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Consider a memoryless multiple source with m components of which a (possi-

bly randomized) subset of k ≤ m components are sampled at each time instant and

jointly compressed with the objective of reconstructing a prespecified subset of the

m components under a given distortion criterion. The combined sampling and lossy

compression mechanisms are to be designed to perform robustly with or without

exact knowledge of the underlying joint probability distribution of the source. In

this dissertation, we introduce a new framework of sampling rate distortion to study

the tradeoffs among sampling mechanism, encoder-decoder structure, compression

rate and the desired level of accuracy in the reconstruction.

We begin with a discrete memoryless multiple source whose joint probability

mass function (pmf) is taken to be known. A notion of sampling rate distortion

function is introduced to study the mentioned tradeoffs, and is characterized first

for fixed-set sampling. Next, for independent random sampling performed without

the knowledge of the source outputs, it is shown that the sampling rate distortion

function is the same whether or not the decoder is informed of the sequence of

sampled sets. For memoryless random sampling, with the sampling depending on



the source outputs, it is shown that deterministic sampling, characterized by a

conditional point-mass, is optimal and suffices to achieve the sampling rate distortion

function.

Building on this, we consider a universal setting where the joint pmf of a dis-

crete memoryless multiple source is known only to belong to a finite family of pmfs.

In Bayesian and nonBayesian settings, single-letter characterizations are provided

for the universal sampling rate distortion function for the fixed-set sampling, inde-

pendent random sampling and memoryless random sampling. We show that these

sampling mechanisms successively improve upon each other: (i) in their ability to

enable an associated encoder approximate the underlying joint pmf and (ii) in their

ability to choose appropriate subsets of the multiple source for compression by the

encoder.

Lastly, we consider a jointly Gaussian multiple memoryless source, to be re-

constructed under a mean-squared error distortion criterion, with joint probability

distribution function known only to belong to an uncountable family of probability

density functions (characterized by a convex compact subset in Euclidean space).

For fixed-set sampling, we characterize the universal sampling rate distortion func-

tion in Bayesian and nonBayesian settings. We also provide optimal reconstruction

algorithms, of reduced complexity, which compress and reconstruct the sampled

source components first under a modified distortion criterion, and then form MMSE

estimates for the unsampled components based on reconstructions of the former.

The questions addressed in this dissertation are motivated by various appli-



cations, e.g., dynamic thermal management for multicore processors, in-network

computation and satellite imaging.
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Chapter 1

Introduction

1.1 Motivation and Prior Work

Consider a setM of m memoryless sources with underlying probability distribution

known only to belong to a given family of distributions. At time instants t =

1, . . . , n, possibly different subsets of sources of size k ≤ m are sampled “spatially”

and compressed jointly by a block (source) code with the objective of reconstructing

a prespecified subset of the m sources from the compressed representations within

a specified level of distortion. The sampling and compression are to be designed

in the face of partial information about the underlying probability distribution.

Which sources should be sampled and when? How should the sampled sources be

compressed, and what are the optimal reconstruction algorithms? The focus of
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Figure 1.1: Schematic for Sampling Rate Distortion
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this dissertation is on answering such questions, where resource constraints, such

as bandwidth and computational constraints, restrict the number of sources that

can be processed at any time, and furthermore require the sampled sources to be

compressed. The sampling and lossy compression mechanisms are to be designed – in

a coordinated manner – to be robust in the absence of precise information about the

underlying statistics of the sources. In this dissertation we introduce our framework

of sampling rate distortion for the study of such problems; the processes of sampling,

compression and reconstruction of the sources are performed by a random sampler,

encoder and decoder, respectively, as shown in Figure 1.1. In such a framework, this

dissertation explores the following questions:

i) Which is the structure of the optimal sampling mechanism?

ii) What are the optimal compression and reconstruction algorithms?

iii) What are the tradeoffs – under optimal processing – among sampling pro-

cedure, inferential methods for approximating the underlying distribution of the

memoryless sources, compression rate and distortion level?

iv) How does a knowledge of the sampling sets at the decoder influence the

tradeoff between compression rate and distortion level?

1.1.1 Motivating applications

The questions above are motivated by various applications. An instance arises in

hardware “dynamic thermal management,” which is the process of controlling surges

in the operating temperature of a multicore processor chip during runtime, based
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on measurements by a limited number of on-chip thermal sensors. Strategic sensor

placement and processing are needed to estimate temperatures at grid points over

the entire chip; compression is essential to process the continuous measurements in

real time.

In a multicore processor, the modes of operation are few and the underlying

probability distribution of the temperatures on the processor can (approximately)

be estimated a priori; however, this is not always possible. In an Internet-of-Things

(IoT) setup, multiple networked smart devices/sensors such as thermostats, motion

detectors, listening speakers, etc., are often placed in diverse settings and the joint

statistics of their measurements are uncertain as they rely on the location and the

nature of varying activities at the location. In smart homes, a central hub, e.g.,

Amazon Echo or Google Home, uses sensor communication to form representations

of the signals at various points of the house, for instigating subsequent actions. A

large number of sensor measurements makes compression essential. Also, power

and bandwidth limitations impose further restrictions on the number of sensors

communicating with the hub at any given time, necessitating spatial sampling.

Satellite images are often used to make inferences for tasks which rely on pic-

tures of wide regions of the earth. Many organizations such as Orbital Insight,

Descartes Labs and the United Nations often use these images for varied tasks such

as analyzing forest cover in the Amazon basin, analyzing traffic patterns in cities

and predicting agricultural harvest output. Any particular satellite provides images

of only portions of area of interest at any time and the high resolution of satellite

images mandate compression for efficient storage and processing; learning and mak-
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ing inference at regions not seen in any image is a particularly important challenge.

Similar problems arise in “in-network computation” [1], [2] in which a subset of a

network of collocated sensors use only their own measurements to estimate an ag-

gregate function of the entirety of distributed and correlated measurements, e.g.,

overall average parameter values in environmental monitoring. In such settings, the

mechanisms for (spatial) sampling, compression and estimation are collocated, with

the latter two being aware of the sampler realizations.

1.1.2 Prior work

The study of problems of combined sampling and compression has a rich and varied

history in diverse contexts. Highlights include: classical sampling and processing,

rate distortion theory, multiterminal source coding, wavelet-based compression, and

compressed sensing, among others. Rate distortion theory [3] rules the compres-

sion of a given sampled signal and its reconstruction within a specified distortion

level. On the other hand, compressed sensing [4] provides a random linear encod-

ing of nonprobabilistic analog sources marked by a sparse support, with lossless

recovery as measured by a block error probability (with respect to the distribu-

tion of the encoder). Upon placing the problem of lossless source coding of analog

sources in an information theoretic setting, with a probabilistic model for the source

that need not be encoded linearly, Rényi dimension is known to determine funda-

mental performance limits [5] (see also [6, 7]). Several recent studies consider the

compressed sensing of a signal with an allowed detection error rate or quantization
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distortion [8,9]; of multiple signals followed by distributed quantization [10], includ-

ing a study of scaling laws [11]; or of sub-Nyquist rate sampled signals followed

by lossy reconstruction [12]; and rate distortion function for multiple sources with

time-shared sampling [13].

Closer to our approach that entails spatial sampling, the rate distortion func-

tion has been characterized when multiple Gaussian signals from a random field

are sampled and quantized (centralized or distributed) in [14]. In a setting of

distributed acoustic sensing and reconstruction, centralized as well as distributed

coding schemes and sampling lattices are studied in [15]. In [16], a Gaussian ran-

dom field on the interval [0, 1] and i.i.d. in time, is reconstructed from compressed

versions of k sampled sequences under a mean-squared error distortion criterion;

the rate distortion function is studied for schemes which reconstruct only the sam-

pled source first and then reconstruct the unsampled source by forming minimum

mean-squared error (MMSE) estimates based on the reconstructions for the sam-

pled source. All the sampling problems above assume a knowledge of the underlying

distribution.

In the realm of rate distortion theory where a complete knowledge of the source

statistics is unknown, there is a rich literature that considers various formulations

of universal coding; only a sampling is listed here. Directions include classical

Bayesian and nonBayesian methods [17–20]; “individual sequences” studies [21–23];

redundancy in quantization rate or distortion [24–26]; and lossy compression of noisy

or remote sources [27–29]. These works propose a variety of distortion measures to
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investigate universal reconstruction performance.

1.2 Main Contributions

The focus of this dissertation is on studying optimal mechanisms and tradeoffs in-

volved in reconstructing a prespecified subset of components of a memoryless mul-

tiple source from the centralized processing of its spatially sampled components.

While aspects of this have been explored in some of the works mentioned above,

in this dissertation we present our framework of sampling rate distortion to study

the tradeoffs among sampling mechanism, compression rate and desired level of ac-

curacy in the reconstruction, in an unified manner. Throughout this dissertation,

sampling is spatial rather than temporal, unlike in most of the settings above. We

introduce new forms of randomized sampling mechanisms that can depend on the

observed source realizations. Such randomized sampling mechanisms, albeit of in-

creased complexity, are shown to yield clear gains in performance.

1.2.1 Finite-Valued Multiple Source

We begin our study with the joint compression and reconstruction of a spatially

sampled finite-valued memoryless multiple source (referred to as a discrete memory-

less multiple source in this dissertation) whose underlying probability mass function

(pmf) is taken to be known in Chapter 2; in this chapter, we present our framework

of sampling rate distortion and introduce several randomized sampling mechanisms.

The models and ideas presented in this chapter will form the bedrock of the chapters
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to follow.

Our formulation involves the notion of a sampling rate distortion function

(SRDf), which captures the tradeoffs among sampling mechanism, compression rate

and desired level of accuracy in the reconstruction. As a basic ingredient, the

sampling rate distortion function is characterized first for a fixed sampling set of size

k ≤ m. This characterization is a consequence of prior work by Dobrushin-Tsybakov

[30] (see also Berger [3], [31] and Yamamoto-Itoh [32]) on the rate distortion function

for a “remote” source-receiver model in which the encoder and receiver lack direct

access to the source and decoder outputs, respectively. For the special case of

the probability of error distortion criterion, we show that optimal compression and

reconstruction can be simplified to a rate distortion code for the sampled source

components followed by maximum a posteriori estimation of the remaining source

components.

Best fixed-set sampling can be strictly inferior to random sampling. Consid-

ering an independent random sampler, in which sampling does not depend on the

source realizations and is independent (but not necessarily identically distributed) in

time, we show that the corresponding SRDf remains the same regardless of whether

or not the decoder is provided information regarding the sequence of sampled sets.

This surprising property does not hold for any causal sampler1, in general. Next, we

consider a generalization, namely a memoryless random sampler whose output can

depend on the instantaneous source realizations. The associated formula for SRDf is

1A casual sampler is one for which sampling at any instant depends only on the current and past
DMMS realizations and past actions of the sampler.
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used now to study the structural characteristics of the optimal sampler. Specifically,

we show that the optimal sampler is characterized by a conditional point-mass; this

has the obvious benefit of a reduction in the search space for an optimal sampler.

We also show that such a memoryless sampler can outperform strictly a random

sampler that lacks access to source realizations. Finally, in a setting in which the

decoder is unaware of the sampled sequence, an upper bound for the SRDf is seen

to have an optimal conditional point-mass sampler.

In Chapter 3 we consider an universal setting where the underlying pmf of a

discrete memoryless multiple source is known only to belong to a finite family of

pmfs. Building on the concept of an SRDf, in Bayesian and nonBayesian settings

we consider an universal sampling rate distortion function (USRDf) which captures

the inherent tradeoffs among sampling mechanism, approximation of underlying

(unknown) pmf, lossy compression rate and distortion level. Our characterizations

of USRDf in this chapter build on the study of sampling rate distortion function in

Chapter 2. We begin, once again, with fixed-set sampling where the encoder observes

the same set of k components of a discrete memoryless multiple source at every time

instant. Recognizing that only the k-marginal pmf of the source – corresponding

to the sampling set – can be learned by the encoder, the associated USRDf is

characterized. In general, allowing randomization in sampling affords two distinct

advantages over fixed-set sampling: better approximation of the underlying joint

pmf and improved compression performance enabled by sampling different subsets

of the source in apposite proportions. An independent random sampler chooses

different k-subsets of the multiple source independently of source realizations and
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independently in time, and can learn all k-marginals of the joint pmf. This reduction

in pmf uncertainty (vis-à-vis fixed-set sampling) aids in improving USRDf. Lastly,

we consider a memoryless random sampler whose choice of sampling sets can depend

on instantaneous source realizations. Surprisingly, this latitude allows the encoder

to learn the entire joint pmf, and that too only from the sampling sequence without

recourse to the sampled source realizations. Furthermore, we show how the USRDf

can be attained by means of a sampling sequence that depends deterministically on

source realizations thereby reducing overall complexity. Thus, all our achievability

proofs in this chapter bring out new ideas for joint source pmf-learning and lossy

compression.

1.2.2 Gaussian Multiple Source

In Chapter 4, we consider a jointly Gaussian memoryless multiple source (GMMS)

with joint probability density function (pdf) known only to belong to a given family

of uncountable pdfs (characterized by a convex compact in the Euclidean space). In

this chapter, our objective is to reconstruct all the components of a GMMS from the

compressed representations of fixed k components under a suitable mean-squared

error (MSE) distortion criterion. In Bayesian and nonBayesian settings, we extend

the notion of USRDf to a GMMS. We consider first the setting where the underly-

ing pdf of the GMMS is known and, building on the ideas developed in Chapter 2,

characterize its SRDf. We also show that a two-step procedure for reconstructing

all the components of a GMMS is optimal: the sampled components of the GMMS
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are reconstructed first under a modified weighted MSE distortion criterion and then

MMSE estimates are formed for the unsampled components based on the recon-

structions of the former. This is akin to the structure observed in Chapter 2 for

a discrete memoryless multiple source reconstructed under the probability of error

distortion criterion and in [33] for reconstructing remote Gaussian sources under

MSE distortion criterion. Considering a Gaussian memoryless field on an interval

sampled at a finite number of points, we characterize its SRDf and illustrate by ex-

ample the structure of the best fixed-set sampling. Building on the ideas developed

for the SRDf, we characterize next the USRDf for a GMMS in the Bayesian and non-

Bayesian settings and show that it remains optimal to reconstruct first the sampled

components of the GMMS and then form estimates for the unsampled components

based on the former, thereby simplifying the reconstruction procedure.

1.3 Organization of Dissertation

In Chapter 2, we introduce our framework of sampling rate distortion and begin with

a study of discrete memoryless multiple source with known pmf. The subsequent

chapters in this dissertation will build on the models and the framework of sampling

rate distortion introduced in this chapter.

Building on the ideas developed in Chapter 2, in Chapter 3 we study a setting

where the pmf of the discrete memoryless multiple source is known only to belong

to a finite family of pmfs. Here, we discuss procedures to estimate pmf from the

sampled source measurements and the optimal tradeoffs arising among sampling
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mechanism, estimation, compression and reconstruction accuracy. In Chapter 4, we

consider a Gaussian memoryless multiple source with joint pdf known only to belong

to an uncountable family of pdfs.

In each chapter, we present first our main results followed by proofs of the

main results. We present the achievability proofs in an increasing order of sampler

complexity; a unified converse proof is presented thereafter. Throughout this dis-

sertation, in the universal setting the emphasis of our achievability proofs is on the

Bayesian formulation.
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Chapter 2

SRDf for Finite-Valued Multiple Source

2.1 Synopsis

In this chapter, we consider a discrete memoryless multiple source (DMMS) with m

components and of known joint pmf. A subset of k components of the DMMS are

sampled (possibly in a randomized manner) at each time instant and compressed

jointly with the objective of reconstructing a subset of DMMS components with

indices in an arbitrary but fixed recovery set.

Our model is described in Section 2.2. We introduce several sampling mech-

anisms and the notion of sampling rate distortion function (SRDf) to characterize

the tradeoffs among sampling procedure, compression rate and desired level of ac-

curacy in reconstruction. The main results, along with examples, are stated in

Section 2.3. Considering the sampling mechanisms introduced in Section 2.2 in

an increasing order of complexity, we provide single-letter characterizations for the

SRDf. Concomitant improvements in performance thereby become evident. Section

2.4 contains the proofs. Presented first are the achievability proofs that are built

successively in the order of increasing complexity of the sampling mechanism. The
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converse proofs follow in reverse order in a unified manner.

2.2 Model

Let M = {1, . . . ,m} and XM = (X1, . . . , Xm) be a XM =
m×
i=1
Xi-valued rv where

each Xi is a finite set. It will be convenient to use the following compact notation.

For a nonempty set A ⊆ M, we denote by XA the rv (Xi, i ∈ A) with values

in ×
i∈A
Xi, and denote n repetitions of XA by Xn

A = (Xn
i , i ∈ A) with values in

X n
A = ×

i∈A
X n
i , where Xn

i = (Xi1, . . . , Xin) takes values in the n-fold product space

X n
i = Xi × · · · × Xi. For 1 ≤ k ≤ m, let Ak = {A : A ⊆M, |A| = k} be the set of

all k-sized subsets of M and let Ac = M\ A. All logarithms and exponentiations

are with respect to the base 2.

Consider a discrete memoryless multiple source (DMMS) {XMt}∞t=1 consisting

of i.i.d. repetitions of the rv XM with given pmf PXM of assumed full support XM.

Let YM =
m×
i=1
Yi, where Yi is a finite reproduction alphabet for Xi.

Definition 2.1 A k-random sampler (k-RS), 1 ≤ k ≤ m, collects causally at each

t = 1, . . . , n, random samples† XSt from XMt, where St is a rv with values in

Ak with (conditional) pmf PSt|Xt
MSt−1, with X t

M = (XM1, . . . , XMt) and St−1 =

(S1, . . . , St−1). Such a k-RS is specified by a (conditional) pmf PSn|Xn
M

with the

requirement

PSn|Xn
M

=
n∏
t=1

PSt|Xt
MSt−1 . (2.1)

The output of a k-RS is (Sn, Xn
S ) where Xn

S = (XS1 , . . . , XSn). Successively restric-

†With an abuse of notation, we write XStt simply as XSt
.
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tive choices of a k-RS in (2.1) corresponding to

PSt|Xt
MSt−1 = PSt|XMt

, t = 1, . . . , n, (2.2)

PSt|Xt
MSt−1 = PSt , t = 1, . . . , n, (2.3)

and, for a given A ⊆M,

PSt|Xt
MSt−1 = 1(St = A), t = 1, . . . , n (2.4)

will be termed the k-memoryless random sampler, k-independent random sampler

and the k-fixed-set sampler abbreviated as k-MRS, k-IRS and k-FS, respectively.

Our objective is to reconstruct a subset of DMMS components with indices

in an arbitrary but fixed recovery set B ⊆ M, namely Xn
B, from a compressed

representation of the k-RS output (Sn, Xn
S ) under a suitable distortion criterion.

Definition 2.2 For n ≥ 1, an n-length block code with k-RS for a DMMS {XMt}∞t=1

with alphabet XM and reproduction alphabet YB is a triple (PSn|Xn
M
, fn, ϕn) where

PSn|Xn
M

is a k-RS as in (2.1), and (fn, ϕn) are a pair of mappings where the encoder

fn maps the k-RS output (Sn, Xn
S ) into some finite set J = {1, . . . , J} and the

decoder ϕn maps J into YnB. We shall use the compact notation (PS|XM , f, ϕ),

suppressing n. The rate of the code with k-RS (PS|XM , f, ϕ) is 1
n

log J .

Remark: An encoder that uses a deterministic estimate of Xn
Sc from (Sn, Xn

S ) in its
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operation is subsumed by the definition above.

For a given (single-letter) finite-valued distortion measure d : XB × YB →

R+∪{0}, an n-length block code with k-RS (PS|XM , f, ϕ) will be required to satisfy

the expected fidelity criterion (d, ∆), i.e.,

E
[
d

(
Xn
B, ϕ

(
f(Sn, Xn

S )
))]

, E
[

1

n

n∑
t=1

d

(
XBt,

(
ϕ
(
f(Sn, Xn

S )
))

t

)]
≤ ∆. (2.5)

We shall consider also the case where the decoder is informed of the sequence

of sampled sets Sn. Denoting such an informed decoder by ϕS, the expected fidelity

criterion (2.5) will use the augmented ϕS
(
Sn, f(Sn, Xn

S )
)

instead of ϕ
(
f(Sn, Xn

S )
)
.

The earlier decoder (that is not informed of Sn) will be termed an uninformed

decoder.

Definition 2.3 A number R ≥ 0 is an achievable k-sample coding rate at average

distortion level ∆ if for every ε > 0 and sufficiently large n, there exist n-length block

codes with k-RS of rate less than R+ ε and satisfying the expected fidelity criterion

(d,∆ + ε); and (R,∆) will be termed an achievable k-sample rate distortion pair.

The infimum of such achievable rates is denoted by RI(∆) for an informed decoder,

and by RU(∆) for an uninformed decoder. We shall refer to RI(∆) as well as RU(∆)

as the sampling rate distortion function (SRDf), suppressing the dependence on k.

Remarks: (i) An informed decoder obtains information regarding Xn
B in two ways:

from the encoder output as well as from Sn (as a k-RS can embed information about
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Xn
M in Sn).

(ii) Clearly, RI(∆) ≤ RU(∆), and both are nonincreasing in k.

(iii) For a DMMS {XMt}∞t=1, the requirement (2.2) on the sampler renders {(XMt, St)}∞t=1

and thereby also {(XSt , St)}∞t=1 to be memoryless sequences.

2.3 Sampling Rate Distortion function

We shall state our results in an order of increasing complexity of the sampling

mechanism. Single-letter characterizations of the SRDfs in this chapter involve, as

an ingredient, a characterization of RI(∆) for a fixed-set sampler, which in turn is

based on [30], [3]. For a k-FS, denote the corresponding RI(∆) by RA(∆) (with an

abuse of notation).

2.3.1 Fixed-Set Sampling

A fixed-set sampler chooses the same k-sized subset A ⊆ M of the components of

DMMS {XMt}∞t=1 at each time instant. Our first result shows that the fixed-set

SRDf RA(∆), in effect, is the (standard) rate distortion function for the DMMS

{XAt}∞t=1 using a modified distortion measure dA : XA×YB → R
+ ∪ {0} defined by

dA(xA, yB) = E[d(XB, yB)|XA = xA]. (2.6)

Proposition 2.1 For a DMMS {XMt}∞t=1 with pmf PXM, the fixed-set SRDf for

16



A ⊆M is

RA(∆) = min
XAc −◦− XA −◦− YB

E[d(XB,YB)]≤∆

I
(
XA ∧ YB

)
(2.7)

for ∆min,A ≤ ∆ ≤ ∆max, and equals 0 for ∆ ≥ ∆max, where

∆min,A = E

[
min
yB∈YB

dA(XA, yB)

]
,

∆max = min
yB∈YB

E
[
d(XM, yB)

]
= min

yB∈YB
E[dA(XA, yB)].

(2.8)

Corollary 2.1 With A ⊆ B and XB = YB, for the probability of error distortion

measure

d(xB, yB) = 1(xB 6= yB) = 1−
∏
i∈B

1(xi = yi), xB, yB ∈ XB

we have

RA(∆) =


min I

(
XA ∧ YA

)
, ∆min ≤ ∆ ≤ ∆max

0, ∆ ≥ ∆max,

(2.9)

where the minimum in (2.9) is subject to

E[α(XA)1(XA 6= YA)] ≤ ∆−∆min (2.10)

with

α(xA) = max
x̃B∈XB

PXB |XA(x̃B|xA)
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and

∆min = 1−E[α(XA)], ∆max = 1− max
xB∈XB

PXB(xB).

Remarks: (i) In (2.10), the overall reconstruction error ∆ can be seen to comprise

two parts: i) minimum error introduced due the sampling, ∆min, and ii) the error

introduced in compression, E[α(XA)1(XA 6= YA)].

(ii) The minimum in (2.7) exists by virtue of the continuity in PXMYB of I(XA∧YB)

over the compact set {PXMYB : XAc −◦− XA −◦− YB, E[d(XB, YB)] ≤ ∆}.

(iii) The corollary relies on showing that the minimum in (2.7) is attained in this

particular instance by a pmf PXMYB under a longer Markov chain

XAc −◦− XA −◦− YA −◦− YB\A.

Interestingly, the achievability proof entails in a first step a mapping of xnA in X n
A

into its codeword ynA from which, in a second step, a reconstruction ynB\A of xnB\A is

obtained as a maximum a posteriori (MAP) estimate.

0

1

0

1

1− p

p

1− q

1− q

q

q
X1 X2

Figure 2.1: BSC (q)
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The following example, albeit concocted, shows that for fixed-set sampling

with A and recovery set B, a choice of A outside B can be best.

Example 2.1 Let M = {1, 2, 3}, B = {1, 2} and Xi = Yj = {0, 1}, i = 1, 2, 3; j =

1, 2. Consider a DMMS with PX1X2 as in Figure 2.1 and X3 = X1 ⊕ X2 where

⊕ denotes addition modulo 2. Here, p = 0.5, q ≤ 0.5. For distortion measure

d(xB, yB) , 1 ((x1 ⊕ x2) 6= (y1 ⊕ y2)), the SRDf for fixed-set sampling is

R{1}(∆) = h(0.5)− h
(∆− q

1− 2q

)
, q ≤ ∆ ≤ 0.5,

where h(·) is the binary entropy function. Also, R{1}(∆) = R{2}(∆). For sampling

set A = {3}, the SRDf is

R{3}(∆) = h(q)− h (∆) , 0 ≤ ∆ ≤ q.

Clearly, R{3}(∆) ≤ R{1}(∆), with the inequality being strict for suitable values of ∆.

2.3.2 Independent Random Sampling

The k-IRS affords a more capable mechanism than the fixed-set sampler of Propo-

sition 2.1, with the sampling sets possibly varying in time. Surprisingly, our next

result shows that the SRDf for a k-IRS, displayed as Rı(∆), remains the same regard-

less of whether or not the decoder is provided information regarding the sequence

of sampled sets. As seen from its proof in Section 2.4, this is enabled by the lack of
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dependence of the sampling sequence on the DMMS realization.

Theorem 2.1 For a k-IRS,

RI
ı (∆) = RU

ı (∆) = Rı(∆) = min I
(
XS ∧ YB|S

)
(2.11)

for ∆min ≤ ∆ ≤ ∆max, where the minimum is with respect to PXMSYB = PXMPSPYB |SXS

and E[d(XB, YB)] ≤ ∆, with

∆min = min
A∈Ak

E

[
min
yB∈YB

dA(XA, yB)

]

and ∆max as in (2.8).

Clearly, for every ∆min ≤ ∆ ≤ ∆max, RU
ı (∆) is no smaller than Rı(∆). In Section

2.4, we provide an achievability proof for Rı(∆) for a k-IRS with an uninformed

decoder and a converse proof for a k-IRS with an informed decoder, thus showing

the equivalence of RI
ı (∆) and RU

ı (∆). Our achievability proof relies on a “determin-

istic” implementation of the optimal k-IRS, obviating the need for a decoder to be

explicitly informed of the random sampling sets.

A convenient equivalent expression for Rı(∆) in (2.11) is given by

Proposition 2.2 For a k-IRS,

Rı(∆) = min
∑
A∈Ak

PS(A)RA(∆A), ∆min ≤ ∆ ≤ ∆max, (2.12)
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where the minimum is with respect to

PS,
{

∆A ≥ ∆min,A, A ∈ Ak :
∑
A∈Ak

PS(A)∆A ≤ ∆
}
. (2.13)

Proof. For every ∆min ≤ ∆ ≤ ∆max, in (2.11),

min
PXMPSPYB |SXS
E[d(XB,YB)]≤∆

I(XS ∧ YB|S)

= min
PXMPSPYB |SXS
E[d(XB,YB)]≤∆

∑
A∈Ak

PS(A)I(XA ∧ YB|S = A)

= min
PS, ∆A:∑

A∈Ak
PS(A)∆A≤∆

∑
A∈Ak

PS(A) min
PYB |S=A,XA

E[d(XB,YB)|S=A]=∆A

I(XA ∧ YB|S = A) (2.14)

= min
PS, ∆A:∑

A∈Ak
PS(A)∆A≤∆

∑
A∈Ak

PS(A)RA(∆A),

where PYB |S=A,XA is used to denote PYB |S,XS(·|A, ·) for compactness. The validity of

(2.14) follows by the introduction of the ∆As and observing that the order of the

minimization does not alter the value of the minimum. The last step obtains upon

noting that the value of the inner minimum in (2.14) is the same upon replacing the

equality in E[d(XB, YB)|S = A] = ∆A with “≤”.

Remark: By Proposition 2.2, the SRDf for a k-IRS is the lower convex envelope of

the set of SRDfs {RA(∆), A ∈ Ak} and thus is convex in ∆ ≥ ∆min. Furthermore,

Rı(∆) ≤ min
A∈Ak

RA(∆).
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Additionally, a k-IRS can outperform strictly the best fixed-set sampler. For in-

stance, if there is no fixed-set SRDf for any A ∈ Ak that is uniformly best for all

∆, then the previous inequality can be strict. This is illustrated by the following

example.

Example 2.2 With M = B = {1, 2}, X1 = X2 = Y2 = {0, 1}, and Y1 = {0, 1, e},

let X1, X2 be i.i.d. Bernoulli(0.5) rvs, and

d
(
(x1, x2), (y1, y2)

)
= d1(x1, y1) + d2(x2, y2)

with

d1(x1, y1) =



0, if x1 = y1 = 0; x1 = y1 = 1

1, if x1 = 0, 1, y1 = e

∞, if x1 = 0, y1 = 1; x1 = 1, y1 = 0,

d2(x2, y2) = 1(x2 6= y2).

For k = 1,

R{1}(∆) = 1.5−∆, 0.5 ≤ ∆ ≤ 1.5,

R{2}(∆) = 1− h(∆− 1), 1 ≤ ∆ ≤ 1.5
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whereas

Rı(∆) =


1.5515− 1.103∆, 0.5 ≤ ∆ ≤ 1.318,

1− h(∆− 1), 1.318 ≤ ∆ ≤ 1.5.

Clearly, Rı(∆) is strictly smaller than min
{
R{1}(∆), R{2}(∆)

}
for 0.5 < ∆ < 1.318;

see Fig. 2.2. Note that while the distortion measure d in Definition 2.2 is taken

to be finite-valued, the event {d(X1, Y1) =∞} above is accommodated by assigning

(optimally) zero probability to it.
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Figure 2.2: SRDfs for k-IRS vs. fixed-set sampler

2.3.3 Memoryless Random Sampling

A k-MRS is more powerful than a k-IRS in that sampling with the former at each

time instant can depend on the current DMMS realization. The SRDf for a k-MRS

can improve with an informed decoder unlike for a k-IRS.
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Theorem 2.2 For a k-MRS with informed decoder, the SRDf is

RI
m(∆) = min I

(
XS ∧ YB|S, U

)
(2.15)

for ∆min ≤ ∆ ≤ ∆max, where the minimum is with respect to

PUXMSYB = PUPXMPS|XMUPYB |SXSU and E[d(XB, YB)] ≤ ∆, with

∆min = min
PS|XM

E

[
min

PYB |SXS

E
[
d(XB, YB)|S,XS

]]
, (2.16)

∆max = min
PS|XM

E

[
min
yB∈YB

E
[
d(XB, yB)|S

]]
, (2.17)

and U being a U-valued rv with |U| ≤ 3.

Remark: Analogously as in Proposition 2.2, the SRDf RI
m(∆) can be expressed as

RI
m(∆) = min

PU , ∆u:∑
u
PU (u)∆u≤∆

∑
u

PU(u) min
PS|XM,U=u,PYB |SXS,U=u

E[d(XB,YB)|U=u]=∆u

I(XS ∧ YB|S, U = u) (2.18)

and thereby equals a lower convex envelope of functions of ∆.

The optimal sampler that attains the SRDf in Theorem 2.2 has a simple struc-

ture. It is easy to see that each of ∆min and ∆max in (2.16) and (2.17), respectively,

is attained by a sampler for which PS|XM takes the form of a conditional point-mass.

Such conditionally deterministic samplers (defined below), in fact, are optimal for

every distortion level ∆min ≤ ∆ ≤ ∆max and will depend on ∆, in general.
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Definition 2.4 For a mapping w : XM × U → Ak, a deterministic sampler is

specified in terms of a conditional point-mass pmf

δw(xM,u)(s) ,


1, s = w(xM, u)

0, otherwise,

(2.19)

for (xM, u) ∈ XM × U , s ∈ Ak.

The following reduction of Theorem 2.2 shows the optimality of deterministic sam-

plers for a k-MRS which will be seen to play a material role in the achievability

proof of Theorem 2.2.

Theorem 2.3 For a k-MRS with informed decoder,

RI
m(∆) = min I

(
XS ∧ YB|S, U

)
(2.20)

for ∆min ≤ ∆ ≤ ∆max, with ∆min and ∆max as in (2.16) and (2.17), respectively,

where the minimum is with respect to PUXMSYB of the form PUPXMδw(·)PYB |SXSU

with E[d(XB, YB)] ≤ ∆, where the (time-sharing) rv U takes values in U with |U| ≤

3.

Proof: See Appendix A.

The structure of the optimal sampler in Theorem 2.3 implies that the search

space for minimization now can be reduced to the corner points of the simplexes of

the conditional pmfs PS|XMU(·|xM, u), (xM, u) ∈ XM × U . The SRDf in (2.20) is

thus the lower convex envelope of the SRDfs for deterministic samplers. In general,
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time-sharing between such samplers will be seen to achieve the best compression

rate for a given distortion level.

While a k-FS and a k-IRS cannot depend on the DMMS {XMt}∞t=1, a k-MRS

can; this enables a k-MRS to embed information about the DMMS in the sampled

sequence Sn. For ∆min ≤ ∆ ≤ ∆max, a optimal k-MRS makes a tradeoff between

conveying rate-free information to the decoder via Sn and via in the compressed

representation of the encoder output. At ∆max however, the k-MRS conveys infor-

mation to the decoder via the sequence of sampling sets alone.

Finally, for a k-MRS with uninformed decoder, we provide an upper bound

for the SRDf RU
m(∆).

Theorem 2.4 For a k-MRS with uninformed decoder,

RU
m(∆) ≤ min I

(
S,XS ∧ YB

)
(2.21)

for ∆min ≤ ∆ ≤ ∆max, where the minimum is with respect to PXMSYB = PXMPS|XMPYB |SXS

and E[d(XB, YB)] ≤ ∆, with ∆min and ∆max being as in (2.16) and (2.8).

Remark: Clearly, when (S,XS) in (2.21) determines XM, we have RU
m(∆) = R(∆) =

the (standard) rate distortion function for the DMMS {XMt}∞t=1.

The (achievability) proof of Theorem 2.4 is along the lines of Proposition 2.1.

The lack of a converse is due to the inability to prove or disprove the convexity

of the right-side of (2.21) in ∆. (Convexity would imply equality in (2.21).) The

optimal sampler can, however, be shown to be a deterministic sampler (2.19) along
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the lines of Theorem 2.3. Note that the same deterministic sampler need not be the

best in (2.15) and (2.21).

Strong forms of the k-MRS and k-IRS are obtained by allowing time-dependence

in sampling. Specifically, (2.2) and (2.3) can be strengthened, respectively, to

PSt|Xt
MSt−1 = PSt|XMtSt−1 (2.22)

and

PSt|Xt
MSt−1 = PSt|St−1 . (2.23)

Surprisingly, this does not improve SRDf for the k-MRS (with decoder informed) or

the k-IRS.

Proposition 2.3 For a strong k-MRS in (2.22) and a strong k-IRS in (2.23), the

corresponding SRDfs RI
ms(∆) and Rıs(∆) equal the right-sides of (2.15) and (2.11),

respectively.

Finally, standard properties of the SRDf for the fixed-set sampler, k-IRS and

k-MRS with informed decoder are summarized in the following

Lemma 2.1 For a fixed PXM, the right-sides of (2.7), (2.11) and (2.15) are finite-

valued, nonincreasing, convex, continuous functions of ∆.

We close this section with an example showing that (i) the SRDf for a k-

MRS with informed decoder can be strictly smaller than that of a k-IRS; and (ii)
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furthermore, unlike for a k-IRS, a k-MRS with informed decoder can outperform

strictly that with an uninformed decoder, uniformly for all feasible distortion values.

Example 2.3 With M = B = {1, 2} and X1 = X2 = {0, 1}, consider a DMMS

{XMt}∞t=1 with PX1X2 represented by a virtual binary symmetric channel (BSC)

shown in Figure 2.1. Fix p ≤ 0.5 and q = 0.5, i.e., X1 and X2 are independent. Let

d correspond to the probability of error criterion, i.e., d(xM, yM) = 1(xM 6= yM).

(i) Considering a k-MRS, k = 1, with informed decoder, we obtain by Theorem 2.3

that ∆min = 0, ∆max = p, and the deterministic sampler

PS|XM(s|xM) =



1, s = 1, xM = 00 or 11

1, s = 2, xM = 01 or 10

0, otherwise

(2.24)

is uniformly optimal for all 0 ≤ ∆ ≤ p, and

RI
m(∆) = h(p)− h(∆), 0 ≤ ∆ ≤ p.

To obtain Rı(∆), the SRDfs for fixed-set samplers (2.7) are

R{1}(∆) = h(p)− h (2∆− 1) , 1
2
≤ ∆ ≤ 1 + p

2
,
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and

R{2}(∆) = h

(
1

2

)
− h

(
∆− p
1− p

)
, p ≤ ∆ ≤ 1 + p

2
.

Since R{2}(∆) ≤ R{1}(∆) for all ∆, it is a simple exercise to show that

Rı(∆) = R{2}(∆).

Clearly, RI
m(∆) ≤ Rı(∆), with ∆max for the former being ∆min for the latter, as

shown in Figure 2.3.

p 1+p
2

h(p)

1

0

Distortion level ∆

R
I
(∆

)

k-MRS

k-IRS

Figure 2.3: SRDf for k-MRS vs. k-IRS

(ii) The conditional pmf PS|XM in (2.24) represents a 1-1 map between the values

of XM and (S,XS), and can be seen also to be the optimal choice in the right-side

of (2.21) for all 0 ≤ ∆ ≤ 1+p
2
. The remaining minimization in (2.21), with respect

to PYB |SXS , renders the right-side to be convex in ∆. Consequently, as observed in

the passage following Theorem 2.4, the bound in (2.21) is tight. For p = 0.1, the
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resulting values of RI
m(∆) and RU

m(∆) are plotted in Figure 2.4, and of RU
m(∆) and

Rı(∆) in Figure 2.5. Figure 2.4 illustrates the benefit of decoder information for a

k-MRS, while Figure 2.5 shows the compression gain achieved by providing source

knowledge to the sampler.
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Figure 2.4: SRDf for k-MRS

2.4 Proofs of Main Results

2.4.1 Achievability Proofs

Our achievability proofs successively build upon each other in the order: fixed-set

sampler, k-IRS and k-MRS. The achievability proof of Proposition 2.1 for a fixed-

set sampler forms a basic building block for subsequent application. Relying on

this, the SRDf for a k-IRS is shown to be achieved in Theorem 2.1 without the

decoder being informed of the sequence of sampled sets. Next, for a k-MRS with

informed decoder, we prove first Theorem 2.3 which shows that the optimal sampler

30



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

Distortion level ∆

S
R
D
f

 

 

Ri(∆)

R
U
m(∆)

Figure 2.5: RU
m(∆) and Rı(∆)

is conditionally deterministic sampler, i.e., the corresponding PS|XM is a point-mass.

This structure enables an achievability proof of Theorem 2.2 which builds on that

of Proposition 2.1. Lastly, for a k-MRS with uninformed decoder, the achievability

proof of Theorem 2.4 rests on the preceding proofs.

Proposition 2.1: The achievability proof below can be obtained directly from [30],

but is given here for completeness. Observe first that

∆min,A = min
XAc −◦− XA −◦− YB

E[d(XB, YB)]

= min
XAc −◦− XA −◦− YB

E
[
E[d(XB, YB)|XA]

]
= min

PXAYB

E[dA(XA, YB)] by (2.6) and since XAc −◦− XA −◦− YB

= E

[
min
yB∈YB

dA(XA, yB)
]
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and

∆max = min
XAc −◦− XA −◦− YB
PXAYB

=PXA
PYB

E[d(XB, YB)] = min
PXMPYB

E[d(XB, YB)]

= min
yB∈YB

E[d(XB, yB)].

Next, note that for every ∆min,A ≤ ∆ ≤ ∆max,

min
XAc −◦− XA −◦− YB
E[d(XB,YB)]≤∆

I(XA ∧ YB) = min
E[dA(XA,YB)]≤∆

I(XA ∧ YB).

Clearly every feasible PXMYB = PXAcXAYB on the left-side above gives a feasible

PXAYB on the right-side. Similarly every feasible PXAYB on the right-side leads to a

feasible PXMYB on the left-side of the form PXMYB = PXAc |XAPXAYB .

Given ε > 0, consider a (standard) rate distortion code (f, ϕ) for the DMMS

{XAt}∞t=1 with distortion measure dA, of rate 1
n

log |f | ≤ RA(∆)+ε and with expected

distortion E
[
dA
(
Xn
A, ϕ(f(Xn

A))
)]
≤ ∆ + ε for all n ≥ NA(ε), say. Here, |f | denotes

the cardinality of the range space of the encoder f .

The code (f, ϕ) also satisfies

E[d(Xn
B, Y

n
B )] =

1

n
E

[
n∑
t=1

E

[
d
(
XBt,

(
ϕ(f(Xn

A))
)
t

)∣∣∣Xn
A

]]

=
1

n
E

[
n∑
t=1

E

[
d
(
XBt,

(
ϕ(f(Xn

A))
)
t

)∣∣∣XAt

]]

= E

[
dA

(
Xn
A, ϕ

(
f(Xn

A)
))]

≤ ∆ + ε,
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thereby yielding achievability in the proposition.

Turning to the corollary, where A ⊆ B, for every PXMYB satisfying the con-

straints in (2.7), consider the pmf QXMYB defined for xM ∈ XM, yB ∈ XB,

QXMYB(xM, yB) , PXMYA(xM, yA)1
(
yB\A = MAP (yA)

)
, (2.25)

where

MAP (yA) = arg max
ỹB\A∈YB\A

PXB\A|XA(ỹB\A|yA) (2.26)

is the maximum a posteriori estimate of yB\A given yA according to PXB\A|XA . Ob-

serve that QXMYB satisfies

QXAc −◦− QXA −◦− QYA −◦− QYB\A

and

EP [d(XB, YB)] = P (XB 6= YB)

= P (XA 6= YA) + P (XA = YA)P (XB\A 6= YB\A|XA = YA)

= Q(XA 6= YA) +Q(XA = YA)P (XB\A 6= YB\A|XA = YA)

≥ Q(XA 6= YA) +Q(XA = YA)Q(XB\A 6= YB\A|XA = YA)

= Q(XB 6= YB) = EQ[d(XB, YB)],
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where the inequality is by (2.25), (2.26) and the optimality of the MAP estimator.

Also, it is readily checked that

EQ[d(XB, YB)] = 1−E[α(XA)] +E[α(XA)1(XA 6= YA)].

Furthermore,

IQ(XA ∧ YB) = IQ(XA ∧ YA)

= IP (XA ∧ YA)

≤ IP (XA ∧ YB).

(2.27)

Putting together (2.25) - (2.27) and comparing with (2.7) establishes the corollary.

It is interesting to note that the form of (2.7)

min
XAc −◦− XA −◦− YB

P (XB 6=YB)≤∆

I(XA ∧ YB) = min
E[α(XA)1(XA 6=YA)]≤∆−(1−E[α(XA)])

I(XA ∧ YA)

leads to a simpler and direct proof of achievability of the corollary. Specifically, for

a given ∆, first xnA is mapped into (only) its corresponding codeword ynA but under

a modified distortion measure d̃(xA, yA) , α(xA)1(xA 6= yA) and a corresponding

reduced threshold as indicated by (2.10). Next, the codewords ynA serve as sufficient

statistics from which (the unsampled) xnB\A is reconstructed as ynB\A = MAP (ynA)

under PXn
B\A|X

n
A

; the corresponding estimation error coincides with the reduction in

the threshold.
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Theorem 2.1: The equivalent expression for Rı(∆) given by Proposition 2.2 sug-

gests an achievability scheme using a concatenation of fixed-set sampling rate distor-

tion codes from Proposition 2.1. Let PS and {∆A, A ∈ Ak} yield the minimum in

Proposition 2.2. A sequence of sampling sets Sn are constructed a priori with St = A

repeatedly for approximately nPS(A) time instants, for each A in Ak. Correspond-

ingly, sampling rate distortion codes of blocklength ∼= nPS(A) – with distortion

∼= ∆A and of rate ∼= RA(∆A) – are concatenated. This predetermined selection of

sampling sets does not require the decoder to be additionally informed.

For a fixed ∆min ≤ ∆ ≤ ∆max, let PS and {∆A, A ∈ Ak} attain the minimum

in (2.12). Fix ε > 0 and 0 < ε′ < ε. Order (in any manner) the elements of Ak as

Ai, i ∈ Mk , {1, . . . ,Mk}, with Mk =
(
m
k

)
. For i ∈ Mk and n ≥ 1, define the

“time-sets” νAi for Ai ∈ Ak as

νAi =

{
t : dn

i−1∑
j=1

PS(Aj)e+ 1 ≤ t ≤ dn
i∑

j=1

PS(Aj)e
}
.

The time-sets cover {1, . . . , n}, i.e.,

⋃
i∈Mk

νAi = {1, . . . , n}

and satisfy

∣∣∣∣ |νAi |n − PS(Ai)

∣∣∣∣ ≤ 1

n
, i ∈Mk.

Now, a k-IRS is chosen with a deterministic sampling sequence Sn = sn ac-
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cording to

St = st = Ai, t ∈ νAi , Ai ∈ Ak.

By Proposition 2.1, for each Ai in Ak, there exists a code (fAi , ϕAi), fAi : X νAi
Ai
→

{1, . . . , JAi} and ϕAi : {1, . . . , JAi} → Y
νAi
B of rate

1

|νAi |
log JAi ≤ RAi(∆Ai) + ε′

2
and

with

E

[
d
(
X
νAi
B , ϕAi

(
fAi(X

νAi
Ai

)
))]

= E

[
dAi

(
X
νAi
Ai
, ϕAi

(
fAi(X

νAi
Ai

)
))]

≤ ∆Ai +
ε′

2

for all |νAi | ≥ NAi

(
ε′

2

)
(cf. proof of Proposition 2.1).

Consider a (composite) code (f, ϕ) as follows. For the deterministic sampling

scheme defined above, the encoder f consists of a concatenation of encoders defined

for xn ∈
Mk×
i=1
X νAi
Ai

by

f(Sn, xn) =
(
fA1

(
x
νA1
A1

)
, . . . , fAMk

(
x
νAMk
AMk

))
,

which maps the output of the k-IRS into the set J ,
Mk×
i=1
{1, . . . , JAi}. The decoder

ϕ is given by

ϕ
(
j1, . . . , jMk

)
,
(
ϕA1 (j1) , . . . , ϕAMk (jMk

)
)
,

for (j1, . . . , jMk
) ∈ J , and is aware of the sampling sequence without being informed
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additionally of it.

The rate of the code is

1

n
log |J | = 1

n

Mk∑
i=1

log JAi

≤ 1

n

(
Mk∑
i=1

|νAi |
(
RAi(∆Ai) +

ε′

2

))

≤
Mk∑
i=1

((
PS(Ai) +

1

n

)(
RAi(∆Ai) +

ε′

2

))

≤
Mk∑
i=1

PS(Ai)RAi(∆Ai) + ε′ < Rı(∆) + ε, (2.28)

where the previous inequality holds for all n large enough. Denoting the decoder

output by

Y n
B , ϕ (f(Sn, Xn

S )) ,

we have that

E[d(Xn
B, Y

n
B )] = E

[
1

n

n∑
t=1

d(XBt, YBt)

]

=
1

n

Mk∑
i=1

|νAi |E
[
d
(
X
νAi
B , ϕAi

(
fAi(X

νAi
Ai

)
))]

≤
Mk∑
i=1

(
PS(Ai) +

1

n

)(
∆Ai +

ε′

2

)

=

Mk∑
i=1

PS(Ai)∆Ai +
Mk

n

(
ε′

2
+ ∆max

)
+
ε′

2

≤ ∆ + ε (2.29)
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by (2.13) and for all n large enough. The proof is completed by noting that (2.28)

and (2.29) hold simultaneously for all n large enough.

Theorem 2.2: By (2.18), using the result of Theorem 2.3,

RI
m(∆) = min

PU , ∆u:∑
u
PU (u)∆u≤∆

∑
u∈U

PU(u)R̃(∆u) (2.30)

where

R̃(∆u) = min
PXMδwu(·)PYB |SXS
E[d(XB,YB)]≤∆u

I(XS ∧ YB|S) (2.31)

for ∆min ≤ ∆,∆u ≤ ∆max, with the pmf PXMδwu(·)PYB |SXS being understood as

PXMδw(·,u)PYB |SXS ,U=u. To simplify notation, the conditioning on U = u will be

suppressed except when needed. It suffices to show the existence of a code of rate

∼= R̃(∆u) with distortion E[d(XB, YB)]
∼
≤ ∆u. A concatenation of such codes in-

dexed by u ∈ U yields, in effect, suitable time-sharing among them, leading to the

achievability of (2.30). By Theorem 2.3, in view of the optimality of determinis-

tic samplers, concatenating fixed-set sampling rate distortion codes for conditional

sources PXM|S=A, A ∈ Ak, will suffice.

Given any ∆min ≤ ∆u ≤ ∆max, for the minimizer in (2.31), consider the

corresponding

PS|XM = δwu(·), ∆Ai , E[d(XB, YB)|S = Ai] and
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I(XAi ∧ YB|S = Ai), i ∈Mk.

The associated {(St, XSt)}∞t=1 is an i.i.d. sequence (cf. Remark (ii) following Defini-

tion 2.3). The sampling sets characterized by the deterministic sampler above and

the DMMS realizations xnM, are denoted as sn(xnM) ,
(
s(xM1), . . . , s(xMn)

)
, and

hence Sn = sn(Xn
M).

The idea behind the remainder of the proof below for each U = u is the

following. We collect all those time instants at which a particular Ai in Ak is

sampled, with the objective of applying a fixed-set sampling rate distortion code.

Since the size of this time-set will vary according to xnM in X n
M, the rate of such

a code, too, will vary accordingly. However, since we seek fixed rate codes (rather

than codes with a desired average rate), we apply fixed-set sampling codes to subsets

of predetermined lengths from among typical sampling sequences in Ank .

Fix ε > 0 and 0 < ε′ < ε. Ordering the elements of Ak as in the proof of

Theorem 2.1, for n ≥ 1, the sets τsn(Ai) , {t : 1 ≤ t ≤ n, st = Ai}, i ∈ Mk,

cover {1, . . . , n}; denote the set of the first max {dn(PS(Ai)− ε′)e, 0} time instants

in τsn(Ai) by νAi . For the (typical) set

T (n)
ε′ ,

{
sn ∈ Ank :

∣∣∣∣ |τsn(Ai)|
n

− PS(Ai)

∣∣∣∣ ≤ ε′, i ∈Mk

}
,

P
(
Sn ∈ T (n)

ε′

)
≥ 1− ε′

2
for all n ≥ N1(ε′), say.

Along the lines of proof of Theorem 2.1, for each DMMS with (conditional)
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pmf PXM|S=Ai , i ∈ Mk, there exists a code (fAi , ϕAi), fAi : X νAi
Ai
→ {1, . . . , JAi}

and ϕAi : {1, . . . , JAi} → Y
νAi
B of rate 1

|νAi |
log JAi ≤ I(XAi ∧ YB|S = Ai) + ε′

2
and

with

E

[
d
(
X
νAi
B , ϕAi

(
fAi(X

νAi
Ai

)
))∣∣∣SνAi = A

νAi
i

]
≤ ∆Ai +

ε′

2

for all |νAi | ≥ NAi

(
ε′

2

)
.

A (composite) code (f, ϕS), with f taking values in J ,
Mk×
i=1
{1, . . . , JAi} is

constructed as follows. The encoder f consists of a concatenation of encoders defined

by

f (sn(xnM);xs1 , . . . , xsn) =


(
fA1

(
x
νA1
A1

)
, . . . , fAMk

(
x
νAMk
AMk

))
, sn(xnM) ∈ T (n)

ε′ ,

(1, . . . , 1), sn(xnM) /∈ T (n)
ε′ .

For t = 1, . . . , n, and (j1, . . . , jMk
) ∈ J , the informed decoder ϕS is given by

(
ϕS
(
sn, (j1, . . . , jMk

)
))

t
=


(
ϕAi

(
x
νAi
Ai

))
t
, sn ∈ T (n)

ε′ and t ∈ νAi , i ∈Mk,

y1, otherwise,

where y1 is a fixed but arbitrary symbol in YB.

The rate of the code is

1

n
log |J | = 1

n

Mk∑
i=1

log JAi
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≤ 1

n

(
Mk∑
i=1

|νAi |
(
I(XAi ∧ YB|S = Ai) +

ε′

2

))

≤
Mk∑
i=1

PS(Ai)

(
I(XAi ∧ YB|S = Ai) +

ε′

2

)

=

Mk∑
i=1

PS(Ai)I (XAi ∧ YB|S = Ai) +
ε′

2

≤ I(XS ∧ YB|S) + ε. (2.32)

Defining dmax , max
(xB ,yB)∈XB×YB

d(xB, yB), and with Y n
B denoting the output of

the decoder, we have

E[d(Xn
B, Y

n
B )] = E

[
E
[
d(Xn

B, Y
n
B )
∣∣Sn]]

=
∑

sn∈T (n)

ε′

PSn(sn)E
[
d(Xn

B, Y
n
B )
∣∣Sn = sn

]
+

∑
sn /∈T (n)

ε′

PSn(sn)E
[
d(Xn

B, Y
n
B )
∣∣Sn = sn

]

≤
∑

sn∈T (n)

ε′

PSn(sn)

Mk∑
i=1

|νAi |
n
E

[
d
(
X
νAi
B , ϕAi

(
fAi(X

νAi
Ai

)
))∣∣∣SνAi = A

νAi
i

]

+
1

n

∑
sn∈T (n)

ε′

PSn(sn)

Mk∑
i=1

∑
t∈τsn (Ai)\νAi

E [d(XBt, YBt)|Sn = sn] +
∑

sn /∈T (n)

ε′

PSn(sn)dmax

≤
Mk∑
i=1

PS(Ai)

(
∆Ai +

ε′

2

)
+

1−

Mk∑
i=1

|νAi |

n

 dmax +
ε′

2
dmax

≤ ∆u +
ε′

2
+ (2Mkε

′) dmax +
ε′

2
dmax

< ∆u + ε (2.33)

for all n large enough. The proof is completed by noting that for n large enough

(2.32) and (2.33) hold simultaneously and time-sharing between the codes corre-
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sponding to U = u, u ∈ U , completes the proof.

Theorem 2.4: The proof is similar to that of Proposition 2.1 with the i.i.d. se-

quence {XAt}∞t=1 replaced by the i.i.d. sequence {St, XSt}∞t=1 with joint pmf PSXS ob-

tained from (2.21) and a modified distortion measure d̃ ((s, xs), yB) , E
[
d(XB, yB)|S =

s,XS = xs
]
. The details, identical to those in the achievability proof of Proposition

2.1, are omitted.

2.4.2 Unified Converse Proof

Separate converse proofs can be provided for Proposition 2.1 and Proposition 2.3.

However, in order to highlight the underlying ideas economically, we develop the

proofs in a unified manner. Specifically, in contrast with the achievability proofs

above, our converse proofs are presented in the order of weakening power of the

sampler, viz., k-MRS, k-IRS and fixed-set sampler. We begin with the proof of

Lemma 2.1 followed by pertinent technical results before turning to Proposition 2.1

and Proposition 2.3.

Lemma 2.1: We need to prove only that the right-sides of (2.7), (2.11) and (2.15)

are convex and continuous, since they are evidently finite-valued and nonincreas-

ing in ∆. The convexity of the right-side of (2.7) on [∆min,A,∆max] is a standard

consequence of the convexity of

I(XA ∧ YB) = I
(
PXA , PYB |XA

)

in PYB |XA and the convexity of the constraint set in (2.7). The convexity of the right-

42



sides of (2.11) and (2.15) is immediate by the remarks following Proposition 2.2 and

Theorem 2.2, and their continuity for ∆ > ∆min is a consequence. Continuity at

∆ = ∆min in (2.7), (2.11) and (2.15) holds, for instance, as in ( [34], Lemma 7.2).

Lemma 2.2 Let the finite-valued rvs Cn, Dn, En, F n be such that (Ct, Dt), t =

1, . . . , n, are mutually independent and satisfy

Dn −◦− Cn, En −◦− F n (2.34)

and

Et −◦− Ct, Dt, E
t−1 −◦− Cn\t, Dn\t, t = 1, . . . , n, (2.35)

where Cn\t = Cn \ Ct. Then, the following hold for t = 1, . . . , n:

I(Ct, Dt, Et ∧ Cn
t+1, D

n
t+1) = 0 ; (2.36)

Ct, Dt −◦− Et −◦− Cn\t, Dn\t, En
t+1 ; (2.37)

and

Dt −◦− Ct, E
t −◦− Ft. (2.38)
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Proof: First, (2.36) is true by the following simple observation: for t = 1, . . . , n,

I(Ct, Dt, Et∧ Cn
t+1, D

n
t+1)

= I(Ct, Dt ∧ Cn
t+1, D

n
t+1) + I(Et ∧ Cn

t+1, D
n
t+1|Ct, Dt)

= 0

(2.39)

where the first term in the sum above is zero by the mutual independence of

(Ct, Dt), t = 1, . . . , n, and the second term equals zero by (2.35). Next, the claim

(2.36) and the Markov property (2.35) imply that for t = 1, . . . , n,

I(Ct, Dt, Et ∧ Ct−1, Dt−1|Et−1)

= I(Ct, Dt ∧ Ct−1, Dt−1|Et−1) + I(Et ∧ Ct−1, Dt−1|Ct, Dt, E
t−1)

= 0. (2.40)

The claim (2.37) now follows, since

I(Ct, Dt∧Cn\t, Dn\t, En
t+1|Et)

= I(Ct, Dt ∧ Ct−1, Dt−1|Et) + I(Ct, Dt ∧ Cn
t+1, D

n
t+1|Ct−1, Dt−1, Et)

+ I(Ct, Dt ∧ En
t+1|Cn\t, Dn\t, Et)

= 0

where the first term in the sum above is zero by (2.40), and the latter two terms are
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zero by (2.39) and (2.35), respectively.

Now using (2.34),

0 = I(Dn ∧ F n|Cn, En)

=
n∑
t=1

I(Dt ∧ F n|Dt−1, Cn, En)

=
n∑
t=1

I(Dt ∧ F n|Dt−1, Ct, C
n\t, Et, En

t+1)

=
n∑
t=1

[
I(Dt ∧Dt−1, Cn\t, En

t+1, F
n|Ct, Et)− I(Dt ∧Dt−1, Cn\t, En

t+1|Ct, Et)
]

=
n∑
t=1

I(Dt ∧Dt−1, Cn\t, En
t+1, F

n|Ct, Et) by (2.37)

≥
n∑
t=1

I(Dt ∧Dt−1, Cn\t, En
t+1, Ft|Ct, Et)

≥
n∑
t=1

I(Dt ∧ Ft|Ct, Et),

so that the claim (2.38) follows.

We now prove Proposition 2.3 which, in effect, implies the converse proofs for

Theorem 2.2, Theorem 2.1 and Proposition 2.1. Specifically, a converse is fashioned

for RI
ms(∆), with those for Rıs(∆) and RA(∆) emerging along the way.

Let
(
{PSt|XMtSt−1}nt=1, f, ϕS

)
be an n-length strong k-MRS block code with

decoder output Y n
B = ϕS

(
Sn, f(Sn, Xn

S )
)

and satisfying E
[
d
(
Xn
B, Y

n
B

)]
≤ ∆. The

hypothesis of Lemma 2.2 with Cn = Xn
S , D

n = Xn
Sc , E

n = Sn and F n = Y n
B is met
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since

Xn
Sc −◦− Sn, Xn

S −◦− Y n
B

and by (2.22),

PSt|Xn
MSt−1 = PSt|XMtSt−1 .

Then by Lemma 2.2, for t = 1, . . . , n,

I(St−1 ∧XMt) = 0, (2.41)

XMt −◦− St −◦− X
n\t
M , X

n\t
S , Snt+1 (2.42)

and

XSct
−◦− St, XSt −◦− YBt. (2.43)

The rate R of the code satisfies

nR = log |f | ≥ H
(
f(Sn, Xn

S )
)

≥ H
(
ϕS
(
Sn, f(Sn, Xn

S )
)
|Sn
)

= H
(
Y n
B |Sn

)
= H

(
Y n
B |Sn

)
−H

(
Y n
B |Sn, Xn

S

)
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= I
(
Xn
S ∧ Y n

B |Sn
)

=
n∑
t=1

(
H(XSt |St, Snt+1, X

t−1
S )−H(XSt |St, Snt+1, X

t−1
S , Y n

B )
)

≥
n∑
t=1

(
H(XSt |St)−H(XSt|St, YBt)

)
(2.44)

=
n∑
t=1

I(XSt ∧ YBt|St) (2.45)

where (2.44) follows from (2.42). Denote E[d(XBt, YBt)] by ∆t.

For the strong k-MRS code above, in (2.45) using (2.41) and (2.43), we get

I(XSt ∧ YBt|St) ≥ min I(XSt ∧ YBt|St, St−1) (2.46)

≥ min
PUt

PXMt
PSt|XMtUt

PYBt|StXStUt
E[d(XMt,YBt)]≤∆t

I(XSt ∧ YBt|St, Ut), (2.47)

where the minimum in (2.46) is with respect to PXMtStYBt = PSt−1PXMt
PSt|XMtSt−1PYBt|StXStSt−1

and E[d(XBt, YBt)] = ∆t, and where Ut is a rv taking values in a set of cardinality

|Ak|t−1. The existence of the minima in (2.46) and (2.47) comes from the continuity

of the conditional mutual information terms over compact sets of pmfs.

By the Carathéodory Theorem [35], every point in the convex hull of the set

C =
{(
E[d(XB, YB)], I(XS ∧ YB|S)

)
: XM −◦− S,XS −◦− YB

}
⊂ R2

can be represented as a convex combination of at most three points in C. Hence, to
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describe every element in the set

{(
E[d(XBt, YBt)], I(XSt ∧ YBt|St, Ut)

)
: PUtXMtStYBt = PUtPXMt

PSt|XMtUtPYBt|StXStUt

}
,

it suffices to consider a rv Ut with support of size three. (For t = 1, this assertion is

straightforward.) Consequently, the right-side of (2.47) equals RI
m(∆t) (cf. (2.15)).

Using the convexity of RI
m(∆) in ∆, we get from (2.45) that

nR ≥
n∑
t=1

RI
m(∆t)

≥ nRI
m

(
1

n

n∑
t=1

∆t

)
(2.48)

≥ nRI
m(∆),

i.e., R ≥ RI
m(∆), ∆ ≥ ∆min, thereby completing the converse proof for a strong

k-MRS and Theorem 2.2.

Next, an n-length strong k-IRS code and fixed-set sampler code can be viewed

as restrictions of the strong k-MRS code above. Specifically, the strong k-IRS and

fixed-set sampler respectively entail replacing PSt|XMtSt−1 by PSt|St−1 and PSt =

1(St = A). Counterparts of (2.46) and (2.47) hold with the mentioned replacements.

For a strong k-IRS, upon replacing PSt|XMtSt−1 with PSt|St−1 , we observe that the

right-side of (2.47), viz.

min
PUt

PXMt
PSt|UtPYBt|StXStUt

E[d(XBt,YBt)]≤∆t

I(XSt ∧ YBt|St, Ut)
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is now the lower convex envelope of the SRDf for a k-IRS, already convex in distor-

tion, and hence, equals Rı(∆t) itself. Thus, (2.47) becomes

I(XSt ∧ YBt|St) ≥ min
PXMt

PSt
PYBt|StXSt

E[d(XBt,YBt)]≤∆t

I(XSt ∧ YBt|St)

= Rı(∆t).

(2.49)

Combining (2.45) and (2.49), we get along the lines of (2.48) that R ≥ Rı(∆), ∆ ≥

∆min, which gives the converse proof for a strong k-IRS and Theorem 2.1.

In a manner analogous to a strong k-IRS, for a fixed-set sampler the convexity

of RA(∆) in ∆ implies that the counterpart of the right-side of (2.47), with PSt|XMtUt

replaced by 1(St = A), simplifies to RA(∆t). As in (2.48), it follows that R ≥

RA(∆), ∆ ≥ ∆min,A, which gives the converse for Proposition 2.1.

2.5 Discussion

Our current formulation requires that a prespecified subset of DMMS components

be reconstructed from the compressed representations of the output of the sampler.

If the reconstruction procedure were restricted to be a two-step procedure (with

reduced complexity) – wherein the sampled DMMS components are reconstructed

first based on which reconstructions for the unsampled components are formed,

what would be the resulting SRDf? In Corollary 2.1, for the probability of error

distortion measure, such a two-step procedure was seen to be optimal. Which other
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distortion measures allow for the DMMS reconstruction to be performed optimally

in such steps?

In this chapter two particular instances of random samplers with “memory,”

a strong k-IRS and a strong k-MRS were seen to not improve over their memoryless

counterparts in terms of the SRDf. This can be attributed to the fact that the source

under consideration is memoryless, the underlying pmf of the DMMS is known and

at any time instant t ≥ 1, the sampled subset St is allowed to depend only on a

subset of the output of the sampler from previous time instants (St−1 in the case of

the strong k-IRS and k-MRS). Does a k-RS of the form

PSt|Xt
MSt−1 = PSt|XM(t−1)S

t−1 t = 1, . . .

improve over a k-IRS in terms of the SRDf? Does a k-RS of the form

PSt|Xt
MSt−1 = PSt|XMtXM(t−1)S

t−1 , t = 1, . . .

improve over a k-MRS in terms of the SRDf? These questions can be the first step

towards a better understanding the SRDf for a k-RS with memory.
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Chapter 3

Universal Sampling Rate Distortion:

Finite-Valued Multiple Source

3.1 Synopsis

In this chapter, we consider a DMMS with m components whose joint pmf is known

only to belong to a given finite family of pmfs. A subset of k components of the

DMMS are sampled (possibly in a randomized manner) at each time instant and

compressed jointly with the objective of reconstructing a prespecified subset of the

m components under a suitable distortion criterion.

In Section 3.2, we describe our model for universality and introduce the no-

tion of a universal sampling rate distortion function (USRDf) to study the tradeoffs

among sampling mechanisms, estimation of underlying pmf, compression rate and

desired level of accuracy in reconstruction. When the underlying pmf of the DMMS

is not known precisely, the sampling mechanism plays the role of: (i) aiding in the

estimating of the underlying pmf and (ii) sampling appropriate components of the

DMMS to enable optimal compression by the encoder. In Section 3.3, considering
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the sampling mechanisms introduced in Chapter 2, we provide single-letter charac-

terizations for the USRDf and show how each sampler enables improvements over

the previous one in both the roles mentioned above. In Section 3.4, we present the

achievability proofs in an increasing complexity of the sampler complexity, with an

emphasis on the Bayesian setting. A unified converse proof is presented thereafter.

3.2 Model

Let Θ be a finite set (of parameters) and θ a Θ-valued rv with pmf µθ of assumed

full support. For a finite-valued rv XM (as in Chapter 2) we consider a DMMS

{XMt}∞t=1 consisting of i.i.d. repetitions of the rv XM with pmf known only to the

extent of belonging to a finite family of pmfs P = {PXM|θ=τ , τ ∈ Θ} of assumed

full support. As in Chapter 2, YM is a finite reproduction alphabet for XM. Two

settings are studied: in a Bayesian formulation, the pmf µθ is taken to be known

while in a nonBayesian formulation θ is an unknown constant in Θ. A k-RS, unaware

of the underlying pmf of the DMMS is defined below, along the lines of Definition

2.1.

Definition 3.1 In the Bayesian setting, a k-random sampler (k-RS), 1 ≤ k ≤ m,

collects causally at each t = 1, . . . , n, random samples XSt from XMt, where St is a

rv with values in Ak with (conditional) pmf PSt|Xt
MSt−1, Such a k-RS is specified by

a (conditional) pmf PSn|Xn
Mθ with the requirement

PSn|Xn
Mθ = PSn|Xn

M
=

n∏
t=1

PSt|Xt
MSt−1 . (3.1)
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In the nonBayesian setting, the first equality above is redundant.

The output of a k-RS is (Sn, Xn
S ) where Xn

S = (XS1 , . . . , XSn). We consider

successively restrictive choices of a k-RS in (the right-side of) (3.1), namely k-MRS,

k-IRS and k-FS as in (2.2), (2.3) and (2.4), respectively.

Our objective is to reconstruct a subset of DMMS components with indices

in an arbitrary but fixed recovery set B ⊆ M, namely Xn
B, from a compressed

representation of the k-RS output (Sn, Xn
S ), under a suitable distortion criterion.

For n ≥ 1, an n-length block code with a k-RS for a DMMS {XMt}∞t=1 with

alphabet XM and reproduction alphabet YB is (PSn|Xn
M
, fn, ϕn), as in Definition 2.2,

with the distinction that now the code is formed without exact knowledge of the

underlying pmf. Note that an encoder that operates by forming first an explicit

estimate of θ from (Sn, Xn
S ) is subsumed by this definition.

Remark: Throughout this chapter we restrict ourselves to an informed decoder. This

assumption is meaningful for a k-IRS and k-MRS. For a k-IRS, it will be shown to

be not needed.

For a given (single-letter) finite-valued distortion measure d : XB × YB →

R+ ∪ {0}, an n-length block code with k-RS (PS|XM , f, ϕS) will be required to

satisfy one of the following distortion criteria (d,∆) depending on the setting.
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(i) Bayesian: The expected distortion criterion is

E
[
d
(
Xn
B, ϕS

(
Sn, f(Sn, Xn

S )
))]

, E
[ 1

n

n∑
t=1

d
(
XBt,

(
ϕS
(
Sn, f(Sn, Xn

S )
))

t

)]
=
∑
τ∈Θ

µθ(τ)E
[ 1

n

n∑
t=1

d
(
XBt,

(
ϕS
(
Sn, f(Sn, Xn

S )
))

t

)∣∣∣θ = τ
]

≤ ∆.

(3.2)

(ii) NonBayesian: The peak distortion criterion is

max
τ∈Θ

E

[
d
(
Xn
B, ϕS

(
Sn, f(Sn, Xn

S )
))∣∣θ = τ

]
≤ ∆, (3.3)

where the “conditional” expectation denotes, in fact, EPXnMSn|θ=τ = EPXnM|θ=τ
PSn|XnM

.

Definition 3.2 A number R ≥ 0 is an achievable universal k-RS coding rate at

distortion level ∆ if for every ε > 0 and sufficiently large n, there exist n-length

block codes with k-RS of rate less than R + ε and satisfying the distortion criterion

(d,∆+ε) in (3.2) or (3.3) above; and (R,∆) will be termed an achievable universal k-

RS rate distortion pair under the expected or peak distortion criterion. The infimum

of such achievable rates is denoted by RA(∆), RI
ı (∆) and RI

m(∆) for a k-FS, k-IRS

and k-MRS, respectively. We shall refer to RA(∆), RI
ı (∆) as well as RI

m(∆) as the

universal sampling rate distortion function (USRDf), suppressing the dependence

on k.

Remarks: (i) Clearly, the USRDf under (3.2) will be no larger than that under (3.3).
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(ii) For |Θ| = 1, the pmf of the rv XM is, in effect, known and the distortion criteria

and the setting above reduce to that in Chapter 2 and the USRDf is simply a SRDf.

Hence, here onwards, we take |Θ| > 1.

3.3 Universal Sampling Rate Distortion function

Throughout this chapter, a salient theme that recurs is this: an encoder without

prior knowledge of θ and with access to only k instantaneously sampled components

of the DMMS {XMt}∞t=1 can form only a limited estimate of θ. The quality of said

estimate improves steadily from k-FS to k-IRS to k-MRS.

3.3.1 Fixed-Set Sampling

Consider first fixed-set sampling with A ⊆M in (2.4). An encoder f with access to

Xn
A cannot distinguish among pmfs in P (indexed by τ) that have the same PXA|θ=τ .

Accordingly, let Θ1 be a partition of Θ comprising “ambiguity” atoms, with each

such atom consisting of τs with identical marginal pmfs PXA|θ=τ . Indexing the

elements of Θ1 by τ1, let θ1 be a Θ1-valued rv with pmf µθ1 induced by µθ. For each

τ1 ∈ Θ1, let Λ(τ1) be the collection of τs in the atom of Θ1 indexed by τ1. In the

Bayesian setting, clearly

PXA|θ1=τ1 = PXA|θ=τ , τ ∈ Λ(τ1).

In the nonBayesian setting, in order to retain the same notation, we choose PXA|θ1=τ1

to be the right-side above.
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Figure 3.1: Ambiguity atoms for k-FS

When the pmf of the DMMS {XMt}∞t=1 is known, say PXM – corresponding to

|Θ| = 1 – we recall from Chapter 2, that the (U)SRDf for fixed A ⊆M is

RA(∆) = min
XM −◦− XA −◦− YB
E[d(XB,YB)]≤∆

I(XA ∧ YB), ∆min ≤ ∆ ≤ ∆max, (3.4)

with

∆min = E
[

min
yB∈YB

E[d(XB, yB)|XA]
]
, ∆max = min

yB∈YB

[
E[d(XB, yB)|XA]

]
,

which can be interpreted as the (standard) rate distortion function for the DMMS

{XAt}∞t=1 using a modified distortion measure d̃ defined by

d̃(xA, yB) = E[d(XB, yB)|XA = xA].

This fact will serve as a stepping stone to our analysis of USRDf for a k-random

sampler. In the Bayesian setting, we consider a modified distortion measure dτ1 ,
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τ1 ∈ Θ1, given by

dτ1(xA, yB) , E[d(XB, yB)|XA = xA, θ1 = τ1]; (3.5)

the set of (constrained) pmfs

κBA(δ, τ1) , {PθXMYB : θ,XM −◦− θ1, XA −◦− YB, E[dτ1(XA, YB)|θ1 = τ1] ≤ δ},

(3.6)

and the (minimized) conditional mutual information

ρBA(δ, τ1) , min
κBA(δ,τ1)

I(XA ∧ YB|θ1 = τ1) (3.7)

which is akin to (3.4) and will play a basal role. In the nonBayesian setting, the

counterparts of (3.6) and (3.7) are

κnBA (δ, τ1) , {PXMYB |θ=τ = PXM|θ=τPYB |XA,θ1=τ1 : E[d(XB, YB)|θ = τ ] ≤ δ, τ ∈ Λ(τ1)}

(3.8)

and

ρnBA (δ, τ1), min
κnBA (δ,τ1)

I(XA ∧ YB|θ1 = τ1). (3.9)

Remarks: (i) The minima in (3.7) and (3.9) exist as those of convex functions over
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convex, compact sets.

(ii) Clearly, the minimum in (3.9) under pmf-wise constraints (3.8) can be no smaller

than that in (3.7) under pmf-averaged constraints (3.6).

(iii) It is seen in a standard manner that ρBA(δ, τ1) in (3.7) and ρnBA (δ, τ1) in (3.9) are

convex and continuous in δ.

Our first main result states that the USRDf at distortion level ∆ for fixed-

set sampling in the Bayesian setting is a minmax of quantities in (3.7), where the

maximum is over ambiguity atoms τ1 in Θ1, while the minimum is over distortion

thresholds δ = ∆τ1 , τ1 ∈ Θ1 whose mean does not exceed ∆. On the other hand,

in the nonBayesian setting, the USRDf at distortion level ∆ is a maximum over

ambiguity atoms of quantities in (3.9) with δ = ∆, and hence is no smaller than its

Bayesian counterpart.

Theorem 3.1 The Bayesian USRDf for fixed A ⊆M is

RA(∆)= min
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

max
τ1∈Θ1

ρBA(∆τ1 , τ1) (3.10)

for ∆min ≤ ∆ ≤ ∆max, where

∆min = E

[
E[ min

yB∈YB
dθ1(XA, yB)|θ1]

]
= E[ min

yB∈YB
dθ1(XA, yB)],

∆max = E
[

min
yB∈YB

E[dθ1(XA, yB)|θ1]
]
.
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The nonBayesian USRDf is

RA(∆) = max
τ1∈Θ1

ρnBA (∆, τ1), ∆min ≤ ∆ ≤ ∆max (3.11)

where

∆min = max
τ1∈Θ1

min
PYB |XA,θ1=τ1

=PYB |XM,θ=τ

max
τ∈Λ(τ1)

E[d(XB, YB)|θ = τ ]

and

∆max = max
τ1∈Θ1

min
yB∈YB

max
τ∈Λ(τ1)

E[d(XB, yB)|θ = τ ].

Remarks: (i) In fact, the minimizing pmf PYB |XAθ1 in ∆min is a conditional point-

mass.

(ii) We note that for a given distortion level ∆, the set {∆τ1 , τ1 ∈ Θ1 :
∑

τ1∈Θ1

µθ1(τ1)∆τ1 ≤

∆} is a convex, compact set in R|Θ1|. Next, observing that

max
τ1∈Θ1

ρBA(∆τ1 , τ1)

is a convex function of {∆τ1 , τ1 ∈ Θ1}, the minimum in (3.10) exists as that of a

convex function over a convex, compact set.

(iii) The minimizing {∆∗τ1 , τ1 ∈ Θ1} in (3.10) is characterized by the following
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special property: for a given ∆min ≤ ∆ ≤ ∆max, for each τ1 ∈ Θ1, either

ρBA(∆∗τ1 , τ1) ≡ max
τ̃1∈Θ1

ρBA(∆∗τ̃1 , τ̃1) (3.12)

where the right-side does not depend on τ1, or

∆∗τ1 = E[ min
yB∈YB

dτ1(XA, yB)|θ1 = τ1].

By a standard argument in convex optimization, if {∆∗τ1 , τ1 ∈ Θ1} does not satisfy

the property above, then a small perturbation decreases the maximum in (3.12)

leading to a contradiction.

(iv) The ∆min and ∆max for the Bayesian and the nonBayesian settings can be

different.

Example 3.1 For the probability of error distortion measure

d(xB, yB) = 1(xB 6= yB), xB, yB ∈ XB = YB,

the Bayesian USRDf for fixed-set sampling with A ⊆ B in (3.10) simplifies with

(3.7) becoming

ρBA(∆τ1 , τ1) = min
E[ατ1 (XA)1(XA 6=YA)|θ1=τ1]≤∆τ1−(1−E[ατ1 (XA)|θ1=τ1])

I(XA ∧ YA|θ1 = τ1)

(3.13)
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where

ατ1(xA) = max
x̃∈XB

PXB |XAθ1(x̃|xA, τ1) (3.14)

is the MAP estimate of XB on the basis of XA = xA under pmf PXM|θ1=τ1.

The proof of (3.13), (3.14) is along the lines of that of Corollary 2.1 under the

pmf PXM|θ1=τ1 (rather than PXM as in Corollary 2.1), and so is not repeated here.

Furthermore,

∆min = 1−E[αθ1(XA)] and ∆max = 1−E
[

max
xB∈XB

PXB |θ1(xB|θ1)
]
.

The form of the Bayesian USRDf in (3.13) suggests a simple achievability

scheme comprising two steps. Using a MAP or maximum likelihood (ML) estimate

τ̂1 of θ1 on the basis of Xn
A = xnA, the first step entails a lossy reconstruction of xnA

by its codeword ynA, under pmf PXM|θ1=τ̂1 and for a modified distortion measure

d̃τ̂1(xA, yA) , ατ̂1(xA)1(xA 6= yA)

with a corresponding reduced threshold

∆τ̂1 − (1−E[ατ̂1(XA)|θ1 = τ̂1]).

This is followed by a second step of reconstructing xnB from the output ynA of the
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previous step as a MAP estimate

ynB = arg max
yn∈YnB

PXB |XAθ1(yn|ynA, τ̂1);

the corresponding probability of estimation error coincides with the mentioned re-

duction 1−E[ατ̂1(XA)|θ1 = τ̂1] in the threshold.

In the nonBayesian setting, the USRDf in (3.11), (3.9) simplifies with

ρnBA (∆, τ1) = min
PYA|XA,θ1=τ1

PYB\A|YA,θ1=τ1
=PYB |XM,θ=τ

E[1(XB 6=YB)|θ=τ ]≤∆, τ∈Λ(τ1)

I(XA ∧ YA|θ1 = τ1), (3.15)

for ∆min ≤ ∆ ≤ ∆max, where

∆min = max
τ1∈Θ1

min
PYB |XA,θ1=τ1

max
τ∈Λ(τ1)

(
1− P (XB = YB|θ = τ)

)

and

∆max = max
τ1∈Θ1

min
yB∈YB

max
τ∈Λ(τ1)

(
1− PXB |θ(yB|τ)

)
.

This leads to the following achievability scheme. With τ̂1 as the ML estimate of

θ1 formed from Xn
A = xnA, first xnA is reconstructed as ynA according to PYA|XA,θ1=τ̂1

resulting from the minimization in (3.15). This is followed by the reconstruction of

xnB from ynA by means of the estimate

ynB = arg max
yn∈YnB

PYB |YAθ1(yn|ynA, τ̂1)
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under pmf PYB |YAθ1 which, too, is obtained from the minimization in (3.15).

0

1

0

1

1− pτ

pτ

1− qτ

1− qτ

qτ

qτ

X1 X2

Figure 3.2: Virtual BSC (qτ )

Example 3.2 Let M = {1, 2} and X1 = X2 = {0, 1}, consider a DMMS with

PX1X2|θ=τ represented by a virtual binary symmetric channel (BSC) shown in Figure

3.2, where pτ , qτ ≤ 0.5, τ ∈ Θ, where Θ is a given finite set. For A = {1}, B =

{1, 2}, and the probability of error distortion measure of Example 3.1 , the Bayesian

USRDf reduces to

R{1}(∆)= min
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

max
τ1∈Θ1

(
h(pτ1)− h

(∆τ1 − qτ1
1− qτ1

))
,

for ∆min ≤ ∆ ≤ ∆max, where

∆min = E[qθ1 ], ∆max = E[pθ1 + qθ1 − pθ1qθ1 ];

and qτ1 = PX2|X1θ1(0|1, τ1), τ1 ∈ Θ1; and the nonBayesian USRDf is

R{1}(∆) = max
τ1∈Θ1

(
h(pτ1)− min

τ∈Λ(τ1)
h
(∆− qτ

1− qτ

))
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with

∆min = max
τ∈Θ

qτ and ∆max = max
τ∈Θ

(pτ + qτ − pτqτ ).

3.3.2 Independent Random Sampling

Turning to a k-IRS in (2.3), the freedom now given to the sampler to rove over all

k-sized subsets in Ak engenders a partition Θ2 of Θ1 (and hence a finer partition

of Θ) with smaller ambiguity atoms. Let A1, . . . , A|Ak|, where |Ak| =
(
m
k

)
, be any

fixed ordering of Ak. Let Θ2 be a partition of Θ consisting of ambiguity atoms,

with each atom formed by τs with identical (ordered) collections of marginal pmfs(
PXAi |θ=τ , i = 1, . . . , |Ak|

)
.

Θ

Θ2

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Pτ
·

Figure 3.3: Ambiguity atoms for k-IRS: Θ2 is a refinement of Θ1

Clearly, Θ2 is a refinement of Θ1 (for any Ai). Indexing the elements of Θ2 by

τ2, let θ2 be a Θ2-valued rv with pmf µθ2 derived from µθ. For each τ2 in Θ2, let
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Λ(τ2) be the collection of τs in the atom indexed by τ2. In analogy with (3.7) and

(3.9), we define counterparts in the Bayesian and nonBayesian settings as

ρBı (δ, PS, τ2), min
κBı (δ,PS ,τ2)

I(XS ∧ YB|S, θ2 = τ2); (3.16)

ρnBı (δ, PS, τ2), min
κnBı (δ,PS ,τ2)

I(XS ∧ YB|S, θ2 = τ2), (3.17)

where dτ2 is defined as in (3.5) with θ2 = τ2 replacing θ1 = τ1, and

κBı (δ, PS, τ2) ,
{
PθXMSYB = µθPXM|θPSPYB |SXSθ2 :∑

A∈Ak

PS(A)E[dτ2(XA, YB)|S = A, θ2 = τ2] ≤ δ
}
,

κnBı (δ, PS, τ2) ,
{
PXMSYB |θ=τ = PXM|θ=τPSPYB |SXS ,θ2=τ2 :∑

A∈Ak

PS(A)E[d(XB, YB)|S = A, θ = τ ] ≤ δ, τ ∈ Λ(τ2)
}
.

Theorem 3.2 The Bayesian USRDf for a k-IRS is

RI
ı (∆) = min

PS, {∆τ2 , τ2∈Θ2}
E[∆θ2

]≤∆

max
τ2∈Θ2

ρBı (∆τ2 , PS, τ2), ∆min ≤ ∆ ≤ ∆max, (3.18)
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where

∆min = min
A∈Ak

E
[
E[ min

yB∈YB
dθ2(XA, yB)|θ2]

]
and ∆max = min

A∈Ak
E
[

min
yB∈YB

E[dθ2(XA, yB)|θ2]
]
.

The nonBayesian USRDf is

RI
ı (∆) = min

PS
max
τ2∈Θ2

ρnBı (∆, PS, τ2), ∆min ≤ ∆ ≤ ∆max, (3.19)

for

∆min = min
PS

max
τ2∈Θ2

∑
A∈Ak

PS(A) min
PYB |SXS,θ2=τ2

=PYB |SXM,θ=τ

max
τ∈Λ(τ2)

E[d(XB, YB)|S = A, θ = τ ]

and

∆max = max
τ2∈Θ2

min
yB∈YB

max
τ∈Λ(τ2)

E[d(XB, yB)|θ = τ ].

Remarks: (i) In Bayesian and nonBayesian settings, the USRDf remains unchanged

upon restricting the decoder to be uninformed (as in Definition 2.3), i.e., RU
ı (∆) =

RI
ı (∆). This is shown by means of the achievability proof of the theorem above in

Section 3.4. Hence, hereafter the USRDf for a k-IRS is denoted simply by Rı(∆).

(ii) For a k-IRS we restrict ourselves to the interesting case of k < |B|, for otherwise

it would suffice to choose St = B, t = 1, . . . , n.

(iii) Akin to a k-FS, the optimizing PS, {∆∗τ2 , τ2 ∈ Θ2} in (3.18) has the following
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special property: for a given ∆min ≤ ∆ ≤ ∆max, for each τ2 ∈ Θ2, either

ρBı (∆∗τ2 , PS, τ2) = max
τ̃2∈Θ2

ρBı (∆∗τ̃2 , PS, τ̃2)

or

∆∗τ2 =
∑
A∈Ak

PS(A)E[ min
yB∈YB

dτ2(XA, yB)|θ2 = τ2].

(iv) In general, a k-IRS will outperform a k-FS in two ways. First, the former

enables a better approximation of θ in the form of θ2 whereas the latter estimates

θ1 = θ1(θ2). Second, random sampling enables a “time-sharing” over various fixed-

set samplers, that can outperform strictly the best fixed-set choice. Both these

advantages of a k-IRS over fixed-set sampling are illustrated in Examples 3.3 and

3.4.

Example 3.3 This example illustrates that a k-IRS can perform strictly better than

the best k-FS. For M = B = {1, 2}, and Xi = Yi = {0, 1}, i = 1, 2, consider a

DMMS with PX1X2|θ=τ = PX1|θ=τPX2|θ=τ where

PX1|θ(0|τ) = 1− pτ , PX2|θ(0|τ) = 1− qτ , τ ∈ Θ,

and 0 < pτ , qτ < 0.5. Under the distortion measure d(xB, yB) = 1(x1 6= y1)+1(x2 6=
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y2), for a k-FS with k = 1, the Bayesian USRDf for sampling set A = {1} is

R{1}(∆)= min
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

max
τ1∈Θ1

(
h(pτ1)−h

(
∆τ1−qτ1

))
, E[qθ] ≤ ∆ ≤ E[pθ + qθ]

where qτ1 = E[qθ|θ1 = τ1], and the nonBayesian USRDf is

R{1}(∆) = max
τ1∈Θ1

(
h(pτ1)− min

τ∈Λ(τ1)
h
(
∆− qτ

))
, max

τ∈Θ
qτ ≤ ∆ ≤ max

τ∈Θ
(pτ + qτ ).

Turning to a k-IRS with k = 1, clearly, Θ2 = Θ. For a k-IRS the Bayesian

USRDf is

Rı(∆)= min
PS, {∆τ , τ∈Θ}

E[∆θ ]≤∆

max
τ∈Θ

min
∆1τ , ∆2τ

PS({1})∆1τ+PS({2})∆2τ≤∆τ

I, min{E[pθ],E[qθ]} ≤ ∆ ≤ E[pθ + qθ]

and the nonBayesian USRDf is

Rı(∆) = min
PS

max
τ∈Θ

min
∆1τ , ∆2τ

PS({1})∆1τ+PS({2})∆2τ≤∆

I, (3.20)

for min
0≤α≤1

max
τ∈Θ

(αpτ + (1− α)qτ ) ≤ ∆ ≤ max
τ∈Θ

(pτ + qτ ), and where I equals

PS({1})
(
h(pτ )− h

(
∆1τ − qτ

))
+ PS({2})

(
h(qτ )− h

(
∆2τ − pτ

))
.

An analytical comparison of the USRDfs shows the strict superiority of the k-IRS

over the k-FS, as seen – for instance – by the lower values of ∆min for the former.
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Example 3.4 In Example 3.3, assume that

pτ ≥ qτ , τ ∈ Θ.

For a k-FS with k = 1, the nonBayesian USRDf is

R{1}(∆) = max
τ1∈Θ1

(
h(pτ1)− min

τ∈Λ(τ1)
h
(
∆− qτ

))
,

R{2}(∆) = max
τ1∈Θ1

(
h(qτ1)− min

τ∈Λ(τ1)
h
(
∆− pτ

))
.

(3.21)

Now, observe that for each τ ∈ Θ

h(pτ )− h(δ − qτ ) ≤ h(qτ )− h(δ − pτ )

holds for pτ ≤ δ ≤ pτ + qτ . Thus, for a k-IRS with k = 1, the nonBayesian USRDf

in (3.20) simplifies to

Rı(∆) = max
τ∈Θ

h(pτ )− h(∆− qτ )

which is strictly smaller than the USRDf for the better k-FS in (3.21). The superior

performance of the k-IRS is enabled by its ability to estimate simultaneously both

PX1|θ and PX2|θ (and thereby PX1X2|θ); a k-FS can estimate only one of PX1|θ or

PX2|θ.
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3.3.3 Memoryless Random Sampling

Lastly, for a k-MRS in (2.2), the ability of the sampler to depend instantaneously on

the current realization of the DMMS enables an encoder with access to the sampler

output to distinguish among all the pmfs in P . Accordingly, for a k-MRS, Θ itself

serves as the counterpart of the partitions Θ1 (for a k-FS) and Θ2 for a k-IRS. For

a rv U with fixed pmf PU on some finite set U , and for fixed PS|XMU , we define the

counterparts of (3.16) and (3.17) as

ρBm(δ, PU , PS|XMU , τ) , min
κBm(δ,PU ,PS|XMU ,τ)

I(XS ∧ YB|S, U, θ = τ), (3.22)

and

ρnBm (δ, PU , PS|XMU , τ), min
κnBm (δ,PU ,PS|XMU ,τ)

I(XS ∧ YB|S, U, θ = τ), (3.23)

where the minimization in (3.22) and (3.23), in effect, is with respect to PYB |SXSUθ

and the sets of (constrained) pmfs are

κBm(δ,PU ,PS|XMU ,τ),{PθUXMSYB =µθPUPXM|θPS|XMUPYB |SXSUθ :E[d(XB, YB)|θ = τ ]≤ δ},

and

κnBm (δ, PU , PS|XMU , τ) , {PUXMSYB |θ=τ = PUPXM|θ=τPS|XMUPYB |SXSU,θ=τ :

E[d(XB, YB)|θ = τ ] ≤ δ}.
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Here, U plays the role of a “time-sharing” rv, as will be seen below.

Theorem 3.3 For a k-MRS, the Bayesian USRDf is

RI
m(∆) = min

PU ,PS|XMU ,{∆τ , τ∈Θ}
E[∆θ ]≤∆

max
τ∈Θ

ρBm(∆τ , PU , PS|XMU , τ), ∆min ≤ ∆ ≤ ∆max

(3.24)

where

∆min = min
PS|XM

E

[
min
yB∈YB

E
[
d
(
XB, yB

)∣∣S,XS, θ
]]

and

∆max = min
PS|XM

E

[
min
yB∈YB

E
[
d
(
XB, yB

)∣∣S, θ]]. (3.25)

The nonBayesian USRDf is

RI
m(∆) = min

PU ,PS|XMU

max
τ∈Θ

ρnBm (∆, PU , PS|XMU , τ), ∆min ≤ ∆ ≤ ∆max, (3.26)

where

∆min = min
PS|XM

max
τ∈Θ

E
[

min
yB∈YB

E
[
d(XB, yB)|S,XS, θ = τ

]∣∣θ = τ
]

(3.27)

and

∆max = min
PS|XM

max
τ∈Θ

∑
Ai∈Ak

PS|θ(Ai|τ) min
yB∈YB

E
[
d(XB, yB)|S = Ai, θ = τ

]
. (3.28)

It suffices to take |U| ≤ 2|Θ|+ 1.
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In (3.25), (3.27) and (3.28), it is readily seen that conditionally deterministic

samplers (2.19) attain the minima in ∆min and ∆max. In Chapter 2, among the class

of memoryless random samplers, deterministic samplers were seen to be optimal

for every feasible distortion level. In the universal setting, too, such deterministic

samplers are seen to be optimal for every ∆min ≤ ∆ ≤ ∆max.

Theorem 3.3 is equivalent to

Proposition 3.1 For a k-MRS, the Bayesian USRDf is

RI
m(∆) = min

PU , δw, {∆τ , τ∈Θ}
E[∆θ ]≤∆

max
τ∈Θ

ρBm(∆τ , PU , δw, τ), ∆min ≤ ∆ ≤ ∆max (3.29)

with ∆min and ∆max as in (3.25), and the nonBayesian USRDf is

RI
m(∆) = min

PU , δw
max
τ∈Θ

ρnBm (∆, PU , δw, τ), ∆min ≤ ∆ ≤ ∆max (3.30)

with ∆min and ∆max as in (3.27) and (3.28), respectively. It suffices if |U| ≤ 2|Θ|+1.

Remark: The proposition above and Theorem 2.3 involve a similar set of techniques.

In Appendix A, we provide a unified proof for the theorem above and Theorem 2.3.

The achievability proof of Theorem 3.3, by dint of Proposition 3.1, will use a deter-

ministic sampler based on the minimizing w from (3.29) or (3.30).

Example 3.5 This example compares the USRDfs for a k-MRS and a k-IRS and is

an adaptation of Example 3.2 above (and also of Example 2.3). Consider Example

3.2 with qτ = 0.5 for every τ ∈ Θ, whereby PX1X2|θ=τ = PX1|θ=τPX2|θ=τ . Clearly,
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Θ2 = Θ. For a k-IRS, the Bayesian USRDf is

Rı(∆) = min
{∆τ ,τ∈Θ}
E[∆θ ]≤∆

max
τ∈Θ

(
h(0.5)− h

(∆τ − pτ
1− pτ

))
= h(0.5)− h

(∆− p
1− p

)

for 0 ≤ ∆ ≤ p, where p = E[pθ], and the nonBayesian USRDf is

Rı(∆) = h(0.5)−min
τ∈Θ

h
(∆− pτ

1− pτ

)
, 0 ≤ ∆ ≤ max

τ∈Θ
pτ .

For a k-MRS, in ρBm(δ, PU , PS|XMU , τ) as well as ρnBm (δ, PU , PS|XMU , τ), PU = a

point-mass and

PS|XMU(s|xM, u) = PS|XM(s|xM) =



1, s = 1, xM = 00 or 11

1, s = 2, xM = 01 or 10

0, otherwise

are uniformly optimal for all 0 ≤ δ ≤ pτ and for all τ ∈ Θ. Then, the Bayesian

USRDf is

RI
m(∆) = min

{∆τ ,τ∈Θ}
E[∆θ ]≤∆

max
τ∈Θ

(
h(pτ )− h(∆τ )

)
, 0 ≤ ∆ ≤ p

and the nonBayesian USRDf is

RI
m(∆) = max

τ∈Θ
h(pτ )− h(∆), 0 ≤ ∆ ≤ max

τ∈Θ
pτ .
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Clearly, in both the Bayesian and nonBayesian settings RI
m(∆) < Rı(∆).

In closing this section, standard properties of the USRDf for the fixed-set sam-

pler, k-IRS and k-MRS in the Bayesian and nonBayesian settings are summarized

below, with the proof provided in Appendix D.1.

Lemma 3.1 The right-sides of (3.10), (3.11), (3.18), (3.19), (3.24) and (3.26) are

finite-valued, decreasing, convex, continuous functions of ∆min ≤ ∆ ≤ ∆max.

3.4 Proofs of Main Results

3.4.1 Achievability Proofs

Our achievability proofs emphasize the Bayesian setting. Counterpart proofs in the

nonBayesian setting use similar sets of ideas, and so we limit ourselves to pointing

out only the distinctions between these and their Bayesian brethren. In the Bayesian

setting, the achievability proofs successively build upon each other according to

increasing complexity of the sampler, and are presented in the order: fixed-set

sampler, k-IRS and k-MRS.

A common theme in the achievability proofs for a k-FS, a k-IRS and a k-MRS

involves forming estimates τ̂1 of the underlying τ1 in Θ1, τ̂2 of τ2 in Θ2 and τ̂ of

τ in Θ, respectively. The assumed finiteness of Θ enables τ̂1 or τ̂2 to be conveyed

rate-free to the decoder. Codes for achieving USRDf at a prescribed distortion level

∆ are chosen from among fixed-set sampling rate distortion codes for τ1s in Θ1
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or from among IRS codes for τ2s in Θ2 or from among MRS codes for τs in Θ.

Such codes, in the Bayesian setting, correspond to appropriate distortion thresholds

that, in effect, average to yield a distortion level ∆; in the nonBayesian setting, a

suitable “worst-case” distortion must not exceed ∆. A chosen code corresponds to

an estimate τ̂1, τ̂2 or τ̂ .

A mainstay of our achievability proofs is the existence of sampling rate distor-

tion codes with fixed-set sampling for a DMMS with known pmf, as in Proposition

2.1.

Theorem 3.1: Considering first the Bayesian setting, observe that

∆min = min
θ,XM −◦− θ1,XA −◦− YB

E[d(XB, YB)]

= min
θ,XM −◦− θ1,XA −◦− YB

E[E[d(XB, YB)|XA, θ1]]

= min
θ,XM −◦− θ1,XA −◦− YB

E[dθ1(XA, YB)] by (3.5)

= E[E[ min
yB∈YB

dθ1(XA, yB)|θ1]]

and

∆max = min
θ,XM −◦− θ1,XA −◦− YB

PXAYB |θ1=τ1
=PXA|θ1=τ1

PYB |θ1=τ1
,τ1∈Θ1

E[d(XB, YB)]

= E
[

min
PXAYB |θ1=PXA|θ1PYB |θ1

E[dθ1(XA, YB)|θ1]
]

= E
[

min
yB∈YB

E[dθ1(XA, yB)|θ1]
]
.
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Now, consider a partition Θ1 of Θ as in Section 3.3. Based on the sampler

output Xn
A, the encoder forms an ML estimate of θ1 as

τ̂1,n = τ̂1,n(Xn
A) , arg max

τ1∈Θ1

PXn
A|θ1(Xn

A|τ1).

For each τ1 in Θ1, observe that {XAt}∞t=1 is a DMMS with pmf Pτ1 , PXA|θ1=τ1 .

The sequence of ML estimates {τ̂1,n}n converges in Pτ1-probability to τ1, so that for

every ε > 0 and τ1 in Θ1, there exists an N1(ε, τ1) such that

Pτ1(τ̂1,n 6= τ1) = Pτ1(τ̂1,n(Xn
A) 6= τ1) ≤ ε

2dmax

, n ≥ N1(ε, τ1),

where dmax = max
xB∈XB , yB∈YB

d(xB, yB). By the finiteness of Θ1, there exists an N(ε)

such that simultaneously for all τ1 ∈ Θ1,

Pτ1(τ̂1,n 6= τ1) ≤ ε

2dmax

, n ≥ N(ε)

and consequently

P (τ̂1,n 6= θ1) =
∑
τ1∈Θ1

µθ1(τ1)Pτ1(τ̂1,n 6= τ1) ≤ ε

2dmax

, n ≥ N(ε). (3.31)

For a fixed ∆min ≤ ∆ ≤ ∆max, let {∆τ1 , τ1 ∈ Θ1} yield the minimum in (3.10).

For each τ1 in Θ1, for the DMMS {XMt}∞t=1 with pmf PXM|θ1=τ1 and distortion

measure dτ1 , there exists as in the Proof of Proposition 2.1 – with PXM = PXM|θ1=τ1
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and dA = dτ1 – a fixed-set sampling rate distortion code (fτ1 , ϕτ1), fτ1 : X n
A →

{1, . . . , J} and ϕτ1 : {1, . . . , J} → YnB of rate 1
n

log J ≤ max
τ1∈Θ1

ρBA(∆τ1 , τ1) + ε
2

=

RA(∆) + ε
2

and with expected distortion

E[dτ1(Xn
A, ϕτ1(fτ1(Xn

A)))|θ1 = τ1] ≤ ∆τ1 +
ε

2

for all n ≥ N2(ε, τ1).

A code (f, ϕ), with f taking values in J , {1, . . . , |Θ1|} × {1, . . . , J} is con-

structed as follows. Order (in any manner) the elements of Θ1. The encoder f ,

dictated by the estimate τ̂1,n, is

f(xnA) , (τ̂1,n(xnA), fτ̂1,n(xnA)), xnA ∈ X n
A .

The decoder is

ϕ(τ̂1,n, j) , ϕτ̂1,n(j), (τ̂1,n, j) ∈ J .

The rate of the code is

1

n
log |J | = 1

n
log |Θ1|+

1

n
log J ≤ RA(∆) + ε, (3.32)
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for all n large enough, by the finiteness of Θ1.

The code (f, ϕ) is seen to satisfy

E[d(Xn
B, ϕ(f(Xn

A)))] ≤ E[1(τ̂1,n = θ1)d(Xn
B, ϕτ̂1,n(fτ̂1,n(Xn

A)))] + P (τ̂1,n 6= θ1)dmax

= E[1(τ̂1,n = θ1)d(Xn
B, ϕθ1(fθ1(Xn

A)))] + P (τ̂1,n 6= θ1)dmax

≤ E
[
d(Xn

B, ϕθ1(fθ1(Xn
A)))

]
+ P (τ̂1,n 6= θ1)dmax. (3.33)

The first term on the right-side of (3.33) is

E

[ 1

n

n∑
t=1

d
(
XBt, (ϕθ1(fθ1(Xn

A)))t
)]

= E

[ 1

n

n∑
t=1

E
[
d(XBt, (ϕθ1(fθ1(Xn

A)))t)|Xn
A, θ
]]

= E

[ 1

n

n∑
t=1

E
[
d(XBt, (ϕθ1(fθ1(Xn

A)))t)|XAt, θ
]]
, since PXn

M|θ =
n∏
t=1

PXMt|θ

= E

[ 1

n

n∑
t=1

E
[
d(XBt, (ϕθ1(fθ1(Xn

A)))t)|XAt, θ1

]]
, since θ −◦− θ1 −◦− Xn

A

= E

[ 1

n

n∑
t=1

dθ1
(
XAt, (ϕθ1(fθ1(Xn

A)))t
)]
, by (3.5)

= E[dθ1(Xn
A, ϕθ1(fθ1(Xn

A)))]. (3.34)

Combining (3.33) and (3.34),

E[d(Xn
B, ϕ(f(Xn

A)))] ≤ E[dθ1(Xn
A, ϕθ1(fθ1(Xn

A)))] + P (τ̂1,n 6= θ1)dmax

≤ E [∆θ1 ] + ε ≤ ∆ + ε, (3.35)
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by (3.31) for all n large enough. Finally, we note that (3.32) and (3.35) hold simul-

taneously for all n large enough.

In the nonBayesian setting, the achievability proof follows by adapting the

steps above with the following differences. For each τ1 in Θ1, a fixed-set sampling

rate distortion code (fτ1 , ϕτ1) is chosen now with expected distortion

E[d(Xn
B, ϕτ1(fτ1(Xn

A)))|θ = τ ] ≤ ∆ + ε
2

for every τ in Λ(τ1) and of rate 1
n

log |fτ1| ≤

RA(∆) + ε
2
, where RA(∆) is the nonBayesian USRDf for a fixed-set sampler.

Theorem 3.2: In the Bayesian setting, for a given ∆min ≤ ∆ ≤ ∆max, consider the

PS, {∆τ2 , τ2 ∈ Θ2} that attain the (outer) minimum in (3.18). For the correspond-

ing minimizing PYB |SXSθ2 in (3.18) (by way of (3.16))

max
τ2∈Θ2

ρBı (∆τ2 , PS, τ2) = max
τ2∈Θ2

∑
Ai∈Ak

PS(Ai)I(XAi ∧ YB|S = Ai, θ2 = τ2) (3.36)

and let

∆Ai,τ2 , E[d(XB, YB)|S = Ai, θ2 = τ2], Ai ∈ Ak, τ2 ∈ Θ2.

The second expression in (3.36) suggests an achievability scheme using an IRS code

(as in the proof of Theorem 2.1) governed by θ2. Our achievability proof comprises

two phases. In the first phase, an estimate τ̂2 of θ2 is formed based on the output

of a k-IRS that chooses each Ai in Ak repeatedly for N time instants. The second

phase, of length n, entails choosing each St = Ai repeatedly for ≈ nPS(Ai) time
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instants and an IRS code governed by τ̂2 of expected distortion

∑
i

PS(Ai)∆Ai,τ̂2

is applied to the output of the sampler. This predetermined selection of sampling

sets obviates the need for the decoder to be additionally informed.

Denote |Ak| by Mk =
(
m
k

)
. Fix ε > 0 and 0 < ε′ < ε. In the first phase, a

k-IRS is chosen to sample each Ai ∈ Ak over disjoint time-sets µi of length N . The

union of the time-sets µi, i ∈ Mk , {1, . . . ,Mk} is denoted by µ , {1, . . . ,MkN}.

Based on the sampler output, an ML estimate τ̂2,N = τ̂2,N(Sµ, Xµ
S ) of θ2 is formed

with

P (τ̂2,N 6= θ2) ≤ ε′

2dmax

, (3.37)

for N ≥ Nε′ , say.

In the second phase, we denote the next set of n time instants, i.e., {MkN +

1, . . . ,MkN + n} simply by ν , {1, . . . , n}. Further, for each i in Mk, define the

time-sets νAi ⊂ ν, made up of consecutive time instants, as

νAi =
{
t : dn

i−1∑
j=1

PS(Aj)e+ 1 ≤ t ≤ dn
i∑

j=1

PS(Aj)e
}
,
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and note that the union of νAis is ν, and

∣∣∣∣ |νAi |n − PS(Ai)

∣∣∣∣ ≤ 1

n
, i ∈Mk.

In this phase, the k-IRS is now chosen (deterministically) as follows:

St = st = Ai, t ∈ νAi , i ∈Mk.

For each DMMS {XMt}∞t=1 with pmf PXM|θ2=τ2 , τ2 ∈ Θ2, and for each Ai

in Ak and its corresponding distortion measure dτ2 , there exists as in the proof of

Proposition 2.1 – with PXM = PXM|θ2=τ2 and dA = dτ2 – a fixed-set sampling rate

distortion code (f τ2Ai , ϕ
τ2
Ai

), f τ2Ai : X νAi
Ai
→ {1, . . . , Jτ2Ai} and ϕτ2Ai : {1, . . . , Jτ2Ai} → Y

νAi
B

of rate 1
|νAi |

log Jτ2Ai ≤ I(XAi ∧ YB|S = Ai, θ2 = τ2) + ε′

4
(cf. (3.36)) and with

E

[
dτ2
(
X
νAi
Ai
, ϕτ2Ai(f

τ2
Ai

(X
νAi
Ai

))
)∣∣θ2 = τ2

]
≤ ∆Ai,τ2 +

ε′

2
,

for all |νAi | ≥ NAi(ε
′, τ2). Note that

∑
τ2∈Θ2

µθ2(τ2)

Mk∑
i=1

PS(Ai)∆Ai,τ2 ≤ ∆

and
Mk∑
i=1

PS(Ai)I(XAi ∧ YB|S = Ai, θ2 = τ2) ≤ Rı(∆)
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for every τ2 in Θ2.

Consider a (composite) code (f, ϕS) as follows. Denote n′ , |µ| + |ν| =

MkN +n, and the encoder f consisting of a concatenation of encoders is defined by

f(sn
′
, xn

′
) ,

(
τ̂2,N , f

τ̂2,N
A1

(x
νA1
A1

), . . . , f
τ̂2,N
AMk

(x
νAMk
AMk

)
)
.

The decoder ϕS, which is aware of the predetermined sequence of sampling sets, is

defined by

ϕS(sn
′
, τ̂2,N , j1, . . . , jMk

) = ϕS(τ̂2,N , j1, . . . , jMk
) ,

(
y1, . . . , y1︸ ︷︷ ︸
first phase

, ϕ
τ̂2,N
A1

(j1), . . . , ϕ
τ̂2,N
AMk

(jMk
)︸ ︷︷ ︸

second phase

)
,

for each encoder output (τ̂2,N , j1, . . . , jMk
), where y1 ∈ YM is an arbitrary symbol.

Clearly, |Θ2| × max
τ2∈Θ2

Mk∏
i=1

Jτ2Ai indices would suffice to describe all possible encoder

outputs.

The rate of the code is

1

n′
log |Θ2|+ max

τ2∈Θ2

1

n′

Mk∑
i=1

log Jτ2Ai≤ max
τ2∈Θ2

Mk∑
i=1

|νAi |
n

1

|νAi |
log Jτ2Ai +

1

n′
log |Θ2|

≤ max
τ2∈Θ2

Mk∑
i=1

(
PS(Ai)+

1

n

)(
I(XAi ∧ YB|S = Ai,θ2 = τ2)+

ε′

4

)

+
1

n′
log |Θ2|
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≤ max
τ2∈Θ2

Mk∑
i=1

PS(Ai)I(XAi ∧ YB|S = Ai, θ2 = τ2) + ε′

< Rı(∆) + ε, (3.38)

where the previous inequality holds for all n large enough. Denoting the output of

the decoder by Y n′
B , ϕS(f(Sn

′
, Xn′

S ))

E[d(Xn′

B , Y
n′

B )]=
1

n′
E

[∑
t∈µ

d(XBt, YBt) +
∑
t∈ν

(
1(τ̂2,N 6= θ2)d(XBt, YBt)

+ 1(τ̂2,N = θ2)d(XBt, YBt)
)]
. (3.39)

The first two terms on the right-side of (3.39) are

E

[ 1

n′

∑
t∈µ

d(XBt, YBt) +
1(τ̂2,N 6= θ2)

n′

∑
t∈ν

d(XBt, YBt)
]
≤ MkNdmax

n′
+
ε′

2
, (3.40)

by (3.37) for N large enough, and the last term on the right-side of (3.39) is

E

[
1(τ̂2,N = θ2)

n′

∑
t∈ν

d(XBt, YBt)
]

≤
Mk∑
i=1

|νAi |
n
E

[
1(τ̂2,N = θ2)d

(
X
νAi
B , ϕ

τ̂2,N
Ai

(f
τ̂2,N
Ai

(X
νAi
Ai

))
)]

≤
Mk∑
i=1

|νAi |
n
E
[
d
(
X
νAi
B , ϕθ2Ai(f

θ2
Ai

(X
νAi
Ai

))
)]

=

Mk∑
i=1

|νAi|
n
E
[
dθ2
(
X
νAi
A , ϕθ2Ai(f

θ2
Ai

(X
νAi
Ai

))
)]

≤
Mk∑
i=1

(
PS(Ai) +

1

n

)
E
[
∆Ai,θ2 +

ε′

2

]
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≤ ∆ +
ε′

2
+

1

n

Mk∑
i=1

E[∆Ai,θ2 ] +
Mk

n

ε′

2
. (3.41)

From (3.39)-(3.41), we have

E[d(Xn′

B , Y
n′

B )] ≤ ∆ + ε, (3.42)

for n and N large enough. Finally, we note that (3.38) and (3.42) hold simulta-

neously for all n and N large enough. Remark (i) following Theorem 3.2 is now

immediate by the choice of codes with “uninformed” decoder in the proof above.

For the nonBayesian setting, achievability follows by adapting the proof above

in a manner similar to that for a k-FS in Theorem 3.1.

Theorem 3.3: The achievability proof relies on the deterministic sampler justified

by Proposition 3.1. In the Bayesian setting, for a given ∆min ≤ ∆ ≤ ∆max, let

PU , PS|XMU = δw, {∆τ , τ ∈ Θ} attain the minimum in (3.29). For the correspond-

ing minimizing PYB |SXSUθ in (3.22), the right-side of (3.29) is

max
τ∈Θ

ρBm(∆τ , PU , δw, τ) = max
τ∈Θ

∑
u∈U

PU(u)I(XS ∧ YB|S, U = u, θ = τ) (3.43)

and we set

∆Ai,u,τ , E[d(XB, YB)|S = Ai, U = u, θ = τ ], Ai ∈ Ak, τ ∈ Θ, u ∈ U .
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Our achievability proof uses a k-MRS in two distinct modes. First, a deterministic

k-MRS is chosen so as to form an estimate τ̂ of θ from the sampler output. Next, for

each U = u, a suitable deterministic k-MRS is chosen in accordance with w(xM, u),

and an MRS code (as in the proof of Theorem 2.2) governed by τ̂ of expected

distortion

∼
≤
∑
Ai

PS|Uθ(Ai|u, τ̂)∆Ai,u,τ̂

is applied to the sampler output. Concatenation of such codes corresponding to

various u ∈ U yields, in effect, time-sharing that serves to achieve (3.43). To simplify

the notation, the conditioning on U = u will be suppressed except when needed.

Fix ε > 0 and 0 < ε′ < ε.

(i) We devise a deterministic k-MRS on a time-set µ, based on whose output

an estimate τ̂N = τ̂N(Sµ, Xµ
S ) = τ̂N(Sµ) of θ is formed with

P (τ̂N 6= θ) ≤ ε′

4dmax

, (3.44)

for N ≥ Nε′ . The estimate τ̂N is formed from only the sampling sequence Sµ and

thus is available to the encoder as well as the decoder. The k-MRS is chosen on the

time-set µ, to signal the occurrences of each x ∈ XM to the encoder and decoder

through Sµ above; for each x ∈ XM, a distinct A ∈ Ak is chosen. If |Ak| ≥ |XM|,

a trivial one-to-one mapping from XM to Ak enables Sµ to determine Xµ
M, where

Sµ is of length N , say. Then τ̂N is taken to be the ML estimate of θ based on Xµ
M,
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which satisfies (3.44).

When |Ak| < |XM|, a k-MRS is chosen attuned variously to disjoint subsets

of XM, of size |Ak| − 1, on corresponding disjoint time-sets µl of length N , l =

1, . . . ,
⌈
|XM|
|Ak|−1

⌉
, as follows. In each µl, the k-MRS signals the occurrence (or not) of

XMt = x in the lth-subset of XM in a (deterministic) manner by choosing |Ak| − 1

distinct sampling sets in Ak; the nonoccurrence of symbols from this lth-subset of

XM is indicated by the remaining (dummy) sampling set in Ak. We denote
⋃
l

µl by

µ. Finally, τ̂N is taken as the ML estimate of θ based on the sampling sequence Sµ

of length
⌈
|XM|
|Ak|−1

⌉
N = N ′, say.

(ii) Next, for each U = u, a k-MRS is chosen according to PS|XM,U=u = δw(·,u)

for n time instants. Then, for a DMMS {XMt}∞t=1 with pmf PXM|θ=τ̂N an MRS code

comprising a concatenation of fixed-set sampling rate distortion codes corresponding

to the Ais in Ak is applied to the sampler output.

Denote the set of n time instants {N ′+1, . . . , N ′+n} simply by γ , {1, . . . , n}.

Define time-sets γSn(Ai) , {t : 1 ≤ t ≤ n, St = Ai}, i ∈Mk, and note that γSn(Ai)s

cover γ, i.e.,

γ =
⋃

Ai∈Ak

γSn(Ai).

Denote the set of the first max{d(nPS|θ(Ai|τ̂N))−ε′e, 0} time instants in each γSn(Ai)

by νAi (suppressing the dependence on τ̂N). Defining the (typical) set for each τ in
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Θ

T (n)(ε′, τ) ,

{
sn ∈ Ank :

∣∣∣ |γsn(Ai)|
n

− PS|θ(Ai|τ)
∣∣∣ ≤ ε′, i ∈Mk

}
,

we have that

P (Sγ /∈ T (n)(ε′, τ̂N)) = P (Sγ /∈ T (n)(ε′, τ̂N), τ̂N = θ) + P (Sγ /∈ T (n)(ε′, τ̂N), τ̂N 6= θ)

≤ ε′

2dmax

(3.45)

for all n large enough.

As in the Proof of Proposition 2.1, for each DMMS {XMt}∞t=1 with pmf

PXM|S=Ai,θ=τ , i ∈ Mk, τ ∈ Θ, there exists a code (f τAi , ϕ
τ
Ai

), f τAi : X νAi
Ai
→

{1, . . . , JτAi} and ϕτAi : {1, . . . , JτAi} → Y
νAi
B of rate

1

|νAi |
log JτAi ≤ I(XAi ∧ YB|S = Ai, θ = τ) +

ε′

2
(3.46)

and with

E
[
d
(
X
νAi
B , ϕτAi(f

τ
Ai

(X
νAi
Ai

))
)∣∣SνAi = A

νAi
i , θ = τ

]
≤ ∆Ai,τ +

ε′

4
(3.47)

for all |νAi | ≥ NAi(ε
′, τ). Such codes are considered for each U = u.

Consider a (composite) code (f, ϕS) as follows. Denoting N ′ + n by n′, an
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encoder f consisting of a concatenation of encoders is defined as

f(sn
′
, xn

′

s ) ,


(
f τ̂NA1

(x
νA1
A1

), . . . , f τ̂NAMk
(x

νAMk
AMk

)
)
, sγ ∈ T (n)(ε′, τ̂N)

(1, . . . , 1), sγ /∈ T (n)(ε′, τ̂N).

For t = 1, . . . , n′, and each encoder output (j1, . . . , jMk
), the decoder ϕS, which can

recover the estimate τ̂N from its knowledge of the sampling sequence Sn
′

= sn
′
, is

given by

(
ϕS(sn

′
, j1, . . . , jMk

)
)
t
,


(
ϕτ̂NAi (ji)

)
t
, sγ ∈ T (n)(ε′, τ̂N) and t ∈ νAi , i ∈Mk

y1, otherwise,

where y1 is a fixed but arbitrary symbol in YM.

Finally, for N and n large enough, the codes (f, ϕS) corresponding to each

U = u are concatenated so as to effect the time-sharing prescribed by PU , in a

standard manner. We claim that the rate of the resulting code is

∼
≤ max

τ∈Θ

∑
u∈U

PU(u)
∑
Ai∈Ak

PS|Uθ(Ai|u, τ)I(XAi ∧ YB|S = Ai, U = u, θ = τ) + ε′

∼
≤ RI

m(∆) + ε,

using (3.46) and the expected distortion is

∼
≤ E[∆S,U,θ] + ε
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∼
≤ ∆ + ε,

from (3.44), (3.45), (3.47) and the definition of ∆Ai,u,τ . The proof of the claim above

is in Appendix C.1.

3.4.2 Unified Converse Proof

In contrast with the achievability proofs, we present a unified converse proof for

Theorems 3.3, 3.2 and 3.1 according to successive weakening of the sampler, viz.

k-MRS, k-IRS and fixed-set sampler. We begin with the technical Lemma 3.2 that

is used subsequently in the converse proof.

Lemma 3.2 Let finite-valued rvs C,Dn, En, F n, be such that (Dt, Et), t = 1, . . . , n,

are conditionally mutually independent given C, i.e.,

PDnEn|C =
n∏
t=1

PDtEt|C (3.48)

and satisfy

C,Dn −◦− En −◦− F n. (3.49)

For any function g(C) of C, such that

En −◦− g(C) −◦− C and PEn|g(C) =
n∏
t=1

PEt|g(C), (3.50)
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it holds that

C,Dt −◦− g(C), Et −◦− Ft, t = 1, . . . , n. (3.51)

Proof: First, from (3.49), we have

0 = I(C,Dn ∧ F n|En) = I
(
C ∧ F n|En

)
+ I
(
Dn ∧ F n|En, C

)
= I
(
C, g(C) ∧ F n|En

)
+ I
(
Dn ∧ F n|En, C

)
≥ I(C ∧ F n|En, g(C)) + I(Dn ∧ F n|En, C). (3.52)

Now, the second term on the right-side of (3.52) is

0 = I(Dn ∧ F n|En, C) = H(Dn|En, C)−H(Dn|En, F n, C)

=
n∑
t=1

(
H(Dt|Et, C)−H(Dt|Dt−1, En, F n, C)

)
, by (3.48)

≥
n∑
t=1

(
H(Dt|Et, C)−H(Dt|Et, Ft, C)

)
=

n∑
t=1

I(Dt ∧ Ft|Et, C). (3.53)

Next, the first part of (3.50) along with (3.52) implies that

0 = I
(
C ∧ En|g(C)

)
+ I
(
C ∧ F n|En, g(C)

)
= I
(
C ∧ En, F n|g(C)

)
,
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and hence

I
(
C ∧ Et, Ft|g(C)

)
= 0, t = 1, . . . , n. (3.54)

Now, by (3.53) and (3.54), for t = 1, . . . , n,

I
(
C,Dt ∧ Ft|Et, g(C)

)
= I
(
C ∧ Ft|Et, g(C)

)
+ I
(
Dt ∧ Ft|Et, C

)
= 0,

which is the claim (3.51).

Converse: In the Bayesian setting, we provide first a converse proof for Theorem

3.3, which is then refashioned to give converse proofs for Theorems 3.2 and 3.1.

Let ({PSt|XMtθ = PSt|XMt
}∞t=1, f, ϕS) be an n-length k-MRS block code of rate

R and with decoder output Y n
B = ϕS(Sn, f(Sn, Xn

S )) satisfying E[d(Xn
B, Y

n
B )] ≤ ∆.

The hypothesis of Lemma 3.2 is met with C = θ, Dn = Xn
M, E

n = (Sn, Xn
S ), F n =

Y n
B and g(θ) = θ, since

PXn
MSn|θ = PXn

M|θPSn|Xn
M

=
n∏
t=1

PXMt|θPSt|XMt
=

n∏
t=1

PXMtSt|θ, (3.55)

while

θ,Xn
M −◦− Sn, Xn

S −◦− Y n
B
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holds by code construction. Also, (3.55) implies, upon summing over all realizations

of Xn
Sc , that

PSnXn
S |θ =

n∏
t=1

PStXSt |θ. (3.56)

Then the claim of the lemma implies that

θ,XMt −◦− θ, St, XSt −◦− YBt, t = 1, . . . , n. (3.57)

Let ∆τ denote E[d(Xn
B, Y

n
B )|θ = τ ] = 1

n

n∑
t=1

E[d(XBt, YBt)|θ = τ ] for each τ in Θ and

note that E[∆θ] ≤ ∆. For every τ in Θ, the following holds:

R =
1

n
log |f | ≥ 1

n
H(f(Sn, Xn

S )|θ = τ) ≥ 1

n
H(f(Sn, Xn

S )|Sn, θ = τ)

≥ 1

n
H(ϕS(Sn, f(Sn, Xn

S ))|Sn, θ = τ) =
1

n
H(Y n

B |Sn, θ = τ)

=
1

n
I(Xn

S ∧ Y n
B |Sn, θ = τ)

=
1

n

n∑
t=1

(
H(XSt|Sn, X t−1

S , θ = τ)−H(XSt |Sn, X t−1
S , Y n

B , θ = τ)
)

≥ 1

n

n∑
t=1

(
H(XSt |Sn, X t−1

S , θ = τ)−H(XSt |St, YBt, θ = τ)
)

=
1

n

n∑
t=1

(H(XSt |St, θ = τ)−H(XSt|St, YBt, θ = τ)) , by (3.56)

=
1

n

n∑
t=1

I(XSt ∧ YBt|St, θ = τ). (3.58)
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By (3.57),

(( 1

n

n∑
t=1

E[d(XBt, YBt)|θ = τ ],
1

n

n∑
t=1

I(XSt ∧ YBt|St, θ = τ)
)
, τ ∈ Θ

)

lies in the convex hull of

C ,
{(

(E[d(XB, YB)|θ = τ ], I(XS ∧ YB|S, θ = τ)), τ ∈ Θ
)

:

PθXMSYB =µθPXM|θPS|XMPYB |SXSθ
}
⊂ R2|Θ|.

By the Carathéodory Theorem [35], every point in the convex hull of C can be repre-

sented as a convex combination of at most 2|Θ|+1 elements in C. The corresponding

pmfs are indexed by the values of a rv U with

PUθXMSYB = PUµθPXM|θPS|XMUPYB |SXSθU , (3.59)

where the pmf of U has support of size ≤ 2|Θ| + 1. Then, in a standard manner,

(3.58) leads to

R ≥ min
PYB |SXSU,θ=τ

E[d(XB,YB)|θ=τ ]≤∆τ

I(XS ∧ YB|S, U, θ = τ) (3.60)

= ρBm(∆τ , PU , PS|XMU , τ). (3.61)

93



Now, (3.61) holds for every τ ∈ Θ, and hence

R ≥ max
τ∈Θ

ρBm(∆τ , PU , PS|XMU , τ) (3.62)

≥ min
PU ,PS|XMU ,{∆τ , τ∈Θ}

E[∆θ ]≤∆

max
τ∈Θ

ρBm(∆τ , PU , PS|XMU , τ)

= RI
m(∆)

for ∆ ≥ ∆min.

Turning next to Theorems 3.2 and 3.1, an n-length k-IRS code or a fixed-

set sampling block code can be viewed as restrictions of a k-MRS code. Specif-

ically, in Theorem 3.2, for a k-IRS code of rate R with PSt , g(θ) = θ2 instead

of PSt|XMt
, g(θ) = θ (for a k-MRS), the hypothesis of Lemma 3.2 holds. Denote

E[d(Xn
B, Y

n
B )|θ2 = τ2] by ∆τ2 , τ2 ∈ Θ2. Then, the pmfs in (3.59) satisfy

PUθXMSYB = PUµθPXM|θPS|UPYB |SXSθU . (3.63)

The counterpart of (3.60) is

R ≥ min
PYB |SXSU,θ2=τ2

E[d(XB,YB)|θ2=τ2]≤∆τ2

I(XS ∧ YB|S, U, θ2 = τ2)

= min
PYB |SXSU,θ2=τ2

E[d(XB,YB)|θ2=τ2]≤∆τ2

∑
A,u

PS(A)PU |S(u|A)I(XA ∧ YB|S = A,U = u, θ2 = τ2),
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noting from (3.63) that PU |S,θ2 = PU |S. Using the convexity of the mutual informa-

tion terms above with respect to PYB |SXSUθ2 , we get

R ≥ min
PYB |SXSU,θ2=τ2

E[d(XB,YB)|θ2=τ2]≤∆τ2

∑
A

PS(A)I(XA ∧ YB|S = A, θ2 = τ2)

= ρBı (∆τ2 , PS, τ2). (3.64)

Since (3.64) holds for every τ2 ∈ Θ2

R ≥ max
τ2∈Θ2

ρBı (∆τ2 , PS, τ2)

≥ min
PS,{∆τ2 , τ2∈Θ2}

E[∆θ2
]≤∆

max
τ2∈Θ2

ρBı (∆τ2 , PS, τ2)

= Rı(∆),

i.e., R ≥ Rı(∆), ∆ ≥ ∆min, completing the converse proof of Theorem 3.2.

In a manner analogous to a k-IRS, in Theorem 3.1 for a fixed-set sampler

the hypothesis of Lemma 3.2 holds with PSt = 1(St = A), g(θ) = θ1. Defining

∆τ1 , E[d(Xn
B, Y

n
B )|θ1 = τ1], τ1 ∈ Θ1, the counterpart of the right-side of (3.62)

reduces to max
τ1∈Θ1

ρBA(∆τ1 , τ1). It then follows that

R ≥ min
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

max
τ1∈Θ1

ρBA(∆τ1 , τ1), ∆ ≥ ∆min

providing the converse proof for Theorem 3.1.

In the nonBayesian setting, the analog of Lemma 3.2 is obtained similarly

with C = c, g(C) = g(c), and (3.48)–(3.51) expressed in terms of appropriate
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conditional pmfs. The converse proofs for a k-MRS, k-IRS and k-FS are obtained

as above but by excluding the outer minimizations over {∆τ , τ ∈ Θ}, {∆τ2 , τ2 ∈ Θ2}

and {∆τ1 , τ1 ∈ Θ1}, respectively.

3.5 Discussion

Our formulation of universality requires optimum sampling rate distortion perfor-

mance when the “true” underlying pmf of the DMMS belongs to a finite family

P = {PXM|θ=τ , τ ∈ Θ}. The assumed finiteness of Θ affords two benefits in ad-

dition to mathematical ease: (i) simple proofs of estimator consistency uniformly

over Θ1, Θ2 or Θ; and (ii) rate-free conveyance of corresponding estimates τ̂1, τ̂2

or τ̂ to the decoder. While general extensions to the case when Θ is an infinite

set (countable or uncountable) remain open, in Chapter 4 an extension to the case

where Θ is uncountable is studied for a Gaussian memoryless multiple source.

Unlike for a k-IRS, the assumption in a k-MRS that the decoder is informed

of the sampling sequence Sn plays an important role. Specifically, embedded infor-

mation regarding Xn
M is conveyed implicitly to the decoder through Sn. Also, as

a side-benefit, the decoder can replicate the estimate of θ formed by the encoder

based on Sn alone, obviating the need for explicitly transmitting it. However, if the

decoder were denied a knowledge of Sn, what is the USRDf? This question, too,

remains unanswered.

Underlying our achievability proofs of Theorems 3.2 and 3.3 for a k-IRS and
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k-MRS, are schemes for distribution-estimation based on (Sn, Xn
S ). A distinguishing

feature from classical estimation settings is the additional degree of (spatial) freedom

in the choice of the sampling sequence Sn. This motivates questions of the following

genre: How should Sn, consisting of (possibly different) k-sized subsets, be chosen

to form “best” estimates of the underlying joint pmf? How does the degree of the

allowed dependence of Sn on Xn
M affect estimator performance? For instance, our

choice of sampling sequence and estimation procedure in the achievability proof of

Theorem 3.3 is a simple starting point. How must we devise efficient sampling

mechanisms to exploit an implicit embedding of DMMS realization in the sampler

output? These questions are of independent interest in statistical learning theory.
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Chapter 4

Gaussian Sampling Rate Distortion

4.1 Synopsis

In this chapter, we consider a Gaussian memoryless multiple source (GMMS) with

m components with joint pdf known only to belong to a given convex compact family

of uncountable pdfs. A fixed subset of k components of the GMMS are sampled at

each time instant and compressed jointly with the objective of reconstructing all the

components of the GMMS under a mean-squared error distortion criterion.

In Section 4.2, we describe our model for universality and define the notion of a

universal sampling rate distortion function (USRDf) along the lines of Chapter 3, to

study the tradeoffs among sampling, estimation of underlying pdf, compression rate

and desired level of accuracy in reconstruction. In Section 4.3, we characterize first

the USRDf for a GMMS when the pdf of the GMMS is known, i.e., its SRDf. Build-

ing on this, a single-letter characterization is provided for the USRDf in Bayesian

and nonBayesian universal settings. Throughout this chapter, our results will high-

light the structure of our optimal modular reconstruction mechanisms, wherein the

overall reconstruction is performed in two steps - estimates for the sampled compo-
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nents are formed first, based on which the unsampled components are reconstructed.

In Section 4.4, we present first the achievability proofs, with the achievability proof

for known pdf setting serving as a stepping stone for the universal setting. A unified

converse proof is presented thereafter.

4.2 Model

Denote M = {1, . . . ,m} and let

XM =



X1

X2

...

Xm


be a Rm-valued zero-mean (jointly) Gaussian random vector with a positive-definite

covariance matrix. For a nonempty set A ⊆M with |A| = k, we denote by XA the

random (column) vector (Xi, i ∈ A)T , with values in Rk. Denote n repetitions of

XA, with values in Rnk, by Xn
A = (Xn

i , i ∈ A)T . Each Xn
i = (Xi1, . . . , Xin)T , i ∈ A,

takes values in Rn. Let Rm be the reproduction alphabet for XM.

Let Θ = {ΣMτ}τ † be a set of m ×m-positive-definite matrices, and assume

Θ to be convex and compact in the Euclidean topology on Rm×m. For instance, for

† Θ is a collection of covariance matrices indexed by τ . By an abuse of notation, we shall use τ to
refer to the covariance matrix ΣMτ itself.
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m = 2,

Θ =


 σ2

1 rσ1σ2

rσ1σ2 σ2
2

 , c1 ≤ σ2
1, σ

2
2 ≤ c2, −d1 ≤ r ≤ d1

 ,

with 0 < c1 ≤ c2 and 0 ≤ d1 < 1. Hereafter, all covariance matrices under consider-

ation will be taken as being positive-definite without explicit mention. We assume

θ to be a Θ-valued rv with a pdf νθ that is absolutely continuous with respect to

the Lebesgue measure on Rm2
. We assume θ to be a Θ-valued rv with a pdf νθ that

is absolutely continuous with respect to the Lebesgue measure on Rm2
. Assume

νθ(τ) > 0, τ ∈ Θ,

and that νθ(τ) is continuous in τ . We consider a jointly Gaussian memoryless

multiple source (GMMS) {XMt}∞t=1 consisting of i.i.d. repetitions of the rv XM with

pdf known only to the extent of belonging to the family of pdfs P =
{
νXM|θ=τ =

N (0,ΣMτ )
‡ , τ ∈ Θ

}
. Two settings are studied: in a Bayesian formulation, the

pdf νθ is taken to be known, while in a nonBayesian formulation θ is an unknown

constant in Θ.

Remark: Note that in contrast to Chapter 3, the pdf of the underlying GMMS is

known only to lie in an uncountable family of pdfs.

In this chapter we focus on a k-fixed-set sampler as in (2.4) which, for a fixed

A ⊆ M with |A| = k, samples XAt from XMt for t ≥ 1. The output of the k-FS,

‡Throughout this chapter, N (0,Σ) is used to denote the pdf of a Gaussian rv with mean 0 and
covariance matrix Σ.
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in effect, is simply {XAt}∞t=1. For a k-FS and n ≥ 1, an n-length block code is as

in Definition 2.2 with a GMMS {XMt}∞t=1 and k-FS instead of a DMMS and k-RS,

respectively.

In this chapter, our objective is to reconstruct all the components of a GMMS

from the compressed representations of the sampled GMMS components under a

suitable distortion criterion with (single-letter) mean-squared error (MSE) distortion

measure

||xM − yM||2 =
m∑
i=1

(xi − yi)2, xM, yM ∈ Rm.

For threshold ∆ ≥ 0, an n-length block code (f, ϕ) with k-FS will be required to

satisfy one of the following (|| · ||2,∆) distortion criterion depending on the setting.

(i) Bayesian: The expected distortion criterion is

E
[∣∣∣∣∣∣Xn

M − ϕ
(
f(Xn

A)
)∣∣∣∣∣∣2] , E

[
1

n

n∑
t=1

∣∣∣∣∣∣XMt −
(
ϕ
(
f(Xn

A)
))

t

∣∣∣∣∣∣2]

= E
[
E

[ 1

n

n∑
t=1

∣∣∣∣∣∣XMt −
(
ϕ
(
f(Xn

A)
))

t

∣∣∣∣∣∣2∣∣∣θ]]

≤ ∆.

(4.1)

(ii) NonBayesian: The peak distortion criterion is

sup
τ∈Θ

E
[∣∣∣∣∣∣Xn

M − ϕ
(
f(Xn

A)
)∣∣∣∣∣∣2∣∣∣θ = τ

]
≤ ∆, (4.2)

where E[·|θ = τ ] denotes Eν
XnM|θ=τ

[·].
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For a GMMS, an achievable universal k-sample coding rate at distortion level

∆ and universal sampling rate distortion function (USRDf) is defined along the lines

of Definition 3.2, but with distortion criterion (4.1) and (4.2) instead of (3.2) and

(3.3), respectively. For |Θ| = 1, the USRDf is simply referred to as the sampling

rate distortion function (SRDf).

Remarks: (i) The USRDf under (4.1) is no larger than that under (4.2).

(ii) When |Θ| = 1, the underlying pdf of the GMMS is, in effect, known.

Below, we recall (Chapter 1, [36]) the definition of mutual information between two

random variables.

Definition 4.1 For real-valued rvs X and Y with a joint probability distribution

µXY , the mutual information between the rvs X and Y is given by

I(X ∧ Y ) =


EµXY

[
log dµXY

dµX×dµY
(X, Y )

]
, if µXY << µX × µY

∞, otherwise,

where µXY << µX × µY denotes that µXY is absolutely continuous with respect

to µX × µY and dµXY
dµX×dµY

is the Radon-Nikodym derivative of µXY with respect to

µX × µY .

4.3 Gaussian Sampling Rate Distortion function

We begin with a setting where the pdf of the GMMS is known and provide a (single-

letter) characterization for the SRDf. Next, in a brief detour, we introduce an
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extension of GMMS, namely a Gaussian memoryless field (GMF) and show how

the ideas developed for a GMMS can be used to characterize the SRDf for a GMF.

Finally, building on the SRDf for a GMMS, a (single-letter) characterization of the

USRDf is provided for a GMMS in the Bayesian and nonBayesian settings.

Throughout this chapter, a recurring structural property of our achievability

proofs is this: it is optimal to reconstruct the sampled GMMS components first

under a (modified) weighted MSE criterion with reduced threshold and then form

deterministic (MMSE) estimates of the unsampled components based on the recon-

struction of the former.

Before we present our first result, we recall that for a GMMS {XMt}∞t=1 with

pdf N (0,ΣM) reconstructed under the MSE distortion criterion, the standard rate

distortion function (RDf) is

R(∆) = min
µXMYM<<µXM×µYM
E[||XM−YM||2]≤∆

I(XM ∧ YM), 0 < ∆ ≤
m∑
i=1

E[X2
i ] (4.3)

=
1

2

m∑
i=1

(
log λi

α

)+

, 0 < ∆ ≤
m∑
i=1

E[X2
i ],

where λis are the eigenvalues of ΣM, and α is chosen to satisfy
m∑
i=1

min(α, λi) = ∆.

4.3.1 Known Distribution

Starting with |Θ| = 1, for a GMMS {XMt}∞t=1 with (known) pdf N (0,ΣM), our

first result shows that the fixed-set SRDf RA(∆) for a GMMS is, in effect, the RDf

of a GMMS {XAt}∞t=1 with a weighted MSE distortion measure dA and a reduced
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threshold; here dA : Rk ×Rk → R
+ ∪ {0} is given by

dA(xA, yA) , (xA − yA)TGA(xA − yA), xA, yA ∈ Rk

with

GA = I + Σ−1
A ΣAAcΣ

T
AAcΣ

−1
A , (4.4)

where ΣAAc = E[XAX
T
Ac ].

Observe that the modified distortion measure dA above depends on the rv

corresponding to the sampled GMMS components (in contrast to the modified dis-

tortion measures (2.6), (3.5)). A similar structure was observed in Corollary 2.1, for

the SRDf for a DMMS with the probability of error distortion measure.

Theorem 4.1 For a GMMS {XMt}∞t=1 with pdf N (0,ΣM) and fixed A ⊆ M, the

SRDf is

RA(∆) = min
µXAYA<<µXA×µYA

E[dA(XA,YA)]≤∆−∆min,A

I
(
XA ∧ YA

)
, ∆min,A < ∆ ≤ ∆max (4.5)

=
1

2

k∑
i=1

(
log λi

α

)+

, ∆min,A < ∆ ≤ ∆max (4.6)

where

∆min,A =
∑
i∈Ac

(
E[X2

i ]−E[XiX
T
A ]Σ−1

A E[XAXi]
)
, ∆max =

∑
i∈M

E[X2
i ]
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and λis are the eigenvalues of GAΣA, and α is chosen to satisfy
k∑
i=1

min(α, λi) =

∆−∆min,A.

Comparing (4.5) with (4.3), it can be seen that (4.5) is, in effect, the RDf

for a GMMS with weighted MSE distortion measure. In contrast to the RDf (4.3),

in (4.5) the minimization involves only XA (and not XM) under a weighted MSE

criterion with reduced threshold level. For k = m, i.e., A =M, however this reduces

to the RDf (4.3). Also, for every feasible distortion level the SRDf for any A ⊂M

is no smaller than that with A =M.

In Section 4.4, the achievability proof of the theorem above involves recon-

structing the sampled components of the GMMS first, and then forming MMSE

estimates for the unsampled components based on the former. Accordingly, in

(4.5), the MSE in the reconstruction of the entire GMMS is captured jointly by

the weighted MSE (with weight-matrix GA) in the reconstructions of the sampled

components and the minimum distortion ∆min,A.

The form of the SRDf in (4.5) suggests a modular reconstruction scheme

wherein only the sampled GMMS is reconstructed first and then based on it, the

unsampled GMMS is reconstructed. Also, observing that (4.5) is equivalent to the

standard rate distortion function of a GMMS with a weighted MSE distortion mea-

sure enables us to provide an analytic expression for the SRDf using the standard

reverse water-filling solution (4.6) [36]. An instance of this is shown in the example

below.

Observing that (4.5) is equivalent to the RDf of a GMMS with a weighted
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MSE distortion measure enables us to provide an analytic expression for the SRDf

using the standard reverse water-filling solution (4.6) [36]. An instance of this is

shown in the example below.

Example 4.1 For a GMMS with a k-FS with k = 1, this example illustrates the

effect of the choice of the sampling set on SRDf. Consider a GMMS {XMt}∞t=1 with

covariance matrix ΣM given by

ΣM =



σ2
1 r12σ1σ2 · · · r1mσ1σm

r21σ1σ2 σ2
2 · · · r2mσ2σm

...
...

. . .
...

rm1σ1σm rm2σ2σm · · · σ2
m


,

where rij = rji, 1 ≤ i, j ≤ m. For A = {j}, j = 1, . . . ,m, we have

G{j}Σ{j} =
(
1 +

∑
i 6=j

r2
ijσ

2
i

σ2
j

)
σ2
j = σ2

j +
∑
i 6=j

r2
ijσ

2
i

and hence from (4.6), the SRDf is

R{j}(∆) =
1

2
log

σ
2
j +

∑
i 6=j

r2
ijσ

2
i

∆−∆min,{j}



=
1

2
log


m∑
i=1

σ2
i −∆min,{j}

∆−∆min,{j}



for ∆min,{j} < ∆ ≤
m∑
i=1

σ2
i , where ∆min,{j} =

m∑
i 6=j

σ2
i (1− r2

ij). Observe that every SRDf
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ρ{j}(∆) is a monotonically increasing function of ∆min,{j} and that the SRDfs are

translations of each other and hence decrease at the same rate. Thus, the SRDf

with the smallest ∆min,{j} is uniformly best among all fixed-set SRDfs. For k > 2

however, there may not be any A ⊂M, |A| = k, whose fixed-set SRDf is uniformly

best for all distortion levels.

Before turning to the USRDf for a GMMS, the ideas involved in Theorem 4.1

are used to study sampling and lossy compression of a Gaussian field which affords

greater flexibility in the choice of sampling set. While Gaussian fields have been

studied extensively under different formulations, we consider a Gaussian memoryless

field (GMF) as in [16], which is described next. In lieu of M and Gaussian rv

XM in Section 4.2, consider I = [0, 1] ⊂ R and let XI = {Xu, u ∈ I} be a

R
I , {R, u ∈ I}-valued zero-mean Gaussian process† with a bounded covariance

function r(s1, s2) = E[Xs1Xs2 ], s1, s2 ∈ I, such that, for any finite C ⊂ I

E[XCX
T
C ]

is a positive-definite matrix and

∫
I

∫
I

|r(u, v)| du dv <∞.

A GMF‡ {XIt}∞t=1 consists of i.i.d. repetitions of XI . We consider a GMF sampled

†A Gaussian process on an interval [0, 1] means that any finite collection of rvs (Xs1 , . . . , Xsl), si ∈
[0, 1], i ∈ {1, . . . , l}, l ∈ N, are jointly Gaussian.
‡Extensive studies of memoryless repetitions of a Gaussian process exist, cf. [16], [14], under various
terminologies.
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finitely by a k-FS at A ⊂ I, with |A| = k, and with a reconstruction alphabet RI .

For a GMF with fixed-set sampler and MSE distortion measure

||xI − yI ||2 =

∫
I

(xu − yu)2 du, xI , yI ∈ RI , (4.7)

the sampling rate distortion function is defined as in Definitions 2.2 and 2.3 with

the decoder ϕ characterized by a collection of mappings ϕ = {ϕu}u∈I with

ϕu : {1, . . . , J} → R
n, u ∈ I.

Analogous to a GMMS, for a GMF sampled at A = {a1, . . . , ak}, 0 ≤ ai ≤ 1, i =

1, . . . , k, our next result shows that the SRDf is, in effect, the standard rate distortion

function of a GMMS {XAt}∞t=1 with a weighted MSE distortion measure with weight-

matrix given by

GA,I = Σ−1
A

(∫
I

E[XAXu]E[XuX
T
A ] du

)
Σ−1
A , (4.8)

with
∫

connoting element-wise integration. Note that for every 0 ≤ s1, s2 ≤ 1, the

integral

∫
I

r(u, s1)r(u, s2) du

exists and hence (4.8) is well-defined.
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Proposition 4.1 For a GMF {XIt}∞t=1 with A ⊂ I, the SRDf is

RA(∆) = min
µXAYA<<µXA×µYA

E[(XA−YA)TGA,I(XA−YA)]≤∆−∆min,A

I
(
XA ∧ YA

)
, ∆min,A < ∆ ≤ ∆max (4.9)

=
1

2

k∑
i=1

(
log λi

α

)+

, ∆min,A < ∆ ≤ ∆max (4.10)

where

∆min,A =

∫
I

(
E[X2

u]−E[XuX
T
A ]Σ−1

A E[XAXu]
)
du and ∆max =

∫
I

E[X2
u] du,

and λis are the eigenvalues of GA,IΣA, and α satisfies
k∑
i=1

min(α, λi) = ∆−∆min,A.

The SRDf for a GMF (4.9) and its equivalent form (4.10) can be seen as

counterparts of (4.5) and (4.6), with (4.10) being the reverse water-filling solution

for (4.9). As before, the expression (4.9) is the RDf of a GMMS with a weighted

MSE distortion measure. In Section 4.4, an achievability proof for the proposition

above is provided by adapting the ideas developed for Theorem 4.1; a converse

proof for the proposition is provided involving a set of techniques different from the

converse proof provided for Theorem 4.1.

In contrast to a GMMS with a discrete setM, for a GMF, I being an interval

affords greater flexibility in the choice of the sampling set allowing for a better

understanding of the structural properties of the “best” sampling set. In contrast

to Example 4.1 in the example below, considering a GMF with a stationary Gauss-

Markov process, we show the structure of the optimal set for minimum distortion
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for k > 2 as well. In general, the optimal sampling set is a function of the threshold

∆.

Example 4.2 Consider a GMF with a zero-mean, stationary Gauss-Markov process

XI over I = [0, 1] with covariance function

r(s, u) = p|s−u|, 0 ≤ s, u ≤ 1,

and 0 < p < 1. Note that the correlation between any two points in the interval

depends only on the distance between them. For the Gauss-Markov process XI , for

any 0 ≤ u1 < u2 < · · · < ul ≤ 1, l > 2, it holds that

Xu1 −◦− Xu2 −◦− · · · −◦− Xul . (4.11)

For a k-FS with k = 1 and A = {a}, 0 ≤ a ≤ 1,

G{a},I = 1−∆min,{a}

and E[X2
a ] = 1. In (4.10), the eigenvalue λ1 is G{a},IΣ{a} = 1−∆min,{a} itself and

hence, the SRDf is

R{a}(∆) =
1

2
log

1−∆min,{a}

∆−∆min,{a}
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for ∆min,{a} < ∆ ≤ 1, where

∆min,{a} =

∫ a

0

(
E[X2

u]− E
2[XuXa]

E[X2
a ]

)
du+

∫ 1

a

(
E[X2

u]− E
2[XuXa]

E[X2
a ]

)
du

=

∫ a

0

(
1− p2(a−u)

)
du+

∫ 1

a

(
1− p2(u−a)

)
du

= 1− p2a − 1 + p2(1−a) − 1

ln p
.

Note that the SRDf R{a}(∆) is a monotonically increasing function of ∆min,{a},

which in turn is a monotonically increasing function of |a − 0.5|. Thus, R{0.5}(∆)

is uniformly best among all SRDfs R{a}(∆), 0 ≤ a ≤ 1, for all distortion lev-

els. Now, for a k-FS with k > 2 and A = {a1 = 0, a2, . . . , ak−1, ak = 1}, with

ai ≤ ai+1, i = 1, . . . , k − 1, the minimum distortion ∆min,A admits a simple form

∆min,A = 1−
k−1∑
i=1

γ(ai+1 − ai),

where γ(ai+1 − ai) is according to

γ(a) ,
1

1− p2a

(p2a(1− 2a log p)− 1

log p

)
, 0 < a < 1.

The minimum reconstruction error ∆min,A is the “sum” of the minimum error in

reconstructing each segment [ai, ai+1] of the GMF. Now, the Markov property of the

field (4.11) implies that the minimum distortion in reproducing each Xi, i ∈ I,

is determined by its nearest sampled points on the GMF and hence the minimum

distortion in reconstructing each segment [ai, ai+1] of the GMF is independent of the
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location of sampling points other than ai, ai+1 and is given by

(ai+1 − ai)− γ(ai+1 − ai).

The stationarity of the field means that this minimum distortion depends on the

length |ai+1 − ai| alone. Observing that γ(a) is a concave function of a over (0, 1],

∆min,A above is seen to be minimized when ai+1 − ai = 1
k−1

, i = 1, . . . , k − 1, i.e.,

when the sampling points are spaced uniformly. However, such a placement is not

optimal for all distortion levels.

4.3.2 Universal Setting

Turning to the universal setting with a GMMS, consider a set Θ1 = {ΣAτ , τ ∈

Θ} ⊂ R
k2

with τ1 ∈ Θ1 indexing the members of Θ1, i.e., Θ1 = {ΣAτ1}τ1 † . An

encoder f associated with a k-FS observes Xn
A alone and cannot distinguish among

jointly Gaussian pdfs in P that have the same marginal pdf νXA|θ=τ . Accordingly

(and akin to [40]), consider a partition of Θ comprising “ambiguity” atoms, with

each atom of the partition comprising τs with identical νXA|θ=τ , i.e., identical ΣAτ

and for each τ1 ∈ Θ1, Λ(τ1) is the collection of τs in the ambiguity atom indexed by

τ1, i.e.,

ΣAτ1 , ΣAτ , τ ∈ Λ(τ1).

† Θ1 is the collection of covariance matrices ΣAτ indexed by τ1 and by an abuse τ1 will also be
used to refer to ΣAτ1 itself.
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Let θ1 be a Θ1-valued rv induced by θ. It is easy to see that Θ1 and Λ(τ1), τ1 ∈ Θ1,

are convex, compact subsets of Rk2
and the rv θ1 admits a pdf νθ1 induced by νθ.

In the Bayesian setting,

νXA|θ1=τ1 = νXA|θ=τ = N (0,ΣAτ1), τ ∈ Λ(τ1).

In the nonBayesian setting, in order to retain the same notation, we choose νXA|θ1=τ1

to be the right-side above.

Our characterization of the USRDf builds on the structure of the SRDf for

a GMMS. Accordingly, in the Bayesian setting, consider the set of (constrained)

probability measures

κBA(δ, τ1) , {µθXMYM : θ,XM −◦− θ1, XA −◦− YM, µXAYM|θ1=τ1 << µXA|θ1=τ1 × µYM|θ1=τ1 ,

E[||XM − YM||2|θ1 = τ1] ≤ δ}

and (constraint) minimized mutual information

ρBA(δ, τ1) , min
κBA(δ,τ1)

I(XA ∧ YM|θ1 = τ1). (4.12)
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Correspondingly, in the nonBayesian setting, consider

κnBA (δ, τ1) , {µXMYM|θ=τ : µYM|XM,θ=τ =µYM|XA,θ1=τ1 , µXAYM|θ1=τ1<<µXA|θ1=τ1 × µYM|θ1=τ1 ,

E[||XM − YM||2|θ = τ ] ≤ δ, τ ∈ Λ(τ1)}

and

ρnBA (δ, τ1) , inf
κnBA (δ,τ1)

I(XA ∧ YM|θ1 = τ1). (4.13)

Remark: In (4.12) and (4.13), the minimization is with respect to the conditional

measure µYM|XA,θ1=τ1 .

The minimized conditional mutual informations above will be a key ingredient

in the characterization of USRDf. First, we show in the proposition below that

(4.12) and (4.13) admit simpler forms involving rvs corresponding to the sampled

components of the GMMS and their reconstruction alone. In the Bayesian setting,

for each τ1 ∈ Θ1, the mentioned simpler form involves a weighted MSE distortion

measure dAτ1 with weight-matrix GA,τ1 , defined as in (4.4) with ΣAAc replaced by

E[XAX
T
Ac|θ1 = τ1] and

dAτ1(xA, yA) , (xA − yA)TGA,τ1(xA − yA), xA, yA ∈ Rk.

In the Bayesian setting, the modified distortion measure dAτ1 plays a role similar to
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that of dA.

Remark: Clearly, ρnBA (δ, τ1) is a nonincreasing function of δ > ∆min,A,τ1 . Convexity of

ρnBA (δ, τ1) can be shown as in [37], and convexity implies the continuity of ρnBA (δ, τ1).

Now, to show the convexity, pick any δ1, δ2 > ∆min,A,τ1 and ε > 0. For i = 1, 2, let

µi ∈ κnBA (δi, τ1) be such that

Iµi(XA ∧ YM|θ1 = τ1) ≤ ρnBA (δi) + ε.

For α > 0, by the standard convexity arguments, it can be seen that αµ1+(1−α)µ2 ∈

κnBA (αδ1 + (1− α)δ2, τ1) and

Iαµ1+(1−α)µ2(XA ∧ YM|θ1 = τ1) ≤ αρnBA (δ1) + (1− α)ρnBA (δ2) + ε. (4.14)

Since (4.14) holds for any ε > 0, in the limit, we have

ρnBA (αδ1 + (1− α)δ2) ≤ αρnBA (δ1) + (1− α)ρnBA (δ2).

Proposition 4.2 For each τ1 ∈ Θ1, in the Bayesian setting

ρBA(δ, τ1) = min
µXAYA|θ1=τ1

<<µXA|θ1=τ1
×µYA|θ1=τ1

E[dAτ1
(XA,YA)|θ1=τ1]≤δ−∆min,A,τ1

I
(
XA ∧ YA|θ1 = τ1

)
(4.15)
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for δ > ∆min,A,τ1, where

∆min,A,τ1 = E
[
E
[

min
yAc∈Rm−k

∑
i∈Ac

(Xi − yi)2|XA, θ1 = τ1

]∣∣θ1 = τ1

]
.

For each τ1 ∈ Θ1, in the nonBayesian setting

ρnBA (δ, τ1) = inf
E[||XM−YM||2|θ=τ ]≤δ, τ∈Λ(τ1)

I
(
XA ∧ YA|θ1 = τ1

)
, δ > ∆min,A,τ1 ,(4.16)

where the infimum in (4.16) is over µYM|XM,θ=τ , such that

µYM|XM,θ=τ = µYA|XA,θ1=τ1 × µYAc |YA,θ1=τ1 , τ ∈ Λ(τ1), and

µXAYA|θ1=τ1 << µXA|θ1=τ1 × µYA|θ1=τ1

and

∆min,A,τ1 = inf
µYAc |XA,θ=τ=µYAc |XA,θ1=τ1

max
τ∈Λ(τ1)

∑
i∈Ac

E[(Xi − Yi)2|θ = τ ].

Remark: From (4.15), notice that ρBA(δ, τ1) is, in effect, the rate distortion function

for a GMMS with pdf νXA|θ1=τ1 and weighted MSE distortion measure. Hence, the

minimum in (4.15) and ergo that in (4.12) exist and the standard properties of a

rate distortion function are applicable to ρBA(δ, τ1) as well, i.e., ρBA(δ, τ1) is a convex,

nonincreasing, continuous function of δ > ∆min,A,τ1 .
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Theorem 4.2 For a GMMS {XMt}∞t=1 with fixed A ⊆M, the Bayesian USRDf is

RA(∆) = min
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

max
τ1∈Θ1

ρBA(∆τ1 , τ1) (4.17)

for ∆min,A < ∆ ≤ ∆max, where

∆min,A = E
[
E
[

min
yAc∈Rm−k

∑
i∈Ac

(Xi − yi)2|XA, θ1

]]
and ∆max =

∑
i∈M

E[X2
i ].

The nonBayesian USRDf is

RA(∆) = max
τ1∈Θ1

ρnBA (∆, τ1) (4.18)

for ∆min,A < ∆ ≤ ∆max, where

∆min,A = sup
τ1∈Θ1

inf
µYAc |XA,θ=τ=µYAc |XA,θ1=τ1

max
τ∈Λ(τ1)

∑
i∈Ac

E[(Xi − Yi)2|θ = τ ] and

∆max = max
τ∈Θ

m∑
i=1

E[X2
i |θ = τ ].

Remark: In Appendix C.2 a simple proof (using contradiction arguments) is provided

to show the existence of {∆τ1 , τ1 ∈ Θ1}, with ∆τ1 being continuous in τ1, that attains

the minimum and maximum in (4.17).

Notice that ρBA(δ, τ1) and ρnBA (δ, τ1) are reminiscent of the SRDf for a GMMS

and, in fact, reduce to the SRDf for a GMMS with νXM|θ=τ for τ ∈ Λ(τ1) when

Λ(τ1) is a singleton. Thus, the equivalent forms (4.15) and (4.16) can be seen
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as counterparts of (4.5). Additionally, in Section 4.4, we show that ρBA(δ, τ1) and

ρnBA (δ, τ1) are continuous in τ1 ∈ Θ1.

The Bayesian USRDf with an outer minimization over {∆τ1 , τ1 ∈ Θ1} can be

strictly smaller than its nonBayesian counterpart. An illustration of the comparison

of the Bayesian and nonBayesian USRDfs is provided in the example below.

Example 4.3 For M = {1, 2} and fixed σ2 > 0, rmin > 0 and rmax < 1, consider

a GMMS with pdf in Θ, where each Θ = {ΣMτ}τ , where each ΣMτ is given by

ΣMτ =

 σ2 rτσ
2

rτσ
2 σ2


for rmin ≤ rτ ≤ rmax, τ ∈ Θ. Let θ be a Θ-valued rv with pdf νθ continuous on Θ.

For a k-FS with k = 1, for both A = {1} and A = {2}, Θ1 is a singleton. Hence,

in the Bayesian setting, the minimum and maximum in (4.17) are vacuous. For

A = {1}, {2}, in the Bayesian setting we have

GA,τ1 = 1 +E
2[rθ],

∆min,A,τ1 = σ2(1−E2[rθ]),

and (4.17) now yields the Bayesian USRDf to be

R{1}(∆) = R{2}(∆) =
1

2
log

σ2(1 +E
2[rθ])

∆− σ2(1−E2[rθ])
, σ2(1−E2[rθ]) ≤ ∆ ≤ 2σ2.(4.19)
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Evaluating (4.18), the nonBayesian USRDf is

R{1}(∆) = R{2}(∆) =
1

2
log

σ2(1 + r2
min)

∆− σ2(1− r2
min)

, σ2(1− r2
min) ≤ ∆ ≤ 2σ2. (4.20)

A simple comparison of (4.19) and (4.20) shows that the nonBayesian USRDf is

strictly larger than its Bayesian counterpart. Also, it is seen from (4.19) and (4.20)

above that when rτ > 0 for all τ ∈ Θ, the average correlation, E[rθ], and the smallest

correlation, rmin, play similar roles in the expressions for Bayesian and nonBayesian

USRDf, respectively.

Lastly, the standard properties of the SRDf and the USRDf for GMMS and

GMF with fixed-set samplers are summarized in the lemma below, with the proof

provided in Appendix D.2.

Lemma 4.1 The right-sides of (4.5), (4.9), (4.17) and (4.18) are finite-valued, de-

creasing, convex, continuous functions of ∆min,A < ∆ ≤ ∆max.

4.4 Proofs of Main Results

4.4.1 Achievability Proofs

We present first the achievability proof of Theorem 4.1 where the sampled compo-

nents of the GMMS are reconstructed first with a weighted MSE distortion measure

under a reduced threshold, and then MMSE estimates are formed for the unsampled

components based on the former. An achievability proof for Proposition 4.1 is along
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similar lines. Building on this, we present next an achievability proof for Theorem

4.2 with an emphasis on the Bayesian setting. All our achievability proofs empha-

size the modular structure of the reconstruction mechanism, which allows GMMS

reconstruction to be performed in two steps.

Theorem 4.1:First, observe that

∆min,A = min
XAc −◦− XA −◦− YM

E[||XM − YM||2]

= min
XAc −◦− XA −◦− YAc

∑
i∈Ac

E[(Xi − Yi)2] with Yi = Xi, i ∈ A

=
∑
i∈Ac

E[(Xi −E[Xi|XA])2]

=
∑
i∈Ac

(
E[X2

i ]−E[XiX
T
A ]Σ−1

A E[XAXi]
)

and

∆max = min
XAc −◦− XA −◦− YM

XA⊥⊥YM

E[||XM − YM||2]

= min
yM

E[||XM − yM||2]

=
m∑
i=1

E[X2
i ],

where Σ−1
A exists by the assumed positive-definiteness of ΣM.

Given ε > 0, for the GMMS {XAt}∞t=1 with pdf N (0,ΣA) and weighted MSE

distortion measure dA, consider a (standard) rate distortion code (fA, ϕA), fA :
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R
nk → {1, . . . , J} and ϕA : {1, . . . , J} → R

nk of rate 1
n

log J ≤ RA(∆) + ε and with

E[dA(Xn
A, Y

n
A )] ≤ ∆−∆min,A + ε,

for n ≥ Nε, say.

A code (f, ϕ) is devised as follows. The encoder f is chosen to be fA, i.e.,

f(xnA) , fA(xnA), xnA ∈ Rnk

and the decoder ϕ is given by

ϕ(j) ,
(
ϕA(j), E[Xn

Ac |Xn
A = ϕA(j)]

)
, j ∈ {1, . . . , J}.

The rate of the code (f, ϕ) is

1

n
log J ≤ RA(∆) + ε.

Denote the output of the decoder ϕ(f(Xn
A)) by Y n

M = (Y n
A , Y

n
Ac). Then, Y n

Ac =

ΣAcAΣAY
n
A and by the standard properties of an MMSE estimate, for t = 1, . . . , n,

it holds that

(XAct −ΣAcAΣ−1
A XAt) ⊥⊥ XAt. (4.21)
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The code (f, ϕ) has expected distortion

E[||Xn
M−Y n

M||2]= E[||Xn
A − Y n

A ||2] +E[||Xn
Ac − Y n

Ac||2] (4.22)

= E[||Xn
A − Y n

A ||2] +E[||Xn
Ac −ΣAcAΣ−1

A Y n
A ||2]

= E[||Xn
A − Y n

A ||2]

+E[||Xn
Ac −ΣAcAΣ−1

A Xn
A + ΣAcAΣ−1

A Xn
A −ΣAcAΣ−1

A Y n
A ||2]

= E[||Xn
A − Y n

A ||2] +E[||Xn
Ac −ΣAcAΣ−1

A Xn
A||2]

+E[||ΣAcAΣ−1
A Xn

A −ΣAcAΣ−1
A Y n

A ||2] (4.23)

= ∆min,A +
1

n

n∑
t=1

E[(XAt−YAt)T (I +Σ−1
A ΣAAcΣAcAΣ−1

A )(XAt − YAt)]

(4.24)

= ∆min,A +E[dA(Xn
A, Y

n
A )]

≤ ∆ + ε, (4.25)

where (4.23) is by the orthogonality principle of MMSE estimates (4.21) and since

for t = 1, . . . , n,

E[(XAct −ΣAcAΣ−1
A XAt)

TΣAcAΣ−1
A YAt]

= E[XT
ActΣAcAΣ−1

A YAt]−E[XT
AtΣ

−1
A ΣAAcΣAcAΣ−1

A YAt]

= E
[
E[XT

ActΣAcAΣ−1
A YAt|Xn

A]
]
−E[XT

AtΣ
−1
A ΣAAcΣAcAΣ−1

A YAt]

= E
[
E[XT

Act|Xn
A]ΣAcAΣ−1

A YAt
]
−E[XT

AtΣ
−1
A ΣAAcΣAcAΣ−1

A YAt]

= E[XT
AtΣ

−1
A ΣAAcΣAcAΣ−1

A YAt]−E[XT
AtΣ

−1
A ΣAAcΣAcAΣ−1

A YAt]
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= 0.

Proposition 4.1: The achievability proof of Proposition 4.1 is along the lines of

Theorem 4.1. For a given ∆min < ∆ ≤ ∆max and ε > 0, for the GMMS {XAt}∞t=1

with weighted MSE distortion measure

dA(xA, yA) , (xA − yA)TGA,I(xA − yA), xA, yA ∈ Rk,

consider a rate distortion code (fA, ϕA), fA : Rnk → {1, . . . , J} and ϕA : {1, . . . , J} →

R
nk of rate 1

n
log J ≤ RA(∆) + ε and with

E[dA(Xn
A, Y

n
A )] ≤ ∆−∆min,A + ε,

for n ≥ Nε.

A code (f, ϕ) is then constructed as follows. The encoder f is chosen to be

f(xnA) = fA(xnA), xnA ∈ Rnk.

The output of decoder ϕ, corresponding to each u ∈ I, is given by

(ϕ(j))u = E[Xn
u |Xn

A = ϕA(j)], j ∈ {1, . . . , J}.
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Denoting the output of the decoder ϕ(f(Xn
A)) by Y n

I , for u ∈ I, t = 1, . . . , n,

Yut = Σ{u}AΣ−1
A YAt,

where Σ{u}A = E[XuX
T
A ] and ΣA = E[XAX

T
A ]. The rate of the code (f, ϕ) is

1

n
log J ≤ RA(∆) + ε.

The code (f, ϕ) has expected distortion

E[||Xn
I − Y n

I ||2] =

∫
I

E
[
||Xn

u − Y n
u ||2

]
du

=

∫
I

E[||Xn
u −Σ{u}AΣ−1

A Y n
A ||2] du

=

∫
I

E
[
||Xn

u −Σ{u}AΣ−1
A Xn

A + Σ{u}AΣ−1
A Xn

A −Σ{u}AΣ−1
A Y n

A ||2
]
du

=

∫
I

E
[
||Xn

u −Σ{u}AΣ−1
A Xn

A||2
]

+E
[
||Σ{u}AΣ−1

A Xn
A −Σ{u}AΣ−1

A Y n
A ||2

]
du

(4.26)

= ∆min,A +

∫
I

E
[
||(Xn

A − Y n
A )TΣ−1

A ΣT
{u}AΣ{u}AΣ−1

A (Xn
A − Y n

A )||2
]
du

= ∆min,A +E
[
||(Xn

A − Y n
A )TGA,I(X

n
A − Y n

A )||2
]

using (4.8)

≤ ∆ + ε,

where (4.26) is by the orthogonality principle of the MMSE estimates as in (4.23),
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(4.24).

Before we present the achievability proof of Theorem 4.2, we present pertinent

technical results. We state first a standard technical result, a Vitali covering lemma

(Theorem 17.1 in [38]), without proof. For any ε > 0, this lemma guarantees the

existence of a finite number of nonoverlapping Euclidean “balls” of radius ≤ ε such

that the Lebesgue measure of points in Θ1 not covered by the Euclidean balls is

≤ ε. In the achievability proof of Theorem 4.2, the centers of such balls will be used

to approximate Θ1 and (approximately) estimate θ1. For τ1 ∈ Θ1, let Bτ1,ε ⊂ Rk2

denote a standard Euclidean `2-ball with center τ1 and radius ε.

Lemma 4.2 For every ε > 0, there exists an Nε > 0 and a finite disjoint collection

of balls {Bτ1,i,εi}Nεi=1 such that max
i

εi ≤ ε and

µ
(
Θ1 \

⋃
i

Bτ1,i ,εi

)
< ε, (4.27)

where µ is the Lebesgue measure on Rk2
and \ is the standard set difference.

Remarks: i) The lemma above relies on Θ1 being a compact subset of Rk2
.

ii) For ε > 0 and {Bτ1,i ,εi
}Nεi=1 as in the lemma above, let Θ1,ε ⊂ Θ1 be the collection

of “centers” {τ1,i}Nεi=1.

While the lemma above is pertinent to the Bayesian and nonBayesian parts

of Theorem 4.2, Lemmas 4.3 and 4.4 below are pertinent to the Bayesian and non-

Bayesian settings respectively.
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Lemma 4.3 In the Bayesian setting, for every xM ∈ Rm,

νXM|θ1(xM|τ1) (4.28)

is continuous in τ1. For any code (f, ϕ), f : Rnk → {1, . . . , J}, ϕ : {1, . . . , J} →

R
nm,

E
[
||Xn
M − ϕ(f(Xn

A))||2
∣∣θ1 = τ1

]

is continuous in τ1.

Proof: See Appendix B.1.

Remarks: (i) Since Θ1 is a compact set, for every xM ∈ Rm, the pdf νXM|θ1(xM|τ1)

and E
[
||Xn
M − ϕ(f(Xn

A))||2
∣∣θ1 = τ1

]
are, in fact, uniformly continuous in τ1. Thus,

for every xM ∈ Rm and ε > 0, there exists a δ > 0 such that for τ1,1, τ1,2 ∈ Θ1 with

||τ1,1 − τ1,2|| ≤ δ, it holds that

|νXM|θ1(xM|τ1,1)− νXM|θ1(xM|τ1,2)| ≤ ε,

and

∣∣∣E[||Xn
M − ϕ(f(Xn

A))||2
∣∣θ1 = τ1,1

]
−E

[
||Xn
M − ϕ(f(Xn

A))||2
∣∣θ1 = τ1,2

]∣∣∣ ≤ ε.
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(ii) The claim (4.28) implies that

E[XAX
T
A |θ1 = τ1] and E[XAX

T
Ac |θ1 = τ1]

are continuous in τ1 and hence,

GA,τ1 = I+(E[XAX
T
A |θ1 = τ1])−1

E[XAX
T
Ac |θ1 = τ1]E[XAcX

T
A |θ1 = τ1](E[XAX

T
A |θ1 = τ1])−1

is continuous in τ1. Thus, from (4.15), for every δ > ∆min,A,τ1 , ρBA(δ, τ1) is continuous

in τ1.

The following lemma implies that if τ1,1, τ1,2 ∈ Θ1 are “close,” then there exist τ̂

and τ̌ in the ambiguity atoms of τ1,1 and τ1,2, respectively, which too are “close.”

Lemma 4.4 For every ε > 0, there exists a δ > 0 such that for every τ1,1, τ1,2 ∈ Θ1

with ||τ1,1 − τ1,2|| ≤ δ, the following holds

min
τ̂∈Λ(τ1,1), τ̌∈Λ(τ1,2)

||τ̂ − τ̌ || ≤ ε. (4.29)

Proof: See Appendix B.2.

Theorem 4.2: Consider Θ1 as in Section 4.3. Based on the output of the fixed-

set sampler Xn
A, the encoder forms a maximum-likelihood (ML) estimate for the

covariance-matrix ΣAτ1 as

θ̂1,n = θ̂1,n(Xn
A) =

1

n

n∑
t=1

XAtX
T
At.
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Observe that {XAt}∞t=1 is a GMMS with pdf N (0,ΣAτ1) and νXA|θ1=τ1 is continuous

in τ1. Compactness of Θ1, the boundedness and continuity of νXA|θ1=τ1 in τ1 imply,

by the uniform law of large numbers [39], that

θ̂1,n
a.s.−→ τ1

under νXA|θ1=τ1 , and that for every ε1 > 0, there exists a δ and Nε1 such that for

every τ1 ∈ Θ1

Pτ1
(
||τ1 − θ̂1,n|| > δ

)
≤ ε1, n ≥ Nε1 . (4.30)

Now, considering a subset Θ1,δ of Θ1 as in the remark following Lemma 4.2, define

θ̃1,n as

θ̃1,n , arg min
τ̌1∈Θ1,δ

||θ̂1,n − τ̌1||. (4.31)

Fixing ε > 0 and 0 < ε1 < ε, from (4.30), (4.31) and Lemma 4.2, it follows that

there exists a δ and Nε1 such that

P
(
||θ1 − θ̃1,n|| > 2δ

)
≤ ε1, n ≥ Nε1 . (4.32)

Notice that while θ̂1,n may lie outside Θ1, θ̃1,n is an estimate of θ1 that takes values

in a finite subset of Θ1. The estimate θ̃1,n (of θ1) will be used in the next part of
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the proof to select sampling rate distortion codes.

For a fixed ∆min,A < ∆ ≤ ∆max, let {∆τ1 , τ1 ∈ Θ1} be such that it attains the

minimum in (4.17) and ∆τ1 is continuous in τ1 (see the remark below Theorem 4.2).

Recall that for each τ1 ∈ Θ1,δ, ρ
B
A(∆τ1 , τ1) is, in effect, the RDf for a GMMS {XAt}∞t=1

with pdf νXA|θ1=τ1 under a weighted MSE distortion measure dAτ1 . Thus, for each

τ1 ∈ Θ1,δ, there exists a (standard) rate distortion code (fτ1 , ϕτ1), fτ1 : Rnk →

{1, . . . , J} and ϕτ1 : {1, . . . , J} → R
nk of rate 1

n
log J ≤ ρBA(∆τ1 , τ1)+ε1 ≤ RA(∆)+ε1

and with

E[dAτ1(Xn
A, ϕτ1(fτ1(Xn

A)))|θ1 = τ1] ≤ ∆τ1 −∆min,A,τ1 + ε1

for all n ≥ Nε1 .

Now, consider a code (f, ϕ) with f taking values in J , {1, . . . , |Θ1,δ|} ×

{1, . . . , J} as follows. Order (in any manner) the elements of Θ1,δ. The encoder f ,

dictated by the estimate θ̃1,n, is given by

f(xnA) ,
(
θ̃1,n(xnA), fθ̃1,n(xnA)

)
, xnA ∈ Rnk

and the decoder ϕ is given by

ϕ(τ1, j) ,
(
ϕτ1(j),E[Xn

Ac |Xn
A = ϕτ1(j), θ1 = τ1]

)
, (τ1, j) ∈ J . (4.33)
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By the finiteness of Θ1,δ, the rate of the code (f, ϕ) is

1

n
log |J | = 1

n
log |Θ1,δ|+

1

n
log J

≤ RA(∆) + 2ε1,

for n large enough. Denoting the output of the decoder by Y n
M with Y n

A = ϕτ1(j)

and Y n
Ac = E[Xn

Ac |Xn
A = ϕτ1(j), θ1 = τ1], we have that

E[||Xn
M − Y n

M||2] = E[1(||θ̃1,n − θ1|| ≤ 2δ)||Xn
M − Y n

M||2]

+E[1(||θ̃1,n − θ1|| > 2δ)||Xn
M − Y n

M||2] (4.34)

Using Lemma 4.3, it is shown in Appendix C.3 that the first term in the right-side

of (4.34) is

E[1(||θ̃1,n − θ1|| ≤ 2δ)||Xn
M − Y n

M||2] ≤ ∆ + 4ε1. (4.35)

Next, we show that the second term in the right-side of (4.34) is “small.” First, note

that the finiteness of Θ1,δ implies the existence of an M1 such that, for t = 1, . . . , n,

|(ϕτ1(fτ1(xnA)))i,t| ≤M1, i ∈ A, τ1 ∈ Θ1,δ, xnA ∈ Rnk

and hence, from (4.33), there exists an M2 > 0 such that, for t = 1, . . . , n,

|(ϕ(f(xnA)))i,t| ≤M2, i ∈M, xnA ∈ Rnk. (4.36)
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For i ∈ M, from (4.36), Cauchy-Schwarz inequality, and the fact that E[X2
i ] is

bounded, there exists an M such that

E[(Xit − Yit)4] ≤M, t = 1, . . . , n. (4.37)

Now, the second term on the right-side of (4.34),

E[1(||θ̃1,n − θ1|| >2δ)||Xn
M − Y n

M||2]

=
1

n

n∑
t=1

m∑
i=1

E
[
1(||θ̃1,n − θ1|| > 2δ)

(
Xit − Yit

)2]
≤ 1

n

n∑
t=1

m∑
i=1

√
E
[
12(||θ̃1,n − θ1|| > 2δ)

]
E
[(
Xit − Yit

)4]
(4.38)

≤ 1

n

n∑
t=1

m∑
i=1

√
ε1M from (4.32) and (4.37)

≤
√
ε1Mm, (4.39)

where (4.38) is by the Cauchy-Schwarz inequality. From (4.35) and (4.39), we get

E
[
||Xn
M − Y n

M||2
]
≤ ∆ + 4ε1 +m

√
ε1M

≤ ∆ + ε,

for ε1 small enough.

In the nonBayesian setting, as a first step, Lemma 4.4 is used to show that

ρnBA (δ, τ1) is a continuous function of τ1. Then, the maximum in (4.18) is seen to

exist as a continuous function over a compact set attains its supremum. Next, the
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achievability proof follows by adapting the steps above with the following differ-

ences. For each τ1 ∈ Θ1,δ, sampling rate distortion codes (fτ1 , ϕτ1), fτ1 : Rnk →

{1, . . . , J}, ϕτ1 : {1, . . . , J} → R
nm are chosen to satisfy

E
[
||Xn
M − ϕτ1(fτ1(Xn

A))||2|θ = τ
]
≤ ∆, τ ∈ Λ(τ1),

with rate 1
n

log ||fτ1|| ≤ RA(∆)+ε, where RA(∆) is the nonBayesian USRDf. A code

(f, ϕ) with f taking values in J = {1, . . . , |Θ1,δ|} × {1, . . . , J} is constructed based

on the codes (fτ1 , ϕτ1) as before. While counterparts of (4.35) and (4.39) can be

shown for each τ1 ∈ Θ1 using a similar set of ideas, a key distinction in the analysis

is that Lemma 4.4 is used in lieu of Lemma 4.3 to show that for τ ∈ Λ(τ1), τ1 ∈ Θ1,

E
[
1(||θ̃1,n − τ1|| ≤ 2ε1)||Xn

M − ϕ(θ̃1,n, fθ̃1,n(Xn
A))||2

∣∣θ = τ
]
≤ ∆ + ε1,

the counterpart of (4.35).

4.4.2 Converse Proofs

In contrast to the achievability proofs, we present a converse proof for Theorem 4.2

first, with an emphasis on the Bayesian setting; this is then adapted to Theorem 4.1.

Prior to this, we prove the equivalence of expressions in (4.40), that will be pertinent

to Theorem 4.1. Building on this, we show the equivalence of the simplified forms

for ρBA(δ, τ1) and ρnBA (δ, τ1) in Proposition 4.2. Next, we shall present a technical

lemma. These will be used subsequently in the unified converse proof for Theorems
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4.1 and 4.2. The converse proof for Proposition 4.1 uses an approach that does not

rely on Lemma 4.5 and is presented last.

Equivalence for Theorem 4.1: The following equality will be relevant in the

proof of converse for Theorem 4.1:

min
XAc −◦− XA −◦− YM
µXAYA<<µXA×µYA
E[||XM−YM||2]≤∆

I
(
XA ∧ YA

)
= min

µXAYA
<<µXA

×µYA
E[dA(XA,YA)]≤∆−∆min,A

I
(
XA ∧ YA

)
. (4.40)

For any pair of rvs XM, YM satisfying the constraints on the left-side of (4.40),

consider

ŶM , E[XM|YM]. (4.41)

Now,

ŶAc = E[XAc|YM] = E[E[XAc |XA, YM]|YM] = E[E[XAc |XA]|YM]

= E[ΣAcAΣ−1
A XA|YM] = ΣAcAΣ−1

A ŶA. (4.42)

By the optimality of the MMSE estimate,

E[||XM − ŶM||2] ≤ E[||XM − YM||2] ≤ ∆. (4.43)
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It is readily checked (along the lines of (4.22)-(4.25)) that

E[||XM − ŶM||2] = E[dA(XA, ŶA)] + ∆min,A. (4.44)

Putting together (4.41)-(4.44), completes the proof of (4.40).

Proposition 4.2: The proof of (4.15) and (4.16) is the along the lines of proof of

(4.40), with the distinction that in the nonBayesian setting, ŶA is chosen to satisfy

the orthogonality principle and ŶAc is chosen to be a linear function of ŶA.

The following technical lemma is the counterpart of Lemma 6 in [40].

Lemma 4.5 In the Bayesian setting, for any n-length k-FS code (f, ϕ) with f :

R
nk → {1, . . . , J}, ϕ : {1, . . . , J} → R

nm, for t = 1, . . . , n, denoting ϕ(f(Xn
A)) by

Y n
M, it holds that

θ,XAct −◦− θ1, XAt −◦− YMt. (4.45)

Proof: First, note that

θ,Xn
Ac −◦− Xn

A −◦− Y n
M (4.46)

holds by code construction. From (4.46) (and since Y n
M above is a finite-valued rv),
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we have

0 = I
(
θ,Xn

Ac ∧ Y n
M|Xn

A

)
= I
(
θ ∧ Y n

M|Xn
A

)
+ I
(
Xn
Ac ∧ Y n

M|Xn
A, θ
)

= I
(
θ, θ1 ∧ Y n

M|Xn
A

)
+ I
(
Xn
Ac ∧ Y n

M|Xn
A, θ
)

(4.47)

≥ I
(
θ ∧ Y n

M|Xn
A, θ1

)
+ I
(
Xn
Ac ∧ Y n

M|Xn
A, θ
)
, (4.48)

where (4.47) is since θ1 is a function of θ. Now, the second term on the right-side of

(4.48) is

0 = I(Xn
Ac ∧ Y n

M|Xn
A, θ) =

n∑
t=1

I
(
XAct ∧ Y n

M|X t−1
Ac , X

n
A, θ
)

=
n∑
t=1

(
I
(
XAct ∧X t−1

Ac , X
n\t
A , Y n

M|XAt, θ
)

− I
(
XAct ∧X t−1

Ac X
n\t
A |XAt, θ

))
=

n∑
t=1

I
(
XAct ∧X t−1

Ac , X
n\t
A , Y n

M|XAt, θ
)

(4.49)

≥
n∑
t=1

I
(
XAct ∧ YMt|XAt, θ

)
, (4.50)

where (4.49) is since νXn
M|θ =

n∏
t=1

νXMt|θ. Next, (4.48) and the fact

θ −◦− θ1 −◦− Xn
A

imply

0 = I
(
θ ∧Xn

A|θ1

)
+ I
(
θ ∧ Y n

M|Xn
A, θ1

)
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= I
(
θ ∧Xn

A, Y
n
M|θ1

)

and hence, for t = 1, . . . , n,

I(θ ∧XAt, YMt|θ1) = 0. (4.51)

Now, by (4.50) and (4.51), for t = 1, . . . , n,

I(θ ∧ YMt|XAt, θ1) + I(XAct ∧ YMt|XAt, θ) = I(θ,XAct ∧ YMt|XAt, θ1) = 0,

hence, the claim of the lemma (4.45).

Converse: We provide first a converse proof for the Bayesian setting in Theorem

4.2, which is then refashioned to provide converse proofs for the nonBayesian setting

and Theorem 4.1.

Let (f, ϕ) be an n-length k-FS code of rate R and with decoder output Y n
M =

ϕ(f(Xn
A)) satisfying E[||Xn

M− Y n
M||2] ≤ ∆. By lemma 4.5, for t = 1, . . . , n, we have

θ,XAct −◦− θ1, XAt −◦− YMt. (4.52)

For t = 1, . . . , n, and τ1 ∈ Θ1, let ∆τ1,t denote E[||XMt − YMt||2|θ1 = τ1] and

∆τ1 , 1
n

n∑
t=1

E[||XMt − YMt||2|θ1 = τ1]. Along the lines of proof of Theorem 9.6.1
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in [41], for every τ1 ∈ Θ1,

R=
1

n
log |f | ≥ 1

n
H(f(Xn

A)|θ1 = τ1)

≥ 1

n
H(Y n

A |θ1 = τ1)

=
1

n
I(Xn

A ∧ Y n
A |θ1 = τ1)

=
1

n

n∑
t=1

(
I
(
XAt ∧X t−1

A , Y n
A |θ1 = τ1

)
− I
(
XAt ∧X t−1

A |θ1 = τ1

))
=

1

n

n∑
t=1

I(XAt ∧X t−1
A , Y n

A |θ1 = τ1) since νXn
A|θ1 =

n∏
t=1

νXAt|θ1

≥ 1

n

n∑
t=1

I(XAt ∧ YAt|θ1 = τ1)

≥ 1

n

n∑
t=1

min
θ,XAct −◦− θ1,XAt −◦− YMt

µXAtYAt|θ1=τ1
<<µXAt|θ1=τ1

×µYAt|θ1=τ1

E[||XMt−YMt||2|θ1=τ1]≤∆τ1,t

I(XAt ∧ YAt|θ1 = τ1) by (4.52)

=
1

n

n∑
t=1

min
µXAtYAt|θ1=τ1

<<µXAt|θ1=τ1
×µYAt|θ1=τ1

E[dAτ1 (XAt,YAt)|θ1=τ1]≤∆τ1,t−∆min,A,τ1

I(XAt ∧ YAt|θ1 = τ1) by Proposition 4.2

=
1

n

n∑
t=1

ρBA(∆τ1,t, τ1)

≥ ρBA

( 1

n

n∑
t=1

∆τ1,t, τ1

)
≥ ρBA(∆τ1 , τ1). (4.53)

Now, (4.53) holds for every τ1 ∈ Θ1, hence

R ≥ sup
τ1∈Θ1

ρBA(∆τ1 , τ1)

137



≥ inf
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

sup
τ1∈Θ1

ρBA(∆τ1 , τ1) (4.54)

= RA(∆)

for ∆ > ∆min,A.

In the nonBayesian setting, the analog of Lemma 4.5 is obtained similarly with

θ = τ, θ1 = τ1 and (4.46), (4.45) replaced with appropriate conditional measures.

The proof of the converse is along the lines of the proof above, but with ρnBA (∆, τ1) in

place of ρBA(∆τ1 , τ1), and without the outer minimization with respect to {∆τ1 , τ1 ∈

Θ1}.

The converse proof for Theorem 4.1 obtains immediately from the Bayesian

setting with the following changes: Θ1 and Λ(τ1), τ1 ∈ Θ1, are taken to be singletons

(rendering the infimum and supremum in (4.54) superfluous) and (4.40) is used in

place of Proposition 4.2.

The converse proof for Proposition 4.1 involves an approach which does not rely on

Lemma 4.5 and is presented next.

Converse proof for Proposition 4.1: Let (f, ϕ) be an n-length k-FS code of

code R with E[||Xn
I − ϕ(f(Xn

A))||2] ≤ ∆. For u ∈ I and t = 1, . . . , n, define

Ŷut = E[Xut|f(Xn
A)]

= E
[
E[Xut|Xn

A, f(Xn
A)]|f(Xn

A)
]
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= E
[
E[Xut|Xn

A]|f(Xn
A)
]

= E
[
E[Xut|XAt]|f(Xn

A)
]
, since XAt, Xut ⊥⊥ X

n\t
A , Xn\t

u

= E[X{u}A]Σ−1
A E[XAt|f(Xn

A)].

Notice that for u ∈ I \ A,

Ŷut = E[X{u}A]Σ−1
A ŶAt, t = 1, . . . , n.

By the optimality of the MMSE estimate

∆ ≥ E[||Xn
I − ϕ(f(Xn

A))||2] ≥ E[||Xn
I − Ŷ n

I ||2] = E[(Xn
A − Ŷ n

A )TGA,I(X
n
A − Ŷ n

A )] + ∆min,A.

(4.55)

The equality in (4.55) can be seen to hold along the lines of (4.22)-(4.25). Now,

R =
1

n
log |f | ≥ 1

n
H(f(Xn

A))

=
1

n
I(Xn

A ∧ f(Xn
A))

≥ min
f,ϕ

E[||Xn
I
−ϕ(f(Xn

A
))||2]≤∆

1

n
I(Xn

A ∧ f(Xn
A))

≥ min
µXn

A
Y n
A
<<µXn

A
×µY n

A
E[(Xn

A
−Y n

A
)TGA,I (Xn

A
−Y n

A
)]≤∆−∆min,A

1

n
I(Xn

A ∧ Y n
A ) by (4.55)
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= min
µXn

A
Y n
A
<<µXn

A
×µY n

A
E[(Xn

A
−Y n

A
)TGA,I (Xn

A
−Y n

A
)]≤∆−∆min,A

1

n

n∑
t=1

(
I(XAt ∧X t−1

A , Y n
A )− I(XAt ∧X t−1

A )
)

= min
µXn

A
Y n
A
<<µXn

A
×µY n

A
E[(Xn

A
−Y n

A
)TGA,I (Xn

A
−Y n

A
)]≤∆−∆min,A

1

n

n∑
t=1

I(XAt ∧X t−1
A , Y n

A ) since XAt ⊥⊥ X
n\t
A

≥ min
µXn

A
Y n
A
<<µXn

A
×µY n

A
E[(Xn

A
−Y n

A
)TGA,I (Xn

A
−Y n

A
)]≤∆−∆min,A

1

n

n∑
t=1

I(XAt ∧ YAt)

≥ min
{∆t, 1≤t≤n}
1
n

n∑
t=1

∆t≤∆

1

n

n∑
t=1

min
µXAtYAt

<<µXAt
×µYAt

E[(XAt−YAt)TGA,I (XAt−YAt)]≤∆t−∆min,A

I(XAt ∧ YAt) (4.56)

= min
{∆t, 1≤t≤n}
1
n

n∑
t=1

∆t≤∆

1

n

n∑
t=1

ρA(∆t)

= RA(∆),

where (4.56) is since

µXn
AY

n
A
<< µXn

A
× µY nA ⇒ µXAtYAt << µXAt × µYAt , t = 1, . . . , n. (4.57)

The claim (4.57) is easy to see by contradiction. Consider any real-valued rvs

Z1, Z2, Z3 with probability distribution µZ1Z2Z3 << µZ1 × µZ2 × µZ3 . Suppose, if

possible, µZ1Z2 is not absolutely continuous with respect to µZ1 × µZ2 , i.e., there

exist E1, E2 ∈ B(R) such that

µZ1(E1)× µZ2(E2) = 0 and µZ1Z2(E1 × E2) 6= 0. (4.58)
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Considering a E = E1 × E2 × B(R), by (4.58) we have (µZ1 × µZ2 × µZ3)(E) =

µZ1(E1)× µZ2(E2)× µZ3(R) = 0 but

µZ1Z2Z3(E) 6= 0,

since µZ1Z2(E1 × E2) 6= 0, a contradiction, since µZ1Z2Z3 << µZ1 × µZ2 × µZ3 .

Note that a converse proof for Theorem 4.1 can be provided along the lines of

the converse proof for Proposition 4.1. However, we prefer the current manner of

presentation which provides for unity of ideas.

4.5 Discussion

In this chapter, we restricted our attention to a fixed-set sampler and our formulation

of universality in this chapter the underlying pdf of a GMMS was known only to

belong to a convex, compact set of pdfs P . General extensions to a GMMS sampled

by a k-random sampler for any arbitrary P (countable or uncountable) remain open.

In Section 4.3, our study involved a brief detour to Gaussian random field on an

interval. As illustrated by Example 4.2, this allowed for a better understanding of the

structure of the optimal fixed-set sampling. Aspects of sampling and compression of

Markov random fields and Gaussian random fields have been the subject of extensive

studies. It will be interesting to explore the questions posed in this dissertation in

the context of these fields.

In Chapter 2, for a DMMS with known pmf, it was seen that a k-IRS and a

k-MRS with memory did not improve the SRDf. In an universal setting, adaptive
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samplers such as

PSt|Xt
MSt−1 = PSt|St−1Xt−1

S
, t = 1, . . .

can be expected to be strictly superior to their counterparts with memory. This can

easily be seen, for instance, in terms of the improvement in ∆min. Such samplers

allow for the design of sequential decision-making algorithms which can adaptively

identify the optimal sampling sets in an “online” manner. For any ∆min ≤ ∆ ≤

∆max, the optimal sequential decision-making sampling algorithms, in its limit, can

be expected to approximate the optimal k-IRS. An initial study of the design of

sequential decision-making algorithms for achieving minimum expected distortion,

in a multi-armed bandit setup, is already underway.
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Appendix A: Proof of Theorem 2.3 and Proposition 3.1

We begin with the proof of Proposition 3.1 and show that the proof of Theorem 2.3

is obtained from the proof of Proposition 3.1 as a special case, with |Θ| = 1.

First, for Proposition 3.1, for the Bayesian setting, by Theorem 3.3, the claim

entails showing that

min
PU ,PS|XMU ,{∆τ , τ∈Θ}

E[∆θ ]≤∆

max
τ∈Θ

min
PYB |SXSU,θ=τ

E[d(XB,YB)|θ=τ ]≤∆τ

I(XS ∧ YB|S, U, θ = τ) (A.1)

= min
PU ,δw,{∆τ , τ∈Θ}

E[∆θ ]≤∆

max
τ∈Θ

min
PYB |SXSU,θ=τ

E[d(XB,YB)|θ=τ ]≤∆τ

I(XS ∧ YB|S, U, θ = τ), (A.2)

for ∆min ≤ ∆ ≤ ∆max. Denote the expressions in (A.1) and (A.2) by q(∆) and r(∆),

respectively. Now, from the conditional version of Topsøe’s identity [34, Lemma 8.5],

observe that q(∆) equals

min
PU ,PS|XMU ,

{∆τ ,τ∈Θ}
E[∆θ]≤∆

max
τ∈Θ

min
PYB |SXSU,θ=τ

E[d(XB,YB)|θ=τ ]≤∆τ

min
QYB |SU,θ=τ

D
(
PYB |SXSU,θ=τ

∣∣∣∣QYB |SU,θ=τ
∣∣PSXSU |θ=τ) .

(A.3)

Note that the inner max and min can be interchanged in (A.3). Denoting
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D
(
PYB |SXSU,θ=τ

∣∣∣∣QYB |SU,θ=τ
∣∣PSXSU |θ=τ) by Dτ , τ ∈ Θ, we write (A.3) as

min
PU ,PS|XMU ,{∆τ , τ∈Θ}

E[∆θ ]≤∆

min
PYB |SXSUθ

,QYB |SU,θ=τ
E[d(XB,YB)|θ=τ ]≤∆τ , τ∈Θ

max
τ∈Θ

Dτ

= min
PU ,PS|XMU ,PYB |SXSUθ

,QYB |SU,θ=τ
E[d(XB,YB)]≤∆

max
τ∈Θ

Dτ

= min
t,PU ,PS|XMU ,PYB |SXSUθ,QYB |SU,θ=τ

Dτ≤t, τ∈Θ
E[d(XB ,YB)]≤∆

t, (A.4)

which is the epigraph form. Also, r(∆) can be expressed in a similar manner. Based

on (A.4), we define Gq(α, {λτ , τ ∈ Θ}) and Gr(α, {λτ , τ ∈ Θ}) in terms of the

Lagrangians of q(∆) and r(∆), respectively, in a standard way.

Specifically, Gq(α, {λτ , τ ∈ Θ})

= min
t,PU ,PS|XMU

PYB |SXSUθ
,QYB |SUθ

t+
∑
τ∈Θ

λτ (Dτ − t) + αE [d(XB, YB)]

= min
t,PU ,PS|XMU

PYB |SXSUθ
,QYB |SUθ

t(1−
∑
τ∈Θ

λτ ) +
∑
τ∈Θ

λτDτ + αE [d(XB, YB)]

=


min

PU ,PS|XMU
PYB |SXSUθ

,QYB |SUθ

∑
τ∈Θ

λτDτ + αE [d(XB, YB)] , if
∑
τ∈Θ

λτ = 1

−∞, otherwise.

(A.5)

Let Pτ , PXM|θ=τ . When
∑
τ∈Θ

λτ = 1, from (A.5), Gq(α, {λτ , τ ∈ Θ}) equals

min
PU ,QYB |SUθ

,

PYB |SXSUθ

∑
u,xM

PU(u) min
PS|XMU

∑
s∈Ak

PS|XMU(s|xM, u)×
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(
E

[∑
τ∈Θ

λτPτ (xM)log
PYB |SXSUθ(YB|s, xs, u, τ)

QYB |SUθ(YB|s, u, τ)

+ α
∑
τ∈Θ

µθ(τ)Pτ (xM)d(xB, YB)
∣∣∣S = s,XS = xs, U = u, θ = τ

])
,

where the expectation above is with respect to PYB |S=s,XS=xs,U=u,θ=τ . Noting that

the term
(
· · ·
)

above is a function of s, xM, u, we get

Gq(α,{λτ , τ ∈ Θ})

= min
PU ,QYB |SUθ
PYB |SXSUθ

∑
u,xM

PU(u)min
s∈Ak

(
E

[∑
τ∈Θ

λτPτ (xM) log
PYB |SXSUθ(YB|s, xs, u, τ)

QYB |SUθ(YB|s, u, τ)

+ α
∑
τ∈Θ

µθ(τ)Pτ (xM)d(xB, YB)
∣∣∣S = s,XS = xs, U = u, θ = τ

])

= min
PU ,QYB |SUθ
PYB |SXSUθ

∑
u,xM

PU(u) min
δw(·,·)

∑
s∈Ak

δw(xM,u)(s)×

(
E

[∑
τ∈Θ

λτPτ (xM) log
PYB |SXSUθ(YB|s, xs, u, τ)

QYB |SUθ(YB|s, u, τ)

+ α
∑
τ∈Θ

µθ(τ)Pτ (xM)d(xB, YB)
∣∣∣S = s,XS = xs, U = u, θ = τ

])

= min
PU ,QYB |SUθ
PYB |SXSUθ

,δw

∑
τ∈Θ

λτD
(
PYB |SXSU,θ=τ

∣∣∣∣QYB |SU,θ=τ
∣∣PSXSU |θ=τ)+ αE [d(XB, YB)]

= Gr(α, {λτ , τ ∈ Θ}).
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Since q(∆) and r(∆) are convex in ∆, they can be expressed in terms of their

respective Lagrangians as

q(∆) = max
α≥0, {λτ≥0, τ∈Θ}

Gq(α, {λτ , τ ∈ Θ})− α∆ and

r(∆) = max
α≥0, {λτ≥0, τ∈Θ}

Gr(α, {λτ , τ ∈ Θ})− α∆. (A.6)

Thus,

q(∆) = max
α≥0, {λτ≥0, τ∈Θ}

Gq(α, {λτ , τ ∈ Θ})− α∆

= max
α≥0, {λτ≥0, τ∈Θ}∑

τ∈Θ
λτ=1

Gq(α, {λτ , τ ∈ Θ})− α∆

= max
α≥0, {λτ≥0, τ∈Θ}∑

τ∈Θ
λτ=1

Gr(α, {λτ , τ ∈ Θ})− α∆

= r(∆),

upon observing that the maxima in (A.6) are attained when
∑
τ∈Θ

λτ = 1. The

nonBayesian setting is shown using a similar set of ideas.

In the nonBayesian setting, the proof of (3.30) can be provided along the lines

of proof above with the distinction that the minima in (A.1), (A.2) are now over

PUXMSYB |θ=τ such that E[d(XB, YB)|θ = τ ] ≤ ∆, τ ∈ Θ. This distinction is then

maintained throughout the proof.

The proof of Theorem 2.3 can be obtained from the steps above for |Θ| = 1

and with PXM , the pmf of XM, in place of PXM|θ=τ .
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Appendix B: Proofs of Technical Lemmas in Gaussian Sam-

pling Rate Distortion

B.1 Proof of Lemma 4.3

Recall that the elements of the compact sets Θ and Θ1 are indexed by τ and τ1,

which take values in Rm2
and Rk2

respectively. Now, every τ ∈ Θ can be seen as

τ = (τ1, τ2) with τ2 taking values in Θ2, a bounded subset of Rm2−k2
. A continuous

function over a compact set is uniformly continuous, hence, for every xM ∈ Rm,

νXM|θ(xM|τ1, τ2) and νθ(τ1, τ2)

are uniformly continuous in (τ1, τ2). Furthermore, as a function of τ2, νXM|θ(xM|τ1, τ2)

and νθ(τ1, τ2) are bounded functions over bounded set Θ2 and hence so is

νXM|θ(xM|τ1, τ2)νθ(τ1, τ2). By the Bounded Convergence Theorem, for every xM ∈

R
m and τ1 ∈ Θ1

lim
τ̃1→τ1

νθ1(τ̃1) = lim
τ̃1→τ1

∫
Θ2

νθ(τ̃1, τ2) dτ2 =

∫
Θ2

νθ(τ1, τ2) dτ2 = νθ1(τ1) (B.1)
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and

lim
τ̃1→τ1

∫
Θ2

νXM|θ(xM|τ̃1, τ2)νθ(τ1, τ2) dτ2 =

∫
Θ2

νXM|θ(xM|τ1, τ2)νθ(τ1, τ2) dτ2,(B.2)

and thus from (B.1) and (B.2),

lim
τ̃1→τ1

νXM|θ1(xM|τ̃1) = νXM|θ1(xM|τ1).

Continuity of νXM|θ1(xM|τ1) in τ1, implies that for i = 1, . . . ,m, and t = 1, . . . , n,

E
[(
Xi − (ϕ(f(Xn

A)))i,t
)2|θ1 = τ1]

is continuous in τ1. The continuity of

E
[
||Xn
M − ϕ(f(Xn

A))||2
∣∣θ1 = τ1

]
(B.3)

in τ1 is now immediate. Since Θ1 is a compact set, (B.3) is uniformly continuous in

τ1.

B.2 Proof of Lemma 4.4

First, observe that for every τ1 ∈ Θ1, Λ(τ1) is a convex, compact set. Now, the

minimum in (4.29) exists as that of a continuous function over a compact set. It is
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seen in a standard manner that the convexity of Θ and Θ1 imply the convexity of

g(τ1,1, τ1,2) , min
τ̂∈Λ(τ1,2)

min
τ̌∈Λ(τ1,1)

||τ̂ − τ̌ ||

in (τ1,1, τ1,2). Consequently, g(τ1,1, τ1,2) is continuous in (τ1,1, τ1,2). Define

D(δ) , max
τ1,1,τ1,2∈Θ1
||τ1,1−τ1,2||≤δ

g(τ1,1, τ1,2).

Clearly, D(0) = 0 and D(δ) is a continuous nondecreasing function of δ (Chapter

20, [42]).

Now, we prove the lemma by contradiction. Suppose if possible, there exists an

ε > 0 such that for every δ > 0 there exist τ1,1,δ, τ1,2,δ ∈ Θ1 with ||τ1,1,δ − τ1,2,δ|| ≤ δ

and

g(τ1,1,δ, τ1,2,δ) > ε.

Then,

0 = D(0) = lim
δ→0

D(δ) = lim
δ→0

max
τ1,1,δ, τ1,2,δ: ||τ1,1,δ−τ1,2,δ||≤δ

g(τ1,1,δ, τ1,2,δ) ≥ ε,

a contradiction. Hence, the lemma.
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Appendix C: Proof of Key Claims

C.1 Proof of Claim in Achievability Proof of Theorem 3.3

For the code formed by concatenating (f, ϕ) for each u ∈ U , the rate is

∼
≤ max

τ∈Θ

∑
u∈U

PU(u)
1

n′

Mk∑
i=1

log Ju,τAi

≤ max
τ∈Θ

∑
u∈U

PU(u)
( Mk∑
i=1

|νu,τAi |
n

1

|νu,τAi |
log Ju,τAi

)
≤max

τ∈Θ

∑
u∈U

PU(u)
(Mk∑
i=1

PS|Uθ(Ai|u, τ)
(
I(XAi ∧ YB|S = Ai, U = u, θ = τ)+

ε′

2

))
, by (3.46)

≤ max
τ∈Θ

∑
u∈U

PU(u) I(XS ∧ YB|S, U = u, θ = τ) + ε′

≤ Rm(∆) + ε,

for all n large enough.

For each U = u, let ∆u ,
∑

τ∈Θ, Ai∈Ak
µθ(τ)PS|Uθ(Ai|u, τ)∆Ai,u,τ . Denoting the

output of the decoder by Y n′
B , we get

E[d(Xn′

B , Y
n′

B )] ≤ P (τ̂N 6= θ)dmax +E[1(τ̂N = θ)d(Xn′

B , Y
n′

B )]

≤ P (τ̂N 6= θ)dmax + P (Sγ /∈ T (n)(ε′, τ̂N))dmax
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+E
[
E[1(τ̂N = θ, Sγ ∈ T (n)(ε′, τ̂N))d(Xn′

B , Y
n′

B )|Sγ, θ]
]

(C.1)

≤ E[∆S,U,θ|U = u] + ε (C.2)

= ∆u + ε

for all n,N large enough, where the previous inequality is shown below. Then,

expected distortion for the code formed by concatenating (f, ϕ) for each u ∈ U , is

∼
≤ E[∆U ] + ε ≤ ∆ + ε.

It remains to show (C.2). Now, (C.2) follows from the following: In (C.1), for each

τ ∈ Θ and sn ∈ T (n)(ε′, τ̂N),

E[1(τ̂N = θ)d(Xn′

B , Y
n′

B )|Sγ = sn, θ = τ ]

= E

[
1(τ̂N = θ)

n′

∑
t∈µ

d(XBt, YBt) +
1(τ̂N = θ)

n′

∑
t∈γ

d(XBt, YBt)
∣∣Sγ = sn, θ = τ

]
≤ N ′

n′
dmax +

1

n
E

[ Mk∑
i=1

∑
t∈γsn (Ai)\νAi

d(XBt, YBt)|Sγ = sn, θ = τ
]

+

Mk∑
i=1

E

[ |νAi|
n
1(τ̂N = θ)d(X

νAi
B , ϕθAi(f

θ
Ai

(X
νAi
Ai

)))
∣∣SνAi = A

νAi
i , θ = τ

]
≤ N ′

n′
dmax +Mkε

′dmax +

Mk∑
i=1

PS|Uθ(Ai|u, τ)
(

∆Ai,u,τ +
ε′

4

)
, by (3.47)

≤ E[∆S,U,θ|U = u, θ = τ ] +Mkε
′dmax +

N ′

n′
dmax +

ε′

4

≤ E[∆S,U,θ|U = u, θ = τ ] + ε,

for all n large enough and ε′ chosen appropriately.
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C.2 Proof of Existence of Minimum and Maximum in (4.17)

For every τ1 ∈ Θ1, recall that ρBA(δ, τ1) is, in effect, a rate distortion function, hence

its inverse DBA(R, τ1) is well defined over R ≥ 0. Continuity of νXM|θ1(xM|τ1) in τ1

for every xM ∈ Rm implies the continuity of DBA(R, τ1) in τ1.

We now show the existence of the minimum and maximum on the right-side

of (4.17)

inf
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

sup
τ1∈Θ1

ρBA(∆τ1 , τ1) = min
{∆τ1 , τ1∈Θ1}
E[∆θ1

]≤∆

max
τ1∈Θ1

ρBA(∆τ1 , τ1). (C.3)

Denote the left-side of (C.3) by r and choose

∆∗τ1 = DBA(r, τ1), τ1 ∈ Θ1.

The continuity of DBA(r, τ1) in τ1 implies the continuity of ∆∗τ1 in τ1 and hence E[∆∗θ1 ]

exists. A simple proof of contradiction can be used to show that E[∆∗θ1 ] ≤ ∆. Thus,

{∆∗τ1 , τ1 ∈ Θ1} satisfies the constraint on the left-side of (C.3) and for every τ1 ∈ Θ1,

ρBA(∆∗τ1 , τ1) = r, with

sup
τ1∈Θ1

ρBA(∆∗τ1 , τ1) = r

and hence (C.3) holds.
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C.3 Proof of Claim in Achievability Proof of Theorem 4.2

Noting that θ̃1,n(Xn
A) is a deterministic function of Xn

A, for τ1 ∈ Θ1 and τ1,1 ∈ Θ1,δ

with ||τ1 − τ1,1|| ≤ 2δ and Pθ̃1,n|θ1(τ1,1|τ1) > 0,

E
[∣∣∣∣Xn

M − ϕ(τ1,1 , fτ1,1 (Xn
A))
∣∣∣∣2∣∣θ1 = τ1, θ̃1,n = τ1,1

]
=

1

Pθ̃1,n|θ1(τ1,1|τ1)
E
[
1
(
θ̃1,n(Xn

A) = τ1,1

)∣∣∣∣Xn
M − ϕ

(
τ1,1 , fτ1,1 (Xn

A)
)∣∣∣∣2∣∣θ1 = τ1

]
(C.4)

≤ 1

Pθ̃1,n|θ1(τ1,1|τ1)
E
[∣∣∣∣Xn

M − ϕ
(
τ1,1 , fτ1,1 (Xn

A)
)∣∣∣∣2∣∣θ1 = τ1

]
≤ 1

Pθ̃1,n|θ1(τ1,1|τ1)

(
E
[∣∣∣∣Xn

M − ϕ
(
τ1,1 , fτ1,1 (Xn

A)
)∣∣∣∣2∣∣θ1 = τ1,1

]
+ ε1

)
by Lemma 4.3

≤ 1

Pθ̃1,n|θ1(τ1,1|τ1)

(
∆τ1,1

+ 2ε1
)

(C.5)

≤ 1

Pθ̃1,n|θ1(τ1,1|τ1)

(
∆τ1 + 3ε1

)
(C.6)

where

(i) (C.4) is since θ̃1,n(Xn
A) is a deterministic function of Xn

A;

(ii) it is seen along the lines of the achievability proof of Theorem 4.1 that

E
[
||Xn
M − ϕ(τ1,1 , fτ1,1 (Xn

A))||2
∣∣θ1 = τ1,1

]
≤ ∆τ1,1

+ ε1,

and hence (C.5) is obtained;

(iii) ∆τ1 is continuous in τ1 over the compact set Θ1, hence, ∆τ1 is in fact uniformly
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continuous in τ1; (C.6) now follows.

From (C.6), the first term on the right-side of (4.34) is

E[1(||θ̃1,n − θ1|| ≤ 2δ)||Xn
M − ϕ(f(Xn

A))||2]

≤
∑

τ̃1∈Θ1,δ

E[1(||θ1 − τ̃1|| ≤ 2δ)(∆θ1 + 3ε1)]

≤ E[∆θ1 ] + 3ε1 by (4.27)

≤ ∆ + 3ε1.
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Appendix D: Standard Properties of SRDf and USRDf

D.1 Proof of Lemma 3.1

Clearly, for each τ1 ∈ Θ1, ρBA(δ, τ1) and ρnBA (δ, τ1) are finite-valued and, hence, so

are the right-sides of (3.10) and (3.11). Also, they are also nonincreasing in ∆.

The convexity of the right-sides of (3.10) and (3.11) follows from the convexity of

ρBA(δ, τ1) and ρnBA (δ, τ1) in δ along with a standard argument shown below; continuity

for ∆ > ∆min is a consequence. Continuity at ∆min holds, for instance, as in ( [34],

Lemma 7.2). The claimed properties of the right-sides of (3.18), (3.19), (3.24) and

(3.26) follow in a similar manner.

The convexity of the right-side of (3.10) can be shown explicitly as follows. Let

τ1(1) and τ1(2) attain the maximum in (3.10) at ∆ = ∆1 and ∆ = ∆2, respectively,

where ∆1 < ∆2. The corresponding minimizing {∆τ1 , τ1 ∈ Θ1} are denoted by

{∆1
τ1
, τ1 ∈ Θ1} and {∆2

τ1
, τ1 ∈ Θ1}, respectively. For any 0 < α < 1, for i =

1, . . . , |Θ1|

αRA(∆1) + (1− α)RA(∆2) = αρBA(∆1
τ1(1), τ1(1)) + (1− α)ρBA(∆2

τ1(2), τ1(2))

≥ αρBA(∆1
τ1(i), τ1(i)) + (1− α)ρBA(∆2

τ1(i), τ1(i))
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≥ ρBA(α∆1
τ1(i) + (1− α)∆2

τ1(i), τ1(i)), (D.1)

where the inequality above follows by Remark (iii) preceding Theorem 3.1. Now,

(D.2) holds for every i = 1, . . . , |Θ1|, hence

αRA(∆1) + (1− α)RA(∆2) ≥ max
i

ρBA(α∆1
τ1(i) + (1− α)∆2

τ1(i), τ1(i))

≥ min
{∆τ1 ,τ1∈Θ1}

E[∆θ1
]≤α∆1+(1−α)∆2

max
τ1∈Θ1

ρBA(∆τ1 , τ1)

= RA(α∆1 + (1− α)∆2).

D.2 Proof of Lemma 4.1

The right-sides of (4.5) and (4.9) are, in effect, the standard rate distortion func-

tion for GMMS with weighted MSE distortion criterion, and hence are finite-valued,

decreasing, convex, continuous functions of ∆ > ∆min,A and ∆ > ∆min,A,τ1 , respec-

tively.

The right-sides of (4.17) and (4.18) are clearly nonincreasing functions of

∆. Convexity of the right-sides of (4.17) and (4.18) follows from the convexity

of ρBA(δ, τ1) and ρnBA (δ, τ1) using standard arguments; continuity for ∆ > ∆min,A,τ1

is a consequence. Finite-valuedness of (4.17) and (4.18) follows from the finite-

valuedness of ρBA(δ, τ1) and ρnBA (δ, τ1) for δ > ∆min,A,τ1 , respectively.

The convexity of the right-side of (4.17) can be shown explicitly as follows. Let
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τ1(1) and τ1(2) attain the maximum in (4.17) at ∆ = ∆1 and ∆ = ∆2, respectively,

where ∆1 < ∆2. For ∆1,∆2 > ∆min,A, let {∆1
τ1
, τ1 ∈ Θ1} and {∆2

τ1
, τ1 ∈ Θ1},

attain the minimum in (4.17), respectively and are as in Appendix C.2. For any

0 < α < 1, and τ̃1 ∈ Θ1,

αRA(∆1) + (1− α)RA(∆2) = αρBA(∆1
τ̃1
, τ̃1) + (1− α)ρBA(∆2

τ̃1
, τ̃1)

≥ ρBA(α∆1
τ̃1

+ (1− α)∆2
τ̃1
, τ̃1), (D.2)

by the convexity of ρBA(δ, τ̃1) in δ. Now, (D.2) holds for every τ̃1 ∈ Θ1, hence

αRA(∆1) + (1− α)RA(∆2) ≥ sup
τ̃1∈Θ1

ρBA(α∆1
τ̃1

+ (1− α)∆2
τ̃1
, τ̃1)

≥ inf
{∆τ1 ,τ1∈Θ1}

E[∆θ1
]≤α∆1+(1−α)∆2

sup
τ1∈Θ1

ρBA(∆τ1 , τ1)

= RA(α∆1 + (1− α)∆2).
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