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This dissertation covers two topics of interest for network applications: lookup
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erful primitive for anonymous communication. In the first part of this work, we

review lookup protocols, distributed algorithms that allow users to publish a docu-

ment as well as to look up a published document that matches a given name. Our

first major contribution is to design Local Minima Search (LMS), a new efficient

lookup protocol for a model in which a node is physically connected to a few other

nodes and may only communicate directly with them. Our second major contri-

bution is the formulation of a new model in which we allow an arbitrary number

of misbehaving nodes, but we assume a restriction on their network addresses. We

then design a new lookup protocol for this setting.

In the second part of this dissertation, we present our work on ring signatures,

a variant of digital signatures, which enables a user to sign a message so that a set

of possible signers is identified, without revealing which member of that set actually



generated the signature. Our first contribution on this topic is new definitions of

security which address attacks not taken into account by previous work. As our

second contribution, we design the first provably secure ring signature schemes in

the standard model.
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Chapter 1

Introduction

This dissertation deals with two important topics in the area of distributed

applications. The first is lookup protocols, which are a useful building block for

more complex distributed systems. The second is ring signatures, a powerful cryp-

tographic primitive for anonymous communication.

Distributed applications are becoming increasingly important in our informa-

tion economy. More and more personal, corporate and government transactions are

made through the Internet, including online banking, electronic commerce, customer

account management, access to government services, just to make a few examples.

Additionally, large companies and organizations rely on complex computer systems,

which may be distributed on tenths, hundreds or thousands of servers, in order to

increase reliability and scale to a large number of accesses.

One of the tasks of computer science is to develop new tools and primitives

to build distributed applications with better performance and functionality. One

direction of research along these lines is concerned with designing efficient algorithms

for basic tasks, such as information storage and retrieval in a distributed setting,

that can be used as a building block for more complex applications. A different, but

not independent, line of research is the design of security mechanisms for distributed

systems. Security protects the system from threats carried out by a malicious entity
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(the attacker). Such threats depends on the specific application and may include

disruption of service, corruption of data, unauthorized access to restricted services

and information or violation of privacy, just as a few examples.

A contribution to these two lines of research, this dissertation is divided into

two parts: the topic of the first part is lookup protocols, a class of basic distributed

algorithms, while the second part discusses ring signatures, a powerful primitive for

anonymous communication.

1.1 Part One: Lookup Protocols

In the first part of this dissertation, we focus on lookup protocols, a specific

building block for distributed computation and we address both efficiency and se-

curity aspects of their design. A lookup protocol is a distributed algorithm which

allows any participant node to publish a data item (document) as well as to look

up a published data item that matches a given item identifier (name). We review

lookup protocols designed in previous work (in particular, Distributed Hash Tables),

we discuss the assumptions made by such protocols with respect to communication

and security and we pose the problem of designing new algorithms that allow for a

relaxation of such assumptions.

With respect to communication, all efficient lookup protocols in previous work

assume that any node may send a message directly to any other node. It is inter-

esting, though, to study how to design an algorithm for a system in which a node is

physically connected to a few assigned neighbor nodes and may only communicate

2



directly with them; we call this setting the Given-Topology Model . This models

an ad-hoc network without a routing infrastructure. It also models a distributed

application relying on trust relations between nodes. These trust relations define a

graph which, when traversed along its links, provides a known level of assurance for

operations.

The first major contribution of this work is to design Local Minima Search

(LMS), a new efficient lookup protocol for the Given-Topology Model. Lookup oper-

ations in LMS are much more efficient than existing protocols (e.g. Gnutella [Com01],

Gia [CRB+03]) that can be applied to the Given-Topology Model. We proved an-

alytic bounds for the worst-case performance of LMS and, through detailed simu-

lations, we show that the actual performance on realistic topologies is significantly

better. As part of our analysis, we also derived a powerful theorem on statistical

distributions, which is of independent interest. LMS revealed to be the essential

ingredient we needed to build KeyChains, a completely decentralized public-key

infrastructure, which we present elsewhere [MBKM06].

With respect to security, most previous work on lookup protocols assumes a

cooperative environment, i.e. all participants in the distributed application behave

according to the specified protocol. In practice, however, it is necessary to protect

distributed applications from malicious behavior. We, thus, consider the problem of

designing a lookup protocol that operates correctly even in the presence of arbitrarily

misbehaving nodes. Without loss of generality, we can think of the misbehaving

(or corrupted) nodes as controlled by a single attacker (or adversary), although in

practice there may actually be controlled by multiple independent attackers or their

3



misbehavior could be caused by a software, hardware or network fault.

There are lookup protocols in the literature that solve this problem (e.g.

[FSY05, CDG+02]) under the assumption that up to a small fraction of the nodes

in the system may be misbehaving. While this is a reasonable assumption in many

settings, we believe that it is not very realistic when applied to an Internet appli-

cation with open node membership, such as the Gnutella network [Com01]. This

is because even an attacker with limited resources may simulate a large number of

nodes and make them join the application. On the other hand, it is our intuition

that no practical lookup protocol may withstand an attacker that can corrupt an

arbitrary number of nodes with no restriction.

The second major contribution of this dissertation is to consider a middle

ground between these two extreme assumptions: bounded fraction of corrupted

nodes on one hand and no restriction on the other. We formulate a new model in

which we allow an arbitrary number of misbehaving nodes, but we assume that they

are subject to a more realistic restriction on their network addresses; we call this

model the Autonomous System (AS) Model. More specifically, the model dictates

that the attacker can only control hosts in a small number of stub ASes (indepen-

dently managed portions of the Internet), as we will clarify in Chapter 4.

As part of this contribution, we then proceed to design Secure Distributed

Hash Table (SDHT), a new lookup protocol designed to be resilient in this AS

model. We conjecture that SDHT provides acceptably resilient behavior, under

some reasonable circumstances and we provide an informal proof of this property

under some restricted conditions. We provide a prototype implementation of SDHT

4



and we show through experiments that the algorithm is practical for sizes up to 300

nodes, although with high overhead.

1.2 Part Two: Ring Signatures

In the second part of the dissertation, we turn our attention to security tools

for anonymity. We believe that there is a wide class of distributed applications for

which preserving user anonymity is desirable or even essential. In the example of a

system that allows access to a database, a user may not want anyone to track what

information she is retrieving and match that information with her identity. As a

more critical example, an application that allows for anonymous reporting of mis-

management or violations of the law within a government agency should guarantee

that the identity of the whistle-blower cannot be revealed.

There are many challenges in designing truly anonymous distributed systems.

One example is preventing an entity that may eavesdrop on a large number of links in

the network from tracing the communication between the user and the application;

see the work by Sherwood et al. [SBS05] for a discussion of this issue and a possible

solution. A detailed treatment of how to design anonymous distributed systems is

beyond the scope of this work.

Part Two of this dissertation focuses on ring signatures, a cryptographic prim-

itive that addresses one specific challenge: providing some form of authentication,

while still preserving anonymity. Consider the above-mentioned whistle-blower ap-

plication: it is desirable to authenticate the reported information, to ensure that

5



it has actually been leaked by an agency employee of a certain rank, without re-

vealing which employee. Similarly, in the example of the database, the system may

want to restrict access to a set of authorized users. In such a case, the user must

prove that he belongs to the authorized group, without revealing her identity to the

application.

Ring signatures are a variant of digital signatures introduced by Rivest, Shamir,

and Tauman [RST], which can be used for such anonymous authentication. A ring

signature enables a user to sign a message so that a set (or ring) of possible signers

is identified, without revealing exactly which member of that ring actually generated

the signature. In Part Two of this dissertation, we examine previous definitions of

security for ring signature schemes and suggest that most of these prior definitions

do not take into account certain realistic attacks. Our first set of contributions

on this part is new definitions of security which address these threats, and sep-

aration results proving that our new notions are strictly stronger than previous

ones. As our second contribution, we design the first constructions of ring signature

schemes, which are provably secure (under widely-accepted computational assump-

tions), without using the so-called random oracle heuristic [BR93].1 One scheme is

based on generic assumptions and satisfies our strongest definitions of security. Two

1Informally, proofs that use the random oracle heuristic assume that a cryptographic hash

function (such as SHA-1) produces independently random output for every possible input. In

practice all hash functions are deterministic, so the random oracle assumption is false; however,

cryptographers consider a proof in the random oracle model to be a strong argument in favor of

an algorithm security, although not a real proof.
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additional schemes are more efficient, but achieve weaker security guarantees and

more limited functionality.

1.3 Roadmap

Part One of this dissertation begins with a review of lookup protocols and

related literature in Chapter 2. In the same chapter, we also distinguish between

two communication models for lookup protocols: the Given-Routing Model and the

Given-Topology Model. In Chapter 3, we present our design of LMS, an efficient

lookup protocol in the Given-Topology Model. In Chapter 4, we review security

vulnerabilities of existing lookup protocols and some previous work on that addresses

those vulnerabilities, then we argue that the security assumptions made in such work

are very unrealistic in a system with open membership. In the same chapter we also

present the AS Model: a novel sets of assumptions on what an attacker with limited

resources can or cannot do when attacking an Internet application. In Chapter 5,

we finally present SDHT, a lookup protocol designed to be secure in the AS Model.

In Part Two of the dissertation, Chapter 6 presents and motivates our work on ring

signatures. Finally, in Chapter 7 we conclude.
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Chapter 2

Lookup Protocols

In this section, we informally introduce and motivate the notion of a lookup

protocol.

Informally, a lookup protocol is a distributed algorithm that allows nodes (or

processors1) to share data items, which consist of an identifier (ID) and a content :

a node can publish an item (make it available for others); a node can also look up

an item (find a copy and retrieve it), given the item identifier. More specifically, a

user can ask a node to perform one of two operations:

• Publish(id, content), which causes the node to publish the data item consisting

of the identifier id and the value content; and

• Lookup(id), which causes the node to retrieve all data items that have the

given identifier id, if any.

A lookup protocol is interesting as a building block for distributed applications,

because it provides a basic form of shared storage. For example, given an efficient

lookup protocol, it is known how to construct applications such as distributed file

systems, multicasting, keyword-based searching, and more. We will discuss these

applications in Section 2.3.

The rest of this chapter is organized as follows. In Section 2.1, we will introduce

1In this work, we will use the terms “nodes” and “processors” interchangeably.
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some terminology that we will use throughout this document. In Section 2.2, we

will discuss some examples of lookup protocols. In Section 2.3, we will discuss some

applications of lookup protocols. In Section 2.4, we identify two alternative set of

assumptions, with respect to node communication, and their impact on the design

of lookup protocols.

2.1 Preliminaries on Distributed Algorithms

Informally a distributed algorithm involves a set of nodes or processors, which

interact by running local computations and by exchanging messages with each other.

Each processor in the system has some state information that can change over

time and may respond to a set of events. In response to an event, a node may

update its state, send messages and generate local output. Events include reception

of messages from other processors, timeouts and activations, which model stimuli

from a user or another applications running on the same machine.

In an efficient distributed algorithms involving a large number of nodes, a

node will not know the identity of every other node in the system and will not send

messages to every other node in the system. We say that a node u has a distinct set

of neighbors: u only stores information on the identity of its neighbors and sends

messages directly only to its neighbors.
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2.2 Examples in the Literature

Within the category of Peer-to-Peer (P2P) systems, there is a wide variety

of related work on lookup protocols. The term P2P is widely used in the network

research community to refer to any practical distributed system where participating

nodes “are all peers” and each node can both perform as a client (i.e. an entity

receiving a service from the system) and as a server (i.e. an entity providing a

service).

P2P systems are divided into two categories: structured and unstructured. In

the next sections, we will discuss each category in turn.

2.2.1 Structured and Unstructured P2P Systems

In a structured P2P system, a node’s neighbors are chosen by the system

according to certain properties of the nodes. For example, in Chord [SMK+01] each

node is given an identifier, which is a random bit string of length 128 bits. A node

with ID x has as neighbors the nodes with ID x1, . . . , x128, where xi is the (ID

of the) node in the system that has the smallest ID between all the nodes with

ID at least x + 2i−1. The graph of such a P2P system has a particular structure

that provides some useful properties. For example, in Chord, a node can send a

message to another node with ID y (not her neighbor), and the message will reach

y, traveling through at most approximately log N hops in the system (where N is

the total number of nodes).

Unstructured P2P systems, on the other hand, place little restrictions on what
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the neighbors of a node are. Usually, when a new node joins the system, it is given

a list of the IP addresses of other peers already in the system and the new node

will simply make those nodes as their neighbors. Therefore the system can usually

assume very little on the structure of the graph. Examples of unstructured P2P

systems are Gnutella [Com01] and GIA [CRB+03].

We will discuss more examples of structured and unstructured P2P systems

in the following sections.

2.2.2 Distributed Hash Tables: CAN, Chord, Pastry, Tapestry

In this section, we describe in greater detail a class of lookup P2P systems

called Distributed Hash Tables (DHTs). Those are considered the classical examples

of structured P2P systems (Section 2.2.1) and include Pastry [RD01], Chord [SMK+01],

CAN [RFH+01], Tapestry [ZKJ01] and many others. In what follows, we discuss

the meaning of the acronym DHT and the various components of such a system:

the routing protocol, the join and leave protocols and the replication techniques. In

the section that follows, we will see a specific example of DHT.

The principle behind a DHT is the concept of hash table. A hash table is a

data structure consisting of a series of storage spaces called buckets. When an item

is inserted in the hash table, a hash function is applied to the identifier to output

a random number. That random number is used to choose one of the buckets at

random and the item is stored into that bucket. Given an item name, the hash table

can quickly find an item with that name, if one exists: the item name is hashed to
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determine the appropriate bucket, then that bucket is searched for the item.

A DHT builds a sort of hash table in a distributed way. Each data item is given

an identifier, which is a random bit string of some fixed length m, typically 128 or

160 bits. The item ID might be obtained, for example, by hashing an application-

dependent item name. Each node is also given a random ID of length m, which

may be independently generated at random or obtained by hashing some other

information about the node (like the IP address, port pair). Each item is then

assigned to a home node through a deterministic rule based only on the item ID

and the IDs of the peers in the system. Typically, the rule assigns an item with ID

x to the node whose identifier is the numerically closest to x between all node IDs

(Pastry) or all node IDs greater than x (Chord). In a basic DHT implementation,

for each published item only one copy is stored and it is stored into the home

node. There exist analytical results that show that the number of items a node

is responsible for (as a home node) is not too different from node to node and

this guarantees that the amount of data that peers have to stored is well-balanced

through the system.

Like in any other P2P system, in a DHT, each node knows the IP address and

the node ID of a set of other nodes in the system (the node’s neighbors, see Sec-

tion 2.1). DHTs are structured P2P systems, which means that the set of neighbors

of a node is constrained by some rigid rules based on the node IDs.

In order to publish or look up an item, a node must be able to quickly locate

the home node of an item, given the item ID x. This is the task of the routing

protocol of the DHT, which allows any node in the network to address a message to
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any identifier x and delivers the message to the home node of x. Given a message

addressed to item ID x, a node u, uses an appropriate rule established by the routing

protocol to choose a neighbor v and then forwards the message to v. The procedure

repeats recursively until the home node of x receives the message.

Each node typically stores her neighbor set in a specific data structure, which

depends on the protocol. Such data structure is sometimes referred to as the routing

table. In some protocols, like Pastry, the routing table is only a portion of that data

structure.

A DHT also needs a join protocol and a leave protocol, which define the op-

erations that the peers in the system have to perform when a new peer wants to

join the system or when an existing peer leaves the system (either by choice or by

a failure).

In the join protocol, typically the new node u is given out of band the IP

address of a peer v already in the system (v is sometimes called the bootstrap node

for u). After u sends v a join request, the join protocol specifies which actions

the various peer in the system have to perform such that u’s routing table can be

appropriately constructed and such that other peers in the system can update their

routing table.

The leave protocol specifies how the system detects that one of the peers left

and how it repairs the routing tables, in order to maintain the required constraint.

We finally discuss replication. We already said that, in a basic DHT imple-

mentation, the system stores the only copy of an item in the home node of that

item. More advanced implementations keep multiple copies of each item: each copy
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is called a replica and this technique is called replication. There are three main

reasons to do replications: to make sure an item is not lost when the node that is

storing it fails, to reduce the number of requests to retrieve the item the node has

to process and to make the lookup operation faster.

One possible replication technique is that the number of replicas r is the same

for all items and is fixed (static replication) and the replicas are stored at a set of

r replica nodes. Such set is determined by some rule given the item ID and the

node ids, which generalizes the rule for the home node. For example, in a variant of

Chord, the replica nodes of item with ID x are the r nodes with the smallest node

ID greater than x. In a variant of Pastry, the replica nodes are the r nodes (with

ID) closest to x in the identifier space.

Other systems use dynamic replication techniques, which determine the num-

ber of replicas of an item at run time. For example, a system might want to create

more replicas for a popular item (i.e. an item that is being retrieved by many users)

and fewer replicas for a less popular item (see, for example, [RS04]).

In order to make our description of DHTs more concrete, in the following

section we give some more details about Pastry, a specific DHT.

2.2.2.1 Pastry

In this section, we briefly discuss Pastry, an example of DHT.

In Pastry [RD01], each node or item ID is a string of m bits, which is also seen

as a sequence of digits, each consisting of b bits (m and b are system parameters,
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typically set to 160 and 4). Each digit can be considered a value between 0 and

2b − 1.

A peer has three data structures that store information about other peers (the

peer neighbors): the neighbor set, the leaf set and the routing table.

The leaf set of a node with ID y contains (the ID and the IP address of) the

l peers with the smallest IDs greater than y and the l peers with the largest IDs

smaller than y, where l is a system parameter. The elements of the leaf sets are

called the leaves of the node.

The routing table of the node is a table with m rows and 2b columns. The

entry in row i and column j of the table contains the (ID and the IP address of) a

peer whose ID has the first i− 1 digits in common with y, but the i-th digit equal

to j. An entry is allowed to be empty, if such a node does not exist.

The neighbor set of the node contains a list of other peers that are close to

the node in network distance, i.e. the network latency between the node and the

elements of her neighbor set is relatively small, compare to the other node. The

neighbor set is used during updates to the routing table, with the goal to ensure

that every table entry contains the node in the system that is the closest in network

distance, between all nodes that qualify for that table entry. We refer the reader

to [RD01] for more details.

Routing in Pastry proceeds as follows. When a node u receives or generates a

message addressed to the home node of item ID x (a publish or a lookup request),

first u determines whether she or any of her leaves is the home node for x; if yes, the

message is delivered to the final destination. Otherwise, u determines the number d
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of leading digits that the ID of u has in common with x and forwards the message

to the entry in the routing table in row d + 1 and in the column corresponding to

the d + 1-th digit of x.

The routing protocol in Pastry guarantees that a message addressed to an item

ID will reach the corresponding home node from any node within about (1/b) log n

hops with high probability, where n is the total number of nodes in the system.

2.2.3 Unstructured P2P Systems

Unstructured P2P protocols differs from structured P2P protocols, like DHTs,

in that the set of neighbors of a node (that is, the set of peer nodes that the node

knows and send messages to) is not constrained by some rigid rules based on the

node IDs. There are several examples of unstructured P2P protocols, which include

Gnutella [Com01], Gia [CRB+03] and Kazaa [Net], just to name a few.

These protocols typically implement the search functionality, which is more

general then the lookup functionality. This means that, instead of the Lookup prim-

itive, they provide a more general Search primitive, which takes a predicate as an

argument and will retrieve some or all data items in the system that satisfy the

predicate. The Publish operation is local, that is, publishing an item involves simply

storing it locally in a list of shared items and does not involve network communi-

cation. Searching, in such systems, is inefficient in the general case, but becomes

efficient when a large fraction of the peers in the networks have published an item

that matches the search predicate. We find illuminating an observation by Chawathe
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et al. [CRB+03], that we here summarize: unstructured P2P protocols like Gnutella

are designed to search for hay, not for needles.

While Gnutella is maybe the first open-specification example of unstructured

P2P protocol [Gnu], there has been a lot of work how to improve its (relatively poor)

performance. An important example is the paper by Lv et al. [LCC+02], which

compares different techniques for searching in this model. Such techniques include

different flavors of flooding and random walks. In flooding (Gnutella technique), the

node searching sends the request to all its neighbors, which, in turn, forward the

request to all their neighbors and so on, until a copy of the request has reached

all (or a large fraction of) the nodes in the network. The other technique involves

sending the request to a random neighbor, which in turn forwards it to a random

neighbor and so on, up to a predetermined number of hops; multiple requests can

be sent out in parallel or in sequence.

Gia [CRB+03] is a more sophisticated member of the family. It improves on

Gnutella through several techniques, which take into account node heterogeneity

(i.e. the fact that some node have more bandwidth and processing capacity) and

node congestion (the fact that a node performance degrades when it is required

to process too many protocol messages). These techniques include biased random

walks (towards nodes that have more resources), token-based flow control (a node

cannot forward a request to another node, unless the other node has previously

consented), topology adaptation (a node may add or drop neighbors) and allow Gia

to beat Gnutella in performance by several orders of magnitude.
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2.3 Applications of Lookup Protocols

Lookup protocols can be used as a building block for complex distributed

applications. One such application is P2P file systems, such as Ivy [MMGC02],

Pastis [BPS05] or OceanStore [KBC+00]. Such systems have the same interface as

a distributed file system such NFS, but without requiring dedicated servers. These

P2P file systems are built on top of efficient lookup protocols, namely DHTs. For

example, Pastis employs Pastry [RD01] in the following way. Similarly to a Unix

file system, each file has an associated i-node, which is stored as a data item into

the DHT; additionally, file data is divided into fixed-sized blocks, each of which is

also stored as a data item into Pastry. The i-node maintains the file meta-data and

the identifiers of the data blocks.

Another example of application of lookup protocols is P2P multicast systems,

which allows nodes to join named multicast groups, as well as efficiently sending a

message to all members of a multicast group. For example, Scribe [RKCD01] uses

Pastry to construct a communication tree consisting of a superset of the nodes in a

multicast group. In order to multicast, the node sends the message to the node that

is at the root of the tree. The message is then forwarded down the tree, reaching

all targets.

A third example is P2P systems that enable keyword-based search [RV03,

TD04, Gna02, LHH+04]. Such systems generalize lookup protocols in that they

allow a node to locate all data items (documents) that match a query consisting of

a list of keywords. The basic technique is to build an inverted index for each keyword
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appearing in any document, which is a list of all data item identifiers containing a

certain keyword, and to store each index as a data item using the corresponding

keyword as its identifier. In [TD04], the authors present an alternative solution,

which requires an appropriate modification of Chord [SMK+01].

2.4 Communication Models

So far, we have simply assumed that any node in the network can send a

message directly to any other node in the network. This is not necessarily true. In

this section, we consider the issue of communication in more details. We will define

two communication models, which describe how nodes in a distributed algorithm

are allowed to communicate to each other. The first attempts to portray a routed

network such as an IP network: a node may send a message directly to any other

node, as long as the sender knows the recipient’s address. The second model portrays

an ad-hoc network with no routing infrastructure, in which a node can only send a

message directly to a few other nodes that are assigned to it by the environment. We

call the first model the Given-Routing Model and the second the Given-Topology

Model.

Designing a distributed algorithm with the same goals in the two communica-

tion models yields two different and interesting problems. The Given-Routing Model

represents the case of an application running on the Internet or, more in general,

on an IP network. Most previous work on lookup protocols and P2P protocols im-

plicitly assumes the Given-Routing Model. For example, in a DHT (Section 2.2.2),
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although a node only communicates with a small number of neighbors, the node

chooses who its neighbors are (in this case, on the basis of the random identifiers).

While DHTs are very efficient, they might not be usable in some circumstances.

Consider the case where the nodes are connected by a wireless ad-hoc network. In

this case, a node u can send a message to a node v only if the two nodes are within

transmission range. A lookup protocol in the Given-Topology Model is required for

this application.

The Given-Topology Model also applies when the lookup protocol is executed

as a component of a more complex P2P application and such application: a) es-

tablishes a neighborhood relation between nodes that is not under control of the

lookup protocol; b) requires that messages only be sent to nodes that are neighbors

according to such relation. This is especially the case when the links in the relation

have particular significance, such as expressing statements of trust or belief between

nodes. An example of this is discussed in another work of ours [MBKM06].

Note the fundamental difference between real-world systems, such as the In-

ternet, which we model as given-routing, and one, such as an ad-hoc network, which

corresponds to the Given-Topology Model. Although the underlying structure of

the Internet is a sparsely-connected graph and the Given-Routing Model is only

its abstraction, the nodes of the distributed algorithms that we are interested in

are only end hosts on the Internet graph. Messages between nodes are forwarded

by routers, which are not part of the distributed algorithm and are not under the

control of the algorithm designer. In the ad-hoc network, instead, the same nodes

that participate in the distributed algorithm also route messages for other nodes.
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Figure 2.1: Representation of the Given-Routing Model: every node has a unique
address and is connected to the network.

2.4.1 The Given-Routing Model

In this section, we introduce a communication model, called the Given-Routing

Model. In this model, the network is treated as a black box that delivers messages,

based on their destination address (Figure 2.1). All processors are given a unique

network address. Any user can send a message, addressed to a certain network

address, and the network will deliver it correctly, if any such destination user exists.

This communication model intends to model the behavior of any network that

supports IP routing. The model is somewhat simplified and abstracts away the

entire routing infrastructure. However, the model captures the essential aspects

that are necessary to understand the design of virtually all P2P protocols available

in the literature. In particular, the Given-Routing Model captures the fact that any

node can send a message directly to any other node, given the recipient’s address,

but a node does not know a priori the number, the addresses or the identity of all

other nodes in the protocols.
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2.4.2 The Given-Topology Model

In this section, we discuss the Given-Topology Model . In this model, the

network is modeled as a graph G (which may change over time), where vertices

correspond to nodes. A node can only communicate with its physical neighbors

(Figure 2.2), that is with the nodes that correspond to its neighbor vertices in G.

We assume that all the nodes in the graph participate in the P2P protocol and that

each node knows the identity of its neighbors.

Designing a lookup protocol in the Given-Topology Model is more challenging,

because communication is heavily restricted. One possibility is to use unstructured

search protocols (Section 2.2.3) such as Gnutella [Com01] or Gia [CRB+03], although

such protocols have very inefficient worst-case performance (see the previously cited

discussion of hay vs. needles in [CRB+03]). Note we would need to modify un-

structured P2P protocols for them to work in the Given-Topology Model, since such

protocols have been designed for the Internet, which is a Given-Routing setting. For

example, Gia should be adapted by disabling its topology adaptation features, since

the Given-Topology Model does not allow a node to change its set of neighbors

One of the major contributions of this dissertation is the design of an efficient

lookup protocol in the Given-Topology Model. We will present such contribution in

Chapter 3.
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Figure 2.2: Given-Topology Model: every node is physically connected to some
assigned neighbors. In this example, node 14 may send a message directly to the
nodes 28, 32 and 70, but no others.
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Chapter 3

Efficient Lookup in the Given-Topology Model

In this chapter,1 we present LMS, an efficient lookup protocol for the Given-

Topology Model (Section 2.4). It is more efficient than existing lookup protocols

for unstructured networks, and thus is an attractive alternative for applications in

which the topology cannot be structured as a Distributed Hash Table (DHT).

We present analytic bounds for the worst-case performance of LMS. Through

detailed simulations (with up to 100,000 nodes), we show that the actual perfor-

mance on realistic topologies is significantly better. We also show in both simula-

tions and a complete implementation (which includes over five hundred nodes) that

our protocol is inherently robust against multiple node failures and can adapt its

replication strategy to optimize searches according to a specific heuristic. Moreover,

the simulation demonstrates the resilience of LMS to high node turnover rates, and

that it can easily adapt to orders of magnitude changes in network size. The over-

head incurred by LMS is small, and its performance approaches that of DHTs on

networks of similar size.

1The work presented in this chapter was published as [MBMS05, MBMS07].
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3.1 Introduction

In this chapter, we present the Local Minima Search (LMS) protocol for the

Given-Topology Model (Section 2.4.2). LMS extends the notion of random walks,

which to date have proved the most promising approach to improving search per-

formance on unstructured networks [LCC+02, GMS04, CRB+03]. In addition, LMS

borrows the ideas of namespace virtualization employed by constrained-topology

protocols such as distributed hash tables (DHTs) [RD01, ZKJ01, SMK+01, MNR02].

Namespace virtualization maps both peers and objects to identifiers in a single large

space.

In LMS, the owner of each object places replicas of the object on several nodes.

Like in a DHT, LMS places replicas onto nodes which have IDs “close” to the object.

Unlike in a DHT, however, in an unstructured topology there is no mechanism to

route to the node which is the closest to an item. Instead, we introduce the notion

of a local minimum: a node u is a local minimum for an object if and only if the

ID of u is the closest to the item’s ID in u’s neighborhood (those nodes within h

hops of u in the network, where h is a parameter of the protocol, typically 1 or 2).

In general, for any object there are many local minima in a graph, and replicas are

placed onto a subset of these. During a search, random walks are used to locate

minima for a given object, and a search succeeds when a minimum holding a replica

is located.

While DHTs typically provide a worst-case bound of O(log n) messages sent

for lookup operations in a network of n nodes, by storing only one replica of the data
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item, LMS provides a worst-case bound of O(
√

n/dh · (log n)/g), with O(
√

n/dh)

replicas. In this expression, dh denotes the minimum size of the h-hop neighborhood

and g denotes the eigenvalue gap of a random walk in the graph (see Section 3.4).

The eigenvalue gap g is a constant for a wide range of randomly-grown topologies

(e.g. random and random-regular graphs). LMS is thus notably worse than DHTs,

but is a considerable improvement over other (essentially linear-time) lookup tech-

niques in networks that cannot support a structured protocol, and a vast improve-

ment over flooding-based searches. Furthermore, as we shall see, LMS provides a

high degree of fault-tolerance.

Note that the LMS protocol provides a probabilistic guarantee of success. De-

pending on the number of replicas placed and the number of search probes, an object

may not be found even if it exists in the network, though the probability of failure

can be made arbitrarily small. In Section 3.4, we derive expressions for the number

of necessary replicas and probes for specific probabilities of success, for arbitrary

graphs G. In particular, we deal with the following problem. Let D be an arbitrary

distribution on a set of size k. Suppose we sample r+s times independently from D;

what is a good upper bound on the probability that the first r samples are disjoint

from the last s samples? We present an upper-bound of exp(−Ω(s ·min{r/k, 1})),

assuming without loss of generality that s ≤ r. At first sight, this may appear re-

lated to the “birthday paradox”, and D being the uniform distribution may appear

to be the worst case. This turns out to not be true — this problem is more complex,

as is illustrated in Section 3.7.

The object placement component of LMS distributes replicas randomly through-
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out the network. This means that even if the LMS lookup is not used (e.g. for multi-

attribute searches when the object ID-based lookup is not applicable) flooding will

succeed with high probability even with relatively small bounded propagation. LMS

can also be augmented with index-based searches in the same manner as DHTs.

This flexibility suggests that LMS could become the underlying platform of choice

for building wide-area applications.

We start with a description of related work in Section 3.2. The primary contri-

bution of this chapter is the base LMS protocol described in Section 3.3, for which

we derive expected and worst-case performance bounds in Section 3.4. We also an-

alyze, in Section 3.5, the performance of LMS over realistic topologies via a set of

comprehensive simulations on networks with 105 peers and over a testbed with 512

peers.

3.2 Related work

Gnutella [Com01] is probably the most-studied unstructured peer-to-peer net-

work; much work has been done to understand Gnutella dynamics [RF02, SGG03,

CLL02]. The original Gnutella search protocol was based on naive flooding. An

improved flooding algorithm is discussed in [JGZ03]; it reduces the number of mes-

sages per search while still reaching the entire network. More sophisticated search

techniques based on random walks are described in [LCC+02]. Their analysis yields

a search cost of n
r
, where n is the size of the network and r is the number of repli-

cas, although it is based on the assumption that replicas are placed on uniformly
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random nodes, while the paper does not describe any placement protocol. As a

comparison, LMS achieves a search cost of O( n
rdh

log n), which is significantly better

for the large class of topologies for which dh is much larger than log n. In Section 3.5

we directly compare LMS to the best protocol described in [LCC+02]. Yang and

Garcia-Molina [YGM02] present more techniques and comparisons along the same

lines.

The Gia system [CRB+03] improves on Gnutella using: topology adaptation,

flow control and biased random walks. We do not compare LMS and Gia, because

our model does not allow topology adaptation and, by design, the LMS substrate

is not responsible for node heterogeneity and node congestion, without which flow

control and biased random walks are of no use. Note that one can implement the

latter two techniques on top of LMS. Also related is PlanetP [CAPMN03], a P2P

system which enables searching and ranking documents on the basis of their content.

Highly-efficient DHT lookup algorithms (e.g., [SMK+01, RD01, ZKJ01, RFH+01,

MNR02]) impose structure on the topology in order to achieve their performance

bounds. Beehive [RS04] is a replication framework that can be built on top of a

DHT. These systems employ the same namespace virtualization of which we make

use. A virtualized namespace has previously been used on an unstructured topology

in Freenet [CMH+02], though for a different reason.

In [AM03] the authors build a P2P system where publishing involves storing

on s random nodes in the graph and searching involves querying s independently

chosen random nodes. Unlike LMS, [AM03] requires that the nodes may modify the

topology of the neighborhood graph. The authors prove a result that is similar to our
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Theorem 3.1 for the case s = r in this chapter, although with a different technique.

Other differences are: (a) LMS restricts replica placement to local minima; (b) our

Theorem 3.1 is generalized beyond the special case in [AM03]; and (c) our proof

technique for Theorem 3.1 also helps us show that LMS is robust under the loss of

some replicas. (The result applies to [AM03] as well.)

YAPPERS [GSGM03] is a P2P system that, like LMS, assumes a “given topol-

ogy” model and combines structured and unstructured designs. In YAPPERS, nodes

publish an item by storing it at a node of the 2-hop neighborhood, which is struc-

tured as a small DHT. Search is achieved by flooding all and only the nodes in the

network that might have the item, and requires nodes to keep state for an extended

local neighborhood (within 5 hops). The authors do not present a formal analysis.

Related to the problem of lookup in a given topology is the work on name-

independent routing (NIR) in a graph [ACL+03, AGM+04, AM05]. NIR allows a

node to send a message to any other node, in a given topology setting. Existing

work on NIR assumes that the topology graph never changes and requires an initial

setup phase performed by a centralized algorithms that knows the entire graph.

Bloom filters [Blo70, Mit01], compact digests of sets of elements, have pre-

viously been considered for structured topologies [RK02] as a way to provide fast

lookup. In this chapter, we present an application of Bloom filters on a completely

unstructured topology. Theoretical properties of random walks have been exploited

by [GMS04] to improve search in unstructured networks.
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(b) 2-hop Neighborhoods

Figure 3.1: Local minima, basins and deterministic forwarding. Nodes are labelled

with their distances from the key. Concentric circles denote local minima, and

shaded regions their basins. Arrows indicate the path from a node towards its local

minimum. (a) All forwarding arrows for h = 1. (b) Forwarding arrows for two nodes

with h = 2. A dashed arrow indicates the target towards which a node forwards a

probe when different than the next hop.

3.3 LMS protocol description

We assume a system of principals (nodes or peers) structured as an overlay

network on top of a communications infrastructure such as the Internet. The topol-

ogy of this overlay network is dictated by external requirements, and its maintenance

is beyond the scope of our protocol. We assume that nodes can communicate with

one another if and only if they are neighbors in the overlay topology.2 We model

the topology as an undirected graph.

Nodes in the system have unique identifiers generated uniformly at random

2This assumption can be weakened and communications made possible over larger distances in

the overlay. This does not substantially alter the protocol, other than to allow optimizations that

reduce the number of messages exchanged.
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from an ID space of all bit strings of some length λ. λ must be chosen large enough

to guarantee uniqueness with high probability (for example, 160 bits). How this

identifier is constructed is in general application-specific.3

We define a node v’s neighborhood as the set of nodes at most h hops away

from v in the overlay. For each of these nodes, v knows its unique identifier, how

many hops away it is, and v’s next hop towards it. We do not present a protocol for

propagating this information, but it is easily implemented by repeated exchanges of

a node’s known h− 1-hop neighborhood. Note that nodes have no knowledge of the

topology beyond this neighborhood.

3.3.1 Protocol overview

LMS enables nodes to publish data items (i.e. files, documents) and to retrieve

data items published by others. Items published by the system are given key iden-

tifiers (or simply keys) in the same ID space as the nodes, for example by hashing

the name or contents of the item. The protocol then attempts to store an item at

nodes that are close to its key in the (circular) ID space. In terms of the distance

between a node and key, we do not find the global minimum (as in a distributed

hash table), but rather a local minimum.

Publishing an item involves storing replicas of the item at a number of ran-

domly selected local minima; retrieving an item involves querying randomly selected

local minima until one is found that holds a replica. Crucially, the distribution of

these random selections is typically not the uniform distribution; it is a function of

3For instance, the SHA-1 hash of a node’s public key.
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the underlying topology, and is naturally generated by the distributed algorithms

that we employ. Intuitively, the more replicas are placed, the easier it will be to find

one of them. Random minimum selection is accomplished by performing a random

walk through the overlay before actively looking for a local minimum.

3.3.2 The basic protocol

For clarity of the exposition, we first present a slightly simplified version of the

LMS protocol. In this version, placing and locating items are essentially identical.

We will then refine this to account for the differences between the two operations

and to add optimizations.

To select a random local minimum, a node generates a probe message, which

has the general form 〈probe, initiator, key, walk length, path〉. A probe moves

through the network with a random walk followed by a deterministic walk. The

walk length parameter is initialized to some positive value. A node that receives

the probe (including the initiator) first examines this parameter. If it is greater

than zero, the probe is in the random walk phase, and the node forwards it to a

randomly selected neighbor4 and decrements the value. If walk length is zero, the

probe is forwarded according to the deterministic walk, which is described below.

In either case, a node appends itself to path before forwarding the probe so that a

4The distribution for this selection is uniform in our case, but nonuniform choice is also possible.

For instance, if the topology is dictated by trust relations, more highly trusted nodes might be

given greater weight in selection. Another possibility, introduced in [CRB+03], is to weight the

distribution according to resource availability.
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local minimum can direct its response back to the initiator.5

Deterministic walk Deterministic forwarding (Figure 3.1) is done using a greedy

algorithm. A node v receiving a probe computes the distance between key and every

node in its neighborhood including itself. We define the distance between a key x

and a node w as

d(x, w) = min{x− w mod 2λ, w − x mod 2λ}.

Let v′ be the node that minimizes d(key, ·) over the neighborhood of v. If

v = v′, then v is the local minimum; it then stores or returns a replica, depending

on the type of probe. Otherwise, v determines the next-hop node towards v′ (from

its local knowledge of the topology) and forwards the probe to this node. (Recall

that we assume v cannot communicate directly with v′ if it is more than one hop

away.) It is also possible that a message “intended” for a node v′ will be redirected

towards a better minimum v′′ at an intermediate hop, as shown in Figure 3.2.

For a local minimum of a key x, vx, we define the set of nodes that deter-

ministically forward to this minimum as its basin of attraction (or basin). Note

that while it is possible for a local minimum to “attract” nodes from outside of its

neighborhood, it is also possible for the basin to be only the minimum itself. This

is shown in Figure 3.1.

5If messages can be exchanged by nodes that are not direct neighbors, then path is not needed,

since the local minimum can communicate directly with the initiator.
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Figure 3.2: An illustration of “unexpected” message forwarding. Node 5 sees 3 in its
2-hop neighborhood, and forwards the probe to 21, the next hop towards 3. Node
21 sees a better match in 2, and so forwards the probe to 53 rather than 3.

3.3.3 Protocol details

Replica placement We now distinguish between probes for placing replicas and

those for locating replicas. A REPLICA-PLACE probe is initiated by the owner of

an item, and includes an additional field item. When a local minimum receives a

REPLICA-PLACE probe, it checks if it already holds a replica, and if not whether it

has the resources to store one. If the minimum is able to store a replica of the item,

it informs the initiator.

When a local minimum cannot store a new replica, it performs duplication

avoidance: it doubles the initial random walk length and restarts the probe’s random

walk. Because the probe is starting from a new location, it is less likely to again

reach a duplicate minimum than if it were started with the same random walk length

from the initiator.

We must limit the number of times that duplication avoidance is invoked,

because the owner of an item might attempt to place more replicas than there

are local minima for the item’s key. This leads to REPLICA-PLACE probes that

circulate through the network indefinitely, with progressively longer random walks.

Consequently, we include a parameter initialized with the maximum number of

failures permitted. Duplication avoidance decrements this parameter, discarding the
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probe when it becomes negative. The final form of a REPLICA-PLACE probe is then

〈REPLICA-PLACE, initiator, key, walk length, item, initial walk length, failure count,

path〉.

Replica lookup A SEARCH-PROBE performs a lookup operation on an item key. A

local minimum that receives a SEARCH-PROBE checks whether it holds a replica of

the item and returns either the replica or notice of failure to the initiator. The form

of a SEARCH-PROBE is simply 〈SEARCH-PROBE, initiator, key, walk length, path〉.

Note that LMS is a probabilistic algorithm. The probability of a single

SEARCH-PROBE locating a replica is fairly low, so a node will have to initiate a

number of probes when looking for an item. This can be done in serial or in par-

allel. The former increases the expected time until the node receives a successful

response, while the latter increases the load on the system.

3.3.4 Variant: Bloom filters

In this section, we describe a variant of the protocol, called the Bloom filter

variant, which improves the efficiency of item lookup at the expense of additional

communications overhead.

Each node periodically constructs a Bloom filter [Blo70] of the keys for which

it holds a replica and provides a copy of this Bloom filter to all the nodes in its hB-

neighborhood, where hB is a global parameter. It is possible for hB to be different

than h, the depth of the neighborhood for the definition of local minimum (see

Section 3.3).
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Use of the filters within LMS is relatively straightforward: upon receiving a

SEARCH-PROBE message, a node v can check all of the Bloom filters it holds for each

of its hB-hop neighbors. If there is a match of the key being searched for in the

Bloom filter of some neighbor u, v can short-circuit the usual search protocol and

forward the SEARCH-PROBE message directly to u.

Note that it is possible to use an attenuated Bloom filter [RK02] to combine

incoming filters and transmit only a single filter for each distance. Thus, from each

neighbor v a node receives a single filter for the items replicated at v, a single filter

for all of v’s one hop neighbors, a single filter for v’s two hop neighbors, and so on.

It is possible to further reduce the filter overhead by using arithmetic encoding to

compress the filters (as described in [Mit01]).

In general, it is not necessary to keep (attenuated) Bloom filters for the entire

neighborhood for which a node keeps ID information (i.e. in general one can choose

hB to be smaller than h). Often it is sufficient to choose hB to be 1 or 2 to get

significant benefit without incurring the (computation and bandwidth) overhead of

constructing and disseminating large filters from multiple hops away.

In the special case that the Bloom filter and identifier neighborhood are iden-

tical (i.e., hB = h), the search phase of the protocol can dispense with the determin-

istic walk (Section 3.3.2). More specifically, if hB = h, the Bloom filter variant of

LMS mandates that search probes only perform a random walk. The search probe

fails if walk length reaches 0 without finding a Bloom filter match at any node on

the path.
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3.3.5 The adaptive protocol

Having only local information, a node has no a priori way to know how many

replicas of its items it must place in order for them to be easily found by other

nodes. Increasing the number of replicas reduces the average number of search

probes needed to find a replica, and vice-versa. Search performance thus provides a

feedback mechanism to determine if an item has been replicated sufficiently.

The adaptive protocol is the component of LMS that determines and dynam-

ically adjusts the number of replicas to be placed. It is run periodically for each

item by its owner and ensures that a sufficient number r of replicas are available at

any time. Let s be the average number of probes needed to find the item at a given

time. The adaptive protocol ensures that s ≈ f(r), where f is an arbitrary function,

chosen by the owner.6 For simplicity of the exposition we present the protocol for

the case f(r) = r (see Section 3.4). The overhead of this protocol is minimal, aside

from any additional replica placements, as it leverages existing actions.

A search from a random node in the system takes on average s probes to

find a replica of an item I owned by node v. Node v periodically learns an es-

timate of s, as explained below; from the current number of reachable replicas r,

it computes the number of replicas r′ that it adaptively determines are needed as

r′ = ⌈αr + (1− α)s⌉. Here α is a hysteresis parameter between 0 and 1 (we use 0.9)

that controls how sensitive the algorithm is to fluctuations in s. We define δ = r′−r

as the needed change in number of replicas, and a non-zero value results in either

6For example, this could be used to take the popularity of an item into account by storing many

more replicas so that most searches require very few probes.
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placing or deleting replicas.

Since searches are a normal and frequent part of the system’s operation, it is

a simple matter for a node vi to keep track of the number of probes si it needed to

send before finding a replica of I.7 If si is included in a SEARCH-PROBE message, the

replica holder can store it and forward a batch of probe results to v periodically.

These results provide a representative sample from which v can estimate the average

s. Note that nodes on the threshold of being able to find replicas of I will tend to

drive r up, allowing new nodes to find replicas and improving the sampling over the

network.

3.4 Analysis of LMS

We now give a rigorous analysis of the protocol; we make no assumptions about

the topology layer, other than the necessary condition that the topology, which is

an undirected graph G, is connected. The three main results derived are: (a) tight

bounds on the probability that a search in LMS fails; (b) bounds on the expected

walk-length (i.e. the number of nodes visited by a search probe, Section 3.3.2)

conditional on successful search; and (c) the asymptotic performance of LMS.

3.4.1 Mixing time and eigenvalue gap

We first define the mixing time of a graph and the eigenvalue gap of a random

walk in that graph. We will use these concepts to analyze the performance of LMS.

7For an unpopular item, the owner of an item might select random nodes and request that they

perform searches for the item to make up for the lack of search feedback.
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We also refer the reader to [MR97, Chapter 6] for a more thorough discussion of

random walks.

Let G be a connected undirected graph and let n denote the number of nodes

in G. Let RW(u, t) be the distribution of the vertex visited by a random walk on

graph G after t steps, starting at vertex u. Only for the purpose of this analysis, we

define the random walk in a way that is slightly different than what we did in the

protocol description (Section 3.3.2): at each step, the walk remains at the current

vertex with probability 1/2 and otherwise moves to a uniformly random neighbor.

Let P be the probability transition matrix of the random walk. Namely, P [i, j]

(1 ≤ i, j ≤ n) is the probability that the random walk will move from node i to

node j, at any step: for all edges (i, j) of G, it is P [i, j] = 1/(2di), where di is the

degree of node i; for all nodes i, P [i, i] = 1/2; P [i, j] = 0 otherwise. We denote by

1 = µ1 > µ2 ≥ · · · ≥ µn ≥ 0 the eigenvalues of P . We define the eigenvalue gap of

the random walk as g(G) = 1− µ2.
8

It is a known fact in graph theory that RW(u, t) approaches a unique station-

ary distribution SRW , as t approaches infinity, no matter what the starting vertex

u is. SRW places probability d(v)/(2m) on each node v, where d(v) is the degree

—number of neighbors— of v, and m is the total number of edges in G. We want

to formalize this notion.

8We are aware that the eigenvalue gap of a random walk in the graph is a non-standard notion.

Some authors define the eigenvalue gap of the graph as the difference between the two largest (in

absolute value) eigenvalues of the adjacency matrix or of the normalized adjacency matrix. Those

notions of eigenvalue gap differ from ours.
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We can define the ǫ-mixing time of G, denoted by T (G, ǫ), as the smallest

integer t such that for any vertex u:

SD(RW(u, t),SRW) ≤ ǫ/2

where SD(D, D′) = 1

2

∑

i
|PrD[i] − PrD′[i]| denotes the statistical difference between

the distributions D and D′. It follows immediately that, if t ≥ T (G, ǫ), then the

statistical difference between RW(u, t) and RW(v, t) is at most ǫ for every two

vertices u and v.

It is known how to express the ǫ-mixing time as a function of the eigen-

value gap. To see this, we can apply a technique analogous to the proof of The-

orem 6.21 in [MR97]: the statistical difference between RW(u, t) and SRW is at

most
√

n(µ2)
t. From this, we obtain the following expression for the ǫ-mixing time:

T (G, ǫ) ≤ 1

g

[

1

2
ln n + ln(1/ǫ)

]

. (3.1)

For most natural models of randomly chosen/evolving graphs (such as random

graphs and random regular graphs), it is known that the eigenvalue gap is lower

bounded by a positive constant, independent of G and n; see Section 3.8 for details

and references. For such classes of graphs, T (G, ǫ) = O(log n + log(1/ǫ)) suffices.

There exist, however, pathological graphs in which T (G, ǫ) = Ω(n). This happens,

for example, if G is a path.

In LMS, ideally we would take our parameter INITIAL-WALK-LENGTH to be at

least T (G, ǫ), for a sufficiently small ǫ, although this is not always possible because

the topology G is unknown. In our simulations, choosing INITIAL-WALK-LENGTH to
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be 3 and doubling its value each time a duplicate local minimum is found is sufficient

to obtain very good results.

3.4.2 Probability of successful search

Consider an item x. Let r denote the number of replicas of x that the owner

of x places, and let s be the number of search probes that another node conducts to

search for x. We derive an upper bound on the probability that the search fails. If

G is regular, we expect the r replicas of a key x to be placed uniformly at random

at the k local minima for x; similarly for the s locations at which the s searches

end. In such a case, the probability of “failure” (unsuccessful search) is essentially

of the form (1 − r
k
)s ≤ exp(−rs

k
), where exp(a) denotes ea. However, we desire

protocols that work for arbitrary topologies G where the distribution may be quite

non-uniform. Our first main result is that the failure probability is always bounded

by a function of the form exp(−Ω(rs/k)), in the case of interest where r and s are

bounded by O(k). (Indeed, LMS is not an interesting algorithm if either r or s is

Ω(k), because it becomes a trivial linear-time algorithm.)

Theorem 3.1. Let G be any connected undirected graph, on which we run LMS

with random walks of length at least T (G, ǫ). Let u and v be two arbitrary nodes in

G. Let x be an arbitrary identifier. Let K(x) be the random variable representing

the number of local minima for x in G, with respect to a random ID assignment to

the nodes of G. Suppose node u publishes an item with ID x, using r replicas, and

suppose that, later, node v looks up an item with ID x using s search probes. Let

42



pf be the probability that v fails to find the item. Then, conditioned on the event

K(x) = k, the following bound on the failure probability holds:

pf ≤ min{r, s}ǫ + exp(−Ω(
rs

k
)).

The proof of this theorem relies on Theorem 3.5, a result on probability dis-

tributions that we present in Section 3.7. We consider Theorem 3.5 a contribution

of independent interest.

Proof. We first present the main ideas of the proof. For simplicity, let’s focus on the

case that ǫ is so small that can be neglected. Since all the random walks are chosen

to be of length t ≥ T (G, ǫ), we can pretend that the distributions RW(u, t) of the

random walk during publishing and RW(v, t) of the random walk during lookup are

both equal to the stationary distribution SRW .

Our goal is to show that even when r and s are only moderately large, a

search for x will succeed with high probability, no matter what G is. We proceed

as follows. Let D be the probability distribution of choosing a vertex w (which

is a local minimum for x) as follows: choose a vertex v using distribution SRW ,

and then deterministically go to a local minimum w starting at v, as described in

Section 3.3. Then, replica-placement is as follows: choose a multiset R of r local

minima by sampling r times independently from D, and place the replicas at the

locations in R. Search for x is as follows: choose a multiset S of s local minima

by sampling s times independently from D, and search is successful if and only if S

intersects R.

When can we show that Pr[R ∩ S 6= ∅] is high? The heuristic argument a
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few paragraphs above shows that if D is the uniform distribution on K, then, the

probability of unsuccessful search is of the form exp(−rs
k
). Theorem 3.5 (Section 3.7)

shows that this bound indeed holds for any distribution D if r, s ≤ k.

We are now ready for the full proof. Without loss of generality, we assume

s ≤ r. Let t be the length of the random walks used. For any vertex y, let Dy be the

probability distribution of choosing a vertex w (which is a local minimum for x) as

follows: choose a vertex w′ using distribution RW(y, t), and then deterministically

go to a local minimum w starting at w′, as described in Section 3.3. Then, replica-

placement is as follows: choose a multiset R of r local minima by sampling r times

independently from Du, remove duplicates from R, and place the replicas at the

locations in R. Search for x is as follows: choose a multiset S of s local minima by

sampling s times independently from Dv, and search is successful if and only if S

intersects R.

We introduce a hybrid experiment, where we choose a set S∗ of s random

samples according to the distribution Du. Theorem 3.5 implies that:

Pr[R ∩ S∗ = ∅] ≤ B(r, s, k),

where B(r, s, k) is as defined in Theorem 3.5. Under the assumption r, s ≤ k of this

theorem, B(r, s, k) = exp(−Ω( rs
k
)).

We now have to relate pf = Pr[R ∩ S = ∅] with Pr[R ∩ S∗ = ∅]. Since

t ≥ T (G, ǫ), this implies that the statistical difference between Du and Dv is at

most ǫ. Let Ds
u (resp. Ds

v) be the distribution consisting of s independent samples
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from Du (resp. Dv). A straightforward hybrid argument shows that

SD(Ds

u
, Ds

v
) ≤ sǫ

which implies that the statistical difference between the random variables S and S∗

is also at most sǫ.

We now need the following claim:

Claim 3.2. Let X1 and X2 be two random variable with statistical difference at most

ǫ. Let E(X, Y ) be an event that depends only on the underlying random variable

X, Y (i.e. E is a predicate of two variables). Then, for any distribution of random

variable Y :

|Pr[E(X1, Y )]− Pr[E(X2, Y )]| ≤ ǫ.

Proof. Fix an arbitrary value y. We first show that the statement holds when

conditioning on the event Y = y. Let:

A+ = {x : E(x, y) and Pr[X1 = x] > Pr[X2 = x]}

A− = {x : E(x, y) and Pr[X1 = x] < Pr[X2 = x]}

We get:

|Pr[E(X1, Y )|Y = y]− Pr[E(X2, Y )|Y = y]| =

|
∑

x∈A+

Pr[X1 = x] +
∑

x∈A−

Pr[X1 = x]+

∑

x∈A+

Pr[X2 = x] +
∑

x∈A−

Pr[X2 = x]| =
∣

∣

∣

∣

∣

∑

x∈A+

(Pr[X1 = x]− Pr[X2 = x])−
∑

x∈A−

(Pr[X2 = x]− Pr[X1 = x])

∣

∣

∣

∣

∣

.
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This quantity is maximized when the first summation is maximum and the second

is minimum. Specifically, for any fixed choice of the distributions of X1 and X2, the

quantity is maximized by choosing E such that A+ = {x : Pr[X1 = x] > Pr[X2 = x]}

and A− is empty. Therefore:

|Pr[E(X1, Y )|Y = y]− Pr[E(X2, Y )|Y = y]| ≤
∑

x:Pr[X1=x]>Pr[X2=x]

(Pr[X1 = x]− Pr[X2 = x])

and simple algebra shows that the right hand side of the last inequality is equal to

SD(X1, X2), which is at most ǫ. The claim follows by unconditioning.

Using the Claim, we can write:

|Pr[R ∩ S = ∅]− Pr[R ∩ S∗ = ∅]| ≤ sǫ

from which the theorem follows.

In practice, we choose the parameters of LMS to obtain a small constant

probability of failure. Therefore, Theorem 3.1 tells us that we need random walks of

length T (G, O(1/s)) = O((logn)/g); as mentioned above, this is O(log n) for many

realistic networks. We also need to choose r and s such that rs = Ω(k). We expand

on this issue below.

3.4.3 Expected walk-length

A second quantity of interest is the number N of nodes visited by any single

search probe. This, multiplied by the number s of probes, yields the total cost of a

search query (similarly, we get a multiplier of r in the replica-placement). We can
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write N = T + l, where T is the length of the random walk and l is the length of the

deterministic walk. As we discussed above, T = O((log n)/g), where g is constant

for practical networks. As far as l is concerned, we present the following result which

shows that l = O(log n) with high probability:

Theorem 3.3. For any graph G of n nodes and for any positive constant c, the

number l of steps of any deterministic walk to a local minimum is at most (c+1) log n

with high probability (at least 1− 2/nc) over the choices of the node identifiers.

Proof. Fix an arbitrary object x. We aim to show that the “deterministic walk to

a local minimum for x” takes at most O(log n) steps in expectation, and also with

high probability.

Recall that we currently hash to a very large universe of (say, 160-bit) IDs,

and also recall our notion of distance between two hash values. Since the ID-space

has size large enough (2160), the situation is essentially equivalent to the following.

Let C be a circle of unit circumference. We then hash each entity v (whether it

is an object or a node) to a random point h(v) on the circumference of C. The

distance between two points p and q that lie on C, denoted ∆(p, q), is the length of

the shorter of the two arcs that connect them; thus, ∆(p, q) ≤ 1/2. Note that this

is the same notion of distance that we currently employ; thus, our notion of local

minima etc. carries over here exactly. (That is, we always aim to find a neighbor

that has the smallest distance ∆(·, ·) to the value h(x).) The utility of mapping on

to the circle is that the analysis becomes smoother (e.g., via integrals).

Suppose we start at a node u0, and are routing to a local minimum for x.
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We assume without loss of generality that the hash value h(x) of x, is the lowest

point P on C. Whenever we say “distance”, we will mean the distance function

∆(·, ·). We now introduce some random variables. Let u1, u2, . . . be the successive

nodes visited; if ui is the local minimum found, then ui+1, ui+2 etc. equal ui. Let

Mi = ∆(h(ui), P ) denote the distance “between ui and x”; note that the sequence

M0, M1, . . . decreases until we hit a local minimum. Our key idea is to show that

this sequence decreases fast enough. For t ≥ 0, let At be the indicator random

variable for the event that the walk has not yet stopped after t steps (i.e., after

visiting u0, u1, . . . , ut).

Our key lemma is the following:

Lemma 3.4. For any t ≥ 1 and any z ∈ [0, 1/2], E[Mt+1At

∣

∣MtAt−1 = z] ≤ z/2.

We will prove Lemma 3.4 below; let us now see why the lemma yields the

desired O(log n) bound. Note that E[M1A0] ≤ E[M1] ≤ 1/2; thus, Lemma 3.4 and

an induction on t yield that E[MtAt−1] ≤ 2−t. In particular, letting T = (c+1) logn

where c is some suitable constant, we get

E[MT AT−1] ≤ n−(c+1). (3.2)

Now, suppose uT = u and that MT AT−1 = z. Node u has at most n unexplored

neighbors; for each of these neighbors v, Pr[h(v) < z] = 2z. (The factor of two

comes from the fact that h(v) can fall on either side of point P on the circle.) Thus,

the probability that u is not a local minimum is at most 2nz; more formally,

∀z, Pr[AT = 1
∣

∣MT AT−1 = z] ≤ 2nz.
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So,

Pr[AT = 1] ≤ 2n · E[MT AT−1] ≤ 2/nc

by (3.2), which is negligible if, say, c ≥ 2. Thus, the routing takes at most O(log n)

steps in expectation, and also with high probability.

We now prove Lemma 3.4:

Proof. First of all, we can assume that z 6= 0; since Mt+1 ≤ Mt and At ≤ At−1, the

lemma is trivial if z = 0. Therefore, we have At−1 = 1 and Mt = z; i.e., the walk

has not stopped after visiting node ut−1, and also ∆(h(ut), P ) = z > 0. Let Y be

the random variable denoting the number of “unexplored” neighbors of ut; i.e., the

number of neighbors of ut that do not belong to the set {u0, u1, . . . , ut−1}. If Y = 0,

then ut is a local minimum, and hence Mt+1At = 0. We will now prove that for all

d ≥ 1,

E[Mt+1At

∣

∣ ((MtAt−1 = z) ∧ (Y = d))] ≤ z/2. (3.3)

If we can do so, we will be done, since if the lemma holds conditional on all positive

values of d, it also holds unconditionally. For notational simplicity, we will from

now on refer to the l.h.s. of (3.3) as Φ.

Fix some d ≥ 1; in all arguments below, we are conditioning on the event

“(MtAt−1 = z) ∧ (Y = d)”. Let v1, v2, . . . , vd denote the d unexplored neighbors of

ut. If h(vi) > h(ut) for all i, then ut is a local minimum, and hence Mt+1At = 0.

Therefore, conditioning on the value y = mini d(h(vi), P ) ≤ z, and also considering
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the d possible values of i that achieve this minimum, we get

Φ = 2d ·
∫ z

y=0

y(1− 2y)d−1dy.

Again, the factor of two up-front comes from the fact that the “minimizing neighbor”

vi can fall on either side of point P on the circle. A simple computation yields

Φ =
1− (1− 2z)d · (1 + 2zd)

2(d + 1)
. (3.4)

We need to show that the r.h.s. of (3.4) is at most z/2. Changing variables to

y := 2z and rearranging, we need to show that

f(y)
.
= (d + 1)y/2 + (1− y)d(1 + yd) ≥ 1,

where 0 ≤ y ≤ 1 and d ≥ 1 is an integer. This inequality is easily seen to hold if

d = 1, so we may assume d ≥ 2.

It can be verified that f ′(y) equals (d+ 1)/2+ d(1− y)d− d(1+ yd)(1− y)d−1.

Also, f ′(1/d) equals

(d + 1) · (1/2− (1− 1/d)d−1), (3.5)

and f ′′(y) equals

d(1− y)d−2(d + 1) · (dy − 1). (3.6)

We see from (3.6) that f ′ has a unique minimum (in our domain 0 ≤ y ≤ 1) at

y = 1/d. Also, for integer d ≥ 2, the function (1 − 1/d)d−1 has value 1/2 when

d = 2, and decreases as d takes on higher integral values. Thus, (3.5) shows that

f ′(1/d) ≥ 0. Since this minimum value is non-negative, it follows that f ′(y) ≥ 0 for

0 ≤ y ≤ 1. So, since f(0) = 1, we get f(y) ≥ 1 for all y ∈ [0, 1], as required.
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Search cost State
general case O( n

rdh
(log n)/g) O(dh)

r = dh = Θ(n1/3) O(n1/3(log n)/g) O(n1/3)

Table 3.1: Asymptotic performance of LMS. n is the number of nodes, dh is the
minimum size of a h-hop neighborhood and r is the number of replicas.

3.4.4 Asymptotic performance of LMS

Theorem 3.1 allows us to estimate the performance of LMS. For any given k,

we can choose rs = Θ(k) to make the failure probability an arbitrary small constant.

For example, if r = s = ⌈2
√

k⌉, the probability of unsuccessful search is essentially

at most e−4 ∼ 0.018. (In fact, this upper bound only holds for relatively regular

graphs; as G gets more irregular, the failure probability becomes smaller.)

Note that the number of local minima is, in expectation, k = O(n/dh), where

dh is the minimum h-hop neighborhood size in the graph. This means that, in any

class of graphs where dh = dh(n), if LMS places r = r(n) replicas, then a search

requires s = O( n
rdh

) probes. This translates into a search cost of O( n
rdh

(log n)/g) by

virtue of Theorem 3.3 and Eq. (3.1). As far as the routing state kept by a node, this

is proportional to the size of its h-hop neighborhood. Since this can be much larger

than dh, we assume that a node has a cap ∆ = O(dh) on the number of nodes in its

neighborhood it is willing to keep state for.

Table 3.1 summarizes the asymptotic performance of the protocol. The table

also shows, for concreteness, the interesting special case, where dh = Ω(n
1

3 ) (i.e.,

the given topology has h-hop neighborhoods that are not too small) and where we

choose r such that r and s are of the same order of magnitude.
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3.5 Experimental results

In this section we present an experimental study of LMS using a simulation

(described in Section 3.5.1) both to demonstrate large-scale behavior of the al-

gorithm and to compare its performance on various topologies and with different

extensions to the base protocol. In addition, we present results from a complete

implementation of the base protocol.

3.5.1 Simulation methodology

The message-level protocol simulator (written in Perl, about 1600 lines of code)

chooses a node, uniformly at random, and simulates replica placement performed by

that node. A search is performed from another similarly chosen node, which sends

out search probes one at a time and records how many probes are necessary to find

the item. This placement-search simulation is repeated for 10,000 trials with the

same graph and key.

We present results from three kinds of graphs: random, power-law, and Gnutella.

The random graphs have uniform edge probability between any two nodes. (In or-

der to generate very large random sparse graphs, we generate an even larger sparse

graph and take the giant component). We consider a variety of random graphs

with sizes ranging from 10,000 to 100,000 nodes with different average degrees. In

a power law graph of n nodes, node i (i = 1, . . . , n) has degree di = ω/iα for some

positive constants ω and α. The properties of these types of graphs have recently

been extensively studied in the context of the Internet [MMB00] and of peer-to-
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peer networks [RF02]. Our power-law graphs are generated using the inet (version

3.0) topology generator [WJ02], which is intended to model AS-level topology of

the Internet. Specifically, we consider 10,000 node inet graphs. For this topol-

ogy size, inet yields graphs with average degree 4.11. The third type of graph we

use represents a snapshot generated by crawling the Gnutella peer-to-peer network.

The Gnutella topology has 61,274 nodes with average degree 4.70, and also exhibits

some power-law type properties [RF02]. Nominally, for all topologies, we assume

that each peer keeps identity information for 2-hop neighbors.

3.5.2 Lookup performance

The results of the first set of experiments are shown in Table 3.2. The Gnutella

graph represents a crawl of the actual deployed system [Rip, RF02], while the oth-

ers are generated. One randomly generated item is replicated in each trial, and

the number of replicas is determined by an iterative procedure so that the aver-

age number of lookup probes needed to find one replica is approximately equal to

the number of replicas. The “Visited” column shows the cost of the search either

using the basic LMS protocol (the “LM” column) or the Bloom filter variant with

hB = 2 (the “LM+BF” column, see Section 3.3.3). The costs listed are the total

number of nodes visited by the lookup probes until a replica is located (including

all unsuccessful probes, executed serially).

The 10K graphs were chosen for comparison with the results of [LCC+02]. The

most successful protocol in [LCC+02], check, visits approximately 150 nodes (slightly
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Graph Size Avg. # Repl. Visited
Type deg. LM LM+BF

power-law 10K 4.11 3 17.7 4.4
random 10K 4.11 22 131.1 21.8

Gnutella 61K 4.7 16 83.9 15.7
random 61K 4.7 45 282.8 43.8

random 100K 17 14 55.9 14.0
random 100K 12 19 87.1 19.0
random 100K 7 34 185.4 34.0

Table 3.2: Lookup performance for different graphs. The average number of lookup
probes is approximately equal to the number of replicas. Measured quantities are
averaged over 10,000 trials for each of 60 generated graphs, excluding the Gnutella
graph.

more than our 130), but requires over 90 replicas in contrast to our 22. As the

graphs grow larger, LMS continues to perform reasonably. On the Gnutella graph,

in particular, LMS requires relatively few replicas and lookup probes; we expect this

graph to be typical of many applications with unstructured topologies. Note that

the Bloom-filter-based lookup performs considerably better than the standard LMS

lookup, but this comes at the cost of maintaining and propagating Bloom filters.

In this experiment, we assume homogeneous nodes we do not take into account

the effects of node congestion. Further our model does not allow a node to add

neighbors. Therefore we do not discuss a comparison with Gia here (see Section 3.2).

Random graphs show the worst-case performance of LMS. In order to demon-

strate the lower-bound behavior of the protocol, we restrict our experiments to these

graphs hereafter.
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3.5.3 Number of replicas vs. lookup overhead

In this section, we further consider details of LMS performance. We introduce

the notion of an iso-success curve. An iso-success curve, for a given graph G and

a given probability p, is the set of all pairs (r, s), such that if the owner of an item

places r replicas and a node v uses up to s search probes to search the item, then

the probability that v finds the item is p.

Iso-success curves precisely capture the tradeoff between number of replicas

and lookup overhead. In Figure 3.3, we present the iso-success curves for a single

random graph of size 100K nodes (average degree 17). The figure shows the worst-

case number of probes required for each number of replicas to achieve the given level

of success probability (without using Bloom filters). For example, a little more than

20 probes were required with 10 replicas for 70% probability of finding an item. The

curve was obtained by measuring the distribution of the number of probes for each

number of replicas, using 10,000 trials.

For each success probability, the average number of search probes for each

number of replicas was fit to the function f(r) = a
r
+ b, using the standard deviation

of the numbers of probes as the uncertainty in their average. The fits demonstrate

that rs = Constant for a fixed probability is a very good approximation (b is small

and negative in all fits).

A global fit to all of the data reveals that approximately half of the local

minima dominate the network, greatly reducing the expected number of replicas

needed for reliable lookup (k/2 rather than k in the results of Section 3.4).
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Figure 3.3: Number of probes as a function of the number of replicas. Random
graph with 105 nodes, of average degree 17. The numbers labeling the curves are
the particular success probabilities. The curves show fits to the functional form
f(r) = a

r
+ b.

Along with the tradeoff measure, the iso-success curves also provide us with a

snapshot of the distribution of the expected number of probes required for lookups

on a given graph. For example, with 15 replicas, 50% of the lookups require less

than 8 probes (in the worst case), and only 5% of the lookups required more than 40

probes. This information is useful in implementation since it provides a strategy for

fixing the number of probes that should be launched in parallel in order to reduce

lookup latency.

3.5.4 Failure analysis

LMS is extremely robust, and in this section, we analyze its resilience under

the failure model described in Section 3.4. Specifically, we consider random failures

in which a given fraction of nodes in the networks fail. In these results, we consider
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Failure # Replicas Average Analytic
Probability Visited Bound

0 36 188 36
0.1 38 200 37.9
0.2 41 213 40.2
0.3 45 231 43.0
0.4 48 262 46.5
0.5 53 289 50.9

Table 3.3: Performance under random failures: random graph with 105 nodes, av-
erage degree of 7. The analytic bound predicts the number of replicas which in this
case is equal to the number of probes.

how many replicas should be provisioned to handle specific failures (and validate our

analysis). In these experiments, the adaptation is via static provisioning, i.e. the

application/system designer places extra replicas. In later simulation (Section 3.5.5)

and implementation results (Section 3.5.6), we consider how the system can adapt

at run-time as it becomes aware of new failures.

In Table 3.3, we consider a random graph with 100,000 nodes (average degree

7). We consider that each replica, after being placed, can independently fail (the

node discards the data) with the probability specified in the first column. In each

case, we present an average over 10,000 runs of the number of replicas that needed

to be placed before the failures such that the probability of a successful search after

the failures is at least 99%. We present the specific placement that equalizes the

number of search probes and the number of replicas.

If f is the failure probability, the number of replicas that equalizes the expected

number of probes is r(f) = r(0)√
1−f

. This analytic prediction is the last column of the

table. It is clear that the analysis is extremely accurate in this case, and that LMS

scales extremely well with failures. The most important point to note here is that
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the number of replicas only has to scale with the square root of the fraction of

failures, which is an extremely positive outcome.

3.5.5 Performance under high churn

We now examine the behavior of LMS in a network with a high rate of nodes

leaving and joining. The topology is a random graph of 10K nodes of average degree

7. A departing node is immediately replaced by a new node with the same number

of neighbors; this maintains both the size of the graph and the degree distribution.

Bloom filters are not used in this experiment. The neighborhood distance h is 2.

At the start of the simulation, a node u creates one replica of its item. Every

minute (in simulation time) a random node searches for the item (over 99% of all

searches succeed). The simulator also chooses q nodes at random (excluding u)

to remove, where q = 10000/T for an average node lifetime of T minutes. Every

three minutes, the item’s owner u selects a node by initiating a random walk (of

length 6) and has that node perform a search for the item. Based on the result

of the search, u applies the adaptive protocol (Section 3.3.5); placing or removing

replicas as needed. The number of replicas r needed is based on a cost ratio, an

input parameter defined as r/s, where s is the expected number of probes to find

the item9. The adaptive protocol then attempts to equalize the replication cost and

the total cost of all (expected) searches.

The results of the experiment are shown in Table 3.4, which averages results

9In the notation of Section 3.3.5, this means running the adaptive protocol with f(r) =

r/(cost ratio).
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Cost Node Search Adaptive Average
Ratio Lifetime Cost Overhead Replicas

15 44.2 69.8 16.4
2 30 35.9 63.4 20.3

60 37.2 53.2 18.6
15 29.6 116.6 27.4

5 30 35.7 70.7 23.8
60 32 62.1 25.8

Table 3.4: Cost of searching, publishing and maintaining the overlay in basic LMS,
in presence of high node churn. Lifetimes are measured in minutes.

over seven initial random graphs. The search cost is collected from the one-minute

lookups. The adaptive overhead includes the cost of the search initiated by u and

the cost of placing additional replicas. The search cost and number of replicas are

fairly stable over all scenarios. The adaptive overhead is also relatively stable, with

the exception of 15-minute lifetimes for a cost ratio of 5. Note that we do not include

the overhead of maintaining the network, as it is external to the LMS protocol.

3.5.6 Implementation

We have implemented the complete LMS protocol (without Bloom filters).

Multiple nodes are run on a single host, enabling us to test fairly large networks.

The topology is maintained by a separate topology server that creates edges between

nodes at random while enforcing a minimum degree for each node. All nodes are

fail-stop; as nodes leave the network their neighbors obtain replacements as needed

to maintain the minimum degree. The available bandwidth for each host and the

capacity of the topology server define the limits of the network size that we were

able to construct. The deployment was limited to locally available hosts.
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Two experiments were performed, one with 512 nodes and one with 1024,

both focusing on the behavior of the adaptive protocol, and both with a minimum

node degree of 3 (average 3.9 ± 1.1) and h = 2. For the smaller network, we

investigate a system in which searches and adaptation are frequent. The purpose

of this experiment is to demonstrate that our protocols are functional in a real

deployment under high (for the limited resources available) load. The behavior of

the adaptive protocol is shown in Figure 3.4. Each node replicates one item10 and

performs a search for a random item every 10 seconds (staggered by random offsets

at start-up), so that a new search is started roughly every 20 milliseconds. The

adaptive protocol is run every 20 seconds (again staggered), and is based on the

results of these searches. The average number of replicas tends to converge on a

value dependent on the specific topology. The standard-deviation error band around

the average number of replicas is dominated by the variation in the number of search

probes, which we expect to be close to 1, as observed.

LMS probes increase in size as they propagate, but almost all are 400 bytes or

smaller (excluding item size), and all are less than 1000 bytes. A successful lookup

sends an “adaptive hint” back to the item’s owner, the average size of which is 28.5±

0.5 bytes; most of this is the key identifier and can be batched by the replica holder

or otherwise amortized. Replicas are soft state, so the owner of an item must send a

10Note that the number of items per node is not important when considering network load.

What matters is the number of probes circulating through the network, or essentially the number

of searches initiated per second. Our experiments are fundamentally limited by having eleven I/O-

intensive processes on a single host, forcing us to restrict the rate at which searches are initiated.
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Figure 3.4: Effect of the adaptive protocol. The x axis shows elapsed time, with 20s
between subsequent runs of the adaptive protocol. The y axis shows the average
number of replicas placed for all items in the system. The shaded region indicates
the one standard deviation region. The steep drop-off at the right is due to the
system shutting down.

refresh message (66.9±0.8 bytes on average) to replica holders, which is done every

20 seconds in this experiment. Replicas that are not refreshed are garbage-collected

by their holder. Neighborhood propagation consumes considerable bandwidth, but

we have constructed a much more efficient protocol that only propagates changes.

The experiment with 1024 nodes was used to verify that the adaptive protocol

can cope with the sudden loss of half the network. Only one item is replicated, and

its owner initiates periodic searches for it. Halfway through the experiment 512 of

the nodes depart. We do not present specific results of this, as providing no special

insight into the system, but mention that it performed very well under extremely

adverse conditions.
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3.6 Conclusions

In this chapter, we designed LMS, an efficient lookup P2P protocol for the

Given-Topology Model. Unlike a DHT [SMK+01, RD01, RFH+01], LMS is de-

signed for a model in which the topology (i.e. the graph where a vertex denotes

a peer and an edge denotes that two peers know of each other and can communi-

cate directly) is determined by an external entity, therefore peers are not allowed

to choose their neighbors. We demonstrated through analysis and simulation that

LMS is an efficient protocol with stronger performance guarantees than other un-

structured protocols that work in the same model. We also presented a prototype

implementation, which shows the practicality of the design.

LMS is of practical interest for distributed applications relying on trust rela-

tions between nodes. These trust relations define a graph which, when traversed

along its links, provides a known level of assurance for operations. Specifically, we

developed a decentralized public-key infrastructure based on a web-of-trust. Travers-

ing links in the trust graph implicitly generates certificate chains assuring a node

searching for a public key of that key’s correctness. More details on this application

will be available in [MBKM06].

3.7 A Useful Result on Distributions

In this section, we present our result on probability distributions, which we

use to prove Theorem 3.1 and is also of independent interest.

Theorem 3.5. Let r, s, k be three integers. Let D be an arbitrary distribution over
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the set K = {1, . . . , k}. Let R be a set obtained by taking r independent samples

from D and let S be a set obtained by taking s additional independent samples from

D. Then: Pr[R ∩ S = ∅] ≤ B(r, s, k) where:

B(r, s, k) =















exp(−Ω(s ·min{r/k, 1})) if s ≤ r

exp(−Ω(r ·min{s/k, 1})) if s ≥ r.

Before proving this theorem, we make an observation. It seems reasonable to

conjecture that D being the uniform distribution is the worst case (that is the case

in which Pr[R ∩ S = ∅] is highest), since otherwise elements of K that have high

probability could appear in both R and S with increased likelihood. This intuition

turns out be false: consider the case where k = 2, s≪ r, and D places probabilities

s/(r + s) and r/(r + s) on the two elements of K. In such case, Pr[R ∩ S = ∅]

is approximately (s/r)s · exp(−s) which is much larger than the value 2−(r+s−1)

obtained in the uniform case. In general, the case where r and s are quite different,

needs care.

The proof of this theorem relies on the notion of negative association and a

result on balls and bins, both due to Dubhashi and Ranjan [DR98], which we now

recall.

Definition 3.6. A function f : Rn → R is non decreasing (resp. non-increasing)

if, for any x, y ∈ Rn, if xi ≤ yi for all i = 1, . . . , n, then f(x) ≤ f(y) (resp.

f(x) ≥ f(y)).

Definition 3.7. [DR98, Definition 3] Random variables X1, X2, . . . , Xn are nega-
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tively associated if, for every two disjoint index sets I, J ⊆ [n],

E[f(XI)g(XJ)] ≤ E[f(XI)] E[g(XJ)] (3.7)

(where XI = (Xi)i∈I) for all functions f : R
|I| → R and g : R

|J | → R that are both

non-increasing or both non-decreasing.

Lemma 3.8. [DR98, Proposition 12] Consider an experiment where we throw m

balls into n bins independently at random and such that the probability that ball j

goes into bin i is pi,j. The pi,j are arbitrary, except that, for each j,
∑

i pi,j = 1.

Let Bi,j be the random variable indicating whether ball j falls into bin i. Then, the

random variables Bi,j, i ∈ [n], j ∈ [m] are negatively associated.

We are now ready to prove Theorem 3.5.

Proof. Before diving into the proof details, we first discuss a simple approach to the

problem and we show why it does not work. One would be tempted to proceed as

follows: denote the s samples from D that form the set S by the random variables

e1, . . . , es and try to express Pr[R ∩ S = ∅] as a function of y = Pr[ei 6∈ R]. We

immediately note a stumbling block: given that one element of S did not lie in R

(over the random choices of both the ei’s and R), the conditional probability of this

happening for another element of S can go up! Indeed ei 6∈ R is a sign that the set

R is “small” and this fact increases the probability that ej does not fall in R either.

Thus we have an undesirable positive correlation among these events: in particular,

if y is the probability that an arbitrary single element of S does not lie in R, then

the probability that R and S are disjoint is at least as large as ys.
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We take a different approach, wherein the correlations actually help us. Recall

that K = {1, 2, . . . , k}, and let Xi be the event that i lies in both R and S. As usual,

Xi denotes the complement of Xi; letting pi be the probability that distribution D

places on i and setting qi = 1− pi, we have Pr[Xi] = (qr
i + qs

i − qr+s
i ).

The probability that R and S are disjoint is Pr[
∧k

i=1 Xi]. Our first key idea

is that the events Xi, i = 1, 2, . . . , k, are negatively correlated! Intuitively, this

seems clear: given that none of X1, X2, . . . , Xi−1 held, this informally “leaves more

slots free” for Xi to occur. We prove this by using the above-mentioned result

by Dubhashi and Ranjan. For i = 1, . . . , k and for j = 1, . . . , r + s, let Bi,j be

the indicator of the event {σj = i}, where σ1, . . . , σr are the samples from D that

constitute R and σr+1, . . . , σr+s are the samples that constitute S. Lemma 3.8 tells

us that the Bi,j are negatively associated. For every i, we can write the event Xi

as f(Bi,1, . . . , Bi,r+s) and the event “
∧i−1

l=1 Xl” as g((Bl,j)l=1,...,i−1;j=1,...,r+s), where f

and g are appropriate non-increasing functions. Applying the definition of negative

association, we get that Xi as “
∧i−1

l=1 Xl” are negatively correlated, as needed. This

negative correlation leads to the bound

Pr[

k
∧

i=1

Xi] ≤
k
∏

i=1

Pr[Xi] (3.8)

=

k
∏

i=1

(qr
i + qs

i − qr+s
i ). (3.9)

W.l.o.g., we assume s ≤ r. The basic idea to complete the proof is as follows.
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Partition K into three sets:

C1 = {i : pi ≤ 1/r};

C2 = {i : 1/r < pi ≤ 1/s}, and

C3 = {i : pi > 1/s}.

The product in (3.9) now splits into three products, which we will analyze sepa-

rately and then combine. For j = 1, 2, 3, let vj =
∑

i∈Cj
pi and note that the sum

v1 + v2 + v3 = 1.

Let us first consider any i ∈ C1. Since 0 ≤ pi ≤ 1/r, it is easy to show here

that

qr
i + qs

i − qr+s
i = 1−Θ(rsp2

i ).

Next, basic convexity arguments show that for any constant α > 0, and any given

values for |C1| and v1, the quantity
∏

i∈C1
(1 − αrsp2

i ) is maximized (as a function

of the variables pi) when pi = v1/|C1| for each i ∈ C1. Further simplification yields

∏

i∈C1

(qr
i + qs

i − qr+s
i ) ≤ exp(−Ω(rsv2

1/|C1|)). (3.10)

Next consider C2. In this case,

qr
i + qs

i − qr+s
i = 1−Θ(spi).

A simple argument yields

∏

i∈C2

(qr
i + qs

i − qr+s
i ) ≤ exp(−Ω(s · v2)). (3.11)

The set C3 is where the function qr
i + qs

i − qr+s
i exhibits complex behavior.

Fortunately, we can deal with it as follows. For any i ∈ C3, qr
i + qs

i − qr+s
i is at most

qr
i + qs

i ≤ 2 · qs
i ≤ 2 · exp(−spi) ≤ exp(−Ω(spi)),
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where the final inequality follows from the fact that pi ≥ 1/s. Therefore,

∏

i∈C3

(qr
i + qs

i − qr+s
i ) ≤ exp(−Ω(s · v3)). (3.12)

Putting (3.10), (3.11) and (3.12) together with (3.9), we get that for some

constant γ > 0, Pr[
∧k

i=1 Xi] is upper-bounded by

exp(−γ · s · (rv2
1/|C1|+ v2 + v3)),

which equals exp(−γ · s · (rv2
1/|C1| + 1− v1)); this, in turn, is at most exp(−γ · s ·

(rv2
1/k + 1− v1)).

We now apply elementary calculus to determine the maximum of this last

expression as a function of v1 (where v1 takes values in [0, 1]). There are two cases.

If r ≤ k/2, then the function is maximum for v1 = 1, in which case the bound

becomes exp(−γrs/k). If r > k/2, the maximum occurs for v1 = k/(2r), in which

case the bound becomes exp(−γs(1−k/(4r)) which is at most exp(−(γ/2)s). In the

special case k/2 < r ≤ k this can be further upper bounded by exp(−(γ/2)rs/k).

In summary, we have shown that, for s ≤ r:

Pr[R ∩ S = ∅] ≤















exp(−(γ/2)rs/k) if r ≤ k

exp(−(γ/2)s) if r > k

which is what we wanted to prove. We conclude by pointing out γ can be taken to

be 0.13, as it can be shown by a more careful analysis.

3.8 Mixing time in certain classes of graphs

In this section, we justify our claim that random and random regular graphs

have constant eigenvalue gap, and therefore logarithmic mixing time, under reason-
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able assumptions.

3.8.1 Mixing time in random graphs

A random G(n, p) graph has a constant eigenvalue gap, i.e. g = Ω(1), with

high probability, if p = Ω((ln n)/n). Although we believe this fact was previously

known, we could not find a reference. Therefore, we provide a simple proof sketch.

Let Φ be the expansion factor of a graph. If p ≥ 4(ln n)/n, then the random

graph G(n, p) has an expansion factor of at least .066np, with high probability (at

least 1−1/n). We prove this, by showing that for all t = 1, . . . , n/2, and for any set

S of t nodes in the graph, the probability that S has too few outgoing edges (i.e.

less than (1 − δ) times the expected number of outgoing edges) is at most 1

n n
2 (

n
t)

.

The proof is a standard application of the Chernoff bound.

Let P be the probability transition matrix of a random walk on a graph G, as

defined in Section 3.4.1, and let 1 = µ1 > µ2 ≥ · · · ≥ µn ≥ 0 be its eigenvalues.

Frieze [Fri00, Eq.(12,13)] gives the following bound on the eigenvalue gap g =

1− µ2:

g ≥ Φ2δ2

8∆4
,

where Φ is the expansion factor of G and δ and ∆ are the minimum and maximum

degree of G.

In case of G(n, p), if p ≥ 8(lnn)/n, then δ ≥ .13p(n−1) and ∆ ≤ 1.87p(n−1),

with high probability (application of Chernoff bound). This means that δ2/∆4 ≥

.00131/(p(n− 1)). Therefore g ≥ .39 with high probability.
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Note that the condition p ≥ 8(lnn)/n is not really restrictive, because a similar

condition p ≥ (1 + ǫ)(ln n)/n is required for the graph to be connected with high

probability.

3.8.2 Mixing time in random regular graphs

Friedman [Fri03] shows that the second eigenvalue of the adjacency matrix of

a random d-regular graph is at most 2
√

d− 1 + ǫ, with high probability, for any fix

value of d. This implies our claim that the graph has constant eigenvalue gap, as

explain below.

If we call A the adjacency matrix of a random d-regular graph and we call P

the probability matrix of the random walk, it is easy to see that P = 1
2
(I + A/d).

Let λi (resp. µi) be the eigenvalues of A (resp. P ). It follows that µi = 1
2
(1 + λi/d).

The second eigenvalue is therefore µ2 ≤ 1/2 +
√

d− 1/d + ǫ/2d which is at

most 0.98 + ǫ/6, in the worst case d = 3. This implies that g = 1− µ2 is a positive

constant, as needed.
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Chapter 4

Lookup Protocols and Security

In the previous chapter, we defined lookup protocols and we presented several

examples. So far, our discussion of those algorithms assumes that all processes in

the systems behave according to the prescribed protocol, except for the fact that

processes may exhibit stopping failures. In this chapter, we concern ourselves with

the possibility that some processes may arbitrarily misbehave. We will say that a

lookup protocol is secure, if it can operate correctly in such setting. In the course of

the chapter, we clarify the notion of security further and we present previous work

on the topic.

Next, we present a new model of security for lookup protocols, which we will

call the Autonomous System (AS) Model, and we argue that it is more realistic than

the security models considered in previous work, at least for some applications. The

definition of the AS Model is one of the main contributions of this dissertation.

4.1 Attacks on Existing Lookup Protocols

An important aspect of distributed applications is their ability to operate

correctly even in the presence of malicious participants. With respect to lookup

protocols, an attacker could try to tamper with the system behavior in order to

achieve several goals:
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• denial of service, i.e. preventing most or all nodes from retrieving any published

data item;

• selective denial of service, i.e. preventing certain nodes from retrieving certain

data items;

• data corruption, i.e. causing nodes to retrieve data items that have never been

published.

In general, an attacker may interfere with the system in several ways, for exam-

ple, by controlling some of the nodes in the P2P system, by intercepting, modifying

or preventing delivery of messages sent between nodes. In this dissertation, we focus

on attackers that control some of the nodes that are part of the P2P system, while

we assume that the attacker cannot interfere with messages between nodes that she

does not control. We believe that this problem is the most interesting. Informally,

we will say that a lookup protocol is secure, if it is resilient to a wide range of at-

tacks. Following previous work, we refer to a node controlled by the attacker as a

corrupted or malicious node and to other nodes as correct or honest nodes.

While DHTs such as Chord [SMK+01] or Pastry [RD01] are very efficient and

resilient in a cooperative setting, they are relatively easy to manipulate by a few

corrupted nodes. We illustrate this fact with the example in Figure 4.1. In this

example, a data item with identifier x has been previous published and stored at

the home node and now node z. Another node u is performing a lookup for x. In a

first scenario (Figs. 4.1(a) and 4.1(b)), the lookup request message generated by u is

recursively forwarded to the correct node v and then to the corrupted node w. Then
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(a) Corrupted nodes

u
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item x

DROP

(b) Attacker drops lookup query

u
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(c) Attacker controls home node . . .

u
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No item
"x"

location
stored at

item x

(d) . . . and gives incorrect information

Figure 4.1: Two different attacks against Chord. White nodes are under control of
the adversary. A data item with identifier x has been previous published and now
node u is performing a lookup for x. In the first attack (Figs. 4.1(a) and 4.1(b)),
the adversary blocks the lookup request, because it controls one of the nodes in the
path of the request. In the second (Figs. 4.1(c) and 4.1(d)), the attacker controls
the home node corresponding to x. This allows the attacker to incorrectly report to
u that no item with that identifier was published.

the attacker simply discards the request message, thus preventing the lookup from

completing. In a different scenario (Figs. 4.1(c) and 4.1(d)), the attacker controls

the home node z corresponding to x. This allows the attacker to incorrectly report

to u that no item with that identifier was published. Alternatively, z could report

a modified copy of the item.
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Some previous work has designed lookup protocols that provide some form of

security against node corruption. We will survey this work in the next section.

4.2 Related Work

In this section, we survey some of the related work on the design of secure

lookup protocols.

4.2.1 Castro et al.’s Work on Secure Routing

A very interesting piece of work on this subject is by Castro et al. [CDG+02].

That work shows how to make a DHT, in particular Pastry, resilient to a powerful

adversary that can control up to a fraction f < 1/2 of the nodes in the system. The

security model assumes that:

• there is a centralized trusted authority that issues membership certificates

binding the IP address, the identifier (which the authority generates uniformly

at random) and the signing public key of every node that wants to enter the

system;

• the number of certificates that the adversary can obtain from the authority is

bounded;

• all peers know the central authority’s public key;

• data items are self-certifying1, that is, given a data item it is possible to verify

1We will provide a more detailed discussion of self-certifying data items in Section 4.3.
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whether the data item is original or if it has been altered.

The modified DHT protocol in [CDG+02] uses several techniques. Every node

maintains a constrained routing table, in addition to the regular routing table. The

constrained routing table has the property that, for any entry in the table, there is

exactly one node in the system that can occupy the entry. As a contrast, in Pastry,

for any entry of the (regular) routing table, there are many possible nodes that can

occupy the entry and the protocol chooses the one that appears to have the smallest

ping time. It is much harder for the adversary to use malicious protocol messages to

“pollute” the constrained routing table with corrupted entries than it is to pollute

the regular routing table. The protocol also requires that a new node joining the

system contact multiple bootstrap nodes, instead of one, in the hope that at least

one of them will not be malicious. The specifics of the protocol guarantee that the

new node will construct a correct routing table, in such a favorable event.

The second technique used is the routing failure test. Assume that a node u

wants to publish or look up an item with ID x. We require that u’s request be

routed to a node that can determine the set of the replica nodes for x (in Pastry,

the r live nodes whose ID is numerically closest to x) and such a set be returned

to u in the response. In [CDG+02], a simple computation (the routing failure test)

is described that allows u to determine whether the returned replica set is correct.

The test is based on the comparison of the density of the node in the replica set and

the expected density of nodes in the ID space. The test is only probabilistic and it

is subject to both false positives (the routing appears to have failed, but it did not)
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and false negatives (the routing succeeded, but the test reports that it failed).

Finally, the third security component is redundant routing, which is used by

a node u that wants to retrieve the replica set corresponding to an ID x, after the

regular routing operation has produced a result that fails the routing failure test.

The redundant routing carefully attempts to route the message from u to the replica

set through multiple independent paths and then appropriately reconciles possibly

incompatible results, returned by each of the paths.

4.2.2 S-Chord

A different approach was taken by Fiat et al. [FSY05]. In their work, the

authors consider a different model, which they call the Byzantine Join Model. In

this model it is assumed that, during the period of time where malicious nodes are

present in the system: “1) there are always at least z total peers in the network

for some integer z; 2) there are never more than (1/4− ǫ)z Byzantine peers in the

network for a fixed ǫ > 0; and 3) the number of peer insertion and deletion events is

no more than zk for some tunable parameter k”. No centralized authority is assumed

and the adversary that coordinates the malicious nodes can arbitrarily choose IP

addresses of nodes and is computationally unbounded.

Under these assumptions, Fiat et al. present S-Chord, a variant of Chord [SMK+01]

that can withstand the attack with high probability. S-Chord is not much more inef-

ficient than Chord, at least asymptotically speaking: the cost of a lookup or publish

operation is O(log2 n) messages (with O(log n) latency) and each node is only re-
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quired to store O(log2 n) neighbors. As a comparison, Chord achieve O(log n) for

such performance measures, in absence of corrupted nodes, but does not work in

the Byzantine Join Model.

The main idea behind S-Chord is the concept of a swarm. For any ID x (of

an item or of a node), the swarm S(x), is the set of peers whose IDs are located

within a clockwise distance of (C ln n)/n of the point x. S-Chord maintains the

invariant that less than one-fourth of the members of every swarm is controlled by

the adversary. This, essentially, allows each swarm to simulate the behavior of a

honest peer, even though some of its members are dishonest.

When a new node p joins the S-Chord ring, it contacts an already-in-the-

system node q, which must be honest. Then q alerts its swarm S(q), which runs

a multi-party coin-tossing protocol to generate a random ID, that will become p’s

node identifier. Then S(q) will locate S(p) (the swarm that p will become part of)

and introduces p to S(p). The introduction protocol is designed in such a way that

no node will be allowed to join a swarm, unless it has been properly introduced by

a majority of the members of another swarm.

4.3 Data Corruption vs. Denial of Service

In Section 4.1, we mentioned that attacks on a lookup protocol may have

as goals either data corruption or (selective) denial of service. In this section we

discuss the solution proposed by Castro et al. ( [CDG+02], see Section 4.2.1) of

using self-certifying data items. Such solution effectively solves the problem of data
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corruption for most applications. This observation means that, in order to obtain

a secure lookup protocol, it is sufficient to design one that is resilient to denial of

service, and then requiring self-certifying data items.

4.3.1 Self-Certifying Data Items

A data item (id, content) is self certifying if there exists a known algorithm to

verify its authenticity, given only id and content. Two techniques for self-certifying

data items are presented in [CMH+02]. The first technique is to use data items

in which the identifier is a content-hash key, i.e. a hash of the content of the

document, obtained through a hash function, which is conjectured to be collision-

resistant [Dam87], such as SHA-1 [oSN02]. To verify the authenticity of the data

item, it is sufficient to verify that the identifier equals the hash of the content. By

definition of collision resistance, it is unfeasible to construct two distinct data items

with the same identifier, which both verify. This prevents an attacker from changing

the content of a published data item without being detected.

The other technique is to use signed-subspace keys as identifiers. Each system

user that wants to publish documents with a signed-subspace key, must generate a

public-private key pair for a digital signature scheme. The public key will act as

a pseudonym under which the user will publish the documents. The user, for each

data item of content c she wants to publish, chooses a descriptive string s and sets

the identifier id = (pk, s) to be the concatenation of her public key pk and the string

s. The user then signs (pk, s, c) with her private key to produce a signature σ and
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sets content = (c, σ). A user that retrieves (id, content) can verify the correctness of

the data item, by parsing id as (pk, s), parsing content as (c, σ), and then checking

that σ is a valid signature on (pk, s, c). The unforgeability of the digital signature

guarantees that an attacker cannot forge a valid data item with the same identifier

(pk, s) as the data item published by the honest user. It actually provides a stronger

property: an item identifier uniquely identifies the user authorized to publish a value

under that identifier and the scheme securely enforces this provision.

The two techniques presented here are not the only possible solutions to certify

the authenticity of a data item. Depending on the application that employs the

lookup substrate, it is possible to design other authentication and access-control

mechanisms.

4.4 Towards a More Realistic Attack Model

As discussed in Section 4.2, previously designed lookup protocols that claim

security assume that the attacker is subject to certain constraints, namely that the

number of nodes controlled by the attacker is a small fraction of the total number of

nodes. In this dissertation, we are similarly interested in designing a practical and

efficient solution to the lookup problem, in the presence of attackers with limited

resources. Indeed, we conjecture that no efficient lookup protocol can be secure

against an unrestricted adversary. With this in mind, we will compare different

types of restrictions.

The assumption that the number of corrupted nodes is a small fraction of the
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total (e.g. [CDG+02, FSY05]) is reasonable in applications for which there exists a

central authority that limits node membership (such as the one that is explicitly

required by [CDG+02]). However, there are circumstances where assuming that the

adversary can only control a small number of nodes in unrealistic. For example,

consider an open P2P system running on the Internet, such as the Gnutella net-

work [Com01], where any user can create a node and make it join, without any

form of access control. It is relatively easy for anyone to generate a large number of

nodes, even with limited resources, by simply running a large number of processes

on a small number of machines. The problem is that it is not easy for an external

observer to tell whether two remote nodes are controlled by the same or by different

real-world identities.

If we look at the issue from a system perspective, we may suggest using IP

addresses as identities. For example, the distributed algorithm could enforce that

no two nodes have the same IP address. We quickly realize that such algorithm

would not work. The main problem is that it is relatively easy, in many networks, to

simulate a large number of machines with a single machine, by spoofing IP addresses;

we expand on this point in Section 4.5.1, for the interested reader. Another issue

is that we may want to allow two different users to both run a node from the same

machine. Finally, we want to allow users on different machines that access the

Internet through the same network address translation (NAT) box.

So, we are faced with the question: what is it that an attacker with limited

resources cannot do, if she can control a large fraction of the nodes? What restriction

is it reasonable to assume on the adversary?
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We conjecture that it is hard for a weak attacker to control a diverse set of IP

addresses. This is due to the fact that it is hard for the attacker to control hosts in

many different physical networks, thus the addresses that she owns or can effectively

spoof are limited to the IP addresses assigned to a few networks. Pursuant to our

conjecture, in Section 4.6 we describe the Autonomous System (AS) attack model.

In Chapter 5, we will present a lookup protocol that is secure in the AS Model.

4.5 Autonomous Systems and IP Spoofing

The Internet may be described as an interconnection of Autonomous Systems

(ASes), which are independently owned and managed IP networks [PD00, Section

4.3]. Each AS administrator manages a set of IP addresses that she can assign to

hosts and routers within her network.

ASes are traditionally divided into stub, transit, and backbone, according to

a non-strict hierarchical structure, as shown in Figure 4.2. A stub AS only routes

packets originating from or addressed to a node within itself, while transit ASes also

carry through traffic. Backbone ASes are a special case of transit ASes and they are

so called, because they correspond to the root of the hierarchy, under a simplified

tree approximation of the Internet.

In Section 4.6, we apply the notion of ASes in the definition of our new attack

model.
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Figure 4.2: Stub, transit and backbone ASes. Stub ASes do not carry through
traffic, while transit ASes do. Backbones are a special case of transit ASes.

4.5.1 IP Spoofing

IP spoofing is the practice of an host to send IP packets carrying a source IP

address that does not correspond to one of the IP addresses that the administrator

assigned to the sender. Spoofing is sometimes used by an attacker to hide her

identity or location. It can also be used to simulate multiple identities, in systems

that associate identities to IP addresses.

When an attacker uses IP spoofing to create fake identities, she is faced with

the problem that a reply message sent to the spoofed address may never reached

the attacker. Attacks against certain protocols are not hindered by this problem,

since the attacker does not need to receive the reply.

In some networks, the attacker may choose to spoof an IP address a in such

a way that it will receive packets addressed to a. For example, this happens if

the attacker controls a host with an address a′ in a subnet s, the spoofed address
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a 6= a′ logically belongs to the subnet and the link layer allows the attacker’s host

to overhear traffic direct to address a. Another example occurs when the attacker

acquires control of some routers within the AS responsible for address a and can,

therefore, intercept traffic directed to spoofed address a (which may or may not be

assigned to a host in the AS).

In some instances, AS administrators can limit IP spoofing by employing ap-

propriate measures, such that egress filtering : instructing routers that handle pack-

ets leaving a region of the AS to discard packets with a source address that cannot

correspond to any legitimate host within the region. However, egress filtering is not

widely used and may be challenging to implement in some networks.

4.6 The AS Model

In this section, we present an attack model, which we name the AS Model that

we believe realistically describes an attacker with limited resources. Informally, in

the AS Model we assume that the adversary can only control an arbitrary number of

nodes, but all of those corrupted nodes are located in a few ASes. This assumption

is shown in Figure 4.3.

We simplistically portray the Internet as a collection of stub ASes connected

to an Internet core or backbone. We assume the existence of an adversary, which

may control nodes in up to f ASes, which we call corrupt ASes; f is a parameter

of the model. This assumption models our intuition that it is hard for an entity

with limited resources to obtain access to too many independently-managed net-
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Attacker
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Figure 4.3: Simplified representation of the Internet assumed in the AS Model. The
attacker may control hosts in at most f stub ASes (f = 2 in the example), but
cannot affect routing through the core of the Internet.

works; we expand on this justification in Section 4.7. Within each corrupt AS, we

conservatively assume that the adversary may create as many corrupt nodes as she

wants, which she fully controls. We assume that the attacker cannot affect routing

of messages through the core of the Internet.

Another important assumption that we make is that the mapping between IP

addresses and ASes is public. This means that a node can easily determine the AS

number of any other node, given the other node’s IP address.

In order to make our model concrete, we also assume that the system is syn-

chronous, that delivery of messages is guaranteed, although one could consider a

more general version of the AS Model that does not. Similarly to the work by Cas-

tro et al. [CDG+02], we also assume the existence of a public-key infrastructure;

we justify this decision in Section 4.7. We chose this particular set of assumptions,
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because we believe that they can be implemented in practice for some applications

and because we were able to derive a positive result (which we describe in the next

chapter) under these conditions.

We are now ready to provide a detailed description of the AS Model.

1. The network address space is partitioned into sets, called ASes.

2. There exists a known efficient algorithm AS() that, on input a network address

a, outputs the corresponding AS number AS(a).

3. We assume the existence of an adversary that can generate an arbitrary num-

ber of corrupted nodes and assign them a network address. Network addresses

of corrupted nodes must belong to one of f ASes (the corrupt ASes).

4. We assume the existence of a global clock and that each node has access to

this global clock.2

5. We assume that every message that is sent will be delivered to the destination.

This means that we ignore packet loss. We also ignore packet duplication.

6. We assume that there is a bound δ on the delivery time of messages.

7. Honest nodes (i.e. nodes that are not corrupted nodes) may join the system

at any time. Additionally, for any time interval T0, a honest node has a

probability p0 of crashing. Node crashes are independent.

2This assumption may be relaxed by assuming that all nodes have local clocks with bounded

drift. However, in this work, we make the assumption of a global clock for simplicity of presentation.
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8. Each node in the system generates a public-private key pair for a signature

scheme.

9. There exists a public-key infrastructure, i.e. there exists a public trusted ser-

vice that allows a node to obtain the public key of another node, given the

other node’s network address.

1 and 2 summarize the portion of the assumptions related to the subdivision in

ASes that is really necessary for the design of our secure lookup protocol (Chapter 5).

Assumptions 4, 5, 6 ensure a synchronous model with guaranteed message delivery,

while Assumption 7 provides for crash failures of correct nodes. Finally, the last

two assumptions are related to the public-key infrastructure.

In the next section, we will discuss how realistic and interesting the AS Model

is. In the next chapter, we will design a lookup protocol that is secure in this model.

4.7 Discussion on the AS Model

. We argue that the formulation of the AS Model is an interesting step forward

towards establishing reasonable assumptions on what a limited attacker may do in

a practical Internet application. Although we acknowledge that our model makes

some simplifying assumptions, which are not fully realistic, we remark that all pre-

vious work has been based on a much less realistic assumption that the fraction of

adversarial nodes may be bounded by a small constant. The AS Model is therefore

a reasonable middle ground between assuming an authority limiting the number of

identities that the attacker can assume and assuming an unrestricted adversary, for

85



which no efficient lookup protocol can be likely designed.

With this in mind, we expand on the limitations of the AS Model. First, the

public mapping assumption is not completely realistic. It is now known how to map

an IP address to an AS number, in general. However, we note that the IP address to

AS mapping needs not to be perfect, but it can be a conservative approximation. A

conservative approximation may report two addresses that belong to different real

world ASes as belonging to the same AS, but never the vice versa. Note that an

attacker that may corrupt up to f ASes in the real world would also corrupt up to f

ASes in the conservative approximation. Obviously, the approximation should not

be as conservative as to reduce the number of distinct ASes too much (this will be

clearer when we present the SDHT protocol in Chapter 5).

The second limitation of the AS Model is that it does not defend against large

scale compromises of hosts across many ASes, as it can be achieved through the

employment of worms and viruses. In particular, an attacker that acquires control

of a botnet [McC03], a large army of compromised hosts that is configured for remote

control by the compromiser, would control hosts on a very large number of domains

and would thus be more powerful than what the security model allows. This fact

can be a significant shortcoming, especially taking into account that botnets are

illegally rented by compromisers to malicious users that are willing to pay for them.

However, the AS Model remains interesting, because it provides defense against an

attacker that does not have the connections or the money to acquire a botnet. It

also defends against attackers that do not want to expose themselves to the legal

liability associated with the use of compromised machines. On the flipside, note that
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an attack carried out by a botnet with tens of thousands of hosts from hundreds

of domains is extremely debilitating. It is unlikely that any system with open

membership can be both reasonably efficient and resilient against such an attack.

The third limitation of the AS Model is our assumption of a public-key in-

frastructure (Assumption 9 in Section 4.6). Such assumption requires, in practice,

an (offline) trusted authority that certifies public keys. Nodes that join the system

need to register their keys with the certification authority. At first glance, it could

appear that this requirement defeats the purpose of the AS Model, which is to avoid

a central membership authority in the first place! However, a public-key certification

authority is a much weaker assumption than a membership authority, such as the

one required by Castro et al. [CDG+02] or implicitly assumed by other work that

relies on the fraction of corrupted nodes to be small (e.g. [FSY05]). This is because

the only thing that the former type of authority has to do is to certify a mapping

between public keys and network addresses and does not need any knowledge of

the real-world identities behind such addresses. A certification authority does not

stop a single user from registering keys for an overwhelming number of network

addresses. Instead, a real membership authority has to be able to limit the number

of nodes that an attacker controls, which requires either an out-of-band verification

of the real-world identity of a node’s administrator or some payment mechanism;

see [CDG+02] for a discussion.

All in all, we believe that the AS Model is interesting on its own and is the

necessary first step towards considering models that are neither too unrealistic, by

neglecting most malicious behavior, nor too harsh for the designer, by assuming
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that attackers are all powerful and therefore ruling out the feasibility of efficient

and secure peer-to-peer applications.
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Chapter 5

Secure Distributed Hash Table

In this chapter,1 we present the design of Secure Distributed Hash Table

(SDHT), a lookup protocol designed to be secure in the AS Model.

In Chapter 4, we motivated the need for lookup protocols that are secure, i.e.

operate correctly in the presence of an attacker that may control a fraction of the

nodes. We also introduced the AS Model, which defines a class of attackers with

limited resources but that can still control a large fraction of the nodes in the system.

We remind the reader that the AS Model is defined by the set of assumptions listed

in Section 4.6. As part of our dissertation, we developed SDHT, a protocol that we

believe to be secure against such class of attackers.

We provide an informal analysis of SDHT in which we show that the protocol

can still provide service even in the presence of a computationally-bounded attacker.

Although informal, our analysis is very thorough; the informal arguments that we

provide for our claims fall short to be actual proofs only because they do not handle

a long list of easy and boring details. We also describe a prototype implementation

with which we show that the protocol is practical, although with high overhead, for

a small number of nodes.

The rest of this chapter is structured as follows. In Section 5.1, we present

1This is joint work with Bobby Bhattacharjee, Jonathan Katz, Neil Spring and Rob Sherwood

of the Department of Computer Science, University of Maryland. See also Footnote 6.
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the basic ideas behind our algorithm. In Section 5.2, we review Byzantine agree-

ment algorithms, which is a primitive that we use as part of the design of SDHT.

In Section 5.3, we present the SDHT algorithm in the details. In Section 5.4, we

present an informal argument demonstrating that SDHT is actually secure. Fi-

nally, in Section 5.5, we present our implementation of the SDHT protocol and the

corresponding experimental results.

5.1 Main Protocol Ideas

Although developed independently, the basic ideas behind the protocol are sim-

ilar to those of S-Chord [FSY05], in that our protocol is based on Chord [SMK+01]

and nodes in the system are partitioned into neighborhoods (which corresponds,

roughly, to swarms in S-Chord). Each neighborhood is a set of nodes whose identi-

fiers belong to an interval of the Chord ring.

The nodes in a neighborhood operate collectively to act like a single correct

Chord node, even if some of the members are under control of the attacker. In

order to enforce this condition, we need to make sure that at least some nodes in

the neighborhood are correct in the first place. We achieve this fact by enforcing

diversity in the neighborhood: we require that a neighborhood contains nodes from

at least 2f +1 different ASes. Following the notation in Section 4.6, f is a parameter

of the protocol that represents an upper bound on the number of ASes where the

adversary can control nodes. This is shown in Figure 5.1, while a summary of the

parameters of the protocol appears in Table 5.1.
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Figure 5.1: Neighborhoods in SDHT. The picture shows the nodes currently in the
system as points on the ring-shaped identifier space (the interval [0, 2m)) and their
subdivision into neighborhoods (gray areas). The number inside the node indicates
its AS. In this example, f is assumed to be equal to 1. Note that each neighborhood
contains at least 2f + 1 = 3 nodes from different ASes.

A node in the protocol knows the composition only of a few of the neigh-

borhoods. Nodes learn dynamically the composition of other neighborhoods by

querying other nodes. It is important, therefore, that an attacker cannot lie about

the real membership of a neighborhood, without being detected. We achieved this

requirement by having nodes in a neighborhood create a neighborhood certificate,

which lists all the nodes in the neighborhood, plus other protocol information, and

is signed by enough nodes to guarantee its validity. In particular, a certificate is

valid if it is signed by at least f + 1 nodes from different ASes (this ensures that

at least one of the signer is not corrupt). This is shown, for the case f = 1, in

Figure 5.2.

Neighborhoods naturally define a partition of the Chord ring into identifier

intervals. A certificate for a neighborhood N also carries the corresponding interval
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Figure 5.2: The figure shows a possible neighborhood certificate for the neighbor-
hood {38, 40, 43, 47}, with f = 1. The notation is similar to Figure 5.1, except
nodes are now tagged with their Chord identifier (in black, next to the node). Note
that the certificate contains signatures by f + 1 = 2 nodes from different ASes.

[N.l, N.u). All the nodes in a neighborhood must have identifiers that fall in that

interval.

In addition to a certificate for its own neighborhood, a node stores a successor

pointer, a predecessor pointer and a finger table. These are similar to Chord, except

that each of these pointers is a neighborhood certificate, instead of the address

of a single node. In particular, for a node u with identifier x in neighborhood

N , u’s successor pointer is a certificate for the neighborhood Ns such that Ns.l =

N.u. Similarly, u’s predecessor pointer is a certificate for Np such that Np.u = N.l.

The finger table of u contains entries fing[1], . . . , fing[d] where the i-th finger fing[i]

contains a certificate for the neighborhood encompassing x + 2m−i, where m is the

length of the node identifier in bits. (A neighborhood N is said to encompass id if

N.l ≤ id < N.u.) This is shown in Figure 5.3.

In Section 5.1.1, we explain the basics of the lookup and publish operation; in
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Figure 5.3: State stored at node with ID 40 includes successor pointer, predecessor
pointer and finger entries.
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Section 5.1.2, we cover the evolution of the neighborhoods over time.

5.1.1 Performing Lookup

Let’s see how neighborhoods and neighborhood certificates allow the perfor-

mance of secure lookup. Similarly to S-Chord, SDHT stores a copy of a published

data item (id, content) at each of the nodes in the neighborhood encompassing id.

Both a publish and lookup operations for an item with identifier id involve

obtaining a certificate of the neighborhood encompassing id. Publishing is then

achieved by sending a copy of the item to each member of the neighborhood, while

lookup is achieved by querying each member. Since the authenticity of the neigh-

borhood certificate can be verified and since a neighborhood is guaranteed to have

some correct node, this procedure will guarantee that published items will be cor-

rectly retrieved. Therefore the design of both the lookup and publish operations

reduces to the design of a neighborhoodLookup(id) operation that returns the

certificate of the neighborhood encompassing id.

The neighborhoodLookup operation in SDHT is shown in Figure 5.4. Let

u be a node performing a neighborhoodLookup for identifier x. Node u uses

the certificates it possesses (as successor, predecessor and fingers) to choose the

neighborhood N that it knows about that is clockwise-closest to x (Figure 5.4(a)).

In the example u chooses the neighborhood N = {17, 20}. Next, u selects a node v

at random in N ; we will see in Section 5.3.3 how the random choice is made. Then

u sends a lookup query message to v requesting ID x (Figure 5.4(b)). In response v
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chooses the neighborhood N ′ it knows about that is closest to x (Figure 5.4(c)) and

returns its certificate to u (Figure 5.4(d)). Node u repeats the procedure iteratively

until it learns the certificate of the neighborhood encompassing x.

While in Chord [SMK+01] lookups could be performed both recursively and

iteratively, in SDHT lookups are iterative only. (In a recursive lookup, v would

forward u’s request message herself to a random node in N ′, instead of sending N ′

back to u.) Iterative lookups require slightly more communications but ensure that

the node initiating the operation remains in control of the progress at all time.

5.1.2 Dealing with Change

As nodes join and leave the system, neighborhoods change over time, so it

is important to make sure that a neighborhood certificate is up to date. This is

achieved by incorporating a timestamp in a neighborhood certificate and in verifying

that the timestamp is not “too old”, when a certificate is used. In order to simplify

this process, time will be divided in epochs, each consisting of several rounds. The

protocol will generate a new neighborhood certificate for each neighborhood and for

each epoch.

More specifically, at the beginning of each epoch, the nodes within each neigh-

borhood will execute a sub-protocol called epoch update. During an epoch update,

the nodes will recompute the membership of their neighborhood, by removing nodes

that have crashed and by adding nodes that have joined the system. Then the node

will generate a new certificate for the neighborhood.

95



6

1

38
40

4347

34

51
54

32

29
27

60

11 17 20

8

u

lookup(x)

x

(a) 54 chooses known neighborhood closest
to target.

x ?

6

1

38
40

4347

34

51
54

32

29
27

60

11 17 20

8

u

(b) 54 queries random node (20) in
neighborhood.

6

1

38
40

4347

34

51
54

32

29
27

60

11 17 20

8

u

x

(c) 20 chooses known neighborhood closest
to target.

{27,29,32,34}

6

1

38
40

4347

34

51
54

32

29
27

60

11 17 20

8

u

(d) 20 sends neighborhood certificate
to 54

Figure 5.4: Example of neighborhoodLookup operation performed by node u
with identifier 54 for identifier x = 30. We only show a simple example, in which u
learns the desired neighborhood in one iteration, to avoid cluttering the figure with
too many neighborhoods.
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A property that we need to provide during an epoch update is consistency.

All (honest) nodes in a neighborhood should have a uniform view of the neighbor-

hood memberships. In order to achieve this, our protocol will execute a Byzantine

agreement [PSL80, Fis83] subprotocol at every epoch. Our intuition is that, in our

model, Byzantine agreement is indeed necessary to achieve this consistency prop-

erty (although it might not be necessary to implement lookup). We will review

Byzantine agreement in Section 5.2.

SDHT also needs to ensures that there are enough nodes from different ASes

in the neighborhood to produce a valid certificate and not too many nodes to make

the overhead too large. We achieve this through several mechanisms:

• For each neighborhood, we introduce a quantity called neighborhood weakness,

which is a real value between 0 and 1 that measures the diversity of the neigh-

borhood. A weakness of 1 or close to 1 means that the diversity is insufficient

and that the neighborhood may fail to produce a valid certificate. Occasion-

ally, a neighborhood will fail to produce a valid certificate during an epoch;

we will call this undesirable event a neighborhood failure. The weakness of the

neighborhood upper bounds the probability of such event during an epoch.

We will show in Section 5.3.2 how to calculate the neighborhood weakness.

• We allow a neighborhood to split into several neighborhoods, whenever such

subdivision generates new neighborhoods that are sufficiently strong (i.e. the

weakness of the new neighborhoods is smaller than a threshold).

• We establish a bound a on the number of nodes from the same AS that may
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join the same neighborhood. This bound, coupled with the ability of a neigh-

borhood to split, effectively limits the size of a neighborhood.

• We allow adjacent neighborhoods to merge if some of them are too weak. This

prevent neighborhoods for growing too small or not sufficiently diverse.

There are important consequences of our design decisions that are important

to stress.

• A node that requests to join has to wait until the following epoch update

before joining. Therefore the epoch length determines a tradeoff: a shorter

epoch length allows for shorter waiting time of joining nodes at the expense

of higher overhead, due to the more frequent invocations of the epoch update

sub-protocol.

• Occasionally nodes that attempt to join the SDHT instance will be rejected

and will not be able to join. This occurs if the neighborhood that the node is

supposed to join already contains at least a nodes from the same AS as the

joining nodes. The node will be allowed to join again later, if the size and the

diversity of the system increase enough so that the assigned neighborhood will

have room for the joining node. We believe that this limitation of a protocol

in the AS Model is inevitable, because the system needs to maintain diversity.

A higher value of a reduces the likelihood a node is rejected but also increases

the overhead caused by large neighborhoods.

In the following section, we present more details on the protocol.
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5.2 Byzantine Agreement

A primitive that we employ in our design of SDHT is Byzantine agreement [PSL80,

Fis83] and the related notion of broadcast2. A broadcast protocol is a distributed

algorithm that allows a distinguished node (the sender) to send its input x to a

set of other nodes, even when a fraction of the nodes may arbitrarily misbehave.

The critical property that broadcast provides is that all correct nodes agree on the

value of x at the end of the execution, even if the sender is corrupt. In a Byzantine

agreement protocol, as defined by Pease, Shostak and Lamport [PSL80, LSP82],

each node broadcasts its own individual input to every other node, so that, at the

end, each correct node will have a consistent view of the inputs of everyone else.

Note that the two notions are equivalent: given a broadcast algorithm, a Byzantine

agreement is immediately constructed by running in parallel one broadcast for each

node; similarly, broadcast can be achieved by running Byzantine agreement and

giving a dummy input to all nodes other than the sender.3

In particular, we say that a distributed algorithm Π is a (t, n)-broadcast pro-

tocol, if it satisfies the following properties, when executed by a set of n nodes, in

which there is a distinguished sender node and of which at most t are corrupted

2Fischer [Fis83] calls broadcast the generals problem.
3Some authors use the term Byzantine agreement to refer to consensus, which is a slightly dif-

ferent notion. In consensus, correct nodes must also agree on an output, but with the requirement

that, if all correct nodes’ inputs are the same, then they have to output that value. Consensus

only makes sense if a majority of the nodes is correct, in which case it is equivalent to broadcast

and Byzantine agreement.
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nodes controlled by an adversary and may behave arbitrarily:

• Termination: all nodes eventually terminate.

• Agreement: all correct nodes have the same output.

• Validity: if the sender is correct, then all the correct nodes output the sender’s

input.

Some of these requirements may be relaxed to hold with high probability. We refer

the reader to [Lyn96, Section 6.3] for a more formal definition.

There are several known positive and negative results on the implementation

of broadcast, depending on the bound t on the number of corrupted nodes, on

whether the system is assumed to be synchronous or asynchronous, on whether the

algorithm must be deterministic or may be randomized. Additionally, the results

vary widely depending on whether messages are authenticated. Informally, we say

that the system provides authenticated messages if, for any nodes u, v, w and for

any message m sent from u to v, v may convincingly prove to w that m was sent

by u; w also acquires the ability to prove the authenticity of m to a third party.

Authenticated messages can be implemented in practice with digital signatures and

a public-key infrastructure, as follows.

1. Each node generates beforehand a public-private key pair for a signature

scheme.

2. Each node acquires the public key of every other nodes through a trusted

mechanism (the public key infrastructure). For example, there could be a
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trusted authority, which always acts correctly, that acquires all public keys

and then provides them to all nodes.

3. Each node signs every message it generates and appends the signature to the

message.

4. Each node discards any incoming message with an invalid signature with re-

spect to the public key of the sender.

5. Any node may verify the authenticity of a message m, which claims to have

been generated by another node u, by verifying that it contains a valid signa-

ture with respect to the public key of u.

Under the assumptions that the signature scheme is secure and that corrupted nodes

are computationally bounded, the mechanism provides authenticated messages. In

particular, it is infeasible for an adversary to deceive a correct node into believing

that a certain message was sent by another correct node, when it was not.

In the following sections, we will summarize the known results for Byzantine

agreement (which imply a corresponding result for broadcast).

5.2.1 Known Results for Non-Authenticated Byzantine Agreement

If we do not assume authenticated messages, Pease, Shostak and Lamport

(PSL) [PSL80] have shown that no Byzantine agreement protocol exist for t ≥

n/3. The authors also show how to construct a deterministic Byzantine agreement

protocol for t < n/3, assuming a synchronous system.
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For an asynchronous system, Fischer et al. [FLP85] proved that no deter-

ministic algorithm solves Byzantine agreement, except in the trivial case t = 0.

However, it is possible to solve the problem with a randomized algorithm, for any

t < n/3 [Bra84].

5.2.2 Known Results for Authenticated Byzantine Agreement

Assuming authenticated messages, Pease, Shostak and Lamport (PSL) con-

structed a deterministic synchronous algorithm that provides Byzantine agreement

for any value of t, n [PSL80]. The algorithm requires t+1 rounds of communication,

which is optimal for deterministic algorithms [Lyn96].

Without the synchronous assumption, Toueg proved that no Byzantine agree-

ment algorithm exists for t ≥ n/3, even if authenticated messages are assumed

and the algorithm can be randomized [Tou84]. Obviously Bracha’s protocol [Bra84]

as well as subsequent improved algorithms for the non-authenticated case can be

applied to the authenticated case as well.

We review the PSL Byzantine agreement algorithm in Figure 5.5, with an

optimization described by Lynch [Lyn96, OptEIGStop, Sections 6.2.3 and 6.2.4].

This is the algorithm that we employ in SDHT. For simplicity of exposition, the

figure actually shows the corresponding broadcast protocol pslBroadcast and,

for concreteness, it also shows how authenticated messages are implemented by

using digital signatures. The algorithm can be described in the following manner.

In the first round, the sender sends its input to all other nodes. In each following
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round, when a node v receives a message, it verifies that the message is of the

form < x, u1, σ1, u2, σ2, . . . , ur−1, σr−1 >, meaning “ur−1 says that ur−2 said that

. . .u2 said that the sender u1 said that its input is x”. If the message is in such

form and passes a series of validity tests (Figure 5.5), the node accepts x as a

value broadcast by the sender. Node v then informs the other nodes, by sending

< x, u1, σ1, u2, σ2, . . . , ur−1, σr−1, ur = v, σr > to everyone, where σr is v’s signature

on the rest of the message. At the end of the execution, if (as expected) the node

has accepted only one value, the node will output that value. Otherwise, the node

assumes that the sender is faulty and outputs the default value ⊥ instead.

It is easy to estimate the cost of the PSL algorithm, in terms of the num-

ber of messages sent, by simple inspection. Each node will send a message either

once or twice to every other node, therefore the total number of messages sent is

at least n2 and at most 2n2. The size of the messages is dominated by the digi-

tal signatures, which are usually fairly large (e.g. 128 bytes each for 1024bit RSA

signatures). However, note that it is possible to use known techniques, such as

aggregate signatures [LMRS04, BGLS03], to reduce the total size of the sequence

(σ1, u2, σ2, . . . , ur−1, σr) to that of a single signature.

5.2.3 Byzantine Agreement in SDHT

In SDHT, we employ a Byzantine agreement algorithm to ensure that all the

nodes in a neighborhood have the same view of the neighborhood membership. We

chose the PSL algorithm for this purpose, because in our model (Section 4.6), we can
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pslBroadcast(nodes, sender, t, input)
if this = sender

then σ1 ← sign(< input, sender >, this.secretkey)
for each v in set

send(v, < input, sender, σ1 >)
values← {}
for r ← 2 to t + 1

waitFor( beginning of round r )
for each message m received during round r − 1

if m of type < x, u1, σ1, u2, σ2, . . . , ur−1, σr−1 >
and u1 = sender and validSignatures(m)
and u1, . . . , ur−1 are all distinct
and x 6∈ values and |values| < 2
then values← values ∪ {x}

σr ← sign(< x, u1, σ1, u2, σ2, . . . , ur−1, σr−1, ur >, this.secretkey)
for each v in set

send(v, < x, u1, σ1, u2, σ2, . . . , ur−1, σr−1, ur, σr >)
if |values| = 1

then output← x : values = {x}
else output← ⊥

return output

validSignatures(< x, u1, σ1, u2, σ2, . . . , ur−1, σr−1 >)
allvalid← true
for i← 1 to r − 1

valid← verifySignature(m, < x, u1, σ1, . . . , ui−1, σi−1, ui >, publicKey(ui))
if not valid

then allvalid← false
return allvalid

Figure 5.5: PSL algorithm (pslBroadcast) for broadcast in a synchronous system
with digital signatures. Each node receives as input the set of nodes executing the
algorithm (nodes), the bound t on the number of corrupted nodes and the identity of
the sender (sender). The sender node also receives the value to be broadcast via the
argument input (this is ignored by non-sender nodes). At the end, pslBroadcast

returns the broadcast value, as perceived by the node; this may be the default value
⊥. Implicit parameter of the procedure is this, the node itself.
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assume synchronous communication and a public-key infrastructure. Additionally,

the PSL algorithm not only is correct under these assumptions, but it is relatively

easy to implement in practice.

Note that, in SDHT, all nodes in a neighborhood may potentially exhibit a

form of failure, because any correct node may crash. Even if we assumed that

correct nodes cannot crash, the number of misbehaving nodes alone could be large.

Therefore it is impossible to apply our solution if we relax either the synchronous

or public-key infrastructure restrictions, because t ≥ n/3.4

In SDHT, we will actually use the procedure byzantine, which is the Byzan-

tine agreement version of the PSL algorithm. byzantine is implemented by running

in parallel |nodes| separate instances of pslBroadcast. The number of messages

sent by the byzantine procedure is thus Θ(|nodes|3).

5.3 SDHT Protocol Details

In this section, we present the SDHT protocol in the details.

4One could modify the protocol to ensure that misbehaving nodes account for less than one

third of the nodes in the neighborhood, by requiring that the neighborhood contains at least

(2a + 1)f + 1 ASes, where a is the maximum number of nodes allowed from the same AS (Ta-

ble 5.1, Section 5.1.2). Such change would allow the use of other Byzantine protocols that require

fewer assumptions, but at the price of a much higher diversity requirement and a much higher

neighborhood size.
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Table 5.1: Parameters of SDHT protocol.
Symbol Explanation

a Tentative maximum number of nodes from the same AS in the same
neighborhood.

E Length of an epoch.
f Maximum number of ASes in which the adversary controls nodes.
m Length in bits of the Chord identifier.
p0 Maximum probability of failure of an honest node during a period

T0.
T0 See p0.
p Maximum probability of failure of an honest node during a two

epoch period.
SDHT WEAK High threshold for neighborhood weakness.
SDHT STRONG Low threshold for neighborhood weakness.

Table 5.2: List of other symbols.
Symbol Explanation

α An AS number.
d(N, x) Distance between neighborhood N and ID x.

e An epoch.
n Total number of nodes currently in the system.
N A neighborhood.
x A point in the identifier space.

weak High threshold for neighborhood weakness for this neighborhood.
strong Low threshold for neighborhood weakness for this neighborhood.
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5.3.1 Initialization

SDHT requires the system to be in a valid state at all times. This means that

the protocol execution must begin with the presence of (at least) one neighborhood.

Therefore, in order to start an instance of SDHT, it is necessary to identify and

configure a distinguished set of initial nodes. The initial nodes will then execute a

component of the SDHT protocol called initialization that will result in the gener-

ation of a protocol instance consisting of one neighborhood. The neighborhood will

consist of the initial nodes or, if failures occur, a subset of the initial nodes.

The initialization phase requires some manual setup and coordination. How-

ever, this operation only needs to be executed once. After that, the system becomes

self-sustaining and further addition or removal of nodes from the protocol instance

is dealt automatically by the protocol in a decentralized manner.

It is a requirement that the set of initial nodes be sufficiently diverse. At

a minimum, it should contain 2f + 1 nodes from different ASes. Better yet the

weakness of the initial set should be low. We have already introduced the notion of

weakness and we will discuss it more in detail in Section 5.3.2.

Before initialization begins, each initial node is given as input the list of all

the initial nodes. The initialization phase begins with the execution of a Byzantine

agreement sub-protocol (Section 5.2). This step ensures that all nodes output the

same set of initial nodes and also removes from the list initial nodes that may have

crashed. Next, each node constructs a certificate describing the only neighborhood

that has just been created and sends a signature on that certificate to all other
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initialize(initialnodes, starttime)
set← setByzantine(initialnodes, ∅, starttime)
certtext← newCertText(set, [0, 1) , currentepoch)
certsig← sign(certtext, this.secretkey)
for each v in set

send(v, < CERT, certtext, certsig >)
waitFor( f + 1 valid CERT messages with signatures certsig[1], . . . , certsig[f + 1] )
this.neighborhood ← newCertificate(certtext, certsig[1], . . . , certsig[f + 1])

setByzantine(nodes, joining, starttime)
input← {this} ∪ joining

output← byzantine(nodes, input, starttime)
return

⋃

i∈nodes output[i]

Figure 5.6: Initialization in SDHT. The procedure setByzantine is also used in
other parts of the protocol. The procedure byzantine is discussed in Section 5.2.

nodes. The final result is that each node will be able to output a certificate that

contains at least f + 1 signatures from different ASes as required. The pseudocode

for the initialization is shown in Figure 5.6, procedure initialize. In an attempt to

improve clarity, we use an object-oriented notation: we assume that the node that

is invoking the algorithm is an implicit parameter and is accessible as this.

5.3.2 Neighborhood Weakness

In Section 5.1.2, we introduced the notion of weakness of a neighborhood. In

this section, we explain this concept in more detail.

In order for a neighborhood to function correctly, it is necessary that it can

generate a neighborhood certificate in every epoch. Such certificate generation oc-

curs in the epoch update (Section 5.3.5). Recall that a neighborhood certificate is

valid if it contains f + 1 signatures from nodes of different ASes. The neighbor-
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hood weakness is an upper bound to the probability that a neighborhood fails to

produce a valid certificate during an epoch (in Section 5.1.2, we called this event a

neighborhood failure).

In order to estimate this upper bound, we need to realize what can go wrong.

Recall that in our model (Section 4.6), an attacker may control up to f ASes. In

particular, nodes controlled by the attacker may refuse to cooperate in the certificate

generation. Therefore, if a neighborhood contains nodes from less than 2f +1 ASes,

we define the weakness to be 1, because in the worst case the nodes from f of the

ASes will not produce any signature.

If the number of ASes represented in a neighborhood is at least 2f + 1, that

would be sufficient to guarantee successful certificate generation, if there were no

honest node failures. Recall that, in our model, we assume that for every time

period of duration T0 and for every honest node u there is a probability p0 that u

will crash.

We introduce two new important parameters: E and p. E represents the

duration of an epoch, while p is the probability that a node will crash during a

two-epoch period. We can use the union bound to estimate p = p0 · ⌈2E/T0⌉. Under

this model which involves both stopping and Byzantine failures, we can compute

the weakness as follows. Assume the set of nodes in a neighborhood N at a point in

time during an epoch e is S. At some point during epoch e + 1, the neighborhood

will need to generate a new certificate, as it will be made clearer in Section 5.3.5.

Let α1, . . . , αq be the set of ASes represented in S and, for i = 1, . . . , q, let ci be

the number of nodes in S that belong to AS αi. Without loss of generality, ci ≤ ci+1;
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N

α1

α2

α3

α4

(a) Nodes in neighborhood grouped by AS

N

α1

α2

α3

α4

(b) Assume largest f ASes are corrupt

N

α1

α2

α3

α4

(c) Good outcome: at least f + 1 correct ASes
survive

N

α1

α2

α3

α4

(d) Bad outcome: less than f + 1 correct ASes
survive

Figure 5.7: Example of definition of weakness with f = 1 for a neighborhood with
q = 4 ASes, each containing c1 = 1, c2 = 2, c3 = 2 and c4 = 3 nodes respectively.
A full circle represents a correct alive node, an empty circle represents a node con-
trolled by the attacker and a crossed out circle represents a crashed correct node.
Figure 5.7(a) shows the nodes in the neighborhood N , grouped by AS. First, we
conservatively assume that the largest AS (α4) is controlled by the attacker (Fig-
ure 5.7(b)). We define weakness as the probability that less than f + 1 = 2 ASes
remain with a correct node, when each correct node crashes with independent proba-
bility p. Figure 5.7(c) represents an example of “good” outcome, while Figure 5.7(d)
shows a “bad” outcome.
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Figure 5.8: Neighborhood weakness.
weakness(nodeset)

AS set← {AS(u) : u ∈ nodeset}
i← 1
for each α in AS set

ascount[i]← | {u ∈ nodeset : AS(u) = α} |
i← i + 1

q ← |AS set|
sort(ascount)
µ←∑q−f

i=1 pascount[i]

δ ← (q − (2f + 1))/q − 1
return F+(µ, δ)

Figure 5.9: Computing the weakness of a set of nodes. F+ is defined in [MR97,
Section 4.1].

see Figure 5.7(a) for an example. We conservatively assume that the f ASes with

the largest representation in S (namely αq−f+1, . . . , αq) are completely under control

of the adversary, while the remaining ASes contain nodes that behave correctly, but

may randomly crash. Let S ′ denote the random variable representing the subset of

nodes in S, belonging to one of α1, . . . , αq−f , which did not crash during the epochs

e or e+1. A certificate will be generated if S ′ contains representatives from at least

f + 1 ASes.

Therefore, we define:

weakness(N) = Pr
S′

[S ′ contains representatives from at least f + 1 ASes]

The neighborhood weakness can be estimated using the Chernoff’s bound [MR97,

Section 4.1]. The pseudocode is given in Figure 5.9.

We introduce two threshold values for the weakness denoted by weak and

strong, where weak > strong. A neighborhood with a weakness higher than weak
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will attempt to merge with nearby neighborhoods, to avoid the risk of a neighbor-

hood failure. Vice versa, a neighborhood will split into two or more neighborhoods

if each of the resulting neighborhoods have weakness smaller than strong. This

two-threshold approach prevents neighborhoods from oscillating between merging

and splitting.

We choose to give each neighborhood its own value of weak, in order to ensure

that the probability that a neighborhood failure occurs in some neighborhood is

at most SDHT WEAK, where SDHT WEAK is a global parameter. We achieve this by

employing the following algorithm. During initialization, when the system consists

of only one neighborhood, the property weak is set to SDHT WEAK. Every time a

neighborhood N splits into sub-neighborhoods N1, . . . , Nq, each Ni sets its value

of weak to w/q, where w is the value of the property weak of the “parent” neigh-

borhood N . Every time neighborhoods N1, . . . , Nq merge into a neighborhood N ,

the resulting neighborhood sets its weak property to the sum of the values in the

Ni. This ensures that at all times the sum across all neighborhoods of the weak

properties is at most SDHT WEAK. We similarly handle the strong property of the

neighborhoods, by introducing the global parameter SDHT STRONG.

5.3.3 neighborhoodLookup()

A node invokes the procedure neighborhoodLookup() (Figure 5.10) to dis-

cover the certificate of the neighborhood encompassing a given identifier x. This

procedure is used in lookup and publish operations, as well as in other components of
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neighborhoodLookup(x)
found← false
nhd← lookupStep(x)
repeat

if nhd.l ≤ x < nhd.u
then found← true
else

stepdone← false
repeat

node← chooseRandomNode(nhd.nodeset)
send(u, < RLOOKUP REQUEST, x >)
receive( message m of type < RLOOKUP REPLY, nhd1 > )
if nhd1 valid and nhd1 closer to x than nhd

then stepdone← true
nhd← nhd1

until stepdone

until found

lookupStep(x)
S ← {this.nhd, this.pred, this.succ} ∪ {this.fing[i] : i ≥ 1}
return argminN∈Sd(N, x)

chooseRandomNode(nodeset)
AS set← {AS(u) : u ∈ nodeset}
as← U(AS set)
v ← U({w ∈ nhd : AS(w) = as})

Figure 5.10: neighborhoodLookup() operation in SDHT.
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the protocol, such as joining (Section 5.3.4) and finger table updates (Section 5.3.5).

The procedure is simple and has already been described in Section 5.1.1. There

are, however, a few details that we should clarify.

The algorithm uses a notion of counterclockwise distance between a neighbor-

hood N and an identifier x. This is defined as:

d(N, x) =















0 if N.l ≤ x < N.u

x−N.u otherwise.

The procedure lookupStep returns the known neighborhood that minimizes the

counterclockwise distance to the target point x.

One detail we should explain is the subroutine chooseRandomNode. In-

stead of choosing a node uniformly at random in the neighborhood, the procedure

chooses an AS uniformly at random (within the set of ASes represented in the

neighborhood) and then a node uniformly at random between the nodes in the

neighborhood from that AS. This ensure that an honest node will be chosen with

probability larger than 1/2, regardless of the distribution of nodes between the ASes.

5.3.4 Joining and Leaving

Like in every other lookup protocol, in SDHT nodes can dynamically join and

leave the system.

In general, nodes may leave the system either gracefully, by executing a specific

leave operation specified by the protocol, or ungracefully, by crashing. For simplicity

of design, SDHT does not prescribe a graceful leave operation, so both types of events

are identical: the node simply cease to participate in the protocol with no warning.
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join(bootstrap)
send(bootstrap, < RLOOKUP REQUEST, this.id >)
receive( message m of type < RLOOKUP REPLY, cert > )
verify( cert valid neighborhood certificate )
verify( nhd encompasses this.id )
for each v in set

send(v, < JOIN2 REQUEST, this >)
success← false
repeat

receive( message m of type < JOIN2 REPLY, nhd, pred, succ > )
if pred, nhd, succ valid consecutive neighborhood certificates

then if nhd contains this
then success← true

this.nhd← nhd

this.pred← pred

this.succ← succ

until success
epochUpdate2()

Figure 5.11: Join operation in SDHT.

Nodes that have left or crashed are removed from their neighborhood by the next

invocation of the epoch update sub-protocol Section 5.3.5.

Nodes that decide to join an SDHT instance (other than during initialization)

execute the procedure depicted in Figure 5.11. The argument bootstrap must be an

honest node which has successfully joined. First, the joining node u asks the boot-

strap node for the current neighborhood containing its identifier (this.id); let cert

be such certificate. Next u sends a JOIN2 REQUEST to all nodes in the neighborhood

defined by cert. Finally, u waits to receive a JOIN2 REPLY message from any of the

nodes in that neighborhood, notifying u that it has successfully joined. The reply

carries the new certificates of the neighborhood containing u (nhd), its successor

(succ) and its predecessor (pred).

We omitted some details from this description. When a node v receives a
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JOIN2 REQUEST message from u, v simply adds u to a list of nodes that have re-

quested a join (joiningNodes), after verifying that u’s Chord identifier falls in v’s

neighborhood. Node v will send u the JOIN2 REPLY during the following epoch

update, as we explain in Section 5.3.5.

5.3.5 Epoch Update

The epoch update sub-protocol is invoked periodically to recompute the mem-

bership of the neighborhoods. A node invokes the epoch update when the current

time is a multiple of the epoch length. We assume that times are synchronized,

therefore all nodes in a neighborhood will enter the epoch update phase at the same

time. The pseudocode for the epoch update appears in Figure 5.12.

The epoch update phase is divided into several phases:

1. In epochUpdateBA (Figure 5.13), the node discovers the set of nodes pre-

viously in its neighborhood are still alive (stayset) and the set of nodes

that have requested to join through any of the nodes in the neighborhood

(joinset). Each node adjusted the resulting joinset to remove nodes that

should not enter the neighborhood as well as nodes that are in excess of the

limit a of nodes from the same AS. This phase uses Byzantine agreement

as a tool to ensure that all nodes obtain the same values of stayset and

joinset. The function also returns the provisional membership newset of the

new neighborhood, which is the union of stayset and joinset. The mem-

bership is provisional, because it may change during the merging and splitting
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phases (below).

2. In protocertGen (Figure 5.13), the nodes in a neighborhood create a cer-

tificate corresponding to the provisional neighborhood membership newset.

We call such a certificate protocertificate (proto) to insist on its provisional

nature. Also, for every pair of consecutive neighborhoods N and N ′ on the

Chord ring, N and N ′ exchange their protocertificates, so that, at the end of

protocertGen phase, a node will also have a current protocertificate of its

success or (protosucc) and predecessor (protopred).

3. In notifyJoined, a node sends a JOIN2 REPLY message to all nodes that have

successfully joined its neighborhood (i.e. the nodes in joinset). The message

carries the protocertificates of the neighborhood, successor and predecessor.

As discussed in Section 5.3.4, the notified joining nodes now take part in the

remaining portion of the epoch update, which is specified by epochUpdate2.

4. In merge, nodes determine whether their neighborhood should merge with

other adjacent neighborhoods. Merging occurs only if some of the neighbor-

hoods involved are not sufficiently diverse, i.e. if their weakness is above a

weak threshold. The details of the procedure are shown in Figure 5.14. The

procedure returns the new neighborhood nhd of the node, as well as (a subset

of) the successor (succnhd) and predecessor (prednhd) neighborhoods.

5. In split, a neighborhood determines if it can split into two or more adjacent

neighborhoods. The splitting only occurs if each of the sub-neighborhoods
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after the split is sufficiently diverse, i.e. if its weakness is smaller than a strong

threshold.

6. Phase certGen (not shown) is analogous to protocertGen: nodes in the

same neighborhood exchange the signatures necessary to construct their neigh-

borhood certificate, which this time correspond to the final neighborhood for

the epoch (as opposed to the provisional neighborhood). Then nodes in con-

secutive neighborhoods exchange certificates, so that they all learn the new

up-to-date successors and predecessors.

7. In phase itemRedistribute (Figure 5.16, a node u forwards copies of data

items that it currently stores (Section 5.3.6) to the new nodes of its neighbor-

hood, if the item identifier still falls in u’s neighborhood, or republishes the

item, otherwise.

8. In phase fingerUpdate (Figure 5.15), a node updates its finger table by

performing one neighborhoodLookup for all the entries in the table.

5.3.6 Publish and Lookup

We finally discuss how SDHT handles data items. The procedures for publish-

ing and lookup are shown in Figure 5.16 and are relatively straightforward. When

a node u publishes a data item, u locates the neighborhood that encompasses its

identifier and asks each of its members to store a copy of the item. When a node

u looks up an identifier, u similarly locates the neighborhood of responsibility and
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epochUpdate()
this.oldnhd← this.nhd
(newset, joinset, stayset)← epochUpdateBA()
(proto, protosucc, protopred)← protocertGen(newset, joinset, stayset)
notifyJoined(joinset, proto, protosucc, protopred)
epochUpdate2(proto, protosucc, protopred)

epochUpdate2(proto, protosucc, protopred)
(prednhd, nhd, succnhd)← merge(proto, protosucc, protopred)
(prednhd, nhd, succnhd)← split(prednhd, nhd, succnhd)
certGen(prednhd, nhd, succnhd)
itemRedistribute()
fingerUpdate()

Figure 5.12: Epoch Update in SDHT. Function epochUpdate2 is factored out
because it is shared by the join procedure (Figure 5.11).

queries all nodes in the neighborhood. Then u outputs all the data items that are

stored at any member of the neighborhood.5

5.3.7 Neighborhood Failures and System Failures

As already mentioned, a node may fail to compute a certificate during an

epoch update: we call this event a neighborhood failure. A node that reports a

neighborhood failure simply leaves the system.

This event is considered a catastrophic event that only occurs in one of two

circumstances:

5If the application uses self-certifying data items (Section 4.3), the node will also filter out any

item that does not pass verification. If, in addition to the above, the application guarantees that

no two data items may exist with the same identifier, publish may return after retrieving the first

valid item. We do not discuss such details further, because they are application-specific and are

not relevant to our discussion.
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epochUpdateBA()
S ← this.nhd.nodeset
result← setByzantine(S, this.joiningNodes, now)
stayset← result ∩ S
joinset← result − S
l = this.nhd.l
u = this.nhd.u
for each v in joinset

if v.id < l or v.id ≥ u
then joinset← joinset − {v}

for each α : ∃v ∈ joinset and AS(v) = α
n joining← | {v ∈ joinset : AS(v) = α} |
n staying← | {v ∈ stayset : AS(v) = α} |
n allowed← max {a− n staying, 0}
if n allowed > n joining

then remove the n joining - n allowed nodes from joinset with lowest ids
newset← joinset ∪ stayset
return (newset, joinset, stayset)

protocertGen(newset, joinset, stayset)
nhd← newCertText(newset, [this.nhd.l, this.nhd.u) , currentepoch)
certsig← sign(nhd, this.secretkey)
for each v in stayset

send(v, < CERT, nhd, certsig >)
waitFor( f + 1 valid CERT messages with signatures certsig[1], . . . , certsig[f + 1] )
proto← newCertificate(nhd, certsig[1], . . . , certsig[f + 1])
for each v in this.pred ∪ this.succ

send(v, < CERT2, proto >)
receive( message m of type < CERT2, nhd1 > )
if nhd1 valid and nhd1.l= this.nhd.u

then protosucc← nhd1

receive( message m of type < CERT2, nhd1 > )
if nhd1 valid and nhd1.u= this.nhd.l

then protopred← nhd1

return (proto, protosucc, protopred)

Figure 5.13: Phases of the epoch update sub-protocol.
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notifyJoined(joinset, proto, protosucc, protopred)
for each v in joinset

send(v, < JOIN2 REPLY, proto, protosucc, protopred >)

merge(proto, protosucc, protopred)
(neighb[−1], neighb[0], neighb[1])← (protopred, proto, protosucc)
for r ← 1 to MERGE ROUNDS

for each v in neighb[−r]
send(v, < MERGE, r, neighb[−1] >)

for each v in neighb[r]
send(v, < MERGE, r, neighb[1] >)

receive( message m of type < MERGE, r, nhd1 > )
if nhd1.l = neighb[r].u

then neighb[r + 1] = nhd1

receive( message m of type < MERGE, r, nhd1 > )
if nhd1.u = neighb[−r].l

then neighb[−(r + 1)] = nhd1

(left, right)← findSeparators(neighb)
nhd← ⋃right

i=left+1 neighb[i]
(prednhd, succnhd)← (neighb[left], neighb[right + 1])
return (prednhd, nhd, succnhd)

split(prednhd, nhd, succnhd)
subneighb← findSubneighborhoods(nhd)
// subneighb is an array of consecutive neighborhoods
i← index s.t. subneighb[i] contains this
nhd← subneighb[i]
if i > 1

then prednhd← subneighb[i− 1]
if i < subneighb.length

then prednhd← subneighb[i + 1]
return (prednhd, nhd, succnhd)

Figure 5.14: More phases of the epoch update sub-protocol. In merge, the union
of two consecutive neighborhoods is defined in the natural way (i.e. the set of nodes
of the union is the union of the sets and the interval of the union is the union of the
intervals). In split, the procedure findSubneighborhoods (not shown) returns
a partition of the given neighborhood into consecutive sub-neighborhoods, such as
each sub-neighborhoods has weakness at most strong. In merge, the procedure
findSeparators (not shown) determines whether merging is necessary and, if yes,
computes the interval of consecutive neighborhoods to be merged with this node’s
neighborhood.
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fingerUpdate()
i← 0
while this.id + 2m−i ∈ [this.nhd.u, this.id)
do nhd← neighborhoodLookup(this.id + 2m−i)

this.fing[i]← nhd

Figure 5.15: Phase of the epoch update that updates the finger table list.

itemRedistribute()
newnodes← this.nhd.nodeset − this.oldnhd.nodeset
for each d in this.dataItems

if d.id ∈ [this.nhd.l, this.nhd.u)
then for each v in newnodes

send(v, < ITEM PUT, d >)
else publish(d)

publish(d)
nhd← neighborhoodLookup(d.id)
for each v in nhd.nodeset

send(v, < ITEM PUT, d >)

lookup(x)
nhd← neighborhoodLookup(x)
retrieved← ∅
for each v in nhd.nodeset

send(v, < ITEM GET, x >)
receive( message m of type < ITEM GET REPLY, items > )
for each d in items

if d.id = x
then retrieved← retrieved ∪ d

return retrieved

Figure 5.16: Procedures in SDHT that deal with data items. This includes the
procedure for publishing, for looking up and for the itemRedistribute phase of
the epoch update.
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• the number and diversity of the set of nodes in the system is insufficient to

sustain even a single neighborhood; or

• the system as a whole is sufficiently diverse, but, because of an unlikely chain

of event, too many correct nodes in the same neighborhood crash during the

same two epoch period.

A neighborhood failure of the second type occurs with very low probabil-

ity. In particular, such probability is bounded by the neighborhood weakness (Sec-

tion 5.3.2), which in turns is kept by the protocol between the two configurable

values strong and weak.

On the other hand, in the worst case, there is no way to bound the probability

of a neighborhood failure of the first type. We conjecture that this is an intrinsic

problem with the model: in a scenario in which the alive nodes in the system do

not represent a sufficiently large number of ASes, it is not possible to guarantee any

correct behavior.

When a neighborhood failure of the second type occurs in a neighborhood N ,

the nodes in the predecessor N ′ of N will detect this fact, by not receiving any

certificate from N during that epoch. The nodes in N ′ will then execute a recovery

procedure, in which they look up the value of N.u and change the interval of their

neighborhood to [N ′.l, N.u) to cover the interval of the failed neighborhood.

A particularly catastrophic event is the system failure. A system failure occurs

when all the nodes in the system terminate because of a neighborhood failure event.

This occurs when a neighborhood failure of the first type. It may also occur when
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too many neighborhood failures of the second type happen in a short time interval,

such that recovery is not possible.

5.4 Security Analysis

In this section, we analyze the security of SDHT. We were unable to provide a

full proof for the claims we present in this section, because of the extreme complexity

of the protocol and we present informal arguments instead. We believe that our

arguments are very strong, as well as intuitive, and fall short to be proofs only

because of a large number of minor technicalities. We leave the development of a

formal proof of these claims as an open problem.

Our main result is that, under the assumptions of the AS Model (Section 4.6),

SDHT behaves correctly with a reasonably high probability, in the presence of an

arbitrary computationally-bounded adversary, during any period of time in which

“not too many nodes fail”.

Before giving a precise statement of our result, we define the notions of sane

and safe state for a running instance of the SDHT protocol. In what follows, if u

is a node, we denote the variable var of node u as u.var. We similarly denote the

property prop of a neighborhood N with N.prop. Intuitively, the system is sane if

the state of all nodes in the system is consistent with what the protocol description

assumes it to be.

Definition 5.1. We say that, at a given time, an SDHT protocol instance is in a

sane state, if the following properties are satisfied:
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1. If node v belongs to the neighborhood u.nhd, then v.nhd = u.nhd.

2. In each neighborhood N there are at least f+1 alive correct nodes from different

ASes.

3. The successor and predecessor variables of each node contain a valid certificate

for appropriate neighborhoods (Section 5.1).

4. For every point x in the identifier space, there exists one and only one neigh-

borhood N , such that N.l ≤ x < N.u and such that there exists a correct alive

node u for which u.nhd is a valid certificate corresponding to N . We call N

the neighborhood encompassing x and will denote it by nhd(x, e), where e is

the current epoch.

Additionally, we say that the system is in a safe state, if it is in sane state

and every neighborhood N has weakness at most N.weak.

Note that the protocol actively seeks to maintain a sane state, by updating all

node information at each epoch. The protocol also tries to maintain a safe state by

merging neighborhoods that are too weak. We can now state our main result:

Informal Claim 5.2. Let p and SDHT WEAK be the two parameters of the SDHT, as

defined in Table 5.1. Assume that the SDHT is in a safe state at a time t1. Assume

further that at a time tf during the interval [t1, t2] some of the correct nodes may

crash: specifically, every correct node has an independent probability of at most p of

crashing, where p is the appropriate parameter in the protocol (Table 5.1). Assume

that at some point during [t1, t2] a node u publishes a data item I with identifier x
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and at some later time, within the same time interval, a node v looks up identifier x.

Then, node v will correctly retrieve item I, except with probability at most SDHT WEAK

.

What this result is saying is that, as long as the system is in a safe state, the

lookup protocol behaves correctly, regardless of the action of the corrupted nodes.

However, this result, on its own, is not sufficient to demonstrate the use-

fulness of the algorithm. We need to show instead that, under many reasonable

circumstances, that the algorithm remains in a safe state. Another issue to take

into account is that joining nodes may be rejected by the system. Therefore, we

also need to show that, under reasonable circumstances, most joining nodes are ac-

cepted, as opposed to rejected. We will demonstrate these facts through our set of

experiments in Section 5.5.

The remainder of this section will be used to show Informal Claim 5.2. In

Section 5.4.1, we show that no neighborhood failure occurs except with probability

SDHT WEAK; this leaves to argue that the claim holds with probability 1 conditioned

on the fact that no neighborhood failure occurs. In Section 5.4.2, we show that,

if no neighborhood failure occurs, the system remains at least in a sane state over

time. In Section 5.4.3, we show that the lookup operation is correct, under the

assumptions of Informal Claim 5.2. Finally, in Section 5.4.4, we “prove” our main

result.
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5.4.1 Dealing with Neighborhood Failures

Towards a justification of our main result (Informal Claim 5.2), we argue that

the probability that some neighborhood failure occurs is at most SDHT WEAK. This

leaves us the task to “prove” that the claim holds when neighborhood failures do

not occur.

Informal Claim 5.3. In the setting of Informal Claim 5.2, let e be the epoch that

contains tf and let e + 1 be the epoch that immediately follows. For each x, the

probability that a correct node in nhd(x, e) reports a neighborhood failure during

either e or e + 1 is at most nhd(x, e).weak.

Informal Argument A node in nhd(x, e) reports a neighborhood failure during

epoch e or e + 1 if, after the crashes at time tf , the number of correct ASes with

alive nodes in the neighborhood becomes less than f + 1.

The claim follows from the definition of weakness of a neighborhood, given in

Section 5.3.2 and from the fact that the weakness of nhd(x, e) is at most nhd(x, e).weak,

by assumption of safety of the system.

Informal Claim 5.4. In the setting of Informal Claim 5.2, the probability that any

correct node reports a neighborhood failure during [t1, t2] is at most SDHT WEAK.

Informal Argument Let e as in Informal Claim 5.3. No neighborhood failure can

occur except during epochs e and e+1. The probability that any neighborhood fails

during e or e + 1 is at most
∑

N N.weak, by Informal Claim 5.3. Such summation

is at most SDHT WEAK by construction.
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5.4.2 Sanity is Preserved

The next step towards the justification of Informal Claim 5.2 involves showing

that the system remains in a sane state over time, if no neighborhood failure occurs.

Informal Claim 5.5. If an instance of the SDHT protocol is in a sane state at the

beginning of an epoch and no neighborhood failure occurs, then the SDHT is also in

a sane state at the beginning of the next epoch.

Our informal proof of this result follows from Informal Claim 5.11 through

Informal Claim 5.14.

Informal Claim 5.6. Assume that the properties of Definition 5.1 at the beginning

of epochUpdateBA. Then, at the end of the procedure all correct processes in a

neighborhood output the same sets newset, joinset, stayset. joinset contains all

correct nodes that have executed a join operation in the previous neighborhood, while

stayset contains all correct nodes in the neighborhood that have survived. joinset

may also contain arbitrary corrupt nodes with an identifier in the neighborhood,

while stayset may also contain correct nodes in the neighborhood that have failed.

Informal Argument This follows from the property of the Byzantine agreement

protocol and by the post-processing stage of epochUpdateBA.

Informal Claim 5.7. Unless a neighborhood failure occurs, at the end of the pro-

cedure protocertGen, the return value proto contains a valid certificate for the

neighborhood defined by newset.
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Informal Argument This follows easily by inspection of protocertGen, by the

fact that all alive correct nodes in newset will enter the procedure with the same

value of the newset argument (Informal Claim 5.6) and by the fact that, if a neigh-

borhood failure does not occur, then the node will be able to obtain at least f + 1

signatures from nodes in newset belonging to different ASes.

Informal Claim 5.8. Let u be a node executing epochUpdate2 during epoch e.

Let v be any node in the neighborhood in the proto argument for node u. Then

the arguments proto, protosucc and protopred represents respectively the same

neighborhoods for the invocation of epochUpdate2 of u and v.

Informal Argument This is an immediate consequence of the Informal Claim 5.7.

Informal Claim 5.9. Let u be a correct node and let N ′
u be the return value nhd

of the invocation of merge made by u during epoch e. Let v be any correct node in

the neighborhood N ′
u and let N ′

v be the return value nhd of the merge invocation by

v. Then N ′
u = N ′

v.

Informal Argument Let η, l, r (resp. η′, l′, r′) be the content of the variables

neighb, left, right computed by u (resp. v) inside merge. Since v belongs

to N ′
u by assumption, it must be the case that there exists a k such that v is in the

neighborhood η[k] and l + 1 ≤ k ≤ r (by inspection of merge).

The first fact we need is that η and η′ represent consistent views of the Chord

ring, i.e.:

η′[i] = η[i + k] (5.1)
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for all i for which i and i+k are within the bounds of the arrays η and η′. This follows

easily from the structure of the merge procedure and from Informal Claim 5.8.

We also need to ensure that the procedure findSeparators satisfies the

following properties:

1. it is deterministic;

2. it always returns a pair (left, right) such that left + 1 ≤ 0 ≤ right;

3. if η′[i] = η[i + k], for some k and for all i, then either l′ = l + k and r′ = r + k

or the the two intervals [l + 1, r] and [l′ + k + 1, r′ + k] do not intersect.

It is relatively easy to construct a procedure findSeparators that satisfies such

property and also causes neighborhoods to merge when appropriate.

Eq. (5.1) combined with Property 3 of findSeparators ensures that l′ = l+k

and r′ = r + k, since [l + 1, r] and [l′ + k + 1, r′ + k] intersect in this case. (Property

2 ensures l′ + 1 ≤ 0 ≤ r′, which implies l′ + k + 1 ≤ k ≤ r′ + k, while we argued

earlier that l + 1 ≤ k ≤ r.)

By inspection of merge we can then conclude that u and v return the same

value of nhd as needed.

Informal Claim 5.10. Let u be a node and let nhd be the return value of the split

executed by u during epoch e. Let v be any node in the neighborhood nhd. Then u

and v obtain the same return values from the invocation of split during epoch e.

Informal Argument By inspection of split and its invocation within epochUpdate2

(Figure 5.12), it is easy to see that v also belongs to the return value nhd of the

130



invocation of merge executed by u. By virtue of Informal Claim 5.9, u and v enter

the procedure split with the same values of nhd. Once within the split procedure,

nodes u and v will compute the same subneighb array, since it is obtained via a

deterministic computation on nhd. By assumption, it must be that u and v compute

the same value of i and, therefore, return the same value of nhd from the procedure.

Informal Claim 5.11. Property 1 of Definition 5.1 holds at the end of the epoch

update phase.

Informal Argument Let u be a node and let N be the value of the variable nhd as

returned by the split procedure executed by u during epoch e. Let v be any node

in the neighborhood N . By virtue of Informal Claim 5.10, u and v have the same

return values from split.

Since no neighborhood failure occurs, then u and v will be able to construct

a neighborhood certificate and therefore will have the same neighborhoods in the

variable this.nhd.

Informal Claim 5.12. Property 2 of Definition 5.1 holds at the end of the epoch

update phase.

Informal Argument This follows directly from Informal Claim 5.4.

Informal Claim 5.13. Property 3 of Definition 5.1 holds at the end of the epoch

update phase.
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Informal Claim 5.14. Property 4 of Definition 5.1 holds at the end of the epoch

update phase.

Both Informal Claim 5.13 and Informal Claim 5.14 can be “proven” similarly

to Informal Claim 5.11, by tracing the behavior of the protocol through the different

phases of the algorithm. We omit those easy, but tedious details.

5.4.3 Correctness of Publish and Lookup Operations

The correctness of publish and lookup operations follow from two results: the

first (Informal Claim 5.15) says that the neighborhoodLookup operation always

return the desired certificate and the second (Informal Claim 5.16) says that, once

a data item is published on a neighborhood, the item remains correctly replicated

on that neighborhood.

Informal Claim 5.15. Under the assumptions of Informal Claim 5.2, the

neighborhoodLookup subroutine, on input an ID x, returns a current valid

neighborhood certificate for a neighborhood encompassing x, conditioned on the fact

that no neighborhood failure occurs.

Informal Argument Conditioned on the fact that a neighborhood failure does not

occur, at some point in time after the neighborhoodLookup is requested, the

system is guaranteed to be sane, by virtue of Informal Claim 5.5. At such time, the

neighborhood lookup operation can be performed correctly, as we now argue.

Recall the definition of d given in Section 5.3.3 and let Ni, for i = 0, 1, . . . ,

be the value of the variable nhd at the beginning of the (i + 1)-th iteration of the
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external repeat loop in Figure 5.10.

First, we want to show that d(Ni+1, x) < d(Ni, x), for all i ≤ r − 2, where r

is the total number of iterations. x does not lie in Ni, otherwise there would be no

i+2 iteration of the loop. Informal Claim 5.5 tells us that, for all correct nodes u in

Ni, u has a successor pointer pointing to a neighborhood N ′ such that N ′.l = Ni.u

(Property 3 of Definition 5.1). That claim also tells us that Ni has an alive correct

node. This means that the internal repeat loop of the neighborhoodLookup

function may have one of two outcomes: either a corrupt node is contacted, which

returns a neighborhood Ni+1 such that d(Ni+1, x) < d(Ni, x); or an honest node is

contacted, which will return the neighborhood Ni+1 for which it holds a certificate

and such that d(Ni+1, x) is minimized. In the latter case, note that d(Ni+1, x) ≤

d(N ′, x) < d(Ni, x), because N ′ belongs to the set of neighborhoods for which the

contacted node holds a certificate. In both cases, our claim is true.

We have shown that d(Ni+1, x) < d(Ni, x) for all i, unless x lies in Ni and that

the external repeat loop terminates only at the iteration r, such that x falls in the

Nr−1. Since the number of neighborhoods is at most the number of nodes and no

neighborhood is visited twice, the loop will actually terminate.

Informal Claim 5.16. If at any time a node u stores a copy of a published data

item with ID x, then at all subsequent times all correct nodes of nhd(x, e) store that

item, unless a neighborhood failure occurs at nhd(x, e).
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Informal Argument This follows immediately from inspection of the itemRedis-

tribute procedure.

5.4.4 Informal Proof of Informal Claim 5.2

We are now ready to argue Informal Claim 5.2.

Informal Argument We know from Informal Claim 5.4 that there is no neighbor-

hood failure, except with probability SDHT WEAK. Given that a neighborhood

failure did not occur, we show that v correctly retrieves the data item I, when

performing a lookup for identifier x.

Informal Claim 5.15 guarantees that u correctly retrieves nhd(x, e) at the epoch

e in which u performs the publish operation. It also guarantees that v correctly

retrieves nhd(x, e′), where e′ is the epoch at the time of the lookup. nhd(x, e)

contains at least one alive honest node, therefore such honest node stores a copy of

the data item during the Publish operation. Because of Informal Claim 5.16, any

data item stored in a correct node on nhd(x, e) will also be stored on any correct node

in nhd(x, e′). nhd(x, e′) contains at least one correct node and therefore will provide

the data item to u during the Lookup operation. This completes the argument.

5.5 Experimental Results

In this section, we describe our implementation of SDHT and a set of experi-

mental results obtained from such implementation.
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5.5.1 Implementation of SDHT

We have implemented a prototype of SDHT, which provides the main func-

tionalities of the protocol, for the purpose of evaluating the algorithm correctness

and performance.

As part of the development of the implementation, we have also developed a

novel application that we call Simulation Implementation Engine (SIMPL Engine),

which allows both the simulation and the implementation of an arbitrary protocol.6

In order to use SIMPL Engine, the user has to provide a shared library (the agent)

which contains the code of the protocol of interest and which implements a given

API. The agent communicates with the outside world exclusively via the abstract

API, which allows the agent to send and receive messages as well as to perform

other basic operations such as obtaining the current time and scheduling timeouts.

When in simulation mode, a single instance of SIMPL Engine creates a number of

instances of the user-specified agent, each instance corresponding to a node; both

time and communication are simulated through the event-driven engine. When in

implementation mode, a single instance of SIMPL Engine becomes a single node, by

creating one instance of the agent; messages are sent and received to other nodes

via TCP connections.

SIMPL Engine is written in C, approximately 7100 lines of code. The agent

that implements the SDHT node is also written in C and consists of approximately

6SIMPL Engine is joint work with Randy Baden, Adam Bender, Matt Mah and Rob Sherwood,

of the Department of Computer Science at University of Maryland. The SDHT agent is also joint

work with Baden, Bender and Mah.

135



Table 5.3: Approximate message sizes (bytes) in the SDHT prototype, as estimated
by code inspection. Message size depends on several factor, especially the value of
f and the number of nodes in a neighborhood. In this table, sizes are shown as
the sum of three components: the first is fixed, the second is proportional to the
neighborhood size and the third is proportional to (f + 1). For concreteness, sizes
are also shown for an example where f = 5 and neighborhoods have size 50. The
“other” category of messages has been divided into messages that contain one cer-
tificate (such as CERT2) and that do not contain certificates (such as JOIN2 REQUEST,
RLOOKUP REQUEST).

Type Fixed Per Node in Times Example
Component Neighborhood f + 1 Total

pslBroadcast (worst case) 40 144 0 7240
pslBroadcast (no failures) 328 0 0 328

CERT 164 16 0 964
JOIN2 REPLY 76 48 384 4780

other (with cert.) 36 16 128 1604
other (without cert.) 16 0 0 16

11500 lines of code.

The implementation has the following limitations, due to its prototype nature:

• Digital signatures are not implemented. More precisely, in the current imple-

mentation all signatures are of length zero and always verify.

• The recovery phase is not currently implemented, which means that a neigh-

borhood failure always causes a system failure (Section 5.3.7).

• The code is neither optimized nor extremely robust, which limits the size

of the experiments that can be performed to approximately 100–200 nodes,

depending on the setup.

Table 5.3 shows the size of protocol messages in the SDHT implementation,

as determined by inspecting the code and assuming that digital signatures are of

length 128 bytes (e.g. 1024-bit RSA). The messages used by pslBroadcast are the
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most important, because their number dominates the number of all other messages.

Although those messages can be very large in the worst case (because they may

contain a chain of signatures that is as long as the number of nodes in a neighbor-

hood), they are of a reasonable size (328 bytes) for executions in which no failures

occur (including no misbehavior and no correct node crashes), because they contain

at most two signatures. Other messages of large size are the ones that carry certifi-

cates, especially the JOIN2 REPLY message type, because it carries three certificates.

For the latter category, the dominant component of the message is the vector of

f + 1 signatures.

5.5.2 Experiment Setup

Our experiments with the SDHT implementation are performed on a 30-host

cluster. Each machine is a single-processor Pentium III 650 MHz with 768M of

memory and running a 2.4 Linux kernel. The machines are connected with a 100Mbit

Ethernet switch.

The mapping between a node address to the corresponding AS number is

simulated, in order to allow all nodes to run within the same real-world AS. The

simulated mapping is implemented by generating a file that maps IP address–port

pairs to AS numbers; every node is given access to a copy of such file.

We employ a bootstrap agent to aid our experiment setup. SDHT nodes contact

first the bootstrap agent to obtain the experiment parameters and, for nodes that

are not part of the initialization phase (Section 5.3.1), the addresses of the twenty
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Table 5.4: Parameters for the lookup validation experiment. See Table 5.1 and
Table 5.2 for more information.

Value
Max nodes from 1 AS (a) 10

Epoch length (E) 150 sec
Max bad ASes (f) 1

Assumed prob. of crash (p) 0.04
SDHT WEAK 0.01

SDHT STRONG 0.001
Number of nodes (n) 100

AS distribution 10 ASes of 10 nodes each

last nodes that have successfully joined the system.

5.5.3 Lookup Correctness

In this first experiment, we validate the implementation, by verifying it cor-

rectly performs the publish and lookup operation and by measuring the correspond-

ing cost.

On a 100-node instance of SDHT, we publish 32817 data items with random

identifiers and we verify that a lookup operation on each of those successfully locates

the item. We also look up 4042 data items with random identifiers that have not

been published and we verify that all such operations successfully complete with a

negative result. Table 5.4 summarizes the parameters of the experiment. For such

settings, the SDHT instance consists of three neighborhoods of sizes 30, 32 and 38.

Figure 5.17 shows the distribution of the time to complete each of the three

types of operation. We observe that an overwhelming majority of the operations

7In the setup we determine the duration of the experiment in seconds, which indirectly deter-

mines the number of publish and lookup operations.

138



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

F
ra

ct
io

n 
of

 o
pe

ra
tio

ns
 (

cu
m

.)

Time to complete (msec)

Publish
Lookup existent

Lookup non-existent

Figure 5.17: Lookup validation experiment. For each of the three types of operation
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the cumulative distribution of the time required for the operations of that type to
complete. The scale is semilogarithmic.
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complete in a relatively small time, as expected: reading the “knee” of the three

curves, we note that over 94% of the publish operations complete in 6 msec or

less, while 95% of the lookups for the published items complete in 13 msec or less.

The lookup operations for non-existing items are slower (88% complete in 20 msec

or less; 95% complete in 1.43 sec or less), as expected, since all the nodes of the

neighborhood encompassing the target identifier need to be contacted.

We also observe, that a small fraction of the operations require a significantly

large amount of time, of the order of several seconds. This is due to the fact that,

in the prototype implementation, nodes cannot process neighborhoodLookup

operations during a portion of the epoch update, which typically lasts 1 second,

but is observed to be as long as 14 sec in some instances during this experiment.

The operations are paused during such critical section of the code and this fact is

responsible for the occasional long delays. This problem can be avoided with an

optimized implementation.

5.5.4 Lookup Under Attack

In this experiment, we verify that the SDHT implementation is resilient to a

very basic attack. The attacker controls one AS and the nodes from this AS always

report that no data item exists in response to a ITEM GET message, but otherwise

follow the protocol correctly. All other nodes behave correctly and never fail. The

setup of the experiment is otherwise identical to that of Section 5.5.3. We verified

that all lookup operations return the outcome we expect (positive if the item has
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Table 5.5: Parameters for the maintenance cost experiment.
Value

Max nodes from 1 AS (a) 10
Epoch length (E) 150 sec
Max bad ASes (f) 1

Assumed prob. of crash (p) 0.04
SDHT WEAK 0.01

SDHT STRONG 0.001
Join rate 100 nodes/hour

Node lifetime exp. distr. with mean 1 hour
AS distribution 10 equally-sized ASes

been published and negative otherwise).

5.5.5 Maintenance Cost

In this experiment, we measure the overhead that SDHT incurs during the

epoch update phase. We demonstrate that the overhead of SDHT is practical for a

relatively-static system with long epochs.

Table 5.5 summarizes the parameters of the experiment. The SDHT instance

begins with 100 nodes and a batch of 100 additional nodes join every hour. Each

node has an exponentially distributed lifetime with average 1 hour, after which the

node silently crashes. The epoch length is set to 150 seconds.

Figure 5.18 shows the number of nodes in the system, as well as the protocol

overhead, measured as the number of messages sent over the entire system, as a

function of time. Note that, as expected, the number of nodes increases by about

100 at the beginning of every hour and declines slowly over time because of the

random node crashes. The experiment terminates after 3 hours, when a random

sequence of crash events causes a total system failure.
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Figure 5.18: Cost of maintenance experiment. The plot shows the number of nodes
that are part of the SDHT instance as a function of time, as well as the number of
messages sent during every 10 minute period.
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We observe that the cost of maintenance of SDHT is somewhere between

12,500 and 50,000 messages per node per epoch and grows linearly with the number

of nodes in the system. An inspection of the experiment raw data shows that the

component of the overhead that dominates this cost is the Byzantine agreement

phase at the beginning of the epoch update (Section 5.1.2, Section 5.3.5). As men-

tioned in Section 5.2.3, the number of messages sent by the Byzantine agreement

protocol for one neighborhood is cubic in the size of the neighborhood. If all the

neighborhoods contain approximately the same number of nodes, the total cost is

thus linear in the number of nodes and quadratic in the size of a neighborhood. This

overhead is very high: in the same setting Chord [SMK+01] would require less than

75 messages per node per minute for its stabilize and fix fingers periodic pro-

cedures,8 plus a negligible number of messages to handle joining nodes.9 However,

as already discussed in Chapter 4, Chord does not provide any protection against

malicious behavior.

It is important to understand that the overhead of SDHT is proportional to

the frequency of the epoch updates and that this experiment shows only the extreme

case in which an epoch lasts only 2 1/2 minutes. The overhead can be dramatically

lowered, by choosing a much longer epoch length, for example 1 hour or even 1

8We assume that stabilize and fix fingers are executed every 30 seconds, as in the setup

of [SMK+01, Section 6.5], that running stabilize requires 4 messages, that fixing a finger also

requires 4 messages (because a strong hint is available during lookup) and that all log n fingers are

fixed at every update.

9100 nodes join every hour, each join requiring at most log2 n ≤ log2 300 ≤ 81 messages. This

means at most 81 messages per node per hour.
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Table 5.6: Parameters for the effect of parameter f experiment.
Value

Max nodes from 1 AS (a) 10
Epoch length (E) 150 sec
Max bad ASes (f) 1, 5, 10

Assumed prob. of crash (p) 0.04
SDHT WEAK 0.01
SDHT STRONG 0.001

Join rate 100 nodes/hour
Node lifetime until end of experiment

AS distribution all nodes are from distinct ASes

day. The two conditions that are necessary to choose longer epochs are: (1) the

rate at which nodes crash is sufficiently low, so that the probability that a node

crashes over an epoch is small (e.g. 4%–8%); and (2) it is acceptable that a node

may have to wait for up to an entire epoch to be able to join or gracefully leave the

system. While the second condition is obvious, the first condition is necessary to

avoid excessively large neighborhoods that would be required by a large value of p

(Section 5.3.2).

5.5.6 Effect of Parameter f

In this experiment, we study the effect of the parameter f on the protocol. As

we will show, as f increases, the performance of SDHT degrades, because neighbor-

hoods grow larger, thus increasing the overhead of the epoch update.

We run instances of SDHT with 100 initial nodes and, at every hour, we allow

100 new nodes to join, up to a maximum of 3 hours and 300 nodes. The parameters

of the experiment (Table 5.6) are similar to those in the previous experiment, except

that all nodes live until the end of the experiment and that we vary f to assume
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Figure 5.19: Effect of varying f . The plot shows the number of nodes in the system
as a function of time. The three experiments are shown sequentially, for better
clarity.

values 1, 5 and 10 respectively, in each instance. For a more meaningful comparison

between different values of f , all nodes will originate from distinct ASes.

Figure 5.19 shows the number of nodes in the system as a function of time,

during the sequence of the three experiments. The experiment with f = 1 is per-

formed between time 0 and (approximately) time 12,000 sec; the experiment with

f = 5 occurs between time 13,000 sec and time 25,000; the last experiment (f = 10)

is performed afterwards.

We observe how the experiment completes successfully for the cases of f = 1

and f = 5, while a system failure occurs in the case f = 10, right at the time when

the second batch of 100 nodes joins the system. This phenomenon is due to the

fact that neighborhoods become larger and larger as f increases, thus increasing the

145



Table 5.7: Neighborhood size for different values of f , at the time the SDHT instance
contains 100, 200 and 300 nodes respectively. For f = 10, the system never reaches
the two larger sizes.
Max bad ASes (f) Number of nodes (n) Neighborhood sizes

1 100 18, 18, 18, 18, 28
1 200 21, 31, 33, 29, 30, 21, 35
1 300 30, 42, 22, 23, 21, 24, 21, 21, 21, 25, 28, 22
5 100 27, 27, 46
5 200 29, 39, 44, 29, 29, 30
5 300 54, 30, 32, 50, 49, 42, 43
10 100 39, 60

number of messages that need to be sent during the epoch update (Table 5.7). As

discussed in Section 5.5.5, the communication required during an epoch update is

quadratic in the size of the neighborhoods, for a fixed number of nodes.

With respect to Table 5.7, we notice the high variability in the size of a neigh-

borhood, for a given system size and set of parameters. For example, for f = 5 and

n = 300, we see both a 30 node neighborhood and a 54 node neighborhood. This

behavior is due to the fact that a neighborhood may only split when it reaches a

critical size (say 56 nodes). As nodes randomly join there will be some neighbor-

hoods that barely reach the splitting threshold (e.g. they become 60 nodes) and then

split into neighborhoods of smaller size (e.g. 30 each). Some other neighborhoods,

instead, narrowly miss the threshold (56 in the example) and are stuck with, say, 54

nodes. This explanation is an oversimplification because what determines whether

a neighborhood may split is the weakness of the sub-neighborhoods (Section 5.3.2)

and not the size of the neighborhood. This explains why for f = 1 and n = 300

we observe both a neighborhood of size 21 and one of size 42. However, the size

of a neighborhood is intuitively a good predictor of its weakness, for a given AS
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Table 5.8: Parameters for the rejection rate and neighborhood size high-level simu-
lation.

Value
Max nodes from 1 AS (a) 10, 20, 30

Max bad ASes (f) 1
Assumed prob. of crash (p) 0.04

SDHT WEAK 0.01
SDHT STRONG 0.001

join rate 0.05, 0.1, 0.2, 0.5
max SDHT size 2000
AS distribution Uniform from a set of 10 ASes

distribution.

5.5.7 Rejection Rate and Neighborhood Size

As discussed in Section 5.1.2, nodes that attempt to join a running instance

of SDHT may be rejected because a nodes from the same AS are already in the

neighborhood (Section 5.1.2). It is possible to reduce the rejection rate by increasing

the value of a, but at the price of larger neighborhoods. In this experiment, we study

how the value of a and the rate at which nodes join affect the rejection rate (e.g.

the fraction of joining nodes that are rejected), as well as the average neighborhood

size. We perform this study with a high-level simulator (Ruby, approximately 1000

l.o.c.), because we do not need the full power of an implementation and our Ruby

simulator enables more complex experiments in a shorter amount of time.

A basic simulation run creates a SDHT with 2f +1 nodes from different ASes.

At every epoch e, a new set Se of nodes attempts to join the system. We obtain the

number |Se| of joining nodes by multiplying the number of nodes currently in the

SDHT by a given join rate (Table 5.8); we establish that a minimum of 10 nodes
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join at every epoch. Each joining node is associated with a uniformly random AS

in a set of 10 ASes. No nodes misbehave or crash, so the number of nodes increases

exponentially over time. The run stops when the number of nodes in the SDHT

exceeds 2000.

Figure 5.20 shows how the rejection rate and the neighborhood size vary within

a single run, for the case f = 1 and a = 10. Four runs are shown, for different values

of the join rate. Figure 5.21 shows the rejection rate and neighborhood size, averaged

across an entire run, as a function of the join rate. From both figures we see that the

neighborhood size is not significantly influenced by the join rate. This phenomenon

is due to the fact that the merge-split process of SDHT maintains the neighborhoods

around the desired size, regardless of how fast nodes join.

For the case a = 10, the rejection rate increases from an average of 10% when

the join rate is 0.05 or 0.1 to an average close to 20%, when the join rate is 0.5.

Indeed, when nodes join faster, neighborhoods do not have the time to split as often,

since splitting occurs only once per epoch. This fact leads to more neighborhoods

in which the quota of a nodes from the same AS is filled up. When a is 20 or more,

we notice that the rejection rate is negligible for the given parameters, although it

still increases with the join rate.

More surprising is the fact that the neighborhood size does not seem to change

with the value of a. This is due to the fact that, in this experiment, the number

of joining nodes from each AS is about the same, therefore the splitting process

successfully compensates for the occasional larger number of nodes from the same

AS that may land on the same neighborhood. However, it is important not to be
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Figure 5.20: Neighborhood size and rejection rate, within a simulation run with
f = 1 and a = 10, as a function of the number of nodes in the SDHT. The figure
shows four different settings of the join rate.
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tricked into believing that a larger value of a can be chosen for free. Increasing

a allows an attacker to increase the size of the neighborhoods significantly. The

attacker could do so by generating a very large number of nodes from the ASes that

she controls, therefore increasing the number of nodes in every neighborhood to

the maximum allowed. In the example of Figure 5.21, each neighborhood contains

an average of about 5 nodes from each AS (approximately 55 nodes divided equally

between 10 ASes). In the case a = 30 and f = 1 the attacker could raise the number

of nodes from her AS from 5 to 30, thus bringing the size of the neighborhood to

about 80.10 However, if a = 10, the attacker can raise the neighborhood size only

to about 60. Obviously, this penalty in increasing a grows linearly with the value

of f . The same penalty also applies to a setting in which there is no attacker, but

a few of the ASes contribute to a much larger fraction of the nodes; we can use the

same analysis, since we can think of such more prominent ASes as under control of

an attacker.

5.5.7.1 Increasing the Diversity of Joining Nodes

We repeat the simulation with a more diverse set of joining nodes. We associate

each node with a uniformly random AS from a set of 25 (up from 10) ASes. Other

parameters are as in Table 5.8. The results are shown in Figure 5.22. We notice

how the neighborhood size decreases from approximately 55 (in Figure 5.21) to

approximately 35. This is due to the fact that a smaller number of nodes is necessary

10Remember that the weakness of a neighborhood does not decrease when the size of the f

largest ASes in a neighborhood increases.
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Figure 5.21: Neighborhood size and rejection rate as a function of the join rate, for
three different values of a and f = 1. Each node is associated with a uniformly
random AS in a set of 10 ASes.
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to obtain the same value of the neighborhood weakness, if the nodes are more diverse

(Section 5.3.2). Since neighborhoods are both smaller and more diverse, incoming

nodes are never rejected, because they never find a nodes from their AS already in

the neighborhood.

Finally, we repeat the last experiment with f = 5 (Figure 5.23). As expected,

the neighborhood size increases significantly to about 80. We also notice a small

rejection rate (below 5%) for the case a = 10. We insist that the neighborhood sizes

shown here do not take into account the effect of an attacker that generates a much

larger number of nodes within her controlled ASes. In the example of f = 5 and

a = 30, the neighborhood size could grow to more than 210, because, for each of 5

ASes, the attacker would be able to place 30 nodes per neighborhood, up from the

average of 80/25 = 3.2 nodes per AS observed in Figure 5.23.
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Figure 5.22: Neighborhood size and rejection rate as a function of the join rate, for
three different values of a and f = 1. Each node is associated with a uniformly
random AS in a set of 25 ASes.
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Figure 5.23: Neighborhood size and rejection rate as a function of the join rate, for
three different values of a and f = 5. Each node is associated with a uniformly
random AS in a set of 25 ASes.
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Part II

Techniques for Anonymity
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Chapter 6

New Results on Ring Signatures

Ring signatures,1 first introduced by Rivest, Shamir, and Tauman, enable a

user to sign a message so that a ring of possible signers (of which the user is a

member) is identified, without revealing exactly which member of that ring actually

generated the signature. In contrast to group signatures, ring signatures are com-

pletely “ad-hoc” and do not require any central authority or coordination among

the various users (indeed, users do not even need to be aware of each other); fur-

thermore, ring signature schemes grant users fine-grained control over the level of

anonymity associated with any particular signature.

This chapter has two main areas of focus. First, we examine previous defi-

nitions of security for ring signature schemes and suggest that most of these prior

definitions are too weak, in the sense that they do not take into account certain

realistic attacks. We propose new definitions of anonymity and unforgeability which

address these threats, and give separation results proving that our new notions are

strictly stronger than previous ones. Second, we show the first constructions of ring

signature schemes in the standard model. One scheme is based on generic assump-

tions and satisfies our strongest definitions of security. Two additional schemes are

more efficient, but achieve weaker security guarantees and more limited functional-

ity.

1The work presented in this chapter was published as [BKM06].
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6.1 Introduction

Ring signatures enable a user to sign a message so that a “ring” of possible

signers (of which the user is a member) is identified, without revealing exactly

which member of that ring actually generated the signature. This notion was first

formally introduced by Rivest, Shamir, and Tauman [RST], and ring signatures —

along with the related notion of ring/ad-hoc identification schemes — have been

studied extensively since then [BSS, Nao, AOS, ZK, BGLS, HS, DKNS, XZF04,

LWW, AHR05]. Ring signatures are related, but incomparable, to the notion of

group signatures [CvH]. On the one hand, group signatures have the additional

feature that the anonymity of a signer can be revoked (i.e., the signer can be traced)

by a designated group manager. On the other hand, ring signatures allow greater

flexibility: no centralized group manager or coordination among the various users is

required (indeed, users may be unaware of each other at the time they generate their

public keys), rings may be formed completely “on-the-fly” and in an ad-hoc manner,

and users are given fine-grained control over the level of anonymity associated with

any particular signature (via selection of an appropriate ring).

Ring signatures naturally lend themselves to a variety of applications which

have been suggested already in previous work (see especially [RST, Nao, DKNS,

AHR05]). The original motivation was to allow secrets to be leaked anonymously.

Here, for example, a high-ranking government official can sign information with

respect to the ring of all similarly high-ranking officials; the information can then be

verified as coming from someone reputable without exposing the actual signer. Ring
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signatures can also be used to provide a member of a certain class of users access to a

particular resource without explicitly identifying this member; note that there may

be cases when third-party verifiability is required (e.g., to prove that the resource has

been accessed) and so ring signatures, rather than ad-hoc identification schemes, are

needed. Finally, we mention the application to designated-verifier signatures [JSI]

especially in the context of e-mail. Here, ring signatures enable the sender of an

e-mail to sign the message with respect to the ring containing the sender and the

receiver; the receiver is then assured that the e-mail originated from the sender but

cannot prove this to any third party. We remark that for this latter application it is

sufficient to use a ring signature scheme which supports only rings of size two. See

also [CKP] for another proposed application of ring signatures which support only

rings of size two.

6.1.1 Our Contributions in Relation to Previous Work

This chapter focuses on both definitions and constructions. We summarize

our results in each of these areas, and relate them to prior work.

Definitions of security. Prior work on ring signature/identification schemes pro-

vides definitions of security that are either rather informal or seem (to us) unnat-

urally weak, in that they do not address what seem to be valid security concerns.

One example is the failure to consider the possibility of adversarially-chosen public

keys. Specifically, both the anonymity and unforgeability definitions in most prior

work assume that honest users always sign with respect to rings consisting entirely
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of honestly-generated public keys; no security is provided if users sign with respect

to a ring containing even one adversarially-generated public key. Clearly, however,

a scheme which is not secure in the latter case is of limited use; this is especially

true since rings are constructed in an ad-hoc fashion using keys of (possibly un-

known) users which are not validated as being correctly constructed by any central

authority. We formalize security against such attacks (as well as others), and show

separation results proving that our definitions are strictly stronger than those con-

sidered in previous work. In addition to the new, strong definitions we present,

the hierarchy of definitions we give is useful for characterizing the security of ring

signature constructions.

Constructions. We present three ring signature schemes which are provably se-

cure in the standard model. We stress that these are the first such constructions,

as all previous constructions of which we are aware rely on random oracles/ideal

ciphers.2 It is worth remarking that ring identification schemes are somewhat easier

to construct (using, e.g., techniques from [CDS]); ring signatures can then easily

be derived from such schemes using the Fiat-Shamir methodology in the random

oracle model [FS]. This approach, however, is no longer viable (at least, based on

our current understanding) when working in the standard model.

2Although Xu, Zhang, and Feng [XZF04] claim a ring signature scheme in the standard model

based on specific assumptions, their proof was later found to be flawed (personal communication

from J. Xu, March 2005). Concurrently to our work, Chow, Liu and Yuen [CLY05] show a ring

signature scheme that they prove secure in the standard model (for rings of constant size) based

on a new number-theoretic assumption.
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Our first construction is based on generic assumptions, and satisfies the strongest

definitions of anonymity and unforgeability considered here. This construction is in-

spired by the generic construction of group signatures due to Bellare, et al. [BMW]

and, indeed, the constructions share some similarities at a high level. However, a

number of subtleties arise in our context that do not arise in the context of group

signatures, and the construction given in [BMW] does not immediately lend itself

to a ring signature scheme. Two issues in particular that we need to deal with are

the fact that we have no central group manager to issue “certificates” as in [BMW],

and that we additionally need to take into account the possibility of adversarially-

generated public keys as discussed earlier (this is not a concern in [BMW] where

there is only a single group public key published by a (semi-)trusted group manager).

Our other two constructions are more efficient than the first, but rely on spe-

cific number-theoretic assumptions. Furthermore, they provide more limited func-

tionality and security guarantees than our first construction; most limiting is that

they only support rings of size two. Such schemes are still useful for certain ap-

plications (as discussed earlier); furthermore, constructing an efficient 2-user ring

signature scheme without random oracles is still difficult, as we do not have the

Fiat-Shamir methodology available in our toolbox. These two schemes are based,

respectively, on the recent (standard) signature schemes of Waters [Wat] and Ca-

menisch and Lysyanskaya [CL].
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6.2 Preliminaries

We use the standard definitions of public-key encryption schemes and semantic

security, signature schemes and existential unforgeability under adaptive chosen-

message attacks, and computational indistinguishability. In this chapter we will

assume public-key encryption schemes for which, with all but negligible probability

over (pk, sk) generated at random using the specified key generation algorithm,

Decsk(Encpk(M)) = M holds with probability 1.

We will also use the notion of a ZAP, which is a 2-round, public-coin, witness-

indistinguishable proof system for any language in NP (the formal definition is

given in Section 6.7). ZAPs were introduced by Dwork and Naor [DN00], who

show that ZAPs can be constructed based on any non-interactive zero-knowledge

proof system; the latter, in turn, can be constructed based on trapdoor permutations

[FLS99]. For notational purposes, we represent a ZAP by a triple (ℓ,P,V) such that

(1) the initial message r from the verifier has length ℓ(k) (where k is the security

parameter); (2) the prover P, on input the verifier-message r, statement x, and

witness w, outputs π ← Pr(x, w); finally, (3) Vr(x, π) outputs 1 or 0, indicating

acceptance or rejection of the proof.

6.3 Definitions

We begin by presenting the functional definition of a ring signature scheme.

We refer to an ordered list R = (PK1, . . ., PKn) of public keys as a ring, and let

R[i] = PKi. We will also freely use set notation, and say, e.g., that PK ∈ R if
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there exists an index i such that R[i] = PK. We will always assume, without loss

of generality, that the keys in a ring are ordered lexicographically.

Definition 6.1 (Ring signature). A ring signature scheme is a triple of ppt algo-

rithms (Gen, Sign, Vrfy) that, respectively, generate keys for a user, sign a message,

and verify the signature of a message. Formally:

• Gen(1k), where k is a security parameter, outputs a public key PK and secret

key SK.

• Signs,SK(M, R) outputs a signature σ on the message M with respect to the

ring R = (PK1, . . . , PKn). We assume the following: (1) (R[s], SK) is a

valid key-pair output by Gen; (2) |R| ≥ 2 (since a ring signature scheme is not

intended3 to serve as a standard signature scheme); and (3) each4 public key

in the ring is distinct.

• VrfyR(M, σ) verifies a purported signature σ on a message M with respect to

the ring of public keys R.

We require the following completeness condition to hold: for any integer k, any

{(PKi, SKi)}ni=1 output by Gen(1k), any s ∈ [n], and any M , we have VrfyR(M, Signs,SKs
(M, R))

1 where R = (PK1, . . . , PKn).

3Furthermore, it is easy to modify any ring signature scheme to allow signatures with |R| = 1

by including a special key for just that purpose.
4This is without loss of generality, since the signer/verifier can simply take the sub-ring of

distinct keys in R and correctness is unchanged.
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A c-user ring signature scheme is a variant of the above that only supports

rings of fixed size c (i.e., the Sign and Vrfy algorithms only take as input rings R

for which |R| = c, and correctness is only required to hold for such rings).

To improve readability, we will generally omit the input “s” to the signing algorithm

(and simply write σ ← SignSK(M, R)), with the understanding that the signer can

determine an index s for which SK is the secret key corresponding to public key R[s].

Strictly speaking, there may not be a unique such s when R contains incorrectly-

generated keys; in real-world usage of a ring signature scheme, though, a signer will

certainly be able to identify their public key.

A ring signature scheme is used as follows: At various times, some collection of

users runs the key generation algorithm Gen to generate public and secret keys. We

stress that no coordination among these users is assumed or required. When a user

with secret key SK wishes to generate an anonymous signature on a message M , he

chooses a ring R of public keys which includes his own, computes σ ← SignSK(M, R)

and outputs (σ, R). (In such a case, we will refer to the holder of SK as the signer

of the message and to the holders of the other public keys in R as the non-signers.)

Anyone can now verify that this signature was generated by someone holding a key

in R by running VrfyR(M, σ).

We remark that although our functional definition of a ring signature scheme

(cf. Def. 6.1) requires users to generate keys specifically for that purpose (in contrast

to the requirements of [AOS, AHR05]), our first construction can be easily modified

to work with any ring of users as long as they each have a public key for both
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encryption and signing (see Section 6.5).

As discussed in the Introduction, ring signatures must satisfy two independent

notions of security: anonymity and unforgeability. There are various ways each of

these notions can be defined (and various ways these notions have been defined in

the literature); we present our definitions in Sections 6.3.1 and 6.3.2, and compare

them in Section 6.4.

6.3.1 Definitions of Anonymity

The anonymity condition requires, informally, that an adversary not be able

to tell which member of a ring generated a particular signature.5 We begin with a

basic definition of anonymity which is already stronger than that considered in most

previous work in that we give the adversary access to a signing oracle (this results

in a stronger definition even in the case of unconditional anonymity).

Definition 6.2 (Basic anonymity). Given a ring signature scheme (Gen, Sign,

Vrfy), a polynomial n(·), and a ppt adversary A, consider the following game:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of public

keys S
def
= {PKi}n(k)

i=1 is given to A.

2. A is given access (throughout the entire game) to an oracle OSign(·, ·, ·)

such that OSign(s, M, R) returns SignSKs
(M, R), where we require R ⊆ S and

5All the anonymity definitions that follow can be phrased in either a computational or an

unconditional sense (where, informally, in the former case anonymity holds for polynomial-time

adversaries while in the latter case anonymity holds even for all-powerful adversaries). For sim-

plicity, we only present the computational versions.
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PKs ∈ R.

3. A outputs a message M , distinct indices i0, i1, and a ring R ⊆ S for which

PKi0, PKi1 ∈ R. A random bit b is chosen, and A is given the signature

σ ← SignSKib
(M, R).

4. The adversary outputs a bit b′, and succeeds if b′ = b.

(Gen, Sign, Vrfy) achieves basic anonymity if, for any ppt A and any polynomial

n(·), the success probability of A in the above game is negligibly close to 1/2.

(Some previous papers consider a variant of the above in which the adversary is

given a signature computed by a randomly-chosen member of R, and should be

unable to guess the actual signer with probability better than 1/|R| + negl(k). A

hybrid argument shows that such a variant is equivalent to the above.)

Unfortunately, the above definition of basic anonymity leaves open the possibil-

ity of the following attack: (1) an adversary generates public keys in some arbitrary

manner (which may possibly depend on the public keys of the honest users), and

then (2) a legitimate signer generates a signature with respect to a ring containing

some of these adversarially-generated public keys. The definition above offers no

protection in this case! This attack, considered also in [Nao] (in a slightly different

context) is quite realistic since, by their very nature, ring signatures are intended

to be used in settings where there is not necessarily any central authority checking

validity of public keys. This motivates the following, stronger definition:

Definition 6.3 (Anonymity w.r.t. adversarially-chosen keys). Given a ring
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signature scheme (Gen, Sign, Vrfy), a polynomial n(·), and a ppt adversary A, con-

sider the following game:

1. As in Definition 6.2.

2. As in Definition 6.2, except that we no longer require R ⊆ S.

3. As in Definition 6.2, except that we no longer require R ⊆ S.

4. The adversary outputs a bit b′, and succeeds if b′ = b.

(Gen, Sign, Vrfy) achieves anonymity w.r.t. adversarially-chosen keys if for any ppt

A and polynomial n(·), the success probability of A in the above game is negligibly

close to 1/2.

The above definition only guarantees anonymity of a particular signature as

long as there are at least two honest users in the ring. In some sense this is inherent,

since if an honest signer U chooses a ring in which all other public keys (i.e., except

for the public key of U) are owned by an adversary, then that adversary “knows”

that U must be the signer (since the adversary did not generate the signature itself).

A weaker requirement one might consider when the signer U is the only honest

user in the ring is that the other members of the ring should be unable to prove to

a third party that U generated the signature (we call this an attribution attack).

Preventing such an attack in general seems to require the involvement of a trusted

party (or at least a common random string), something we would like to avoid. We

instead define a slightly weaker notion which, informally, can be viewed as offering

honest user U some protection against attribution attacks as long as at least one
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other user U ′ in the ring was honest at the time U ′ generated his public key. However,

we allow this user U ′, as well as all other honest users in the ring (except for U),

to later collude with an adversary by revealing their secret keys in an attempt

to attribute the signature to U .6 (Actually, we even allow these users to reveal the

randomness7 used to generate their secret keys.) Note that security in such a setting

also ensures some measure of security in case secret keys are exposed or stolen.

In addition to the above, we consider also the stronger variant in which the

secret keys of all honest users in the ring (i.e., including U) are exposed. This

parallels (in fact, is stronger than) the anonymity definition given by Bellare, et al.

in the context of group signatures [BMW]. For simplicity, we also protect against

adversarially-chosen keys, although one could consider the weaker definition which

does not.

Definition 6.4 (Anonymity against attribution attacks/full key exposure).

Given (Gen, Sign, Vrfy), n(·), and A as in Definition 6.3, consider the following

game:

1. For i = 1 to n(k), generate (PKi, SKi) ← Gen(1k; ωi) for randomly-chosen

ωi. Give to A the set of public keys {PKi}n(k)
i=1 .

2. The adversary A is given access to a signing oracle as in Definition 6.3. A is

6The idea is that everyone in the ring is trying to “frame” U , but U is (naturally) refusing to

divulge her secret key. Although this itself might arouse suspicion, the point is that it still cannot

be proved — in court, say — that U was the signer.
7This ensures security when erasure cannot be guaranteed, or when it cannot be guaranteed

that all users will comply with the directive to erase their random coins.
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also given access to a Corrupt(·) oracle that, on input i, returns ωi.

3. A outputs a message M , distinct indices i0, i1, and a ring R for which PKi0, PKi1 ∈

R. A random bit b is chosen and A is given σ ← SignSKib
(M, R).

4. The adversary outputs a bit b′, and succeeds if b′ = b and i0 6∈ C, where C is

the set of queries to the corruption oracle.

(Gen, Sign, Vrfy) achieves anonymity against attribution attacks if, for any ppt A

and polynomial n(·), the success probability of A in the above game is at most 1/2+

negl(k). If we drop the requirement i0 6∈ C, then we say (Gen, Sign, Vrfy) achieves

anonymity against full key exposure.

Linkability. Another desideratum of a ring signature scheme is that it be unlink-

able; that is, it should be infeasible to determine whether two signatures (possibly

generated with respect to different rings) were generated by the same signer. As

in [BMW], all our definitions imply (appropriate variants of) unlinkability.

6.3.2 Definitions of Unforgeability

The intuitive notion of unforgeability is, as usual, that an adversary should

be unable to output (R, M, σ) such that VrfyR(M, σ) = 1 unless either (1) one of

the public keys in R was chosen by the adversary, or (2) a user whose public key

is in R explicitly signed M previously (with respect to the same ring R). Some

subtleties arise, however, when defining a chosen-message attack on the scheme.

Many previous works (e.g., [RST]), assume a definition like the following:
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Definition 6.5 (Unforgeability against fixed-ring attacks). A ring signature

scheme (Gen, Sign, Vrfy) is unforgeable against fixed-ring attacks if for any ppt

adversary A and for any polynomial n(·), the probability that A succeeds in the

following game is negligible:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of public

keys R
def
= {PKi}n(k)

i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·), where OSign(s, M) outputs

SignSKs
(M, R).

3. A outputs (M∗, σ∗), and succeeds if VrfyR(M∗, σ∗) = 1 and also A never

made a query of the form OSign(⋆, M∗).

Note that not only is A restricted to making signing queries with respect to the full

ring R, but its forgery is required to verify with respect to R as well. The following

stronger, and more natural, definition was used in, e.g., [AOS]:

Definition 6.6 (Unforgeability against chosen-subring attacks). A ring sig-

nature scheme (Gen, Sign, Vrfy) is unforgeable against chosen-subring attacks if for

any ppt adversary A and for any polynomial n(·), the probability that A succeeds

in the following game is negligible:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of public

keys S
def
= {PKi}n(k)

i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s, M, R) out-

puts SignSKs
(M, R) and we require that R ⊆ S and PKs ∈ R.
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3. A outputs (R∗, M∗, σ∗), and succeeds if R∗ ⊆ S, VrfyR∗(M∗, σ∗) = 1, and A

never queried (⋆, M∗, R∗) to its signing oracle.

While the above definition is an improvement, it still leaves open the possibility

of an attack whereby honest users are “tricked” into generating signatures using rings

containing adversarially-generated public keys. (Such an attack was also previously

suggested by [Nao, LWW].) The following definition takes this into account as well

as (for completeness) an adversary who adaptively corrupts honest participants and

obtains their secret keys. Since either of these attacks may be viewed as the outcome

of corrupting an “insider,” we use this terminology.8

Definition 6.7 (Unforgeability w.r.t. insider corruption). A ring signature

scheme (Gen, Sign, Vrfy) is unforgeable w.r.t. insider corruption if for any ppt

adversary A and for any polynomial n(·), the probability that A succeeds in the

following game is negligible:

1. Key pairs {(PKi, SKi)}n(k)
i=1 are generated using Gen(1k), and the set of public

keys S
def
= {PKi}n(k)

i=1 is given to A.

2. A is given access to a signing oracle OSign(·, ·, ·), where OSign(s, M, R) out-

puts SignSKs
(M, R) and we require that PKs ∈ R.

3. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs

SKi.

8We are aware that, technically speaking, there are not really any “insiders” in the context of

ring signatures.
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4. A outputs (R∗, M∗, σ∗), and succeeds if VrfyR∗(M∗, σ∗) = 1, A never queried

(⋆, M∗, R∗), and R∗ ⊆ S \ C, where C is the set of corrupted users.

We remark that Herranz [Her05] considers, albeit informally, a definition inter-

mediate between our Definitions 6.6 and 6.7 in which corruptions of honest players

are allowed but adversarially-chosen public keys are not explicitly mentioned.

6.4 Separations Between the Security Definitions

In the previous section, we presented various definitions of anonymity and un-

forgeability. Here, we show that these definitions are in fact distinct, in the sense

that there exist (under certain assumptions) schemes satisfying a weaker definition

but not a stronger one. First, we show separations for the definitions of anonymity,

considering in each case a scheme simultaneously satisfying the strongest defini-

tion of unforgeability. (Proofs for the claims presented in this section are given in

Section 6.8.1.)

Claim 6.8. If there exists a scheme which achieves basic anonymity and is un-

forgeable w.r.t. insider corruption, then there exists a scheme which achieves these

same properties but which is not anonymous w.r.t. adversarially-chosen keys.

Claim 6.9. If there exists a scheme which is anonymous w.r.t. adversarially-

chosen keys and is unforgeable w.r.t. insider corruption, then there exists a scheme

which achieves these same properties but which is not anonymous against attribu-

tion attacks.
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We also show separations for the definitions of unforgeability, considering now

schemes which simultaneously achieve the strongest definition of anonymity:

Claim 6.10. If there exists a scheme which is anonymous against full key expo-

sure and unforgeable w.r.t. insider corruption, then there exists a scheme which is

anonymous against full key exposure and unforgeable against fixed-ring attacks,

but not unforgeable against chosen-subring attacks.

In contrast to the rest of the claims, the assumption in the above claim is not

minimal. We remark that the scheme of [HS] serves as a natural example of a

scheme that is unforgeable against fixed-ring attacks, but which is not unforgeable

against chosen-subring attacks (in the random oracle model); this was subsequently

fixed in [Her05]. See Section 6.8.2.

Claim 6.11. If there exists a scheme which is anonymous against full key expo-

sure and unforgeable against chosen-subring attacks, then there exists a scheme

achieving these same properties which is not unforgeable w.r.t. insider corruption.

6.5 Ring Signatures Based on General Assumptions

We now describe our construction of a ring signature scheme that satisfies

the strongest of our proposed definitions, and is based on general assumptions. In

what follows, we let (EGen, Enc, Dec) be a semantically-secure public-key encryption

scheme, let (Gen′, Sign′, Vrfy′) be a (standard) signature scheme, and let (ℓ,P,V) be

a ZAP (for an NP-language that will become clear once we describe the scheme).

We denote by C∗ ← Enc∗RE
(m) the probabilistic algorithm that takes as input a set
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of encryption public keys RE = {pkE,1, . . . , pkE,n} and a message m, and does the

following: it first chooses random s1, . . . , sn−1 ∈ {0, 1}|m| and then outputs:

C∗ =

(

EncpkE,1
(s1), EncpkE,2

(s2), · · · , EncpkE,n−1
(sn−1), EncpkE,n

(m⊕
n−1
⊕

j=1

sj)

)

.

Note that, informally, encryption using Enc∗ is semantically secure as long as at

least one of the corresponding secret keys is unknown.

The idea of our construction is the following. Each user has an encryption

key pair (pkE, skE) and a standard signature key pair (pkS, skS). To generate a

ring signature with respect to a ring R of n users, the signer produces a standard

signature σ′ with her signing key. Next, the signer produces two ciphertexts C∗
0 , C

∗
1

using the Enc∗ algorithm and the set RE of all the encryption public keys in the ring;

one of these ciphertexts will be an encryption of σ′. Finally, the signer produces

a proof π, using the ZAP, that one of the ciphertexts is an encryption of a valid

signature on the message with respect to the signature public key of one of the ring

members.

Toward a formal description, let L denote the NP language:

{

(pkS, M, RE, C∗) : ∃σ, ω s.t. C∗ = Enc∗RE
(σ; ω)

∧

Vrfy′pkS
(M, σ) = 1

}

;

i.e., (pkS, M, RE, C∗) ∈ L iff C∗ is an encryption (using Enc∗RE
) of a valid signature

of M with respect to the verification key pkS. We now give the details of our

construction, which is specified by the key-generation algorithm Gen, the ring signing

algorithm Sign, and the ring verification algorithm Vrfy:9

9In our conference paper [BKM06], we presented a less efficient version of the scheme, in which

a ring signature contains n ciphertexts, as opposed to two.
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Gen(1k):

1. Generate signing key pair (pkS, skS)← Gen′(1k).

2. Generate encryption key pair (pkE, skE)← Gen(1k) and erase skE.

3. Choose an initial ZAP message r ← {0, 1}ℓ(k).

4. Output the public key PK = (pkS, pkE, r), and the secret key SK = skS.

Signi∗,SKi∗
(M, (PK1, . . . , PKn)):

1. Parse each PKi as (pkS,i, pkE,i, ri), and parse SKi∗ as skS,i∗ . Set RE :=

{pkE,1, . . . , pkE,n}.

2. Set M∗ := M |PK1 | · · · |PKn, where “|” denotes concatenation. Compute

the signature σ′
i∗ ← Sign′

skS,i∗
(M∗).

3. Choose random coins ω0, ω1, choose a random bit β and: (1) compute C∗
β =

Enc∗RE
(σ′

i∗ ; ωβ) and (2) compute10 C∗
1−β = Enc∗RE

(0|σ
′

i∗
|; ω1−β).

4. For i ∈ [n] and j ∈ {0, 1}, let xi,j denote the statement: “ (pkS,i, M
∗, RE , C∗

j ) ∈

L ”, and let x :=
∨n

i=1

∨1
j=0 xi,j. Compute the proof π ← Pr1

(x, (σ′
i∗ , ωβ)).

5. The signature is σ = (C∗
0 , C

∗
1 , π).

VrfyPK1,...,PKn
(M, σ)

1. Parse each PKi as (pkS,i, pkE,i, ri). Set M∗ := M |PK1 | · · · |PKn and RE :=

{pkE,1, . . ., pkE,n}. Parse σ as (C∗
0 , C

∗
1 , π).

10We assume for simplicity that valid signatures w.r.t. the public keys {pkS,i}i6=i∗ always have

the same length as valid signatures w.r.t. pkS,i∗ . The construction can be adapted when this is

not the case.
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2. For i ∈ [n] and j ∈ {0, 1}, let xi,j denote the statement: “ (pkS,i, M
∗, RE , C∗

j ) ∈

L ”, and let x :=
∨n

i=1

∨1
j=0 xi,j.

3. Output Vr1
(x, π).

It is easy to see that the scheme above satisfies the functional definition of a

ring signature scheme (recall that the {PKi} in a ring are always ordered lexico-

graphically). We now prove that the scheme satisfies strong notions of anonymity

and unforgeability:

Theorem 6.12. If encryption scheme (EGen, Enc, Dec) is semantically secure, sig-

nature scheme (Gen′, Sign′, Vrfy′) is existentially unforgeable under adaptive chosen-

message attacks, and (ℓ,P,V) is a ZAP for the language L′ = {(x1, . . ., xn) : ∃i :

xi ∈ L}, then the above ring signature scheme is (computationally) anonymous

against attribution attacks, and unforgeable w.r.t. insider corruption.

The proof is given in Section 6.9.1.

Extension. The scheme above can also be used (with a few easy modifications) in

a situation where some users in the ring have not generated a key pair according

to Gen, as long as (1) every ring member has a public key both for encryption and

for signing (these keys may be associated with different schemes), and (2) at least

one of the members has included a sufficiently-long random string in his public key.

Thus, a single user who establishes a public key for a ring signature scheme suffices

to provide anonymity for everyone. This also provides a way to include “oblivious”

users in the signing ring [AOS, AHR05].
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Achieving a stronger anonymity guarantee. The above scheme is not secure

against full key exposure, and essential to our proof of anonymity is that the ad-

versary not be given the random coins used to generate all (honest) ring signature

keys.11 (If the adversary gets all sets of random coins, it can decrypt ciphertexts

encrypted using Enc∗RE
for any ring of honest users R and thereby determine the true

signer of a message.) It is possible to achieve anonymity against full key exposure

using an enhanced form of encryption for which, informally, there exists an “obliv-

ious” way to generate a public key without generating a corresponding secret key.

This notion, introduced by Damg̊ard and Nielsen [DN], can be viewed as a general-

ization of dense cryptosystems in which the public key is required to be a uniformly

distributed string (in particular, dense cryptosystems satisfy the definition below).

We review the formal definition here.

Definition 6.13. An oblivious key generator for the public-key encryption scheme

(EGen, Enc, Dec) is a pair of ppt algorithms (OblEGen, OblRand) such that:

• OblEGen, on input 1k and random coins ω ∈ {0, 1}n(k), outputs a key pk;

• OblRand, on input a key pk, outputs a string ω;

and the following distribution ensembles are computationally indistinguishable:

{

ω ← {0, 1}n(k) : (ω, OblEGen(1k; ω))
}

11We remark that anonymity still holds if the adversary is given all secret keys (but not the

randomness used to generate all secret keys). This is because the decryption key skE is erased,

and not included in SK.
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and

{

(pk, sk)← EGen(1k); ω ← OblRand(pk) : (ω, pk)
}

.

Note that if (EGen, Enc, Dec) is semantically secure, then (informally speaking) it

is also semantically secure to encrypt messages using a public key pk generated by

OblEGen, even if the adversary has the random coins used by OblEGen in generating

pk. We remark for completeness that the El Gamal encryption scheme (over the

group of quadratic residues modulo a prime) is an example of a scheme having an

oblivious key generator.

Given the above, we adapt our construction in the natural way: specifically,

the Gen algorithm is changed so that instead of generating pkE using EGen (and

then erasing the secret key skE and the random coins used), we now generate pkE

using OblEGen. Adapting the proof of Theorem 6.12, we can easily show:

Theorem 6.14. Under the assumptions of Theorem 6.12 and assuming (EGen, Enc,

Dec) has an oblivious key generator, the modified ring signature scheme described

above is (computationally) anonymous against full key exposure, and unforgeable

w.r.t. insider corruption.

The proof is given in Section 6.9.2.

6.6 Efficient Two-User Ring Signature Schemes

In this section, we present more efficient constructions of two-user ring sig-

nature schemes based on specific assumptions. Our first scheme is based on the
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(standard) signature scheme constructed by Waters [Wat], whereas the second is

based on the Camenisch-Lysyanskaya signature scheme [CL].

6.6.1 The Waters Scheme

We briefly review the Waters signature scheme. Let G, G1 be groups of prime

order q such that there exists an efficiently computable bilinear map ê : G×G→ G1.

We assume that q, G, G1, ê, and a generator g ∈ G are publicly known. The Waters

signature scheme for messages of length n is defined as follows:

Key Generation. Choose α ← Zq and set g1 = gα. Additionally choose random

elements h, u′, u1, . . . , un ← G. The public key is (g1, h, u′, u1, . . . , un) and the secret

key is hα.

Signing. To sign the n-bit message M , first compute w = u′ ·∏i:Mi=1 ui. Then

choose random r ← Zq and output the signature σ = (hα · wr, gr).

Verification. To verify the signature (A, B) on message M with respect to public

key (g1, h, u′, u1, . . ., un), compute w = u′ · ∏i:Mi=1 ui and then check whether

ê(g1, h) · ê(B, w)
?
= ê(A, g).

6.6.2 A 2-User Ring Signature Scheme

The main observation we make with regard to the above scheme is the fol-

lowing: element h is arbitrary, and only knowledge of hα is needed to sign. So, we

can dispense with including h in the public key altogether; instead, a user U with

secret α and the value g1 = gα in his public key will use as his “h-value” the value
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ḡ1 contained in the public key of a second user Ū . This provides anonymity since

Ū could also have computed the same value (ḡ1)
α using the secret value ᾱ = logg ḡ1

known to him (because ḡα
1 = gᾱ

1 ). We now proceed with the details.

Key Generation. Choose α ← Zq and set g1 = gα. Additionally choose random

elements u′, u1, . . . , un ← G. The public key is (g1, u′, u1, . . ., un) and the secret

key is α. (We again assume that q, G, G1, ê, and g are system-wide parameters.)

Ring Signing. To sign message M ∈ {0, 1}n with respect to the ring R =

{PK, PK} using secret key α (where we assume without loss of generality that

α is the secret corresponding to PK), proceed as follows: parse PK as (g1, u′,

u1, . . ., un) and PK as (ḡ1, ū′, ū1, . . ., ūn), and compute w = u′ ·∏i:Mi=1 ui and

w̄ = ū′ ·∏i:Mi=1 ūi. Then choose random r ← Zq and output the signature

σ = (ḡα
1 · (ww̄)r, gr) .

Ring Verification. To verify the signature (A, B) on message M with respect

to the ring R = {PK, PK} (parsed as above), compute w = u′ · ∏i:Mi=1 ui and

w̄ = ū′ ·∏i:Mi=1 ūi and then check whether ê(g1, ḡ1) · ê(B, (ww̄))
?
= ê(A, g).

It is not hard to see that correctness holds. We prove the following regarding

the above scheme:

Theorem 6.15. Assume the Waters signature scheme is existentially unforgeable12

under adaptive chosen message attack. Then the 2-user ring signature scheme de-

scribed above is unconditionally anonymous against full key exposure, and unforge-

able against chosen-subring attacks.

12This holds [Wat] under the computational Diffie-Hellman assumption in G.

179



Proof. Unconditional anonymity against full key exposure follows easily from the

observation made earlier: namely, that only the value ḡα
1 = gᾱ

1 (where ᾱ
def
= logg ḡ1)

is needed to sign, and either of the two (honest) parties can compute this value.

We now prove that the scheme satisfies Definition 6.6. We do this by showing

how an adversary A that forges a signature with respect to the ring signature scheme

with non-negligible probability can be used to construct an adversary Â that forges

a signature with respect to the Waters signature scheme (in the standard sense)

with the same probability. For simplicity in the proof, we assume that A only ever

sees the public keys of two users, requests all signatures to be signed with respect

to the ring R containing these two users, and forges a signature with respect to

that same ring R. By a hybrid argument, it can be shown that (for this scheme)

this is equivalent to the more general case when A may see multiple public keys,

request signatures with respect to various (different) 2-user subsets, and then output

a forgery with respect to any 2-user subset of its choice.

Construct Â as follows: Â is given the public key (ĝ1, ĥ, û′, û1, . . ., ûn) of

an instance of the Waters scheme. Â constructs two user public keys as follows:

first, it sets g1 = ĝ1 and ḡ1 = ĥ. Then, it chooses random u′, u1, . . . , un ← G and

sets ū′ = û′/u′ and ūi = ûi/ui for all i. It gives to A the public keys (g1, u′, u1,

. . ., un) and (ḡ1, ū′, ū1, . . ., ūn). Note that both public keys have the appropriate

distribution. When A requests a ring signature on a message M with respect to

the ring R containing these two public keys, Â requests a signature on M from its

signing oracle, obtains in return a signature (A, B), and gives this signature to A.
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Note that this is indeed a perfect simulation, since

(

ĥlogg ĝ1 ·
(

û′
∏

i:Mi=1

ûi

)r

, gr

)

=

(

ḡ
logg g1

1 ·
(

u′ū′
∏

i:Mi=1

uiūi

)r

, gr

)

,

which is an appropriately-distributed ring signature with respect to the public keys

given to A.

When A outputs a forgery (A∗, B∗) on a message M∗, this same forgery is

output by Â. Note that Â outputs a valid forgery whenever A does, since

ê(g1, ḡ1) · ê
(

B∗, (u′ū′∏
i:M∗

i =1 uiūi)
)

= ê(A∗, g)

implies

ê(ĝ1, ĥ) · ê
(

B∗, (û′∏
i:M∗

i
=1 ûi)

)

= ê(A∗, g) .

We conclude that Â outputs a forgery with the same probability as A. Since, by

assumption, the Waters scheme is secure, this completes the proof.

We remark that the security reduction to the Waters scheme is tight.

An efficiency improvement. A (slightly) more efficient variant of the above

scheme is also possible. Key generation is the same as before, except that an addi-

tional, random identifier I ∈ {0, 1}k is also chosen and included in the public key.

Let <lex denote lexicographic order. To sign message M ∈ {0, 1}n with respect to

the ring R = {PK, PK}, first parse PK as (I, g1, u′, u1, . . ., un) and PK as (Ī,

ḡ1, ū′, ū1, . . ., ūn). Choose random r ← Zq. If I ≤lex Ī, compute w = u′ ·∏i:Mi=1 ui

and the signature

σ = (s · wr, gr) ;
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if Ī <lex I, compute w̄ = ū′ ·∏i:Mi=1 ūi and the signature

σ = (s · w̄r, gr) ,

where, in each case, s = ḡα
1 = gᾱ

1 is computed using whichever secret key is known to

the signer. Verification is changed in the obvious way. A proof similar to the above

shows that this scheme satisfies the same security properties as in Theorem 6.15.

6.6.3 A Construction Based on the Camenisch-Lysyanskaya Scheme

A second ring signature scheme based on similar ideas can be derived from

the signature scheme of Camenisch and Lysyanskaya (scheme A in [CL]), which

we briefly review. Let G, G1, q, ê, g be as above (we again assume that these are

publicly known). The Camenisch-Lysyanskaya signature scheme for messages in Zq

is defined as follows:

Key Generation. Choose x, y ← Zq and set X = gx and Y = gy. The public key

is (X, Y ) and the secret key is (x, y).

Signing. To sign the message m ∈ Zq, choose a random value a ∈ G and output

the signature (a, ay, ax+mxy).

Verification. To verify the signature (a, b, c) on message m with respect to public

key (X, Y ), check that ê(a, Y )
?
= ê(g, b) and ê(X, a) · ê(X, b)m ?

= ê(g, c).

The reader is referred to [CL] for details regarding the assumption under which

the above scheme can be proven secure. As for adapting the above to a two-user ring

signature scheme, our key observation is that knowledge of either (x, Y ) or (X, y)

is sufficient to generate a signature. In more detail:
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• Using (x, Y ), a signature on m may be computed as follows: choose random

r ∈ Zq and set a = gr. Then output the signature (a, Y r, axY mxr).

• Using (X, y), a signature on m may be computed as follows: choose random

r ∈ Zq and set a = gr. Then out put the signature (a, ay, Xr+mry).

This suggests the following ring signature scheme: to generate a public key, choose

x ← Zq and a random identifier I ∈ {0, 1}k; the public key is (I, X = gx) and the

secret key is x. To sign message m with respect to ring
{

(I, X), (Ī, X̄)
}

, proceed

as follows: if I ≤lex Ī, compute a Camenisch-Lysyanskaya signature (as described

above) for the “public key” (X, X̄); if Ī <lex I, compute a Camenisch-Lysyanskaya

signature for the “public key” (X̄, X). Verification is done in the obvious way.

Unconditional anonymity against full key exposure is immediate, and unforgeability

against chosen-subring attacks (assuming security of the Camenisch-Lysyanskaya

scheme) can be easily proven exactly as in Theorem 6.15.

6.7 ZAPs

Let L be an NP language with associated polynomial-time and polynomially-

bounded witness relation RL (i.e., such that L
def
= {x | ∃w : (x, w) ∈ RL}). If

(x, w) ∈ RL we refer to x as the statement and w as the associated witness for x.

We now recall the definition of a ZAP from [DN00]:

Definition 6.16 (ZAP). A ZAP for an NP language L (with associated witness

relation RL) is a triple (ℓ,P,V), where ℓ(·) is a polynomial, P is a ppt algorithm,

and V is polynomial-time deterministic algorithm, and such that.
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Completeness For13 any (x, w) ∈ RL and any r ∈ {0, 1}ℓ(k):

Pr [π ← Pr(x, w) : Vr(x, π) = 1] = 1 .

Adaptive soundness There exists a negligible function ε such that

Pr
[

r ← {0, 1}ℓ(k) : ∃(x, π) : x 6∈ L and Vr(x, π) = 1
]

≤ ε(k) .

Witness indistinguishability (Informal) For any x ∈ L, any pair of witnesses w0, w1

for x, and any r ∈ {0, 1}ℓ(k), the distributions {Pr(x, w0)} and {Pr(x, w1)} are

computationally indistinguishable. (Note: more formally, we need to speak in

terms of sequences {rk ∈ {0, 1}ℓ(k)}, {xk}, and {(wk,0, wk,1)} but we avoid

doing so for simplicity of exposition.)

A ZAP is used in the following way: The verifier generates a random first message

r ← {0, 1}ℓ(k) and sends it to the prover P. The prover, given r, a statement x,

and associated witness w, sends π ← Pr(x, w) to the verifier. The verifier then runs

Vr(x, π) and accepts iff the output is 1.

6.8 Separation Results

6.8.1 Proofs of Claims 6.8–6.11

Proof of Claim 6.8: Let Π = (Gen, Sign, Vrfy) be a ring signature scheme

satisfying the conditions stated in the claim. Construct the following scheme Π′:

13We remark that the definition in [DN00] allows for a negligible completeness error. However,

their construction achieves perfect completeness when instantiated using the NIZK of [FLS99].
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the key generation algorithm Gen′(1k) computes (PK, SK) ← Gen(1k) and out-

puts PK ′ = 0|PK and SK ′ = SK. The signing algorithm Sign′
s,SKs

(M, R) checks

whether all public keys in R begin with a “0”: if so, it outputs σ ← Signs,SKs
(M, R̄)

(where R̄ contains the same keys as R, but with the leading bit of each key removed);

otherwise, it outputs s. Vrfy′R(M, σ) similarly checks whether all public keys in R

begin with a “0”: if so, it outputs VrfyR̄(M, σ) (with R̄ as above); otherwise, it

outputs 0. (Recall that completeness is only required to hold for rings containing

honestly-generated public keys.)

Clearly, the above scheme does not achieve anonymity w.r.t. adversarially-

chosen keys. On the other hand, it clearly still achieves basic anonymity. It is also

not difficult to see that it remains unforgeable w.r.t. insider corruption.

Proof of Claim 6.9: Let Π = (Gen, Sign, Vrfy) be a ring signature scheme satisfying

the conditions stated in the claim, and assume a symmetric-key encryption scheme

(Enc, Dec) (which exists given the assumption of the claim). Construct scheme Π′

as follows: the key generation algorithm Gen′(1k) computes (PK, SK) ← Gen(1k)

but additionally chooses κ ← {0, 1}k; it outputs PK ′ = PK and SK ′ = SK|κ.

The signing algorithm Sign′
s,SKs|κ(M, R) computes σ ← Signs,SKs

(M, R) and C ←

Encκ(0
k); it outputs the signature (σ, C). Verification is changed in the obvious way,

simply ignoring the ciphertext included as part of the signature.

The scheme does not achieve anonymity under attribution attacks since, given

a signature computed by a user with secret key SK|κ with respect to any ring,

as long as the adversary has all-but-one of the secret keys of the members of the
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ring (and, in particular, has the {κi} values for all-but-one of the members), it can

determine the correct signer with all but negligible probability. On the other hand, it

is not hard to show that the scheme remains anonymous w.r.t. adversarially-chosen

keys and also remains unforgeable w.r.t. insider corruption.

We remark that although the modified scheme, above, does not satisfy our

formal definition of anonymity against attribution attacks, it does not quite allow

an adversary to unambiguously prove to a third party that some user was the signer.

(The issue is that the adversary can output whatever {κi} it likes, and not the

“actual” values it chose at the time of key generation.) This can be prevented,

however, if we additionally require users to include a commitment to κ as part of

their public key, and to include the corresponding decommitment as part of their

secret key.

Proof of Claim 6.10: Let Π = (Gen, Sign, Vrfy) be a ring signature scheme satisfying

the conditions of the claim. Construct Π′ = (Gen′, Sign′, Vrfy′) as follows. The key

generation algorithm Gen′ is the same as Gen. The signing algorithm Sign′
s,SKs

(M, R)

sets R′ = R ∪ {M} (where M is treated as a public key) and computes σ1 ←

Signs,SKs
(M, R) and σ2 ← Signs,SKs

(0k, R′). The output is the signature (σ1, σ2).

To verify a signature (σ1, σ2) (using Vrfy′), simply verify that signature σ1 is correct

(using Vrfy).

It is easy to see that the scheme is insecure against chosen-subring attacks.

Specifically, consider the adversaryA who receives the set of public keys (PK1, PK2, PK3)

and then requests a signature on the message M = PK3 with respect to the ring
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R = (PK1, PK2). Let (σ1, σ2) be the response of the signing oracle. A outputs

(0k, (σ2, σ2), (PK1, PK2, PK3)) and terminates. Note that (σ2, σ2) is a valid ring

signature (with respect to the scheme Π′) for the message 0k with respect to the

ring (PK1, PK2, PK3). Also note that A never requested a signature for such a

message/ring pair. We therefore conclude that A succeeds in producing a valid

forgery with probability 1.

It is quite obvious that Π′ remains anonymous against full key exposure. Π′

is also unforgeable against fixed-ring attacks. We prove this by contradiction. Let

A′ be an adversary that breaks the unforgeability of Π′ against fixed-ring attacks.

We construct an adversary A that breaks the unforgeability of Π w.r.t. insider

corruption. A takes as input a ring R = (PK1, . . . , PKn) and feeds it to A′. When

A′ requests a signature (under Sign′) on the message M with respect to the ring R,

A uses its signing oracle to obtain the two components σ1 and σ2. Note that A can

obtain σ2, because it can request a signature on a ring that contains public keys

of its choice (M in this case). When A′ outputs a candidate forgery (M, (σ1, σ2)),

then A outputs σ1 as a candidate forgery for message M with respect to the ring

R. Note that if the output of A′ is a valid signature with respect to Π′, then the

output of A is a valid signature with respect to Π. Also, if A′ never requested a

signature on M , then A never requested a signature on M with respect to the ring

R. We conclude that A outputs a valid forgery whenever A′ does.

Proof of Claim 6.11: Let Π = (Gen, Sign, Vrfy) be a scheme satisfying the conditions

of the claim. We construct the scheme Π′ as follows. The key generation algorithm
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Gen′ runs Gen to obtain (PK, SK), then outputs PK ′ = 0|PK and SK ′ = SK. We

will say that a public key is “good” if it begins with a zero and that it is “bad” if it

begins with a one. Note that all public keys generated by Gen′ are “good.”

The signing algorithm Sign′
s,SKs

(M, R) proceeds as follows: let R′ be the ring

consisting of only the “good” public keys from R, with the initial bit stripped. Then

compute σ ← Signs,SKs
(M, R′) and output this as the signature. The verification

algorithm is modified in the appropriate way.

Π′ is not unforgeable w.r.t. insider corruption. To see this, consider the adver-

sary A who receives public keys (PK ′
1, PK ′

2). Next, A generates an arbitrary “bad”

public key PK ′ = 1 | PK ′′. The adversary then requests a signature on an arbi-

trary message M with respect to the ring (PK ′
1, PK ′

2, PK ′) on behalf of the signer

holding PK ′
1. The signing oracle returns a signature σ that is a valid signature for

message M respect to the ring (PK ′
1, PK ′

2) (recall that PK ′ is ignored, since it is

“bad”). But now A can output the forgery (M, σ, (PK ′
1, PK ′

2)) and succeed with

probability 1.

It is not hard to see that Π′ remains unforgeable against chosen-subring attacks

(since, in such attacks, the adversary can only request signatures with respect to

rings that consist only of “good” public keys). One can also easily show that Π′

remains anonymous w.r.t. key exposures.
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6.8.2 The Herranz-Sáez Ring Signature Scheme

In the proof of Claim 6.10 (above), we presented an “artificial” ring signa-

ture scheme that is unforgeable against fixed-ring attacks, but not against chosen-

subring attacks. We now show a “natural” scheme, the Herranz-Sáez ring signature

scheme [HS], that illustrates the same separation (albeit under less general assump-

tions).

We first review the Herranz-Sáez ring signature scheme. Let G be a group

of prime order q, such that, given a bit string y it is possible to efficiently verify

whether y ∈ G. Let H : {0, 1}∗ → Zq be a hash function modeled as a random

oracle. We assume that H , q, G, and a generator g ∈ G are publicly known. The

scheme is defined as follows:

Key Generation. Choose x ← Zq and set y = gx. The public key is y and the

secret key is x.

Ring Signing. To sign message M with respect to the ring R = {y1, . . . , yn} (where

yi ∈ G for all i) using secret key xs, proceed as follows:

1. for i = 1, . . . , n, i 6= s, choose random ai ← Zq and set Ci = gai;

2. choose random as ← Zq;

3. compute Cs and b as follows:

Cs = gas

∏

i6=s

y
−H(M,Ci)
i

b = as +
∑

i6=s

ai + xsH(M, Cs);

4. in the unlikely event that the Ci are not all distinct, restart from the beginning;
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5. output the signature σ = (b, C1, . . . , Cn).

Ring Verification. To verify the signature (b, C1, . . . , Cn) on message M with

respect to the ring R = {y1, . . . , yn} (where yi, Ci ∈ G for all i), check that the Ci

are all distinct and that:

gb ?
=

n
∏

i=1

Ci · yH(M,Ri)
i .

It is not hard to see that the scheme above is unconditionally anonymous

against full key exposure, even in the standard model. This is because a ring sig-

nature on message M with respect to a ring R is a uniformly random sample from

the set of the tuples (b, C1, . . . , Cn) that satisfy the ring verification condition, and

this distribution is independent of the index s of the signing key used. Addition-

ally, Herranz and Sáez [HS] prove that this scheme is unforgeable against fixed-ring

attacks14 under the discrete logarithm assumption in the random oracle model.

However, the Herranz-Sáez scheme is not unforgeable against chosen-subring

attacks. Consider an adversary that requests two signatures on the same arbitrary

message M with respect to the disjoint rings R = (y1, . . . , yn) and R′ = (y′
1, . . . , y

′
m),

obtaining signature σ = (b, C1, . . . , Cn) in the first case and σ′ = (b′, C ′
1, . . . , C

′
n) in

the second. The adversary then outputs the forged signature

σ∗ = (b + b′, C1, . . . , Cn, C
′
1, . . . , C

′
m)

on M with respect to the ring R ∪ R′ = (y1, . . . , yn, y
′
1, . . . , y

′
m). Applying the ring

verification algorithm shows that this is indeed a valid forgery, except in the unlikely

14The authors do not formally define unforgeability, but an inspection of their proof of security

reveals that their notion of unforgeability matches our Definition 6.5.
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case that Ci = C ′
j for some i, j.

The above attack was, in fact, addressed in subsequent work of Herranz [Her05],

where it is shown that a simple modification of the scheme (in which the ring R is

included as an additional input to the hash function) is unforgeable against chosen-

subring attacks.15 (In fact, examination of the proof shows that the modified scheme

is also secure with respect to our Definition 6.7, although adversarially-chosen keys

are not explicitly addressed in [Her05].) Nevertheless, the attack on the original

scheme that we have demonstrated shows that security against chosen-subring at-

tacks is strictly stronger than security against fixed-ring attacks, and illustrates yet

again the importance of rigorously formalizing desired notions of security.

6.9 Proofs of Theorems 6.12 and 6.14

6.9.1 Proof of Theorem 6.12

We restate Theorem 6.12 for convenience:

If encryption scheme (EGen, Enc, Dec) is semantically secure, signature scheme (Gen′,

Sign′, Vrfy′) is existentially unforgeable under adaptive chosen-message attacks, and

(ℓ,P,V) is a ZAP for L as described above, then the above ring signature scheme

is (computationally) anonymous against attribution attacks, and unforgeable w.r.t.

insider corruption.

Proof. We prove each of the desired security properties in turn.

15We thank Javier Herranz for pointing this out to us.
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Anonymity. For simplicity of exposition, we consider Definition 6.4 with n = 2;

i.e., we assume only two users. By a straightforward hybrid argument, this implies

the general case. Given a ppt adversary A, we consider a sequence of experiments

E0, Hybrid0, Hybrid1, E1 such that E0 (resp., E1) corresponds to the experiment

of Definition 6.4 with b = 0 (resp., b = 1), and such that each experiment is

computationally indistinguishable from the one before it. This implies that A has

negligible advantage in distinguishing E0 from E1, as desired.

For convenience, we review experiment E0. Here, two key pairs (PK0 =

(pkS,0, pkE,0, r0), SK0) and (PK1 = (pkS,1, pkE,1, r1), SK1) are generated and A is

given PK0 and the randomness used to generate (PK1, SK1) (by hybrid argument,

we can assume that i0 = 0 and i1 = 1). The adversary is also given access to a

signing oracle (which can be used to obtain signatures computed using SK0). A

then outputs a message M along with a ring of public keys R containing both PK0

and PK1. Finally, A is given σ ← SignSK0
(M, R).

Experiment Hybrid0 is the same as experiment E0 except that we change how

the signature σ is generated. In particular, step 3 of the ring signing algorithm

is modified as follows: let RE and M∗ be as in the description of the ring signing

algorithm given earlier. In step 3, instead of setting C∗
1−β to be an encryption of all

zeros, we now compute σ′
1 ← SignskS,1

(M∗) and then set C∗
1−β = Enc∗RE

(σ′
1; ω1−β).

We stress that, as in E0, the ciphertext C∗
β is still set to be an encryption of the

signature σ′
0.

It is not hard to see that experiment Hybrid0 is computationally indistinguish-

able from experiment E0, assuming semantic security of the encryption scheme
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(EGen, Enc, Dec). This follows from the observations that (1) adversary A is not

given the random coins used in generating PK0 and so, in particular, it is not

given the coins used to generate pkE,0; (2) (informally) semantic security of encryp-

tion under EncpkE,0
implies semantic security of encryption using Enc∗RE

as long as

pkE,0 ∈ RE (a formal proof is straightforward); and, finally, (3) the coins ω1−β used

in generating C∗
1−β are not used in the remainder of the ring signing algorithm.

Experiment Hybrid1 is the same as Hybrid0 except that we use a different wit-

ness when computing the proof π for the ZAP. In particular, instead of using witness

(σ′
0, ωβ) we use the witness (σ′

1, ω1−β). The remainder of the signing algorithm is

unchanged.

It is relatively immediate that Hybrid1 is computationally indistinguishable

from Hybrid0, assuming witness indistinguishability of the ZAP. (We remark that

the use of a ZAP, rather than non-interactive zero-knowledge, is essential here since

the adversary may choose the “random string” component of all the adversarially-

chosen public keys any way it likes.) In more detail, we can construct the follow-

ing malicious verifier algorithm V∗ using A: verifier V∗ generates (PK0, SK0) and

(PK1, SK1) exactly as in experiments Hybrid0 and Hybrid1, and gives these keys and

the appropriate associated random coins to A. The signing queries of A can easily

be answered by V∗. When A makes its signing query, V∗ computes the C∗
j exactly

as in Hybrid1 and then gives to the prover P the keys {pkS,i}i∈R, the message M∗,

the set of keys RE , and the ciphertexts (C∗
0 , C

∗
1); this defines the NP-statement x

exactly as in step 4 of the ring signing algorithm. In addition, V∗ gives the two wit-

nesses w0 = (σ′
0, ωβ) and w1 = (σ′

1, ω1−β) to P. Finally, V∗ sends as its first message
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the “random string” component r of the lexicographically-first public key in R (this

r is the random string that would be used to generate the proof π in step 4 of the

ring signing algorithm). The prover responds with a proof π ← Pr(x, wb) (for some

b ∈ {0, 1}), and then V∗ outputs (C∗
0 , C

∗
1 , π).

Note that if the prover uses the first witness provided to it by V∗ then the

output of V∗ is distributed exactly according to Hybrid0, while if the prover uses

the second witness provided to it by V∗ then the output of V∗ is distributed ex-

actly according to Hybrid1. Witness indistinguishability of the ZAP thus implies

computational indistinguishability of Hybrid0 and Hybrid1.

We may now notice that Hybrid1 is computationally indistinguishable from E1

by exactly the same argument used to show the indistinguishability of Hybrid0 and

E0. This completes the proof.

Unforgeability. Assume there exists a ppt adversary A that breaks the above

ring signature scheme (in the sense of Definition 6.7) with non-negligible proba-

bility. We construct an adversary A′ that breaks the underlying signature scheme

(Gen′, Sign′, Vrfy′) (in the standard sense of existential unforgeability) with non-

negligible probability.

A′ receives as input a public key pkS. Let n = n(k) be a bound on the

number of (honest user) public keys that A expects to be generated. A′ runs A

with input public keys S = {PK1, . . . , PKn}, that A′ generates as follows. A′

chooses i∗ ← {1, . . . , n} and sets pkS,i∗ = pkS. The remainder of public key PKi∗ is

generated exactly as prescribed by the Gen algorithm, with the exception that the
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decryption key skE,i∗ that is generated is not erased. Public keys PKi for i 6= i∗ are

also generated exactly as prescribed by the Gen algorithm, again with the exception

that the decryption keys {skE,i} are not erased.

A′ then proceeds to simulate the oracle queries of A in the natural way:

1. When A requests a signature on message M , with respect to ring R (which

may possibly contain some public keys generated in an arbitrary manner by

A), to be signed by user i 6= i∗, then A′ can easily generate the response to

this query by running the Sign algorithm completely honestly;

2. When A requests a signature on message M , with respect to ring R (which,

again, may possibly contain some public keys generated in an arbitrary manner

by A) to be signed by user i∗, then A′ cannot directly respond to this query

since it does not have skS,i∗. Instead, A′ sets M∗ appropriately, submits M∗

to its signing oracle, and obtains in return a signature σ′
i∗ . It then computes

the remainder of the ring signature by following the rest of the Sign algorithm;

note, in particular, that skS,i∗ is not needed for this;

3. Any corruption query made by A for a user i 6= i∗ can be faithfully answered

by A′. On the other hand, if A ever makes a corruption query for i∗, then A′

simply aborts.

At some point, A outputs a forgery σ̄ = (C̄∗
0 , C̄

∗
1 , π̄) on a message M̄ with respect

to some ring of honest-user public keys R̄ ⊆ S. If PKi∗ 6∈ R̄, then A′ aborts.

Otherwise, since A′ knows all relevant decryption keys (recall that the ring R̄ con-

tains public keys of honest users only, and these keys were generated by A′) it can
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decrypt both C̄∗
0 , C̄

∗
1 and obtain a candidate signatures σ̄i∗,0, σ̄i∗,1 respectively. Fi-

nally, A′ sets M̄∗ = M̄ |PK1 | · · · |PKn′ (where R̄ = {PKi}) and verifies which

of the σi∗,0, σ̄i∗,1 is a valid signature for M∗: if Vrfy′pkS
(M∗, σi∗,0) = 1, A′ outputs

(M̄∗, σ̄i∗,0); else outputs (M̄∗, σ̄i∗,1). Note that (by requirement) A never requested

a signature on message M̄ with respect to the ring R̄, and so A′ never requested a

signature on message M̄∗ from its own oracle.

We claim that if A forges a signature with non-negligible probability ε = ε(k),

then A′ forges a signature with probability at least ε′ = ε/n− negl(k). To see this,

note first that if A outputs a valid forgery then with all but negligible probability

(by soundness of the ZAP) it holds that (pkS,i, M̄
∗, R̄E, C̄∗

j ) ∈ L for some i, j (where

pkS,i and R̄E are defined in the natural way based on the ring R̄ and the public keys

it contains). Conditioned on this, with probability 1/n it is the case that (1) A′

did not abort and furthermore (2) (pkS,i∗ , M̄
∗, R̄E, C̄∗

j ) ∈ L. When this occurs,

then with all but negligible probability A′ will recover (by decrypting as described

above) a valid signature σ̄i∗,j on the message M̄∗ with respect to the given public

key pkS,i∗ = pkS (relying here on the fact that with all but negligible probability

over choice of encryption public keys, Enc∗ has zero decryption error). Security of

(Gen′, Sign′, Vrfy′) thus implies that ε is negligible.

6.9.2 Proof of Theorem 6.14

We restate Theorem 6.14 for convenience:

Under the assumptions of Theorem 6.12 and assuming (EGen, Enc, Dec) has an obliv-
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ious key generator, the modified ring signature scheme described above is (compu-

tationally) anonymous against full key exposure, and unforgeable w.r.t. insider cor-

ruption.

Proof. The proof of unforgeability follows immediately from Theorem 6.12 since,

by Definition 6.13, the adversary cannot distinguish between the original scheme

(in which the encryption key is generated using EGen) and the modified scheme (in

which the encryption key is generated using OblEGen).

We now argue that the modified scheme achieves anonymity against full key

exposure. First we note that the anonymity against attribution attacks claimed

in Theorem 6.12 holds even when the adversary is given all random coins used

to generate (PK0, SK0) except for those coins used to generate pkE,0 (using EGen).

Now, if there exists a ppt adversaryA that breaks anonymity of the modified scheme

in the sense of full key exposure, we can use it to construct a ppt adversary A′ that

breaks anonymity of the original scheme against attribution attacks. A′ receives

PK0, the random coins ωS,1, ωE,1 used to generate (PK1, SK1), and the random

coins ωS,0 used to generate pkS,0 (i.e., A is not given the coins used to generate

pkE,0). Next, A′ runs ω′
E,0 ← OblRand(pkE,0) and ω′

E,1 ← OblRand(pkE,1) and gives

to A the public key PK0 it received as well as the random coins ωS,0, ω
′
E,0, ωS,1, ω

′
E,1.

The remainder of A’s execution is simulated in the natural way by A′.

Now, Definition 6.13 implies that the advantage of A in the above is negligibly

close to the advantage of A in attacking the modified scheme in the sense of full

key exposure. But the advantage of A in the above is exactly the advantage of
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A′ in attacking the original scheme via key attribution attack. Since we have al-

ready proved that the original scheme is anonymous against attribution attacks (cf.

Theorem 6.12), the modified scheme is anonymous against full key exposure.
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Chapter 7

Conclusions

In this dissertation, we presented four major contributions. Our first contri-

bution is the design of LMS, an efficient lookup protocol for a setting, where each

node is directly connected to a small set of neighbors and can send a message only

to them. This models an ad-hoc network without a routing infrastructure and it

also has applications in trust networks. As a demonstration of the power of LMS,

in other work we used it to build a completely decentralized public-key distribution

system [MBKM06]. We proved analytic bounds for the worst-case performance of

LMS and, through detailed simulations, we show that the actual performance on

realistic topologies is significantly better. As part of our analysis, we also derived a

powerful theorem on statistical distributions, which is of independent interest.

Our second contribution is the definition of the AS attack model and the design

of SDHT, a lookup protocol that is resilient within such model. In the AS Model,

an attacker may control an arbitrary number of nodes, but with the restriction

that all of those nodes belong to a small set of ASes. The AS Model represents a

reasonable intermediate assumption between assuming that the attacker can control

only a small fraction of the nodes in the system, which is unrealistic for Internet

applications with open membership, and assuming that the attacker may control an

arbitrary number of nodes with no restrictions, which makes it unlikely that any
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lookup protocol exists that is simultaneously secure and efficient.

Our last two contributions are on the topic of ring signatures, a variant of

digital signatures with an interesting anonymity property. First, we have devised

new definitions of security for ring signatures that address realistic threats ignored

by definitions provided in previous work. Finally, we have designed the first three

constructions of ring signatures that are provably secure in the standard model, i.e.

without the use of the random oracle heuristic.
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[HS] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes.
In Progress in Cryptology — Indocrypt 2003.

[JGZ03] Song Jiang, Lei Guo, and Xiaodong Zhang. LightFlood: an efficient
flooding scheme for file search in unstructured peer-to-peer systems.
In International Conference on Parallel Processing, 2003.

204



[JSI] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs
and their applications. In Advances in Cryptology — Eurocrypt ’96.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Chris Wells, and Ben Zhao. Oceanstore: an
architecture for global-scale persistent storage. In ASPLOS-IX: Pro-
ceedings of the ninth international conference on Architectural support
for programming languages and operating systems, pages 190–201, New
York, NY, USA, 2000. ACM Press.

[LCC+02] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search
and replication in unstructured peer-to-peer networks. In Proceedings
of the 16th international conference on Supercomputing, pages 84–95.
ACM Press, 2002.

[LHH+04] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Scott Shenker,
and Ion Stoica. Enhancing p2p file-sharing with an internet-scale query
processor. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases (VLDB ’04), pages 432–443, Toronto, Canada,
August 2004.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.
Sequential aggregate signatures from trapdoor permutations. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027
of Lecture Notes in Computer Science, pages 74–90. Springer, 2004.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzan-
tine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–
401, 1982.

[LWW] J.K. Liu, V.K. Wei, and D.S. Wong. Linkable spontaneous anonymous
group signatures for ad hoc groups. In ACISP 2004.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MBKM06] Ruggero Morselli, Bobby Bhattacharjee, Jonathan Katz, and Michael
Marsh. Keychains: A decentralized public-key infrastructure. Techni-
cal Report CS-TR-4788, Department of Computer Science, University
of Maryland, March 2006.

[MBMS05] Ruggero Morselli, Bobby Bhattacharjee, Michael A. Marsh, and Ar-
avind Srinivasan. Efficient lookup on unstructured topologies. In Sym-
posium on Principles of Distributed Computing (PODC 2005), Las
Vegas, Nevada, USA, July 2005. ACM SIGACT and SIGOPS.

[MBMS07] Ruggero Morselli, Bobby Bhattacharjee, Michael A. Marsh, and Ar-
avind Srinivasan. Efficient lookup on unstructured topologies. IEEE

205



Journal on Selected Areas in Communications, 2007. Issue on Peer-to-
Peer Communications and Applications.

[McC03] Bill McCarty. Botnets: Big and bigger. IEEE Security & Privacy,
1(4):87–90, 2003.

[Mit01] M. Mitzenmacher. Compressed bloom filters. In 20th Annual ACM
Symposium on Principles of Distributed Computing, pages 144–150,
2001.

[MMB00] Alberto Medina, Ibrahim Matta, and John Byers. On the origin of
power laws in internet topologies. SIGCOMM Comput. Commun.
Rev., 30(2):18–28, 2000.

[MMGC02] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Ben-
jie Chen. Ivy: a read/write peer-to-peer file system. In OSDI ’02:
Proceedings of the 5th symposium on Operating systems design and
implementation, pages 31–44, New York, NY, USA, 2002. ACM Press.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable
and dynamic emulation of the butterfly. In Proceedings of the twenty-
first annual symposium on Principles of distributed computing, pages
183–192. ACM Press, 2002.

[MR97] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1997.

[Nao] M. Naor. Deniable ring authentication. In Advances in Cryptology —
Crypto 2002.

[Net] Sharman Networks. Kazaa. http://www.kazaa.com.

[oSN02] National Insititute of Standards and Technology (NIST). Fips 180-2:
Secure hash standard. http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2withchangenotice.pdf, August 2002.

[PD00] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems
Approach. Morgan Kauffman Publishers, second edition, 2000.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2001), 2001.

[RF02] M. Ripeanu and I. Foster. Mapping the Gnutella network: Macroscopic
properties of large-scale peer-to-peer systems. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems, 2002.

206



[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and
Scott Shenker. A scalable content-addressable network. In Proceedings
of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM ’01), pages 161–
172, San Diego, CA USA, August 27–31 2001. ACM.

[Rip] http://people.cs.uchicago.edu/∼matei /GnutellaGraphs/.

[RK02] Sean C. Rhea and John Kubiatowicz. Probabilistic location and rout-
ing. In Proceedings of INFOCOM 2002, 2002.

[RKCD01] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and
Peter Druschel. Scribe: The design of a large-scale event notifica-
tion infrastructure. In Jon Crowcroft and Markus Hofmann, editors,
Networked Group Communication, volume 2233 of Lecture Notes in
Computer Science, pages 30–43. Springer, 2001.

[RS04] Venugopalan Ramasubramanian and Emin Gun Sirer. Beehive: Ex-
ploiting power law query distributions for O(1) lookup performance in
peer to peer overlays. In Proceedings of NSDI, 2004.

[RST] R.L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In
Asiacrypt 2001. Full version available at http://www.mit.edu/~tauman
and to appear in Essays in Theoretical Computer Science: in Memory
of Shimon Even.

[RV03] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching.
In Proceedings of IFIP/ACM Middleware 2003, 2003.

[SBS05] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. P5: A
protocol for scalable anonymous communications. Journal of Com-
puter Security, 13(6):839–876, 2005.

[SGG03] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. Measur-
ing and analyzing the characteristics of Napster and Gnutella hosts.
Multimedia Syst., 9(2):170–184, 2003.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, San Diego, California, August 2001.

[TD04] Chunqiang Tang and Sandhya Dwarakadas. Hybrid global-local index-
ing for efficient peer-to-peer information retrieval. In Proceedings of
USENIX NSDI ’04 Conference, San Fransisco, CA, March 2004.

207



[Tou84] Sam Toueg. Randomized byzantine agreements. In PODC ’84: Pro-
ceedings of the third annual ACM symposium on Principles of dis-
tributed computing, pages 163–178, New York, NY, USA, 1984. ACM
Press.

[Wat] B. Waters. Efficient identity-based encryption without random oracles.
In Advances in Cryptology — Eurocrypt 2005.

[WJ02] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator.
Technical Report UM-CSE-TR-456-02, University of Michigan, 2002.

[XZF04] J. Xu, Z. Zhang, and D. Feng. A ring signature scheme using bilinear
pairings. In Workshop on Information Security Applications (WISA),
2004.

[YGM02] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-
peer networks. In ICDCS, pages 5–14, 2002.

[ZK] F. Zhang and K. Kim. ID-based blind signature and ring signature
from pairings. In Advances in Cryptology — Asiacrypt 2002.

[ZKJ01] B. Zhao, K. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure
for fault-resilient wide-area location and routing. Technical Report
UCB//CSD-01-1141, University of California at Berkeley Technical
Report, 2001.

208


