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This thesis presents the development of a discrete time observer for estimating

state information from optic flow and radar measurements. It is shown that esti-

mates of translational and rotational speed can be extracted using a least squares
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and simplicity, both of which are imperative for implementation on MAVs due to

stringent size, weight, and power requirements.
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Chapter 1

Introduction

Unmanned air vehicles (UAVs) are a well established class of aircraft which

have been in use for several decades. UAVs carry a variety of sensors capable of

determining the vehicles’ pose and velocity to enable a level of autonomy which

includes stability control, trajectory tracking, and GPS-based waypoint navigation.

However, these vehicles are designed for missions at high altitudes and are thus un-

able to navigate unmapped obstacles such as buildings, trees, or telephone wires. In

recent years, an emphasis has been placed on the development of micro air vehicles

(MAVs), a miniaturized class of UAVs whose mission profiles typically include navi-

gating close to the ground in unmapped, cluttered outdoor or indoor environments.

These vehicles require more precise sensing and control than typical UAVs to safely

navigate the cluttered environments. The ability for a vehicle to autonomously es-

timate egomotion and proximity to obstacles is considered an advanced capability,

even for large vehicles. MAVs are very small platforms, typically on the order of

several hundred grams or less, so they are limited to carrying small, low weight

sensors with low power and processing requirements, thus severely restricting the

type of sensors and control algorithms which can be implemented on-board. As a

result, the investigation of novel sensing techniques is necessary to advance MAV

technology.
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Recent advancements in radar technology have allowed researchers to design

miniaturized radar sensors which may be implemented on MAVs. Scientists at the

University of Michigan are currently developing a radar sensor with a mass of 5

grams and peak power of 200 mW [1, 2]. This thesis investigates the combination

of Michigan’s radar sensor and an optical camera for state estimation and control

of small autonomous vehicles. The focus of this thesis is to obtain translational

velocity (u,v,w) and angular rate (p,q,r) estimates of sufficient accuracy to be used

in feedback control for aircraft stabilization and obstacle avoidance. Unfortunately,

accurate translational velocity measurements can be difficult to obtain, particularly

for MAVs. Inertial measurement units (IMUs), which contain gyros and accelerom-

eters, are the state-of-the-art in velocity and rate estimation due to their low weight

and power requirements. While gyro measurements tend to show some bias, ac-

celerometer data, which can provide velocity estimates, experience random walk be-

havior stemming from integrating accelerometer noise and resulting in highly biased

estimates. In general, inertial measurement is much more capable of determining

attitude motion than translational motion. As a result, vehicles using IMUs typi-

cally benefit from the addition of sensors such as GPS or vision-based systems in

order to provide accurate knowledge of translational motion. In this thesis, empha-

sis is placed on obtaining accurate translational velocity estimates without the use

of GPS or IMU sensors. Rather, these estimates are obtained using the combination

of an omni-directional visual sensor and a radar sensor.

Naturally, vision is an appealing technique for providing a thorough knowledge

of an environment. Several machine vision approaches have been investigated [3, 4,
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5, 6, 7], but many of these techniques prove to be computationally expensive and

physically cumbersome. Vision-based sensors typically require robust estimation

schemes such as the extended Kalman Filter (EKF) [4], the unscented Kalman

Filter (UKF) [5], or sigma point Kalman Filters [7], which are non-linear estimation

techniques that lead to computational complexity and more physically cumbersome

systems. As result, the vehicles which utilize these vision methods tend to be much

larger than a typical MAV just to be able to carry the sensors and accompanying

hardware to implement machine vision.

However, one visual based method for detecting speed and proximity to ob-

stacles which has proven to be viable for implementation on MAVs is optic flow.

Derived from the visual perception of flying insects, optic flow is the characteristic

patterns of visual motion which form on the retinas of insects as they move about an

environment. These patterns are a function of relative speed and relative proximity

of the insect to obstacles in the surroundings.

Scientists are able to mimic the way insects compute optic flow using man

made cameras and algorithms which monitor the changes in luminosity patterns

with time. Due to the small size, weight and computation power needed for optic

flow sensors, as well as the ample information they can extract from images of the

environment, optic flow is an ideal candidate for unmanned vehicles.
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1.1 Optic Flow based Navigation in Robotics

Since optic flow was first recognized as a feasible sensing method for MAVs,

many researchers have investigated different schemes for utilizing optic flow in MAV

control and navigation. One of the earliest and most widely used control strategy

is the “balance strategy,” which attempts to center the vehicle between obstacles

by equalizing optic flow measurements on the left and right sides of the vehicle [8].

Several studies investigate the application of this centering scheme to regulate the

velocity of a vehicle travelling through tunnels of various widths [9, 10, 11, 12, 13,

14, 15]. While these methods provide navigational cues for obstacle avoidance, they

ignore the problem of accurate state estimation for use with traditional feedback

control approaches.

In pursuit of a more formal approach to allow the use of conventional naviga-

tion and control techniques, many researchers have investigated the use of optic flow

for state estimation [16, 17, 18, 19, 20, 21, 22, 23, 24]. Some studies have explored

extracting total velocity estimates from optic flow but ignored the problem of find-

ing estimates for the directional velocities [17, 16]. Many studies use an extended

Kalman Filter (EKF) with the non-linear optic flow equations forming the mea-

surement model [16, 17, 18, 4]. Not only do these solutions require a linearization

step during each state estimate step, but some require the addition of an IMU [18]

or a feature detection step in order to reduce the noise inherent in the optic flow

measurements [16, 17, 4]. While these schemes can provide decent estimates, since

they use dynamic filtering strategies to clean up optic flow estimates they can be
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quite computationally expensive and thus difficult to implement on an MAV. More

recently, some researchers have investigated Wide Field Integration (WFI) of optic

flow for state estimation [19, 20, 21, 22, 23]. WFI provides excellent state estimates

with very low computation and power requirements. However, WFI schemes require

the development of weighting patterns which map optic flow data from a spatially

distributed sensor array to actuator commands. The development of these weight-

ing patterns require an assumed structure for a vehicles’ immediate surroundings.

While the environment model assumptions made in [23] are typically sufficient, this

work seeks to use optic flow measurements for state estimation without making any

assumptions about the environment and using sensors with a smaller field of view.

The goal of this work is to combine raw optic flow measurements with data

collected from a radar sensor to accurately estimate translational and rotational

velocity. Optic flow is a relative measure of speed over proximity. Therefore, if

accurate proximity measurements can be acquired and compared with optic flow es-

timates, then more accurate knowledge of velocity can be obtained. Franz et. al. [24]

investigated a method for obtaining translational and rotational velocity estimates

from optic flow and prior knowledge of an environment. Franz sent a rotating laser

scanner through an office environment along several prescribed paths to simulate

typical motion patterns of an autonomous robot. The laser scanner was used to

collect distance statistics which include properties of both the environment and of

specific movement patterns of a robot. The distance measurements provide an aver-

age nearness and covariance which were supplied to a “robot” equipped with a vision

sensor for computing optic flow. The robot used a static estimation scheme derived
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from least squares to estimate egomotion from the optic flow measurements and pre-

recorded distance statistics. The results obtained from Franz’s experiments revealed

that accurate estimates of rotational velocity could be obtained because rotational

optic flow has no dependence on distance statistics. However, since translational

optic flow is highly dependent on distance, the translational velocity estimates ob-

tained by Franz were much less accurate and degraded quickly against changing

scenes and simultaneous rotation. The results obtained by Franz validates the proof

of concept for his proposed egomotion estimation scheme. However, since it relies so

heavily on prior knowledge of an environment and an assumed vehicle trajectory, it

is infeasible for implementation on an autonomous MAV. Thus, this work improves

on the scheme proposed by Franz by adding an active distance measurement sensor,

such as a miniaturized radar sensor, to an autonomous 6 DOF robot in order to

provide proximity measurements captured simultaneously with optic flow measure-

ments so that better speed information can be extracted. This would allow the

vehicle to traverse along any path without prior knowledge of the environment and

still obtain accurate translational and rotational velocity measurements.

1.2 Thesis Contributions and Organization

While optic flow has proven to be a viable source of information for MAV

navigation, this work presents one alternative implementation of obtaining state in-

formation from optic flow. The goal of this thesis is to develop an estimation scheme

which can be applied to a 6 DOF autonomous MAV with on-board radar to obtain
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accurate velocity information sufficient for feedback control. To achieve this goal,

experiments must be conducted to determine a sufficient sensor arrangement which

will yield accurate velocity estimates while still maintaining a realizable hardware

configuration. The proposed solution builds on the estimation scheme investigated

in [24] by including a discrete time Kalman Filter to reduce noise in the velocity

and rate estimates resulting from sensor arrangements with small fields of view.

Rather than using a non-linear Kalman Filter to clean up optic flow estimates as

in many previous studies, the linear Kalman Filter implemented in this work im-

proves estimates for the six velocity and rate states u, v, w, p, q, r obtained from the

integration of optic flow estimates and radar measurements via least squares estima-

tion. The advantage of this implementation of the Kalman Filter is computational

simplicity because fewer states are filtered and there is no need for a linearization

step during each state estimation step. Finally, a feedback control scheme, which

is robust to noise in state estimates and allows a 6 DOF vehicle to navigate a 3D

urban environment, is developed.

This thesis is organized as follows. Chapter 2 presents a discussion on the

optic flow and radar sensors used for state estimation as well as a description of

the vehicle testbed used to validate the estimation and control methods presented

in this thesis. Chapter 3 presents the various state estimation schemes investigated

for this research, including both static and dynamic estimators employing spherical

optic flow and radar. Chapter 4 describes the static H∞ feedback control scheme

implemented to regulate position, orientation and velocity using state estimates

computed from the methods presented in Chapter 3. Chapter 5 presents results
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obtained from simulation of the estimation and control schemes discussed in the

previous chapters. Finally, Chapter 6 summarizes the findings of this research and

discusses some directions for future work.
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Chapter 2

Micro Air Vehicle Sensing and Dynamics

This chapter presents the sensors used for state estimation in this study. The

theory associated with optic flow is discussed and mathematical models are pre-

sented. The radar sensors are described and the vehicle testbed and dynamics are

discussed.

2.1 Optic Flow

Optic flow is the apparent visual motion experienced by an observer when

moving through an imaged environment. True optic flow is the vector field describing

the relative velocities of points within the projected image over the viewing surface,

e.g. the retina of an insect. This velocity field is defined by the translational and

rotational motion, as well as the relative proximity of the observer to objects in the

surrounding environment. The optic flow pattern Q̇ on a spherical surface can be

expressed mathematically [25] as

Q̇ = ! × r + �[v − ⟨v, r⟩r] (2.1)

where ! = [p, q, r]T is the angular velocity of the vantage point, v = [u, v, w]T

is the translational velocity of the vantage point, and � is the nearness function,
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Figure 2.1: Geometry of imaging surface for spherical optic flow. (A) Azimuth and
elevation angle definitions. (B) Optic flow components Q̇� and Q̇.

which represents the distribution of objects in the surrounding environment. The

nearness function is defined as the inverse of the distance d(, �) from the observer

to an object in the environment through a point on the imaging surface r(, �) at

a particular viewing angle of azimuth  ∈ [0, 2�] and elevation � ∈ [0, �]. Thus

�(, �) = 1
d(,�)

where d(, �) ∈ [0,∞). Figure 2.1 illustrates the optic flow pattern

from Eqn (2.1) can be broken down into components of azimuth and elevation:

Q̇ = Q̇ ê + Q̇�ê� (2.2)

where

Q̇ = p cos � cos  + q cos � sin  − r sin � + �(u sin  − v cos )

Q̇� = p sin  − q cos  + �(−u cos � cos  − v cos � sin  + w sin �). (2.3)
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In robotic applications, optic flow is measured as either 1-D flow (either Q̇

or Q̇�) or 2-D flow (both Q̇ and Q̇�). In the work presented in this research, 2-D

optic flow is assumed.

2.2 Radar

Radar is a valuable source for collecting enviroment knowledge. It is a well

established sensor on both manned and unmanned aircraft. Synthetic Aperature

Radar (SAR) is a common form of radar found on aircraft. This type of radar

is used by repeatedly emiting pulses of radio waves with wavelengths between a

meter to just a few millimeters from a single beam-forming antenna. The returning,

or echo, waveforms recieved in succession as the vehicle translates are stored and

post-processed together to resolve an image of the targeted region. While common

on UAVs, these radar systems are typically on the order of 50 pounds or more —

impossible sizes for a MAV. The Radiation Lab at the University of Michigan is

currently working on minaturizing radar sensors suitable for use on MAV platforms.

The radar being developed at Michigan is a 215 GHz electronically-scanned radar

with a horizontal field of view of 50 degrees, with 2-degree resolution, and a vertical

field of view of 30 degrees. The range resolution is 25 cm, which is determined by

the chirp bandwidth of the system, while the range of the system is approximately

200 meters, given the noise levels chosen [1, 2].
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2.3 Vehicle Dynamics

The vehicle used to test the state estimation and control algorithms derived in

this study is an X-UFO Quadrotor MAV made by Ascending Technologies GmbH.

The 6 DOF vehicle, shown in Figs. 2.2 and 2.3, has an overall diameter of 40

cm, an overall mass of 505 g, and rotor diameter of 20 cm. A linearized flight

dynamics model was obtained by Gremillion in [26]. The kinematics and dynamics

are linearized about forward flight with uref = 1 m/s. For simulation, the full

Figure 2.2: X-UFO Quadrotor.
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nonlinear kinematic equations are used. The equations of motion are

u̇ = Xuu+X��

v̇ = Yvv − urefr + Y��

ẇ = Zww + urefq + Ztℎr�tℎr

ṗ = Lpp+ L��+ Llat�lat

q̇ = Mqq +M�� +Mlon�lon (2.4)

ṙ = Nrr +Nyaw�yaw

�̇ = Φpp+ Φlat�lat

�̇ = Θqq + Θlon�lon

 ̇ = Ψrr + Ψyaw�yaw

The actuator saturation limits are: ∣�lat∣ ≤ 1, ∣�lon∣ ≤ 1, ∣�yaw∣ ≤ 1, ∣�tℎr∣ ≤ 1. The

Figure 2.3: Quadrotor axes definitions.
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Table 2.1: Quadrotor Parameter Values

Parameter Value Parameter Value

Xu -0.27996 Φp 0.9655

Yv -0.22566 Θq 0.9634

Zw -1.2991 Ψr 0.6748

Lp -2.5110 Ztℎr -39.282

Mq -2.4467 Llat 11.468

Nr -0.4948 Mlon 9.5711

X� -10.067 Nyaw 3.5647

Y� 9.8648 Φlat 0.0744

L� -21.358 Θlon 0.0594

M� -18.664 Ψyaw 0.0397

characteristic stability derivatives are defined in Table 2.1.

For convenience in later chapters, Eqn. (2.4) can be expressed in the typical

linear time invariant state space model of the form ẋ = Ax + Bu where the state

vector is given by x = [�, �,  , u, v, w, p, q, r]T, the control input vector is u =

[�lat, �lon, �tℎr, �yaw]T and the dynamics and controls matrices are given in (2.5) and

(2.6), respectively.
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 Φp 0 0

0 0 0 0 0 0 0 Θq 0

0 0 0 0 0 0 0 0 Ψr

0 X� 0 Xu 0 0 0 0 0

Y� 0 0 0 Yv 0 0 0 −uref

0 0 0 0 0 Zw 0 uref 0

L� 0 0 0 0 0 Lp 0 0

0 M� 0 0 0 0 0 Mq 0

0 0 0 0 0 0 0 0 Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φlat 0 0 0

0 Θlon 0 0

0 0 0 Ψyaw

0 0 0 0

0 0 0 0

0 0 Ztℎr 0

Llat 0 0 0

0 Mlon 0 0

0 0 0 Nyaw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

15



Chapter 3

State Estimation

This chapter presents strategies for estimating vehicle velocity states using

on-board sensor measurements. A simple static least squares estimator which fuses

optic flow and radar measurements is developed to estimate translational and rota-

tional velocity. In addition, an implementation of the linear Kalman Filter is derived

in order to reduce noise in the least square estimates.

Optic flow is not a quantity which can be measured directly; rather, the value

Q̇ is an estimate of optic flow which is dependent on the luminance incident on the

imaging surface. This estimation process, along with sensor noise and contrast and

texture variations throughout the surfaces in the environment, introduce error into

the optic flow measurements. In addition, the radar proximity measurements are

also corrupted by several sources of noise.

Given the noisy measurements available from optic flow and radar, the goal is

to obtain rate and velocity information necessary to control an aircraft and permit

autonomous navigation of a cluttered environment. In other words, the goal is to

find an estimate x̂ of the state vector x given the linear state space model

ẋ = Ax +Bu (3.1)

y = Cx (3.2)
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where u is the control vector, A is a linear, time invariant system matrix, B is

a matrix of constant control sensitivity derivatives, and C is the output equation

matrix. The process model, (3.1), for the quadrotor can be found from (2.5) and

(2.6).

3.1 Static Estimation

In this section, a method of static estimation for determining translational and

rotational velocity from noisy measurements is presented. In optic flow estimation,

the combined effect of the various uncertainties have been modelled in [27, 28] as

zero mean white Gaussian noise. Thus the optic flow measurement is expressed as

˙̃Q = Q̇ + �, (3.3)

where ˙̃Q is the optic flow measurement, and � is noise assumed to be zero mean,

white, and uncorrelated with itself at different viewing angles and directions. There-

fore, if the following vectors are defined:

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(1, �1)

�(2, �2)

...

�(N , �N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, �� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��(1, �1)

��(2, �2)

...

��(N , �N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where � is the noise on the optic flow measurement in the azimuthal direction

˙̃Q, �� is the noise on the optic flow measurement in the elevation direction ˙̃Q�,
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and N is the number of optic flow measurement nodes, then E[���
T] = 0 and

E[��
T] = �2

�IN×N . It is also assumed that the noise covariance is identical at

each measurement node and in both directions E[��
T] = E[����

T]. The radar

distance measurements, too, are corrupted by noise, thus,

�̃ = �+ �. (3.4)

where �̃ is the nearness measurement, and � is noise assumed to be zero mean, white,

and uncorrelated with itself at different viewing angles. If the following vector is

defined

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(1, �1)

�(2, �2)

...

�(N , �N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then E[��T] = �2
�IN×N .

3.1.1 Measurement Model

In state estimation, it is required that a set of measurements, z̃, which are

dependent on the states x and thus provide knowledge of the system dynamics, can

be obtained. Furthermore, for simplicity, we can impart the restriction that the

measurements be linearly related to the states. The equation which relates x to z̃

is expressed as:

z̃ = Hx + v (3.5)
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where H is the linear transformation from x to z̃ and v is a vector of measurement

errors. In this section, measurement models for static estimation are developed for

two cases. First, the case of 1-D ring constrained optic flow and radar is examined.

This case is applicable to the quadrotor vehicle when constrained to 3 DOF as in

Figure 3.1. Next, the case of spherical optic flow and radar, which is applicable to

6 DOF vehicles, is presented.

3.1.1.1 Yaw Plane Optic Flow and Radar

We first consider the case of 1-D optic flow restricted to the yaw plane. This

measurement domain, defined as a ring of azimuthal measurements (Q̇), is appli-

cable to the quadrotor presented in Fig. 3.1 which is restricted to forward motion,

lateral motion and yaw rotation only, as in [21]. The simplified optic flow model

which relates to this case is presented here and is written without subscripts and

Figure 3.1: Quadrotor axes definitions in tunnel environment when constrained to
3 DOF with ring constrained optic flow and radar.
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superscripts for simplicity:

Q̇ = −r + �(u sin  − v cos ). (3.6)

The observation equation is then obtained from Eqns. (3.6), (3.3) and (3.4).

If N discrete optic flow and radar measurements are taken along the yaw plane, the

observation equations are written as

˙̃Q1 = −r + (�1 + �1)(u sin 1 − v cos 1) + �1

˙̃Q2 = −r + (�2 + �2)(u sin 2 − v cos 2) + �2

...

˙̃QN = −r + (�N + �N)(u sin N − v cos N) + �N (3.7)

By allowing vj = �j + �j(u sin j − v cos j) for j = 1, 2, . . . , N , Eqn. (3.7) can take

the form of the linear measurement equation shown in Eqn. (3.5) where z̃ is the

N×1 vector of optic flow measurements z̃ = [ ˙̃Q1,
˙̃Q2, . . . ,

˙̃QN ]T, x is the 3×1 vector

of angular and translational velocities x = [u, v, r]T, v is the N × 1 error vector and

H is the N × 3 matrix given by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 sin 1 −�1 cos 1 −1

�2 sin 2 −�2 cos 2 −1

...
...

...

�N sin N −�N cos N −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)
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Thus, the full observation equation is written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙̃Q1

˙̃Q2

...

˙̃QN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 sin 1 −�1 cos 1 −1

�2 sin 2 −�2 cos 2 −1

...
...

...

�N sin N −�N cos N −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
u

v

r

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 + �1(u sin 1 − v cos 1)

�2 + �2(u sin 2 − v cos 2)

...

�N + �N(u sin N − v cos N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.9)

3.1.1.2 Spherical Optic Flow and Radar

Now consider the case of 2-D optic flow measurements taken around the sphere.

The observation equation can be obtained in a similar fashion as the planar 1-D case,

however the relevant equations are now Eqns. (2.3), (3.3) and (3.4). If optic flow

and radar measurements are taken at N discrete points on the sphere, then the

observation equations are written as

˙̃Q
j =p cos �j cos j + q cos �j sin j − r sin �j

+ (�j(j, �j) + �j)(u sin j − v cos j) + �,j for j = 1, 2, . . . , N

˙̃Q�
j =p sin j − q cos j + (�j(j, �j) + �j)(−u cos �j cos j

− v cos �j sin j + w sin �j) + ��,j for j = 1, 2, . . . , N (3.10)

By allowing v,j = �,j + �j(u sin j − v cos j) for j = 1, 2, . . . , N and v�,j = ��,j +

�j(−u cos �j cos j − v cos �j sin j + w sin �j) for j = 1, 2, . . . , N , Eqn. (3.10) can
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take the form of the linear measurement equation shown in Eqn. (3.5) where z̃ is

the 2N × 1 vector of optic flow measurements

z̃ = [ ˙̃Q
1 ,

˙̃Q
2 , . . . ,

˙̃Q
N ,

˙̃Q�
1 ,

˙̃Q�
2 , . . . ,

˙̃Q�
N ]T,

x is the 6× 1 vector of angular and translational velocities

x = [u, v, w, p, q, r]T,

v is the 2N × 1 error vector

v =

⎡⎢⎢⎣v

v�

⎤⎥⎥⎦ ,
and H is the 2N × 6 matrix given by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 s1 −�1 c1 0 c�1 c1 c�1 s1 − s�1

�2 s2 −�2 c2 0 c�2 c2 c�2 s2 − s�2

...
...

...
...

...
...

�N sN −�N cN 0 c�N cN c�N sN − s�N

−�1 c�1 c1 −�1 c�1 s1 �1 s�1 s1 − c1 0

−�2 c�2 c2 −�2 c�2 s2 �2 s�2 s2 − c2 0

...
...

...
...

...
...

−�N c�N cN −�N c�N sN �N s�N sN − cN 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.11)
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where s = sin , s� = sin �, c = cos , and c� = cos �.

3.1.2 Least Squares Inversion

When written as Eqn. (3.5) the problem is posed in the form of a standard

static linear estimation problem, in which the solution of an overdetermined, incon-

sistent set of linear equations is sought. Gauss’s principle of least squares solves for

x̂, the estimate of x which minimizes the sum of the square of the residual errors

[29]. The residual error is defined as the difference between the measurements and

the estimate of the measurements e ≡ z̃− ẑ, where the estimated measurements are

simply defined as ẑ = Hx̂. Thus, the goal of the least squares method is to solve

for x̂ by minimizing the cost function J = 1
2
eTe. With some manipulation, J can

be written as

J = J(x̂) =
1

2
(z̃Tz̃− 2z̃THx̂ + x̂THTHx̂). (3.12)

To minimize J with respect to x̂, the partial derivative is found and set equal to

zero:

∂J

∂x̂
= −z̃TH + x̂THTH (3.13)

= 0.
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Solving this equation for x̂ results in

HTHx̂ = HTz̃

x̂ = (HTH)−1HTz̃. (3.14)

As long as the number of measurements N is greater than the number of unknown

states n, and the measurements are linearly independent, i.e. H is full rank, Eqn.

(3.14) provides the optimal static estimates for translational and angular velocities,

x̂ = [û, v̂, r̂]T for the planar case in section 3.1.1.1 and x̂ = [û, v̂, ŵ, p̂, q̂, r̂]T for the

spherical case in section 3.1.1.2.

3.2 Dynamic Estimation

As will be shown in Chapter 5, the least squares static estimation scheme

provides adequate estimates for the complicated case of the 6 DOF quadrotor only

when the sensor coverage area has a wide field of view. However, for the sensors

selected for this work, it is more practical to implement a sensor arrangement with a

much more narrow field of view, which leads to a serious degradation in the accuracy

of the state estimates. Thus, it is necessary to develop a sequential estimation

scheme which follows the recursive process of prediction and correction in order to

filter the noisy state estimates resulting from a small field of view. The Kalman

Filter provides the optimal estimation for linear systems subject to Gaussian noise

and whose state variables can be described with Gaussian probability distributions.

The literature on the Kalman Filter is quite extensive and the full derivation can
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be found in sources such as [30, 31]. However, the discrete time Kalman Filter will

be described in brief here.

First, assume that both the dynamic model of the vehicle and the measure-

ments are available in the discrete time form, and that both model and measure-

ments are corrupted by noise. The model for this case is given by

xk+1 = Fkxk +Gkuk + wk (3.15)

ỹk = Ckxk + vk (3.16)

where xk is the state vector at time k, uk is the input vector, and vk and wk are

assumed to be zero-mean Gaussian white-noise processes, i.e. the errors are not

correlated forward or backward in time, so

E[vkvj] =

⎧⎨⎩
0 k ∕= j

Rk k = j

(3.17)

E[wkwj] =

⎧⎨⎩
0 k ∕= j

Qk k = j

(3.18)

It is further assumed that vk and wk are uncorrelated, i.e. E[vkwk] = 0 for all k. If

it turns out the noise sources creating w are uncorrelated, then Qk will be a diagonal

matrix with the diagonal elements given by

Qk,i = �2
w,i (3.19)
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where �w,i is the standard deviation of the itℎ element of w. Likewise, if the noise

sources contributing to v are uncorrelated, then Rk will also be a diagonal matrix

with the diagonal elements given by

Rk,i = �2
v,i (3.20)

where �v,i is the standard deviation of the itℎ element of v. If we also assume

the dynamics of the system are modelled as LTI, as we have with the vehicle model

presented in Chapter 2, and that the time intervals are equally spaced, i.e. tk+1−tk =

T for each k = 0, 1, . . . , then Fk and Gk are constant matrices, Fk = F and Gk = G

found from

F = eAT (3.21)

G =

[ ∫ T

0

eA� d�

]
B. (3.22)

Finally, assuming C from Eqn. (3.2) is constant, then Ck = C is also constant.

The Kalman Filter is defined by the following iterative process. First, esti-

mates of the initial mean and error covariance matrix are given or assumed:

x̂−0 = E[x0] (3.23)

P−0 = E[(x0 − x̂−0 )(x0 − x̂−0 )T]. (3.24)

Next, at each time step, k, the following computations are made.
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1. Compute the Kalman Filter Gain, Lk

Lk = P−k C
T[CP−k C

T +Rk]
−1 (3.25)

2. Update the state estimate

x̂k = x̂−k + Lk[ỹk − Cx̂−k ] (3.26)

3. Update the error covariance

Pk = [I − LkC]P−k (3.27)

4. Predict the next state estimate

x̂−k+1 = F x̂k +Guk (3.28)

5. Predict the next error covariance matrix

P−k+1 = FPkF +Qk (3.29)

For this work, the Kalman Filter is used to improve the noisy velocity and rate

estimates obtained though the least squares method in Eqn. (3.14). Thus, the

states to be filtered are x̂LS = [ûLS, v̂LS, ŵLS, p̂LS, q̂LS, r̂LS]T. However, as seen

in Eqn. (2.4), the velocity and rate estimates are coupled with the roll and pitch

27



states � and �. As a result, measurements of the roll and pitch angles are necessary

for the implementation of the Kalman Filter. Luckily, the X-UFO Quadrotor comes

equipped with an avionics package capable of measuring roll and pitch. Now the

goal of the Kalman Filter is to find state estimates x̂ = [�̂, �̂, û, v̂, ŵ, p̂, q̂, r̂]T

where the measurement vector is given by the angle measurements from the X-UFO

avionics and the least squares state estimates ỹ = [�̃, �̃, ûLS, v̂LS, ŵLS, p̂LS, q̂LS,

r̂LS]T. The F and G matrices are found from (3.21) and (3.22) where A and B are

taken from (2.5) and (2.6) with the columns and rows corresponding to the yaw

angle  omitted since the translational and rotational velocities are not coupled

with the yaw state. The C matrix is taken to be the Identity matrix C = I8×8.

3.3 Noise Characterization

The implementation of the Kalman Filter also demands accurate noise char-

acterization to determine values for the covariance matrices Qk and Rk. Accurate

characterization of process and measurement noise is arguably one of the most dif-

ficult steps in optimal state estimation. In this work, process noise was assumed to

be negligible, i.e. Qk ≈ 0 ∀ k. On the other hand, the measurements are assumed

to be quite noisy, thus the need for an accurate measurement noise model. The

characteristics of v were determined empirically, allowing for the development of

the matrix Rk.

Measurement noise is highly dependent on the number of optic flow and radar

measurements taken as well as the FOV of the sensors. Ideally, the FOV would
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encompass the full spherical viewing area around the MAV. However, the physical

implementation of such a set-up would be impractical with the radar sensors used

in this work. Realistically, the FOV would encompass the viewing area of only one

radar sensor as such a design would be easier to implement. However, as the FOV

decreases, the noise increases. Likewise, as the number of measurements within the

field of view decreases, the noise increases. But fewer measurements corresponds

to less processing, thus quicker computation time and less power consumption, all

of which is important for MAV sensing. Thus, the trick is to determine an accept-

able hardware configuration and number of measurements without sacrificing the

accuracy of estimated state values. For that reason, this thesis investigates several

simulated hardware configurations, which will be discussed in Chapter 5. How-

ever, for each configuration, a new Rk matrix must be developed to account for the

different measurement parameters.

To determine the values for these matrices, the vehicle was flown through the

Fort Benning environment along a representative trajectory which takes about 30

seconds to complete. During the flight, optic flow and radar measurements were

taken and x̂LS was computed. If we define the vector xa = [�, �, u, v, w, p, q, r]T and

recall that the measurement vector ỹ is simply a vector of the true state values xa

plus white noise,

ỹ =

⎡⎢⎢⎢⎢⎢⎢⎣
�̃

�̃

x̂LS

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
�

�

xv

⎤⎥⎥⎥⎥⎥⎥⎦+ v = xa + v (3.30)
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where xv = [u, v, w, p, q, r]T, it can be shown that

Rk = E[vvT] = E[(ỹ − xa)(ỹ − xa)T]. (3.31)

Eqn. (3.31) shows that if the true values of the states are know, the noise covariance

matrix Rk can be found by solving for the covariance of the error between the mea-

surements and the true values. The measurements from the X-UFO avionics were

assumed to be near perfect and uncorrelated with the velocity and rate estimates

obtained from the least squares estimation method, so �2
� = �2

� = 0.0001 and Rk

has the structure

Rk =

⎡⎢⎢⎢⎢⎢⎢⎣
�2
� 0 0

0 �2
� 0

0 0 Σx̄

⎤⎥⎥⎥⎥⎥⎥⎦ (3.32)

where x̄ = x̂LS−xv with covariance matrix Σx̄ = E[x̄x̄T] = E[(x̂LS−xv)(x̂LS−xv)T].

An expression for Σx̄ is derived in Appendix A, where it is shown that the noise

sources contributing to the error in x̂LS may be correlated, and Chapter 5 discusses

the values obtained for Σx̄ for each sensor configuration investigated.
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Chapter 4

Navigation

While the focus of this research is not to develop a novel navigation and control

scheme, it is still necessary to utilize an algorithm for path following and vehicle

control in order to demonstrate the ability to use the estimated state values for

navigation in a cluttered environment. To that end, this chapter develops a con-

trol scheme to allow the quadrotor to autonomously navigate a simulated environ-

ment. During the simulations, the quadrotor is provided a path to follow through

the environment. Each path is intended to closely resemble a typical trajectory

an autonomous UAV may take as it traverses through the cluttered environment.

Therefore, the desired trajectories are generated by allowing a quadrotor equipped

with WFI optic flow sensors and a control scheme similar to that developed in [23] to

autonomously navigate the environment from several different initial conditions (x0,

y0, z0,  0) obtained via Monte Carlo simulation. Figure 4.1 displays the generated

trajectories for the vehicle to track.

In order for the vehicle to closely track the desired trajectory while maintaining

the desired flight conditions for forward flight at u = 1 m/s a control scheme must

be developed. Several control schemes were investigated but ultimately, an inner

loop and outer loop structure, as depicted in Fig. 4.2, was chosen, whereby the

gains were computed via static H∞.
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Figure 4.1: Desired trajectories for quadrotor to follow.

As the figure shows, the measurement block includes not only optic flow and

radar sensors which provide Q̇ and � respectively, but also the X-UFO avionics

which provide measurements for � and �. These measurements are provided to the

least squares estimator and dynamic filter as discussed in Chapter 3. Assuming the

initial conditions x0, y0, z0,  0 are known, then the velocity estimates û, v̂, ŵ and

yaw rate estimate r̂ can be integrated to provide estimates for position and yaw

angle, x̂, ŷ, ẑ,  ̂. The inner loop is designed to regulate the measurements � and �

and the rate estimates p̂, q̂, r̂, while the outer loop is designed to track the desired

reference states for x, y, z, and  as well as regulate the velocity estimates û, v̂, ŵ

to keep the vehicle in the desired flight condition. The following section will discuss
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Figure 4.2: Control Loop Structure.

how the gains for the inner and outer loops were chosen.

4.1 Gain Matrix Selection

As mentioned earlier, both the inner and outer loop gains were selected via

static H∞ output feedback, which is derived in [32]. The static H∞ problem state-

ment is as follows: Consider the LTI system shown in Fig. 4.3 given by

ẋ = Ax +Bu +Dd

y = Cx (4.1)

with performance output

∥z∥2 = xTQx + uTRu, (4.2)
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Figure 4.3: System Description.

and control input

u = −Ky = −KCx, (4.3)

where d is some exogenous disturbance, C has full row rank, Q ≥ 0 is positive

definite and R > 0 is positive semi-definite. The goal is to select gains K such that

the system in Eqn. (4.1) is stable, the performance is satisfied, and the system is

robust to disturbances d(t).

At this point, a few terms should be defined. The pair (A,B) is said to be

stabilizable if there exists a matrix K such that A − BK is asymptotically stable.

The pair (A,C) is detectable if there exists a matrix L such that A− LC is stable.

The system in Eqn. (4.1) is output stabilizable if there exists a matrix K such that

A−BKC is stable. Finally, the system L2 gain is said to be bounded by  if

∫∞
0
∥z(t)∥2 dt∫∞

0
∥d(t)∥2 dt

=

∫∞
0

(xTQx + uTRu) dt∫∞
0

(dTd) dt
≤ 2. (4.4)

From this, Gadewadikar [32] states that the goal is to find the matrix K which

34



minimizes the cost function

J(K, d) =

∫ ∞
0

(xTQx + uTRu− 2dTd) dt.

Thus, the solution to this problem is found by iterating the following Algebraic

Riccati Equation (ARE) and matrix equations

ATPn + PnA+Q− PnBR−1BTPn +
1

2
PnDD

TPn + LT
nR
−1Ln = 0 (4.5)

Kn+1 = R−1(BTPn + Ln)CT(CCT)−1 (4.6)

Ln+1 = RKn+1C −BTPn (4.7)

until the matrix K converges to within a desired tolerance.

The two sets of gains, inner loop gains Kin and outer loop gains Kout, were

found using this method. The inner loop is defined by the following system

ẋin = Ainxin +Binu +Dind

yin = Cinxin (4.8)

where the states are xin = [�, �, u, v, w, p, q, r]T, the control inputs are u = [�lat,
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�lon, �tℎr, �yaw]T and the following matrix definitions are given:

Ain =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 Φp 0 0

0 0 0 0 0 0 Θq 0

0 X� Xu 0 0 0 0 0

Y� 0 0 Yv 0 0 0 −uref

0 0 0 0 Zw 0 uref 0

L� 0 0 0 0 Lp 0 0

0 M� 0 0 0 0 Mq 0

0 0 0 0 0 0 0 Nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φlat 0 0 0

0 Θlon 0 0

0 0 0 0

0 0 0 0

0 0 0 Ztℎr

Llat 0 0 0

0 Mlon 0 0

0 0 Nyaw 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Din =

⎡⎢⎢⎣ 0

I6×6

⎤⎥⎥⎦

The inner loop is a stabilization control loop which controls the attitude states roll

and pitch, as well as all three attitude rates. Therefore, the outputs are yin = [�,
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�, p, q, r]T and the output matrix is given as

Cin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The performance matrices were chosen as Q = diag{200, 200, 0.2, 0.2, 0.2, 0.01,

0.01, 0.01} and R = I4×4. Using Eqns. (4.5) through (4.7) the following gain matrix

was selected with the values for the gains presented in Table 4.1.

Kin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K�,�lat 0 Kp,�lat 0 Kr,�lat

0 K�,�lon 0 Kq,�lon 0

0 K�,�tℎr 0 Kq,�tℎr 0

K�,�yaw 0 Kp,�yaw 0 Kr,�yaw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9)

In order to meet the objective of trajectory tracking, it is imperative to add an outer

tracking loop. The variables to be controlled in the outer loop are the positions x,

y, z, the translational velocities, u, v, w, and the yaw angle  . The outer loop gains

are found by first closing the inner loop and augmenting the system by adding the
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position and yaw states. The inner closed loop plant is given as

ẋin = Ain,CLxin +Binu (4.10)

yin = Cinxin (4.11)

where Ain,CL = Ain−BinKinCin is the inner closed loop system matrix. Augmenting

this system with the position and yaw states yields

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋin

ẋ

ẏ

ż

 ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣Ain,CL 0

AA

⎤⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xin

x

y

z

 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎣Bin

BA

⎤⎥⎥⎦u = AOxO +BOu (4.12)

yO = COxO = [x, y, z, u, v, w,  ]T (4.13)

where AA and BA describe the linearized model for position and yaw orientation,

AA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 uref

0 −uref 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Ψr 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, BA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Ψyaw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Eqns (4.5) through (4.7) were again employed to find the outer loop gains where

the outer loop performance matrices are chosen as Q = diag{0.5, 0.5, 1, 1, 1, 0.01,
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0.01, 0.01, 10, 5, 2, 1} and R = I4×4. The outer loop gain matrix has the structure

presented in Eqn (4.14) with the values for the gains listed in Table 4.1.

Kout =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ky,�lat 0 0 Kv,�lat 0 K ,�lat

Kx,�lon 0 Kz,�lon Ku,�lon 0 Kw,�lon 0

Kx,�tℎr 0 Kz,�tℎr Ku,�tℎr 0 Kw,�tℎr 0

0 Ky,�yaw 0 0 Kv,�yaw 0 K ,�yaw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.14)

4.2 State Feedback

As the reader will notice, the inner and outer loop gain matrices are uncoupled

and all 12 states are fed-back. Thus, Fig. 4.2 can be equated to the system in Fig.

Table 4.1: H∞ Inner Loop and Outer Loop Gains

Lateral Longitudinal Throttle Yaw

Inner K�,�lat = 13.1322 K�,�lon = 12.8486 K�,�tℎr = 0.0286 K�,�yaw = -1.0306

Loop Kp,�lat = 1.2094 Kq,�lon = 1.3041 Kq,�tℎr = -0.0219 Kp,�yaw = -0.0554

Kr,�lat = -0.1998 Kr,�yaw = 0.6329

Ky,�lat = 5.4088 Kx,�lon = -5.9488 Kx,�tℎr = 0.1219 Ky,�yaw = 0.3753

Outer K ,�lat = 8.7270 Kz,�lon = 0.0002 Kz,�tℎr = -1.4701 K ,�yaw = 2.5480

Loop Kv,�lat = 6.3502 Ku,�lon = -5.1979 Ku,�tℎr = 0.1353 Kv,�yaw = 0.4888

Kw,�lon = 0.0006 Kw,�tℎr = -1.0043
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Figure 4.4: Equivalent Control Loop Structure.

4.4 and the system dynamics can be written as

ẋ =

⎡⎢⎢⎣Ain 0

AA

⎤⎥⎥⎦x +

⎡⎢⎢⎣Bin

BA

⎤⎥⎥⎦u = AFx +BFu (4.15)

with control law

u = −K(x̂− xref ). (4.16)

Here, x = [�, �, u, v, w, p, q, r, x, y, z,  ]T and the state feedback gain matrix K is the

combination of the inner and outer loop gain matrices Kin and Kout.

K=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K�,�lat 0 0 Kv,�lat 0 Kp,�lat 0 Kr,�lat 0 Ky,�lat 0 K ,�lat

0 K�,�lon Ku,�lon 0 Kw,�lon 0 Kq,�lon 0 Kx,�lon 0 Kz,�lon 0

0 K�,�tℎr Ku,�tℎr 0 Kw,�tℎr 0 Kq,�tℎr 0 Kx,�tℎr 0 Kz,�tℎr 0

K�,�yaw 0 0 Kv,�yaw 0 Kp,�yaw 0 Kr,�yaw 0 Ky,�yaw 0 K ,�yaw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.17)
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The desired reference for the state vector x, which allows the vehicle to maintain

the desired flight condition of u = 1 m/s by accounting for the pitch and vertical

speed variation from hover, is set as

xref = [0,−0.0285, 1, 0,−0.0285, 0, 0, 0, xref , yref , zref ,  ref ]T (4.18)

where xref , yref , zref , and  ref define the trajectory which the vehicle is commanded

to track.
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Chapter 5

MAV Simulation Results

The estimation and navigation methods presented in Chapters 3 and 4 are

applied to simulations of a quadrotor vehicle flying through an urban environment,

replicating the flight of an autonomous reconnaissance vehicle. This chapter presents

the methodology and results obtained from simulation.

5.1 Methodology

The Autonomous Vehicle Laboratory at the University of Maryland developed

an in-house simulation environment which provides visualization capabilities as well

as the ability to compute optic flow from simulated cameras on robotic platforms.

Figure 5.1 depicts scenes from the 3-D simulation environment.

For optic flow estimation, the virtual MAV is equipped with six cameras, each

with a 90∘ × 90∘ field of view and a resolution of 64 × 64 pixels. The optic flow

cameras cover the six sides of a cube, such that the full spherical viewing arena is

imaged. However, for this work, optic flow is only measured on the bottom hemi-

sphere, i.e. 0 ≤ � ≤ �
2
. In processing the images captured by the optic flow cameras,

the imagery is first passed through a Gaussian blurring function to mitigate aliasing

issues. A resolution iterative implementation of the Lucas-Kanade algorithm at 60

fps is implemented to calculate optic flow. During flight, 4N image points with
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Figure 5.1: 3-D simulation environment.

constant angular spacing along the lower hemisphere of the uv-coordinate spherical

grid are tracked. These points are mapped from a virtual sphere surface to the flat

cameras via geometric projection. The objects in the simulated environment, in-

cluding walls, rooftops, the ground and sky, are textured with imagery of sufficient

visual contrast so that optic flow can be computed. The optic flow measurements

are desampled from 4N to N by unweighted averaging of square groups of four adja-

cent nodes. To reduce noise, outlier measurements with a high final cost function or

infeasibly large shift estimates are ignored in the block average[22]. This process is

summarized in Fig. 5.2. The angular spacing of the optic flow measurement nodes

is set to 9∘. After the desampling process, the angular spacing of the measurement

nodes becomes 18∘, which corresponds with the angular spacing of the radar mea-

surement nodes. Figure 5.3 displays a cross section of the quadrotor assuming a

sensor field of view encompassing the full lower hemisphere of the viewing surface,
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Figure 5.2: Spherical optic flow simulation process diagram.

Figure 5.3: Cross sectional view of quadrotor and angular spacing of elevation angle
�.

demonstrating the angular spacing of the elevation angle �. After desampling, there

are five elevations rings � = 9∘, � = 27∘, � = 45∘, � = 63∘, and � = 81∘ as shown in

Fig. 5.3. Each elevation ring contains 20 azimuthal points evenly spaced between 

= 0∘ and  = 360∘. This angular spacing of the measurement nodes is maintained

for all experiments conducted in this work.
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5.2 Experimental Results

In order to demonstrate both the importance of the FOV and the necessity

of a dynamic filter for smaller FOVs, several sensor configurations were simulated.

First, the situation of the full lower hemisphere was examined. That is, a FOV of

180∘× 180∘, or 0 ≤ � ≤ �/2. For this configuration N = 100. This set-up was

tested both with and without the dynamic filtering step.

Next, the FOV was reduced to include just one radar sensor pointing in the zb

direction, thus a maximum FOV of 50∘× 30∘. Refering to Fig. 5.3, it can be seen

that, due to the angular spacing of measurement nodes, this FOV encompasses only

� = 9∘, resulting in an effective FOV of 18∘× 18∘. In this configuration N = 20.

Finally, several simulations were conducted in which the FOV was incremently

reduced from the full lower hemisphere down to just 18∘× 18∘ in order to determine

at what point the dynamic filter step was absolutely necessary to obtain accurate

velocity and rate estimates.

5.2.1 Measurement Noise Characterization

As discussed in Chapter 3, accurate noise characterization is a crucial step in

the Kalman Filtering process. Section 3.3 detailed how the measurement noise was

characterized and presented the form of the measurement noise covariance matrix

Rk in Eqn. (3.32). Eqns (5.1) and (5.2) display the values for the covariance matrix

Σx̄ found from the MATLABTMcommand ‘cov’ for each sensor arrangement. Recall

now that the diagonal elements of Σx̄ are �2
v,i, the square of the standard deviation
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of the itℎ element of v, and the off-diagonal elements are the covariance between the

different noise sources creating v. As Eqn (5.2) shows, there is some strong coupling

between the noise sources contributing to v, which can be expected due to the small

field of view and the nature of the least squares estimator which provides x̂LS, as

shown in Appendix A.

∙ Full Lower Hemisphere:

Σx̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0026 0.0005 −0.0001 −0.0001 −0.0006 −0.0002

0.0005 0.0029 0 0.0004 −0.0001 −0.0002

−0.0001 0 0.0010 0 0.0002 0

−0.0001 0.0004 0 0.0008 0.0001 0

−0.0006 −0.0001 0.0002 0.0001 0.0019 0.0001

−0.0002 −0.0002 0 0 0.0001 0.0006

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

∙ 18∘×18∘:

Σx̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6302 −0.2945 −0.0697 −0.1836 −0.4664 −0.0337

−0.2945 0.9067 0.1199 0.6440 0.1662 0.0618

−0.0697 0.1199 0.0506 0.0749 0.0399 0.0147

−0.1836 0.6440 0.0749 0.4786 0.1033 0.0377

−0.4664 0.1662 0.0399 0.1033 0.3673 0.0199

−0.0337 0.0618 0.0147 0.0377 0.0199 0.0175

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)
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It is important to note that these Rk results represent the measurement noise expe-

rienced during one 30 second flight. Changes in terrain shapes or image contrast can

significantly increase noise in the least squares estimates. Thus, Rk was manually

tuned to improve the filtered state estimates. Since the diagonal elements in Rk

represent the square of the standard deviation of the noise in each velocity and rate

estimate, it can be seen from Eqn. (5.1) that the maximum velocity measurement

noise standard deviation is about 0.054 m/s while the maximum rate noise standard

deviation is about 0.044 rad/s. This suggests that the measurement noise for u, v,

and w will be less than 3� = 0.162 m/s for 99% of the time and the measurement

noise for p, q, and r will be less than 3�= 0.132 rad/s for 99% of the time. However,

it was assumed that more rigorous maneuvers, different terrain shapes and changes

in image contrast would increase these standard deviations. Therefore, the standard

deviations were rounded up and the diagonal entries of Rk in (5.1) were each set to

�2 = 0.01. The diagonal entries in (5.2) were adjusted in a similar fashion, where

each entry was set to �2 = 1.0.

The results of the experiment conducted to characterize the noise in the full

lower hemisphere sensor arrangement also showed the estimated values for v had

a mean error of about -0.31 m/s, while the estimates for the other five states had

negligible mean error. This mean error was removed in all analysis of the least

squares estimation method, but was not removed from the estimates provided to

the Kalman filter.
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Figure 5.4: Optic Flow and Radar Configuration with a Field of View of the full
lower hemisphere. Screen shots from AVLsim of (A) a top view and (B) a rear view.

5.2.2 Experiment 1: Full Lower Hemisphere

For the first experimental set-up, the simulated on-board sensors were arranged

such that they provided a FOV which encompassed the full lower hemisphere of the

spherical imaging surface. That is, a FOV of 0 ≤  ≤ 2� and 0 ≤ � ≤ �/2. Figure

5.4 demonstrates what this sensor arrangement looks like in AVLsim. The red lines

emanating from the center of the quadrotor represent the fiducial points r(, �) at

which optic flow and radar measurements are taken. After the desampling process,

measurements are take at 100 fiducial points, or N = 100. This set-up was studied

both with and without the dynamic filtering step.

Least Squares Estimation

The case of only a static least squares estimator with a sensor configuration

spanning the FOV of the full lower hemisphere was studied in [33]. Figure 5.5

displays a sample of the results obtained using this estimation method. The results
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in Fig. 5.5 demonstrate a good match between estimated states and true values,

particularly for the pitch rate and heave velocity. The longitudinal and lateral

translational velocities, as well as the roll and yaw rates, are also estimated well,

but contain some high frequency content which increases the error in these estimates.

One simple solution to improve û, v̂, p̂, and r̂ is to apply a low pass filter to each

estimate to smooth the data. Fig. 5.6 demonstrates the impact of applying low

pass filters to û, v̂, p̂, and r̂. As expected, the filtered estimates have much less

high frequency content and provide more accurate knowledge of the longitudinal

and lateral velocities and the roll and yaw rates.

Dynamic Filtering

Instead of applying low pass filters to four of the six estimated states, the

Kalman Filtering scheme presented in Chapter 3 was applied. The results of this

method can be seen in Fig. 5.7, which presents the data from the same time segment

as Figs. 5.5 and 5.6. The data in Fig 5.7 demonstrates improvement over the results

in Figs. 5.5 and 5.6. As expected, the Kalman filter more accurately estimates the

translational velocities and angular rates than the least squares method and naive

low pass filters. Table 5.1 compares the average standard deviations of each rate

and velocity estimate for the least squares (LS), low pass filter (LPF), and Kalman

filter (KF) estimation schemes.

Figures 5.5, 5.6, 5.7, and Table 5.1 demonstrate that the estimated velocities

fit the true values well for each of the respectively implemented state estimation
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Figure 5.5: Estimated vs. actual speeds and rates with measurements taken over
the full lower hemisphere of the viewing surface and estimates found using only the
least squares estimation scheme.
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Figure 5.6: Estimated vs. actual speeds and rates with measurements taken over
the full lower hemisphere of the viewing surface and estimates found using a low
pass filter on the least squares estimates.

schemes. With the wide field of view provided by the sensor arrangement in this

case, the least squares estimation scheme generates fairly accurate estimates for

all six velocities and rates. The translational velocity estimates û and v̂ and the

angular velocity estimate r̂ can be improved greatly with a simple low pass filter

due to the low frequency content of each of the three states. In addition, a Kalman

Filter can be applied to the estimates provided by the least squares technique to

further improve the accuracy of the velocity and rate estimates. However, as seen

in Figs. 5.6, 5.7, and Table 5.1, the simple low pass filter is capable of improving

û and v̂ about as much as the Kalman filter. The estimate r̂ is improved slightly

with a low pass filter, but is improved tremendously by the Kalman filter. It is
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Figure 5.7: Estimated vs. actual speeds and rates with measurements taken over the
full lower hemisphere of the viewing surface and estimates found using the Kalman
filtering scheme.
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Table 5.1: Standard Deviations for Velocity and Rate Estimates

State
Experiment 1 Experiment 2

LS LPF KF LS KF

u (m/s) 0.0360 0.0230 0.0115 0.5396 0.0110

v (m/s) 0.0298 0.0224 0.0191 0.5586 0.0138

w (m/s) 0.0229 — 0.0131 0.0803 0.0131

p (deg/s) 1.4050 1.5247 0.5963 29.1813 0.5960

q (deg/s) 2.3052 — 1.3217 28.7612 1.3223

r (deg/s) 2.2670 2.0230 0.1566 4.3334 0.1358

interesting to note that adding a low pass filter to the least squares estimate for the

angular rate p̂ actually causes the standard deviation to increase slightly, indicating

that this filtering scheme is somewhat naive in this instance because it worsens the

estimates for p̂ rather than improving them. Overall, with the sensor arrangement of

Experiment 1, it is best to use the least squares estimation scheme with the addition

of low pass filters on û, v̂ and r̂ because it requires less computation power than

the dynamic Kalman filtering scheme. However, the drawback to this scheme is it

requires a large field of view which is difficult to obtain with the radar sensor being

developed at the Radiation Lab. This arrangement would require several radar

sensors which would increase weight and power consumption.

5.2.3 Experiment 2: 18∘×18∘

In an effort to keep weight and power consumption low, a sensor arrangement

with a smaller field of view was studied. In Experiment 2, the field of view of the

sensors was severely reduced to encompass only a 50∘× 30∘ area, which corresponds
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to the viewing area of one radar sensor, Fig. 5.8. Refering to Fig. 5.3, it can be seen

that, due to the angular spacing of measurement nodes, this FOV encompasses only

� = 9∘, resulting in N=20. Figure 5.9 displays a sample of data collected using this

restricted field of view using only the Least Squares estimation scheme. The figure

demonstrates that the estimated values are extremely noisy and do not provide a

good knowledge of translational or rotational velocities. Figure 5.10 displays the

same section of data after the Kalman Filter in Chapter 3 was applied. Table 5.1

compares the average standard deviations of each rate and velocity estimate for the

least squares and Kalman filter estimation schemes.

The results in Fig. 5.9 and Table 5.1 demonstrate that the least squares es-

timation scheme alone does not provide velocity and rate estimates of sufficient

accuracy for this field of view. But the addition of the Kalman Filter not only

significantly improves the states estimates, it also increases the accuracy to be com-

Figure 5.8: Optic Flow and Radar Configuration with a Field of View of 18∘×
18∘. (A) Sketch of radar and optic flow sensor capture volume. (B) Screen shot of
quadrotor in AVLsim.
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Figure 5.9: Estimated vs. actual speeds and rates with sensor FOV of 18∘× 18∘

using only the least squares estimation scheme.
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Figure 5.10: Estimated vs. actual speeds and rates with sensor FOV of 18∘× 18∘

using the Kalman filtering scheme.
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parable to, and for some states, better then, the estimates obtained from the wide

field of view in Experiment 1.

5.3 Discussion

As shown in Section 5.2.2, adequate velocity and angular rate estimates can

be obtained with a least squares inversion and simple low pass filter when using

a wide field of view. Alternatively, Section 5.2.3 demonstrates a dynamic filter is

necessary for obtaining state estimates from a small field of view. As mentioned in

Section 5.2.3, the Kalman filter used on the small field of view produced better state

estimates, specifically v̂ and r̂, than the Kalman filter used on the wide field of view

sensor arrangement. One simple explanation for this phenomenon is the measure-

ment noise may have been more accurately characterized for the small field of view

than the larger field of view. In tuning the measurement noise covariance matrices

5.1 and 5.2, assumptions were made regarding the expected standard deviations for

each state which may have been more accurate for Experiment 2 than Experiment

1. It may also be the case that the wide field of view used in Experiment 1 was

in fact too large. Both optic flow estimates and radar measurements are distance

dependent values whose inaccuracies increase with distance. In the sensor arrange-

ment of Experiment 1, the field of view extends to an angle just below parallel with

the vehicle x-y plane. Since the vehicle’s trim position is just slightly askew from

parallel with the terrain, the measurements taken at � = 81∘ can extend off into the

horizon if no obstacles are nearby. This can not only increase the distance dependent
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noise in the radar measurements, but can also increase the noise in the optic flow

measurements since the image contrast can degrade quickly with distance. Thus,

measurements taken close to the x-y plane may not benefit the velocity and rate

estimation process, particularly for the states whose motion occurs in the x-y plane.

This theory is tested on two additional experimental sensor configurations.

In order to determine the smallest field of view acceptable for using only the

least squares and low pass filter, two more sensor FOVs were tested . Experiment

3 has a field of view of 0 ≤ � ≤ 45∘ with N = 60 while Experiment 4 has a field of

view of 0 ≤ � ≤ 27∘ with N = 40. Each of these sensor arrangements were tested

on five of the trajectories in Fig. 4.1. Figures 5.11, 5.12, 5.13 and 5.14 display

a sample of the results obtained from these experiments and Table 5.2 presents

the average standard deviations for the estimates obtained. The results show that

the sensor configuration in Experiment 3 yields state estimates whose accuracy is

comparable to that of Experiment 1. The state estimates produced via the least

squares estimation scheme all tend to be slightly worse in Experiment 3, except

for the yaw rate r̂ which is estimated more accurately in Experiment 3. This is

particularly interesting since the field of view in Experiment 3 is almost half that

of Experiment 1. With the addition of low pass filters, the estimates for û and v̂

improve greatly and have standard deviations very similar to the LPF estimates from

Experiment 1. Also, the application of a low pass filter on p̂ improves the estimates

in this case, rather then degrading the least squares estimates as in Experiment 1.

The results obtained from Experiment 4 present two interesting phenomena.

First, while the smaller field of view causes the estimates for û, v̂,ŵ, p̂, and q̂, to
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Table 5.2: Standard Deviations for Velocity and Rate Estimates: Experiments 3
and 4.

State
Experiment 3 Experiment 4
LS LPF LS LPF

u (m/s) 0.0500 0.0284 0.1119 0.0360
v (m/s) 0.0401 0.0209 0.1003 0.0342
w (m/s) 0.0260 — 0.0354 —
p (deg/s) 1.7762 1.7074 4.7899 2.6757
q (deg/s) 2.6986 — 5.5405 —
r (deg/s) 0.8193 0.7678 1.6100 0.9855

become even worse then the estimates from Experiments 1 and 3, the estimates for

r̂ are still better than those obtained in Experiment 1. Second, while there is a

small overall increase in the least squares estimation error between Experiments 1

and 3, which differ by two elevation measurement rings, and slightly larger increase

in error between Experiments 3 and 4, which differ by one elevation measurement

ring, there is a very substantial increase in estimate error between Experiments 4

and 2, which also only differ by one elevation measurement ring.

Another metric by which the quality of the estimated values is determined is

the Frobenius norm. The Frobenius norm is the matrix norm defined as the square

root of the sum of the absolute squares of the elements of an m× n matrix M [29]:

∥M∥F =
√
Tr(M∗M) (5.3)

where M∗ is the complex conjugate of M . In this usage, M is defined as the 6×k

matrix where the elements are the difference between the true and estimated velocity

and rate values at each time k:
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Figure 5.11: Estimated vs. actual speeds and rates with sensor FOV of 90∘× 90∘

and estimates found using only the least squares estimation scheme.
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Figure 5.12: Estimated vs. actual speeds and rates with sensor FOV of 90∘× 90∘

and estimates found using a low pass filter on the least squares estimates.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(u1 − û1) (u2 − û2) ⋅ ⋅ ⋅ (uk − ûk)

(v1 − v̂1) (v2 − v̂2) ⋅ ⋅ ⋅ (vk − v̂k)

(w1 − ŵ1) (w2 − ŵ2) ⋅ ⋅ ⋅ (wk − ŵk)

(p1 − p̂1) (p2 − p̂2) ⋅ ⋅ ⋅ (pk − p̂k)

(q1 − q̂1) (q2 − q̂2) ⋅ ⋅ ⋅ (qk − q̂k)

(r1 − r̂1) (r2 − r̂2) ⋅ ⋅ ⋅ (rk − r̂k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.4)

Since the Frobenius norm is single value, it represents the overall goodness of the

values estimated for the six translational and rotational velocities. A small value

for the Frobenius norm is indicative of a smaller error in the estimates through the

full flight. The Frobenius norm for the matrix M was found for each flight the

quadrotor made with each sensor arrangement and estimation technique. Table 5.3
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Figure 5.13: Estimated vs. actual speeds and rates with sensor FOV of 54∘× 54∘

and estimates found using only the least squares estimation scheme.
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Figure 5.14: Estimated vs. actual speeds and rates with sensor FOV of 54∘× 54∘

and estimates found using a low pass filter on the least squares estimates.

Table 5.3: Average Frobenius Norm for Velocity and Rate Estimates

Method Experiment 1 Experiment 2 Experiment 3 Experiment 4

Least Squares 23.3262 287.7601 22.7521 47.0962
Low Pass Filter 21.3925 — 19.1458 30.1584
Kalman Filter 11.2092 10.4819 — —

presents the average Frobenius norm obtained across all the flights made for each

sensor arrangement and estimation scheme.

The results in Table 5.3 further demonstrate that in terms of translational

velocity and rotational rate estimation, there is no advantage to using optic flow

and radar sensors with an effective field of view larger than a circle of diameter 90∘.

The results also show that with the addition of a Kalman Filter, the effective sensor

field of view does not need to extend beyond a circle of diameter 18∘ for accurate

velocity and rate estimation.
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Chapter 6

Conclusions and Future Work

This work presents an observer for estimating translational velocities and ro-

tational rates from optic flow and radar measurements. A state feedback control

scheme was developed to permit autonomous velocity regulation, vehicle stabiliza-

tion, and trajectory following for a quadrotor using only the velocity and rate es-

timates as well as roll and pitch measurements obtained from the built-in avionics

package. The results from simulation demonstrate that all the velocity and rate

states are estimated accurately. However, particular interest is taken in how well

the estimates û and v̂ match the true values. Traditionally, these translational

velocities are difficult to measure on MAVs and this work demonstrates a simple

and accurate means of doing so. This chapter summarizes the key findings and

recommends areas for future work.

6.1 Summary

As discussed in Chapter 1, the primary goal of this work was to determine the

feasibility of combining optic flow sensing techniques with radar sensors to obtain

accurate estimates for translational and rotational velocities of a 6 DOF micro air

vehicle. Towards this end, the theory surrounding optic flow was examined and a

method of least squares static estimation was derived using a mathematical model of
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2-D optic flow to generate velocity approximations. The estimation scheme was ap-

plied to a simulation of a 6 DOF quadrotor vehicle navigating an urban environment.

The results illustrated the viability of this estimation scheme by demonstrating an

excellent fit to the true velocity values.

Another goal of this work was to determine “optimal” sensor arrangements

which allow accurate state estimates to be obtained while also considering the fea-

sibility of hardware implementation. Therefore, various fields of view were studied

and the following conclusions were drawn. The results presented in Section 5.3

demonstrate the ability to obtain accurate state estimates with a least squares in-

version and simple low pass filter when using a FOV of 90∘× 90∘ pointing in the

positive zb direction, i.e. towards the ground. Alternatively, a very restricted field

of view, e.g. 18∘× 18∘, can be used to obtain accurate velocity and rate estimates

with the caveat of an additional dynamic filtering step, such as the Kalman filter

presented in Chapter 3.

6.2 Limitations of Applicability

While the work described here provides an exciting and novel method of state

estimation in addition to an effective feedback control scheme, there are some issues

which limit the applicability of these algorithms as implemented here. First, from

Appendix A, it can be seen that the measurement noise covariance matrix is state

dependent. That is, Σx̄ depends on u, v, and w which appear in the matrix S.

This occurs because of the method by which the optic flow and radar measurements
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are combined. As shown in (2.3) and (3.10) optic flow is a function of the radar

measurements, and thus also a function of the noise in the radar measurements,

which results in the noise � being multiplied by the states u, v, and w. This

suggests that a rigorous analysis of the measurement noise covariance matrix would

need to make certain assumptions about the environment.

Second, as seen in (2.4), the linearized attitude kinematics of the quadrotor

vehicle used in this study have control terms. That is, �̇, �̇, and  ̇ include the terms

Φlat, Θlon, and Ψyaw which are control derivatives. While counter-intuitive, the

reader is reminded that the equations of motion for this vehicle were obtained from

a previous study in which system identification techniques suggested these terms fit

an input/output relationship. This does not mean the terms necessarily exist, but

instead were just found to fit the linear model and most likely appear in the model

due to the quadrotor’s built-in inner stabilization control loop.

Third, there are a few limitations to the implementation of optic flow on

real systems. Optic flow requires a certain amount of visual contrast to provide

good measurements. If the imaged environment has poor contrast, such as a room

with white walls and floor, the optic flow measurements will be poor as a result of

uniformity in the pixel images. Also, optic flow is dependent on luminosity, i.e. the

relative brightness of the environment. Therefore, optic flow measurements will be

poor if the vehicle is in a dark or foggy environment.
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6.3 Future Work

The observer was implemented in simulation and has proven to be a valid

method of state estimation. However, experimental tests should be conducted to

demonstrate the work presented here as a feasible, practical and realistic approach

to MAV velocity and rate estimation. To this end, the obstacle which must be

overcome is hardware feasibility. For optic sensing, the field of view requirements

can be met easily by a single downward pointing camera. For obtaining distance

measurements, the FOV requirement of 18∘× 18∘ can easily be attained by a single

radar sensor. The additional requirement of a dynamic filtering scheme with this

field of view will unfortunately increase the on-board processing requirement, but

should be feasible on MAVs such as the quadrotor studied in this work. However,

the reader will note that the system assumed in this work is linear time invariant.

Thus, a steady state Kalman Filter can be implemented, in which a time invariant

Kalman gain matrix Lss is found and used for all time k, resulting in significantly

reduced processing requirements. In contrast, the FOV requirement of 90∘× 90∘

necessitates the use of several radar sensors, or suggests the need for a radar sensor

with a larger FOV. However, the benefit of this FOV is that accurate velocity and

rate estimates can be obtained with a simple static least squares estimator which

requires less computation power than a dynamic estimator, and is therefore more

suitable for use on MAVs. Experimental validation of these techniques will soon be

possible using the radar sensors under development at the Radiation Laboratory of

the University of Michigan. In the meantime however, if a few sonar sensors were
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used in place of a radar sensor, it may be possible to reformulate the estimation

process with the measurement model presented in (3.9) to obtain estimates for û, v̂,

and r̂, with the additional caveat that the quadrotor be constrained to 3 DOF. Such

an experiment would further prove the feasibility of velocity estimation techniques

presented here.

Next, the work presented in this thesis derived a feedback control scheme suit-

able for velocity regulation, vehicle stabilization, and trajectory following. Ideally,

however, the vehicle would be able to autonomously navigate an unmapped envi-

ronment without following a prescribed trajectory. Thus, while this work provides

an excellent means of partial state estimation, it ignores the problem of obstacle

detection and avoidance. Future work should address this problem by taking fur-

ther advantage of the radar sensors. In this case, two radar sensors should be used

on-board the vehicle — one would be used for small field of view velocity and rate

estimation, while the second could be pointed forward along the xb-axis and be used

as a means of simultaneous localization and mapping to provide the vehicle with

pose and yaw estimates x̂, ŷ, ẑ,  ̂. This would allow the vehicle to autonomously

navigate a cluttered environment without being constrained to predetermined tra-

jectories.
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Appendix A

Measurement Noise Derivations

First, from Section 3.3 we know that the measurement noise covariance matrix

is given by Σx̄ = E[x̄x̄T] = E[(x̂LS − xv)(x̂LS − xv)T]. Next, recall that x̂LS =

(HTH)−1HTz̃. Thus,

Σx̄ = E[((HTH)−1HTz̃− xv)((HTH)−1HTz̃− xv)T] (A.1)

Now define

H† ≡ (HTH)−1HT (A.2)

Note that although H is a time-varying matrix, it is still a deterministic matrix,

thus H† is also deterministic. If we substitute z̃ with Eqn. (3.5) we get

Σx̄ = E[(H†Hxv +H†v − xv)(H†Hxv +H†v − xv)T] (A.3)

= E[(xv +H†v − xv)(xv +H†v − xv)T] (A.4)

= E[(H†v)(H†v)T] (A.5)

= E[H†vvT(H†)T] (A.6)

= H†E[vvT](H†)T (A.7)
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Next, recall from Section 3.1.1.2 that v is the combination of the optic flow mea-

surement noise � and the nearness measurement noise �,

v =

⎡⎢⎢⎣v

v�

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�,1 + �1(u sin 1 − v cos 1)

...

�,N + �N(u sin N − v cos N)

��,1 + �1(−u cos �1 cos 1 − v cos �1 sin 1 + w sin �1)

...

��,N + �N(−u cos �N cos N − v cos �N sin N + w sin �N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
If we set v = � + S� where S is the 2N×2N deterministic diagonal matrix S =

diag{(u sin 1−v cos 1), . . . , (u sin N −v cos N), (−u cos �1 cos 1−v cos �1 sin 1 +

w sin �1), . . . , (−u cos �N cos N − v cos �N sin N + w sin �N)}, then we can write

Σx̄ = H†E[(� + S�)(� + S�)T](H†)T (A.8)

= H†(E[(��T] + SE[��T]ST + E[��T]ST + STE[��T])(H†)T (A.9)

Since the optic flow measurement noise is uncorrelated with the radar measurement

noise, E[��T] = E[��T] = 0 and

Σx̄ = H†(E[(��T] + SE[��T]ST)(H†)T (A.10)

= H†(�2
�I + S�2

�IS
T)(H†)T (A.11)

= H†(�2
�I + �2

�SS
T)(H†)T (A.12)
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This results in a 6×6 matrix which is not strictly diagonal due to the H† terms. In

other words, noise in the different “measured” states may be coupled even though

the optic flow noise and radar noise are uncorrelated with themselves or each other.
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