Variable-Rate Finite-State
Vector Quantization

by Y. Hussain and N. Farvardin

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 90-22

Variable-Rate Finite-State Vector QuantizationT

Y. Hussain and N. Farvardin
Electrical Engineering Department
Institute for Advanced Computer Studies
and
Systems Research Center
University of Maryland
College Park, MD 20742

Abstract

A finite-state vector quantizer is a finite-state machine that can be
viewed as a collection of memoryless full-searched vector quantizers,
where each input vector is encoded using a vector quantizer associ-
ated with the current encoder state; the current state and codeword
selected determine the next encoder state [1]. In [1], the state code-
books are unstructured. In addition, it is assumed that all the state
codebooks have the same cardinality leading to a fixed-rate system.
In this paper, we present two variable-rate variations of the system
in [1]. In the first system we let the state codebook sizes be different
for different states. In the second system along with the flexibility
of having different codebook sizes for different states, we use pruned
tree-structured vector quantizers [2] as the state quantizers. For en-
coding sampled speech data, both of these schemes perforin signifi-
cantly better than the scheme in [1]. The second system gives the
best performance of all. Performance improvements of up to 4.25 dB
at the rate of 5/8 bits per sample are obtained.

) T This work was supported in part by National Science Foundation grants NSFD MIP-
86-57311 and NSFD CDR-85-00108 and in part by a grant from General Electric Company.

1

1 Introduction

In the last decade an extensive amount of work has been done on vector
quantization (VQ) as a means for data compression [3]-[6]. The main moti-
vation behind the use of VQQ was the result by Shannon that V() can attain
performance close to the “best possible” in the rate-distortion theoretic sense
in the limit when the block length goes to infinity. In a practical situation,
however, we can only consider finite block lengths, and practical VQ systems"
fall short of achieving the best, while still performing much better than scalar
quantizers. The main reason for the superior performance of VQ over scalar
quantization is that VQ exploits the correlation between the components of
the vector, while scalar quantization assumes no memory between successive
samples. On the other hand, V(Q assumes memorylessness between succes-
sive vectors. The performance of VQ can be further improved by either
increasing the blocklength or exploiting the correlation between successive
vectors. The option of increasing the blocklength is not very attractive due
to the complexity issue, leaving us with the second option. In order to ex-
ploit the inter-vector correlation, several VQ) systems with memory have been
introduced in the Literature [1], [3], [7], [8]. The so-called finite-state vector
quantizer (FSVQ) [1], belongs to the class of VQs with memory. An FSVQ
is a finite-state machine used for data compression. It can be viewed as a
collection of memoryless VQs, where each input vector is encoded using a VQ
associated with the current encoder state; the current state and codeword se-
lected determine the next encoder state. FSVQ has been successfully applied
to both speech and image coding and it is shown to perform substantially
better than memoryless VQ [1],[8]-[11].

In the FSVQ systems described in [1], the state codebooks are all as-
sumed to have the same cardinality and hence the same bit rate. This, in a
loose sense, implies that all the states are treated with approximately equal
degree of fidelity. Such a restriction limits the performance of the FSVQ
which has the potential of doing much better. In one of the schemes de-
scribed in this paper, we have relaxed this assumption as a result of which
performance improventents (in some cases substantial) in terms of signal-to--
quantization-noise ratio are obtained. We have also considered the possibil-
ity of using structured VQs such as tree-structured VQ (TSVQ) and pruned
tree-structured VQ (PTSVQ) as the state quantizers. In fact, the scheme
using PTSVQ) as state VQs and with the flexibility of having variable bit

2

rate assignment among the states performs the best amongst all the schemes
considered in this paper, as will be shown by the simulation results.

The rest of the paper is organized as follows. In Section 2, fixed-rate
FSVQ systems as well as optimally pruned TSVQ systems are briefly dis-
cussed. Section 3 describes variable-rate FSVQ systems, while Section 4
provides the simulation results. Finally summary and conclusions are given -
in Section 5. -

2 Preliminaries

In this section, we briefly provide the description and design algorithm of
FSVQ with both structured and unstructured state codebooks. Also, we
briefly describe the idea-of optimally pruned TSVQ of [2] which will be the

key to the systems to be described in the next section.

2.1 Finite-State Vector Quantizer and Finite-State
Tree-Structured Vector Quantizer

An L-dimensional K-state FSVQ [1] is specified by a state space § =
{L,2,..., K}, an initial state sy and three mappings:

(1) a: RY x & — N : finite-state encoder,

(2) B: N xS — A: finite-state decoder,

(3) f: N x 8§ — §: next state function.

Here, N/ 2 {1,2,..., N} is the finite channel alphabet of size N and A is the
reproduction space.

Let {x,}%, denote the input vector sequence, where x,, € IR*. Similarly
let {un}2q, {54}, and {%X,}22, denote the channel symbol sequence, state
sequence and reproduction vector sequence, respectively. With initial state
S0, the input process determines the sequence of channel symbols, reproduc-
tion vectors and states according to:

Uy = a(Xp,3n), ' 7 (1)
)A(n = ,3(%, Sn)’ : : (2)
Snt1 = f(un,sn), n =0,1,.... - (3)

Note that the next state depends only on the present state and the output
channel symbol, and therefore, given the initial state and correct channel

3

symbol sequence, the decoder can track the state sequence. The collection

Ck = {ﬁ(u k) u € N} is the codebook associated with state k; obviously,
A= U Cr. For a given state space S and a channel alpl 1abet N, the
mapping ﬂ can be stored as a look-up table for a given FSVQ. The rate of
an FSVQ is given by R =log, N, bits/vector.

The encoder mapping is specified in terms of a distortion function that
is used to measure the performance of the FSVQ. The distortion measure
d:R* x A — [0,00) assigns a nonnegative cost d(x,%) to reproducing the
input vector x as X. Then the encoder is specified by the minimum distortion -
rule

a(x, k) = arg IIélAI/_l d(x, B(u, k)),Vk € S.

An FSVQ can be interpreted as a set of K full-searched VQs (one VQ
associated with each state), each of codebook size N [3], [4]. The current
input vector is vector-quantized using the V() associated with the current
state of the system; the current state and channel symbol determine the
next state.

A finite-state tree-structured vector quantizer (FS-TSVQ) is specified in
a manner very similar to FSVQ. Associated with each state, we now have a
TSVQ rather than a full-searched VQ. The encoding is accordingly done in a
tree-structured manner. In particular, the encoder mapping o : R¥x 8§ — N
for FS-TSVQ differs from that of the FSVQ; rather than computing the index
of the minimum-distortion codevector in the state codebook, we now encode
the input vector using the state TSVQ and the output channel symbol is
the index of the codeword resulting from the TSVQ encoding. The main
advantage of this schemeis the complexity reduction in the encoding obtained
due to the structured nature of the state codebooks. Next, we present the

basic design algorithms of the FSVQ (FS-TSVQ) as given in [1].

2.2 FSVQ (FS-TSVQ) Design Algorithm

Given a training sequence {X,, n = 0,1,...} and a distortion measure, the
design algorithm for an L-dimensional, K-state FSVQ (FS- lS\’Q) of rate
R = log, N, bits/vector consists of designing: 7
(a) the state codebooks Cy for FSVQ (FS-TSVQ), each of size N, and
(b) the next-state function f(u,k),u € N, k€ S. '
Followmg [1], the design algorithm can be described in four steps.

4

1. Using the LBG algorithm [4], design an ordinary memoryless VQ with
K codevectors for the given training sequence. We refer to this VQ as

the state-label VQ, C = {c(k),k € S}.

2. For each state k of the FSVQ (FS-TSVQ), design an initial repro-
~ duction codebook Cr = {B(u,k),u € N} using the LBG algorithm

[4] on the subtraining sequence composed of all successors to vec-

tors for which the state-label VQ chooses k, i.e., the subsequence

{xn : k = arg minges d(xn-1,¢(s))}. Thus each codebook Cj 1s designed

to be good for vectors which will occur next if the FSVQ (FS-TSVQ)

is currently in the ideal state k.

3. The ideal state k in step (2) depends on the input vector and therefore
the decoder at the receiver side will not be able to track the ideal state
sequence. In order to enable the decoder to track the state sequence, we
choose the next state as the label which best matches the reproduction
of the current input vector rather than the current input vector itself.
Thus given the state labels c(£) and the decoder f designed in step
(2), we define a next-state function f by

fu, k) = arg Igsigld(ﬂ(u,k),c(s)), keS,ueN. (4)

4. Attempt to improve the state codebooks {C, &k € S} of the FSVQ (FS-
TSVQ) by encoding the training sequence using the next-state function
obtained in step (3) and updating each codevector by replacing it by

the centroid of the cell associated with that codevector. Also update
the state-label VQ C similarly.

In most cases further improvements are possible by iterating steps (3)
and (4). The algorithm described above does not necessarily converge and
in fact it does not even guarantee improved performance at each step of iter-
ation. However, the FSVQs designed with this algorithm exhibit substantial
gain over ordinary memoryless VQs in both waveform coding and vocoding
applications [1], [8]. -

In the FSVQ design algorithm presented by Foster et al [1], all the state
codebooks are assumed to have the same cardinality and in order to design a
rate R bits/vector FSVQ, the cardinality of each state codebook is assumed to
be 2R, In the next section, we drop this assumption and present a modified

5

FSVQ system (and also a modified FS-TSVQ system), in which the state
codebook sizes are optimally chosen; this leads to performance gains (in
some cases substantial). We also consider a second variation of the FSVQ
system in which optimally pruned TSVQs [2] are used as state Vs and state
codebook sizes are chosen optimally.

In the following, we provide a brief description of the optimally pruned
tree-structured vector quantizers described in [2] which is the key to the |
systems to be discussed. ‘

2.3 Optimal Pruning of a TSVQ

Consider a complete binary TSVQ of rate ! bits/vector. Corresponding to
this TSVQ, there is a complete binary tree of depth [with 2' leaves. As-
sociated with each interior node (not including the root node) and leaf of
the tree, there is a codevector (reproduction level), a probability and a con-
ditional expected distortion. By pruning off various branches of the tree, a
variable-rate TSVQ or a pruned TSVQ (PTSVQ) is obtained. The codebook
of the PTSVQ) is the set of the codevectors associated with the leaves of the
pruned tree. The quantizer’s average rate is the sum, over all the leaves, of
the leaf probability times the length from the root to the leaf. The quan-
tizer’s average distortion is the sum, over all the leaves, of the leaf probability
times the conditional expected distortion associated with the leaf.

Now suppose 7 is a large tree corresponding to a complete (complete-
ness is not mandatory) TSVQ, then every pruned subtree P of 7 (P < T)
defines a PTSVQ with average rate ¢(P) and average distortion 6(P). The
operational distortion-rate function defined by

D(R) = min{6(P)/¢(P) < R} (5)
P<T

specifies the optimal trade-ofl between rate and distortion over all pruned
subtrees of 7. An algorithm is presented in [2] which traces out the convex-
hull of the operational distortion-rate function. The algorithm given in [2] is
quite general and if 6 is any monotone decreasing real-valued function defined
on trees (i.e., if Py = Py <X T, then §(P1) > 6(P2)) and if £ is any monotone
increasing real-valued function defined on trees then the algorithm gives the
optimal trade-off between ¢ and § over all pruned subtrees of 7.

6 -

3 Variable-Rate FSVQ

In this section, we present the modified FSVQ systems. We begin with the
description of the variable-rate FSVQ systems. -

3.1 Description of Variable-Rate FSVQ and FS-
- TSVQ : ' :

So far, the state V(s were assumed to have the same cardinality (and hence
the same bit rate). Roughly speaking, this assumption implies that the source
vectors are encoded with more-or-less the same degree of fidelity regardless of
the state. This assumption may be unnecessarily restrictive in certain appli-
cations where some types of source vectors should be quantized more finely
than some others (e.g., in speech coding silence periods can be quantized
quite coarsely). In what follows we relax this assumption and let the rates
of state VQJs vary from state to state subject to a constraint on the average
encoding rate. The modified versions of FSVQ and FS-TSV(Q will be subse-
quently referred to as V-FSVQ and V-FS-TSVQ, respectively. Both V-FSVQ
and V-FS-TSVQ can again be specified by a state space S = {1,2,..., K},
an initial state sp and three mappings as follows:

(1) a: RF x & — N(S) : finite-state encoder,

(2) B: M(S) x S — A: finite-state decoder,

(3) f: N(S) x § — §: next state function.
Here the channel alphabet depends of the state (N} for state k) and, in gen-
eral, is different for each state. Hence the system becomes a variable-rate sys-
tem. Accordingly, the rate of the system is defined by R = 25| Py log, Ny,
bits/vector, where Ny is the cardinality of N, and P is probability of oc-
currence of state k. Now since the bit rates associated with different state
codebooks are not constrained to be the same, state codebook sizes become
an additional set of variables in the design stage. In the next subsection, we
provide a description of the method used to determine the state codebook
sizes.

3.2 Bit Assignment Algorithm

Suppose we are given K sets of collection of codebooks {Ci,: =
1,2,..., My}, k € &, one set associated with each state. Let the rate

;7f’

and average distortion associated with Ci be given by Ry, and Dy g,
respectively. Also let Rpy < Rpa < ... < Rgm,, VE € S. Then,
Dir., 2 Dipyy 2 oo 2 DiRey,, Yk € S Given the set of codebooks
{Ci,i=1,2,..., M}, k € S, we want to choose a codebook of bit rate b
from each set as the state codebook of the FSVQ, i.e., determine the bit rate -
assignment map (b}, 05, .. - b;) (not necessarily integers) that minimizes the
average distortion given by :

K -
D= Z Pchk,bk, (6&)
k=1
subject to
K
Z Pkbk S bavga (6b)
k=1
and
br € {Rk,l,Rk,g,. . -,Rk,Mk}- (6.0)

The above bit assignment problem can be solved using the idea of optimal
pruning of a TSVQ. In that, we first construct the following tree 7: The root
node of 7 has K children, one per state, and the subtree rooted at each child &
is a unary tree of length M) . Thus we have K branches, each associated with
a state, coming out of the root node of the tree. Let each node of the branch
associated with state k correspond to a codebook from {C, 7 = 1,2,..., My}
and hence to a rate-distortion pair; the node closest to the root of the tree
has rate 1 bit/vector (and distortion Dy ;) and in increasing order the node
farthest from the root node has rate Ry a, (and distortion Dy,r, ,,)-

Let P be a pruned subtree of 7 with the branch associated with state k of
length [;. Corresponding to this pruned tree P, we construct a variable-rate
FSVQ system with C,lc" as the state codebook associated with state-k, Vk € S.
We assume for the moment that the next-state function is given to us; the
problem of determining the next-state function is considered in the next
subsection. Then the rate of the variable-rate FSVQ associated with P is
given by - ' :

ﬂ(’P) = i PkRk,lk, - ' , (7)

k=1

and the average distortion is given by

6(P) = Z Pka,Rk,zk . (8)
: . k=1 .

The optimal pruning algorithm of [2], when applied to the tree 7 constructed

above gives the optimal pruned subtree P* and hence the bit rate assignment

map (b},83,...,b%) that minimizes §(P) subject to £(P) < by, over all

PXT. ‘

3.3 V-FSVQ (V-FS-TSVQ) Design Algorithm

Let Dy, denote the average distortion associated with state k£ when the rate
of the quantizer associated with the state k is by bits/vector. Then we wish
to minimize the average distortion given by

K
D =" PDyy,, (9)

k=1
subject to a constraint on the average rate described by
K

Z Pkbk < bavg’ (10)

k=1
by appropriately designing the bit assignment map
(b3,05,...,b%), the state codebooks {Ci, k € S} for V-FSVQ (V-FS-TSVQ),
and the next state function. An additional constraint implicitly assumed is
that the rate (in bits/vector) associated with each state quantizer is con-
strained to be an integer. The design algorithm consists of the following
steps:

1. For the given training sequence, design ‘the state-label VQ, C =
{c(k),k € S}, using the LBG algorithm [4].

o

For each state k, construct the subtraining sequence consisting of the
subsequence {x, : k = arg minses d(x,_1,¢(s))}. Then, for each state
k, design ordinary VQs (TSVQs) of rates 1,2,...,bm4z k" bits/vector.

1bmax,k is determined based on the size of the subtraining sequence associated with
the state k. It is determined such that each quantizer bin is richly populated so that the-
codevector associated with that bin is a nreaningful representative of the training vectors
assigned to that bin. - '

We denote the set of VQs and TSVQs by {CL, keS,1=1,2,..., M =
bmaz,k}- . 7 .
3. Find the optimum bit assignment map (b%,53,...,b%) using the algo-

rithm describlged in Subsection 3.2. The state codebook used for state
k will be C* = {B%(u,k),u € {1,2,...,2%}} for V-FSVQ (V-FS-

TSVQ). 7 ‘
4. Asin the case of FSVQ (FS-TSVQ), the next-state function f is defined
as ,
f(u, k) = arg minses d(B%(u, k), c(s)),
keSue{l,2,...,2%}. (11)
5. Encode the whole training sequence using the next-state function f

and the state codebooks {Cz;, k € S} for V-FSVQ (V-FS-TSVQ). Af-
ter encoding, update the state-label VQ by replacing each c(k) by the
conditional centroid of the cell associated with it. As a result of encod-
ing, each state k has a subtraining sequence associated with it given
by the subsequence {x, : k = f(a(Xn_1,Sn-1),$n-1)}. It differs from
the subsequences of step (2) due to the introduction of the next-state
function in the encoding process.

6.a (for V-FSVQ) Vk € S, update the codebooks {C},¢ € {1,2,...,bmark}}
by encoding the training sequence associated with state £ and replac-
ing each reproduction level of Ci by the conditional centroid of the cell
associated with the codevector. Then repeat steps (3), (4), (5) and
-(6.a) for some predetermined number of iterations.

6.6 (for V-FS-TSVQ) Using the training sequences obtained in step (5),
repeat steps (2), (3), (4) and (5) for some predetermined number of
iterations. '

As in the case of FSVQ (FS-TSVQ), the design algorithm does not con-
verge and it does not even guarantee improvement at each step of iteration.
However, the system obtained using this algorithm performs substantially
better than FSVQ (FS-TSVQ) as will be shown by the results in Section 4.

10

3.4 Description and Design of Variable-Rate Finite-
State Pruned Tree-Structured Vector Quantizer

“In another variation of the FSV() scheme; we consider a system in which the
state quantizers are optimally pruned TSVQs obtained using the algorithm
in [2]. We also have the flexibility of having different rates for different
states. The main motivation behind using such a scheme was the superior
performance of the optimally pruned TSVQ over full-search VQ along with
the additional advantage of fast encoding due to the tree-searched method.
As aresult of using PTSVQs as state VQs, even for a given state the encoding
rate is variable with time now, while for V-FSVQ (V-FS-TSVQ) the rate
varies between states but is fixed within each state. We refer to the new
scheme as V-FS-PTSVQ. The system is formally described in the same way
as V-FS-TSVQ. The design algorithm is also similar to that of V-FS-TSVQ
with step (2) modified in the following way:

2" For each state k, we design a complete TSVQ of rate I;maz,k, where Igmaz,k
is determined in the same way as bjqzk is determined in the design of
V-FSVQ (V-FS-TSVQ). Then, using the optimal pruning algorithm of
[2] on each of the complete state TSVQs, we obtain K setsof collection
of optimally pruned TSVQs. The rate of the optimally pruned TSVQs
associated with state k varies from 1 bit/vector to l;maz,k bits/vector and
takes finitely many discrete values which are not necessarily integers;
the fact that rates are not constrained to be integers as in V-FSVQ
(V-FS-TSVQ) leads to an additional improvement factor. Then we
apply the bit assignment algorithm on the collection of K sets of op-
timally pruned TSV(Qs to obtain the optimal bit rate assignment map
(b’f,b;,...,b;(). ’

The remaining steps of the algorithm are identical to the design algorithm
of V-FS-TSVQ. Again, the algorithm is suboptimal but it gives substantial
gain over all other schemes considered in this paper. .

4 Simulation Results

We performed extensive simulations to compare the variable-rate FSVQ sys-
tems described in this paper with the scheme described in [1]. The per-
formance mecasure used is the signal-to-quantization-noise ratio (SQNR). We-

11

denote by b the average bit rate per sample. FSVQs were designed for speech
waveform with vector dimension L = 8 and K = 8, 16 and 32. The database
used for these designs was a sequence of speech samples consisting of five
minutes of speech sampled at § KHz and uttered by five male and three
female speakers. :

The performance of FSVQ [1] for & = 0.25, 0.375, 0.5- and 0.625
bits/sample is iustrated in Table 1. Also for the sake of comparison, we in-
clude the performance results of ordinary VQ in terms of SQNR. As claimed
in [1], the FSVQ system outperforms the VQ system by over 2 dB and the
gain increases with the number of states.

Table 2 illustrates the performance of FS-TSVQ system in comparison
with the VQ system. The trend is similar to that of FSVQ. Comparison
of Tables 1 and 2 shows that under similar conditions, FS-TSV() performs
slightly worse than the FSVQ system since there is a degradation in the
performance when we replace a full-searched VQ by a complete TSVQ of the
same rate. In most cases, FS-TSVQ system yields a SQNR within 1.0 dB of
the FSVQ.

Table 3 summarizes the performance of V-FSVQ for different values of b
and K. The term in the braces is the value of the bit rate per sample actually
achieved by the system, while the desired value is given by b. Comparison of
Table 1 and 3 indicates that at the same bit rate, V-FSVQ outperforms FSVQ
system, in general, by about 2.5 dB. Note that the discrepancy between the
desired rate and the achieved rate decreases with the increase in the number
of states. When the number of states is relatively small, the number of
achievable points on the convex-hull given by the algorithm in {2] is small.

The performance of V-FS-TSVQ is illustrated in Table 4. It should be
noted that the difference between the performance of V-I'S-TSVQ and V-
FSVQ is smaller than the difference between FS-TSV(Q and FSVQ. The
reason resides in the limitation in the size of the largest full-searched VQ
(2048 codevectors in codebook) needed for V-FSVQs; this limitation is less
severe for TSVQs.

Finally, we include the performance results of V-FS-PTSV(Q in Table 5.
This system gives the best performance results among all the schemes con-
sidered in this paper. Again, the term in the braces represents the actual
achieved rate. For all values of K considered here, V-FS-PTSV(Q performs
better than the FSVQ by at least 3 dB and by as much as 4.25 dB for b = 0.5
bits/sample and higher. o

12

The performance of V-FSVQ and V-FS-PTSVQ schemes on an out-of-
training test sequence is summarized in Tables 7 and 8. The test sequence
was 67 seconds of speech sampled at 8 KHz. It consisted of several sentences
spoken by a male speaker. The performance results of VQ and FSVQ schemes
are also included for comparison. Study of these tables shows that variable-
- rate FSVQs outperform fixed-rate FSV(Q and VQ.-The SQNR gains for V-
FS-PTSVQ, when b is 0.375 bits/sample and higher is close to 2 dB while
the actual rate of the variable-rate FSVQ systems is much lower than b.

Comparison at the same bit rate shows a gain of as much as 3 dB for V-FS-
PTSVQ and 2.4 dB for V-FSVQ over the fixed-rate FSVQ.

5 Summary and Conclusion

We have considered two wvariable-rate variations of the FSVQ system de-
scribed in [1]. The design algorithms for the variable-rate FSVQs are ob-
tained by simple modification of the FSV(Q) design algorithm. None of these
algorithms (including the one described in [1]) converge and there is no guar-
anteed improvement at each step of iteration.

The variable-rate FSVQ systems considered in this paper perform sub-
stantially better than the system in [1] and SQNR gains of up to 4.25 dB on
in-training sequence and 3 dB on out-of-training test sequence are obtained.
We believe that higher gains can be achieved even on the test sequence out-
side the training sequence if sufficiently long sequence is used to train the
variable-rate FSVQ) systems.

One shortcoming of the variable-rate FSVQ systems is that if it is de-
signed to achieve a certain encoding rate for a training sequence, it may give
a different rate if used to encode another sequence. To circumvent this diffi-
culty, some type of algorithm which adaptively modifies the encoding system
based on some local (instantancous) measurement of the encoding rate is
needed.

References

[1] J. Foster, R.M. Gray and M.O. Dunham, “Finite-Statc Vector Quanti-
zation for Waveform Coding,” IEEE Trans. Inform. Theory, vol. IT-31,

13

~ pp. 348-359, May 1985.

3

[4]

P.A. Chou, T. Lookabaugh and R.M. Gray, “Optimal Pruning with
Applications to Tree-Structured Source Coding and Modeling,” IELE
Trans. Inform. Theory, vol. IT-35, pp. 299-315, March 1989.

R.M. Gray, “Vector Quantization,” IFEE ASSP Mayg., pp- 4-29, Apr.
1984. ' ,

Y. Linde, A. Buzo and R.M. Gray, “An Algorithm for Vector Quantizer
Design,” IEEE Trans. Commun., vol.-COM-28, pp. 84- 95, January
1980. ' :

H. Abut, R.M. Gray and G. Rebolledo,:“Vector Quantization of Speech
and Speech-like Waveforms,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-30, pp. 423-435, June 1982.

A. Buzo, A.H. Gray, R.M. Gray and J.D. Markel, “Speech Coding Based
upon Vector Quantization,” IEEE Trans. A®ust., Speech, Signal Pro-
cessing, vol. ASSP-28, pp. 562-574, Oct. 1980. ™

L.C. Stewart, R.M. Gray and Y. Linde, “The Design of Trellis Waveform
Coders,” IEEE Trans. Commaun., vol. COM-30, pp. 702-710, April 1982.

M.O. Dunham and R.M. Gray, “An Algorithm for the Design of Labeled-
Transition Finite-state Vector Quantizers,” IEEE Trans. Commun., vol.

COM-33, pp. 83-89, January 1985.

T. Kim, “New Finite State Vector Quantizers for Images,” Proc. Int.
Conf. Acoustics, Speech and Signal Processing, pp. 1180-1183, April
1988.

C.S. Kim, J. Bruder, M.J.T. Smith and R.M. Mersereau, “Subband

- Coding of Color Images Using Finite State Vector Quantization,” Proc.

Int. Conf. Acoustics, Speech and Signal Processing, pp. 753-756, April
1988.

H.H. Shen, and R.L. Baker, “A Finite State/Frame Diflerence Inter-
polative Vector Quantizer for Low Rate Image Sequence Coding,” Proc.
Int. Conf. Acoustics, Speech and Signal Processing, pp. 1188-1191, April

= 1988.

, FSVQ
[F=25]b=375]b=25 [b=.62
M [SQNR | SQNR | SQNR | SQNR
§ | 3.64 | 5455 | 729 | 8.90
16 | 375 | 586 | 7.68 | 9.57
32 | 389 | 6.6 | 870 | 10.06
[VQ] 245 | 432 | 58 | 7.31 |

Table 1: Performance of FSVQ and VQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample

on the Training Sequence.

FSTSVO
=2516=3751b=.5|b=.625
M | SQNR | SQNR | SQNR | SQNR
8 3.19 5.15 6.81 8.29
16 3.46 5.42 7.12 8.73
321 3.59 5.53 7.33 9.06

Table 2: Performance of FS- TSVQ at b =
-0.25, 0.375, 0.5 and 0.625)1ts/samp1e on the

Training Sequence

15

V-FSVQ
b=25[b=375]b=.5]b=.625
M | SQNR | SQNR [SQNR | SQNR
8| 6.09 6.96 | 10.45 | 11.73
(0.24) | (0.31) | (0.47) | (0.58)
16| 646 | 864 | 10.85 | 12.02
(0.25) | (0.385) | (0.52) | (0.64)
321 734 | 876 | 1152 | 12.04
(0.25) | (0.34) | (0.50) | (.58)

Table 3: ‘Performance of V-FSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the

Training Sequence.

VFS-TSVQ
=25 b=375]b=.5 b= .62
M | SQNR | SQNR | SQNR | SQNR
8| 586 | 656 | 9.49 | 10.54
(0.25) | (0.32) | (0.46) | (0.58)
16] 623 | 7.08 | 10.83 | 12.09
(0.25) | (0.37) | (0.49) | (0.61)
32| 633 | 912 | 11.63 | 12.69
(0.25) | (0.37) | (0.53) | (0.64)

Table 4: Pcrformdnce of V-FS-TSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence.

16

V-FS-PTSVQ

b= 25 b= 375 b=.5 | b= .625
M | SQNR | SQNR | SQNR | SQNR
8| 695 | 934 | 11.93 | 13.12
4 (0.25) | (0.375) | (0.49) | (0.625)
16 | 7.27 | 9.68 | 12.61 | 13.59
(0.25) | (0.375) | (0.49) | (0.625)

32| 831 | 9.93 | 12.92 | 13.58
(0.25) | (0.375) | (0.49) | (0.59)

Table 5: Performance of V-FS-PTSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on the
Training Sequence.

FSVQ
b=.25|b=.375|b=.5|b=.625
M | SNR SNR | SNR | SNR
8§ | 213 3.50 | 4.90 | 5.98
16 | 2.06 3.62 | 5.03 | 5.97
32 | 219 376 | 567 | 6.22
[VQ] 190 | 323 | 437 [555 |

Table 6: Performance of FSV(Q and VQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample
on Out-of-Training Test Sequence.

17

“V-FSVQ

b=25[b=375[b=.5]b=.625

M| SNR | SNR | SNR | SNR

8 | 208 2.50 | 7.27 | 7.88
(0.17) | (0.21) |(0.39) | (.51)

16| 2.39 6.06 | 7.65 { 8.38

‘ (0.18) | (0.33) | (0.47)| (0.52)

32| 3.21 3.95 | 7.66 | 8.14
(0.19) | (0.25) | (0.42) | (.51)

Table 7: Performance of V-FSVQ at b =
0.25, 0.375, 0.5 and 0.625 bits/sample on
Out-of-Training Test Sequence.

VFSPTSVQ
b=25|b=315]b=5]b=.62
M| SNR | SNR | SNR | SNR
8| 279 | 543 | 744 | 7.95
(0.18) | (0.32) | (0.40)| (0.525
16| 302 | 524 | 780 | 844
(0.18) | (0.32) | (0.41)| (0.54)
32| 331 | 458 | 7.96 | 8.43
(0.18) | (0.25) | (0.41) | (0.49)

Table 8: Performance of V-FS-PTSVQ at
b = 0.25, 0.375, 0.5 and 0.625 bits/sample

on Out-of-Training Test Sequence.

- 18

