
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Algorithms for Computing Global Accessibility Cones

by Savinder Dhaliwal, Satyandra K. Gupta, Jun Huang,
Alok Priyadarshi

TR 2002-30

1

Algorithms for Computing Global Accessibility Cones
Savinder Dhaliwal, Satyandra K. Gupta1, Jun Huang, Alok Priyadarshi

University of Maryland

College Park, MD 20742

ABSTRACT

This paper describes algorithms for computing global accessibility cones for various faces (i.e.,
the set of directions from which faces are accessible) in a polyhedral object. We describe exact
mathematical conditions and the associated algorithm for determining the set of directions from
which a planar face with triangular boundary is inaccessible due to another face in the object. By
utilizing the algorithm to compute the exact inaccessibility region for a face, we present
algorithms for computing global accessibility cones for various faces in the object. These global
accessibility cones are represented in a matrix structure and can be used to support a wide variety
of accessibility queries for the object. We provide several examples to show computational
performance of our algorithm.

Keywords

Accessibility Analysis, Geometric Reasoning, and Computational Geometry.

1 INTRODUCTION
Accessibility analysis of an object helps in process planning in a number of different
manufacturing applications. For example, accessibility analysis is required in

�� Machining: A good setup planning ensures high productivity as well as machinability.
Accessibility analysis helps in determining machinability by finding the set of directions
from which the part may be approached by the cutting tool. It also helps in determining the
work-piece orientations that would minimize the number of set-ups required for machining
the part [Kang97, Suh95] and helps in cutter path planning [Bala00].

�� Assembly: It helps in determining the directions from which the assembly and disassembly
operations can be carried out.

�� Mold Design: The mold assembly needs to be disassembled to eject the molded part.
Accessibility analysis is used in accessibility/disassembly-based decomposition of the gross
mold to ensure part ejection. It helps in selecting the parting surface that minimizes or
eliminates the undercuts. It also helps in reducing the number of side cores required in the
mold design [Chen93, Wein96, Wein97].

�� Inspection Planning: It is used in automatic planning and programming tasks with a
Coordinate Measuring Machine (CMM). It helps in determining part orientation on the CMM
and identifying the directions from which a probe can approach the part to perform
measurements [Spit99].

1 Corresponding Author.

2

This paper describes algorithms for computing global accessibility cones for polyhedral objects
modeled using facets (planar faces with triangular boundaries). If an object has curved faces,
such faces are faceted and approximated by small triangles. If the object has non-triangular
planar faces, then such faces are triangulated. The remainder of this paper has been organized in
the following manner. Section 2 describes the related research in the area of accessibility
analysis. Section 3 presents an overview of necessary mathematical terminology for
understanding this paper and describes the problem formulation. Section 4 describes the
mathematical condition and the associated algorithm for determining the set of directions from
which a facet is inaccessible due to presence of another facet in the object. Sections 5 and 6
describe algorithms for computing global accessibility cones for various facets by utilizing the
algorithm described in Section 4. Section 7 describes how the accessibility matrix supports
various queries about the accessibility of facets. Finally, Section 8 presents the concluding
remarks.

2 RELATED WORK IN THE AREA OF ACCESSIBILITY ANALYSIS

2.1 Accessibility Analysis Based on Visibility Map
A Gaussian map of a surface is the set of end points of the unit normal vectors of the surface.
Gaussian maps can be represented as a spherical region (i.e., a subset of the boundary of a unit
sphere). By extending the basic idea behind Gaussian maps, Woo et al developed the concept of
visibility map to represent and compute accessibility [Chen93, Woo94]. A visibility map is a set
of points on a spherically convex region. Any point in a visibility map denotes a direction from
which the entire surface is accessible to its exterior. Local accessibility of a point on a surface is
defined by the hemispherical region constructed by using the surface normal at the point as the
pole (for detailed definition of poles and hemispherical regions, please see Section 3). Therefore,
the visibility map of a point is a hemispherical region on a unit sphere. The visibility map of a
surface is the intersection of visibility maps of all the points on the surface. For example, the
visibility map of a planar surface is a hemisphere. The concept of visibility maps has been
extended by Kim et al to cover bezier surfaces [Kim95]. They have defined and provided
algorithms for computing tangent, normal and visibility maps for regular bezier surfaces. Elber et
al [Elbe95] presented an approach to compute “visibility set” (a very similar concept to visibility
map) for freeform surfaces. They use a “symbolic based method” to compute the convex hull of
the Gaussian map, and calculate the visibility set as the intersection of hemispheres associated
with vertices of the convex hull.

For polyhedral parts, the boundary is divided into spatially independent convex (portion of
boundary that is part of convex hull) and concave (portion of boundary that is not a part of
convex hull) regions. The visibility map of each face within the convex region is the hemisphere
formed by using the direction normal of the facet as a pole. The visibility map of each concave
region is the intersection of the visibility maps of all the planar faces within the region.

Sometimes visibility maps cannot be used to determine the global accessibility of an individual
facet within a concave region. This is because the visibility map of an object is constructed using
the local accessibility information for various facets. Whenever global accessibility of a facet
differs from its local accessibility, this approach cannot be used. Figure 1 shows an example
where visibility maps of individual facets cannot be used to correctly compute the global
accessibility of a facet. Facets A, B, C, D, E and F form a concave region. Consider facet A
individually, its visibility map is a hemisphere. The combined visibility map of the concave

3

region is arc v. However, the global accessibility cone for facet A differs from both of these
visibility maps. For example, facet A is accessible from direction d1 while this facet is not
accessible from direction d2.

2.2 Accessibility Analysis based on Binary Spherical Maps
Suh and Kang developed an approach for accessibility analysis for NC machining [Suh95]. They
compute accessibility by constructing the binary spherical maps. The part surface is faceted into
triangular patches. The unit hemisphere is also faceted using spherical triangles. Accessibility
information is represented using a table. This table contains various part facets as rows and
various spherical triangles as columns. Each entry in the matrix describes whether a facet is
completely accessible from a spherical triangle or not. For example if ith facet is accessible from
jth spherical triangle, entry that corresponds to ith row and jth column is set to 1. On the other
hand, if ith facet is not accessible from jth spherical triangle, the entry that corresponds to ith row
and jth column is set to 0. This table is constructed by projecting centroids of various facets on
the unit sphere and identifying various spherical triangles that contain them.

In this approach accessibility of a facet is computed by checking the accessibility of the centroid
of the facet against the centroid of the spherical triangle. Therefore, due to this approximation,
this approach is prone to the following two types of errors. First, it might report that an entire
facet is accessible in a certain spherical triangle while actually only a portion of the facet is
accessible. Second, it might report that a facet is not accessible from an entire spherical triangle
while actually the facet is accessible from a portion of the spherical triangle.

2.3 Accessibility Analysis Using Computer Graphics Hardware
Recently, methods have been developed to perform accessibility analysis by taking advantage of
computer graphics hardware [Bala00, Spit99]. Graphics cards make use of the depth-buffer
implemented using hardware to perform fast hidden surface removal and render the object in a
given scene. If all the individual faces on the object have been assigned different colors, then the
accessibility of each face in a given direction can be detected by rendering the object using the
given direction as the viewing direction, and querying the colors that appear on the pixel map
after rendering. This approach works for a faceted object with maximum 16,777,216 faces,
which is the maximum number of colors supported by a 24-bit graphics card. Since each
rendering actually corresponds to a particular viewing direction, the point accessibility can be
approximated by sampling a finite number of directions on the Gaussian Sphere.

This approach involves two types of approximations. First, it uses finite sampling of viewing
directions on Gaussian sphere. Second, it assumes that the face is so small that presence of a
single pixel on the rendered scene can identify its accessibility. Therefore, the results produced
by this approach are only an approximation of the exact solution.

Spitz et al have also done work in the area of accessibility analysis using graphics hardware [14].
They use cubic maps to approximate spherical maps and use graphics hardware to determine
accessibility. Their application domain is inspection planning.

2.4 Representing and Computing Tool Accessibility for Milling Operations
Stage and Roberts described a framework for representing and computing tool accessibility from
manufacturability evaluation point-of-view [Stag97]. This is primarily a feature-based approach,
focusing on the shape/size compatibility between the pair of tool and the entity (a face or a set of

4

faces) to be machined. There are four forms of accessibility in the framework for an entity-tool
pair. An entity is said to have full section accessibility with respect to a particular section of a
particular tool, if through some combination of tool orientations, the section can sweep the entire
entity while avoiding collision between the part and the tool. If the section can sweep some
portion but not the entire entity under the same conditions, then the entity is said to have partial
section accessibility with respect to this section of the tool. An entity is said to have full tool
accessibility with respect to a particular tool, if through some combination of tool orientations,
the entire entity can be swept by the tool while avoiding collision between the part and the tool.
If the tool can sweep some portion but not the entire entity under the same conditions, then the
entity is said to have partial tool accessibility with respect to this tool. An entity is said to have
NULL accessibility with respect to a particular tool if the tool cannot sweep any portion of the
entity without causing a collision. For entities possessing full accessibility, there are two types of
accessibility as follows. An entity is said to have open accessibility if there is at least one
direction of accessibility from which the tool section (or tool) can sweep the entire entity. If the
tool must be oriented using two or more directions in order to sweep the entire entity, then the
entity is said to have controlled accessibility. If an entity has open accessibility, then the set of all
directions of accessibility, each of which allows a tool section (or tool) to sweep an entire entity,
is called an accessibility cone.

The advantage of this approach is that it works for an object with curved surfaces without any
need for faceting. However, the notion of accessibility is closely tied with a particular tool.

3 Mathematical Definitions
In this section we present the definitions and basic mathematical concepts that are needed to
describe our algorithms.

3.1 Accessibility Definitions

�� Accessibility of a point in a given direction: A point belonging to a geometric entity is
accessible in a given direction if a ray of can be drawn from it in the given direction without
intersecting with interior of the geometric entity. Figure 2 illustrates the concept of
accessibility graphically.

�� Accessibility of a face in a given direction: A face is accessible in a given direction if all
points in the interior of the face are accessible in the given direction. The boundary points of
the face are not considered in this definition in determining the accessibility of a face.

�� Global accessibility cone of a point: Global accessibility cone of a point represents the set of
unit vectors along which the point is accessible.

�� Global accessibility cone of a face: Global accessibility cone of a face represents the set of
unit vectors along which the face is accessible.

3.2 Review of Spherical Geometry Properties
To make this paper self-contained, we describe the following properties and definitions from
spherical geometry area [Lent49]:

Property 1: The curve of intersection of a plane and a sphere is a circle. It is called a great circle
if the plane passes through the center of the sphere, and a small circle if the plane does not pass
through the center of the sphere. The radius of a great circle is equal to the radius of the sphere.

5

Property 2: Only one great circle can be drawn through two points of a sphere that are not
diametrically opposite.

Property 3: Two great circles intersect at two points that are diametrically opposite.

Definition 1: A spherical polygon is a portion of the surface of a unit sphere that is bounded by
the arcs of great circles.

Definition 2: The position vector
PS of the spherical projection of a point P onto a unit sphere is a

unit vector parallel to the line that joins the center O of the unit sphere and the point P.
PS is

given by

where P is a position vector that corresponds to the point P and O is a position vector that
corresponds to the center of the sphere O.

Definition 3: The spherical projection
Pf of a face f is the spherical projection of all the

constituent points of the face. Spherical projection of a point that coincides with the center of the
sphere is not defined.

Definition 4: A hemisphere is a portion of a spherical surface obtained by splitting the sphere
surface by using a plane passing through the center of the sphere. The normal vector of the plane
pointing towards the hemisphere is called the pole of the hemisphere.

3.3 Review of Polyhedral Part Properties
A faceted object boundary consists of two types of facets: convex-hull facets and non-convex
hull-facets. Convex-hull facets are those facets on the part that are also on the convex hull of the
part. All the facets on the part other than convex-hull facets are called non-convex-hull facets.
Figure 3 shows examples of convex-hull and non-convex-hull facets. Connected sets of non-
convex-hull facets form concave regions (pockets in [Chen93])

Property 4: The global accessibility cone of a convex-hull facet is a hemisphere generated using
the direction normal of the facet as its pole [Chen93].

Property 5: A non-convex-hull facet can be blocked only by a non-convex-hull facet present in
the same concave region [Chen93]. A ray emanating from a point in a concave region will either
intersect a facet in the same concave region or go to infinity.

Property 6: A pair of facets can obstruct their mutual accessibility only if they are facing each
other. Since the boundary of the object is continuous, if the facets are not facing each other, there
will always be at least one facet in between the two facets.

3.4 Problem Formulation
The input to the accessibility analysis algorithms is a polyhedral object modeled using facets
(triangular planar faces). If an object has curved faces, such faces are faceted and approximated
by small triangles. If the object has non-triangular planar faces, such faces are triangulated.

The output of the algorithms is the global accessibility cones of all facets on the object. The
global accessibility cones are represented as a matrix called AccessStatus matrix. In this scheme,
the boundary of the unit sphere is partitioned into a finite number of spherical triangles, each

P

�
�

�
P O

S
P O

6

representing a set of directions. Rows of this matrix represent spherical triangles. Columns of
this matrix represent the facets. Each entry in the matrix describes whether a facet is completely
accessible from a spherical triangle or not. For example if jth facet is completely accessible from
ith spherical triangle, entry that corresponds to ith row and jth column is set to TRUE. On the other
hand, if jth facet is not accessible from ith spherical triangle, it is due to one of the two cases. If
the ith spherical triangle does not reside within the visibility map of the jth facet (a unit
hemisphere with the normal vector of the jth facet as the pole), the entry that corresponds to ith
row and jth column is simply set to FALSE. Otherwise, if ith spherical triangle does reside within
the visibility map of jth facet, the entry that corresponds to ith row and jth column is filled with the
index of the facet(s) that is blocking jth facet from the directions represented by ith spherical
triangle.

The status of the boundary of each spherical triangle is defined as follows. Since we consider the
global accessibility cones as close sets, if a facet is completely accessible from directions in a
spherical triangle, then it is also completely accessible from directions on the edges of this
spherical triangle.

Since the global accessibility cone of a convex-hull facet is always a hemisphere (property 4), we
only need to compute the global accessibility cones for non-convex-hull facets. Therefore, only
the accessibility information of non-convex-hull facets is needed to be stored in the AccessStatus
matrix.

4 COMPUTING EXACT INACCESSIBILITY REGION OF A FACET DUE
TO PRESENCE OF ANOTHER FACET

In order to compute the global accessibility cone for a face on a polyhedral object, we will first
investigate how presence of a facet makes some other facet inaccessible from certain directions.
Given two planar facets f and f’, we are interested in determining the set of directions from which
f becomes inaccessible due to presence of f’.

4.1 Mathematical Definition of Inaccessibility Region of a Facet due to Presence of
another Facet
Let f and f’ be two facets on the boundary of an object. Let I be the set of directions (i.e., unit
vectors) from which f is inaccessible. Let V be the set of directions (i.e., unit vectors) from which
f is accessible. We also refer to I as inaccessibility region and V as accessibility region. I and V
can be constructed in the following manner:

1) Set I = Ø���V = H, where H is a unit hemisphere defined using outward normal vector of f as
the pole.

2) For every point p in the interior of f, do the following:

�� Construct a unit sphere S centered at p

�� Compute the spherical projection fp’ of f’ on S

�� I = I � (interior of fp’)

3) V = V – I.

Though this is a mathematically rigorous construction of accessibility and inaccessibility regions,
it is computationally impractical because there would be infinite number of points on the facet f

7

for which the projection of f’ would need to be computed. Therefore, we need to develop a
computationally practical but mathematically equivalent algorithm. Section 4.2 describes such an
algorithm. Before defining the algorithm, we need to present Proposition 1 and Proposition 2.

Proposition 1: The sweep of a convex object over another convex object results in a convex
object.

Proof: Let A and B be two convex objects represented as sets of Euclidean points. Let a and b
denote points in objects A and B. The sweep of object A over object B can be represented by
Minkowski sum C

 C = A � B = {c | c = a + b, a � A, b � B}

As per definition of C, for a pair of arbitrary points in set C denoted by c and c’, we can always
find points a and a’ in set A and b and b’ in set B such that c = a + b and c’ = a’ + b’.

Let cu be a point formed by linear combination of c and c’.

 cu = u c + (1 – u) c’ where 0 	 u 	 1

By substituting c = a + b and c’ = a’ + b’ in the above equation, we get

cu = u (a + b) + (1 – u) (a’ + b’) = u a + (1 – u) a’ + u b + (1 – u) b’

Let au = u a + (1 – u) a’ and bu = u b + (1 – u) b’

Therefore, cu = au + bu. If A is a convex object, then by the definition of convexity:

 au = u a + (1 – u) a’ � A

Similarly, if B is a convex object, then by the definition of convexity:

 bu = u b + (1 – u) b’ � B

Since au � A and bu � B, then by definition of Minkowski sum au + bu � C holds for every u
within range 0 	 u 	 1. Therefore, cu � C

We have shown that for every pair of points c and c’ and 0 	 u 	 1

cu = u c + (1 – u) c’ � C

Therefore C is a convex set.

Proposition 2: Inaccessibility region I for a facet f due to another facet f’ is a convex region.

Proof: From Proposition 1, we know that the sweep of a convex object over a convex object
results in a convex object. Let A be the spherical triangle formed by the projection of a point in
facet f’ (for example the centroid of f’) onto the sphere as the sphere moves over facet f. Let B be
the interior of a spherical triangle representing the spherical projection of f’. Both A and B are
convex. Inaccessibility region I is formed by sweeping B over A. Therefore, I is a convex region.

4.2 An Algorithm for Computing Exact Inaccessibility Region
Given two planar facets f and f’, the set of directions from which f is inaccessible (and
accessible) can be computed using the algorithm defined below. Once again, let the set of
directions from which f is inaccessible due to f’ be given by I and the set of directions from
which f is accessible be given by V.

8

Algorithm INACCESSIBLE(f, f’)

1) Construct unit spheres at the three vertices of the facet f. Project f’ on these spheres and let
the projections be denoted by f’P1, f’P2 and f’P3. If any vertex of f’ lies at the center of sphere,
then do not include that vertex in the projection. Figure 4 graphically shows this step.

2) f’P1, f’P2 and f’P3 are spherical triangles (or arc if the two facets share vertices) on the sphere
and would result in maximum of nine vertices on the unit sphere.

3) Find the convex hull CV of the vertices computed in the previous step.

4) I = the interior of CV. (I is a convex spherical polygon representing the set of directions from
which f is inaccessible due to f’.)

In the next section we will prove that the algorithm described in this section is mathematically
equivalent to the definition of inaccessibility region defined in Section 4.1.

4.3 Correctness Proof for Inaccessibility Region Determination Algorithm
In this section we prove that the algorithm described in the Section 4.2 for computing I is
equivalent to the mathematical definition of I given in Section 4.1. To do this, we will use one of
the fundamental properties of convex regions that states that the convex hull of a convex region
is the convex region itself. Using this property of convex region, we will prove that the convex
hull generated by the algorithm described in Section 4.2 is equivalent to the convex
inaccessibility region defined in Section 4.1.

As a preparation for the main proof, two basic spherical projection characteristics are proved as
Proposition 3 and Proposition 4. With these two basic characteristics, the whole proof proceeds
as follows. We will first prove that the boundary of inaccessibility region defined in Section 4.1
is a convex spherical polygon. This will be done in two steps. In the first step we will prove that
the boundary of the inaccessibility region can be produced by taking the projection of facet f’
onto the unit sphere by moving the sphere only over the edges of facet f. Proposition 5 described
below provides this portion of the proof. We will then prove that as the unit sphere moves over
edges of facet f, the projection of facet f’ would result in a spherical polygon. Proposition 7
described below provides this portion of the proof.

Once we have proved that the boundary of inaccessibility region is a convex spherical polygon,
we just need to know the vertices of this spherical polygon in order to generate the convex hull
and hence the region itself. We will show that the points obtained by projecting facet f’ onto unit
spheres centered at the three vertices of facet f are the superset of the vertices that form the
boundary of the inaccessibility region. We will prove this by showing that three arcs generated
by projecting the vertices of facet f’ onto the sphere as it moves along an edge of facet f do not
intersect. Theorem 1 described below provides this portion of the proof. Therefore no new
vertices are created as the facet f’ is swept over an edge of facet f. Hence the points obtained by
projecting facet f’ on unit spheres centered at the three vertices of facet f indeed are the superset
of the vertices that form the boundary of the inaccessibility region.

Proposition 3: Spherical projection of a line segment not passing through the center of the
sphere is a great arc. (This proposition is a minor modification of the proposition described in
[Chen92]).

Proof: The spherical projection of a line segment on a unit sphere is the set of spherical
projection of all the points constituting the line segment. We know from plane geometry that 3

9

non-collinear points can be used to define a unique plane. Therefore if the center of the sphere is
not collinear with the vertices of the line segment (PQ), the vertices of the line segment along
with the center of the unit sphere (O) define a unique plane. From Property 1, the intersection of
this plane with the sphere would generate a great circle. Since the line segment lies on the plane,
its projection would be a portion of this great circle, which is a great arc. Figure 5 shows this
construction graphically.

Proposition 4: Spherical projection of a point onto a unit sphere moving along a line segment
AB is an arc of a great circle. This projection is equivalent to the projection of line segment PQ
onto a unit sphere centered at point A, where PQ a line segment with P as a vertex, parallel to
AB, with the same length as AB, and apposite in direction to AB.

Proof: Let the point being projected onto the unit sphere be denoted by P. We are interested in
finding the locus of the projection of P onto the unit sphere (initially located at A) as the sphere
moves from A to B along the line segment AB. From rigid body transformation, we know that the
transformation of the sphere relative to the point P is equivalent to the inverse transformation of
the point P relative to the sphere. Since in this case the transformation of the sphere is a linear
translation along line segment AB, its inverse transformation for P would also be a linear
translation in a direction apposite and parallel to AB and also the same length as AB. Let us
assume that this transformation would result in a line segment PQ. Thus, the locus of the
projection of the point P onto a sphere, initially centered at A, as it moves along the line segment
AB is equivalent to the projection of the line segment PQ onto the sphere located at A. From
Proposition 3, we know that this projection would be an arc of a great circle.

Proposition 5: Inaccessibility region I of a facet f can be determined by the inaccessibility region
of its edges.

Proof: Consider the projection of a point P onto a unit sphere as it moves over the edges of a
facet f. Following the argument presented in Proposition 4, instead of moving the sphere, we can
move the point along a line segment. Therefore, the projection of the point P onto a sphere as it
moves over the edges of a facet f is equivalent to the projection of a triangle t, having the same
dimensions as the facet f, onto the sphere (see Figure 6 for a graphical illustration). When the
sphere is centered at any point R lying inside the facet, the projection of the point P is equivalent
to the projection of a point R’ lying inside triangle t following the transformation argument
presented in Proposition 4. The projection of triangle t onto the sphere would result in a spherical
triangle. From convexity principles, since R’ lies in the interior of a convex polygon (triangle t),
its projection would also lie in the interior of the spherical polygon. Hence, it is sufficient to
project the edges of the triangle t, which implies that it is sufficient to examine the edges of facet
f. Thus, we have proved that for finding the projection of a point onto a sphere as the sphere
moves over a facet, it is sufficient to move the sphere along the edges of the facet.

Now consider the projection of facet f’ on facet f. Since f’ is nothing but a collection of points,
therefore, by induction it holds that it is sufficient to examine the edges of facet f for finding the
projection of the facet f’ onto the sphere.

Proposition 6: The projection of a triangular planar facet onto a unit sphere as the sphere moves
along a line segment is a spherical polygon.

Proof: From basic spherical geometry, we know that the spherical projection of a triangle is a
spherical triangle. If the sphere were now moved along a line segment, the projection of the

10

triangle on the sphere would also move. We are interested in finding the swept region that
represents union of projections as the sphere moves along a line segment. From Proposition 4,
we know that the spherical projection of a point on a sphere as the sphere moves along a straight
line is a great arc on the unit sphere. Since a triangle can be considered as a collection of points,
its projection on the sphere as the sphere moves along a straight line would be collection of great
arcs on the unit sphere. Moreover, since we are considering the projection of a convex polygon
on a sphere as it moves along a line, only the vertices of the convex polygon need to be projected
in order to construct the boundary of the projected convex region. The three vertices would
generate three great arcs as the sphere moves along the line segment. These three arcs along with
the two spherical triangles (that result due to projection of the facet when the sphere is at the
vertices of the line segment) are the only possible choices for forming the boundary of the
projected convex region. Since only arcs form the boundary of this projected region, this region
is a spherical polygon. It is difficult to illustrate this condition graphically using the spherical
projection. Therefore, we will illustrate this condition using an equivalent planar representation
created by using central projection of the spherical region [Lent49]. An example of a planar
representation of such a polygon is shown in Figure 7.

Proposition 7: Boundary of inaccessibility region I for a facet f due to another facet f’ is a
convex spherical polygon.

Proof: The closure of inaccessibility region I for a facet f due to another facet f’ is formed by
spherical projection of facet f' onto a unit sphere as it moves over facet f. We have already shown
in Proposition 5 that we only need to consider the edges of a facet f to compute the projection of
f'. We have also shown in Proposition 3 that I is a convex region. Therefore the only possible
candidates for forming the boundary of I are boundaries of the three spherical polygons
generated as the sphere moves along the three edges of f (as a consequence of Proposition 6).
Therefore, the boundary of I will consist of only arcs and it will be a convex spherical polygon.
The basic idea behind this proposition is shown graphically in Figure 8 using planar
representation.

Theorem 1: Vertices obtained by projecting the facet f’ onto the sphere centered at the three
vertices of facet f form the super set of the vertices that constitute the convex hull of the
inaccessibility region I.

Proof: To prove this we have to show that during projection of a facet f’ as the sphere moves
along the three edges of f, no new vertices are created (i.e., all vertices generated during this
operation are included in the set of vertices obtained by projecting the facet f’ on the sphere
centered at the three vertices of facet f). This implies that the three arcs that define the swept
projection of f’ as the sphere moves along each of the edges of f should not intersect and
therefore do not create any new vertex.

Consider a line segment LM and a unit sphere that moves along a line segment AB, as shown in
Figure 9. Form Proposition 4 we know that for the line segment LM, the locus of projection on
the sphere as it moves along AB is equivalent to the projection of a parallelogram onto the unit
sphere centered at A. The lengths of the adjacent sides of the parallelogram are AB and LM. Let
the four vertices of the parallelogram be given by L, M, S, and T. Where MS is parallel to LT. We
are interested in finding the projection of MS and LT on the unit sphere.

 The points A, B, L, T and A, B, M, S also form parallelograms since AB = LT = SM and AB || LT
|| MS (as a consequence of Proposition 4). From plane geometry we know that a unique plane

11

passes through a parallelogram. Therefore parallelograms ABLT and ABMS lie on unique planes.
Let these planes be given by PLT and PMS respectively. Since AB lies on both the planes, this
implies that the line containing AB is the line of intersection of planes PLT and PMS. The planes
PLT and PMS intersect the unit sphere to form two great circles. Since line segments LT and MS lie
on planes PLT and PMS respectively, their projections on the sphere would lie on the
corresponding great circles. The line AB would be collinear with the common diameter of these
great circles since it lies on both planes and also passes through the center A of the sphere. From
Property 3 we know that two great circles intersect at exactly two points that are diametrically
opposite. Therefore, these two great circles will not intersect at any other point. Hence, the
projection of line segments LT and MS will not intersect as long as points L and M are not
collinear with the line segment AB. Therefore, no new vertex will be created. If L and M are
collinear with the line segment AB, the projection of LT and MS would be a point on the unit
sphere and therefore, no new vertex will be created.

A triangle would consist of three line segments LM, LN, and MN. These line segments would
form three parallelograms. The projections of the parallel sides of these parallelograms would
result in non-intersecting arcs of great circles. Therefore we will get three arcs that would be
non-intersecting.

5 GENERATING EXACT GLOBAL ACCESSIBILITY CONES
This section describes an algorithm that generates exact accessibility cones for various facets and
stores the accessibility information in the matrix AccessStatus.

5.1 Overview of Approach
This approach follows an “initialize-update” scheme. It initially assumes a non-convex-hull facet
f is accessible from all the orientations described by the hemisphere H created by the facet’s
direction normal as its pole. Algorithm INITIALIZE described in Section 5.2 performs this
initialization for all non-convex-hull facets. Number of spherical triangles on the boundary of the
unit sphere (equal to number of rows in the matrix AccessStatus) is dynamic in nature and grows
on as-needed basis. Additional rows are added in this matrix as and when finer spherical
triangles are required to exactly represent global accessibility cones.

Algorithm UPDATE described in Section 5.3 updates accessibility cone of each facet by
adaptively incorporating the influence of other facets. Algorithm UPDATE calls algorithm
INACCESSIBLE to find the inaccessibility region of various facets. The boundary of the unit sphere
is further reclassified and subdivided according to the accessibility of various facets as reported
by algorithm INACCESSIBLE.

Section 5.4 discusses the implementation issues associated with this approach.

5.2 Initializing Accessibility Matrix to Represent Global Accessibility Cones
Algorithm INITIALIZE takes the set of non-convex-hull facets Fn of the object as an argument. It
uniquely classifies the boundary of the unit sphere into spherical polygons according to the initial
accessibility status of each facet. This initial accessibility information is stored in matrix
AccessStatus and will be later updated by the iterative algorithm UPDATE.

Algorithm INITIALIZE (Fn)

12

1) Form the set of spherical polygons X by taking the intersection of all great circles
corresponding to normal vectors of various facets in Fn.

2) Triangulate every polygon in X. Let S be the set of resulting spherical triangles.

3) Create an M×N matrix AccessStatus, where N is the number of the facets in Fn, M is the
number of spherical triangles in S. Each entry of the matrix will indicate the accessibility
status (TRUE or FALSE) of a facet f from a set of directions defined by a spherical triangle s.
Initially, for a facet f, if a triangle s is contained by hemisphere H(f), the corresponding entry
in the matrix is set to TRUE; otherwise, the corresponding entry is set to FALSE. An
example of initial matrix is shown in Table 1.

5.3 Updating Initial Accessibility Matrix
As stated in property 5 and 6, inaccessibility region of a non-convex-hull facet f, can be
determined by only considering the influence of other non-convex-hull facets facing f and
present in the same concave region. Hence, to determine the accessibility cone of a non-convex-
hull facet f, it is sufficient to only examine the influence of other non-convex-hull facets facing f
and present in the same concave region.

UPDATE takes two arguments, S and Fn. S is the initial set of spherical triangles on the boundary
of the unit sphere generated by INITIALIZE. Fn is the set of non-convex-hull facets in the object.
For each pair of facets (f, f’) in Fn that face each other and are present in the same concave
region, UPDATE calls algorithm INACCESSIBLE to find the inaccessibility region of f on the
spherical map due to f’. We convert the inaccessibility region I into a set of spherical triangles by
triangulating it. Figure 10 illustrates an inaccessibility region overlaid on the current set of
spherical triangles. Then, UPDATE calls PARTITIONTRIANGLES, which is an algorithm that
reclassifies the spherical boundary through further partitioning, and updates the AccessStatus. In
general, the number of the rows in the matrix AccessStatus grows with each partitioning as
shown in Table 2.

Table 1: Initial matrix Access_Status

facets
spherical Triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T T T T

7 T T T T T T T T T
8 T F F F F T T T T
9 F T T T T T T F F
.
.
.
M F T T F F T T F F

facets
spherical Triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T T T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T T T T

7 T T T T T T T T T7 T T T T T T T T T
8 T F F F F T T T T
9 F T T T T T T F F
8 T F F F F T T T T
9 F T T T T T T F F
.
.
.
M F T T F F T T F F

.

.

.
M F T T F F T T F F

13

Algorithm UPDATE(S, Fn)

For every pair of facets (f, f’) in Fn that face each other and are present in the same concave
region, do the following:

1) Call INACCESSIBLE (f, f’), which returns I, the convex spherical polygon representing the
inaccessibility region of f due to f’.

2) Triangulate the convex polygon I into a set of spherical triangles.

3) Call PARTITIONTRIANGLES (S, I, f), which returns the updated uniquely classification S of the
boundary of the unit sphere.

If every triangle in set I does not exactly match with (i.e., is equal to in the set theoretic sense)
some triangle in set S, then PARTITIONTRIANGLES is used to subdivide triangles in S and I to
make sure that the subdivided triangles match. Every pair of spherical triangles (s�� �� ���
examined to find out if we need to subdivide triangles (where s is an element of set S����� �������
element of set I�	�
�������� ����
��
������
���
�����������
���
����
��
�������
���������������������
TRIANGULATE. For computing Boolean operations on spherical triangles, we first convert
spherical triangles to planar triangles using central projection [Lent49]. After this step we apply
standard planar polygon intersection algorithms. TRIANGULATE takes a spherical polygon P and
partitions the given polygon P into triangles and returns the result. This algorithm has been
adopted from a standard triangulation procedure [Lo89]. Figure 11 illustrates the basic idea
behind algorithm TRIANGULATE.

After subdivision of spherical triangles, we update AccessStatus to incorporate information in
inaccessibility region I for facet f. Based on the result of the triangulation, PARTITIONTRIANGLES

updates AccessStatus. Table 2 is an example of an intermediate result while updating
AccessStatus shown in Table 1. In this example, Facet 7’s accessibility status has been updated.
Rows 6, 7, 8, 9, 10 in Table 2 replace the previous row 6 in Table 1. This is due to subdivision of

Table 2: Updating matrix Access_Status

(L* – a list of blocking facets)

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.

13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

Table 2: Updating matrix Access_Status

(L* – a list of blocking facets)

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.

13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

(L* – a list of blocking facets)

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

facets
spherical triangles 1 2 3 4 5 6 7 8 … N

1 T T F T T T T T F
2 F T T T T F F T T
3 T T T F F F T T F
2 F T T T T F F T T
3 T T T F F F T T F
4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T

4 T F T F T F F T F
5 T T T T T T T T F

6 T F T T T T L* T T
7 T F T T T T T T T
8 T F T T T T T T T
7 T F T T T T T T T
8 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T
9 T F T T T T T T T
10 T F T T T T T T T

11 T T T T T T T T T
12 T F F F F T T T T
11 T T T T T T T T T
12 T F F F F T T T T
13 F T T T T T T F F
.
.
.

13 F T T T T T T F F
.
.
.
M+4 F T T F F T T F F

14

Triangle 6 into 5 different triangles. Hence, the number of rows in the tabular form has grown by
4. Facet 7 has been found to be inaccessible in one of the five triangles, but remains accessible in
the remaining four. Note that, for the sake of clarity, the example here is an extremely simple
one. In general, the number of rows to be split is usually large, and each row could be split into
more new rows.

Algorithm PARTITIONTRIANGLES (S, I, f)

For every pair of intersecting spherical triangles (s�� ����
��������
�������������
������
�
�s is
an element of set S����� �������
�
�
�������
��I):

1) Calculate Int, the intersection of s����� 	

2)
�� ���������
�
����������
���� s, do the following:

a. Let T1 = 	

b. T2 = Triangulate (s – Int).

 Otherwise, do the following:

a. T1 = TRIANGULATE (Int).

b. T2 = TRIANGULATE (s – Int).

3) Insert rows in Matrix AccessStatus for all the spherical triangles in T1 and T2.

4) For every spherical triangle t1 in T1, set the value of the corresponding entry (t1, f) in
AccessStatus to be FALSE.

5) For every spherical triangle t2 in T2, set the value of the corresponding entry (t2, f) in
AccessStatus to be the same as the value of entry AccessStatus (s, f).

6) Delete row s from AccessStatus.

7) S = (S – s) � T1 � T2.

5.4 Implementation Issues
Section 5.2 and Section 5.3 have shown that theoretically the approach described above leads to
exact accessibility cones through adaptive refinement. However, numerical accuracy problems
common to geometric algorithms may creep in to make the implementation difficult. We found
during the implementation, for example, that the adaptive refinement may generate spherical
triangles having two of the vertices extremely close to each other. This tends to cause wrong
vertex classifications due to numerical inaccuracies. There has been a great deal of progress in
developing techniques for robust geometric computations [Hoff88, Sahn98], and such methods
could be employed here. However the implementation of these methods is non-trivial and
believed to be a research issue on its own right from a pure computational geometry point of
view, which is beyond the scope of this paper.

6 GENERATING APPROXIMATE GLOBAL ACCESSIBILITY CONES
USING A FIXED-RESOLUTION PARTITIONING OF UNIT SPHERE
This section describes an approach for computing approximate global accessibility cones. This
approach is relatively easy to implement. It simplifies the problem by introducing approximation
and eliminating numerical difficulties.

15

6.1 Overview of Approach
This approach follows the similar “initialize-update” scheme as in the exact adaptive approach.
The difference is that, instead of adaptively refining the partitioning resolution on the unit
sphere, a fixed resolution is adopted in the following two steps:

1) Initialization: In this step we partition the boundary of the unit sphere into spherical triangles
with a pre-defined resolution, and initialize the AccessStatus matrix. Section 6.2 describes
this step in detail.

2) Updating: In this step we update the accessibility information in the AccessStatus matrix.
Section 6.3 describes an algorithm UPDATE for this step. We calculate inaccessibility region I
by performing inaccessibility test for each pair of non-convex-hull facets that belong to the
same concave regions and face each other (property 5 and 6). For each inaccessibility region
I, we perform occupancy test and update the accessibility information for all spherical
triangles that lie inside or intersect I. Section 6.3.1 describes this step in detail.

This fixed-resolution approach provides conservative approximation. Although for some
directions, it may report an accessible facet as inaccessible, but it never reports an inaccessible
facet as accessible. That is, it does error only on the safe side. It ensures that accessibility-based
decomposition guided by the information from the result of this approach, does not result in any
components that still contain inaccessible facets due to the imprecise input.

6.2 Initializing Accessibility Matrix
Algorithm INITIALIZE takes the set of non-convex-hull facets Fn of the object as an argument.
Using a similar approach to Binary Spherical Maps [Suh95], the boundary of the unit sphere is
partitioned into spherical triangles with a certain pre-defined resolution. The initial accessibility
information is stored in matrix AccessStatus and will be updated later by algorithm UPDATE.

Algorithm INITIALIZE (Fn)

1) Partition the boundary of the unit sphere into spherical triangles.

2) Create an M×N matrix AccessStatus, where N is the number of the facets in Fn, M is the
number of spherical triangles in S. Each entry of the matrix will indicate the accessibility
status of a facet f from a set of directions defined by a spherical triangle s. Let H(f) be the
hemisphere with the direction normal of facet f as its pole. Initially, for a facet f, if a spherical
triangle s is completely contained by hemisphere H(f), the corresponding entry in the matrix
is set to TRUE; otherwise, the corresponding entry is set to FALSE.

Note that this initialization is conducted conservatively – an entry associated with a spherical
triangle intersecting H(f) is set to FALSE because facet f cannot be accessible from the entire
spherical triangle.

6.3 Updating Initial Accessibility Matrix
As stated in Section 5.3, to determine the accessibility cone of a non-convex-hull facet f, it is
sufficient to only examine the influence of other non-convex-hull facets facing f and present in
the same concave region.

Algorithm UPDATE takes two arguments, S and Fn. S is the set of spherical triangles on the
boundary of the unit sphere generated by INITIALIZE. Fn is the set of non-convex-hull facets on
the object.

16

For each pair of facets (f, f’) in Fn that face each other and are present in the same concave
region, UPDATE calls Algorithm INACCESSIBLE to find the inaccessibility region of f on the
spherical map due to f’. Figure 12 schematically shows an inaccessibility region overlaid on the
set of spherical triangles. Then, it performs occupancy tests to update the matrix AccessStatus.

Algorithm UPDATE (S, Fn)

For every pair of facets (f, f’) in Fn that face each other and are present in the same concave
region, do the following:

1) Inaccessibility Test: Call INACCESSIBLE to calculate the inaccessibility region I of f due to the
presence of f’.

2) Occupancy Test: For every spherical triangle on the unit sphere, OCCUPANCY checks whether
it is contained inside the inaccessibility region I. All the spherical triangles that are contained
inside the inaccessibility region I are marked as inaccessible. To make the algorithm
conservative, all spherical triangles that are intersecting the inaccessibility region I are also
marked as inaccessible. The index of facet f’ is added into the entries in the AccessStatus
matrix corresponding to facet f and these spherical triangles.

Algorithm UPDATE has the time complexity of O(N2M) in the worst case, where N is the total
number of non-convex-hull facets, and M is the number of spherical triangles. However this is a
loose-bound complexity. This algorithm can be made efficient by pruning out unnecessary
inaccessibility and occupancy tests. Unnecessary inaccessibility tests have already been pruned
out by not doing the inaccessibility tests for facet pairs that are not present in the same concave
region and are not facing each other (property 5 and 6). Section 6.3.1 describes an algorithm for
pruning unnecessary occupancy tests.

6.3.1 Pruning Unnecessary Occupancy Tests

After an inaccessibility region is calculated, it is sufficient to apply the occupancy tests only for
candidate spherical triangles. Take the enclosing spherical rectangle of the convex
inaccessibility region I and expand it by the resolution of the spherical triangles. This expanded
enclosing spherical rectangle is defined as a candidate patch. A spherical rectangle can be
completely specified by the spherical coordinates of its vertices. The spherical coordinates of a
point p(
, �) are shown in Figure 13, where
 �[0, �] and � �[0, 2�]. All the spherical triangles
with vertices inside this candidate patch will be the candidate triangles for occupancy test. The
reason for expanding the enclosing spherical rectangle into the candidate patch is to include
those spherical triangles that intersect the rectangle but whose vertices do not lie inside the
rectangle. Figure 14 shows an enclosing spherical rectangle for an inaccessibility region before
expansion. Notice that to calculate
-coordinate extremes, extreme edges have to be found, while
the �-coordinate extreme can be calculated by finding the extreme vertices.

A variation of 2-Dimensional Orthogonal Range Tree [Berg00] is used to store and query for the
vertices of spherical triangles. Let Q be the set of m points (vertices of spherical triangles) on the
sphere. Range tree T is a two-level data structure. Figure 15 shows the structure of a range tree.

�� The main tree is a balanced binary search tree T built on the
-coordinate of the points in Q.
The points are stored in the leaves of this main tree.

17

�� For any internal or leaf node v in T, the canonical subset Q(v) is stored in a balanced binary
search tree Tassoc(v) on the �-coordinate of the points. The node v stores a pointer to the root
of Tassoc(v), which is called the associated structure of v.

The canonical subset Q(v) is the subset of points stored in the leaves of the sub-tree rooted at
node v. For instance, the canonical subset of the root of the tree is the whole set Q. The canonical
subset of a leaf is simply the point stored at that leaf.

A rectangle query range on Q asks for the points from Q lying inside a spherical query rectangle
[
1 :
2] × [�1 : �2]. A point p = (
p, �p) lies inside the spherical query rectangle if and only if
p �
[
1 :
2] and �p � [�1 : �2].

Construction time for range tree is O(m log m) while the query time is O(log2m+k), where m is
the total number of points in Q and k is the number of reported points [Berg00].

All the reported points are candidate vertices, which are then tested if they are contained inside
the inaccessibility region. If a vertex is contained inside the inaccessibility region, all the
spherical triangles sharing that vertex are marked as inaccessible. If not, all the spherical
triangles sharing that vertex are tested for intersection with the inaccessibility region.

Hence, Algorithm OCCUPANCY takes the set S of spherical triangles on the boundary of the unit
sphere and the inaccessibility region I as input, and performs occupancy tests in the following
steps.

Algorithm OCCUPANCY (S, I)

1) Call CALCULATEENCLOSINGRECTANGLE to calculate enclosing spherical rectangle R0 for the
inaccessibility region I.

2) GENERATE the candidate patch R by expanding the spherical rectangle R0.

3) Obtain all the spherical vertices VR, contained in R by querying the range tree.

4) Call UPDATEACCESSIBILITYMATRIX to update the accessibility matrix AccessStatus by testing
all the candidate vertices VR, and the associated spherical triangles T for occupancy.

Algorithm CALCULATEENCLOSINGRECTANGLE takes the inaccessibility region I as input and
generates the enclosing spherical rectangle R0 which is specified as [
1 :
2] × [�1 : �2]. This
algorithm is straightforward except for three special cases - one of the poles lies inside I, or arc �
= 0 intersects I.

Algorithm CALCULATEENCLOSINGRECTANGLE (I)

1) If north pole (0, 0) is contained in I (see Figure 16), then [
1 :
2] = [0,
max] and [�1 : �2] = [0,
2�].

2) Else if south pole (�, 0) is contained in I, then [
1 :
2] = [
min, �] and [�1 : �2] = [0, 2�].

3) Else if arc � = 0 intersects I (see Figure 17), then, due to discontinuity of � at 0, there will be
two spherical rectangles in this case [
1 :
2] × [�1 : �2] and [
1’ :
2’] × [�1’: �2’], where [
1 :

2] = [
min,
max], [�1 : �2] = [0, �lower] and [
1’ :
2’] = [
min,
max], [�1’: �2’] = [�higher, 2�].

4) Else (see Figure 14), [
1 :
2] = [
min,
max] and [�1 : �2] = [�min, �max].

18

min and
max are the
-coordinate extremes of I, while �min and �max are the �-coordinate
extremes of I. Due to discontinuity of � at 0, search will be done in two steps in the above third
case. �lower is the maximum �-coordinate of I less than �. �higher is the minimum �-coordinate of I
greater than �. Maximum and minimum � can be computed by finding the extreme vertices of I.
Maximum and minimum
 will have to be computed by finding the extreme edges of I.

Algorithm UPDATEACCESSIBILITYMATRIX takes the set S of spherical triangles on the boundary
of the unit sphere, the inaccessibility region I, and the set of vertices VR as input, and updates the
accessibility matrix. VR is the set of vertices reported by the range tree query about the candidate
patch R.

Algorithm UPDATEACCESSIBILITYMATRIX (S, I, VR)

For every vertex v in VR, do the following:

1) Let Tv be the set of all the spherical triangles sharing v.

2) If v lies inside I, then mark all spherical triangles in Tv as inaccessible and update the
corresponding entries in the matrix AccessStatus.

3) Else, for every spherical triangle t in Tv do the following:

�� If t intersects I, then mark t as inaccessible and update the corresponding entry in the
matrix AccessStatus.

6.4 Implementation and Results
Above-described algorithms have been implemented on Windows 2000 (AMD Athlon XP 1700+
and 1 GB RAM) using Visual C++ and ACIS 7. Figure 18, 19, 20 and 21 show four objects that
were tested on the system. The number of spherical facets used in all cases is 2700. We created
multiple versions of each object by faceting them with different surface tolerance. Surface
tolerance is ���� �������� 	�
������
������� �� ������ ��	� ���� �����
�������� Table 3 shows the
number of facets in each object and the time required to construct the entire AccessStatus matrix.
This matrix needs to be built only once and can even be built offline and stored with the object
model. Once it has been built, it can be used for various application queries. Since these queries
are simple mappings and lookups, they are very fast (see Section 7 for details).

Table 3: Implementation results
Part Number of Facets Execution Time

(seconds)
1028 33
2140 92
3084 171

Object A
(Figure 18)
5 Concave Regions
 4076 280

1016 13
2028 41
3120 85

Object B
(Figure 19)
3 Concave Regions

4004 132
1024 18
2008 58
3050 129

Object C
(Figure 20)
1 Concave Region

4020 210
1064 48 Object D

(Figure 21) 2090 127

19

3084 272 1 Concave Region
4052 435

6.5 Computing Exact Global Accessibility Cones for a Single Facet
This section shows that, although the above approximate approach brings inaccuracy into the
accessibility matrix, there is still a way to compute exact global accessibility cones for a single
facet by utilizing the information in the accessibility matrix generated by the approximate
approach.

In the above approximate approach, a spherical triangle will be marked accessible only if the
facet is accessible from the whole triangle. A spherical triangle will be marked as inaccessible
even if it offers partial accessibility. To extract the accessible portions from such spherical
triangles, the information stored in the matrix can be used. If a facet is inaccessible from a
certain spherical triangle, facet indices of all the blocking facets are also stored in the matrix.
These blocking facets can be projected onto the unit sphere to find the exact inaccessibility
regions due to these facets. These exact inaccessibility regions can then be subtracted from the
spherical triangle to produce the portion of the spherical triangle from which the facet is exactly
accessible. The spherical triangles and the inaccessibility regions can also be projected onto a
plane using central projection for using the Boolean operations implemented for planar polygons.
After performing the Boolean operation, the planar polygon can be converted back to spherical
polygon.

7 QUERYING ACCESSIBILITY MATRIX
Based on the application of accessibility analysis in the areas of process planning, inspection
planning and mold design, following types of querying can be performed on the global
accessibility cones represented by the matrix AccessStatus.

1) Find the global accessibility cone of a facet. Given a particular facet on the object, this query
finds its facet index and looks up the corresponding column in AccessStatus. The rows with
TRUE entries corresponding to this column indicate the spherical triangles from which this
facet is accessible. The set of all such spherical triangles forms the global accessibility cone
of the facet.

2) Find the facets that are accessible from a particular direction. Given a particular direction as
a unit vector, we locate the spherical triangle that contains this direction on the boundary of
the unit sphere. The query looks up the row in AccessStatus matrix corresponding to the
index of the spherical triangle. The columns with TRUE entries corresponding to this row
indicate the facets that are accessible from the given direction.

3) Find the facets that are blocking a particular facet. Given a particular facet on the object,
this query looks up the column in AccessStatus matrix corresponding to the index of this
facet. Each row with the entry of a facet list corresponding to this column gives the indices of
the facets that are blocking the given facet in directions represented by a spherical triangle.

4) Compare two or more directions for the amount of accessibility. For each spherical triangle,
number of TRUE entries is added. All the spherical triangles are then ranked based on the
sum. Each input direction is mapped to the corresponding spherical triangle and the
calculated ranks are returned.

20

The above queries are simple mappings and lookups. A direction is first mapped to a spherical
triangle, then the index of the spherical triangle and the object facet is fetched, and finally, the
information stored in the AccessStatus matrix at the index is looked up and returned. These
queries are very fast to perform and typically take fraction of a second.

8 Conclusions
In this paper we present an algorithm for determining the set of directions from which a
triangular facet is inaccessible due to another triangular facet. This algorithm corresponds to the
exact mathematical definition of semi-infinite inaccessibility region and is easy to implement.
We present two different approaches to compute the global accessibility cone for every facet of
an object based on this algorithm. We report detailed experimental results for the approach
described in Section 6 to illustrate the running performance. We ran our experiments on a low
end PC. Accessibility analysis results for all objects were computed in less than eight minutes.
The longest time was 435 seconds. It was taken for an object that was faceted with 4052 facets
with the surface tolerance of 0.025mm. We believe that the running time will be approximately
one third to one fourth of the time reported on a high-end workstation. Our implementation of
approach described in Section 5 is not very robust and for complex objects it does not always
produce correct results. We believe that this problem can be overcome. But it will require
significant effort.

Accessibility analysis approach described in this paper presents an improvement over previous
approaches in the following aspects:

�� A provably sound algorithm has been developed for computing the exact inaccessibility
region for a facet due to the presence of another facet.

�� Based on the above algorithm, both exact and approximate approaches have been developed
to compute the accessibility cones for polyhedral objects. The approximate approach is
conservative in nature - it makes errors on the safer side and is guaranteed to correctly
identify all inaccessible facets on the boundary of the object.

We believe that the algorithms presented in this paper can be used in a wide variety of
manufacturing planning applications. Specifically, we are using the method described in this
paper in the area of mold design and setup planning for CNC machining.

We have extended the ray-based accessibility analysis approach described in this paper such that
it can be used to conduct accessibility analysis for ball-end tools with a given radius. Because of
space restriction we have not reported those results in this paper. For details please see [Huan02].
The basic idea behind that extension is as following. We compute approximate tool-based
accessibility cones of facets on an object by computing how the presence of one facet is affecting
the tool-based accessibility of another facet. Given a pair of facets on the boundary of an object
O, denoted by facet f and facet f’, the tool-based inaccessibility region of facet f due to the
presence of facet f’ can be computed in the following way. We denote the object obtained by
sweeping a sphere of radius r over an object A by A
r: A
r = {p: � q � A, distance (p, q) 	 r}.
If p is a point, then p
r is a sphere centered at p with radius r. Let T be a ball-end tool with
radius r, then it can be defined by equation T = t
r, where t is a ray. We showed that tool-based
inaccessibility region of one facet f due to the presence of another facet f’, is equal to the ray-
based inaccessibility region of planar facets fr due to the presence of f’
r, where r is the tool
radius and fr is obtained by offsetting f along its outward pointing direction normal by r.

21

Unfortunately, since f’
r is generally not a planar object, the inaccessibility region determination
algorithm described in Section 4 cannot be directly used to compute the exact inaccessibility
region in this problem due to the increased the geometric complexity. However, we extended the
algorithm to compute approximate inaccessibility region of fr due to the presence of f’
r. This
extended algorithm employs a conservative approximation in the sense that all the accessible
facets reported by this algorithm are guaranteed to be accessible. The tool-based accessibility
cones computed through this approach can support the queries that are supported by the ray-
based accessibility cones described in Section 7.

Future tasks of this work include investigation of the following research issues:

1) The accessibility analysis approach described in this paper currently addresses the exact
accessibility cones only for polyhedral objects. This approach can be extended by allowing
direct projection of curved faces. Further theoretical work will be needed in this area to
identify the projection scheme.

2) The extended approach to computing tool-based accessibility cones currently only addresses
ball-end tool accessibility. Extensions need to be made for computing the flat-end tool
accessibility.

9 REFERENCES
[Bala00] Balasubramaniam, M., Laxmiprasad, P., Sarma, S., and Shaikh, Z. Generating 5-axis
NC roughing paths directly from a tessellated representation. Computer-Aided Design, 32:261-
277, 2000.

[Berg00] Berg, M. de, Kreveld, M. van, Overmars, M., and Schwarzkopf, O. Computational
Geometry: Algorithm and Applications, Springer-Verlag, 2000.

[Chen92] Chen, L.-L., and Woo, T. C. Computational geometry on the sphere with application to
automated machining. Journal of Mechanical Design, 1992, Vol. 114, 288-295.

[Chen93] Chen, L.-L., Chou, S.-Y., and Woo, T. C. Parting directions for mould and die design.
Computer-Aided Design, 1993, Vol. 25, 763-767.

[Elbe95] Elber, G. and Cohen, E. Arbitrarily precise computation of Gauss maps and visibility
sets for freeform surfaces. In Proceedings of 3th Symposium on Solid Modeling and
Applications, May 1995, Salt Lake City, Utah.

[Hoff88] Hoffmann, C., Hopcroft, J., and Karasick, M. Towards implementing robust geometric
computations. In 4th Annual ACM Symposium of Computational Geometry, pp106-117, 1988.

[Huan02] Huang, J. Accessibility-driven spatial partitioning: a step towards automated design of
multi-piece molds. Ph.D. dissertation, University of Maryland, College Park, 2002.

[Kang97] Kang, J.-K. and Suh, S.-H. Machinability and set-up orientation for five-axis
numerically controlled machining of free surfaces. International Journal of Advanced
Manufacturing Technology, 1997, 13: 311-325.

[Kim95] Kim, D.-S., Papalambros, P. Y., and Woo, T. C. Tangent, normal, and visibility cones
on Bézier surfaces. Computer Aided Geometric Design, 1995, Vol. 12, 305-320.

[Lent49] Lenthem, J. G. Spherical trigonometry, for the use of colleges and schools, London,
Macmillam, 1949.

22

[Lo89] Lo, S. H. Delaunay triangulation of non-convex planar domains. International Journal for
Numerical Methods in Engineering, vol. 28, 2695-2707 (1989).

[Sahn98] Sahni, S. Data Structures, Algorithms, and Applications in C++, McGraw-Hill, 1998.

[Spit99] Spitz, S. N., Spyridi, A. J., and Requicha, A. A. G. Accessibility analysis for planning of
dimensional inspection with coordinate measuring machines. IEEE Transactions on Robotics and
Automation v 15 n 4 1999 IEEE p 714-727 1042-296X.

[Stag97] Stage, R. and Roberts, C. A framework for representing and computing tool
accessibility. Proceedings of DETC’97, September 14-17, 1997, Sacramento, California.

[Suh95] Suh, S.-H. and Kang, J.-K. Process planning for multi-axis NC machining of free
surfaces. Internal Journal of Production Research, 1995, Vol. 33, No. 10, 2723-2738.

[Wein96] Weinstein, M. and Manoochehri, S. Geometric influence of a molded part on the draw
direction range and parting line locations. Journal of Mechanical Design, 1996, Vol. 118, 29-39.

[Wein97] Weinstein, M. and Manoochehri, S. Optimum parting line design of molded and cast
parts for manufacturability. Journal of Manufacturing Systems, 1997, Vol. 16, No. 1, 1-11.

[Woo94] Woo, T. C. Visibility maps and spherical algorithms. Computer-Aided Design, 1994,
Vol. 26, No. 1, 6-1.

