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1. Introduction

Let G be a finite dimensional Lie group. In this paper, we consider left-invariant
control systems on G. To fix notation, let Ly : G — G, h — g - h, denote the left
translation by ¢ € G, and let Ty Ly, : ThG — Ty 4 G denote its tangent (i.e linearization).
Let G denote the Lie algebra of G (i.e T.G the tangent space at identity e € G). A vector
field g > vy € TG is left-invariant if vy = T L, - € for some fixed £ € G. A left-invariant
control system is defined by letting £ be a (controlled) curve in G. It takes the form

g = TeLg'éu (1)

where each control u(-) determines a curve £,(., C G. Here we limit ourselves to vector

valued control functions u(-).

W]

€u = &0 + Z u; (t)E; (
=1

where u; (t) € R, {&, &, ---, &m} spans an (m + 1)-dimensional subspace H of G,
m + 1< n = dim (G).

Consider an optimal control problem of the form

T

Min
L(u) d :
e 0/ (u) dt (3)

subject to the condition that u(-) steers (1) - (2) from go at t = 0to gy att = T. (T
may be fixed or free. For simplicity we restrict 7' to be fixed in this paper.)
Clearly, the Lagrangian L is G-invariant (-does not depend on ¢).

It is the content of the mazimum principle that optimal curves in G are base integral
curves of a hamiltonian vector field on T*G. To be more precise, let 7 : TG — G and

& ¢ T*G — G be bundle projections.

o



Define

H» = H* (ay, u)
C AL 4 <ag TLy - > ()

where A = 1or 0, and oy € T*G.
Maxzimum Principle

Let uop¢ be a minimizer of (3) and let ¢ be the corresponding trajectory of (1). Then,
9(t) = 7& (ay(t)) for an integral curve ay, of the hamiltonian vector field X ;5" defined

for t € [0, T such that:
(a) If A = 0 then a4 is not the zero section of T*G on [0, T].

(b) HM ey, uopt) = ;g’[’]H’\(ag, u) for t a.e. in [0, T]. Here U is the space of values of

controls = IR™ in this paper.

(c) If the terminal time T is fixed then H*(ay, uopt) = constant, and if T is free then
H* ey, uopt) = 0 Vt € [0, T]. Trajectories corresponding to A = 0 are called abnormal
extremals and they occur often but are ruled out under suitable hypotheses. We are
concerned solely with reqular extremals (A = 1) in this paper. In that case, since /' = R™,

optimal controls for (3) subject to (1) and (2) satisfy

_aif + 5%; (g, T.Ly - £,) = 0. (5)
= 1,2, m.
From (2),
(ag, TeLg - &u) = (ag, TeLy- (o + zm: uii))
=
= (LI ag b S i)
=
o) oy s ) (©
=



where y = TeL} - a, € G*. From (5) and (6)

Observe that, from (6) and (7) the pre-hamiltonian H*~! and the hamiltonian H*=! are

m

G-invariant. More explicitly, suppose L(u) = 2 3~ I, u?, the constants I; > 0. Then, the
1=1

optimal u; are given by

and the hamiltonian on T*@G is

I;

1

- <F’“7 ‘Sl> ’

1

clearly the hamiltonian H is G-invariant. This brings us to the main (and essentially
only point) of this paper. The hamiltonian vector field Xy on T*G corresponding to
the hamiltonian H can be (left-) reduced to a hamiltonian vector field X, on g*. The
latter is hamiltonian in a non-canonical (Lie-Poisson) sense. Integral curves of Xy can
be reconstructed from integral curves of X by quadrature. Thus questions about explicit

solvability (or integrability) of X g are turned into corresponding questions about Xj,.

The process by which one passes from Xy to X, known as Poisson reduction, is well-
known in geometric mechanics. Since G* is a vector space, we thus conveniently bypass
computations with the symplectic structure on T*G. In his papers Jurdjevic works with
the symplectic structure on T*G although one does see reduction “done by hand” in special

examples.

The paper of Faybusovich is closest to the point-of-view of the present paper and is in
some ways broader in scope. Limiting ourselves to G-invariant optimal control problems

as here, we hope to make things a bit more explicit than is perhaps in [2].

4



In the next few sections we collect together some basic facts regarding Poisson man-

ifolds, summetry and reduction and carry out the reduction step for the optimal control
problem (1)-(3).

2. Poisson Manifolds, Symmetry Groups and Reduction

A smooth manifold P is said to be a Poisson manifold if it comes equipped with an

IR-bilinear map (Poisson structure),

{ip 2 CF(P) x C®(P) — C%(P)

satisfying the axioms:

(¢, vtp = - {¥, ¢}
(”){¢7 {¢’ X}P}P + {1/)? {Xa ¢}P}P + {/\7 {¢a d’}P}P =0
(@i){ew, xtp = ¥ {¢, x}tp + o{¢, x}r

Associated to a Poisson structure is a unique twice- contravariant, skew- symmetric,

tensor field A on P on such that

{6, ¥}p = A(dg, di). (10)

For a proof see p. 109 of [8]. The tensor A defines a vector-bundle morphism,

A* TP - TP
Wy A#(az) e T.P
satisfying,
Be (A*# (a)) = A(2) (ag, B;) forall a,, 8, € T.P.

The rank of the Poisson structure at « € P is defined to be the rank of the Poisson ten-
sor A at x. This is simply the rank of the (characteristic) distribution ¢ = A#(T*P)c TP
at the point #. The rank may vary on P. It is a theorem of Kirillov [6] that A% (T*DP)

defines a generalized foliation on P such that through each point + € P, passes a leaf
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carrying a unique symplectic structure that makes the injection map of the leaf a Poisson
morphism. (See Weinstein [13] and Liebermann-Marle [8]). Thus a Poisson manifold is a

unzon of symplectic leaves.

A function ¢ € C*°(P) is called a Casimir function if {¢, v}p = 0Vip € C=(P).

Casimir functions are constant on symplectic leaves.

Let G be a Lie groupand let ¥ : G x P — P, (g, ) — ¥,(x) be a group action
such that, ¥4(-) is a Poisson morphism for every ¢ € G. Further suppose that the action
is proper and free. Then the quotient manifold P/G is smooth and carries the Poisson

structure {-,-} p/¢ induced from the one on P satisfying,

{4, 1/’}P/G07T = {¢om, Yor}p,

where 7 : P — P/@ is the canonical projection. By construction, it is a Poisson morphisiu.

Now G-invariant dynamics on P induces dynamics on P/G. To see this, let H : P —

R be a G-invariant hamiltonian function on P, i.e,

H(U,(z)) = H(z) Vge€G.

Define the (hamiltonian) vector field X on P by requiring,

Xp¢ = {6 H V¢ € C=(P).

The hamiltonian H descends to h P/G — R and determines the reduced hamiltonian

dynamics X, on P/G by

Xn ¢ = {§, h}pjc V€ C™(P/G).

Here h([z]) = H(z) for any equivalence class [z] in P/G.

From the definition of the characteristic distribution on a Poisson manifold, it follows

that the hamiltonian vector field X} leaves invariant the symplectic leaves of P/G. Thus
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any Casimir function on P/G is an integral of motion for Xj. The integral curves of Xy

project under 7 to integral curves of Xp.

The process sketched out so far is the essence of Poisson reduction. See [9. 10] for

details and generalizations.

For our purposes the main examples of Poisson manifolds are 7% G and G*. The Poisson

structure on T*@ is given by the canconical symplectic structure w on T*G as,

{¢7 ¢}T‘G = W (X¢7 Xil)) (11)

where w is the canonical symplectic form on T*G (c.f. Abraham-Marsden p. 315).

The second example of interest to us is the space G* the linear dual of a Lie algebra

G. The space G* carries the Lie-Berezin- Kirillov - Kostant - Souriau Poisson structure (s),

defined by

(12)

S T S|

(6 ¥}s () = F (u, [—

where ¢, ¢ € C*°(G*)and u € G*. Here the variational derivative 6% is defined via

the Frechet derivative:

Do)+ = (52 56)

for 6 ¢ € G*. By finite dimensionality ,G** = § and g% € g.

The minus (plus) bracket in obtained by viewing G* as the left (right) Poisson reduction
of T*G by G, as explained further in the next section.

3. Lie - Poisson Reduction and the Maximum Principle

Recall that the tangent and cotangent bundles of Lie groups are trivial as vector

bundles, i.e.

TG ~ G x Gand TG = G x G*.
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The trivializations are made explicit by tangents of left and right translation operators.

Thus

(id, \) : TG — G x G*
ay; — (g, TeLZO‘g)
(id, p) : TG — G x G*
ag = (g, TRy ay)
are the corresponding Poisson diffeomorphisms. In the case of G = SO(3) the rota-

tion group, these diffeomorphisms correspond to passage to body and space coordinates

respectively, in rigid body mechanics.

Observe that the canonical symplectic structure on T*G 1s G-invariant and 1s best ex-

pressed in one of the trivializations (A & M p. 315). Ineach case the quotient T*G /G ~ G*.
Proposition (Lie-Poisson Reduction):

The quotient maps

A: TG — G*
p: T"G — G

are Poisson homomorphisms if for A we take the minus Lie-Poisson structure on G* and for

p we take the plus Lie Poisson structure on G*.

Proof: 1t is a calculation using the expression of w on T*G in one of the two trivializations,

and using the definition of quotient Poisson structure as in section 2. See for instance [9]

[10]. .

Denote the space G* with the minus (plus) Poisson structure (12) as G* (G%). From
the discussion in section 2, every left - invariant hamiltonian on T*G gives rise to a reduced

dynamics on G*. (For our optimal control problem, left reduction is of interest.)

Suppose h : G* — R is a reduced hamiltonian function. Let {X;, ---, X} be a basis

for the Lie algebra G. Let {X?, ---, X’} be the dual basis for G*. Thus (X!, X;) = o
the Kronecker Symbol. Any p € G* can be expressed as ¢ = > Xzb. The differential

=1
equations satisfied by the coordinate functions are
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lli - {Nza h}_ i:]-vg?"'an (13)

where the Poisson bracket has to be computed from (12). Explicitly

:_ZZ ukF,]é ' =1,2,---,n. (14)

=1 k=1

Here I‘fj are the structure constants of G in the basis {X;,---, X,}.

By the properties of the Poisson bracket it is immediate that h is constant along
trajectories of (13). Additionally, the Casimir functions on G* are also constant along
trajectories of (13). For § = SO(3) the Lie algebra of skew symmetric matrices, any
Casimir function is of the form ® (p? + u3 + p3). In general there may not be any

nontrivial (i.e. non-constant) Casimir functions. (The Lie algebra of the affine group or

ar + b group is an example.)

Returning to the optimal control problem of this paper, since the hamiltonian H in

(9) is already expressed as function on G*, we note that the reduced hamiltonian is

1m
ho= (u &) 52"" . (15)

We have in effect shown the following reduction of the maximum principle.

Theorem. Consider the optimal control problem,

T

U

0

DO | =

m
Z I u?.dt
=1

subject to

g = TeLy' (60 + Z Uy (“51‘)7
=1

g(0) = go and g(T) = g:.



Then every regular extremal is given by

ui = (4, &) /1

where p is an integral curve of the vector field X}, on G* corresponding to the hamiltonian

h = </L, 60) +

- <N7 §l>2
= Il

N | =

1=1

and the Poisson bracket {-,-}_ on G* is given by (12). In coordinates on G* the integral
curves satisfy the ordinary differential equations (13)-(14). =

4. Example: The Unicycle.

Consider the unicycle equations

T = cos (¢) usp

y = sin (¢) U

</; = u
These equations are equivalent to the nonholonomic constraint @ stn ¢ — y cos o = 0.
Set,
cos ¢ —sin ¢
g = |stm¢é cos ¢ Yy
0 0 1

clearly ¢ € SE(2) the rigid motion group of the plane. Further the unicycle equations
take the form

g = ¢ (X1ur + Xoug) (16)

where,
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(0 -1 0

X, =11 0 0

0 0 0
(17)

[0 0 1

X, = [0 0 0

0 0 0

clearly this is a left-invariant system in SE(2). Further, since the Lie algebraof SE(2) = se(2)
= span {X;, X2, X3}, where

0 00
Xs = |0 0 1
0 0 O
and [X7, X2] = X3, (also [X1, X3] = — X3 and [X3, X3] = 0), it follows that we have

a controllable system on SE(2). (This way of looking at the unicycle was pointed out by

Naomi Leonard.)

Next consider the optimal control problem

T
min /(u% + uj) dt

0

subject to end-point conditions. By our theorem, regular extremals are given by integral
curves of a reduced hamiltonian on se(2)*. The hamiltonian is in fact, in the coordinates
corresponding to the dual basis {X}, X5, X3}, given by b = (u? + p2)/2. The Poisson

bracket of two functions ¢ and ¢ is given by

{6, ¥}- = V¢ A (n) V 4

where,

[A(:u)]ij - 7 Z Ffj Fek -
k=1
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Explicitly,

0 —ps  po
A= H3 0 0 (18)
—H2 0 0

The reduced hamilton’s equations are (from (14)),

1 = —H2p3
P2 = pips
f3 = p1po. (19)

The Casimir functions are of the form ® = & (u3 + 12), (equivalently V@ is in the kernal
of A). The level sets of Casimir functions (i.e symplectic leaves in G* ) are right circular
cylinders { : p3 + p2 = c}. Integral curves of (19) are intersections of level sets of I,
also cylinders {g : p} + p2 = 2h}, with the symplectic leaves. Thus the phase curves

on symplectic leaves are as in Figure 1.
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Equations (19) are explicitly solvable by elliptic functions. To see this, note that,

fiz + (2H + C) pa — 2/u3 = 0. (20)

This is the equation of an anharmonic oscillator with quartic potential term. The general

solution to (20) is given by,

K2 (t) = ﬂ Sn (/\(t —-to), k)

where Sn (u, k) is Jacobi’s elliptic sine function, A s.t. A2 < (2H + () < 2\%, tg is
arbitrary, k? = 2H_A42-_Q — 1,52 = 2H + C — ). Then p; and p3 are determined

from pu; = /2H — ud; us = /C — pi.

The optimal controls are given by

Ur = M1, Uz = U2.

It can be shown that in this example, there are no abnormal extremals since the strong

bracket-generating condition holds (c.f. Strichartz [12])
5. Conclusion

We have worked out explicitly the Poisson reduction of certain G-invariant optimal
control problems on Lie groups. The approach presented here yields an algorithm for

constructing regular extremals.

6. Notes

This paper is meant to be used as a set of notes for a mini-lecture at the Workshop
on Mechanics, Holonomy and Control, IEEE CDC , Dec 14 1993. The main ideas of this
paper are already to be found in the papers of Faybusovich referred to below. He used
the language of collective hamiltonians and we use the language of Poisson reduction. We
are also a bit more fussy about right and left reduction and the different reduced Poisson
structures one associates with them. In the papers of Jurdjevic, the reduction is carried out

in various examples by hand, but Jurdjevic tends to work with the symplectic structures.
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These papers of Jurdjevic and the references therein contain many additional examples of

explicitly solvable optimal control problems. Our own enthusiasm for Lie-Poisson structures

dates back at least to our work [7] on the dual spin problem. This and later collaborations

have influenced our thinking. A special thanks is extended to Leonid Faybusovich for useful

and enthusiastic discussions.

7. References

1]

2]

8]

[4]

[5]

[7]

8]

[9]

R. Abraham and J.E. Marsden (1978), Foundations of Mechanics, Second Edition.

revised, enlarged, reset. Benjamin/Cumimings, Reading.

L. Faybusovich (1988), “Explicitly Solvable Nonlinear Optimal Control Problems”,
Int. J. Control, vol 48, pp 2507-2526.

L. Faybusovich (1989), “Collective Hamiltonian Methods in Optimal Control Prob-
lems”, Kybernetika, vol 25, no. 2, pp 73-77, (in Russian).

V. Jurdjevic (1992),“Casimir Elements and Optimal Control Problems™. i Proc.
Workshop on Nonlinear Systems, 25th Anniversary of INRIA, Paris.

V. Jurdjevic (1992), “Optimal Control Problems on Lie Groups: Crossroads between
Geometry and Mechanics”, to appear in B. Jakubczyk and W. Respondek eds. Ge-
ometry of Feedback and Optimal Control, Marcel-Dekker.

A.A. Kirillov (1976), “Local Lie Algebras”, Russian Math. Surveys, vol. 31, 56-75

P.S. Krishnaprasad (1985), “Lie-Poisson Structures Dual-Spin Spacecraft and Asymp-
totic Stability”, Nonlinear Analysis : Theory, Methods and Applications. vol. 9. no.
10, 1011-1035.

P. Libermann and C-M. Marle (1987), Symplectic Geometry and Analytical Mechanics,
D. Reidel Publ., Dordrecht.

J.E. Marsden, T. Ratiu and A. Weinstein (1984), “Reduction and Hamiltonian Struc-
tures on Duals of Semidirect Product Lie Algebras™, in J.E. Marsden ed. Fluids and
Plasmas: Geometry and Dynamics, in series Contemporary Mathematics, vol. 28,

55-100, AMS, Providence.

15



[10] J.E. Marsden and T. Ratiu (1986), “Reduction of Poisson Manifolds”, Letters in Math.
Phys., vol 11, 161-169.

[11] J. E. Marsden and A. Weinstein (1974), “Reduction of Symplectic Manifolds with
Symmetry”, Reports in Math. Phys., vol. 5, 121-130.

[12] R.S. Strichartz (1986), “Sub-Riemannian Geometry” J. Differential Geometry, vol. 24,
221-263.

[13] A. Weinstein (1983), “The Local Structure of Poisson Manifolds”, J. Diff. Geom., vol.
18, 523-557 and vol. 22; (1985), 255.

16



