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Addressing the issue of delivery efficiency and transportation service quality in rural areas, this 

thesis presents an analysis of total cost of delivery services in regions with low demand density 

and low road network density. It focuses on designing a cost-effective and efficient freight delivery 

system, which is crucial for promoting a vibrant rural economy. A flexible-route service model is 

developed, aiming to improve farm products and other deliveries by optimizing the service zone 

size and frequency to minimize the average cost per delivered package. The model is tailored for 

a potential truck operation scenario in the central Appalachian region, serving as a representative 

case study, with a general formulation of total cost that can be adapted to similar cases elsewhere. 

Considering the influence of dead-end roads in rural area, this study presents an adjusted 

formulation of length estimation for Traveling Salesman Problem (TSP) tours based on the 



  

literature review and regression on multiple graphs with road network, and develops a 

mathematical formulation of total cost, integrating operation and user costs, supported by 

reasonable assumptions and system constraints.  The results from the baseline study suggest that 

one truck can serve a large service area by exceeding the maximum working hours constraint. This 

observation is made without considering the potential expansion into a multi-zone system, which 

might be necessary due to the combined factors of road network complexity and the perishability 

of farm products. The results from our sensitivity analysis show that a system with a single large 

truck will have the lowest average cost per package when demand is low.  Considering an actual 

road network, this study also explores the possibility of combining the flexible-route delivery 

service with self-deliveries and the extension of Vehicle Routing Problem (VRP) with maximum 

working hour constraint. The study concludes with suggested future research directions in this 

important domain. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Currently, in many rural areas such as Appalachia, low demand density, long travel 

distances, and detours due to terrain constraints are major factors limiting freight 

delivery services provided by major operators. Rural communities face transportation 

insecurity due to factors such as remoteness, high travel costs, lack of efficient public 

transportation, and safety issues. Several delivery companies, such as FedEx and UPS, 

are suspending or requesting extra charges for deliveries in low-density rural markets, 

which significantly disadvantages rural communities. Under the Justice40 Initiative, 

the USDOT is prioritizing projects aimed at eliminating transportation insecurity 

(Justice40 Initiative). Thus, designing a cost-effective freight delivery system is 

important for a vibrant rural economy. 

In addressing delivery challenges in rural areas, it is important to balance route 

optimization with cost considerations for both users and operators. Traditional methods 

such as high frequency delivery with fixed route designed for urban setting often 

struggle in rural contexts due to distinct topographical and demand variables. Advanced 

route optimization and tour length estimation can offer a substantial economic benefit 

for an known area with low demand based on approximate tour, eliminating the need 

for specific point details. The Traveling Salesman Problem (TSP) has emerged as a 

central topic in related research. The TSP provides a methodological foundation for 

determining the most efficient delivery routes with minimal driving distance and travel 
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time, making it relevant to rural delivery challenges. The adaptability of the TSP offers 

significant potential benefits for optimizing rural deliveries.  

The TSP is formulated to determine the shortest tour distance for one vehicle 

visiting all the given n points and returning to the origin. It is widely used for modeling 

delivery and public transit service with small or medium numbers of served points. 

Solving a TSP problem for each exact route requires a large computational effort since 

the computing time for finding the global optimal path increases exponentially with 

number of points. In most scenarios, the demand and exact locations are unknown 

during the planning and design stage for logistics and public transportation (Choi, 

2021). Therefore, estimating typical TSP tour lengths  rather than applying TSP 

algorithms for each exact route is useful for planning vehicle operations, although not 

for real-time decisions. The approximation of tour length also solidly supports the 

economic analysis of total cost, which helps reveal the relations among the decision 

variables, including service headway and size of delivery area, and the demand density 

in the delivery area. 

For rural areas, compared to the suburban and urban areas with denser road 

networks, a tour length with the same distribution of nodes in same size of service area 

is longer due to the sparse road network and dead-end roads. Based on the literature 

reviews, existing tour length models are largely focused on the distribution of nodes, 

density of nodes, few points, and urban road networks. A proposed adjusted tour length 

model considering the influence of dead-ends and topology information is more 

suitable for rural area road networks. 
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This thesis analyzes the total cost of delivery services in rural areas with low 

demand density and explores possible solutions based on adjusted tour length 

approximations. The flexible-route service can help potential delivery scenarios, such 

as farm product deliveries, by optimizing service frequency and service zone size to 

minimize costs. The proposed economic model is used to analyze a potential truck 

operation scenario in the central Appalachian region as a case study. The general 

formulation of total cost and tour length approximation can be adapted to other similar 

cases with proper adjustments. 

1.2 Research Objectives 

The overall objective of this thesis is to develop a tour length estimation relation 

for rural areas and a flexible-route service revealing various factors affecting service 

headway, size of service area and delivery cost for rural freight transportation. The 

methodology has the following features: 

1 It refines the distance approximation models developed by Beardwood et al. (1959) 

by recomputing the circuity factor and focusing on tours of small number of visit 

points with sparse road network and dead-end roads. 

2 It compares the accuracy of length approximation results with multiple heuristic 

algorithms. 

3 It develops the economic model of flexible-route service focusing on minimizing 

the total cost (user cost + operation cost), while considering perishability of farm 

products. 
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4 It jointly optimizes the headway and size of service area for flexible-route deliveries 

by minimizing the average cost per package through the partial derivative of the 

cost with size of service area.   

5 It explores the sensitivity of relationships between headway, size of service area 

and average cost in relation to influential input parameters, which represent the 

range of operating environments. 

The remaining parts are organized as follows.  

Chapter 2 is the literature review summarizing existing studies in 1) Truck 

operation and cost 2) Flexible-route service and its application, 3) Traveling Salesman 

Problem (TSP) 4) the development and summary of tour length approximation for TSP, 

5) heuristic algorithm for solving the TSP. The literature focuses on overview of the 

approximation method and consideration of real-world constraints with proper 

assumptions. Chapter 3 first develops the TSP approximations. Experiment settings are 

discussed, including the points distribution, simulation of road networks with dead-

ends, sample size, and ordinary least squares (OLS) regression analysis. Then the 

results of regression are compared with those of the Lin-Kernighan-Helsgaun (LKH) 

algorithm, which was selected based on a comparison among multiple heuristic 

algorithms. The optimal TSP length estimation is determined based on the adjusted 

formulation using statistical analysis. Chapter 4 explores a mathematical formulation 

of total cost, considering both the operation cost and user cost, with proper assumptions 

and system constraints. The optimization of minimizing the average cost per package 

through the partial derivative of the cost with respect to the size of service area is 

displayed. Chapter 5 presents the case study from the central Appalachian area. Based 
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on the baseline study and sensitivity analysis, the results reveal how various factors 

affect the service headway, size of service area, and delivery cost. The possible 

advantage of flexible-route service compared to existing self-delivery service can then 

be assessed. Chapter 6 summarizes the tasks completed in the thesis and potential 

extensions for future research. 
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Chapter 2: Literature Review 

The thesis selectively reviewed papers about flexible-route services and papers 

and book chapters approximating TSP tour lengths based on regressions or heuristic 

algorithms. Multiple factors are considered for length estimation including 1) number 

of points 2) distribution of points in rural areas 3) the road network.  

2.1 Truck Operation and Costs 

Trucks are the main mode of freight transportation in the United States. In 2017, 

the value of shipments by truck is 12.017 trillions in 2017 dollars, which is about 63.6% 

of the value of freight transported by all modes (U.S. Bureau of Transportation 

Statistics, 2023). Such a vast reliance on trucks for transportation has stimulated many 

studies on their operation and costs, including basic operating cost such as fuel cost 

(Sdoukopoulos et al., 2015; Winebrake et al., 2015; Wu et al., 2021), salary of driver, 

maintenance of fleet (Topal and Ramazan, 2012), and road condition (Barnes and 

Langworthy, 2004), type of vehicle (Barnes and Langworthy, 2004), route 

optimization with cost-effectiveness (Kulović, 2004). 

The cost of fuel can be reduced through the utilization of specific vehicles (e.g. 

eco-driving) based on the estimated operation cost  for road freight transportation in 

Greece (Sdoukopoulos et al., 2015). When the price of fuel is fluctuating, the estimated 

elasticity of fuel price can help in computing the cost of single-unit truck activity based 

on the data from 1980 to 2012 (Winebrake et al., 2015). Besides the vehicles using 

clean energy (e.g. charging and hydrogenation), the method of battery-swapping for 

specific truck types is also reducing the cost of fuel, according to a case study in China 
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(Wu et al., 2021). However, the cost of fuel saved by using new types of trucks requires 

updates of the entire truck delivery system in the region. Topal and Ramazan (2012) 

used stochastic integer programming (SIP) for annually scheduled maintenance for a 

fixed fleet of mining trucks based on the case study of delivering the gold mine in 

Australia. They proposed a stochastic parameter for maintenance cost due to the 

significant level of uncertainty and scheduled the available fleet to meet the annual 

production targets. The output indicated that the maintenance cost value changes non-

linearly depending on the size, age and the truck type.  

Barnes and Langworthy (2004) based on a fuel price of $1.50 per gallon and other 

costs in 2003 dollars, found the difference in operation cost between personal vehicles 

and trucks where personal vehicles average 17.1 cents per mile to operate and trucks 

average 43.4 cents per mile, not counting costs associated with the driver or travel time. 

When considering extremely rough pavement and city driving conditions involving 

frequent stops and starts, the cost also increased proportionally. For delivery service on 

rural roads, the consideration of dwell time per stop and the vehicle operation speed 

can be inputted as a part of vehicle operation cost. 

Considering the factors affecting the cost-effectiveness, Kulović (2004) computed 

the coefficients of utilization rate of fleet, time, and path to minimize the loss of time 

for different organizational activities, suggesting the low demand pattern will reduce 

the cost-effectiveness of delivery. The estimation of coefficients enabled the change of 

input parameters, but for a delivery system at planning stage, it is infeasible to obtain 

detailed operation data sets. 
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In general, operational costs play a crucial role in management. It is essential to 

account for both the potential risks associated with increased costs and the 

opportunities for cost reductions. The relevant components of operational costs can be 

integrated into the model as a fixed hourly cost with truck and a fixed hourly cost with 

its capacity. Overall, the unit truck operating cost is assumed to be a linear function of 

the truck’s capacity. 

2.2 Flexible-route Services 

The characteristics of rural delivery include low demand density, long travel 

distances, and detours due to terrain characteristics. Flexible-route services can provide 

a high service quality where the service is needed with low demand density, which is 

not profitable for setting a fixed route service. Compared to conventional transit service, 

which requires a higher density of both demands and terminals, the cost of running and 

maintaining flexible-route service is also lower. In Figure 1, the black line represents 

the optimized route connecting all the demand points in the service zone with the 

consideration of the road network, since the shortest Euclidean distance or rectilinear 

distance is not always available between any two points.  

 

Figure 1. Illustration of Flexible-Route Delivery System in Rural Areas 
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For national delivery companies, such as UPS, using an On-Road Integrated 

Optimization and Navigation (ORION) algorithm, provides an optimized route for each 

driver based on the packages to be picked up and delivered on that day (Holland et al., 

2017). Although the details of the algorithm are confidential, they are based on the 

travelling salesman problem (TSP) with time windows adding practical constraints, 

such as practical routes avoiding frequent zigzags and initial bounds from delivery 

history. The side constraints are apparent. For example, some groups of stops must 

follow a strict, predetermined delivery order and the preference for right-turns over 

left-turns can reduce the driving time for deliveries (Holland et al., 2017). 

Considering the size of vehicles as a decision variable in the total cost function, 

Chang and Schonfeld (1991) found that for a conventional service for passengers the 

optimal number of zones and vehicle size should be kept in constant proportion 

regardless of demand density. For a mixed transportation system, rather than a purely 

fixed or flexible system, the performance is sensitive to the threshold of the demand 

densities. 

For both users and operators, the cost and the service quality are the essential 

measures of deliveries, and the time efficiency is the first consideration (Kallio et al., 

2000). The freight delivery environment varies between urban and rural areas. The 

density of transfer points and service frequency based on the demand density is much 

higher in urban than rural areas. The difference and importance of optimizing the 

service zone and frequency is highlighted. In flexible route research, Adebisi pointed 

out that the average demand is small but has considerable variance for doorstep service 

(Adebisi, 1980). The total cost of variable, flexible service is lower compared to pure 
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fixed or flexible service, which suggests that these variable-type services can perform 

well for areas with low demand over a long time (Kim and Schonfeld, 2012). To make 

the objective function responsive to changes in demand, the elasticities of the factors 

should be considered when computing the net benefit of flexible route service (Kim 

and Schonfeld, 2015), solving the problem of one terminal connecting multiple regions. 

The principal objectives are the optimization of service areas and frequencies, as well 

as the implementation of various types of services, all aimed at reducing overall costs. 

However, finding the global optimum for a substantial problem may be quite 

difficult. Kim and Schonfeld (2015) optimized the service headway and the zone size 

using the approximate lengths of Travelling Salesman Problem (TSP) tours during the 

planning model for freight delivery. Zone sizes could be optimized based on 

capabilities of single trucks while multi-zone systems were also optimized (Kim and 

Schonfeld, 2012). Han et al. (2022) explored flexible-route bus operations with 

financial constraints for both break-even and subsidized cases. They verified the global 

optimizations from the formulation of net benefit function, assuming fluctuating 

demand, by checking the Karush-Kuhn-Tucker (KKT) condition and used the 

Sequential Quadratic Programming (SQP) method for optimization. Their significant 

finding was that increased financial subsidies do not increase welfare proportionally, 

while lower fixed-cost components of transit operation cost can significantly improve 

the net benefit of transit operations. Kim and Schonfeld (2022) optimized the service 

headway and the zone size using travelling salesman problem (TSP) tours in a planning 

model for freight deliveries based on the Lagrangian relaxation to the integer fleet size. 

Their numerical analysis indicated that one truck can serve a smaller zone with low 
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demand, and suggested that a multi-zone system with multiple periods is a potential 

research direction for last-mile delivery. 

 

2.3 Tour Length Estimation  

2.3.1 TSP Tour Length Estimation 

The average distance between two points in both Euclidean and rectilinear space 

can be mathematically derived (Choi, 2021). The Euclidean space allows the 

movements in straight lines between any pair of points and rectilinear space allows the 

movements in two orthogonal coordinates.  

 Beardwood et al. (1959)  showed that the shortest path through n points is 

asymptotically proportional to √𝑛𝐴  for large n in formulation of 𝐿 ≈ 𝛽√𝑛𝐴  with 

0.62 ≤ 𝛽 ≤ 0.92 and 𝛽 ≈ 0.75 for Euclidean space, where 𝐿 is the estimated TSP tour 

length of n points in the area with the size of A. Then, Stein (1978) estimated the value 

of 𝛽  at 0.765 for Beardwood’s formula through Monte Carlo experiments and 

concluded the minimum number of points for TSP length estimation in a fairly compact 

and fairly convex area should not less than 5. Multiple researchers estimated the value 

of coefficient 𝛽 for TSP tour estimation using regression for small number of n ranging 

5 to 50 (Choi and Schonfeld, 2022) and large number of n over 500 (Brunetti et al., 

1991), and over 10,000 (Johnson et al., 1996; Lee and Choi, 1994).  The range of 𝛽 is 

reduced to values between 0.7 and 0.9. Vig and Palekar (2008) derived regression 

equations for predicting the first four moments of distribution of TSP tour length and 

concluded the empirical results with the Beta distribution showing excellent fitness for 



 

 

12 

 

small to moderately sized TSP problems. Besides the number of points, other factors 

also influence the length of TSP tours, including point distribution, shape of area, and 

geometry (Chien, 1992; Choi, 2021; Daganzo, 1984). Choi (2021) considered the 

adjustment factor 𝛽 and provided a guideline of 𝛽 for different conditions including 1) 

whether the depot is in a square area 2) random-to-center conversion factor of points 3) 

point distribution 4) length-to-width ratio of area. 

Transformations of formula 𝐿 ≈ 𝛽√𝑛𝐴  are widely used for estimation. 

Daganzo (1984) introduced the circuity factor c for road network in the formulation of 

𝐿 ≈ 𝛽𝑐√𝑛𝐴. Based on this formulation, Merchán and Winkenbach (2019) focused on 

last-mile problems in urban area instead of Euclidean space and rectilinear space with 

fixed 𝛽 = 0.9 . Kou et al. (2022) used standard deviation as a predictor for both 

Euclidean space and rectilinear space. They emphasized that the shortest Euclidean 

distance between two nodes might not accurately represent the actual driving distance 

due to the characteristics of road networks. In a subsequent study in 2023, the same 

authors introduced the Sammon map (Sammon, 1969) to address non-convex service 

areas. The technique transforms the size of non-convex service area A to a convex-

shaped area 𝐴𝑆𝑎𝑚𝑚𝑜𝑛  based on minimizing the error function of Sammon map 

projection. By preserving pairwise distances of vertices, this transformation to 

𝐴𝑆𝑎𝑚𝑚𝑜𝑛 indicates a stronger computation time advantage of 𝛽√𝑛𝐴𝑆𝑎𝑚𝑚𝑜𝑛 relative to 

LKH or alternative VRP heuristic solvers (Kou et al., 2023).  
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2.3.2 Approximation Formulations 

 Besides Beardwood’s formulation of approximation 𝐿 ≈ 𝛽√𝑛𝐴, other accurate 

estimations have been presented in the literature. Chien (1992) argued that 𝐿∗ =

2.1𝑅̅ + 0.67√(𝑛 − 1)𝐴1  can generate a robust estimation after the comparison of 

seven estimated models, where 𝑅̅ represents the average distance between all other 

vertices and the starting vertex, and 𝐴1 represents the area of smallest rectangle that 

can cover all vertices. Basel and Willemain (2001) ran the regression on 17 Euclidean 

instance from TSPLIB (1991) and introduced a log-linear regression formulation of 

ln(𝐿∗) = 1.798 + 0.927ln⁡(𝑠𝑡𝑑𝑅𝑇) , where 𝑠𝑡𝑑𝑅𝑇  is the standard deviation of tour 

lengths for 20,000 random tours. Their results indicated that the computation of 𝑠𝑡𝑑𝑅𝑇 

does not require the space to be Euclidean or rectilinear or require any known metric. 

Cavdar and Sokol (2015) found a distribution-free model for estimation of TSP tour:  

𝐿∗ = 2.791√𝑁(𝑐𝑠𝑡𝑑𝑒𝑣𝑥 ∗ 𝑐𝑠𝑡𝑑𝑒𝑣𝑦) + 0.2669√𝑁(𝑠𝑡𝑑𝑒𝑣𝑥 ∗ 𝑠𝑡𝑑𝑒𝑣𝑦)
𝐴

𝑐𝑥̅𝑐𝑦̅
(1) 

where 𝑐𝑠𝑡𝑑𝑒𝑣𝑥 and 𝑐𝑠𝑡𝑑𝑒𝑣𝑦 are the measurement of standard deviation of the absolute 

distances to the vertices from the horizontal and vertical midpoint lines of the 

rectangular space, 𝑠𝑡𝑑𝑒𝑣𝑥  and 𝑠𝑡𝑑𝑒𝑣𝑦  are the standard deviations in 𝑥 and 𝑦 

coordinates, 𝐴⁡represents the size of the rectangular space, 𝑐𝑥̅ and 𝑐𝑦̅ are the average 

distance of vertices to the horizontal and vertical midpoint lines of the space. Generally, 

most of the correlations observed between 𝐿 and √𝑛⁡estimations are still based on the 

assumption of Euclidean space. 

 TSPLIP (1991) provides the data in a specific format, which includes 

information about the problem type (e.g., TSP, Asymmetric TSP, etc.), the type of 
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weight (e.g., Euclidean distance, Manhattan distance, etc.), and the explicit distances 

between the cities or points. The maps from TSPLIP are widely used for testing the 

efficiency of tour length estimation model or the performance of heuristic model, and 

becomes the standard benchmark for TSP solvers. Unfortunately, the official dataset 

lacks details on network structures and dead-end roads. Its available distance matrix is 

not adequate for the scope of this research. Consequently, there is a pressing need to 

create a dataset tailored to meet the specific demands of this study or similar research. 

2.3.3 Circuity Factor 

  A circuity factor c represents the average ratio of actual travel distance to 

Euclidean distance, based on the computation below: 

𝑐 =
∑𝐷𝑛
∑𝐷𝑒

(2) 

where ∑𝐷𝑛⁡is the summary of network distances of two points within the road network, 

and ∑𝐷𝑒  is the summation of Euclidean distances between successive points pairs. 

For specific cities or regions, the value of c will varies due to road network density and 

connectivity (Ballou et al., 2002; Levinson and El-Geneidy, 2009), the curve of the 

Earth for large area within the same hemisphere (Ballou et al., 2002), and vertical 

height due to mountainous areas (Kweon, 2019). Although tables of average circuity 

factor with standard deviation are provided in some studies, including (Ballou et al., 

2002; Levinson and El-Geneidy, 2009), it will be beneficial to recompute the circuity 

factor for a specific region. 
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2.4 Heuristic Algorithms  

 Heuristic algorithms can be used for solving TSP problems and find a near-

optimal solution within required time. Choi and Schonfeld (2022) made a review for 

TSP tour length estimation of heuristic algorithm. The review in the thesis mainly 

focuses on algorithms including Greedy Algorithms, Dynamic Programming (DP), 

Simulated Annealing (SA), Tabu Search (TS), Lin-Kernighan-Helsgaun Algorithm 

(LKH) and Concorde server as a supplement of their research.  

 The performance of heuristic algorithms greatly depends on the problem scale 

and solution quality requirements. A greedy algorithm employs a short-sighted 

heuristic approach, making locally optimal decisions at each stage, and thus yields 

globally suboptimal solutions (Cormen et al., 2022). The result is acceptable for the 

Euclidean TSP but poor for the general symmetric and asymmetric TSP and it can help 

find the worst tour (Bang-Jensen et al., 2004; Gutin et al., 2002). Both Simulated 

Annealing and Tabu Search are methods that can potentially yield near-optimal TSP 

solutions but are computationally intensive. Specifically, they require substantial 

computational resources due to their iterative and complex nature (Glover and Laguna, 

1998; Kirkpatrick, 1983). The Concorde solver uses a branch and bound search strategy, 

as well as cutting planes to reduce the search space, which is time-consuming but can 

most closely approach a TSP’s global optimum (Concorde TSP Solver). The research 

based on Concorde improves the difference of runtime cost, such as using partition 

crossover (Sanches et al., 2017). Compared to the Concorde solver, the LKH algorithm 

is a highly successful refinement of the 2-opt and 3-opt techniques. It generally 

outperforms other algorithms for larger problems due to its ability to conduct deeper 
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explorations, but at the cost of increased complexity (Helsgaun, 2000). Helsgaun (2000) 

also pointed out that providing an initial solution for algorithms as a starter instead of 

starting from randomly generated one can reduce the computation time. 

2.5 Research Gaps 

 From the literature review, it is found that for rural areas with low demand 

density, flexible-route services can be a cost-effective method for freight deliveries. 

Besides the objective function of cost or revenue function, most studies about deliveries 

focus on the waiting cost of users and the operation cost. Some factors are missing, 

such as the perishability of farm products and the in-vehicle cost from long driving 

times in rural area. The relation between headway and size of service area can be 

revealed with the consideration of all decision variables and baseline inputs. 

Most studies on tour length estimation focus on square, rectangular, and circle-

based shapes without considering scenarios where points have the same distribution 

(e.g. normal distribution) across different road networks. For the estimation of TSP tour 

in rural areas, the sparseness of road network and existence of dead-end roads increases 

the TSP tour length, which cannot be reflected in existing estimation formulas. For 

practical applications, estimating average tour length for road network with multiple 

dead-ends in irregular convex shape becomes of paramount importance for delivery 

services by vehicles with limited capacity in rural areas. The effectiveness of flexible-

route service is highly linked with the estimation model. 

Instead of a precise route with minimal length for specific points, the goal of 

TSP tour length approximation is to provide a general view of tour length for a number 

of points and basic road network in an area. Approximated tour lengths are useful for 
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the joint optimization of multiple variables, where a quantified length can be applied 

for revealing the relation between variables. Therefore, the formulation of TSP tour 

length estimation introduced in chapter 3 will consider the dead-end roads and circuity 

factor for the accuracy of estimation and economic model in chapter 4 will use the 

result from the chapter 3. The definitions and units of input variables and other factors 

are listed as Table 1. 

 

Table 1 Variable Definitions and Baseline Values 

Symbol  Variable Units Value Reference 

Decision Variables 

𝐴 Size of Delivery Area mi2   

ℎ Headway hr   

Output Variables 

𝐶1 System Cost of TSP Tour $/hr   

𝐶2 User Cost of Self-delivering $/hr   

𝐶𝐴 Average Cost per Package $/package   

𝐶𝑜 Operating Cost $/hr   

𝐶𝑃 Perishability Cost per Tour $/hr   

𝐶𝑉 In-vehicle Cost per Tour $/hr   

𝐶𝑊 Waiting Cost per Tour $/hr   

𝐿 Tour Distance mi   

𝑁𝑡 Number of Trucks  Integer  

𝑇 Round-trip Time hr   

𝑡𝑝 Total Time of Perishability per Tour hr   

𝑡𝑣 In-vehicle Time per Tour hr   

𝑡𝑤 Waiting Time per Tour hr   

Input Variables 

𝑎 Parameter for Truck Operating Cost $/(vehicle·hr) 30  

𝑏 Parameter for Truck Operating Cost $/(package·hr) 0.3  

𝐵 Truck Operating Cost (𝐵 = 𝑎 + 𝑏𝑆) $/(vehicle·hr)   

𝑐 Circuity Factor dimensionless 1.3579  

𝑑 Dwell Time hr/stop 0.1  

𝐿𝑋 Line-haul Distance per Tour mi 10  

𝑁 Modified Number of Stops per Route   Equation 8 

𝑛 Number of Stops per Route    
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𝑝 Perishability rate per hr 

0.2% (Blackburn 

and 

Scudder, 

2009) 

𝑄 Demand Density  
Packages / 

(mi2·hr) 

2.7*10-4  

𝑞 Demand Packages/hr   

𝑆 Truck Capacity Packages 100  

𝑣 Value of Package  $/package 100 (U.S. 

Bureau of 

Labor 

Statistics, 

2023) 

𝑣𝑡 Value of Freight Time  $/(vehicle·hr) 0.415 (Kawamura, 

2000) 

𝑉 Vehicle Operation Speed  mph 60  

𝑍 Size of Current Service Area mi2 56442.69 (Choi, 

2020) 
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Chapter 3: Methodology 

 This chapter presents a model of TSP tour length estimation model with dead-

ends roads using ordinary least squares (OLS) as the basis. First, the reason of adapting 

Lin-Kernighan-Helsgaun (LKH) Algorithm is discussed. Then, the simulation setting 

and factors influencing the approximation are presented. Lastly, a solution procedure 

based on the improvement of current research is discussed. 

3.1 Solution Method 

3.1.1 Formulation of Traveling Salesman Problem 

 The algorithm for solving the exact solution of TSP is formulated as the 

following integer program: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡∑∑𝑑𝑖𝑗𝑥𝑖𝑗
𝑗𝑖

 

Subject to 

∑𝑥𝑖𝑗 = 1⁡∀⁡𝑖 = 1, 2,… , 𝑛

𝑛

𝑗=1

(3) 

∑𝑥𝑗𝑖 = 1⁡∀⁡𝑖 = 1, 2, … , 𝑛

𝑛

𝑗

(4) 

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1⁡∀⁡𝑖 = 2, 3,… , 𝑛; ⁡∀⁡𝑗 = 2, 3, … , 𝑛; 𝑖 ≠ 𝑗 (5) 

𝑥𝑖𝑗 = 0⁡𝑜𝑟⁡1⁡ (6) 

𝑢𝑖 > 0⁡∀⁡𝑖 = 1, 2,… , 𝑛 (7) 

where n is the number of n points should be visited, 𝑑𝑖𝑗 is the distance between points 

i and j measuring in Euclidean or rectilinear space, 𝑥𝑖𝑗 is the binary variables indicating 
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whether the sub-loop route from i to j is formed in the tour, 𝑢𝑖 is the sequence number 

or order number in which point i is visited.  

The objective function is minimizing the tour distance for one vehicle visiting all 

the nodes. Constraints 3 and 4 specify that every node must be visited once. Constraint 

5 represents subtour elimination and prohibits solutions consisting of several 

disconnected tours; it is named the Miller-Tucker-Zemlin constraint (Miller et al., 

1960). Constraints 6 and 7 define variables 𝑥𝑖𝑗 and 𝑢𝑖. When 𝑥𝑖𝑗 = 0, the difference of 

non-adjacent nodes 𝑖, 𝑗 is computed where the upper bound Δ𝑖𝑗 ≤ 𝑛 − 1. When 𝑥𝑖𝑗 =

1, the difference of adjacent nodes 𝑖, 𝑗 is computed where the lower bound ∀Δ𝑖𝑗 ≥ 1. 

The design of this constraints avoids enumeration with low efficiency and prevents the 

inconsistent subtours. However, no loop will form under this constraint since the edge 

between the last visiting point with order n and departure points with order 1, where 

Δ𝑛1 = 1 − 𝑛 < 0. Therefore, the dummy node for the departure node is generated 

which helps the formulation of the enclosed loop for TSP solution. 

3.1.2 Lin-Kernighan-Helsgaun (LKH) Algorithm and Comparison of Solution Methods 

 LKH algorithm is one of the state-of-the-art heuristic algorithms for solving the 

TSP and its variants, building upon the Lin-Kernighan (LK) method. The LK method, 

introduced by Shen Lin and Brian Kernighan in the 1970s (Kernighan and Lin, 1970), 

was one of the first effective heuristics for the TSP. Helsgaun later improved this 

method, which resulted in the LKH algorithm. 

 The most up-to-date version of LKH code version is 2.0.10 (November 2022) 

which can be found from its official website (LKH website). The information about 

nodes can be edited in a text file and saved as tsp format before generating the optimal 
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results. Multiple parameters (more than 20) can be adjusted, core parameters including 

1) RUNS: the number of times the algorithm should be run, 2) MAX_TRIALS: the 

maximum number of iterations of the algorithm in each run, 3) MAX_CANDIDATES: 

Controls the number of candidate edges for each city, 4) MOVE_TYPE: Defines the 

k value for k-opt search, and 5) SUBPROBLEM_SIZE: Defines the size of the 

subproblems of the split problem. 

 The effectiveness of LKH can be reflected from a computational comparison 

based on replicating the codes from the literature for the best-known algorithms is 

presented below. Figure 2 indicates the computation time for solving TSP’s with same 

11, 13, 15, 17, 19, 21, 23, 50, and 100 nodes within the service zone. Using the result 

from the solver Concorde as the baseline value, Table 2 indicates the % difference 

between the near-optimal solution of each algorithm and the result from the solver, in 

which the bold number indicates the smallest tour distance among the outputs. 

Table 2  Tour Length (in Miles) Results from Heuristic Algorithms and the Concorde 

Solver 

Nodes Greedy 

Algorithm 

Dynamic 

Programming 

Simulated 

Annealing 

Tabu 

Search 

LKH Concorde 

11 203 162 162 162 162 162 

13 190 186 187 187 187 187 

15 242 238 238 242 238 238 

17 269 234 236 267 236 236 

19 250 226 226 250 226 226 

21 299 216 218 228 216 216 

23 405 248 255 299 248 248 

50 591 - 368 405 368 368 

100 1344 - 507 599 486 486 
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Figure 2. Time Consumption of Each Heuristic Algorithm 

 In Table 2, due to the Java platform limit on the maximum length of arrays, the 

use of dynamic planning algorithms for larger datasets is restricted. The efficiency of 

heuristic algorithms, especially Tabu Search, depends on the expertise of the coder. 

The suboptimal performance of the Tabu Search in this context does not indicate that 

it is inferior to other algorithms such as Simulated Annealing. The reproduction of 

corresponding codes comes from the several studies (Cormen et al., 2022; Glover & 

Laguna, 1998; Helsgaun, 2000; Kirkpatrick, 1983). 

It can be found that when the problem is small, there is almost no difference in 

the speeds of the six algorithms. As the problem size increases, the difference in the 

speed of the algorithms become more evident. Dynamic programming requires the 

longest time among all the algorithms tested here. The greedy algorithm is fast but only 

reaches locally optimal solutions. Compared to the Concorde solver, except for 

dynamic programming, heuristic algorithms are faster. 

 The accuracy of dynamic programming and simulated annealing is satisfactory 

for smaller datasets. However, when dealing with large datasets, the potency of the 

LKH algorithm and the Concorde solver becomes noticeable. The operational 

effectiveness of an algorithm is influenced by several factors, such as design 

philosophy, implementation process, programming language, computer performance, 
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among others. A rough comparison based on a single case from literature reviews is 

performed. Based on the review of similar studies (Choi, 2021) and the output of this 

comparison, the LKH algorithm-based methodology is used for processing the TSP 

route in this paper’s case study. Therefore, the output of LKH algorithm is determined 

as the near-optimal solution for simulation settings. 

  

3.2 Simulation Settings 

Most studies on the TSP in Euclidean space focus on two types of graphs: 

complete graphs, where every node is directly connected to every other node, and 

incomplete graphs. In the latter, a 'big M' constraint is often introduced to limit 

movement between specific corresponding nodes (Boccia et al., 2021). The definition 

of dead-end road in the graph starts from a node with one edge, passes through the 

nodes with two edges (if exist), and ends at a node with more than two edges. Thus, to 

visit the nodes at the end of dead-ends, some nodes must be visited more than once, 

which avoids the TSP constraint that each node only can be visited once. Nodes visited 

more than once are only being served when first visited during the entire tour. Therefore, 

the consideration of dead-end road does not violate a TSP.  

The distribution of points is assumed to follow normal distributions considering 

the low demand in large rural area. Considering the delivery frequent and vehicle 

capacity, the number of nodes should not be too large. The estimation of √𝑛𝐴  is 

suitable for a single vehicle visiting 5 or more stops in one service area. Coupled with 

the need to balance operational feasibility and comprehensive data analysis, the range 

of n in this thesis is from 5 to 150.  
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A depot or terminal of delivery service is a facility where vehicles start and end 

their tours, which may in or near a city or a location with a quite convenient road 

network. The shape of the delivery area 𝐴 should be fairly compact and fairly convex. 

Thus, the determination of A is also displayed. 

When the dead-ends are added into the network, the overall network is the 

combination of tree-structure network and complete graph. With the consideration of 

dead-end roads in real world, the simulation of a road network based on a graph is as 

follows:  

Step 1: Generate a complete graph with 5-25 points following normal 

distribution, representing the road network near terminal. Node 0 represents the 

terminal of departure and return. The gray links represents the Euclidean distance 

between two nodes. The red dashed line around the graphs represents the minimal 

convex area covering all the nodes based on the Convex Hull function from Scipy 

(Virtanen et al., 2020). The area consisting of red dashed line is regarded as the area A 

in the formulation. Figure 3 is the sample visualization of complete graph with convex 

area. 

 

Figure 3. Complete graph for step 1 

 Step 2: Set the number of added nodes following the rule introduced at the end 

of this paragraph. In accordance with the established rule governing the relation 
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between new nodes and the initial graph, there is a 30% probability that a new node 

will be part of a tree-like network or a dead-end structure, while there is a 70% 

probability that it will become a child node, thereby not leading to a dead-end. It is 

possible for number of nodes exceeding the preset boundary with 150 nodes or 

generating the graph to not be consistent with actual road network due to too many 

dead-ends. Therefore, the number of new nodes in the dead-end should not exceed the 

number of nodes in the initial complete graph, and the total number of new nodes 

should not exceed six times the number of nodes in the initial complete graph. 

 

Figure 4. Road network with dead-ends for step 2 

 Step 3: For each initial graph, iterate 100 times following the description of step 

2 and save the information of the graph into the csv file. Iterations are performed 100 

times to ensure data diversity while also not consuming excessive computational 

resources. The definition of each column includes: 

1. Number of nodes n: the total number of nodes in the graph. 

2. Number of edges e: the total number of edges in the graph. 

3. Total dead-end length 𝑳𝒅: the total length of dead-end roads. The definition of a 

dead-end road in the graph is starting from a node with one edge, passing through 

nodes with two edges (if they exist), and ending at a node with more than two 

edges. 

4. Total graph length 𝑳𝒈: the total length of all edges from the graph. 
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5. Dead-end length ratio 𝒓 =
𝑳𝒅
𝑳𝒈
⁄ : the ration between total dead-end length and 

total graph length. 

6. Average degree 𝑑 = 2𝑒 𝑛⁄ : the average degree for each node in the graph 

7. Area A: the size of the convex area by the definition above. 

Step 4: Compute the TSP tour length L based on LKH algorithm for each graph 

and add to corresponding row of csv file. 

 Following the steps above, the process begins by generating a complete graph 

with n=5 nodes 100 times. New nodes are then added with the condition that their 

number does not surpass six times the original node count, and the count of new dead-

end nodes remains below the initial node count. Then the same process for generating 

a complete graph with 𝑛 + 1 nodes will stop when 𝑛 = 25. 

 

3.3 Improvements of Current Research 

3.3.1 Circuity Factor 

From Ballou et al. (2002), the circuity factor for the U.S road network at east 

of the Mississippi River of U.S. is between 1.20 and 2.10, depending on road network 

density and connectivity. 

To compute the circuity factor in a rural area with a sparse rural road network, 

500 random points are generated within rural zones of West Virginia and Virginia, 

specifically in the Appalachian Region. These points are merged with the 2016 

shapefile for these states obtained from the U.S. Census Bureau. After eliminating 

points that fall outside the road network, distances for 436 origin-destination (O-D) 
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pairs are extracted for subsequent computations. A circuity factor of 1.3579 with a 

standard deviation of 0.4708 is generated based on Equation 2.  

3.3.2 Consideration of Dead-ends in the Rural Area Road Network 

 The adjusted length estimation L is based on Beardwood’s formula √𝑛𝐴. The 

coefficient 𝛽 is reconsidered as a part of number of points n. Due to the existence of 

dead-end roads, several nodes are traversed more than once. This results in the count 

of traversals, denoted as N, being higher than the number of nodes n. Based on the 

information collected from the simulation setting, a relation between N and n is 

revealed. The goal of the model is building a function of 𝑁(𝑛) to estimate the TSP tour 

length 𝐿 ≈ √𝑁𝐴 with 𝑁(𝑛). 

3.4 Process of Tour Length Approximation 

 In the final date set, information from 97,400 graphs is collected. To avoid 

multicollinearity among the variables for regression analysis, it is essential to check the 

relation between input parameters and carefully choose appropriate ones. In the model, 

N is derived from or equivalent to n; hence, a strong correlation between N and n is 

anticipated. Due to this relation, variables such as e and d, which are related to n, will 

be removed from our considerations. 𝐿𝑑 represents the cumulative length of all dead-

end roads, while r denotes its proportion in relation to 𝐿𝑔. Given that r encapsulates 

information about both the total dead-end length and the overall graph length, we 

incorporate either r or 𝐿𝑑—but not both—as a variable in the model. Therefore, two 

models are considered: one is the prediction of N using n and r as explanatory variables, 

and the other is the prediction of N using n and 𝐿𝑑 as explanatory variables. To reveal 
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the relation among variables, the ordinary least square (OLS) method is considered. 

For model 1, it can be expressed as 𝑁1 = 𝛽0 + 𝛽1𝑛 + 𝛽2𝑟 + 𝜖. For model 2, it can be 

expressed as 𝑁2 = 𝛽0 + 𝛽1𝑛 + 𝛽2𝐿𝑑 + 𝜖. The parameter and the statistical information 

can be found in Tables 3 and 4. 

Table 3 Results of Parameters from OLS Regression for Model 1 

 Coefficient Std error 𝑡 𝑃 > |𝑡| [0.025 0.975] 

constant -30.8001 0.311 -99.077 0.000*** -31.409 -30.191 

𝑛 2.9905 0.004 796.660 0.000*** 2.983 2.998 

𝑟 -8.2495 1.523 -5.416 0.000*** -11.235 -5.264 

 

Table 4 Results of Parameters from OLS Regression for Model 2 

 Coefficient Std error 𝑡 𝑃 > |𝑡| [0.025 0.975] 

constant -30.8001 0.311 -99.077 0.000*** -31.409 -30.191 

𝑛 2.9905 0.004 796.660 0.000*** 2.983 2.998 

𝑟 -8.2495 1.523 -5.416 0.000*** -11.235 -5.264 

 

Figure 5 shows the QQ plots indicating the residual for normality of both 

models and Figure 6 shows the histogram of residuals. 

 

Figure 5 QQ Plot for residual of two models 



 

 

29 

 

 

Figure 6 Histogram of residuals of two models 

 

The 𝑅2 is  0.884 for model 1 and 0.914 for model 2. All explanatory variables 

from both models are statistically significant as their p-values are much less than 0.05. 

The skewness of model 1 is 0.8653 with the kurtosis of 3.9033 and Durbin-Watson 

statistic of 1.9942. The skewness of model 2 is 0.9295 with the kurtosis of 3.2590 and 

Durbin-Watson statistic of 2.0014. The residuals from both models appear to exhibit 

positive skewness and kurtosis. The value of the Durbin-Watson statistic is around 2, 

which usually means that the residuals have no autocorrelation. 

The QQ plot indicates that the distribution of the residuals is not completely 

normal, especially in the tail of the QQ Plot. This may indicate some form of 

heteroskedasticity, nonlinearity, or extreme values in the model. The linear regression 

function from Tables 3 and 4 for two models cannot describe several conditions when 

n is small (less than 10) with no dead-end length due to the negative value under the 

square root √𝑁𝐴. For example, considering the case with 10 nodes and no dead-end 

roads, the value of N is negative. 
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Based on the literature (Basel Iii and Willemain, 2001), the log transformation 

of N is used to stabilize variance and handle skewed distributed data to improve the 

residual distribution of TSP tour estimation. Therefore, the log-transformed model is 

expressed as ln⁡(𝑁1) = 𝛽0 + 𝛽1𝑛 + 𝛽2𝑟 + 𝜖  for model 1 and ln⁡(𝑁2) = 𝛽0 + 𝛽1𝑛 +

𝛽2𝐿𝑑 + 𝜖 for model 2. The parameter and the statistical information can be found from 

Tables 5 and 6. 

 

Figure 7 QQ Plot for residual of two log-transformed models 

 

Table 5 Results of Parameters from OLS Regression for Log-transformed Model 1 

 Coefficient Std error 𝑡 𝑃 > |𝑡| [0.025 0.975] 

constant 3.4530 0.0024 1414.14 0.000*** 3.4483 3.4578 

𝑛 0.0384 0.000135 283.893 0.000*** 0.0381 0.0386 

𝑟 10.2213 0.0512 199.748 0.000*** 10.121 10.322 

 

Table 6 Results of Parameters from OLS Regression for Log-transformed Model 2 

 Coefficient Std error 𝑡 𝑃 > |𝑡| [0.025 0.975] 

constant 3.4229 0.0018 1941.68 0.000*** 3.4194 3.4263 

𝑛 0.0125 0.000042 296.496 0.000*** 0.0124 0.0126 

𝐿𝑑 0.1237 0.0006 206.964 0.000*** 0.1225 0.1249 
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Figure 8 Histogram of residuals of two log-transformed models 

 

After the log transformation, the 𝑅2 is 0.8729 for model 1 and 0.9136 for model 

2, i.e.,  slightly lower than for the linear relation. All explanatory variables from both 

models are statistically significant as their p-values are much less than 0.05. The 

skewness of model 1 is -0.0107 with the kurtosis of 0.1088 and Durbin-Watson statistic 

of 2.0022. The skewness of model 2 is -0.2353 with the kurtosis of 0.2119 and Durbin-

Watson statistic of 2.0109. From the above results, after logarithmic transformation of 

N, the skewness and kurtosis of the residuals of the model are close to 0, which means 

that the residuals are closer to a normal distribution. 

Table 7 𝑅2 and MAPE of Training Set and Test Set for Log-transformed Model 

 Log-transformed Model 1 

𝑁 and 𝑛, 𝑟 

Log-transformed Model 2 

𝑁 and 𝑛, 𝐿𝑑 

𝑅2 (Training Set) 0.8732 0.9135 

𝑅2 (Test Set) 0.8714 0.9139 

MAPE (Training Set) 21.906% 18.070% 

MAPE (Test Set) 21.896% 17.941% 

 

After splitting the data into 80% training set and 20% test set, the 𝑅2 and MAPE 

of both training set and test set can be found in Table 7. The results provide the 
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predictive performance of the two models on the training and test sets. From these 

results, it is found that the second model predicts better. Compared to the linear relation 

between 𝑁 and 𝑛, 𝐿𝑑, the log-transformed model can always generate the positive value 

of 𝑁 with a wider versatility for length estimation with known network information. 

Also, compared to the log-transformed model 1, no information about 𝐿𝑔 is required 

for model 2 since the computation of variable 𝑟 is based on 𝐿𝑑 and 𝐿𝑔. Overall, the 

relation between 𝑁 and 𝑛, 𝐿𝑑 can be expressed as follows: 

ln(𝑁) = 3.4229 + 0.0125𝑛 + 0.1237𝐿𝑑 (8) 

3.5 Summary 

 In this chapter, Beardwood’s formulation 𝛽√𝑛𝐴 is reconsidered as √𝑁𝐴 with a 

function indicating the relation among 𝑁, number of nodes 𝑛 and dead-end length 𝐿𝑑. 

A generation function of 𝑁  is established in equation 8. The models consider the 

various scenarios, including networks with or without dead-ends for between 5 and 150 

nodes. Combining equation 8 with the recomputed circuity factor 𝑐 , provides a 

contribution to TSP tour length estimation of rural roads, using the formulation below. 

𝐿 ≈ 𝑐√𝑁𝐴 (9) 
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Chapter 4: Economic Analysis of Flexible-route Freight 

Deliveries 

 This chapter presents a mathematical formulation of total cost, combining the 

operation cost and user cost, with proper assumptions and system constraints. 

4.1 Assumptions for Delivery System 

The following simplified assumptions are made for a baseline model. These 

can be revised to fit specific cases. 

1. The demand is uniformly distributed within the service area. 

2. All demands are served. 

3. Packages are homogeneous in size, weight, and density. 

4. The value of farm products decreases linearly with time while stored in a 

refrigerated truck or warehouse with 0 Celsius degrees environment 

(Blackburn and Scudder, 2009). 

5. Truck drivers drive a limited number of hours per day and round trips may 

extend beyond one day.  

6. The truck size is uniform for each self-delivery and flexible-route delivery 

service. 

For assumption 1, the demands of customers are assumed to be non-stochastic 

and known in advance. Assumption 3 simplifies a real case considered for the planning 

model. Also, combined with assumption 1, a general formula of in-vehicle time and 

waiting time can be used during the analysis. Assumption 4 reflects the perishability of 

farm products. Since the value of farm products decreases over time, a scenario at 0 
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Celsius degrees is considered, where the value decays linearly overtime, unlike the 

exponential decay that may be expected in environments exceeding 10 Celsius degrees 

(Blackburn and Scudder, 2009). However, fairly long driving distances may be 

acceptable due to the small fleet size and maximum allowable driving time per day, 

which are reflected in assumption 5. According to assumption 6, the truck size is the 

same for both self-delivery and multiple-destinations delivery tours. 

4.2 Baseline Values 

The demand or delivery service is determined by the demand density Q, the size 

of service area Z, the number of stops n, and the service headway h. Based on the 

research of chapter 3, the number of stops n will be replaced with N if the information 

of road networks is known. Currently, the gathering of farm products relies on self-

deliveries by farm owners. The demand density Q fluctuates with the peak and off-peak 

periods for harvesting farm products.  

Equation 9 approximates the shortest TSP tour that connects randomly located 

points n in the service area A. 

𝑇 =
2𝐿𝑋 + 𝐿

𝑉
+ 𝑛𝑑 (10) 

𝑡𝑣 =
𝑇

2
(11) 

𝑡𝑤 =
ℎ

2
(12) 

The truck operation cost varies linearly with the truck capacity S, while labor 

cost is and related to working time, and fuel consumption is related to both time and 

truck size. Equation 10 formulates the round-trip time. The dwell time is for loading 
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and unloading at each stop. Due to the assumptions of uniformly distributed demand 

and homogenous packages, the in-vehicle time and waiting time of packages can be 

expressed in Equations 11 and 12. To keep the low operation cost, the minimal required 

number of trucks is: 

𝑁𝑡 =
𝑇

ℎ
(13) 

 Based on the 20 farms listed on the website of ASD, the three main farm 

products are dairy, livestock, and eggs. In the baseline model, the value of a package is 

estimated from the average price data of U.S. Bureau of Labor Statistics (2023). Using 

the finding from (Kawamura, 2000) , the value of time for waiting for the shipment is 

41.5 $/hr in 2023 prices for large commercial vehicles. Since that freight time value is 

based on large shipments, when considering the freight time value for self-delivery, 

this value is proportionally reduced. The weight per package is set at 50 pounds, based 

on what one person can carry. With trucks of 5,000 pounds capacity providing flexible-

route service, the maximum capacity of one truck is equal to 100 packages and the 

value of time spent waiting for freight 𝑣𝑡  is 0.415 $/(package·hr). For a practical 

application, the U.S. Department of Transportation (USDOT) developed values of 

travel time by modes and business types (USDOT, 2014). 

4.3 Cost Function 

4.3.1 Cost Function for Flexible-route Delivery Service 

The cost function consists of operator and user cost. The operator cost 𝐶𝑜 

considers the operating hours of trucks and the number of trucks. The user cost consists 
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of perishability cost 𝐶𝑃 , in-vehicle cost 𝐶𝑉 , and waiting cost 𝐶𝑊 . The total cost of 

flexible-route delivery service is expressed as: 

𝐶1 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⁡𝑐𝑜𝑠𝑡 + 𝑢𝑠𝑒𝑟⁡𝑐𝑜𝑠𝑡 = 𝐶𝑜 + 𝐶𝑃 + 𝐶𝑉 + 𝐶𝑊 (14) 

 The cost components in Equation 14 are formulated in Equations 15-18. 

𝐶𝑜 = 𝑁𝑡 ∙ 𝐵 = 𝑁𝑡 ∙ (𝑎 + 𝑏𝑆) (15) 

𝐶𝑃 = 𝑞𝑝𝑣𝑡𝑝 = 𝑄𝐴𝑝𝑣(𝛼𝑡𝑣 + 𝛽𝑡𝑤) (16) 

𝐶𝑉 = 𝑞𝑣𝑡𝑡𝑣 = 𝑄𝐴𝑣𝑡𝑡𝑣 (17) 

𝐶𝑊 = 𝑞𝑣𝑡𝑡𝑤 = 𝑄𝐴𝑣𝑡𝑡𝑤 (18) 

 Equation 15 indicates that the cost of operating trucks depends on the number 

of trucks 𝑁  and the unit cost of operating truck, where the number of trucks is 

determined from Equation 13. Equation 16 includes the in-vehicle time and waiting 

time for computing the farm products perishability, where 𝛼 and 𝛽 range from 0 to 1 

representing the influence of time on freshness. Based on the assumption of the baseline 

model, 𝛼 is 1 and 𝛽 is 1. Equations 17 and 18 express the cost of in-vehicle and waiting 

time, which depend on the demand density 𝑄, size of delivery area 𝐴, value of freight 

time 𝑣𝑡, and respective spent time 𝑡𝑣 and 𝑡𝑤. 

4.3.2 Cost Function for Self-Delivery Service 

The cost function component of the self-delivery service closely resembles that 

of the flexible-route delivery service. However, instead of considering the operator cost, 

the cost of self-driving is considered, where the TSP tour is replaced by round-trip 

between delivery points and terminal. Accordingly, the truck capacity 𝑆, size of current 

service area 𝑍, and other input variables change with the mode of delivery. 

𝐶2 = 𝑢𝑠𝑒𝑟⁡𝑐𝑜𝑠𝑡 = 𝐶𝑜 + 𝐶𝑃 + 𝐶𝑉 + 𝐶𝑊 (19) 
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4.4 System Constraints 

In the delivery system, the total number of packages should not exceed the 

maximum capacity of the truck. Based on the input variables, the relation among the 

number of stops 𝑛, the number of packages per stop 𝑢 (from the assumption 2 and 3, 

value of 𝑢 is equal to 1) and the demand 𝑞 with headway ℎ is established in Equation 

22. Lastly, the number of trucks should be integer for practical applications, but this 

constraint can be relaxed during the sensitivity analysis. 

ℎ ≤
𝑆

𝑄𝐴
(20) 

ℎ = min {ℎ𝑑𝑒𝑠𝑖𝑔𝑛 ,
𝑆

𝑄𝐴
} (21) 

𝑛 · 𝑢 = 𝑞ℎ = 𝑄𝐴ℎ (22) 

𝑁𝑡 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (23)  

4.5 Optimization of Flexible-route Freight Deliveries 

 This section will discuss the mathematical proof of the existence of minimal 

value of average cost per package within range of value, which is the base of the joint 

optimization of headway and size of service area from the objective function. 

4.5.1 Optimization of Flexible-route Delivery Service of Planning Stage 

The optimal service headway ℎ can be found by differentiating the objective 

function with respect to ℎ. The headway ℎ is replaced with the maximum allowable 

headway ℎ =
𝑆

𝑄𝐴
 to deal with the low demand from the baseline input variable (12, 13, 

15). The average cost per package 𝐶𝐴 is:  
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𝐶𝐴 =
𝐶1
𝑄𝐴

= (
(𝑎 + 𝑏𝑆)𝑐

𝑉𝑆
+
(𝑝𝑣 + 𝑣𝑡)𝑐⁡

2𝑉
)√𝑁𝐴⁡+ (𝑝𝑣 + 𝑣𝑡)

𝑆

2𝑄𝐴

+
2𝐿𝑋(𝑎 + 𝑏𝑆)

𝑆
+
𝑁𝑑(𝑎 + 𝑏𝑆)

𝑆
+ (𝑝𝑣 + 𝑣𝑡)(

𝐿𝑋⁡

𝑉
+
𝑁𝑑

2
) (24)

 

Replacing 𝑘1 = (
(𝑎+𝑏𝑆)𝑐

𝑉𝑆
+
(𝑝𝑣+𝑣𝑡)𝑐⁡

2𝑉
)√𝑁 , 𝑘2 = (𝑝𝑣𝑛 + 𝑣𝑡)

𝑆

2𝑄
,  𝑋 = 𝐴−

1

2 , the 

differentiating process is expressed in Equations 17 and 18. 

𝜕𝐶𝐴
𝜕𝐴

=
1

2
(
(𝑎 + 𝑏𝑆)𝑐

𝑉𝑆
+
(𝑝𝑣 + 𝑣𝑡)𝑐⁡

2𝑉
)√
𝑁

𝐴
+ (−1)(𝑝𝑣 + 𝑣𝑡)

𝑆

2𝑄𝐴2
= 𝑋 (

1

2
𝑘1 − 𝑘2𝑋

3) (25) 

𝜕2𝐶𝐴
𝜕𝐴2

= −
1

4
(
(𝑎 + 𝑏𝑆)𝑐

𝑉𝑆
+
(𝑝𝑣 + 𝑣𝑡)𝑐⁡

2𝑉
)√𝑁𝐴−

3
2 + 2(𝑝𝑣 + 𝑣𝑡)

𝑆

2𝑄
𝐴−3 = 𝑋3 (−

1

2
𝑘1 + 2𝑘2𝑋

3) (26) 

Since 𝑘1, 𝑘2, 𝑋 are positive, by setting Equation 25 
𝜕𝐶𝐴

𝜕𝐴
= 0 and Equation 26 

𝜕2𝐶𝐴

𝜕𝐴2
> 0, the global optima of the size of service zone can be determined, as Equation 

(19) expresses. 

𝐴 = (√
𝑘1
2𝑘2

3

)

−2

=

(

 
 
√
(
(𝑎 + 𝑏𝑆)𝑐
𝑉𝑆 +

(𝑝𝑣 + 𝑣𝑡)𝑐⁡
2𝑉 )√𝑁

(𝑝𝑣 + 𝑣𝑡)
𝑆
𝑄

3

)

 
 

−2

(27) 

The headway ℎ can be found based on Equation 20. Based on the result, the 

optimal size of service zone and headway is determined for the planning stage. To 

verify this optimal value is within the range of solvable values, a discussion about 

necessary condition of the global optimality is needed. By setting Equation 26 to be 

positive, the value of the Equation 25 is increasing as 𝑋3⁡increasing, where its increase 

is due to the decrease of the service zone 𝐴. Therefore, the upper limit (maximum) of 

the service zone 𝐴 can be determined when the Equation 26 is equal to zero. 
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𝐴𝑀𝐴𝑋 = (√
𝑘1
4𝑘2

3

)

−2

=

(

 
 
√
(
(𝑎 + 𝑏𝑆)𝑐
𝑉𝑆 +

(𝑝𝑣 + 𝑣𝑡)𝑐⁡
2𝑉 )√𝑁

(𝑝𝑣 + 𝑣𝑡)
2𝑆
𝑄

3

)

 
 

−2

(28) 

By comparing the result of maximum size of service area and optimal size of 

service area, the existence of an optimal value is guaranteed, since 
𝐴𝑀𝐴𝑋

𝐴
= √16

3
> 1 

always hold regardless of the input parameters. 

4.5.2 Optimization of Flexible-route Delivery Service with Self-Delivery 

In analyzing practical cases, given information on delivery points (i.e., 

geocoordinates data, demand), it is straightforward to obtain an actual Traveling 

Salesman Problem (TSP) tour within the service area using the Lin-Kernighan-

Helsgaun (LKH) algorithm.  Due to the characteristics of the rural road network, 

significant detours may be required to reach demand nodes located at dead-ends or far 

from other existing nodes when considering the TSP tour visiting the nodes in the 

service area. Therefore, the algorithm merging the current self-delivery service and 

flexible-route service, considering that the number of trucks is a fixed value for existing 

rural communities, aims to minimize the total cost of the delivery service. Figure 9 

illustrates this algorithm.  

 Since the proposed flexible-route delivery service does not account for users’ 

willingness to switch delivery methods, the selection of delivery method for each user 

is primarily based on economic considerations.  This algorithm also can indicate the 

marginal cost of adding or dropping one or more nodes in the flexible-route service 

based on the baseline inputs and geocoordinates. 
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Figure 9 Algorithm combining flexible-route service and self-delivery 

 

With the results of initial optimal TSP tour length and the total cost of flexible-

route service, to avoid detours to points outside the optimal TSP tour and find a better 

solution, the algorithm starts by dropping one random point of the TSP tour. If total 

cost decreases and satisfies the constraints, the result is saved. The iterations end when 

the stopping criteria are satisfied, e.g., by reaching the maximum available number of 

vehicles or when the remaining nodes in the TSP tour drop below a preset number. 
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Chapter 5: Case Study and Sensitivity Analysis 

In this chapter, a case study evaluates the performance of flexible-route delivery 

service mixing with current self-delivering service and estimates the difference 

between the planning stage model and real delivery points in the rural road network. A 

truck delivery system is specified with a mathematical formulation, which can be used 

for similar farm product logistic scenarios in rural areas. 

5.1 Dataset 

The Appalachian Region of the U.S., as defined by Congress in 1965 through 

the Appalachian Regional Development Act (ADRA) which established the 

Appalachian Regional Commission (ARC) to oversee economic development in the 

Region, is a 205,000 mile2 region covering West Virginia and parts of 12 other states 

that follows the spine of the Appalachian Mountains from southern New York to 

northern Mississippi. This region has encompassed numerous economically distressed 

areas where accessibility to transportation and economic opportunities remains a 

pivotal factor in fostering an equitable and sustainable economic growth (Shayanfar et 

al., 2019). In 2016, the Central Appalachian Food Enterprise Corridor Project was 

launched by the Appalachian Sustainable Development (ASD) organization through a 

grant funded by ARC. ASD is a non-profit organization with a focus on sustainable 

agriculture development in the central Appalachian region (Choi et al., 2022). The 

project seeks to develop a coordinated local foods distribution network throughout 

Central Appalachia which will connect established and emerging producers in Ohio, 

West Virginia, Tennessee, Southwest Virginia, and Eastern Kentucky to wholesale 
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distribution markets. The goal of the ASD project is to bridge the gap between 

producers and wholesale or retail outlets seeking local farm products. This endeavor 

aims to spark economic opportunities within the food and agriculture sector in 

underserved communities (Choi et al. 2022). According to the project data provided by 

ASD in 2020, two refrigerated trailers were used to provide the cross-state routes 

weekly. Meanwhile, ASD is exploring potential routes to expand its delivery service 

within the Appalachian area, aiming to fill the delivery gaps in the existing routes. 

Taking into account the maximum available service time for both current over-state 

delivery services and potential new ones, it is possible to operate short delivery trips 

for local communities within the existing service gaps. 

5.2 Existing Delivery Services 

There are 6 aggregation points, including farm market and workshops, 

collecting the farm products from 90 growers within the Appalachian region. The 

demand in the entire service area can be computed from the baseline inputs in Table 1. 

𝑞 = 𝑄𝑍 = 15.24⁡𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠/ℎ𝑜𝑢𝑟 (28) 

 
Figure 10 Illustration of location of points and self-delivery Euclidean distance 

Figure 10 illustrates the locations of both the aggregation points and growers, 

as well as the current association of growers with their corresponding aggregation 
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points. Appalachian Harvest (green point with 46 self-delivery routes) and Sprouting 

Farms (Orange points with 27 self-delivery route) cover most of the points within the 

service area. The assumptions of Stein’s formula include a fairly compact and fairly 

convex service area with more than five points that are fairly uniformly distributed. 

Otherwise, that approximation is unreliable (Stein, 1978). The case study focuses on 

these two aggregation points, which satisfy Stein’s assumptions. Both aggregation 

points are situated within a reasonably compact and convex service zone, including far 

more than five stop points. Prior to assessing the performance of the flexible-route 

delivery service, a discussion on point attribution, grounded on the isochrones of the 

aggregation points, is necessary. 

 

Figure 11 Illustration of 1-hour, 2-hour, and 3-hour isochrone of aggregation points 

 

The visualization of the isochrone is based on the QGIS, using data accessed 

from Travel Time API. For Appalachian Harvest, located at the intersection of US-23 

and US-58, there are 36 points within the 1-hour isochrone, 7 additional points between 

1-hour and 2-hour isochrone, and 9 additional points between 2-hour and 3-hour 
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isochrone. For Sprouting Farms, situated in the mountainous area of central Appalachia, 

there are 3 points within the 1-hour isochrone, no additional points between 1-hour and 

2-hour isochrone, 10 points between 2-hour and 3-hour isochrone (including 4 points 

overlapping with another 3-hour isochrone), and 9 points located close but outside the 

3-hour isochrone. It is sensible to maintain the current attribution of growers, taking 

into account the transportation convenience for nearby growers and preserving the 

diversity of farm products for both aggregation points. This consideration also 

incorporates growers within a 3-hour isochrone. Following this, the process of 

optimizing the total cost of both the flexible-route delivery service and self-delivery 

service is performed. In the case study, Area 1 represents Appalachian Harvest region 

(suburban area). Area 2 represents Sprouting Farms region (mountainous area) 

The driving distance between aggregation points and each corresponding 

grower can be computed based on the distance matrix from Google Map API. The 

maximum allowable service headway of self-driving can be calculated through ℎ =
𝑆

𝑞
. 

Accordingly, the total user cost of perishability cost 𝐶𝑃, in-vehicle cost 𝐶𝑉, and waiting 

cost 𝐶𝑊 are determined based on the Equation 15-18. 
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Figure 12 Visualization of dead-ends in urban and rural area (Area 1 of case study) 

 

 

Figure 13 Visualization of coordinates, dead-ends and convex area 1 and area 2 

 

The transformation of number of nodes from n to N can be found through the 

road network from the API provided by Open Street Map. Based on the definition of 

dead-ends roads, figure 12 is the visualization of dead-ends of Manhattan Island, New 

York and an example of Appalachian Harvest region, a suburban area which will be 

mentioned in the case study. The red dots represent the dead-ends in the road network 

of possible edge of TSP tour, where only some of them will be visited if one TSP tour 

is determined. In other words, this value can be used for determining the upper 
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boundary of an approximated TSP tour. Then, we must convert the real road network 

with n nodes (shown in blue) into its minimal convex area (indicated by green dashed 

lines) and document all the related information. Figure 13 is the visualization of the 

results.  

For area 1 with 52 delivery points, its service area size is 10,694.68 square mile 

and the length of dead-end road is 9.97 miles. For area 2 with 25 delivery points, the 

size of service area is 15,706.64 square mile and the length of dead-end road is 10.84 

miles. The lower boundary of estimated TSP tour length is not considering the 

existence of dead-end roads. Therefore, the range of approximated tour length can be 

computed with Equation 9 based on the length of dead-end roads within a service area 

with known number of demand points. To indicate the advantage of flexible-route 

service, the longest dead-end length is considered for optimization to reflect the worst 

case, such as visiting all the nodes in the dead-end roads. 

 Based on Equation 9, without considering the dead-end roads, the TSP tour 

length of current service size for area 1 is 1069.8 miles and for area 2 is 1216.9 miles. 

The maximum of TSP tour length of current service size, considering all the dead-end 

roads, with same number of delivery points for area 1 is 1958.2 miles and 1860.4 miles 

for area 2. 
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Figure 14 Optimal TSP tour visualization 

The visualization of optimized TSP tour by LKH algorithm generated using the 

Google Map API indicates that several route segments are dead-end roads. Within the 

context of this thesis, dead-end roads are defined as routes or edges connected to nodes 

that have only a single segment leading in or out. Consequently, nodes with two or 

more connecting segments are not classified as dead-ends, even if their impact on the 

TSP tour is analogous to that of dead-end roads. Based on the result, the minimal tour 

length with current nodes is 1040.8 miles for area 1 and 877.5 miles for area 2. 
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5.3 Results of the Planning Model 

Using the baseline inputs listed in Table 1, the results for flexible-route delivery 

service are shown in Tables 8 and 9.  

Table 8 presents the results for the baseline case with integer fleet size and size 

of service zone for two cases. Two aggregation points feature different transportation 

environments: one is located in a suburban area while the other is situated in a 

mountainous area with a sparse road network. Area 1 represents Appalachian Harvest 

region (suburban area). Area 2 represents Sprouting Farms region (mountainous area). 

Based on the same methodology introduced in the chapter 3.3.1, the resulting circuity 

factor is 1.35 for the service area 1 and 1.5 for the service area 2.  

While the total and average costs of self-delivery are lower than those of 

flexible-route service, the number of trucks in real-world scenarios tends to exceed the 

figures obtained from our comparison. This is often the case when the number of trucks 

matches the number of stops, especially as most self-delivery services are operated by 

the users themselves. This situation significantly increases operating costs. The results 

presented are based on the assumption that the minimum number of trucks is being 

used. Consequently, Table 8 displays the minimum cost for self-delivery. In real-world 

scenarios, achieving a long total delivery time with small trucks fleet in order to 

minimize costs is challenging. The result also indicates the optimized average cost and 

total cost of flexible-route service compared to the current self-delivery. 

Compared to flexible-route service, the total delivery time is significantly 

higher for self-delivery service, but the average in-vehicle cost is less. This result 

inspires the idea of combining self-delivery service and flexible-route delivery service, 
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to avoid unnecessary detour of flexible-route service for access the nodes far from the 

terminal. 

Table 8 Baseline Case and Optimized Results for Delivery Routes 

 Existing Self-Delivery with Minimal 

Operating Trucks 

Flexible-route Service Integer Fleet 

with Current Area Constraint 

Area 1 Area 2 Area 1 Area 2 

Headway, ℎ * (hr) 41.8* 42.5* 38.6 33.8 

Size of Service Zone, 𝐴 * (mi2) 10694.68* 15706.64* 10694.68 15706.64 

Total delivery distance, ∑𝐿(mi) 2,178.1 2,381.6 1982.2 1860.4 

Total delivery time 𝑇(hr) 41.8 42.5 38.6 33.8 

Package Demand 𝑞 (packages/hr) 2.89 4.24 2.88 4.24 

Number of trucks, 𝑁 1** 1** 1 1 

Operating Cost, 𝐶𝑂 ($/hr) 60 60 60 60 

Perishability Cost, 𝐶𝑃 ($/hr) 12.54 19.48 22.27 28.70 

In-vehicle Cost, 𝐶𝑉 ($/hr) 0.96 2.99 23.11 29.78 

Waiting Cost, 𝐶𝑊 ($/hr) 25.07 37.42 23.11 29.78 

Total Cost, 𝐶($/hr) 98.57 119.89 128.49 148.26 

Average Cost, 𝐶𝐴 ($/package) 34.14 28.27 44.50 34.96 

* The headway and size of self-delivery service zone is used for determining the 

package demand; therefore, the same size as flexible-route service zone is considered. 

** The minimal number of trucks is calculated based on the round-delivery time over 

the headway. 

 

Table 9 Optimal Solution of Baseline Study 

 Optimal Solution  Optimal Solution with Integer 

Constraint 

Area 1 Area 2 Area 1 Area 2 

Headway, ℎ * (hr) 43.5 41.7 35.0 30.5 

Size of Service Zone, 𝐴 * (mi2) 8514.8 8882.3 8514.8 8882.3 

Total delivery distance, ∑𝐿(mi) 1768.7 1660.0 1768.7 1660.0 

Total delivery time 𝑇(hr) 35.0 30.5 35.0 30.5 

Package Demand 𝑞 (packages/hr) 2.30 2.40 2.30 2.40 

Number of trucks, 𝑁 0.80 0.73 1 1 

Operating Cost, 𝐶𝑂 ($/hr) 48.29 43.88 60 60 

Perishability Cost, 𝐶𝑃 ($/hr) 18.05 17.31 16.10 14.63 

In-vehicle Cost, 𝐶𝑉 ($/hr) 16.70 15.18 16.70 15.18 

Waiting Cost, 𝐶𝑊 ($/hr) 20.75 20.75 16.70 15.18 

Total Cost, 𝐶($/hr) 103.79 97.13 109.50 104.98 
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Average Cost, 𝐶𝐴 ($/package) 45.15 40.50 47.63 43.78 

 

A very low demand density 𝑄 of 2.7 × 10−4 package/sq. mile/hour is used here, 

which is roughly 0.01 pound/sq. mile/hour, representing the actual non-peak demand 

in the rural area. To find the influence of peak demand due to agricultural harvest, a 

sensitivity analysis should be performed. The case of Appalachian Harvest 

characterizes a service area in a suburban location, featuring a dense road network and 

a large number of stops. In contrast, the Sprouting Farms scenario represents a 

mountainous area where the road network is less dense and there are fewer stops. The 

number of trucks in the unconstrained case indicates that the fleet with more than one 

truck may be beneficial for finishing the delivery service within one day, even if the 

total cost in $/hr is higher than for the one-truck fleet. In this case, another algorithm 

about Capacitated Vehicle Routing Problem (CVRP) should be adapted for route 

design.  
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5.4 Sensitivity Analysis of Case Study 

5.4.1 Effect of Demand Density (in package/sq. mile/hr) 

 

Figure 15 Zone size and headway vs. delivery demand 

 

 

Figure 16 Package demand vs. demand density 
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In the sensitivity analysis, the integer fleet constraint is strictly applied to reflect 

the operation of flexible-route service in real cases. In Figure 15, the optimal service 

zone size and headway decrease as demand increases, following the exponential 

trendline, indicating that the rate of decrease is faster for optimal size of service area 

than the headway. The demand model is simplified as a power function. Although the 

package demand is larger for area 2 than area 1, as indicated in Figure 16, due to more 

stops in area 1, the sudden decrease of headway occurs when the fleet size increases 

from 1 to 2. This result suggests that it is possible to operate more than one truck to 

service high demand area or low demand area with occasional peak demand such as 

harvesting. 

 

Figure 17 Total cost and average cost vs. demand density 

 

Figure 17 illustrates that the rate of decrease for the average cost per package 

surpasses the rate of increase for the total cost per hour as demand rises. This indicates 

a high cost per package when the demand is low in the rural areas. Due to the integer 
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constraint of fleet size, when the cumulated total demand within the round-trip time in 

the service area exceeds the capacity of one truck, additional truck should be used. 

When more than one truck is operating, both total cost and average cost increase 

significantly. This reveals the reason why the result about mixing self-delivery and 

flexible-route service is keeping a pure flexible-route service based on the baseline 

input. As Figure 14 indicates, the headway reduced by half with the increases of total 

cost. Figure 18 indicates the consist of user cost and operation cost for area 1. When an 

additional truck is placed into operation, the decrease of waiting cost and perishability 

cost is smaller than the extra cost of truck operation. 

 

Figure 18 User Cost and Operation Cost vs. Demand Density 

5.4.2 Effect of Demand (in package/hr) 

To provide a more general view of optimal headway and zone size, the package 

demand is varied from 2 packages/hr up to 40 packages/hr in Fig. 18?. The demand 

density is the combination of demand density in packages/sq. miles/hr and zone size in 
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sq. miles. The required fleet size changes as Figure 19 indicates. For area 1, the fleet 

size increases from 1 to 2 at 5.82 packages/hr and increases from 2 to 3 at 23.90 

packages/hr. For area 2, the fleet size increases from 1 to 2 at 8.42 packages/hr. 

 

 

 
Figure 19 Log zone size and headway vs. demand density 
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5.4.3 Effect of Truck Size (in packages/truck) 

Figure 19 suggests that, at low demand levels, the average cost per package is 

minimized when larger trucks with a capacity of 120 packages are used, compared to 

the existing trucks with a capacity of 100 packages, based on the baseline inputs. This 

occurs when the demand density is low, the larger trucks will be more cost-effective 

compared to small trucks, as Table 10 suggests. The headway and zone size increase 

as truck capacity increasing. 

 

Table 10 Effect of Truck Size 

Truck Capacity of Area 1 

 (packages/truck) 

60 80 100* 120 140 

Headway (hours) 28.8 32.2 35.0 37.5 39.6 

Zone Size (sq. miles) 5304.1 6959.5 8514.8 9985.5 11384.6 

Package Demand (packages/zone/hr) 1.43 1.88 2.30 2.70 3.07 

Operating Cost, 𝐶𝑂 ($/hr) 48.00 54.00 60.00 66.00 72.00 

Perishability Cost, 𝐶𝑃 ($/hr) 8.56 12.55 16.70 20.95 25.27 

In-vehicle Cost, 𝐶𝑉 ($/hr) 8.56 12.55 16.70 20.95 25.27 

Waiting Cost, 𝐶𝑊 ($/hr) 8.25 12.09 16.10 20.20 24.36 

Total Cost, 𝐶($/hr) 73.36 91.19 109.50 128.10 146.89 

Average Cost, 𝐶𝐴 ($/package) 51.23 48.23 47.63 47.52 47.79 

% Change of Average Cost 7.56 1.89 0 -0.24 0.33 

 

Truck Capacity of Area 2 

 (packages/truck) 

60 80 100* 120 140 

Headway (hours) 24.7 27.8 30.5 32.8 34.8 

Zone Size (sq. miles) 5533.0 7259.9 8882.3 10416.5 11876.0 

Package Demand (packages/zone/hr) 1.49 1.96 2.40 2.81 3.21 

Operating Cost, 𝐶𝑂 ($/hr) 48.00 54.00 60.00 66.00 72.00 

Perishability Cost, 𝐶𝑃 ($/hr) 7.65 11.33 15.18 19.14 23.17 

In-vehicle Cost, 𝐶𝑉 ($/hr) 7.65 11.33 15.18 19.14 23.17 

Waiting Cost, 𝐶𝑊 ($/hr) 7.37 10.92 14.63 18.45 22.33 

Total Cost, 𝐶($/hr) 70.67 87.57 104.99 122.72 140.67 

Average Cost, 𝐶𝐴 ($/package) 47.30 44.67 43.78 43.64 43.87 

% Change of Average Cost 8.05 2.04 0 -0.33 0.21 

* Baseline results 
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Figure 20 Average cost per package vs. truck size 

 

5.4.4 Effect of Value of Time (in $/package/hr) 

 As the value of time for users becomes more important in total cost, more trucks 

are dispatched to deliver packages sooner since the value of time influencing in-vehicle 

cost, waiting cost and perishable cost. When the value of time increases tenfold over 

the baseline from 0.415 $/(package·hr) to 4.15 $/(package·hr), for area 1, the optimal 

headway decreases significantly from 35.0 to 22.3 h, the optimal zone size increases 

greatly from 8514.8 to 14892.6 sq. miles, while the truck capacity is kept at 100 

packages/truck. A similar relation holds for area 2. 
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5.4.5 Effect of the Perishability Coefficient (in %/hr) 

 The perishability rate is used for farm products. Keeping other variables same 

as in the baseline inputs, besides adjusting the value of 𝑝 from 0.2 to 1, the effect is 

summarized in Table 11. When the farm product is harder to preserve during the 

waiting and delivery time, the perishability cost increases significantly and dominates 

the user cost. 

Table 11 Effect of Perishable Coefficient 

Perishable Coefficient of Area 1 

 (%/hr) 

0.2* 0.4 0.6 0.8 1.0 

Headway (hours) 35.0 36.8 19.1 19.6 20.0 

Zone Size (sq. miles) 8514.8 9581.4 10412.8 11081.9 11633.1 

Fleet Size (trucks) 1 1 2 2 2 

Package Demand (packages/zone/hr) 2.30 2.59 2.81 2.99 3.14 

Operating Cost, 𝐶𝑂 ($/hr) 60.00 60.00 120.00 120.00 120.00 

Perishability Cost, 𝐶𝑃 ($/hr) 16.70 19.76 11.12 12.16 13.03 

In-vehicle Cost, 𝐶𝑉 ($/hr) 16.70 19.76 22.24 24.31 26.06 

Waiting Cost, 𝐶𝑊 ($/hr) 16.10 38.08 48.24 70.31 94.20 

Total Cost, 𝐶($/hr) 109.50 137.59 201.61 226.78 253.29 

Average Cost, 𝐶𝐴 ($/package) 47.63 53.19 71.71 75.79 80.64 

% Change of Average Cost 0 11.67 50.56 59.24 69.31 

 

Perishable Coefficient of Area 1 

 (%/hr) 

0.2* 0.4 0.6 0.8 1.0 

Headway (hours) 30.5 32.2 33.4 17.2 17.6 

Zone Size (sq. miles) 8882.3 9995.0 10862.3 11560.2 12135.3 

Fleet Size (trucks) 1 1 1 2 2 

Package Demand (packages/zone/hr) 2.40 2.70 2.93 3.12 3.28 

Operating Cost, 𝐶𝑂 ($/hr) 60.00 60.00 60.00 120.00 120.00 

Perishability Cost, 𝐶𝑃 ($/hr) 15.18 18.02 20.34 11.14 11.96 

In-vehicle Cost, 𝐶𝑉 ($/hr) 15.18 18.02 20.34 22.28 23.91 

Waiting Cost, 𝐶𝑊 ($/hr) 14.63 34.74 58.82 64.42 86.43 

Total Cost, 𝐶($/hr) 104.99 130.78 159.51 217.83 242.30 

Average Cost, 𝐶𝐴 ($/package) 43.78 48.46 54.39 69.79 73.95 

% Change of Average Cost 0 10.69 24.23 59.41 68.91 

* Baseline results 
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5.4.6 Effect of Truck Operation Speed (in mph) 

he baseline value of truck operation speed is 60 mph. The result from Table 12 indicates 

that within the range from 30 to 70, the average cost decreases withhigher speed, but 

the large value may not fit the operation scenario since it is hard for vehicles to maintain 

high speeds on rural roads. The marginal benefit from increasing speed is decreasing 

since the % change of average cost decreases at a slower rate.  

Table 12 Effect of Truck Operation Speed 

Truck Operation Speed of Area 1 

 (%/hr) 

30 40 50 60* 70 

Headway (hours) 52.7 44.3 38.9 35.0 32.1 

Zone Size (sq. miles) 5364.0 6498.0 7540.2 8514.8 9436.3 

Fleet Size (trucks) 1 1 1 1 1 

Package Demand (packages/zone/hr) 1.45 1.75 2.04 2.30 2.55 

Operating Cost, 𝐶𝑂 ($/hr) 60.00 60.00 60.00 60.00 60.00 

Perishability Cost, 𝐶𝑃 ($/hr) 15.83 16.14 16.43 16.70 16.96 

In-vehicle Cost, 𝐶𝑉 ($/hr) 15.83 16.14 16.43 16.70 16.96 

Waiting Cost, 𝐶𝑊 ($/hr) 15.25 15.55 15.83 16.10 16.35 

Total Cost, 𝐶($/hr) 106.90 107.83 108.69 109.50 110.27 

Average Cost, 𝐶𝐴 ($/package) 73.81 61.46 53.39 47.63 43.28 

% Change of Average Cost 54.97 29.04 12.09 0 -9.13 

 

Truck Operation Speed of Area 2 

 (%/hr) 

30 40 50 60* 70 

Headway (hours) 47.1 39.3 34.1 30.5 27.8 

Zone Size (sq. miles) 5595.5 6778.5 7865.7 8882.3 9843.7 

Fleet Size (trucks) 1 1 1 1 1 

Package Demand (packages/zone/hr) 1.51 1.83 2.12 2.40 2.66 

Operating Cost, 𝐶𝑂 ($/hr) 60.00 60.00 60.00 60.00 60.00 

Perishability Cost, 𝐶𝑃 ($/hr) 14.76 14.91 15.05 15.18 15.30 

In-vehicle Cost, 𝐶𝑉 ($/hr) 14.76 14.91 15.05 15.18 15.30 

Waiting Cost, 𝐶𝑊 ($/hr) 14.23 14.37 14.50 14.63 14.75 

Total Cost, 𝐶($/hr) 103.75 104.18 104.59 104.99 105.36 

Average Cost, 𝐶𝐴 ($/package) 68.67 56.92 49.25 43.78 39.64 

% Change of Average Cost 56.86 30.02 12.49 0 -9.45 

* Baseline results 



 

 

59 

 

5.4.7 Effect of Truck Operation Cost (in $/hr) 

 Since the truck operation cost 𝐵 = 𝑎 + 𝑏𝑆  consists of fixed cost a in 

$/(vehicle·hr) and cost b in $/(package·hr) relating to truck capacity. The range of a 

and b is set to correspondingly span from -25% to 25%. With the increase of either 

parameter, the cost increases linearly and the headway decreases linearly. 

 

Figure 21 Headway and average cost per package vs. truck operation cost a 

 

Figure 22 Headway and average cost per package vs. truck operation cost b 
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5.5 Results of Optimization Algorithm of Real Case 

 

Figure 23 Optimal service route for area 1 and 2 

 

Relying on the algorithm presented in Figure 9, the LKH algorithm is employed 

to compute a near-optimal route for the flexible-route service. This computation is 

based on geocoordinate inputs and is used to determine the minimal total cost of both 

flexible-route services and self-delivery services. Both constraints on maximum 

allowable delivery time and integer fleet size are strictly followed. The optimal delivery 

route covering all the nodes can be found in Figure 14 or Figure 20. The algorithm 

attempts to remove one node from the TSP tour and assign another truck to deliver the 

package separately, with the output of TSP tour covering all demand nodes with one 

truck. There is no output about mixing service and keep the same route as flexible-route 

service. One possible explanation is that when more than one truck is operating, both 



 

 

61 

 

total cost and average cost increase significantly due to the large proportion of 

operating cost. Consequently, the cost saved by removing one node from TSP tour is 

less than the cost of dispatching another truck. 

The results from baseline and sensitivity study all suggest that when demand is 

low and the zone size is large, it is impossible for a driver to finish the tour within the 

maximum allowable working time in one day (e.g., 10 hours maximum per day). To 

finish the tour, a driver has to stop for resting or a Vehicle Routing Problem (VRP) 

should be solved. Since the detailed constraints for a VRP algorithm are not discussed, 

the same constrains from TSP is applied with additional flow balance where the node 

only will be visited by one vehicle. Using the nodes from case 2 as an example, the 

near-optimal route for the flexible-route service of two vehicles with maximum 

allowable working time and balanced driving distance can be found in Figure 21. In 

this scenario, one vehicle completes its route in 9.0 hours covering 497 miles, while 

the other finishes in 9.8 hours, traveling 482 miles.  
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Figure 24 Optimal service route with two vehicles for area 2 

5.6 Summary 

 This chapter discusses the application of economic planning model of total cost 

(user cost + operation cost) and finds the minimal average cost per package with 

optimized service headway and size of service zone in both ideal unconstrained case 

and in a realistic application  operating jointly with existing self-delivery service. 

AVRP application would probably improve the practicalities of flexible-route service 

in a large area with low demand. 
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Chapter 6: Conclusion and Future Research 

6.1 Research Summary and Contributions 

Efficiency and low demand constitute significant challenges in achieving a 

cost-effective delivery system in rural areas. Based on literature reviews, this research 

focuses on integrating various methods and addressing several research gaps. These 

gaps include computing the circuity factor in rural areas, defining a new estimation 

formulation of TSP tour considering the influence of dead-end road and sparseness of 

the rural road network, incorporating the perishability factor into the cost function 

formulation, and applying a heuristic method to solve the Traveling Salesman Problem 

(TSP) tour distance in the case study, as opposed to estimating the distance. 

This study focuses on the optimization of a planning stage model which 

minimizes the total cost and the average cost per package. Several findings reveal the 

characteristic of delivery in rural areas. First, the adjusted tour length estimation model 

based on log-transformation is discussed based on literature review and statistical 

support. Then, based on the estimated input parameters, in reducing the average cost 

per package, it is more beneficial to have a fleet with multiple trucks rather than a 

single-truck fleet. Furthermore, the optimal size of the service area can be determined 

by identifying the size that yields the lowest average cost per package. Lastly, it is 

observed that the same fluctuation in an input variable can lead to varying impacts on 

service areas depending on their road network densities and demand characteristics. 

6.2 Future Research 

Some potential extensions of this study are considered, including: 
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⚫ Compiling more similar case studies and relaxing the simplifying 

assumptions in the planning model, such as variable demand per point. 

⚫ Developing a more realistic model for the perishability of products, such 

as an exponential decay model. 

⚫ Considering the influence of heterogeneous packages and trucks, as well 

as the integration of potential new delivery mediums like unmanned 

vehicles or drones. 

⚫ Using a better model for tour estimation in the planning model, such as one 

based on more raw data from real world cases. 

⚫ Using heuristic vehicle routing problem (VRP) algorithms for similar cases 

with greater numbers of trucks in the service zone. 

⚫ Considering probabilistic variations in demand and service times. 
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