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1 Introduction

1.1 Discussion of theorem for essentially increasing, even weight
functions w
The weighted Fourier transform inequality studied in this paper is:∫ ∞

−∞
|f̂(x)|2w

(
1

x

)
dx ≤ C

∫ ∞

−∞
|f(x)|2w(x) dx, (1)

where w is a non-negative weight function, C is a constant, and f̂ the Fourier
transform defined by

f̂(x) =
∫ ∞

−∞
e−ıxyf(y) dy.

The conditions of weight functions that satisfy (1) have been discussed in
[1] and [2]. It was shown in [2] that if w(x) is an even weight function,
nondecreasing on (0,∞), we have (1) if and only if w(x) ∈ A2, where A2 is a
Muckenhoupt weight class and consists of all non-negative locally integrable
functions w(x), such that for all intervals (a, b),( ∫ b

a
w(x) dx

)1/2( ∫ b

a
w(x)−1 dx

)1/2

≤ C(b− a) (2)

holds. This theorem is still valid if one replaces w(x) by even weight functions
which are essentially increasing on (0,∞) and have no zeros. This was shown
in Yayama [1]. A weight w(x) is an essentially increasing function on (0,∞)
if there exists an increasing function U(x) and positive constants C1, C2, such

that C1 ≤ w(x)
U(x)

≤ C2. In her thesis, Yayama proved that a weight function

w(x) with n zeros which is not essentially increasing can satisfy (1). She
proved this by using estimations of the distribution function and also using
the fact that sin t ∼ t and arcsin t ∼ t for t ∼ 0. This paper will discuss the
computation of the precise value of the distribution function and make the
approximations only when necessary, thereby providing another proof of the
result.

1.2 Essentially increasing weight functions w with a finite num-
ber of zeros
We show that if w is essentially increasing and there exists at least one z such
that w(z) = 0, the weight w cannot satisfy (1). We suppose that w(x) is an
essentially increasing function with w(z) = 0. Then there is an increasing

function U(x) and positive constants C1, C2, such that C1 ≤ w(x)
U(x)

≤ C2.
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Then U(x) = 0 for x ≤ z and so w(x) = 0 for x ≤ z. If we also suppose that
w belongs to A2, then the inequality (1) must hold. If we choose

f(x) =


1 |x| ≤ z

2

0 |x| > z
2
,

then ∫ ∞

−∞
|f(x)|2w(x) dx = 0

Since |f̂(x)|2 > 0 on 1
2z
≤ x ≤ 1

z
, we have∫ ∞

−∞
|f̂(x)|2w

(
1

x

)
dx > 0.

Hence, w(x) cannot satisfy (1) [1].

2 Definitions
Consider the following definitions from [2] and [3].

Definition 2.1
Let E be any subset of R. If a function f belongs to Lp(E), the distribution
function Df of a function f is defined by Df (s) = m{x ∈ E : |f(x)| > s},
where m is the Lebesgue measure.

Definition 2.2
The nonincreasing rearrangement f ∗ of a measurable function f is defined on
a measure space by f ∗(t)=inf{s : Df (s) ≤ t}, where Df is the distribution
function defined above.

Definition 2.3
The weight class F ∗

2,2 , is the collection of all pairs of non-negative, locally
integrable functions (u, v) on R such that

sup
s>0

( ∫ 1/s

0
u∗(t) dt

)1/2( ∫ s

0

(
1

v

)∗
(t) dt

)1/2

<∞. (3)

We write (u, v) ∈ F ∗
2,2. Note that if (u, v) ∈ F ∗

2,2, then u satisfies inequality
(1). Here, we interpret ∞ · 0 to be 0.
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It is shown in [3] that, if (u,v)∈ F ∗
2,2, then∫ ∞

−∞
|f̂(x)|2u(x) dx ≤ C

∫ ∞

−∞
|f(x)|2v(x) dx (4)

holds for some constant C, for every f(x) such that the right hand side is
finite.

Remarks
1. Both Df and f ∗ are nonincreasing functions on the positive real axis.
2. Clearly, if f is a nonincreasing function, f = Df .

3 Main Problem
We will examine even, nonessentially increasing weight functions with a finite
number of zeros by giving concrete examples, and then determine if they can
satisfy (1).

3.1 The case for a weight function w1 with one zero for 0 < x <∞
First, consider the case for n = 1 :

w1(x) =

{
| sin x|a |x| ≤ 3π

2

1 |x| > 3π
2

,

where w1 has two zeros, at x = 0 and x = π. Then,

w̃1(x) = w1

(
1

x

)
=

{
| sin 1

x
|a |x| ≥ 2

3π

1 |x| < 2
3π

,

and
1

w1

(x) =

{
1

| sin x|a |x| ≤ 3π
2

1 |x| > 3π
2

.

The graphs of w1(x), w̃1(x) and 1
w1

(x) are labeled Figure 1, Figure 2 and

Figure 3 respectively in the List of Figures. Because w1,
1

w1
and w̃1 are all

even functions, then only consider the positive real axis for each of these
functions. If A(x) ≤ B(x), then the following is true:

DA(s) ≤ DB(s) and A∗(t) ≤ B∗(t). (5)
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The distribution function of 1
w1

(x) is

D 1
w1

(s) = 2
[
m
(
0 ≤ x ≤ 3π

2
:

1

| sin x|a
> s

)
+m

(
x >

3π

2
: 1 > s

)]
≤ p1(s),

where

p1(s) =

 6 arcsin
(

1
s1/a

)
, s ≥ 1

∞ 0 ≤ s < 1.

By definition of the nonincreasing rearrangement function,(
1

w1

)∗
(t) = inf

{
s : D 1

w1

(s) ≤ t
}
.

Since D 1
w1

(s) ≤ p1(s), then by (5)

inf
{
s : D 1

w1

(s) ≤ t
}
≤ inf {s : p1(s) ≤ t} . (6)

Therefore, (
1

w1

)∗
(t) ≤ inf {s : p1(s) ≤ t} .

Recall that if s → 1, then s1/a → 1 and 1
s1/a → 1 also. This implies that

arcsin
(

1
s1/a

)
approaches arcsin(1) = π

2
. Moreover, as s → 1, then p1(s) =

6 arcsin
(

1
s1/a

)
−→ 6

(
π
2

)
= 3π. Consider

6 arcsin
(

1

s1/a

)
= t

arcsin
(

1

s1/a

)
=

t

6
1

s1/a
= sin

(
t

6

)
s1/a = csc

(
t

6

)
s =

(
csc

t

6

)a

.

Hence, (
1

w1

)∗
(t) ≤ P ∗

1 (t)
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where

P ∗
1 (t) =


(

csc t
6

)a

, 0 ≤ t < 3π

1, t ≥ 3π

The distribution function of w̃1(x) is

Dw̃1(s) = m{x : w̃1(x) > s}.

To simplify Dw̃1(s), consider the following background calculations. Let
| sin 1

x
|a = s. For x > 0, then we have that(

sin
1

x

)a

= s

sin
1

x
= s1/a.

The points x1, x2, and x3 where
(

sin 1
x

)a

= s occur when

2

3π
≤ 1

x1

≤ 1

π
,

1

π
≤ 1

x2

≤ 2

π
,

2

π
≤ 1

x3

≤ 0.

That is, when

π ≤ x1 ≤
3π

2
,

π

2
≤ x2 ≤ π, 0 ≤ x3 ≤

π

2
.

After further calculations,

x1 =
1

π + arcsin s1/a
, x2 =

1

π − arcsin s1/a
, x3 =

1

arcsin s1/a
.

For ease of calculations, let T = arcsin s1/a. From these values, we get that

Dw̃1(s) = 2

(
(x1 − 0) + (x3 − x2)

)

= 2

(
1

π + T
+

1

T
− 1

π − T

)

= 2

(
T (π − T ) + (π2 − T 2)− T (π + T )

T (π2 − T 2)

)
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= 2

(
πT − T 2 + π2 − T 2 − Tπ − T 2

T (π2 − T 2)

)

= 2

(
π2 − 3T 2

T (π2 − T 2)

)
.

At this point,

Dw̃1(s) =



0, s > 1 (7)

4
3π
, s = 1 (8)

2(π2−3T 2)
T (π2−T 2)

, 0 < s < 1 (9)

The value for (7) is due to the fact that | sin z| ≤ 1. Now we will approximate
(9) for s close to 0. Note that as s→ 1, then s1/a → 1 and T = arcsin s1/a →
π
2
. Let q(T ) = 2(π2−3T 2)

T (π2−T 2)
. Hence,

q(T ) →
2(π2 − 3(π

2
)2)

π
2
(π2 − (π

2
)2)

=
2(1

4
)π2

π
2
(3

4
)π2

=
4

3π
.

As s → 0+, then s1/a → 0+, T → 0, q(T ) ∼ 2
T
→ +∞. For t ∼ 0, then by

Taylor series we have for f(t) = arcsin t, f ′(t) = 1√
1−t2

and f ′(0) = 1. The
Taylor expansion is

f(t) = f(0) + f ′(0)t+ f ′′(0)
t2

2!
+ . . . = t+ . . . ,

and hence arcsin t ∼ t. Then for 0 < s < δ, then T = arcsin s1/a ≈ s1/a. Now
the expression for q(T ) can be simplified to

q(T ) =
2

T

(
π2 − 3T 2

π2 − T 2

)
≤ 2

T

because

(
π2−3T 2

π2−T 2

)
≤ 1. Hence, T ≥ s1/a which implies that q(T ) ≤ 2

s1/a for

0 < s < 1. Since Dw̃1(s), then q(T ) is decreasing.
We can now rewrite Dw̃1(s) as Dw̃1(s) ≤ Q1(s) where

Q1(s) =



0, s > 1 (10)

4
3π
, s = 1 (11)

2
s1/a , 0 < s < 1 (12)
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Now we can write the nonincreasing rearrangements w̃∗
1(t) and Q∗

1(t) as

w̃∗
1(t) = inf{s|Dw̃1(s) ≤ t} and Q∗

1(t) = inf{s|Q1(s) ≤ t}

and by (6) we have that w̃∗
1(t) ≤ Q∗

1(t) where

Q∗
1(t) =

{
1, 0 ≤ t ≤ 2

(2
t
)a, 2 < t <∞.

Now consider

(
∫ 1/s

0
w̃∗

1(t) dt)
1/2(

∫ s

0
(1/w1)

∗(t) dt)1/2,

where 0 < s. The supremum of this product must be bounded in order
to have (w̃1, w1) ∈ F ∗

2,2 and moreover that w̃1 satisfies inequality (1). To
demonstrate that this is indeed true, we only need to show that

(
∫ 1/s

0
w̃∗

1(t) dt)
1/2(

∫ s

0
(1/w1)

∗(t) dt)1/2

is bounded. Let ∫ 1/s

0
w̃∗

1(t) = C1 and
∫ s

0

(
1

w1

)∗
(t) = D1.

Now compute C1D1 for 0 < s and determine if C1D1 is bounded. Since
w̃∗

1(t) ≤ Q∗
1(t) and ( 1

w1
)∗(t) ≤ P ∗

1 (t), then

C1D1 ≤
( ∫ 1/s

0
Q∗

1(t) dt
)( ∫ s

0
P ∗

1 (t) dt
)
.

Because of the definition of (w̃1, w1) belonging to F ∗
2,2, it is enough to show

that for any s > 0, ( ∫ 1/s

0
Q∗

1(t) dt
)( ∫ s

0
P ∗

1 (t) dt
)

is bounded for all fixed a where 0 < a < 1.

Based on Q∗
1 and P ∗

1 , there are four cases of s to consider. Further work
will illustrate that these four cases can be combined into three cases.

Case 1 : 1
s
≤ 2 or s ≥ 1

2
. Then∫ 1/s

0
Q∗

1(t) dt =
∫ 1/s

0
1 dt =

1

s
.
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Case 2 : 1
s
> 2 or s < 1

2
. Then

∫ 1/s

0
Q∗

1(t) dt =
∫ 2
0 Q

∗
1(t) dt+

∫ 1/s
2 Q∗

1(t) dt

=
∫ 2
0 1 dt+

∫ 1/s
2 (2

s
)a dt

= 2 + 2a(
∫ 1/s
2 t−a dt)

= 2 + 2a

[
1

−a+1
t−a+1

] 1
s

2

= 2 + 2a

(
t1−a

1−a

)∣∣∣∣ 1s
2

= 2 + 2a

(
( 1

s
)1−a−21−a

1−a

)
= 2(1−a)

1−a
+ 2asa−1−2

1−a

= 2asa−1−2a
1−a

Case 3 : s < 3π. Then ∫ s

0
P ∗

1 (t) dt =
∫ s

0

(
csc

t

6

)a

dt.

In general, since one cannot exactly evaluate
∫
(csc x)a dx where 0 < a < 1

in closed form, then we must perform the following calculations to obtain an
estimate for

∫
(csc x)a dx.

Consider the function φ(x) = x− tan x, where φ(0) = 0. Then

φ
′
(x) = 1− sec2 x < 0 for x > 0.

Consider another function ψ(x) = tan x− x, where ψ(0) = 0. Then

ψ
′
(x) = sec2 x− 1 > 0.

Note also that ψ(x) ≥ 0 for all x > 0.

If 0 ≤ x ≤ π
2
, then x ≤ tan x. Now consider the function F (x) = sin x

x
.

Then

F
′
(x) =

cosx[x− tan x]

x2
.
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On the interval
(
0, π

2

)
, F

′
(x) < 0. Hence, for 0 < x < π

2
, then

2

π
≤ sin x

x
≤ 1,

but letting x→ π
2

or x→ 0, then the ineqality is true for 0 ≤ x ≤ π
2
.

Now we have all the information needed to determine a lower and an up-
per bound for

∫ s
0 (csc( t

6
))a dt. Recall that for 0 < x ≤ π

2
, we have

2

π
<

sin x

x
≤ 1,

1

x
<

1

sin x
≤ π

2x
,

1

x
< csc x ≤ π

2x
.

For 0 < t ≤ 3π or 0 ≤ t
6
≤ π

2
,

6

t
≤ csc

t

6
≤ 6π

2t
,

(
6

t

)a

≤
(

csc
t

6

)a

≤
(

6π

2t

)a

.

Now ∫ s

0

(
6

t

)a

dt ≤
∫ s

0

(
csc

t

6

)a

dt ≤
∫ s

0

(
3π

t

)a

dt,

6as1−a

1− a
≤
∫ s

0

(
csc

t

6

)a

dt ≤ (3π)as1−a

1− a
,

that is for s ≤ 3π,

6as1−a

1− a
≤
∫ s

0
P ∗

1 (t) dt ≤ (3π)as1−a

1− a
.
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Case 4 : s ≥ 3π. Then

∫ s

0
P ∗

1 (t) dt =
∫ 3π
0 P ∗

1 (t) dt+
∫ s
3π P

∗
1 (t) dt

=
∫ 3π
0

(
csc t

6

)a

dt+
∫ s
3π 1 dt

From the previous four cases, one can conclude that there are actually three
cases (I, II and III) of s to consider. In each of these cases, let( ∫ 1/s

0
Q∗

1(t) dt
)( ∫ s

0
P ∗

1 (t) dt
)

= H.

We will disregard the lower bounds for Cases I, II and III because the integrals
in each of these cases are positive.

Case I : 0 < s < 1
2
. Then

H ≤
(

2asa−1−2a

1−a

)(
(3π)as1−a

1−a

)
= 2a(3π)a−2a(3π)as1−a

(1−a)2

≤ 2a(3π)a

(1−a)2

= (6π)a

(1−a)2

= Z1

Recall that C1D1 ≤ H. Since 0 < a < 1, then H ≤ Z1 where Z1 ∈ R+ and
hence H is bounded above.

Case II : 1
2
≤ s < 3π. Here,

H ≤ 1
s

(
(3π)as1−a

1−a

)
= (3π)a

(1−a)sa

≤ (3π)a

(1−a)( 1
2
)a

= (6π)a

(1−a)

= Z2
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Recall that C1D1 ≤ H. Since 0 < a < 1, then H ≤ Z2 where Z2 ∈ R+ and
hence H is bounded above.

Case III : s ≥ 3π.

H ≤ 1
s

(
(3π)a(3π)1−a

1−a
+ s− 3π

)
= 1

s

(
(3π)a(3π)(3π)−a

1−a
+ s− 3π

)
= 1

s

(
3π

1−a
+ s− 3π

)
= 3π

(1−a)s
+ 1− 3π

s

≤ 3π
(1−a)s

+ 1

≤ 3π
(1−a)(3π)

+ 1

= 1
1−a

+ 1

= Z3

Recall that C1D1 ≤ H. Since 0 < a < 1, then H ≤ Z3 where Z3 ∈ R+

and hence H is bounded above. Now, C1D1 ≤ max(Z1, Z2, Z3). This means
C1D1 is bounded above which implies that (w̃1, w1) ∈ F ∗

2,2. Thus, w̃1 satisfies
inequality (1).

3.2 The case for a weight function wn with n zeros for 0 < x <∞
Consider the case for any natural number n where

wn(x) =

{
| sin x|a |x| ≤ (2n+1)π

2

1 |x| > (2n+1)π
2

Then,

w̃n(x) = wn

(
1

x

)
=

{
| sin 1

x
|a |x| ≥ 2

(2n+1)π

1 |x| < 2
(2n+1)π

,

and
1

wn

(x) =


1

| sin x|a |x| ≤ (2n+1)π
2

1 |x| > (2n+1)π
2

.
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As in the case for n = 1, only consider the positive real axis for each function
since they are all even. Recall also from this case that if A(x) ≤ B(x), then
the following is true:

DA(s) ≤ DB(s) and A∗(t) ≤ B∗(t).

We will use similar reasoning to conclude that (w̃n, wn) belongs to F ∗
2,2 for

every natural number n and hence w̃n satisfies inequality (1).

The distribution function of 1
wn

(x) is

D1/wn(s) = 2
[
m
(
0 ≤ x ≤ (2n+ 1)π

2
:

1

| sin x|a
> s

)
+m

(
x >

(2n+ 1)π

2
: 1 > s

)]
≤ pn(s),

where

pn(s) =

 2(2n+ 1) arcsin
(

1
s1/a

)
, s ≥ 1

∞ 0 ≤ s < 1.

By definition of the nonincreasing rearrangement function,(
1

wn

)∗
(t) = inf

{
s : D 1

wn
(s) ≤ t

}
.

Using similar reasoning as in the case n = 2,(
1

wn

)∗
(t) ≤ inf {s : pn(s) ≤ t} .

Recall that if s→ 1, 1
s1/a → 1, arcsin

(
1

s1/a

)
approaches π

2
and

pn(s) = 2(2n+ 1) arcsin
(

1

s1/a

)
−→ 2(2n+ 1)

(
π

2

)
= (2n+ 1)π.

Consider

2(2n+ 1) arcsin
(

1

s1/a

)
= t

arcsin
(

1

s1/a

)
=

t

2(2n+ 1)
1

s1/a
= sin

(
t

2(2n+ 1)

)
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s1/a = csc
(

t

2(2n+ 1)

)
s =

(
csc

t

2(2n+ 1)

)a

.

Hence, (
1

wn

)∗
(t) ≤ P ∗

n(t)

where

P ∗
n(t) =


(

csc t
2(2n+1)

)a

, 0 ≤ t < (2n+ 1)π

1, t ≥ (2n+ 1)π

As n increases, the domain of wn( 1
x
) decreases. Hence, wn( 1

x
) ≤ w1(

1
x
) for all

natural numbers n. Moreover by (5),

w̃∗
n(t) ≤ w̃∗

1(t).

Since w̃∗
1(t) ≤ Q∗

1(t), then w̃∗
n(t) ≤ Q∗

1(t). Let

∫ 1/s

0
w̃∗

n(t) = Cn and
∫ s

0

(
1

wn

)∗
(t) = Dn.

Then we have

CnDn ≤
( ∫ 1/s

0
Q∗

1(t) dt
)( ∫ s

0
P ∗

n(t) dt
)
.

Using analogous computations as those found in Section 3.1 show that
(w̃n, wn) ∈ F ∗

2,2 and thus, w̃n satisfies inequality (1).

13



4 Summary

Yayama’s thesis used estimations of the distribution function and approxi-
mations for sin t and arcsin t to prove that a nonessentially increasing weight
function w(x) with n zeros can satisfy the inqequality (1). This paper pro-
vides more precise estimates of the distribution function and uses approxi-
mations as a last step.
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