(θj). I performed 10,000 simulations in each case and ¯∆Dk is
the average of ∆k over those simulations (for k = 1, 2).
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Table H.8: Estimated Share of Adverse Selection Explained by Baseline Characteristics

Loss (%) Due to:
All causes

Eq. (1) Eq. (2)
Estimate (SE) Estimate (SE)

First-choice 4.03 ∗ ∗∗ [1.24] 2.84 ∗ ∗∗ [1.24]
Plot size 21.3 ∗ ∗∗ [3.68] 21.5 ∗ ∗∗ [3.58]

Season 2 X Flooding index 2.55 ∗ ∗∗ [1.22]
Season 2 X Medium risk of rats 4.44∗ [4.36]
Season 2 X High risk of rats 1.28 [3.38]
Season 2 X Medium risk of tungro 4.64 ∗ ∗∗ [2.66]
Season 2 X High risk of tungro 3.56 [5.31]
Season 3 X Flooding index 2.95 ∗ ∗∗ [1.20]
Season 3 X Medium risk of rats −1.09 [3.19]
Season 3 X High risk of rats −0.63 [3.45]
Season 3 X Medium risk of tungro 1.30 [2.76]
Season 3 X High risk of tungro 3.35 [4.38]
Constant 13.3 ∗ ∗∗ [0.46] 11.6 ∗ ∗∗ [2.32]
F-test All Risk Characteristics p = 0.00
Mean of dependent variable for
non-first choice plots

12.4 12.4

Num FE’s 483 483
Observations 1259 1259
The table only includes data from Season 2 and 3 since these baseline characteristics were not
collected in Season 1. Significance stars: * < 0.1; ** < 0.05; *** < 0.01.
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Table H.9: Estimation of Predicted Damages by Treatment Group

Loss Due to All Causes
Estimate (SE)

Season 2 X Flooding index 6.97 (2.37)
Season 2 X Medium risk of rats −3.99 (5.41)
Season 2 X High risk of rats −12.5 (5.58)
Season 2 X Medium risk of tungro 0.14 (4.39)
Season 2 X High risk of tungro 1.45 (8.71)
Season 3 X Flooding index 3.21 (2.09)
Season 3 X Medium risk of rats 0.94 (5.02)
Season 3 X High risk of rats −0.30 (5.28)
Season 3 X Medium risk of tungro −2.71 (4.35)
Season 3 X High risk of tungro −0.70 (6.81)
Insurance X Season 2 X Flooding index −2.61 (2.47)
Insurance X Season 2 X Medium risk of rats 6.70 (5.18)
Insurance X Season 2 X High risk of rats 9.99 (6.48)
Insurance X Season 2 X Medium risk of tungro −4.15 (4.51)
Insurance X Season 2 X High risk of tungro 1.47 (9.54)
Insurance X Season 3 X Flooding index 0.59 (2.79)
Insurance X Season 3 X Medium risk of rats 1.40 (5.14)
Insurance X Season 3 X High risk of rats 2.20 (5.71)
Insurance X Season 3 X Medium risk of tungro 3.96 (4.59)
Insurance X Season 3 X High risk of tungro 1.47 (7.59)
Insurance −4.86 (3.69)
Constant 20.2 (3.71)

Observations 1259
This table reports coefficient estimates for a model that predicts damages based on
plot characteristics and insurance status. The predicted values from this regression
are used in the selection model reported in Table 5 (these are estimates for the sample
used to estimate the selection models; the bootstrap procedure used to estimate those
models re-estimates this prediction model for each bootstrap sample). The outcome
variable is total damages divided by the sum of total damages and harvest (I use
this outcome variable instead of the damage measures used before to avoid using plot
area as a part of the prediction model). The plot characteristics used are described
in Section 5. The standard errors in Column 2 are estimated using OLS (this is only
an illustration; as mentioned before, the prediction model is re-estimated for each
bootstrap sample to estimate the selection model).
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I Appendix Figures

ê
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Figure I.1: Optimal effort, êj , as a function of the plot-specific cost of effort for insured and uninsured plots. Here,
winsured

j and wnot insured
j denote wj for insured and uninsured plots, respectively. Therefore, winsured

j = 1
2
θj(1 − L) and

wnot insured
j = 1

2
θj . The upper boundaries are defined by ŵinsured

j = winsured
j + 2

3
ρAj(w

insured
j )2 and ŵnot insured

j =

wnot insured
j + 2

3
ρAj(w

not insured
j )2. The policy functions imply that, for plot j, effort is lower when the plot is insured if

winsured
j < ψ < ŵnot insured

j , and otherwise equal.
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Figure I.2: This figure shows a map of the study area. Dark green plots are those that were a part of the study in at least one
season while the light green plots are other rice plots.
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J Insurance Contract Flier
The next two pages contain the flier that PCIC uses to market and explain the insurance
contract.
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GENERAL INFORMATION ON THE RICE 
CROP INSURANCE PROGRAM

OBJECT OF INSURANCE
The object of insurance shall be the standing rice 

crop planted on the farmland specified in the insurance 
application and which the assured farmer has an insurable 
interest on.

AMOUNT OF COVER
The insurance shall cover the cost of production inputs 

per Farm Plan and Budget, plus an additional amount of 
cover (at the option of the farmer) of up to a maximum of 
20% hereof to cover portion of the value of the expected 
yield, subject to the following prescribed cover ceilings:

   Inbred Varieties
      Irrigated/Rainfed	 P41,000 per ha.
      Seed Production	 P50,000 per ha.
   Hybrid Varieties
      Commercial Production (F1)	 P50,000 per ha.
      Seed Production (A x R)	 P65,000 per ha.

TYPES OF INSURANCE COVER
Multi-Risk Cover - This is a comprehensive coverage 
against crop loss caused by natural disasters (i.e., 
typhoon, flood, drought, earthquake, and volcanic 
eruption) as well as pest infestation and plant diseases.
Natural Disaster Cover - This is a limited coverage 
against crop loss caused by natural disasters.

PERIOD OF COVER
The insurance coverage shall be from direct seeding 

or upon transplanting up to harvesting, provided that 
insurance coverage shall commence from the date of 
issuance of the Certificate of Insurance Cover (CIC) or, 
from the emergence of seed growth (coleoptiles), if direct 
seeded or upon transplanting, whichever is later.

INSURABLE RICE VARIETIES
All rice varieties accredited for production by the 

National  Seed Industry Council (NSIC) are insurable.

PREMIUM RATE 
Premium rate is variable per region, per season and per 

risk classification. This shall be shared by the farmer, lending 
institution and the government.

National Composite Rates and
Premium Sharing (%)

Borrowing Farmers
Multi-Risk Cover

Low Risk Medium  Risk High Risk

Farmer 1.46 2.91 4.37

L.I. 2.00 2.00 2.00

Gov’t. 5.90 5.90 5.90

Total 9.36 10.81 12.27

Natural Disaster Cover

Low Risk Medium Risk High Risk

Farmer 1.12 2.23 3.35

L.I. 1.50 1.50 1.50

Gov’t. 4.22 4.22 4.22

Total 6.84 7.95 9.07

Self-Financed Farmers

Multi-Risk Cover

Low Risk Medium  Risk High Risk

Farmer 3.46 4.91 6.37

Gov’t. 5.90 5.90 5.90

Total 9.36 10.81 12.27

Natural Disaster Cover

Low Risk Medium Risk High Risk

Farmer 2.62 3.73 4.85

Gov’t. 4.22 4.22 4.22

Total 6.84 7.95 9.07

COVERED RISKS
•	 Natural disasters including typhoons, floods,  drought, 

earthquakes, and volcanic eruptions.
•	 Plant diseases, e.g., tungro, rice blast/neck rot,   grassy 

stunt, bacterial leaf blight and sheath blight.
•	 Pest infestation by any of the following major pests: 

rats, locusts, armyworms/cutworms, stemborer, black 
bugs and brown planthopper/hopperburn.

EXCLUDED RISKS
Losses arising from:

•	 Fire from whatever cause;
•	 Theft and robbery, pillage, sequestration, strikes 

or other commotion, war, invasion, acts of foreign 
enemies, hostilities (with or without declaration of 
war), civil war, rebellion, revolution, insurrection, acts 
of terrorism, military or usurped power or radio-active 
contamination whether controlled or uncontrolled;

•	 Any measure resorted  by  the government in the 
larger interest of the public;

•	 Avoidable risk emanating from or due to neglect of 
the assured/non-compliance with the accepted farm 
management practices by the assured or person 
authorized by him to work and care for the insured 
crop;

•	 Strong winds and heavy rains not induced by 
typhoon;   and

•	 Any cause or risk not specified in the covered risks;
•	 Unintentional acts of persons, natural or judicial, that 

may cause damage to the insured crop; and
•	 Losses arising from failure to comply with the 

eligibility requirments.
Losses occurring:

•	 Prior to the effectivity of insurance;
•	 Prior to seed growth (coleoptile);
•	 Beyond the scheduled date of harverst, unless 

harvesting could not be undertaken on such 
scheduled dates due to adverse weather conditions 
as certified to by the production technician/municipal 
agricultural officer or death of the insured and the 
the subject loss occurs within five (5) days after the 
scheduled date of harvest.

FARMER/FARMER ORGANIZATION ELIGIBILITY
•	 Any borrowing farmer or group of farmers who 

obtains production loans from any lending institution 
participating in the government-supervised rice 
production program and GOCCs/GFIs/NGOs/DILG-
LGUs-sponsored credit programs.

•	 Any self-financed farmer/farmer organization (FO)/
people’s organization (PO) or group of farmers 
who agrees to place himself/themselves under the 
technical supervision of PCIC-accredited agricultural 
production technician.

•	 Any Farmer Organization (FO) or People’s Organization 
(PO) or group of farmers duly qualified under the 
Government Corporation Insurance System (GCIS).



FARM ELIGIBILITY
•	 The farm must not be part of a riverbed, lakebed, 

marshland, shoreline or riverbank;
•	 The farm  must  have  an   effective  irrigation   and 

drainage systems. Rainfed areas are eligible farms 
during wet cropping season subject to planting cut-
off date;

•	 The farm must be accessible to regular means of 
transportation;

•	 The farm must be suitable for production purposes 
in accordance with the recommended Package of 
Technology (POT), e.g., right zinc content;  and

•	 Farm location must have generally stable peace and 
order condition and not hazardous to health.

DOCUMENTS REQUIRED IN APPLYING FOR COVER
Individual Borrowing Farmer

•	 Application  for Production Loan (APL) which also 
serves as application for crop insurance.

•	 Farm Plan and Budget (FPB) - showing schedule  of 
farm activities, e.g.,date of planting and harvest, etc.

•	 Location Sketch Plan (LSP)/Control Map (CM)- 
showing landmarks and names of adjoining lot 
owners.

Farmers Borrowing as a Group
•	 List  of Borrowers (LOB)- containing the names and 

addresses of the borrowers, the farm area, location, 
planting schedules, variety, amount of loan and 
signatures of borrowers.

•	 Standard Farm Plan and Budget (SFPB)
•	 Control Map (CM)

Self-financed Farmer
•	 Application for Crop Insurance (ACI)
•	 Farm Plan and Budget (FPB)
•	 Location Sketch Plan (LSP)/Control Map (CM)

WHERE TO FILE APPLICATION FOR COVERAGE
•	 Lending institution where farmers obtained their 

production loans.
•	 PCIC Regional Offices/PCIC authorized underwriting 

agents.

WHEN TO FILE APPLICATION FOR COVERAGE
Any day before the date of planting up to fifteen (15) 

calendar days after planting.

NOTICE OF LOSS
In the event of loss arising from risks insured against, a 

written Notice of Loss (NL) shall be sent to the PCIC Regional 
Office within ten (10) calendar days from occurrence of loss 

and before the scheduled date of harvest. In cases where 
the cause of loss is due to pest infestation, disease or 
drought and where the effect of damage is gradual or the 
full extent thereof is not immediately determinable, the NL 
shall be filed upon discovery of loss. In no case shall this be 
later than twenty (20) calendar days before the scheduled 
date of harvest. The NL shall at least contain the following 
information: name of the assured farmer, CIC number, lot 
number, time of occurrence of loss, stage of cultivation, 
nature, cause and extent of loss.

CLAIM FOR INDEMNITY
The Claim for Indemnity (PCIC Indemnity Form) shall be 

filed by the assured farmer or any immediate member of 
his family with the concerned PCIC Regional Office within 
forty five (45) calendar days from occurrence of loss.

ADJUSTMENT AND SETTLEMENT OF CLAIM
Verification and Loss Assessment

A team of adjusters composed of two (2) members, one 
from PCIC and the other from either the DA/DILG or DAR or 
NIA or concerned LI, shall verify the claim.
Loss Category:

•	 Total loss  -  if loss is 90% and above.
•	 Partial loss - if loss is more than 10% and below 90%                          
•	 No loss  -  if loss is 10% or less.

Amount of Indemnity
The amount of indemnity shall be based on the ff:
•	 Stage of cultivation at time of loss.
•	 Actual CPI (per FPB) already applied at time of loss. 
•	 Percentage of yield loss.

Settlement of Claim
A claim shall be settled as expeditiously as possible but 

not later than sixty (60) calendar days from submission 
by the affected farmers of complete claims documents to 
PCIC RO.  A claim not acted upon 60 calendar days shall be 
considered approved.

NO-CLAIM BENEFIT
The assured is entitled to a no-claim benefit of ten 

percent (10%) of his net premium paid if he/she has not 
filed any claim during the immediately preceding three (3) 
insured crop seasons not subject of any claim.

DEATH BENEFIT
This is a built-in death benefit component of the 

insurance package for rice crop equivalent to P10,000 per 
assured farmer who may suffer death within the term of 
coverage; provided said farmer is not more than 75 years of 
age at the inception of insurance.
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