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ABSTRACT
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Although the question of the numerical evaluation of Doyle’s structured singular
value has been repeatedly addressed, it is not yet entirely resolved in the general
case. It has been shown recently that this question can be reduced to that of
iteratively computing the distance from the origin to the m-form numerical
range of m tuples of matrices. How to effectively compute such distance in the
nonconvex case (which may arise when dealing with m more than 3) is an open
problem. In this thesis, in an attempt to tackle this problem, the question of
graphically displaying 2-dimensional and 3-dimensional sections of the m-form

numerical range is investigated.
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CHAPTER

ONE

Introduction

1.1 Motivation

The concept of structured singular value was introduced by Doyle [1]. It was
motivated by simultaneously analyzing the robust performance and robust sta-
bility properties of feedback systems affected by possibly structured uncertainty.
The general framework to be used in this analysis is illustrated in the diagram
in Figure 1. P(s) represents all the system dynamics including interconnection
of nominal plants, controllers, sensors, and any scalings etc., and is assumed to
be described by a causal, stable and real proper transfer function, e(s) is the er-
ror of the system, A(s) is the perturbations of the system, and u(s) is the input
of the system respectively. Doyle [2,3] showed that any linear interconnection
of inputs, outputs, commands, perturbations and controllers can be rearranged
to match this diagram. The analysis problem involves determining whether the
error e remains in a desired set for sets of input u and perturbation A. It is
convenient to partition P(s) into the form

_ Pu(S) Pm(s)
Ple) = [ Pu(s) Pis) ] ’

where P;;(s) corresponding to (vector) input j and (vector) output ¢ in Figure 1.

The (casual) plant uncertainty A(s) has the form

A(s) = block diag {611k, -, 6- Ik, , A1(s),...,A(s)} ,



P(s)

A(s)

Figure 1: General Framework

where r + ¢ specifies the nuimber of blocks of the simultaneous uncertainties.
Thus, uncertainty is assumed to be localized in some specific subsystems. In
practical problem, it is generally the case that the uncertainty consists of pa-
rameter variations and multiple norm-bounded perturbations which correspond
to the constant real scalars é, and to the submatrices A;(s) respectively. Pa-
rameter variations typically arise because of uncertain coefficients in differential
equation models of physical systems and involve real scalars. Norm-bounded
perturbations often arise when trying to capture the effect of unmodeled dy-
namics and are themselves dynamical systems. The A;(s)’s are assumed to have
known bounds over the closed right half complex plane C, but to be otherwise
unknown, and the §,'s are assumed to be real numbers within known bounds
but otherwise unknown. The external input u(s) is an additive signal entering
the system and is typically used to model disturbances, commands and noises.

It is conventional to absorb any scalings, weights, or coloring filter into P so
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that u, €, and A(s) are normalized to

supd(A(jw)) < 1 (1.1)
w20
where &(-) is the largest singular value of its matrix-valued argument, and

/0°° uT(t)u(t)dt < 1 (1.2)

where, with a slight abuse of notation, u(t) (resp. €(t)) represents the inverse
Laplace transformation of u(s) (resp. e(s)). The input-output mapping in the

diagram in Figure 1 is
e(s) = [Pui(s) + Pra()A(s)(I — Poa(s)A(5))™" Pra(s)]u(s) -

The introduction by Doyle [1] of the structured singular value was motivated

by an attempt to determine when the following analysis criterion holds.

Analysis Criterion 1. The feedback system in Figure 1 is stable and the

error ¢ satisfies

/o T eT()e(t)dt < 1

for all input u(s) and bounded uncertainty A(s) for which (1.1) and (1.2) hold.
O

The question then is whether a necessary and sufficient condition can be im-
posed on the transfer function P(s) to ensure fulfillment of Analysis Crite-
rion 1. To address this question, Doyle introduced a new measure for matrices,
the structured singular value denoted by u. This new measure characterizes the

largest block-structured uncertainty which makes Analysis Criterion 1 satisfied.



1.2 Outline of Thesis

Although the question of the evaluation of Doyle’s structured singular value has
been repeatedly addressed, it is not yet entirely resolved in the general case (see
section 1.6). It has been shown recently that this question can be reduced to
that of iteratively computing the distance from the origin to the m-form numer-
ical range of certain tuples of matrices, where m is the number of ‘blocks’ of the
structure [4]. How to effectively compute such distance in the non-convex case
(which may arise when m is greater than 3) is an open problem. In this thesis,
in an attempt to tackle this problem, we examine the properties of the m-form
numerical range and propose procedures to graphically display the boundaries
of its 2-dimensional and 3-dimensional sections. In Chapter 1, we define the
structured singular value, the numerical range, the m-form numerical range and
then discuss some of their properties. In Chapter 2, we investigate the question
of graphically displaying sections of the m-form numerical range. Specially, we
first propose several procedures to display any specified 2-dimensional section.
By employing the NCAR [5] graphics software and the data generated by the
above procedures, we then propose a procedure to display the surface of the
corresponding 3-dimensional section. For the non-convex case, we show several
interesting pictures of Doyle’s example (see Appendix B). We hope this geomet-

ric insight will be helpful for the question of computing the structured singular

value.

1.3 Structured Singular Value

Throughout the thesis, we use following notations:

1. Given any square complex matrix M, we denote by p(M) its spectral

radius, by (M) its largest singular value, by M# its complex conjugate



o

transdpuose, and define pgr(M) as pr(M) = 0 if M has no real eigenvalue,

pr(M) = max{|A| : X is a real eigenvalue of M} otherwise.

Given any complex vector z, z¥ denotes its complex conjugate transpose

and ||z} its Euclidian norm.

9B denotes the unit sphere in C", i.e., B = {z € C",||z|| = 1} .

. For any positive integer k, we denote by Oy the k x k zero matrix, and

by Ix the k x k identity matrix.

Given an n X n complex matrix M and 2 nonnegative integers r and ¢, a
block-structure K of dimensions (r, ¢) associated with M is an (r+c)-tuple

of positive integers
K= (k],...,k,- 3 kr+1,---,kr+c)
such that 37X k; = n.

Given a block-structure K of size r + ¢, we make use of the family of block

diagonal matrices with any positive scalar § (possibly o)

Xx(6) = {block diag(811k,,..., 61k, ,Dr,...,A) :
b6 € R, 6] < 6,A; € CF+xb+ 5(A;) < 6}

of the family of block diagonal matrices

Dx = {block diag(Ds,...,Dr,dilx,,,,...,dcIx,,.) :
D; e C+*% D; = DF > 0, d; € (0,00)},

(if A is Hermitian, A > 0 expresses that A is positive definite); of the

family of block diagonal unitary matrices

Uc = {block diag(uili,,...,u. s, Uy,..., U) :
u; € {~1,1},U; € Corv >4+ UUH =11} .



Definition 1.1. [1] The structured singular value pxc(M) of a n x n complex
matrix M with respect to block-structure K is the positive number u having

the property that

det(I + MA) # 0 for all A € Xi(6)

if, and only if

ou<l.

in other words, ux(Af) = 0, if there is no A in Xg(o0) such that det(I+ MA) =
0, and (minaex,(5{7(A) : det(I + MA) = 0})7? otherwise. O

The structured singular value yields a necessary and sufficient condition for

Analysis Criterion 1 to be satisfied. We state the result in the following fact

[2].
Fact 1.1. [2] Analysis Criterion 1 holds if, and only if,

sup ux(P(jw)) £ 1,
w>0

where j = /-1, and X is the block-structure of A(s) augmented by adding one

complex block with the size equal to the number of u (or e). 0

The structured singular value satisfies the following properties [6].
g,régipn(MU) < ux(M) . (1.3)

The inequality in (1.3) becomes an equality, with p replacing pg, if r = 0 (no

real uncertainty).

: = -1
ue(M) < inf 5(DMD™). (1.4)



Forr=0¢c<3o0orr=1,c=1

pc(M) = Diéllg,c e(DMD™). (1.5)

Doyle [7] exhibited an example with block-structure K = (;1,1,1, 1), for which
equality in (1.5) does not hold. Using (1.3) to compute the structured singular
value is discarded in [1] because the optimization problem it involved gener-
ally has nonglobal maxima. It should be noted that any nonglobal maxima of
maxy ey pr(MU) is a lower bound, i.e., an optimistic bound, for ux(M). On the
other hand, (1.4) always generate an upper bound of ux(M), which is conser-
vative and does guarantee the robust stability (here robust is used to indicate
that the property of stability is maintained under perturbations). Algorithms
[1,8] are available for this problem yielding a reliable way of computing px(M)
for the cases when (1.5) holds. However, to date there is no reasonably efficient

algorithm for the computation of pux(M) in the general case.

1.4 Numerical Range and m-Form Numerical Range

The idea of the numerical range of an n X n complex matrix A was introduced

by Toeplitz in 1918 [9]. It is the set of complex numbers defined by
W(4)={z"Az : z€C", |z|| =1} .

Toeplitz [9] showed that 011"(A4) (the boundary of W(A)) is a convex curve, and
a short time later Hausdorff [10] proved that W(A) itself is convex. This result
is known as Toeplitz-Hausdorff Theorem. The followings are some properties

of the numerical range.

1. W(A) is convex [9,10].



2. The non-differcntiable points on the boundary of W(A) are eigenvalues
of 4 [11].

Any n X n complex matrix A can be decomposed into

A+ AP A AH

A 2 +J 2

= A +1A2 ’

with A; and A, Hermitian and j = y/—1 (in this thesis, we denote /=1 by
J, while 7 is used as a running index). Thus we can view the numerical range

W(A) as a subset of R? :

W(A, A;) = {[ “”HA"] Lz € aB} .

.’BHAQIIJ

This representation suggests a generalization to more than two Hermitian forms
(sce Hausdorff [10], Brickman [12], and Au-Yeung [13]). Following [14], we now
call this generalization to m matrices the m-form numerical range.

Definition 1.2. The m-form numerical range of an m-tuple of n xn Hermitian

matrices A;,...,An 1s the set
W(A1,....An) = {f(z) : ||lz|]| =1, z € C"}
where f : C" — R™ has components
fi(z) =27 Az, fori=1,...,m.

O

Clearly the numerical range is a special case of the m-form numerical range.

1.5 Some Properties of the m-Form Numerical Range

Given m complex Hermitian n X n matrices A,,..., An, their m-form numerical

range W = W(A,,..., A,) satisfies the following properties.
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Property 1.1. [13-16] If n = 2 and m = 3, W is (the boundary of) an
ellipsoid. In all other cases, if m < 3, W is a convex. If the A;’s are real

symmetric then, if m < 3, W is always convex. 0

Property 1.2. [14] The intersection of W(A4;,...,An) with any of its sup-
porting hyperplanes is an R™-embedding of the m-form numerical range of a

certain (m — 1)-tuple of matrices. O
The next property is an immediate consequence of Properties 1.1 and 1.2.

Property 1.3. If m = 4 and A,,..., 44 are real symmetric, then W has a
convex boundary, i.e., the intersection of W with any of its supporting hyper-

planes is convex. O

Property 1.4. [14] If 2 € 8B is such that f(z) is on OW(A4,,...,An) then
there exists a direction w € IR™ such that z is an eigenvector of 17, w*4;.
Moreover (i) if H is any supporting hyperplane to W(A,,...,4,) at f(z),
then the direction orthogonal to H is a valid choice for w. (i¢) if for some
g € {1,---,m} there exists no subset of W(4,,...,A,) containing f(z) that is
locally homeomorphic to R™ ™% around f(z), then there is a (¢+ 1)-dimensional
subspace S of V = {4 € C™*" : 4 = Y1, w* A, w* € R} such that all matrices

in § admit z as an eigenvector. D

Property 1.4 plays an important role in graphically displaying the boundary
of the m-form numerical range. In the convex case, the normal vector of any
supporting hyperplane is a valid choice of w such that f(z) is a boundary point

of W, where z is the unit eigenvector corresponding to the smallest eigenvalue

of 37, w* A4 (see Section 2.2). For non-convex case, boundary point f(z) need



not be contatt point for any supporting hyperplane of W, but the corresponding

z still a unit eigenvector of Y7, w* A, for some w.

1.6 Structured Singular Value and

m-Form Numerical Range

In Section 1.3, we gave the definition of the structured singular value ux(M)
of an n X n complex matrix M associated with a block-structure . In or-
der to connect the structured singular value problem to the m-form numeri-
cal range, we review an equivalent expression of the structured singular value
[6]. Given an n x n complex matrix M and associated block-structure K =

(k1. s ke krgay ooy krge), we will make use of the projection matrices P,, ¢ =

1,...,7r +¢c,
Pq = block diag(Okl,... ,qu_l,qu,qu“,. "70kr+c) )

and for ¢ = 1,...,7 + ¢, of the ‘set of indices in block ¢’

9-1 g-1 q
Jq= {ij+1,§:kj +2,,ij} 9
Jj=1

j=1 j=1
with the convention that 3] = 0. For i,j € {1,... y2Lo=1kq}, define the n x n
matrices EY by

(E"")u={1 ifk=iandl=7j

0 otherwise

and define the set Sx(M) by

Sx(M) = {x €0B : s"E'Mz = " MYEY2,¥(i,5) € |J J, x J,,} .

¢=1

10



Fact 1.2.76] For any n x n complex matrix M and associated block-structure

K,

pc(M) =4 max {6 : ||PMz| 2 0||Pz||, ¢g=1,...,r+ ¢} otherwise
seR
xGSi(M)
O

Fact 1.2 gives an alternative formula to compute the structured singular value.

Now consider the family of elementary Hermitian matrices [6]

E= {(EV+E") : (47) €U Jg x Joy i <5}V
((EY —E#) & (4,5) € Ujey Jo X Jgy i < j} .

Then Sk(M) can be written as
Sc(M)={z € 8B : z"EMz =" M¥Ez VEc &} .
Let us pick up an order for the entries in £, so that
E={E,...,E}
withs =37 k2. Forg=1,...,r+cand a € R, let
Ag(a) =aP, - MY P (1.6)
andforg=r+c+1,...,7+c+s,let

A (a) = j(E,M — MFE)) (1.7)

where in (1.7) the argument « is used for sake of uniformity. Then A,(a) =

Af(a), forg=1,...,r4+c+s,and

max {a : 7 4,(a)r <0, ¢=1,...,r+¢
:eealgl HA(a)r =0, g=r+c+1,...,r+c+s} otherwise

0 if Sc(M) =10
pc(M) = {

11



Consider the (r + ¢ + s)-form numerical range associated with matrices 4;(a)’s,

fori=1,...,r+c+s,ie.,

W(a)={veR™*** : 3z € B, s.t. v¥ =274 (a)z, ¢g=1,...,7 +c+s} .
Make use of the set Pry. C R™*** defined by
Prpe={veR™T* : 0v92>0,¢9g=1,...,r+c; v =0, ¢ =r+c+1,...,r+c+s}.

Fact 1.3. [6] If 0 € W1"(a) + P,4. for some a € R, then 0 € W () + Pry. for all

B < a. a
Fact 1.4. [6]

px(M) = inf {(Va : 0 ¢ W(a) + Prec) -
In terms of the distance function ¢ : R — R given by

o(a) = min{[lv] : v € W(a)+Prac} |

one have equivalently
pe(M) = inf{Va : c(a) >0} .

O
The above results mean that ux(M) is the square root of a such that the set

7 4,(a)z

: : eHAa)r =0, i=r+c+1,...,r+c+s, z € OB
A e(a)z

first touches the negative orthant when a changes from +o0o to 0. However, for

r = 0 (no real uncertainty), ux(M) can also be represented by [17]

uc(M) = max { : |P,Mz| =6||Fezll, g=1,....c},
€

r€0B

12



or

pe(M) = inf{v/a : 0 ¢ W(g) for all § > a} .

Under this condition, ux(Af) is the square root of the a such that W(a) first
touches the origin when a change from +oo to 0.

Algorithm 1.1. [4,6] (Computation of ux(M))
Step 0. Set ag = 6°(M)and k=0 .

Step 1. Set a4y = ap — c(ay) .

Step 2. Set k = k + 1 and go to Step 1.

]
It was proved in [4,6] that the sequence {a)} generated by Algorithm 1.1 is

monotone decreasing and
klim Var = ux(M) .

Algorithms [1,18] exist to compute the distance from 0 to co(T(a) + Pry.),
where co(W(a) + Pry.) is the convex hull of W(a) + P,i.. When W(a) is
convex, this yields ¢(a). This is the case whenever r + ¢ + s < 3, i.e.. in the

case of

1. Three or fewer complex blocks (r =0, ¢ < 3).
2. One real scalar block and one complex block (r =1, ¢ =1, s =1).

However for r + ¢ + s > 3, W(a) may not be convex. The existing algorithm

would then yield, instead of ¢(«), the value

d'(a) = min{||v]] : v € co (W(a) + Pryc)}

13



which is a lower bound for c(a). Using this value, instead of c(a), Algorithm

1.1 would then yield an upper bound uj(M) for ux(M), with
(M) = inf{Va : c(a) > 0} .

For r = 0 (no real uncertainty), it was shown in [4] that this new upper bound
pic(M) is equal to infpep, 6(DMD™1). The following property is also proved
in [4].

Property 1.5. [4] For r = 0 (no real uncertainty)

— 3 Y -1
uc(M) = Dlenvf,c g(DMD™*)

if, and only if, there exists a vector A € R°, with A' > 0 for all ¢, such that the

set W(uZ(M)) is contained in the closed half space
HO)={v e R : (v,A)20}.

0

Since Fact 1.4 converts the evaluation of the structured singular value to the
evaluation of the distance between the origin and a family of the set W(a) +
Prte in R7F® space, a key question is ‘Can we use the properties of m-form
numerical range to help us in computing c(a) ?’. To explore this problem, we

propose some algorithms to find the boundary of W(a).

14



CHAPTER

TWO

Graphically Displayin
m-F(I))rm NumerilzalyRagnge

2.1 Introduction

In this chapter, we investigate the question of graphically displaying the m-form
numerical range W. Based on the results of the previous chapter, we propose
several procedures to display any specified 2-dimensional or 3-dimensional sec-
tion of the boundary of W. In Section 2, we first review an algorithm [4,8]
to draw W for 2-dimensional case (m = 2). We point out a valuable property
of this algorithm. In Section 3, we show that if one rotates and translates an
m-form numerical range so as to map any k-dimensional section to the subspace
spanned by the last k coordinate axes, the resulting set is still an m-form nu-
merical range. In Section 4, we propose an algorithm to plot the 2-dimensional
section of the convez hull of W. In Section 5, we investigate some properties of
W for non-convezr case. We show several interesting pictures of Doyle’s exam-
ple (see Appendix B) and one example of the structured singular value problem
under parametric uncertainty. In Section 6, we propose an algorithm to draw
the surface of the desired 3-dimensional section of an m-form numerical range

using the NCAR ([5] graphics software.

15



2.2 Two-Dimensional Case

In [4,8], a simple algorithm was proposed to plot the boundary of W when
this set is in R? (m = 2). In this scction, after describing the algorithm, we
show that the density of points plotted around any point is proportional to
the curvature of the boundary at this point. In the following sections, we will

generalize the algorithm to plot the boundaries of W for higher dimensional

case.

Now consider the case when W C IR?. Suppose W is strictly convex, i.e.,

for any z, y € W,
Az + (1 — Ay € intW for all A € (0,1)

where int1W denotes the interior points of W. Then clearly there is a one to one
correspondence between the points of the boundary of W and the supporting
hyperplanes to W, namely, for any v € OW (here we denote the the boundary
of W by W) there exists a unit vector u = [cos 8 sin6]T such that v achieves

the minimum in

min{{w,u) : we W}.

In view of the definition of W, w' = £ A;z, for 1 = 1,2, where z achieves the
minimum in

Q%B{IH(COS 6A; +sinbAy)z}

i.e., T is a unit eigenvector corresponding to the smallest eigenvalue of cos 6.4, +
sin §A;. This leads to the following procedure [4,8].
Procedure 2.1. [4,§]

Step 0. Set 8 = 0 and N = a large integer.

Step 1. Let z be any unit eigenvector corresponding to the smallest eigenvalue

16



of cos8A4; + sinfA,. Set
_ IHAl.’L'
y2 = .’L‘HAzl' )
If 6 # 0, draw the line segment 1yz. If 8 > 27, stop.

Step 2. Set y; = y2, 6 = 6 + 27 /N and go to Step 1.

Figure 2 depicts W(A;1, A2) with

1 0 o0 00 0
Ai=10 -1 1 |, 4,=j|0 0 -1
0 1 -1 01 0

Here W(A,;, A;) consists of the convex hull of a disk of radius 1 center at (—1,0)
and a point at (1,0) (this example is borrowed from [19], where a different
algorithm is used to plot W). In agreement with Property (1.4), the point (1,0)
is the image of an eigenvector [1 0 0] of all linear combination of 4, and A,, i.e.,
an eigenvector of both A; and A;. Figure 3 is a repeated plotting of the matrices
given above by Procedure 2.1 except that in Step 2 a asterisk ‘*’ is marked at
the point y, and no line segment is drawn for each (y;,y2) pair. Same as that
of Figure 3, Figure 4 depicts another W(A,;, A;) with arbitrarily generated A,
and A, matrices. Figures 3 and 4 show that, while we uniformly divide 27 in
Procedure 2.1 (Step 2), the corresponding points in the d11” are not uniformly
distributed and it seems that there are more points plotted around any point
wherever the corresponding curvature is large. The following proposition shows
that, in fact, the density of distribution at any point on W is proportional to

its curvature.
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Figure 2: Example of Procedure 2.1

Proposition 2.1. Let y2(6) be the supporting point of hyperplane H with

unit normal vector u = [cos § sin )T, as constructed in Step 1 of Procedure 2.1.

Suppose that y;(8) is differentiable at . Then
dy.(6) _ 1

dé =E'T"

where Ky and Ty are the curvature of 811 at y,(6) and the unit tangent vector
to OV at y,(@) respectively.

Proof Let s(8) represent the arc length of 0TV at y,(6). Then from the

definition of curvature, since 91V is smooth at 6, KIZ = %‘-’-. Also, it is clear

that Ty = %’T{‘%l is just the unit tangent vector at y;(8). Therefore

dy,(6) _ dy:(6) ds(6)
6 = ds(6) " dé
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Figure 3: Generated Boundary Points of Figure 2

2.3 Coordinate Transformations

In this section, we sliow that if one rotates and translates an m-form numerical
range so as to map any given k-dimensional section to the subspace spanned by
the last k coordinate axes, the resulting set is still an m-form numerical range.

The intersection, denoted by A, of the m-form numerical range 11" of matri-

ces Ay,..., A, with a k-dimensional affine space can be expressed as
A=WnH N...0NHpx
where, for i = 1,...,m — k, H, is the hyperplane defined as
H={veR": (vu)= /\i}
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Figure 4: Property of Curvature

for some u; € R™\{0}, ' € IR. Without loss of generality, it can be assumed

that the u;’s are orthonormal. Now consider the following coordinates transfor-

mation
d=UTv—-X (or v=U(0+A)) (2.1)
where

U={u...up)

for some um_k41,...,um, such that U is an orthonormal matrix (i.e., UTU = I).

and
A=A

with arbitrary A™=%+1 _  A™  Transformation (2.1) is a composition of coor-

dinates rotation and translation. Under this transformation, it is clear that the

image of the k-dimensional section A of the m-form numerical range is
A=WnEnNn...NHn,
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where W i&the image of W and similarly for H;, ¢ = 1,...,m — k. Since
W={veR™ : 3r€0Bst.v'=z"4zxVie{1,...,m}},
we obtain

W = () eR™: 32€dBst.o=UTv-X v=24zVie {1, .. ,m}}
= {¢#€R™ : Iz €OBst. o' =zF Az, Vie {1,...,m}}

= W(Ay,...,An)

where, fort: = 1,...,m,

A=Y uld; - N1 (2.2)
Jj=1
Similarly, for: =1,...,m — k,

H = {eR™ : 5 =UTv-\, (v,u;) = A}
= {0 eR™ : ((t}-{-/\),UTu,-) = \'}

= {s €™ : v =0}

Thus A can be obtained by translation and rotation from the intersection of the

m-form numerical range of fil, . A,, with the span of the last k coordinate

axes.

2.4 Two-Dimensional Sections of W

Consider now the question of displaying convex 2-dimensional sections of W
(m > 3). In view of the discussion in Section 2.3, without loss of generality,
suppose that the section of interest is defined by w' =0, =1,...,m — 2. The
following procedure is suggested.

Procedure 2.2.
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Step 0. Set 9=0and N=a large integer.

Step 1. Find 2!,...,2z™"? € R such that the Hermitian matrix

m~2

Z 2'A; +cosBA,,_; +sinbA,

=1
has a unit length eigenvector z corresponding to its smallest eigenvalue
satisfying zf A;r = 0,1 =1,...,m — 2. Set

_ d?HAm-].’E
V2= zH Az )

If 6 # 0, draw the line segment y1y3. If 8 > 27, stop.
Step 2. Set y; = y2, 6§ = 6 + 27 /N and go to Step 1.
O

In view of Properties 1.1 and 1.2, Procedure 2.2 will correctly display the bound-
ary of any 2-dimensional section of W when m = 3 and the 2-dimensional ‘outer’
boundary of W when m = 4 and the A;’s are real symmetric. It should be clear
that, if the m-form numerical range W is not convex, Procedure 2.2 will display
the boundary of the section of the convez hull of W. Figure 5 was generated by
Procedure 2.2. It is the section defined by a 2-dimensional affine space passing
through the origin of the convex hull of the m-form numerical range W (u%(M))
(ux(M) = .87) corresponding to an example due to Doyle [7], referenced to be-
low as Example D (see Appendix B). Although Procedure 2.2 just displays a
single 2-dimensional section of W, by its repeated use we can generate a fam-
ily of convex 2-dimensional sections. Displaying all these curves may help us
to better understand any 3-dimensional section of W, especially for m = 3.

Furthermore, this will lead to a way to display 3-dimensional sections of 11" by
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N

Figure 5: Convex Hull of Doyle’s Example for W(uZ(M))

Figure 6: A Family of 2-Dimensional Curves



using the graphics package NCAR [5] (see Section 2.6 below). In the following
procedure we denote the largest and smallest eigenvalues of a Hermitian matrix
A by A(A) and A(A) respectively.

Procedure 2.3.

Step 0. Set L = a large integer and v = M Ap_2) + (A(Am-2) — A(Am-2))/L .
Step 1. Set § = 0 and N = a large integer.

Step 2. Find z',...,2™ % € R such that the Hermitian matrix

m-—2

Z 2*A; + cos8Am_1 +sinbA,,

=1

has a unit length eigenvector z corresponding to its smallest eigenvalue

satisfyingfori =1,...,m -3, 27 4,z =0, and 29 4,,_,z = v. Set

[ tHA, 1z ]
Y2 = .

M A,z
If 6 # 0, draw the line segment 777;. If 8 > 27, go to Step 4.
Step 8. Set y; = y2, § = 6 + 27 /N and go to Step 2.

Step 4. Set v = v + (M Am-2) = MAm-2))/L. I v < A(Am-2), go to Step 1.

Stop otherwise.

O

Figure 6 (generated by Procedure 2.3) depicts a family of 2-dimensional sections
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Figure 7: Doyle’s Example for W (u%(Af)) by Brute Force
of the m-form numerical range 117(4,, A3, A3) of arbitrarily generated matrices
A = 0.5+ ;1 24350 145129

| 14058 1-j12.9 —24j0
5+j0 2.37+j1 1+j2.789}

[ 3+j0  0.5—j 1—j.58}

Ay, = | 23T—j1  1+4j0 523+j1
| 1-j2.780 5231 —4.54j0
2.5+j0 0.12—j2 —5.67+j2
Ay = | 01242 15+j0 4.87-j2
| —5.67—j2 4.87+j2 —53+j0

2.5 Non-convex boundary of W

In this section, we will investigate the geometric properties of W in the non-
convex case. To investigate the question of graphically displaying non-convex

2-dimensional sections of ”, we propose the following procedure as our first
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Figure 8: Boundary Points of Figure 7

step to solve this problem. This procedure uses ‘brute force’ to display the

intersection of any given 1" with the span of the last two coordinate axes.

Procedure 2.4.

Step 1. Randomly generate z; € €", z; #0, i =1,...,.m—1.

Step 2. Find B' € R (e.g., using a Newton iteration). ¢ = 1,...,m — 2 such

that,for y=1,...,m -2,

m-—2 m-2
(3 Bzi+ama)TA (Y Bzitzma)=0.
=1 1=1

Step 3. Set r = 272 Bizi + 2m-y. 2 = 0, go to Step 1. Else set z = z/||z||

and

_ .‘L'HAm_j.‘L'
y= HA,.x )

Draw a small dot at y. Go to Step 1.
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- O
In view of Property 1.5, Example D (see Appendix B) corresponds to a set

W (u2(M)) for which there is no A > 0 such that W(u%(M)) is contained in the
closed half space {v = R* : (v,A) > 0}. Figure 7 (generated using Procedure
2.4), which displays that intersection of W(u%(M)) with a 2-dimensional affine
set passing through the origin, illustrates this point. Assume {bi,...,b;} is
the set of the points generated by Procedure 2.4, the following procedure is
proposed to find the boundary points of the set {b1,...,b4,;}.

Procedure 2.5.
Siep 0. Set N a large integer, 6 a small number, § =0, and ¢ = (I, 6)/q.
Step 1. set u = [cos@ sinf]7. Find b that solves

(b—c,u)

max{”b——c” : m>c059, be{bl,...,bq}} :

Draw a small dot at b. If 6 > 2r, stop.
Step 2. § = 6 + 2 /N. Go to Step 1.

O
Figure 8 (generated by Procedure 2.5) depicts the boundary points of the set

of points showed in Figure 7. Clearly Procedure 2.4 is computationally expen-
sive. As an alternative, one can try to make use of Property 1.4. This possibility
was investigated in the particular case of Example D. Figure 9 shows the exact
boundary of the section displayed on Figure 7. The ‘convex’ portion of this
boundary was drawn on Figure 5 using Procedure 2.2. It turns out that, in this
case, the ‘non-convex’ portion is constituted of images of eigenvectors corre-

sponding to the sccond largest eigenvalue of the linear combination "1t . w'A;,
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Figure 3: Non-Convex Section of Doyle's Example

Figure 10:
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Figure 11.

F".gure 12:
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Figure 13:

Figure 14:
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Figure 15:

Figure 16:
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with w a vector orthogonal to the hyperplane ‘tangent to W{(u}(M)) at the
point under consideration. A similar technique was used to generate Figures 10
to 13. These also come from Example D, this time with & = 1. As seen in Fig-
ure 10, coW (1) touches the origin (while W(1) does not) and the corresponding
supporting hyperplane H intersects 1¥(1) at more than one point. Clearly, the
‘contact surface’ is not convex so that, in view of Properties 1.1 and 1.2, it must
be an ellipsoid. This is confirmed by Figures 11 to 13 which depict 2-dimensional
sections contained in 3-dimensional sections of W defined by hyperplanes par-
allel to H. The discontinuity in Figure 10 is due to two inflection points on the
boundary. Consider the 2-dimensional case, the angle 8 of the normal vector
u = [cosfsin6)T of the ‘tangent’ hyperplane of the boundary point will not
change monotonely around the inflection point. However, the corresponding 6
defined in Procedures 2.1 and 2.2 increases monotonely. Under this conditin,
Procedures 2.1 and 2.2 can’t generate a continuous boundary curve. Figures
14 to 16 show 2-dimensional sections of W(A,, ..., As) which correspond to the

structured singular value problem under parametric uncertainty with

1 0 -1
M=|2 -1 3 )
0 1 -2

and the block-structure K = (1,1,1,1;). Then define
Ai=aP, - M"YPM, fori=1,2,3;
Ai = j(MH P, - P,M), for i = 4,5,6.

Figure 14 (generated by brute force method ~ Procedure 2.4) depicts the section

H
a:HAlx : 2H Az =0, fori = 3,...,6, and = € 6B
T Ag.’!‘
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of W(A,,.77,A4s) with a = 9. Let

a) +jbl
ax + jba
as + jbs

€ 0B,

T =

and set

tH A3z = (5a3 — az)(as + a) + (5b3 — b)(bs + b2) = 0 ;

e Az = jlaybs —asb) =0

i Az = J2(a1by; — azby) + j3(azby; — az2b3) =0

sHAez = Jj(azbs —azby) =0.
Then, we have

eH A1z = (4a; — a3)(2a; + as) + (4b; — b3)(2b; + b3) ;

P A0 = —(2a; — Ta3)(2a; + az) — (2b; — 7b3)(2b; + b3) .
By simplifying the above equations, we draw the exact curves of Figure 14 in
Figure 15 which consist of two ellipses. Figure 16 shows another 2-dimensional
section perturbed a little bit from that of Figure 15. These figures show that
the set

.’EHA].T
" A,z | @ 2 A4,z2=0,1=4,5,6, and z € 6B
zH Asr

has no interior point.

2.6 Three-Dimensional Sections of W

In the previous sections, we discussed several procedures to display 2-dimensional
section of a given m-form numerical range. We now present a procedure to dis-
play the surfaces of 3-dimensional sections of W (m > 3) . We will employ the

graphics software NCAR [5].
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The NCAR graphics software consists of graphics utilities such as multi-
variable graphs, contour plotting, 3-dimensional surface drawing and world map
projection. These utilities perform graphics output using low-level graphics
subroutines in NCAR system plot package. The output of the system plot
package is a file of metacode, a device independent plot file which may be
post-processed (interpreted) and plotted on any device for which a translator
is available. To use the NCAR graphics utility, one must link with the NCAR
library and call the desired graphics utility routine through a calling routine.
The routine ISOSRF is one of 3-dimensional surface drawing utilities in NCAR.
Suppose that given a function r(z,y, z) : R* = IR, one would like to draw the
portion of the isosurface r(z,y,2) = 0 for which z; <z <z, h <y <y, and
21 £ z £ z3. In order to use ISOSRF, one must construct a 3-dimensional array
T (with size n; x n; x ng, for some integers n;, n; and n;) such that for any i,
J and k
Y2—th

)
nJ_l)]+yla(

22— 21

7’lk—-1

T(,5,k) =r((

Iy — I
i

)i + x4, ( k+z1) .

n,—1

As mentioned in Section 2.4, Procedure 2.3 may be used to generate a family
of convex 2-dimensional sections of the m-form numerical range. For the case
when m = 3, Procedure 2.3 generates a set of boundary points of the m-
form numerical range. Let {b;,...,b,} denote those boundary points. We now
propose a function r(z,y, z) such that the isosurface r(z,y,z) = 0 represents
(more or less) the boundary points {b;,...,b4,} of the m-form numerical range.

Define (let b € R?)

_ o= _

O = e
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Figure 17: 3-Dimensional Convex Surface

q b -~
where ¢ = 2k and b solves .

q

e (b—1c,b —c)
i€{la} [|b—c| ||b: =]

Then it is easily checked that r(b) > 0if b & W; r(b) < 0if b € int¥1": and
r(b) = 0 if b € OW. Figure 17 depicts the 3-dimensional surface of the m-
form numerical range showed in Figure 6 which is then represented by a family
of 2-dimensional sections. Similar to Procedure 2.3, we can generate a family
of 2-dimensional boundary curves by repecated use of Procedures 2.4 and 2.5.
Figures 18 and 19 depict the non-convex surface of the intersection of Doyle’s

example (see Appendix B) with a 3-dimensional affine set passing through the

origin for the W (ui(M)) case.



Figure 19: Different View Position of Figure 18
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CHAPTER

THREE

Conclusion

In Chapter 2, we proposed procedures to display the 2-dimensional sections of
the m-form numerical range W. Procedure 2.2 will correctly display the 2-
dimensional boundary of W when m < 3 and the 2-dimensional ‘outer’ bound-
ary of W when m = 4 and A;’s are real. If the section under consideration
is not convex, Procedure 2.2 will display the boundary of the 2-dimensional

section of the convex hull of W. Procedure 2.4 uses brute force method to

randomly generate the points that belong to the desired 2-dimensional section
of W. We can display the non-convex 2-dimensional sections by this method
even though it is computationally expensive. Procedure 2.5 sorts the points
generated by Procedure 2.4 and finds the corresponding boundary points which
could be used to approximate the exact boundary curve. In Figure 9, we show
the non-convex boundary is the image of the unit eigenvector corresponding
to the second largest eigenvalue of I, w'4;, with w a vector orthogonal to
the hyperplane tangent to W(u%(M)) at the point under consideration. How-
ever, there is still no efficient algorithm to find the non-convex boundary of the
m-form numerical range.

For graphically displaying the 3-dimensional sections of W, we employ the
NCAR graphics software. Procedure 2.3 generates a family of 2-dimensional
convex sections. Through the isosurface function r(z,y, z) defined in Section

2.6 , we display the 3-dimensional surface of W by the NCAR graphics utility
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- ISOSRF. by repeated use of Procedures 2.4 and 2.5, we can also generate a
family of 2-dimensional sections and display the corresponding 3-dimensional
surface by ISOSRF, especially for the non-convex case. It should be noted
that not all kind of non-convex surface can be drawn through the isosurface
function r(z,y,2). For example, the non-convex surface of the 3-dimensional

scction corresponding to Figures 15 and 16 can not be drawn by using the

isosurface function r(z,y, z).
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Appendix A

Software Package

A.1 Introduction

In this appendix we describe some software packages developed to display any
desired 2-dimensional section of the m-form numerical range. According to Sec-
tion 2.3, we develop program ma:t (short for matrices A;’s transformation) to
convert the structured singular value problem to the m-form numerical range
and then transform the corresponding m-form numerical range to another m-
form numerical range such that the desired 2-dimensional section is in the span
of the last two coordinate axes (see Section 2.3). In order to find the de-
sired 2-dimensional section of an m-form numerical range, program nr (short
for numerical range) uses Procedures 2.2 and 2.3 to find the boundary points
of the corresponding convex hull. In order to find the shape of the desired
2-dimensional section of the m-form numerical range, program bf ( short for
brute force) use Procedure 2.4 to randomly generate the points that belong to
the desired 2-dimensional section. To find the boundary points of the set of
points generated by bf, program fbd (short for find boundary) follows Proce-
dure 2.5 to sort the points generated by bf and writes the boundary points

in a output file. Programs nr, bf and fbd just generate the desired points and
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write them in a output file. To see the diagrams generated by programs nr, bf,
and fbd, we have program grap (short for graphics) to draw the 2-dimensional
diagrams on a specified device. To draw the 3-dimensional surface of a m-form
numerical range, program tisosrf (short for transformation for isosurface) takes
a set of boundary points as its input and generates a metacode file which could

be post-processed by a translator ncartrn and be displayed on a specified device.

A.2 Program mait
According the following three equations, program ma:t converts structured sin-
gular value problem to the corresponding m-form numerical range and trans-
forms the m-form numerical range to another m-form numerical range such that
the desired 2-dimensional section is in the span of the last two coordinate axes.
Given an n xn complex matrix M and associated block-structure K, we sum-
marize the equations (1.6), (1.7), and (2.2) to achieve the above requirements.
Fori:=1,---r+¢

Ai=aP,-MPPM . (a.1)

Fori=r+c+1,---,r+c+s

A = j(EM - MUEE) . (a.2)
Fori=1,---,r+c¢
«‘i,‘ = Equ, - Xj . (0.3)
j=1

where E; € £ and r + c is the number of block of uncertainties including para-
metric and dynamic uncertainties, and U = [u; ... u,4.]7 and X are the rotation
matrix and translation vector respectively. mait takes data from an input file
- a file containing n, r (used to specify the number of block of parametric

uncertainty), ¢ (used to specify the number of block of dynamic uncertainty),
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(r 4 ¢)-tuple block-structure K, a n X n complex matrix M, the parameter a as
that defined in (a.1), 2 linear independent (r 4+ ¢) x 1 vectors #,4c—1, Ur4c, and
a (r +¢) x 1 translation vector X. By (a.1) and (a.2), the matrix M, the associ-
ated block-structure K, and the parameter a specify the corresponding m-form
numerical range. The vectors @,4._1, 4, and A together specify the desired
2-dimensional section which is the intersection of the corresponding m-form nu-
merical range with the affine space {v € R™° : v € span{i,4c-1,r4c} + A}
To map the desired 2-dimensional section to the subspace spanned by the last
two coordinate axes, we have the following procedure to generate the corre-
sponding rotation matrix U and translation vector A (see Section 2.3).

Procedure A.1.

Step 0. Generate a set of (r+c)x1 vectors {@y,...,Ur4c—2} such that {@;, -+, Grq.}
is a linear independent set. Set : =1 and @, = [0,...,0]7.
Step 1. Set

t—1
vy = U;— Z(ﬁg,u,-)uj ;
et

Uy

u, =

flodll

Step 2. Set : = 1+ 1. If 2 < r+ ¢, go to Step 1. Otherwise, set U =

[y, trpc)T, A = UM, and stop.

a

By (a.1), (a.2), and (a.3), mait generates the corresponding A;’s and Ai’s ma-

trices and writes all the n x n Hermitian complex matrices A;’s into a file with

the same name as that of the input file plus the extension name .a:.
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The following is the format of the input file for program mait. One should
follow the sequence of the parameters specified in the following table, otherwise

there will be errors.

Note: The numbers at the end of each line are used for the purpose of expla-

nation only, they do not actually appear in the input file.

format_mait 1
nrec 2
Ky - Ky Krp1--Kege 3
a 4
miy -+ Myp

5
mn1 ... mnn
=1 =T+
Urje-t " “;+:-1

6
=1 =T+
Uric r+g
Al... )\ 7

1. Parameter format.mait is the header of a input file. It should be specified

at the very beginning of each input file for program mast.

2. Parameter n is used to specify the dimension of matrix M in (a.1). The
value of n must be strictly positive. Parameters r and c are used to specify
the numbers of blocks of parametric uncertainty and dynamic uncertainty

respectively.

3. Parameters k,,-- -, k,4. are used to specify the block-structure K of the

given structured singular value problem.
4. Parameter a is used to specify the a in (a.1).

5. Data m;;, -+, m,, are used to specify the n x n complex matrix M in

(a.1). The entries of matrix M are stored by the following row order:
myy My2- - Myy M2 Mpp.
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All fﬁ:j’s are complex numbers . Each complex number must has its real
part followed by its imaginary part. Real part and imaginary part must
be separated by at least one blank space.

Note: The above representations for complex matrix and complex num-
bers will be followed throughout this appendix without any further men-

tion.

6. Data @},---,a[*", for i = r + ¢~ 1,r + ¢, are used to specify the desired

2 linear independent vectors i,4.-; and U, 4.

7. Data X!,---, A"+ are used to specify the (r 4+ c) x 1 real translation vector
X. The vectors #,4._1, and #,,. together with the vector A specify the

desired 2-dimensional section of the corresponding r+c+ s-form numerical

range.

After reading all the required data from the input file, mait generates all A;’s
matrices by (a.3) and writes them in a output file. The following is the format

of the output file of program ma:t.

format_ai 1
nm 2
ajy -+ A

3
ant °°° &pn
agy -+ ain

m+2
any -°° ann

1. Parameter format_at is the header for the output file of mait.

2. Parameter n and m are to specify the dimension and the number of Her-

mitian complex matrix stored in this file.
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3. tom + 2. All n x n Hermitian complex matrices ji,', forz=1,---,m, are

sequentially specified by these complex numbers a;;’s.

The output file of mait could be used as the input file of programs nr and bf
directly (sce Sections A.3 and A.4 below). Let us assume the input file is db.

To invoke mait, one just types
mait db
A message similar to the following appears on the terminal.

velcome to mait

reading db ...
computing Ai’s
transforming Ai’s ...

writing the transformed Ai’s to db.ai

The bottom three lines correspond to three successive operations performed by
mait. Each of these lines appears on the screen at the start of the correspond-
ing operation. If any error is detected, mait reports the corresponding error

message and aborts.

A.3 Program nr

The purpose of program nr (short for numerical range) is used to generate the
boundary points of the intersection or projection of the m-form numerical range
with the span of the any two of m coordinate axes. nr takes all A; matrices from
an input file which has the same format specified by the output file of mait.
By following Procedure 2.2 or 2.3, nr generates the boundary points of convex
hull of the corresponding intersection. All the generated boundary points are
written to a output file which has the same name as that of the input file plus

the extension name .nr. The syntax of nris
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-

nr [option] input_file

where [option] contains any option specified by the user. The following options

are interpreted by nr:
-e Have nr echo all the data in the input file on the screen.

-11j Have nr choose A; and A; matrices as the A,,_; and A,, matrices in
the Procedure 2.2 or Procedure 2.3. If -s (see the next option) option is
not specified, nr follows the Procedure 2.2 to find the boundary points.
Otherwise nr follows the Procedure 2.3. The default values of i and j are

m — 1 and m.

-s k ns Have nr choose A; as the A,,_, matrix and ns as the L in Procedure
2.3 respectively. nr follows Procedure 2.3 (note A,,_1, A,, matrices are
specified by A;, and A, matrices) to find the corresponding boundary

points.

-p Specify the desired boundary points are the convex hull of the projection

of the m-form numerical range to the span of the ith and jth coordinate

axes.

-n np Specify the number of points per intersection to be generated. The

default value of np is 50.

Let us assume the input file is db, the number of A,’s matrices is greater than 6,
and each point generated by nr has its vector representation as [z1 22 ... zm]7.

The following is the format of the output file of nr:

format_graph 1
miijk 2
x1 x2 ... xm 3
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-

yly2 ... ym 3

z1 z2 ... zm

0.12345 56789 4

1. Parameter format_graph is the header of the output file of nr. This header
is used for programs fbd, grap, and tisosrf (sce sections A.4, A.5, and A.6

below) to identify the format of this file.

2. Parameter m is used to specify the dimension of each point generated
by nr. Parameters i , j and k are used to specify the data in this file
are generated by setting A;, A;, and Ax matrices as the A,,-; , A, and
A, -2 matrices. If the option -s is not specified when nr is invoked, then
the value of &k will be 0. Programs fbd, grap, and tisosrf use these three
parameters to read the the ith, jth and kth coordinates of each point of

the input file.

3. Data from z1 z2...zm to 21 22... zm are the coordinates of the points
generated by nr. Each set of m real numbers is the vector representation

of a point in m-dimensioual space.

4. Special codes 0.12345 56789 are used to separate the data of different
2-dimensional sections. These special codes are automatically appended
to the end of the data of each section. Program grap (see section A.5
below) takes the output file of nr as its input file and uses these special
codes to separate the data of different boundary curves. By this method,

we could keep several boundary curves in the same file.

The following is an example to invoke nr.
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nr -i 35 -s 2 60 -n 100 db

In the above example, nr will follow Procedure 2.3 to find boundary points,
choose A3, Az, and As matrices as the corresponding A,,_2, A,n-1, and A,, ma-
trices in Procedure 2.3, generate 60 2-dimensional sections with 100 boundary
points per section, and write the generated data in the output file db.nr. If any

error is detected, nr reports the corresponding error message and aborts.

A.4 Programs bf and fbd

Similar to nr, program bf also displays the intersection of a m-form numerical
range with the span of any two of its m coordinate axes. Instead of finding the
boundary curves, bf randomly generates those points that belong to the desired
2-dimensional section of the given m-form numerical range by Procedure 2.4.
The formats of the input and output files of bf are the same as that of nr's

except that the output file of bf has the extension name .bf. The syntax of bfis
bf [option] input_file

where [option] contains any option specified by the user. The following options

are interpreted by bf :
-e Have bf ccho all the data in the input file on the screen.

-i 1j Have bf choose 4; and A; matrices as the A,,_; and A,, matrices in

Procedure 2.4. The default values of : and j are m — 1 and m.

-n nop Specify the number of points to be generated. The default value of
nop 1s 5000.

Because relatively bf need much more computation time to have a good enough
approximation of the desired section, we omit the optin -s specified in the syntax

of nr. To get a family of 2-dimensional sections, one need to invoke bf for each

47



[

section. This also can be done by invoking bf at different computers. Let us
assume the input file is db and the number of A;’s matrices is greater than 5.

The following is an example to invoke bf.
bf -1 4 5 -n 5000 db

In the above example, bf will select the A4 and As matrices as the A4,,_; and
A,, matrices in the Procedure 2.4 respectively. The number of points to be
generated is 5000. All these points are written in the file db.bf with the same
format as that specified by the output file of nr. If any error is detected, bf
reports the corresponding error message and aborts.

Program fbd follows Procedure 2.5 to find the boundary points of the set of
points generated by program bf. It takes data from the output file of bf and
writes the boundary points in a file with the same name as that of input file
plus the extension name .bd. The format of the output file of fbd is the same

as that of nr’s. Assume the input file is pd.bf, the following is an example to

invoke fbd.

fbd -n 300 pd.bf

The option -n is the only option of fbd. This option specifies the number of
boundary points generated by fbd. The default value of this number is 200.
In the above example, we specify the number of boundary points is 300. Once
complete, an output file dp.bf.bd will be generated.

A.5 Program grap

grap is a program for plotting 2-dimensional curves or making a small mark
at the corresponding vector position for each point on a specified device which
could be a graphics terminal or a imagen printer. It takes the output files of
programs nr, bf, and fbd as its input file and plots the desired diagram on

a specified device. According to the format of the input file, each point is
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representea“as an m-dimensional vector. Since grap just plots 2-dimensional
diagram, it only uses two (these are specified by parameters ¢ and j in the
input file) of m coordinates of each point to plot the diagram. This means
grap plots 2-dimensional projection diagram from a higher dimensional space.
Throughout this section, we only use the ith and jth coordinates to identify
a m-dimensional point. For simplicity, we assume the graphics screen is a 2-
dimensional plane, There are three kinds of graphics modes in grap. The first
one only draws a small mark at the corresponding screen position for each
point. The second one draws a line segment between two corresponding screen
positions for every two successive points stored in the input file. Combining
previous two modes together, the last one displays the diagram by drawing small
marks at each corresponding screen positions and connecting a line segment
between two successive points on the screen. It is possible that a input file may
have more than one diagram to be plotted. Under this condition, grap use a
set of special codes to separate each group of data (see Section A.3 for detail
description). It should note that grap accepts more than one input file. By this
method, grap takes different diagrams from different files and plots them on the

same screen. The syntax of grap is
grap [option] input_filel input_file2 ... input_filen
The following options are interpreated by grap:

-e Have grap echo the parameters read from the input file except the coordi-

nate of each point.
-h  Have grap choose HP2623 graphics terminal as the output device.

-t Have grap choose V550 tektronix emulating graphics terminal as the output

device.
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-imp Have grap choose imagen printer as the output device.

-m Have grap draw a small mark at the corresponding screen position for each
point stored in the input file. This option is typically useful to display

the diagram generated by program bf.

-¢ Have grap draw a line segment between two corresponding screen positions
for every two successive points in the input file. This means grap draw
a boundary curve by connecting every two successive points by a line
segment. It should note that this is not suitable to display the diagram

generated by program bf but is useful to draw the diagram generated by

program nr.
-b Have grap choose both -m and -c¢ options.

-w wz!l wyl wz? wy?2 Have grap define the coordinates of the left bottom
corner and right upper corner of the graphics device as (wzl,wyl) and
(wz2,wy2). All the points with the coordinate beyond these ranges will
not appear on the graphics device. If this option is not specified, grap will
automatically choose a set of suitable ranges such that all the points in

the input file will be displayed on the graphics device..

Let us assume the input files are dbl and db2, the graphic terminal is HP2623,

the world coordinates are (-10 -10 10 10). To invoke grap, one just type:
grap -e -h -c =-w =10 -10 10 10 dbl db2

In the above example, grap takes dbl and db2 as its input files, echo all the
specified parameters for each input file, displays the boundary curves on a
HP2623 terminal. All the points with coordinate beyond the ranges (-10 -10)
and (10,10) will not be displayed.
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A.6 Program tisosrf

By calling the NCAR graphics utility - ISOSRF, program tisosrf generates the
corresponding 3-dimensional surface metacode from a family of 2-dimensional
sections. The format of the input file of tisosrf is the same as that of program
grap’s. In order to have a correct 3-dimensional surface diagram generated by
tisostf, we should have enough number of data stored in the input file. The
output of tisosrf is a file named metacode which is a device independent plot

file. Assume the input file is bd, the following is an example to invoke tisosrf.

tisosrf db

Once complete, a metacode file will be generated. This file could be plotted by
the translator program ncartrn on HP2623, or Visual 550 graphics terminals.

The syntax of ncartrn is
ncartrn [terminal] [metacode_filel

where terminal option could be -h or -t which are used to specify the output
device as HP2623 graphics terminal or V550 tektronix emulating graphics ter-
minal respectively. The default metacode file is the local file metacode, but one
can specify any file that contains the metacode. Assume the file bd contains the

desired metacode file, the following is an example to invoke ncartrn.

ncartrn -h bd

In the above example, ncartrn takes metacode file from file bd and displays the

diagram on a HP20623 terminal.
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Appendix B
Doyle’s Example

For ease of reference, we reproduce here an example due to Doyle [7] where
r =0, ¢ = 4, and equality in (1.5) does not hold. Some of background from [1]
is given first. All the following results are restricted to the case r = 0 (no real
uncertainty).

For a complex n x n matrix M, consider the singular value decomposition

as

M=[U U]y (Vi V)7,
where Uy, V; € €7 with ¢ the multiplicity of 5(M) and [U, U], [V; V;] are
unitary. Define

Vy={z€R" : el |v]|=1st. 2' =v7Hw, Vie {1,...,c~1}}

where

H, = -(UIMV, + VEMEU,)

N —

and

M;=PM-MPF;.

The following two facts are proved in [1].
Fact B.1. infpep, 6(M) = 6(M) if, and only if, 0 € coV,.
Fact B.2. ux(M) = 6(M) if, and only if, 0 € V,.
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Doyle’s'-;xample is as follows. Let

a 0 0 a H
ab ab ab —ab
M= ab abj ab —abj

a2 ; —a2(1—1 .
V1-2a? 2:/1(—1::;,2 2\ﬁ(-]2;]2) V1~ 2a?

K=(1111)

o

= %-2— and j = v/—1. One obtains

where a = /1 — ﬁ,

_ 2|11 0 2101 2 0
Hl—-a [0 1 ,Hz—a 1 0 ,H3—(1 —J 0

and it is easy to check that V; is a circle with radius a? centered at the origin.

Thus, by Facts B.1 and B.2, we have

Juf a(DMD™) =35(M) # pc(M) .
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