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Large eddy simulation (LES) is a modeling approach to simulation of turbu-

lence, in which the large and energy containing eddies are directly resolved, while

the smaller scales are modeled. The “coarse-graining” length scale (the length scale

below which the turbulent eddies are modeled) is an important modeling parameter

that is directly tied to the computational grid. As a result, the LES grid controls

both the numerical and modeling errors and in most cases (given that the LES model

is consistent) becomes the most important factor in determining the accuracy of the

solution. The main goal of this dissertation is to enable a systematic approach to

grid selection and convergence-verification in LES.

Systematic grid selection consists of five essential ingredients: (i) an “error-

indicator” that identifies the regions of error generation, (ii) some knowledge of

the directional structure of error generation (i.e., an anisotropic measure of error

generation at each location), (iii) a model that describes the connection between the

error generation and the filter/grid resolution (i.e., how it changes with a change



in the resolution), (iv) criteria that describe the most “optimal” distribution of the

error-indicator in space and in direction, and (v) a robust method for convergence-

verification. Items (i), (ii), (iv) and (v) are all addressed in this dissertation, while

item (iii) has not been a subject of extensive research here (because of its somewhat

lower importance compared to the other four).

Three error-indicators are introduced that are different in terms of their under-

lying assumptions, complexity, potential accuracy, and extensibility to more com-

plex flows and more sophisticated formulations of the problem of “optimal” grid

selection. Two of these error-indicators are inherently anisotropic, while the third

one is only a scalar but can be combined with either of the other two to enable

anisotropic error-estimation. The “optimal” distributions of these error-indicators

are discussed in detail, that, combined with a model to connect the error-indicator

and the grid/filter resolution, describe our “optimal” grid selection criteria. Addi-

tionally, a more robust approach for convergence-verification in LES is proposed,

and is combined with error-estimation and “optimal” grid selection/adaptation to

form a systematic algorithm for large eddy simulation.

The proposed error-estimation, grid selection, and convergence-verification

methods are tested on the turbulent channel flow and the flow over a backward-

facing step, with good results in all cases, and grids that are quite close to what is

know as “best practice” for LES of these flows.
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Chapter 1: Introduction

Turbulence is generally defined as the state of flow in which the fluid particles

show unsteady and chaotic motions. It is further characterized by an efficient mixing

of particles and properties like density, concentration, temperature, etc., as well as

a balance between energy injection into the flow and dissipation of that energy by

the molecular viscosity. Generally speaking, the injection of energy happens at the

largest scales of the flow, while the dissipation happens at the smallest scales. This

gives rise to the presence of a broad range of length scales in the flow, and their

corresponding velocity scales, where the flow develops smaller and smaller scales as

the energy injection rate increases or the kinematic viscosity decreases, so that it

can keep the energy injection and dissipation in balance.

Turbulence follows the same evolution equation that governs the laminar, tran-

sitional, and other states of the flow; i.e. the Navier-Stokes equations. Therefore,

its “direct” computational simulation also follows the same procedures: to generate

a computational grid that covers the domain of interest and is fine enough to cap-

ture the “important” details of the flow, and to discretely solve the equations on

that grid. In a “complete” simulation, called “direct numerical simulation” (DNS),

almost all scales of turbulence are important. In other words, the largest scales are
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important because they contain and describe the physics that are usually of engi-

neering interest, while the smallest scales are where the energy dissipation happens

and balances the energy injection. Unfortunately, it is impossible to capture the

correct large scale dynamics without capturing the correct balance between the en-

ergy injection and the dissipation rate (and some of the other interactions between

“large” and “small” scales of the flow).

Roughly speaking, if the computational domain is of size L and the smallest

scales are of size η, the cost of a three-dimensional direct simulation is proportional

to (L/η)4. Note that L remains constant, while η will decrease as the Reynolds

number increases (see Fig. 1.1), which makes the simulation cost prohibitive for

moderate to high Reynolds numbers. As a result, it is actually impossible to do

DNS of many flows given today’s computing power (for instance, an approximate

analysis by Spalart [1] suggests that the DNS of an aircraft wing requires 1016 grid

points, and is not possible at least until year 2080). As a result, we need to employ

models that aim at modeling some of the phenomena taking place in the smallest

scales of size η (most prominent of which is dissipation) to break this strong scaling

with η and make the computational simulation of turbulence affordable.

1.1 Large eddy simulation

Due to the complexity of turbulence, there are multiple ways in which this

modeling can be done, where these models generally vary in the portion of the

physics they model, their potential accuracy, and the computational cost of the
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Figure 1.1: Schematic of the channel flow (top left) with a wall-parallel plane,
whose instantaneous streamwise velocity is plotted in the top right panel. The
circular arrows depict eddies of different sizes. The bottom panel shows the energy
spectrum (in a log-log plot) where k = 2π/l (l being the eddy size) is the wave
number of the eddies (plot is not to scale). The smallest length scale η correspond
to the highest wavenumber, while the domain size L correspond to the lowest value
on the horizontal axis. As the Reynolds number increases 2π/η moves to higher and
higher values (as depicted by the dotted lines), increasing the computational cost.

resulting simulation. An illustrative comparison of these models is shown in Fig. 1.2

in terms of the modeled and resolved part of the energy spectrum, and in Fig. 1.3,

in terms of the modeled and resolved portion of an actual turbulent velocity field.

In the Reynolds Averaged Navier-Stokes (RANS) approach most or all of the

turbulent activity is modeled. For the example of the channel flow, this modeling

approach eliminates the dependence of the resolved part of the flow on the wall

parallel coordinates and makes the simulation one-dimensional. This is obviously

many orders of magnitude cheaper than a direct simulation of the Navier-Stokes

equations on a 3D grid fine enough to resolve scales of size η. However, the problem

with this modeling approach is that the largest scales of turbulence are known to
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Figure 1.2: Illustration of different approaches to the modeling of turbulence. The
left column shows the resolved part of the spectrum, while the right column shows
the part that is handled by the model. The top and middle rows correspond to the
RANS and URANS class of models, while the bottom row illustrates the approach
taken in large eddy simulation (LES). Finding the “cut-off” length scale ∆ in LES
is the subject of this thesis.

be flow and geometry dependent. As a result, despite the relatively sophisticated

models used for RANS simulations, their accuracy is not comparable with the direct

approach (DNS).

The situation is no different for the class of unsteady RANS (URANS) mod-

els that aim at directly resolving the largest unsteady, and usually non-turbulent,

structures of the flow (e.g. vortex shedding, flutter, etc.) but model the rest of

the turbulent scales. The modeled scales are still flow dependent and exhibit very

complicated behaviors; this makes the models less effective, and the simulations are
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Figure 1.3: Illustration of the resolved (left column) and modeled (right column)
part of the turbulent velocity field for the channel flow of Fig. 1.1 and for the
modeling approaches and energy spectrums of Fig. 1.2. The first and second rows
correspond to the RANS and URANS approaches that aim at modeling the entire
or most of the turbulence activity. The third row corresponds to LES, where the
energy containing portion of the velocity field (i.e. large turbulent “eddies”) is fully
resolved and only the smallest scales are modeled.

again not as accurate as DNS.

The other class of turbulence modeling, called Large Eddy Simulation (LES),

is inspired by a few observations of turbulent flows. The first observation is that,

contrary to the larger scales of turbulence that are flow and geometry dependent,

the smaller scales become almost independent of the geometry and exhibit nearly

universal behavior (e.g., see Fig. 1.4). As a result, the models used to describe them

can be much more accurate and simultaneously much simpler than those used in

the RANS simulations to describe the large, flow and geometry-dependent eddies.

The other observation is that the amount of energy contained in the smaller length

scales of the flow (higher wavenumbers in the energy spectra of Figs. 1.1 and 1.2)
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drops rapidly as the length scale decreases, meaning that most of the physics that

is of engineering interest is described by the larger scales of the motion. And the

third observation, which is also the most important one, is that the energy transfer

in turbulence (generally speaking) takes place from the larger eddies to the smaller

ones; i.e., the smaller scales respond to the larger ones and not the other way around

(approximately). This means that the smaller scales of turbulence do not directly

affect its larger eddies, and nor does their inaccurate description, as long as the

energy transfer rate (e.g., the dissipation rate) is described accurately. Therefore,

if we can resolve those larger scales that are of more interest to us, and somehow

model the key interactions between the larger and smaller scales of the flow accu-

rately enough to capture the correct dynamics of the larger scales (dissipation in

particular), in principle we should be able to achieve an accuracy that is not much

different from a direct numerical simulation but at a much lower cost. This is why

LES is so powerful and popular, and why we have decided to focus on it in this

dissertation.

1.2 Importance of systematic grid selection and adaptation in LES

Even though LES is orders of magnitude cheaper than a direct numerical

simulation, it is still some orders of magnitude more expensive than both the RANS

and URANS approaches. As an example of this massive cost we can mention an

approximate analysis by Spalart [1], who estimated that a full LES of an aircraft

wing (for the least expensive LES) is not possible until year 2040 (given today’s
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Figure 1.4: The idea behind LES. The left column shows the larger scales of the
velocity field, while the right column corresponds to its smaller scales (high-pass
filtered). The first row corresponds to a turbulent jet at Reynolds number of 106

and Mach number of 0.9 [2], while the second to last rows correspond to turbulent
channel flow at different locations (y+ of 25, 45, 65, and 135, respectively). Despite
the huge difference between the larger scales of the motion, the smaller scales show
a nearly universal behavior, which makes their modeling easier and more accurate.

computational power and applying Moore’s law of exponential growth of the CPU

power). This means that for so many of the flowfields where LES can be performed

today, it is either at the edge of what is computationally possible, or at least it is

very expensive. As a result, it is extremely important to be able to perform the

least expensive simulation that leads to the highest accuracy of the solution.

There are a few major ways in which LES can be made more efficient: (i) by de-
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veloping more accurate LES models and/or numerical schemes, and (ii) by choosing

more optimal computational grids. In most cases, the choice of the computational

grid is arguably at least as important as the LES model and the numerical imple-

mentation. Simply put, most LES codes and LES models produce accurate results

on sufficiently “good” grids and inaccurate results on sufficiently “bad” grids. This

importance of the computational grid as a significant parameter in the accuracy

of LES stands in some contrast to the literature on large eddy simulation over the

last half century, with many papers published on LES modeling (cf. the book by

Sagaut [3]) and the influence of numerical errors (cf. [4–8] and many others) but with

few studies devoted to the problem of how to optimally choose the computational

grid.

The systematic and iterative process of finding this “optimal” computational

grid is usually referred to as “grid-adaptation”. The idea is to start from a relatively

coarse and easy to generate grid, solve the governing equations on that grid, and

use the solution to find a better and more optimal next grid. We then solve the

equations on the new grid and see if the solution, or more formally the quantities

of interest from the solution, have converged. If yes, the process is terminated, and

if not, it is repeated by using the solution on the most recent grid to find an even

“better” next grid, until convergence is achieved. Figure 1.5 shows a more formal

representation of the grid-adaptation algorithm and the different processes involved

in it.

Broadly speaking, algorithmic grid-adaptation has three different advantages

compared to the kind of user-driven grid-selection that is the current standard in
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Figure 1.5: A typical grid-adaptation algorithm

LES: (i) adapted grids can be closer to “optimal”, in the sense that they may

produce similar accuracy with fewer cells; (ii) it can reduce the human time spent

on generating grids, since the starting grids are using coarse and easy to generate,

and the next grids are being automatically generated by adapting the previous

grids; and, perhaps most importantly, (iii) it makes the simulation process more

systematic, in that it makes it more likely that different users will end up with

similar converged final results.

1.3 Motivating different parts of this dissertation

The next grid is usually found by computing an “error-indicator”: a function

that estimates the local sources of errors and their contribution to the overall error

in the quantities of interest. The definition of a local error-indicator is relatively

straightforward for computational simulations where the errors are only numerical

in nature. This includes laminar and RANS simulations, as well as DNS. For such
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computations the numerical errors can be estimated by computing the leading order

truncation error of the numerical scheme or, almost equivalently, by estimating the

numerical residuals by interpolation onto a finer grid (cf. [9]). Unfortunately, error-

estimation is not as straightforward in large eddy simulation. In fact, almost none

of the methods used for error-estimation in laminar, RANS, and direct simulations

can be readily used for LES, due to the different nature of errors in a large eddy

simulation.

The grid resolution in LES not only determines the significance of numerical

errors in the resolved fields (like any other computational simulation), but also

dictates the resolved part of the turbulence spectrum, and accordingly the modeled

portion of it (turbulent scales below twice the grid resolution cannot possibly be

resolved due to the Nyquist cut-off). If the grid is too coarse, we may model scales

that are no longer in the universal regime, introducing large modeling errors into

the solution (see Fig. 1.6). More importantly, no model is perfect, meaning that

any large eddy simulation is essentially contaminated by the modeling errors. It is

interesting to point out that in an LES the numerical errors may be avoided (we

discuss this in more detail later), but there is no way of avoiding the modeling

errors. Therefore, the errors in LES are either purely of modeling nature, or there is

a combination of modeling and numerical errors with significant contribution from

the modeling errors. This means that the existing error-indicators that target the

numerical errors fail at finding the true sources of errors in LES, and we need to

define new indicators with the aim of (at least partially) targeting the modeling

errors.
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Figure 1.6: Difference between the effect of the grid in LES and other types of
simulation. The cut-off length scale ∆ not only determines the accuracy of the
resolved part of the spectrum (through its relation to the numerical error in the
resolved eddies) but also the portion of the spectrum that is modeled and hence the
modeling errors.

This motivates the error-estimation portion of this dissertation (discussed in

Chapters 3, 5, and 8).

Error-indicators estimate the sources of error introduction into the solution,

but they do not directly determine the appropriate grid resolution to minimize

those errors. This is done by a model that connects the error-indicator to the grid

resolution and a criterion that determines what distribution of the error-indicator

would lead to the lowest overall error in the outputs from the solution. The models

used to connect the error-indicator and the grid resolution are usually simple in

their functional form, and they usually do not affect the final outcome (since the

optimal state is when the error-indicator itself has a distribution described by the

criteria, regardless of how it was achieved); as a result, we have not paid much
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attention to those models here. On the other hand, the criteria that determines

the optimal distribution of the error-indicator (i.e., the distribution that leads to

the lowest overall errors in the solution) have a very significant effect on the grid

selection process and motivate the other part of this thesis (Chapter 4).

The definition of convergence in LES is also different from its definition in

laminar, RANS, and direct simulations. LES is by its definition under resolved,

meaning that the solution necessarily develops smaller scales on finer grids (see the

grids in Fig. 1.6). As a result, in a point-wise sense (in space and time) LES does

not converge as the “filter-width” (length scales denoted by ∆1, ∆2, ∆3 in Fig. 1.6)

is refined, at least not until the DNS limit is reached. The National Research Coun-

cil [10] suggests that the best-practice is to identify important simulation outputs

(“quantities of interest”, or QoIs), defined as functionals of the LES solution, and

assess the convergence of these specific outputs only.

Apart from the need for a more elaborate definition of grid convergence in

LES, the fact that some of the scales of the flow are fully unresolved poses additional

problems to the robustness of any convergence test, even for carefully defined QoIs.

This happens because of what is called the “projection error”, meaning that any

information about the scales below the grid resolution is completely lost, and thus,

those scales cannot be approximated with absolute certainty from only the resolved

scales (see Fig. 1.7). This means that the modeling error (that depend on both

the filtered field and the original field) cannot be robustly estimated, nor can be

its effect on the QoIs. Since the convergence is judged by the error in the QoIs, it

directly affects our ability to make robust judgements of convergence.
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Figure 1.7: An illustration of the uncertainty due to the projection errors in LES:
two velocity fields u1 and v1 may have very different shapes, while their resolved
versions u1 and v1 are almost identical due to the effect of the projection error.
Robust error-estimation would require us to estimate the original velocity fields from
their filtered versions, which is obviously not possible in a deterministic sense. This
introduces an uncertainty in our estimated errors that is followed by an uncertainty
in the estimated error in the QoIs.

This motivates the other part of this thesis, focusing on outlining a more robust

approach to test for grid convergence in LES (Chapter 7).

1.4 Contributions and novelties of the work

List of contributions:

(i) defined three different error-indicators that are all accurate and can be used for

both error-estimation and grid generation/adaptation (Chapters 3, 5, and 8);

(ii) enabled anisotropic grid selection/adaptation in LES by making the error-

indicators anisotropic (Chapters 3 and 5);

(iii) identifying the correct criteria to use in grid selection/adaptation (Chapter 4);

(iv) introducing a systematic and more robust approach for convergence-verification
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(Chapter 7);

(v) integrating the convergence-verification and grid-adaptation as part of a sys-

tematic algorithm for LES (Chapter 9).

All of the error-indicators were completely novel in the field, one of them is

already published [11], the other one is under review for publication [12], and the

third one has been published as part of a conference paper [13] but is still undergoing

some modifications before its final submission as a journal paper. The first two of

these error-indicators are inherently anisotropic, with a clear distinction between

different resolutions in different directions, while the last one is a scalar value on its

own, but is combined with either of the two anisotropic error-indicators to enable

directional error-estimation and grid selection/adaptation. This anisotropic error-

estimation and grid generation in LES is completely new in the field and has not

been done before.

The proposed convergence-verification methodology is not a separate paper on

its own, but instead is a section of the conference paper (and its journal version),

that also combines the convergence-verification and grid-adaptation as part of an

integrated algorithm. The proposed algorithm is novel to the field; however, the

novelty of the proposed convergence-verification method is somewhat arguable.

The modifications made in the equidistribution principle are also not novel per

se, as its correct form has been known and used for a relatively long time in many

of the works in the field of grid-adaptation [14–16]; although, its application in grid

selection and adaptation in LES was less well-established.
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Chapter 2: Background

The dynamics of the incompressible, Newtonian, and constant-viscosity fluids

is described by the Navier-Stokes equations

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (2.1)

where ui and p are the instantaneous velocity and pressure fields, ρ and ν are density

and kinematic viscosity of the fluid, and summation over the repeated index j is

implied. This set of equations is then closed by the mass conservation equation

∂ui
∂xi

= 0 , (2.2)

and/or the Poisson equation for pressure. These equations describe the full dynamics

of the system. In the turbulent regime, solving these equations corresponds to

performing a full DNS of the flow.

The governing equations for large eddy simulation (LES) can be formally de-

rived by applying a low-pass filter with characteristic filter width ∆ to the above

equations. If we denote this filtering process by ·, we can write the filtered Navier-

Stokes equations as

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (2.3)
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where ui and p are the low-pass filtered part of the full velocity and pressure fields

(usually referred to as the “resolved” fields), and we have assumed that the filtering

and differentiation commute, i.e., that ∂φ/∂xi ≈ ∂φ/∂xi. This assumption is not

always satisfied (e.g., for spatially varying filter kernels), but is generally known to

be sufficiently good for most cases.

The filtered mass conservation equation and filtered Poisson equation of pres-

sure can be similarly derived by applying the same filtering operations (cf. the books

by Pope [17] or Sagaut [3]).

The filtering process, or the “coarse-graining” process, is in fact just a formal

way of removing (or highly attenuating) the length-scales below the filter-width ∆.

In practice, it can be done either implicitly when generating the grid (since the

scales below the Nyquist cut-off of the grid are removed) or explicitly by application

of a low-pass filter to the equation and then using a grid that is fine enough to solve

the coarse-grained equations (obviously the grid resolution cannot be coarser than

the filter-width).

The nonlinearity of the convective term of the Navier-Stokes equation gives rise

to the expression uiuj in Eqn. 2.3 that is not described in terms of the resolved fields.

This means that the filtered equations are not in closed form. All the modeling effort

in LES focuses on the closure of this term by describing it based on the resolved fields.

In the most popular approach one expands this term as uiuj = uiuj + (uiuj − uiuj)

and moves the second term of the expansion to the right-hand side (rhs) of the
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equation, i.e.,

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

, (2.4)

where τij ≡ uiuj−uiuj is referred to as the “subgrid-scale” (SGS) stress term and is

subject to modeling. This general approach is referred to as the “implicitly filtered

LES”, since one simply uses the grid-filtered velocity field (i.e. the implicitly filtered

fields due to the Nyquist cut-off of the grid) in computation of the convective term.

Another approach is to decompose the convective term as uiuj = uiuj+(uiuj−

uiuj) and define the “subfilter-scale” (SFS) stress as τ ij ≡ uiuj − uiuj, where again

τ ij is the subject of modeling. This is usually called “explicitly filtered LES”, in

reference to the explicit filtering of the convective term (and the resulting stress

term).

Regardless of the approach, the SGS/SFS stress describes the interaction be-

tween the resolved and unresolved scales of motion. These are the same interactions

mentioned in Chapter 1, where we argued that their accurate modeling is essential

to the success of LES. Needless to say, there has been extensive work in the litera-

ture to develop better and more accurate models (see [3] for a survey on different

LES models and approaches). For the purpose of this study, the key point is that

all modeling approaches have an error that scales in some way with ∆ and should

vanish in the limit ∆ → 0. This error is referred to as the “modeling error”. For

example, in the specific case of Eqn. 2.4 the modeling error can be quantified as

uiuj − uiuj − τmod
ij (uk), where τmod

ij is the LES model used to describe τij based on

the resolved velocity field ui.
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The other source of error in LES is numerical in nature, and happens due

to the fact that the filtered equations are solved on a discrete grid with a finite

characteristic resolution h (i.e., the equation that the code actually solves is similar

to Eqn. 2.4, but the exact derivatives ∂/∂t and ∂/∂xj are replaced by their numerical

versions δ/δt and δ/δxj; more on this in Chapter 8). Similar to the modeling errors,

the “numerical errors” scale with h and vanish in the limit of infinite resolution

h→ 0.

In the case of implicitly filtered LES with ∆ ≈ h, the modeling and numerical

errors can strongly interact with each other, especially since the resolved fields that

enter the LES model are already contaminated by the numerical errors. This does

not have to be the case, and the two errors can be separated by choosing a ∆/h ratio

that is larger than unity. In such cases, the numerical errors are negligible (∆/h ≈ 2

for a sixth-order numerical scheme and ∆/h ≈ 4 for second-order schemes [4]) and

the modeling errors become the dominant source of errors; however, it is usually not

desirable since the increase in the modeling error (by choosing ∆ that is larger than

what it could be, and increasing the modeled portion of turbulence) is larger that

the effect of the decrease in the numerical errors, leading to higher overall errors in

the QoIs (see Fig. 2.1). As a result, in most practical cases we choose ∆ ≈ h and

have to deal with an LES solution that is contaminated by both the modeling and

numerical errors.

The other type of error in LES is the “projection error”. These errors happen

due to the finite resolution of the grid and the fact that we may only resolve turbulent

scales that are larger than the grid resolution, while the original turbulent field may
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Figure 2.1: The overall effect of ∆/h ratio on the accuracy of LES of channel flow
at Reτ ≈ 545 on a fixed computational grid. The dotted blue lines correspond to
the DNS solution of Del Alamo & Jimenez [18] for the same setup. The other colors
from brightest to darkest correspond to ∆/h ratios of 1, 1.15, 1.3, 1.6, 1.8, 2.0, 2.25,
respectively. The subgrid stress is modeled using the Vreman model [19] with a
constant (static) coefficient of cv = 0.03.

have much smaller scales η � h. Similar to the numerical errors, the projection

errors also scale with h and vanish as h → 0, although they describe a completely

different type of error. The direct contribution of the projection error to the error

in the QoIs is relatively small, given that the QoIs are consistent with the definition

of LES and are only functions of the larger scales of the motion (for instance, their

direct effect on the Reynolds stress, which is a large scale quantity, can be quantified

as uiuj−uiuj, which should be small given that the filter is not too wide). However,

as discussed in Section 1.3, the projection error introduces an innate uncertainty in

estimating the modeling errors based on the resolved fields (since we have to estimate

uiuj solely based on the resolved velocity field ui, which is the only data we have

available from LES). This breaks down the certainty (and somewhat the robustness)

of error-estimation in LES, and consequently, the robustness of any convergence-
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verification test based on the estimated sources of errors. This is discussed in more

detail in Section 2.2.

2.1 Literature survey: error-estimation and grid selection in LES

In the following, we review some of the available error-indicators in the liter-

ature. In order to have a more meaningful discussion about their relative accuracy,

we also assess them on a typical LES of channel flow at Reτ ≈ 545 that exhibits

some of the signature LES errors (e.g., a mean velocity profile that lands above

the log law and an overprediction of the turbulent kinetic energy; see Fig. 2.2) to

see how well they can localize the sources of errors. We should keep in mind that

the primary target of most of these error-indicators is to estimate the errors due to

modeling of the unresolved scales. Accordingly, we have chosen an LES with sixth-

order accurate numerics and ∆/h ≈ 1.6 (and a Vreman model [19] with a model

coefficient of 0.03) to have low numerical errors, and thus a fair comparison between

them. An accurate error-indicator for LES (explained in Chapter 5) that identifies

the important areas of error generation is plotted in Fig. 2.3 as a reference for com-

parison, along with the error in the dissipation rate that could also be somewhat

indicative of the local sources of error generation in this flow.

Consistent with what we said in Chapter 1, some early attempts relied on the

theoretical importance of dissipation for correct predictions of dynamics of the large-

scale system (thus, accuracy of the LES solution) and defined their error-indicator

based on the dissipation rate. More specifically, they used the fraction of energy
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Figure 2.2: The error in some of the typical quantities computed from an LES
solution of the channel flow at Reτ ≈ 545. The grid has a near-wall resolution

of (h
+

x , h
+

yw/2, h
+

z ) ≈ (45, 1.7, 19) in friction units, and ∆/h = 1.6. The top row

shows the normalized mean velocity U
+

1 (left), normalized turbulent kinetic energy

R
tot+

kk /2 (middle), and normalized turbulent shear stress R
tot+

12 (right). The bottom
row shows the normalized budgets of the turbulent kinetic energy (middle) and
turbulent shear stress (right, multiplied by −1). In all plots the solid lines are the
LES solution, while the dotted lines are from the DNS solution of Del Alamo &
Jimenez [18] for the same setup. The LES profiles for turbulent kinetic energy,
turbulent shear stress, and their budgets are for the total values, i.e. sum of the
resolved and SGS model contributions. Budgets include: dissipation rate (black
lines), production (dark blue), pressure-strain (blue), and all the transport terms
(red) that includes the pressure, turbulent and viscous transport. The shaded region
highlights the areas of error generation based on typical LES judgement for this flow.

dissipation caused by the SGS/SFS model to the total (cf. [20]) as a measure of

error. This is closely related to using the ratio of the eddy viscosity to the molecular

viscosity as a measure of accuracy (cf. [28]). This ratio is plotted in Fig. 2.3(a). Using

this indicator, the “optimal” LES grid can presumably be constructed by requiring

that the ratio remains constant and equal to a few percents throughout the domain.
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Figure 2.3: A comparative study of different LES error estimators for the channel
flow of Fig. 2.2. The region of error generation (based on experience) is shaded in
all plots. Panels (a− g) are indicators from the literature vs the top left panel that
plots a realistic error generation profile (dark blue, see Chapter 5) consistent with
experience, as well as the error in the total dissipation rate (blue): (a) ratio of eddy
viscosity to molecular viscosity proposed by Geurts and Fröhlich [20], (b) ratio of
unresolved to total kinetic energy proposed by Pope [21] (1−modified value, pro-
posed by Celik et al. [22]), (c) the small-scale energy without local scaling proposed
by Bose [23], (d) the ratio of effective viscosity index proposed by Celik et al. [22,24]
(1−value), (e) the ratio of Kolmogorov scale index proposed by Celik et al. [22, 24]
for cell volume (black) and diagonal length of the cell (grey) as cell length scales
(1−value), (f) sum of the absolute values of the numerical and modeling errors in
the mean velocity profile from the SGMV method proposed by Klein et al. [22,25,26]
for m = 2/3 and n = 6 (black) and m = n = 2 (grey), (g) solution error from the
MR-LES method proposed by Legrand et al. [27] (lightest to darkest colors corre-
spond to different times after the last synchronization for (t−ts)Ub/H = 0, 1, 2, 3, 4,
5, respectively). Some methods are modified such that the larger values correspond
to higher error generation (modifications are mentioned in the parentheses). Only
the general shape of the profiles should be compared, not their actual magnitudes.
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Despite the undeniable importance of dissipation, the approach of using the

ratio between the modeled and molecular/total dissipation rate is meaningful only

at low Reynolds numbers, since the whole idea of LES is to avoid having to resolve

the viscous dissipation (we are actually being a bit too optimistic here; our channel

flow test case has a relatively low Reynolds number, but the dissipation-based error-

indicator still fails to correctly identify where errors are generated).

A more accurate version of the dissipation-based error-indicators could perhaps

be constructed if we could somehow estimate what the total dissipation rate (i.e., the

sum of molecular and LES) should actually be and use the error in that quantity as

a local error-indicator (see Fig. 2.3 where this error is computed from the available

DNS data and plotted as a reference). This is generally not possible based on current

LES methods (most LES models are defined to predict the most accurate level of

dissipation; so, if we could have a more accurate estimate of the total dissipation

rate we could have instead used it in our LES model) and thus requires some extra

steps (e.g., LES solution on a slightly coarsened or refined version of the grid and

employing Richardson extrapolation), where in that case one can also go all the way

with the extra information that is now available and define more comprehensive

error-indicators instead (see Chapter 8).

Driven by an appeal for simplicity and use of information from a single LES

solution, a more successful class of methods was inspired by the alternative argument

that the LES is accurate whenever the contribution of the modeled scales to the total

kinetic energy is sufficiently small [29]. This general thinking is supported by the

fact that the modeling errors should essentially go down as a lesser portion of the
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turbulent scales are being modeled. This decreases the projection errors as well. And

due to the decaying spectrum of turbulence, the numerical errors (that are somewhat

proportional to how energetic the smallest resolved scales are) become less significant

as one resolves a larger portion of the spectrum, and the Nyquist cut-off π/h shifts

towards higher wavenumbers (this decay of energy for higher wavenumbers is clear

from the energy spectrum of Fig. 1.1). Pope [21] used this intuitive argument to

suggest that the proportion of resolved to total kinetic energy could be used as a

local indicator function (plotted in Fig. 2.3(b)). Alternatively, Bose [23] used the

kinetic energy in the smallest resolved scales directly (i.e., without scaling with the

resolved or total energy) as an error-indicator (Fig. 2.3(c)). In both approaches, the

next LES grid was found by requiring a constant and uniform indicator function

everywhere in space (e.g., that no more than 10% of the total kinetic energy was in

the unresolved scales).

While this general idea of connecting the accuracy of LES to the amount of

unresolved or small-scale kinetic energy is quite intuitive and has been found to

work well in some cases [11, 23], it is important to acknowledge that it is still only

heuristic in nature: there is no equation showing that error scales with unresolved

kinetic energy. For instance, the approach proposed by Pope does not seem to be

able to identify the areas of error generation in the channel flow.

Several researchers tried to modify and improve the error-indicators discussed

so far, or even used the LES solution on more than one grid (usually combined with

Richardson extrapolation) to define more accurate indicators (cf. [22,25,26,28,30]),

but still based on the same heuristic ideas about the importance of energy or dis-
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sipation to LES accuracy. Some of these modified indicators are: the modified

activity parameter such that it also accounts for the effect of numerical dissipa-

tion [22,28] which was a modification to the ratio of dissipations originally proposed

by Geurts and Fröhlich [20] (not plotted here, since our test case uses a high-order

and non-dissipative numerical scheme with ∆/h = 1.6), the relative SGS viscosity

index [22,24] (Fig. 2.3(d)), relative Kolmogorov scale index [22,24] (Fig. 2.3(e)), the

modification made in the indicator proposed by Pope [21] for cases where the total

energy is less that the resolved part [22], using the Richardson extrapolation and

the LES solution on two or three grids to estimate the total kinetic energy in Pope’s

indicator [22,24] (not plotted, since we took the actual total kinetic energy from the

DNS data), etc. Similarly, in the method of Systematic Grid and Model Variation

(SGMV) the Richardson extrapolation was employed as a way of deconvolution of

the mean velocity [22,25,26,31] and Reynolds stresses [31]. The primary focus of the

SGMV method was on uncertainty quantification (UQ) of the LES solution due to

modeling and numerical errors, and not exactly on local error-estimation; however,

all the ingredients are already there, and one can use it for finding a better grid by

enforcing some criteria on the distribution of these resolution-induced uncertainties.

As an example, the total error in the mean velocity field computed from the SGMV

method (as the sum of the absolute values of the estimated modeling and numerical

errors) is plotted in Fig. 2.3(f).

We should also mention the class of multi-resolution LES (MR-LES) methods

(cf. [3, 27]) where two parallel simulations are performed on two slightly different

grids, with the difference between the two solutions used to infer the sources of error.
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The chaotic nature of the equations then requires regular synchronization of the

two solutions (through interpolation between the two grids). The time between two

synchronizations should be sufficiently long to allow for the LES solution to develop

to a new state where it is contaminated by both the modeling and numerical errors on

the second grid (immediately after interpolation the solution is only affected by the

interpolation errors), yet short enough to avoid the divergence of the two solutions.

This introduces an additional parameter, i.e. the simulation time between any two

synchronizations, that will most probably be set by the user (or found based on the

solution itself) and is not a big problem in general (see Fig. 2.3(g) for an example of

the effect of this time scale for times (t− ts)Ub/H = 0, 1, 2, 3, 4, and 5, where H is

the channel half-width, Ub is the bulk velocity, t is time, and ts is the time at which

the last synchronization has taken place). The more important question is whether

the difference between the two LES solutions (i.e. ui
∆→∆̃ − ũi, where ui denotes

the solution on grid ∆, ũi is the solution on the second grid ∆̃, and ·∆→∆̃ denotes

interpolation from ∆ to ∆̃) is in itself indicative of the local sources of error (we

discuss this in Chapters 5 and 8). Figure 2.3(g) shows this error-indicator computed

for the channel flow based on the LES solution on a second grid that is 1.25 times

coarser in all three directions, i.e. ∆̃ = 1.25∆. Note that for this case we took

∆/h = ∆̃/h̃ = 1.3 in order to increase the numerical errors.

The most sophisticated approach to date was developed by Hoffman and

Johnsson (cf. [32, 33]) and later Barth [34] who defined error-indicators within a

finite-element framework that included both the numerical errors and the estimated

modeling errors through a scale-similarity model. They also solved the adjoint equa-
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tion to directly connect the estimated local errors to integrated quantities of interest

(QoIs). Despite the comprehensive treatment in these papers and their successful

results, this approach has not been adopted extensively in the community. Part of

the reason is probably that the work was focused on the finite-element approach,

another is that the adjoint equations diverge exponentially for long-time integration

(cf. [35, 36]).

One major shortcoming of most existing error-indicators is that they are de-

fined as scalar values and are unable to infer anything about the effect of insufficient

directional resolution of the grid on the overall errors. This becomes a major prob-

lem when one wants to use them for grid selection/adaptation, since the optimal

LES grids are often highly anisotropic: for example, the optimal LES grid near a

solid wall is about 20 and 10 times coarser in the streamwise and spanwise directions

than in the wall-normal one. Among the few studies that did address the anisotropy

was that of Addad et al. [37], who instead of defining an error-indicator and a cri-

terion on how it should be distributed, directly defined their optimal directional

resolution based on an empirical criterion about the relative size of the LES filter

∆ compared to the Taylor microscale and the RANS dissipation length scale.

This leaves a clear gap in the field for anisotropic error-indicators, capable of

producing meaningful information about the directional resolution of the grid.

The other issue is that, despite what many (though not all) researchers heuris-

tically assumed, the uniform distribution of the error-indicator (even assuming that

the error-indicator exactly measures the local source of errors) does not lead to the

lowest global error generation. This is the other aspect of grid selection that needs
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to be addressed.

2.2 Literature survey: convergence-verification in LES

Convergence can be generally defined as the state in which the error in the

solution is below some acceptable threshold and no further refinement of the com-

putational grid (independently of the exact way of refinement, e.g., local or global

refinement, refinement in one direction or in all directions, with the same refinement

factor everywhere or different factors in different locations or directions, etc.) can

change the solution beyond an acceptable threshold.

There are two main differences between LES and other types of simulations

that can affect the above definition of grid-convergence.

First, in LES there are two relevant length scales that are affecting the solution:

the filter-width ∆ and the grid resolution h. As a result, if we refine the grid but

keep the filter-width unchanged, we can achieve a “grid-independent” solution [38],

but this does not mean that the solution is converged: it is still a function of ∆.

The next difference between LES and any of the laminar, RANS, or direct

simulations is that the LES solution will necessarily change and develop smaller

scales as one refines the filter. This is in contrast with other methods of turbulence

simulation, where a change in the solution is a sign that the convergence is not yet

reached. In fact, the whole purpose of LES is to carry out underresolved simulations

of turbulence: any real LES will necessarily develop smaller scales as the filter-width

∆ is refined (until it reaches the DNS limit and resolves all the scales). This means

28



that judging the convergence by the change in the solution itself ui is not meaningful

in the context of LES.

The National Research Council [10] suggests that the best-practice to examine

the convergence of any simulation (including LES) is to identify important simula-

tion outputs (QoIs). In LES, the quantities of interest must be defined as statistics of

the solution that are strong functions of the larger scales of turbulence (essentially

the resolved LES fields) but have little to no explicit dependence on the smaller

scales (of course, they are still implicitly dependent on the smaller scales, through

the effect of smaller scales on the dynamics of the larger ones), and assess the conver-

gence of these specific outputs only. This makes sense: if the QoIs we are interested

in did not converge well before the DNS limit, LES would be a pointless tool. In

other words, LES makes sense for QoIs that depend on the larger scales (e.g., lift,

drag, pressure rms, Reynolds stress, etc.) but not if the purpose is to predict QoIs

that depend on the smallest scales (e.g., molecular dissipation or similar).

Figure 2.4 illustrates the importance of the QoIs used to judge the convergence

of the solution from a large eddy simulation. Note that although the mean velocity is

converged on all grids and the Reynolds stresses are converged on the finer two grids,

both the energy spectrum and the dissipation spectrum are developing smaller scales

(higher wavenumbers) on the finer grids. The resolved part of the energy spectrum

seems to be converged on the finer grids (for wavenumbers not very close to the

cut-off), but the molecular dissipation is far from converged on any of the three

grids.

Based on the outlined definition of convergence, if the error in the large-scale
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Figure 2.4: Importance of identifying the quantities of interest (QoIs) when judging
the convergence of an LES solution: Panels (a) and (b) show the mean velocity
and Reynolds stress profiles obtained from LES of channel flow. Panel (c) plots
the convergence of the spanwise energy spectrum for a wall parallel plane located at
y+ ≈ 12, while panel (d) shows the convergence of the spanwise molecular dissipation
spectrum (a small-scale quantity) at y+ ≈ 12. The dotted blue lines correspond
to the DNS solution. The other colors correspond to three grids with different
resolutions (the coarsest to finest grids are shown by the lightest to darkest colors,
in that same order).

QoIs is below some acceptable value, and remains to be in the acceptable region

with any further refinement of ∆, we can declare our LES to be converged, even

though the solution ui is still changing with refinement of the filter. This also means

that we do not explicitly require the LES solution (i.e., the instantaneous resolved

fields) to be “grid-independent” [38,39], or the filter-width to be within the inertial

subrange, or there to be 10-20 grid points across a specific physical feature, etc.; as

long as the error in the QoIs is and remains to be below the acceptable threshold
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(for any possible refinements of the filter) we consider our LES converged.

This systematic definition of convergence in LES draws the attention away

from the discussions of grid independence in LES (or other such discussions) and

focus it more on how to assess the accuracy of QoIs. This is a real problem in LES,

because of the inevitable presence of projection errors; and to see why, we need to

study in more detail how the convergence of QoIs is robustly assessed.

The exact computation of error in the QoIs would essentially require access

to the fully converged solution, which, obviously, cannot be the case in any realistic

scenario. The alternative is to either use the change in the QoIs from one grid to the

other as a representation of their actual error (method 1 in Fig. 2.5), or to somehow

estimate their error in some other way. The former option is much easier in reality,

but it may not be robust: the two grids used to compute the QoIs (and thus to

compute the change in the QoIs) are often being generated by the same user or

by the same error-estimation and grid-adaptation technique (for instance, when we

compare the change in the QoIs on two grids from the same sequence of adapted

grids). It is quite possible for a user, or even an error-indicator, to completely miss

an important region of refinement and keep refining the grid in the same already

overrefined regions, and then to conclude that the QoIs are converged while in

reality they are not (cf. [40] for some examples in the context of Hessian-based

grid-adaptation).

To avoid these issues, researchers have developed more rigorous techniques to

estimate the error in the QoIs without having to solve the equations on extra fine

grids (see methods 2 and 3 of Fig. 2.5). In the simpler and more basic approach, one
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Use the current solution to compute !",$%
Use the solution on the previous grid to compute !",$%&'

Compute the change in the QoIs as (!" = !",$% −!",$%&'
Use the change in the QoIs (!" to judge the convergence

Local error-estimation to get + ,
Option 1. estimating the numerical residuals, by interpolation, etc.
Option 2. computing the leading order truncation error.

Solve the adjoint equations to get . ,
Estimate the error in the QoIs as e01 ≈ ∫. , + , 4,

Step 1. Refine/coarsen the current grid by a fixed factor 
Step 2. Do the simulation on the refined/coarsened grid
Step 3. Use the solution on the second grid to compute !",$%5

Compute the change in the QoIs as (!" = !",$% −!",$%5
Richardson extrapolation says that the actual error is proportional to 
the change e01 ≈ (!"/(1 −9:)

Use the current solution to compute !",$%

Method 1: Not robust

Method 2: Somewhat robust

Method 3: Somewhat robust
o Additional cost of solving the adjoint equations
o Complicated
o Not wasteful: the information from the adjoint 

solution is then used to compute the adjoint-
weighted residuals used for grid adaptation

o Additional cost of one extra 
simulation

o Relatively easy
o Wasteful, since the extra 

solution is just used for 
convergence verification

o No extra cost
o Very easy
o Not wasteful

Figure 2.5: A review of different approaches to convergence-verification. The
shaded boxes denote the processes with computational costs that are of the same
order of magnitude as the original simulation. Robustness of the methods are judged
for laminar and RANS simulations. Methods 1 and 2 can be readily applied to
both LES and DNS, while for application of method 3 to DNS we should first find
a way to avoid the chaotic divergence of the adjoint fields for long time integra-
tions. Having found a way to compute the adjoint fields, method 3 can be used for
convergence-verification in LES as well; however, it is no longer fully robust, since
error-estimation in LES cannot be fully robust (because of the projection errors).

refines or coarsens the grid that is the subject of convergence assessment by a fixed

and uniform factor throughout the domain (in the context of LES this is similar to

the SGVM method [22,25,26,31] mentioned in Section 2.1). Assuming that the error

in the QoIs is in the asymptotic range and scales with filter-width/grid-resolution

in some known way, one can either back out an estimate of the converged value of

the QoIs (from a Richardson extrapolation method), or equivalently, assume that

the actual error in the QoIs is proportional to the change in the QoIs between the

two grids: if the grid resolution changes by a factor β and the asymptotic scaling
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exponent is α, the error in any QoI (computed as the difference from its extrapolated

value) can be computed by multiplying the change in the QoI by a factor 1/(1−βα).

The exact assumptions of the Richardson extrapolation (that the solution

over the entire domain is in the asymptotic range, with the same grid dependence

exponent α) may not be necessarily satisfied, especially on the coarser grids, and

thus the estimated error in the QoIs may be somewhat different from the actual

errors. However, it is still a much better test of convergence compared to the

previous approach (method 1 of Fig. 2.5). Note that instead of comparing the QoIs

on two grids that were generated based on the same assumptions (error-indicator,

user knowledge and experience, etc.), one compares them between two grids where

the second one is now generated without any assumption about the flowfield or its

resolution requirements: no matter what the original grid or the flowfield looked like,

we always change the resolution everywhere, and thus expose the QoIs to changes in

the local error sources everywhere in the domain (and not just some specific region

where we thought was more important). The real problem with this approach is the

extra cost associated with the second simulation which is done only to test for grid

convergence. In other words, if the solution is not converged, this extra solution is

wasted and one moves on to generating the next grid.

The third method of Fig. 2.5 was specifically designed, in the context of non-

broadband simulations, to overcome some of the issues mentioned so far. This

approach is called the “adjoint-weighted residual” method, and is carried out in

two steps: (i) estimation of the local sources of errors through interpolation of the

solution onto a (uniformly) refined version of the grid and computing the numerical
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residuals of the governing equations on the refined grid, and (ii) solving the so-

called adjoint equations for each of the QoIs to connect the local sources of errors

(numerical residuals) to the error in the QoIs. As a result, the error in each of the

QoIs can be approximated as the inner product of the local adjoint fields and the

local numerical residuals; convergence of the solution can then be judged by whether

or not these estimated errors in the QoIs are below the acceptable threshold. Even

though this is still just an estimate of the error in the QoIs, it is much more robust

than method 1 and arguably more robust than method 2. Additionally, it is not

wasteful: if the QoIs are not converged we can multiply the local values of the

numerical residuals by the local value of the adjoint fields to compute the “adjoint-

weighted residuals” that can be used to find a much more optimal grid for accurate

predictions of our specific outputs.

Unfortunately, direct application of the adjoint-weighted residual method to

chaotic problems is not really possible at this point. The first issue is the so-

called “butterfly effect” [35,36] that causes the adjoint equations to diverge for long

time integrations (required for statistically stationary problems with low-frequency

motions). There are ways around this, like the method of “least-squares shadowing”

(LSS) proposed by Wang [36]; however, computation of the adjoint fields using the

LSS method is several orders of magnitude more expensive that the original LES

(the “forward” problem).

There is another problem with applying the adjoint-weighted residual method

to LES (assuming that the computation of the adjoint fields is not an issue). This

is because of the inherent uncertainty that the projection errors introduce into the
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error estimates in LES (the actual ui, or more accurately uiuj, cannot be exactly

known based solely on ui; see Fig. 2.6). In fact, even in the case of laminar and

RANS simulations the projection errors are known to cause problems in the robust-

ness of the convergence-verification using the adjoint-weighted residual method, by

under-predicting the error in the QoIs (see Fig. 2.6). The difference is that in a lam-

inar/RANS simulation one can be conservative and keep refining the grid until the

estimated QoI errors are below the acceptable threshold for a few consecutive grids

and then assume that there is no longer an effect from the projection errors and the

convergence test is robust; however, there is no way of avoiding the projection errors

in LES, at least not until the DNS limit is reached. As a result, there is always an

uncertainty associated with all of the LES error estimates and the estimated error

in the QoIs using those error estimates.

The lack of systematic tests for robust convergence-verification in LES is the

other gap in the field that we briefly discuss as part of this dissertation (Chapter 7).
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Figure 2.6: An illustration of the effect of projection errors in the context of
broadband and non-broadband simulations: (a) a non-broadband simulation where
the interpolation onto a finer grid (used in the adjoint-weighted residual method)
cannot capture the correct shape of the exact profile and the computed residuals
are highly affected by the projection errors; (b) two broadband velocity fields, and
the inherent uncertainty in estimation of the original fileds using only the resolved
field. Note that even interpolation onto a refined grid does not recover the original
shape of the of unfiltered fields. The only way is presumably to actually run the
simulation on the refined grid and let the velocity fields develop smaller scales.
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Chapter 3: Our first attempt: a fully intuition-based approach to

anisotropic error-estimation and grid selection in LES

Among all the areas mentioned in Section 1.4 as gaps in the field, the most im-

portant is arguably the lack of any method for anisotropic grid selection and adapta-

tion in LES. Consider the case of wall-bounded turbulent flow computed using wall-

resolved LES, for which a typical grid will have a grid-spacing of (∆
+

x ,∆
+

y ,∆
+

z ) ≈

(40, 2, 20) close to the wall. Any isotropic grid-adaptation process, no matter how

accurate, is still incapable of modifying the aspect ratio of the cells of the initial

grid. Therefore, if the initial grid has cubic cells, the final grid for wall-resolved

LES would be (∆
+

x ,∆
+

y ,∆
+

z ) ≈ (2, 2, 2) near the wall. The potential saving in grid-

points for an accurate anisotropic error-indicator is thus a factor of about 200 for

this particular case. Naturally, our first attempt was targeted at addressing this

major shortcoming.

In this Chapter we rely on the heuristic importance of the small-scale energy

in determining the accuracy of LES, and define our error-indicator based on that

small-scale energy. Our use of the small-scale energy is supported by a few heuristic

arguments that connect it to all types of errors in LES:

Modeling errors: the modeling errors (i.e., uiuj−uiuj−τmod
ij (uk)) should decrease
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as a smaller portion of the turbulent scales are being modeled (a decrease in both

uiuj − uiuj and τmod
ij (uk), and usually their difference); how much of the turbulence

is being modeled is related to the energy of the smallest scales.

Numerical errors: the numerical errors affect the resolved turbulent scales that

are of a similar size to the grid-resolution. For instance, we can roughly apply the

findings of Ghosal [4] here and say that depending on the order of accuracy of the

numerical scheme, only scales that are smaller than 4 times the cut-off resolution of

the grid (for second order methods; or twice the resolution for sixth order methods)

are directly affected by the numerical errors; and, the effect on the larger scales is

only indirect, through the errors introduced into the smallest resolved scales and

their interaction with the larger scales. Based on this argument, the important

factor in determining the numerical error is how active the smallest resolved scales

are.

Projection errors: generally speaking, the projection errors are proportional to

how much of the turbulence is not directly resolved. The degree of importance of

these unresolved scales is different in different problems (e.g. in DNS or in LES) and

should be measured differently for each case according to the role of the projection

errors in the final solution (e.g., while the difference between uiuj and uiuj, which is

the relevant quantity in LES, is presumably small, the difference in ∂ui/∂xk∂uj/∂xk

and ∂ui/∂xk∂uj/∂xk, as the relevant quantity in DNS, may by quite large). For the

specific case of LES the energy of those scales seems to be a particularly good

measure (in a heuristic sense), descriptive of their importance.

These arguments suggest that the use of the small-scale energy can be a good
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estimate of the sources of errors in LES. In fact, even in our preliminary tests of

the channel flow in Fig. 2.3(c), the indicator proposed by Bose [23] was one of the

most promising in the literature. The question then becomes how we can extend

this idea to enable anisotropic grid selection and adaptation in LES.

We note that the idea of using the small-scale energy as a measure of errors

in LES is not something new that we came up with, or something that Pope [21] or

Bose [23], or Jimenez & Moser [29] invented. Instead, it is almost interwoven with

the whole idea of large eddy simulation and has been used for a long time, either

implicitly or explicitly, to judge the accuracy of LES solutions. In that sense, our

use of the energy as an error-indicator for LES in not novel. Instead, the novelty

of the work presented in this Chapter lies in the extension of the idea to enable

anisotropic grid selection and generation; i.e., to find ∆opt(x,n), where ∆opt is the

optimal filter-width, x is the spatial coordinate, and n is the direction.

3.1 Grid selection methodology

In the following we consider ui to be the resolved velocity field from an LES,

where (in this Chapter) we do not distinguish between different LES formulations;

i.e., ui can be the velocity field that has been filtered either implicitly (by the

numerical errors and the subgrid model) or explicitly (by the application of a filter

at the end of each time step). Throughout this Chapter we assume that the ∆/h

ratio (whatever value it has) is fixed. As a result, by a finer grid we imply reducing

the filter width and vice versa.
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3.1.1 The essence of the idea

Consider an anisotropic turbulent flow, e.g. the flow in the buffer layer of wall-

bounded turbulence as shown in Fig. 3.1. For such a flow the turbulent structures

are elongated in the streamwise (x) direction, while they have much shorter length

scales in the spanwise (z) direction. The figure also shows two imagined computa-

tional grids, with the same spanwise resolution (∆z) but with different streamwise

resolutions (∆x). Turbulence in large eddy simulation is under-resolved on purpose;

as the grid is refined, the solution will develop smaller and smaller scales (assuming

a constant ∆/h ratio). However, this is true only when the grid is refined in all

directions. If the grid is refined in an anisotropic fashion (e.g., in one direction

only, as is the case in Fig. 3.1), the effective turbulence resolution is determined by

the limiting directional resolution. For example, it is visually clear that in Fig. 3.1

the spanwise resolution is the limiting one for both grids; in other words, further

refinement of the grid in the streamwise direction does not increase the effective

resolution, since the grid can only resolve turbulent scales that are of size λ+
z & 30

in the spanwise direction. Since the turbulence is elongated in the streamwise di-

rection, these scales have a larger length in x (say, λ+
x ≈ 80 − 90), and thus any

streamwise resolution finer than a certain threshold does not really add to the LES

resolution. As a result, both grids in Fig. 3.1 would lead to essentially the same

accuracy, and the additional streamwise resolution in the first grid is wasteful and

unnecessary. This also implies that the “optimal” grid for an LES would be one for

which the level of resolution is similar in all directions (and where the turbulence is
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Figure 3.1: The essence of the proposed anisotropic error-indicator: instantaneous
streamwise velocity u1 (from a DNS) in a channel flow at y+ ≈ 12 with two imagined

computational grids overlaid. The first grid has (∆
+

x ,∆
+

z ) = (15, 15) while the

second has (∆
+

x ,∆
+

z ) = (40, 15); performing an LES on either of the two grids
would lead to essentially the same accuracy.

resolved “sufficiently well” everywhere throughout the domain).

What exactly measures the resolution in LES is a difficult question. In the

present study, we base our estimates on the energy in the barely resolved small-scale

velocity field, following our discussion at the beginning of this Chapter. By looking

at the energy in a directional sense, where direction refers to the filtering direction

rather than the velocity component, we get a directional error-indicator that can

later be used for anisotropic grid selection and adaptation. For example, by looking

at the energy spectrum of Fig. 3.2, it is obvious that the imagined isotropic grid in
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Figure 3.2: Pre-multiplied energy spectrum of the channel flow at y+ ≈ 12 (cor-
responding to the flow shown in Fig. 3.1). The colormap is logarithmic, i.e. −5
corresponds to 10−5. The horizontal dotted black line corresponds to the spanwise

cut-off of the grids in Fig. 3.1 (i.e., ∆
+

z = 15), while the vertical dotted blue and

dotted dark blue lines, respectively, correspond to the finer (∆
+

x = 15) and coarser

(∆
+

x = 40) streamwise resolutions. The directional small-scale energy is roughly
proportional to the area below the horizontal line for the spanwise direction, and
the area to the left of the vertical lines for the streamwise direction. In a grid

with (∆
+

x ,∆
+

z ) = (40, 15) the directional small scale energies are very close to being

equal, in constrast to a grid with (∆
+

x ,∆
+

z ) = (15, 15). This justifies our choice of
small-scale energy as a measure of resolution.

Fig. 3.1 has more small-scale energy in the spanwise direction (the energy in the area

below the horizontal dotted black line) than in the streamwise direction (the area

to the left of the vertical dotted blue line). The second grid in Fig. 3.1 has the same

small-scale energy in the spanwise direction, but now more small-scale energy in the

streamwise direction (area to the left of the vertical dotted dark blue line). It appears

that the second grid of Fig. 3.1 would have something close to equi-distribution of

energy in the streamwise and spanwise directions. This similarity between what we

expected from heuristic arguments and physical intuition with what we concluded

by comparing the directional small-scale energies further supports the suitability
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of the directional small-scale energy as a good measure of directional resolution.

We also take the idea of equi-distribution across different directions as a desirable

property of the adapted grid in this work, i.e. equivalence of “similar resolution” in

all directions.

3.1.2 The proposed error-indicator

In order to measure the small-scale energy we need to first extract the smallest

resolved scales as u∗i = ui−ûi where ·̂ is a low-pass test filter (cf. [3,17,41]). Similarly,

to measure the small-scale energy in a directional sense, we need a directional low-

pass test filter ·̂(n0) that filters the solution only in the specified direction n0, where

n0 is a unit vector. On structured grids such a uni-directional test-filter along the

grid lines is trivial to implement. In order to make the error-indicator applicable to

grids with arbitrary topologies (e.g., unstructured grids with any type of elements)

in complex geometries, we define this directional low-pass test filter as a modified

differential filter [3, 42]. For filtering in the n0 direction, it is defined implicitly as

ui =

(
I −

∆
2

n0

4
nT0∇∇Tn0

)
û

(n0)

i ,

where I is the identity operator and ∆n0 = ∆(x,n0) is the filter-width in the n0

direction (∆ is the same filter-width that was used in the original LES to obtain ui).

The doubly-projected Hessian operator nT0∇∇Tn0 can equivalently be written in

tensor notation as n0,jn0,k ∂
2/∂xj∂xk = ∂2/∂x2

n0
. Application of this filter requires

the inversion of a linear system of equations (after discretization). While this is not

a major problem, we instead follow the route of an approximate inversion since the
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test filtered field will be used only to inform a grid-adaptation algorithm (e.g., it will

not enter into a subgrid-scale model or similar). The van Cittert approximation [43]

of the inverse, truncated after two terms, is

û
(n0)

i ≈

(
I +

∆
2

n0

4
nT0∇∇Tn0

)
ui , (3.1)

which provides an explicit formulation of the low-pass test filter. The van Cit-

tert approximation was introduced to the field of LES by Stolz and Adams [44]

as a means to model the subgrid stress through an approximate deconvolution of

ui. The van Cittert approximation technically requires that the operator norm

‖(∆2

n0
/4)nT0∇∇Tn0‖ < 1 for convergence of the infinite series. In practice, the

approximation is regularized both by the discretization and the truncation of the

series; as a result, no issues of ill-posedness are expected due to this approximate

inversion.

For a structured grid with uniform grid-spacing and using second-order central

differencing, the filter of Eqn. 3.1 simplifies to a uni-directional box filter of width

2∆(x,n0) (applied using the trapezoidal rule).

We thus compute the directionally small-scale (i.e., the directionally high-pass

test filtered) field u
∗,(n0)
i as

u
∗,(n0)
i ≡ ui − û

(n0)

i ≈ −
∆

2

n0

4
nT0
(
∇∇Tui

)
n0 , (3.2)

and then define the anisotropic error-indicator in any arbitrary direction n as the

square root of (twice) the small-scale energy in that direction,

A(x,n) =

√〈
u
∗,(n)
i u

∗,(n)
i

〉
, (3.3)
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where 〈·〉 denotes a suitable average (time-average, phase-average, etc; the key point

is to average out the turbulent fluctuations) and summation over the tensor index i

is implied. The overbar on A only signifies the filter width ∆ used in calculation of

the error-indicator, i.e. it does not mean a filtering of A.

This error-indicator is defined as an estimate of the energy of those components

of the solution that have small-scale variation along direction n, and should be

interpreted as such in all scale-resolving simulations of turbulence. However, for the

case of laminar flow where the averaging operation is redundant, the error-indicator

reduces to the doubly-projected Hessian of the velocity field (or equivalently, the

length of r = n(∆n/2) with respect to a Hessian-based metric); it is therefore

related to the many prior usages of the Hessian matrix in grid-adaptation for non-

chaotic flows (cf. [40, 45–48]). For flows with broadband turbulence, however, the

meaning and interpretation of A(x,n) is quite different. Specifically, one should

not interpret A(x,n) as a measure of the numerical error: note, for example, that

A(x,n) is agnostic (in terms of its functional form) to the numerical method, the

∆/h ratio, and the grid-spacing h in general.

While only statistically stationary problems are considered in this Chapter

(and throughout this dissertation), the proposed error-indicator should be applicable

to problems with large-scale unsteadiness (e.g., vortex shedding in the turbulent

regime) provided that the averaging operation 〈·〉 is modified accordingly.

We note that the contribution from the “cross-term” 2
〈
û

(n)

i u
∗,(n)
i

〉
is not in-

cluded in the error-indicator. While we have no solid proof for excluding it, the

hypothesis is that the direct effect of insufficient resolution is measured by the small
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scale energy and thus that we should only estimate the energy of those small scales.

Finally, the proposed error-indicator in (3.3) is not scaled by the resolved turbulent

kinetic energy (as suggested by Pope [21]) since this was found to produce clearly

inferior results in preliminary tests on channel flows.

We end this section by noting that the directional test filter could have been

derived in different ways, e.g. through a Taylor expansion of a convolution-based

filter (cf. [3,17]). Other similar anisotropic error-indicators could also be constructed

using different techniques or different assumptions, e.g. through the use of struc-

ture functions (analogously to the method used by Moser and Haering [49–51] to

construct an anisotropic subgrid model). A brief discussion of the application and

suitability of structure functions for anisotropic grid-adaptation in LES is included

in Section 3.4.

3.1.3 Scaling and limiting behavior

It is instructive to study the scaling behavior of the proposed error indicator

in some idealized situations, including the channel flow of Figs. 3.1 and 3.2. For

a spatially homogeneous turbulent field (in at least one direction) an energy spec-

trum tensor Φij can be defined as the Fourier transform of the two-point velocity

correlation Rij(x, r) =
〈
u′i(x)u′j(x + r)

〉
[17] (where u′i = ui− 〈ui〉 is the fluctuating

velocity). For such flows, the error-indicator A can be expressed in terms of the

energy spectrum tensor Φij(x,k) as

A2
(x,n) =

∆
4

n

16

∫ ∞
−∞

k4
nΦii(x,k)dk , (3.4)
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where sum over i is implied, and kn = k · n is the wavenumber in direction n.

Figure 3.3 shows the integrand of Eqn. 3.4, for the wall-bounded turbulence of

Fig. 3.1 and for directional filtering in both the spanwise and streamwise directions.

The energy spectrum itself, Φii, is also shown for the ease of comparison (same

as Fig. 3.2). The error-indicators computed for the imagined grids show how the

directional filtering amplifies those modes with small wavelengths (high wavenum-

bers) along direction n. It is visually clear that the directional small scale energy is

relatively small for streamwise filtering with ∆
+

x = 15 but much larger for spanwise

filtering with ∆
+

z = 15, and thus that A(x,nz) is much larger than A(x,nx) for this

imagined isotropic grid. The assumed principle of directional equi-distribution then

means that we should increase ∆x relative to ∆z. For the grid with ∆
+

x = 40, the two

values are much closer to each other, meaning that this directional equi-distribution

is almost satisfied.

On a finite grid, the integration bounds in Eqn. (3.4) become proportional to

the inverse of the grid-spacing, and it is useful to study how A(x,n) varies with ∆n

in some special cases.

In the limit of well-resolved DNS, the grid resolution falls in the dissipative

range where the spectrum is exponentially decaying. This means that the integral

in Eqn. 3.4 becomes independent of the grid-spacing, and thus that A(x,n) ∼ ∆
2

n.

This is approximately the case for A(x,nx) in Fig. 3.3 for grid with ∆
+

x = 15.

For a laminar flow (or more precisely, for a flow without broadband energy),

the integral is also independent of the grid-spacing and thus A(x,n) ∼ ∆
2

n.

In LES, the grid resolution should generally be such that most of the energy is
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Figure 3.3: Pre-multiplied spectral density of the energy, kxkzΦii, in the turbu-
lent channel flow at y+ ≈ 12 (top), and the premultiplied integrand of Eqn. 3.4,

kxkz
∆

4
n

16
k4
nΦii (∆n is constant and is moved inside the integral) at the same location,

corresponding to the error-indicator A, for: exact computation of the second order
derivatives in the definition of the error-indicator (middle row), and the second-
order central differencing used throughout this dissertation (bottom row). See text
for more details. The colormap is logarithmic.

resolved without requiring that any of the dissipation is resolved. In those situations

the scaling of A(x,n) depends on the slope of the energy spectrum near the cut-off.

Assuming that the spectrum decays as ∼ k−βnn in direction n, we get

A(x,n) ∼ ∆
2

n

√∫
k4
nk
−βn
n dkn ∼ ∆

(βn−1)/2

n . (3.5)
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In ideal homogeneous isotropic turbulence, for example, the one-dimensional density

of the energy scales as ∼ k
−5/3
n (cf. [17]) which results in A(x,n) ∼ ∆

1/3

n for any

n. In a more general flow with anisotropic turbulent structures it is plausible that

the spectrum decays differently in different directions and thus that A(x,n) scales

differently for different n. This is true more broadly, in the sense that the spectrum

in LES will depend on the flow, the grid spacing in all directions (not just direction

n), the subgrid model, and the numerics; the scalings derived here are thus merely

estimates.

We should emphasize that all the results presented in this Section were ob-

tained by assuming an exact differentiation operator in the filter definition of Eqn. 3.2.

For numerical differentiation, the wavenumber inside the integral of Eqn. 3.4 should

be replaced by the modified wavenumber of the numerical scheme k′n. For instance,

for a second order central differencing on uniform grids (which is equivalent to a

unidirectional box filter of size 2∆n applied using the trapezoidal rule) the modi-

fied wavenumbers k′n have lower values compared to the exact kn, especially close

to the cut-off of the grid [52], and the filtered spectrums are slightly modified (see

Fig. 3.3). The important point here is that even though the computed values of the

small scale energies are being slightly affected, both the streamwise and spanwise

error-indicators are affected in the same way (i.e. both have lower values compared

to the exact differentiation); therefore, these changes do not significantly affect the

final aspect ratio of the grid. As for the scaling exponent of the error-indicator,

we can expect to see more significant variations with the choice of the numerical

scheme. However, this scaling exponent does not affect our prediction of the opti-
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mal grid; in other words, the optimal grid is achieved when the error-indicator itself

has a spatial distribution that is described by the optimality criteria. Throughout

this Chapter we have used the approximate scaling A(x,n) ∼ ∆
2

n in generating the

adapted grids, with good results in all tests.

3.1.4 Use when adapting a grid

Our primary focus so far has been on using the directional error-indicator A

for finding the correct anisotropy (aspect ratio) of the filter or computational cells.

The next question to answer is what distribution of the error-indicator leads to the

most optimal distribution of filter width in space x. In other words, how the level

of resolution of different turbulent scales should vary in space to achieve the highest

possible accuracy. This is a much more complicated question to answer, one that

also depends on the quantity of interest. For instance, in an LES of a wing with flow

separation where the main purpose of the simulation is finding the drag coefficient,

it is not optimal to resolve the turbulent scales far downstream of the wing with the

same level of resolution as the turbulent scales near the solid wall. In the relatively

simple test cases of this Chapter, where we do not really have a strong preference

towards a specific QoI and the goal is to have a good “all-around” solution, we

assume that the most optimal filter should provide similar resolution in different

locations as well. Intuitively speaking, this amounts for the equidistribution of the

error-indicator in both space and direction, i.e.,

Ǎopt(x,n) = const. = Athresh , (3.6)
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where Ǎopt denotes the “optimal” distribution of the error-indicator, and Athresh is

a scalar value. This can be used in grid selection and adaptation.

The first step is to choose a threshold value Athresh. Since there is no known

connection between A(x,n) and the error in the solution (or in specific outputs

of the solution), there is no way to derive or specify a suitable threshold a priori.

The threshold Athresh must therefore be either chosen heuristically, similar to what

Pope [21] and Bose [23] did, or based on a desired increase of the size of the grid. The

former approach is completely heuristic and does not necessarily lead to convergence

(there is really no reason why all the QoIs should converge if 80% or 90% or 95% of

the energy is resolved), while the latter approach then requires a direct monitoring

of the convergence of the solution and its QoIs. The important argument in the

second approach is that if we assume that the grid is close to its optimal state at

each iteration (since all grids are generated by enforcing Eqn. 3.6 that describes

an “optimal” distribution for the filter ∆̌), the first grid for which the convergence

criterion is satisfied will be our optimal grid. This will be our approach throughout

this Chapter (and in fact the whole dissertation).

Once a threshold Athresh is chosen, the simplest way is to refine cells in those

directions n for which A(x,n) > Athresh. This is basically a binary decision, where

cells would be refined at most once in each iteration. While simple, it is not the

most efficient. An alternative (and more efficient) approach is to assume a scaling

A(x,n) ∼ ∆
αn

n and then find the “target” filter-width as,

∆̌opt(x,n) =

[
Athresh

A(x,n)

]1/αn

∆(x,n) , (3.7)
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n1 n2

n3

n4

Figure 3.4: Two types of cells, their possible ways of refinement (in dashed lines),
and the assoctiated directions n1-n3 or n1-n4 in which to compute the error-indicator
A(x,n).

where ∆̌opt is our best estimate of the optimal distribution at that specific level of

accuracy (or resolution), and A(x,n) is the value of the error-indicator computed

on the original LES grid with filter-width ∆(x,n). Since the exponent αn is flow-

dependent and potentially also direction-dependent, it is necessary to choose this

value in an approximate way. The flow problems tested in the present work are

dominated by wall-bounded turbulence for which we perform wall-resolved LES.

Since wall-resolved LES is known to behave properly for wall-bounded turbulence

only when the grid approaches “quasi-DNS” resolution, we use αn = 2 in this work

(in all directions) without any attempts at finding the “best” value. In Section 4.4

we further justify our choice of αn = 2 from another perspective.

Which directions n to evaluate the error-indicator for will depend on the nature

of the grid (what types of cells it has) and the solver (what types of cells it can

handle).

A hexahedral cell (which is the cell topology used in all test cases of this

Chapter) is most naturally refined in one, two or all three of the natural directions,

as sketched in Fig. 3.4. One would therefore compute the error-indicator A(x,n)

for those three directions only (n1, n2 and n3 in the figure) and refine accordingly.
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Figure 3.4 also shows a prism cell, which could for example be refined by

either: (a) slicing it in half in the plane of the triangular faces, i.e., normal to the

n1 direction; or (b) inserting grid points in the center of the triangular faces, thus

creating three new prisms. Option (a) would reduce the characteristic size of the cell

only in the n1 direction; therefore, this refinement should be done only if A(x,n1)

is larger than some threshold. Option (b) would reduce the characteristic size of the

cell in the directions of the face normals, and thus one should compute and check

all of A(x,n2), A(x,n3) and A(x,n4) in order to make this refinement decision.

For other refinement strategies, and possibly for other types of solvers (e.g.,

cell- or vertex-based), one may possibly need to compute the error-indicator for other

directions as well. In any case, the general idea would be to refine the cell in any

given manner only if the maximum of all A(x,n) values is above some threshold,

where one should include all those directions n for which the refinement would

reduce the characteristic filter-width.

We note that the computation of the error-indicator is entirely a post-processing

operation. One needs to compute the Hessian of the instantaneous velocity field

∇∇Tui for a number of solution snapshots, project this onto all (locally) possible

refinement directions n, and average. The computation of the Hessian is straight-

forward on grids with structure (e.g., Cartesian AMR), but will require a more

elaborate technique on unstructured grids, e.g., a Taylor expansion of the solution

followed by a least-squares method [46] or a quadratic reconstruction of the solu-

tion [47].

In situations where the grid is completely re-generated rather than adapted,
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one could assess the directional structure of A(x,n) in more detail in order to locally

align the new grid to the local resolution requirements. An approach similar to that

of Frey and Alauzet [46] or Park [48] could be used for this, where one assembles a

modified metric tensor for use in anisotropic grid generation. These considerations

are beyond the scope of this dissertation, which is focused on assessing the proposed

error-indicator itself.

3.1.5 Stopping criterion

Grid-adaptation is iterative and it is thus important to devise a criterion for

when to stop, i.e., for when to declare the grid sufficiently fine. A stopping criterion

must necessarily measure the error in the quantities of interest from the solution. In

contrast, the error-indicator A(x,n) attempts to measure the local sources of error

into the problem. In grid-adaptation for non-chaotic problems, the adjoint provides

a link between the error sources and the quantities of interest (cf. [9]). In the present

approach we have no such link, and thus the stopping criterion cannot be defined

in terms of the error-indicator at all. Instead, the only reasonable approach is to

monitor the convergence of the QoIs during the grid-adaptation process.

Assuming that we have M quantities of interest Qm in the simulation (· means

that Qm was computed on grid ∆) allows for the total error in these QoIs to be

defined as

eref
QoI =

M∑
m=1

wmδQ
ref

m , (3.8)

where δQ
ref

m is the difference in Qm compared to a reference solution and wm is an
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appropriate weight.

Two different reference solutions are used to compute the total error in this

paper: (i) the LES solution on the previous grid that was used to compute the error-

indicator and generate the current grid (labeled eprev
QoI ); and (ii) a converged DNS

solution (labeled eDNS
QoI ). The DNS-based error eDNS

QoI is obviously a better measure

of convergence, but is not available in practice. As a result, both eDNS
QoI and eprev

QoI

are reported for all cases. Since our primary purpose in this Chapter is to assess

the error-indicator and the grid-adaptation process (and not to discuss how we can

judge the convergence in a real grid-adaptation scenario) eDNS
QoI will be our primary

measure in deciding whether or not the results are converged.

The first grid that satisfies the criterion on eDNS
QoI is taken as the “optimal”

grid in this Chapter. A more conservative criterion would be to require multiple

sequential grids to satisfy the convergence criterion. Chapter 7 of this dissertation

focuses on convergence-verification in LES, and any further discussions of the subject

are delayed until then.

3.2 Assessment on turbulent channel flow

The filter-width selection and adaptation problem is inherently an optimiza-

tion problem: we should therefore check whether the predicted grids/filter-widths

are “optimal” in the sense of leading to the best accuracy at the lowest cost. While

true optimality is probably impossible to assess in the context of LES, the tur-

bulent channel flow is arguably as close as we can get given the many decades of
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experience with this flow in the LES community. For the turbulent channel cases,

we therefore ask whether the adaptation algorithm can produce grids close to the

(∆+
x ,∆

+
yw/2,∆

+
z ) ≈ (40, 1, 20) or so that is widely considered a “good” grid for

wall-resolved LES.

All simulations are started from exceedingly coarse grids that are essentially

ignorant of the flow physics; this is done to test the robustness with severely under-

resolved solutions. The idea here is that, no matter how coarse the grid might be,

a robust method should always drive the grid towards a distribution that leads to

lower errors in the solution.

To further test the robustness of the method, we consider three different ap-

proaches: (i) implicitly filtered LES with an explicit LES model (dynamic Smagorin-

sky model) and a mixture of modeling and numerical errors; (ii) Implicit LES (ILES)

with a dissipative WENO scheme (as a completely different approach to LES mod-

eling); and (iii) DNS, which is purely affected by numerical errors.

3.2.1 Code and problem specification

The code used for this problem is the Hybrid code that solves the compressible

Navier-Stokes equations for a calorically perfect gas on structured Cartesian grids

using sixth-order accurate central differencing schemes with a split form of the con-

vective terms [53] (skew-symmetric in the limit of zero Mach number) for increased

numerical stability. Numerical noise is removed by a numerical sixth-order hyper-

viscosity term in conservative form; the effect of this (very low level of) numerical
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high wave-number dissipation has been assessed and found negligible for the cases

in this study. Time-integration is handled by classic fourth-order Runge-Kutta.

The channel flows are driven by a spatially uniform body force that is ad-

justed at each time step to maintain a constant bulk velocity Ub. The walls are

isothermal. The bulk Mach number, defined as the ratio of Ub and the speed-of-

sound at the walls, is 0.8, which is a compromise between having minimal effects of

compressibility while avoiding an excessively small time step. The computational

domain is of size (Lx, Ly, Lz) = (10H, 2H, 3H) where H is the channel half-width.

The grids are stretched in the wall-normal direction using a tanh-function. The

simulations are initialized either from a laminar profile with random, approximately

solendoidal, noise added to the velocity (with 10% amplitude), or by interpolating

an existing fully developed solution from a different grid. They are integrated for

a time of 400H/Ub before collecting statistics over a period of 400H/Ub. The con-

vergence of the statistics is verified by computing averages using only parts of the

complete record in time, and then estimating the associated standard deviation of

the averages. The convergence error is found to be sufficiently small as to not affect

any conclusions in this study. This long integration time is primarily required for

convergence of the solution, while the grid-adaptation can actually be performed

with averages collected over a much shorter time. A careful study of the required

statistical convergence of the error indicator is deferred until Chapter 6.

To measure convergence, the QoIs are defined based on the mean velocity and
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the Reynolds stresses. Specifically, the errors in the QoIs are defined as

δQ
ref

1 =

∫ b
a

∣∣∣U+

1 − Ũ+
1,ref

∣∣∣ d (ln y+)∫ b
a
Ũ+

1,ref d (ln y+)

δQ
ref

2-5 =

∫ b
a

∣∣∣R+

ij − R̃+
ij,ref

∣∣∣ d (ln y+)∫ b
a
R̃+
kk,ref/2 d (ln y+)

, (i, j) = (1, 1), (2, 2), (3, 3), (1, 2) .

(3.9)

where U1 = 〈u1〉 and Rij =
〈
u′iu
′
j

〉
are the resolved mean velocity and resolved

Reynolds stress on the LES grid (with characteristic filter-width ∆). The reference

quantities Ũ1,ref and R̃ij,ref are taken either from the previous LES grid in the se-

quence of adapted grids (for eprev
QoI ) or from our own DNS for the same setup (for

eDNS
QoI ). The integration limits (a and b) are taken as y+ = 2 to y+ = Reτ/2 (i.e.

y = H/2), where the core of the channel is excluded since it is the most affected by

the domain size. Note that the error in all of the Reynolds stresses is normalized by

the (integral of the) kinetic energy R̃kk/2. These five δQ
ref

m are then equally weighted

to form the final error metric

eref
QoI =

1

5

5∑
m=1

δQ
ref

m . (3.10)

Admittedly, we should use the total Reynolds stress R
tot

ij =
〈
u′iu
′
j

〉
+
〈
τmod
ij

〉
(where τmod

ij is the modeled SGS stress) for judging the convergence of any LES.

Unfortunately, for the channel flow cases of this Chapter (and only this Chapter)

we had not stored the eddy viscosity in the original simulations and we did not want

to repeat all of them. That is why we are instead using the resolved Reynolds stress

Rij =
〈
u′iu
′
j

〉
. Besides, a good wall-resolved LES (i.e., on a converged grid, or not

far from it) must have a resolution that is close to the DNS, meaning that the LES

model is not really that active on the finer grids anyway. In other words, in the
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wall-resolved LES of the channel flow the effect of
〈
τmod
ij

〉
is significant only on the

coarser grids, where eref
QoI is high anyways, and it is negligible on finer grids that have

a lower eref
QoI; therefore, none of the conclusions of this Section should be affected by

using the resolved Reynolds stress.

3.2.2 LES with a dynamic Smagorinsky model at Reτ ≈ 830

The main test case is to run an implicitly filtered LES with an explicit subgrid

model. Specifically, the dynamic Smagorinsky model [54, 55] is used, with filtering

and averaging in the wall-parallel directions. Combined with the use of numerics

with low numerical dissipation, this produces solutions that are contaminated by

both modeling and numerical errors of about similar magnitudes (cf. [4, 56]).

The bulk Reynolds number Reb = ρbUbH/µw (where ρb is the bulk density and

µw is the viscosity at the wall) is 15,000, which leads to a friction Reynolds number

of about Reτ ≈ 830 (for a fine grid on which the solution is converged).

To really test the proposed error-indicator, the initial grid is chosen to be both

isotropic and exceedingly coarse. This approximates a realistic engineering scenario

where the user has little idea about how to generate the initial grid. Specifically,

the initial grid (labeled LES-1) has cells of size ∆x = ∆y = ∆z = 0.25H, which

corresponds to ∆
+

x = ∆
+

y = ∆
+

z ≈ 210 at the converged Reτ . The mean velocity

and streamwise Reynolds stress are shown in Fig. 3.5 with some details given in

Table 3.1. Both profiles are, of course, completely inaccurate on this exceedingly

coarse grid. The threshold Athresh is chosen such that it leads to an increase in the

59



Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eprev

QoI (%) eDNS
QoI (%)

LES-1 3.84k 8 (89, 45, 89) (0.25, 0.25, 0.25) 356 − 110
LES-2 16.8k 32 (170, 2.2, 120) (0.29, 0.14, 0.20) 611 200 53
LES-3 144k 50 (130, 1.7, 57) (0.17, 0.090, 0.075) 758 17 22
LES-4 553k 60 (85, 1.6, 26) (0.10, 0.075, 0.031) 820 13 8.3
LES-5 1.97M 72 (54, 1.3, 14) (0.066, 0.063, 0.017) 822 5.8 3.1
LES-6 4.75M 80 (38, 1.5, 9.2) (0.046, 0.052, 0.011) 827 2.1 2.0

Table 3.1: LES of channel flow at Reτ ≈ 830 starting from a very coarse isotropic

grid. Note that ∆yc is the value at the channel centerline, while ∆
+

yw is the value at
the wall. Ntot is the total number of grid points in the computational domain. Ny is
the number of points across the channel in the wall normal direction. The conver-
gence is monitored by the difference compared to the DNS (eDNS

QoI ); for completeness
we have also measured the difference compared to a previous grid (eprev

QoI ). Results
shown in Fig. 3.5.

cell count by approximately a factor of 4; adaptation based on this threshold then

leads to a new grid (labeled LES-2) with ∆x = 0.29H, ∆y = 0.007H → 0.14H and

∆z = 0.20H. Note that we use the minimum values of ∆̌opt(x,n) in the x and z

directions, respectively, in order to ensure a structured grid (for the channel cases).

The process continues in the same manner, generating the 6 grids listed in

Table 3.1 for which the key results are shown in Fig. 3.5. The threshold value

Athresh is chosen, at each stage, based on the approximate increase in the number

of grid points; this is taken as a factor of 4 or above on the first few grids and then

as factors of 3 and 2 on the final grids. These choices are necessarily based on user

judgment, but the exact choices do not qualitatively change the grid-adaptation

process.

The solution clearly converges as the grid is refined. More importantly, as

the grid progresses through the adaptation process, note how the directional error-

indicator becomes progressively closer to equal in the different directions. The fact
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Figure 3.5: LES of channel flow at Reτ ≈ 830 starting from a very coarse isotropic
grid. The rows show the progression of grids from the initial (LES-1; top row) to
the final (LES-6; bottom row). The columns show, from left: (i) the shape of a wall-

adjacent cell; (ii) the mean (van Driest transformed) velocity U
+

VD; (iii) the resolved

streamwise Reynolds stress R
+

11; and (iv) the error-indicators A(y+,nx) (brightest
color), A(y+,ny) (mid-bright), and A(y+,nz) (darkest color). The dotted line in
columns (ii) and (iii) shows the converged DNS result. The dotted line in column
(iv) shows the threshold Athresh used at each stage. The thick line in column (i) is
of length 0.05H. Key quantities are listed in Table 3.1.
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that it takes a few iterations is partly due to the fact that the resolved turbulence

changes as the grid is refined (particularly from the exceedingly coarse initial grid

used here) and partly due to the fact that the true scaling exponents αn are different

from the assumed value of 2.

It is interesting to note how the first adaptation step (from LES-1 to LES-

2) essentially only targets ∆y, especially near the wall. In fact, ∆x even increases

slightly in this adaptation step. After this step, the ∆y is sufficient to allow for a

more meaningful resolved turbulence, which then requires refinement in all directions

but primarily in ∆z.

Looking at the plots in Fig. 3.5, based on typical “LES judgment”, one might

argue that the solution is sufficiently accurate on grids LES-5 and LES-6. The

solution error metric (based on the DNS solution) eDNS
QoI is 3% and 2% on these

grids, that are arguably small enough for an LES. The grid-adaptation process is

therefore terminated after LES-6.

The LES-5 and LES-6 grids have grid-spacings (∆
+

x ,∆
+

yw/2,∆
+

z ) of (54, 1.3, 14)

and (38, 1.5, 9). These grid-spacings are commensurate with the literature and ex-

perience on LES, albeit with arguably slightly finer spanwise grid-spacing than is

considered “best practice” or “optimal”. In the next Chapter (Section 4.5) we show

that the fine spanwise resolution happens primarily because of the assumption of

uniform distribution of the error-indicator in space, and show that with a modified

criteria this is no longer an issue.
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eprev

QoI (%) eDNS
QoI (%)

DNS-1 1.62k 6 (86, 43, 86) (0.33, 0.33, 0.33) 257 − 72
DNS-2 12.5k 28 (170, 6, 120) (0.31, 0.12, 0.21) 547 140 47
DNS-3 28.7k 38 (130, 4.4, 89) (0.24, 0.087, 0.17) 535 8.7 33
DNS-4 821k 85 (41, 1.0, 26) (0.071, 0.049, 0.044) 581 22 5.9
DNS-5 6.38M 110 (20, 0.9, 8.6) (0.035, 0.036, 0.015) 572 5.2 1.4
DNS-6 14.8M 110 (14, 0.9, 5.3) (0.024, 0.036, 0.009) 571 1.0 1.1
DNS-7 16.9M 110 (12, 0.9, 5.3) (0.021, 0.036, 0.009) 571 0.8 0.3

Table 3.2: DNS of channel flow at Reτ ≈ 570 starting from a very coarse isotropic

grid. Note that ∆yc is the value at the channel centerline, while ∆
+

yw is the value at
the wall. Results shown in Fig. 3.6.

3.2.3 DNS at Reτ ≈ 570

To assess the robustness of the grid-adaptation process, we next consider DNS

of the same channel flow. This problem has no explicit subgrid model, and thus all

errors are numerical in nature. The Reynolds number is reduced to Reb = 10, 000

in order to limit the computational cost; this leads to a friction Reynolds number

of Reτ ≈ 570. We again start from a very coarse grid with cubic cells, taken here

as ∆x= ∆y = ∆z = 0.33H in order to have similar dimensions in viscous units as in

the LES case. The results are shown in Fig. 3.6 and listed in Table 3.2.

The process is terminated when the solution error metric eDNS
QoI is less than 1%,

since one would require greater accuracy from a DNS than an LES. At the point of

termination, the grid-spacing is (∆
+

x ,∆
+

yw/2,∆
+

z ) ≈ (12, 0.9, 5) which agrees quite

well with the standard practice in DNS [17] (albeit slightly too coarse in y).

We should note that the success of the proposed error-indicator in DNS of the

channel flow was to some degree due to the nature of the wall-bounded turbulence

and the similarity between the grids used in DNS and wall-resolved LES. In other
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Figure 3.6: DNS of channel flow at Reτ ≈ 570 starting from a very coarse isotropic
grid. Mean velocity (left) and resolved streamwise Reynolds stress (right). The
dotted blue line shows the converged DNS result. Sequence of grids DNS-1 to DNS-
7 shown by the brightest to the darkest colors, respectively. Key quantities are listed
in Table 3.2.

words, the final decision on the suitability of A(x,n) in grid selection for DNS

requires a much more comprehensive assessment and cannot be simply concluded

based on the favorable results of this Section.

3.2.4 Implicit LES (ILES) with the 5th-order WENO scheme at

Reτ ≈ 310

The final channel test case is to consider ILES, i.e., an LES with a numerically

dissipative scheme and no explicit subgrid model. A 5th-order WENO scheme with

Roe flux-splitting is used for this test, at Reb = 5, 000 (or Reτ ≈ 310). The initial

grid is ∆x = ∆y = ∆z = 0.125H, which was the coarsest isotropic grid for which

we could achieve sustained turbulence for this WENO scheme at this low Reynolds

number.
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eprev

QoI (%) eDNS
QoI (%)

WENO-1 30.7k 16 (23, 12, 23) (0.13, 0.13, 0.13) 185 − 35
WENO-2 220k 70 (29, 1.0, 16) (0.13, 0.047, 0.071) 219 48 47
WENO-3 1.10M 100 (27, 0.4, 7.2) (0.10, 0.042, 0.027) 265 17 22
WENO-4 4.03M 120 (18, 0.4, 4.1) (0.063, 0.034, 0.014) 291 9.8 9.7
WENO-5 9.43M 130 (12, 0.5, 3.1) (0.040, 0.029, 0.010) 301 4.2 5.1
WENO-6 16.7M 140 (8.7, 0.4, 2.7) (0.029, 0.027, 0.009) 305 2.4 2.4

Table 3.3: Implicit LES using a 5th-order WENO scheme of channel flow at Reτ ≈
310 starting from a very coarse isotropic grid. Note that ∆yc is the value at the

channel centerline, while ∆
+

yw is the value at the wall. Results shown in Fig. 3.7.

The results from the sequence of grids produced by the grid-adaptation are

shown in Fig. 3.7 and Table 3.3. At comparable solution error levels, these grids

are clearly finer than those for the prior LES. Nevertheless, the final grids have cell

aspect ratios (or anisotropies) that seem quite reasonable.

Note that the difference in Reynolds numbers between the different channel

flow test cases does not change the conclusions at all, since the anisotropy of near-

wall turbulence is not very sensitive to Reynolds number. This was also confirmed

by performing the LES test at all three Reynolds numbers and the DNS test at the

two lower Reynolds numbers, with no significant difference in the results.

3.3 Assessment on the flow over a backward facing step at ReH =

5100

The grid-adaptation process is next assessed on the flow over a backward-

facing step. The purpose of this test case is to expose the adaptation algorithm to

a more complex flow, with multiple different canonical flow elements: an attached
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Figure 3.7: Implicit LES using a 5th-order WENO scheme of channel flow at
Reτ ≈ 310 starting from a very coarse isotropic grid. Mean velocity (left) and
resolved streamwise Reynolds stress (right). The dotted line shows the converged
DNS result. Sequence of grids WENO-1 to WENO-6 shown by the brightest to the
darkest colors, respectively. Key quantities are listed in Table 3.3.

boundary layer upstream of the step, a free shear layer after the separation, an

impingement/reattachment region, and a large recirculation zone.

The flow geometry and conditions are chosen based on the experiment of Jovic

and Driver [57,58] and the DNS of Le et al. [59]. The computational domain is shown

in Fig. 3.8. The Reynolds number based on the step height H and inflow velocity U∞

is ReH = U∞H/ν = 5100. This corresponds to a momentum Reynolds number of

Reθ ≈ 780 for the incoming boundary layer (at x/H = −3) and a friction Reynolds

number of Reτ ≈ 208 based on the δ95 boundary layer thickness (or Reτ ≈ 448

based on δ99) at that same location. Note that the flow conditions are close to those

of the experiment and the DNS, but not exactly the same: the present setup has a

thicker boundary layer compared to that of the experiment (which had Reθ ≈ 610).
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Figure 3.8: Schematic of the computational domain for the flow over a backward-
facing step. The top boundary is a slip wall (modeling the centerline in the exper-
iment) while periodic boundary conditions are used in the spanwise direction. The
origin of the coordinate systems is placed at the upper corner of the step.

3.3.1 Code and computational details

The OpenFOAM code version 2.3.1 [60] is used for this test case to allow

for fully unstructured adapted grids. Spatial discretization is done using the linear

Gauss scheme (second-order accurate), with second-order backward method for time

integration. The pressure-velocity coupling is performed using the PISO algorithm

with three iterations of nonorthogonality correction. We use the dynamic ksgs-

equation model [61–64] with the cube-root of the cell volume as the filter-width.

The quantities of interest for this flow are taken to be the two non-zero mean

velocity components, the four non-zero Reynolds stress components, and the friction

and pressure coefficient profiles on the horizontal walls. The errors in the QoIs are
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defined as

δQ
ref

1-2 =

∫∫
Ω

∣∣∣U i − Ũi,ref

∣∣∣ dxdy
0.2U∞AΩ

; i = 1, 2

δQ
ref

3-6 =

∫∫
Ω

∣∣∣Rtot

ij − R̃tot
ij,ref

∣∣∣ dxdy
0.015U2

∞AΩ

; (i, j) = (1, 1), (2, 2), (3, 3), (1, 2)

δQ
ref

7 =

∫
Ψ
|cf − c̃f,ref | dx
0.002LΨ

;

δQ
ref

8 =

∫
Ψ
|cp − c̃p,ref | dx

0.1LΨ

.

(3.11)

where the first two integrals are taken over the region Ω : (x, y) ∈ [−10H, 20H] ×

[−H, 2H], with AΩ = 10H×2H + 20H×3H denoting the area of this region. The

remaining two integrals are taken over the horizontal walls in the region Ψ : x ∈

[−10H, 20H] with LΨ = 30H denoting the normalizing length. Note that here we

use the correct QoI, i.e. the total Reynolds stress R
tot

ij =
〈
u′iu
′
j

〉
+
〈
τmod
ij

〉
, when

judging the convergence of our LES. The quantities are scaled by representative

values to make the δQm comparable, and then weighted and added together to

define the convergence metric as

eref
QoI =

1

3

2∑
m=1

δQ
ref

m

2
+

1

3

6∑
m=3

δQ
ref

m

4
+

1

3

8∑
m=7

δQ
ref

m

2
. (3.12)

As in the previous section, we compute both eprev
QoI defined with respect to the previous

grid in the sequence and eDNS
QoI defined with respect to a converged DNS. The reference

DNS is computed on a very fine unstructured grid with about 54M cells.

Each case was run for 500H/U∞ time units to remove the initial transients, af-

ter which 400 snapshots were collected over a period of 1000H/U∞. The convergence

of the averaging was judged by dividing the full record into four separate batches

with 200 snapshots in each, computing the QoIs for each batch, and then computing
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the sample standard deviation between the batch averages. We then constructed

95% confidence intervals for each quantity using the Student’s t-distribution with

3 degrees of freedom (cf. [65]). The confidence intervals for the integrated errors

in the QoIs are very small (and thus omitted below), but they are significant for

some of the profiles especially downstream of the step. This is consistent with the

expectation of low frequency unsteadiness in the separated flow. The long averaging

times are required only for the QoI profiles to converge; the error-indicator converges

about an order of magnitude more quickly due to its dependence on small scales.

The statistical convergence of the error-indicator and the resulting predicted grids

are investigated in detail in Chapter 6.

We emphasize that the differences in the numerics and models between the

channel and backward-facing steps are viewed as a strength in the assessment of

the grid-adaptation method, by exposing the adaptation process to numerical and

modeling errors that are qualitatively and quantitatively different (high vs low order,

less vs more numerical dissipation, compressible vs incompressible, etc).

3.3.2 Results

The initial grid (labeled LES-1) has a resolution of ∆(x,n)/H = 0.2 every-

where in the domain except for close to the walls where the wall-normal direction

is refined by a factor of two (this is done to enable a direct comparison between

the sequences of grids generated by all three of the error-indicators proposed in this

dissertation; since the indicator of Chapter 8 is based on assumptions that are only
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Figure 3.9: The grid LES-2 from Table 3.4 illustrated by its refinement levels in
x (top), y (middle), and z (bottom). Refinement levels are computed based on a
skeletal grid with ∆0(x,n) = 0.2H for all x and n. The light green, dark green and
blue colors illustrate regions with one (∆n/H = 0.1), two (∆n/H = 0.05), and three
(∆n/H = 0.025) refinement levels, respectively. The white areas are associated with
regions that are left untouched (i.e. ∆n/H = 0.2). The dashed black lines highlight
the δ95 boundary layer thickness.

true when there is a sufficient level of turbulent activity in the flow). After running

the LES on this initial grid, the error-indicator A(x,n) is computed for the three

directions of possible refinement and the target grid-spacing distributions ∆̌opt(x,n)

for nx, ny and nz are computed based on Eqn. 3.7 for a threshold value Athresh that

leads to the doubling of the number of cells.

Figure 3.9 illustrates how the adaptation methodology targets different regions

of the domain for refinement. The algorithm predicts a single level of refinement in

the y direction (∆y = ∆(x,ny) = 0.1H) in most of the domain inside the boundary

layer, with a second level of refinement (∆y/H = 0.05) closer to the horizontal walls

and in the shear layer, and a third level of refinement (∆y/H = 0.025) immediately

above the horizontal walls in both incoming and recovering boundary layers. The
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spanwise resolution ∆z is targeted for a single level of refinement (∆z/H = 0.1)

for the most part of the domain inside the turbulent boundary layers, while the

relaminarized region inside the recirculation bubble is left untouched. The resolution

of the skeletal grid in the x direction (∆x/H = 0.2) is deemed adequate (at this

resolution level, compared to resolution in y and z) for the most part of the domain

downstream of the reattachment point. Half of the incoming boundary layer, the

shear layer formed by separation at the step, the reattachment point and some area

around it are marked for one level of refinement in the x direction. The vertical wall

of the step (where the recirculation bubble causes shear) is also predicted to need

some refinement (the wall-normal resolution for this wall is ∆x/H = 0.05). We also

note that the aspect ratio of the cells in the boundary layers, the shear layer, and

the recirculation bubble are quite close to what we expect from experience for those

flows. The fact that the resulting LES-2 grid seems this reasonable from an “LES

experience” point-of-view is actually quite remarkable, since it was created entirely

by an algorithm, using a heuristic-based error-indicator applied by an even more

heuristic criterion on how the error-indicator should be spatially distributed, and

from a solution on a highly underresolved mesh.

The adapted grid is then generated using OpenFOAM’s refineMesh utility,

by using the target grid-spacings to produce an input file to refineMesh. Since

refineMesh can only refine hexahedral cells by factors of 2R in any direction (R

being the refinement level), a cell is cut in half until the grid-spacing is less than

or equal to the target grid-spacing in that location and direction. For instance,

a target resolution of ∆̌ = 0.17H is projected down to the first available value of
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Grid Ntot (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆y,∆z)/δshear eprev

QoI (%) eDNS
QoI (%)

LES-1 149k (42, 10, 42) (0.21, 0.17, 0.33) − 11.2
LES-2 293k (21, 2.6, 21) (0.17, 0.087, 0.17) 6.9 11.0
LES-3 596k (22, 2.7, 11) (0.076, 0.038, 0.076) 4.8 7.7
LES-4 1.28M (23, 2.9, 5.7) (0.076, 0.038, 0.038) 4.2 5.8
LES-5 2.22M (23, 1.5, 5.9) (0.048, 0.019, 0.038) 2.4 4.3
LES-6 3.59M (25, 1.5, 6.2) (0.034, 0.017, 0.034) 2.8 3.9

DNS 54M (6.0, 0.38.3.0) (0.017, 0.0086, 0.017) − 0

Table 3.4: LES of the flow over a backward-facing step. Ntot is the actual number
of cells in the computational domain. The filter width in inner units is taken from
x/H = −3 (upstream of the step). The filter width in outer units is taken from the
middle of the shear layer and is scaled by the approximate thickness of that shear
layer δshear. See Fig. 3.14 for more details. eDNS

QoI and eprev
QoI are defined in Eqn. 3.12.

0.10H. Consequently, the adapted grid has cells that may be up to a factor of almost

2 finer than the target grid-spacing.

The threshold level Athresh was chosen to produce an approximate doubling of

the number of cells. This approximation was done before the actual construction of

the adapted grid, by estimating the number of cells from the target grid-spacings:

therefore, the actual adapted grid has slightly higher or lower cell counts than the

target values. The process is then repeated, with the sequence of resulting grids

listed in Table 3.4.

As can be seen in Table 3.4, the error in quantities of interest eDNS
QoI is below

5% on the last two grids and thus we can declare LES-6 to be sufficiently converged.

The convergence of some key profiles are shown in a few figures. Figure 3.10 shows

the friction and pressure coefficients on the bottom wall of the geometry. The results

are reasonable on LES-5 and almost converged on LES-6. The LES results converge

to the present DNS, which in turn shows slight differences with the experimental
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results. Most notably, the experimental friction coefficient cf has a deeper negative

peak around x/H ≈ 3 and a slightly higher level around x/H ≈ 15−20. These slight

differences are commensurate with the known differences in the incoming boundary

layer between the present computations and the experiments. The slow convergence

of cf upstream of the step (compared to the downstream) is also notable. We note

the presence of some sudden jumps in the friction coefficient cf ; these are mostly

post-processing artifacts that happen due to the interpolation of the unstructured

grid data onto a structured grid for computation of the friction coefficient.

The mean velocity and the Reynolds stresses at x/H = 6 are shown in

Fig. 3.12. This is near the reattachment point. All quantities are basically con-

verged on LES-6. Similar results at the incoming boundary layer at x/H = −3 and

the recovering boundary layer at x/H = 15 are shown in Figs. 3.11 and 3.13.

The converged LES-6 grid is shown in Fig. 3.14. The regions where the grid

has been refined basically agree with one’s expectation for this flow, with the most

refinement in the incoming boundary layer and the initial part of the shear layer. The

anisotropic nature of the final grid is clearly visible, particularly when comparing

∆y to ∆x or ∆z for those resolutions that are reported in Table 3.4. It is interesting

to note the very coarse grid in the lower part of the recirculation bubble, where the

flow is slow and less turbulent.
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Figure 3.10: Convergence of (a) friction coefficient cf and (b) pressure coefficient
cp for LES of flow over a backward-facing step. Grids in Table 3.4 are shown by
the lightest color for LES-1 to the darkest for LES-6. Solid lines denote the sample
means, while the shaded regions correspond to the approximate confidence intervals
(computed locally). The dotted blue lines and their shaded regions denote our DNS
results and their confidence intervals. Symbols correspond to the experimental data
of Jovic & Driver [57,58] with slightly different setup (error bars on the experimental
data are not shown). Experimental measurements of cf and cp are not available
upstream of the step.

3.4 Alternative definition of the error-indicator using structure func-

tions

The directional filter used in obtaining the high-pass filtered velocity u
∗,(n)
i

in Eqn. 3.2 is, in fact, only one of many choices that are potentially available.

Generally speaking, any filter that can be applied in a single direction can also be

used to compute the error-indicator; e.g., the box filter, the Gaussian filter, the

spectral filter, differential filters other than the one used in Eqn. 3.2, etc. One of

the most popular of these directional filters in the turbulence literature has been

the structure function, that has been in use since the early days in the development
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Figure 3.11: Convergence of the mean velocity and Reynolds stress profiles for
the sequence of grids in Table 3.4 at the incoming boundary layer at x/H = −3.
Grids in the sequence are shown by the lightest color for LES-1 to the darkest for
LES-6. Solid lines denote the sample means, while the shaded regions correspond to
the approximate confidence intervals (computed locally). The dotted blue lines and
their shaded regions denote our DNS results and their confidence intervals. Symbols
correspond to the experimental data of Jovic & Driver [57, 58] (error bars on the
experimental data are not shown).

Figure 3.12: Convergence of the mean velocity and Reynolds stress profles for grids
in Table 3.4 at x/H = 6 near the reattachment point. See Fig. 3.11 for more details.

of the turbulence theory (cf. [17]). In this Section, we briefly discuss an alternative

definition of the error-indicator based on the second-order structure function and

comment on its performance and suitability.
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Figure 3.13: Convergence of the mean velocity and Reynolds stress profiles for the
recovering boundary layer at x/H = 15 for the sequence of grids in Table 3.4. See
Fig. 3.11 for more details.

The advantage of this alternative formulation is that it is readily implementable

in almost any unstructured code without any complications; the disadvantage is that

it leads to less “optimal” predictions of the filter width.

The second-order velocity structure function at position x for the resolved

velocity field ui is defined as [17]

Dij(x, r) = 〈[ui(x + r)− ui(x)] [uj(x + r)− uj(x)]〉 ,

which is the covariance of the difference in velocities between two points separated

by r. Taking r = n∆n allows us to define an alternative anisotropic error-indicator

as

A′(x,n) =
√
Dii(x,n∆n) . (3.13)

One could take n∆n to be the vector connecting two cell centers on two adjacent

cells (for example two prisms in Fig. 3.4) which makes the method applicable to all

types of grids. This error-indicator can also be approximated using a Taylor series
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Figure 3.14: The generated grid LES-6 of Table 3.4 with 3.59M cells. Intersections
of the blue planes denote locations whose resolutions are reported in Table 3.4,
while the green planes correspond to x/H = −3 and x/H = 6 whose velocity and
Reynolds stress profiles are plotted in Figs. 3.11 and 3.12. The grid is resulted
from computation of the proposed error-indicator (Eqns. 3.2 and 3.3) and enforcing
Eqn. 3.7, with no user experience involved.

as

A′(x,n) ≈ ∆n

√
〈(nT∇ui) (nT∇ui)〉 . (3.14)

which gives us a more clear idea of its scaling with directional resolution ∆n. For

LES of isotropic turbulence, this leads to a scaling A′(x,n) ∼ ∆
1/3

n exactly as for the

standard definition of the error-indicator A(x,n) (for both the original formulation

and its differential approximation; assuming exact differentiation in the latter). For

DNS and laminar flows, however, it produces a different scaling of A′(x,n) ∼ ∆n

(from the differential approximation). For steady laminar flows, this alternative

error-indicator then effectively becomes a gradient-based adaptation.

This alternative error-indicator A′(x,n) was assessed on the same cases. For

the channel flows, it was found to favor refinement in the wall normal direction when
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Figure 3.15: The target resolutions predicted by A′(x,n) (solid lines) and A(x,n)
(dotted lines) for turbulent channel flow at Reτ ≈ 545. The streamwise, wall-
normal, and spanwise resolutions are shown by the brightest to the darkest colors,
in that same order. Resolutions correspond to target grids with around 1.10M
cells. Both target resolutions are obtained by Eqn. 3.7 assuming Ǎ′(x,n) ∼ ∆̌n

and Ǎ(x,n) ∼ ∆̌2
n. Note that compared to A(x,n), the alternative error-indicator

A′(x,n) leads to coarser resolutions in the streamwise and spanwise directions, while
the wall-normal resolution is much finer in the region, y+ . 10-20.

compared to the main definition A(x,n). In other words, if the threshold is chosen

such that the cell count of the target grids from both error-indicators are almost

equal, A′(x,n) will produce a finer grid in y than A(x,n) will (see Fig 3.15).

A sample target grid-spacing for the backward-facing step is shown in Fig. 3.16.

These target values were computed using the differential approximation and the

assumed scaling A′(x,n) ∼ ∆n, i.e. the scaling in the DNS limit exactly as done for

A(x,n). Comparing Figs. 3.16 and 3.9 reveals that the grid produced by A′(x,n)

has much finer resolution in the wall-normal direction of the boundary layers. In

the original paper [11], we have generated a full sequence of grids for the backward-

facing step using A′(x,n) and compared it with the sequence generated by A(x,n).

The conclusion was that the alternative definition A′ leads to less optimal grids

(higher eDNS
QoI on grids with same number of cells). We expect the same conclusion
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Figure 3.16: The alternative grid LES′-2 predicted by A′(x,n) illustrated by its re-
finement levels in x (top), y (middle), and z (bottom). See Fig. 3.9 for interpretation
of the colored regions.

here; even though, the flow setup in the paper is slightly different than the results

presented here, and thus that sequence is not added to this dissertation.

3.5 Cost

One potential criticism of this type of adaptation algorithm is the additional

cost of performing LES on a full sequence of grids. We make four counter-arguments

and observations.

First, assuming that the cell count is doubled at each iteration and that the

time step scales as N
1/3
tot , the total cost of computing all grids in the sequence (in-

cluding the final one) is . 1.66Nfinal. If the cell count is quadrupled at each iteration,

the total cost is . 1.19Nfinal instead.

Second, one could in practice start from a “best guess” grid (based on prior

experience with the flow in question), thus reducing the number of steps of the
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algorithm. We only started from exceedingly coarse and “ignorant” initial grids

here in order to test the robustness of the method.

Third, as mentioned in the text (and will be shown in Chapter 6), the error

indicator converges faster (in terms of the integration time) than the QoI profiles

from LES, due to its dependence on the smallest resolved scales. Therefore, one

could run the simulations on the first several grids for shorter times.

Finally, the minor added computational cost must of course be balanced

against the larger cost saving of having a more “optimal” final grid. This saving

will presumably become larger for more complex flow problems.

3.6 Concluding remarks

The objective of this Chapter was to introduce the first anisotropic, or direc-

tional, error-indicator that could be used for grid selection and adaptation in LES.

The proposed error-indicator A provides an estimate of the energy of components of

the solution that have small-scale variation in any arbitrary direction n. It is then

argued that, due to the intuitive connection between the small-scales energy and all

types of errors in LES, this measure of directional small-scale energy can be used as

an anisotropic error-indicator in LES and thus to adapt the grids. The link between

A(x,n) and the grid-adaptation process is the assumption that the “optimal” grid

should satisfy an equi-distribution principle, with equal value of the error-indicator

in different directions and at different locations in space (Eqn. 3.7). This is what

we call the “grid selection criteria”.
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As far as a first attempt goes, the success of the proposed method was quite

remarkable. Our tests on the canonical problem of turbulent channel flow led to

a final grid with resolutions of (∆
+

x ,∆
+

yw/2,∆
+

z ) ≈ (38, 1.5, 9) for the case of the

implicitly filtered LES with the dynamic Smagorinsky model. While the “optimal”

grid for a backward-facing step is not known, the final grid LES-6 (see Table 3.4 and

Fig. 3.14) is consistent with our understanding of the flow field and the resolution

needs in LES.

One of the weaknesses in the methodology and the results presented in this

Chapter is the grid selection criterion of Eqn. 3.7: while the assumption of equi-

distribution of the small-scale energy in different directions appears to be reasonable

(at least at this stage), the equi-distribution in space is really way too simplistic.

Of course, the adjoint fields can provide a better measure of how important the

resolution in each location x is, and thus, how the resolution (the error-indicator)

can be more optimally distributed. However, even without using the adjoint fields

(i.e., assuming a uniform importance for different locations) the solution to the

constrained optimization problem of minimizing the errors at a given grid size, Ntot,

is not the uniform distribution of the error-indicator itself. This is discussed in more

detail in the next Chapter (Chapter 4).

It should be emphasized that the proposed error-indicator of this Chapter

is agnostic to the LES code and models: regardless of the approach, the high-

pass filtered velocity is always computed using Eqn. 3.2 and the error-indicator is

computed from Eqn. 3.3. Here, the method was tested with: (i) a compressible, high-

order, minimally-dissipative code (the channel LES case); (ii) a compressible implicit
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LES code (the channel WENO case), also mimicking a situation where ∆/h �

1; and (iii) an incompressible, low-order, unstructured code with ∆/h = 1 (the

backward-facing step case). The physical models were also different: the dynamic

Smagorinsky model in the channel vs the dynamic ksgs-equation eddy viscosity model

in the backward-facing step. The fact that the grid-adaptation method produced

reasonable results in all cases suggests that it is robust to the numerical method and

physical model.

The agnostic nature of the error-indicator A(x,n) has its own advantages and

disadvantages. The most notable benefit of such generic formulations is perhaps the

fact that it offers a “one solution fits all” sort of approach, meaning that a single

post-processing script can be written and used for all LES cases, over all numerical

codes and using all LES models; and it would probably work, at least to some

degree, in all of them. The main disadvantage is that such generic methods are

incapable of optimizing the outcome for different codes and models. In other words,

in none of the cases can we reach the most “optimal” distribution of the filter: the

predicted grids may always be close to the “optimal”, but still with some distance

from it. As a results, a more efficient approach would be to have an error-indicator

that is customizable to the specific code and the LES model, but is still robust to

the changes. Such an error-indicator would lead to target grids that are (at least

theoretically) as optimal as possible for the customized case, while still somewhat

close the optimal in all other cases.

And finally, while the general idea of connecting the accuracy of LES to the

amount of unresolved or small-scale kinetic energy is quite intuitive and has been
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found to work well in several cases in this Chapter and in the literature [23], it is

important to acknowledge that it is heuristic in nature: there is no equation showing

that error scales with unresolved kinetic energy. For example, a perfect SGS/SFS

model would introduce no modeling error regardless of the unresolved kinetic energy.

If one then uses a ∆/h that eliminates the numerical errors, our predictions of the

QoIs are always accurate (for QoIs that are consistent with LES), independent of the

small-scale or unresolved kinetic energy. Another example of failure of the energy-

based indicators (although primarily for those based on the unresolved energy) is in

the channel flow, where the LES-predicted kinetic energy is known to be (typically)

larger than DNS (for instance, see all the grids in Figs. 3.1, 3.7, and 3.11) and the

unresolved energy becomes a negative value; therefore, judging the modeling errors

by the amount of “unresolved” energy becomes almost meaningless (similarly, for

the ratio of resolved to total kinetic energy that is now larger than unity).

In Chapter 5 we revisit the problem of error-estimation in LES, this time from

an equation-based point of view, and define a new error-indicator that is customiz-

able to the LES model and the code, and is not affected (or at least less affected)

by such flaws in the heuristic argument.
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Chapter 4: The optimality criteria for grid selection and adaptation

Grid selection is a multi-objective optimization problem with the goal of pro-

ducing a grid that simultaneously minimizes the error in the “quantities of interest”

(QoIs) and the computational cost. In practice, the problem is often framed as the

constrained minimization problem of minimizing the error (in the QoIs) for a fixed

number of computational cells Ntot; or equivalently, minimizing the number of cells

Ntot for a fixed threshold on the error in the QoIs.

The purpose of this Chapter is to highlight that the correct solution to the

optimization problem is the equidistribution of the cell-integrated error, not the

pointwise error as has been assumed in multiple grid-adaptation studies in the liter-

ature. While this is clearly well known in parts of the grid-adaptation community,

it appears to not be broadly known. We therefore include a derivation of the correct

equidistribution principle here and also show how this impacts the adapted grids.
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4.1 The grid selection problem in an arbitrary number of dimensions

The global error in a quantity of interest is assumed to be (cf. [9,35,48,66–69])

eref
QoI =

∫
Ω

eref
local(x)J(x) dx , (4.1)

where eref
local(x) is the local source error on grid ∆ compared to a reference solu-

tion, J(x) is the adjoint field [9, 35, 48, 66–69] that connects the global error in the

quantities of interest to the local error source eref
local(x), and Ω is the computational

domain.

For grid selection we usually assume that the local error at an arbitrary grid-

resolution or filter-width ∆̌ can be found as

ěref
local(x) ≈ c(x)∆̌α(x) , (4.2)

where c(x) is only a function of space (not the grid/filter size ∆̌) and can be com-

puted from the evaluation of the error-indicator on grid ∆ as

c(x) =
eref

local(x)

∆
α
(x)

. (4.3)

Using Eqns. 4.2, 4.3, and 4.1 we can estimate the value of ěref
QoI(x) on any given grid

∆̌ as

ěref
QoI =

∫
Ω

c(x)∆̌α(x)J(x) dx , (4.4)

and try to find the one that leads to the minimum value.

The constraint of a fixed number of cells Ntot cannot be directly enforced in

the continuous setting (at least not in physical space), but can be approximately
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enforced by requiring that

Ntot =

∫
Ω

dx

V̌c
, (4.5)

where V̌c is a continuous measure of the volume (or area in 2D, or length in 1D) of

each cell.

The characteristic resolution of the filter/grid ∆̌ that enters the definition of

ěref
local can be expressed as

∆̌(x) = r(x)V̌ 1/d
c (x) , (4.6)

where d is the number of spatial dimensions, such that the second factor in the

right-hand side of the equation is the cube-root of the cell volume in 3D or the

square-root of the cell area in 2D. In the definition above, r(x) ≡ 1 describes a case

with the cube root of the cell volume as the relevant length-scale and ∆/h = 1, while

other values of r(x) describe ∆̌/ȟ ratios other than unity, or alternative definitions

of ∆̌(x) in the error-indicator (e.g., the maximum cell size, the diagonal length of

the cells, etc.) that are all proportional to V̌
1/d
c , provided that the aspect ratio of

the cell remains unchanged during the optimization process (which is usually true).

The goal of the optimization process is to find the ∆̌(x) that minimizes Eqn. 4.4

given that Eqn. 4.5 (the constraint on the number of cells on that grid) is satisfied.

This constrained optimization problem can be solved by finding the minimum of the

Lagrangian

L = ěref
QoI − λ

(
Ntot −

∫
Ω

dx

V̌c

)
=

∫
Ω

(
c(x)∆̌α(x)J(x) + λ

rd(x)

∆̌d(x)

)
dx− λNtot ,

which can be done by setting the functional derivative δL/δ∆̌ to zero. This yields

α c(x)∆̌α−1
opt (x)J(x)− λ d rd(x)∆̌−d−1

opt (x) = 0
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or equivalently

J(x) c(x)∆̌α
opt(x)︸ ︷︷ ︸

ěreflocal,opt(x)

∆̌d
opt(x)r−d(x)︸ ︷︷ ︸

V̌c,opt

=
λ d

α
= const. (4.7)

This means that the optimal grid is achieved when each computational cell con-

tributes equally to the error in the QoIs (equidistribution of the cell-wise contribu-

tion to the error in the QoI), and not when the error-indicator ěref
local(x) is uniformly

distributed. This means that our intuitive assumption in the previous Chapter that

(for J(x) ≡ 1) the most “optimal grid” is achieved when the error-indicator is

uniformly distributed in space was sub-optimal.

We are not considering the adjoint fields in this dissertation. Besides, we want

to have “generally good” solutions with no emphasis on a specific QoI or a specific

part of the domain. As a result, and for the lack of any better option, from now on

we take a constant J(x) in space,

J(x) ≡ 1 . (4.8)

If we also assume that r(x) is some fixed value for all x, i.e. r(x) = r = const.,

Eqn. 4.7 simplifies to

c(x)∆̌α+d
opt (x) = const. (4.9)

This shows that the optimal grid-spacing distribution for the continuous problem

with no adjoint field is the one for which c(x)∆̌α+d
opt (x) (the cell-integrated error-

indicator) is equidistributed, and not c(x)∆̌α
opt(x) (the error-indicator itself).

We should mention that this equidistribution principle is exact only for the

continuous problem, and is only an approximation for the actual discrete problem
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of grid selection. Nevertheless, it is an O(∆̌) accurate approximation of the dis-

crete problem [14,15] (under certain assumptions), which suggests that it is a good

approximation provided that ∆̌ is not too coarse.

4.2 Verification on a toy problem

To verify the equidistribution principle and to assess the effect on the global er-

ror, the following numerical experiment is performed. We define the three-dimensional

field

c(x) = c(x, y, z) = [1.01 + cos (2πx)] exp
(
−4y2

)
[1 + tanh (3z)] ,

for x = (x, y, z) ∈ [−1, 1]3 and assume that the pointwise error-indicator scales

with ∆̌2(x) (i.e., that α = 2). We then find the grid-spacing distribution ∆̌(x) that

satisfies equidistribution of c(x)∆̌ζ(x) for values of the exponent ζ between 1 and 10.

For every value of ζ, the Lagrange multiplier λ (or, equivalently, the level at which

we are equidistributing) is adjusted until the estimated number of cells
∫

Ω
dx/V̌c is

equal to 40d. After finding the ∆̌(x) distribution, the global error ěref
QoI is computed

from Eqn. 4.4 with J(x) ≡ 1 and plotted in Fig. 4.1 vs the exponent ζ. This is then

repeated in 2D (with z = 0) and 1D (with y = z = 0).

The figure illustrates quite clearly that the minimum error occurs very near

ζ = α+d in each case, which supports the continuous formulation of the optimization

problem and the implied equidistribution principle. It also shows that the global

error is about 2.5 times higher if one equidistributes c(x)∆̌α(x) (i.e., the error-

indicator itself) rather than the correct quantity c(x)∆̌α+3(x) in 3D; the specific
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Figure 4.1: The global error ěref
QoI (Eqn. 4.4 with J(x) ≡ 1) for grids that equidis-

tribute c(x)∆̌ζ(x) for the numerical experiment described in the text. Tested in 1D
(black), 2D (red), and 3D (blue). All curves are normalized by their corresponding
minimum value to make them comparable. Note how the minimum occurs at ζ = 3
(1D), ζ = 4 (2D), and ζ = 5 (3D), as predicted by the continuous formulation.

factor is of course unique to this particular setup (i.e., c(x) field, etc.), but illustrates

that this does have an impact on the global error.

4.3 Effect on the resulting grids

It is also interesting to see how the equidistribution principle affects the result-

ing grids. Figure 4.2 shows the target grid-spacing ∆̌opt that one gets from an in-

stantaneous snapshot of laminar (two-dimensional) vortex shedding behind a square

cylinder at a free stream Reynolds number of ReH = U∞H/ν = 100 (where H is the

square height) . The c(x) field is computed from a Hessian-based grid-adaptation

method [40, 46, 70–72] here, and the figure compares the target grid-spacings ∆̌opt

that one would get by imposing equidistribution of c(x)∆2(x) (the error-indicator it-

self) and that by equidistribution of c(x)∆4(x) (from the continuous formulation, for

2D). Note how the latter suppresses extreme variations in the grid-spacing, leading
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Figure 4.2: The predicted characteristic cell size ∆̌(x) (normalized by the square
height H) for laminar vortex shedding from a square cylinder in 2D, based on a
Hessian-based grid-adaptation method. Comparing equidistribution of the local
error-indicator c(x)∆̌2(x) (top) with equidistribution of the local cell-area-weighted
error-indicator c(x)∆̌4(x) (bottom). Both grids have the same number of cells (15k).

to less coarse cells in the free stream and less refined cells near the cylinder.

This is even more true in 3D, which can be seen in Fig. 4.3 which shows

a similar example from LES of the flow over a backward-facing step. Again, the

corrected equidistribution principle produces much smaller variations in ∆̌opt(x).

This latter example is from the error-indicator A(x,n) of the previous Chapter,

where the “equidistribution of error-indicator” (Eqn. 3.7) was imposed. The most

significant change in the results is in the freestream in Fig. 4.3, where the old

principle leads to extremely coarse grids. We actually failed to fully appreciate

this at the time of submission or even publication of the original paper [11], since
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Figure 4.3: The predicted characteristic cell size ∆̌(x) (normalized by the step
height H) for the flow over a backward-facing step using equidistribution of the
error-indicator (top) and the cell-volume-weighted error-indicator (bottom). The
c(x) field is computed from the anisotropic error-indicator of Chapter 3. Both grids
have about 1 million cells.

the grids were adaptively refined from the “skeletal” mesh with ∆0(x,n)/H = 0.2

with no ability to coarsen beyond that size; hence the extremely coarse cells in the

freestream were never realized. With the equidistribution principle derived from the

continuous formulation, this is much less of an issue.

4.4 Optimal criteria for anisotropic grid selection in LES

Everything discussed so far in this Chapter was for the case of a local error-

indicator that is only a function of x. In this Section we focus on extending the

grid selection criterion to anisotropic error-indicators, like A(x,n) of Chapter 3, to

enable optimal anisotropic grid selection.

Assuming that the local error source at any x is proportional to the total

small-scale energy at that location, which can be approximated for a hexahedral
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cell as

Ǎ2
tot(x) = Ǎ2(x,n1) + Ǎ2(x,n2) + Ǎ2(x,n3)

(where the n1, n2 and n3 directions are the three directions of the hexahedral cells;

see Fig. 3.4), provides a link between our anisotropic error-indicator Ǎ(x,n) and

the local error-indicator ěref
local(x) as

ěref
local(x) ∝ Ǎtot(x) =

√
Ǎ2(x,n1) + Ǎ2(x,n2) + Ǎ2(x,n3) . (4.10)

This definition of the local error-indicator can be substituted into Eqn. 4.1 and

the resulting optimization problem can be solved by setting the functional derivatives

of the Lagrangian to zero, i.e., δL/δ∆̌1 = 0, δL/δ∆̌2 = 0, and δL/δ∆̌3 = 0. After a

bit of simple algebraic manipulation, it can be shown that for this specific definition

of Ǎtot(x) the solution to the directional optimization problem is

α1 Ǎ(x,n1) = α2 Ǎ(x,n2) = α3 Ǎ(x,n3) , (4.11)

where αi is the scaling exponent in direction ni, i.e., from the model Ǎ(x,ni) ∼ ∆̌αi
ni

in Section 3.1.3. In the previous Chapter we assumed that the scaling exponent is

the same in all directions, α1 ≈ α2 ≈ α3 ≈ α ≈ 2, meaning that the optimal direc-

tional distribution of the error-indicator is in fact the intuitively assumed uniform

distribution in different directions

Ǎ(x,n1) = Ǎ(x,n2) = Ǎ(x,n3) . (4.12)

Note that for different scaling exponents in different directions the selection criteria

is again different from what we assumed heuristically.
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This criterion can be expressed in an equivalent form as

Ǎ(x,ni) = a(x,ni)∆̌
α(x,ni) = avol(x)∆̌α

vol(x) , i = 1, 2, 3 , (4.13)

where

a(x,ni) =
A(x,ni)

∆
α
(x,ni)

is computed from evaluation of the error-indicator on the original LES grid, and

avol = (a(x,n1)a(x,n2)a(x,n3))1/3 , ∆̌vol =
(
∆̌(x,n1)∆̌(x,n2)∆̌(x,n3)

)1/3
.

This implies that the predicted optimal cell aspect ratio is, for example,

∆̌(x,nj)

∆̌(x,n1)
=

(
a(x,n1)

a(x,nj)

)1/α

, j = 2, 3 . (4.14)

Examples of the predicted optimal cell aspect ratios are given in Fig. 4.4 for a turbu-

lent channel flow and in the recirculation region of the flow over a backward-facing

step. We note that the target aspect ratio can be a function of the scaling exponent

α. This is only true in the intermediate grids in the sequence where the resolutions

are still adjusting to satisfy the directional equidistribution of the error-indicator,

while the final “optimal” grid that should have an equal error-indicator in all direc-

tions n is not really affected by the choice of α. Since a lower scaling exponent α

generally leads to more extreme aspect ratios of the filter (see Fig. 4.4) and since the

turbulence on the coarser grids is underresolved and potentially inaccurate, select-

ing a lower α that may be closer to its theoretical value for that flow might instead

lead to less optimal intermediate grids and delay the convergence of the sequence.

As a result, the choice of α = 2 may actually help improving the performance of
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Figure 4.4: Examples of the predicted optimal cell aspect ratios ∆̌(x,n2)/∆̌(x,n1)
(black lines) and ∆̌(x,n3)/∆̌(x,n1) (blue lines) for: (a1) turbulent channel flow at
Reτ ≈ 545, for α = 1 (a2) same flow as (a1), α = 2, (b1) in the recirculation region
of the flow over a backward-facing step at x/H = 4, for α = 1, and (b2) same flow
and region as (b1), α = 2. Note that α = 1 leads to more extreme aspect ratios
of the cells, leading to possibly low-quality computational cells, and is thus less
robust. The aspect ratio on the final “optimal” grid does not depend on the scaling
exponent (as long as αn is the same in all directions).

the adaptation algorithm by making it more robust to such unwanted errors. This

further justifies our choice of α = 2 in the previous Chapter, and in the rest of this

dissertation.

We should also note that the target cell aspect ratios are the same for both the

modified criterion and the one used in the previous Chapter; although, the aspect

ratio of the generated grids may still be different because of the limitations like the

structured nature of the grids, or the ability to refine by factors of two only.
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Equations 4.13 and 4.9 can be combined to find the optimal value of ∆̌vol as

avol(x)∆̌α+3
vol,opt(x) = Λ = const. , (4.15)

where ∆̌vol,opt is then used to find the optimal directional filter as

∆̌opt(x,ni) =

(
avol(x)

a(x,ni)

)1/α

∆̌vol,opt(x) . (4.16)

Equations 4.15 and 4.16 define our optimal filter-width ∆̌opt(x,n) on any given

grid with a specified Ntot number of cells.

Figure 4.5 shows a comparison between the optimal grids for the channel flow

where one is predicted by the grid selection criterion of this Chapter (Eqns. 4.15

and 4.16) and the other from the equidistribution of the error-indicator itself, used

in the previous Chapter (Eqn. 3.7). Note that the grids generated by the new

criteria: (i) have the same directional resolution at the wall; (ii) have much smoother

variations of the grid; (iii) are about a factor of two finer at the center of the channel;

and (iv) are a little coarser in the region y+ . 100.

In the rest of this Chapter we repeat our assessments of the error-indicator

A(x,n) on both the channel flow and the flow over a backward-facing step, and

compare the sequence of grids generated by the modified criteria of this Chapter

(Eqns. 4.15 and 4.16) with the one generated by the heuristic criterion of equidis-

tribution of the error-indicator itself (Eqn. 3.7).
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Figure 4.5: A comparison of the optimal directional filter-width ∆̌opt(x,n) using the
modified criteria of this Chapter (solid lines) vs the heuristic criterion of Chapter 3
(dotted lines), for grids generated using: (a) the standard definition of the error-
indicator A(x,n), and (b) the alternative definition based on the structure-functions

A′(x,n). The streamwise, wall-normal, and spanwise directions are shown by the
brightest to the darkest colors, in that order.

4.5 Assessment on the turbulent channel flow at Reτ ≈ 545

4.5.1 Setup

The code used for this problem is the Hybrid code that is described in some

detail in Section 3.2.1. The code solves the compressible Navier-Stokes equations

for a calorically perfect gas on structured Cartesian grids using sixth-order accurate

central differencing schemes.

The bulk Mach number, defined as the ratio of the bulk velocity Ub and the

speed-of-sound at the walls, is 0.2 for this case, which is a compromise between

having minimal effects of compressibility while avoiding an excessively small time

step. The bulk Reynolds number Reb = ρbUbH/µw is 10,000, which leads to a friction

Reynolds number of about Reτ ≈ 545. This is the same Reynolds number used in

the benchmark incompressible DNS of del Alamo & Jimenez [18] which is used here

96



as the reference solution in computing eDNS
QoI and in plots of the mean velocity and

Reynolds stress profiles. The error in the QoIs is computed from Eqn. 3.10, where

δQ
ref

m are defined by Eqn. 3.9, except that the resolved Reynolds stress Rij =
〈
u′iu
′
j

〉
is now replaced by the correct quantity R

tot

ij =
〈
u′iu
′
j

〉
+
〈
τmod
ij

〉
where τmod

ij is the

SGS stress from the LES model.

All simulations are started from a fully developed snapshot on a sufficiently

fine grid. They are integrated for a time of 200H/Ub before collecting statistics

over a period of 600H/Ub, using 400 snapshots at a distance of 1.5H/Ub from each

other. The convergence error is found to be sufficiently small as to not affect any

conclusions in this study.

Only the implicitly filtered LES with explicit modeling using the dynamic

Smagorinsky model is considered in this Section. The results for the other cases

(including DNS with only the numerical errors, and ILES) will be very similar to

this case.

One important difference between the problem setup in this Section and that

of Section 3.2.1 is that here we can freely input the target ∆y to the code and thus

have a wall-normal resolution that matches the target values as closely as possible (in

Section 3.2.1 we could only use tanh functions). This allows us to make interesting

observations that are discussed below.
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4.5.2 Process

Two new sequences of grids are generated for the new setup of this Section,

one with the old and heuristic-based criterion of Eqn. 3.7 and the second sequence

using the correct and modified criteria of this Chapter. Both sequences are started

from the same initial grid with (∆x,∆y,∆z)/H = (0.20, 0.10, 0.20). The finer wall-

normal resolution is to allow for a later comparison of the results with those of

Chapter 8 whose error-indicator is based on certain assumptions that require suffi-

cient turbulent activity to be valid. The next grid in the sequence is selected such

that the cell count increases by a factor of 4 in the first iteration, a factor of 3 in

the second iteration, and factors of 2 afterwards. The number of cells Ntot is closely

matched between the grids generated by the old and new criteria to allow for a

direct comparison of their optimality, i.e. lowest eDNS
QoI for a given Ntot.

4.5.3 Results

Figures 4.6 and 4.7 illustrate this step-by-step adaptation process, in terms of

the shape of the predicted cells, convergence of the mean velocity U
+

1 = 〈u1〉 /uτ and

total streamwise Reynolds stressR
tot

11 = 〈u′1u′1〉+
〈
τmod

11

〉
, as well as the error-indicator

in each of the three directions of refinement (A(y+,nx), A(y+,ny) and A(y+,nz)) as

well as Atot(y
+) =

√
A2

(y+,nx) +A2
(y+,ny) +A2

(y+,nz). Table 4.1 summarizes

the generated grids and some of their key quantities. Figure 4.8 plots the overall error

in the QoIs eDNS
QoI vs the number of cells Ntot. Note that the modified criterion was

derived based on the assumptions that J(x) ≈ 1 and ěref
local(x) ∝ Ǎtot(x). Therefore,
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Grid Ntot Ny (∆
+
x ,∆

+
yw ,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eDNS

QoI (%)

OLD-2 76k 34 (77, 5.5, 54) (0.14, 0.10, 0.097) 554 12
NEW-2 76k 36 (80, 6.9, 56) (0.14, 0.075, 0.10) 562 12

OLD-3 246k 38 (51, 3.0, 28) (0.093, 0.12, 0.050) 551 7.1
NEW-3 245k 48 (57, 3.6, 32) (0.10, 0.061, 0.058) 560 8.3

OLD-4 525k 42 (45, 2.7, 17) (0.080, 0.12, 0.030) 558 4.0
NEW-4 526k 56 (46, 2.9, 22) (0.082, 0.052, 0.039) 559 5.5

OLD-5 1.18M 48 (36, 2.6, 11) (0.064, 0.11, 0.019) 563 3.4
NEW-5 1.17M 66 (35, 2.6, 15) (0.063, 0.044, 0.027) 559 4.2

OLD-6 2.56M 58 (26, 2.2, 7.9) (0.048, 0.095, 0.014) 553 1.9
NEW-6 2.52M 80 (26, 2.2, 11) (0.048, 0.035, 0.020) 552 2.4

OLD-7 5.81M 74 (19, 1.9, 6.2) (0.034, 0.072, 0.011) 548 1.2
NEW-7 5.90M 100 (18, 1.8, 8.2) (0.034, 0.028, 0.015) 543 0.8

Table 4.1: Sequence of grids generated for LES of channel flow at Reτ ≈ 545 using
the dynamic Smagorinsky model. All the “OLD” grids are generated using the
heuristic grid selection criterion of Eqn. 3.7, while the “NEW” grids are generated
by enforcing the modified criteria of Eqns. 4.15 and 4.16. Note that ∆yc is the value

at the channel centerline, while ∆
+

yw is the value at the wall. Ntot is the total number
of grid points in the computational domain. Ny is the number of points across the
channel in the wall normal direction. The sequences are also illustrated in Fig. 4.6
for the OLD sequence and in Fig. 4.7 for the set of NEW grids. Convergence of
eDNS

QoI vs Ntot is plotted in Fig. 4.8 for both the OLD and NEW grids.

the convergence of

esurr =
1

VΩ

∫
Ω

Atot(x)dx , (4.17)

where VΩ is the volume of the computational domain, is also plotted in Fig. 4.8 to

compare with the convergence of eDNS
QoI .

4.5.4 Discussion

If we follow the succession of the grids labeled “NEW” (for the modified criteria

of this Chapter) and “OLD” (for the heuristic grid selection criterion of Chapter 3),

we can clearly see that both the sequences have a qualitatively similar behavior.
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Figure 4.6: Sequence of grids generated by the heuristic grid selection criterion of
Eqn. 3.7 for LES of the channel flow at Reτ ≈ 545. The rows show the progression
of grids from OLD-1 (top row) to OLD-7 (bottom row). Key quantities are listed
in Table 4.1. The left column shows the shape of a wall-adjacent cell, while the
right column shows the streamwise, wall-normal, and spanwise error-indicators by
the brightest to the darkest colors. The dotted lines shows Atot(y

+) in the right
column and the reference DNS solution of del Alamo and Jimenez [18] in the middle
columns.
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Figure 4.7: Sequence of grids generated by the modified grid selection criteria of
Eqns. 4.15 and 4.16 for LES of the channel flow at Reτ ≈ 545. The rows show
the progression of grids from NEW-1 (top row) to NEW-7 (bottom row). See the
caption of Fig. 4.6. Key quantities are listed in Table 4.1.

For example, both primarily target ∆yw for refinement in the first iteration (to

generate OLD-2 and NEW-2), followed by a refinement of both ∆y and ∆z in the

next iteration (generating OLD-3 and NEW-3), and then a focus on the spanwise
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Figure 4.8: Convergence of eDNS
QoI (left) and esurr (right) defined in Eqn. 4.17, both

vs the number of cells Ntot for the LES of channel flow at Reτ ≈ 545 reported in
Table 4.1. The solid lines correspond to the NEW grids, while the dotted lines
denote the OLD grids. The y-axes are scaled such that the slopes can be directly
compared between the two panels. Note that eDNS

QoI has a faster convergence than
esurr

local. See text for explanation.

refinement in both NEW-4 and OLD-4 grids.

Note that the aspect ratio of the grids labeled “NEW” are somewhat different

from those labeled “OLD”, even though the criterion for selecting the optimal aspect

ratio has not changed. This is because of the structured nature of the predicted

grids and the fact that the maximum value of the error-indicator in the spanwise

direction occurs around y+ ≈ 10−20 which is different from where A(y+,nx) reaches

its maximum (y+ ≈ 40− 50); therefore, the final aspect ratio that is determined by

miny ∆x and miny ∆z, changes between the two methods.

Despite the qualitative similarity between the two sequences, there are a few

key differences between them as well. Most notably, the grids labeled “NEW” have

finer wall-normal resolutions almost everywhere (except at the walls where ∆yw is

surprisingly similar between the two sequences) and thus a higher Ny. These are

consistent with our observations from Fig. 4.5. On the other hand, the spanwise
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resolutions of these grids are coarser. In fact, both of these changes are favorable as

the grids in the “NEW” sequence now have resolutions and aspect ratios that are

closer to what we expect from experience.

An interesting observation from Fig. 4.6 is that for grids “OLD-3” or “OLD-

4” and after the wall normal error-indicator A(y+,ny) is almost constant across

the channel. For grids “OLD-5” and after the maximum value of A(y+,nx) and

A(y+,nz) are also equal to each other and equal to the nearly constant value of

A(y+,ny). It means that for “OLD-5” and all the grids after it the optimality crite-

rion of Eqn. 3.6 is reached: the first grid after “OLD-5” that satisfies the threshold

on eDNS
QoI is the “optimal” grid based on the proposed methodology of Chapter 3.

This also means that our choice of α = 2 does not negatively impact the perfor-

mance of the algorithm: the first few grids on which the optimality criterion was

not accurately satisfied were too coarse to produce a converged solution anyway,

and for grids “OLD-5” and after which may produce converged results the criterion

is satisfied, despite the value of α being higher than its theoretical value for this

flow. Note that our use of Fig. 4.6 and the “OLD” grids in our arguments were for

the sake of clarity (since they require a constant error-indicator across the channel

which is visually more clear).

It is quite clear from Figs. 4.6 and 4.7 that the locations corresponding to

the maximum value of the streamwise and spanwise error-indicators move from one

grid to the other. Note that ∆x and ∆z are fixed across the channel, and any

qualitative difference in the profiles of A(y+,nx) and A(y+,nz) is due to the change

in the underlying flowfield used in their computation; e.g., because of the change in
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the LES solution (i.e., it is becoming more accurate), or some indirect effect from

a change in the resolution in other directions. This further justifies our choice of

α = 2 for increased robustness.

Figure 4.8 summarizes the convergence of the NEW and OLD grids vs the

number of cells Ntot. Two quantities are plotted in this figure: (i) the error in the

QoIs, eDNS
QoI , which is the subject of minimization in any grid selection/adaptation

process, and (ii) the surrogate error esurr defined in Eqn. 4.17 which was used as an

approximation to eDNS
QoI when deriving the modified grid selection criteria. Note that

the modified criteria leads to lower values of esurr on almost all the NEW grids (as

expected, since it was formulated to minimize that specific quantity); however, eDNS
QoI

does not follow the same behavior and is actually slightly lower on the OLD grids

(except for the last grid). This can happen due to a number of reasons, including

the assumption of J(x) ≈ 1, or the fact that Ǎtot(x) may not be a great estimate

of ěref
local(x).

Another interesting point is that eDNS
QoI seems to have a faster convergence than

esurr. This is most probably due to the large-scale nature of the QoIs and the small-

scale nature of what esurr measures; in other words, Atot measures the total small

scale energy, and since the resolved LES fields always develop smaller scales with

refinement of the filter, Atot does not decay with filter refinement at the same rate

as the large scale quantities (see Fig. 2.4 for an example of different convergence

behaviors of LES for difference variables, and Section 3.1.3 for a more detailed

discussion of the scaling of A(x,n) with ∆(x,n)).
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4.6 Assessment on the flow over a backward-facing step at ReH =

5100

4.6.1 Setup

The flow setup and computational detail are identical to those of the previous

Chapter, described is Section 3.3.1.

The OpenFOAM code version 2.3.1 is used for this flow, which is a second-order

finite-volume solver capable of handling unstructured grids. All adapted grids in this

Section have Cartesian topology, since they were all generated by refinement of an

initially structured Cartesian “skeletal” grid with ∆0(x,n)/H = 0.2. Coarsening

beyond this “skeletal” grid is not possible, although the adaptation process may

both coarsen or refine the cells (a refined cell in one iteration may be selected

for coarsening in a future iteration, as long as ∆̌(x,n)/H ≤ 0.2). Refinement is

performed using the refineMesh utility of OpenFOAM, which refines the hexahedral

cells with factors of two in any of the three refinement directions. Similar to the

previous Chapter, the target resolutions are rounded down to the nearest available

resolution; e.g., a target resolution of 0.09H is rounded down to 0.05H which is the

coarsest finer resolution available.

4.6.2 Process

A new sequence (labeled “NEW”) is generated using the modified criterion

of this Chapter, starting from LES-1 in Table 3.4 as the initial grid. The setup is
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exactly the same as the one used for grids in Table 3.4; these grids are relabeled

“OLD” and repeated in Table 4.2. At each iteration we have tried to match the

total number of cells Ntot between the corresponding grids in the two sequences as

closely as possible, to allow for a direct comparison of optimality between any two

grids; i.e., to see which grid has a lower eDNS
QoI at the same Ntot.

4.6.3 Results

Figure 4.9 compares the target refinement regions of grids OLD-2 and NEW-2

with around 300k computational cells, while Fig. 4.10 compares the generated grids

OLD-6 and NEW-6 with around 3.7M cells and converged solutions. Table 4.2

summarizes the two sequences of grids generated using the heuristic-based criterion

(“OLD”) and the modified criterion (“NEW”) along with their resolutions in some

of the key locations. The convergence of eDNS
QoI and esurr with Ntot are plotted in

Fig. 4.11. Figure 4.12 compares the convergence of the friction and pressure coeffi-

cient profiles along the horizontal wall, while Figs 4.13. 4.14, and 4.15 compare the

convergence of the mean velocity and Reynolds stress profiles at some of the more

interesting locations.

4.6.4 Discussion

Figure 4.9 shows that the grids OLD-2 and NEW-2 have qualitatively similar

regions of predicted refinement, although there are some differences between them

as well. Most importantly, note that NEW-2 has only two refinement levels in the y
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Figure 4.9: The grids OLD-2 (the top three) and NEW-2 (the bottom three) from
Table 4.2 illustrated by their refinement levels in x (top plot, in each set), y (middle,
in each set), and z (bottom, in each set). Refinement levels are computed based on a
skeletal grid with ∆0(x,n) = 0.2H for all x and n. The light green, dark green and
blue colors illustrate regions with one (∆n/H = 0.1), two (∆n/H = 0.05), and three
(∆n/H = 0.025) refinement levels, respectively. The white areas are associated with
regions that are left untouched (i.e. ∆n/H = 0.2). The dashed black lines highlight
the δ95 boundary layer thickness.

direction, even at the vicinity of the wall at the incoming and recovering boundary

layers, while instead a larger portion of the domain is selected for refinement. The

same general trend holds when comparing grids NEW-6 and OLD-6, where in the

107



Figure 4.10: The generated grids OLD-6 (top) and NEW-6 (bottom). Intersections
of the blue planes denote locations whose resolutions are reported in Table 4.2, while
the green planes correspond to x/H = −3 and x/H = 6 whose velocity and Reynolds
stress profiles are plotted and compared in Figs. 4.13 and 4.14. The grid is resulted
from computation of the proposed error-indicator of Chapter 3 (Eqns. 3.2 and 3.3)
and applying the heuristic grid selection criterion of Eqn. 3.7 (OLD-6, top) and the
modified criteria of Eqns. 4.16 and 4.15 (NEW-6, bottom) with no user experience
involved.

latter ∆y is only refined inside the δ95 boundary layer thickness, while in NEW-6

those refinement regions are extended far beyond the edge of the boundary layer.
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Grid Ntot (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆y,∆z)/δshear eDNS

QoI (%)

OLD-2 293k (21, 2.6, 21) (0.17, 0.087, 0.17) 11.0
NEW-2 297k (45, 5.7, 23) (0.15, 0.093, 0.15) 10.5

OLD-3 596k (22, 2.7, 11) (0.076, 0.038, 0.076) 7.7
NEW-3 599k (47, 2.9, 12) (0.15, 0.074, 0.074) 6.1

OLD-4 1.28M (23, 2.9, 5.7) (0.076, 0.038, 0.038) 5.8
NEW-4 1.35M (22, 2.8, 11) (0.15, 0.036, 0.073) 6.6

OLD-5 2.22M (23, 1.5, 5.9) (0.048, 0.019, 0.038) 4.3
NEW-5 2.17M (24, 1.5, 6.1) (0.068, 0.034, 0.034) 4.2

OLD-6 3.59M (25, 1.5, 6.2) (0.034, 0.017, 0.034) 3.9
NEW-6 3.70M (25, 1.6, 6.2) (0.065, 0.033, 0.033) 4.4

Table 4.2: LES of the flow over a backward-facing step. “OLD” grids are generated
by the heuristic criterion of Eqn. 3.7, while the modified criteria (Eqns. 4.16 and 4.15)
are used for generation of the “NEW” grids. Ntot is the actual number of cells in
the computational domain. The grid-spacing in inner units is taken from x/H = −3
(upstream of the step). The grid-spacing in outer units is taken from the middle of
the shear layer and is scaled by the approximate thickness of that shear layer δshear.
See Fig. 4.10 for more details on the locations of resolution sampling. eDNS

QoI and eprev
QoI

are defined in equation 3.12.

Figure 4.11: Convergence of eDNS
QoI (left) and esurr (right) with Ntot in the sequence of

grids generated by A(x,n) for LES of the flow over a backward-facing step using the
heuristic (dotted lines with square symbols) and modified (solid lines with square
symbols) grid selection criteria. See Table 4.2 for more details on the grids. See
Figs. 4.12, 4.13, 4.14, and 4.15 for convergence of the QoI profiles.

Same goes true for refinements inside the shear layer where NEW-6 has coarser cells

in general compared to OLD-6.

109



Figure 4.12: Convergence of friction coefficient cf (left column) and pressure coef-
ficient cp (right column) for LES of flow over a backward-facing step, for the OLD
(top row) and NEW (bottom row) grids in Table 4.2. Different grids are shown
by the lightest color for OLD/NEW-1 to the darkest for OLD/NEW-6. Solid lines
denote the sample means, while the shaded regions correspond to the approximate
confidence intervals (computed locally). The dotted blue lines and their shaded re-
gions denote our DNS results and their confidence intervals. Symbols correspond to
the experimental data of Jovic & Driver [57, 58] with slightly different setup (error
bars on the experimental data are not shown). Experimental measurements of cf
and cp are not available upstream of the step.

The convergence of esurr (defined in Eqn. 4.17) is faster for the sequence of

grids generated by the modified grid selection criterion (Fig. 4.11), confirming the

superiority of this criterion over the heuristic one; however, just like the channel
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Figure 4.13: Convergence of the mean velocity and Reynolds stress profiles for the
sequence of the OLD (top) and NEW (bottom) grids in Table 4.2 at the incoming
boundary layer at x/H = −3. Grids in the sequence are shown by the lightest color
for NEW/OLD-1 to the darkest for NEW/OLD-6. Solid lines denote the sample
means, while the shaded regions correspond to the approximate confidence intervals
(computed locally). The dotted blue lines and their shaded regions denote our DNS
results and their confidence intervals. Symbols correspond to the experimental data
of Jovic & Driver [57,58] (error bars on the experimental data are not shown).

flow, the convergence of eDNS
QoI does not seem to follow the same trend of improve-

ment. The same can be observed in the convergence of the QoI profiles, where the

modified criterion leads to improved results in some of the grids, while the heuristic

criterion still produces more “optimal” grids in the others. We should note that this
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Figure 4.14: Convergence of the mean velocity and Reynolds stress profiles for the
OLD (top) and NEW (bottom) grids of Table 4.2 at x/H = 6 near the reattachment
point. See Fig. 4.13 for more details.

conclusion is based on a skeletal grid with ∆0(x,n) = 0.2H, with no coarsening of

the grid beyond this skeletal resolution. This means that the very coarse cells in the

free stream outside the boundary layer (see Fig. 4.3) are automatically prevented

by this skeletal grid. As a result, the conclusion may have been completely different

if the skeletal grid had a coarser ∆0: it is quite unlikely that a grid with cells as

coarse as what is depicted in Fig. 4.3 could lead to eDNS
QoI less than 7%.
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Figure 4.15: Convergence of the mean velocity and Reynolds stress profles for the
OLD (top) and NEW (bottom) grids of Table 4.2 at x/H = 15 at the recovering
boundary layer. See Fig. 4.13 for more details.

4.7 Concluding remarks

The purpose of this Chapter was to investigate the grid-selection criterion and

its effect on the target grids. We showed that the correct criterion is to enforce an

equidistribution of the cell-integrated error-indicator, and not the error-indicator it-

self. The modified approach leads to lower error in the QoIs (Fig. 4.1), and perhaps

more importantly also leads to a less extreme spatial distribution of the grid-spacing
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(Figs. 4.2 and 4.3). Specifically, it may alleviate the problems of excessively coarse

cells in the far-field reported in some studies for feature-based grid-adaptation ap-

praches (cf. [40, 73, 74]). The less extreme spatial variation of the target ∆̌opt also

naturally produces grids with less stretching and thus higher quality in terms of grid

metrics.

Application of the same formulation to anisotropic grid selection required an

estimation of the total local source of error ěref
local based on the directional structure

of the anisotropic error-indicator Ǎ(x,n). For the simple case of hexahedral cells,

we assumed that ěref
local is proportional to the magnitude of the error-indicator Ǎtot

(Eqn. 4.10), which then led to a criterion for the optimal aspect ratio of the grids

(Eqn. 4.14) and one for their optimal spatial distribution (Eqn. 4.15).

The modified criteria were then tested on grid selection and adaptation of the

turbulent channel flow and the flow over a backward-facing step. Contrary to our

a priori conclusions, the final grids generated by the new criteria did not improve

upon the QoI errors eDNS
QoI in neither of the cases. The exact reason for this is not

obvious at this point, but two of the more likely explanations are (i) the lack of

adjoint fields in our formulation, and (ii) the lack of direct connection between the

small-scale energy and the LES errors. In the next Chapter we introduce a new

error-indicator that is more directly connected to the LES equations, and we show

that this new error-indicator leads to lower eDNS
QoI compared to the energy-based

indicator A(x,n).

There are still several possibilities to improve the optimality criteria used to

generate the grids. For compressible solvers with explicit time-stepping, it may
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be important to include the number of time steps in the estimated computational

cost. This would then effectively “penalize” very thin cells near boundaries. More

generally, since it is well known that numerical errors are highly sensitive to the

smoothness of the mesh, one should certainly include a penalization of too rapid

filter-width transitions when solving the optimization problem. None of these issues

seemed to be a problem for the LES grids of this Chapter, since A(x,n) automat-

ically produced grids with smooth variations of the resolution and prevented very

fine cells (for the modified criterion); however, this may not be necessarily the case

for other error-indicators.

A major improvement would be to include the adjoint of the QoIs and thus

make the adaptation “output-based”. This has been the major advancement in

steady-state grid-adaptation over the last few decades (cf. [9]). Inclusion of the

adjoint would first require the problem of exponential divergence of the adjoint for

chaotic problems to be solved (cf. [75]). The adjoint fields are not considered in this

dissertation.
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Chapter 5: An equation-based error-indicator based on the sensitiv-

ity of LES equation to the coarse-graining length scale

The framework discussed in Chapter 3 was a first attempt at anisotropic error-

estimation and grid selection in LES, where both the error-indicator A(x,n) and

the criterion used for grid selection based on it were entirely based on heuristic

arguments. In Chapter 4 we tried to modify our grid-selection criterion based on

mathematical reasoning; in this Chapter we define a new error-indicator that ad-

dresses some of the shortcomings of the old indicator A(x,n). These shortcomings

were discussed in some detail in Section 3.6 and can be summarized here as:

• First and foremost, A(x,n) is a fully heuristic error-indicator that is based

on an assumed connection between the small scale energies and all types of

errors in LES. It is not necessarily true and there are many examples where

the small-scale energy is completely irrelevant.

• A(x,n) has a generic functional form, independent of the LES formulation

(implicitly filtered LES, explicitly filtered LES, ILES), the ∆/h ratio, and

the LES model. This means that it (most probably) cannot find the most

“optimal” distribution of the filter-width for that specific setup, formulation,
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and model; even though the target grids may always be “close to the optimal”.

• The wall-normal resolutions of the grids (especially in the channel flow, see

Table 4.1) were slightly coarser than what is known as the “best-practice” in

LES of wall-bounded flows. Note that the spanwise resolution was also slightly

finer than the “optimal” when the heuristic selection criterion was used, but

it was fixed for the modified criterion (see Table 4.1).

In this Chapter we define a new error-indicator that is derived more directly

from the governing equation and thus requires less heuristics. The key assumption

in the definition of this error-indicator becomes that the LES equations should be

minimally sensitive to a change in the filter-width. This is a much weaker require-

ment than the arguments of Chapter 3 on the connection between the LES errors

and the small-scale energy. Besides, the equation-based nature of the error-indicator

allows for an explicit account of the the specific LES formulation, the ∆/h ratio,

and the specific LES model in the error-indicator, and consequently, in the “target”

grids.

This Chapter only focuses on statistically stationary problems for which we

seek a stationary grid/filter-width (as is the general theme in this entire dissertation).

In other words, the grid/filter-width is adjusted only between LES runs, and the

adaptation step becomes solely a post-processing operation with no changes needed

in the LES solver at all. We should also emphasize that the focus of this dissertation

is entirely on the problem of finding ∆opt(x,n) and not at all the exact way of

creating this new grid; we simply use currently available tools to generate these
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grids without worrying about parallel performance, data structures, etc. Other

factors like the grid quality, stretching factor, etc. have not been considered either.

Consequently, the results presented in this Chapter could presumably be improved

by imposing some constraints on the grid quality metrics or stretching factors, or

by the use of more sophisticated and flexible grid-generation toolboxes capable of

generating a closer grid to the target ∆opt(x,n).

The final definition of the error-indicator (and in part the reasoning leading

to it) becomes closely related to the dynamic procedure [54,55], and in fact leads to

an alternative explanation for why the dynamic procedure works; this is discussed

briefly in Section 5.1.2.

5.1 Methodology

The developments in this Section are based on the implicitly filtered LES

equation which is arguably the most popular formulation. For incompressible flows

of the Newtonian fluids the governing equation is

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂τmod

ij (uk)

∂xj
, (5.1)

where ui and p are the resolved velocity and pressure fields, ρ and ν are density and

kinematic viscosity of the fluid (both assumed constant), and τmod
ij (uk) is the SGS

stress tensor computed from the LES model.

Derivations of the error-indicator for some alternative forms of this equation

are given in Section 5.6, including: (i) when the convective flux is written as uiuj

(used when applying an explicit filter in the solver, known as the explicitly filtered
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LES); (ii) when solving LES without an explicit subgrid model (implicit LES, or

ILES); and (iii) for implicitly filtered LES of compressible flows.

5.1.1 The proposed error-indicator

The idea of this Section is to estimate how sensitive the LES equation (Eqn. 5.1)

is to a change in the filter-width in any given direction and at any given location,

and to use that to define our error-indicator. The estimate will be derived and

computed using a low-pass test filter, which must be able to filter only in a single

direction (i.e., filter modes with high wavenumber in that single direction) in order

to infer anything about the directional structure of the errors (or sensitivity), and

thus the anisotropy of the “optimal” filter-width. To make this work applicable to

general geometries and grid topologies, we will use the same directional differential

filter of Section 3.1.2, defined as

φ̂
(n0)

≈

(
I +

∆
2

n0

4
nT0∇∇Tn0

)
φ , (5.2)

where φ = φ(x) is the original resolved LES field, φ̂
(n0)

= φ̂
(n0)

(x) is the directionally

low-pass test-filtered (in direction n0) field, ∆n0 = ∆(x,n0) is the filter-width in

direction n0 (where n0 is the unit direction vector), and I is the identity tensor. For a

structured grid with uniform grid-spacing and using second-order central differencing

this filter simplifies to a unidirectional box filter of size 2∆(x,n0) applied using a

trapezoidal rule. More details about this differential filter is given in Section 3.1.2

(also see [42,76] for the definition of the filter kernel).

Applying the directional test-filter to Eqn. 5.1 yields (assuming that filtering
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and differentiation commute) an evolution equation for the filtered instantaneous

fields at the test-filter level as

∂û
(n0)

i

∂t
+
∂ûiuj

(n0)

∂xj
= −1

ρ

∂p̂
(n0)

∂xi
+ ν

∂2û
(n0)

i

∂xj∂xj
−
∂ ̂τmod

ij (uk)
(n0)

∂xj
. (5.3)

An alternative way to get an evolution equation for the solution at the test-

filter level is to write the filtered Navier-Stokes equations (Eqn. 5.1) directly at the

test-filter level instead

∂v̂
(n0)

i

∂t
+
∂v̂

(n0)

i v̂
(n0)

j

∂xj
= −1

ρ

∂q̂
(n0)

∂xi
+ ν

∂2v̂
(n0)

i

∂xj∂xj
−
∂τmod

ij

(
v̂

(n0)

k

)
∂xj

, (5.4)

where v̂
(n0)

i and q̂
(n0)

are the resolved velocity and pressure fields at the test-filter

level ∆̂
(n0)

= ∆̂
(n0)

(x,n).

Defining the difference between the two solutions as

ê
(n0)

i = v̂
(n0)

i − û(n0)

i , Π̂
(n0)

= q̂
(n0) − p̂(n0)

,

and subtracting Eqn. 5.3 from Eqn. 5.4 then yields an evolution equation for the

difference as

∂ê
(n0)

i

∂t
+ û

(n0)

j

∂ê
(n0)

i

∂xj︸ ︷︷ ︸
T1

− ν ∂
2ê

(n0)

i

∂xj∂xj︸ ︷︷ ︸
T2

+
∂ê

(n0)

i ê
(n0)

j

∂xj︸ ︷︷ ︸
T3

+ ê
(n0)

j

∂û
(n0)

i

∂xj︸ ︷︷ ︸
T4

+
1

ρ

∂Π̂
(n0)

∂xi︸ ︷︷ ︸
T5

= F̂
(n0)

i ,

(5.5)

where

F̂
(n0)

i(x) =
∂

∂xj

(
ûiuj

(n0)
− û(n0)

i û
(n0)

j

)
+

∂

∂xj

(
̂τmod
ij (uk)

(n0)

− τmod
ij

(
v̂

(n0)

k

))
. (5.6)

The difference ê
(n0)

i can be interpreted as a measure of sensitivity of the solution to

the filter level used in its computation.
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The procedure so far was very similar to the multi-resolution LES (MR-LES)

method [3, 27], where the interpolation is here replaced by test-filtering. The MR-

LES method takes the error êi (where ·̂ is a regular test filter, not directional,

corresponding to a grid that is finer/coarser in all directions) directly as a measure

of the local source of error, and define its error-indicator based on the magnitude

of êi (this is the same error-indicator plotted in Fig. 2.3(g)). The primary goal of

the MR-LES method is also to minimize the solution sensitivity êi, although, the

assumption that êi itself is a local measure of error (which is implied when êi is used

to define a local error-indicator) is probably not true in a general configuration.

Here, we instead use the governing equation of this error (Eqn. 5.5) to infer the

local source of its generation.

Terms T1 and T2 in the error evolution equation, Eqn. 5.5, describe convective

and viscous transport, term T3 is a nonlinear transport term, term T4 becomes a

production term in the governing equation of ê
(n0)

i ê
(n0)

j , and term T5 is a pressure-

like term that keeps ê
(n0)

i divergence-free. The terms in Eqn. 5.5 are grouped such

that all terms involving ê
(n0)

i are on the left, while the terms not involving the error

are grouped in F̂
(n0)

i(x).

In a chaotic system (like LES), the difference ê
(n0)

i will of course grow expo-

nentially and thus rapidly becomes meaningless. Having said that, over short time

scales, when starting from identical solutions (ê
(n0)

i = 0), Eqn. 5.5 shows that F̂
(n0)

i(x)

is the source of initial divergence between the two solutions (since, with ê
(n0)

i = 0,

all terms of the left side of Eqn. 5.5 are zero). We can then hypothesize that the

magnitude of F̂
(n0)

i(x) remains a meaningful estimate of the error generation in an
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LES, even beyond the short time horizon.

The proposed error-indicator is then defined as

G(x,n) =

√〈
F̂

(n)

i(x) F̂
(n)

i(x)

〉
, (5.7)

where 〈·〉 denotes a suitable averaging operator, and · signifies the filter-level on

which the test-filtering is applied (i.e. ∆). In this Chapter (and more generally this

dissertation) we are interested in finding the optimal static grids for statistically

stationary problems, and hence averaging is performed over time and any homo-

geneous spatial directions. For more general settings the averaging operator could

be adjusted accordingly. For example, in flows with strong unsteady effects at a

slow time-scale (e.g., vortex shedding) one could use a low-pass time filter, and for

temporally periodic flows (e.g., pulsating flows) one could use a phase average.

The first term (the Leonard-like stress) in F̂
(n)

i(x) can be directly computed

from the LES solution ui, and τmod
ij (uk) is also known from the LES. On the other

hand, the subgrid tensor in the imagined evolution equation at the test filter level is

defined based on the imagined velocity field v̂
(n)

i . One option would be to actually

run an additional LES solving Eqn. 5.4 but in a synchronized way (similar to the

MR-LES methods of Legrand et al. [27]). The alternative, which is applied here, is

to use the test-filtered velocity field from the original LES solution to expand the

SGS tensor as well, i.e.,

τmod
ij

(
v̂

(n)

k

)
= τmod

ij

(
û

(n)

k

)
+ Tij

(
û

(n)

k , ê
(n)

l

)
,

where Tij must vanish when ê
(n)

l = 0 for consistent SGS models. As a result,

T6 = ∂Tij/∂xj can be moved to the left-hand side of Eqn. 5.5 where it becomes
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excluded from the imagined error source (based on the same reasoning used before).

Note that expanding τmod
ij (v̂

(n)

k ) using the test-filtered field û
(n)

k is not only simpler

(and cheaper), but also more consistent with our current formulation.

5.1.2 Connection to the dynamic procedure

The dynamic procedure [54,55] is a way to compute model constant(s) through

test-filtering, which has received a lot of attention in the LES community. It finds

the model coefficient that minimizes

edyn =
〈

(L̂ij + M̂ij)(L̂ij + M̂ij)
〉
,

where ·̂ is a regular test-filter (i.e. not directional), and

L̂ij = ûiuj − ûiûj , M̂ij = ̂τmod
ij (uk)− τmod

ij

(
ûk

)
.

There have been multiple explanations for how/why the dynamic procedure works.

The original explanation appealed to scale similarity in the inertial range (cf. [77]),

but as pointed out by others (cf. [21,29]) this fails to explain why the dynamic pro-

cedure works during transition to turbulence or in the near-wall region of turbulent

boundary layers (arguably its greatest success). The lack of any scale similarity

at the test-filter level in those scenarios (the filter is close to the dissipative range

in wall-resolved LES) therefore makes the original explanation unlikely. Jimenez

& Moser [29] suggested that the explanation has to do (among other things) with

dissipation, that the dynamic procedure makes the dissipation by the LES model

equal to the production of the Leonard stresses. An alternative explanation was
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put forth by Pope [21], who showed that the dynamic procedure can be derived

by requiring that the total Reynolds stress (i.e., resolved plus modeled) should be

minimally sensitive to the filtering level, i.e., that the model coefficient should be

chosen to minimize (in magnitude)

(
ûiuj + ̂τmod

ij (uk)
)
−
(
ûiûj + τmod

ij (ûk)
)
,

which is equal to minimizing L̂ij + M̂ij. Although not directly stated in [21], the

choice of the total Reynolds stress as the critical quantity presumably comes from

the importance of stresses in momentum transport.

The present derivation of the error-indicator G(x,n) implies a somewhat simi-

lar but slightly different explanation for why the dynamic procedure works, without

any specific assumption about turbulent properties like scale-similarity or about the

importance of Reynolds stresses, energy or dissipation in the accuracy of the LES

solution.

The residual force F̂ i of Eqn. 5.6 is simply the divergence of the total tensor

subject to minimization in the dynamic procedure, i.e.,

F̂ i =
∂

∂xj

(
L̂ij + M̂ij

)
.

Pope arrived at the minimization of this tensor by requiring that the predicted total

stress from an LES should be insensitive to the filter level; here, we instead arrive at

the same thing by requiring that the assumed source term in the evolution equation

for the difference between the two solutions at the same filter levels be as small as

possible (leading to filter-insensitivity of the solution itself).
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Figure 5.1: A comparison of the target grids between the tensorial (solid lines)
and vectorial (dotted lines) definitions of G(x,n). The streamwise, wall-normal,
and spanwise resolutions are shown by the brightest to darkest colors. Note that
the tensorial definition leads to excessively fine cells at the wall and is discouraged.
Both grids have the same number of cells (1.10M).

We should also note that the present work clearly suggests that the force F̂ i

rather than the tensor L̂ij + M̂ij should be minimized in the dynamic procedure.

This has actually been tested before in the literature, in the work of Morinishi &

Vasyliev [78]. The downside is that this leads to a nonlinear second-order PDE for

the model coefficient, which is presumably why this version of the dynamic procedure

has not received the attention and popularity it arguably deserved.

Interestingly, our tests on the channel flow suggest that using the full tensor

to drive filter-width adaptation leads to excessively fine cells in the wall-normal

direction in the vicinity of the walls (Fig 5.1) and is therefore strongly discouraged.

5.1.3 Finding the optimal filter-width

The error-indicator estimates the introduction of error into the evolution equa-

tion due to insufficient resolution, but does not automatically determine how much
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the resolution needs to be changed for the error to go down to a certain level. This

link is provided by means of a model that estimates how much the error-indicator

would change by a certain change in the filter-width. In this Chapter, we adopt the

same simplistic model of Section 3.1.4, as

Ǧ(x,n) ≈ G(x,n)∆̌α(x,n) , (5.8)

where Ǧ(x,n) is the predicted value of the error-indicator on the filter-level ∆̌(x,n)

and the “error source density” G(x,n) is computed from the existing LES solution

as

G(x,n) =
G(x,n)

∆
α
(x,n)

.

The exponent α = α(x,n) should be different in different flow regimes (free-shear

turbulence, near-wall turbulence, etc.), in different directions, and for different LES

models (e.g. for an exact LES model α ≡ 0), but is simply taken as α = 2 in the

present study without any attempt at finding the best (case-specific) value. This is

justified by our discussion in Section 4.4 that (i) the choice of α does not affect the

“optimal” grid, but only the way the final grid is approached, and (ii) due to the

error in the LES solution on intermediate grids it is usually more appealing to use

higher values of α to increase robustness.

If we assume that the local error source ěref
local(x) is proportional to the mag-

nitude of Ǧ(x) the error to be minimized (for the special case of a grid with only

hexahedral cells) is

ěref
local(x) ∝ Ǧtot(x) =

√
Ǧ2(x,n1) + Ǧ2(x,n2) + Ǧ2(x,n3) . (5.9)
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This approximation of ěref
local(x) is identical to Eqn. 4.10 with Ǎ(x,ni) being replaced

by Ǧ(x,ni), which results in the equidistribution of the error-indicator in different

directions (assuming the same αn in all directions),

Ǧopt(x,ni) = g(x,ni)∆̌
α
opt(x,ni) = gvol(x)∆̌α

vol,opt(x) , i = 1, 2, 3 , (5.10)

where

gvol = (g(x,n1)g(x,n2)g(x,n3))1/3

∆̌vol,opt =
(
∆̌opt(x,n1)∆̌opt(x,n2)∆̌opt(x,n3)

)1/3
.

This implies that the predicted optimal cell aspect ratio is

∆̌opt(x,nj)

∆̌opt(x,n1)
=

(
g(x,n1)

g(x,nj)

)1/α

, j = 2, 3 .

Examples of the predicted optimal cell aspect ratios for α = 1 and α = 2 are given

in Fig. 5.2 for a turbulent channel flow and in the recirculation region of the flow

over a backward-facing step.

The optimal filter-width ∆̌vol,opt(x) can be found as,

gvol(x)∆̌α+3
vol,opt(x) = Λ = const. , (5.11)

which is then used to find the optimal direction filter-width ∆̌opt(x,ni) as

∆̌opt(x,ni) =

(
gvol(x)

g(x,ni)

)1/α

∆̌vol,opt(x) . (5.12)

Equations 5.11 and 5.12 define our optimal filter-width ∆̌opt(x,n) on any given

grid with a specified Ntot number of cells.
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Figure 5.2: Examples of the predicted optimal cell aspect ratios ∆̌(x,n2)/∆̌(x,n1)
(black lines) and ∆̌(x,n3)/∆̌(x,n1) (blue lines) for: (a1) turbulent channel flow at
Reτ ≈ 545, for α = 1, (a2) same flow, α = 2, (b1) in the recirculation region of the
flow over a backward-facing step at x/H = 4, for α = 1, and (b2) same flow and
region, α = 2. Note that α = 1 leads to more extreme aspect ratios of the cells,
leading to possibly low-quality computational cells, and is thus less robust.

5.1.4 The stopping criterion

Assuming that we have M quantities of interest Qm in the simulation allows

for the total error in these QoIs to be defined as

eref
QoI =

M∑
m=1

wmδQ
ref

m , (5.13)

where δQ
ref

m is the change in Qm (computed on grid ∆) compared to a reference

solution and wm is an appropriate weight with
∑
wm = 1. In this Section we report

the error in the QoIs by comparison to a DNS solution, labeled eDNS
QoI , and to the
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previous grid that was used to generate the grid ∆, labeled eprev
QoI . The first grid that

satisfies the criterion on eDNS
QoI is taken as the “optimal” grid.

5.2 Assessment on turbulent channel flow at Reτ ≈ 545

We start our assessments by the turbulent channel flow, which is the specific

flowfield with which the LES community has the most experience, and the response

of the LES solution to the insufficient resolution in different directions and the

optimal resolutions are rather well-known.

In order to test the robustness with severely underresolved solutions, all simu-

lations are started from exceedingly coarse grids that are essentially ignorant of the

flow physics. In the same spirit, we push the resolution of the final grids to the DNS

limit, to make sure that the method is still robust when the LES model becomes

effectively inactive. The idea is that, no matter how coarse or fine the grid might

be, a robust method should always drive the grid towards a distribution that leads

to lower errors in the solution.

To further test the robustness of the method, we consider three different ap-

proaches: (i) LES with a mixture of modeling and numerical errors; (ii) LES where

the modeling errors are dominant; and (iii) DNS, which is purely affected by nu-

merical errors.
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5.2.1 Code and problem specification

The code used for this problem is the Hybrid code (used is Sections 3.2 and 4.5),

which solves the compressible Navier-Stokes equations for a calorically perfect gas on

structured Cartesian grids using sixth-order accurate central differencing schemes

with a split form of the convective term. Time-integration is handled by classic

fourth-order Runge-Kutta. The code solves the implicitly-filtered LES equations

with an explicit eddy viscosity model.

The bulk Reynolds number Reb = ρbUbH/µw is 10,000, which is identical to

the setup in Section 4.5 and leads to a friction Reynolds number of about Reτ ≈

545. The bulk Mach number is 0.2. The simulations are integrated for a time

of 200H/Ub (around 11H/uτ ) before collecting statistics over a period of 600H/Ub

(slightly more than 32H/uτ ), by post-processing 400 snapshots that are 1.5H/Ub

(close to 0.08H/uτ ) apart from each other. The convergence error is found to be

sufficiently small Similar to the error-indicator of Chapter 3, this long integration

time is primarily required for convergence of the mean profiles. A careful study of

the statistical convergence of the error-indicator and its predicted grids is given in

Chapter 6.

Since the code uses structured grids, the grid-spacing in the wall-parallel direc-

tions is taken as the smallest predicted value along y. The wall-normal resolution,

on the other hand, is directly matched to the target values, by giving the code a list

of y coordinates for the grid points across the channel.

Quantities of interest are taken to be the streamwise mean velocity and the four
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non-zero Reynolds stresses. The error in the QoIs δQm are defined by Eqn. 3.9, where

the resolved Reynolds stress Rij is replaced by the total R
tot

ij =
〈
u′iu
′
j

〉
+
〈
τmod
ij (uk)

〉
.

The convergence criterion is computed from Eqn. 3.10, repeated here, as

eref
QoI =

1

5

5∑
m=1

δQ
ref

m .

5.2.2 LES with a mixture of modeling and numerical errors

We first use the dynamic Smagorinsky model [54, 55] with filtering and aver-

aging in the wall-parallel directions to compute τmod
ij . The use of implicitly filtered

LES equations, combined with the use of numerics with low numerical dissipation,

produces solutions that are contaminated by both modeling and numerical errors of

about similar magnitudes (cf. [4, 56]).

This first grid has a uniform resolution of (∆x,∆y,∆z)/H = (0.20, 0.10, 0.20),

corresponding to (∆
+

x ,∆
+

yw/2,∆
+

z ) ≈ (110, 28, 110) if one uses the fully converged

friction velocity. Note that ∆
+

yw is the wall-normal filter width at the wall.

After performing an LES on this grid, we need to compute the error indicator

which requires the computation of the eddy viscosity at the test-filter level. Assum-

ing that the model coefficient is the same at the grid- and test-filter levels, this can

be computed approximately as

V̂
(n0)

sgs ≈

∆̂
(n0)

∆

2

∣∣∣∣Ŝ(n0)
∣∣∣∣

|S|
νsgs , (5.14)

where νsgs is the eddy viscosity in the underlying LES. The effect of this approxima-

tion is minor, with a full assessment shown in Section 5.5. We assume ∆̂
(n0)

/∆ ≈ 3
√

2
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for all 3 directions, since the test-filter of Eqn. 5.2 is wider by a factor of two in

only one direction. This assumes that the characteristic filter-width is taken as the

cube-root of the cell volume, which is actually not explicitly enforced in the dynamic

model since the filter-width definition can be absorbed into the model constant in

the dynamic procedure.

An step-by-step illustration of the adaptation process is given in Fig. 5.3, in-

cluding the shape of the first computational cell next to the wall, the mean stream-

wise velocity, the total streamwise Reynolds stress, and the three components of the

error-indicator G(x,ni) along with Gtot(x).

In the first grid, the largest error-indicator is for the wall-normal direction

in the vicinity of the wall (as expected for this coarse uniform grid). The next

grid (DSM-2) is then generated by enforcing the optimality criteria of Eqns. 5.11

and 5.12. Note that due to the structured nature of the computational grid we

have to take the minimum of the target streamwise and spanwise resolutions across

the channel in order to generate each of the grids. The constant Λ in Eqn. 5.11 is

adjusted (in an iterative process) such that the number of grid points in the next

grid DSM-2 increases by a factor of 5.

The key metrics for all grids are reported in Table 5.1.

The grid DSM-2 has a grid-spacing of (∆
+

x ,∆
+

yw/2,∆
+

z ) = (77, 5.6, 55). The

solution on this grid is actually not bad, but of course not converged. The error-

indicator computed from the DSM-2 solution again shows the largest error coming

from the wall-normal resolution near the wall, followed by the spanwise resolution

throughout much of the buffer layer. The resulting grid DSM-3 produces a solution
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Figure 5.3: Sequence of grids generated by G(x,n) (Eqns. 5.6 and 5.7) for LES of
the channel flow at Reτ ≈ 545. The rows show the progression of grids from DSM-1
(top row) to DSM-8 (bottom row). Key quantities are listed in Table 5.1. The
left column shows the shape of a wall-adjacent cell, while the right column shows
the streamwise, wall-normal, and spanwise error-indicators by the brightest to the
darkest colors. The dotted lines show Gtot(y

+) in the right column and the reference
DNS solution of del Alamo and Jimenez [18] in the middle columns.
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eprev

QoI (%) eDNS
QoI (%)

DSM-1 15k 20 (80, 20, 80) (0.20, 0.10, 0.20) 398 − 32
DSM-2 74k 34 (77, 5.6, 55) (0.14, 0.099, 0.10) 553 27 11
DSM-3 251k 44 (53, 2.3, 29) (0.098, 0.091, 0.054) 536 8.0 7.3
DSM-4 514k 50 (45, 1.7, 19) (0.082, 0.080, 0.035) 544 4.2 3.3
DSM-5 1.18M 60 (34, 1.4, 13) (0.063, 0.065, 0.024) 544 2.1 1.8
DSM-6 2.53M 72 (25, 1.6, 10) (0.046, 0.052, 0.018) 542 1.0 1.1
DSM-7 5.80M 90 (18, 1.4, 7.6) (0.033, 0.041, 0.014) 540 0.6 1.1
DSM-8 11.1M 108 (14, 1.2, 6.3) (0.025, 0.033, 0.012) 541 0.6 0.9

Table 5.1: Sequence of grids generated for LES of channel flow at Reτ ≈ 545 using
the dynamic Smagorinsky model. Ntot is the total number of grid points, while
Ny denotes the number of points across the channel. ∆n = ∆(x,n) is both the

filter-width and the grid-resolution. Friction resolutions ∆
+

n are computed based on
grid-specific values. ∆yc is the wall-normal filter-width at the center of the channel,
while ∆yw is its value at the wall. eDNS

QoI and eprev
QoI are defined by Eqns. 3.9 (using the

total Reynolds stress R
tot

ij instead) and 3.10.

where the streamwise Reynolds stress is close to the DNS and where the error-

indicator values in the different directions are closer to being balanced, suggesting

that the algorithm has started to find a nearly “optimal” state.

The adaptation process is continued until DSM-8. After the first two adap-

tations, the target number of cells is doubled each time. The solution is effectively

converged on grid DSM-4 or DSM-5 depending on the desired accuracy. The grid-

spacings on grids DSM-4 and up are quite close to what is considered “best practice”

in LES and DNS for channel flows, with (∆
+

x ,∆
+

yw/2,∆
+

z ) of (45, 1.7, 19) on DSM-4

and (14, 1.2, 6.3) on DSM-8.
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eprev

QoI (%) eDNS
QoI (%)

Vr-1 15k 20 (153, 38, 153) (0.40, 0.20, 0.40) 382 − 34
Vr-2 73k 34 (135, 9.5, 97) (0.28, 0.22, 0.20) 487 25 21
Vr-3 256k 44 (103, 4.7, 47) (0.21, 0.18, 0.097 484 7.7 18
Vr-4 517k 50 (91, 4.1, 32) (0.18, 0.16, 0.064) 500 6.0 11
Vr-5 1.16M 62 (68, 3.3, 24) (0.13, 0.12, 0.048) 510 2.3 9.7
Vr-6 2.51M 76 (49, 2.8, 20) (0.096, 0.096, 0.038) 518 2.8 7.1
Vr-7 5.83M 96 (35, 2.3, 15) (0.068, 0.075, 0.029) 524 2.1 5.1
Vr-8 11.0M 114 (27, 1.9, 13) (0.052, 0.061, 0.024) 530 1.1 4.4

Table 5.2: Sequence of grids generated for LES of turbulent channel flow using the
Vreman model with a model constant of cv = 0.03 and ∆/h = 2. Additional details
on the notation are given in the caption of Table 5.1. All resolutions are based on
the filter-width, not the grid-spacing.

5.2.3 LES with dominant modeling errors and small numerical errors

The next test case tries to assess the performance of the error-indicator in

a flow where the numerical errors are relatively small and the solution is mostly

dominated by the effect of modeling errors. This is achieved here by taking ∆/h = 2

and using the eddy viscosity model by Vreman [19] with a constant coefficient of

cv = 0.03. The use of a filter-width larger than the grid-spacing causes the eddy

viscosity to increase by a factor of 4, which dissipates most of the energy before

reaching the Nyquist limit of the grid.

The sequence of grids and solutions are summarized in Table 5.2 and Fig. 5.4.

The initial grid has the same number of grid points as for the dynamic Smagorinsky

case, but twice the filter-width. The subsequent grids in the sequence have approx-

imately the same number of grid points as the corresponding dynamic Smagorinsky

cases.
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Figure 5.4: Convergence of the mean velocity and Reynolds stress profiles for grids
in Table 5.2 generated for LES with the constant coefficient Vreman model [19] and
∆/h = 2. Colors vary from the brightest for the first grid to the darkest for the last
one. The dotted blue lines are the DNS of del Alamo & Jimenez [18].

The solutions converge much more slowly for this case, which is consistent with

the broadly agreed upon notion that, for a given grid-spacing h, the choice of ∆ ≈ h

leads to the best LES accuracy in most cases (see Fig. 2.1). In other words, that

the increase in modeling error for larger filter-widths is greater than the decrease in

numerical error.

More interestingly (in the present context) is that the last few grids again agree

quite closely with the “best practice” in LES, and in fact agree rather well with the

grids for the dynamic Smagorinsky model. For example, grid Vr-5 in Table 5.2 has

a grid-spacing (half the filter-width) of (34, 1.6, 12) in viscous units, which is almost

identical to the resolution of (34, 1.4, 13) for grid DSM-5 in Table 5.1.

5.2.4 DNS affected solely by numerical errors

The final channel case is to turn off the LES subgrid model and thus have only

numerical errors. The adaptation algorithm remains the same except that τmod
ij = 0
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eprev

QoI (%) eDNS
QoI (%)

DNS-1 15k 20 (81, 20, 81) (0.20, 0.10, 0.20) 405 − 30
DNS-2 76k 34 (80, 6.2, 56) (0.14, 0.094, 0.097) 578 24 16
DNS-3 252k 44 (51, 2.4, 31) (0.093, 0.092, 0.057) 547 13 6.7
DNS-4 515k 50 (43, 1.6, 22) (0.076, 0.086, 0.039) 563 5.3 5.0
DNS-5 1.14M 60 (34, 1.6, 15) (0.060, 0.067, 0.026) 566 2.2 4.4
DNS-6 2.53M 72 (25, 1.5, 10) (0.046, 0.054, 0.019) 553 2.1 2.9
DNS-7 5.87M 90 (18, 1.3, 7.7) (0.033, 0.042, 0.014) 545 2.4 1.8
DNS-8 11.0M 106 (13, 1.2, 6.4) (0.025, 0.034, 0.012) 543 0.9 0.9

Table 5.3: Sequence of grids generated for DNS of turbulent channel flow at Reτ ≈
545. Additional details on the notation are given in the caption of Table 5.1.

Figure 5.5: Convergence of the mean velocity and Reynolds stress profiles for grids
in Table 5.3. Colors vary from the brightest for DNS-1 to the darkest for DNS-8.
The dotted blue lines show the DNS of del Alamo & Jimenez [18].

in both the solver and when computing the error-indicator.

When creating the sequence of grids we target the same number of grid points

as in the previous cases. Key metrics are summarized in Table 5.3 with the conver-

gence of the mean velocity and Reynolds stress profiles shown in Fig. 5.5.

The sequence of grids is very similar to those produced for the dynamic

Smagorinsky and constant Vreman models in the previous sections. Again, we

should emphasize that this is mainly because the wall-resolved LES grids have “op-

timal” resolutions that are very close to DNS. The error in the QoIs is larger for
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the DNS (no-model) cases than the dynamic Smagorinsky ones, showing that the

model has a positive effect for this particular flow and code.

5.3 Assessment on the flow over a backward facing step at ReH =

5100

The purpose of this test case is to expose the adaptation algorithm to a more

complex flow, with multiple different canonical flow elements. This combination of

different types of building-block flows is meant to challenge the adaptation algo-

rithm, while it gives us s chance to analyze the predicted resolutions based on what

we expect for LES of each of those flows.

The flowfield and setup are identical to what we used in Sections 3.3 and 4.6,

and their details are not repeated here.

5.3.1 Code and computational details

The OpenFOAM code version 2.3.1 [60] (a second-order finite volume solver) is

used for this test case to allow for fully unstructured adapted grids. The filter-width

is taken as the cube-root of the cell volume. We use the dynamic ksgs-equation LES

model (cf. [61–64]) that defines the eddy viscosity as

νsgs = ck∆

√
ksgs

and solves a transport equation for ksgs. This raises the question of how to compute

k̂
(n0)

sgs and thus V̂
(n0)

at the test-filter level. In the present work, we use simple

approach of assuming that the eddy viscosity scales as νsgs ∼ ∆
2|S| (a consistency
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requirement for eddy viscosity models), which then allows us to use the approximate

relation (5.14) to compute the eddy viscosity at the test-filter level. Similar to for the

channel case, the effect of this approximation is assumed to be small (the assessment

is in Section 5.5). We again take ∆̂
(n0)

/∆ ≈ 3
√

2, which comes from our definition of

the characteristic filter-width as the cube root of the cell volume.

The quantities of interest for this flow are taken to be the two non-zero mean

velocity components, the four non-zero Reynolds stress components, and the friction

and pressure coefficient profiles on the horizontal walls. The error in each of the QoIs

is defined by Eqn. 3.11, and the convergence criterion is computed using Eqn. 3.12,

repeated here as

eref
QoI =

1

3

2∑
m=1

δQ
ref

m

2
+

1

3

6∑
m=3

δQ
ref

m

4
+

1

3

8∑
m=7

δQ
ref

m

2
.

The reference DNS is computed on a very fine unstructured grid with about 54M

cells, which is generated by refinement of grid G-7 in Table 5.4 by a factor of 2,

everywhere and in all directions.

Each case was run for 500H/U∞ time units, after which 800 snapshots were

collected over a period of 2000H/U∞. The convergence of the averaging was judged

by dividing the full record into four separate batches with 200 snapshots in each,

computing the QoIs for each batch, and then computing the sample standard devia-

tion between the batch averages. We then constructed 95% confidence intervals for

each quantity using the Student’s t-distribution with 3 degrees of freedom (cf. [65]).

The confidence intervals for the integrated errors in the QoIs are very small (and

thus omitted below), but they are significant for some of the profiles especially down-
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stream of the step. These confidence intervals are shown in all convergence plots of

this Section.

Once again, the long averaging times are required only for the solution to

converge; the error-indicator converges about an order of magnitude more quickly

due to its dependence on the small scales (Chapter 6).

5.3.2 Results

The initial grid (labeled G-1) has a resolution of ∆(x,n)/H = 0.2 everywhere

in the domain except close to the walls where the wall-normal direction is refined by

a factor of two (same initial grid used in Sections 3.3 and 4.6). After computing the

LES on this grid, the error-indicator is computed in the three possible directions of

refinement/coarsening, and the target filter-width fields for the second grid (G-2)

are computed. We then create the actual grid G-2 using the refineMesh utility in

OpenFOAM. Since refineMesh can only refine hexahedral cells by factors of 2 in

any direction, the resulting grid is different from the predicted target. The resulting

grid G-2 (actually, the target filter-width field before creating the refineMesh input)

is visualized in Fig. 5.6. Note that the constant Λ in Eqn. 5.11 was adjusted such

that the resulting number of cells was approximately doubled.

Figure 5.6 illustrates how the adaptation methodology targets different regions

of the domain for refinement. The algorithm predicts a single level of refinement in

the y direction (∆(x,ny) = ∆y = 0.1H) in most of the domain inside the bound-

ary layer, while the y resolution is predicted to need a second level of refinement
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Figure 5.6: The grid G-2 from Table 5.4 illustrated by its refinement levels in
x (top), y (middle), and z (bottom). Refinement levels are computed based on a
skeletal grid with ∆0(x,n) = 0.2H for all x and n. The light green, dark green and
blue colors illustrate regions with one (∆n/H = 0.1), two (∆n/H = 0.05), and three
(∆n/H = 0.025) refinement levels, respectively. The white regions are associated
with regions that are left untouched (i.e. ∆n/H = 0.2). The dashed line highlights
the δ95 boundary layer thickness.

(∆y/H = 0.05) closer to the horizontal walls and in the shear layer, and a third

level of refinement (∆y/H = 0.025) in close vicinity of the horizontal walls in both

incoming and recovering boundary layers. The spanwise resolution ∆z is targeted

for a single level of refinement (∆z/H = 0.1) for the most part of the domain inside

the turbulent boundary layers, while the relaminarized region inside the recircula-

tion bubble is left untouched. The resolution of the skeletal grid in the x direction

(∆x/H = 0.2) is deemed adequate for the most part of the domain, except near the

vertical wall of the step (where the recirculation bubble causes shear) and in the

shear layer (where the turbulent fluctuations are significant in all three directions).

We also note that the aspect ratio of the cells in the boundary layers and the shear

layer are quite close to what we expect from experience for those flows. The fact
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Grid Ntot (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆y,∆z)/δshear eprev

QoI (%) eDNS
QoI (%)

G-1 149k (42, 10, 42) (0.21, 0.17, 0.33) − 11.1
G-2 297k (42, 2.6, 21) (0.16, 0.078, 0.16) 5.3 10.5
G-3 611k (45, 1.4, 11) (0.16, 0.049, 0.078) 6.4 5.6
G-4 1.32M (47, 1.5, 12) (0.076, 0.038, 0.076) 3.8 4.9
G-5 2.13M (25, 0.77, 6.2) (0.070, 0.035, 0.035) 2.8 5.4
G-6 3.41M (25, 0.77, 6.1) (0.068, 0.034, 0.034) 3.4 3.5
G-7 6.72M (12, 0.76.6.0) (0.034, 0.017, 0.034) 2.2 2.5

DNS 54M (6.0, 0.38.3.0) (0.017, 0.0086, 0.017) − 0

Table 5.4: Sequence of grids generated for LES of flow over a backward-facing

step. (∆
+

x ,∆
+

yw/2,∆
+

z ) correspond to the boundary layer resolutions at x/H = −3
upstream of the step, δshear is the approximate shear layer thickness at (x, y)/H =
(1, 0), and (∆x,∆y,∆z) is the resolution at that location. See Fig. 5.11 for more
details. eDNS

QoI and eprev
QoI are defined in Eqn. 3.12.

that the resulting G-2 grid seems this reasonable from an “LES experience” point-

of-view is actually quite remarkable, since it was created entirely by an algorithm

from a solution on a highly underresolved mesh.

The adaptation process is continued until grid G-7 where the QoIs are deemed

converged. Each target grid is generated by aiming for approximately doubling

the number of cells, without trying to match this ratio exactly. The sequence of

generated grids is reported in Table 5.4 by their total number of cells Ntot and

QoI errors (both eDNS
QoI and eprev

QoI ). The table also reports the grid-spacings in the

approaching boundary layer at x/H = −3 and shortly after the step at x/H = 1 (for

y/H = 0) in the shear layer formed by separation at the step. The convergence of the

QoIs is shown in Fig. 5.7 for the pressure and friction coefficients and Figs. 5.8, 5.9

and 5.10 for the mean velocity and Reynolds stress profiles at some of the more

interesting locations.

The computed error eDNS
QoI decreases after every adaptation except for grid G-5.
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Figure 5.7: Convergence of (a) friction coefficient cf and (b) pressure coefficient
cp for LES of flow over a backward-facing step. Grids in Table 5.4 are shown by
the lightest color for G-1 to the darkest for G-7. Solid lines denote the sample
means, while the shaded regions correspond to the approximate confidence intervals
(computed locally). The dotted blue lines and their shaded regions denote our DNS
results and their confidence intervals. Symbols correspond to the experimental data
of Jovic & Driver [57,58] with slightly different setup (error bars on the experimental
data are not shown). Experimental measurements of cf and cp are not available
upstream of the step.

Figure 5.8: Convergence of the mean velocity and Reynolds stress profiles for
the sequence of grids in Table 5.4 at the incoming boundary layer at x/H = −3.
Grids in the sequence are shown by the lightest color for G-1 to the darkest for
G-7. Solid lines denote the sample means, while the shaded regions correspond to
the approximate confidence intervals (computed locally). The dotted blue lines and
their shaded regions denote our DNS results and their confidence intervals. Symbols
correspond to the experimental data of Jovic & Driver [57, 58] (error bars on the
experimental data are not shown).
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Figure 5.9: Convergence of the mean velocity and Reynolds stress profles for grids
in Table 5.4 at x/H = 6 near the reattachment point. See Fig. 5.8 for more details.

Figure 5.10: Convergence of the mean velocity and Reynolds stress profiles for the
recovering boundary layer at x/H = 15 for the sequence of grids in Table 5.4. See
Fig. 5.8 for more details.

The relatively large value of the error for this grid is primarily due to the error in

the friction coefficient of the incoming boundary layer (see Fig. 5.7), that happens

despite the apparently sufficient resolution of the grid, and affects the entire flowfield

downstream of the step.

Figure 5.11 shows the constructed grid G-6 of Table 5.4 as an example of

a converged LES grid for this specific setup. Note how complicated this grid has

become, with many transitions between different grid-resolutions and cells that have
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Figure 5.11: The generated grid G-6 of Table 5.4 with 3.41M cells. Intersections
of the blue planes denote locations whose resolutions are reported in Table 5.4,
while the green planes correspond to x/H = −3 and x/H = 6 whose velocity and
Reynolds stress profiles are plotted in Figs. 5.8 and 5.9. The grid is resulted from
computation of the proposed error-indicator (Eqns. 5.7 and 5.6) and applying the
grid selection criteria of Eqns. 5.11 and 5.12 with no user experience involved.

completely different aspect ratios from one region of the domain to another (e.g.,

compare the aspect ratios at the locations reported in Table 5.4). It is interesting to

note how coarse the grid is in the recirculation bubble, expect for the wall-normal

directions that are refined to predict the right level of shear at the wall. The most

important observation is that these predicted resolutions are very similar to what

an experienced user would use when generating a grid for LES of the flow over a

backward-facing step.
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5.4 Comparison with the heuristic-based error-indicator A(x,n)

We defined our heuristic-based error-indicator (Section 3.1.2) as

A(x,n) =

√〈
u
∗,(n)
i u

∗,(n)
i

〉
(5.15)

where u
∗,(n)
i = ui − û

(n)

i is the directionally high-pass test-filtered LES velocity field

(using the same filter of Eqn. 5.2).

It is useful to compare the grids generated by the proposed error-indicator of

this Chapter G(x,n) (Eqn. 5.7) with those of A(x,n). In that sense, the results of

this Section complement our assessments of G(x,n) in Sections 5.2.2 (channel flow

with the dynamic Smagorinsky model) and 5.3 (flow over a backward-facing step).

For both of our error-indicators we only consider the grids that are generated by

the modified grid selection criteria.

Figure 5.12 compares the target aspect ratios from the two error-indicators.

Note how similar the profiles are, meaning that our intuitive arguments in Sec-

tion 3.1.1 (about the optimal selection of the size of the LES filter in any direction

compared to the filter width in the limiting direction) were quite close to what can

be inferred directly from the governing equation.

The results for LES of the channel flow using the dynamic Smagorinsky model

are shown in Table 5.5. An interesting observation is the qualitative difference

between the two sets of grids: although the grids generated using G(x,n) have

a similar streamwise resolution to those generated by A(x,n), their wall-normal

resolution is finer near the wall and coarser at the center of the channel. Note that
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Figure 5.12: Examples of the predicted optimal cell aspect ratios ∆̌(x,n2)/∆̌(x,n1)
(black lines) and ∆̌(x,n3)/∆̌(x,n1) (blue lines) for (a) turbulent channel flow at
Reτ ≈ 545 and α = 2, (b1) in the recirculation region of the flow over a backward-
facing step at x/H = 4, for α = 2. Note how similar the target aspect ratio are
between G(x,n) (solid lines) and A(x,n) (dotted lines).

this basically fixes the coarse wall-normal resolution of the target grids by A(x,n) at

the wall (for example, compare the grids DSM-4 and A-4 from Table 5.5), which was

mentioned in the beginning of this Chapter as one of the shortcomings we wished

to address.

Figure 5.13 summarizes the convergence of eDNS
QoI for all grids in Table 5.5 with

the increase in the number of cells Ntot. Note that almost all grids generated using

the new error-indicator G(x,n) have lower values of the error metric eDNS
QoI . If we

accept the lower values of eDNS
QoI as a measure of optimality (this is not exactly true) we

can conclude that the grids generated by G(x,n) have a more optimal distribution.

This conclusion is consistent with our experience; in fact, grids generated by A(x,n)

seem to have a slightly coarser resolution near the wall (especially in the last grids)

compared to what we expect for such high-resolution grids.

Figure 5.13 also plots the convergence of the indicator values themselves, de-

fined as the volume averages (denoted by esurr, defined in Eqn. 4.17) of Atot (defined
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eDNS

QoI (%)

DSM-2 74k 34 (77, 5.6, 55) (0.14, 0.099, 0.10) 553 11
A-2 76k 36 (80, 6.9, 56) (0.14, 0.075, 0.10) 562 12

DSM-3 251k 44 (53, 2.3, 29) (0.098, 0.091, 0.054) 536 7.3
A-3 245k 48 (57, 3.6, 32) (0.10, 0.061, 0.058) 560 8.3

DSM-4 514k 50 (45, 1.7, 19) (0.082, 0.080, 0.035) 544 3.3
A-4 526k 56 (46, 2.9, 22) (0.082, 0.052, 0.039) 559 5.5

DSM-5 1.18M 60 (34, 1.4, 13) (0.063, 0.065, 0.024) 544 1.8
A-5 1.17M 66 (35, 2.6, 15) (0.063, 0.044, 0.027) 559 4.2

DSM-6 2.53M 72 (25, 1.6, 10) (0.046, 0.052, 0.018) 542 1.1
A-6 2.52M 80 (26, 2.2, 11) (0.048, 0.035, 0.020) 552 2.4

DSM-7 5.80M 90 (18, 1.4, 7.6) (0.033, 0.041, 0.014) 540 1.1
A-7 5.90M 100 (18, 1.8, 8.2) (0.034, 0.028, 0.015) 543 0.8

DSM-8 11.1M 108 (14, 1.2, 6.3) (0.025, 0.033, 0.012) 541 0.9
A-8 11.3M 118 (14, 1.6, 6.8) (0.025, 0.024, 0.013) 542 1.4

Table 5.5: Sequence of grids generated for LES of channel flow at Reτ ≈ 545 using
the dynamic Smagorinsky model. The “DSM” grids are copied from Table 5.1, while
the “A” grids are the “NEW” grids in Table 4.1 and are copied from there. See
caption of Table 5.1 for more details.

Figure 5.13: Comparison between the convergence of eDNS
QoI and esurr with Ntot for

the sequences of grids generated by G(x,n) (solid lines) and A(x,n) (dotted lines)
for the turbulent channel flow at Reτ ≈ 545.

in Eqn. 4.10) and Gtot (defined in Eqn. 5.9), respectively. It is quite interesting to see

that neither of the error-indicators exhibit a similar convergence behavior to that of

eDNS
QoI . Even more interestingly,

∫
Ω
Gtot(x)dx remains nearly constant between grids
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Grid Ntot (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆y,∆z)/δshear eDNS

QoI (%)

G-2 297k (42, 2.6, 21) (0.16, 0.078, 0.16) 10.5
A-2 297k (45, 5.7, 23) (0.15, 0.093, 0.15) 10.5

G-3 611k (45, 1.4, 11) (0.16, 0.049, 0.078) 5.6
A-3 599k (47, 2.9, 12) (0.15, 0.074, 0.074) 6.1

G-4 1.32M (47, 1.5, 12) (0.076, 0.038, 0.076) 4.9
A-4 1.35M (22, 2.8, 11) (0.15, 0.036, 0.073) 6.6

G-5 2.13M (25, 0.77, 6.2) (0.070, 0.035, 0.035) 5.4
A-5 2.17M (24, 1.5, 6.1) (0.068, 0.034, 0.034) 4.2

G-6 3.41M (25, 0.77, 6.1) (0.068, 0.034, 0.034) 3.5
A-6 3.70M (25, 1.6, 6.2) (0.065, 0.033, 0.033) 4.4

G-7 6.72M (12, 0.76.6.0) (0.034, 0.017, 0.034) 2.5
A-7 7.26M (12, 1.5, 6.0) (0.068, 0.034, 0.034) 2.0

Table 5.6: A comparison between the sequence of grids generated for LES of flow
over a backward-facing step using A(x,n) (grids labeled “A”, copied from Table 4.2)
and G(x,n) (grids labeled “G”, copied from Table 5.4) Refer to Table 5.4 for more
details including interpretation of each quantity.

DSM-3, DSM-4, DSM-5 and DSM-6, and only starts decreasing again on DSM-7

where the LES model has become effectively inactive. Note that at the same time∫
Ω
Atot(x)dx decays at a somewhat constant rate (its convergence rate is different

from eDNS
QoI ). This nearly constant value of

∫
Ω
Gtot(x)dx in the intermediate grids may

be at first interpreted as a sign that the choice of Ǧtot(x) as an estimate of ěref
local(x)

was not accurate; while probably true, it stands in some contrast to the consistent

improvement in eDNS
QoI on almost all the grids that were generated by G(x,n). A

more plausible explanation is that while the magnitude of Ǧtot(x) is probably not a

great measure of magnitude of ěref
local(x) (which makes sense, since G(x,n) is based on

small-scale quantities, while the QoIs are functions of the larger scale), the spatial

distribution of Ǧtot(x) must qualitatively match that of ěref
local(x).

As a second comparison we consider the flow over a backward-facing step, with
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Figure 5.14: Grid A-6 in Table 5.6 with 3.70M cells. Intersections of the blue
planes highlight locations whose resolutions are reported in Table 5.6. Note that
this grid is qualitatively different from G-6 shown in Fig. 5.11. See text for more
details.

results summarized in Table 5.6.

Figure 5.15 shows the convergence of the error in the QoIs, eDNS
QoI , and its sur-

rogate quantity, esurr (used when formulating the grid selection criteria), for grids in

Table 5.6. The error in (our specific) quantities of interest is generally lower for grids

generated by G(x,n). Again, (assuming eDNS
QoI as a measure of optimality) we can

conclude that the grids generated by G(x,n) have a more optimal distribution. Once

more, our experience with LES confirms this conclusion, as the reported resolutions

in the boundary layer and shear layer of the “G” grids are closer to what we expect,

especially in the last few grids with relatively high resolutions. The convergence of∫
Ω
Gtot(x)dx is also slower than that of

∫
Ω
Atot(x)dx, which is consistent with what

we saw earlier in Fig. 5.13.
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Figure 5.15: Comparison between the convergence of eDNS
QoI and esurr with Ntot for

the sequences of grids generated by G(x,n) (solid lines) and A(x,n) (dotted lines)
for the flow over a backward-facing step.

5.5 Sensitivity of the target grids and robustness of the method

In this Section, we assess how sensitive the target grids are (in terms of the

error in the QoIs and predicted distribution of the filter-width) to approximations

made when computing Ǧ(x,n), or the use of a non-customized version of the error-

indicator. This is of special interest to us because of two main reasons:

(i) it is extremely desirable that the error indicator is robust to changes in the

LES code and the LES model

(ii) approximations are almost unavoidable in practice, the most common of which

happens when computing τmod
ij (û

(n)

k ) in Eqn. 5.6.

The former point follows from our discussions in Section 3.6 that the best error-

indicator is one that is customizable to the LES formulation and model, while still

robust to a change in them. Examples of the latter point include: our assumption

that the model coefficients remain unchanged between filter levels ∆ and ∆̂
(n)

to

avoid performing the full dynamic procedure (used in Sections 5.2.2 and 5.3), es-
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timating the change in ksgs by an approximate formula to avoid solving an extra

transport equation (Section 5.3), different numerics used in computing G(x,n) to

avoid reimplementation of the exhaustively elaborate numerical schemes used in the

LES solver, and so on.

For the test cases of this Section, we use different LES models in the code

and in computation of the error-indicator. To this end, we generate five new se-

quences of grids, all starting from an initial grid with resolution of (∆x,∆y,∆z)/H =

(0.20, 0.10, 0.20). In three of these sequences the constant Vreman model [19] is used

in the LES solver with cv = 0.07 and ∆/h = 1 (slightly different from what was used

in Section 5.2.3), while τmod
ij (û

(n)

k ) in the error-indicator is computed once by the

Vreman model (as it should be), once by using the (dynamic) Smagorinsky model

(Eqn. 5.14), and once by setting the SGS terms to zero (τmod
ij ≡ 0, corresponding

to the DNS case). These three sets of grids are labeled “Vr/Vr” (same as the “Vr”

grids in Table 5.2), “Vr/DSM” and “Vr/DNS”, respectively. Similarly, the other

three sequences are generated by using the dynamic Smagorinsky model in the LES

solver and using the Smagorinsky model in G(x,n) (labeled “DSM/DSM”, same as

the “DSM” grids in Table 5.1), DSM in the solver and the Vreman model in the

error-indicator (labeled “DSM/Vr”) or setting the SGS terms to zero in the error-

indicator. The last sequence (corresponding to “DSM/DNS” grids) is discontinued

after the fourth grid, since the target grids had identical resolutions (within two

significant digits) to “DSM/Vr” grids.

The generated grids are summarized in Tables 5.7 (for sequences with the

Vreman model in the LES solver) and 5.8 (for DSM). Convergence of eDNS
QoI with
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eDNS

QoI (%)

Vr/Vr-2 74k 34 (70, 4.0, 47) (0.14, 0.10, 0.097) 488 19
Vr/DSM-2 76k 32 (64, 7.0, 55) (0.12, 0.11, 0.10) 528 13
Vr/DNS-2 76k 36 (70, 3.3, 46) (0.15, 0.096, 0.097) 476 20

Vr/Vr-3 253k 48 (58, 1.9, 25) (0.11, 0.081, 0.050) 507 11
Vr/DSM-3 246k 40 (41, 3.8, 33) (0.078, 0.10, 0.063) 526 11
Vr/DNS-3 245k 48 (59, 1.5, 25) (0.12, 0.085, 0.050) 504 11

Vr/Vr-4 513k 52 (46, 2.0, 18) (0.089, 0.076, 0.034) 516 8.1
Vr/DSM-4 517k 48 (34, 2.5, 22) (0.065, 0.083, 0.043) 522 8.2
Vr/DNS-4 512k 54 (46, 1.1, 18) (0.091, 0.075, 0.035) 511 8.4

Vr/Vr-5 1.18M 64 (34, 1.6, 13) (0.065, 0.059, 0.025) 521 5.7
Vr/DSM-5 1.17M 60 (29, 2.0, 15) (0.054, 0.065, 0.028) 525 5.8
Vr/DNS-5 1.15M 64 (34, 0.80, 13) (0.067, 0.063, 0.025) 517 6.7

Vr/Vr-6 2.54M 76 (25, 1.4, 10) (0.047, 0.049, 0.019) 527 4.2
Vr/DSM-6 2.52M 74 (23, 1.7, 11) (0.044, 0.051, 0.020) 530 4.1
Vr/DNS-6 2.50M 78 (25, 0.61, 10) (0.048, 0.050, 0.020 521 5.0

Vr/Vr-7 5.85M 96 (18, 1.1, 7.8) (0.033, 0.037, 0.019) 531 3.6
Vr/DSM-7 5.83M 94 (17, 1.4, 8.0) (0.032, 0.039, 0.015) 534 3.7
Vr/DNS-7 5.80M 98 (18, 0.47, 7.9) (0.034, 0.038, 0.015) 527 3.7

Vr/Vr-8 10.7M 112 (14, 0.97, 6.5) (0.026, 0.031, 0.012) 533 2.7
Vr/DSM-8 10.8M 110 (14, 1.2, 6.5) (0.025, 0.032, 0.012) 535 2.8
Vr/DNS-8 10.9M 114 (14, 0.38, 6.5) (0.026, 0.032, 0.012) 530 2.9

Table 5.7: Sensitivity of the target grids to inaccuracies in the computation of

τmod
ij (û

(n)

k ) in Eqn. 5.6, or to the use of a non-customized version of the error-
indicator. All simulations use the constant Vreman model [19] in the solver with
cv = 0.07 and ∆/h = 1. Refer to caption of Table 5.1 for more details and inter-
pretation of what each quantity means. See text for how grids “Vr/Vr”, “Vr/DSM”
and “Vr/DNS” are generated.

total number of cells Ntot is further illustrated in Fig. 5.16.

Note that the error in the QoIs is not significantly affected by these incon-

sistencies in our implementation of the error-indicator. The change in the target

resolution is slightly more noticeable (Tables 5.7 and 5.8). For instance, the grid

Vr/DSM-4 has a friction resolution of (34, 2.5, 22) which is somewhat different from

grid Vr-4 with resolution of (46, 2.0, 18). Interestingly, this change in the target

resolutions has a general trend that is present for almost all grids in the sequence
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆yc ,∆z)/H Reτ eDNS

QoI (%)

DSM/DSM-2 74k 34 (77, 5.6, 55) (0.14, 0.099, 0.10) 553 11
DSM/Vr-2 72k 34 (78, 4.1, 51) (0.15, 0.10, 0.097) 529 13

DSM/DSM-3 251k 44 (53, 2.3, 29) (0.098, 0.091, 0.054) 536 7.3
DSM/Vr-3 252k 46 (55, 1.4, 28) (0.10, 0.091, 0.053) 527 7.2

DSM/DSM-4 514k 50 (45, 1.7, 19) (0.082, 0.080, 0.035) 544 3.3
DSM/Vr-4 519k 52 (46, 1.0, 19) (0.086, 0.079, 0.035) 538 3.9

DSM/DSM-5 1.18M 60 (34, 1.4, 13) (0.063, 0.065, 0.024) 544 1.8
DSM/Vr-5 1.19M 62 (34, 0.79, 13) (0.064, 0.065, 0.024) 537 1.8

DSM/DSM-6 2.53M 72 (25, 1.6, 10) (0.046, 0.052, 0.018) 542 1.1
DSM/Vr-6 2.54M 76 (25, 0.62, 10) (0.048, 0.051, 0.019) 535 1.3

DSM/DSM-7 5.80M 90 (18, 1.4, 7.6) (0.033, 0.041, 0.014) 540 1.1
DSM/Vr-7 5.83M 94 (18, 0.51, 7.7) (0.034, 0.040, 0.014) 535 1.2

DSM/DSM-8 11.1M 108 (14, 1.2, 6.3) (0.025, 0.033, 0.012) 541 0.9
DSM/Vr-8 11.1M 112 (14, 0.43, 6.4) (0.025, 0.032, 0.012) 537 1.2

Table 5.8: Sensitivity of the target grids to inaccuracies in the computation of

τmod
ij (û

(n)

k ) in Eqn. 5.6, or to the use of a non-customized version of the error-
indicator. Refer to caption of Table 5.1 for more details. All results are for LES
using the dynamic Smagorinsky model. Grids labeled “DSM/DSM” are the same
as those reported in Table 5.1 and are simply copied from there. See text for grids
“DSM/Vr”.

(e.g. “DSM/Vr” grids have similar streamwise and spanwise resolutions compared

to “DSM/DSM” grids, while their wall-normal resolution is finer adjacent to the

wall). However, we should emphasize that despite the relative change in the res-

olution of the target grids these are still suitable grids for LES of wall bounded

turbulence. In other words, the aspect ratio of the cells may be slightly affected and

suboptimal, but the spanwise resolutions of the cells are still significantly finer than

their streamwise resolution, and their wall-normal resolution is such that it resolves

all the scales (or at least most of them) in the y direction. The small change in eDNS
QoI

is in fact another proof of suitability of generated grids for channel flow: although

this little effect on error in the QoIs is more related to the ability of the solver and
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Figure 5.16: Sensitivity of the error in the QoIs to inaccuracies in the computa-
tion of G(x,n), and to the use of a non-customized version of the error-indicator.
Figure summarizes results of Tables 5.7 and 5.8 for convergence of grids labeled as
“DSM/DSM” (plain black line), “DSM/Vr” (black with squares), “Vr/Vr” (plain
blue), “Vr/DSM” (blue with squares) and “Vr/DNS” (blue with triangles). See text
and Tables 5.7 and 5.8 for more details.

its LES model in handling different grids, we can still conclude that the change in

the target resolution is within some acceptable value to not deteriorate LES results

significantly.

The presented results are specific to the LES code (numerics and models) and

implementation of the error-indicator, while the conclusion that the target grids are

still close to what we would get by customized and accurate implementation of the

LES model is probably more general.

5.6 Definition of the error-indicator for other LES formulations

In this Section we define the error-indicator for the cases of explicitly filtered

LES and implicit LES (ILES) of incompressible flows, as well as the implicitly filtered

LES of compressible flows. Our formulation of the error-indicator suggests a small
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modification to the standard compressible version of the dynamic procedure.

In explicitly filtered LES, the convective term of the momentum equation is

filtered at each time step to take the form uiuj, and the definition of the “subfilter”

stress is modified accordingly as τij = uiuj − uiuj (cf. [38]). The definition of F̂
(n)

i(x)

used in Eqn. 5.7 should also be modified as

F̂
(n)

i(x) ≡ ∂

∂xj

ûiuj(n)

−
̂
û

(n)

i û
(n)

j

(n)
+

∂

∂xj

[
̂τmod
ij (uk)

(n)

− τmod
ij (û

(n)

k )

]
. (5.16)

This again becomes the divergence of the tensor that is used in formulation of the

dynamic procedure in explicitly filtered LES.

In ILES there is no explicit SGS model in the code, i.e. τmod
ij ≡ 0 and the

effect of the subgrid scales is accounted for by numerics designed to mimic an LES

model. In this case, the definition of F̂
(n)

i could be modified as

F̂
(n)

i(x) =
δ

δxj

(
ûiuj

(n)
− û(n)

i û
(n)

j

)
, (5.17)

where δ/δxj denotes the specific numerics used in the code and it has replaced

∂/∂xj to emphasize the need to implement numerics that are consistent with the

goal of mimicking a SGS model. We have not tested whether or not an inconsistent

implementation of numerics (e.g. a central scheme) could produce acceptable results,

but we should probably expect a similar behavior to what reported in Section 5.5

for “Vr/DNS” or “DSM/DNS” grids.

The definition of the error-indicator for LES of compressible flows becomes

more involved due to the extra governing equations and the Favre-filtering of the

primitive variables. The governing equations for implicitly filtered LES of compress-
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ible flows (in their conservative form) read (cf. [79])

∂ρ

∂t
+

∂

∂xj
ρũj = 0

∂

∂t
ρũi +

∂

∂xj
ρũiũj +

∂p

∂xi
− ∂σ̃ij
∂xj

=
∂Tij
∂xj

∂

∂t
ρẼ +

∂

∂xj
(ρẼ + p)ũj −

∂

∂xj
σ̃ijũi +

∂Q̃j
∂xj

=
∂Sj
∂xj

where · is the filtering operation that is implicitly applied, ρ and p are the resolved

density and pressure, respectively, and ũi and Ẽ are the Favre-filtered velocity and

total internal energy, with Favre filtering defined as φ̃ = ρφ/ρ. The terms σ̃ij and

Q̃j describe the viscous stress and conductive heat flux, defined as

σ̃ij = σij(T̃ , ũi) = µ(T̃ )

(
2S̃ij −

2

3
S̃kkδij

)
Q̃j = Qj(T̃ ) = −κ(T̃ )

∂T̃

∂xj
,

where T̃ = p/Rρ is the Favre-filtered temperature and µ(T̃ ) and κ(T̃ ) are the

molecular viscosity and thermal conductivity that are functions of T̃ . The Favre-

filtered strain rate is defined as S̃ij = (∂ũi/∂xj + ∂ũj/∂xi)/2. The terms Tij and

Sj contain the entire effect of the subgrid scales in the momentum and energy

equations and are closed by the LES model (Tij could be slightly different from

τij = ρ(ũiuj − ũiũj) since there might be extra subgrid processes involved).

If we follow the approach of Section 5.1.1 and apply a directional test-filter

·̂(n) to the momentum equation at filter level ∆ and subtract it from the momentum

equation at the test-filter level ·̂(n)
, we can identify the following as the residual
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forcing term,

F̂
(n)

i(x) =
∂

∂xj

[
1

ρ̂
(n)
ρ̂ui

(n)
ρ̂uj

(n)
− ρ̂ũiũj

(n)

]
+

∂

∂xj

[
T (ρ̂

(n)
, ŭ

(n)
i )− ̂T (ρ, ũi)

(n)
]

+
∂

∂xj

[
σ(T̆ (n), ŭ

(n)
i )− ̂

σ(T̃ , ũi)
(n)
]
,

(5.18)

where ·̆(n) denotes Favre-filtering at the test-filter level ∆̂
(n)

defined as φ̆(n) =

ρ̂φ
(n)

/ρ̂
(n)

. If we neglect the last term (the nonlinearity of the viscous term), the

residual forcing term becomes the divergence of the tensor used in the standard

compressible version of the dynamic procedure (cf. [79]). However, based on our

discussions in Section 5.1.2, one should in principle include this term when calcu-

lating the model coefficient dynamically. The most important application of this

modification is probably in flows with strong heating/cooling, where µ(T̃ ) has large

variations, especially in complex flows where one cannot specify the preferred filter-

ing direction.

If we repeat our approach for the mass conservation equation we end up with

∂Γ̂
(n)

/∂t + ∂ê
(n)

j /∂xj = 0, where Γ̂
(n)

and ê
(n)

j are the errors in the density and mass

flux, respectively. This suggests that we can exclude the mass conservation equation

from our analysis of the source of error, since the momentum equation essentially

leads to an evolution equation for error in the mass flux ê
(n)

j ; thus, by minimizing the

source of error in the momentum equation (Eqn. 5.18) we automatically minimize

the error in the mass equation as well.

We can define a separate error-indicator for the energy equation as

G ′(x,n) =

√〈
Ĵ

(n)

(x)Ĵ
(n)

(x)

〉
(5.19)
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where Ĵ
(n)

(x) is defined as

Ĵ
(n)

(x) =− ∂

∂xj

[
ρ̂

(n)
Ĕ(n)ŭ

(n)
j − ρ̂Ẽũj

(n)
]
− ∂

∂xj

[
p̂

(n)
ŭ

(n)
j − p̂ũj

(n)
]

− ∂

∂xj

{
1− γ

2
ŭ

(n)
j

[
ρ̂

(n)
ŭ

(n)
k ŭ

(n)
k − ρ̂ũkũk

(n)
+ τmod

kk (û
(n)

i )− ̂τmod
kk (ui)

(n)
]}

+
∂

∂xj

[
ŭ

(n)
i σij(T̆

(n), ŭ
(n)
k )− ̂

ũiσij(T̃ , ũk)
(n)
]
− ∂

∂xj

[
Qj(T̆ (n))− Q̂j(T̃ )

(n)
]

+
∂

∂xj

[
Smod
j (ρ̂

(n)
, ρ̂ui

(n)
, ρ̂E

(n)

)− ̂Smod
j (ρ, ρui, ρE)

(n)
]
.

(5.20)

Here γ is the ratio of the specific heats, and τmod
ij is the LES model used for

τij = ρ(ũiuj − ũiũj). Note how different this error-indicator is from an intuition-

based error-indicator for the energy equation, that could be defined for instance as√〈
T̃ ∗,(n)T̃ ∗,(n)

〉
, where T̃ ∗,(n) = T̃ − ̂̃T (n)

(same as [80] but applied in a directional

sense).

One important point to keep in mind is that we arrived at Eqns. 5.18 and 5.20

by excluding the error in the energy equation from the residual term in the momen-

tum equation and vice versa. This is a relatively ad hoc assumption, driven by the

desire to make the equations simpler, and could be suboptimal.

5.7 Concluding remarks

The goal of this Chapter has been to introduce a new error-indicator that

is more directly connected to the governing equations of LES, and is less based on

heuristic arguments about the importance of physical quantities (e.g., the small-scale

energy or the dissipation rate).

The proposed error-indicator G(x,n), defined in Eqn. 5.7, estimates the error
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introduced into the LES evolution equation at location x caused by an insufficient

filter-width in direction n. More specifically, the error-indicator measures the initial

divergence between the test-filtered LES solution and an imagined solution to the

test-filtered LES equation. In other words, it measures how sensitive the LES equa-

tion is to small (directional) changes in the filter-width. While the error-indicator is

based on manipulations of the governing equation, it is also based on the assumption

that the source of initial divergence between these different solutions is a meaningful

measure of the error in the fully nonlinear long-time evolution of the LES. This is

really the key physical assumption in this work.

For the channel, the algorithm consistently produces grids/filter-widths that

are very close to what is considered “best practice” in LES and DNS: grids with

(∆
+

x ,∆
+

yw/2,∆
+

z ) ≈ (45, 1.7, 19) and (13, 1.2, 6.4), respectively. Note that the wall-

normal resolutions of these grids are much finer than those generated by the previous

error-indicatorA(x,n) with resolutions of (46, 2.9, 22) and (14, 1.6, 6.8) on grids with

the same Ntot (Table 5.5).

For the backward-facing step, the predicted grids are close to what an expe-

rienced user might produce. It is essentially impossible to say how “optimal” (in

the mathematical sense) the grids are for this problem, but we note that the er-

ror (compared to DNS) reaches about 5% with only 600K to 2M cells; it is hard

to imagine an experienced user creating a better grid than that, at least without

significant trial-and-error. Once again, the wall normal resolution of the incoming

boundary layer (Table 5.6) is much closer to what we expect, suggesting that the

relatively coarse wall-normal resolution of the grids generated by A(x,n) that we
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mentioned as one of its shortcomings that we wished to address is now fixed by the

new indicator G(x,n).

The subgrid/subfilter model used in the LES solution enters directly into the

definition of the residual forcing term and thus the error-indicator. Besides, the def-

inition of the residual forcing term is different for different LES formulations (e.g.,

Eqn. 5.6 for implicitly filtered LES of incompressible flows, Eqn. 5.16 for explic-

itly filtered LES of incompressible flows, Eqn. 5.17 for ILES of incompressible flows,

Eqn. 5.18 for errors in the momentum equation of the implicitly filtered LES of com-

pressible flows, and 5.20 for errors in the energy equation of compressible implicitly

filtered LES). In other words, the proposed error-indicator is fully customizable to

the LES formulation and the LES model, meaning that at least theoretically it

should be able to generate the most “optimal” grid for each case. This is further

confirmed by the results in Tables 5.7 and 5.8 where different LES models led to

slightly different target grids. Also clear from the Tables (and from Fig. 5.16) is the

robustness of the error-indicator and its target grids to changes in the LES model

(and probably LES formulation, although it has not been explicitly tested): despite

the change in the target grids, all of them are still “good” grids for LES of wall-

bounded flows, and errors in the QoIs are not significantly higher for non-customized

formulations.

Another advantage of the proposed error-indicator is its straightforward ex-

tensibility to other flow regimes and to include other physics. A derivation for com-

pressible flow is shown in Section 5.6, which creates a separate error-indicator for

the energy equation. Following the same process, one could extend it to chemically
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reacting flows, etc.

The proposed error-indicator has similarities with the dynamic procedure but

was derived without any appeals to scale-similarity in the inertial subrange of tur-

bulence. Its use is not restricted to filter-widths in the inertial subrange, and the

derivation in fact offers an alternative explanation for the success of the dynamic

procedure.

A potential criticism of this type of sequential refinement of an initial grid to

find ∆opt could be the apparent additional cost of performing LES on a full sequence

of grids. We discussed this in some detail in Section 3.5, and made four counter

arguments. Here we only repeat two of them: (i) for flows where we have a “good

guess” of what the grid may be, we can start from our “best guess” and eliminate the

first few grids in the sequence; this sequential refinement from coarse and ignorant

grids is intended for cases where we do not have that knowledge. And (ii) the cost

of doing LES on all grids before ∆̌opt (i.e. the cost of finding the “optimal” grid)

is less than 70% of the solving the LES on ∆̌opt (assuming that the cell count is

doubled in each iteration); this is not significant at all, especially when compared

to the potential saving by having a more optimal ∆̌opt(x,n).

There are still a few possible directions in which the proposed error-indicator

G(x,n) can be improved.

The present error-indicator was derived for the continuous governing equation

and as such does not directly estimate any numerical errors. The adaptation algo-

rithm was still found to perform well for the DNS of the channel flow (which has only

numerical errors), but it may still be required to explicitly include the numerical
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errors in the error-indicator in other flows.

We also note that the error-indicator arguably measures the sensitivity of the

solution at the test-filter level and not at the LES filter level ∆. This is perfectly

fine for the final grid(s), but may not be ideal for the initial grids in the sequence

that are far from resolving the inertial subrange of the turbulence. One possibility

is to investigate approaches similar to that of Porte-Agel et al. [81] who revised the

dynamic procedure to work better on underresolved grids.

And finally, we remember that eDNS
QoI and esurr had very different convergence

behaviors (Figs. 5.13 and 5.15), to a point where esurr remained nearly unchanged

on a few of the intermediate grids in the sequence, and started decreasing again

only when the DNS resolution was reached. This is while eDNS
QoI was constantly

decreasing on those grids (Fig. 5.13). We argued that a plausible explanation would

be that the value of Gtot(x) may not be a great representation of the value of

eref
local(x), but their qualitative spatial distributions must clearly be close, to explain

the convergence of eDNS
QoI and the improved results over the grids generated byA(x,n)

(that were already really good). This inconsistency between the magnitudes of

Gtot(x) and eref
local(x) did not seem to be an issue in any of the test cases considered

here; however, such inconsistencies are always dangerous, since the same may happen

qualitatively as well, i.e., that the relative change in the value of Gtot(x) may become

different from the relative change in the value of eref
local(x), leading to an inaccurate

localization of the error source, and consequently, grids that are not optimal. This

means that, despite the many advantages of the new error-indicator G(x,n) over the

old one A(x,n), the problem of error-estimation in LES is still far from fully solved,
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and more work still needs to be done. This motivates our third error-indicator in

Chapter 8.
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Chapter 6: Statistical convergence of the error-indicators and their

target grids

Most quantities of interest in LES depend on the large scales of motion, which

then require a relatively long averaging time for adequate convergence. In contrast,

the error-indicators of Chapters 3 and 5 depend on the smallest resolved scales

and should therefore converge more quickly. The implication is that one could in

practice reduce the cost of the adaptation process by running only short simulations

on many of the grids, and start collecting long averages only for the finer grids whose

resolutions are deemed adequate to produce converged results. In this Chapter we

study the sensitivity of the error-indicators proposed in Chapters 3 and 5 and their

target grids to insufficient averaging in time.

The convergence assessment is done only for the backward-facing step flow,

for which we have 400 snapshots spaced 2.5H/U∞ apart in time. The error-indicators

computed for grid ∆(x,n) using all 400 snapshots are labeledAref(x,n) and Gref(x,n),

and the refinement level of their target grids, ∆̌(x,n), are labeled Řref(x,n) (for both

error-indicators), quantified as

Ř(x,n) = log2

∆̌(x,n)

∆0(x,n)
, (6.1)

where ∆0(x,n) = 0.2 for all x and n (this Ř(x,n) is what was plotted in Figs. 3.9, 4.9,
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and 5.6). All target grids in this Chapter are such that the cell count is doubled

from grid ∆ to ∆̌.

We also consider averages over batches of m snapshots only, for which the

resulting error-indicators and their target refinement levels are labeled Gm,j(x,n),

Am,j(x,n), and Řm,j(x,n), respectively, where j is the batch number. The errors

due to insufficient averaging are then defined as

EG(m; j) =

∑
i

∫∫
Ω

∣∣Gm,j(x,ni)− Gref(x,ni)
∣∣ dx∑

i

∫∫
Ω
Gref(x,ni)dx

EA(m; j) =

∑
i

∫∫
Ω

∣∣Am,j(x,ni)−Aref(x,ni)
∣∣ dx∑

i

∫∫
Ω
Aref(x,ni)dx

ER(m; j) =

∑
i

∫∫
Ω

∣∣Řm,j(x,ni)− Řref(x,ni)
∣∣ dx∑

i

∫∫
Ω

∣∣Řref(x,ni)
∣∣ dx

(6.2)

where Ω : x = (x, y) ∈ [−20H, 25H]× [−H, 5H] is taken as the full two-dimensional

domain subject to grid selection/adaptation.

Since all three of Gm,j(x,n), Am,j(x,n), and Řm,j(x,n) are random variables,

their errors (Eqn. 6.2) are also random variables. A 90% two-sided prediction inter-

val is computed for each of these variables using the sample mean and sample stan-

dard deviation of EG(m; j), EA(m; j) and ER(m; j) and the Student’s t-distribution

(cf. [65] for more details on prediction intervals). These prediction intervals are

shown in Fig. 6.1 for A(x,n) (using both the heuristic and modified grid selection

criteria) and in Fig. 6.2 for G(x,n) (using only the modified criterion).

To interpret the results, we need to decide what constitutes acceptable errors

in EG, EA, and ER. This was done by visually looking at different random realizations

at different error levels: error levels of 0.05 in all three quantities were deemed to be

definitely acceptable, meaning that the random variation between batches did not
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Figure 6.1: Convergence of the error-indicator A(x,n) (left column) and the refine-
ment levels of the target grid Ř(x,n) (right column) with the number of snapshots
m used in the averaging. The top row corresponds to the sequence of “LES” grids
in Table 3.4 (generated using the heuristic criterion of Chapter 3), while the bottom
row corresponds to the sequence of “A” grids (Table 5.6) generated by the modified
grid selection criterion. The grids are shown by the lightest color for LES-1 (or
A-1) to the darkest for LES-6 (or A-7). The solid lines show the sample means
of EA(m; j) and ER(m; j), while the shaded regions highlight the 90% prediction
interval of the computed values. When the upper bound of the prediction interval
goes below the horizontal dotted line there is a 95% chance that the error metric for
a single realization is below 0.05. The required integration times can be computed
as 2.5mrH/U∞ (mr being the required number of snapshots) and are reported in
Table 6.1.

significantly change the levels of A, G or Ř, and how they were distributed over the

domain (compared to the reference). The 0.05 level is shown as a horizontal line in

Figs. 6.1 and 6.2.
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Figure 6.2: Convergence of (a) the error-indicator G(x,n) and (b) the refinement
levels of the target grid Ř(x,n) with the number of snapshots m used in the averag-
ing. Results are for the “G” grids in Table 5.6. The grids are shown by the lightest
color for G-1 to the darkest for G-7. See the caption of Fig. 6.1 for more details.
Compare the results to Fig. 6.1.

When the upper bound of the prediction interval lies below the acceptable

threshold, there is a 95% chance that the error metric in a single realization of the

flow, averaged over m snapshots, is below the acceptable value of 0.05. The approx-

imate integration times required for this to happen are summarized in Table 6.1

(for all grids), along with the simulation times used in Sections 3.3, 4.6, and 5.3 for

plotting the QoI profiles.

We can make a few interesting observations from Table 6.1. First and foremost,

it is quite clear that tA/G (run time required for sufficient convergence of either of

the error-indicators) and tR (run time required for sufficient convergence of their

target grids) are significantly lower (by about one order of magnitude) compared to

what is needed for sufficiently converged QoI profiles (tQoI). This verifies what we

discussed earlier about the faster convergence of the error-indicators.

The second interesting observation is that the target grids “A” in Table 6.1 (for
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Grid Ntot tQoIU∞/H tA/GU∞/H tRU∞/H

LES-1 149k 1000 75 50
LES-2 293k 1000 50 15
LES-3 596k 1000 75 40
LES-4 1.28M 1000 85 20
LES-5 2.22M 1000 90 20
LES-6 3.59M 1000 100 20

A-1 149k 1000 75 95
A-2 297k 1000 75 110
A-3 599k 1000 95 250
A-4 1.35M 1000 90 75
A-5 2.17M 1000 100 75
A-6 3.70M 1000 80 50
A-7 7.26M 1000 110 30

G-1 149k 2000 260 290
G-2 297k 2000 280 250
G-3 611k 2000 150 80
G-4 1.32M 2000 220 100
G-5 2.13M 2000 240 140
G-6 3.41M 2000 210 140
G-7 6.72M 2000 280 130

Table 6.1: The simulation times used for sufficiently converged mean QoI profiles,
tQoI, (reported in results of Sections 3.3, 4.6, and 5.3) compared against the inte-
gration time required for accurate computation of the error-indicator, tA/G, and the
refinement levels of the target grid, tR. The required integration times are computed
as 2.5mH/U∞, where m is the number of snapshots required for the upper bound
of the prediction intervals in Figs. 6.1 and 6.2 to go below the horizontal lines. The
longer tQoI for the “G” grids was to increase the accuracy of the results, and was
not required.

which the modified grid selection criterion was used) need a longer tR compared to

the “LES” grids for which the heuristic criterion was used, while tA/G is very similar

for both. This is actually consistent with the effect of the modified criterion on the

target grids; in other words, a larger portion of the domain is selected for refinement,

which means that (i) there are more degrees of freedom for how the computational

cells are selected for refinement/coarsening, and (ii) most of these extended regions

are areas that exhibit highly unsteady behavior, e.g., near the edge of the boundary
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layer. Both of these result in a slower convergence of the target grids.

And the third observation is that the error-indicator G of Chapter 5 requires

a longer convergence time (tA/G) compared to A of Chapter 3 (compare grids “A”

and “G” in Table 6.1). The exact reason for this is not fully clear, as both the

error-indicators are small-scale quantities; however, we should point out that there

is no need for them to converge at the same rate anyway. The slower convergence

of the target grids generated by G(x,n) is presumably due to the slow convergence

of the error-indicator itself.

We conclude this Chapter by emphasizing that the exact results presented

here are specific to the flow over a backward-facing step, the sampling frequency,

and other flow parameters; however, the conclusion about a much faster convergence

of the error-indicator and target grids compared to the QoI profiles, the slower

convergence of G(x,n) compared to A(x,n), and the slower convergence of the

target grids predicted by the modified criterion are probably more general and valid

for a broader set of flows.
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Chapter 7: Towards robust convergence-verification and algorithmic

grid selection/adaptation in LES

Any robust and systematic computational simulation should follow an algo-

rithm that consists of three essential parts: (i) convergence-verification, to make

sure that the results and their observed patterns come from the physics of the

problem and not the unavoidable errors associated with almost any discretized sim-

ulation, (ii) error-estimation, to locate where the errors are introduced into the

solution and its QoIs, (iii) grid-adaptation, to enable an efficient path towards the

“optimal” grid−the grid that satisfies the convergence-verification criteria with the

lowest computational cost. This systematic algorithm is shown in Fig. 7.1.

It is useful to study a more detailed example of such algorithms, namely, the

adjoint-weighted residual method for RANS and laminar simulations. The algorithm

is sketched in Fig. 7.2. In each iteration the algorithm

(i) estimates the local sources of error;

(ii) solves the adjoint equations to link the change in the QoIs to those local error

sources;

(iii) estimates the error in all QoIs from the adjoint fields and the local error sources

(convergence-verification);
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Start with the grid G"Grid G#

Solve on grid G#

Convergence-
verification

$%& ≤ $%&,)**+,-.

Output error estimation
Estimate the error in quantities of interest /0

Declare 
convergence, 

terminate

Grid-adaptation 
Use the local error estimates 
to refine the grid in areas of 
large error generation

No

Yes

Local error estimation
Estimate the contribution of insufficient resolution at 
different parts of the domain to the overall error in QoIs

Figure 7.1: A typical grid-adaptation algorithm (same as Fig. 1.5). The boxes with
dotted borders are those that are different between LES and other computational
simulations, and have been the subject of study in this dissertation.

Start with the grid G"Grid G#

Solve on grid G#

Convergence-
verification

$%& ≤ $%&,)**+,-.
using the adjoint-

weighted residuals

Error-estimation
Option 1. estimating the numerical residuals, by interpolation, etc.
Option 2. computing the leading order truncation error

Solve the adjoint equations on grid /#

Declare 
convergence, 

terminate

Grid-adaptation 
Using the adjoint-
weighted residuals

No Yes

Figure 7.2: The standard adjoint-weighted residual method used for convergence-
verification and grid-adaptation in RANS and laminar flows. Dotted borders mean
that the process cannot be directly applied to LES. The shaded box shows the
process that has a computational cost comparable to that of the original solution.

(iv) use the “adjoint-weighted residuals” to adapt the grid if the error in the QoIs

is above an acceptable threshold.

Note that the order of different processes in the “adjoint-weighted residual”
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algorithm is slightly modified (compared to Fig. 7.1) to increase the efficiency.

Particularly, the error-estimation and adjoint solution processes are done before

the convergence-verification step, since they are needed for robust convergence-

verification (see Fig. 7.3). Unfortunately, based on what we have discussed in

Chapters 1 and 2, the boxes with dotted borderlines in Fig. 7.2 are those parts

of the algorithm that cannot be simply used or generalized for LES. Consequently,

despite the efficiency and overall advantage of the adjoint-weighted residual method,

it cannot be directly applied to LES, and we need a new algorithm. The order of

different processes involved in the algorithm should also be modified consistent with

these changes.

In this Chapter, we first address the problem of convergence-verification in

LES, and then we propose an algorithm that is designed around that verification

process.

7.1 Convergence-verification

Among the three possible convergence-verification methods available from the

literature (Fig. 7.3), the adjoint-weighted residual method is the most robust and

most efficient method; however, the presence of the modeling errors in LES introduce

an inherent uncertainty to the estimated errors (see Section 2.2). This reasoning

leads to the idea that convergence-verification based on estimated local error sources

will always carry an uncertainty, and (crucially) that this uncertainty has nothing

to do with the adjoint itself. Therefore, solving the “chaotic adjoint problem” is not
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Use the current solution to compute !",$%
Use the solution on the previous grid to compute !",$%&'

Compute the change in the QoIs as (!" = !",$% −!",$%&'
Use the change in the QoIs (!" to judge the convergence

Local error-estimation to get + ,
Option 1. estimating the numerical residuals, by interpolation, etc.
Option 2. computing the leading order truncation error.

Solve the adjoint equations to get . ,
Estimate the error in the QoIs as e01 ≈ ∫. , + , 4,

Step 1. Refine/coarsen the current grid by a fixed factor 
Step 2. Do the simulation on the refined/coarsened grid
Step 3. Use the solution on the second grid to compute !",$%5

Compute the change in the QoIs as (!" = !",$% −!",$%5
Richardson extrapolation says that the actual error is proportional to 
the change e01 ≈ (!"/(1 −9:)

Use the current solution to compute !",$%

Method 1: Not robust

Method 2: Somewhat robust

Method 3: Somewhat robust
o Additional cost of solving the adjoint equations
o Complicated
o Not wasteful: the information from the adjoint 

solution is then used to compute the adjoint-
weighted residuals used for grid adaptation

o Additional cost of one extra 
simulation

o Relatively easy
o Wasteful, since the extra 

solution is just used for 
convergence verification

o No extra cost
o Very easy
o Not wasteful

Figure 7.3: A review of different approaches to convergence-verification (same as
Fig. 2.5). The shaded boxes denote the processes with computational costs that
are of the same order of magnitude as the original simulation. Robustness of the
methods are judged for laminar and RANS simulations. Methods 1 and 2 can be
readily applied to both LES and DNS, while for application of method 3 to DNS
we should first find a way to avoid the chaotic divergence of the adjoint fields for
long time integrations. Having found a way to compute the adjoint fields, method
3 can be used for convergence-verification in LES as well; however, it is no longer
fully robust, since error-estimation in LES cannot be fully robust (because of the
projection errors).

sufficient, and we must also find a method to verify grid-convergence with greater

confidence.

Given the uncertainties in estimating the local error sources in LES (due to

the modeling errors and the uncertainty of our estimate of them because of the

projection errors), it stands to reason that any robust convergence-verification test

should essentially involve varying the uncertainty due to the effect of the projection

errors. Assuming a constant ratio between filter-width and grid-size, we hypothesize

that the only (?) way to verify grid-convergence with confidence is to compare actual
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LES solutions from different grids with different projection errors.

The two grids used for such convergence-verification must be such that they

do not produce the same error sources anywhere in the domain; otherwise, the two

grids could produce similar solutions despite neither being grid-converged. This

leads to the following criteria on the relation between the original LES grid (subject

to convergence-verification) and the test grid (as the second LES solution):

(a) The two grids cannot be built based on the same assumptions about the nec-

essary resolution requirements (e.g., the user expertise or an error-indicator).

A corollary is that one cannot use two grids from a sequence of adapted grids

to truly verify grid-convergence (cf. Venditti and Darmofal [40] for some

examples).

(b) They cannot have any regions with the same grid spacing.

(c) They cannot have similar resolution in any one direction.

(d) At least one of the grids must produce a “meaningful” LES solution, i.e., have

some reasonable amount of resolved turbulence.

One systematic way of generating a suitable “test” grid is to refine or coarsen

the original grid uniformly (i.e., with the same factor everywhere) and isotropi-

cally (with the same factor in all directions). A distinct advantage of this uniform

refinement/coarsening factor is that it allows us to use the Richardson extrapola-

tion technique and have a better estimate of the error in the QoIs [22, 25, 26]. All

of these arguments clearly favor “method 2” of Fig. 7.3 as the “best” choice for

convergence-verification in LES.

Having access to the LES solutions from two grids, the convergence criterion
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for each of the QoIs becomes

eQm ≈
∣∣∣∣ δQm

1− βα

∣∣∣∣ ≤ eQm,allowed , (7.1)

where β is the uniform refinement/coarsening factor between grids Gk and G′k (i.e.,

β = ∆
′
/∆, where ∆

′
is the characteristic filter-width of grid G′k), α is the assumed

scaling of the results with the change in the filter-width, and eQm,allowed is the ac-

ceptable threshold. Note that in when the quantities of interest are defined as fields

rather than scalars (e.g., mean velocity or Reynolds stress profiles) δQm should be

defined as the volume average of absolute value of the local difference in the QoIs

(e.g., Eqns. 3.9 and 3.11), and the above equation is modified slightly as

eQm ≤
∣∣∣∣ δQm

1− βα

∣∣∣∣ ≤ eQm,allowed .

The coarsening of the grid (β > 1) is usually favored over its refinement, since

the computational cost of solving the LES equations on the test grid ∆
′

= β∆ is

approximately a factor (1/β)4 of the cost of the original LES solution on grid ∆.

Note that the refinement can be theoretically done with almost any factor (although

the computational cost may become prohibitive), while for coarsening the user may

want to consider smaller factors such that the test is still meaningful. In other words,

β is limited by the computational cost as its lower bound and by the meaningfulness

of the test as its upper bound.

7.2 The proposed algorithm

The robust adaptation/verification algorithm of Fig. 7.1 consisted of four pro-

cesses: output error-estimation, convergence-verification, local error-estimation, and
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Output error-estimation and 
convergence-verification

Start with the grid G"Grid G#

Solve on grid G#

Convergence-
verification

%̅&' ≤ %&',*++,-./

Generate a second grid G#0 by 
homogeneous and isotropic 
coarsening/refinement of 1#
with factor 2 = 4Δ0/4Δ

Solve on grid G#0Grid-adaptation

No Yes
Error-estimation

Option 1: error-indicator 7̅ 8, 9 of Chapter 3
Option 2: error-indicator :̅ 8, 9 of Chapter 5
Option 3: make use of the extra LES solution on 
grid G#0 and use the error-indicator of Chapter 8

Declare 
convergence

Terminate

Figure 7.4: The proposed algorithm for convergence-verification and grid-
adaptation in LES. Boxes with dotted borders correspond to the redesigned pro-
cesses for LES. The shaded box corresponds to the process whose cost is comparable
to the original LES solution.

grid-adaptation. Chapters 3 and 5 addressed the problem of local error-estimation

in LES, while Chapter 4 focused on the grid selection/adaptation process of the

algorithm. Section 7.1 of this Chapter addressed the convergence-verification pro-

cess, and since the convergence-verification is done by running an extra simulation

with a uniform refinement/coarsening factor β, the output error-estimation simply

becomes the use of Eqn. 7.1 to approximate eQm . At this point, all the different

processes involved in a robust adaptation/verification algorithm are discussed, and

we can finally assemble a robust algorithm for LES. This is shown in Fig. 7.4.
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7.3 Cost of the algorithm

There are two main factors contributing to the cost of the algorithm: (i) all

the Gk simulations prior to the one that is declared converged (denoted by Gfinal),

and (ii) all the simulations performed on grids G′k, including G′final.

In Section 3.5 we addressed the additional cost of the iterative adjustment of

the LES grid/filter (i.e. the cost of performing LES on grids Gk). In summary we

argued that:

• If the cell count is doubled between Gk and Gk+1, the additional cost of all

simulations prior to Gfinal is only 66% of the cost of solving on Gfinal itself (this

reduces to 19% if the cell count is quadrupled).

• There is no need to start from a very coarse grid: if we have a “good guess”

of what Gfinal should look like we can start from that “best guess” and reach

Gfinal in only a couple of iterations.

• The error-indicators and the target grids usually converge much faster than

the QoI profiles (see Table 6.1 and Figs. 6.1 and 6.2); therefore, in practice

one could cut the simulation time (and consequently the cost) for many of the

grids prior to Gfinal and perform full simulations on the fine grids only.

• The additional cost of performing LES on a sequence of grids should of course

be compared to the potential saving due to a more optimal Gfinal.

The additional cost of the convergence-verification process (i.e., performing

LES on the G′k grids) is a direct function of the refinement/coarsening factor β ≈
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∆
′
/∆, and approximately scales as β−4. If we take β = 1.25 (we usually favor

coarsening to reduce the cost), the additional cost of running full simulations on all

the G′k grids is approximately 68% ((1/1.25)4 × 1.66 ≈ 0.68) of the cost of the LES

on Gfinal. We can make very similar remarks about this additional cost

• If the user starts from a “best guess” grid this additional cost is reduced.

• There is no need to perform convergence-verification on the initial grids that

are too coarse to produce accurate results. These are the same grids for which

the user could perform short simulations.

• Most of the additional cost of the G′k grids comes from G′final (around 60% if

the cell count is doubled in each iteration, and 85% if it is quadrupled). This

is the price that one has to pay to ensure the convergence of the results, and

must not be subject to compromise.

The existence of the LES solution on G′k grids also means that we have some

extra a posteriori information available on the response of the LES solution on

grid Gk to a (uniform) change in its filter-width ∆(x,n). Given that the error-

estimation in LES has always involved some approximation, this extra information

can actually be used to define a more accurate estimate of the local sources of errors.

This can potentially lead to a more optimal Gfinal, which further reduces the cost

of the algorithm. This “two-grid” error-indicator is defined in Chapter 8 with some

preliminary assessments on the channel flow and the flow over a backward-facing

step.
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Chapter 8: Error-estimation using the solution on more than one

grid

One major shortcoming of the error-indicator A(x,n) of Chapter 3 was the

lack of its direct connection to the governing equations. This was addressed later in

Chapter 5 by defining G(x,n), which was a measure of sensitivity of the governing

equations to the filter-width. While a major theoretical improvement over A(x,n),

this error-indicator was still based on the smaller scales of the motion and did not

solve the disconnect between the value of the error-indicator and the error in the

QoIs (as portrayed in Section 5.4). In this Chapter, we make another attempt to

address this disconnect, and define an error-indicator that is more directly connected

to both the governing equations and the error in the QoIs.

The other inspiration behind the developments of this Chapter is the algorithm

proposed in Fig. 7.4 for convergence-verification and grid selection/adaptation in

LES. Every time we perform the proposed convergence-verification test, we get

access to two LES solutions: one on the original grid Gk, and the other on the

slightly “perturbed” version of that grid, G′k. Since accurate error-estimation has

always been an issue in LES, the idea in this Chapter is that we may as well take

advantage of this extra information and hopefully come up with a more accurate
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estimate of the source of errors.

The chaotic nature of the LES solution means that a direct comparison be-

tween any two independent solutions is meaningless. The alternative is to either (i)

synchronize the two solutions periodically, or (ii) to focus on the statistics of the

two solutions instead. The first approach is not fully desirable since it may either

alter the result of the convergence-verification test (if we only use statistics that are

stored at a fixed time after synchronization), or require two separate LES runs on

the same test grid (where one runs independently and is only used for convergence-

verification, while the other one is periodically synchronized with the original LES

solution and is used only for error-estimation). In this Chapter we take the second

approach with an added distinct advantage that it can be later (as a subject for

future research) complemented with the adjoint fields of those statistics [82] (that

are no longer chaotic, and can be solved with minimal computational cost by solving

the mean adjoint equations) to enable “output-based” grid-adaptation in LES.

We should emphasize that the results presented in this Chapter are somewhat

preliminary and mostly a “proof of concept”. In the same spirit, some of the target

grids are not as “good” as what we have seen in Chapters 3 and 5 for the other two

error-indicators A(x,n) and G(x,n); however, this should not be interpreted as an

inherent deficiency of the new approach, but only that it is still under development.
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8.1 The proposed error-indicator

The governing equation for implicitly filtered large eddy simulation (LES) of

an incompressible, constant-viscosity, Newtonian fluid reads

∂vi
∂t

+
∂

∂xj
vivj +

1

ρ

∂q

∂xi
− ν ∂2vi

∂xj∂xj
+
∂τij
∂xj

= 0 , (8.1)

where vi and q are the “exact” resolved velocity and pressure fields at the LES

filter level ∆, · denotes the filtering process, and τij is the exact SGS stress tensor

τij = vivj − vivj.

Denoting the discrete temporal and spatial differentiation by δ/δt and δ/δxj

respectively, the equation that the code actually solves reads

δui
δt

+
δ

δxj
uiuj +

1

ρ

δp

δxi
− ν δ2ui

δxjδxj
+
δτmod
ij

δxj
= 0 , (8.2)

where ui and p are the resolved velocity and pressure fields from the numerical

simulation, and τmod
ij is computed based on the LES model used in the code. Equa-

tion 8.2 can be equivalently written (by replacing all numerical differentiations by

their analytical version) as

∂ui
∂t

+
∂

∂xj
uiuj +

1

ρ

∂p

∂xi
− ν ∂2ui

∂xj∂xj
+
∂τmod

ij

∂xj
= −fnum

i , (8.3)

where all the difference between the numerical and analytical operators is included

in the forcing term fnum
i that describes the direct effect of the numerical errors on

the resolved fields.

An evolution equation for the error in the solution ei = vi − ui can then be
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derived (similar to Chapter 5) by taking the difference between Eqns. 8.2 and 8.3

∂ei
∂t

+
∂

∂xj
(uiej + eiuj + eiej) +

1

ρ

∂Π

∂xi
− ν ∂2ei

∂xj∂xj
+

∂

∂xj

(
τmod
ij − τij

)
︸ ︷︷ ︸

−fmod
i

= fnum
i , (8.4)

where Π = q − p is the error in the resolved pressure field.

We can identify two distinct source terms in Eqn. 8.4, fnum
i and fmod

i , where

fnum
i is completely of numerical nature, and we consider fmod

i as the modeling error

(τmod
ij is the numerical implementation of the LES model in the code, thus fmod

i in

fact contains some contribution from the numerical errors as well). The goal is then

to estimate and minimize f tot
i = fnum

i + fmod
i .

The numerical contribution fnum
i can be easily computed by evaluating the left-

hand side (lhs) of Eqn. 8.3, where the exact differentiations can be approximated by

interpolating ui and p onto a sufficiently fine grid using an appropriate interpolation

operator (e.g. similar to the approach proposed by [27] for interpolating the LES

fields) and computing the derivatives on that grid.

Estimating the modeling error fmod
i requires estimation of the exact residual

stress tensor τij and is much more involved. Many researchers tried estimating τij

using the approximate deconvolution of the velocity fields (cf. [3,44,83,84]) or using

the scale similarity models (cf. [32–34]). However, a significant part of τij could be

due to the completely unresolved scales (including their direct and indirect effects)

that can never be recovered by an approximate deconvolution method, or in fact

any method (cf. [83]). This means that an accurate estimate of the modeling errors

in LES essentially involves comparing the solution to another LES or DNS (for

the same reason as Chapter 7). This can be done in two ways: (i) comparing the
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instantaneous fields, or (ii) comparing the mean fields. The error-indicator of this

Chapter is developed based on the latter approach, which will require a more careful

development and formulation compared to when one uses the instantaneous fields.

This careful treatment is addressed in the rest of this Chapter.

The quantities of interest from an LES should all be only functions of the

larger scales of the motion. For a quantity of interest Qm this assumption can be

expressed as

Qm = Qm(vi, q) ≈ Qm(vi, q, τjk) . (8.5)

Both Qm and Qm may have some type of averaging in their definition, such that the

QoI is a statistic of the solution and not a single realization of it. In this Chapter, we

only consider the statistically stationary flows with long-averaged QoIs, for which

we can go one step further and assume that Qm can be approximately described,

with sufficient accuracy, by a number of statistics of the instantaneous LES fields;

i.e.,

Qm ≈ Qm(vi, q, τjk)

≈ Qm(〈vi〉 , 〈q〉 , 〈τjk〉 ,
〈
v′iv
′
j

〉
, 〈q′q′〉 ,

〈
τ ′ijτ

′
kl

〉
, 〈v′iq′〉 ,

〈
v′iτ
′
jk

〉
,
〈
q′τ ′jk

〉
, ...) ,

(8.6)

where 〈·〉 denotes a suitable averaging. Description of Qm based on the statistics

of the solution has the advantage that those statistics can be directly compared

between two independent LES solutions; although, with a disadvantage that instead

of estimating the error in a few instantaneous fields (i.e., vi, q and τij for this specific

flow) one might have to estimate the error in a large number of statistics.

The next question to answer becomes what statistics are most relevant and
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what statistics in the expansion of Qm can be ignored without a significant loss of

accuracy. In the present study we only keep the mean velocity, mean pressure, mean

SGS stress, and the mean Reynolds stress; i.e., we assume that

Qm ≈ Qm ≈ Qm ≈ Qm(〈vi〉 , 〈q〉 , 〈τjk〉 ,
〈
v′iv
′
j

〉
) . (8.7)

Here, we justify our approximation by “the principle of receding influence”,

stating that “the n-th moment correlations have markedly less effect on the mean

flow than those of (n− 1)-th order” [85]. This may seem as a limiting and perhaps

inadequate assumption; however, we should note that this is the same assumption

used in almost all RANS models and simulation, where decades of successful ap-

plication of the RANS models in computing the QoIs in a wide range of flows of

engineering interest (cf. [9]) suggests that one can reasonably assume that this as-

sumption holds for most scenarios. The counter argument is that the most important

application of LES is for cases where the RANS models fail to predict the correct

values. However, we should emphasize that the failure of the RANS model does

not necessarily mean that the underlying assumption (i.e. the principle of receding

influence) has failed as well; instead, it could mostly be due to the inaccuracy of

the RANS models in correct predictions of those moments. In LES we have direct

access to the mean fields, Reynolds stresses, and many other statistics, and that

should not be a problem.

The goal of the rest of this Section is to find the source of errors in any of the

mean fields entering the definition of Qm in Eqn. 8.7; i.e., to find the error in the

mean velocity and pressure fields, as well as the Reynolds and SGS stresses.
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8.1.1 Source of error in the mean velocity and pressure fields

We can average Eqn. 8.4 to obtain an evolution equation for the error in the

mean velocity field

∂ 〈ei〉
∂t

+
∂

∂xj

(
U i 〈ej〉+ 〈ei〉U j + 〈ei〉 〈ej〉

)
+

1

ρ

∂
〈
Π
〉

∂xi
− ν ∂

2〈ei〉
∂xj∂xj

=

− ∂

∂xj

(〈
u′ie
′
j

〉
+
〈
e′iu
′
j

〉
+
〈
e′ie
′
j

〉)︸ ︷︷ ︸
〈ersij〉=〈v′iv′j〉−〈u′iu′j〉

+
〈
fmod
i

〉
+ 〈fnum

i 〉
(8.8)

where U i = 〈ui〉 is the mean filtered velocity field, 〈·〉 denotes a suitable time/ensemble

averaging, and ·′ denotes the fluctuating part of each field. It is clear that 〈ei〉 =

V i − U i is the error in the mean filtered velocity field.

The convective term is decomposed into six different terms, three of which

describe the convection of 〈ei〉 by the mean velocity field or the mean error (kept

on the left-hand side of the equation), while the remaining three are interactions

between the fluctuating filtered velocity and the error in the fluctuating velocity.

These latter three terms are in fact the error in the resolved part of the Reynolds

stress,
〈
ers
ij

〉
, and are moved to the right-hand side of the equation. The divergence

of this term, i.e., 〈f rs
i 〉 = ∂

〈
ers
ij

〉
/∂xj is an erroneous forcing term that shows up in

the mean momentum equation and introduces error into the mean velocity fields.

Based on Eqn. 8.8 there are three important factors in generation of error

in the mean velocity fields in an LES: (i) the direct contribution of the numerical

error that shows up as an averaged term 〈fnum
i 〉; (ii) the direct contribution of the

modeling error, showing up as its average
〈
fmod
i

〉
; and (iii) the indirect contribution

of both the numerical and modeling errors, affecting the mean velocity field through
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the error they introduce into the Reynolds stress
〈
ers
ij

〉
.

The direct contribution of numerical errors 〈fnum
i 〉 can be easily computed

by access to the numerical mean fields and interpolating these mean fields onto a

sufficiently fine grid. Nevertheless, a reasonable LES grid is usually sufficiently fine

for resolving the mean velocity field, and the resolution requirements are usually

imposed by the fluctuating scales (e.g., the Reynolds stress and the subgrid stress).

In other words, the direct effect of the numerical error on the mean momentum

equation is secondary to the errors in the turbulent field

〈fnum
i 〉 �

〈
f

rs

i + fmod
i

〉
. (8.9)

This means that obtaining an accurate LES solution of the mean velocity field

requires the minimization of

〈
f

rs

i + fmod
i

〉
=

∂

∂xj

[〈
ers
ij + emod

ij

〉]
. (8.10)

We can combine the error in the resolved Reynolds stress
〈
ers
ij

〉
with the errors

in the modeled subgrid stress tensor
〈
emod
ij

〉
. This is done by defining the total

Reynolds stress as the sum of the resolved and modeled stresses [19,86] as

T
tot

ij =
〈
v′iv
′
j

〉
+ 〈τij〉 ,

with a similar definition for its numerical version as

R
tot

ij =
〈
u′iu
′
j

〉
+
〈
τmod
ij

〉
,

where we can express the right-hand side of Eqn. 8.10 as

〈
ers
ij + emod

ij

〉
=
〈
eRS
ij

〉
= T

tot

ij −R
tot

ij . (8.11)
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Note that our definition of R
tot

ij implies that in an eddy viscosity model the full

subgrid stress tensor should be recovered by approximating the SGS kinetic energy

(usually absorbed in the modified pressure) using a method similar to Vreman [19,

86].

Equations 8.9 and 8.10 suggest that the source of error in the mean velocity

can be recovered by finding the source of error in the total Reynolds stresses. As

a corollary, we do not have to directly consider the mean momentum equations

anymore, since reducing the error in R
tot

ij automatically reduces the error in the

mean velocity field (similar to our reasoning in Section 5.6 for excluding the mass

conservation equation from our analysis).

The Poisson equation for the mean pressure 〈q〉 reads

∂2 〈q〉
∂xk∂xk

= −ρ ∂2

∂xi∂xj

(
V iV j + T

tot

ij

)
, (8.12)

which again suggests that we automatically minimize the error in the mean pressure

by minimizing the error in the mean velocity field and the total Reynolds stress

(assuming negligible effect from the numerical errors).

Therefore, the problem of error-estimation in LES really narrows down to

finding the error in the total Reynolds stress.

8.1.2 Source of error in the total Reynolds stress

The source of error in R
tot

ij can be carefully studied by deriving an evolution

equation for
〈
eRS
ij

〉
. This equation can be obtained by subtracting the evolution

equation of R
tot

ij from that of T
tot

ij . The governing equation of the exact field T
tot

ij =
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〈
v′iv
′
j

〉
+ 〈τij〉 can be derived by either adding the evolution equations of

〈
v′iv
′
j

〉
and

τij, or in an algebraically less involved way, by subtracting the evolution equation

of V iV j from that of 〈vivj〉 =
〈
v′iv
′
j

〉
+ ViVj. This equation reads

∂T
tot

ij

∂t
+

∂

∂xk
(V kT

tot

ij )− ν
∂2T

tot

ij

∂xk∂xk
+

[
T

tot

ik

∂V j

∂xk
+ T

tot

jk

∂V i

∂xk

]
= Φij + φij , (8.13)

where Φij contains all the unclosed terms arising from the unfiltered mean fields,

Φij =− ∂

∂xk

[(
ViTjk − V iT

tot

jk

)
+
(
VjTik − V jT

tot

ik

)
+
(
VkTij − V kT

tot

ij

)
+
(
ViVjVk − V iV jV k

)]
− 1

ρ

[(
Vj
∂ 〈q〉
∂xi

− V j
∂〈q〉
∂xi

)
+

(
Vi
∂ 〈q〉
∂xj

− V i
∂〈q〉
∂xj

)]

− 2ν

[
∂Vi
∂xk

∂Vj
∂xk
− ∂V i

∂xk

∂V j

∂xk

]
,

(8.14)

and φij contains the unclosed fluctuating fields,

φij = − ∂

∂xk

〈
v′iv
′
jv
′
k

〉
−1

ρ

[
∂
〈
q′v′j
〉

∂xi
+
∂
〈
q′v′i
〉

∂xj

]
−1

ρ

〈
q′
(
∂v′j
∂xi

+
∂v′i
∂xj

)〉
−2ν

〈
∂v′i
∂xk

∂v′j
∂xk

〉
.

(8.15)

Note that the first two terms in the definition of φij describe the turbulent

transport (velocity and pressure fluctuations), the third term is the pressure-strain

tensor, and the last term is the viscous dissipation.

The term Φij expresses the residual due to estimating an unclosed term con-

taining the unfiltered mean fields by its expansion based on the filtered mean fields

which is presumably small (here we have also assumed that the filtering and differen-

tiation commute). On the other hand, φij contains the total effect of the fluctuating

fields (and not the residual), which is quite significant in general. As a result, we

can generally assume that

Φij � φij . (8.16)
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It is important to note that the dissipation and all the other terms in φij only

show up as the filtered part of their exact definition. This is to emphasize that

the change in both Φij and φij should be minimal from one grid to the other: even

though by changing the grid we change the characteristic length scale of the filter,

that filter acts only on the mean fields which are presumably smooth and should not

be significantly affected by application of any reasonable filter (this involves some

approximation).

A similar expression for the evolution of the numerical total Reynolds stress

R
tot

ij =
〈
u′iu
′
j

〉
+
〈
τmod
ij

〉
can be derived as

∂R
tot

ij

∂t
+

∂

∂xk
(UkR

tot

ij )− ν
∂2R

tot

ij

∂xk∂xk
+

[
R

tot

ik

∂U j

∂xk
+R

tot

jk

∂U i

∂xk

]
= Ψij + ψij . (8.17)

where U i denotes the average of the numerically solved resolved velocity fields ui.

The exact form of the unclosed terms Ψij and ψij depends on the specific LES

model used in the code. Nevertheless, Ψij and ψij are equivalents of their exact

counterparts Φij and φij, and have a generally similar form; i.e., ψij essentially

contains terms due to the transport properties (fluctuating velocity and pressure

fields, as well as transport due to the subgrid stresses), terms for redistribution of the

Reynolds stresses (the resolved pressure-strain term as well as the contribution of the

subgrid kinetic energy), and dissipative terms (both molecular and LES dissipation).

The evolution equation for the error in the total Reynolds stress
〈
eRS
ij

〉
=

T
tot

ij −R
tot

ij can then be obtained by subtracting the evolution equations of R
tot

ij and
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T
tot

ij . This yields

∂
〈
eRS
ij

〉
∂t

+
∂Uk

〈
eRS
ij

〉
∂xk

+
∂

∂xk
(〈ek〉R

tot

ij + 〈ek〉
〈
eRS
ij

〉
)− ν

∂2
〈
eRS
ij

〉
∂xk∂xk

+

[〈
eRS
ik

〉 ∂U j

∂xk
+
〈
eRS
jk

〉 ∂U i

∂xk

]
+

[
R

tot

ik

∂ 〈ej〉
∂xk

+R
tot

jk

∂ 〈ei〉
∂xk

]
+

[〈
eRS
ik

〉 ∂ 〈ej〉
∂xk

+
〈
eRS
jk

〉 ∂ 〈ei〉
∂xk

]
= Ψij − Φij︸ ︷︷ ︸

Γij

+ψij − φij︸ ︷︷ ︸
γij

.

(8.18)

The first line in the evolution equation of
〈
eRS
ij

〉
describes the material deriva-

tive
〈
eRS
ij

〉
(first and second terms), the convection of the errors by the errors in

the mean velocity fields as well as the erroneous convection of the total Reynolds

stress by the errors in the mean velocity (third term), and the viscous diffusion of〈
eRS
ij

〉
(fourth term). The second line of Eqn. 8.18 arises from the production term

in the evolution equation of the total Reynolds stress, and describes the production

of errors in the total Reynolds stress due to the mean velocity gradients (the first

term), erroneous production of Reynolds stress due to the errors in the mean veloc-

ity fields (the second term), and production of Reynolds stress errors due to errors

in the mean velocity fields (the third term).

Based on the same reasoning we used in Chapter 5, (i.e., that the terms that are

vanishing in the absence of errors in the solutions,
〈
eRS
ij

〉
and 〈ei〉 in this formulation,

are not innate sources of errors) we can assume that none of the terms on the left-

hand side of the equation should be considered in local error-estimation. This means

that we should only look at the unclosed terms

Γij = Ψij − Φij

γij = ψij − φij ,
(8.19)
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to find the source of error.

Equation 8.16 suggests that the mean unclosed terms Ψij and Φij are relatively

smaller in magnitude compared to the terms arising from the fluctuating fields (ψij

and φij). Here, we further assume that their difference is also smaller, i.e.,

Γij = Ψij − Φij � ψij − φij = γij . (8.20)

This assumption is only made as a guide for us to focus more on γij and less on Γij,

while in the final definition of our error-indicator we will include Γij.

We can decompose the unclosed term γij = ψij − φij into three physically

different terms:

(i) The part arising from the turbulent transport γtij = ψ
t

ij − φ
t

ij: this term

contains transport due to the fluctuating velocity and pressure fields as well

as the modeled subgrid stresses. γtij would then mostly describe the transport

of errors by the fluctuating fields and is most probably not a source of error.

Perhaps, this could also be learned by looking at the form of φ
t

ij in the Reynolds

stress equation, i.e. only the divergence of the mean fields
〈
v′iv
′
jv
′
k

〉
and

〈
q′v′i
〉

show up in its definition. Similarly, ψ
t

ij and thus γtij have the same form and

describe the same process.

(ii) The term describing the error in the pressure-strain term γpij = ψ
p

ij − φ
p

ij. The

main role of the pressure-strain tensor is to redistribute the Reynolds stresses;

therefore, we hypothesize that γpij, which describes the error in this term, can

be decomposed into two major contributions: the part that is due to the error

already present in the solution (i.e. because Reynolds stresses are erroneous
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and so their redistribution), and the part that is due to the insufficiencies in

the grid resolution or the LES model. This could also be seen in the shape of

the pressure-strain tensor that is a multiplication of the large-scale field q′ and

the strain rate ∂v′i/∂xj + ∂v′j/∂xi that is biased towards the smaller scales.

(iii) The contribution from the errors in the dissipation rate γdij = ψ
d

ij − φ
d

ij, which

can also be decomposed into the part that is due to the error in the turbulent

field, and the part that is due to the inability of the grid and the LES model

to dissipate energy at the correct rate.

We can continue our quest for finding the source of error by considering the

evolution equation for all three different terms in the definition of γij = γtij+γ
p
ij+γ

d
ij

(i.e. the turbulent transport, pressure-strain and dissipation terms) to further isolate

the local source of error from the errors showing up in the solution (ei = vi − ui).

However, instead of directly looking at the evolution equations for each of these

terms we truncate our analysis here and employ the available knowledge from the

RANS literature. In other words, due to decades of experience and the many models

that are available for describing each of these terms, their general behavior is known

and the different processes involved in them are also rather well-known. This means

that we do not need to directly look at their governing equation to understand how

and where the errors are generated: the same can be known by relying on the RANS

models.
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8.1.3 Identifying the source of error in the unclosed term γij

The source of error in the total Reynolds stress equation (and therefore the

mean velocity and mean pressure) is the error in φij (denoted by γij) that does not

come from the error in the solution itself.

Error in the turbulent transport: based on our discussion, the error in

the turbulent transport γtij is almost entirely due to the solution errors. Therefore,

this term should be completely excluded from what we define as the source of error.

Error in the pressure-strain tensor: the pressure-strain term has been

identified as one of the most important and difficult terms to model [17, 85, 87, 88]

and the models proposed for describing it vary, sometimes significantly, from each

other. For the purpose of this study the important point is that this term (and thus

γpij) can be decomposed into three separate parts: the “rapid” part, the “slow” part,

and the “harmonic” part [17,85,89]. The rapid part, as seen in most models [17,85],

is based on the large-scale fields (i.e. mean velocity, Reynolds stress, production,

etc.), while the slow part is mostly described based on the small-scale dominated

fields like dissipation; and, the harmonic part is only active near the walls. If we

simply assume that the larger scales of the solution are mostly affected by the

errors already present in the solution, while the smaller scales of the solution are

mostly affected by the source of error (i.e. insufficient grid resolution and inaccurate

LES models) then we can hypothesize that the change in the “rapid” part of the

pressure-strain term should not a part of our error estimate, while the “slow” part

should be included. Therefore, as a first approximation we can exclude the effect
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of the “rapid” part γp,rapid
ij from the error source and keep the slow part. The error

in the “harmonic” part probably should not included in our estimate of the error;

however, this term is usually small and can be neglected anyway (the “harmonic”

term is different from the effect of wall reflection, which is included in the “rapid”

and “slow” parts). We should emphasize that this was a very simplified reasoning;

while, the actual behavior of the pressure-strain term is much more complicated, as

can be seen in more sophisticated models of the pressure-strain term (cf. [17] and

references therein).

Error in the dissipation rate: The dissipation tensor is a non-local, trans-

ported quantity, and so is its error γdij. In a large eddy simulation the errors in the

dissipation rate happen when the LES model is incapable of accurately accounting

for the effect of the smaller scales in dissipating the resolved energy, or when the

grid resolution is too coarse to accurately describe the resolved fields (that enter the

LES model). Both the insufficient grid resolution and an inaccurate LES model are

considered as an error source. The erroneous field (with higher or lower turbulent

intensity) is then convected and transported to other parts of the domain, where it

will cause more error in the dissipation term due to the wrong turbulent field (not

part of the error source), as well as a possibly new source of error due to the insuf-

ficient resolution or the deficient LES model at that new location (part of the error

source). Since the dissipation is a small-scale quantity of the solution, we roughly

assume that the contribution from the transported erroneous fields is secondary to

the local error due to coarse resolution of the grid or inaccurate LES models. Thus,

we include the entire term γdij in what we will define as the error source.
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8.1.4 How to isolate the source of error from the rest of the unclosed

term γij

In an LES one has access to the instantaneous fields, and therefore, some

of the terms that are to be excluded (e.g., the transport term) can be directly

computing and subtracted from the total γij. However, terms like the rapid part

of the pressure-strain tensor are not directly available from the LES solution, and

one has to somehow estimate them. Additionally, the final goal of the proposed

methodology of this Chapter is to supplement it with the adjoint fields, to link

the errors in the QoIs to the estimated error sources, and to define an output-

based grid-adaptation framework for LES. This justifies an alternative approach

for approximating the parts of γij that we want to exclude (rather than direct

computation).

Looking at the governing equation for the error in the Reynolds stress (Eqn. 8.18)

we realize that any term that contains the error in the mean velocity or the Reynolds

stress is automatically excluded from what we considered as the source of error (since

it reduces to zero when the error in the solution goes to zero). This means that the

effect of the turbulent transport for example can be eliminated by replacing it with

a model that describes it using only the Reynolds stress and the mean velocity and

pressure fields. This is where the RANS modeling comes into play, i.e. when replac-

ing an unclosed term by its RANS model to exclude it from the local error estimate.

We note that this description cannot be exact, due to the errors in the RANS models

as well as the inherent deficiency involved in describing an unclosed term based on a
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few fields in the closed form. Therefore, when we use a RANS model to exclude the

effect of a term from the error source we in fact only exclude the effect of the part

that the RANS model captures, while a residual part (due to the inaccuracies in the

RANS model) still remains in our definition of the error source. In other words,

γij = γmod
ij + γres

ij + Fγij = γmod
ij + Eγij

where Fγij is the actual error source in γij, γ
mod
ij = ψ

mod

ij −φ
mod

ij is the part of γij that

we have modeled, and γres
ij = ψ

res

ij −φ
res

ij is the part of γij that in fact is not a part of

the error source but we could not include in γmod
ij due to the imperfect description

of the unclosed terms by the RANS model. Finally, the term Eγij

Eγij = γij − γmod
ij

= γres
ij + Fγij ≈ F

γ

ij,

is our best estimate of Fγij.

The other unclosed term Γij in the evolution equation of the Reynolds stress

error is due to a filtering residual (see Eqn. 8.14) and is typically insignificant com-

pared to γij. Therefore, no further effort has been made to distinguish between its

different terms and their contribution to the source of error.

Finally, we define the estimated total source of error, denoted by E ij, as

E ij = Γij + Eγij = Γij + γij − γmod
ij . (8.21)

There is some additional benefit to keeping the term Γij in our definition of

the error source that is discussed in the next Section.
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8.1.5 Estimating E ij without the exact solution

The direct computation of γij = ψij−φij and Γij = Ψij−Φij involves both the

numerical fields (ψij and Ψij) and the exact fields φij and Φij. While the numerical

fields are available from the LES solution the exact fields are (of course) not. The

problem is then to find a way to estimate E ij without having access to the exact

fields.

In our derivation of the governing equation for T
tot

ij we have intentionally

formulated the exact unclosed term φij in a way that its definition only includes

filtering of the exact mean fields, e.g.,
〈
v′iv
′
jv
′
k

〉
instead of

〈
v′iv
′
jv
′
k

〉
. In other words,

the filter only acts on the mean fields that are presumably smooth, and as a result,

changing the filter-width slightly should not change this term significantly,

φij ≈ φ̃ij ,

where ·̃ denotes a different filtering process with a characteristic filter-width ∆̃. The

same argument can be made for Φij, i.e. Φij ≈ Φ̃ij. Therefore,

Γij − Γ̃ij = Ψij − Ψ̃ij −
[
Φij − Φ̃ij

]
≈ Ψij − Ψ̃ij

γij − γ̃ij = ψij − ψ̃ij −
[
φij − φ̃ij

]
≈ ψij − ψ̃ij .

Similarly, we assumed that we use a RANS model in describing γmod
ij = ψ

mod

ij −φ
mod

ij ,

where the term φ
mod

ij contains only the filtered exact mean fields V k, 〈q〉, T
tot

ij . Thus,

with a similar arguement

γmod
ij − γ̃mod

ij = ψ
mod

ij − ψ̃mod
ij −

[
φ

mod

ij − φ̃mod
ij

]
≈ ψ

mod

ij − ψ̃mod
ij .
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This means that even though a direct computation of E ij is not possible, we

can directly compute how Eij changes from one grid to the other

E ij − Ẽij =
[
Γij + γij − γmod

ij

]
−
[
Γ̃ij + γ̃ij − γ̃mod

ij

]
≈
[
Ψij + ψij − ψ

mod

ij

]
−
[
Ψ̃ij + ψ̃ij − ψ̃mod

ij

]
.

(8.22)

Note that we can simply compute the left-hand side of Eqn. 8.17 to compute

Ψij + ψij, i.e.

Ψij +ψij −ψ
mod

ij =
∂R

tot

ij

∂t
+

∂

∂xk
(ukR

tot

ij )− ν
∂2R

tot

ij

∂xk∂xk
+

[
R

tot

ik

∂uj
∂xk

+R
tot

jk

∂ui
∂xk

]
−ψmod

ij

(8.23)

where ψ
mod

ij is from a RANS model and expressed in terms of Uk and R
tot

ij . Com-

puting Ψ̃ij + ψ̃ij − ψ̃mod
ij is done in the exact same way, by using the numerical fields

Ũk and R̃tot
ij from the actual LES solution on a different grid with characteristic

filter-width ∆̃. This second grid can in general be any other grid solving the same

flow; for instance, a previous grid in a sequence of adapted grids, or more favorably

the test grid used in the proposed robust convergence-verification of Chapter 7.

We should emphasize that the formulation of Eqn. 8.23 uses exact differen-

tiation operators. The major advantage of this formulation is that it makes the

method almost agnostic to the order of accuracy of the code, whether the filtering

was implicit or explicit, etc. In other words, the implementation is theoretically

the same for all codes. Despite the relative advantage of Eqn. 8.23 in computing

Ψij +ψij−ψ
mod

ij , the computed values may contain significant time averaging errors

and those averaging errors may adversely affect the estimated errors, especially in

flows with significant unsteady motions. This can be overcome by directly including
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the average of the term ∂R
tot

ij /∂t (by storing this field exported from the code), or

by directly computing ψij.

At this point, the only part that remains for our error-estimation is to find a

way to approximate E ij from the knowledge we have on how it changes from one grid

to the other. This can be achieved by a model that relates E ij to the grid-resolution

h and filter-width ∆. The simplest model that describes this dependence would take

the form

E ij(x) = cij(x)∆
α

vol(x) , (8.24)

where ∆vol(x) is the cube-root of the cell volume. Similar to the models used in

Chapters 3 and 5 the scaling exponent is flow and code dependent and may take any

value up to the nominal order of accuracy of the code (e.g. α ≤ 2 in a second-order

accurate code).

In this simple model of Eqn. 8.24 the dependence of the error on the filter-

width is explicitly included by the term ∆
α

vol, where cij is meant to be only a function

of the solution and not ∆vol. However, this assumption is not strictly satisfied in

reality, since the solution itself implicitly depends on the filter and changes from

one grid to the other. Nevertheless, if the characteristic size of the filter does not

change by much, the coefficient c̃ij (on a grid with characteristic filter-width ∆̃vol)

could be approximated using the Taylor expansion of c̃ij about cij such that

Ẽij = c̃ij∆̃
α
vol = cij∆̃

α
vol +O(∆̃α+1

vol ) . (8.25)

In that case, we can use the computed E ij − Ẽij to approximate cij as

cij(x) ≈ E ij(x)− Ẽij(x)

∆
α

vol(x)− ∆̃α
vol(x)
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and thus the error on an arbitrary grid with a characteristic filter-width ∆̌vol can be

approximated as

Ěij(x) ≈ cij(x)∆̌α
vol(x) ≈

[
E ij(x)− Ẽij(x)

∆
α

vol(x)− ∆̃α
vol(x)

]
∆̌α

vol(x) . (8.26)

The estimated value of Ěij(x) is our best estimate of the source of errors on grid

∆̌vol(x) and can be used to drive the grid selection/adaptation process. Note that

this error estimate is only a function of space x; as a result, it must be complemented

by a measure of directional resolution to enable fully anisotropic adaptation. This

can be done by either of the anisotropic error-indicators of Chapters 3 or 5, and is

explained in Section 8.2 below.

8.2 Finding the optimal filter-width

The optimal filter width ∆̌opt(x,n) can be found by solving the constrained

optimization problem that minimizes the quantity

ěref
QoI =

∫
Ω

ěref
local(x) dx

on a grid ∆̌ with a desired number of cells Ntot,

Ntot =

∫
Ω

dx

V̌c
.

Note that this is exactly equivalent to finding the least expensive grid (grid with

lowest Ntot) that satisfies a set threshold on the acceptable value of ěref
QoI.

If we follow the same approach taken in Sections 4.1 and 4.4 and assume that

ěref
local(x) ∝

√
Ěij(x)Ěij(x) =

√
cij(x)cij(x)∆̌α

vol(x) (8.27)
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the optimization problem takes a closed form solution

C(x)∆̌α+3
vol,opt(x) = Λ = const. , (8.28)

where

C(x) ≡
√
cij(x)cij(x) . (8.29)

In other words, the optimal ∆̌vol(x) results in an equidistribution of the cell-integrated

error defined in Eqn. 8.27.

Equation 8.28 determines the optimal distribution of ∆̌vol (the cube root of the

cell volume), but it does not provide any information about the optimal anisotropy

of the filter. In fact the whole error-estimation technique of this Chapter is in gen-

eral incapable of distinguishing between insufficient resolution in different directions

(unless the grid ∆̃ is generated by refinement/coarsening of ∆ in a single direction

n). As a simple solution, we can take advantage of either of our anisotropic error-

indicators A(x,n) (Chapter 3) or G(x,n) (Chapter 5) to determine the optimal

aspect ratio. For example, using A(x,n) we can define ∆̌(x,n) as

∆̌opt(x,ni) =

(
avol(x)

a(x,ni)

)1/α′

∆̌vol,opt(x) , (8.30)

where α′ is the scaling exponent of A(x,n) and

a(x,ni) =
A(x,ni)

∆
α′

(x,ni)

avol(x) = (a(x,n1)a(x,n2)a(x,n3))1/3 .

(8.31)

Equations 8.28 and 8.30 define the optimal filter ∆̌opt as a function of both x

and n.
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We have to admit that G is a more advanced error-indicator compared to A,

and we should have used that instead to determine the aspect ratio of the cells;

however, at the time we were developing E ij, we had not yet fully tested G, and

therefore, all of our preliminary tests were performed using A. That is actually why

the formulations of this Section are based on this older error-indicator.

An interesting result of using two grids in error-estimation is that we can now

directly compute the scaling exponent α′(x,n) of A(x,n). For the example of a

uniformly refined/coarsened grid with a factor β, i.e., ∆̃(x,n) = β∆(x,n), we have

α′(x,n) = logβ
Ã(x,n)

A(x,n)
,

where A and Ã are the values of the error-indicator computed on grids ∆ and

∆̃ = 1.25∆, respectively. However, despite the theoretical advantage of using

the computed value of α′, to increase the robustness of the method we have used

α′(x,n) ≡ 2 throughout this Chapter.

8.3 Algorithm and implementation

In this Chapter we directly follow the proposed algorithm and guidelines of

Chapter 7 for convergence-verification and grid selection/adaptation in LES. This

is shown in Fig. 8.1.

At each iteration of the algorithm a new test grid (labeled G′k) is generated

for convergence-verification of grid Gk, which is constructed by uniform coarsening

of Gk by 25%, i.e. ∆
′
(x,n) = 1.25∆(x,n). This was a compromise between the

computational cost (which appeals larger coarsening factors) and the meaningfulness
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Output error-es+ma+on and 
convergence-verifica+on

Start with the grid G"Grid G#

Solve on grid G#

Convergence-
verification

%̅&' ≤ %&',*++,-./

Generate a second grid G#0 by 
homogeneous and isotropic 
coarsening/refinement of 1#
with factor 2 = 4Δ0/4Δ = 1.25

Solve on grid G#0

Grid-adaptation
Use ℰ̅<=(?) as a measure of 
local source of errors
Compute A(?, B) based on 
the solution on 1#, and use 
it to determine the optimal 
anisotropy of the filter

No YesError-estimation
Use the LES solution on grids 
1# and G#0 to compute ℰ̅<=(?)

Declare 
convergence

Terminate

Figure 8.1: The convergence-verification and grid selection/adaptation algorithm
followed in this Chapter. See text for more details about each process.

of the test (requiring sufficiently small factors).

Due to the approximations involved in the use of the Richardson extrapolation,

i.e.,

eDNS
Qm
≈ δQ

Gk,G
′
k

m

1− βα′′ (8.32)

where the exponent α′′ is not exactly known, the verification tests of this Chapter

are reported by δQ
Gk,G

′
k

m . The reader can assume some value for α′′ and approximate

eDNS
Qm

accordingly.

The error-estimation is done using G′k as the second solution, i.e., ∆̃(x,n) =

∆
′
(x,n) = 1.25∆(x,n). Note that the coarsening factor is presumably small enough

to satisfy the assumption of nearly constant cij between the two grids. Also, we have

simply used a constant exponent α(x,n) ≡ 2 in the model, Ěij = cij∆̌
α, without
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any attempt at finding the optimal value.

The formulation of Eqn. 8.23 uses exact differentiation, which implies that

we need to interpolate the mean fields onto a sufficiently fine grid with negligible

numerical errors. However, interpolation onto extremely fine grids introduces inter-

polation errors that can become dominant and negatively affect our estimation of

the source of errors. To have a bound on the interpolation error and overcome this

issue, we interpolate the fields onto a grid that is generated by refining the original

grid Gk by a fixed factor. We tried factors of 2 and 4, i.e., h
f

= h/2 and h
f

= h/4

and found almost no difference between the results for the test cases presented in

this paper (and using linear interpolation). Therefore, from now on we use h
f

= h/2

when computing Eqn. 8.23 for grid Gk (and similarly h̃f = h
′f

= h
′
/2 for G′k grids).

Another important factor in error-estimation is the definition of γmod
ij , i.e. the

part of γij that we model: preferably, the entire turbulent transport should be

excluded from our definition of the error source, as well as the rapid part of the

pressure-strain tensor (as a first approximation). However, for the test cases of

this paper (the turbulent channel flow and the flow over a backward-facing step)

we saw inconsistent results on improvement of the error-estimation when the rapid

pressure-strain term was excluded from our definition of Ěij. More specifically, we

tried both the LRR [17, 87] and the SSG [17, 85, 88] models of the pressure-strain

tensor, and while for the turbulent channel flow we saw slightly improved results,

for the flow over a backward-facing step both models led to less accurate error-

estimation and thus less optimal adapted grids. Both the LRR and SSG models

were also strongly affected by the time averaging errors. Hence, we decided to
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include the entire pressure-strain tensor in our definition of Ěij until a more careful

study can be made on the effect of the pressure-strain term and the adequacy of the

current RANS models. Therefore, we have only modeled the effect of the turbulent

transport using the gradient-diffusion model of Daly & Harlow [90]

ψ
mod

ij = −Cs
∂

∂xk

[
R

tot

mm

εtot
nn

R
tot

kl

∂R
tot

ij

∂xl

]

where εtot
ij is the total dissipation tensor, including both the molecular and LES

dissipations). We have used Cs = 0.22 which is the value recommended by Laun-

der [17, 91].

8.4 Assessment on LES of the channel flow at Reτ ≈ 545 using the

dynamic Smagorinsky model

The proposed error-estimation and convergence-verification methods are first

assessed on the canonical problem of turbulent channel flow.

The code used for this problem is the Hybrid code (used is Sections 3.2, 4.5,

and 5.2), which solves the compressible implicitly filtered Navier-Stokes equations

using explicit LES modeling and a calorically perfect gas formulation on structured

Cartesian grids using sixth-order accurate central differencing schemes with a split

form of the convective term, and the classical Runge-Kutta method for time inte-

gration.

The bulk Reynolds number Reb = ρbUbH/µw (based on the channel half-

width H) is 10,000, which leads to a friction Reynolds number of about Reτ ≈ 545.

The bulk Mach number is 0.2. These numbers are identical to the setup used in
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Sections 4.5 and 5.2. The rest of the parameters used in the computational setup

are also identical to those Sections and are not repeated here.

Because of the structured nature of the girds the grid-spacing in the wall-

parallel directions is taken as the smallest predicted value across the channel. How-

ever, the wall-normal resolution is directly matched to the target values by giving

the code a list of y coordinates.

Quantities of interest are taken to be the streamwise mean velocity and the

four non-zero Reynolds stresses (same as Sections 3.2, 4.5, and 5.2). The actual

error in the QoIs eDNS
QoI is again computed by comparison to the DNS solution of del

Alamo & Jimenez [18], while instead of eprev
QoI (change in the QoIs from the previous

grid Gk−1) we use our new convergence-verification test and report δQ
Gk,G

′
k , defined

as

δQ
Gk,G

′
k =

1

5

5∑
m=1

δQ
Gk,G

′
k

m , (8.33)

quantifying the change in the QoIs from the uniformly coarsened grid G′k. Assuming

that the underlying assumptions of the Richardson extrapolation hold the actual

error eDNS
QoI can be computed from δQ

Gk,G
′
k using eDNS

QoI ≈ δQ
Gk,G

′
k/(1 − βα

′′
) (as a

result of Eqn. 8.32); however, due to the unknown value of α′′ (scaling of the QoIs

errors with ∆̌) only δQ
Gk,G

′
k itself is reported in the results.

This first grid (labeled G1) has a uniform resolution of (∆x,∆y,∆z)/H =

(0.20, 0.10, 0.20), corresponding to (∆
+

x ,∆
+

yw/2,∆
+

z ) ≈ (110, 28, 110) if one uses the

fully converged friction units. Note that ∆
+

yw is the wall-normal filter width at the

wall. This is the same initial grid used previously for channel flow assessments in
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Sections 4.5 and 5.2. The finer ∆y is required for the error-indicator of this Chapter,

since it is defined based on the assumption of turbulent flows (where we assumed

that the source of error in the mean momentum equation comes from the error in

the total Reynolds stress and not the numerical errors).

The solution on this grid is shown in Fig. 8.2 with some details given in

Table 8.1. Another grid (G′1) is then generated by coarsening the grid G1 by 25%.

Convergence of the grid is tested by directly comparing the solution on the two

grids, i.e., δQ
Gk,G

′
k (see Table 8.1). Since the solution is not converged (δQ

Gk,G
′
k ≈

5%), grids G1 and G′1 are used to estimate the source of error using the proposed

error-indicator E ij. The constant Λ in Eqn. 8.28 is chosen such that it leads to an

increase in the cell count by approximately a factor of 5. Directional small-scale

energy A(x,n) is computed based on the solution on grid G1, which is then used

to determine the anisotropy of the optimal filter based on Eqn. 8.30. This leads to

the next grid, labeled G2, with ∆x = 0.13H, ∆y = 0.011H → 0.12H (∆
+

yw/2 ≈ 5.8

at the wall, based on the converged solution) and ∆z = 0.091H. Note that we have

used the minimum values of the target ∆x and ∆z in order to ensure a structured

grid.

The process continues in the same manner, generating the 7 grids listed in

Table 8.1. At each iteration Ntot is matched, as closely as possible, with the grids

in Table 5.5 generated by error-indicators A(x,n) and G(x,n).

The solution clearly converges as the grid is refined. The fact that it takes

a few iterations is partly due to the change in the resolved turbulence as the grid

is refined (particularly from the exceedingly coarse initial grid used here), partly
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Figure 8.2: Sequence of grids generated by E ij(x) for LES of the channel flow at
Reτ ≈ 545. The rows show the progression of grids from G1 (top row) to G6 (bottom
row). Key quantities are listed in Table 8.1. The left column shows the shape of a
wall-adjacent cell, while the right column shows the streamwise, wall-normal, and
spanwise error-indicators by the brightest to the darkest colors. In the right column
the dotted blue line shows the actual value of E ij(x) (computed by comparing to
DNS solution), while the black solid lines show the estimated value based on the
change in the quantity (used for grid selection). The dotted blue lines in the middle
columns show the reference DNS solution of del Alamo and Jimenez [18].
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Grid Ntot Ny (∆
+
x ,∆

+
yw/2,∆z

+) (∆x,∆yc ,∆z)/H Reτ δQ
Gk,G

′
k (%) eDNS

QoI (%)

G1 15k 20 (80, 20, 80) (0.2, 0.1, 0.2) 398 5.4 32
G2 73k 28 (70, 6.0, 51) (0.13, 0.12, 0.091) 562 3.6 11.3
G3 242k 32 (46, 2.8, 26) (0.083, 0.15, 0.048) 549 3.3 5.6
G4 523k 36 (40, 1.7, 16) (0.073, 0.13, 0.028) 550 2.9 3.1
G5 1.18M 46 (34, 1.3, 10) (0.063, 0.11, 0.019) 546 1.3 1.5
G6 2.59M 60 (28, 1.2, 7.4) (0.051, 0.078, 0.014) 544 0.9 1.3
G7 5.86M 76 (21, 1.0, 5.6) (0.038, 0.056, 0.010) 542 0.9 0.7

Table 8.1: Sequence of grids generated for LES of channel flow at Reτ ≈ 545 using
the dynamic Smagorinsky model. Ntot is the total number of grid points, while
Ny denotes the number of points across the channel. ∆n = ∆(x,n) is both the

filter-width and the grid-resolution. Friction resolutions ∆
+

n are computed based on
grid-specific values. ∆yc is the wall-normal filter-width at the center of the channel,
while ∆yw is its value at the wall. The actual error in the QoIs, eDNS

QoI , is defined by

Eqns. 3.9 and 3.10, while δQ
Gk,G

′
k (defined is Eqn. 8.33) shows the change in the

QoIs between grids Gk and G′k.

due to the simple model used for connecting Ě and ∆̌, or more generally due to the

inaccuracies involved in the error-estimation process, and partly due to the fact that

the true scaling exponents α and α′ are different from the assumed values of 2.

Looking at the plots in Fig. 8.2 the solution is sufficiently accurate on grid

G4 and afterwards. The computed value of δQ
Gk,G

′
k also confirms this conclusion

with values that are all arguably small enough for an LES. We also notice that the

convergence-verification based on δQ
Gk,G

′
k generally leads to the same conclusion

as the validation test based on eDNS
QoI . However, for the initial grids δQ

Gk,G
′
k has a

lower value compared to eDNS
QoI (also α′′ is probably lower for these grids), while it

starts to increase in its relative magnitude to eDNS
QoI (where the LES model is getting

deactivated and α′′ is approaching the nominal value of the code); to a point that

in the final grid we have δQ
Gk,G

′
k > eDNS

QoI .

The G4 and G5 grids have filter widths (∆
+

x ,∆
+

yw/2,∆
+

z ) of (40, 1.7, 16) and
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(34, 1.3, 10) at the wall. These resolutions are commensurate with the literature and

experience on high quality wall-resolved LES. The wall normal filter-width at the

center of the channel, ∆yc , is 0.13H and 0.11H for grids G4 and G5, respectively,

which are arguably too coarse judging by the LES standards. However, these coarse

resolutions did not seem to negatively impact the accuracy of our quantities of

interest (note that this may not be necessarily true for other QoIs, especially those

that are more sensitive to the resolution level).

Grids G6 and G7 are generated to make sure that the grid-adaptation method

keeps improving the solution and does not drive the grid away from optimality.

8.5 Assessment on the flow over a backward-facing step at ReH =

5100

The convergence-verification and grid selection/adaptation algorithm of Fig. 8.1

is next tested on the flow over a backward-facing step. The geometry and flow con-

ditions are identical to what we used is Sections 3.3, 4.6, and 5.3, and are not

explained here.

The OpenFOAM code version 2.3.1 (which is a second-order finite-volume

solver; cf. [60]) is used for this test case in order to allow for fully unstructured

adapted grids. The PISO algorithm is used for the pressure-velocity coupling, with

the dynamic ksgs-equation eddy viscosity model [61, 62] as the SGS model and the

cube root of the cell volume as the filter-width.

At each iteration of the algorithm the LES equations are solved on two grids
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(i.e. the primary grid Gk and the test grid G′k generated by uniform coarsening of Gk

by 25% used for our convergence-verification test) and the change in the quantities

of interest is computed. The quantities of interest are chosen to be the two non-zero

mean velocity and the four non-zero Reynolds stress profiles, as well as the friction

and pressure coefficient profiles on the horizontal wall. The error in each of the

QoIs is computed using Eqn. 3.11. The computed δQm are then scaled by their

representative values to make them comparable and then weighting together as 1/3

each of the mean velocities, the Reynolds stress, and the wall quantities, to define

eDNS
QoI based on Eqn. 3.12, and δQ

Gk,G
′
k as

δQ
Gk,G

′
k =

1

3

2∑
m=1

δQ
Gk,G

′
k

m

2
+

1

3

6∑
m=3

δQ
Gk,G

′
k

m

4
+

1

3

8∑
m=7

δQ
Gk,G

′
k

m

2
. (8.34)

The convergence-verification results of this Section are reported by both of

eDNS
QoI and δQ

Gk,G
′
k . Note that in a practical grid selection/adaptation case one only

has access to δQ
Gk,G

′
k , while eDNS

QoI is reported to make sure that our conclusions from

δQ
Gk,G

′
k is consistent with the actual error in the QoIs, and to enable a direct com-

parison between the results of this Section and the sequences of grids generated by

either of A(x,n) and G(x,n) for the flow over a backward-facing step in Sections 4.6

and 5.3.

In the same spirit as for the channel tests, the initial grid is chosen to have very

coarse cells of size ∆x=∆y=∆z=0.2H everywhere, except for a distance H from the

walls where the grid is refined in the wall-normal direction by a factor of two. This

initial grid is labeled G1 in this Section, which is identical to the initial grid used

in Table 5.4 (labeled G-1), and in Table 3.4 (labeled LES-1). A test grid G′1 is also
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generated for convergence-verification, which has the exact same structure as grid

G1, but is coarser everywhere and in all directions by 25%, ∆
′
(x,n) = 1.25∆(x,n).

Note that the grid G′1 has half the number of computational cells of the grid G1,

and the cost of solving on this grid is about 41% the cost of LES on the primary

grid G1.

After computing the convergence-verification criteria (δQ
Gk,G

′
k and eDNS

QoI ), and

since the change in the QoIs is above the acceptable threshold, the algorithm of

Fig. 8.1 tells us that we need to estimate Ěij (Eqn. 8.26), computed A(x,n) on grid

G1 (Eqns. 3.2 and 3.3), and adapt the grid based on Eqns. 8.28 and 8.30. The two

grid-scaling exponents required for error-estimation and grid-adaptation, α and α′,

are again assumed constant throughout the domain and independent of direction,

α(x,n) = α′(x,n) = 2, without any attempt at finding the optimal values. First, the

optimal ∆̌vol,opt is found by solving Eqn. 8.28 with Λ selected such that the next grid

G2 has twice as many cells as G1, and then the optimal anisotropic filter ∆̌opt(x,n)

is found from Eqn. 8.30. All target resolutions are then converted to the refinement

regions. Since OpenFOAM’s refineMesh utility can only refine hexahedral cells by

factors of 2Ř in any direction (where Ř(x,n) in the refinement level defined in

Eqn. 6.1), a cell is cut in half until the grid-spacing is less than or equal to the

target grid-spacing in that location and direction. These target refinement regions

are illustrated in Fig. 8.3 for grid G-2.

The process suggests a single level of refinement (i.e., by a factor of 2) of ∆y

almost everywhere within the boundary layer downstream of the step, a large portion

of the incoming boundary layer, the shear layer, and the recirculation bubble, with
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Figure 8.3: The grid G2 from Table 8.2 illustrated by its refinement levels in x
(top), y (middle), and z (bottom). Refinement levels are computed based on a
skeletal grid with ∆0(x,n) = 0.2H for all x and n. The light green, dark green and
blue colors illustrate regions with one (∆n/H = 0.1), two (∆n/H = 0.05), and three
(∆n/H = 0.025) refinement levels, respectively. The white regions show areas of
the domain that are left untouched (i.e. ∆n/H = 0.2). The dashed line highlights
the δ95 boundary layer thickness. The refinement regions are then converted to an
input file to OpenFOAM’s refineMesh utility. Same refinement regions are used
for generating the test grid G′2. The irregularities in the target refinement regions
encountered towards the end of the computational domain x/H ≥ 15 are result of
slow convergence of the error-indicator Ěij in time.

an additional level of refinement (i.e., a factor of 4) near the horizontal wall in the

entire domain and the shear layer, as well as a third level of refinement (a factor of 8)

in the incoming boundary layer upstream of the step, the recovering boundary layer

downstream of the step, and at the initial part of the shear layer. The spanwise

resolution ∆z is refined by a single level throughout most of the upstream and

downstream boundary layers and the shear layer, but not in the recirculation region

where the turbulent activity is small. The streamwise grid-spacing ∆x is refined

at the approaching boundary layer close to the step, the vertical step wall where

the recirculation bubble causes shear, the entire free shear layer formed after the

step, and the region close to the impingement/reattachment point. These refinement
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regions are quite consistent with what the other error-indicators A(x,n) and G(x,n)

produced, and also with the experience and “common practice” in LES of such flows.

The adapted grid G2 is then generated by using the target refinement regions

to produce an input file to the refineMesh. The test grid G′2 is generated by using

the same refinement regions (i.e. same refineMesh input file) but applied on the

uniformly coarser test grid G′1 (with minimal change made in the input file to ensure

proper performance of the refineMesh utility). The LES is solved on these two grids

and the algorithm repeats until the solution converges.

At each iteration of the algorithm the constant Λ in Eqn. 8.28 is chosen such

that the next target grid has an approximately equal number of cells, Ntot, to its

equivalent grids generated by error-indicators A(x,n) and G(x,n) (Table 5.6). This

approximation was done before the actual construction of the adapted grid using the

refineMesh utility, by estimating the number of cells from the target grid-spacings,

and therefore, the actual adapted grids may have slightly different number of cells.

The sequence of grids generated by this method is reported in Table 8.2 with

some key resolutions reported for reference. The convergence of the QoI profiles

is plotted in Fig. 8.4 for friction and pressure coefficients, and in Figs. 8.5, 8.6,

and 8.7 for the mean velocity and Reynolds stresses at some of the more interesting

locations.

The computed values for the the solution error is reported in Table 8.2 for both

our convergence-verification criterion, δQ
Gk,G

′
k , and the validation test by compari-

son to the DNS solution, eDNS
QoI . For all grids Gk in the sequence the computed values

of δQ
Gk,G

′
k and eDNS

QoI result in the same conclusion about the convergence of the grid;
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Grid Ntot (∆
+
x ,∆

+
yw/2,∆

+
z ) (∆x,∆y,∆z)/δshear δQ

Gk,G
′
k (%) eDNS

QoI (%)

G1 149k (42, 10, 42) (0.21, 0.17, 0.33) 9.4 11
G2 292k (20, 2.6, 20) (0.078, 0.049, 0.16) 7.9 12
G3 596k (22, 1.4, 11) (0.16, 0.078, 0.078) 6.8 7.3
G4 1.31M (23, 0.71, 5.7) (0.073, 0.036, 0.073) 6.3 7.4
G5 2.13M (23, 0.73, 5.8) (0.068, 0.017, 0.034) 6.4 4.5
G6 3.78M (25, 0.39, 6.2) (0.068, 0.017, 0.034) 3.8 4.5
G7 6.69M (13, 0.42, 3.3) (0.034, 0.017, 0.034) 3.6 4.5

DNS 54M (6.0, 0.38.3.0) (0.017, 0.0086, 0.017) − 0

Table 8.2: Sequence of grids generated for LES of flow over a backward-facing

step. (∆
+

x ,∆
+

yw/2,∆
+

z ) correspond to the boundary layer resolutions at x/H = −3
upstream of the step, δshear is the approximate shear layer thickness at (x, y)/H =
(1, 0), and (∆x,∆y,∆z) is the resolution at that location. See Fig. 8.8 for more

details. eDNS
QoI and δQ

Gk,G
′
k are defined in Eqns. 3.12 and 8.34.

Figure 8.4: Convergence of (a) friction coefficient cf and (b) pressure coefficient cp
for LES of flow over a backward-facing step. Grids in Table 8.2 are shown by the
lightest color for G1 to the darkest for G7. Solid lines denote the sample means, while
the shaded regions correspond to the approximate confidence intervals (computed
locally). The dotted blue lines and their shaded regions denote our DNS results and
their confidence intervals. Symbols correspond to the experimental data of Jovic &
Driver [57,58] with slightly different setup (error bars on the experimental data are
not shown). Experimental measurements of cf and cp are not available upstream of
the step.

in other words, δQ
Gk,G

′
k takes larger values when eDNS

QoI is large and becomes smaller

as eDNS
QoI decreases. This is a critical property for a convergence-verification test, as
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Figure 8.5: Convergence of the mean velocity and Reynolds stress profiles for the
sequence of grids in Table 8.2 at the incoming boundary layer at x/H = −3. Grids in
the sequence are shown by the lightest color for G1 to the darkest for G7. Solid lines
denote the sample means, while the shaded regions correspond to the approximate
confidence intervals (computed locally). The dotted blue lines and their shaded
regions denote our DNS results and their confidence intervals. Symbols correspond
to the experimental data of Jovic & Driver [57, 58] (error bars on the experimental
data are not shown).

Figure 8.6: Convergence of the mean velocity and Reynolds stress proflles for grids
in Table 8.2 at x/H = 6 near the reattachment point. See Fig. 8.5 for more details.

in reality there is no DNS solution to judge the accuracy of the solution and the

convergence-verification test is the only tool we have.

The generated grid G6 is shown in Fig. 8.8 for comparison with the grids

generated by A(x,n) (Fig. 5.14) and G(x,n) (Fig. 5.11). Note how complicated
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Figure 8.7: Convergence of the mean velocity and Reynolds stress profiles for the
recovering boundary layer at x/H = 15 for the sequence of grids in Table 8.2. See
Fig. 8.5 for more details.

Figure 8.8: The generated grid G6 of Table 8.2 with 3.78M cells. Intersections
of the blue planes denote locations whose resolutions are reported in Table 8.2,
while the green planes correspond to x/H = −3 and x/H = 6 whose velocity and
Reynolds stress profiles are plotted in Figs. 8.5 and 8.6. The grid is resulted from
computation of the proposed error-indicator and applying the grid selection criteria
of Eqns. 8.28 and 8.30 with no user experience involved.

the structure of the grid has become, with highly anisotropic cells and so many

transitions in cell anisotropy as well as resolution throughout the domain.
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Looking more closely at how the computed eDNS
QoI changes in Table 8.2 from one

grid to the next we notice a slower convergence compared to the turbulent channel

flow. Specifically, the reported values of eDNS
QoI suggest that the convergence is nearly

stalled (at 4.5%) for grids G5 and afterwards. The exact reason for this is not known,

but a closer study of the convergence of each of the QoIs in Fig. 8.9 identifies the

friction coefficient as the main limiting quantity that prevents further convergence

of eDNS
QoI . This could also be seen from the sudden jump in cf upstream of the step

(Fig. 8.4) which, in turn, shows up as an underprediction of the normalized mean

velocity and Reynolds stresses in the friction units at x/H = −3 (Fig. 8.5). A further

examination of ∆(x,n) in that region (see the third column of Table 8.2 for filter

resolution at x/H = −3) shows that the spanwise friction resolution ∆
+

z (grid G7 for

instance) is much finer than what is known as “optimal” based on the streamwise

and wall-normal resolutions of the grid at that location. In fact, the situation is

even worse, since the streamwise resolution of ∆x+ ≈ 13 is only achieved very close

to the wall (say y+ < 15), meaning that the effective boundary layer resolution is

probably closer to (26, 0.42, 3.3). It is somewhat well-known that LES grids that are

too fine in the spanwise direction (especially when the dynamic procedure is used)

tend to overpredict the resolved shear stress, which can lead to an underpredicted

mean velocity profile (in friction units). This helps us hypothesize a few potential

factors to be contributing to this misbehavior of the adapted grids:

(i) The error-indicator E ij(x), under the current assumptions and implementa-

tion, could become somewhat insufficient in describing the local sources of

errors. Note that a similar behavior was seen before in the case of channel
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Figure 8.9: The error in each of the quantities of interest in the backward-facing
step for (a) the two non-zero mean velocity fields in the x and y directions (lighter
and darker colors, respectively) and their total contribution to eDNS

QoI (dotted blue),

(b) the four non-zero Reynolds stresses R
tot

11 , R
tot

22 , R
tot

33 , R
tot

12 (from the lightest color
to the darkest) as well as their total contribution to eDNS

QoI (dotted blue), and (c)
the friction (lighter color) and pressure (darker color) coefficients and their total
contribution to eDNS

QoI (dotted blue). The nearly constant value of eDNS
QoI on grids G5,

G6, and G7 in Table 8.2 can be mostly attributed to the increase in the error in the
friction coefficient on these grids.

flow where the wall-normal resolution of the target grids were too coarse to-

wards the center of the channel.

(ii) The model we have used to describe the change in Ěij with ∆̌vol (and thus to

estimate E ij from its change between grids ∆ and ∆̃) is insufficient.

(iii) The assumption of full separation between the tasks of finding ∆̌vol,opt(x) based

on Ěij and finding ∆̌vol(x,n) based on A(x,n) was inadequate.

(iv) The adjoint fields could be more important for the success of E ij in optimal

grid selection/adaptation in LES compared to the other two error indicators.

The error-indicator of this Chapter is still under development and the resolu-

tion of these issues is the subject of future research.
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Chapter 9: Summary, conclusion, and future directions

With the huge increase in computing power over the past few decades, large

eddy simulation has become one of the most promising tools for simulation of turbu-

lence in academic research and industrial applications. However, the accuracy of an

LES, and consequently its success, depends directly on (i) the model used to account

for the effect of the unresolved scales, (ii) the computational grid used for discretiza-

tion of the filtered equations, and (iii) the accuracy of numerics used in solving the

discretized equation. While there has been extensive research on items (i) and (iii),

systematic identification of the computational grid is a relatively unexplored field.

The current practice in grid selection/adaptation in LES is to have the user

generate a computational grid that is deemed suitable based on prior experience

with LES of that specific flow and its resolution requirements. This gives rise to a

variety of issues, from the non-systematic nature of the process (e.g., different users

end up with different grids and hence different results), to the possibility of failing to

resolve some of the important features of the flow, and to the problem of suboptimal

application of LES to new flows where limited prior experience and knowledge is

available. This dissertation was aimed at addressing this issue.

The three error-indicators A(x,n), G(x,n) and E ij(x) were described and
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tested in Chapters 3, 5, and 8, respectively. The optimal grid selection criterion

in space and direction was introduced in Chapter 4, followed by a detailed study

of its impact on the generated grids and the overall error in the solution and its

quantities of interest (QoIs). The statistical convergence of A(x,n) and G(x,n)

with time averaging was studied in Chapter 6, where it was shown that they exhib-

ited a much faster convergence compared to the QoI profiles. Introduction of the

proposed convergence-verification method and the proposed systematic algorithm

for convergence-verification and grid selection were delayed until Chapter 7, in or-

der to also motivate the “two-grid” error-estimation method of Chapter 8. The

cost of an iterative and systematic grid selection/adaptation process was first dis-

cussed in Section 3.5, and later in Section 7.3 for the full convergence-verification

and grid-adaptation algorithm.

All the error-indicators were tested for their ability in automatic grid selection

in the canonical problem of turbulent channel flow and in the more complex case

of flow over a backward-facing step (BFS). It was shown that the heuristic-based

error-indicator A(x,n) was able to produce grids that were remarkably close to

what is known as “best practice” in LES of such flows; however, we identified and

acknowledged a few shortcomings in the definition of the error-indicator and its

target grids (discussed in some detail in Section 3.6). These issue were then solved

by introducing the second error-indicator G(x,n), which could outperform A(x,n)

in terms of its theoretical background and the optimality of its target grids. We

then argued that a possible shortcoming of G(x,n) (which measures the sensitivity

of the governing equations to a change in the filter-width) could be in cases where
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the sensitivity of the grid at a certain length scale ∆ was not a direct measure of its

overall error generation (even though we did not see this in our assessments).

The third error-indicator E ij(x) was introduced as a more comprehensive treat-

ment of error-estimation in LES, where it directly targeted the local source of errors

in the governing equation. The underlying assumption in development of E ij(x) was

that the source of error in the instantaneous governing equations of LES could be

found by studying their ensemble/time averaged version and employing our knowl-

edge of turbulence modeling. While the grids generated by E ij(x) had the same

level of accuracy as those generated by G(x,n) for the channel flow, its BFS grids

(Table 8.2) were in fact worse. This led to a more careful study of the convergence

of each of the QoIs, where we argued that the evidence (presented at the end of

Section 8.5) pointed us more towards the suboptimal implementation of the method

as the primary cause (an interaction of the simplified model used for computing

E ij(x) based on its change between the two grids, the suboptimal prediction of as-

pect ratio of the filter, and the spurious sensitivity of the LES models to extra

refined resolutions in the spanwise direction), and less to a fundamental flaw in our

underlying assumptions. Nevertheless, the final decision on the suitability of this

error-indicator requires a more comprehensive assessment.

9.1 Future directions

The most important subject for future research is arguably the improvement of

the proposed error-indicator E ij(x). Due to the complicated implementation of this
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error-indicator and the many different components involved in it, this must be done

by isolating each process and finding the exact cause of the issue. For instance, the

effect of the model and the approximations associated with it can be easily excluded

by direct computation of E ij(x) from the reference DNS solution. This will be the

focus of our research in the immediate future.

The present work can be also extended in a few different directions.

(a) Throughout this dissertation we only considered static grids for statistically

stationary flows. Application of A(x,n) and G(x,n) to turbomachinary flows

and flows with strong unsteady effects (vortex shedding, flutter, etc.) is quite

natural and can be easily pursued; however, changing the grid resolution may

change the frequency of these unsteady motions, and thus, application of E ij(x)

to such flows appears to be more involved.

(b) We only assessed our error-indicators on relatively simple flows, while in reality

their main benefit would be in their capability in accurate error-estimation

and optimal grid selection of more complex flowfields. A more comprehensive

assessment of their performance (e.g., in transitional flows, turbulent jets, high

Reynolds number flows, etc.) will be instructive and quite beneficial.

(c) Most of the developments of this dissertation were for the implicitly-filtered

LES of single-phase, incompressible, Newtonian fluids with constant density

and viscosity. There is still much potential in extending the proposed error-

indicators to more complex problems, including aeroacoustic and noise pre-

diction, supersonic and hypersonic flows, combustion, two phase flows, etc. In

the same spirit, our error-indicators can be combined with the feature-based
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indicators used to locate and follow a strong physical feature (shock, flame,

etc.) in adaptive mesh refinement (AMR) and enable fully adaptable grids.

(d) All of our error-indicators are deterministic measures of error generation in

LES. A more consistent approach is to define stochastic error-indicators that

can also provide a lower and upper bound (due to the uncertainties in esti-

mating the modeling errors) on the estimated values. This could be the next

huge improvement in error-estimation in LES, and can also remove the need

for a second LES solution to verify convergence.

(e) Despite the promising results from the proposed convergence-verification method

(using the LES solution on two grids and employing the Richardson extrap-

olation) there might be more optimal ways of using the second solution, or

possibly, other methods (with the same level of robustness) without the need

for a second LES solution.

(f) A huge improvement of the optimality of the girds could be achieved by

“output-based” grid-adaptation enabled by the adjoint fields. However, this

will first require a computationally tractable method of estimating the adjoint

fields in chaotic problems. A possible solution could be to solve the adjoint

fields of the mean equations (cf. the method proposed by Larsson [82]). Note

that in the case of output-based adaptation, the proposed algorithm of Fig. 7.4

can be modified and rearranged to take a more efficient form similar to Fig. 9.1.
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Figure 9.1: The envisioned algorithm for output-based filter/grid-adaptation and
convergence-verification in LES. Note that the problem of chaotic divergence of the
adjoint fields needs to be solved before we can use this algorithm. The current algo-
rithm uses the adjoint of the mean equations combined with E ij(x) defined based on
the mean equations. More research on “two-grid” error-estimation, E ij(x), is also
necessary, including models that work on partially unchanged grids (encountered
when the two grids used for estimation of E ij(x) are taken from the same sequence
of adapted grids). Addition of stochastic error-indicators can potentially make the
“casual convergence-verification” process more robust and remove the need of run-
ning a second LES for the “robust convergence-verification” process.
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