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ABSTRACT 

This paper describes algorithms for computing global accessibility cones for various faces (i.e., 
the set of directions from which faces are accessible) in a polyhedral object. We describe exact 
mathematical conditions and the associated algorithm for determining the set of directions from 
which a planar face with triangular boundary is inaccessible due to another face in the object. By 
utilizing the algorithm to compute the exact inaccessibility region for a face, we present 
algorithms for computing global accessibility cones for various faces in the object. These global 
accessibility cones are represented in a matrix structure and can be used to support a wide variety 
of accessibility queries for the object. We provide several examples to show computational 
performance of our algorithm. 
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1 INTRODUCTION 
Accessibility analysis of an object helps in process planning in a number of different 
manufacturing applications. For example, accessibility analysis is required in 

�� Machining: A good setup planning ensures high productivity as well as machinability. 
Accessibility analysis helps in determining machinability by finding the set of directions 
from which the part may be approached by the cutting tool. It also helps in determining the 
work-piece orientations that would minimize the number of set-ups required for machining 
the part [Kang97, Suh95] and helps in cutter path planning [Bala00]. 

�� Assembly: It helps in determining the directions from which the assembly and disassembly 
operations can be carried out. 

�� Mold Design: The mold assembly needs to be disassembled to eject the molded part. 
Accessibility analysis is used in accessibility/disassembly-based decomposition of the gross 
mold to ensure part ejection. It helps in selecting the parting surface that minimizes or 
eliminates the undercuts. It also helps in reducing the number of side cores required in the 
mold design [Chen93, Wein96, Wein97].  

�� Inspection Planning: It is used in automatic planning and programming tasks with a 
Coordinate Measuring Machine (CMM). It helps in determining part orientation on the CMM 
and identifying the directions from which a probe can approach the part to perform 
measurements [Spit99].  

                                                 
1 Corresponding Author. 
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This paper describes algorithms for computing global accessibility cones for polyhedral objects 
modeled using facets (planar faces with triangular boundaries). If an object has curved faces, 
such faces are faceted and approximated by small triangles. If the object has non-triangular 
planar faces, then such faces are triangulated. The remainder of this paper has been organized in 
the following manner. Section 2 describes the related research in the area of accessibility 
analysis. Section 3 presents an overview of necessary mathematical terminology for 
understanding this paper and describes the problem formulation. Section 4 describes the 
mathematical condition and the associated algorithm for determining the set of directions from 
which a facet is inaccessible due to presence of another facet in the object. Sections 5 and 6 
describe algorithms for computing global accessibility cones for various facets by utilizing the 
algorithm described in Section 4. Section 7 describes how the accessibility matrix supports 
various queries about the accessibility of facets. Finally, Section 8 presents the concluding 
remarks.   

2 RELATED WORK IN THE AREA OF ACCESSIBILITY ANALYSIS   

2.1 Accessibility Analysis Based on Visibility Map 
A Gaussian map of a surface is the set of end points of the unit normal vectors of the surface. 
Gaussian maps can be represented as a spherical region (i.e., a subset of the boundary of a unit 
sphere). By extending the basic idea behind Gaussian maps, Woo et al developed the concept of 
visibility map to represent and compute accessibility [Chen93, Woo94]. A visibility map is a set 
of points on a spherically convex region. Any point in a visibility map denotes a direction from 
which the entire surface is accessible to its exterior. Local accessibility of a point on a surface is 
defined by the hemispherical region constructed by using the surface normal at the point as the 
pole (for detailed definition of poles and hemispherical regions, please see Section 3). Therefore, 
the visibility map of a point is a hemispherical region on a unit sphere. The visibility map of a 
surface is the intersection of visibility maps of all the points on the surface. For example, the 
visibility map of a planar surface is a hemisphere. The concept of visibility maps has been 
extended by Kim et al to cover bezier surfaces [Kim95]. They have defined and provided 
algorithms for computing tangent, normal and visibility maps for regular bezier surfaces. Elber et 
al [Elbe95] presented an approach to compute “visibility set” (a very similar concept to visibility 
map) for freeform surfaces. They use a “symbolic based method” to compute the convex hull of 
the Gaussian map, and calculate the visibility set as the intersection of hemispheres associated 
with vertices of the convex hull. 

For polyhedral parts, the boundary is divided into spatially independent convex (portion of 
boundary that is part of convex hull) and concave (portion of boundary that is not a part of 
convex hull) regions. The visibility map of each face within the convex region is the hemisphere 
formed by using the direction normal of the facet as a pole. The visibility map of each concave 
region is the intersection of the visibility maps of all the planar faces within the region.  

Sometimes visibility maps cannot be used to determine the global accessibility of an individual 
facet within a concave region. This is because the visibility map of an object is constructed using 
the local accessibility information for various facets. Whenever global accessibility of a facet 
differs from its local accessibility, this approach cannot be used. Figure 1 shows an example 
where visibility maps of individual facets cannot be used to correctly compute the global 
accessibility of a facet. Facets A, B, C, D, E and F form a concave region. Consider facet A 
individually, its visibility map is a hemisphere. The combined visibility map of the concave 
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region is arc v. However, the global accessibility cone for facet A differs from both of these 
visibility maps. For example, facet A is accessible from direction d1 while this facet is not 
accessible from direction d2. 

2.2 Accessibility Analysis based on Binary Spherical Maps 
Suh and Kang developed an approach for accessibility analysis for NC machining [Suh95]. They 
compute accessibility by constructing the binary spherical maps. The part surface is faceted into 
triangular patches. The unit hemisphere is also faceted using spherical triangles. Accessibility 
information is represented using a table. This table contains various part facets as rows and 
various spherical triangles as columns. Each entry in the matrix describes whether a facet is 
completely accessible from a spherical triangle or not. For example if ith facet is accessible from 
jth spherical triangle, entry that corresponds to ith row and jth column is set to 1. On the other 
hand, if ith facet is not accessible from jth spherical triangle, the entry that corresponds to ith row 
and jth column is set to 0. This table is constructed by projecting centroids of various facets on 
the unit sphere and identifying various spherical triangles that contain them. 

In this approach accessibility of a facet is computed by checking the accessibility of the centroid 
of the facet against the centroid of the spherical triangle. Therefore, due to this approximation, 
this approach is prone to the following two types of errors. First, it might report that an entire 
facet is accessible in a certain spherical triangle while actually only a portion of the facet is 
accessible. Second, it might report that a facet is not accessible from an entire spherical triangle 
while actually the facet is accessible from a portion of the spherical triangle. 

2.3 Accessibility Analysis Using Computer Graphics Hardware  
Recently, methods have been developed to perform accessibility analysis by taking advantage of 
computer graphics hardware [Bala00, Spit99]. Graphics cards make use of the depth-buffer 
implemented using hardware to perform fast hidden surface removal and render the object in a 
given scene. If all the individual faces on the object have been assigned different colors, then the 
accessibility of each face in a given direction can be detected by rendering the object using the 
given direction as the viewing direction, and querying the colors that appear on the pixel map 
after rendering. This approach works for a faceted object with maximum 16,777,216 faces, 
which is the maximum number of colors supported by a 24-bit graphics card. Since each 
rendering actually corresponds to a particular viewing direction, the point accessibility can be 
approximated by sampling a finite number of directions on the Gaussian Sphere.  

This approach involves two types of approximations. First, it uses finite sampling of viewing 
directions on Gaussian sphere. Second, it assumes that the face is so small that presence of a 
single pixel on the rendered scene can identify its accessibility. Therefore, the results produced 
by this approach are only an approximation of the exact solution.   

Spitz et al have also done work in the area of accessibility analysis using graphics hardware [14]. 
They use cubic maps to approximate spherical maps and use graphics hardware to determine 
accessibility. Their application domain is inspection planning. 

2.4 Representing and Computing Tool Accessibility for Milling Operations 
Stage and Roberts described a framework for representing and computing tool accessibility from 
manufacturability evaluation point-of-view [Stag97]. This is primarily a feature-based approach, 
focusing on the shape/size compatibility between the pair of tool and the entity (a face or a set of 
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faces) to be machined. There are four forms of accessibility in the framework for an entity-tool 
pair. An entity is said to have full section accessibility with respect to a particular section of a 
particular tool, if through some combination of tool orientations, the section can sweep the entire 
entity while avoiding collision between the part and the tool. If the section can sweep some 
portion but not the entire entity under the same conditions, then the entity is said to have partial 
section accessibility with respect to this section of the tool. An entity is said to have full tool 
accessibility with respect to a particular tool, if through some combination of tool orientations, 
the entire entity can be swept by the tool while avoiding collision between the part and the tool. 
If the tool can sweep some portion but not the entire entity under the same conditions, then the 
entity is said to have partial tool accessibility with respect to this tool. An entity is said to have 
NULL accessibility with respect to a particular tool if the tool cannot sweep any portion of the 
entity without causing a collision. For entities possessing full accessibility, there are two types of 
accessibility as follows. An entity is said to have open accessibility if there is at least one 
direction of accessibility from which the tool section (or tool) can sweep the entire entity. If the 
tool must be oriented using two or more directions in order to sweep the entire entity, then the 
entity is said to have controlled accessibility. If an entity has open accessibility, then the set of all 
directions of accessibility, each of which allows a tool section (or tool) to sweep an entire entity, 
is called an accessibility cone. 

The advantage of this approach is that it works for an object with curved surfaces without any 
need for faceting. However, the notion of accessibility is closely tied with a particular tool.  

3 Mathematical Definitions  
In this section we present the definitions and basic mathematical concepts that are needed to 
describe our algorithms. 

3.1 Accessibility Definitions 

�� Accessibility of a point in a given direction: A point belonging to a geometric entity is 
accessible in a given direction if a ray of can be drawn from it in the given direction without 
intersecting with interior of the geometric entity. Figure 2 illustrates the concept of 
accessibility graphically.  

�� Accessibility of a face in a given direction: A face is accessible in a given direction if all 
points in the interior of the face are accessible in the given direction. The boundary points of 
the face are not considered in this definition in determining the accessibility of a face. 

�� Global accessibility cone of a point: Global accessibility cone of a point represents the set of 
unit vectors along which the point is accessible.  

�� Global accessibility cone of a face: Global accessibility cone of a face represents the set of 
unit vectors along which the face is accessible.  

3.2 Review of Spherical Geometry Properties 
To make this paper self-contained, we describe the following properties and definitions from 
spherical geometry area [Lent49]: 

Property 1: The curve of intersection of a plane and a sphere is a circle. It is called a great circle 
if the plane passes through the center of the sphere, and a small circle if the plane does not pass 
through the center of the sphere. The radius of a great circle is equal to the radius of the sphere. 
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Property 2: Only one great circle can be drawn through two points of a sphere that are not 
diametrically opposite. 

Property 3: Two great circles intersect at two points that are diametrically opposite. 

Definition 1: A spherical polygon is a portion of the surface of a unit sphere that is bounded by 
the arcs of great circles. 

Definition 2: The position vector 
PS  of the spherical projection of a point P onto a unit sphere is a 

unit vector parallel to the line that joins the center O of the unit sphere and the point P. 
PS  is 

given by 

where P is a position vector that corresponds to the point P and O is a position vector that 
corresponds to the center of the sphere O. 

Definition 3: The spherical projection 
Pf  of a face f is the spherical projection of all the 

constituent points of the face. Spherical projection of a point that coincides with the center of the 
sphere is not defined. 

Definition 4: A hemisphere is a portion of a spherical surface obtained by splitting the sphere 
surface by using a plane passing through the center of the sphere. The normal vector of the plane 
pointing towards the hemisphere is called the pole of the hemisphere. 

3.3 Review of Polyhedral Part Properties 
A faceted object boundary consists of two types of facets: convex-hull facets and non-convex 
hull-facets. Convex-hull facets are those facets on the part that are also on the convex hull of the 
part. All the facets on the part other than convex-hull facets are called non-convex-hull facets. 
Figure 3 shows examples of convex-hull and non-convex-hull facets. Connected sets of non-
convex-hull facets form concave regions (pockets in [Chen93]) 

Property 4: The global accessibility cone of a convex-hull facet is a hemisphere generated using 
the direction normal of the facet as its pole [Chen93]. 

Property 5: A non-convex-hull facet can be blocked only by a non-convex-hull facet present in 
the same concave region [Chen93]. A ray emanating from a point in a concave region will either 
intersect a facet in the same concave region or go to infinity. 

Property 6: A pair of facets can obstruct their mutual accessibility only if they are facing each 
other. Since the boundary of the object is continuous, if the facets are not facing each other, there 
will always be at least one facet in between the two facets. 

3.4 Problem Formulation 
The input to the accessibility analysis algorithms is a polyhedral object modeled using facets 
(triangular planar faces). If an object has curved faces, such faces are faceted and approximated 
by small triangles. If the object has non-triangular planar faces, such faces are triangulated.  

The output of the algorithms is the global accessibility cones of all facets on the object. The 
global accessibility cones are represented as a matrix called AccessStatus matrix. In this scheme, 
the boundary of the unit sphere is partitioned into a finite number of spherical triangles, each 

P

�
�

�
P O

S
P O
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representing a set of directions. Rows of this matrix represent spherical triangles. Columns of 
this matrix represent the facets. Each entry in the matrix describes whether a facet is completely 
accessible from a spherical triangle or not. For example if jth facet is completely accessible from 
ith spherical triangle, entry that corresponds to ith row and jth column is set to TRUE. On the other 
hand, if jth facet is not accessible from ith spherical triangle, it is due to one of the two cases. If 
the ith spherical triangle does not reside within the visibility map of the jth facet (a unit 
hemisphere with the normal vector of the jth facet as the pole), the entry that corresponds to ith 
row and jth column is simply set to FALSE. Otherwise, if ith spherical triangle does reside within 
the visibility map of jth facet, the entry that corresponds to ith row and jth column is filled with the 
index of the facet(s) that is blocking jth facet from the directions represented by ith spherical 
triangle.    

The status of the boundary of each spherical triangle is defined as follows. Since we consider the 
global accessibility cones as close sets, if a facet is completely accessible from directions in a 
spherical triangle, then it is also completely accessible from directions on the edges of this 
spherical triangle.  

Since the global accessibility cone of a convex-hull facet is always a hemisphere (property 4), we 
only need to compute the global accessibility cones for non-convex-hull facets. Therefore, only 
the accessibility information of non-convex-hull facets is needed to be stored in the AccessStatus 
matrix. 

4 COMPUTING EXACT INACCESSIBILITY REGION OF A FACET DUE 
TO PRESENCE OF ANOTHER FACET 

In order to compute the global accessibility cone for a face on a polyhedral object, we will first 
investigate how presence of a facet makes some other facet inaccessible from certain directions. 
Given two planar facets f and f’, we are interested in determining the set of directions from which 
f becomes inaccessible due to presence of f’.  

4.1 Mathematical Definition of Inaccessibility Region of a Facet due to Presence of 
another Facet 
Let f and f’ be two facets on the boundary of an object. Let I be the set of directions (i.e., unit 
vectors) from which f is inaccessible. Let V be the set of directions (i.e., unit vectors) from which 
f is accessible. We also refer to I as inaccessibility region and V as accessibility region. I and V 
can be constructed in the following manner: 

1) Set I = Ø���V = H, where H is a unit hemisphere defined using outward normal vector of f as 
the pole.  

2) For every point p in the interior of f, do the following: 

�� Construct a unit sphere S centered at p 

�� Compute the spherical projection fp’ of f’ on S 

�� I = I � (interior of fp’) 

3) V  = V – I. 

Though this is a mathematically rigorous construction of accessibility and inaccessibility regions, 
it is computationally impractical because there would be infinite number of points on the facet f 
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for which the projection of f’ would need to be computed. Therefore, we need to develop a 
computationally practical but mathematically equivalent algorithm. Section 4.2 describes such an 
algorithm. Before defining the algorithm, we need to present Proposition 1 and Proposition 2. 

Proposition 1: The sweep of a convex object over another convex object results in a convex 
object. 

Proof: Let A and B be two convex objects represented as sets of Euclidean points. Let a and b 
denote points in objects A and B. The sweep of object A over object B can be represented by 
Minkowski sum C 

 C  =  A � B = {c | c = a + b, a � A, b � B} 

As per definition of C, for a pair of arbitrary points in set C denoted by c and c’, we can always 
find points a and a’ in set A and b and b’ in set B such that c = a + b and c’ = a’ + b’.  

Let cu be a point formed by linear combination of c and c’. 

 cu = u c  + ( 1 – u ) c’ where 0 	 u 	 1 

By substituting c = a + b and c’ = a’ + b’ in the above equation, we get 

cu = u ( a + b )  + ( 1 – u ) ( a’ + b’ )  = u a + ( 1 – u ) a’ + u b + ( 1 – u ) b’  

Let au =  u a + ( 1 – u ) a’ and bu =  u b + ( 1 – u ) b’ 

Therefore, cu = au + bu. If A is a convex object, then by the definition of convexity:  

 au =  u a + ( 1 – u ) a’ � A 

Similarly, if B is a convex object, then by the definition of convexity: 

 bu =  u b + ( 1 – u ) b’ � B 

Since au � A and bu � B, then by definition of Minkowski sum au + bu � C holds for every u 
within range 0 	 u 	 1. Therefore, cu � C 

We have shown that for every pair of points c and c’ and 0 	 u 	 1 

cu = u c  + ( 1 – u ) c’ � C 

Therefore C is a convex set. 

Proposition 2: Inaccessibility region I for a facet f due to another facet f’ is a convex region. 

Proof: From Proposition 1, we know that the sweep of a convex object over a convex object 
results in a convex object. Let A be the spherical triangle formed by the projection of a point in 
facet f’ (for example the centroid of f’) onto the sphere as the sphere moves over facet f. Let B be 
the interior of a spherical triangle representing the spherical projection of f’. Both A and B are 
convex. Inaccessibility region I is formed by sweeping B over A. Therefore, I is a convex region.  

4.2 An Algorithm for Computing Exact Inaccessibility Region 
Given two planar facets f and f’, the set of directions from which f is inaccessible (and 
accessible) can be computed using the algorithm defined below. Once again, let the set of 
directions from which f is inaccessible due to f’ be given by I and the set of directions from 
which f is accessible be given by V.  
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Algorithm INACCESSIBLE(f, f’) 

1) Construct unit spheres at the three vertices of the facet f. Project f’ on these spheres and let 
the projections be denoted by f’P1, f’P2 and f’P3. If any vertex of f’ lies at the center of sphere, 
then do not include that vertex in the projection. Figure 4 graphically shows this step. 

2) f’P1, f’P2 and f’P3 are spherical triangles (or arc if the two facets share vertices) on the sphere 
and would result in maximum of nine vertices on the unit sphere. 

3) Find the convex hull CV of the vertices computed in the previous step.  

4) I = the interior of CV.  (I is a convex spherical polygon representing the set of directions from 
which f is inaccessible due to f’.) 

In the next section we will prove that the algorithm described in this section is mathematically 
equivalent to the definition of inaccessibility region defined in Section 4.1. 

4.3 Correctness Proof for Inaccessibility Region Determination Algorithm   
In this section we prove that the algorithm described in the Section 4.2 for computing I is 
equivalent to the mathematical definition of I given in Section 4.1. To do this, we will use one of 
the fundamental properties of convex regions that states that the convex hull of a convex region 
is the convex region itself. Using this property of convex region, we will prove that the convex 
hull generated by the algorithm described in Section 4.2 is equivalent to the convex 
inaccessibility region defined in Section 4.1.  

As a preparation for the main proof, two basic spherical projection characteristics are proved as 
Proposition 3 and Proposition 4. With these two basic characteristics, the whole proof proceeds 
as follows. We will first prove that the boundary of inaccessibility region defined in Section 4.1 
is a convex spherical polygon. This will be done in two steps. In the first step we will prove that 
the boundary of the inaccessibility region can be produced by taking the projection of facet f’ 
onto the unit sphere by moving the sphere only over the edges of facet f. Proposition 5 described 
below provides this portion of the proof. We will then prove that as the unit sphere moves over 
edges of facet f, the projection of facet f’ would result in a spherical polygon. Proposition 7 
described below provides this portion of the proof. 

Once we have proved that the boundary of inaccessibility region is a convex spherical polygon, 
we just need to know the vertices of this spherical polygon in order to generate the convex hull 
and hence the region itself. We will show that the points obtained by projecting facet f’ onto unit 
spheres centered at the three vertices of facet f are the superset of the vertices that form the 
boundary of the inaccessibility region. We will prove this by showing that three arcs generated 
by projecting the vertices of facet f’ onto the sphere as it moves along an edge of facet f do not 
intersect. Theorem 1 described below provides this portion of the proof. Therefore no new 
vertices are created as the facet f’ is swept over an edge of facet f. Hence the points obtained by 
projecting facet f’ on unit spheres centered at the three vertices of facet f indeed are the superset 
of the vertices that form the boundary of the inaccessibility region. 

Proposition 3: Spherical projection of a line segment not passing through the center of the 
sphere is a great arc. (This proposition is a minor modification of the proposition described in 
[Chen92]). 

Proof: The spherical projection of a line segment on a unit sphere is the set of spherical 
projection of all the points constituting the line segment. We know from plane geometry that 3 
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non-collinear points can be used to define a unique plane. Therefore if the center of the sphere is 
not collinear with the vertices of the line segment (PQ), the vertices of the line segment along 
with the center of the unit sphere (O) define a unique plane. From Property 1, the intersection of 
this plane with the sphere would generate a great circle. Since the line segment lies on the plane, 
its projection would be a portion of this great circle, which is a great arc. Figure 5 shows this 
construction graphically. 

Proposition 4: Spherical projection of a point onto a unit sphere moving along a line segment 
AB is an arc of a great circle. This projection is equivalent to the projection of line segment PQ 
onto a unit sphere centered at point A, where PQ a line segment with P as a vertex, parallel to 
AB, with the same length as AB, and apposite in direction to AB. 

Proof: Let the point being projected onto the unit sphere be denoted by P. We are interested in 
finding the locus of the projection of P onto the unit sphere (initially located at A) as the sphere 
moves from A to B along the line segment AB. From rigid body transformation, we know that the 
transformation of the sphere relative to the point P is equivalent to the inverse transformation of 
the point P relative to the sphere. Since in this case the transformation of the sphere is a linear 
translation along line segment AB, its inverse transformation for P would also be a linear 
translation in a direction apposite and parallel to AB and also the same length as AB. Let us 
assume that this transformation would result in a line segment PQ. Thus, the locus of the 
projection of the point P onto a sphere, initially centered at A, as it moves along the line segment 
AB is equivalent to the projection of the line segment PQ onto the sphere located at A. From 
Proposition 3, we know that this projection would be an arc of a great circle. 

Proposition 5: Inaccessibility region I of a facet f can be determined by the inaccessibility region 
of its edges. 

Proof: Consider the projection of a point P onto a unit sphere as it moves over the edges of a 
facet f. Following the argument presented in Proposition 4, instead of moving the sphere, we can 
move the point along a line segment. Therefore, the projection of the point P onto a sphere as it 
moves over the edges of a facet f is equivalent to the projection of a triangle t, having the same 
dimensions as the facet f, onto the sphere (see Figure 6 for a graphical illustration). When the 
sphere is centered at any point R lying inside the facet, the projection of the point P is equivalent 
to the projection of a point R’ lying inside triangle t following the transformation argument 
presented in Proposition 4. The projection of triangle t onto the sphere would result in a spherical 
triangle. From convexity principles, since R’ lies in the interior of a convex polygon (triangle t), 
its projection would also lie in the interior of the spherical polygon. Hence, it is sufficient to 
project the edges of the triangle t, which implies that it is sufficient to examine the edges of facet 
f. Thus, we have proved that for finding the projection of a point onto a sphere as the sphere 
moves over a facet, it is sufficient to move the sphere along the edges of the facet. 

Now consider the projection of facet f’ on facet f. Since f’ is nothing but a collection of points, 
therefore, by induction it holds that it is sufficient to examine the edges of facet f for finding the 
projection of the facet f’ onto the sphere.  

Proposition 6: The projection of a triangular planar facet onto a unit sphere as the sphere moves 
along a line segment is a spherical polygon. 

Proof: From basic spherical geometry, we know that the spherical projection of a triangle is a 
spherical triangle. If the sphere were now moved along a line segment, the projection of the 
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triangle on the sphere would also move. We are interested in finding the swept region that 
represents union of projections as the sphere moves along a line segment. From Proposition 4, 
we know that the spherical projection of a point on a sphere as the sphere moves along a straight 
line is a great arc on the unit sphere. Since a triangle can be considered as a collection of points, 
its projection on the sphere as the sphere moves along a straight line would be collection of great 
arcs on the unit sphere. Moreover, since we are considering the projection of a convex polygon 
on a sphere as it moves along a line, only the vertices of the convex polygon need to be projected 
in order to construct the boundary of the projected convex region. The three vertices would 
generate three great arcs as the sphere moves along the line segment. These three arcs along with 
the two spherical triangles (that result due to projection of the facet when the sphere is at the 
vertices of the line segment) are the only possible choices for forming the boundary of the 
projected convex region. Since only arcs form the boundary of this projected region, this region 
is a spherical polygon. It is difficult to illustrate this condition graphically using the spherical 
projection. Therefore, we will illustrate this condition using an equivalent planar representation 
created by using central projection of the spherical region [Lent49]. An example of a planar 
representation of such a polygon is shown in Figure 7. 

Proposition 7: Boundary of inaccessibility region I for a facet f due to another facet f’ is a 
convex spherical polygon. 

Proof: The closure of inaccessibility region I for a facet f due to another facet f’ is formed by 
spherical projection of facet f' onto a unit sphere as it moves over facet f. We have already shown 
in Proposition 5 that we only need to consider the edges of a facet f to compute the projection of 
f'. We have also shown in Proposition 3 that I is a convex region. Therefore the only possible 
candidates for forming the boundary of I are boundaries of the three spherical polygons 
generated as the sphere moves along the three edges of f (as a consequence of Proposition 6). 
Therefore, the boundary of I will consist of only arcs and it will be a convex spherical polygon. 
The basic idea behind this proposition is shown graphically in Figure 8 using planar 
representation.  

Theorem 1: Vertices obtained by projecting the facet f’ onto the sphere centered at the three 
vertices of facet f form the super set of the vertices that constitute the convex hull of the 
inaccessibility region I.  

Proof: To prove this we have to show that during projection of a facet f’ as the sphere moves 
along the three edges of f, no new vertices are created (i.e., all vertices generated during this 
operation are included in the set of vertices obtained by projecting the facet f’ on the sphere 
centered at the three vertices of facet f). This implies that the three arcs that define the swept 
projection of f’ as the sphere moves along each of the edges of f should not intersect and 
therefore do not create any new vertex.  

Consider a line segment LM and a unit sphere that moves along a line segment AB, as shown in 
Figure 9. Form Proposition 4 we know that for the line segment LM, the locus of projection on 
the sphere as it moves along AB is equivalent to the projection of a parallelogram onto the unit 
sphere centered at A. The lengths of the adjacent sides of the parallelogram are AB and LM. Let 
the four vertices of the parallelogram be given by L, M, S, and T. Where MS is parallel to LT. We 
are interested in finding the projection of MS and LT on the unit sphere. 

 The points A, B, L, T and A, B, M, S also form parallelograms since AB = LT = SM and AB || LT 
|| MS (as a consequence of Proposition 4). From plane geometry we know that a unique plane 
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passes through a parallelogram. Therefore parallelograms ABLT and ABMS lie on unique planes. 
Let these planes be given by PLT and PMS respectively. Since AB lies on both the planes, this 
implies that the line containing AB is the line of intersection of planes PLT and PMS. The planes 
PLT and PMS intersect the unit sphere to form two great circles. Since line segments LT and MS lie 
on planes PLT and PMS respectively, their projections on the sphere would lie on the 
corresponding great circles. The line AB would be collinear with the common diameter of these 
great circles since it lies on both planes and also passes through the center A of the sphere. From 
Property 3 we know that two great circles intersect at exactly two points that are diametrically 
opposite. Therefore, these two great circles will not intersect at any other point. Hence, the 
projection of line segments LT and MS will not intersect as long as points L and M are not 
collinear with the line segment AB. Therefore, no new vertex will be created. If L and M are 
collinear with the line segment AB, the projection of LT and MS would be a point on the unit 
sphere and therefore, no new vertex will be created.  

A triangle would consist of three line segments LM, LN, and MN. These line segments would 
form three parallelograms. The projections of the parallel sides of these parallelograms would 
result in non-intersecting arcs of great circles. Therefore we will get three arcs that would be 
non-intersecting. 

5 GENERATING EXACT GLOBAL ACCESSIBILITY CONES  
This section describes an algorithm that generates exact accessibility cones for various facets and 
stores the accessibility information in the matrix AccessStatus. 

5.1 Overview of Approach 
This approach follows an “initialize-update” scheme. It initially assumes a non-convex-hull facet 
f is accessible from all the orientations described by the hemisphere H created by the facet’s 
direction normal as its pole. Algorithm INITIALIZE described in Section 5.2 performs this 
initialization for all non-convex-hull facets. Number of spherical triangles on the boundary of the 
unit sphere (equal to number of rows in the matrix AccessStatus) is dynamic in nature and grows 
on as-needed basis. Additional rows are added in this matrix as and when finer spherical 
triangles are required to exactly represent global accessibility cones.  

Algorithm UPDATE described in Section 5.3 updates accessibility cone of each facet by 
adaptively incorporating the influence of other facets. Algorithm UPDATE calls algorithm 
INACCESSIBLE to find the inaccessibility region of various facets. The boundary of the unit sphere 
is further reclassified and subdivided according to the accessibility of various facets as reported 
by algorithm INACCESSIBLE.  

Section 5.4 discusses the implementation issues associated with this approach.  

5.2 Initializing Accessibility Matrix to Represent Global Accessibility Cones 
Algorithm INITIALIZE takes the set of non-convex-hull facets Fn of the object as an argument. It 
uniquely classifies the boundary of the unit sphere into spherical polygons according to the initial 
accessibility status of each facet. This initial accessibility information is stored in matrix 
AccessStatus and will be later updated by the iterative algorithm UPDATE. 

Algorithm INITIALIZE (Fn)  
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1) Form the set of spherical polygons X by taking the intersection of all great circles 
corresponding to normal vectors of various facets in Fn.  

2) Triangulate every polygon in X.  Let S be the set of resulting spherical triangles. 

3) Create an M×N matrix AccessStatus, where N is the number of the facets in Fn, M is the 
number of spherical triangles in S.  Each entry of the matrix will indicate the accessibility 
status (TRUE or FALSE) of a facet f from a set of directions defined by a spherical triangle s. 
Initially, for a facet f, if a triangle s is contained by hemisphere H(f), the corresponding entry 
in the matrix is set to TRUE; otherwise, the corresponding entry is set to FALSE. An 
example of initial matrix is shown in Table 1. 

 

5.3 Updating Initial Accessibility Matrix  
As stated in property 5 and 6, inaccessibility region of a non-convex-hull facet f, can be 
determined by only considering the influence of other non-convex-hull facets facing f and 
present in the same concave region. Hence, to determine the accessibility cone of a non-convex-
hull facet f, it is sufficient to only examine the influence of other non-convex-hull facets facing f 
and present in the same concave region.  

UPDATE takes two arguments, S and Fn. S is the initial set of spherical triangles on the boundary 
of the unit sphere generated by INITIALIZE. Fn is the set of non-convex-hull facets in the object. 
For each pair of facets (f, f’) in Fn that face each other and are present in the same concave 
region, UPDATE calls algorithm INACCESSIBLE to find the inaccessibility region of f on the 
spherical map due to f’. We convert the inaccessibility region I into a set of spherical triangles by 
triangulating it. Figure 10 illustrates an inaccessibility region overlaid on the current set of 
spherical triangles. Then, UPDATE calls PARTITIONTRIANGLES, which is an algorithm that 
reclassifies the spherical boundary through further partitioning, and updates the AccessStatus. In 
general, the number of the rows in the matrix AccessStatus grows with each partitioning as 
shown in Table 2.  

Table 1: Initial matrix Access_Status 

facets
spherical Triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T T T T

7 T T T T T T T T T
8 T F F F F T T T T
9 F T T T T T T F F
.
.
.
M F T T F F T T F F

facets
spherical Triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T T T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T T T T

7 T T T T T T T T T7 T T T T T T T T T
8 T F F F F T T T T
9 F T T T T T T F F
8 T F F F F T T T T
9 F T T T T T T F F
.
.
.
M F T T F F T T F F

.

.

.
M F T T F F T T F F
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Algorithm UPDATE(S, Fn)  

For every pair of facets (f, f’) in Fn that face each other and are present in the same concave 
region, do the following: 

1) Call INACCESSIBLE (f, f’), which returns I, the convex spherical polygon representing the 
inaccessibility region of f due to f’. 

2) Triangulate the convex polygon I into a set of spherical triangles. 

3) Call PARTITIONTRIANGLES (S, I, f), which returns the updated uniquely classification S of the 
boundary of the unit sphere. 

If every triangle in set I does not exactly match with (i.e., is equal to in the set theoretic sense) 
some triangle in set S, then PARTITIONTRIANGLES is used to subdivide triangles in S and I to 
make sure that the subdivided triangles match. Every pair of spherical triangles (s�� �� ���
examined to find out if we need to subdivide triangles (where s is an element of set S����� �������
element of set I�	�
�������� ����
��
������
���
�����������
���
����
��
�������
���������������������
TRIANGULATE. For computing Boolean operations on spherical triangles, we first convert 
spherical triangles to planar triangles using central projection [Lent49]. After this step we apply 
standard planar polygon intersection algorithms. TRIANGULATE takes a spherical polygon P and 
partitions the given polygon P into triangles and returns the result. This algorithm has been 
adopted from a standard triangulation procedure [Lo89]. Figure 11 illustrates the basic idea 
behind algorithm TRIANGULATE. 

After subdivision of spherical triangles, we update AccessStatus to incorporate information in 
inaccessibility region I for facet f.  Based on the result of the triangulation, PARTITIONTRIANGLES 

updates AccessStatus. Table 2 is an example of an intermediate result while updating 
AccessStatus shown in Table 1. In this example, Facet 7’s accessibility status has been updated. 
Rows 6, 7, 8, 9, 10 in Table 2 replace the previous row 6 in Table 1. This is due to subdivision of 

Table 2:  Updating matrix Access_Status

(L* – a list of blocking facets)

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.

13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

Table 2:  Updating matrix Access_Status

(L* – a list of blocking facets)

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.

13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

(L* – a list of blocking facets)

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.

13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F
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Triangle 6 into 5 different triangles. Hence, the number of rows in the tabular form has grown by 
4. Facet 7 has been found to be inaccessible in one of the five triangles, but remains accessible in 
the remaining four. Note that, for the sake of clarity, the example here is an extremely simple 
one. In general, the number of rows to be split is usually large, and each row could be split into 
more new rows. 

Algorithm PARTITIONTRIANGLES (S, I, f) 

For every pair of intersecting spherical triangles (s�� ����
��������
�������������
������
�
�s is 
an element of set S����� �������
�
�
�������
��I): 

1) Calculate Int, the intersection of s����� 	 

2) 
�� ���������
�
����������
���� s, do the following: 

a. Let T1 = 	 

b. T2 = Triangulate (s – Int).  

     Otherwise, do the following: 

a. T1 = TRIANGULATE (Int).  

b. T2  = TRIANGULATE (s – Int).  

3) Insert rows in Matrix AccessStatus for all the spherical triangles in T1 and T2. 

4) For every spherical triangle t1 in T1, set the value of the corresponding entry (t1, f) in 
AccessStatus to be FALSE. 

5) For every spherical triangle t2 in T2, set the value of the corresponding entry (t2, f) in 
AccessStatus to be the same as the value of entry AccessStatus (s, f).  

6) Delete row s from AccessStatus. 

7) S = (S – s) � T1 � T2. 

5.4 Implementation Issues 
Section 5.2 and Section 5.3 have shown that theoretically the approach described above leads to 
exact accessibility cones through adaptive refinement. However, numerical accuracy problems 
common to geometric algorithms may creep in to make the implementation difficult. We found 
during the implementation, for example, that the adaptive refinement may generate spherical 
triangles having two of the vertices extremely close to each other. This tends to cause wrong 
vertex classifications due to numerical inaccuracies. There has been a great deal of progress in 
developing techniques for robust geometric computations [Hoff88, Sahn98], and such methods 
could be employed here. However the implementation of these methods is non-trivial and 
believed to be a research issue on its own right from a pure computational geometry point of 
view, which is beyond the scope of this paper.  

6 GENERATING APPROXIMATE GLOBAL ACCESSIBILITY CONES 
USING A FIXED-RESOLUTION PARTITIONING OF UNIT SPHERE  
This section describes an approach for computing approximate global accessibility cones. This 
approach is relatively easy to implement. It simplifies the problem by introducing approximation 
and eliminating numerical difficulties. 



15 

6.1 Overview of Approach  
This approach follows the similar “initialize-update” scheme as in the exact adaptive approach. 
The difference is that, instead of adaptively refining the partitioning resolution on the unit 
sphere, a fixed resolution is adopted in the following two steps: 

1) Initialization: In this step we partition the boundary of the unit sphere into spherical triangles 
with a pre-defined resolution, and initialize the AccessStatus matrix. Section 6.2 describes 
this step in detail. 

2) Updating: In this step we update the accessibility information in the AccessStatus matrix. 
Section 6.3 describes an algorithm UPDATE for this step. We calculate inaccessibility region I 
by performing inaccessibility test for each pair of non-convex-hull facets that belong to the 
same concave regions and face each other (property 5 and 6). For each inaccessibility region 
I, we perform occupancy test and update the accessibility information for all spherical 
triangles that lie inside or intersect I. Section 6.3.1 describes this step in detail. 

This fixed-resolution approach provides conservative approximation. Although for some 
directions, it may report an accessible facet as inaccessible, but it never reports an inaccessible 
facet as accessible. That is, it does error only on the safe side.  It ensures that accessibility-based 
decomposition guided by the information from the result of this approach, does not result in any 
components that still contain inaccessible facets due to the imprecise input.  

6.2 Initializing Accessibility Matrix  
Algorithm INITIALIZE takes the set of non-convex-hull facets Fn of the object as an argument. 
Using a similar approach to Binary Spherical Maps [Suh95], the boundary of the unit sphere is 
partitioned into spherical triangles with a certain pre-defined resolution. The initial accessibility 
information is stored in matrix AccessStatus and will be updated later by algorithm UPDATE. 

Algorithm INITIALIZE (Fn)  

1) Partition the boundary of the unit sphere into spherical triangles. 

2) Create an M×N matrix AccessStatus, where N is the number of the facets in Fn, M is the 
number of spherical triangles in S.  Each entry of the matrix will indicate the accessibility 
status of a facet f from a set of directions defined by a spherical triangle s. Let H(f) be the 
hemisphere with the direction normal of facet f as its pole. Initially, for a facet f, if a spherical 
triangle s is completely contained by hemisphere H(f), the corresponding entry in the matrix 
is set to TRUE; otherwise, the corresponding entry is set to FALSE.   

Note that this initialization is conducted conservatively – an entry associated with a spherical 
triangle intersecting H(f) is set to FALSE because facet f cannot be accessible from the entire 
spherical triangle. 

6.3 Updating Initial Accessibility Matrix  
As stated in Section 5.3, to determine the accessibility cone of a non-convex-hull facet f, it is 
sufficient to only examine the influence of other non-convex-hull facets facing f and present in 
the same concave region.  

Algorithm UPDATE takes two arguments, S and Fn. S is the set of spherical triangles on the 
boundary of the unit sphere generated by INITIALIZE. Fn is the set of non-convex-hull facets on 
the object. 
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For each pair of facets (f, f’) in Fn that face each other and are present in the same concave 
region, UPDATE calls Algorithm INACCESSIBLE to find the inaccessibility region of f on the 
spherical map due to f’. Figure 12 schematically shows an inaccessibility region overlaid on the 
set of spherical triangles. Then, it performs occupancy tests to update the matrix AccessStatus.  

Algorithm UPDATE (S, Fn)  

For every pair of facets (f, f’) in Fn that face each other and are present in the same concave 
region, do the following: 

1) Inaccessibility Test: Call INACCESSIBLE to calculate the inaccessibility region I of f due to the 
presence of f’.  

2) Occupancy Test: For every spherical triangle on the unit sphere, OCCUPANCY checks whether 
it is contained inside the inaccessibility region I. All the spherical triangles that are contained 
inside the inaccessibility region I are marked as inaccessible. To make the algorithm 
conservative, all spherical triangles that are intersecting the inaccessibility region I are also 
marked as inaccessible. The index of facet f’ is added into the entries in the AccessStatus 
matrix corresponding to facet f and these spherical triangles. 

Algorithm UPDATE has the time complexity of O(N2M) in the worst case, where N is the total 
number of non-convex-hull facets, and M is the number of spherical triangles. However this is a 
loose-bound complexity. This algorithm can be made efficient by pruning out unnecessary 
inaccessibility and occupancy tests. Unnecessary inaccessibility tests have already been pruned 
out by not doing the inaccessibility tests for facet pairs that are not present in the same concave 
region and are not facing each other (property 5 and 6). Section 6.3.1 describes an algorithm for 
pruning unnecessary occupancy tests. 

6.3.1 Pruning Unnecessary Occupancy Tests 

After an inaccessibility region is calculated, it is sufficient to apply the occupancy tests only for 
candidate spherical triangles. Take the enclosing spherical rectangle of the convex 
inaccessibility region I and expand it by the resolution of the spherical triangles. This expanded 
enclosing spherical rectangle is defined as a candidate patch.  A spherical rectangle can be 
completely specified by the spherical coordinates of its vertices. The spherical coordinates of a 
point p(
, �) are shown in Figure 13, where 
 �[0, �] and � �[0, 2�]. All the spherical triangles 
with vertices inside this candidate patch will be the candidate triangles for occupancy test. The 
reason for expanding the enclosing spherical rectangle into the candidate patch is to include 
those spherical triangles that intersect the rectangle but whose vertices do not lie inside the 
rectangle. Figure 14 shows an enclosing spherical rectangle for an inaccessibility region before 
expansion. Notice that to calculate 
-coordinate extremes, extreme edges have to be found, while 
the �-coordinate extreme can be calculated by finding the extreme vertices. 

A variation of 2-Dimensional Orthogonal Range Tree [Berg00] is used to store and query for the 
vertices of spherical triangles. Let Q be the set of m points (vertices of spherical triangles) on the 
sphere. Range tree T is a two-level data structure. Figure 15 shows the structure of a range tree. 

�� The main tree is a balanced binary search tree T built on the 
-coordinate of the points in Q. 
The points are stored in the leaves of this main tree. 
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�� For any internal or leaf node v in T, the canonical subset Q(v) is stored in a balanced binary 
search tree Tassoc(v) on the �-coordinate of the points. The node v stores a pointer to the root 
of Tassoc(v), which is called the associated structure of v. 

The canonical subset Q(v) is the subset of points stored in the leaves of the sub-tree rooted at 
node v. For instance, the canonical subset of the root of the tree is the whole set Q. The canonical 
subset of a leaf is simply the point stored at that leaf. 

A rectangle query range on Q asks for the points from Q lying inside a spherical query rectangle 
[
1 : 
2] × [�1 : �2]. A point p = (
p, �p) lies inside the spherical query rectangle if and only if 
p � 
[
1 : 
2] and �p � [�1 : �2]. 

Construction time for range tree is O(m log m) while the query time is O(log2m+k), where m is 
the total number of points in Q and k is the number of reported points [Berg00].  

All the reported points are candidate vertices, which are then tested if they are contained inside 
the inaccessibility region. If a vertex is contained inside the inaccessibility region, all the 
spherical triangles sharing that vertex are marked as inaccessible. If not, all the spherical 
triangles sharing that vertex are tested for intersection with the inaccessibility region. 

Hence, Algorithm OCCUPANCY takes the set S of spherical triangles on the boundary of the unit 
sphere and the inaccessibility region I as input, and performs occupancy tests in the following 
steps.  

Algorithm OCCUPANCY (S, I) 

1) Call CALCULATEENCLOSINGRECTANGLE to calculate enclosing spherical rectangle R0 for the 
inaccessibility region I. 

2) GENERATE the candidate patch R by expanding the spherical rectangle R0. 

3) Obtain all the spherical vertices VR, contained in R by querying the range tree. 

4) Call UPDATEACCESSIBILITYMATRIX to update the accessibility matrix AccessStatus by testing 
all the candidate vertices VR, and the associated spherical triangles T for occupancy.  

Algorithm CALCULATEENCLOSINGRECTANGLE takes the inaccessibility region I as input and 
generates the enclosing spherical rectangle R0 which is specified as [
1 : 
2] × [�1 : �2]. This 
algorithm is straightforward except for three special cases - one of the poles lies inside I, or arc � 
= 0 intersects I. 

Algorithm CALCULATEENCLOSINGRECTANGLE (I)   

1) If north pole (0, 0) is contained in I (see Figure 16), then [
1 : 
2] = [0, 
max] and [�1 : �2] = [0, 
2�]. 

2) Else if south pole (�, 0) is contained in I, then [
1 : 
2] = [
min, �] and [�1 : �2] = [0, 2�]. 

3) Else if arc � = 0 intersects I (see Figure 17), then, due to discontinuity of � at 0, there will be 
two spherical rectangles in this case [
1 : 
2] × [�1 : �2] and [
1’ : 
2’] × [�1’: �2’], where [
1 : 

2] = [
min, 
max],  [�1 : �2] = [0, �lower ] and [
1’ : 
2’] = [
min, 
max], [�1’: �2’] = [�higher, 2�].  

4) Else (see Figure 14), [
1 : 
2] = [
min, 
max] and  [�1 : �2] = [�min, �max]. 
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min and 
max are the 
-coordinate extremes of I, while �min and �max are the �-coordinate 
extremes of I. Due to discontinuity of � at 0, search will be done in two steps in the above third 
case. �lower is the maximum �-coordinate of I less than �. �higher is the minimum �-coordinate of I 
greater than �. Maximum and minimum � can be computed by finding the extreme vertices of I. 
Maximum and minimum 
 will have to be computed by finding the extreme edges of I. 

Algorithm UPDATEACCESSIBILITYMATRIX takes the set S of spherical triangles on the boundary 
of the unit sphere, the inaccessibility region I, and the set of vertices VR as input, and updates the 
accessibility matrix. VR is the set of vertices reported by the range tree query about the candidate 
patch R.  

Algorithm UPDATEACCESSIBILITYMATRIX (S, I, VR)  

For every vertex v in VR, do the following: 

1) Let Tv be the set of all the spherical triangles sharing v. 

2) If v lies inside I, then mark all spherical triangles in Tv as inaccessible and update the 
corresponding entries in the matrix AccessStatus. 

3) Else, for every spherical triangle t in Tv do the following: 

�� If t intersects I, then mark t as inaccessible and update the corresponding entry in the 
matrix AccessStatus. 

6.4 Implementation and Results 
Above-described algorithms have been implemented on Windows 2000 (AMD Athlon XP 1700+ 
and 1 GB RAM) using Visual C++ and ACIS 7. Figure 18, 19, 20 and 21 show four objects that 
were tested on the system. The number of spherical facets used in all cases is 2700. We created 
multiple versions of each object by faceting them with different surface tolerance. Surface 
tolerance is ���� �������� 	�
������ 
������� �� ������ ��	� ���� ����� 
�������� Table 3 shows the 
number of facets in each object and the time required to construct the entire AccessStatus matrix. 
This matrix needs to be built only once and can even be built offline and stored with the object 
model. Once it has been built, it can be used for various application queries. Since these queries 
are simple mappings and lookups, they are very fast (see Section 7 for details). 

Table 3: Implementation results 
Part Number of Facets Execution Time 

(seconds) 
1028 33 
2140 92 
3084 171 

Object A 
(Figure 18) 
5 Concave Regions 
 4076 280 

1016 13 
2028 41 
3120 85 

Object B  
(Figure 19) 
3 Concave Regions 

4004 132 
1024 18 
2008 58 
3050 129 

Object C  
(Figure 20) 
1 Concave Region 

4020 210 
1064 48 Object D  

(Figure 21) 2090 127 
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3084 272 1 Concave Region 
4052 435 

 

6.5 Computing Exact Global Accessibility Cones for a Single Facet 
This section shows that, although the above approximate approach brings inaccuracy into the 
accessibility matrix, there is still a way to compute exact global accessibility cones for a single 
facet by utilizing the information in the accessibility matrix generated by the approximate 
approach. 

In the above approximate approach, a spherical triangle will be marked accessible only if the 
facet is accessible from the whole triangle. A spherical triangle will be marked as inaccessible 
even if it offers partial accessibility. To extract the accessible portions from such spherical 
triangles, the information stored in the matrix can be used. If a facet is inaccessible from a 
certain spherical triangle, facet indices of all the blocking facets are also stored in the matrix. 
These blocking facets can be projected onto the unit sphere to find the exact inaccessibility 
regions due to these facets. These exact inaccessibility regions can then be subtracted from the 
spherical triangle to produce the portion of the spherical triangle from which the facet is exactly 
accessible. The spherical triangles and the inaccessibility regions can also be projected onto a 
plane using central projection for using the Boolean operations implemented for planar polygons.  
After performing the Boolean operation, the planar polygon can be converted back to spherical 
polygon.   

7 QUERYING ACCESSIBILITY MATRIX 
Based on the application of accessibility analysis in the areas of process planning, inspection 
planning and mold design, following types of querying can be performed on the global 
accessibility cones represented by the matrix AccessStatus.  

1) Find the global accessibility cone of a facet. Given a particular facet on the object, this query 
finds its facet index and looks up the corresponding column in AccessStatus. The rows with 
TRUE entries corresponding to this column indicate the spherical triangles from which this 
facet is accessible. The set of all such spherical triangles forms the global accessibility cone 
of the facet. 

2) Find the facets that are accessible from a particular direction. Given a particular direction as 
a unit vector, we locate the spherical triangle that contains this direction on the boundary of 
the unit sphere. The query looks up the row in AccessStatus matrix corresponding to the 
index of the spherical triangle. The columns with TRUE entries corresponding to this row 
indicate the facets that are accessible from the given direction. 

3) Find the facets that are blocking a particular facet. Given a particular facet on the object, 
this query looks up the column in AccessStatus matrix corresponding to the index of this 
facet. Each row with the entry of a facet list corresponding to this column gives the indices of 
the facets that are blocking the given facet in directions represented by a spherical triangle.  

4) Compare two or more directions for the amount of accessibility. For each spherical triangle, 
number of TRUE entries is added. All the spherical triangles are then ranked based on the 
sum. Each input direction is mapped to the corresponding spherical triangle and the 
calculated ranks are returned. 



20 

The above queries are simple mappings and lookups. A direction is first mapped to a spherical 
triangle, then the index of the spherical triangle and the object facet is fetched, and finally, the 
information stored in the AccessStatus matrix at the index is looked up and returned. These 
queries are very fast to perform and typically take fraction of a second. 

8 Conclusions 
In this paper we present an algorithm for determining the set of directions from which a 
triangular facet is inaccessible due to another triangular facet. This algorithm corresponds to the 
exact mathematical definition of semi-infinite inaccessibility region and is easy to implement. 
We present two different approaches to compute the global accessibility cone for every facet of 
an object based on this algorithm. We report detailed experimental results for the approach 
described in Section 6 to illustrate the running performance. We ran our experiments on a low 
end PC. Accessibility analysis results for all objects were computed in less than eight minutes. 
The longest time was 435 seconds. It was taken for an object that was faceted with 4052 facets 
with the surface tolerance of 0.025mm. We believe that the running time will be approximately 
one third to one fourth of the time reported on a high-end workstation. Our implementation of 
approach described in Section 5 is not very robust and for complex objects it does not always 
produce correct results. We believe that this problem can be overcome. But it will require 
significant effort.  

Accessibility analysis approach described in this paper presents an improvement over previous 
approaches in the following aspects: 

�� A provably sound algorithm has been developed for computing the exact inaccessibility 
region for a facet due to the presence of another facet. 

�� Based on the above algorithm, both exact and approximate approaches have been developed 
to compute the accessibility cones for polyhedral objects. The approximate approach is 
conservative in nature - it makes errors on the safer side and is guaranteed to correctly 
identify all inaccessible facets on the boundary of the object. 

We believe that the algorithms presented in this paper can be used in a wide variety of 
manufacturing planning applications. Specifically, we are using the method described in this 
paper in the area of mold design and setup planning for CNC machining. 

We have extended the ray-based accessibility analysis approach described in this paper such that 
it can be used to conduct accessibility analysis for ball-end tools with a given radius.  Because of 
space restriction we have not reported those results in this paper. For details please see [Huan02].  
The basic idea behind that extension is as following.  We compute approximate tool-based 
accessibility cones of facets on an object by computing how the presence of one facet is affecting 
the tool-based accessibility of another facet. Given a pair of facets on the boundary of an object 
O, denoted by facet f and facet f’, the tool-based inaccessibility region of facet f due to the 
presence of facet f’ can be computed in the following way. We denote the object obtained by 
sweeping a sphere of radius r over an object A by A
r:  A
r = {p: � q � A, distance (p, q) 	 r}. 
If p is a point, then p
r is a sphere centered at p with radius r. Let T be a ball-end tool with 
radius r, then it can be defined by equation T = t
r, where t is a ray. We showed that tool-based 
inaccessibility region of one facet f due to the presence of another facet f’, is equal to the ray-
based inaccessibility region of planar facets fr due to the presence of f’
r, where r is the tool 
radius and fr is obtained by offsetting f along its outward pointing direction normal by r. 
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Unfortunately, since f’
r is generally not a planar object, the inaccessibility region determination 
algorithm described in Section 4 cannot be directly used to compute the exact inaccessibility 
region in this problem due to the increased the geometric complexity. However, we extended the 
algorithm to compute approximate inaccessibility region of fr due to the presence of f’
r. This 
extended algorithm employs a conservative approximation in the sense that all the accessible 
facets reported by this algorithm are guaranteed to be accessible. The tool-based accessibility 
cones computed through this approach can support the queries that are supported by the ray-
based accessibility cones described in Section 7. 

Future tasks of this work include investigation of the following research issues: 

1) The accessibility analysis approach described in this paper currently addresses the exact 
accessibility cones only for polyhedral objects. This approach can be extended by allowing 
direct projection of curved faces. Further theoretical work will be needed in this area to 
identify the projection scheme. 

2) The extended approach to computing tool-based accessibility cones currently only addresses 
ball-end tool accessibility. Extensions need to be made for computing the flat-end tool 
accessibility.   
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