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Abstract

This paper describes a new technique for interactive planning
under conditions of uncertainty. Our approach is based on
the use of the Air Force Research Laboratory’s Causal Anal-
ysis Tool (CAT), a system for creating and analyzing causal
models similar to Bayes networks.
In order to use CAT as a tool for planning, users go through
an iterative process in which they use CAT to create and an-
alyze alternative plans. One of the biggest difficulties is that
the number of possible plans is exponential. In any planning
problem of significant size, it is impossible for the user to
create and analyze every possible plan; thus users can spend
days arguing about which actions to include in their plans.
To solve this problem, we have developed a way to quickly
compute the minimum and maximum probabilities of success
associated with a partial plan, and use these probabilities to
recommend which actions the user should include in the plan
in order to get the plan that has the highest probability of
success. This provides an exponential reduction in amount of
time needed to find the best plan.

Problem and Significance
A major feature of military plans is the huge amount of un-
certainty they contain. This uncertainty is often referred to
as the ”fog of war.” There are many sources for this uncer-
tainty; perhaps the major source of this uncertainty is the
relationship between cause and effect. For example: At a
tactical level, sorties are flow against a series of bridges
to prevent the enemy ground forces from crossing the river.
The sorties are intended to prevent the crossing. What is the
probability that they will? At a strategic level, destruction of
the Taliban Army was intended ultimately to reduce world-
wide terrorism. Did it?

Due to this uncertainty, the number of possible plans for
carrying out a military operation successfully can be quite
large. Quick and accurate decision making on which of the
series of actions to take is a very important task and it is
very hard. The decision making process highly relies on
the information gathered about those factors, which is of-
ten uncomplete. A typical military plan involves many such
sources of uncertainty. For example, a causal model of Op-
eration Deny Freedom, built by the actual planners, contains
over 300 uncertain events interrelated by cause and effect.
Moreover, there are often significant delays between cause

and effect, and effects may persist for only limited amounts
of time: a bridge destroyed by air power can be rebuilt or
bypassed.

This paper describes the tool that we are developing to
help manage this uncertainty in order to develop effective
plans. The basis for our approach is the Air Force Research
Laboratory’s (AFRL’s) Causal Analysis Tool (CAT), which
is a tool for representing and analyzing causal networks sim-
ilar to Bayesian networks. In order to represent plans using
CAT’s causal networks, all of the actionable items, i.e., the
actions that might potentially appear in a plan, are repre-
sented as nodes within the causal network. Thus, each possi-
ble combination of actionable items is a possible plan. From
this representation, CAT can compute the probability that
any given plan (i.e., any chosen combination of actionable
items) will achieve the desired objectives.

A major technical difficulty is how to overcome combi-
natorial blowup during the planning process. If there are n
different actionable items, then there are potentially 2n dif-
ferent plans, making it infeasible for the user to ask CAT to
analyze each one. One result of this problem is that users of
CAT can spend days arguing about which subsets of action-
able items to use as their plans.

As described in this paper, we have developed a new ap-
proach for overcoming this combinatorial blowup. Our ap-
proach exploits conditional independence within the causal
network in order to compute quick and accurate feedback to
the user about how the best way to extend a partial plan into
a complete plan. We summarize the theory underlying our
approach, describe how we have implemented it by modi-
fying CAT, and give examples of its operation in order to
demonstrate the effectiveness of our approach.

AI Technology
Causal Analysis Tool (CAT ) is a system developed by the
Air Force Research Laboratory (AFRL) for use in creating,
modifying and analyzing causal models of military opera-
tions. CAT is in active use by several strategic-level orga-
nizations within the US Air Force. The basic function of
CAT is to propagate local estimates of uncertainty through-
out large models. Its most basic output is the probability, as
a function of time, that particular events will be true. Below
we give a very brief summary of the theory behind CAT; for
details see (Lemmer 1996).



Figure 1: A causal model named “Operation OctMod” which represents the plan that was used against Milosevic in the Bosnia-
Herzegovina war. The window on the right-hand side of the screen shows a portion of the probability table stored in the
highlighted node. The actionable items are the twelve nodes at the bottom of the network that have no predecessors.

CAT is based on the use of causal models; CAT provides
tools to enable to either construct a causal model or load
a previously constructed causal model from a file. CAT’s
causal models are similar to Bayesian networks (and CAT
compiles them into Bayesian networks in order to do its
analysis). However, CAT’s causal models incorporate sev-
eral extensions in order to make Bayesian causal modeling
available to users who do not have specialized probability
training, and allow sophisticated incremental improvement
of these models when more time is available.

In CAT, a causal model is a directional graph (e.g., see
Fig. 1) in which the nodes represent events and the edges
(which are called signals) represent causal and inhibitory re-
lationships between events. A signal is causal if it increases
an event’s probability of occurrence, and inhibitory if it re-
duces an event’s probability of occurrence.

In a causal model, the user can specify a number of prob-
abilities by filling in the probability tables for each event
in the causal model. More specifically, for every event e
in a causal model M , let causes(e) be the set of all causal
signals affecting e, and inhibitors(e) be the set of all in-
hibitory signals affecting e. Then, for each e, the user may
specify the following probabilities, which are similar but not
identical to the probabilities one would specify in a Bayesian
network (for the mathematical details, see (Lemmer 1996)):

• A causal probability Pc(e, sk), for each sk ∈ causes(e).
Intuitively, this represents the extent to which the signal
sk increases e’s probability of occurring. The user may
also specify causal probabilities of e given various com-
binations of sk’s.

• A inhibiting probability Pi(e, sk), for each sk ∈
inhibitors(e). Intuitively, this represents the extent to
which the signal sk reduces e’s probability of occur-
ring.The user may also specify inhibitory probabilities of
e given various combinations of sk’s.

• A leak probability Pl(e). Intuitively, this is the probability
that e will occur if none of the signals occur. It represents
the effects of events that are not modeled in M explicitly.

• An effectual probability Pe(s|e) for each signal affected
by e. Intuitively, this is the probability that the event e
will cause the signal s will occur.

In CAT, users can specify these probabilities by filling in
the probability tables for every event in the causal model.
For example, Figure 1 shows the probability table used for
specifying the causal probabilities for the event ”Destroy
IADS” in that model. This probability table tells us that each
of the signals ”No Communications”, ”No Sensors”, ”No
Weapons”, and ”No C2” will cause this event with proba-
bility 0.76. The user can specify causal probabilities for the



event ”Destroy IADS” given various groups of its causes by
using the ”group” check-boxes shown in the figure.

Probability Analysis in CAT
When a user gives a causal model M to CAT and asks CAT
to perform a probability analysis on M , CAT does so in the
following two phases:

Compilation Phase. In this phase, CAT translates M into
a Bayesian network B(M whose nodes include the events
and the signals of M . CAT computes the following condi-
tional probabilities for the nodes of B(M):

• Causal conditional probabilities. For each event e and
for each subset C ⊆ causes(e), CAT computes a con-
ditional probability P (e|C) using the causal probabilities
Pc(e, sk) specified by the user for each sk ∈ C .

• Inhibiting conditional probabilities. For each event e and
for each subset I ⊆ inhibitors(e), CAT computes a con-
ditional probability P (e|I) using the inhibiting probabili-
ties Pi(e, sk) specified by the user for each sk ∈ I .

• Conditional probabilities of signals. For each signal s in
M , CAT uses P (s|e) = Pe(s, e), where Pe(s, e) is the
effectual probability specified in the causal network.

Simulation Phase. To calculate the probabilities of occur-
rence the events and signals modeled in B(M), CAT does
Monte Carlo simulations in which it repeatedly simulates
their occurrence or nonoccurrence.1

In this paper, we will assume that M (and thus B(M))
is acyclic (although CAT can handle certain kinds of cyclic
networks as well). Thus, each node n of B(M) has a height
h(n), which is the length of the longest path from any ac-
tionable item to n. The simulation proceeds by simulating
the occurrence or nonoccurrence of each node at height i,
for i = 1, 2, . . . , h, where h is the largest height of any node
in B(M).

Here is how CAT decides, for each event e, whether e will
occur during the simulation. During a particular run of the
simulation, let C = {c1, . . . , cj} be the set of all causes of
e that have occurred, and I = {i1, . . . , ik} be the set of all
inhibitors of e that have occurred. If I were empty, then
we would want e to occur because of its causes with condi-
tional probability P (e|C), or because of unmodeled external
factors with conditional probability Pl(e). However, in ei-
ther case, if I is nonempty then the occurrence of e may
be inhibited with conditional probability P (e|I). Thus, the
probability that CAT makes e occur in the simulation is

(1 − P (e|I))[1 − (1 − P (e|C))(1 − Pl(e))].

Here is how CAT decides, for each signal s, whether s
will occur during the simulation. Let e be the event that
may cause s. If e does not occur occur during the simula-
tion, then CAT will not make s occur either. However, if e
occurs during the simulation, then CAT will make s occur
with probability P (s|e).

1The reason why CAT uses Monte Carlo simulations is because
of the way in which CAT reasons about time and scheduling; the
details are beyond the scope of this paper.

CAT runs such simulations repeatedly. As it does so,
keeps track of how frequently each event occurs. These
statistics provide an estimate of P (e) for every event e in
the network. CAT displays these estimates to the user as
shown in the left-hand pane of Fig. 1. As CAT runs more and
more simulations, the estimates of each P (e) get progres-
sively more accurate, and CAT updates its display accord-
ingly. The user may stop the simulations whenever he/she
feels that the estimates have become sufficiently accurate.

Planning using CAT

The planning process in CAT starts with creating a causal
model in which one or more nodes are actionable items, i.e.,
actions that one may or may not want to perform. In this
context, a plan corresponds to a set of yes-or-no choices:
for each each actionable item, one must choose whether to
include it in the plan or exclude it from the plan. In making
these choices, the user’s objective is to create a plan that
causes some set of nodes to occur that represent the goals of
the plan. For simplicity, in this paper we assume that there
is exactly one such goal.

The user’s objective is to find a plan that maximizes the
probability of the goal. For each plan, one can use CAT to
determine the probability that the plan will achieve the goal,
in the following manner. First, set the probability of each
actionable item to 1 if the item is included in the plan or 0 if
it is not included in the plan, and then tell CAT to perform
the analysis described in the previous section.

Thus, planning takes place as an iterative process in
which users repeatedly make decisions about which action-
able items to include and which ones to exclude, tell CAT
to determine the probability of achieving the goal, and re-
vise these decisions based on their experience and intuition.
Users may need to try many combinations of actionable
items in order to generate the plan that has the highest prob-
ability of achieving the goal.2

In order to find the plan that maximizes the probability of
achieving the goal, in the worst case a user may need to cre-
ate and analyze exponentially many alternative plans. For
example, if there are n actionable items, then there are 2n

different possible combinations of the actionable items, i.e.,
2n different plans. Since the causal models for military op-
erations can be quite large and complex, and since military
planning often needs to be done in a very limited amount of
time under stressful conditions, it clearly is not feasible for
the user to generate and examine all of these plans.

As an example, if n = 22 then there are 222 different
possible plans. Suppose CAT takes 10 seconds to analyze
each one (this assumption is rather optimistic: if the network
is sufficiently large, CAT might take minutes or even hours).
Then the total time needed to analyze all of the plans is about
11,651 hours, which is more than 485 days.

2Note that this plan is not necessarily the one that includes all
possible actionable items. If the causal model contains inhibitory
signals, then some actionable items may reduce the probability of
achieving the goal.
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Figure 2: A simple causal model in which there are n action-
able items a1, . . . , an, various events ei,j that are caused by
the actionable items, and a single goal g. Each event other
than a1, . . . , an has at most three predecessors.

Innovation
We have developed a way to overcome the exponential
blowup described above. Our approach involves modifying
CAT so that it can represent and reason about partial plans
in which the user has made yes-or-no decisions for some of
the actionable items and the others remain undecided. This
enables the users to carry out the following iterative plan-
development process: the user begins with a partial plan
in which all actionable items are undecided, and gradually
makes decisions about more and more of the items until no
undecided items remain.

In this section, we describe a modified version of CAT
that can give the following feedback to the user at each it-
eration of the process: (1) an evaluation of the minimum
and maximum probabilities of success that can be attained
with the current partial plan, and (2) a recommendation for
what choice to make next in order to get the plan that has the
highest possible probability of achieving the goal.

The following subsections describe (1) how to compute
the minimum and maximum probabilities of success of a
partial plan, and (2) how to use these probabilities to rec-
ommend which item to include or exclude next.

Minimum and Maximum Probabilities of Success
Consider a causal model M in which the set of actionable
items is A = {a1, . . . , an}. Suppose the user has already
made yes-or-no choices for some subset D ⊆ A. For each
ai ∈ D, if the choice is to include ai, then this means that
the action ai will be performed, i.e., that P (ai) = 1. If the
choice is to exclude ai, then this means that the action ai

will not be performed, i.e., that P (ai) = 0.
For each ai ∈ A − D, no decision has been made yet,

so P (ai) may be either 0 or 1. Thus, the minimum and
maximum possible probabilities of ai are Pmin(ai) = 0 and
Pmax(ai) = 1.

Given the probabilities {Pmin(ai), Pmax(ai)}
n
i=1

, we
want to compute Pmin(e) and Pmax(e) for every event that is
not an actionable item. One way is the brute-force approach:
run CAT’s probability analysis on M repeatedly, once for
every combination of probabilities {P (ai) ∈ {0, 1} : ai ∈
A − D}. However, this approach incurs the same kind of
exponential blowup that we discussed earlier, because it re-
quires doing the probability analysis 2n−m times, where
n = |A| and m = |D|. For example, in the causal net-
work in Fig. 2, suppose n = 25 and m = 3. Then there are
222 different plans, the same number as in the previous ex-
ample. As in the previous example, suppose that CAT takes
10 seconds to analyze each one. Then as before, the total
computation time will be 485 days.

In the above example, Pmin(e) and Pmax(e) can be com-
puted much more quickly by taking advantage of conditional
independence in the causal network. We start with comput-
ing P (e1,1). Pmin(e1,1) and Pmax(e1,1) can be computed
by calculating P (e1,1) eight times: once with P (a1) = 0,
P (a2) = 0, and P (a3) = 0, once with P (a1) = 0,
P (a2) = 0, and P (a3) = 1, and so forth until we compute
P (e1,1) of the event e1,1 for all possible choices for a1, a2

and a3. Then Pmin(e1,1) and Pmax(e1,1) are the minimum
and the maximum probability values computed for P (e1,1).

Similarly, we can calculate P (e2,1) eight times: once
with P (e1,1) = Pmin(e1,1) and P (e1,2) = Pmin(e1,2) and
P (e1,3) = Pmin(e1,3), once with P (e1,1) = Pmin(e1,1)
and P (e1,2) = Pmin(e1,2) and P (e1,3) = Pmax(e1,3), once
with P (e1,1) = Pmin(e1,1) and P (e1,2) = Pmax(e1,2) and
P (e1,3) = Pmin(e1,3), once with P (e1,1) = Pmin(e1,1) and
P (e1,2) = Pmax(e1,2) and P (e1,3) = Pmax(e1,3), and so
forth. Then Pmin(e2,1) and Pmax(e2,1) are the minimum
and the maximum probability values computed for P (e2,1).

Continuing in this manner, we can compute Pmin(ei,j)
and Pmax(ei,j) for every ei,j , and thus can compute Pmin(g)
and Pmax(g).

In the above example, we need to consider at most eight
combinations at each node. As a result, the total computa-
tion time is no more than would be required for eight calls to
CAT’s probability-analysis routine. Thus if we assume (as
before) that CAT takes 10 seconds for each probability anal-
ysis of M , it is possible to perform the above computation
in about 80 seconds. This is substantially better than the 485
days required by the brute-force approach!

We now describe how to modify CAT to perform the kinds
of computations described above. We begin by noting that
CAT’s simulations can be described using a boolean ran-
dom variable x(e) ∈ {0, 1} for each event e. Thus, rather
than saying that an event e occurs during the simulation with
probability P (e), we can say that CAT assigns x(e) ∈ {0, 1}
with probability P (e).

Our modification of CAT is to replace x(e) with two ran-
dom variables xmin(e) and xmax(e) such that CAT assigns
xmin(e) = 1 with a probability that is the minimum possible
value of P (e) over all choices for the actionable items, and it
assigns xmax(e) = 1 with a probability that is the maximum
possible value of P (e) over all choices for the actionable
items. We now describe how to accomplish this.

As before, the simulation proceeds by simulating the oc-



currence and nonoccurrence of each node at height i, for
i = 1, 2, . . . , h, where h is the largest height of any node
in B(M). The nodes of height i = 0 are the actionable
items. For each such node e, our modified simulation as-
signs xmin(e) = 1 if the user has included e in the par-
tial plan, and Pmin(e) = 0 otherwise. Similarly, it assigns
xmax(e) = 0 if the user has excluded e from the partial plan,
and Pmax(e) = 1 otherwise.

For i = 1, 2, . . ., the simulation proceeds as follows: let s
be a signal that may be caused by some event e, and suppose
the simulation has progressed far enough to assign values
to xmin(e) and xmax(e). From conditional independence, it
follows that P (s) depends only on e. Thus, the simulation
assigns xmin(s) = 1 with probability P (s|e) if xmin(e) = 1,
and xmin(s) = 0 otherwise. Similarly, it assigns xmax(s) =
1 with probability P (s|e) if xmax(e) = 1, and xmax(s) = 0
otherwise.

Let e be an event that is not an actionable item. Let
s1, s2, . . . , sb be all of the signals that may affect e, and
suppose the simulation has progressed far enough to assign
values to xmin(si) and xmax(si) for each i. From condi-
tional independence, it follows that P (e) depends only on
s1, . . . , sb. Thus, the set of possible probabilities for e is

{P (e|x(s1), x(s2), . . . , x(sb)) :

x(s1) ∈ {xmin(s1), xmax(s1)},

x(s2) ∈ {xmin(s2), xmax(s2)},

. . . ,

x(sb) ∈ {xmin(sb), xmax(sb)}}.

Let p0 and p1 be the minimum and maximum values in this
set. Then the simulation assigns xmin(s) = 1 with probabil-
ity p0 and it assigns xmax = 1 with probability p1.

Like the original version of CAT, the modified version
keeps running its simulations for as long as the user wishes.
For each event e, it keeps track of the average values of
xmin(e) and xmax(e). These averages are estimates of the
minimum and maximum probabilities of e over all possible
choices for the actionable items. These probabilities are dis-
played to the user in the hierarchical display shown in the
left-hand pane of Fig. 3.

The Feedback Mechanism
The previous section described an efficient way to compute
Pmin(g) and Pmax(g), given a causal network M and a par-
tial plan. We now describe how this computational tech-
nique makes it possible for us to give recommendations to
the user about the best choice to make at each step of the
iterative planning process, in order to generate a plan that
maximizes the probability of achieving the goal.

First, we point out that we can use the computational
technique of the previous section to compute Pmax(g|ai):
we just do the computation with P (ai) = 1. To get
Pmax(g|¬ai), we can do the same thing with P (ai) = 0.

Next, suppose we compute Pmax(g|ai) and Pmax(g|¬ai)
for every ai ∈ A − D. Using the conditional indepen-
dence conditions in the causal network, we can show that
for every ai ∈ A − D, either Pmax(g) = Pmax(g|ai) or
Pmax(g) = Pmax(g|¬ai). If P (g) = Pmax(g|ai), then our

recommendation to the user is to include ai in the plan; if
P (g) = Pmax(g|¬ai) for some ai, then our recommenda-
tion to the user is to exclude ai from the plan.

The above technique generates a sequence of recommen-
dations for producing the plan with the largest possible prob-
ability of achieving the goal. The total computation time is
no greater than the time needed for n2b calls to the original
version of CAT, where b is the maximum number of pre-
decessors of each node. This is a substantial improvement
over 2n, because b normally remains small even in very large
networks. For example, in the OctMod example of Fig. 1,
no node has more than four predecessors. Furthermore, if
most nodes have fewer than b predecessors (as is true in the
OctMod example), then the total computation time will be
substantially less than n2b.

For example, consider again the causal network in Fig.
2. As before, let us suppose that n = 25 and m = 3, and
the original version of CAT needs 10 seconds each time it
analyzes the causal network. Then the total time needed for
us to get the complete plan is less than 30 minutes.

Implementation and Evaluation
We have created a modified version of CAT that computes
the probabilities and recommendations described in the pre-
vious section.

To evaluate our implementation, we have used unclassi-
fied versions of causal models for two military operations
scenarios. One is the ”Operation OctMod” model shown in
Fig. 1, which is a representation of the plan was used against
Milosevic in the Bosnia-Herzegovina war. The other is a
“scrubbed” version of a much larger model that was devel-
oped for the war in Afghanistan. In each case, it was possi-
ble to use our modified version of CAT to develop plans in
just a few minutes.

We now describe a sample user session with the OctMod
example. Initially, the user has not decided which of the
actionable items to include in the plan or exclude from it,
so all of the actionable items are marked as unknown. Sup-
pose the user asks our modified version of CAT to analyze
the causal model and make a recommendation. Then CAT
calculates the maximum and minimum probabilities shown
in the left-hand pane in Fig. 3. Note in particular that the
range of probabilities for the goal node (the “accede to de-
mands” node) is quite broad; the minimum and maximum
probabilities for this node are 0% and 89%. Furthermore,
CAT calculates that the best choice for the user to make next
is to include the action “Destroy Transformer Stations,” so it
highlights this action in black as shown in Fig. 3.

Suppose the user decides to follow CAT’s recommenda-
tion and include the action in the plan, and then asks CAT to
analyze the causal model again. As shown in Fig. 4, includ-
ing this action in the plan increases the minimum probabil-
ity of the goal node from 0% to 56%. At 90%, the node’s
maximum probability is the same as before except for a 1%
difference due to random variation in CAT’s Monte Carlo
simulation. At this point, the user can again request a rec-
ommendation for what to do next.

The iterative planning process continues in this manner
until the user has made a decision for every actionable item.



Figure 3: Here is the causal model for Operation OctMod, with the left-hand pane showing the values that our modified
version of CAT computes for the minimum and maximum probabilities of each node. Our system recommends performing the
rightmost actionable item in the causal network, and indicates this by highlighting the node.

If the user follows all of our system’s recommendations, the
result will be a plan whose probability of success is as high
as possible (i.e., about 89% or 90%). The entire process
takes just a few minutes.

Related Research
The best known approach for planning under uncertainty is
based on Markov Decision Process (MDPs); examples in-
clude (Kushmerick, Hanks, & Weld 1995; Hanks & Mc-
Dermott 1994; Draper, Hanks, & Weld 1993; Poole 1995;
Singh & Cohn 1998; Dean & Kanazawa 1989; Howard
& Matheson 1984). For a survey of this approach see
(Boutilier, Dean, & Hanks 1999). MDPs can be solved by
using dynamic programming algorithms ((Barto, Bradtke,
& Singh 1995)). To reduce the computational overhead of
solving a planning problem represented as an MDP, (Givan,
Leach, & Dean 1997) proposes a concept called Bounded
Parameter MDPs, which assigns probability intervals repre-
senting the assertion that the probability of the state of the
planning algorithm must be within that interval. The use
of probability intervals are similar to our reasons for effi-
ciently computing the minimum and maximum probabilities
for events, but they are closed real intervals for probability
distributions whereas the minimum and maximum probabil-
ities in our case represent the set of single probability values
of occurrence for an event (or a signal). (Littman 1997) re-
views several such representations and shows that these ap-
proaches are ”expressively equivalent”, meaning that plan-
ning problems formulated in one representation can be con-
verted to another representation in polynomial time.

Several other approaches have been developed for plan-
ning under conditions of uncertainty. For example, (Bertoli
et al. 2001) introduces a planning system that inserts sens-

ing actions in the plan it generates, in order to gather infor-
mation when the plan is being executed. (Cimatti & Roveri
2000) presents a search technique that relies on the use of
symbolic model checking, Binary Decision diagrams, and
heuristic search. (Bonet & Geffner 2000) introduces the
GPT (General Planning Tool), which is a system that pro-
vides a high-level language for expressing actions, sensors,
and planning goals, along with set of heuristic search algo-
rithms that generate plans based on the problem description
given by that language. (Smith & Weld 1998) presents a
planning technique that is built on top of the GRAPHPLAN
planning algorithm ((Blum & Frust 1997) and is capable of
coping with certain kinds of uncertainty in the world. Fi-
nally, Bridge Baron (Smith, Nau, & Throop 1998) uses task-
decomposition planning techniques to generate game trees
in the game of bridge and analyze those game trees prob-
abilistically; this approach worked well enough to win the
1997 world championship of computer bridge.

Two of the biggest differences between our problem re-
quirements and the ones addressed in the traditional litera-
ture on AI planning are our domain’s requirements for user
interaction and causal modeling:
• User Interaction. Our problem domain requires mixed-

initiative planning (Burstein & McDermott 1994). It is
important for users to be control the planning process and
be able to modify the plan being developed at any time
during the planning process.
As a similar approach to ours, (Wilkins 1995) describes
the CYPRESS system, a domain-independent framework
for planning with distributed agents in dynamic and un-
certain environments. The Gister-CL component inte-
grated in CYPRESS implements a suite for analyzing
uncertain information about the world and possible ac-



Figure 4: Here, the user has decided to follow the recommendation given by our system in Fig. 3. As shown in the left-hand
pane, this substantially increases the minimum probability of achieving the goal.

tions during both planning and execution. Cypress has
been used for military operations as well as for fault di-
agnosis problems. The most important difference be-
tween our planning approach and CYPRESS as follows:
CYPRESS incorporates the automated planning system
SIPE-2 (Wilkins 1988; 1990) to generate plans whereas,
in our approach, users are generating plans themselves
possibly by using the feedback provided by the system.
(Muñoz Avila et al. 1999) describes the HICAP system,
which is an interactive cased-based plan authoring system
developed for a special kind of military operations called
Noncombatant Evacuation Operations (NEOs). HICAP
can handle certain kinds of uncertainties by using its con-
versational case retrieval mechanisms, but has no way to
reason about probabilities.

• Causal Modeling. Our problem domain requires a way
for users to explicitly model probabilistically the cause-
effect relationships among actionable items, events that
can be caused by those actions, and events that are not un-
der control of the users. There is a huge and well known
literature on probabilistic reasoning using Bayesian net-
works; see (Pearl 1988; 2000; Jensen & Lauritzen 1997)
for an overview to the subject. Bayesian techniques have
been used in a number of applications ranging from med-
ical decision-support (e.g. HUGIN Advisor (http://
www.hugin.com) and DIAVAL (Diez et al. 1997)) to
Microsoft’s “Clippy” (Horvitz et al. 1998).
Probabilistic reasoning techniques are also used in a num-
ber of military organizations. For this purpose, probably
the most widely used probabilistic reasoning system is
one called SIAM. However, not much documentation is
readily available for SIAM in the open literature. The pri-
mary limitation of SIAM relative to CAT is that SIAM
is not capable of doing Bayesian inference for evidential

reasoning; instead, it requires independence assumptions
much stricter than the ones normally needed in Bayesian
networks.

Conclusions
In this paper, we have described a new technique for interac-
tive planning under conditions of uncertainty. Our approach
is based on the use of CAT (Causal Analysis Tool). CAT
was developed by the Air Force Research Laboratory and is
in use by a number of military organizations for creating and
analyzing causal models of military operations.

To do planning in CAT, a user begins with a causal model
of the domain in which some of the nodes represent action-
able items, and makes decisions about which actions to in-
clude in the plan and which not. One of the biggest prob-
lems is the exponentially large number of combinations of
actionable items: there are far too many for of them users to
analyze each one, and users can spend days arguing about
which actionable items to include in their plans.

To provide a solution to this problem, we have developed
a way to quickly compute the minimum and maximum prob-
abilities of success associated with a partial plan, and use
these probabilities to make recommendations about which
actions should be included and excluded in order to get the
highest possible probability of success. This provides an
exponential reduction in the amount of time required. For
problems in which finding the best plan would have required
days, it can now be found in minutes.

Our modified version of CAT is attracting interest among
several potential users. Currently it is still a prototype that
does not include the full functionality of CAT. We intend to
add the missing functionality during the next few months.
Once we have done so, we anticipate that our modifications
will become part of the standard CAT distribution.
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