
  

 
 

ABSTRACT 
 

 
Title of Dissertation: Development of a biogeochemical modeling 

system to estimate fluxes and controls of 
estuarine organic matter cycling 
 

  
 John Blake Clark, Doctor of Philosophy, 2019 
  
Dissertation directed by: Professor Dr. Raleigh R. Hood, Department of 

Marine Estuarine Environmental Science 
 

This dissertation is an analysis of organic matter cycling using a biogeochemical 
modeling system to estimate a comprehensive organic carbon budget in an estuary. New 
processes were built into the model, including sediment-water column dissolved organic 
matter (DOM) fluxes, wetland input of DOM, and a more sophisticated representation of 
DOM reactions in the water column. First, the Sediment Flux Model was updated to 
include DOM as a diagenesis intermediate in the breakdown of organic matter. Long term 
time series of sediment-water column nitrogen and oxygen fluxes constrained the updated 
sediment model. On average, subtidal sediment was a net source of 1.00 mol C m-2 yr-1 
and 0.19 mol N m-2 yr-1, substantially larger than previous estimates.  

Wetland derived DOM undergoes transformations due to absorbing large 
quantities of UV-Visible light during estuarine transport. To account for this in the 
model, the light absorbed by DOM drives mechanistic photochemical degradation 
reactions in a new module in the organic carbon reaction suite. The reaction equations 
were parameterized and tested by recreating bench top photochemical degradation 
experiments using the model. Predicted organic carbon transformation rates ranged from 
0.59 to 4.86 µmol C L-1 hr-1 and a test data set was recreated with 3.66% mean percent 
error. 

The enhanced modeling system was implemented in the Rhode River, MD, USA, 
a well studied tributary of Chesapeake Bay. Coupled observations and 3-D modeling 
results at the outflow of the Kirkpatrick Marsh creek showed that wind variability was 
important in driving variations in salinity and was strongly correlated with fluorescent 
DOM. Finally, the fully coupled organic carbon cycle model was implemented and 
constrained by water column observations. Numerical experiments with and without the 
tidal wetland input showed that the marsh contributed 20.5% to the total DOC stock 
within the tributary and 20.7% to the total flux of DOC from the Rhode River to the 
Chesapeake Bay. A geographic relationship derived from the Rhode River predicts that 
tidal wetlands contribute 3.0% to the total DOC inputs in Chesapeake Bay and 13.4% to 
the total DOC stock. 
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absorbance at 440 nm (a440). Observations were collected at various times during ebb 
tide phase and averaged. The model output is at an hourly interval for July 2005 when the 
change in tidal elevation, dz dt-1, was less than the median change in tidal elevation for all 
ebb tides (dz dt-1 < -2.16 cm hr-1; n=153). Collection methods and analytical techniques 
can be found in Tzortziou et al. (2011) and Logozzo (2017). Modeled a440 is the product 
of the specific absorption of each colored DOC class (1-3) at 440 nm (m2 g C-1) and 
colored DOC concentration (g C m-3). 
 
Figure 5.8 Model (contours) and Chesapeake Bay Program observations (circles) for 
stations WT8.2 (upper) and XGE3275 (lower) for dissolved organic nitrogen (a,b)(g N m-

3), dissolved oxygen (c,d) (g O2 m-3), chlorophyll a (e,f)(mg chl a m-3), NH4
+ (g,h)(g N m-

3), NO3
- (i,j)(g N m-3) and particulate organic carbon (POC)(k,i)(g C m-3). Observed POC 

is estimated from measured values of particulate organic nitrogen and converted to 
carbon units using a ratio of 5.67 g C g N-1. 
 
Figure 5.9 Average marsh-estuary (a) dissolved organic carbon flux (JDOC) and 
particulate organic carbon flux (JPOC). A positive flux is out of the marsh, negative flux 
into the marsh.  The orange line represents the low pass frequency filtered flux using a 
period of 14 days as the filter cutoff frequency. The grey line is the instantaneous average 
flux taken at an hourly interval. 
 
Figure 5.10 The complete dissolved organic carbon (DOC) budget for the Rhode River 
tributary (Figure 1c). Each bar represents the cumulative DOC sources (positive) or sinks 
(negative) for DOC from the Rhode River over April 1 – November 30, 2005. The total is 
the sum of the three reactivity classes. From left to right, the terms are defined as the 
marsh sediment-water column DOC flux (marsh JDOC), estuarine sediment-water 
column DOC flux (estuary JDOC), planktonic algal derived DOC from both exudation 
and predation, hydrolysis of particulate organic carbon to DOC, denitrification loss of 
DOC, heterotrophic remineralization of DOC, abiotic photochemical remineralization of 
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DOC, riverine inputs from the watershed of DOC, photochemical transformation of DOC 
between colored and non-colored pools and reactivity classes, photochemical loss of 
DOC (inverse of production), the change in DOC concentration over the model time 
period (ΔDOC) and flux between the Rhode River and the main stem of the model 
domain (MainStem). 
 
Figure 5.11 Difference network between the model scenarios with (+M) and without (-
M) marsh dissolved organic matter (DOM) inputs and marsh NH4

+ uptake. The dashed 
lines represent processes that are unchanged, orange arrows represent processes that 
decreased under the –M scenario, black arrows represent processes that increased under 
the –M scenario. The width of the arrow represents the total difference (Tons C) over the 
242 day model time period.  
 
Figure 5.12 (a) Transect moving out of the Kirkpatrick Marsh through the Rhode River 
into the Chesapeake Bay displaying the concentration gradient of colored and non-
colored dissolved organic carbon (CDOC and NCDOC) in the model runs with (+M) and 
without (-M) the marsh input and the difference (Diff.) between the +M and –M scenario 
for (b) CDOC1, (c) CDOC2, (d) CDOC3, (e) total DOC, (f) NCDOC1, (g) NCDOC2, and 
(h) NCDOC3. The dashed line represents the cutoff for the section of the Rhode River 
used in the budget analysis. 
 
Figure 5.13 Absolute difference in nitrogen budgets for runs with (+M) and without (-M) 
the marsh for (a) ammonium (NH4

+), (b) nitrate (NO3
-) and (c) dissolved organic nitrogen 

(DON) for the Rhode River integrated from April 1st – November 30th, 2005. Terms in 
regular print are sources while terms in bold are sinks.  
 
Figure 5.14 The average difference between runs with and without the marsh for mid-
water column (+M minus –M) (a) ammonium (NH4

+), (b) nitrate (NO3
-), (c) net primary 

production (NPP) and (d) photosynthetically active radiation (PAR).  
 
Figure 5.15 Percent dissolved organic carbon (DOC) contribution from the marsh to the 
gross DOC production and estuarine DOC stock within the Rhode River modeled as a 
function of Estuary volume to marsh area (EV:MA) ratio. The model function was 
derived using a generalized logarithmic linear model predicted by the five segments from 
the Rhode River and extrapolated to estimate the marsh DOC contribution based on the 
EV:MA for the entire Chesapeake Bay (59.6 m, dashed line). Diamonds indicate model 
extracted values for each segment. (p value for % GDP = 0.002, p value for stock = 
0.001) 
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Introduction 

1.1 Overview  

We are in an era of change, with anthropogenic greenhouse gas emissions since 

the industrial revolution driving rapid and widespread shifts in Earth’s climate. In order 

to understand and predict the effects of anthropogenically driven climate change, 

quantifying the drivers and understanding the processes that contribute to the past and 

current climate state is key. One of the main components of the regulation of Earth’s 

climate is carbon, and in particular carbon dioxide and methane and the cycles that 

govern their distribution. Quantifying the carbon cycle as a whole is paramount to 

predicting the future state of the Earth and how each component of the highly complex 

and always changing carbon cycle contributes to the changing climate.  

One large and relatively uncharacterized pool of carbon is aquatic and marine 

organic carbon that has two main forms: dissolved and particulate organic carbon (DOC 

and POC). DOC is comprised of a highly complex heterogeneous pool of tens of 

thousands of compounds (Gonsior et al., 2017; Hawkes et al., 2016; Hernes, 2003; 

Medeiros et al., 2016) with many sources to the marine environment. In the open ocean, 

the primary source is from phytoplankton primary production (Carlson et al., 1994; 

Carlson et al., 2010; Romera-Castillo et al., 2016) whereby much of the DOC produced 

by phytoplankton is subsequently remineralized in the epipelagic and mesopelagic 

waters. The oceanic DOC concentration of 667 Pg of carbon is on the same order of 

magnitude as the recent atmospheric concentration of CO2 (Hedges et al., 1997) and 

small changes in the oceanic pool of DOC can alter the atmospheric concentration; DOC 
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that is remineralized into CO2 in the ocean will eventually enter the atmosphere and 

potentially contribute to further warming. The standing concentration of DOC in the 

ocean is driven by the balance of inputs (e.g., oceanic production and terrestrial runoff) 

and outputs (e.g., remineralization to CO2 and degassing) therefore constraining these 

flux terms is key to understanding the past, current, and future state of the DOC stock of 

the ocean.  

Sources of DOC in coastal waters include riverine input (Fichot and Benner, 

2014; Hedges et al., 1997; Raymond and Spencer, 2015) much of which is chemically 

distinct from compounds that are produced within the water column from phytoplankton 

production (Mannino and Harvey, 2000; Medeiros et al., 2016). Globally, the riverine 

export of DOC to the coastal ocean is estimated at 250 Tg C yr-1, with 36.1% originating 

from the world’s 30 largest rivers (Raymond & Spencer 2015). The remaining 63.9 % 

comes from smaller rivers and streams, many of which drain into estuarine systems 

where much of the DOC can undergo further transformation and processing before 

reaching the continental shelf and open ocean. In addition to rivers, wetlands and 

vegetated systems also contribute large quantities of DOC to coastal waters. Estimates of 

tidal wetland (both tropical mangroves and temperate marshes) DOC export range from 

50-150 Tg C yr-1 (Raymond & Spencer 2015) to 174-400 Tg C yr-1 (Cai,  2011), 

extremely large ranges with significant uncertainty associated with each estimate. Indeed, 

it is widely considered that tidal wetlands export DOC on the same order of magnitude as 

rivers, although the molecular composition is likely distinct from riverine inputs.  

Knowing the contemporary state of these systems is key to making future 

predictions about how changes in land use and watershed inputs, loss of coastal 
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ecosystems such as wetlands due to sea level rise and other forms of anthropogenically 

driven change will alter the input and role of terrestrial derived DOC in the global carbon 

cycle. My dissertation specifically focuses on organic carbon biogeochemical cycling in 

estuaries. Estuarine ecosystems are undergoing rapid change, are often influenced 

directly by anthropogenic pressures, and are particularly challenging to study due to 

varying inputs and substantial physical and biogeochemical gradients. Challenges aside, 

the majority of terrestrial derived compounds pass through some type of estuarine system 

on the way to the coastal and open ocean. Therefore, understanding the processing of 

organic carbon within estuaries is key to quantifying the linkage of the land-ocean 

organic carbon cycle. The scientific community has recently composed a well-informed 

estimate of the flux of carbon between estuaries and the coastal ocean (Windham-Myers 

et al., 2018), but the original source of the DOC that is being advected from estuaries to 

the coastal ocean is less clear. This is due to varying levels of reactivity of DOC that 

depends on many factors that will be discussed below; not all DOC is created equal 

which has important implications on how long it remains in the organic form in the water 

column.  

1.2 Sources of dissolved organic matter to estuarine waters 

In this section, I provide an overview of the various sources of dissolved organic matter 

(DOM) to estuarine waters, touching on the chemical composition and the processes that 

contribute to the cycling of the DOM from each source. DOM includes not only carbon 

but all other elements contained within the thousands of formulae of dissolved organic 

molecules. This research primarily focuses on DOC, although dissolved organic nitrogen 

(DON) is also considered; carbon makes up the majority of the total chemical 



 

 4 
 

composition of most DOM. Figure 1.1 details a conceptual model of the coastal carbon 

cycle with dominant sources and processes included (Bauer et al., 2013).  This 

introduction focuses on DOM as the primary form of organic matter of interest while 

particulate organic matter (POM) will also be considered as an important pool of organic 

carbon where appropriate. 

1.2.1 Riverine inflow 

 Rivers provide substantial input of both organic and inorganic matter to estuarine 

waters. Land use within a watershed can influence the age of the DOM influx, with 

anthropogenically-disturbed watersheds exporting older DOM on average (Butman et al., 

2012; Lu et al., 2013). Vascular plant derived organic compounds such as lignin make up 

a large portion of riverine DOM and have been used as a biomarker for tracing 

terrestrially derived DOM in marine systems (Benner and Opsahl, 2001; Hernes, 2003; 

Opsahl and Benner, 1997). Microbial reactivity of riverine DOM is somewhat determined 

by the composition of the DOM pool, in addition to environmental factors and the 

microbial community that is utilizing DOM as a substrate for growth and respiration 

(Raymond & Spencer, 2015). Aromatic compounds and lignin are susceptible to 

photochemical degradation and alteration, especially as riverine water is transported into 

less turbid coastal regions where more light penetrates into the water column (Bélanger et 

al., 2006; Cao et al., 2016; Smith and Benner, 2005). A large portion of riverine water 

contains colored DOM (CDOM) (Spencer et al., 2013; Spencer et al., 2012) that absorbs 

light at exponentially increasing amounts as wavelength decreases. As DOM in river 

water flows into estuarine and coastal waters, it is photochemically degraded by ultra-

violet (UV) light, transforming high molecular weight compounds into low molecular 
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weight compounds (Figure 1.2) (Helms et al., 2008; McKay et al., 2016). Photochemical 

degradation tends to increase the bioavailability of riverine DOM (Lu et al., 2013; Moran 

et al., 2000; Reader and Miller, 2014; Smith and Benner, 2005), although the precise 

mechanisms and drivers of the enhanced biological reactivity are less clear. The chemical 

complexity of the DOM composition in riverine waters makes a quantitative assessment 

of the varying processes that govern the distribution in time and space difficult as it is 

transported through estuarine and coastal waters. There remains a lot of uncertainty 

surrounding the ultimate fate of terrestrial derived DOM in estuaries and the coastal 

ocean.  

1.2.2 Wetland export 

 Wetlands export large quantities of optically and chemically distinct DOM 

(Tzortziou et al., 2008), potentially contributing substantially to the DOM pool within 

estuarine waters.  Wetland derived DOM has a very high CDOM content with DOC 

specific absorption (the amount of light absorbed per unit carbon; m-1 g C-1 m-3  or m2 g 

C-1) in a Chesapeake Bay sub-estuary decreasing non-conservatively with distance away 

from the wetland source (Tzortziou et al., 2011). This indicates that the estuary acts as a 

net sink of colored dissolved organic matter (CDOM) and biogeochemical processes 

beyond physically-driven conservative mixing are leading to the loss of CDOM. The 

composition of wetland derived DOM varies, from highly aromatic, high molecular 

weight humic compounds to low molecular weight aliphatic compounds (Helms et al., 

2008; Medeiros et al., 2015; Osburn et al., 2015). Wetland DOM can be both biologically 

available and highly photolabile, with photochemical degradation enhancing biological 

reactivity during estuarine transport (Miller et al., 2002; Vähätalo and Wetzel, 2004; 
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Vähätalo and Wetzel, 2008). In general, the main source of DOM from wetlands is the 

sediment pore water (Qualls & Richardson, 2003), although controls on the timing of 

fluxes and the direct contribution of recently fixed carbon in the form of plant biomass 

are unclear (Schiebel et al., 2018; Wang et al., 2014). 

Wetlands are large sources of DOM to the adjacent tidal waters, but unlike rivers, 

they can be a source (Childers 1993; Ganju et al., 2013; Odum, 2000) or a sink (Jordan 

and Correll, 1991) of particulate organic matter, depending on various factors including 

wetland hydrology and tidal inundation (Fagherazzi et al., 2013; Friedrichs & Aubrey, 

1988). Wetlands in temperate regions such as the Mid-Atlantic and Chesapeake Bay 

experience large seasonal variation in both plant biomass and nutrient fluxes (Rasse et al., 

2005). Undoubtedly, a large amount of organic matter that is fixed by wetland plants 

contributes to the DOM that is lost, although the time scales and processes that lead to the 

loss of the highly colored, humic compounds from wetland sediment are less clear. What 

we do know is that wetland DOM is potentially biologically available, highly 

photoreactive, and can be a large flux to the adjacent estuaries.  

1.2.3 Sub-tidal sediments 

 Relatively sparse observations of sediment-water column DOM fluxes show a 

potentially substantial albeit poorly quantified contribution to the overlying water column 

(Burdige and Homstead, 1994; Burdige and Zheng, 1998). With the high organic matter 

flux across the sediment water interface and generally shallow water in estuaries, 

sediment DOM may be important in the overall budget of organic matter. Fluxes of both 

DOC and DON across the sediment water interface have been shown to make up ~10 % 

of the total sinking POM flux, based on estimates from sediment core incubations 
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(Burdige and Homstead, 1994; Burdige and Zheng, 1998) and sediment trap data from 

main stem Chesapeake Bay (Roden et al., 1995). Although relatively small when 

compared to the downward organic matter flux, the composition and reactivity of 

sediment derived DOM efflux is less clear. In addition, the paucity of measurements 

within the bay makes a thorough quantitative analysis of sediment DOM flux difficult, 

with some incubations indicating a flux of DON into the sediments (Cowan & Boynton 

1996), rather than out (Burdige & Zheng 1998). Our understanding is particularly lacking 

with regard to the temporal and spatial variability of DOM efflux and the reactivity of 

sediment porewater DOM. 

1.2.4 Autochthonous algal production 

 Inland waters with high residence times and large allocthonous nutrient inputs 

tend to exhibit high primary production. Some of this fixed carbon is lost as DOC from 

algal exudation (Baines and Pace, 1991; Lignell, 1990) and when zooplankton graze on 

phytoplankton in a process called sloppy feeding (Møller, 2007). The chemical 

composition and reactivity of algal produced DOM is generally thought to be relatively 

labile supporting up to 50% of the marine heterotrophic microbial community (Thornton, 

2014). The non-conservative loss of CDOM away from terrestrial and wetland sources 

indicates that algal derived DOM is optically and chemically distinct from both wetland 

and riverine derived DOM, with less light absorption per unit carbon. Phytoplankton 

produced CDOM is more protein-like relative to wetland or terrestrial derived DOM, as 

indicated by fluorescence excitation-emission matrices and absorption spectra (Romera-

Castillo et al., 2010).  Even though phytoplankton can contribute significant amounts of 

DOM to estuarine waters, the relative contribution of phytoplankton derived DOM to the 
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standing stock within an estuary is unclear; a relationship between phytoplankton and 

DOC concentration is not always apparent. For example, long-term data sets of main-

stem Chesapeake Bay DON and DOC show a lack of distinct seasonality (Figure 1.3), 

contrary to the strong seasonality in algal biomass and primary production (Adolf et al., 

2006; Cerco and Noel 2004; Gallegos et al., 1997). The lack of any discernible 

relationship between estuarine DOC or DON and chl a biomass over a 10 year period 

(Figure 1.3c, d) supports the idea that allocthonous DOM is potentially subsidizing the 

standing stocks in Chesapeake Bay waters.  

1.3 Important biogeochemical pathways that alter dissolved organic matter (DOM) 

distribution 

1.3.1 Physics 

 Longer residence time allows more thorough processing of DOM as it moves 

away from terrestrial and wetland sources towards the coast. Physical forcing determines 

the fate of a mass of water and therefore has a strong influence of the material within it. 

For example, the two-layer circulation (Pritchard, 1952) and strong seasonal stratification 

of Chesapeake Bay, in addition to wind driven circulation (Wang, 1979b) can exert 

profound influence over the larger scale biogeochemical processes such as dissolved 

oxygen dynamics (Scully 2010). Tidal exchange and wetland inundation is important in 

governing the exchange of solutes between a wetland and the estuary (Correll, 1991) but 

advective processes on longer time scales are less clear. A water mass that is enriched 

with DOM during tidal inundation over a marsh becomes diluted due to advection and 

diffusion as it is flushed out towards the mouth of an estuary, the rate of which is 

controlled by mixing and flow velocity. In addition, flow can modulate wetland stability 
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and sedimentation processes (Friedrichs and Aubrey, 1988; Ganju et al., 2013). 

Understanding flow variability with as high as resolution as possible is foremost to 

quantifying the biogeochemical controls on marsh-estuary solute exchange.  

1.3.2 Heterotrophic microbial degradation 

Heterotrophic microbial breakdown of organic matter is the primary process 

through which organic matter gets decomposed into inorganic components. In estuaries, 

large inputs of organic matter that are subsequently remineralized creates a large input of 

CO2 to the water column (Wang & Cai,  2004; Cai,  2011), making most estuaries on the 

east coast of the United States net heterotrophic, i.e., the rates of organic matter 

remineralization are greater than primary production (Herrmann et al., 2014). Chesapeake 

Bay, however, has a net neutral metabolism due to the large amount of algal production 

in the water column (Herrmann et al., 2014). Cai (2011) shows that much of the organic 

matter that is remineralized to CO2
 in estuaries comes from tidal wetland sources, and 

that a large amount of the organic matter that is exported to the shelf is potentially of 

wetland origin. The high molecular weight (HMW) DOC that is typically exported from 

terrestrial systems (Helms et al., 2008) is initially resistant to biological break down 

(Moran & Hodson, 1990; Moran et al., 2000), potentially increasing the distance it can be 

transported from its source towards the ocean. In the estuarine environment, many factors 

can influence biological reactivity and heterotrophic remineralization rates of organic 

matter. The interactions between molecular composition, UV-Visible light absorption, 

photochemical degradation, and biological availability should be considered when 

attempting to quantify the cycling of DOM in estuarine waters. 



 

 10 
 

1.3.3 Photochemical processing of colored dissolved organic matter (CDOM) from tidal 

wetlands 

Wetlands in Georgia and Chesapeake Bay have been shown to produce optically 

active DOM, with photochemical degradation enhancing microbial activity in samples 

that are experimentally exposed to UV irradiation (Logozzo, 2017; Miller et al., 2002; 

Moran et al., 2000). For example, in incubations where DOM was exposed to UV 

radiation, Moran et al. (2000) saw a ~4 fold increase in the amount of O2 drawdown (and 

thus DOC loss). UV absorption by HMW  “humic” compounds that are exported from 

wetlands, and the subsequent photochemical breakdown of these compounds, leads to 

lower molecular weight compounds on average (Figure 1.2) (Helms et al., 2008). There is 

a direct causal link between spectral absorbance characteristics of DOM and the average 

molecular weight of the DOM, with HMW DOM absorbing more strongly across all UV-

Visible wavelengths.  

 The spectral absorption characteristics of CDOM such as the slope ratio (SR) can 

inform the source and biogeochemical history of the DOM in a parcel of water (Helms et 

al., 2008). SR, one of many useful absorption spectra metrics (Hu et al., 2002), is defined 

as the ratio of the exponential slope of the CDOM absorption spectra between 275-295 

nm and 350-400 nm. The shallower the slope, the lower the slope ratio, and the less 

photodegraded a water parcel is; SR is used as a proxy of light exposure history and 

DOM photoreactivity. Different biogeochemical processes can have opposing effects on 

DOM optical properties, which can confound the interpretation of source and history by 

optical properties alone (Hansen et al., 2016). Nonetheless, optical methods and 

bioassays can offer snapshots of the in-situ conditions. Wetland, terrestrial and algal 
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produced DOM all undergo different processing due to biological and photochemical 

production and degradation. Understanding the combined effects of spectrally dependent 

light absorption, light energy reaction efficiency (known as the apparent quantum yield or 

AQY), and photochemical-biological degradation is necessary to thoroughly capture the 

source-sink dynamics of DOM in an estuarine ecosystem. 

1.4 Organic carbon budgets of estuarine systems 

 All of the above sources and associated processes contribute to the total organic 

carbon budget of estuarine waters, yet teasing apart the relative contribution of each to 

the total organic carbon stock and flux at any given time or place is very difficult. Recent 

comprehensive analyses of the wetlands and estuaries of the East Coast of the United 

States provides estimates of organic carbon budgets across systems (Najjar et al., 2018; 

Herrmann et al., 2014). These estimates are based on empirical relationships that are used 

to estimate estuarine organic carbon production and they utilize relatively sparse 

measurements of inputs to extrapolate to a regional budget. In addition, important aspects 

of the budgets are often estimated by difference, e.g., what is left over after summing the 

estimated quantities. Some processes are well constrained (e.g., net tidal wetland carbon 

uptake measured by eddy covariance) (Forbrich & Giblin, 2015) while others are 

relatively uncertain (e.g., marsh-estuary DOC fluxes during tidal inundation) (Herrmann 

et al., 2014). Using a difference method (Inputs - Losses = Net flux out), Cai (2011) 

estimated that 5.5 Tg C yr-1 was exported out of US South Atlantic Bight salt marshes to 

the downstream estuaries. This leads to an areal flux of 1100.0 g C m-2 yr-1 that, when 

extrapolated out to the global wetland area of 3.8x1011 m2, gives the large estimate of 

174-400 Tg C yr-1. This estimate also makes the assumption that in-estuary processing is 
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insignificant and the vast majority of marsh derived DOC is exported to the shelf.  This 

assumption may be valid in energetic systems with a short residence times, but in large 

estuaries with small tides, such as Chesapeake Bay, in-estuary processing of allocthonous 

DOC is likely important. Even with the associated caveats, this initial estimate by Cai 

(2011) of organic carbon fluxes on a large scale shows the potential importance of 

marshes to the global organic carbon budget, contributing ~half of the total organic 

carbon flux from terrestrial to marine ecosystems. 

 Following Cai (2011), Herrmann et al. (2014) compiled estimates of the lateral 

flux of organic carbon between tidal marshes and estuaries on the East Coast of the 

United States, with values averaging 184.8 ± 123.0 g C m-2 yr-1. Looking at Table 1 from 

Herrmann et al. (2014), organic carbon flux estimates range from 48 g C m-2 yr—1 (Jordan 

and Correll, 1991) to 456 g C m-2 yr-1 (Dame, 1995). Locations of the measured fluxes 

span from Georgia (264 g C m-2 yr-1) to New York (324 g C m-2 yr-1) with no clear 

geographic pattern to explain differences. Herrmann (2014) predicts the average DOC 

flux across the East Coast of the US is ~20% that of  Cai’s (2011) estimate. Having a 

robust flux estimate that is as tightly constrained as possible is key to producing a reliable 

budget. Depending on whether Herrmann’s (2014) estimate or Cai’s (2011) estimate is 

used will give very different answers on the relative importance of tidal wetlands in the 

global carbon budget when extrapolating to the global wetland area. Having a large range 

of DOC estimates is helpful when considering carbon budgets on multiple scales, but 

understanding why the flux estimates vary is paramount to extrapolating relatively sparse 

direct measurements of DOC flux to large areas from representative marshes.  
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 The large range of flux estimates beg some important questions: why do marshes 

behave differently in terms of the total carbon flux, where does all of the organic carbon 

go once it enters the water column, and what processes govern its fate? Ranging back to 

the 1960s when marsh-estuary biogeochemical measurement techniques were pioneered, 

field and experimental studies can offer windows into important processes in estuarine 

and coastal ocean carbon cycling. This falls short, however, when attempting to do a high 

spatial and temporal resolution comprehensive budget analysis of all of the important 

processes affecting organic matter cycling. Building tools such as sophisticated 

biogeochemical models that can be used to narrow the uncertainty around these estimates 

is important to further constrain marsh-estuary-ocean carbon cycling. 

1.5 Aims and Objectives 

 As discussed above, quantifying the flux of DOM into and out of estuaries and 

towards the coastal and open ocean is a high priority to narrow uncertainty associated 

with some aspects of the carbon cycle. The complex processing along the environmental 

gradients from land to sea makes this task difficult in practice when relying on 

observational methods alone. This study aims to incorporate new biogeochemical 

components into a mechanistic carbon cycle and water quality model, ICM, to directly 

estimate the role of each process on the transport and transformation of organic matter in 

estuarine waters. The new model, hereinafter ICM-DOM-PD (Integrated Compartment 

Model-Dissolved Organic Matter-Photochemical Degradation) was implemented in a 

tributary of Chesapeake Bay to estimate processes that were previously unrepresented in 

modeling systems. 
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 Two new modules were built into ICM to model the sediment-water column 

exchange of DOM and the mechanistic photochemical degradation of DOM in the water 

column. The Sediment Flux Model (Brady et al., 2013; Di Toro and Fitzpatrick, 1993) 

was altered to include DOM as an intermediate state variable in the breakdown of POM 

to inorganic carbon and nutrients. This was done to provide one of the first long-term 

estimates of DOM fluxes between subtidal sediment and the overlying estuarine water in 

a shallow ecosystem, and to provide a mechanism to load DOM into the sediments at 

locations specifically designated as intertidal wetland in the 3-D model domain. The 

photochemical degradation model achieves two main goals: first, the mechanistic 

representation of photochemical degradation allows an estimate of the flux of CDOM 

through the photochemical pathways and the potential to alter the biological reactivity of 

CDOM. The photochemical degradation model can calculate the impact of marsh derived 

CDOM on the underwater UV-Visible light field which is important to provide a more 

realistic simulation of light attenuation. The updated SFM and the photochemical 

degradation model were tested in stand alone frameworks and compared to experimental 

data to estimate key fluxes and properties of both carbon cycle pathways. This 

methodology allowed for a robust parameterization, with the experimental data providing 

the bounds on the new components of the model before implementation into the three-

dimensional biogeochemical modeling system.  

 To better understand physical drivers of material transport in an estuarine 

environment, the 3-D hydrodynamic model FVCOM (Chen et al., 2003) was built to 

represent the Rhode River, MD, USA, a well studied tributary of Chesapeake Bay. The 

hydrodynamic model was used to simulate the physical properties of water such as water 
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transport, salinity and temperature. In addition, the drivers of the variability of water flow 

and transport between a tidal wetland and the Rhode River were explored. High 

resolution observations at the marsh creek were used to contextualize organic matter 

fluxes at the outflow of the marsh. It was found the variability of organic matter and 

salinity was correlated with variations in wind velocity, and the modeling system was 

used to explore mechanisms on how wind affects flow at the marsh creek. 

 To explore marsh-estuary organic carbon cycling and fluxes, the FVCOM 

hydrodynamic model was coupled to the updated organic carbon cycle model, ICM-

DOM-PD, with the enhancements described above for the Rhode River. The modeling 

system was used to carry out one of the first comprehensive organic carbon and nitrogen 

budgets in a fully coupled marsh-estuary ecosystem model. In addition, model scenarios 

with and without the marsh DOM input and the photochemical degradation of DOM were 

used to understand the role of each process on the direct cycling of organic matter and 

indirectly on other biogeochemical cycles such as nitrogen cycling. The export of DOC 

from the marsh to the tributary and from the tributary to the mainstem of the Chesapeake 

Bay was quantified on time scales that can capture seasonality in environmental 

conditions. From this representative estuarine ecosystem, estimates of the wetland 

contribution to total DOC inputs and DOC stock within Chesapeake Bay were derived.  

 Each chapter of this research builds on the previous, with the methods and 

modules developed in the first three chapters built into the full model system in the final 

chapter. The modeling system is a tool that can be used in ecosystems where the cycling 

of organic matter across the terrestrial-marine continuum is important. The model will be 
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open source with all inputs, pre and post processing scripts, and source code publicly 

available in an online repository. Figure 1.4 displays the work flow for this dissertation. 
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Figures Chapter 1 

 
Figure 1.1 From Bauer et al. (2013) the coastal carbon cycle with all-important processes 
related to the cycling of organic carbon displayed.  
 

 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 1.2 Conceptual model showing the breakdown of high- and mid-molecular weight 
compounds during the photochemical degradation process. The shading of each idealized 
compound is also indicative of the relative color of each pool, with darker compounds 
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absorbing more light per unit carbon. The general concepts for this model were adapted 
from Helms et al., 2008 and are detailed in Chapter 3. 
 

 
Figure 1.3 Annual climatology of (a) dissolved organic carbon (DOC) and (b) dissolved 
organic nitrogen at mainstem Chesapeake Bay Program (CBP) water quality monitoring 
station 4.1C and (c) DOC and (d) DON plotted as a function of chlorophyll a at mainstem 
CBP stations 3.3C and 4.1C. The DOC data was collected from 1985 to 1995 while the 
DON data was collected from 1985 to 2005. Periodograms and cross covariance analysis 
revealed no significant seasonality in the full time series. 
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Figure 1.4 Workflow of the research process in this dissertation. Green boxes indicate 
method development and implementation while red boxes indicate outcomes of each 
methodology. 
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Estuarine sediment dissolved organic matter dynamics 

in an enhanced sediment flux model 

2.1 Abstract 

Sediment derived dissolved organic matter (DOM) can comprise a substantial portion of 

the organic carbon budget in coastal bottom waters, yet it is often neglected in coastal 

carbon cycle models.  In most modern sediment-water column flux models, biologically 

mediated reactions that remineralize particulate organic matter (POM) into inorganic 

compounds are simplified. In reality, organic matter remineralization is a complex suite 

of reactions that include DOM intermediate compounds. To better represent the 

sequential breakdown of POM and remineralization of DOM, a DOM state variable was 

built into a widely used sediment flux model. In the model, DOM is created in the 

sediment by hydrolysis of POM, and all organic matter passes through the DOM pool 

before remineralization.  The model was run for 11 years and tuned to reproduce 

observed sediment flux data collected in Chesapeake Bay and then used to assess the role 

of DOM in sediment organic matter dynamics. Sediment-water column fluxes of DOM 

are highly variable both on seasonal and inter-annual scales, with substantial variability 

among stations in both magnitude and flux direction. Across all stations, semi-labile and 

inert DOM is lost and labile DOM is taken up into the reactive first layer of the modeled 

sediment, with the net flux a balance of the two processes. The improved sediment flux 

model can be utilized to better understand the role of sediment biogeochemistry in the 

estuarine and coastal carbon cycle, and shed light on difficult to measure processes 

involving DOM intermediate compounds. 
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2.2 Introduction 

 Although estimates of sediment-derived dissolved organic matter (DOM) 

contribution to coastal organic matter cycling are potentially significant (Burdige et al., 

1992; Vlahos et al., 2002), few studies assess the quantity, quality, and variability of 

sediment DOM exchange. In Chesapeake Bay, limited observations of sediment 

porewater DOM concentration show DOM accumulates and eventually approaches a 

constant value with depth (Burdige and Homstead, 1994; Burdige and Zheng, 1998), 

indicating that there is an internal source of DOM in the sediment. In addition, sediment-

water column DOM flux data show that, in general, estuarine and coastal ocean sediment 

acts as a source of DOM to the overlying water column (Alperin et al., 1994; Burdige et 

al., 1992; Burdige and Homstead, 1994; Burdige and Zheng, 1998). To account for the 

depth distribution in sediment of DOM concentration, particulate organic matter (POM) 

that settles to the sediment from the overlying water column must pass through DOM 

intermediate compounds in the process of organic matter remineralization (Burdige and 

Gardner, 1998; Weston and Joye, 2005).  Even though DOM plays an important role in 

early diagenesis and carbon preservation, the seasonal and inter-annual variability of 

estuarine sediment DOM dynamics and reactivity remains poorly quantified.  

 The paucity of measurements of Chesapeake Bay sediment DOM fluxes and 

concentrations makes a quantitative analysis of the role of DOM in the local and regional 

organic matter cycle difficult. Limited observations of dissolved organic carbon (DOC) 

and dissolved organic nitrogen (DON) fluxes reveal that both exhibit potentially 

substantial inter-annual variability (Burdige and Homstead, 1994; Burdige and Zheng, 

1998). In addition, there is disagreement in the direction of fluxes in measurements of 
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DON in a mid-channel Chesapeake Bay, seasonally anoxic station, with both a DON 

efflux (Burdige and Zheng, 1998) and influx (Cowan and Boynton, 1996) being 

observed. In general and across systems, it does appear that estuarine and coastal ocean 

sediment is a source of DOM to the overlying water column. However, the variability in 

measured downward sinking flux of POM makes an analysis of the net flux, the fraction 

of the sinking POM that is lost from the sediment through the diffusion of DOM, elusive. 

Coupled water-column sediment biogeochemical models, however, can help address 

some of these shortcomings in our current observational and experimental understanding 

if DOM can be incorporated into them.  

Coupled sediment-water column models range from simple no flux boundaries to 

complex multilayer depth explicit models (Soetaert et al., 2000). Burdige and Gardner 

(1998) first proposed the Pore Water Size Reactivity (PWSR) model to describe the size 

distribution and reactivity of DOM with depth in coastal sediment. Recently, an updated 

version of the PWSR model gives a realistic representation of porewater DOM depth 

profiles in coastal California sediment (Komada et al., 2013; Burdige et al., 2016). A 

similar, albeit depth integrated, model is the Sediment Flux Model (SFM), which is used 

in applications in estuarine and coastal waters to simulate sediment fluxes (Di Toro and 

Fitzpatrick, 1993; Brady et al., 2013; Testa et al., 2013).  Unlike the PWSR model, in 

SFM diagenesis of organic matter is simplified into a one-step temperature dependent 

degradation coefficient where POM is converted directly to inorganic forms. Modeled 

and observed NH4
+

,and NO3
- fluxes (JNH4

+ and JNO3
-) and sediment oxygen demand 

(SOD) comparisons show that SFM performs well in estuarine waters of Chesapeake Bay 

(Testa et al., 2013; Brady et al., 2013), reproducing observed fluxes at long-term 
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observational and experimental stations (Boynton and Bailey, 2008 ). However, the two-

layer depth-integrated SFM does not include DOM as an intermediate compound in the 

diagenetic reactions, a potentially important omission especially in terms of organic 

matter budgeting. The lack of a porewater DOM state variable in SFM (and most other 

models) prevents a quantitative assessment of the role of DOM in bulk organic matter 

retention, reactivity and storage.  

To analyze the role of DOM in estuarine sediment, DOM was incorporated as an 

intermediate diagenesis compound into SFM (hereinafter SedDOM-SFM).  SedDOM-

SFM was set up to analyze the reactivity and fate of DOM in three seasonally hypoxic 

Chesapeake Bay stations by tuning the model to 11-year observed time series of water 

column - sediment nutrient and oxygen fluxes (SONE) (Boynton and Bailey, 2008). The 

flux comparison model validation strategy is based on the principle that sediment-water 

column inorganic nitrogen and O2 fluxes are primarily driven by the microbial 

breakdown of organic matter: to capture the sediment fluxes the remineralization of 

organic matter must be simulated reasonably well. It is shown that model skill is 

moderately improved with the inclusion of DOM as a diagenesis intermediate. In 

addition, the model indicates that DOM fluxes are highly seasonal in magnitude, 

reactivity, and nitrogen content, and can vary in direction across seasons, stations and 

years. SedDOM-SFM also allows a more complete mechanistic representation and 

analysis of early diagenesis of organic matter in estuarine sediment. 

2.3 Methods 

The model formulations of SFM have been discussed at length in recent 

publications (Brady et al., 2013; Testa et al., 2013), therefore a detailed description of the 
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model formulations is not included here. SFM is a two layer, depth integrated, 

biogeochemical sediment flux model that predicts sediment-water column diffusive 

fluxes based on concentration gradients of solutes and settling fluxes of particulates 

across the sediment water interface, as well as exchange between the two sediment layers 

(Di Toro and Fitzpatrick, 1993). Anoxic remineralization occurs in a finite depth layer 

and the thickness of the surface aerobic layer is adjusted based on overlying water 

column oxygen concentrations and model calculated SOD. The model assumes that the 

aerobic first layer is much thinner than the anoxic second layer (e.g. 1-2 mm vs. 10 cm), 

therefore all particulate organic matter hydrolysis occurs in the second layer. In this 

section, focus is placed on the new DOM state variables and the model tests that were 

conducted to assess how the inclusion of DOM into SFM affects organic matter cycling 

and thus nutrient flux variability. 

DOM is modeled with the same strategy as other dissolved solutes, having a mass 

transfer between the aerobic layer 1 and anaerobic layer 2 that is temperature dependent, 

and a surface diffusivity approximation that is based on SOD and overlying water column 

O2 concentration (Figure 2.1; following Di Toro,  2001). This treatment ensures that all 

porewater solutes are diffusing with the same mass transfer velocity. DOM is 

remineralized into both inorganic carbon (untracked in the model) and NH4
+, which can 

diffuse with the overlying water column.  The following section details the new model 

equations conceptualized in Figure 2.1. 

2.3.1 New model formulations 

Equation 2.1 is the mechanistic representation of sediment porewater compound x 

(carbon or nitrogen) and reactivity i (1-3) DOM in the aerobic sediment layer 1. DOM 
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reactivity is based on the 3-G model (Jorgensen, 1978; Westrich and Berner, 1984), with 

DOM1 and DOM2 representing labile and semi-labile fractions, and DOM3 representing 

an inert fraction. From left to right, the first term is the terminal remineralization of DOM 

to inorganic forms via the first order temperature dependent remineralization rate kDx,i, 

followed by two porewater diffusion terms based on Fick’s law of diffusion. The first is 

calculated from the sediment layer 1 and layer 2 DOM (DOM1
x,i, and DOM2

x,i) 

concentration gradient using a temperature dependent mass transfer velocity KL12 (Table 

2.1) over the depth of the sediment H2 (~10 cm). The second term is the diffusion of 

DOM across the sediment layer 1-water column DOM  (DOM0
x,i) concentration gradient 

from the middle of the overlying water column (1m) and the middle of  layer 1 (H1) by 

surface mass transfer velocity KL01. KL01 is approximated at each time step of the model 

by taking the ratio between SOD and the overlying water column dissolved O2 

concentration.  

dDOMx,i
1

dt
= −kDx,iDOMx,i

1 +
KL12
H2

DOMx,i
2 −DOMx,i

1"# $%−
KL01
H1

DOMx,i
1 −DOMx,i

0"# $%        (2.1)                                                 

Anaerobic sediment layer 2 DOM (DOM2
x,i), represented by Equation 2.2, is 

modeled similarly to layer 1 DOM but with one key difference: POM that is deposited in 

layer 2 (POMx,i) by settling from the overlying water column is hydrolyzed via a first 

order temperature dependent reaction rate (kPx,i) into DOM. This is the primary source of 

DOM into sediment layer 2, and is the primary mechanism beyond diffusion that DOM is 

added into the sediment. The fourth term is the sediment accretion velocity ω to account 

for the burial and loss of organic matter from the finite depth being modeled as sediment 

is deposited over time. All other terms are defined as in layer 1.  
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dDOMx,i
2

dt
= kPx,iPOMx,i − kDx,iDOMx,i

2 −
KL12
H2

DOMx,i
2 −DOMx,i

1"# $%−
ω
H2

DOMx,i
2                      (2.2)                                 

Temperature dependency is important in marine sediment diagenesis (Weston and 

Joye, 2005) and therefore was included explicitly in the model. Temperature dependency 

is modeled as an Arrhenius relationship with a basal value either increasing or decreasing 

around temperatures of 20° C. The temperature control function is shown in Equation 2.3 

where M is either kP, kD or KL, kbx,i is the reference rate for each compound x  (C or N) 

and reactivity i (1-3), θi is the temperature control parameter and T is the sediment 

temperature (°C). θi varies for each reactivity class of organic matter, while diffusion 

temperature control (θD) is the same for all three DOM reactivity classes (Table 2.1). 

Diffusion temperature control was included to account for the abiotic increase in 

diffusion with temperature. POM3
 reactivity is set to 5.0x10-6 rather than the literature 

value of 0.0 to account for the slow accumulation of DOM3 with depth. DOM reaction 

rates were tuned manually to achieve an optimal model fit to observational data and 

subsequently fixed for model analysis.  

                   (2.3)   

2.3.2 Model environment and implementation 

 SedDOM-SFM was implemented at main channel Chesapeake Bay stations R-64 

(38.559 N, -76.426 W), and Point No Point (PNPT; 38.133 N, -76.252 W), in addition to 

Ragged Point (RGPT; 38.162 N, -76.589 W) in the Potomac River, a large tributary of 

Chesapeake Bay. Long-term sediment biogeochemical measurements were taken from 

1985 through the summer of 1996 at all three stations, which are all seasonally hypoxic 

(Boynton and Baily, 2008). Observed seasonal time-series of JNH4
+

 and JNO3
- as well as 
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SOD were used for model validation beginning May 6,1986 after a one year model spin-

up, following Brady et al. (. Organic nitrogen reactivity provided one of the best 

constraints on model DOM remineralization parameterization because the relative rates 

of PON hydrolysis and DON remineralization are key to an accurate simulation of JNH4
+. 

The sediment surface boundary was forced with time series of observed overlying water 

column concentrations collected by the Chesapeake Bay Program (CBP; 

http://www.chesapeakebay.net/data/downloads) for all model constituents including 

DOC, DON, NH4
+, NO3

-, O2 and temperature. CBP data were used rather than the 

overlying water column measurements from SONE because the goal was to model in-situ 

rather than experimental conditions. A shape preserving piecewise cubic Hermite 

interpolation scheme (PCHIP) was used to interpolate to a 6 hour time step for the model 

forcing from the approximately biweekly CBP observations.    

Time-variable overlying water column DOM forcing interpolated from the 

relatively uneven and sparse CBP data lacked distinct seasonality and didn’t exhibit 

trends (Figure 2.2). Station PNPT provided a nearly regularly sampled continuous data 

set for both DON and DOC, but the other two stations lacked a complete and regularly 

sampled time series for both variables. In order to avoid interpolation errors, at time 

points when the interpolated data set exceeded the minimum or maximum of the 

observed data, the interpolated values were set to the mean. CBP data doesn’t distinguish 

between reactivity classes as in SedDOM-SFM, therefore the data was partitioned into 20 

% G-1 (labile), 30 % G-2 (semi-labile) and 50 % G-3 (inert), following a water column 

DOM modeling study in Chesapeake Bay (Keller and Hood, 2011). For reference, a cross 

aquatic system analysis (Søndergaard and Middelboe, 1995) found that ~17% of DOC 
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was utilized quickly during incubations, and up to 30 % of riverine derived DOC was 

utilized within estuaries in the southeastern United States (Moran et al., 2000). Two 

model runs were conducted to examine different timescales of interest. First, model runs 

with the time varying DOM forcing were used to see how overlying water column DOM 

concentration affected the model performance and sediment-water column flux 

predictions. Second, time-averaged overlying water column DOM forcing was used to 

look at differences on seasonal and inter-annual time scales that, due to the lack of 

seasonality and trend in the DOM observations, I hypothesized would be relatively 

unaffected by removing the time-variance. 

SedDOM-SFM is parameterized as in Brady et al. (2013) and Testa et al. (2013) 

and forced with the same yearly average downward POM flux (JPOM), which is 

optimized in their modeling studies to achieve the best model fit to observed JNH4
+. The 

semilabile POM reactivity was reduced to 1.8 × 10-4 in the model run with DOM turned 

on, which appropriately scaled the DOM fluxes and pore water concentration to the 

correct order of magnitude that has been measured while improving model skill. At 

steady state, the POM hydrolysis and the DOM remineralization must be equivalent, and 

the ratio of the POM hydrolysis rate and the DOM remineralization rate is proportional to 

the concentrations of each state variable. Sediment observations of POC and DOC in 

Chesapeake Bay show that POC is ~2–3 orders of magnitude greater than DOC (Burdige 

and Homstead, 1994; Burdige and Zheng, 1998); therefore, the reactivity of POC should 

be 2–3 orders of magnitude less than DOC if steady state is assumed. An updated JPOM 

optimization was not conducted for SedDOM-SFM because a direct comparison between 

the model with DOM and SFM was desired, and a new optimization would make such a 
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comparison ambiguous. Due to the lack of measured porewater DOM remineralization 

rates in the literature, it was necessary to use an inverse modeling technique to back out 

the DOM reactions rates, similar to Burdige et al. (2016). The comprehensive time series 

of flux data added confidence to the estimated DOM remineralization rates.  

Model skill was characterized by model-data sediment flux comparisons using 

three metrics; coefficient of covariance (r), root mean square error (RMSE), and model 

efficiency (MEF). The coefficient of covariance is a measure of how well the model 

simulates the data variability, RMSE is an indicator of how accurate the model prediction 

is and MEF is an indication of the model’s predictive capacity relative to the mean (Stow 

et al., 2009). A MEF > 0 indicates that the model gives a better estimate of observations 

than the observed mean at any given time, while a value < 0 indicates the model is not 

better than the mean at representing any one data point. Comparisons of these skill 

metrics between models with and without the DOM intermediate were conducted to 

determine how the inclusion of DOM affected JNH4
+, JNO3

- and SOD. The statistics 

presented are the combined mean values of all three stations unless otherwise noted. 

2.4 Results and Discussion 

2.4.1 Model validation and skill analysis 

Model-data comparisons of inorganic nitrogen and O2 fluxes show that SedDOM-

SFM reasonably simulated the early diagenesis of organic matter in Chesapeake Bay 

(Figures 2.3-2.5). Although the skill of the SOD model solution is relatively low (Table 2 

and Figure 2.6), overall SedDOM-SFM captured much of the dynamic seasonal and inter-

annual variation in SOD and compares well with previously reported values of model 

skill in Chesapeake Bay (Brady et al., 2013; Di Toro,  2001). SOD is strongly driven by 
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both the seasonal variation in temperature-controlled microbial activity and the overlying 

water column O2 concentration (Figure 2.3a). During summer, when there were re-

aeration events of hypoxic bottom water that increase bottom water O2 (e.g., in 1989 and 

1995) there were large spikes in SOD. Small variations in bottom water O2 concentration 

can lead to significant variation in modeled SOD because sediment microbial respiration 

consumes oxygen rapidly when it is available (Boynton and Kemp, 1985). For 

comparison, when the oxygen concentrations that were observed during the SONE core 

incubations were used as the boundary forcing, instead of the CBP data, all SOD skill 

metrics improved dramatically (Figure 2.6 and Table 2.3). This occurred because small 

deviations in model forcing from the true oxygen concentration that were observed 

during flux incubations can cause significant model errors. The CBP database was used 

for boundary forcing nonetheless because the goal was to model in-situ rather than 

experimental conditions.  

The model sometimes under-predicted anoxic events, also likely due to the small 

variation in overlying water column dissolved oxygen forcing. There was also large 

variation in the model skill for each station, further emphasizing the importance of the 

overlying water conditions in determining the model’s ability to predict SOD. Lastly, the 

model results suggest that the intra-seasonal variability in SOD was largely missed by the 

observational data, especially decreases in SOD during winter months that occurred at 

low temperatures. Statistical analysis with and without time varying overlying water 

column DOM forcing showed no difference for all three variables used for the model 

skill assessment, indicating short term variation in the DOM flux does not impact the 

seasonal variation of the inorganic nitrogen and O2 flux.    
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Seasonal and inter-annual variability of JNH4
+ was modeled very well (Table 

2.2), with the model capturing the summer peak in all years, while also showing a marked 

shutdown in JNH4
+ in the winter months. Variability in JNO3

- was also captured quite 

well in SedDOM-SFM (Table 2.2), which is indicative of the ability of the model to 

simulate nitrification and denitrification. When compared with SFM, SedDOM-SFM 

performs better for MEF and RMSE for both JNH4
+ and SOD, while differences in r-

value performance were negligibly changed (Table 2.2). JNO3
- model skill was not 

substantially improved by the inclusion of the DOM intermediate, supporting the idea 

that the overlying water column NO3
- concentration largely drives JNO3

- in Chesapeake 

Bay sediment (Testa et al., 2013).    

 From these comparisons between SFM and SedDOM-SFM, it appears that 

including a DOM diagenesis intermediate resulted in a more skillful model, with a 

particularly strong model performance and high MEF in JNH4
+.  JNH4

+ is largely 

controlled by organic N remineralization (Cowan and Boynton, 1996; Kemp et al., 1990). 

Therefore, to capture JNH4
+ organic N remineralization must be well represented by the 

model formulations, which adds confidence in our conclusion that the model’s simulation 

of organic matter breakdown was improved by the addition of a DOM intermediate. The 

lack of improvement in the coefficient of covariance (r; Table 2.2) while the RMSE and 

MEF improved substantially indicates that both models exhibit similar ability to capture 

seasonal variations, but that SedDOM-SFM can potentially estimate SOD and JNH4
+ for 

any given time point more accurately.  

 Model runs with constant DOM forcing and time variable DOM forcing resulted 

in no change in model skill metrics with respect to SOD, JNH4
+, and JNO3

-.  This 
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indicates that although the DOM flux between the sediment and water column can be 

highly variable (see following sections), the short-term variability in the breakdown of 

DOM in the sediment doesn’t have a large controlling influence over DIN fluxes and 

SOD.  As in previous observational (Kemp et al., 1992) and modeling work (Brady et al., 

2013), the seasonal variability in observations of sediment nutrient and oxygen fluxes is 

primarily driven by POM delivery to estuarine sediment and the variation in the 

overlying water column concentrations of DIN and O2. 

2.4.2 Sediment-Water column dissolved organic matter flux variability 

The following sections detail different time scales of sediment-water column DOM flux 

variability for the three stations within the study.  All fluxes are positive out of the 

sediment. Different controlling factors act on time scales spanning from days to multiple 

years. A comparison between the three stations demonstrates that sediment overlying 

water column POM delivery is an important controlling factor for DOM dynamics. 

Lastly, how the reactivity and partitioning of DOM within models can relate to 

conceptualizations and observations of organic matter cycling in shallow coastal 

sediment is discussed. 

 

DOC flux short-term variability 

 Time-varying observed and interpolated DOM forcing was used to assess how the 

diffusive flux across the sediment water interface of DOC varies in response to changes 

in the overlying water column concentration. Figure 2.7 shows the 11-year averaged 

climatology for the three stations. The modeled DOC flux responded strongly to changes 

in overlying water column DOC concentration, represented by the short term pattern of 
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variation in each climatology. In general, the flux peaks in late summer and declines to 

around 0-1 mmol C m-2d-1 in the cooler months. The lack of overlying water column 

DOM concentration seasonality (Figure 2.2) but high frequency of variation suggest that 

the overlying water column doesn’t exhibit a strong control on the seasonal variability of 

the sediment-water column DOC flux. The total flux is a balance between a net uptake of 

DOC1 into the sediment and a net loss of DOC2 and DOC3 out of the sediment. Due to the 

temporal variability in the concentration gradient across the sediment-water interface, all 

stations can act as either a source or a sink for DOC. Station R-64 (Figure 2.7a) was a 

source in all seasons, on average, while station RGPT (Figure 2.7b) transitioned from a 

source to a DOC sink in the late summer, and station PNPT (Figure 2.7c) was generally a 

sink, although there were small-scale fluctuations when the sediment is periodically a 

source. 

Fluctuations in the sediment layer 1 and overlying water column mass transfer 

velocity, KL01, due to changes in the ratio between SOD and the overlying water column 

dissolved O2 concentration also affect the diffusion across the sediment water interface. 

The variation in KL01 does not appear to drive much of the short-term variation in JDOC, 

although the seasonal JDOC cycle is largely determined by seasonal variation in KL01. 

All three stations exhibited similar seasonal patterns of KL01 variance, with high KL01 in 

the summer, and varying by about an order of magnitude across seasons. This is due to a 

high oxygen demand but low oxygen concentration occurring at warmer temperatures 

(Brady et al., 2013). The non-linearity of the system is reflected in the rapidly changing 

flux, although the concentration in the modeled sediment layer 2 is relatively stable on 

short time scales (not shown). It is important to emphasize that in-station temporal 
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variance can offer a different interpretation of the direction of the flux, depending on 

when the station is sampled. The timing of sampling could potentially change the 

interpretation of the general sediment JDOC trend, which has implications for previous 

and future benthic DOC and DON flux measurements. The short-term dependency of the 

benthic flux on the overlying water column DOM concentration begs the question as to 

whether or not the relatively sparse flux measurements that have been made in 

Chesapeake Bay actually capture the behavior of the sediment fluxes.   

 

DOC flux seasonality and annual averages 

The measured and forced overlying water column DOM concentrations lacked 

any apparent seasonality or pattern of variability, allowing the mean value of DOM 

forcing for each station to be used. Removing all variance from the DOM forcing resulted 

in a smoother average DOC flux, although there was still strong seasonality for all three 

stations (Figure 2.8). This indicates that hydrolysis of POM and thus porewater DOM 

concentration, coupled with the seasonally varying mass transfer velocities between the 2 

sediment layers and the water column, largely determined the seasonality of the modeled 

fluxes. In order to analyze the seasonal variability, each time series was decomposed into 

an 11-year climatology to get the mean conditions for our study period. The same general 

seasonal pattern as seen in the previous section is observed, indicating that processes 

within the sediment primarily governed the seasonal variation of DOC flux. SedDOM-

SFM predicted that the sediment would actively take up and remineralize labile DOC 

from the water column while acting as a source of semi-labile and inert DOC. DOC2 

efflux peaked between Aug 17 and Aug 28, on average depending on the station, while 
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DOC1 uptake by the sediment peaked from 25 August to 10 September. Station R-64 and 

RGPT had a positive average yearly integrated flux (Table 2.4), while PNPT was neutral.  

On average, DOC3 contributed 34% and 38% to the total JDOC for stations R-64 and 

RGPT, and 45% at station PNPT. Across all three stations, inert DOC3 contributed 41% 

to the net flux on average, similar albeit less when compared to results from Santa 

Barbara Channel anoxic sediment (53% of modeled total JDOC) (Burdige et al., 2016). 

DON flux exhibited similar seasonal patterns (Figure 2.9). 

The JDOC:JDON ratio (C:N, Table 2.4) offers insight into how DON and DOC 

differentially behave across stations. On average, when compared to the Redfield ratio of 

6.6 mols C mol N-1, the sediment was a larger source of DON relative to DOC with a 

ratio of 4.75 mols C mol N-1. In particular, station RGPT was a large source of DON 

relative to DOC, which appeared to be driven by the high C:N of the forced overlying 

water column DOM (Figure 2.2c). The three stations had an average water column 

DOC:DON ratio of 9.2 (Table 2.4). DOC and DON flux vary independently and are 

partly dependent on temperature due to the 1.14 times greater reaction rate of DON1 and 

DON2, in addition to the high overlying water column DON:DOC ratio. This suggests 

that sediment efflux of DOM in estuarine and coastal waters with a potentially high 

DOC:DON ratio in the water column may be a relative sink for nitrogen from the 

sediment. This can contribute to the increasing C:N that is observed in porewater profiles 

in Chesapeake Bay (Burdige and Zheng, 1998) and anoxic Santa Barbara Channel 

sediment (Burdige et al., 2016). For comparison, Burdige et al. (2016) predicted a 

DOC:DON sediment efflux of 2.98, while forcing their model with an overlying water 

column DON concentration assumed to be 0. The results across all stations suggest that 
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the sediment can act as a transformer of organic material: algal-derived POM that is 

hydrolyzed in even proportions into semi-labile and refractory DOC and DON, can 

diffuse back to the water column at different flux rates because the overlying water 

column has a high DOC:DON ratio. Estuarine and coastal ocean bottom water DOM 

often has a high C:N ratio relative to Redfield stoichiometry (Hopkinson et al., 2002), 

therefore this phenomenon of a low JDOC:JDON ratio may be more geographically 

widespread. This has implications for the net organic carbon and nitrogen flux across the 

sediment water interface.  

 The highly seasonal DOM flux is largely controlled by the production and 

accumulation of DOM by the temperature-controlled hydrolysis of POM. The rates of 

POM hydrolysis (kPx,i) are an order of magnitude slower than DOM remineralization 

(Table 2.1). However, sediment POM concentration is much greater than DOM 

concentration in Chesapeake Bay (e.g. at the modeled sediment density of 360 g l-1, ~1.1-

2.31 mol C POC l-1 vs ~ 0.2-2 mmol C DOC l-1) (Brady et al., 2013; Burdige and Zheng, 

1998; Testa et al., 2013). Thus, POM hydrolysis and DOM remineralization generally are 

on the same order of magnitude. In addition, POM was sourced in the model with a 

yearly averaged constant overlying water column downward POM flux, allowing it to 

accumulate through winter before temperature ramps up. The seasonal cycle of DOM 

flux is indicative of the competing sources and sinks that lead to the makeup of the net 

concentration of DOM1 and DOM2. POM accumulated over fall and winter before 

hydrolysis ramped up as temperature increased in spring. As concentrations of DOM1 and 

DOM2 increased as the products of POM hydrolysis, DOM loss by remineralization and 

diffusion from layer 2 to layer 1 eventually out paced hydrolysis. This temperature driven 
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uncoupling of POM hydrolysis and DOM remineralization has been observed in 

experimental coastal ocean sediment slurries (Weston and Joye, 2005).  The difference 

between stations, and whether a given location acts as a source or a sink of total DOC, is 

largely determined by the delivery of POM into the sediment on an inter-annual basis.  

An important consideration is how much refractory POM is degraded into inert 

DOM (DOM3) in the sediment. An order of magnitude increase in POM3 reactivity 

substantially increased the modeled porewater DOM concentration and flux out of the 

sediment with the majority of the DOM efflux comprising DOM3 (not shown). In order to 

keep the modeled DOM efflux within reasonable values compared to what has been 

observed in Chesapeake Bay, POM3 must hydrolyze into DOM3 slowly (5.0x10-6 d-1) 

leading to DOM3 making up a small portion of the total pool in both the porewater and 

efflux. The parameterization of POM3 hydrolysis to DOM3 will influence the conclusions 

drawn in terms of the relative contribution of each G-class and thus the bulk reactivity of 

DOM that leaves the sediment. It should be noted that if the modeled depth is increased 

to 20 cm (from 10 cm), DOM3 made up a much greater portion of the total DOM pool. 

This is owed to the slow production of inert DOM from the breakdown of refractory 

POM. When the upper 10 cm is modeled, the loss of DOM3 is roughly balanced by its 

hydrolytic production, although excess DOC3 diffuses out of the sediment. However, if 

the depth is increased (and thus average age), the modeled sediment the inert DOM3 can 

accumulate over time.     

 

11-year time-series of DOM flux across three locations 
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 For all three stations, there was strong inter-annual variability of the total DOC 

flux across the sediment water interface (Figure 2.10), although the general direction 

waslargely consistent with the climatologies presented in Figure 2.9. All stations exhibit a 

DOC efflux at the start of the time series, likely due to the initial condition over-

estimating POC concentration in the sediment. After the first year, the time-series 

exhibits differential flux, with both the magnitude and direction varying. Across all years, 

all three stations were sinks for DOC1 and sources of DOC2 and DOC3. Station RGPT 

exhibits the most inter-annual variability with three years acting as a source of DOC, six 

years as a sink, and two years with seasonally varying DOC flux direction.   

The highly variable time series for the three stations indicate a variety of 

biogeochemical conditions were captured, adding confidence in the conclusions that can 

be drawn from the model results. The differential JPOM forcing at each station largely 

dictated the inter-annual variability of the DOC flux. Figure 2.11 depicts the JPOM for 

each station (left axis) and the net flux for both organic carbon and organic nitrogen 

(right axis). The net flux can also be thought of as the fraction of POM that is either lost 

(or gained) as DOM efflux (or uptake) across the sediment-water interface. A positive 

JDOM:JPOM indicates the sediment had a net loss of DOM, while a negative 

JDOM:JPOM indicates the sediment had a net gain of DOM which was subsequently 

remineralized. If the average of all three stations across all years is calculated, the 

sediment was a net source of DOC of 1.00 mol C m-2 yr-1 and a net source of DON of 190 

mmol N m-2 yr-1 (Table 2.4). The modeled average DON flux was 9.5% of the measured 

NH4
+ flux of 2.0 mol N m-2 yr-1 at similarly located stations (Cowan and Boynton, 1996). 

Looking specifically at station R-64, which is directly comparable to station M3, the 
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modeled estimate of the TDOC flux of 1.92 mol C m-2 yr-1 was 5.2 times greater than the 

measured DOC flux and 27% that of the observed benthic remineralization rate of 

organic carbon of 7.17 mol C m-2 yr-1 (Burdige and Zheng, 1998). It should also be noted 

that the calculated annual fluxes in Burdige and Zheng (1998) are relatively coarse 

estimates because of the lack of measurements in cold months, whereby SedDOM-SFM 

captured the full seasonal cycle in over many years with different biogeochemical 

conditions. 

 The variability across station and year for both DOC and DON can help explain 

some of the previous literature discrepancies in both magnitude and direction of DOC 

and DON fluxes. In general, Burdige and Homstead (1994) and Burdige and Zheng 

(1998) found that the sediment was a source for both DOC and DON to the water 

column. This contrasts with Cowan and Boynton (1996) who found the sediment was a 

sink for DON at a main-stem Chesapeake Bay station, while North Bay and South Bay 

stations were a source. To reconcile differences across observational and modeling 

studies, I propose that the key factor that drives DOM flux variability is the recent (2-3 

year) POM flux history, and secondarily winter time temperature. A region with a high 

average POM flux will act as a DOM source, and the fraction of JPOM that is hydrolyzed 

into DOM and lost out of the sediment will be greater. A region with low POM flux will 

act as a DOM sink and the net flux will be greater into the sediment. Therefore, 

patchiness in how POM settles into the sediment could cause a station in a similar 

biogeochemical and redox environment, as the three stations in our study, to exhibit 

differences in both the DOM flux and the net organic matter flux.   
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2.4.3 Net organic matter flux and dissolved organic matter reactivity 

 The effects of the different remineralization rates of DOC and DON are realized 

in the yearly averaged fraction of JPOM that leaves the sediments as DOM, i.e., the net 

organic matter flux (Figure 2.11). The three stations exhibit differential net flux, which 

follows the general direction of the TDOC flux, although there was substantial inter-

annual variability. On average, at R-64 23% of the PON flux (JPON) and 21% of the 

POC flux (JPOC) was lost as DOM at the summer peak (Figure 2.12). Integrating over 

the entire year, 7.8% and 10% of the organic carbon and nitrogen was lost as DOC and 

DON at R-64 (Table 2.5). Station RGPT (Figure 2.11b) exhibits substantial inter-annual 

variability, with some years exhibiting a decrease in net downward organic matter flux 

due to a large DOM efflux. In years following low JPOM into the sediment, the sediment 

acted as a sink and the net organic matter flux into the sediment is enhanced by labile 

DOM uptake. Station PNPT was consistent across all years, with the net organic matter 

flux into the sediment enhanced by labile DOM uptake.  

The primary control on the net flux was the POM flux history of the sediment, 

and secondarily the concentration of overlying water column DOM. R-64 and RGPT both 

had a much higher average JPOC (15.6 and 13.7 mol C m-2 yr-1) and JPON (2.4 and 2.07 

mol N m-2 yr-1) than station PNPT (8.65 mol C m-2 yr-1 and 1.3 mol N -2 yr-1). The years 

with higher average downward POM flux, and especially years with a relatively small 

flux that were preceded by a large flux (e.g. 1987 and 1989 at R-64 and 1987 at RGPT) 

exhibit a large net efflux of DOM. Station RGPT in year 1991 stands out as an outlier, 

where the DOM flux peaked out of the sediment in early summer and then was rapidly 

drawn down into the sediment. The bottom water temperature of the winter in 1990-1991 
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was ~1.5 °C warmer than the 11-year average. The high average temperature would have 

driven more POM1 hydrolysis into DOM1, and as temperature increased DOM1 was 

rapidly drawn down due to the order of magnitude faster reactivity. This was a result of 

the very fast and highly temperature-responsive reaction rate of DOM1 in SedDOM-SFM. 

This result implies that higher wintertime temperatures may cause more POM to be 

hydrolyzed and eventually remineralized into inorganic matter, reducing sediment 

organic matter retention and storage.  

In order to fit the model to the observations DOM must be tuned to react an order 

of magnitude more rapidly than POM, in agreement with recent results from a similar 

modeling study in the Santa Barbara Channel, CA, USA (Burdige et al., 2016). In 

addition, DOC2 reacted as fast as DON2, rates that are partly constrained by the SOD 

solution and JNH4
+. If kDx,2 was slower, DON efflux became a sink for N that lead to an 

under prediction of JNH4
+; if kDx,2 is increased, JNH4

+ was over predicted. Although the 

numerical model formulation and validation are different in this study from the modeling 

studies of Komada et al. (2013, 2016) and Burdige et al. (2016), the same general 

conclusions are drawn in terms of DOM reactivity. The sediment nutrient and oxygen 

flux data offered a robust test bed to tune and constrain SedDOM-SFM. Recent 

experimental work also shows that on short time scales much of sediment porewater 

DOM is turned over quickly (Arnosti and Holmer, 2003). The total DOM flux is 

relatively dependent on the labile DOM reaction rate, kDx,1. If kDx,1 is either increased or 

decreased, the direction of the flux can change because the DOM1 flux and concentration 

gradient between layer 1 and the water column responds very strongly to changes in the 

DOM1 concentration in layer 1. 
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Inert DOM (DOM3) made up a small portion of the total pool in SedDOM-SFM, 

which was constrained by both the observed concentration and flux of DOM in 

Chesapeake Bay, but also importantly by JNH4
+. If a large amount of organic nitrogen 

was sequestered from remineralization as inert DON, too much N was removed from the 

reactive pool as DON. This caused JNH4
+ to be under predicted in addition to DON 

concentration and flux being unreasonably elevated. DON must turn over relatively 

quickly to achieve the observed JNH4
+. Due to a lack of mechanistic understanding, 

pathways through which DOM1 and DOM2 transform to DOM3 were also not built into 

the model, which contributed to the low background level of refractory DOM in the 10 

cm deep model domain. The ability of the model to recreate JNH4
+ and generate 

reasonable DOC and DON concentrations and fluxes indicates that the creation of inert 

DOM may not be an important process in diagenesis in shallow estuarine sediment. This 

leads me to conclude that the underlying processes that are being simulated in the model 

are likely well represented, and that the majority of porewater DOM in the upper 10 cm 

does, indeed, react rapidly.   

2.4.4 Dissolved organic matter flux: controlling factors 

Although the model-data comparisons of JNH4
+, JNO3

- and SOD show that 

SedDOM-SFM reasonably simulated the early diagenesis of organic matter in 

Chesapeake Bay, the sparseness of DOM measurements makes it difficult to 

quantitatively assess the accuracy of modeled DOM dynamics. What can be said is that 

the model DOM flux variability was highly dependent on the reaction rates chosen for 

DOM1 and the overlying water column DOM1 concentration. DOM2 reactivity had a 

lesser effect due to the lower overall rate. Depending on how the model was forced and 
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parameterized with respect to DOM1 the direction and magnitude of the total flux could 

be different. Inherent in the modeling exercise is the partitioning of the DOM forcing, 

which can potentially affect the result. SedDOM-SFM predicted that in regions with a 

greater concentration of water column labile DOM, the sediment would act as a sink, but 

would also be dependent on the delivery of POM into the sediment. This intriguing result 

begs the question of how the diffusion of a complex mixture of compounds can be 

reasonably modeled mechanistically. SedDOM-SFM uses the concentration gradient of 

labile, semi-labile and inert DOM to calculate the flux. Fick’s Law of Diffusion, i.e. the 

governing diffusive term in Equations 2.1 and 2.2, is based on the diffusion of a single 

solute across a membrane; therefore, SedDOM-SFM represents what is in reality a 

complex mixture as one solute for each reactivity class. In order to reconcile the 

conceptualization of the model, the assumption must be made that each reactivity class is 

composed of very similar molecular formulae with a similar concentration in both the 

water column and porewater. I propose the thought experiment, whereby there is a high 

concentration of DOM compound X on one side of a membrane and a high concentration 

of DOM compound Y on the opposite side. If compound X and Y are DOM of different 

composition, for example a solution of amino acids and carbohydrates, they will diffuse 

down their concentration gradient in opposing directions. This is exactly what we see 

with the DOM1 and DOM2 in SedDOM-SFM. They conceptually must represent different 

compounds in order to diffuse in the opposite direction across the sediment water 

interface. This also implies that the sediment will act as a sink for certain classes of 

compounds that are in higher concentration in the water column, and a source of 

compounds that are in higher concentration in the sediment.  
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2.5 Conclusion 

This study represents one of the first efforts to model the processes governing 

estuarine sediment porewater DOM fluxes, and examined the role of DOM in sediment 

organic matter breakdown and retention. The results suggest that the differential 

reactivity and response of POM and DOM were important in governing the temporal 

variability of the net sediment-water column organic matter flux. Stations with a high 

amount of POM settling into the sediment exhibit a larger DOM efflux, while stations 

with a low POM delivery acted as a DOM sink. DON and DOC had a similar seasonal 

response, although the flux of DOC between the sediment and water column was less 

than DON, relative to the Redfield ratio. There was substantial inter-annual variability of 

the net organic matter flux, with some years having large losses of organic matter out of 

the sediment as DOM efflux, relative to the sinking flux of POM. In addition, the order of 

magnitude higher reactivity of DOM made it more responsive to changes in temperature. 

Understanding the role of DOM in early diagenesis may be important for quantifying and 

modeling the response of sediment organic matter cycling to anthropogenically-driven 

warming in shallow, temperate estuaries. In order to better link DOM biogeochemical 

modeling efforts and observational work, future measurements and monitoring should 

focus on bottom water and pore water DOM chemical composition and reactivity. 

In addition, the new model formulation in SedDOM-SFM now allows for 

modeling the dominant mechanism through which DOM is exchanged between tidal 

marshes and estuarine waters. Although highly simplified, SedDOM-SFM can now be 

used to model the marsh sediment boundary condition and the exchange of organic 

matter during tidal inundation and excursion in an estuarine ecosystem. Chapter 4 will 
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detail how marsh sediments are treated differently in terms of the loading of DOM into 

the sediment, but all subtidal and marsh sediments can now include DOM as a state 

variable to interact with the overlying water column. 
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Figures Chapter 2 

 

 
Figure 2.1 Conceptual diagram of the sediment flux model with a dissolved organic 
matter (DOM; SedDOM-SFM) diagenesis intermediate compound between the 
breakdown of particulate organic matter (POM) and NH4

+. NH4
+ is also oxidized to NO3

- 
in layer 1 (not shown). All arrows represent fluxes between state variables. All 
parameters are defined in Table 1. POM and DOM can be either carbon or nitrogen, but 
only NH4

+ is tracked as the pore water inorganic constituent product of organic nitrogen 
remineralization. Both carbon and nitrogen remineralization and NH4

+ oxidation 
contribute to sediment oxygen demand. 
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Figure 2.2 (a) Time variable overlying water column DOC forcing for all 3 stations in 
our modeling study, (b) 11-year climatology of DOC forcing and (c) DON forcing and 
(d) the DOC:DON ratio 
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Figure 2.3 Station RGPT modeled and observed (a) sediment oxygen demand (SOD; left 
axis) and water column O2 concentration (right axis), (b) NH4

+ flux (JNH4
+), and (c) NO3

- 
flux (JNO3

-). Nitrogen fluxes are positive out of the sediment.  
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Figure 2.4 Station PNPT modeled and observed (a) sediment oxygen demand (SOD; left 
axis) and water column O2 concentration (right axis), (b) NH4

+ flux (JNH4
+), and (c) NO3

- 
flux (JNO3

-). N fluxes are positive out of the sediment. 
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Figure 2.5 Station R-64 modeled and observed (a) sediment oxygen demand (SOD; left 
axis) and water column O2 concentration (right axis), (b) NH4

+ flux (JNH4
+), and (c) NO3

- 
flux (JNO3

-). N fluxes are positive out of the sediment. 
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 Figure 2.6 Modeled vs. observed sediment oxygen demand (SOD) for all three stations 
using (a) the Chesapeake Bay Program dissolved oxygen data or (b) the sediment oxygen 
and nutrient exchange (SONE; Boynton and Baily, 2008) incubation oxygen data for the 
overlying water column oxygen boundary forcing in SedDOM-SFM. SOD model skill is 
improved substantially by using the SONE data (r = 0.59, 100% improvement, MEF = 
0.12, 121% improvement, RMSE = 12.15 mmol O2 m-2 d-1, 24.1% improvement) 
 
 
 

Figure 2.7 11-year average climatology dissolved organic carbon flux (JDOC) across the 
sediment layer 1 and overlying water column interface for (a) station R-64, (b) RGPT, 
and (c) PNPT. A positive flux is out of the sediment into the water column.  DOC1 is 
labile DOC, DOC2 is semi-labile DOC, DOC3 is refractory DOC and TDOC is the sum of 
all three reactivity classes. The shocks in each plot are due to discontinuities in the 
interpolated forcing. 
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Figure 2.8 11-year averaged climatology of the three reactivity classes of dissolved 
organic carbon (DOC; G1, G2, G3) and the total (TDOC) flux out of the sediment for (a) 
station R-64, (b) RGPT and (c) PNPT.  The dates on the plot are when peak flux rates are 
observed for DOC1 and DOC2 and total DOC (TDOC).  
 

 
Figure 2.9 11-year average climatology of the three reactivity classes of dissolved 
organic nitrogen (DON; G1, G2, G3) and the total (TDON) flux out of the sediments for 
station (a) R-64, (b) Ragged Point and (c) PNPT. The dates on the plot are when peak 
flux rates are observed for DON1 and DON2 and total DON (TDON).  
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Figure 2.10 Time series of dissolved organic carbon flux (JDOC) across the sediment 
water interface for (a) stations R-64 (b) RGPT, and (c) PNPT. The total flux (TDOC) is 
the sum of the labile (DOC1), semi-labile (DOC2) and inert (DOC3) fractions. Note the 
scale on (b) is different than that on (a) and (c). The stars on panel (a) in 1991-1992 
(Burdige and Homstead, 1994) and 1995-1996 (Burdige and Zheng, 1998) are measured 
fluxes from a similarly located mid-channel Chesapeake Bay station. 
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Figure 2.11 The forced modeled downward sinking particulate organic carbon (JPOC, 
left axis) for  (a) station R-64, (b) RGPT, and (c) PNPT. The right axis is the fraction of 
JPOM (both organic carbon and nitrogen) that is either lost (positive) or gained 
(negative) out of the sediment as the dissolved organic matter flux (JDOM). Particulate 
organic nitrogen was forced with the same inter-annual variability as that of POC at a 
ratio of 6.6:1 POC:PON 
 
  

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Year

0
10
20
30
40
50
60
70
80

-0.75
-0.5
-0.25
0.0
0.25
0.5
0.75
1.0

-1.0

Carbon
Nitrogen
JPOC

-0.75
-0.5
-0.25
0.0
0.25
0.5
0.75
1.0

-1.0

JDOM
:JPOM

JP
OC

 (m
m

ol 
C 

m-2
 d-1

)

0
10
20
30
40
50
60
70
80

-0.75
-0.5
-0.25
0.0
0.25
0.5
0.75
1.0

-1.00
10
20
30
40
50
60
70
80

c

b

a



 

 56 
 

 

 
Figure 2.12 Annual average climatology of the fraction of particulate organic matter flux 
(JPOM; both organic carbon and nitrogen) that is either lost (positive) or gained 
(negative) out of the sediment as the dissolved organic matter flux (JDOM). 
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Tables Chapter 2 

Table 2.1 Model parameters from Figure 2.1, and Equations 2.1 and 2.2 
 

Parameter Description Symbol Value units 

DOC1,2,3 Remineralization kDC,1,2,3
 c 0.35, 0.030, 0.0 d-1 

DON1,2,3 Remineralization kDN,1,2,3
c 0.4, 0.030, 0.0 d-1 

POM1,2,3 Hydrolysis kPx, 1,2,3
a,f 0.01, 1.8x10-4, 5.0x10-6 d-1 

OM1 temperature control θ1
d,e 1.10 unitless 

OM2 temperature control θ2
 d,e 1.15 unitless 

Diffusion temperature control θD
 d 1.08 unitless 

Sediment accretion velocity ω d, 0.7 cm y-1 

Layer 1 and 2 diffusion coefficient KL12
a,b 5.0x10-4 m2 d-1 

  
a. Brady et al., 2013; Testa et al., 2013   
b. 10x less for DOM, following Burdige et al., 2016  
c.     Parameters varied to find best model fit 

 d.     Parameters fixed across all model runs  
 e.     Same for both POM and DOM 
 f.     Same for both PON and POC 
 
 
 
 
 
Table 2.2 Model skill assessment metrics for SedDOM-SFM (DOM +) and SFM (DOM 
-) sediment oxygen demand (SOD), NH-4

+ flux (JNH4
+) and NO3

- flux (JNO3
-) when 

compared against SONE observations 

 
DOM + ra,*

 MEFc,* RMSEc,*
 

SOD 0.29 -0.55 16.77 
JNH4

+
 0.77 0.47 2.09 

JNO3
-
 0.58 0.28 0.88 

DOM -    
SOD 0.32 -0.99 19.01 

JNH4
+ 0.78 0.14 2.63 

JNO3
- 0.56 0.25 0.89 

% Change    
SOD -9.3 44.6 11.8 

JNH4
+ -0.86 244 20.6 

JNO3
- 2.96 13.5 1.12 

a. coefficient of covariance 
b. model efficiency 
c. root mean square error 

*Stow et al., 2009 
 
 

Table 2.3 Model skill statistics for SedDOM-SFM with the overlying water column 
dissolved O2 forcing obtained from the Sediment Oxygen and Nutrient Experiment 
(SONE) flux experiment data base and interpolated in time. 
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Station Variable r MEF 
RMSE (mmol 

N m-2 d-1) 
R64 SOD 0.66 0.17 11.56 

 
NH4 0.79 0.57 2.35 

 
NO3 0.43 0.05 1.18 

RGPT SOD 0.52 0.06 16.66 

 
NH4 0.81 0.61 2.33 

 
NO3 0.72 0.52 0.84 

PNPT SOD 0.58 0.12 9.98 

 
NH4 0.70 0.21 1.63 

 
NO3 0.53 0.10 0.67 

Mean value SOD 0.59 0.12 12.73 

 
NH4 0.77 0.46 2.10 

 
NO3 0.56 0.22 0.90 

Improvement SOD (%) 100.0 121.3 24.1 
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Table 2.4 Annual average benthic dissolved organic carbon (DOC) and dissolved organic 
nitrogen (DON) fluxes for the three stations with time variable overlying water column 
DOM forcing.  The total (TDOC and TDON) is the sum of the three reactivity classes.  
All flux units are mol C or N m-2 yr-1, and the TDOC:TDON ratio (C:N) is mol C mol N-

1. The forced Bottom water (BW) C:N ratio is also included. 

 
 
 
Table 2.5 Net fluxes for the three stations with time variable overlying water column 
DOM forcing; all fluxes are in mmol m-2 yr-1.  The % JDOC and % JDON is the 11-year 
averaged, time integrated net flux divided by the 11 year averaged, time integrated JPOM 
forcing. 

 
 
 
 
 
 
 

  

 DOC1 DOC2 DOC3 TDOC DON1 DON2 DON3 TDON C:N BW C:N 

R-64 -0.94 1.89 0.97 1.92 -0.10 0.31 0.11 0.316 6.08 9.1 

RGPT -1.90 1.84 1.15 1.07 -0.19 0.30 0.13 0.24 4.46 9.7 

PNPT -2.30 1.27 1.06 0.03 -0.29 0.19 0.12 0.01 2.3 8.8 

Mean -1.71 1.67 1.05 1.00 -0.19 0.27 0.12 0.19 4.28 9.2 

Net Fluxes JPOC JPON JDOC JDON % JDOC % JDON 
R-64 15.6 2.4 1.92 0.32 12.3 10.00 

RGPT 13.74 2.07 1.07 0.24 7.79 6.28 
PNPT 8.65 1.3 0.03 0.01 0.34 -6.92 
mean 12.7 1.9 1.01 0.19 7.80 10.0 
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A mechanistic model of photochemical transformation 

and degradation of colored dissolved organic matter 

 

3.1 Abstract 

Photochemical degradation (PD) of colored dissolved organic matter (CDOM) is a key 

transformational process for both natural and anthropogenic DOM. A fully mechanistic 

model is presented that can simulate laboratory incubations of the controlled PD of marsh 

and estuarine derived CDOM. The model was designed and optimized to recreate the loss 

of absorbance for marsh low tide and estuarine samples, representing high molecular 

weight allochthonous and mid molecular weight estuarine CDOM. In the model, high 

specific absorbance fractions representative of marsh and estuarine CDOM are 

transformed into a low specific absorbance fraction representative of coastal ocean 

CDOM as well as non-colored fractions. The various transformations in the model have 

maximum apparent quantum yields (at 284 nm) that range from 3.22 ± 1.75 x10-8 to 

56.05 ± 21.5 (mmol C mol photons-1), with non-colored DOM/ inorganic carbon 

production outpaced by inter-molecular organic carbon transformations. Model 

performance was tested using an independent incubation data set whereby experimental 

results of photobleaching of spectral absorbance at 300 nm were recreated with a 

Willmott model skill of 0.98 and mean percent error of -3.66%. The production of the 

low molecular weight photodegraded end member ranged from 0.59 to 4.86 µmol C L-1 

hr-1.	  
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3.2 Introduction 

Photochemical degradation of colored dissolved organic matter (CDOM) can 

affect the biological reactivity of dissolved organic carbon (DOC) (Aarnos et al., 2012; 

Miller et al., 2002; Moran et al., 2000; Reader and Miller. 2014; Smith and Benner, 

2005), in addition to changing the optical properties and molecular composition of 

CDOM as it is transported away from its source (Helms et al., 2008; Tzortziou et al., 

2011). In estuarine and coastal waters that are characterized by high amounts of strongly 

absorbing CDOM, photochemical alteration and degradation can substantially alter the 

distribution and ultimate fate of DOC. This is particularly the case for wetland derived 

CDOM which is both optically and chemically distinct and subject to significant 

alteration upon exposure to ultraviolet and visible light (Reader and Miller, 2014; 

Tzortziou et al., 2007, 2008, 2011). Up until now, however, few mechanistic estuarine 

and coastal carbon cycle models have accounted for the effects that photochemical 

alteration can have on the water column DOC pool. In addition, most models of the 

attenuation of light in estuarine and coastal waters account for CDOM absorbance based 

on a constant, decreasing exponential function whose spectral absorption shape does not 

change with increasing absorbed light energy (Del Vecchio and Blough, 2002; Gallegos 

et al., 1990; Gallegos et al., 2006; Rose et al. 2018; Twardowski et al., 2004). In reality, 

the shape and magnitude of absorption spectra of CDOM change as CDOM undergoes 

photochemical degradation during transport away from its source, primarily due to 

ultraviolet and visible light absorption (Helms et al., 2008). In regions where strong 

gradients of CDOM occur such as adjacent to tidal wetlands (Osburn et al., 2015; 

Tzortziou et al., 2011) and downstream of large rivers (Raymond and Spencer, 2015; 
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Spencer et al, 2013), an optical model that utilizes a constant CDOM spectral slope can’t 

accurately capture the variations in absorption spectral shape and thus the transfer of 

absorbed light energy into changes in the DOC pool. 

The lack of representation in current models is largely due to high levels of 

uncertainty regarding a key parameter, the apparent quantum yield (AQY), that relates 

the amount of light energy absorbed by DOC to its transformation into either dissolved 

inorganic carbon directly (Aarnos et al., 2012, 2018; Powers and Miller, 2015) or into 

DOC of a different biological reactivity (Aarnos et al., 2012; Miller et al., 2002; Reader 

and Miller, 2014). This uncertainty is likely a result of spatial heterogeneity in DOC 

composition and CDOM absorption in addition to complex mixing of different sources 

that contribute to the overall CDOM and DOC pool (Helms et al., 2008); attempting to 

encapsulate the spectral dependency of photochemical transformations for the thousands 

of compounds that compose CDOM into a single AQY is extremely challenging. 

Mechanistic modeling of CDOM and DOC and the biogeochemical processes that govern 

their distribution is thus a simplification, i.e., representative of the average of the total 

pool. Ambiguity and a lack of consistent spectral dependence across time and space limit 

the extrapolation of experimentally derived AQY’s to systems outside of the geographic 

location and/or similar biogeochemical conditions.  

This study presents a newly developed photochemical degradation model that 

simulates the transformation of CDOM due to the absorption of light in the UV-visible 

range (284-700 nm), simplifying a previously described conceptual model of the 

interactions of CDOM and biological reactivity of DOC (Reader and Miller, 2014). The 

model presented here is the first attempt at mechanistically representing photochemical 
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reactions in a way that can be incorporated into a full organic carbon cycle modeling 

system, the Integrated Compartment Model (ICM) (Cerco and Cole, 1993; Cerco and 

Noel, 2013). The absorption of light by CDOM results in changes in the overall DOC 

pool that correspond to hypothesized and observed changes in DOM molecular 

composition (Maizel and Remucal, 2017; Sharpless and Blough, 2014), absorption 

spectra, and biological reactivity. Experimental observations of CDOM and DOC 

photochemical degradation from a tidal marsh-estuary system in Chesapeake Bay, MD, 

USA inform the modeling effort and provide bounds for rates of transformations for the 

bulk CDOM and DOC pools (Logozzo, 2017). This allows the AQYs for CDOM to be 

estimated using an inverse modeling approach and also provides insight into the 

controlling factors when modeling the photochemical degradation of CDOM. 

3.3 Methods 

3.3.1 Photochemical degradation model 

  A new mathematical model was developed to mechanistically simulate the 

photochemical degradation of CDOM in an estuarine ecosystem, hereinafter DOM-PD. 

DOM-PD is included as a module in a full organic carbon-nutrient-phytoplankton water 

quality model originally developed to simulate Chesapeake Bay water quality and 

dissolved oxygen concentration, ICM (Integrated Compartment water quality Model, 

Cerco and Cole, 1993). In ICM, DOC is mainly loaded by marsh sediment-water column 

diffusion, riverine discharge, phytoplankton production, and subtidal sediment-water 

column diffusion. Non-colored DOC (DOC that doesn’t absorb UV-Visible light) is not 

discussed in this research, as the DOM-PD is only constrained for the colored DOC 

dynamics in terms of photobleaching. In DOM-PD, colored dissolved organic carbon 
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(CDOC) pools are defined by optical properties related to the absorption of UV and 

visible light (Helms et al., 2008). A useful optical property is the absorption spectral 

slope ratio (SR) which is defined as the ratio of the slope of the log transformed spectral 

absorption between 275-295 nm and 350-400 nm (Helms et al., 2008). Increasing SR is 

indicative of a higher degree of photochemical degradation and a decrease in molecular 

weight (Helms et al., 2008). 

Operationally, the model defines three types of CDOC. CDOC3 represents marsh-

derived compounds with a high DOC-specific absorption, or absorption per unit mass (m2 

mol C-1), and primarily of a high molecular weight (HMW); this end-member was 

parameterized in our model using measurements at the outflow of the Global Change 

Research Wetland (GCREW) in the Rhode River, MD, USA. For the CDOC3 pool, the 

SR is 0.845. CDOC2 represents an estuarine fraction that has a lower specific absorption 

and higher SR (1.179; Figure 3.1a-c) compared to CDOC3, and is assumed to primarily 

be composed of autochthonous-produced DOC and the photodegraded fraction of 

allochthonous DOC of a lower molecular weight compared to CDOC3. CDOC1 represents 

a low molecular weight (LMW) coastal ocean end member that has the lowest absorption 

and greatest SR (1.570; Figure 3.1d-f) and is also assumed to primarily be composed of 

autochthonous-produced DOC and some portion of the photodegraded fraction of 

allochthonous DOC. These pools are parameterized with absorption spectra that are 

derived from optical and chemical data collected across the wetland-estuarine-coastal 

ocean transition from the Chesapeake Bay to the mid-Atlantic continental shelf (Figure 

3.1). This empirical approach limits our study to representing the CDOM absorption in 

Chesapeake Bay and the mid-Atlantic, but can be redefined to model other regions as 
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long as optical and DOC concentration data are available. The newly developed 

numerical modeling equations (Equations 3.1, 3.2 and 3.3) solve for the absorption of 

light at each wavelength by each CDOC pool and the conversion of absorbed light energy 

into CDOC transformations.   

 

Equation 3.1 specifies the spectral Naperian absorption coefficients, abs(λ)i (m-1), 

associated with each CDOC pool (i=1-3) as equal to the product of the concentration of 

each CDOCi (mol C m-3) and the spectral specific absorption a*cdoc(λ)i (m2 mol C-1; 

Figure 3.2). CDOCi can’t be directly measured in terms of its absolute concentration in 

mass per unit volume. Therefore, an estimate of the CDOC concentration for each pool is 

needed to estimate a*cdoci(λ). The results of the derivation of CDOC concentration and 

a*cdoci(λ) are in section 3.1.  After Naperian absorption spectra are calculated using 

Equation 3.1 for each pool, they are passed to Equation 3.2 which defines Izi(λ) 

 (mols Photons m-2 s-1), the total light energy absorbed across the UV-Visible 

wavelengths by each pool. Izi(λ) is equal to the incident UV-Visible light energy, Iz0(λ) 

(mols Photons m-2 s-1), scaled by the fraction of the total light energy that is absorbed by 

each CDOC pool which is equal to the Naperian absorption coefficient for each CDOC, 

absi(λ), divided by the total absorbance, 𝑎𝑏𝑠! (λ) (m-1). The final term calculates the 

fraction of light that is absorbed over the exposure path length, Δz (m), using the 

common Beers-Lambert light absorbance formulation. Equation 3.2 follows previous 

work describing the contribution of each absorbing constituent to the overall absorbance 

of light (Hu et al., 2002; Stedmon et al., 2007). In general, total absorbance is composed 

𝑎𝑏𝑠(𝜆)! = 𝐶𝐷𝑂𝐶!  𝑎∗𝑐𝑑𝑜𝑐(𝜆)! (3.1) 
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of the contributions from CDOM, phytoplankton, suspended solids and water. In this 

modeling study, only the absorbance of CDOM and water were considered but the results 

are still valid in the larger context when including CDOM as a water quality constituent. 

A summary of all the equations and terminology in the model is given in the Appendix. 

 𝐼𝑧!(𝜆) = 𝐼𝑧!(𝜆)
!"#! !
!"#! !

(1− 𝑒 !!"#! ! !" ) (3.2) 

 

Izi is then used in Equation 3.3 where the total amount of CDOCi, that is 

photodegraded from fraction i (i=1-3) to fraction j (j=1,0 where 0 is NCDOC/DIC), 

dCDOCi,j dt-1 (mol C m-3 s-1) is the integral over the incident irradiance wavelength 

range, λ0 to λf, of the product of Izi and the apparent quantum yield (AQY) of the 

transformation from CDOC compound i to CDOC compound j, AQYi,j (mol C mol 

Photons-1), at each λ. This formulation assumes that each CDOC pool captures the mean 

conditions for each source location and therefore the associated bulk molecular 

composition of the CDOC in terms of both absorption spectra and photoreactivity. 

𝑑𝐶𝐷𝑂𝐶!,!
𝑑𝑡 =

𝐼𝑧! 𝜆 𝐴𝑄𝑌!,! 𝜆 𝑑𝜆
!!
!!

𝛥𝑧  (3.3) 

 

 Equation 3.3 is primarily based on studies conducted whereby the AQY is the 

amount of light energy that is converted into chemical changes in CDOM and is 

measured indirectly using DOC proxies (e.g., changes in microbial respiration or 

microbial biomass) (Miller et al., 2002; Reader and Miller, 2014) or directly using short 

lived DOC reactive intermediate compounds (Maizel and Remucal, 2017). For DOM-PD 

to accurately represent photobleaching, the most important step is estimating the AQYs 
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using the experimental data available from the Rhode River bench top photochemical 

degradation experiments.  

3.3.2 Xenon arc photobleaching experiments 

The AQY spectra for CDOC transformations were estimated based on changes in 

absorption spectra during laboratory exposures of CDOM samples from the GCREW and 

the Rhode River water column. The exposures used a special polychromatic incubator, 

the “photoinhibitron”, similar to setups previously used for photochemistry and 

phytoplankton photosynthesis exposures (Kieber et al., 2014; Smyth et al., 2012). Briefly, 

irradiance from a 2.5 kW Xenon lamp is reflected off a front-surface mirror and directed 

vertically upward through various long-pass cutoff filters and then into sample aliquots (8 

mL) in quartz and fused-silica cuvettes. There were six spectral treatments configured 

using WG280, WG295, WG305, WG320, WG335 (Schott technologies) and LG350 

(SpectraPhysics) long-pass filters with five or six samples exposed to each treatment 

(average irradiances in Table 1), giving a total of 34 exposures in each experiment. The 

cuvettes were housed in slots (aluminum tubes) fitted into aluminum blocks machined to 

have a large internal chamber through which coolant was circulated around the slots to 

maintain temperature (20°C).  All metal surfaces near the cuvette were anodized black to 

eliminate reflection so that exposure was limited to collimated irradiance from the lamp. 

Spectral exposure in each slot was measured using a custom-built fiber-optic 

spectroradiometer (Neale and Fritz, 2012). Exposures were conducted with surface water 

taken at low tide in a tidal creek draining the GCREW (Jul. 29, Aug. 12, and Aug. 20, 

2015) and a point in the middle of the Rhode River estuary (dock of the Smithsonian 

Environmental Research Center, Aug. 17, 2015).  Samples were filtered immediately 
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after collection sequentially through 0.7 glass fiber filters followed by 0.2 µm pore size 

nuclepore filters (Whatman) and distributed into cuvettes.  Half of the cuvettes were 

exposed for 12 h, the rest for 24 h.  A slot with blocked light served as a dark control.  

Unexposed sample was kept at 4 °C during the experiment. CDOM absorption in all 

exposed samples and controls was measured within 1 or 2 days after exposure (stored at 

4°C until measured) using previously reported methods (Tzortziou et al. 2008; Logozzo, 

2017).   

3.3.3 Parameter and initial condition estimates 

Spectral AQY parameters (both magnitude and slope) for each pathway in the 

DOM-PD model were estimated by iterative minimization of the summed squared 

differences between observed and predicted absorbance spectra. Computations were 

carried out in MATLAB R2017a using the function, minimize.m, version 1.7.0 written by 

Rody P. S. Oldenhuis, which is, in turn, based on the MATLAB functions fminsearch and 

fminlbfgs. Parameter values were iteratively incremented using the Nelder-Mead simplex 

algorithm.  Parameters were constrained to be positive, and AQYs at 284 nm to be < 83 

mmol C mol photons-1. Convergence was considered when the step size in both the 

parameter vector norm and cost function was < 10-4. Uncertainty in parameters was 

estimated using a “jack-knife” technique:  The minimization was re-run n times deleting 

in sequence each one of the samples and using the reduced sample set to give a perturbed 

parameter set θi.  The standard error (StdError) was then estimated using Equation 3.4 

where n is the sample size and 𝜃 is the mean of the n perturbed parameter sets. 

𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟(𝜃) = [(!!!)
!

(𝜃! − 𝜃)
!]

!
!  (3.4) 
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The initial CDOC concentration was estimated by assuming that the initial total 

abst(λ) for each incubation can be represented as a linear composite of all three 

a*cdoci(λ). The coefficients of the linear model that minimized sum squared differences 

between observed and estimated spectra were set as the initial CDOC concentrations for 

each pool. The coefficients were estimated using the MATLAB function lsqnonneg with 

the constraint that all CDOCi ≥ 0. Initial conditions and full incubation information can 

be found in Table 2 and Table 3. For all GCREW low tide samples (all which were 

included in the initial definition of CDOC3 [see section 2.2]), the best fit, as expected, 

was obtained using only CDOC3. For the marsh high tide and estuarine samples, a 

mixture of all three CDOC classes gave the best fit.  

Based on the representation of CDOC3 and CDOC2 by either the marsh low tide 

or the Rhode River initial condition estimate, each incubation set was used to define the 

AQYs originating from CDOC3 (marsh low tide) or CDOC2 (Rhode River) using the 

results from the Xenon lamp exposures. This implicitly assumes that the Rhode River 

incubations are representative of the estuarine mid-molecular weight end member, while 

the marsh low tide incubations are representative of the HMW marsh derived end 

member. This is a logical assumption given that each pool is optically defined based on 

data collected from either the same place at a different time (CDOC3, GCREW) or a 

similar estuarine environment (CDOC2; Chesapeake Bay). CDOC1 is modeled as a 

combination of the breakdown of both CDOC3 and CDOC2 and therefore the removal of 

CDOC1 to non-colored DOC or DIC was derived as the average AQY1,0 from all the 

incubations combined. 
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To estimate the final treatment absorbance spectra, the sample initial CDOCi 

values in each model formulation were time-stepped (Δt=1 min) through the incubation 

period using the specific exposure conditions of each treatment. After the treatment 

period (12 or 24 h) was complete, the final CDOCi values were used to predict the 

absorbance spectra for that treatment and sum squared differences between the predicted 

and observed spectra were calculated. The cost function for each iteration was the grand 

sum squared differences for all treatment and sample spectra (34 each for the GCREW 

low tide and Rhode River estuary fits, 102 for the combined data set).   

3.3.4 Model parameter testing with an independent PD incubation data set 

 In order to further assess the robustness and utility of the DOM-PD model, an 

independent test data set of photochemical degradation experiments from the Rhode 

River ecosystem across seasons (Logozzo, 2017) was simulated. Detailed methods were 

previously reported on incubation set up and chemical analysis for these experiments 

(Logozzo, 2017). Briefly, this set of PD incubations were forced with 17.9 W m-2 from a 

UV-blue wavelength emitting fluorescent lamp (Figure 3.3) over 7-10 day time periods 

across multiple seasons and locations. In this configuration, daily absorbed light energy 

was similar to the daily, depth-integrated absorbance in the Rhode River for a clear day in 

June (Logozzo, 2017). The four SERC Dock samples used for the test data set had an 

average SR of 1.195, which is very close to the average SR of the data set (1.186) used to 

generate the CDOC2 specific absorption spectra based on measurements collected during 

the 2011 NASA GEOCAPE (Geostationary for Coastal and Air Pollution Events) cruise 

in the Chesapeake Bay (July 2011). Each of the 15 incubations were independently 

simulated using the AQYs derived from the Xenon lamp exposures. The fit of the model 
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to the independent test set was assessed using multiple model skill metrics (Stow et al., 

2009) comparing observed vs. predicted final CDOM absorbance at 300 nm (a300 m-1) to 

measure model performance for each test incubation. In addition, CDOM absorbance 

spectra were measured at daily intervals for two of the incubations, which provided a 

qualitative comparison with the modeled kinetics. 

3.4 Results and Discussion 

3.4.1 Derivation of colored dissolved organic carbon (CDOC) specific absorption 

spectra 

CDOM absorption spectra and DOC concentration data collected from the 

GCREW Creek, MD, USA in the summer of 2015 and 2016 were used to parameterize 

the allochthonous, marsh derived CDOC3 pool. Analytical methods that were used for 

determining CDOM absorption spectra and DOC concentration have been previously 

reported (Tzortziou et al., 2008; Logozzo, 2017). To estimate the marsh CDOC3 

concentration, the CDOM absorbance at 355 nm (a355, m-1) was ordinary least squares 

regressed against measured DOC concentration across five 24 hour periods in July and 

August, 2015 and June, July, and August, 2016 (n=113; Table 4) (Figure 3.4a). The y-

intercept of each individual regression, when a355 is equivalent to zero, was defined as the 

background non-colored DOC (NCDOC) for each sampling period (Table 4). The 

NCDOC was subtracted from the total DOC at each time point to yield the CDOC. This 

method implies that for this study any DOC that absorbs light only at wavelengths less 

than 355 nm is non-colored.  Hereinafter, NCDOC refers to DOC that only absorbs light  

into the UV-B range. 355 nm was used as the cutoff to be consistent with the 

measurements of a355 and DOC concentration in the two NASA data sets used below. If 
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300 nm was used instead as the cutoff for the CDOC3 pool, the estimated CDOC3 would 

increase by 7.8%, on average, which would decrease the specific absorption by a similar 

proportion. This in turn would cause the AQYs to increase because there is less light 

being absorbed per unit carbon with the same amount of CDOC transformation. This 

implies that with the CDOC3 specific absorption estimated using 355 nm as the cutoff the 

AQYs are relatively conservative. 

Conditions that best represented the time points when marsh derived DOC was at 

its highest relative concentration were only included in the CDOC3 specific absorption 

spectra. To do this, the SRs for each time point were sorted into quartiles and the SRs for 

each time period that were in the lowest quartile (i.e., most marsh-like) were identified 

(n=28). At these time points, the CDOM absorption spectra were divided by each 

associated CDOC concentration estimate to yield 28 individual CDOC specific 

absorption spectra. These spectra were then averaged to yield the CDOC3 specific 

absorption spectra that were used to parameterize DOM-PD (Figure 3.2). 

The other two CDOC classes were defined using National Aeronautics and Space 

Administration (NASA) cruise data (CLiVEC cruise in the mid-Atlantic and GEOCAPE 

in Chesapeake Bay) that were downloaded using the NASA SeaBASS data hub (Werdell 

et al., 2003) and a processing script that extracted and sorted the data into a table. 

Information on the NASA DOC and CDOM measurement methods has been summarized 

previously (Mannino et al., 2008). Water samples collected in mid Chesapeake Bay 

defined the estuarine CDOC2 (Figure 3.1a-c), while samples collected on the Mid-

Atlantic continental shelf defined the coastal ocean CDOC1 end member (Figure 3.1d-f). 
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DOC concentration at each station was averaged to get an average station DOC 

concentration for use in the CDOC estimating procedure. 

CDOC1 and CDOC2 concentration was estimated for each location using a similar 

procedure as above (Figure 3.4b,c). The data from the GEOCAPE cruise (CDOC2; n=61) 

had a calculated background of 119.3 µM NCDOC (Table 4). For the CLIVEC cruise 

(CDOC1; n=398), a background NCDOC concentration of 50 µM was used instead of the 

regressed value of 72. The linear regression was much less robust than the wetland and 

estuarine data set (Figure 3.4c) and if the regressed intercept was used, then there were 

values that ended up with an unreasonably high a*cdoc(λ) which skewed the mean to be 

greater than that at the wetland. Open ocean DOC has virtually zero absorbance at 

wavelengths longer than 355 nm (Helms et al., 2008), defined for this study as the cutoff 

wavelength for CDOM, and a background of 50 µM is a good approximation of the 

average concentration of open ocean DOC. Differences in the y-intercept were trivial 

depending if 280 or 355 nm was used as the cutoff, ranging from 70-72 µM C, and the 

linear relationships always had a R2 value < 0.09. 

3.4.2 Xenon Arc Photobleaching Experiments 

Irradiance exposures of samples in the photoinhibitron with the different cutoff 

filters varied from 0 to 13 W m-2 UVB (280-320 nm), 44 to 107 W m-2 UVA (320-400 

nm) and 239 to 473 W m-2 of PAR (Table 1). Depending on the duration of exposure and 

filter type, the absorbed photons ranged from 0.8 to 31 moles, which resulted in a 

decrease in a300 from negligible to almost 70%. Relative photobleaching has an 

approximately linear relationship with absorbed photons (Figure 3.5). The slope of this 

relationship was steeper for the high tide and Rhode River samples compared to low tide 
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samples. In other words, it took fewer absorbed photons to produce a given percent 

photobleaching of high tide/Rhode River CDOM compared low tide CDOM. Another 

general metric of photobleaching is absolute photoreactivity, estimated as the average 

change in absorption over the range 280-500 nm divided by the total absorbed energy 

(expressed as m MJ-1). This was 2.0 m MJ-1 for a representative low tide sample, which is 

comparable to that reported for the GCREW CDOM photobleaching by solar irradiance 

(Tzortziou et al., 2008). Even though relative photobleaching was strong, absolute 

photoreactivity was low for the high tide (1.3) and Rhode River (0.8) samples, 

comparable to the low photoreactivity samples in similar exposures of lake CDOM 

(Osburn et al., 2001). These contrasting results are due to the much lower average 

absorbance in the high tide and Rhode River samples compared to low tide. 

For both relative photobleaching and absolute photoreactivity, the response of 

high tide and Rhode River CDOM samples are similar.  This indicates that the marsh 

high tide samples have a high content of estuarine-like DOM. At high tide and in the 

estuary, the average molecular weight, absorptivity and DOC concentration is less 

(Tzortziou et al., 2008), coinciding with the predicted decrease in absolute 

photoreactivity. Changes in photoreactivity appear to be driven by changes in source 

DOM, which was previously correlated with molecular weight (Helms et al., 2008; 

Tzortziou et al., 2008), and thus corresponds well with the conceptual model used in 

designing DOM-PD. The relationship of source material and photoreactivity as it relates 

to molecular weight and absorption spectra characteristics has also been observed across 

an estuarine gradient (Helms et al., 2008) and in DOM samples from different 

environments (Maizel and Remucal, 2017). Therefore, the model formulation presented 
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here appears to be a robust approximation of CDOM photodegradation in an estuarine 

environment where photochemistry is important in DOM transformations. 

3.4.3 AQY magnitude and slope Parameter estimation 

 The best-fit parameter sets of the DOM-PD for the two locations resulted in 

consistent predictions over all treatments and exposure periods (Figure 3.6). The mean 

percent error between predicted and observed absorbance at 300 nm was 6-7%. 

Prediction was unbiased for both 12- and 24-hour exposures, suggesting that simple, first-

order kinetics are justified for the exposure range encompassed by these experiments. 

Fitted parameters for selected AQY spectra are given in Table 5. Jack-knife estimates of 

the standard errors suggested that the slopes are tightly constrained by the fits, but AQY 

at 284 are less tightly constrained. The AQY for the conversion to NCDOC/DIC, which 

are substantially lower than the other AQY, have a high degree of uncertainty (relative to 

their magnitude) (Table 5). The CDOC3 and CDOC1 pools are largely driving the 

conversion of total CDOC to NCDOC/DIC, although the standard error range is larger 

than the predicted AQY. The full spectral plots of each AQY are in Figure 3.7. Figure 3.7 

also shows an updated model conceptualization with the magnitude of each arrow scaled 

to the AQYs.  

 The AQYs estimated here can be compared to measured values from other 

experimental designs whereby the AQY is directly measured or inferred from the 

production of intermediate compounds. First, a comparison of the predicted rate of 

NCDOC/DIC creation (AQYi,0) can be directly compared to measurements of CO and 

CO2 AQYs derived experimentally (Powers and Miller, 2015). Qualitatively, maximal 

AQYi,0  (AQY3,0+AQY1,0, 1.77±0.97 mols C mol photons-1) falls within the same order of 
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magnitude of a large range of reported values for CO2 AQYs in coastal (Powers and 

Miller, 2015) and river/estuarine waters (Aarnos et al., 2018). The slope estimated from 

DOM-PD (-0.0206±0.0015 nm-1) is relatively shallow, but there is substantial variability 

in slopes of DIC AQY (Aarnos et al., 2018; Powers and Miller, 2015). Recently reported 

DIC AQYs at 330 nm measured from the St. Lawrence River estuary range from 0.116 at 

the mouth to 0.231 mmol C (mol photons)-1 at the head, and up to 0.335 mmol C (mol 

photons)-1 in the Mississippi river (Aarnos et al., 2018). The total AQYi,0 at 330 nm 

derived using DOM-PD of 0.410 mmol C (mol photons)-1, the majority of which is 

occurring from the CDOC1 pool, would be larger than the measured values but not 

unreasonable considering marsh derived DOC is extremely fresh and photoreactive and 

in the large river systems there would be previous exposure during river transport.   

If light exposure time in DOM-PD is considered as a proxy for environmental 

transport away from the HMW source and an increase in salinity along an estuary 

gradient, without supplementation from other marsh/HMW sources the photoproduction 

of NCDOC/DIC would decrease rapidly with increasing salinity. This is not due to a lack 

of photoreactivity in LMW compounds, but due to the decreasing concentration. This 

suggests that a lack of relationship between DIC photoproduction and salinity (Powers 

and Miller, 2015) indicates the presence of autochthonous sources of HMW 

photoreactive compounds in estuarine and coastal ocean systems along a salinity 

gradient, or additional inputs from fringing wetlands or runoff. DIC photoproduction 

should decrease as a parcel of water moves offshore and the HMW compounds are 

removed relatively quickly, which is seen along the St. Lawrence River (Aarnos et al., 

2018).  
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 Comparing the colored AQY pathways (AQY3,1 and AQY2,1) to measured 

quantities is difficult because of the abstraction made to parameterize DOM-PD; real 

world comparisons don’t exist because CDOC3-1 represents many thousands of 

compounds across a large environmental gradient. It is reasonable that estuarine, lower 

molecular weight (greater SR and less specific absorption) CDOC would have a larger 

AQY relative to HMW, marsh derived compounds. Recently reported laboratory 

experiments show that the rate of triplet DOM formation during irradiation increases with 

decreasing molecular weight when using model DOC mixtures that represent high 

molecular weight allocthonous sources and lower molecular weight autochthonous 

sources (Maizel and Remucal, 2017). This phenomenon is attributed to photochemical 

quenching in compounds with HMW (and high aromaticity) allowing much of the 

absorbed light energy to dissipate rather than transferring the energy into chemical 

reactions at molecular sites that are more vulnerable to photoreactions. The emergent 

AQYs of our model are consistent with these findings if CDOC3 and CDOC2 pools are 

considered as proxies for size-fractionated samples of allochthonous (CDOC3) and 

autochthonous (CDOC2) DOM. 	 	 

3.4.4 Model evaluation with an independent photobleaching data set  

 An independent evaluation of DOM-PD and the associated parameters derived 

from the Xenon lamp incubations was conducted using fifteen individual 

photodegradation experiments (Figure 3.8). In all experiments, initial and final a300 

values were measured (Figure 3.8a), in addition to two samples (one for marsh-derived 

and one for estuarine DOM) where daily time series data were measured (Figure 3.8b). 

Model-data comparison of final a300 shows a robust and tight fit, indicating that for the 
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Rhode River, across seasons and locations (including far from the marsh near the main 

stem of Chesapeake Bay), the model performed well in capturing the removal of CDOM 

absorbance. The model efficiency (MEF) has a value of 0.94, indicating that DOM-PD 

has very high predictive capacity (a value of 0.0 would indicate the model has no better 

predictive capacity vs. the mean, a value of 1.0 is a perfect fit) (Stow et al., 2009). The 

mean percent error of  -3.66% indicates a strong overall fit to the data, with a slight over 

photobleaching bias primarily at marsh low tide samples taken in the summer when 

CDOM absorption and DOC concentrations at the marsh creek tend to be greatest. Time 

series of a300 removal of summer time marsh high and low tide water also indicate a 

slight over-bleaching bias although DOM-PD captured the general trend in the change in 

a300 over time (Figure 3.8b).  

 Time series of each CDOC class for average estuary (Figure 3.8c) and marsh low 

tide (Figure 3.8d) conditions over the seven day numerical incubation show how each 

sample location differs in terms of the relative change of each pool over time. The loss of 

absorption in both samples was due to transformations of carbon from the higher 

molecular weight pools into CDOC1. The maximal rate of change for each CDOC pool 

and the total CDOC (sum of all three pools) can be estimated by taking the temporal 

derivate, dCDOC dt-1, over the course of the incubations. The average estuarine 

incubations (Figure 3.9a) show some loss of CDOC to NCDOC/DIC (0.091 µmol C L-1 

hr-1) while the average marsh low tide incubation (Figure 3.9b) lost 0.20 µmol C L-1 hr-1 

at maximum photobleaching. For comparison, St. Lawrence River estuary freshwater and 

coastal ocean end members have a measured DIC photoproduction rate of 0.582 ± 0.121 

and 0.065 ± 0.121  µmol C L-1 hr-1. Over the course of the average-condition estuary and 
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marsh low tide incubations (Figure 3.8c-d), 13.49 (11.4%) and 26.98 (9.56%) µmol C L-1 

was lost to NCDOC/DIC, respectively. For the average estuary condition, maximal DOC 

loss to NCDOC/DIC occurred at 139.9 hrs (5.8 days) into the incubation, while for the 

marsh low tide sample it occurred at 168 hrs (7 days). The maximal production in the 

marsh low tide sample occurred at 190 hrs (7.9 days) when the model run time was 

increased to one year to see the long-term degradation of CDOC into NCDOC/DIC 

(recall that daily absorbed photons in the incubation were configured to be similar to that 

occurring in the Rhode River). The marsh low tide DOC had a half life of 36.2 days, and 

after one year only 0.035% of the DOC remained. DOM-PD suggests that it is not the 

initial marsh derived compounds that are directly producing the most DIC/NCDOC, but 

the product of the initial photobleaching reaction, CDOC1, that contributes most to the 

net loss of CDOC. There is less DIC/NCDOC being produced in the estuary not because 

of less photoreactivity, but because there is less total concentration of CDOC, in addition 

to less light absorption per unit CDOC1.  

Photochemical degradation can drive changes in microbial availability of DOC 

across inland water ecosystems. Incorporating this important DOC cycling phenomena 

into a modeling framework is of particular interest. Although biological reactivity is not 

specified in DOM-PD presented here, if the breakdown of CDOC3 and CDOC2 to 

CDOC1 is considered as the production of a more biologically available end member the 

model predicted rates can be compared to measured rates of biologically labile 

photoproduct (BLP) formation from laboratory incubations (Reader and Miller, 2014). 

The maximal rate of CDOC1 production in DOM-PD was 1.54 and 3.73 µmol C L-1 hr-1
, 

and over the entire incubations 62.40 and 226.2 µM C of CDOC1 was produced for the 
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average estuary and marsh low tide incubations, respectively. The simultaneous 

production and destruction of BLPs has been proposed as a potential explanatory 

pathway for difficult to interpret patterns of BLP formation observed in similar marsh-

estuary ecosystems (Reader and Miller, 2014). In DOM-PD, the destruction of CDOC is 

only represented as a loss to NCDOC/DIC. The net destruction of the CDOC1 pool does 

occur, but only after nearly all of the CDOC2, and CDOC3 was exhausted. Maximum net 

loss of CDOC1 occurred at 12.5 and 15.8 days for the average estuarine and marsh low 

tide incubations, respectively. This suggests that as a parcel of water moves away from a 

marsh DOM source, net loss of microbially labile DOC can occur and photochemical 

degradation can decrease microbial production via loss of labile DOC. The full carbon 

cycle model contains NCDOC as a state variable and the pathway from CDOC1,2 to more 

biologically refractory pools of NCDOC does exist. The reason more pathways are not 

currently included in DOM-PD is the lack of data to constrain highly non-linear 

processes. In its current state, DOM-PD does a satisfactory job of recreating the 

experimental data available while reasonably coinciding with observations from various 

coastal ecosystems throughout the globe (Aarnos et al., 2018).  

The uncertainty around the model parameters was assessed by running the model 

for the average estuary and marsh low tide test incubation conditions using the upper and 

lower values of the jackknife standard errors for each parameter (Table 5). AQYs that 

would be less than zero when the standard error is subtracted from the best-fit AQY were 

set to zero as a negative AQY is not physically possible. In addition, the specific 

absorption spectra were also varied by a factor of 2. The total CDOC concentration at the 

end of the incubation was largely insensitive to parameter variations, with the greatest 



 

 81 
 

difference in total DOC concentration of 22.4 µM C occurring between the lower AQY 

and upper AQY range in the average marsh condition (Table 6). All other test parameter 

sets exhibit a very narrow range of final total CDOC concentrations in both the marsh 

and the estuary average conditions. The standard deviations of final concentrations were 

8.83 and 16.94 µM C (8.46% and 6.64% of baseline total CDOC) for the average estuary 

and marsh conditions, respectively, for all the test parameter sets. The final total a300 

was also relatively insensitive to variations in the AQY slope and magnitude with a 

standard deviation of 1.62 and 3.81 (m-1). The distribution of the CDOC concentrations 

among the three classes is changed slightly, with more CDOC3 remaining in the low 

AQY test runs at the end of the incubations.  

Altering the specific absorption spectra magnitude has a much more significant 

effect than the other parameters on the final CDOC distribution but even more so on the 

total a300. Increasing the specific absorption by a factor of 2 increased the final a300 by 

3.09 and 7.44 (m-1) in the estuary and marsh conditions, while decreasing the specific 

absorption by a factor of two led to a decline in final a300 by 1.84 and 3.95 (m-1), 

respectively. Increasing specific absorption increases total photochemical reactivity and 

thus decreases the high molecular weight, more absorbing CDOC pools. However, 

because the specific absorption spectra are used directly to calculate total absorbance as 

the product of CDOC, the final total absorption increases substantially even though there 

are less of the more absorbing pools. For example, in the marsh low tide incubation there 

was 14.48 µM C less CDOC3 due to more photons being absorbed per unit carbon thus 

leading to more photochemical degradation, but absorption increased to 18.91 (m-1). This 

highlights the importance of having a robust data set to parameterize the specific 
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absorption spectra for a given environment; full absorption spectra and DOC 

concentration are needed to properly parameterize DOM-PD, and in general to 

characterize the non-colored and colored DOC pools. 

3.5 Conclusions 

 DOM-PD was able to reasonably estimate the AQY magnitude and slope using a 

training data set from highly controlled photochemical degradation experiments. 

Maximal apparent quantum yields range from 3.22x10-8 ± 1.75 to 56.05 ± 21.5 (mmol C 

mol photons-1), with non-colored DOM/ inorganic carbon production outpaced by inter-

molecular organic carbon transformations. The model was applied to an independent test 

incubation data set whereby experimental results of photobleaching of spectral 

absorbance at 300 nm were recreated with a Wilmott model skill of 0.98 and mean 

percent error of -3.66%. The production of the low molecular weight photodegraded end 

member ranged from 0.59 to 4.86 µmol C L-1 hr-1
. The half-life of the marsh derived 

CDOC3 was 36.2 days with only 0.035% of the total CDOC remaining after 1 year. The 

high model skill, relative flexibility, and robustness of the model parameterization 

indicates DOM-PD has reasonable ability to simulate photodegradation across coastal 

ecosystems. The most important parameter is the CDOC specific absorption spectrum, 

which can be estimated using observational data from the representative ecosystem. 

The successful development, parameterization and application of DOM-PD shows 

that a first order approximation of photochemical degradation kinetics is possible, and 

that the dominant transformation pathways to consider are those between separate pools 

of DOC rather than the production of DIC/NCDOC. The production of DIC is of course 

important, especially as more marsh derived DOC is degraded and transported through 
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the estuary. The application of DOM-PD to other systems where parameterization data 

for a*cdom(λ) are available will allow further model development and validation. The 

modeling framework described here can now be fully incorporated in bio-optical models 

to simulate not only the effects of CDOM absorption on light attenuation, but also the 

resulting effects on spectrally dependent optical properties and carbon transformation. 

Furthermore, implementation of this novel mechanistic photochemical model into a 

larger carbon cycle modeling framework in ecosystems where photochemistry has an 

important control on the distribution and fate of DOC is now possible. Accurately 

representing changes in CDOM absorption magnitude and spectral shape due to 

photochemistry will lead to better representation of the role CDOM plays in underwater 

light attenuation in optically complex coastal waters and quantification of fluxes and fate 

of DOC in coastal and open ocean environments.  
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Variable/ 
Parameter Description Value Units 

Izi(λ) 
Photon flux absorbed by CDOCi (1-3) at 

wavelength λ  calculated mols photons 
m-2 s-1 nm-1 

Iz0(λ) Surface (above) total photon flux at wavelength λ calculated mols photons 
m-2 s-1 nm-1 

absi(λ) 
Absorption coefficient of CDOCi (1-3) at 

wavelength λ calculated m-1 

absw(λ) Absorption coefficient of water at wavelength λ calculated m-1 

abst(λ) Total absorption coefficient at wavelength λ calculated m-1 

Δz Exposure pathlength 0.04          m 

a*cdoc(λ)i 
Specific absorption of CDOCi (1-3) at wavelength 

λ 
Figure  

3.2 m2  mols C-1 

CDOCi Concentration of CDOCi (1-3) calculated mols C m-3 

dCDOCi,j dt-1 Transformation rate of CDOCi (1-3) to DOCj (0-3 
with 0 being to non colored DOC/DIC calculated mols C m-3 s-1 

AQYi,j(λ) 
Apparent quantum yield of CDOCi (1-3) to DOCj 

(both colored and non-colored, 1-3) 
Figure 

3.7 
mol C mols 
photons-1 

dCDOC1 dt-1 Total rate of change of colored DOC1 calculated mols C m-3 s-1 

dCDOC3,1 dt-

1 Transformation rate of colored DOC3 to DOC1 calculated mols C m-3 s-1 

dCDOC2,1 dt-

1 Transformation rate of colored DOC2 to DOC1 calculated mols C m-3 s-1 

dCDOC1,0 dt-

1 
Transformation rate of colored DOC2 to non-

colored DOC and DIC calculated mols C m-3 s-1 

dCDOC2 dt-1 Total rate of change of colored DOC2 calculated mols C m-3 s-1 

dCDOC2,0 dt-

1 
Transformation rate of colored DOC2 to non-

colored DOC and DIC calculated mols C m-3 s-1 

dCDOC3 dt-1 Total rate of change of colored DOC3 calculated mols C m-3 s-1 

dCDOC3,0 dt-

1 
Transformation rate of colored DOC3 to non-

colored DOC and DIC calculated mols C m-3 s-1 

dNCDOC dt- Total rate of change of non-colored DOC/ DIC calculated mols C m-3 s-1 
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Figures Chapter 3 

 
 
 

 
Figure 3.1 Chesapeake Bay (a-c) and mid-Atlantic Bight (d-f) absorption at 355 nm 
(a355), dissolved organic carbon concentration (DOC), and spectral absorption slope 
ratio (SR) used to parameterize the specific absorption for colored DOC2 and colored 
DOC3. SR is the ratio between the slope of the absorption spectra in the 275-295 nm 
region and the 350-400 nm region. 
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Figure 3.2 Colored dissolved organic carbon (CDOC) specific absorption spectra for the 
three photoreactivity classes in DOM-PD.  
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Figure 3.3 Spectral distribution of the irradiance used to force the numerical model of the 
test data set. The total irradiance used was 17.9 W m-2  
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Figure 3.4 Dissolved organic carbon (DOC) as a function of absorbance at 355nm (a355) 
for (a) the GCREW marsh creek derived samples used  to generate the colored DOC3 
specific absorption spectra (diamonds=2015, squares =2016, orange=June, blue=July, 
magenta=August.),(b) the mid-Chesapeake Bay NASA GEOCAPE cruise data used to 
generate the colored DOC2 specific absorption spectra, and (c) the mid-Atlantic coastal 
ocean NASA CLiVEC cruise data used to generate the colored DOC1 specific absorption 
spectra. Information on each data set can be found in Table 3.4. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Photobleaching of absorbance (a300) after filtered Xenon lamp exposure for 
filtrate from the marsh low tide sample (filled circles), marsh high tide samples, (x’s) and 
Rhode River estuary sample (circles) as a function of total absorbed energy during the 
exposure. Variation in exposure and photobleaching results from the use of six long-pass 
cutoff filters and exposure durations of 12 and 24 h. 
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Figure 3.6 Predicted vs observed a300 (m-1) for DOM-PD model fits to the (a) marsh low 
tide data and (b) Rhode River estuary samples. Open symbols are for 12 hour exposures, 
filled symbols 24 hour exposures to Xenon irradiance through the various long-pass 
filters (Table 3.2). The marsh low tide samples were used to estimate AQY3,j and the 
Rhode River estuary samples were used to estimate AQY2,j.  
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Figure 3.7 The spectrally explicit apparent quantum yields (AQY) estimated from the 
Xenon lamp solar exposures for each pathway and a photochemical degradation 
conceptual diagram with the shading of each dissolved organic matter (DOM) pool 
representative of the fraction of the total absorbance in each pool after the seven day 
incubation experiments for an average marsh low tide condition. The width of the arrows 
are scaled to the magnitude of the apparent quantum yield (AQY) for each pathway (see 
scale key in lower right corner). There is no arrow from CDOM2 to non-colored 
DOM/DIC because the AQY for that pathway is virtually 0. 
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Figure 3.8 (a) Seven day final predicted and observed absorbance at 300 nm (a300, m-1) 
for all 15 Rhode River incubations in the test data set, with the numbers corresponding to 
the incubation data in Table 3.3. Blue numbers indicate marsh low tide incubations and 
orange numbers dock (estuary) water incubations. (b) Predicted (dashed lines) and 
observed (diamonds) colored dissolved organic carbon (CDOC) absorbance at 300 nm 
(a300) for marsh low tide (LT) and marsh high tide (HT) samples from incubations 8 and 
9.  Time series of modeled CDOC concentration beginning with the (c) average dock 
initial concentration and (d) average marsh low tide initial concentration.  
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Figure 3.9 Rate of change of colored dissolved organic carbon (CDOC; dDOC dt-1, µmol 
C L-1 hr-1)  over the course of the (a) average estuary incubation and (b) the average 
marsh low tide incubation. The total DOC (tDOC) is the sum of each pool and the 
negative rate of change is the loss of CDOC to non-colored DOC and dissolved inorganic 
carbon.  
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Tables Chapter 3 

 
 
Table 3.1 Average irradiances (W m-2) used for photobleaching experiments with Xenon 
lamp exposures for each filter type 
 
 

Filter UVB UVA PAR 
WG280 4.08 68.3 343.1 
WG295 13.2 106.7 394.6 
WG305 4.11 43.6 238.5 
WG320 0.98 48.2 263.0 
WG335 0.01 102.4 472.6 
LG350 0.01 55.2 408.3 

 
 
 
 
 
Table 3.2 Initial colored dissolved organic carbon concentration (CDOC; µM C) for each 
photoreactivity class for the Xenon Lamp exposures 

Identification 
Initial 

CDOC1 
a 

Initial 
CDOC2 

Initial 
CDOC3 a300b 

 
Date Sampled 

Rhode Riverc 0 178.33 N/A 10.25 Aug. 17, 2015 
GCREW HTd 42.29 117.61 81.71 17.64 Jul. 30,2015 
GCREW HT 0.00 167.14 115.81 22.55 Aug. 13, 2015 
GCREW HT 62.77 34.07 61.90 11.49 Aug. 21,2015 
GCREW LTe 0.00 0.00 598.09 66.91 Jul. 29, 2015 
GCREW LT 0.00 0.00 642.69 71.67 Aug. 12, 2015 
GCREW LT 29.93 0.00 308.33 35.30 20-Aug-15 

 
a. CDOC1-3 were estimated using a multiple linear regression of the observed 

absorbance spectra as a function of the CDOC concentration and the a*cdoci  

detailed in the methods section of the main text. For the Rhode River sample, 
CDOC3 was assumed to be 0. 

b. Initial colored dissolved organic matter absorbance at 300 nm (a300; m-1) 
c. Sample collected at the SERC Dock in the Rhode River, MD, USA (38.8856 N, -

76.5419 E) 
d. Sample collected at high tide at the GCREW Marsh, Rhode River, MD, USA 

(38.8749 N, -76.5465 E) 
e. Sample collected at low tide at the GCREW Marsh, Rhode River, MD, USA  
      (38.8749 N, -76.5465 E) 
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Table 3.3 Initial colored dissolved organic carbon estimates for DOM-PD test data set 
 
Identification Duration 

(Days) 
Initiala 
CDOC1 

Initial 
CDOC2 

Initial 
CDOC3 

a300 b Date 
Sampled 

1. SERC Dockc 7 0.00 99.06 3.33 6.06 Jan. 13, 2016 
2. GCREW LTd 7 0.00 46.22 164.61 21.22 Jan. 14, 2016 
3. Lower MCe 9 47.58 86.56 27.30 9.97 Apr. 5, 2016 
4. SERC Dock 10 83.25 13.93 21.18 6.54 Apr. 22, 2016 
5. GCREW LT 10 22.15 62.49 122.73 18.33 Apr. 22, 2016 
6. SERC Dock 8 46.20 50.07 18.98 6.89 May 5, 2016 
7. GCREW LT 8 0.00 0.00 291.98 32.95 May 5, 2016 
8. GCREW HTf 7 1.49 73.35 193.52 26.10 Jun. 10, 2016 
9. GCREW LT 7 0.00 0.00 426.31 48.10 Jun. 10, 2016 
10. Upper MCg 7 0.00 214.97 72.59 20.43 Jun. 28, 2016 
11. RR Mouthh 7 62.20 0.00 32.31 6.15 Jun. 28, 2016 
12. SERC Dock 7 28.76 92.65 7.24 7.29 Jul. 21, 2016 
13. GCREW LT 7 46.66 0.00 299.10 35.63 Jul. 21, 2016 
14. GCREW LT 7 0.00 53.58 204.75 26.18 Oct. 19, 2016 
15. GCREW LT 7 0.00 0.00 223.18 25.18 Jan. 5, 2017 
16. Dock Avg.i N/A 39.58 63.92 14.42 5.84 N/A 
17. Marsh Avg.j N/A 11.50 23.17 247.50 11.76 N/A 
 

a. Initial colored dissolved organic carbon (CDOC; µM C) estimates for each of the 
15 test incubations derived from Logozzo (2017). 

b. Initial colored dissolved organic matter absorbance at 300 nm (a300; m-1) 
c. Sample collected at the SERC Dock in the Rhode River, MD, USA (38.8856 N, -

76.5419 E) 
d. Sample collected low tide at the GCREW Marsh, Rhode River, MD, USA  
      (38.8749 N, -76.5465 E) 
e. Sample collected lower Muddy Creek, Rhode River, MD, USA (38.8775 N, -

76.5527 E) 
f. Sample collected high tide at the GCREW Marsh, Rhode River, MD, USA  
      (38.8749 N, -76.5465 E) 
g. Sample collected upper Muddy Creek, Rhode River, MD, USA (38.8843 N, -

76.5576 E) 
h. Sample collected at the Rhode River Mouth, MD, USA (38.8605 N,-76.4931 W) 
i. Average for all SERC Dock samples 
j. Average for all GCREW LT samples 
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Table 3.4 Average total dissolved organic carbon and derived non-colored dissolved 
organic carbon for data sets to derive NCDOC 
 

Date total DOCa  NCDOCb % NCDOCc SRd a300 (m-1)e nf 
Jul. 2015g 616.3 319.5 51.83 0.870 39.34 21 

Aug. 2015g 705.8 332.9 47.16 0.887 40.56 24 
Jun. 2016g 658.6 342.4 51.99 0.822 57.21 24 
Jul. 2016g 571.5 301.9 52.82 0.908 36.00 20 

Aug. 2016g 831.9 583.9 70.18 0.804 49.32 24 
GEOCAPEh 279.3 119.34 42.73 1.183 5.94 61 

CLiVECi 85.1 50 58.75 1.595 1.17 398 
a. Total dissolved organic carbon (total DOC) in µM. 
b. Non-colored DOC (NCDOC) in µM derived as the intercept of the regression of 

total DOC for each data set as a function of absorbance at 355 nm (a355 m-1) 
c. Percent of total DOC that is NCDOC 
d. Spectral absorption slope ratio (SR) for the samples used to define the specific 

absorption spectra. SR is calculated as ratio of the exponential slope of the 275-
295 nm range and 350-400 nm range of the absorption spectra (Helms et al., 
2008) 

e. Absorption at 300 nm (a300)  for the samples used to define the specific absorption 
spectra 

f. Number of samples (n) 
g. Samples taken at the GCREW Marsh creek in the Rhode River, MD, USA over 

24 hour period 
h. Samples collected by the NASA GEOCAPE research project in Chesapeake Bay, 

MD, USA 
i. Samples collected by the NASA CLiVEC research project in the mid-Atlantic 

bight, East Coast, USA 
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Table 3.5 Apparent quantum yield parameter estimates derived from the Xenon Arc 
photobleaching experimental setup 
 

Parameter Source AQY(284)a Slopeb (nm-1) 

AQY31 Marsh LT 5.74±0.69 -0.021±0.0014 
AQY30 Marsh LT 0.111±0.154 -0.021±0.0014 
AQY21 Rhode River 56.05±21.5 -0.0495±0.0101 

AQY20 Rhode River 3.22x10-8±1.75 -0.0495±0.0101 

AQY10 Rhode River 1.66±0.82 -0.0328±0.0065 
a. Apparent quantum yield (AQY; mmol C mol photons-1). Each pathway is 

represented by the subcript (e.g. AQY31 is the transformation of CDOC3 to 
CDOC1) 

b. AQY spectral slope estimates (nm-1)  
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Table 3.6 Results of sensitivity analysis of the DOM-PD for initial parameters 
representative of dissolved organic matter in the Rhode River estuary and that exported 
from associated tidal marshes  
Estuarya CDOC1

 

 
CDOC2 CDOC3 a3001 a3002 a3003 Total 

a300 
Total 

CDOC 
Baseb 101.98 1.81 0.64 4.11 0.10 0.07 4.28 104.4 
Upper 
AQYc 

93.68 0.34 0.40 3.77 0.02 0.04 3.84 94.43 

Lower 
AQYc 

109.3 0.46 0.98 4.40 0.03 0.11 4.54 110.7 

Upper 
Sloped 

98.22 0.25 0.50 3.96 0.01 0.06 4.03 98.98 

Lowerd 
Slope 

101.57 6.05 0.80 4.09 0.35 0.09 4.53 108.4 

2x 
a*CDOCe 

91.37 0.07 0.04 7.35 0.01 0.01 7.37 91.37 

0.5x 
a*CDOCe 

98.56 10.26 2.93 1.99 0.29 0.16 2.44 111.8 

 
Marsh CDOC1 CDOC2 CDOC3 a3001 a3002 a3003 Total 

a300 
Total 

CDOC 
Base 237.7 1.10 16.35 9.58 0.06 1.83 11.47 255.2 

Upper 
AQY 

226.2 0.25 10.60 9.11 0.01 1.18 10.31 237.0 

Lower 
AQY 

246.2 0.36 24.44 9.92 0.02 2.73 12.67 271.0 

Upper 
Slope 

232.8 0.19 13.06 9.38 0.01 1.46 10.85 246.1 

Lower 
Slope 

238.5 3.14 20.07 9.61 0.18 2.24 12.03 261.7 

2x 
a*CDOC 

229.4 0.10 1.87 18.48 0.01 0.42 18.91 231.4 

0.5x 
a*CDOC 

207.2 4.44 57.69 4.17 0.13 3.22 7.52 269.3 

 
 

a. Modeled average estuary (upper) and marsh low tide (lower) final colored 
dissolved organic carbon (CDOC) and absorbance at 300 nm (a300; m-1) for each 
CDOC pool and the total a300 and CDOC (sum of each state variable) for upper 
and lower bounds of the model derived parameters 

b. Baseline model run 
c. Upper and and lower apparent quantum yield (AQY) estimates (Table 5).  
d. Upper and lower AQY spectral slope estimates (Table 5) 
e. 2 times and 0.5 times the CDOC specific absorption (a*CDOC; m2 mol C-1) 
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Wind Driven Dissolved Organic Matter Dynamics in a 

Chesapeake Bay Tidal Marsh-Estuary System 

4.1 Abstract 

Controls on organic matter cycling across the tidal wetland-estuary interface have proved 

elusive, but high-resolution observations coupled with process-based modeling can be a 

powerful methodology to address shortcomings in either methodology alone. In this 

study, detailed observations and three-dimensional hydrodynamic modeling are used to 

examine biogeochemical exchanges in the marsh-estuary system of the Rhode River, 

MD, USA. Analysis of observations near the marsh in 2015 reveals a strong relationship 

between marsh creek salinity and dissolved organic matter fluorescence (fDOM), with 

wind velocity indirectly driving large amplitude variation of both salinity and fDOM at 

certain times of the year. Three dimensional model results from the Finite Volume 

Community Ocean Model implemented for the wetland system with a new marsh grass 

drag module are consistent with observations, simulating sub-tidal variability of marsh 

creek salinity. The model results exhibit an interaction between wind driven variation in 

surface elevation and flow velocity at the marsh creek, with northerly winds driving 

increased freshwater signal and discharge out of the modeled wetland during 

precipitation events. Wind setup of a water surface elevation gradient axially along the 

estuary drives the modeled local sub-tidal flow and thus salinity variability.  On sub-tidal 

time scales (>36 hours, < 1 week) wind is important in mediating dissolved organic 

matter releases from the Kirkpatrick Marsh into the Rhode River. 
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4.2 Introduction 

Wetlands can be important buffers for coastal flooding and storms (Haddad et al., 

2016) and they provide habitat and nursery grounds for many species of animals that 

have cultural and economic significance, including birds, fish, mammals and 

invertebrates. In addition to more tangible ecosystem services, the generally high 

productivity of tidal wetlands makes them dynamic carbon fixers and transformers of 

organic material, playing a potentially substantial role in the coastal carbon cycle. In the 

face of rising seas and warming coastal oceans, interest in marsh biogeochemistry and the 

ecosystem services and carbon cycling associated with them has been increasing. 

Numerous studies have quantified the fluxes of materials between tidal wetlands 

and adjacent estuaries on varying time scales (e.g., Teal, 1962; Nixon, 1980; Dame et al., 

1991; Childers 1993; Tzortziou et al., 2008). Brackish and salt marshes have high rates of 

primary production, generally being net carbon sinks from the atmosphere (Chmura et al., 

2003; Bridgham et al., 2006), while also contributing a large source of dissolved 

inorganic carbon and dissolved organic matter (DIC and DOM) to the coastal ocean 

(Wang and Cai, 2004; Herrmann et al., 2014). A recent estimate of a tidal wetland 

organic carbon flux of 1.2-2.5 Tg C year-1 to the eastern coastal waters of the United 

States indicate tidal wetlands play an important role in the coastal carbon cycle 

(Herrmann et al., 2014).  

 In addition, marsh carbon fixation and processing have widespread implications 

for net ecosystem production of the east coast of North America and in particular 

Chesapeake Bay (Herrmann et al., 2014). Wetlands make up 1 % of the total watershed in 

the mid-Atlantic Bight, but contribute up to 40% of the total organic carbon export into 
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estuarine and coastal waters  (Herrmann et al., 2014). Marsh-estuary dissolved organic 

matter (DOM) fluxes have been studied extensively for over 30 years, with most studies 

showing that coastal marshes are strong sources of dissolved organic carbon and nitrogen 

to adjacent waters (e.g. Dame et al., 1986; Childers 1993; Tzortziou et al., 2008). 

However, generalizations about the magnitude of these fluxes and the factors that drive 

their spatiotemporal variability have proven elusive.   

Wetland inundation regimes and water flux exert substantial control over many 

biogeochemical processes in marsh-estuary systems (Fagherazzi et al., 2013). Factors that 

influence marsh water intrusion on temporal scales longer than tidal cycles can have 

potentially important implications in microtidal environments such as Chesapeake Bay. 

In Chesapeake Bay, variations in freshwater discharge (Schubel and Pritchard, 1986) and 

wind speed (e.g. Blumberg and Goodrich, 1990; Scully et al., 2005) can both have a 

strong influence on the residual flow patterns of the Bay. Wind also affects flushing, 

residence time and salinity variability in shallow water estuaries (Geyer, 1997). It is 

therefore not surprising that wind forcing also impacts biogeochemical fluxes associated 

with marsh ecosystems. For example, Childers et al. (1993) reported that salt marshes in 

coastal Georgia have varying inorganic nutrient flux responses associated with changes in 

wind direction and wave height at exposed marsh sites, and that more exposed marshes 

have higher amounts of potentially wind driven DOM exchange. Sub-tidal inundation 

variation in tidal wetlands has also been linked to wind forcing (Dame et al., 1986; 

Childers 1993; Bockelmann et al., 2002), but sub-tidal flow variability has yet to be 

quantitatively linked to DOM transport across the wetland-estuary interface. 

Implementing high resolution monitoring programs that can capture transient wind and 
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storm events associated with marsh-estuary fluxes is challenging, partly due to high 

human resource and material costs in addition to high spatial and temporal heterogeneity 

associated with intertidal wetlands (Jordan et al., 1991). The advent of in-situ optical 

sensors that can measure various water column properties including fDOM have made 

high-frequency observations much more attainable. Furthermore, modeling combined 

with the in-situ sensing technology can offer insights into the spatiotemporal variability 

of marsh-estuary coupled water flow with high resolution over a wide range of scales.  

Biogeochemical degradation, physical transport and mixing, and photochemical 

transformations all contribute to the distribution of DOM in estuarine waters. The highly 

variable tidal signal inherently influences the biogeochemical processes that occur as 

wetland DOM is advected between the wetland and estuary. This study addresses the 

processes of physical mixing and transport to examine the influence they have on the 

observed temporal patterns of DOM variability at a wetland creek. Specifically, a 

combination of observations and modeling are used to investigate how wind influences 

the outflow of DOM from the Kirkpatrick Marsh into the Rhode River in Chesapeake 

Bay, USA. First, an instrument deployment at the marsh creek is used to provide insight 

into the temporal variability of salinity and fDOM. Insight gained from the instrument 

deployment is then used to inform numerical experiments utilizing a Rhode River 

implementation of the Finite Volume Community Ocean Model (RhodeFVCOM). 

Specifically, RhodeFVCOM is used to examine how wind velocity influences the 

temporal and spatial salinity and flow variability.  These experiments reveal that wind 

forcing affects inundation timing and extent and significantly alters marsh creek flow 

velocity, with northerly winds enhancing marsh water efflux. The results of this 
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numerical study, in conjunction with the observational data set, demonstrate that wind 

largely controls water advection and inundation in the marsh and sub-tidal hydrological 

variability, and thus controls marsh-estuary DOM exchange.  

 

4.3 Methods 

4.3.1 Site description and observations  

The Rhode River, MD, USA is a shallow water tributary located on the western 

shore of Chesapeake Bay just south of Annapolis, MD (Figure  4.1a & b). The 

Kirkpatrick Marsh is a fully developed mesohaline (0-14 psu) marsh that is located near 

the head of the Rhode River at 38° 52’ 30” N, 76° 32’ 50” W (Figure 4.1c).  The 

bathymetry in the Rhode River slopes from a depth of approximately 0.3 m at the marsh 

edge to 4 m at the mouth of the river.  

The largest input of freshwater into the estuary is from Muddy Creek (Figure 

4.1c), with a maximum instantaneous discharge of 15 m3 s-1 and a median daily discharge 

of 0.13 m3 s-1 in the modeled year 2005 (Breitburg et al., 2008). Marsh plant community 

density in the Kirkpatrick Marsh ranges from 200 to 1000 plants m-2 with substantial 

inter-annual variability (Rasse et al., 2005).  Schoenoplectus americanus makes up a 

significant portion of the plant community and average high marsh plant diameter at an 

adjacent marsh measured 3.75 mm (Ikegami et al., 2006). Among other species 

commonly found in brackish marshes, there are stands of Spartina patens in areas with 

higher elevation (Jordan and Correll, 1991). The portion of the Kirkpatrick Marsh under 

study is mainly flushed by a tidal creek outfitted with a flow-through flume that is the 
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main conduit linking ~3 hectares of marsh area to the Rhode River (Jordan and Correll, 

1991). 

A multiparameter EXO2 6-port water quality sonde (Yellow Springs Instruments, 

YSI) was deployed at the Kirkpatrick Marsh creek starting in November 2014 and 

sampling nearly continuously through 2015. Measurements included salinity, 

temperature, chl a fluorescence, dissolved oxygen, DOM fluorescence (fDOM) and pH at 

15-minute intervals 0.25 meters above the marsh creek sediment. A similarly configured 

instrument was operated at the Smithsonian Environmental Research Center (SERC) 

dock (38° 53’ 8” N, 76° 32’ 30” W) which is about 1 km downstream of the marsh in the 

Rhode River (Figure 4.1c). Both instruments are outfitted with an automatic wiper that 

cleans the active surface of all probes, allowing for less maintenance and longer 

deployment times. The probes were regularly inspected for bio-film accumulation and the 

instrument was cleaned and calibrated before and after each deployment. Deployment 

periods between calibrations in the summer were around two weeks, longer during cool 

weather.  fDOM data have been corrected for the effects of turbidity and temperature 

dependent variation in quantum yield (Downing et al., 2012). 

A SonTek-IQ acoustic doppler velocimetry  (ADV) probe was intermittently 

deployed at the marsh creek flume beginning June 2015 to measure current velocity and 

depth at 5 cm above the marsh creek sediment surface. The ADV sampled for a 120 

second period every 5 minutes, averaging the measured velocity and depth over the 

sample period. Flow measurements obtained at 15 minute intervals over a 55 day ADV 

deployment in the summer were used to generate a hypsometric relationship for area 

inundated for a given tidal stage. The flow data obtained was used to compare the 
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calculated wetland inundation with the model predicted wetland inundation. In addition, a 

deployment in November 2015 is used for a comparison between model dynamics and 

observed velocity at the marsh creek. 

4.3.2 Model development and implementation 

The Finite Volume Community Ocean Model (FVCOM) (Chen et al., 2003)was 

implemented for a section of mid Chesapeake Bay including the Rhode River and 

Kirkpatrick Marsh (Figure 4.1b) to analyze controls on hydrodynamic processes in the 

marsh and the estuary down-stream. The wetting and drying treatment of intertidal areas 

available in FVCOM gives an accurate representation of intertidal hydrodynamics in a 

wetland-estuarine system in the Satilla River, GA (Chen et al., 2008), and was therefore 

selected for this application.  

The model domain includes two main stem EPA Chesapeake Bay Program (CBP) 

long-term water quality model stations as well as four stations on the east and west shoals 

of the bay. The northern open boundary of the model domain is near the Chesapeake Bay 

Bridge, and the southern open boundary is just north of Poplar Island. The near 

continuous measurements of temperature and salinity at the SERC dock allowed for 

shallow water model validation (see 4.4.2). 

Eight freshwater discharge sites were included in the model domain, four of 

which are adjacent to the Kirkpatrick Marsh (stars in Figure 4.1c). Measured freshwater 

discharge from the three V-notch weirs (Breitburg et al., 2008) in the Rhode River 

watershed was extrapolated to the other five discharge points by normalizing the flow 

measured at the weir to watershed area. When a flow meter records low or no flow over a 

long period of time and a sudden increase in discharge occurs, the flow recorders miss the 
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initial increase in discharge. In order to prevent an over-estimate of flow into the model 

domain, an algorithm was employed to account for the missed flow when doing a linear 

temporal interpolation (Jordan, personal communication). When there is a sharp increase 

in flow after extended low flow periods, the algorithm assumes a constant flow rate until 

the sharp increase in flow is observed. 

A nested model approach is used to force the northern and southern open 

boundaries with temperature, salinity, and sea surface height (SSH). Time series of SSH 

at the open boundaries were extracted at hourly intervals from a solution of a larger scale 

FVCOM simulation developed for this study to drive the RhodeFVCOM tidal forcing.  A 

model solution for daily temperature and salinity was taken at daily intervals from the 

Chesapeake Bay Regional Ocean Modeling System (ChesROMS) (Xu et al., 2012) grid 

points closest to the RhodeFVCOM north and south open boundaries. Two- and three-

dimensional interpolations were done for SSH, temperature and salinity onto the 

RhodeFVCOM open boundaries. Lastly, the spatially interpolated temperature and 

salinity from ChesROMS were linearly interpolated in time from a daily output to the 

hourly time step and used to force RhodeFVCOM.  

The estuarine surface boundary is forced using North American Regional 

Reanalysis (NARR) model output for the year 2005 

(http://rda.ucar.edu/datasets/ds608.0/). Three-hourly NARR data from the NARR grid 

cell that covers the majority of the RhodeFVCOM domain was applied uniformly over 

the entire model domain. Wind speed u and v vector components at 10 meters above the 

sea surface were used to calculate surface wind stress in the model (Large and Pond, 

1981). Temperature at 10 m above sea level, surface pressure (Pa) and relative humidity 
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(%) at 2 meters above sea level, along with the NARR wind and model calculated sea 

surface temperature (SST, °C), were used to compute the sensible and latent heat flux in 

the model internally using the COARE 2.6 algorithm (Fairall et al., 1996). This method 

allowed a dynamic feedback between the model predicted SST and the heat flux 

calculation.  Net short wave and long wave radiation from NARR was used to close the 

heat flux calculation internally.  A correction factor of 0.5 was applied to the NARR 

estimated net long-wave radiation flux in order to resolve the temperature in the summer 

and partially account for systematic over prediction of long wave radiation flux (Kumar 

and Merwade, 2011). 

Model horizontal resolution increases from ~400 m in the main channel portion of 

Chesapeake Bay to less than 10 m in the marsh area.  The high spatial resolution is 

necessary to attempt to resolve bathymetric features within the marsh. The unstructured 

mesh contains 8,138 nodes and 14,572 elements. Rhode River bathymetry was input 

manually into the Surface-Water Modeling System (SMS) mesh generation software 

package (SMS version 8.0, AQUAVEO) from NOAA chart #12270 

(www.charts.noaa.gov) and interpolated to the nodes of the model grid.    

FVCOM uses a vertical hybrid terrain following coordinate system commonly 

referred to as sigma coordinates.  In areas with still-water depth less than 3 m, the vertical 

coordinates form an exponential distribution with decreasing resolution with depth.  In 

areas with depth greater than 3 m, the vertical coordinates change to a parabolic 

distribution with coarser vertical resolution in the middle of the water column.  This is 

implemented to counteract spurious heating and cooling in the surface layers of the 

shallow areas of the model, while resolving boundary layer effects in deeper regions. 



 

 109 
 

A marsh plant momentum sink was included in the model (Wang et al., 2014) in 

order to simulate the drag imposed by marsh grass on the tidal water flowing through the 

marsh. Following Nepf (1999), the momentum sink calculates the drag imposed by a 

rigid cylindrical body and subtracts it from the momentum equation solved for each grid 

cell in the water column. Equation 4.1 (Wang et al., 2014) is used to numerically solve 

for the drag force on the flow due to the presence of marsh grass in a spatially explicit 

context, where FM is the momentum sink due to drag (m s-2), N is the number of plants in 

the marsh element, Cd is the drag coefficient (dimensionless), A is the cross sectional area 

of plant stems (Diameter x Height, m2), VC is the element volume (m3) and u is the 

velocity of the water at the element centroid (m s-1).   

      (4.1) 

 

An average stem number density of 600 plants m-2 (Rasse et al., 2005) and a stem 

diameter of 3.75 mm (Ikegami et al., 2006) was used to calculate a cross sectional area of 

influence in each cell specified upon model startup as containing marsh plants. Table 4.1 

summarizes the marsh plant drag model parameterization.  

   In FVCOM, a minimum depth (Dmin) is required to maintain computational logic 

in the intertidal zone for the wetting and drying scheme (Zheng et al., 2003). The 

minimum depth is the modeled water elevation where “dry” conditions take place and 

calculations for temperature and salinity diffusion cease until Dmin is exceeded. A Dmin 

value of 0.05 m was used in this research for model stability purposes.  

The boundaries of the marsh areas were extracted from traced paths in Google 

Earth (GoogleEarth 7.1.5).  The mode-split time stepping scheme of FVCOM requires a 
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small external mode (barotropic) to internal mode (baroclinic) time step ratio when grid 

resolution is fine and intertidal areas are shallow (See Chen et al., 2013 for intertidal tests 

and numerical constraints).  Therefore, an external time step (DTE) of two seconds and 

internal time step (DTI) of six seconds were used.  The computations were carried out 

using OpenMPI on an 8 core 2014 Mac Pro, which took approximately two days in wall 

clock time for 242 model days. 

4.3.3 Model numerical experiments 

Model parameter optimization tests were carried out to find the best parameter set 

for predicting salinity and temperature in the Rhode River.  The parameter set that 

produced the best results was used as the control run for the numerical experiments 

(Table 4.1). The bottom friction (BFRIC) and horizontal diffusion coefficient (HORCON) 

were the most important parameters affecting salinity and SSH in the Rhode River. 

Temperature variation was strongly dependent on the surface forcing and the vertical 

layer distribution in the modeled water column. In order to find out how wind velocity 

affected the system, 2 model “experiments” with varying atmospheric forcing were 

carried out in addition to a control run. Observations at the Kirkpatrick Marsh creek in 

2015 suggested a non-linear relationship between wind forcing and salinity.  To explore 

this relationship, numerical experiments were set up to test how the model replicated the 

observed non-linear interactions at different times of the year. 

Test B is the baseline model run (the control). Tests SW and NW were set up so 

that southerly (Test SW) and northerly (Test NW) winds blow for a 48-hour bracket (±24 

hours) around storm events.  Storm events were defined as an increase in total discharge 

of 0.25 m3 s-1 into the entire Muddy Creek watershed over a 15-minute time period, 
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totaling 12 events.  Wind climatologies from Baltimore-Washington Airport, MD from 

2010 through 2013 reveal that, in general, winds are stronger and from a more 

northwesterly direction in autumn, winter and spring (Vinnikov, 2015; 

http://www.atmos.umd.edu/~kostya/NIST/WIND/SURFACE/KBWI_2010_13_WIND_2

.pdf). In the summer, winds tend to be of smaller magnitude and the direction switches to 

having a more pronounced southerly component. The two-day wind bracket in the model 

was designed to capture any potential lag influences associated with salinity intrusion, 

flow velocity and wind speed.   

The model initial condition was set using output from a previous baseline model 

run ending March 31, 2005 and run recursively three times for the entire year. The 

numerical experiments were conducted beginning March 31, 2005 running 242 days 

through November 30, 2005.  The model time period captured the spring freshet in 2005 

that peaked in mid-April. Hydrodynamic parameters were adjusted in order to minimize 

model temperature and salinity solution error at the SERC dock (Table 4.1).     

4.3.4 Statistical analysis 

Time series comparisons of root mean square error (RMSE) and correlation 

coefficient (r) characterized model skill for temperature and salinity (Stow et al., 2009). 

A low frequency pass cutoff filter MATLAB function (lpfilt; Sherwood 1989,Version 

R2014B, The Mathworks Inc.) was used to remove the tidal signal from both the 

observed (salinity, fDOM, depth, wind velocity) and the modeled (salinity, flow velocity 

and SSH) time series in order to examine the response of the sub-tidal variability to the 

effect of wind. This algorithm employs a  fast Fourier transform (fft) and tapered moving 

box-car algorithm to filter both modeled and observed time series in the frequency 
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domain before statistical analysis.  Non-stationary time series were detrended by 

removing the best-fit least-squares regression line of the data from the total data set. 

Cross covariance analysis of the three observed time series was conducted to assess 

covariance of fDOM, salinity, wind velocity and depth.   

Equation 4.2 is used to calculate the area of inundated marsh at the Kirkpatrick 

Marsh creek where AI is the area inundated of the marsh (m2), VF is the flow velocity at 

the marsh flume (m s-1), AF is the cross-sectional area 

 

         (4.2) 

 

of the marsh flume (m2), and dZ/dt is the temporal derivative of the tidal height (m s-1). 

The hypsometry of a wetland is based on the relationship between flooding or ebbing 

water flow across a known cross sectional area and marsh tidal inundation. If the 

discharge through the flume is known, then the area flooded within the marsh can be 

inferred using Equation 4.2. RhodeFVCOM predicted total, instantaneous area inundated 

combined with the observed area inundated calculated from the hypsometric relationship 

allows an indirect but useful comparison of the model and the Kirkpatrick Marsh.  For the 

hypsometry analysis, only flood tides where the change in tidal height, dZ, was greater 

than 0.01 m were used to eliminate noise associated with low or no flow (Jordan and 

Correll, 1991). 

Augmented Dickey-Fuller tests (ADF) conducted using the R statistical software 

(version 3.1) library “tseries” (version 0.10-34; Trapletti and Hornick, 2014) function 

adftest were used to assess the stationarity and potential cointegration of the detrended, 
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low-pass filtered time series of fDOM, salinity and observed wind velocity components. 

fDOM  and salinity were filtered at a 36 hour cutoff, while wind components were 

filtered at a 24 hour cutoff to remove diel periodicity.  The ADF tests accepted the 

alternative hypothesis of unit root of 0 of N-S and E-W wind (p<0.05) for all time periods 

except fall E-W wind (Table 4.2). Therefore, analysis between wind and fDOM avoided 

the potential spurious relationship of co-integration among variables that could produce 

dubious correlations. ADF tests of salinity failed to reject the null hypothesis of non-

stationarity in the spring but accepted the alternative of stationarity in the summer and 

fall.  In the analysis, westerly and southerly winds are defined as positive (positive u and 

v vector components). 

4.4 Results 

4.4.1 Observations 

Observed wind data from Tolchester Beach, MD (tidesandcurrents.noaa.gov) 

showed an alternating wind pattern corresponding to the sub-tidal variability of salinity 

and fDOM at the marsh creek in 2015 (Figure 4.2). Covariance of salinity and fDOM at 

the marsh creek appeared to have a seasonal component with strong negative covariance 

in the spring and fall at a lag centered around 0.5 days following changes in wind 

direction (Figure 4.3a & 4.3c). Southerly and easterly wind components were anti-

correlated with the fDOM signal while northerly and westerly wind components were 

positively correlated with the fDOM signal (Table 4.3). fDOM lagged changes in the peak 

N-S wind velocity components by 9-10 hours and the peak E-W wind velocity 

components by 12-22 hours consistently across the three seasons. Wind velocity and 

fDOM had a greater coefficient of covariance in the spring and fall relative to the summer 
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for both N-S and E-W wind components. This was likely driven by high wind speeds that 

were sustained for longer periods in both component directions during spring and fall.  

The seasonal variability in wind direction and speed is relatively consistent with a wind 

climatology from Baltimore Washington International Airport, MD which is ~40 km 

away (Vinnikov, 2015). 

In the summer, N-S wind velocity exhibited covariance with fDOM (r=0.60) as in 

spring and fall while E-W winds exhibited less covariance with a longer lag than the 

other two observation periods (r=0.34).  The lower relative importance of the E-W wind 

component in the summer is likely due to a lack of a strong E-W wind event. The higher 

positive covariance in the N-W wind direction with fDOM appears to be due to the 

sustained low-speed southerly wind during 14-20 August coinciding with a steadily 

decreasing trend in fDOM signal and an increase in salinity (Figure 4.2b).  In addition, a 

strong wind event coinciding with the largest release of fDOM in the time series occurred 

on August 22.  Wind patterns also differed across seasons; in the spring and fall there was 

oscillatory behavior of component wind vectors with strong northwest winds followed by 

lower wind magnitude from a generally southerly direction (Figure 4.2a & 4.2c).  The 

magnitude of summer wind was lower, on average, with the aforementioned long period 

of sustained light southerly winds in mid-August, which also coincided with a steady 

increase in marsh creek salinity.  

Low-pass filtered depth and fDOM were consistently correlated, with a strong 

negative covariance across all seasons (Table 4.3, Figure 4.4a). The high correlation and 

similar lag between depth and salinity and fDOM indicates that the primary control on the 

flux of water between the marsh and estuary was the SSH at the marsh creek and the 



 

 115 
 

marsh inundation, which was influenced by wind on sub-tidal time scales. As the marsh 

was flooded (high depth) fDOM was low due to the presence of primarily estuarine water 

at the marsh creek.  As the marsh drained and SSH dropped due to sustained 

northwesterly winds, high-fDOM marsh water was released from the wetland into the 

estuary, evidenced by the consistently strong fDOM signal at low water depths (Figure 

4.4a).  This relationship is also indicated by cross-plots of salinity and fDOM (Figure 

4.4b) although there is substantial variability across seasons.  The lack of a strong 

relationship between fDOM and salinity in the summer is clearly shown by the summer 

scatter plot of salinity and fDOM (Figure 4.4b). There also appeared to be two sources of 

fDOM, particularly in the fall, which is indicated by the branching nature of the fall 

salinity-fDOM relationship. The raw observed SSH and fDOM data are shown in Figure 

4.5. 

In the spring and fall, the salinity and fDOM negatively covaried consistently with 

a lag centered around 0 days, suggesting the variance of both were being driven by the 

same process (Table 4.3). The observed time series from August, however, exhibited a 

steadily increasing trend in salinity from approximately August 12 to August 22 followed 

by a complex pattern of high northwest wind velocity accompanied by an increase in 

salinity and spike in fDOM signal (Figure 4.2b). This indicates the wind was driving the 

same physical mechanism associated with the fDOM signal intensity as observed in 

spring and fall because the pattern of co-variance between wind and fDOM remained 

consistent. However, the covariance of fDOM and salinity was much weaker and had the 

opposite sign compared to the spring and fall (Figure 4.3b; positive correlation) 

indicating that water that was released out of the wetland had a higher salinity than the 
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outlying estuary. The August 21 storm event that was followed by a sharp increase in 

salinity appeared to be driven by wind forcing rather than an increase in freshwater 

discharge into the system from precipitation. In summer months during long dry periods, 

evaporation on the marsh surface can concentrate salinity in the marsh porewater 

(Correll, 1981). As north winds accelerated around August 22nd, high salinity marsh 

water that was concentrated due to evaporation over the extended dry period from August 

14- 20 appeared to have been released from the marsh creek along with a large pulse of 

fDOM.  The fDOM signal in summer fluctuated both positively and negatively with 

salinity with an overall higher magnitude of fDOM signal compared to the other seasons 

(Figure 4.4b). The overall higher magnitude in fDOM signal in the summer corresponds 

with observed seasonally higher DOC concentrations at the marsh creek in the summer 

and early fall months (Jordan et al., 1991; Tzortziou et al., 2008).   

Storm events with both wind and precipitation clearly impacted both fDOM and 

salinity in the marsh creek but it appears that wind velocity mediated freshwater transport 

and mixing as it entered the marsh-estuary system and determined the strength and 

direction of the salinity signal variation at the marsh creek. In most cases, large declines 

in salinity covaried with increases in fDOM and occurred independently of local rain 

events (dots in Figure 4.2). This suggests that overland freshwater runoff potentially had 

some correlation to fDOM influx from the marsh to the estuary, but that wind driven 

inundation and mixing mediated the response in both the salinity and fDOM signal.  Only 

when the winds were in a favorable direction for marsh outflow did the freshwater input 

show up as a decrease in salinity at the marsh creek.   
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 For the entire EXO2 deployment (March 2015 through November 2015), fDOM 

had a negative covariance with N-S wind, and weak positive covariance with E-W winds 

(Total, Table 4.3).  Depth and fDOM were also tightly coupled; wind driven changes in 

SSH at the marsh creek coincided with changes in fDOM. As water elevation drops due 

to NW winds pushing water out of the Rhode River, marsh water is released from the 

marsh creek into the estuary. Salinity and fDOM also had a strong negative covariance 

throughout the time series centered at a lag of 1 hour. The strong anti-correlation between 

fDOM and salinity and their variation with wind velocity indicates that both variables are 

related to wind forcing, primarily from the N-S component direction but secondarily from 

the E-W direction. The reasons for this are addressed with the hydrodynamic 

RhodeFVCOM model in the next section. 

4.4.2 Baseline model validation 

RhodeFVCOM tidal elevation (SSH; deviation from mean sea level) was 

validated at the node closest to NOAA Tides and Currents Annapolis, MD station 

(tidesandcurrents.noaa.gov) and the SERC dock.  At Annapolis, the high-frequency pass 

filtered tidal elevation showed strong agreement for the amplitude and period with 

observations (RMSE = 5.25 cm, r = 0.93).  Including the low frequency variation, the 

model captured the overall patterns of tidal height well, although the model missed some 

of the variability associated with large storm and wind events (RMSE = 15.31 cm, r = 

0.63). The model grid coarseness in the Annapolis area likely contributed to an 

underestimation of some of the shallow water tidal effects at this location, but Annapolis 

is the closest NOAA continuous tidal monitoring station to the study site with a known 

datum and therefore provided the best comparison. Modeled tidal elevation at the SERC 
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dock exhibited similar variability as measured tidal elevation in both the high-frequency 

pass (r = 0.85) and unfiltered (r = 0.53) records for the entire modeled time period, 

adding confidence to the model simulation of shallow water tidally driven circulation in 

the Rhode River.   

The majority of the temperature (RMSE = 1.71 °C, r = 0.98) and salinity 

variability (RMSE = 1.43, r = 0.88) in observations from the SERC dock was captured 

for the modeled period (Figure 4.6). The high model skill of the RhodeFVCOM 

temperature and salinity solution added confidence that shallow water circulation in the 

Rhode River was simulated well. Two early fall cooling events where the magnitude of 

cooling was over predicted by the model contributed substantially to the error in the 

temperature solution. There was no observational data for comparison at the beginning of 

the model time period due to a lack of measurements taken at the dock. Some of the 

salinity draw down in the early spring and late fall was not captured with the model (see 

discussion).   

The inundated area of the marsh as a function of flooding tidal stage at the marsh 

creek (hypsometry; Equation 4.2, following Jordan and Correll, 1991) from the model is 

compared with data collected at semi-continuous frequency from June-August 2015 in 

Figure 4.7. The inflection point of both scatter sets indicates the tidal stage at which the 

flooding water surface reaches the edge of the marsh creek bank. This represents the tidal 

height at which the marsh platform begins to flood. The inflection points of both modeled 

and observed hypsometry are similar indicating the model marsh platform elevation was 

similar to the actual Kirkpatrick Marsh, although the model was ~10 cm less, which is 

due to the modeled creek depth being slightly shallower. The model predicted more area 
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inundated, on average, but was of correct magnitude.  The slope of the marsh 

hypsometric curve is steeper in the model, indicating RhodeFVCOM predicted a more 

rapid flooding of the marsh relative to observations. This happened because the modeled 

wetland bathymetry had a shallower slope compared to the real wetland. A shallower 

slope favors a conservative prediction of RhodeFVCOM outflow velocity because it 

reduces gravity driven flow in the model as the wetland is draining. Conversely, a 

modeled wetland with a steeper slope than the real marsh would favor an over prediction 

of the outflow velocity. The step function nature of the modeled inundation curve can be 

attributed to the finite representation of the slope in the wetland area; each cell at each 

elevation is flooded instantaneously when Dmin was exceeded.  The entire wetland area 

was generally only flooded on spring tides.  

Velocity comparisons between model elements inside the marsh creek and 60 m 

adjacent on the marsh platform (dot in Figure 4.1c) when there is greater than 10 cm of 

water depth at an adjacent model node offers insight into the effect of both bottom 

friction and marsh grass drag on the flow field. Depth and time averaged median 

horizontal flow velocity on the marsh platform (1.29 cm s-1) was substantially depressed 

relative to an element in the marsh creek, (1.74 cm s-1).  In addition, runs without the 

marsh grass drag module resulted in a 3.0 % increase in median horizontal surface 

velocity and a 9.9% increase in median vertical velocity for the same model element. In a 

model run without the marsh grass drag model, a similar decrease in horizontal velocity 

from the marsh creek to a node on the marsh platform was also observed. This indicates 

that the majority of velocity reduction over the marsh platform appears to be independent 

of the presence or absence of vegetation and most of the velocity reduction is due to drag 
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induced by the shallow flow over the marsh platform, in agreement with vegetation 

removal experiments (Leonard and Croft, 2006).  Leonard and Croft (2006) also found a 

substantial decrease in the vertical velocity component in the marsh interior, consistent 

with the findings in RhodeFVCOM.  

4.4.3 Atmospheric forcing sensitivity experiments 

Experimentally altering the wind direction during storm events in the model had a 

strong effect on the salinity variability at the marsh creek in the spring and early summer 

(Figure 4.8). A southerly wind (test SW) during storms increased depth averaged salinity 

by 2.15 psu relative to the northerly storm wind (test NW) for the period of March 31 to 

July 19. The increased freshwater signal at the marsh creek in test NW was greatest in the 

early April storm events (Figure 4.8). Low salinity water persisted at the marsh creek for 

multiple days and up to two weeks following a series of storm events. The response of 

the salinity signal for the two tests occurred before the peak discharge for both the early 

April and May 22 events (Figure 4.8). This early salinity response is owed to the wind 

bracket around storm events in the model forcing. The wind started blowing either 

southerly (test SW, increased salinity) or northerly (test NW, decreased salinity) 24 hours 

before the increased discharged. The wind set up the salinity signal before the freshwater 

discharge, further exhibiting the strong effect that wind had on the salinity at the marsh 

creek.  A change in wind direction can drive a change in salinity independent of a large 

discharge event. 

During the summer the salinity remained generally the same across the three 

model runs. When storms did occur and the wind patterns were experimentally altered in 

the late summer and early fall (September-November; not shown) only a small difference 
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in the salinity for each model run occurred. The wind effect was most pronounced in the 

spring when marsh creek salinity was lower and freshwater input into the system was 

highest. The strong salinity variation produced by altering the model wind direction 

corroborates that wind forcing was driving much of the salinity and anti-correlated fDOM 

variability in the measurements in 2015. 

The model results also reveal that altering the wind direction caused changes in 

the flow velocity at the marsh creek in early spring and summer (March 31- July 19, 

Figure 4.9a). Flow velocity directed out of the marsh creek was consistently elevated at 

the onset of northerly storm events in test NW compared to southerly events during storm 

events in test SW. Moreover, the difference in flow velocity at the creek between test SW 

and NW occurred consistently with changes in salinity, i.e., increases in flow out of the 

marsh creek were associated with lower salinity and vice versa.   

In the model experiments, changes in the wind velocity also caused changes in 

estuarine surface elevation in the Rhode River (Figure 4.9b). The difference in surface 

elevation axially along the estuary during the northerly April storm event was > 1.2 cm 

km-1 from the Kirkpatrick Marsh creek to the opposite side of the Rhode River. These 

changes in salinity, velocity and surface elevation are consistent with the idea that 

northerly storm winds simultaneously drive water out of Muddy Creek into the estuary 

while also substantially pushing water out of the mouth of the river towards main stem 

Chesapeake Bay, setting up a pressure gradient sloping out of and away from the marsh 

creek.  In contrast, it appears that southerly winds push water into the mouth of the Rhode 

River from main stem Chesapeake Bay, causing water to accumulate opposite the 

wetland in the Rhode River, sloping back toward the marsh. It should be noted that two 
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layer opposing flow was not consistently observed in the Rhode River model simulations 

and therefore likely does not greatly contribute to the mean flow. 

4.4.4 Acoustic Doppler Velocimetry (ADV) observations 

Limited observational data from a November 2015 ADV deployment allows a 

tentative corroboration of the modeled wind driven variability (Figure 4.10). Northwest 

winds increased flow out of the marsh. Large fDOM pulses occurred during low water 

events. These pulses of fDOM are likely due to a combination of local wind driven flow 

out of the Rhode River as predicted by the model and a drop in overall SSH of 

Chesapeake Bay, as confirmed by similarly low-pass filtered SSH data collected from 

Tolchester Beach, MD (not shown; tidesandcurents.noaa.gov).  As the northwest winds 

relax the pressure gradient set up by the wind leads to a “slosh” of water out of the marsh, 

likely enhancing export. The release of hydrostatic pressure on marsh porewater may also 

enhance porewater export that is high in CDOM into the tidal creek. The fDOM peaks in 

the observational data (e.g. between 11/14 and 11/16) occurred after the flow reversed 

out of the marsh creek. Estuarine water inflow initially diluted the high fDOM signal at 

the marsh creek, and upon wind relaxation and flow reversal, as hydrostatic pressure was 

released fDOM was released out of the wetland into the tidal creek. CDOM export during 

low water events is consistent with previously observed tidal dynamics of Kirkpatrick 

Marsh CDOM fluxes (Tzortziou et al., 2008).  

4.5 Discussion 

Past studies have examined the effect that winds can have on marsh erosion and 

sediment transport (Dame et al., 1986; Stevenson et al., 1985) and compared fluxes of 
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nutrients under differing measured wind regimes and topographically diverse salt marsh 

sites (Childers 1993). In general, this study corroborates these past studies and previous 

qualitative estimates of wind driven marsh tracer flux. Winds have an indirect local effect 

on the marsh water level, either enhancing or depressing marsh inundation at the onset of 

storm events and thus affecting marsh-estuary water exchange. In the Rhode River, as 

NW winds persist, flow out of the marsh is enhanced, primarily due to water being driven 

out of the mouth of the sub-estuary. The effect of wind on the estuarine pressure gradient 

explains much of the observed variability in both fDOM and salinity at the marsh creek. 

The response of the Rhode River to N-S wind components is primarily related to the 

geographic orientation of the estuary. Therefore consideration should be given for a 

particular wetland to the local response of that wetland to wind forcing.   

Quantifying the input of both terrestrial and marsh biogeochemical end members 

into the estuary has implications for estuarine carbon cycling and productivity. Correll 

(1981) and Jordan et al. (1991) describe nutrient budgets for the Rhode River and 

Kirkpatrick Marsh, including freshwater runoff inputs. Correll (1981) notes that 

neglecting overland freshwater inputs can skew results toward overestimation of marsh 

biogeochemical transformations. The observations presented here show that wind affects 

how freshwater runoff from the watershed moves between the terrestrial, intertidal and 

estuarine areas, having a direct effect on the marsh water and fDOM export. The model 

experimental results corroborate these observations; wind largely determines how fresh 

and saline water mix at the marsh-estuary interface and likely has similar influence over 

other conservative and non-conservative tracers.   
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Observations show that during and following northwest wind events, strong 

pulses of fDOM are seen at the marsh creek.  These signals are indicative of highly 

colored DOM, of which the marsh has been shown to be a source to the adjacent estuary 

across all seasons (Tzortziou et al., 2008; 2011). Model results show that the wind sets up 

a pressure gradient due to differences in water surface elevation across the Rhode River.  

In addition, the enhanced flow out of Muddy Creek during northerly wind events can also 

be a source of fDOM to the estuary and potentially contributes to the signal seen at the 

marsh creek.  The magnitude of the pressure gradient is directly dependent on the 

direction, duration and velocity of wind events.  It appears that, as sustained 

northwesterly winds slacken, the pressure gradient sloping out of the marsh creek is 

released and large amplitude spikes in fDOM are observed (Fig. 2). Because of the 

sinuous and changing orientation of the river relative to the winds, northwest winds 

initially drive water back onto the marsh platform while also pushing water out of the 

mouth of the Rhode River into Chesapeake Bay, while southeasterly winds appear to 

have the opposite effect.  

Large-scale (Bay-wide) circulation and SSH variability patterns that can 

contribute to the change in surface elevation at the marsh creek and in the Rhode River 

aren’t captured in the model.  Main-stem Chesapeake Bay circulation and SSH can be 

influenced by wind driven events on both short (< 4 days) and long time scales (Wang, 

1979a,b). E-W winds influence SSH across the bay on a time scale of 3-5 days, and N-S 

winds at a shorter time and space scale (Wang, 1979a,b). This study, however, addresses 

the local forcing on a small tributary that appears to be important on shorter time scales 

(0-1 days), which is likely embedded in the larger regional atmospheric-driven SSH 
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signal. The boundaries of RhodeFVCOM are forced with the model predicted SSH under 

normal atmospheric conditions. Therefore, in the experiments presented in this paper 

larger scale circulation effects are not captured. There is potentially a significant non-

local effect that enhances marsh water inflow and outflow during storm events in addition 

to the local forcing on the Rhode River demonstrated here. Additional future numerical 

manipulations utilizing a larger scale regional model can be used to explore more non-

local and regional impacts that wind driven dynamics have on marsh water movements. 

Nonetheless, modeling results suggest that local wind forcing can cause sub-tidal flow 

variation between the wetland and estuary. 

The optical, high-resolution measurements of fDOM from the EXO-2 probe at the 

marsh creek allowed the exploration of the sub-tidal variability of DOM across tidal, sub-

tidal and inter-seasonal time scales. fDOM spikes were consistently observed with pulses 

of lower salinity water, although the summer shows a decoupling between fDOM and 

salinity. The salinity and fDOM signals appeared to vary independently of precipitation 

events. Northerly winds following a sustained southerly wind event can drive large fluxes 

of fDOM out of the marsh, independent of season and precipitation. Winds masked the 

discharge of freshwater into the Rhode River often accompanying strong southwesterly 

winds. Furthermore, in the summer when marsh water would be expected to have an 

elevated salinity compared to the surrounding estuary due to evaporation on the wetland 

surface (Correll, 1981), a northwesterly wind event was followed by an increase in 

salinity at the marsh creek co-occurring with a spike in fDOM.  Elevated salinity in marsh 

water relative to the surrounding estuary during summer time could explain the positive 

relationship between fDOM and salinity seen on August 22nd. The branching nature of the 
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fDOM-salinity cross-plots in both the spring and fall (Figure 4.4) offers qualitative 

evidence of Muddy Creek water interacting with marsh-derived water at the marsh creek. 

Muddy Creek water would contribute fDOM to the estuary.  Therefore, the combination 

of low salinity and high fDOM could represent mixing of marsh and Muddy Creek waters 

during northwesterly wind events accompanied by freshwater discharge. The contribution 

of each source to the overall signal is unclear, but previous studies have shown large 

amounts of export of fDOM at the marsh creek accompanying low water events 

(Tzortziou et al., 2008; 2011). The August 22nd event clearly shows that fDOM can be 

exported out of the marsh independent of freshwater input. 

RhodeFVCOM captured the shallow water temperature and salinity variability 

well for the year 2005. The model, however, didn’t capture all of the variability, over-

predicting the salinity in the late spring and fall.  The missed salinity variability is 

potentially due to unresolved overland flow contributing to the salt balance. The high 

bank to estuary ratio suggests overland freshwater flow contribution may be important 

when freshwater input via precipitation is high (Correll, 1981; Jordan and Correll, 1991).  

Some of the watershed, including areas on the east side adjacent to the marsh, is outside 

of the measured area and wasn’t included as freshwater input into the model domain. 

Including overland diffuse discharge points into the model may help drive the estuary 

salinity lower during spring and fall freshwater discharge events.  Groundwater discharge 

likely also contributes to the freshwater input into the Rhode River (Jordan et al., 1991), 

but is currently not included in RhodeFVCOM.  

Water-column temperature is accurately predicted in the shallow water and main 

channel. Water column and sediment temperature variability has important implications 
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for future biogeochemical simulations of the marsh-estuary ecosystem.  The internally 

calculated heat flux algorithm used here is crucial to resolving the temperature as 

opposed to forcing the model with a specified net heat flux from atmospheric models, 

which is commonly done. The heat flux formulation factors in the balance between net 

short wave and long wave radiation, with both contributing to the heating and cooling of 

the surface layer of the model. If either is incorrectly predicted it will lead to inaccurate 

surface heat flux forcing and inaccurate FVCOM water temperature. NARR consistently 

over predicts net long wave radiation flux (Kumar and Merwade 2011), and this problem 

is potentially exacerbated by the likely large amplitude variation in long wave radiation 

that occurs in land-influenced estuarine NARR grid cells. As discussed above, a 

correction factor of 0.5 is applied to the NARR predicted net long-wave radiation flux in 

order to resolve the temperature in the summer. 

Modeled flow velocity over the marsh platform was extremely reduced relative to 

the tidal creek.  However, these velocity comparisons between model elements inside and 

outside of the wetland and model runs with and without plant momentum-drag in the 

marsh area are sensitive to the choice of the locations that are compared and the statistical 

approaches that are used to compare them. The microtidal environment in the Rhode 

River and the irregularity with which the Kirkpatrick Marsh is flooded offers an 

interesting comparison of the flow field from the marsh creek to the marsh interior, 

similar to observational studies (e.g. Christiansen et al., 2000; Leonard and Croft, 2006). 

Marsh water depth is consistently low, exceeding 10 cm in surface elevation only 11% of 

the time at the selected marsh node used for comparison (Fig.1c). Pairwise (20.7 % 

velocity reduction) vs unpaired (25.7 % velocity reduction) comparisons of the velocity 
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time series of flow in the marsh creek versus the marsh interior gave different results, 

although similar conclusions. Comparing flow in the creek and on the wetland surface for 

all model time points (n=5808) produces a median velocity reduction of 85.4 % from the 

creek to the marsh interior. Rather, there is a 25.7 % velocity reduction if instead times 

when the wetland is flooded to a depth greater than 10 cm (n=656) are compared.  Spatial 

heterogeneity in the marsh platform flow field can produce strongly differing velocity 

depending on the model output location and frequency. Thus, careful consideration is 

needed in both observational and modeling comparisons to accurately quantify the 

relative contribution of surface friction and drag induced by marsh grass stems. 

Nonetheless, the hydrology in the wetland is reasonably recreated in the model and the 

drag model in RhodeFVCOM allows future studies to assess how the inclusion of explicit 

marsh plants in wetland areas affects biogeochemical processes and residence time. 

The slope of the modeled hypsometric plot indicates the model overestimates the 

rate at which the marsh floods relative to observations taken in 2015, which is indicative 

of a shallower slope in the modeled marsh surface relative to the Kirkpatrick Marsh (Fig. 

6). The differences between modeled and calculated curves appear to be due to a modeled 

depth that is shallower on average, which gives rise to the difference in the inflection 

point, combined with substantially less variance in the model output which is inherent in 

a deterministic model. Even though the maximum area inundated predicted by 

RhodeFVCOM is greater than the calculated area inundated, because the slope of the 

modeled bathymetry in the wetland is less than observed, the model is potentially 

underestimating flow velocity out of the wetland creek because there is a weaker 

hydrostatic pressure gradient for any two points across the wetland surface. The total 
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volume that passes through the creek during a given tidal cycle would be greater, 

however, which could lead to an overestimation of wetland discharge. Calculated 

hypsometry is an estimate of inundation based on the relationship between marsh creek 

flow and change in tidal stage (Equation 4.2). Inherent in the hypsometric estimation 

from observations at the marsh creek is the assumption that the marsh region in question 

is only flooded through the tidal creek, which could potentially lead to an under 

prediction of the inundated area if there is over-edge sheet flow. The model analysis, 

however, recorded when every marsh grid cell in the area that was deemed to potentially 

drain the tidal creek has a surface water elevation > 0.055 m, which is independent of the 

source of the water in the marsh grid cell. The delineation between modeled wetland 

areas affected the maximum area inundated because if a larger potential inundation area 

was used in the model analysis, than it would appear that the model is more flooded 

relative to the observations on any given tide. In addition, some of the difference between 

modeled and observed inundation from RhodeFVCOM arises from predicted intermittent 

sheet flow over the marsh edge onto the platform during flood tides. Over edge marsh 

flooding in the model appears to be related to wind forcing driving water into the back of 

the tributary, runoff from Muddy Creek, and spring tides.  More work is needed to 

quantify the variability of marsh platform flooding, including the delineation of each 

region within the marsh, in order to resolve the differences in modeled and observed 

inundation progression and rate.  

It should be stressed that a particular wetland’s response to differential wind 

forcing will be determined by that wetlands orientation in relation to the dominant wind 

forcing patterns.  The orientation of the Rhode River relative to the mainstem of the bay 
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was important in this response (Figure 4.11). Indeed, there may be a dynamic relationship 

between dominant wind patterns for a certain region and the likelihood of a wetland to 

export large amounts of fDOM. Although this study did not look directly at wetland 

erosion/ deposition, the relationship between those processes and inundation patterns 

would also likely be influenced by wind similarly to fDOM and salinity.   

4.6 Conclusion 

Modeled marsh-estuary water flow is influenced by sub-tidal variability of wind-

driven estuarine water surface elevation in the Rhode River, MD. Observed wind driven 

fDOM variability is consistent across the seasons, showing the influence that atmospheric 

forcing has on marsh DOM efflux. The wind driven setup of pressure gradients can 

dominate the tidal signal, exerting a strong control on the water exchange across the 

marsh-estuary interface.  Water flow and inundation ultimately govern the timing and 

magnitude of biogeochemical exchanges and processes between the marsh and estuary. 

The modeling exercises allow exploration of how different physical phenomena affect the 

inundation regime, hypsometry, and marsh water residence time on the marsh platform. 

By varying wind forcing and modeled vegetation characteristics, in addition to 

bathymetry, RhodeFVCOM can be used as a tool to study how different factors influence 

the flow across the marsh-estuary interface. Marsh water residence time has been 

demonstrated to have strong control over many wetland processes (e.g. Childers et al., 

1993; Bockelman et al., 2002); therefore it cannot be ignored in any realistic wetland 

hydrodynamic modeling application.  

 Modeling of the Rhode River can capture the local effect of wind and allow a 

detailed analysis that would otherwise be difficult to empirically measure.  Ongoing 
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studies are utilizing the hydrodynamic modeling results to drive a biogeochemical model 

to further explore marsh-estuary dissolved organic carbon cycling.  As understanding of 

the physical drivers of marsh water exchange broadens, improved models will help foster 

predictions for future changes in tidal wetland-estuary carbon cycling.  Quantifying the 

physical controls on marsh DOM processes will help reduce the uncertainty that still 

exists on the role wetlands play in estuarine and coastal ocean carbon cycling. 
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Figures Chapter 4 

 
 

 
Figure 4.1 (a) Chesapeake Bay with the (b) RhodeFVCOM model domain and (c) the 
Kirkpatrick Marsh area in the RhodeFVCOM model domain. Stars represent freshwater 
discharge points and the dot represents the marsh element used in marsh hydrology 
analysis. The Kirkpatrick Marsh is outlined in (c) and measurements were taken at the 
marsh creek and SERC, indicated by the arrows. 
 

Muddy Creek
SERC Dock
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Figure 4.2 Low-pass cutoff filtered (36 hour frequency) salinity and DOM fluorescence 
(fDOM) observed at the Kirkpatrick Marsh creek in (a) spring, (b) summer and (c) fall in 
2015. The stick plots are the observed hourly wind speed at Tolchester Beach, MD 
(NOAA Tides and Currents). Black dots indicate days when greater than 3 mm of rain 
fell at Annapolis, MD (weatherunderground.com) 
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Figure 4.3 Cross covariance of North-South (NS) winds, East-West (EW) winds and 
salinity with fDOM at the Kirkpatrick Marsh creek for the three time periods in Figure 
4.2.  Southerly wind (v) and westerly wind (u) are defined as positive.  Lags at the 
maximum absolute covariances are given in Table 3 
 
 
 

 
Figure 4.4 fDOM versus (a) observed sea surface height (SSH) and (b) salinity at the 
Kirkpatrick Marsh Creek for the three time series in Figure 4.2. 
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Figure 4.5 (a) Unfiltered fDOM and (b) depth for the entire sampling period in 2015. 
Gaps in the data indicate periods when the EXO-2 Sonde was not deployed. 
 
 

 
 
Figure 4.6 Modeled and observed (a) salinity (r = 0.88, RMSE = 1.43) and (b) 
temperature (r = 0.98, RMSE =1.71 °C) at the SERC dock. Gaps in the observed data are 
periods when the sonde was removed for maintenance. 
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Figure 4.7 A hypsometric curve generated by RhodeFVCOM and calculated inundation 
area vs. elevation from acoustic Doppler velocimetry (ADV) probe observations at the 
Kirkpatrick Marsh creek from June – December 2015. Inundation areas were calculated 
as the flow rate at the marsh creek (m3 s-1) divided by the rate of tide stage change (m s-1; 
Eq. 2).  The modeled inundated area is the actual area of a sub-section of the marsh that 
RhodeFVCOM has predicted with a height above Dmin (0.05 m) at each time step 
 

 
Figure 4.8 (a) Modeled salinity in the Kirkpatrick marsh creek for the three numerical 
experiments and (b) interpolated river discharge forcing from the Muddy Creek 
watershed. Test SW is forced with wind from the south during storms, and test NW is 
forced with wind from the north during storms. 
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Figure 4.9 (a) Modeled low-pass cutoff filtered (36 hr frequency) marsh creek velocity 
and (b) sea surface height (SSH) gradient from Kirkpatrick Marsh creek to the opposite 
side of the Rhode River in spring and early summer.  Positive velocity is marsh water 
efflux and a positive gradient indicates the water surface is sloping away from the marsh 
towards the mouth of the river. The asterisks indicate when modeled storm winds were 
applied. Test SW is forced with wind from the south during storms; test NW is forced 
with wind from the north during storms. 
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Figure 4.10 Low-pass filtered flow (m3 s-1), deviation from mean water depth (m), and 
mean-normalized fDOM at the marsh creek. Negative flow is out of the marsh, positive is 
into the marsh. 
 
 

 
 
 
Figure 4.11 Conceptual diagram of the estuarine surface gradient progression during a 
“typical” wind progression in the Rhode River, MD in the spring and fall. As southerly 
winds blow a barotropic surface pressure gradient sets up in the back of the Rhode River 
depicted by the H in (a) that forces water back towards the marsh, depressing flow out of 
the wetland depicted by the shaded region. As Northwesterly winds progress, local wind 
driven flow enhances flow  out of the creek back towards the marsh, while local wind 
effects set up a low pressure in the back and mouth of the Rhode River, depicted by the 
L’s (b).  
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Tables Chapter 4 

Table 4.1 Parameters tuned for salinity, temperature and marsh plant drag properties 
 

Parameter Description Value 
VPRNU Vertical Prandtl number 1.00 
HPRNU Horizontal Prandtl number 1.00 
UMOL Molecular diffusivity (m2 s-1) 10-6 

HORCON Horizontal diffusion coeff. (m2 s-1) 2.00 
BFRIC Bottom friction 0.002 

N Marsh plant stem density  (m-2) 600 
D Marsh plant stem diameter (mm) 3.75 
CD Marsh plant drag coefficient 0.005 

 
Table 4.2 Augmented Dickey-Fuller (ADF) test results and associated p-values for the 
four variables used in the covariance analysis.  If p is less than 0.05, the alternative 
hypothesis was accepted with 95% confidence of unit root 0 and thus the time series are 
stationary  
 

 
 
 
 
 
 

 
Table 4.3 Lag (hours) at minimum or maximum absolute covariance and the associated 
coefficient of covariance of observed fDOM and wind, salinity and depth for the three 
observational periods shown in Fig. 2 and for the entire observational record (Total).  A 
complete depth record was not available to coincide with the other measurements.  

 
 
 

Property Spring 
ADF, P 

Summer Fall 

Salinity -1.76 , 0.68 -3.99 , <0.01 -3.52, 0.04 
fDOM -3.18, 0.09 -4.83 , <0.01 -2.83, 0.23 

NS Wind -4.09 , 0.02 -3.79, 0.02 -3.74, 0.02 
EW Wind -3.64, 0.03 -5.74, <0.01 -2.83, 0.23 

Property Spring 
lag, r 

Summer Fall Total 

NS Wind 10, -0.74 10, -0.64 10, -0.66 9, -0.37 
EW Wind 12, 0.66 22, 0.31 16, 0.69 18, 0.36 
Salinity 1, -0.81 245 -0.20 0, -0.87 3, -0.55 
Depth 1, -0.66 2 -0.76 1, -0.75 -2, -0.09 
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A comprehensive estuarine organic carbon budget and 

the importance of tidal marshes in estuarine 

biogeochemistry 

 

5.1 Abstract 

Complicated biogeochemical cycling and differential organic matter reactivity makes 

quantifying the relative contribution of a given source of organic carbon to the standing 

stock within an estuary difficult. Here, a new model of tidal wetland-estuary organic 

carbon cycling is presented for the Rhode River, MD, a well studied tributary of the 

Chesapeake Bay, USA for April 1-November 30, 2005. The modeling system was used to 

produce a comprehensive organic carbon budget with unprecedented detail. Tidal 

wetlands and watershed inputs account for 22.9% of the input of dissolved organic 

carbon (DOC) into the tributary, with 61.8% coming from phytoplankton production. 

95.7% of the particulate organic carbon (POC) within the tributary originated from algal 

production and subsequent mortality, with 19.86 tons of POC exported from the Rhode 

River to the mainstem. Overall 87.75 tons of DOC is exported to the mainstem, which 

accounts for 34.4% of the total allochthonous and autochthonous inputs to the tributary. 

Removing the wetland at the head of the tributary decreased export of DOC to the 

mainstem by 20.5%. Furthermore, by removing the marsh, total nitrogen in the tributary 

decreased, while dissolved oxygen increased. A geographic relationship derived from the 

Rhode River modeling system indicates that tidal wetlands may contribute 13.4% of the 
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total DOC stock of Chesapeake Bay. The modeling framework described here can be 

used across estuarine systems, and provides a new methodology for quantifying the role 

of tidal wetlands in estuarine biogeochemistry. 
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5.2 Introduction 

Tidal marshes and the estuaries in which they reside are inextricably linked, with 

biogeochemical processes influencing each sub-ecosystem as tidal water exchanges 

during flood and ebb. Nixon (1980) showed the nuance through which tidal marshes must 

be viewed, with the important biogeochemical controls requiring careful consideration 

within each system. Differences among marsh-estuary ecosystems can be due to plant 

community (Boschker et al., 1999), salinity regime (Weston et al., 2014), and hydrology 

(Wolff et al., 1979; Dame, 1995), with all facets convolved to make tidal marsh-estuary 

organic matter and nutrient cycling difficult to quantify, extrapolate, and generalize 

across ecosystems. Nonetheless, the important role of tidal wetlands in regional and 

global carbon cycling is apparent, with estimates of organic carbon export on the same 

order of magnitude as riverine export (Cai, 2011), and the wetlands of North America 

fixing as much carbon as the entire continental shelf (Najjar et al., 2018). 

 Emerging from the research is the clear role tidal brackish and salt marshes play 

in the carbon cycle within the estuary they reside. Tidal marshes tend to export large 

quantities of dissolved organic carbon (DOC) (Cai, 2011; Herrmann et al., 2014) much of 

which is optically complex (Medeiros et al., 2015; Osburn et al., 2015; Tzortziou et al., 

2008), with high molecular weight (Helms et al., 2008; Tzortziou et al., 2008), and 

initially resistant to microbial degradation (Moran et al., 2000; Vähätalo and Wetzel, 

2008). In addition, particulate organic carbon (POC) is also exchanged with the estuary, 

with small-tide, stable marsh systems trapping water column derived inorganic sediment 

and POC (Jordan, 1991; Kirwan and Megonigal, 2013), and large-tide, ebb dominated 

marshes exporting marsh derived POC (Dame et al., 1986; Ganju et al., 2013; Ganju et 
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al., 2015). Substantial variability in the direction and magnitude of POC flux makes 

generalization difficult (Childers et al., 2002; Najjar et al., 2018), further exhibiting the 

necessity to develop tools to estimate carbon fluxes in addition to expanding the 

frequency in space and time over which fluxes are quantified. 

Dissolved organic nitrogen (DON) can also be imported or exported from 

marshes (Dame et al., 1991; Jordan, 1991; Jordan et al., 1983; Wolaver et al., 1983). 

Marsh-estuary nitrogen exchange is complicated, with plant uptake of inorganic nitrogen, 

remineralization of DON to NH4
+, nitrification of NH4

+, and denitrification of NO3
-, all 

influencing the observed exchanges of nitrogen species between marshes and estuaries. 

These competing processes of uptake and release by both marsh plants and sediment 

likely lead to the large variance in nitrogen flux direction and magnitude that has been 

observed (e.g. Dame et al., 1986; Dame et al., 1991; Jordan, 1991; Nixon, 1980; Wolaver 

et al., 1983). 

Across systems, estimates of organic carbon exchange between tidal marshes and 

the adjacent estuarine waters span multiple orders of magnitude. Herrmann et al. (2014) 

compiled estimates of United States East Coast salt marsh total organic carbon (TOC) 

fluxes, that ranged from 48 g C m-2 yr-1 in the Rhode River, MD (Jordan, 1991), to 456 g 

C m-2 yr-1 in North Inlet, SC (Dame, 1995; Herrmann et al., 2014). In the US South 

Atlantic Bight, tidal marshes are estimated to contribute 1100 g C m-2 yr-1 to the adjacent 

bodies of water (Cai, 2011). The most recent comprehensive study of wetland-estuary-

coastal ocean carbon cycling in North America found that 64 ± 11% of the carbon fixed 

by wetland plants is exported to estuaries, while 36  ± 11% is buried in wetland sediment 

(Najjar et al., 2018). Tidal wetlands are estimated to contribute 33 ± 8% to the organic 
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carbon input in estuarine systems (Najjar et al., 2018), with the potential for wetland 

derived DOC to be transported to the coastal and, eventually, open ocean.  

Clearly, the wide range in flux estimates across ecosystems, methodologies, and 

assumptions make extrapolation from one system to regional or global budgets 

potentially problematic. Based on their relative areal extent, tidal marshes play an 

outsized role in estuarine elemental cycling (Najjar et al., 2018).  But how tidal marshes 

influence estuarine biogeochemistry, both directly through carbon export and indirectly 

through biogeochemical cycle alteration, is unclear.  

The total amount of marsh-derived DOC that reaches the coastal ocean is unclear, 

especially because autochthonously produced DOC within estuarine and coastal waters 

has yet to be quantified on a large scale. Nonetheless, the total amount of carbon moving 

between coastal systems has been estimated using observational data, although some 

fluxes still have uncertainty on the order of 100% (Windham-Meyers, 2018), and the 

original source of the carbon that makes it to the ocean is difficult to quantify. Marsh and 

riverine derived DOC and estuarine/marine derived DOC can have different biological 

reactivity and can persist in the environment on different time scales.  

To provide an accurate estimate of the exchange of organic matter (both C and N) 

between marshes, estuaries, and the coastal ocean, tools must be developed that can be 

utilized across these systems. One such useful tool that is relatively inexpensive and can 

be reasonably implemented where data availability is sufficient is a numerical model. 

Numerical models have been utilized to simulate estuarine biogeochemistry and food 

webs for decades (e.g. Cerco and Noel, 2004; Feng et al., 2015; Xu and Hood, 2006), but 

only recently have formulations been developed that can simulate organic carbon 
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transport and transformation processes that are specific to tidal marshes and include, for 

example, sediment DOC dynamics (Clark et al., 2017) and photochemical degradation of 

colored DOC. 

In this paper a new coupled marsh-estuary hydrodynamic-biogeochemical model 

is described, hereinafter RhodeFVCOM-ICM. RhodeFVCOM-ICM was developed and 

implemented in the Rhode River, MD, USA, a well-characterized sub-estuary of 

Chesapeake Bay. The model allows exploration of the role tidal marshes play in estuary 

carbon and nitrogen cycling by simulating physical and biogeochemical processes at an 

unprecedented resolution and scale. Using the model, a comprehensive organic carbon 

budget for a well-studied tributary of the Chesapeake Bay is presented. The important 

role of marsh derived DOM and its subsequent transformation during estuarine transit are 

assessed. 

5.3 Methods 

5.3.1 The hydrodynamic model and study site 

The physical transport of water, salinity and temperature in ICM are driven by the 

hydrodynamic model, FVCOM (Chen et al., 2003; Kim & Khangaonkar, 2012). FVCOM 

utilizes a terrain following unstructured grid, making it ideally suited for complex coastal 

bathymetry. In addition, the wetting and drying treatment within FVCOM makes it well 

suited for applications in the intertidal range (Chen et al., 2008). Our implementation of 

FVCOM utilizes 10 sigma layers in the vertical domain, with 14572 elements and 8138 

nodes in a mesohaline segment of the main channel of Chesapeake Bay, MD, USA 

(Figure 5.1a). 
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The model domain encompasses the study site of the Rhode River, MD, USA 

where ~21 ha of marsh resides near the head of the small estuary (Figure 5.1c). The main 

river input in the model is from Muddy Creek, with flows peaking at > 9.0 m3 s-1 during 

large discharge events. The marsh and estuary is a very well studied system, with 

researchers from the Smithsonian Environmental Research Center characterizing both the 

wetland chemistry (https://serc.si.edu/gcrew/nitrogendata) and the water column primary 

production and nutrient chemistry (Jordan, 1991; Jordan et al., 1991). In addition, 

multiple studies have characterized the spatial distribution of CDOM and DOC in the 

water column of the Rhode River (Tzortziou et al., 2008; Tzortziou et al., 2011), and also 

estimated nutrient and organic matter fluxes at the marsh-estuary interface (Jordan et al., 

1983).   

5.3.2 The organic carbon cycle model 

The U.S. Army Corps of Engineers Integrated Compartment Model (CE-QUAL-

ICM; hereinafter ICM) is a well studied and widely applied organic carbon and nutrient 

cycling model designed for Chesapeake Bay (Cerco and Cole, 1993). ICM has been 

developed and implemented primarily for quantifying oxygen dynamics in Chesapeake 

Bay, MD, USA, and has been shown to have good skill at reproducing nutrient cycling 

variability (Cerco & Noel 2017) and phytoplankton growth (Cerco & Noel 2004). 

Included here are Appendices in the Supporting Information (SI) that detail all the 

formulations related to reaction kinetics for each of the ICM water column 

biogeochemical constituents, including organic carbon, organic nitrogen, inorganic 

nitrogen, underwater light, phytoplankton and dissolved oxygen. Citations for each 

parameter are given where available or appropriate in the Appendices. 
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ICM is offline coupled to FVCOM (Kim and Khangaonkar, 2012), meaning the 

physical variables relating to water advection and diffusion, and temperature and salinity 

are first calculated independently of the biogeochemistry. Once a satisfactory 

hydrodynamic model solution is attained, the solution is stored and then used to drive the 

biogeochemical kinetic formulations within ICM. This method increases model 

efficiency by allowing the user to run ICM at a longer time step than the short (6 

seconds) required for FVCOM, in addition to decreasing the total number of calculations 

required at each time step. The FVCOM hydrodynamic model took ~13 hours while the 

ICM took ~ 6.5 hours to run a 242 day simulation on an Intel® Xeon® E5-2690 24 core 

server using Intel® Parallel Studio XE 2017 MPI Library.  

 

5.3.3 New components in ICM related to dissolved organic carbon 

Marsh derived sediment dissolved organic matter  

ICM has been coupled to the sediment flux model SFM (Brady et al., 2013; Di 

Toro and Fitzpatrick, 1993; Testa et al., 2013), and SFM has also been updated to include 

DOM (SedDOM-SFM; Clark et al., 2017). As SedDOM-SFM has been detailed in these 

previous publications, here only the newly introduced model components, namely how 

the model is loaded with DOM in the marsh, are discussed. There is substantial 

seasonality in marsh DOM pore water concentration and fluxes (Clark et al., 2018; 

Schiebel et al., 2018). The model is loaded using a temperature dependent DOC 

exudation rate that depends on the below ground biomass specified at model startup. The 

spatial distribution of marsh plant biomass is specified in an input file and remains 

constant in time but DOM release from the marsh is regulated by temperature from a 
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basal rate of 0.03 g DOC g biomass-1 d-1 to simulate seasonality (Appendix I). This 

provides a relatively simple way to control the loading of DOM into marsh sediments, 

without having to simulate the complex processes that contribute to it such as physico-

chemical reactions in marsh sediment (Qualls and Richardson, 2003) and marsh plant 

growth and senescence (Schiebel et al., 2018).  In addition, a temperature dependent 

marsh plant uptake of NH4
+ based on the below ground biomass is included for the 

potential uptake by marsh plants of inorganic nitrogen (Appendix I) (Bradley and Morris, 

1991). 

DOM is fractionated as it is loaded into the marsh sediment to resolve the 

differences in marsh derived DOM reactivity and light absorption, relative to other DOM 

sources. There are six pools total, divided by biological reactivity (labile, semilabile, 

refractory) and photoreactivity (colored or non-colored). 80% of the DOM is specified as 

colored DOC (CDOC) that undergoes interactions with the underwater light field once it 

enters the water column. 20% is specified as non-colored DOC (NCDOC). DON is 

similarly fractionated into the model but is scaled with a DOC:DON ratio of 10 g DOC:1 

g DON. The coefficients and parameterizations related to marsh DOM loading and marsh 

sediment characteristics can be found in Appendix I. Sediment DOM is included as a 

state variable defined at all model locations but the external DOM input is only specified 

in the marsh locations of the model. It should be noted that the marsh area itself does not 

contain a dynamic plant community and the associated biogeochemical affects. This was 

done for simplicity and including a dynamic marsh growth model was beyond the scope 

of the research questions that are addressed in this paper. However, the variable uptake of 
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NH4
+ was accounted for with a first order approximation. Plans exist to couple a dynamic 

marsh plant m5odel to this modeling system in the future. 

 

Water column DOC formulations and kinetics 

Previous versions of ICM included one pool of DOC that was classified based on 

reactivity by a first order remineralization rate. This updated and enhanced version of the 

model has split those two classes into three biological reactivity (G) classes (following 

Keller and Hood, 2011; Westrich and Berner, 1984), and now includes both colored and 

non-colored dissolved organic matter (CDOx, NCDOx; x stands for C, and N) for a total 

of six new DOM pools. CDOM absorbs light and an explicit photochemical degradation 

model transforms that absorbed light energy into chemical reactions. The increased 

model complexity allows greater flexibility in parameterization, in addition to a more 

aligned coupling with SedDOM-SFM that also has six classes of DOM. In this section, 

equations are shown for DOC, while differences are highlighted where appropriate for 

dissolved organic nitrogen (DON); dissolved organic phosphorus, though included in 

ICM, is ignored in this research and in the current implementation phosphorus is not 

included as a limiting nutrient. A model schematic is shown in Figure 5.2 and the detailed 

formulations are found in Appendix IV. 

 

!"#!!
!"

= 𝐴𝐷𝑂𝐶! 𝑓!"#! − 𝑘𝐷𝑂𝐶!𝜃!"#!𝐷𝑂𝐶! + (𝐿𝑃𝑂𝐶!!" + 𝑅𝑃𝑂𝐶!!") 𝑓!!"#! −

𝐷𝐸𝑁𝐼𝑇!𝐷𝑂𝐶! − 𝐷𝐷𝑂𝐶!  + 𝑝𝑑𝐷𝑂𝐶!        (5.1) 
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= 𝐴𝐷𝑂𝐶! 𝑓!"#! − 𝑘𝐷𝑂𝐶!𝜃!"#!𝐷𝑂𝐶! + (𝐿𝑃𝑂𝐶!!" + 𝑅𝑃𝑂𝐶!!") 𝑓!!"#! −

𝐷𝐷𝑂𝐶! +  𝑝𝑑𝐷𝑂𝐶!                                 (5.2) 

 

 

!"#!!
!"

= 𝐴𝐷𝑂𝐶! 𝑓!"#! − 𝑘𝐷𝑂𝐶!𝜃!"#!𝐷𝑂𝐶! + (𝐿𝑃𝑂𝐶!!" + 𝑅𝑃𝑂𝐶!!") 𝑓!!"#! −

𝐾!"#$𝐷𝑂𝐶! + 𝐷𝐷𝑂𝐶! + 𝑝𝑑𝐷𝑂𝐶!         (5.3) 

 

Equation 5.1 is the mass balance formulation for labile DOC1. The change in 

DOC1 over time dDOC1 dt-1 (g C m-3 d-1) is equal to the first term which represents the 

formation of algal derived DOC from planktonic algae group a, ADOCa, (g C m-3 d-1; see 

Appendix II for details on phytoplankton growth) fractionated into the DOC1 pool via 

fractionation coefficient fcda1 (dimensionless) minus the second term which represents the 

remineralization of DOC1 via implicit microbial remineralization rate, kDOC1 (d-1) 

regulated by temperature coefficient 𝜃mnl1 (dimensionless).  The third term represents the 

production of DOC1 by the hydrolysis of labile and refractory particulate organic carbon 

pools, LPOChdr and RPOChdr (g C m-3 d-1) fractionated to DOC1 by hydrolysis 

fractionation coefficient fhdrc1.  The fourth term represents the loss of DOC1 due to 

denitrification by rate DENITC (d-1) if anoxic conditions exist (see Appendix IV for 

details).  The fifth term represents the rate of change from diffusion across the sediment 

water interface of DOC, DDOC1 (g C m-3 d-1) and the sixth term represents the 

photochemical degradation of DOC between the photoreactive colored DOC pools (see 

Clark et al., 2017 for details of the sediment DOC model and Appendix III for details of 

photochemical degradation model). Diffusion across the sediment water interface can act 
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as either a source or a sink of DOC but only occurs in the bottom layer of the water 

column. The detailed formulations for each term can be found in Appendix IV. The first 

three terms are analogous for all six DOC classes with the fractionation coefficients 

partitioning the DOC among each pool and the rates being different depending on 

reactivity. Semi-labile DOC2 is detailed in Equation 5.2, with the only difference from 

DOC1 being no loss occurs via denitrification. Refractory DOC3 (Equation 5.3) 

undergoes the same reactions as DOC2 with the additional potential loss of DOC3 via 

coagulation to refractory POC by a salinity dependent coagulation rate KCOAG (d-1). In the 

baseline parameterization, KCOAG is equal to 0.0. Appendix V details the formulations for 

DON where DON is treated very similarly to DOC but is scaled by a C:N ratio where 

appropriate. 

There are three main ways through which DOM is loaded into the estuary: the 

first is through stream loading from the watershed; the second is from marsh plant 

exudation and diffusion across the marsh sediment-water column interface during tidal 

inundation; and the third is through autochthonous algal production, with both DOM 

exudation and an implicit zooplankton sloppy feeding contributing to the DOC pool. In 

this version of ICM, two algal groups are used to represent spring and summer time 

planktonic algae communities. All parameters and equations for algal primary 

production, nutrient uptake, and DOM production follow Cerco and Noel (2004; 2017) 

except where otherwise noted in Appendix II.  

Lastly, a new photochemical degradation model has been implemented to 

mechanistically represent the reactions that occur in aquatic systems between colored 

DOC and light. Upon reactions with light, the colored DOC pools are broken down into 
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colored pools with less specific absorption and a greater spectral slope (e.g., lower 

molecular weight; Helms et al., 2008) while some fraction is also completely 

photobleached. The set of equations and parameters used to calculate pdDOCi can be 

found in Appendix III.  

 

Updated underwater light attenuation model: extension into the Ultra-Violet (UV) range 

CDOM absorbs light across the UV-Visible spectrum with an exponentially 

increasing absorption spectra with decreasing wavelength.  In order to account for the 

large amount of light energy that is absorbed by CDOM at short wavelengths and 

photochemical reactions driven by the light energy, the previous optical model coded into 

ICM was modified to include UV wavelengths. The previous model used a combination 

of an optical transfer model to predict the scattering of light in water, in addition to 

empirically derived functions to calculate the attenuation of light due to algae (chl a), 

total suspended solids (TSS), and CDOM (Gallegos et al., 2006). The attenuation 

coefficient calculated at every depth in the model was then used to integrate over the 

visible spectrum to get a total photon flux in the photosynthetically active radiation 

(PAR) region of the spectrum. This model was inadequate, however, for CDOM because 

changes in absorption related to the quality of CDOM was not included (e.g., an 

increasing spectral absorption slope with increased light exposure), and there was no 

representation of the transmission and attenuation of UV light in the water column. 

Modifications were made to the spectral light attenuation model to account for the 

composition of CDOM and its effect on the spectral attenuation of light, in addition to the 

attenuation of light in the UV range by the other water column constituents. The 
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modifications were done following Rose et al. (2018) to incorporate specific absorption 

spectra for TSS and chl a, and specific scattering of TSS that extends from the visible 

range into the UV spectra. Instead of utilizing the previously derived empirical functions 

(Gallegos et al., 2006), the model now uses the product of the total concentration of each 

constituent (g m-3) and its specific absorption spectra (m2 g-1 nm-1) to calculate the 

spectral absorption (m-1 nm-1) of each constituent at all of the 417 wavelengths from 284 

to 700 nm. The individual absorption spectra are then used to calculate the diffuse 

attenuation coefficient (kd; m-1) and thus the attenuation of light in the water column. 

Appendix III details the equations utilized in the light model, and the specific absorption 

spectra utilized to calculate each water quality constituent are shown in Figure 5.3.  

5.3.4 Biogeochemical model forcing 

Inputs from the Rhode River watershed 

The main watershed input to the Rhode River estuary enters from Muddy Creek. 

The watershed is extremely well characterized in terms of its biochemical constituents 

making specification of the forcing relatively simple. However, some assumptions related 

to organic matter partitioning were necessary. Long term monitoring of the watershed 

and the estuary allow for detailed forcing for nutrients and algal biomass, and the 

collection and sample processing has been detailed elsewhere (Jordan et al., 1991). All 

samples used to extrapolate out to the entire model area were collected at the headwaters 

of Muddy Creek (Figure 5.1c). Land use was assumed to not be a significant factor across 

sub-watershed in nutrient dynamics, but was factored in for DOM forcing and 

partitioning. Discharge is scaled by watershed area while concentration was assumed to 

be that of Muddy Creek, therefore the loads entering the watershed at each location only 
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change due to variations in discharge. Algal biomass (g C m-3) was calculated using 

observed chl a concentrations at the head of Muddy Creek and a fixed Carbon to chl a 

ratio of 50 mg C (mg chl a)-1 and partitioned evenly between the two algal groups in ICM 

(see Gallegos et al., 2010 for station location and chemical analysis).  

NH4
+ and NO3,

- were measured in the headwaters and were applied to the model 

directly from observations. Inorganic suspended sediment was estimated as the difference 

between total suspended solids, algae and particulate organic carbon. DOC and POC 

were measured as chemical oxygen demand and converted to carbon units by a factor of 

2.9 (Oxygen:Carbon, Patrick J. Neale, personal communication). A linear regression 

method was used to model POM C:N ratio as a function of percent forest in the 

watershed using data from Lu et al. (2014). Land cover data in the Rhode River 

watershed was taken from Breitburg et al. (2008). The regression for the C:N ratio from 

the small streams in Virginia from Lu et al. (2014) is shown in Figure 5.4. 20% of POM 

from Virginia streams was composed of labile long-chain fatty acids, therefore stream 

POM was partitioned as 20% labile and 80% refractory (Lu et al., 2014). 

The C:N ratio calculated for POM for each sub-watershed was also applied to 

DOC in the model forcing to calculate DON. Watershed derived DOM (both C and N) 

was partitioned into the three reactivity classes following Lu et al. (2013) who found that 

16.3% of all DOC across watersheds was biologically labile and significant differences 

didn’t occur across varying land use. The remaining 85.7% of the DOC was further 

partitioned into 30% semilabile and 70% refractory. Importantly, the three reactivity 

classes were also partitioned into the colored or non-colored (e.g., photoreactive or non-

photoreactive) classes to complete the river forcing input. Similar to the C:N ratio, this 
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was done using a simple least-squares linear regression model of the percent of the DOM 

pool that is CDOM as function of forest cover. The fraction of CDOM was found to be 

significantly related to land use type and was modeled as the product of 0.6 and the 

fraction of forest minus 0.0274 (Lu et al., 2013).  

 

Open Boundary forcing   

The RhodeFVCOM-ICM model domain has a northern open boundary located 

near the Chesapeake Bay Bridge and a southern open boundary that spans across the 

main-stem of Chesapeake Bay just north of Poplar Island (Figure 5.1). The physical 

forcing at the boundaries was specified using a Chesapeake Bay implementation of the 

Regional Ocean Modeling System (ROMS; Xu et al., 2012). For the biogeochemical 

model forcing, Chesapeake Bay Program (CBP) Water Quality Database 

(http://data.chesapeakebay.net/WaterQuality) data was used to generate the necessary 

forcing variables. The CBP stations closest to the model boundaries were extracted for all 

variables that could either indirectly or directly be used for forcing the model. These data 

were interpolated in both time and space to the model grids at the open boundaries. NH4
+, 

NO3
-, and total suspended solids (TSS) were used directly to force the model. Chl a was 

converted to the algae 1 (spring) and algae 2 (summer) biomass by splitting the total chl a 

concentration into each group evenly and converting to carbon biomass using a C:Chl a 

ratio of 50:1 (g C g chl a-1). 

The remaining state variables were inferred or calculated from the available data 

as follows: DOC at the open boundary was converted from measured DON assuming 

Redfield stoichiometry (5.68 g C g N-1) and fractionated into the three reactivity classes 
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following Keller and Hood (2011) (40 % DOM1, 59 % DOM2 and 1.0 % DOM3). POC 

was similarly converted from measured PON (difference between measured total organic 

nitrogen and DON) using the Redfield ratio.  

The northern boundary was interpolated from CBP stations CB3.3W, C, and E 

linearly in time, depth and space to the northern boundary at a daily interval and across 

the X-Y horizontal and Z vertical domain using the MATLAB function griddatan. Each 

time point was first interpolated to the model layers linearly, extrapolating to points 

outside the measured depth using a nearest neighbor scheme. Next, a linear interpolation 

was done in time at each station and each depth to a daily frequency. Finally, a two 

dimensional interpolation was conducted in space to each model boundary node using a 

nearest neighbor extrapolation to points that resided beyond stations CB3.3W and 

CB3.3E. The southern boundary was interpolated in depth and time using a similar 

scheme to the northern boundary, although 6 stations (CB4.2 W,C,E and CB4.3 W,C,E) 

were used because the southern boundary was located in between each set of stations. 

 

Surface meteorological forcing 

The model was forced at the surface with short wave radiation and wind speed 

from the North American Regional Reanalysis weather product with spatially constant, 

time varying values for the modeled time period. The physics for FVCOM are responsive 

to all surface forcing and ICM utilizes the water column FVCOM-predicted temperature, 

salinity and velocity fields. The biogeochemical portion of ICM uses wind speed to 

calculate air-water oxygen transfer and solar radiation to calculate underwater light 

penetration and attenuation. NARR 3-hourly wind speed was averaged for each day (8 
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time points per day) to get the daily averaged wind speed over the model domain. The 

daily averaged NARR short wave radiation product was applied to RhodeFVCOM by 

scaling it by a factor of 0.43 to remove the infrared portion of the short wave radiation 

product. The total UV-Visible surface irradiance is then broken down by wavelength into 

UV-Visible spectra (284-700 nm) by the solar spectral distribution of light (Figure 5.5). 

ICM calculates the incident irradiance internally utilizing an empirical function that 

solves for the declination of the sun and length of day based on latitude and the time of 

the year. 

5.3.5 Model validation statistical analysis 

Comparison statistics were used to analyze the degree of success of the model at 

recreating the variability of CBP-measured biogeochemical constituents. Coefficient of 

variance (r), root mean square error (RMSE), Willmott Skill (WMS), Mean Percent Error 

(MPE), Reliability Index (RI) and Model Efficiency (MEF) (Stow et al., 2009) were 

calculated at stations XGE3275 and WT8.2 in the Rhode River (Figure 5.1c) and at 

stations CB4.1W, C and E which reside near the middle of the main-stem of the model 

domain (Figure 5.1b). The comparison was made by finding the closest model points in 

time and depth to each CBP observation, providing the most rigorous and strict model 

comparison available. Each statistical measure is reported for complete transparency as 

some model statistics capture phenomena and patterns better than others (Stow et al., 

2009). The model was optimized to achieve the best distribution of DOC (and 

secondarily DON) in the Rhode River at stations XGE3275 and WT8.2 while attempting 

to maintain relatively high model skill in nutrient, oxygen and chl a solutions.  
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5.3.6 Dissolved organic carbon model scenarios 

Four model scenarios were run to examine the influence of marsh derived DOM 

on the distribution and flux of organic matter throughout the Rhode River. First, marsh 

DOM production and plant uptake of NH4
+ was left on in the baseline, full ecosystem 

scenario (+M). Second, the marsh plant biomass was reduced to zero, removing the input 

of DOM and uptake of NH4
+ by the marsh from the model domain (-M). The physical 

effects and topographic characteristics of the marsh were unchanged. To further 

understand the role that photochemical degradation and coagulation of DOC3 played in 

the total DOC budget in the Rhode River, runs with photochemical degradation off (-PD) 

and the basal coagulation rate increased from 0.0 to 0.01  d-1 (+CG) were also conducted. 

Budgets for each of these scenarios in the Rhode River were calculated by integrating in 

time and space all of the sources and sinks for each DOC class grouped by reactivity. A 

similar process was conducted for total DON, inorganic nitrogen and POC for each 

model test. The overall budget for the +M scenario is presented for both the Rhode River 

and the entire model domain for April 1st, 2005 through November 30th, 2005. The 

balance after integrating and summing all of the source and sink terms was assumed to be 

the flux across the boundary of the region where the budget was calculated 

 Initially, due to computational constraints and the challenge of processing output 

with dozens of variables across the entire model domain at every depth, the model results 

were output at a period of 0.75 days. Subsequent analysis showed the long sampling 

frequency biased the outputs to miss fine scale tidal variation and substantially over 

predict the accumulation of DOC in the tributary while under predicting the export of 

DOC to the mainstem. This is unsurprising as the Rhode River and Kirkpatrick Marsh are 
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largely governed by tidal exchange, and by sampling at a longer frequency the only the 

roughly average condition was captured. A substantial effort was made to give 

RhodeFVCOM-ICM the computational tools, namely the output for all variables in 

NetCDF format, to post-process and calculate budget terms at an hourly frequency for the 

entire model domain. When working in a system where tidal dynamics are potentially 

important, the effects of aliasing tides due to the model sampling period must be 

considered to avoid inaccurate estimates of flux terms. 

5.4 Results and Discussion 

5.4.1 Model Validation 

The model parameters were tuned to achieve the best fit to observed DOC data at 

two CBP water quality monitoring stations in the Rhode River. The model was also 

adjusted to qualitatively agree with observed DOC concentrations and CDOM 

absorbance at 440 nm (a440) along a transect. The two main parameters that were 

adjusted to achieve the best fit to time series (Figure 5.6) and transect (Figure 5.7) data 

were the DOM remineralization rates, kDOCi, and the loading term into the marsh 

sediment porewater, ExRate0. The high model skill (Table 5.1) for DOC and DON gives 

confidence in the model test-scenarios used to determine a budget of sources and sinks of 

DOC and DON for the Rhode River.  

There was a strong correlation between modeled and observed DOC in the Rhode 

River throughout the year, with the model capturing the observed seasonal trend, 

exhibiting little bias, and also capturing much of the short term variability in DOC 

concentration (Figure 5.6). Statistical analyses of DOC comparisons (Table 5.1) confirm 

the remarkably high skill of RhodeFVCOM-ICM in modeling DOC concentration in time 
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at these two stations. Each gray transect line in Figure 5.7 displays a model predicted 

transect of DOC concentration extracted at hourly intervals in July of 2005 on all ebb 

tides when the water surface elevation is dropping, while the observational data 

(diamonds) were averaged between three transects collected during ebb tides when the 

spatial gradient in each component is likely the greatest; two in summer 2006 (Tzortziou 

et al., 2011) and one in July 2016. Although there was substantial variability in the model 

solutions at any given point along the transect, the model captures the spatial gradient in 

DOC and a440 away from the marsh into the estuary quite well. A DON model-data 

comparison for station WT8.2 can be found in Figure 5.8a & b. 

Modeled temperature (WMS of 0.96 and 0.98) and salinity (WMS of 0.78 and 

0.83) time series correspond well with observations in the Rhode River, indicative of the 

models ability to simulate the hydrodynamic variability and freshwater discharge balance 

into the estuary. The relatively high skill of salinity indicates that transport and mixing 

within the Rhode River was reasonably simulated, and achieving an accurate temperature 

solution is key to simulating the biogeochemical reactivity rates with first-order accuracy. 

Dissolved oxygen (DO) concentration achieved a WMS of 0.61 and 0.57 and coefficient 

of variance (r) of 0.41 and 0.49 for both stations in the Rhode River (Figure 5.8c & d). 

Seasonal oxygen variability was well captured, but the high degree of temporal 

variability caused some model-data comparisons to be slightly mismatched that led to 

some of the error.  Nonetheless, the oxygen field throughout the model was well 

captured, on average. 

Statistics for all other model-observational comparisons where observational data 

was collected in the main stem of Chesapeake Bay are supplied in Table 5.2. Chl a was 
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predicted with relatively good accuracy in the mainstem of Chesapeake Bay, but the 

model under predicted concentrations > 80 mg chl a m-3 in the Rhode River during peak 

biomass in the late summer (Table 5.1; Figure 5.8e & f). The mean condition is well 

captured, however, with an MPE of 2.00 and -10.49% for the two stations in the Rhode 

River. The underestimation of chl a during summer can be attributed to the fact that the 

model lacks the ability to simulate bloom forming species that lead to high algal biomass 

(Gallegos et al., 1997). NH4
+ and NO3

- also show general agreement with the observations 

in the mainstem of the bay (Table 5.2) while NO3
- in the Rhode River is generally under 

predicted in the spring, although values rapidly decline to zero in the early summer and 

remain low for both the model and observations (Figure 5.8g & h and Figure S4i & j). 

The quick decline of NO3
- is owed to the fast uptake by phytoplankton due to primary 

production and high uptake into the sediment via denitrification as temperatures warm 

and oxygen demand increases. A similar pattern is observed in the CBP data, although 

RhodeFVCOM-ICM predicted a more rapid drawdown of NO3
-. Predicted and observed 

NH4
+ shows good agreement in the warm months in the Rhode River and model statistics 

show a good fit, in general (Table 5.1). As in all biogeochemical models, there are 

inherent tradeoffs among the skill of model variables when optimizing the solution to the 

observed data; skill in some variables is sacrificed to achieve the highest skill possible in 

others. 

POC is generally under predicted in the Rhode River  (Figure 5.8k & l) with a 

mean percent error of 27.4 and 44.5% for the two stations. The under prediction of POC 

is likely due to three factors. First, as previously stated, phytoplankton concentration is 

generally under predicted and phytoplankton biomass makes up a substantial portion of 
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the POC standing stock in RhodeFVCOM-ICM. Second, even though there is a 

formulation to account for the impact of sediment resuspension on light attenuation via 

the mobilization of ISS (Appendix VIII), this resuspension does not include the sediment 

POC pool. Not including the POC pool in the resuspension formulation was done for 

simplicity and to maintain organic carbon mass conservation, but in shallow systems this 

is likely a large source to the water column. Finally, POC was not measured by the CBP 

and therefore was estimated from measured particulate organic nitrogen (PON) using the 

Redfield ratio of 5.67 g C g N-1. If in reality the C:N ratio of the POC in the Rhode River 

was less than Redfield, the estimated observed POC concentration used for the 

comparison would be greater than the true value. 

Shallow water modeling is particularly challenging, especially when attempting to 

cross multiple ecosystem types (marsh - shallow estuary - deep estuary) and capture the 

seasonal and spatial variability in each biogeochemical constituent in each sub-

ecosystem. There is an inherent tradeoff between shallow vs. deep systems, with shallow 

systems being heavily influenced by the benthos (Soetaert and Middelburg, 2009). 

Physical processes differ in well-mixed shallow systems such as the Rhode River vs. the 

seasonally stratified mainstem of Chesapeake Bay (Pritchard, 1952). However, in general 

RhodeFVCOM-ICM broadly captures the observed patterns, especially in relation to 

DOC and DON in both shallow and deep observational stations. Oxygen is consistently 

modeled well throughout both shallow and deep areas and in particular in the Rhode 

River. Sediment oxygen demand accounts for a large portion of the oxygen drawdown in 

the water column in the shallow areas and is highly sensitive to the POM sinking 

velocity.  
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Moving forward, if cross-ecosystem modeling is to progress, fundamental 

processes that differ substantially between shallow vs. deep estuaries need to be 

considered. In particular, sediment-water column coupling that explicitly includes more 

processes such as sediment resuspension (Moriarty et al., 2017) and the subsequent 

response of biogeochemical cycling to resuspended sediment in the water column should 

be explored. Reactions of organic matter transformation between particulate and 

dissolved phases, and vice-versa, should also be considered especially with relation to 

salinity dependence (He et al., 2016). Potentially expanding or re-parameterizing 

phytoplankton to represent shallow tributary vs. deep phytoplankton communities may 

also need to be considered to capture the bloom dynamics in the observational data. 

Lastly, the plant community within an ecosystem should be represented if more nuance is 

required to capture the direct interaction between the marsh and the water column during 

tidal inundation. The contribution of plant senescence in temperate regions to the total 

annual flux of organic carbon may be significant and currently cannot be captured with 

RhodeFVCOM-ICM. 

5.4.2 Organic carbon flux between the marsh and the estuary. 

The DOC flux from the marsh was seasonally variable (Figure 5.9a), increasing 

through the spring, peaking in late summer and subsequently declining in fall. The flux 

was also highly variable in time with values ranging from 30.6 to 3158 mg C m-2 d-1. The 

average areal flux from the marsh sediment into the water column is 580.1 mg C m-2 d-1 

(211.7 g C m-2 yr-1), which is quite high relative to the previous estimates of 48 g C m-2 

yr-1 (Jordan, 1991) and 32 g C m-2 yr-1 (Tzortziou et al., 2008). Over the entire 242-day 

model time period 29.47 tons of DOC effluxed from the marsh sediment into the water 
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column during inundation. The total POC settling flux (Figure 5.9b) into the marsh of 

89.7 mg C m-2 d-1 (32.7 g C m-2 yr-1, 4.56 tons over 242 days) was 84.5% less than the 

quantity of DOC that is being exported; the marsh traps particulate carbon derived from 

the estuary (and potentially the watershed) while exporting large quantities of DOC to the 

Rhode River. The daily flux estimates of DOC and POC, respectively, were determined 

by dividing the total integrated flux of 29.47 and 4.56 tons C by the model time period of 

242 days. The annual estimate was made by taking the daily values of 580.1 and 89.7 mg 

C m-2 d-1 and multiplying by 365 days.  

The discrepancy between the RhodeFVCOM-ICM predicted flux and what has 

been measured at the marsh creek could potentially be attributed to multiple factors. First, 

the area sampled in the two previous observational studies from the Kirkpatrick Marsh 

(~3 ha) was much smaller than the entire marsh area (21.0 ha) included in 

RhodeFVCOM-ICM. Second, the observations were collected by measuring DOC and 

POC concentration and flow coming out of a single creek draining the marsh, whereas 

the model is directly integrating all of the DOC and POC that crosses the sediment-water 

interface from the marsh into/out of the tidal waters. Assuming minimal processing of the 

water column DOC on the marsh surface due to relatively short marsh platform residence 

times, this would lead the model to be only slightly biased upwards relative to 

observations. Perhaps the most important difference between the observed and modeled 

DOC and POC flux estimates is that the observations do not include large weather driven 

events (e.g., storms and high/low water inundation events that have been shown to drive 

large variations in concentration and flow) that are captured in their entirety by 

RhodeFVCOM-ICM. This conclusion is supported by a recent estimate using high 
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temporal resolution measured fluorescent DOM as a proxy for DOC and water flow that 

yielded an annual DOC flux of 173.6 g C m-2 yr-1 out of the marsh creek (Menendez et 

al., unpublished data). The model predicted net total organic carbon flux of 179.0 g C m-2 

yr-1 is consistent with a synthesis of East Coast estuaries that found that the average 

annual lateral net (DOC - POC) organic carbon flux between wetlands and estuaries was 

185±71 g C m-2 yr-1 (Herrmann et al., 2014). Lastly, it should be noted that net ecosystem 

exchange (total uptake of atmospheric CO2 into the marsh) measured at the Kirkpatrick 

marsh averaged 1900 g C m-2 yr-1 over a 19 year time series (Erickson et al., 2013), 

allowing for ample transfer of carbon fixed by the plants into both sedimentation, DIC 

lateral export, and the 211.7 g C m-2 yr-1 of predicted lateral DOC export. 

5.4.3 Rhode river organic carbon budget analysis 

Baseline DOC budget in the Rhode River  

Figure 5.10 shows the DOC budget for the Rhode River estuary from April 1 to 

November 30, 2005, with the region for the budget depicted in Figure 1c (the entire 

Rhode River). Each DOC reactivity class has been partitioned to examine differences in 

source-sink dynamics in each pool, while the total DOC budget (sum of three lability 

classes) for the Rhode River is presented as the blue bars. All positive values represent a 

source to the estuary, while negative values indicate a sink from the estuary. The gross 

DOC production (GDP) is the summation of all DOC sources to the estuary, including 

the marsh and the watershed. The export to the mainstem is estimated by taking the 

difference between all sources, sinks and the accumulation of DOC throughout the model 

time period, 𝚫DOC. Algal derived DOC was the largest source of DOC1 (67.0% of GDP, 

63.05 tons) and DOC2 (63.3%, 86.70 tons), while only comprising 12.9% of the GDP of 
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DOC3 (7.88 tons). Algal derived DOC contributed 157.6 tons of total DOC (61.8%) to the 

Rhode River, the largest source of DOC to the estuary by a substantial margin. The algal 

derived DOC includes both direct exudation (10% of primary production, Baines and 

Pace 1991) and algal death (20% of implicit algal mortality).  

The Kirkpatrick Marsh and the Rhode River watershed combined added 22.9% of 

the total DOC to the Rhode River. 29.06 tons of DOC (11.4%) entered from the 

watershed, the majority of which was delivered during the spring when discharge was 

greatest. 16.3% of the riverine DOC is DOC1, 25.1% is DOC2 and 58.8% is DOC3. The 

Kirkpatrick Marsh contributed 29.47 tons (11.6%) of total DOC, the majority of which 

was colored and photoreactive (80% of DOC input to marsh sediments is colored). 88.1% 

(25.98 tons) of the total DOC from the marsh sediments was DOC3, while 6.96% and 

4.90% was DOC2 and DOC1, respectively.  

Sub-tidal estuarine sediment was a large source of DOC2 (23.0%, 31.51 tons) and 

DOC3 (15.3%, 9.33 tons) while acting as a sink of estuarine DOC1 (18.7%, 17.55 tons). 

Over the entire model deployment period, the total net flux of DOC was 23.29 tons from 

the sediment, making up 9.13% of the GDP in the Rhode River. Although the total DOC 

flux was the fourth largest source (out of five), the sediment was differentially altering 

the composition of the DOC pool in the water column, taking up the most reactive 

compounds into the sediment while releasing less reactive compounds into the water 

column. The behavior of the model sediment coincides with a previous idealized 

modeling study looking at main channel Chesapeake Bay sediment (Clark et al., 2017). 

The largest sink term of DOC in the Rhode River water column was heterotrophic 

remineralization. 170.1 tons (66.7%) of the GDP was lost due to remineralization, 69.2%, 
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73.3% and 7.48% of DOC1-3, respectively. The reason that relatively more DOC2 is lost 

to remineralization than the more reactive DOC1 is the uptake of DOC1 into the sediment 

and the greater overall production of DOC2 from phytoplankton. The direct photo-

remineralization of DOC was very small (0.07% of GDP) but the photochemically 

mediated transformation of DOC between pools was dynamic and substantial. 26.6% 

(16.27 tons) of the DOC3 input was lost due to photochemical degradation with the vast 

majority being shunted to CDOC1, and only 0.26% of DOC3 being directly 

photomineralized to DIC. 19.36 tons (20.6%) of the DOC1 GDP was from photochemical 

degradation of CDOC3 and CDOC2 indicating the importance of including this pathway 

in the modeling framework. The degradation of CDOC with lower biological reactivity 

into the more biological labile pool increased the total remineralization of DOC into 

inorganic carbon. Photochemistry-driven changes in the biological reactivity of DOC 

have been observed across systems (Reader and Miller, 2014; Moran et al., 2000; 

Vähätalo and Wetzel, 2008), and was one of the primary concepts used to formulate the 

photochemical degradation model utilized here. DOC2 plays a smaller role in the 

photochemical degradation pathways, with 2.29% of DOC2 production being 

photodegraded.  

The Rhode River was a net source of DOC to the mainstem, although the relative 

biological reactivity of the DOC varied considerably in magnitude. The net total DOC 

flux out of the Rhode River was 87.75 tons of C, which was 34.4% of the GDP within the 

tributary. All three reactivity classes of DOC were exported out of the tributary at varying 

percentages of the total GDP depending on the biological reactivity. 12.0% and 25.2% of 

DOC1 and DOC2 GDP was exported from the Rhode River to the mainstem. The largest 
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contribution to the total flux was from the DOC3 pool with 41.9 tons of C, comprising 

68.6% of the total DOC3 inputs and 47.8% of the total DOC export to the mainstem. The 

export of more refractory DOC components from tidal marshes and watersheds is a well-

described phenomenon (Lu et al., 2013; Moran et al., 2000; Osburn et al., 2015; 

Tzortziou et al., 2008). The variable composition of the total DOC being exported is 

attributed to the varying sources of DOC to the tributary. This is further explored in 

section 3.4 where the model scenarios are analyzed. 

If the entire model domain including the mainstem of Chesapeake Bay is 

decomposed into a budget similarly to the Rhode River, the role of each process on a 

larger scale in a predominantly estuarine system can be analyzed. Unsurprisingly, the 

relatively tiny Kirkpatrick Marsh contributed 0.03% to the total DOC budget in the 

mainstem, with 0.34% of the DOC3 originating from the marsh. The largest sources were 

estuarine sediment (25.6%, 25351 tons), algal derived DOC (48.4%, 47951 tons) and the 

hydrolysis of POC to DOC (26.0%, 25720 tons) leading to an export out of the model 

domain of 15360 tons of DOC (15.5%). The vast majority (84.1%) of total DOC was 

remineralized in the model domain. Measurements of sediment DOC and DON fluxes in 

the deep mainstem of Chesapeake Bay have shown a relatively minor role in the overall 

sediment-water column carbon (both organic and inorganic) budget with DOC efflux 

~10% that of CO2 production via heterotrophic remineralization (Burdige and Homstead, 

1994). The model results here suggest a larger impact of sediment DOC efflux on the 

organic carbon budget. This is likely due to the inclusion of the shallow flanks within the 

model domain where the contribution of sedimentary fluxes of solutes play a much larger 

role in water column biogeochemistry (Soetaert and Middelburg, 2009).  
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Baseline POC Budget in the Rhode River 

 The POC budget must also be analyzed to provide a full organic carbon 

production analysis of the Rhode River. It should be noted, however, that POC in the 

Rhode River is under predicted, while in the mainstem it tends to be over predicted 

(Figure 5.8k & l). The Rhode River was a source of POC to the mainstem of Chesapeake 

Bay, with 19.86 tons C (4.92% of gross POC production) being exported from the 

tributary. Only 1.13% (4.56 tons) of the POC produced within the estuary was trapped in 

the marsh. Phytoplankton accounted for 95.7 % of the total POC production in the Rhode 

River, with the remaining 4.3% originating from the Rhode River watershed. 60% of the 

algal predation mortality is partitioned to POC, 20% of which is labile and 80% of which 

is refractory (Appendix V). Only 3.87% of the POC is lost via the hydrolytic pathway to 

DOC.  

 

Net ecosystem production in the Rhode River 

Net ecosystem production (NEP) for the Rhode River can be defined as the net 

total organic carbon that is produced within the estuary. This is following a 

comprehensive analysis of NEP for the east coast of North America whereby each 

region’s carbon budgets were estimated using representative ecosystems and mass 

balance budget analysis (Herrmann et al., 2014; Najjar et al., 2018). NEP is defined here 

as the sum of all the organic carbon budget terms across the interfaces of the Rhode River 

water column (watershed, wetland, subtidal sediment and tributary mouth) with sinks 

being positive and sources being negative. NEP is a measure of the trophic status of a 
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given ecosystem. If NEP is negative, that ecosystem is a net source of carbon dioxide to 

the atmosphere; the remineralization of organic carbon is larger than the production of 

organic carbon (net heterotrophic). If NEP is positive, the ecosystem is a net sink of 

carbon dioxide (net autotrophic). Estuaries, in general, tend to be net heterotrophic due to 

the large amount of allochthonous input of organic carbon from rivers and wetlands. 

Chesapeake Bay is an exception, with a net neutral NEP due to the high amount of algal 

production and long residence time. Trophic status is also linked to the size of the 

estuary, with large estuaries tending towards autotrophy (Nidzieko, 2018).  

The large contribution of organic carbon from algal production drives the Rhode 

River to be net autotrophic with an NEP of 377.2 tons of C yr-1  (89.5 g C m-2 yr-1). If the 

Rhode River trophic status was estimated using the relationship between estuary size and 

NEP developed by Nidzieko (2018), the Rhode River should be net heterotrophic, 

although substantial variability exists among ecosystems. The Rhode River is a eutrophic 

estuary (Gallegos et al., 2010) with relatively high algal biomass and primary production, 

indicating gross primary production outpaced remineralization even with 22.9% of the 

DOC entering from the watershed and tidal wetland. 

5.4.4 Model scenarios and associated ecosystem impacts 

Marsh export of dissolved organic carbon 

Completely removing the marsh (-M scenario), rendering the marsh area as an 

intertidal mudflat with the same initial properties as the subtidal sediments, had large 

impacts on the organic carbon cycling within the estuary (Figure 5.11). The removal of 

marsh DOC input decreased export of DOC out of the Rhode River to the mainstem by 

20.5% (17.98 tons C). This was dominated by the reduction in the export of DOC3 by 
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17.94 tons. DOC2 export was reduced by 0.74 tons, which was mostly offset by a slight 

increase in DOC1 export of 0.70 tons C. The small increase in DOC1 is likely due to 

downstream ecosystem impacts of removing the marsh (e.g., on primary production) that 

can affect the DOC pool. The difference in each budget term for both DOC and POC 

between the +M and -M scenario shows that the marsh has impacts throughout the 

organic matter system (Figure 5.11) 

 A reduction in DOC concentration occurred across all pools by the removal of 

the marsh input into the Rhode River. This difference in total concentration extended well 

away from the Kirkpatrick Marsh into the estuary. The average concentration gradient 

can show differences across lability with and without the marsh (Figure 5.12). 

Unsurprisingly, there were strong spatial fluctuations in the DOC concentration gradient 

(dDOC dx-1; g C m-3 km-1) for each reactivity class in the +M and -M scenarios (Figure 

5.12). dDOC dx-1 was calculated by dividing the difference between DOC concentration 

between successive model node points by the distance between successive points along 

an extended transect (Figure 5.12a). A positive gradient indicates the concentration 

decreases away from the marsh. The strong gradient was mostly driven by CDOC3 and 

NCDOC3 with CDOC1 contributing modestly.  

The difference between the DOC gradient between the +M and -M scenarios 

extended all the way out to the main stem at the end of the transect. The largest difference 

between the scenarios was near the marsh, with relatively small gradients in the -M 

scenario compared to large gradients in the +M scenario. Overall the difference decreased 

from 2.31 g C m-3 km-1 adjacent to the marsh to < 0.5 g C m-3 km-1 over ~2 km from the 

marsh past station XGE3275. The median total DOC concentration gradient difference 
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was 0.21 g C m-3 km-1, with the marsh derived CDOC3 comprising the majority of the 

total DOC pool. Differences in concentration for most of the DOC pools attenuated past 2 

km from marsh, but CDOC3 differences persisted all the way to the mainstem. The 

largely marsh derived CDOC3 pool accounted for the majority of the difference in the 

total DOC concentration gradient into the mainstem of the bay (Figure 5.12e). The 

gradients for NCDOC2 and NCDOC1 slope back towards the marsh in both scenarios, 

indicative of the primarily phytoplankton source. The large fluctuations in both the 

direction and magnitude of the gradients in both scenarios in the marsh and the mainstem 

show the inherent patchiness in the DOC field.  

The budget terms outlined above are heterogeneous, with each source 

contributing a different composition and reactivity of DOC; although the Kirkpatrick 

Marsh contributed 11.6% to the GDP within the estuary, that does not necessarily mean 

that the marsh contributed a similar fraction to the total standing DOC stock. This is 

because of differences in the reactivity of the DOC entering from each source, with 

watershed and marsh inputs less biologically available than algal produced DOC, on 

average. For example, in the –M scenario the flux between the Rhode River and the 

mainstem decreased by 20.5% even though the marsh only made up 11.6% of the GDP. 

By taking the difference between DOC concentration in the +M and -M scenario and 

integrating the average concentration field over the volume of the estuary, the net 

contribution of marsh derived DOC to the total estuarine DOC stock can be estimated. 

The median total integrated DOC stock over the 242 day model period in +M for the 

Rhode River was 28.37 tons C and in the -M was 22.51 tons, a difference of 5.86 tons C 

(20.7% of the median total DOC stock is attributed to the marsh). When the estuarine 
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DOC stock was greatest (43.64 tons ) on Sep. 9th, the difference between scenarios was 

13.69 tons C, with marsh export supporting 31.4% of the total DOC stock in the Rhode 

River.  

 

Ecosystem impacts of the tidal marsh 

Removing the marsh also affected other aspects of the estuarine ecosystem 

including DON, inorganic nitrogen, phytoplankton, and light. First, the presence of the 

marsh increased the total nitrogen in the Rhode River for NH4
+, NO3

- and DON. This 

curious outcome is mostly due to the relatively high flux of NH4
+ out of the marsh into 

the Rhode River, in addition to the marsh loading of DON. The marsh derived DON 

(input at a DOC:DON ratio of  10 g C: 1 g N) increased total DON in the water column 

which drove an increase in remineralization to NH4
+ (Figure 5.13a,c). The increase in 

remineralization of DON (348.9 kg N) and a higher input of NH4
+ from the marsh 

sediment (398.5 kg N), led to an increase in average NH4
+ concentration adjacent to the 

marsh (Figure 5.14a). The increase in NH4
+ concentration was also a primary driver of 

enhanced nitrification of NH4
+ to NO3

- (Figure 5.13a,b), which increased the 

concentration of NO3
- downstream from the marsh (Figure 5.14b).  

Marsh derived organic matter also drives an increase in oxygen demand in the 

water column via remineralization of DOC. Average minimum dissolved oxygen (DO) 

concentration throughout the Rhode River increased by 16.7 % from 3.47 to 4.05 g O2 m-

3 from the +M to the –M scenario. The total time spent below the critical oxygen 

threshold of 2.0 g O2
 m-3 (e.g. hypoxia) can be an important metric related to water 

quality and habitat suitability. If each point in the Rhode River is analyzed for how often 
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it experienced DO < 2.0 g O2
 m-3, the impact of the marsh on oxygen in the water column 

can be assessed. On average across the Rhode River, removing the marsh decreased the 

average amount of time that the bottom water of each node spent below 2.0 g O2
 m-3 from 

137.6 to 24.5 hours. The low oxygen water was mostly confined to locations adjacent to 

the marsh, although deeper regions away from the marsh area also experienced hypoxia. 

In total, 20.0 % of the sub-tidal region of the Rhode River experienced hypoxia at some 

point in the +M scenario. These estimates may change if the marsh plant community was 

dynamically modeled as marsh primary production would increase water column oxygen 

during inundation. However, observations show that as water enters the Kirkpatrick 

Marsh, it becomes depleted in oxygen when the water is over the marsh surface due to 

heterotrophic oxygen demand (Nelson et al., 2017). The oxygen demand in the tidal 

marsh sediment due to organic matter breakdown was captured with the current model 

formulation. 

Lastly, the removal of the marsh drove changes in the phytoplankton growth in 

the water column and increased the amount of light penetrating into the water column. 

Removing the marsh caused significant changes in average phytoplankton growth, 

depending on the location within the Rhode River (Figure 5.14c). In RhodeFVCOM-

ICM, phytoplankton growth is limited by light or nitrogen, with the relative degree of 

limitation depending on which is less in supply relative to its demand (Appendix II). 

Adjacent to the marsh where light was more limiting, the net primary production (NPP) 

was substantially less when the marsh was included. Moving away from the marsh, NPP 

was greater in the +M scenario due to a relief from nitrogen limitation because of a 

greater total amount of NO3
- (as the product of nitrification) in the water column (Figure 
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5.14a,b). Adjacent to the marsh where CDOM concentration was high and nutrients are 

relatively replete because of the watershed inputs, the phytoplankton tended to be light 

limited. Nutrient limitation is stronger in the –M scenario away from the marsh because 

there is less nitrogen available for phytoplankton being transported down tributary, 

regardless of the presence of the marsh. Moving further towards the mainstem, the –M 

scenario had greater NPP, especially in deeper areas. The nitrogen concentration 

difference between scenarios was near zero, but the difference in underwater light 

persists throughout the tributary, therefore NPP increases in the –M because of a slight 

relief of light limitation. The increase in PAR in the –M scenario occurred throughout the 

tributary with a relatively constant difference in the two first 2-3 kilometers away from 

the marsh (Figure 5.14d). The shift in NPP across time and space concurrent with shifts 

in light and nitrogen availability suggests that phytoplankton are dynamically limited by 

light and nutrients, with light limitation more important adjacent to the marsh. 

 

Photochemical degradation in the water column 

The no photodegradation (-PD) run revealed the influence that photodegradation 

has on the overall distribution, cycling and export of DOC in the Rhode River. Under the 

-PD scenario, the export to the mainstem of total DOC increased by 9.78% from 87.75 to 

96.34 tons. DOC3 export increased by 37.7% from 41.90 to 57.98 tons, further exhibiting 

the strong influence that photochemical degradation has on breaking down this fraction of 

DOC into the lower molecular weight, more biolabile pool. Surprisingly, removing 

photochemical reactions in the water column also affected the magnitude of the net DOC 

flux across the estuarine sediment-water interface. The flux of DOC1 into the sediment 
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was reduced by 17.0% from 17.55 to 14.57 tons, which is due to less DOC1 being created 

in the water column via photochemical degradation. Turning off the photochemical 

production of DOC1 from CDOC3 and CDOC2 reduced the average water column DOC1 

concentration by 13.3%.  

Secondary effects also occurred due to removing the impact of photochemical 

degradation in the water column. First, average mid water column Rhode River PAR, 

which is directly calculated at each depth in the model, decreased by 1.78%. The 

increased amount of CDOC that remains in the water column in the –PD scenario 

increased light attenuation throughout the estuary. The decline in PAR decreased average 

Rhode River algal net primary production (NPP) by 1.17%, which reduced the algal 

derived DOC input by a modest 2.20 tons. Remineralization of DOC declined by 4.52% 

(7.68 tons) in the -PD scenario which is not only due to the reduction in photochemical 

production of DOC1 but the small reduction in algal derived DOC which is more labile in 

general. 

 

Coagulation of refractory DOC in the water column 

The potential impact of the flocculation and/or coagulation of the allocthonous, 

high molecular weight DOC3 on the spatial distribution and total budget of DOC in the 

water column is considered here because this term was set to zero in all of the runs that 

have been examined thus far. When a salinity dependent coagulation term was included 

(+CG) as a sink for DOC3 in the water column, the flux of DOC from the mouth of the 

Rhode River was reduced from 87.75 to 61.43 tons C. Although the coagulation term was 

included initially in the DOM formulations for ICM (Kim and Khangaonkar, 2012) it 
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appears to have been removed in the most recent implementation of the CBP Water 

Quality Model (Cerco and Noel, 2017). The actual physico-chemical process of DOC 

coagulation and flocculation is uncertain, however, and due to its potentially large impact 

on the organic carbon cycle was not included in the baseline scenario. In addition, DOC 

that is marsh or estuarine derived, and thus native to the elevated salinity conditions 

typical of an estuary, will likely be stable in the dissolved form. In contrast, river derived 

DOM that comes from a freshwater environment rapidly aggregates to POM at low (1-2) 

salinity levels (Sholkovitz, 1976) due to a lack of stability in the increased ionic 

concentration of saline water (He et al., 2016). The aggregation or coagulation process 

was not included in the +M control run because the RhodeFVCOM-ICM marsh pore 

water has the same salinity as the overlying water column. Therefore, it follows that the 

DOM contained in the pore water of the marsh, at estuarine salinity levels, is stable at 

those ionic concentrations. 

When modeling a freshwater wetland at the head of an estuary using the marsh-

estuary carbon cycle model described here, coagulation processes affecting high 

molecular weight terrestrial derived DOM may need to be included. Models simulating 

POM-DOM exchange have been proposed with differing complexity (He et al., 2016).  

The approach used in the +CG scenario is relatively simple and can be found in 

Appendix IV. Factors such as shear stress, particle size, and Brownian motion are 

neglected in the FVCOM-ICM-PD formulation. In general, more research needs to be 

done on DOM-POM exchange of marsh derived organic matter across salinity gradients, 

as these processes can be important transformational pathways in an estuarine 

environment. For instance, DOM that transforms to POM will enter a grazing food web 
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rather than the heterotrophic microbial pathway, potentially increasing trophic energy 

transfer and enhancing food web retention. DOM that transforms to POM will also 

potentially settle out of the water column, while DOM that remains in the water column 

will tend to be exported to adjacent water bodies. 

5.4.5 Scaling up: Developing a model derived relationship for estimating the impact of a 

given marsh on an estuary  

In a seminal review, Nixon (1980) examined the potential reasons for why certain 

marshes exhibit vastly differing behavior in terms of nutrients and organic matter fluxes. 

The takeaway is that marshes are extremely complicated and many aspects of 

biogeochemistry and hydrology (Fagherazzi et al., 2013) can determine the fluxes of a 

given solute or particulate between a marsh and its adjacent water body. Some easily 

measured geographical metrics, such as marsh area and open water area that can clearly 

affect the influence of a given marsh in an estuary have been used as a way to look across 

systems, ignoring hydrological, biogeochemical and ecological differences (Nixon, 

1980). Nixon (1980) found that patterns relating geographic variability to estuarine 

productivity were indeterminate. An updated synthesis reached similar conclusions 

(Childers et al., 2002), and the vast differences in marsh organic carbon lateral export 

supports these claims (Herrmann et al., 2014). At some level, though, the spatial 

characteristics of a given marsh-estuary ecosystem must manifest themselves in how 

organic matter is cycled between each sub-system. 

A geographical metric that can capture the influence a particular wetland will 

have on the organic carbon budget in the estuary within which it resides is the ratio of 

estuarine volume (EV) to marsh area (MA). As the total volume of water under influence 
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from a particular marsh decreases, the importance of the marsh to the estuarine 

biogeochemistry will increase. For the Rhode River tributary described in the budget, this 

ratio is 35.85 (m). That is, for every 35.85 m3 of water there is 1.0 m2 of marsh. By 

selectively removing estuary water from the budget calculation at the segments in Figure 

1c, the amount of DOC that is contributed to the total estuary budget from the marsh can 

be modeled as a function of EV:MA. Physically measuring the total contribution of a 

wetland to the carbon budget for differing volumes of the same estuary is difficult if not 

impossible. If an empirical relationship between the fractional DOC contribution and 

EV:MA can be established using RhodeFVCOM-ICM, then generalizations can begin to 

be developed about the geography of a given ecosystem and the role that a wetland can 

potentially play in the water column carbon budget. This will allow commonly available 

geospatial information (e.g., National Wetlands Inventory) to be used to estimate a given 

wetlands contribution to estuarine carbon cycling, assuming other contributing factors 

such as primary production within the estuary are similar.  

In order to make a prediction of the contribution of marsh derived DOC to the 

estuarine DOC budget across scales, a logarithmic generalized linear model (GLM) 

predicting the % of GDP that is derived from marshes as a function of EV:MA was built 

using the MATLAB function fitglm (Figure 5.15). To the largest section of the Rhode 

River, the marsh contributed 11.6% of the GDP; this increased to 49.2% for the smallest 

estuarine segment directly adjacent to the marsh. At an estuary volume of 6.814x1010 m3 

(www.chesapeakebay.net/discover/facts) and a total tidal marsh area of 1.142x109 m2 

(www.chesapeakebay.net/state/wetlands) the entire Chesapeake Bay has an EV:MA of 

59.6. The GLM derived from the Rhode River as depicted in Figure 5.15 predicts that 
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2.95% of the GDP of Chesapeake Bay is derived from tidal wetlands.  

A similar relationship can be derived to estimate the total contribution of wetland 

derived DOC to the DOC stock within the Rhode River, and extrapolated out to 

Chesapeake Bay (Figure 5.15). To do this, the % marsh contribution to the stock is 

defined using Equation 5.4. The % contribution is equal to the difference in total DOC 

mass (tDOC g C) in the estuary in the +M and -M scenario divided by the total mass in 

the +M scenario. The marsh contributed between 20.7 and 35.3% to the total DOC stock 

moving from the largest to smallest sections in the Rhode River, on average. 

Extrapolating, the GLM indicates that tidal marshes could contribute 13.4% to the total 

DOC stock within Chesapeake Bay.  

% 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  (!!"#!! ! !!"#!!)
!"#$!!

 𝑥 100                          (5.4)   

The log-linear model for the EV:MA vs. % contribution of the marsh to the total 

DOC stock has a shallower slope and a smaller intercept relative to the GDP curve 

(Figure 5.15). The hypothetical upper bound of the marsh contribution to either 

relationship would be 100% if there were no other sources within an estuary. For the 

Rhode River, the relationship reaches an upper bound of < 50% for both quantities due to 

the inclusion of the watershed input adjacent to the marsh for the smallest polygon used 

in the model fit, in addition to algal production near the marsh. The larger contribution of 

marsh derived DOC to the estuarine stock relative to the GDP as EV:MA increases is 

indicative of the variable reactivity of marsh derived vs. estuarine derived DOC. 

Although it makes up progressively less of the gross DOC input as estuarine volume 

increases, the longer persistence of marsh derived DOC relative to algal sources (the 

primary source within the estuary) leads an uncoupling of the tDOC stock and the marsh 
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contribution to the GDP within the estuary. Relatively to its contribution to the GDP, the 

marsh contributes substantially more to the standing DOC stock. 

The application of the geographical relationship derived from the Rhode River to 

the entire Chesapeake Bay assumes that the Rhode River is representative of all wetlands 

in Chesapeake Bay. The high amount of algal primary production and DOC production 

exhibited in the Rhode River makes the above models not necessarily applicable to 

estuarine ecosystems that are more oligotrophic. As estuarine water column primary 

production decreases, the importance of a given tidal marsh to its adjacent estuary will 

tend to increase. Moving forward, it would be useful to establish these kinds of models 

for certain classes of estuarine ecosystems to reduce error when scaling from sampled 

“representative” marshes to regional and global budgets. Whether wetlands can be 

grouped by trophic status, land-use characteristics, tidal variability, or geographic 

location, perhaps this approach can be used as a tool to establish the model-derived 

statistical relationships for many ecosystems. Furthermore, as computational power 

continues to improve, the ability to represent all of the tidal marsh area for a large 

ecosystem such as Chesapeake Bay will greatly advance our understanding of the role 

that tidal marshes can play on regional and global scales. Deriving the EV:MA % 

contribution relationship for an entire system, like Chesapeake Bay, would allow for a 

robust quantitative assessment of the role marshes play in supporting estuarine 

productivity, heterotrophic microbial food webs, and the export of DOC to the 

continental shelf. 

5.5 Summary 

Tidal marshes are important components of estuarine and coastal ecosystems. The 
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export of organic carbon is an important and large portion of the coastal carbon cycle. 

The modeling system developed here, RhodeFVCOM-ICM, is a useful tool that can 

quantitatively describe both the flux of organic carbon between ecosystems and the 

different processes that contribute to the total concentration and budget within an estuary. 

Below are the key findings of this research. 

1. The tidal marsh accounted for 20.7% of the median DOC stock in the Rhode River 

and 20.5% of the export of DOC from the tributary to the mainstem of Chesapeake 

Bay. 

2.  22.9% of DOC within the Rhode River entered from allochthonous sources (tidal 

marsh and watershed) with estuarine phytoplankton production the largest source of 

DOC (and POC) to the estuary. The Rhode River was net autotrophic with a net 

ecosystem production of 89.5 g C m-2 yr-1. 

3. The tidal marsh increased total nitrogen within the estuary via increased export of 

DON and NH4
+ from the tidal marsh sediment. 

4. Applying the relationship in the DOC budget from the Rhode River modeled as a 

function of estuarine water volume and total marsh area to the entire Chesapeake Bay 

estimates that 13.4% of the total DOC stock in Chesapeake Bay is from tidal 

wetlands.  
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5.7 Appendices  

 
Appendix I  
 
Equations governing marsh dissolved organic matter (DOM; both Carbon and 
Nitrogen) loading 
 
These functions were tuned to get appropriate DOC loading in the 3-D model domain and 
match observed gradients of DOC away from the marsh into the estuary 
 

𝐸𝑥𝑅𝑎𝑡𝑒 = 𝐸𝑥𝑅𝑎𝑡𝑒!𝜃!(!!!!) 
 

𝐽𝑀𝐷𝑂𝑀 =  𝑀!"# 𝑓!"#𝐸𝑥𝑅𝑎𝑡𝑒 
  

𝑀𝑃!"! = 𝑉𝑚!"!𝑀!"#𝑓!"#𝜃(!!!!)
𝑆𝑒𝑑𝑁𝐻!!

𝐾!"#$%! + 𝑆𝑒𝑑𝑁𝐻!!
 

 
Variable/ 

Parameter 
Description Value Units 

ExRate Plant DOM exudation rate calculated g DOC g 
biomass-1 d-1 

ExRate0 Basal exudation rate 0.03 g DOC g 
biomass-1 d-1 

𝜃m Temperature control coefficient 
for marsh DOM exudation 

1.15 dimensionless 

T Sediment temperature calculated °C 

Tm Reference temperature for marsh 
DOM exudation 

20 °C 

Mmrs Below ground biomass 100 g m-2 

fmrs Fraction of marsh at node 1.0 dimensionless 

JMDOM Flux of marsh derived DOM into 
marsh sediment 

calculated  g DOM m-2 d-1 

MPNH4 Marsh Plant NH4
+ uptake calculated mg N m-2 d-1 

VmNH4 Maximum marsh plant NH4
+ 

ratea 
1.344 mg N g-1d-1 

SedNH4
+ Sediment NH4

+ concentrationb calculated mg N m-3 
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KsedNH4 Half Saturation of plant 
NH4

+uptake 
70.0 mg N m-3 

a. Bradley and Morris 1991 
b. Testa et al., 2013 

 
Appendix II 
 
Equations governing water column algal production  
 

𝜃!,!"# = 𝑒[!!"!,!(!!!!,!"#)!] 
 

𝜃!,!"# = 𝑒[!!"!,!(!!,!"#!!)!] 
 

𝜃! = 𝑒[!!"!(!!!!)] 
 

𝜃!" = 𝑒[!!"!"(!!!!")] 
 

𝑃𝑃! = 𝑃𝑀! 𝜃! 
 

𝐵𝑀! = 𝐵𝑀𝑅! 𝜃! 
 

𝑃𝑅! = 𝐵𝑃𝑅! 𝐵! 
!𝜃!" 

 

𝑃𝑁! = 𝑁𝐻!!
𝑁𝑂!!

(𝑘ℎ!,! + 𝑁𝐻!!)(𝑘ℎ!,! + 𝑁𝑂!!)
+

𝑘ℎ!,!
(𝑁𝐻!! + 𝑁𝑂!!)(𝑘ℎ!,! + 𝑁𝑂!!)

 

 

𝑁𝐿! =
𝑁𝑂! − 𝑃𝑁!(𝑁𝑂!! + 𝑁𝐻!!)

𝑘ℎ!,! + 2𝑁𝐻!! + 𝑁𝑂!! − 𝑃𝑁!(𝑁𝑂!! + 𝑁𝐻!!)
 

 

𝐼𝑘! =
𝑃𝑃!
𝛼!

 

 

𝐹𝐼! =
𝐼𝑎𝑣𝑔

𝐼𝑘!! + 𝐼𝑎𝑣𝑔!
 

 

𝑃! =
𝑃𝑃! 𝑚𝑖𝑛 𝐹𝐼! ,𝑁𝐿!

𝐶𝐶ℎ𝑙!
 

 
𝑁𝑒𝑡𝑃! = 𝑃!(1− 𝑃𝑅𝑆𝑃!)− 𝐵𝑀! 𝐵! 

 

𝑊𝐵! =
𝑊𝑆! 𝐵!!!!  −  𝑊𝑆! 𝐵!!

𝛥𝑧  
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𝑑𝐵!
𝑑𝑡 = 𝑁𝑒𝑡𝑃! − 𝑃𝑅! +𝑊𝐵! 

 
 

Variable/ 
Parameter 

Description Value Units 

𝜃a,sub Sub optimal temperature control on algal 
production 

calculated dimensionless 

kta,1 Sub-optimal temperature coefficient for 
algae 1 and algae 2 productiona 

0.0018, 
0.0035 

℃-2 

Ta,ref Reference temperature for algal 
productiona 

16.0, 35.0 ℃ 

T Water Column Temperature calculated ℃ 

𝜃a,sup Super- optimal temperature control on 
algal production 

calculated dimensionless 

kta,2 Super-optimal temperature coefficient 
for algae 1 and algae 2  productiona 

0.006, 0.00 ℃-2 

𝜃b Temperature control on algal metabolism calculated dimensionless 

ktb Algal basal metabolic temperature 
coefficienta 

0.032 ℃-1 

Tb Reference temperature for algal 
metabolisma 

20 ℃ 

𝜃pr Temperature control on algal predation calculated dimensionless 

ktpr Algal predation temperature coefficientb 0.032 ℃-1 

Tpr Reference temperature for algal 
predationb 

20 ℃ 

PPa Algal photosynthetic rate before nutrient 
limitation 

calculated g C g chl a-1 d-1 

PMa Maximum photosynthetic ratea 300, 350 g C g chl a-1 d-1 

BMa Algal metabolic rate calculated d-1 

BMRa Basal algal metabolic ratea 0.01,0.02 d-1 

PRa Algal predation rate calculated g C m-3 d-1 
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BPRa Basal algal predation ratec,d (see below) 1.5 m3 g C-1 d-1 

Ba Algal biomass calculated g C m-3 d-1 

PNa Algal preference for NH4
+ calculated dimensionless 

NH4
+ Ammonium Concentration calculated g N m-3 

khn,a Half saturation of inorganic nitrogen 
uptake by algaea 

0.025,0.025 g N m-3 

NO3
- Nitrate + Nitrite concentration calculated g N m-3 

NLa Algal nitrogen limitation calculated dimensionless 

Ika Intersection of P vs I curve calculated mols photons 
m-2 d-1 

αa Slope of P vs I curvea 8.0, 8.0 g C g chl a-1 
(mols photons 

m-2)-1 

FIa Light Limitation coefficient calculated dimensionless 

Iavg Photosynthetically active radiation calculated mols Photons 
m-2 

Pa Realized photosynthetic rate calculated d-1 

CChla Carbon to chl a ratiob 50, 50 g C g chl a-1 

NetPa Net primary production calculated g C m-3 d-1 

PRSPa Algal respirationa 0.25 dimensionless 

WBa Algal sinking calculated g C m-3 d-1 

WSa Algal sinking velocitya 0.1, 0.1 m d-1 

Ba
z-1

 Algal biomass in layer above calculated g C m-3 

Ba
z-1 Algal biomass in current layer calculated g C m-3 

𝜟z Layer thickness calculated m 

dBa dt-1 Change in algal biomass over time calculated g C m-3 d-1 
 
 
The predation rate (BPRa) was increased relative to Cerco and Noel (2017) because chl a 
was too high relative to observations in the main stem of the bay.  The justification for 
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this is based on a mathematical argument using measured zooplankton clearance rates. 
Specifically, Richman et al. (1977) found that calanoid copepods have a filtration rate of 
~200  uL ind-1 hr-1 and copepods are a dominant member of the zooplankton grazing 
community throughout the year in Chesapeake Bay (Kimmel et al., 2006). To convert to 
a volumetric clearance rate per biomass of zooplankton, the mean zooplankton biomass 
per individual must be estimated. This was calculated as 3.21 ug C ind-1 which is the 
mean of the four years of data tabulated in Kimmel et al. (2006; Table 3) for Chesapeake 
Bay zooplankton. To find the volumetric clearance rate for a given biomass of 
zooplankton (m3 g C-1 d-1), take the individual filtration rate and divide it by the 
individual biomass (below). 
 

𝐵𝑃𝑅! =
0.2𝑚𝑙
𝑖𝑛𝑑 ℎ𝑟  𝑥

𝑖𝑛𝑑
 3.21 𝑢𝑔 𝐶 𝑖𝑛𝑑  𝑥 

1𝑥10!𝜇𝑔 𝐶 
𝑔 𝐶  𝑥 

1 𝑚!

1𝑥10!𝑚𝑙  𝑥 
24 ℎ𝑟
𝑑𝑎𝑦  

=  1.50 𝑚! (𝑔 𝐶 𝑑)!!  
 

a. Cerco and Noel 2004 
b. Cerco and Noel 2017 
c. Richman et al., 1977 
d. Kimmel et al., 2006 

 
Appendix III 
 
Photochemical degradation model (Chapter 3) 
 
Methods: Full optical modeling equations and parameterization 

 

 

𝑎𝑏𝑠! 𝜆 =  𝑎𝑏𝑠! 𝜆 +  𝑎𝑏𝑠! 𝜆
!

!!!

 
 

 
 
 
 
 
 
 
 
 

 
𝑝𝑑𝑁𝐶𝐷𝑂𝐶! = 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!! + 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!" + 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!" 

𝐼𝑧!(𝜆) = 𝐼𝑧!(𝜆)
𝑎𝑏𝑠! 𝜆
𝑎𝑏𝑠! 𝜆

(1− 𝑒 !!"#! ! !" ) 
 

𝑎𝑏𝑠!(𝜆) = 𝐶𝐷𝑂𝐶!  𝑎∗𝑐𝑑𝑜𝑐!(𝜆)  
  

𝑝𝑑𝐷𝑂𝐶!,! =
𝐼𝑧! 𝜆 𝐴𝑄𝑌!,! 𝜆 𝑑𝜆

!!
!!

𝛥𝑧  
 

 

𝑝𝑑𝐶𝐷𝑂𝐶! = 𝑝𝑑𝐶𝐷𝑂𝐶!,! + 𝑝𝑑𝐶𝐷𝑂𝐶!,! − 𝑝𝑑𝐶𝐷𝑂𝐶!,! − 𝑝𝑑𝐶𝐷𝑂𝐶!,! 
 

 

𝑝𝑑𝐶𝐷𝑂𝐶! = −𝑝𝑑𝐶𝐷𝑂𝐶!,! − 𝑝𝑑𝐶𝐷𝑂𝐶!,! − 𝑝𝑑𝐶𝐷𝑂𝐶!,!  

𝑝𝑑𝐶𝐷𝑂𝐶! = −𝑝𝑑𝐶𝐷𝑂𝐶!,! − 𝑝𝑑𝐶𝐷𝑂𝐶!,! − 𝑝𝑑𝐶𝐷𝑂𝐶!,!  
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𝑝𝑑𝑁𝐶𝐷𝑂𝐶! = 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!" + 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!! + 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!" 
 
𝑝𝑑𝑁𝐶𝐷𝑂𝐶! = 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!" + 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!" + 𝑝𝑑𝐶𝐷𝑂𝐶!,! 𝑓!"#!! 
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Variable/ 
Parameter Description Value Units 

Izi(λ) 
Photon flux absorbed by CDOCi (1-3) at 

wavelength λ (284-460 nm) calculated mols photons 
m-2 d-1 nm-1 

Iz0(λ) 
Surface (above) total photon flux at 

wavelength λ calculated mols photons 
m-2 d-1 nm-1 

absi(λ) 
Absorption coefficient of CDOCi (1-3) at 

wavelength λ calculated m-1 

absw(λ) Absorption coefficient of water at wavelength 
λ calculated m-1 

abst(λ) Total absorption coefficient at wavelength λ calculated m-1 

Δz Exposure pathlength 0.04 m 

a*cdoc(λ)i 
Specific absorption of CDOCi (1-3) at 

wavelength λ 
Figure 
5.3a m2  g C-1 

CDOCi Concentration of CDOCi (1-3) calculated g  C m-3 

pdDOCi,j 
Flux of CDOCi (1-3) to DOCj (1-3; either 

colored or non-colored) calculated g C m-3 d-1 

AQYi,j(λ) 
Apparent quantum yield of CDOCi (1-3) to 
DOCj (both colored and non-colored, 1-3)a calculated g C mols 

photons-1 

pdCDOC1 Total photodegradation flux of colored DOC1 calculated g  C m-3 d-1 

pdCDOC3,1 
Photodegradation flux of colored DOC3 to 

DOC1 
calculated g  C m-3 d-1 

pdCDOC2,1 
Photodegradation flux of colored DOC2 to 

DOC1 
calculated g  C m-3 d-1 

pdCDOC1,0 
Photoremineralization flux of colored DOC2 to 

DIC calculated g C m-3 d-1 

pdCDOC1,N Photobleaching flux of colored DOC2 to non-
colored DOC  calculated g C m-3 d-1 

pdCDOC2 Total photodegradation flux of colored DOC2 calculated g C m-3 d-1 

pdCDOC2,0 
Photomineralization flux of colored DOC2 to 

DIC calculated g  C m-3 d-1 

pdCDOC2,N Photobleaching flux of colored DOC2 to non-
colored DOC  calculated g  C m-3 d-1 

pdCDOC3 Total photodegradation flux of colored DOC3 calculated g C m-3 d-1 
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a. Chapter 3 
b. Vahatalo and Wetzel, 2008;  

Upon solar exposure, most CDOC is moved to the labile and semi-labile fractions to 
enhance microbial breakdown of exposed DOC. Vahatalo and Wetzel (2008) found that 
upon solar exposure, ~50-75% of DOC was remineralized over 400 day incubations. 
 
Appendix III 

pdCDOC3,0 
Photobleaching/photomineralization flux of 
colored DOC3 to non-colored DOC and DIC calculated g  C m-3 d-1 

pdCDOC3,N Photobleaching flux of colored DOC3 to non-
colored DOC  calculated g  C m-3 d-1 

pdNCDOC1 Total photodegradation flux to non-colored 
DOC1 

calculated g C m-3 d-1 

fpdc11 Fraction of colored DOC1 photobleaching flux 
to non-colored DOC1

a 
0.5 dimensionless 

fpdc21 Fraction of colored DOC2 photobleaching flux 
to non-colored DOC1

a 
0.5 dimensionless 

fpdc31 Fraction of colored DOC3 photobleaching flux 
to non-colored DOC1

a 
0.5 dimensionless 

pdNCDOC2 Total photodegradation flux to non-colored 
DOC2 

calculated g C m-3 d-1 

fpdc12 Fraction of colored DOC1 photobleaching flux 
to non-colored DOC2

a 
0.25 dimensionless 

fpdc22 Fraction of colored DOC2 photobleaching flux 
to non-colored DOC2

a 
0.25 dimensionless 

fpdc32 Fraction of colored DOC3 photobleaching flux 
to non-colored DOC2

a 
0.25 dimensionless 

pdNCDOC3 Total photodegradation flux to non-colored 
DOC3 

calculated g C m-3 d-1 

fpdc13 Fraction of colored DOC1 photobleaching flux 
to non-colored DOC3

a 
0.25 dimensionless 

fpdc23 Fraction of colored DOC2 photobleaching flux 
to non-colored DOC3

a 
0.25 dimensionless 

fpdc33 Fraction of colored DOC3 photobleaching flux 
to non-colored DOC3

a 
0.25 dimensionless 
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Other equations of light attenuation model  
 

𝐴𝐵!!!(𝜆) = 𝜙!!!(𝜆) 𝐵!𝐶𝐶ℎ𝑙!
!! 

 
𝐴𝐵!""(𝜆) = 𝜑!""(𝜆) 𝑇𝑆𝑆 

 
𝑆𝐶𝐴𝑇!(𝜆) = 𝛽!""(𝜆) 𝑇𝑆𝑆 

 

𝐴𝐵!"#$(𝜆) = 𝑎𝑏𝑠!(𝜆)
!

!!!

 

 
𝐴𝐵!"!#$(𝜆) = 𝐴𝐵!"#$%(𝜆)+ 𝐴𝐵!"#$(𝜆)+ 𝐴𝐵!!!(𝜆)+ 𝐴𝐵!""(𝜆) 

 

𝐾𝑑(𝜆) =
𝐴𝐵!"!#$(𝜆)! + 𝐺!!𝐴𝐵!"!#$(𝜆)𝑆𝐶𝐴𝑇!(𝜆)

𝜇!
 

 
𝐼𝑧(𝜆) = 𝐼𝑧! 𝜆 𝑒[!"(!)!"] 

 

𝐼𝑎𝑣𝑔 = 𝐼𝑧(𝜆)
!""

!""
 

 
 

Variable/ 
Parameter 

Description Value Units 

ABchl(λ) Absorption  due to chl a calculated m-1 

ɸchl(λ) Specific absorption due to chl aa Figure 5.3b m2 g chl-1 

ABtss(λ) Absorption due to total suspended solids calculated m-1 

φtss(λ) Specific absorption due to TSSa Figure 5.3b m2 g TSS-1 

SCAT𝛽(λ) Scattering of light due to TSS calculated m-1 

βtss(λ) Specific scattering of light due to TSSa Figure 5.3b m2 g TSS-1 

ABcdom(λ) Absorption due to CDOM calculated m-1 

absi(λ) Absorption of CDOMi (1-3) calculated m-1 

ABtotal(λ) Total absorption calculated m-1 

ABwater(λ) Absorption due to watera Figure 5.3b m-1 

Kd(𝜆) Diffuse attenuation coefficient at wavelength 𝜆b calculated m-1 
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G𝜇0 Scaled scattering of light to attenuation and 
depthb,c 

calculated dimensionles
s 

𝜇0 Incident angle of light due to time of day and 
refraction 

calculated dimensionles
s 

Iz(𝜆) Photon flux at wavelength 𝜆 after attenuation calculated mols photons 
m-2 d-1 

Iavg Photosynthetically active radiation calculated mols photons 
m-2 d-1 

 
a. Rose et al., 2018 
b. Gallegos et al., 1990 
c. Kirk 1994 

 
 
Appendix IV 
Equations governing dissolved and particulate organic carbon (DOC & POC) 
dynamics 
 

𝐶𝑃𝐶! = (𝑃! 𝑃𝑅𝑆𝑃! + 𝐵𝑀!) 𝐵! 
 

𝐿𝑃𝑂𝐶! = 𝑓!"#$ 𝐶𝑃𝐶!  +  𝑓!"##$𝑃𝑅! 
 

𝑅𝑃𝑂𝐶! = 𝑓!"#$ 𝐶𝑃𝐶!  +  𝑓!"##"  𝑃𝑅! 
 

𝜃!!" = 𝑒[!!"!!"(!!!!!")] 
 

𝐿𝑃𝑂𝐶!!" = 𝐾!"#$  𝜃!!" 𝐿𝑃𝑂𝐶  
 

𝑅𝑃𝑂𝐶!!" = 𝐾!"#$  𝜃!!" 𝑅𝑃𝑂𝐶  
 

𝑊𝑆!"# =
𝑊𝑆! 𝑃𝑂𝐶!!! −𝑊𝑆! 𝑃𝑂𝐶! 

𝛥𝑧  
 

𝐴𝐷𝑂𝐶! = 𝑓!"#𝐶𝑃𝐶! + 𝑓!"#𝑃𝑅! 
      
 

𝜃!"#! = 𝜃!(!!!!"#) 
 

𝐾!"#$ = 0.5 [1+ 𝑡𝑎𝑛ℎ(𝑆 − 𝑘ℎ!"#$)] 𝑘!"#$ 
 

𝐷𝐸𝑁𝐼𝑇!  =  𝑘𝐷𝑂𝐶! 𝜃!"#  𝐴𝐴𝑁𝑂𝑋 
𝑘ℎ!"!#

𝑘ℎ!"!# + 𝑂!
 

𝑁𝑂!!

𝑘ℎ!"! + 𝑁𝑂!!
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𝐷𝐷𝑂𝐶! =
𝐷
𝑍 (𝐷𝑂𝐶! − 𝐷𝑂𝐶!,!"#) 

 
𝑑𝐿𝑃𝑂𝐶
𝑑𝑡 = 𝐿𝑃𝑂𝐶! − 𝐿𝑃𝑂𝐶!!" +𝑊𝑆!"#$ 

 
𝑑𝑅𝑃𝑂𝐶
𝑑𝑡 = 𝑅𝑃𝑂𝐶! − 𝑅𝑃𝑂𝐶!!" +𝑊𝑆!"#$ + 𝐾!"#$𝐷𝑂𝐶! 

 
 
!"#!!
!"

= 𝐴𝐷𝑂𝐶! 𝑓!"#!  − 𝑘𝐷𝑂𝐶!𝜃!"#!𝐷𝑂𝐶!  + (𝐿𝑃𝑂𝐶!!" + 𝑅𝑃𝑂𝐶!!") 𝑓!!"#! −
𝐷𝐸𝑁𝐼𝑇!𝐷𝑂𝐶! − 𝐷𝐷𝑂𝐶!  + 𝑝𝑑𝐷𝑂𝐶!      
  
 
!"#!!
!"

= 𝐴𝐷𝑂𝐶! 𝑓!"#! − 𝑘𝐷𝑂𝐶!𝜃!"#!𝐷𝑂𝐶! + (𝐿𝑃𝑂𝐶!!" + 𝑅𝑃𝑂𝐶!!") 𝑓!!"#! −
𝐷𝐷𝑂𝐶! +  𝑝𝑑𝐷𝑂𝐶!                          
              
 
!"#!!
!"

= 𝐴𝐷𝑂𝐶! 𝑓!"#! − 𝑘𝐷𝑂𝐶!𝜃!"#!𝐷𝑂𝐶! + (𝐿𝑃𝑂𝐶!!" + 𝑅𝑃𝑂𝐶!!") 𝑓!!"#! −
𝐾!"#$𝐷𝑂𝐶! − 𝐷𝐷𝑂𝐶! + 𝑝𝑑𝐷𝑂𝐶!          
 
 
 

Variable/ 
Parameter 

Description Value Units 

CPCa Algal respiration and metabolism calculated g C m-3 d-1 

LPOCa Algal derived LPOC calculated g C m-3 d-1 

fclpa Fraction of algal production that is LPOC 0.0 dimensionless 

fclppr Fraction of predation derived organic carbon 
that is LPOC 

0.10 dimensionless 

fcrpa Fraction of algal production that is RPOC 0.0 dimensionless 

fcrppr Fraction of predation derived organic carbon 
that is RPOC 

0.50 dimensionless 

𝜃hdr Temperature control of hydrolysis calculated dimensionless 

kthdr Hydrolysis temperature control coefficienta 0.069 dimensionless 

Thdr Reference temperature for hydrolysisa 20.0 ℃ 
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LPOChdr Hydrolysis of LPOC calculated g C m-3 d-1 

klpoc Hydrolysis rate of LPOCb 0.03 d-1 

LPOC LPOC concentration calculated g C m-3 

RPOChdr Hydrolysis of RPOC calculated g C m-3 d-1 

krpoc Hydrolysis rate of RPOCa 0.006 d-1 

RPOC RPOC concentration calculated g C m-3 

WSpoc LPOC or RPOC sinking calculated g C m-3 d-1 

WSp POC sinking velocitya 0.5 m d-1 

POCz-1 POC concentration in layer above calculated g C m-3 

POCz POC concentration in current layer calculated g C m-3 

ADOCa Algal derived DOC calculated g C m-3 d-1 

fcda Algal respiration DOC exudation fractionc 0.10 dimensionless 

fcdp Algal predation DOC fractiond 0.20 dimensionless 

𝜃mnli Temperature control on DOCi (1-3)  
remineralization 

calculated dimensionless 

𝜃i Temperature control coefficient for DOCi (1-3) 1.10,1.15,1.2 dimensionless 

Tmnl Reference temperature for remineralization 20.0 ℃ 

KCOAG Coagulation rate of DOC3
  to RPOC calculated d-1 

S Salinity calculated PSU 

khcoag Half saturation of salinity for DOM coagulationa 2.0 PSU 

kcoag Basal DOM coagulation ratea 0.0 d-1 

DENITc Denitrification rate of DOC calculated d-1 

kDOC1 DOC1 remineralization rate 0.05 d-1 

AANOX Anoxic remineralization scaling 0.90 dimensionless 

khodoc Oxygen half saturation for anoxic 
remineralization 

0.1 g O2 m-3 

O2 Dissolved oxygen concentration calculated g O2 m-3 
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NO3
- Nitrate concentration calculated g N m-3 

khndn NO3
-  half saturation concentration for 

denitrificationa 
0.01 g N m-3 

DDOCi Diffusive flux of DOCi (1-3) between sediment 
and water column bottom layer 

calculated g C m-3 d-1 

D Mass transfer coefficient between sediment and 
water columnc 

calculated m d-1 

Z Distance between sediment and bottom layer of 
water column 

calculated m 

DOCi,sed Sediment concentration of DOCi (1-3)e calculated g C m-3 

dLPOC dt-1 Change in LPOC over time calculated g C m-3 d-1 

dRPOC dt-

1 
Change in RPOC over time calculated g C m-3 d-1 

DOC3 DOC3 (refractory) concentration calculated g C m-3 

dDOC1
 dt-1 Change in DOC1 over time calculated g C m-3 d-1 

fcda1 Fraction of algal derived DOC that is CDOC1 , 
NCDOC1

f,g 
0.10, 0.30 dimensionless 

DOC1 DOC1 concentration calculated g C m-3 

fhdrc1 Fraction of hydrolyzed POC that is CDOC1 , 
NCDOC1

g 
0.15, 0.20 dimensionless 

pdDOC1 Photodegradation flux of DOC1 (either colored 
or non-colored) 

calculated g C m-3 d-1 

dDOC2
 dt-1 Change in DOC2 over time calculated g C m-3 d-1 

fcda2 Fraction of algal derived DOC that is CDOC2 , 
NCDOC2 f,g 

0.10, 0.45 dimensionless 

kDOC2 DOC2 remineralization rate 0.035 d-1 

DOC2 DOC2 concentration calculated g C m-3 d-1 

fhdrc2 Fraction of hydrolyzed POC that is CDOC2 , 
NCDOC2

h 
0.20, 0.40 dimensionless 

pdDOC2 Photodegradation flux of DOC2 (either colored 
or non-colored) 

calculated g C m-3 d-1 
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fcda3 Fraction of algal derived DOC that is CDOC3 , 
NCDOC3

f,g 
0.05, 0.00 dimensionless 

kDOC3 DOC3 remineralization rate 0.001 d-1 

DOC3 DOC3 concentration calculated g C m-3 d-1 

fhdrc3 Fraction of hydrolyzed POC that is CDOC3 , 
NCDOC3

h 
0.025, 0.25 dimensionless 

pdDOC3 Photodegradation flux of DOC3 (either colored 
or non-colored) 

calculated g C m-3 d-1 

 
a. Cerco and Noel, 2017 
b. Etcheber et al., 2007  
c. Baines and Pace 1991 
d. Møller, 2007 
e. Clark et al., 2017 
f. Keller and Hood, 2011 
g. Romera-Castillo et al., 2010 
h. Kinsey et al., 2018 

 
Romera-Castillo et al. (2010) found that algal exudation produced CDOM that had 
protein like and marine-humic like characteristics which corresponds more to the DOC1 
and DOC2 pools. The slow production of refractory CDOM was also included to account 
for the accumulation of CDOM and DOC in surface waters. Kinsey et al. (2018) found 
that algal-derived aggregates also produced CDOM with distinct marine humic like 
characteristics. The majority of the hydrolysed DOM is partitioned into the semi-labile 
pool due to the aggregation of both LPOM and RPOM before fractionation into DOM, 
assuming some of the DOM would have less reactivity if derived from RPOM. Lastly, 
there is a slow production of DOM3 from hydrolysis to also account for the accumulation 
of CDOM and DOC in the ocean, and the production of humic like fluorescence of likely 
recalcitrant nature from algal derived particulates (Kinsey et al., 2018). 
 
Appendix V 
 
Equations governing dissolved and particulate organic nitrogen (DON & PON) 
dynamics 
 

𝐿𝑃𝑂𝑁! = (𝑓!"#$ 𝐶𝑃𝐶!  +  𝑓!"##$𝑃𝑅! ) 𝐴𝑁𝐶! 
 

𝑅𝑃𝑂𝑁! = (𝑓!"#$ 𝐶𝑃𝐶!  +  𝑓!"##"  𝑃𝑅!) 𝐴𝑁𝐶! 
 

𝐿𝑃𝑂𝑁!!" = 𝐾!"#$𝜃!!"  𝐿𝑃𝑂𝑁 
 



 

 198 
 

𝑅𝑃𝑂𝑁!!" = 𝐾!"#$𝜃!!"  𝑅𝑃𝑂𝑁 
 

𝑊𝑆!"# =
𝑊𝑆! 𝑃𝑂𝑁!!! −𝑊𝑆! 𝑃𝑂𝑁! 

𝛥𝑧  
 

𝐴𝐷𝑂𝑁! = 𝑓!"#𝐶𝑃𝐶! + 𝑓!"#𝑃𝑅! 𝐴𝑁𝐶! 
 

𝐷𝐸𝑁𝐼𝑇!  =  𝐷𝑂𝑁! 𝜃!"#  𝐴𝐴𝑁𝑂𝑋 
𝑘ℎ!"!#

𝑘ℎ!"!# + 𝑂!
 

𝑁𝑂!!

𝑘ℎ!"! + 𝑁𝑂!!
 

 

𝐷𝐷𝑂𝑁! =
𝐷
𝑍 (𝐷𝑂𝑁! − 𝐷𝑂𝑁!,!"#) 

 
𝑑𝐿𝑃𝑂𝑁
𝑑𝑡 = 𝐿𝑃𝑂𝑁! − 𝐿𝑃𝑂𝑁!!" +𝑊𝑆!"#$ 

 
𝑑𝑅𝑃𝑂𝑁
𝑑𝑡 = 𝑅𝑃𝑂𝑁! − 𝑅𝑃𝑂𝑁!!" +𝑊𝑆!"#$ + 𝐾!"#$𝐷𝑂𝑁! 

 
𝑑𝐷𝑂𝑁!
𝑑𝑡 = 𝐴𝐷𝑂𝑁! 𝑓!"!,! − 𝑘𝐷𝑂𝑁! 𝜃!"#  𝐷𝑂𝑁! + (𝐿𝑃𝑂𝑁!!" + 𝐿𝑅𝑃𝑂𝑁!!") 𝑓!!"#!

− 𝐷𝐸𝑁𝐼𝑇!𝐷𝑂𝑁! − 𝐷𝐷𝑂𝑁!  + 𝑝𝑑𝐷𝑂𝐶!𝑁𝐶!" 
 

𝑑𝐷𝑂𝑁!
𝑑𝑡 = 𝐴𝐷𝑂𝑁! 𝑓!"!,! − 𝑘𝐷𝑂𝑁! 𝜃!"#  𝐷𝑂𝑁! + (𝐿𝑃𝑂𝑁!!" + 𝐿𝑅𝑃𝑂𝑁!!") 𝑓!!"#!

− 𝐷𝐷𝑂𝑁 +  𝑝𝑑𝐷𝑂𝐶!𝑁𝐶!" 
 

𝑑𝐷𝑂𝑁!
𝑑𝑡 = 𝐴𝐷𝑂𝑁! 𝑓!"!,! − 𝑘𝐷𝑂𝑁! 𝜃!"#  𝐷𝑂𝑁! + (𝐿𝑃𝑂𝑁!!" + 𝐿𝑅𝑃𝑂𝑁!!") 𝑓!!"#!

− 𝐾!"#$𝐷𝑂𝑁! + 𝐷𝐷𝑂𝑁! + 𝑝𝑑𝐷𝑂𝐶!𝑁𝐶!" 
 
 
 
Variable/ 

Parameter 
Description Value Units 

LPONa Algal contribution to labile PON calculated g N m-3 

ffnlpa Fraction of algal production that is LPON 0.0 dimensionless 

fnlppr Fraction of algal predation that is LPON 0.1 dimensionless 

ANCa Algal Nitrogen to Carbon ratioa 0.135, 
0.175 

g N g C-1 

RPONa Algal contribution to refractory PON calculated g N m-3 
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fnrpa Fraction of algal production that is RPON 0.0 dimensionless 

fnr Fraction of algal  production that is RPON 0.5 dimensonless 

LPONhdr Hydrolysis of LPON calculated g N m-3 

Klpon Hydrolysis rate of LPONb 0.03 d-1 

RPONhdr Hydrolysis of RPON calculated g N m-3 

Krpon Hydrolysis rate of RPONa 0.006 d-1 

RPON RPON concentration calculated g N m-3 

WSpon LPON or RPON sinking calculated g N m-3 d-1 

WSp PON sinking velocitya 0.5 m d-1 

PONz-1 PON concentration in layer above calculated g N m-3 

PONz PON concentration in current layer calculated g N m-3 

ADONa Algal derived DON calculated g N m-3 

fnda Algal respiration DON exudation fractionc,d 0.10 dimensionless 

fndp Algal predation DON fraction 0.20 dimensionless 

DENITn Denitrification rate of DON calculated d-1 

kDON1 DON1 remineralization rate 0.05 d-1 

DDONi Diffusive flux of DON between sediment and 
water column bottom layer 

calculated g N m-3 d-1 

DONi,sed Sediment concentration of DONi (1-3) calculated g N m-3 

dLPON dt-1 Change in LPON over time calculated g N m-3 d-1 

dRPON dt-1 Change in RPON over time calculated g N m-3 d-1 

DON3 DON3 concentration calculated g N m-3 

dDON1
 dt-1 Change in DON1 over time calculated g N m-3 d-1 

fnda1 Fraction of algal derived DON that is CDON1 
, NCDON1 

0.10, 030 dimensionless 

DON1 DON1 concentration calculated g N m-3 

fhdrn1 Fraction of hydrolyzed PON that is CDON1 , 
NCDON1 

0.15, 0.20 dimensionless 
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NCpd Photodegradation N:C ratio for colored DOM calculated g N g C-1 

dDON2
 dt-1 Change in DON2 over time calculated g N m-3 d-1 

fnda2 Fraction of algal derived DON that is CDON2 
, NCDON2 

0.1, 0.45 dimensionless 

kDON2 DON2 remineralization rate 0.035 d-1 

DON2 DON2 concentration calculated g N m-3 d-1 

fhdrn2 Fraction of hydrolyzed POC that is CDON2 , 
NCDON2 

0.2, 0.4 dimensionless 

fnda3 Fraction of algal derived DOC that is CDON3 
, NCDON3 

0.05, 0.0 dimensionless 

kDON3 DON3 remineralization rate 0.001 d-1 

DON3 DON3 concentration calculated g C m-3 d-1 

fhdrn3 Fraction of hydrolyzed POC that is CDON3 , 
NCDON3 

0.025 dimensionless 

 
a. Cerco and Noel 2017 
b. Etcheber et al., 2007 
c. Bronk et al., 1994 
d. Baines and Pace 1991 

 
Appendix VI 
 
Equations governing dissolved inorganic nitrogen (DIN) dynamics 
 
 

𝜃!",!"# = 𝑒[!!"!",!(!!!!",!"#)!] 
 

𝜃!",!"# = 𝑒[!!"!",!(!!",!"#!!)!] 
 

𝑁𝑇 =
𝑂!

𝑘ℎ!"# + 𝑂!
𝑁𝐻!!

𝑘ℎ!!" + 𝑁𝐻!!
𝜃!"𝑁𝑇!𝑁𝐻!! 

 
𝑁𝐻!𝐴! = −𝑃𝑁! 𝑃! 𝐵! + 𝑓!"#𝑃𝑅! 𝐴𝑁𝐶! 

 
𝑁𝑂!𝐴! = 𝑃𝑁! − 1 𝑃!𝐵!𝐴𝑁𝐶! 
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𝑑𝑁𝐻!!

𝑑𝑡 = 𝑁𝐻!𝐴! +  𝑘𝐷𝑂𝑁!  𝜃!"#  𝐷𝑂𝑁! − 𝑁𝑇 + 𝐷𝐸𝑁𝐼𝑇!𝐷𝑂𝑁! + 𝑝𝑑𝐷𝑂𝐶!,! 𝑁𝐶!" 
 

𝑑𝑁𝑂!!

𝑑𝑡 = 𝑁𝑇 − 𝑁𝐶!"#$%𝐷𝐸𝑁𝐼𝑇! − 𝑁𝑂!𝐴! 
 

Variable/ 
Parameter 

Description Value Units 

𝜃!",!"# Sub-optimal temperature control on 
nitrification 

calculated dimensionless 

ktnt,1 Sub-optimal temperature coefficient on 
nitrification 

0.030 ℃-2 

Tnt,ref Reference temperature for nitrificationa 35.0 ℃ 

𝜃!",!"# Super-optimal temperature control on 
nitrification 

calculated dimensionless 

ktnt,2 Super-optimal temperature coefficient on 
nitrificationa 

0.030 ℃-2 

NT NH4
+ loss from nitrification* calculated g N m-3 d-1 

khont Half saturation of Oxygen control on 
nitrificationa 

0.10 g O2 m-3 

khnnt Half saturation of NH4
+ on nitrification 0.01 g N m-3 d-1 

NTm Maximum nitrification rate 0.20 d-1 

NPa Production of NH4
+ from algal respiration calculated g N m-3 d-1 

NH4Aa Algal contribution to NH4
+ calculated g N m-3 

fnip Fraction of predation that is NH4
+ 0.10 dimensionless 

NO3Aa Algal contribution to NO3
- calculated g N m-3 

dNH4
+  dt-1 Change in NH4

+ over time calculated g N m-3 d-1 

dNO3
- dt-1 Change in NO3

- over time calculated g N m-3 d-1 

NCdenit Nitrogen to Carbon ratio of Denitrificationa 0.933 g N g C-1 
 

a. Cerco and Noel 2017 
*Nitrification formulated updated to include NH4

+ as a limiting reactant (1st order) rather 
than using the old 0-order equation. This more accurately reflects the substrate limiting 
nitrification. 
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Appendix VII 
 
Equations governing dissolved oxygen dynamics 
 

𝐷𝑂𝑅! = ((1.3− 0.3𝑃𝑁!)𝑃! − (1− 𝑓!"#)𝐶𝑃𝐶!) 𝐴!"#  𝐵! 
 

𝐷𝑂𝑃! = 𝑓!"#𝑃𝑅!𝐴!"# 
 

𝑑𝐶𝑂𝐷
𝑑𝑡 =  −

𝑂!
𝑘ℎ!"!# + 𝑂!

𝑘!"#𝑒[!"!"#(!!!!"#,!"#)]𝐶𝑂𝐷 

 

𝑅! = 0.54 +  
0.7𝑇
30 −

0.07𝑆
35  

 
𝐾!"# = 𝛼!"#!(𝛽!"#!  𝑢!"#$)!!"#!𝑅! 

 

𝐷𝑂! = 14.5532+ 𝑇(0.0054258𝑇 − 0.38217)−
𝑆

1.08655 [0.1665+ 𝑇(0.00009796𝑇
− 0.005886)] 

 

𝐷𝑂!"#! = 86400
𝐾!"#
𝛥𝑧!"#$

(𝐷𝑂! − 𝑂!)  

𝑑𝑂!
𝑑𝑡 = 𝐷𝑂𝑅! + 𝐷𝑂𝑅! − 𝐷𝑂𝑃! − 𝐷𝑂𝑃! − 𝑘𝐷𝑂𝐶!𝜃!𝐷𝑂𝐶!𝐴!"#

!

!!!

 +
𝑑𝐶𝑂𝐷
𝑑𝑡 − 𝐴!"#𝑁𝑇

− 𝐷𝑂!"#! −
𝑆𝑂𝐷 
𝛥𝑧!"#

 

 
 

Variable/ 
Parameter 

Description Value Units 

DORa Dissolved Oxygen from primary production and 
respiration of algae a 

calculated g O2 m-3 d-1 

Aocr Oxygen to carbon ratio for production and 
respiration 

2.667 g O2 g C-1 

DOPa Dissolved oxygen loss from predation calculated g O2 m-3 d-1 

fdop Fraction of  algal predation that is respiration 0.20 dimensionless 

dCOD dt-1 Change in Chemical oxygen demand (COD) over 
time 

calculated g O2 m-3 d-1 

khocod Half saturation of O2 for CODa 0.10 g O2 m-3 
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kcod Rate of COD oxidationa 20.0 d-1 

ktcod Temperature control of COD oxidationa 0.041 ℃-1 

Tcod,ref Reference temperature for COD oxidation 23.0 ℃ 

COD Chemical oxygen demand calculated g O2 m-3 

R𝜈 Ratio of kinematic viscosity of pure water at 20 
℃ to kinematic viscosity at modeled temperature 

and salinity 

calculated dimensionless 

Krdo Oxygen reaeration velocityb calculated m d-1 

𝛼rear Reaeration coefficient 1 0.08 m s-1 

𝛽rear Reaeration coefficient 2 1.0 s m-1 

uwind Surface wind velocity forced m s-1 

𝛾rear Reaeration coefficient 3 1.5 dimensionless 

DOs Empirical relationship for oxygen saturation at 
modeled temperature and salinity 

calculated g O2 m-3 

DOrear Reaeration rate of dissolved oxygenc,* calculated g O2 m-3
 d-1 

𝛥zsurf Surface layer thickness calculated m 

dO2 dt-1 Change in dissolved oxygen concentration over 
time 

calculated g O2 m-3 d-1 

Aont Oxygen to NH4
+ uptake ratio for nitrification 4.33 g O2 g N-1 

SOD Sediment oxygen demandc,** calculated g O2 m-2 d-1 

𝛥zbot Bottom layer thickness calculated m 
 
 

a. Cerco and Noel 2017 
b. Wanninkhof 2014 
c. Stumm and Morgan 2012 
d. Testa et al., 2013 for details 

*Only calculated in surface layer of water column 
**Only calculated in bottom layer of water column 
 

Appendix VIII 
Inorganic suspended sediment mass balance and resuspension formulations 
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𝑈∗ =
𝜅(𝑈! + 𝑉!)!.!

𝑙𝑜𝑔(𝛥𝑧!"#𝑅!!!)
 

 
𝜏 = 𝜌𝑈∗! 

 
𝑑𝐼𝑆𝑆
𝑑𝑡 =

𝑊𝑆!  𝐼𝑆𝑆!!! −𝑊𝑆!  𝐼𝑆𝑆! 
𝛥𝑧 +𝑀!(𝜏 − 𝜏!"#$) 

 
 

Variable/ 
Parameter 

Description Value Units 

U* Boundary layer bottom friction velocity calculated m s-1 

𝜅 Von Karman’s constant 0.41 dimensionless 

U East-West Velocity in bottom layer calculated m s-1 

V North-South Velocity in bottom layer calculated m s-1 

Rh Roughness height of bottom sediment 0.002 m 

𝜏 Shear stress in sediment-water column boundary 
layer 

calculated pa 

⍴ Water densitya calculated kg m-3 

dISS dt-1 Change in inorganic suspended sediment over time calculated g m-3 d-1 

WSi Inorganic suspended sediment sinking velocity 1.5 m d-1 

ISSz-1 ISS concentration in layer above calculated g m-3 d-1 

ISSz ISS concentration in layer below calculated g m-3 d-1 

Mr Resuspension mass ratea 0.005 g m-2 d-1 

𝜏crit Critical shear stressa 0.005 pa 
 

a. Xu and Hood, 2006 
 
The general formula applied here (Law of the Wall) utilizes as simple formulation to 
calculate resuspension of inorganic sediment. If the critical shear stress (𝜏crit=0.005 pa) is 
exceeded, sediment is added back into the water column in the bottom layer at a rate of 
0.05 g m-2 s-1 (Xu and Hood, 2006). The model assumes an inexhaustible sediment 
supply. The critical shear stress resuspension formula is also applied to POC and PON, 
applying Mr directly to POC and scaling it by a factor of 10 to PON. 
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Figures Chapter 5 

 
 
 

 
Figure 5.1 (a) RhodeFVM model domain extending from the William Preston Lane 
Memorial (Chesapeake Bay) Bridge in the north to Poplar Island in the South, (b) 3-
dimensional bathymetric rendering of (a) showing three Chesapeake Bay Program (CBP) 
stations used for model tuning and validation and (c) the Rhode River with the 
Kirkpatrick Marsh at the head of the tributary and the eight watershed inflows depicted 
with X’s. CBP stations XGE3275 and WT8.2 are shown which were used for modeling 
tuning and validation. Contours represent model depth. These figures were generated 
using Tecplot 360.  
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Figure 5.2 Model Conceptual Diagram with an emphasis placed on transformations 
related to colored and non-colored dissolved organic matter (CDOM and NCDOM; both 
C and N). The potential coagulation pathway and hydrolytic pathway between DOM and 
particulate organic matter (POM) is highlighted by a red arrow, and the photochemical 
reaction pathway is highlighted by a violet arrow. All reaction terms and parameters are 
defined in the Appendices. 
 
 
  

Algae1,2

Remin.

O2
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Figure 5.3 Specific absorption spectra for (a) colored dissolved organic carbon (CDOC) 
1-3 and (b) water, particles, and chl a. Curves in (b) were taken from Rose et al. (2018) 
and interpolated to the 1 nm interval. 
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Figure 5.4 Regression of fraction of forest cover with the particulate organic carbon to 
nitrogen ratio (C:N); Final equation is C:N = 4.78x + 11.27 where x is  fraction of the 
watershed that is forest. 
 
 

 
Figure 5.5 The spectral distribution of light at 100 W m-2 of incident irradiation. 
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Figure 5.6 Model-observation comparisons for station WT8.2 (a,b) and station XGE3275 
(c,d). Contours represent model output for dissolved organic carbon (DOC) in time, while 
each dot represents an observation.  
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Figure 5.7 Model-observation comparison along the transect in Figure 1c for (a) 
dissolved organic carbon (DOC) and (b) colored dissolved organic matter (CDOM) 
absorbance at 440 nm (a440).  Observations were collected at various times during ebb 
tide phase and averaged. The model output is at an hourly interval for July 2005 when the 
change in tidal elevation, dz dt-1, was less than the median change in tidal elevation for all 
ebb tides (dz dt-1 < -2.16 cm hr-1; n=153). Collection methods and analytical techniques 
can be found in Tzortziou et al., (2011) and Logozzo (2017). Modeled a440 is the product 
of the specific absorption of each colored DOC class (1-3) at 440 nm (m2 g C-1) and 
colored DOC concentration (g C m-3). 
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Figure 5.8 Model (contours) and Chesapeake Bay Program observations (circles) for 
stations WT8.2 (upper) and XGE3275 (lower) for dissolved organic nitrogen (a,b)(g N m-

3), dissolved oxygen (c,d) (g O2 m-3), chlorophyll a (e,f)(mg chl a m-3), NH4
+ (g,h)(g N m-

3), NO3
- (i,j)(g N m-3) and particulate organic carbon (POC)(k,i)(g C m-3). Observed POC 

is estimated from measured values of particulate organic nitrogen and converted to 
carbon units using a ratio of 5.67 g C g N-1. 
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Figure 5.9 Average marsh-estuary (a) dissolved organic carbon flux (JDOC) and 
particulate organic carbon flux (JPOC). A positive flux is out of the marsh, negative flux 
into the marsh.  The orange line represents the low pass frequency filtered flux using a 
period of 14 days as the filter cutoff frequency. The grey line is the instantaneous average 
flux taken at an hourly interval. 
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Figure 5.10 The complete dissolved organic carbon (DOC) budget for the Rhode River 
tributary (Figure 1c). Each bar represents the cumulative DOC sources (positive) or sinks 
(negative) for DOC over April 1 – November 30, 2005. The total is the sum of the three 
reactivity classes. From left to right, the terms are defined as the marsh sediment-water 
column DOC flux (Marsh JDOC), estuarine sediment-water column DOC flux (Estuary 
JDOC), planktonic algal derived DOC from both exudation and predation (Algae DOC), 
hydrolysis of particulate organic carbon to DOC, denitrification loss of DOC, 
heterotrophic remineralization of DOC, abiotic photochemical remineralization of DOC, 
riverine inputs from the watershed of DOC, photochemical transformation of DOC 
between colored and non-colored pools and reactivity classes, photochemical loss of 
DOC (inverse of production), the change in DOC concentration over the model time 
period (ΔDOC) and the flux between the Rhode River and the main stem of the model 
domain (MainStem). 
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Figure 5.11 Difference network between the model scenarios with (+M) and without (-
M) marsh dissolved organic matter (DOM) inputs and NH4

+ uptake. The dashed lines 
represent processes that are unchanged, orange arrows represent processes that decreased 
under the –M scenario, black arrows represent processes that increased under the –M 
scenario. The width of the arrow represents the total difference between the two scenarios 
(tons C) over the 242-day model time period. 
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Figure 5.12 (a) The average difference in DOC concentration between the +M and –M 
scenarios and a transect line (for b-h) used to calculate the concentration gradient in the 
+M and –M scenarios and the difference (Diff.) between the two for (b) CDOC1, (c) 
CDOC2, (d) CDOC3, (e) total DOC, (f) NCDOC1, (g) NCDOC2, and (h) NCDOC3. The 
dashed lines on b-h represent the cutoff for the section of the Rhode River used in the 
budget analysis. 
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Figure 5.13 Absolute difference in nitrogen budgets for runs with (+M) and without (-M) 
the marsh for (a) ammonium (NH4

+), (b) nitrate (NO3
-) and (c) dissolved organic nitrogen 

(DON) for the Rhode River integrated from April1st – November 30th, 2005. Terms in 
regular print are sources while terms in bold are sinks.  
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Figure 5.14 The average difference between runs with and without the marsh (+M minus 
–M) for mid-water column (a) ammonium (NH4

+), (b) nitrate (NO3
-), (c) depth integrated 

net primary production (NPP) and (d) mid-water column photosynthetically active 
radiation (PAR). 
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Figure 5.15 Percent dissolved organic carbon (DOC) contribution from the marsh to the 
gross DOC production and estuarine DOC stock within the Rhode River modeled as a 
function of the estuary volume to marsh area ratio (EV:MA). The model function was 
derived using a generalized logarithmic linear model predicted by the five segments from 
the Rhode River and extrapolated to estimate the marsh DOC contribution based on the 
EV:MA for the entire Chesapeake Bay (59.6 m, dashed line). Diamonds indicate model-
extracted values for each segment. (p value for % GDP = 0.002, p value for stock = 
0.001) 
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Tables Chapter 5 

 
Table 5.1 Model statistics for the two stations in the Rhode River, MD 
 

Station WT8.2       
Variablea MEFb rc RMSEd MPEe WMSf RIg nh 

DOC 0.21 0.82 0.37 (g m-3) 2.44 0.86 1.11 23 
chl a -0.38 0.23 17.97 (mg m-3) 2.00 0.30 2.14 23 
DO -0.25 0.41 2.26 (g m-3) -21.75 0.61 1.40 55 

DON 0.08 0.51 0.08 (g m-3) -10.61 0.66 1.22 23 
NH4

+ -0.22 -0.03 0.07 (g m-3) -29.95 0.32 14.23 23 
NO3

- -0.39 0.13 0.20 (g m-3) 71.95 0.45 76.77 23 
POC -1.35 -0.19 1.48 (g m-3) 27.36 0.39 2.18 23 

Salinity 0.38 0.92 2.56 -34.20 0.78 1.46 55 
Temperature 0.85 0.93 2.22 (°C) -1.11 0.96 1.14 55 

Station XGE3275       
DOC 0.43 0.82 0.42 (g m-3) 3.33 0.88 1.12 23 
chl a -0.40 -0.12 23.11 mg m-3) -10.49 0.35 2.57 23 
DO -0.60 0.49 2.61 (g m-3) -51.54 0.57 1.65 82 

DON -0.02 0.34 0.11 (g m-3) 0.38 0.55 1.26 23 
NH4

+ -1.14 0.03 0.10 (g m-3) -763.6 0.33 6.84 23 
NO3

- 0.31 0.71 0.14 (g m-3) -42.44 0.68 246.5 23 
POC -2.46 0.02 1.84 (g m-3) 44.54 0.40 2.44 23 

Salinity 0.51 0.92 2.18 -26.98 0.83 1.38 82 
Temperature 0.91 0.96 1.71 (°C) -2.20 0.98 1.10 82 

a. Observational data collected by the US Environmental Protection Agency 
Chesapeake Bay Program Water Quality Database for the year 2005. Each 
comparison is for the closest matching time and depth for the model output and 
the observational data. Chlorophyll a (chl a), dissolved organic carbon and 
nitrogen (DOC and DON), dissolved oxygen (DO), Ammonium (NH4

+), nitrate 
(NO3

-), salinity and temperature were all measured directly, while particulate 
organic carbon was estimated from particulate organic nitrogen using a C:N ratio 
of 5.67 (g C : g N). 

b. Model efficiency (MEF), values greater than 0.0 are better than the mean at 
recreating any observation (Loague and Green, 1991; Stow et al., 2009) 

c. Coefficient of variance (r), a value of 1 is a perfect match between model and data 
d. Root mean square error (RMSE) 
e. Mean percent error (MPE), the sign indicates whether the model is less than 

(positive) or greater than (negative) observations on average  
f. Willmott Skill (Willmott, 1981) 
g. Reliability Index (RI) indicates the factor by which model data varies from 

observational (Leggett and Williams, 198l; Stow et al., 2009)   
h. Number of observations 
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Table 5.2 Model statistics for the Main Stem of Chesapeake Bay 

Station CB4.1C       
Variablea MEFb rc RMSEd MPEe WMSf RIg nh 

DOCi -0.13 0.30 0.30 (g m-3) -2.26 0.56 1.18 46 
chl a 0.09 0.36 15.15 (mg m-3) -160.4 0.30 3.22 46 
DO -0.21 0.54 3.64 (g m-3) -706.5 0.67 6.17 130 

DON -1.22 0.27 0.06 (g m-3) -18.15 0.45 1.25 46 
NH4

+ 0.43 0.69 0.10 (g m-3) -286.5 0.75 5.98 46 
NO3

- 0.18 0.48 0.21 (g m-3) -343.1 0.62 11.2 46 
POCi -0.66 -0.14 1.74 (g m-3) -271.6 0.32 3.66 46 

Salinity -0.17 0.71 3.85 -27.95 0.61 1.38 130 
Temperature 0.81 0.97 2.95 (°C) -13.86 0.96 1.18 130 

Station CB4.1E       
DOCi 0.13 0.39 0.39 (g m-3) -7.48 0.50 1.23 31 
chl a -0.09 -0.05 13.27 mg m-3) -259.6 0.16 3.93 31 
DO -0.75 0.33 4.30 (g m-3) -797.2 0.55 6.52 101 

DON -0.49 0.43 0.07 (g m-3) -23.03 0.51 1.31 31 
NH4

+ -0.13 0.45 0.14 (g m-3) -357.7 0.55 4.26 31 
NO3

- 0.28 0.63 0.21 (g m-3) -427.2 0.64 16.7 31 
POCi -1.28 -0.41 1.46 (g m-3) -348.0 0.27 3.87 31 

Salinity -0.67 0.69 4.31 -36.63 0.58 1.45 101 
Temperature 0.85 0.97 2.86 (°C) -11.62 0.97 1.17 101 

Station CB4.1W       
DOCi 0.03 0.29 0.36 (g m-3) -5.34 0.54 1.22 22 
chl a 0.03 0.27 10.1 (mg m-3) -73.89 0.43 2.43 22 
DO -0.76 0.34 3.62 (g m-3) -14.87 0.58 1.88 83 

DON -0.66 0.48 0.07 (g m-3) -22.15 0.55 1.29 22 
NH4

+ -0.96 0.29 0.12 (g m-3) -171.5 0.53 5.81 22 
NO3

- 0.19 0.68 0.31 (g m-3) -37.09 0.67 398.5 22 
POCi -1.27 -0.37 1.33 (g m-3) -152.5 0.33 2.61 22 

Salinity -3.26 0.85 6.39 -89.39 0.50 1.94 83 
Temperature 0.93 0.97 1.92 (°C) -1.20 0.98 1.11 

 
83 

a. Observational data collected by the US Environmental Protection Agency 
Chesapeake Bay Program Water Quality Database for the year 2005. Each 
comparison is for the closest matching time and depth for the model output and 
the observational data. Chlorophyll a (chl a), dissolved organic carbon and 
nitrogen (DOC and DON), dissolved oxygen (DO), Ammonium (NH4

+), nitrate 
(NO3

-), salinity and temperature were all measured directly, while particulate 
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organic carbon was estimated from particulate organic nitrogen using a C:N ratio 
of 5.67 (g C : g N). 

b. Model efficiency (MEF), values greater than 0.0 are better than the mean at 
recreating any observation (Loague and Green, 1991; Stow et al., 2009) 

c. Coefficient of variance (r), a value of 1 is a perfect match between model and data 
d. Root mean square error (RMSE) 
e. Mean percent error (MPE), the sign indicates whether the model is less than 

(positive) or greater than (negative) observations on average  
f. Willmott Skill (Willmott, 1981) 
g. Reliability Index (RI) indicates the factor by which model data varies from 

observational (Leggett and Williams, 198l; Stow et al., 2009)   
h. Number of observations 

 

  

 
 
 

 

 



 

 222 
 

Conclusion and Future Research Directions 

 
This study offers a detailed look at carbon, and specifically the cycling of organic 

carbon within an estuarine ecosystem. The first two research chapters focused on 

developing methods to incorporate specific important processes into a modeling system 

that were previously unrepresented with any detail, if at all. Next, physical and 

biogeochemical cycles were identified and quantified for the case-study ecosystem, the 

Rhode River, MD. The Rhode River is similar to many estuarine systems found in 

populated watersheds, therefore it is founded to draw some general conclusions from this 

work. Here, I provide a brief summary of each chapter with some potential future 

research questions and directions related to each. 

Chapter 2 predicted that estuarine sediment organic carbon fluxes are potentially 

important, especially in shallow estuarine ecosystems such as Chesapeake Bay. 

Sediment-water column fluxes of DOM are highly variable on seasonal and interannual 

scales, with substantial variability among stations in both magnitude and flux direction. 

Semilabile and inert DOM was lost and labile DOM was taken up into the reactive first 

layer of the sediment, with the net flux out of the sediment a balance of the two 

processes. The modeling results are striking in that they predict a much larger flux than 

what has previously been measured, and that the sediment is effectively decreasing the 

reactivity of the overlying water column DOC. The results from Chapter 2 are potentially 

testable in a laboratory and in situ in an estuarine environment. First, the flux can be 

measured using an approach that is similar to the widespread measurements of inorganic 

nitrogen (Boynton and Bailey, 2008; Cowan and Boynton, 1996) and previous 
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measurements of DOC (Burdige and Homstead, 1994). These flux measurements can be 

paired with geochemical analysis to characterize the molecular composition of the DOC 

in the overlying water column and the sediment porewater. Sediment porewater contains 

DOM with specific optical and molecular characteristics (Burdige et al., 2004; Burdige 

and Gardner, 1998) and these geochemical measurements can be extended into the water 

column. In light of the model results, measurements that can confirm the prediction of 

both flux direction (depending on biological reactivity) and magnitude can then be 

incorporated into larger regional and potentially global estuarine organic carbon budgets. 

Chapter 3 used a new photochemical degradation model paired with laboratory 

experiments to better understand and predict the transformation of CDOM by the 

absorption of UV-Visible light. The model predicted rates that are similar to 

measurements from many different environments, and was successfully parameterized to 

represent the loss in color (absorption of light) over time. Furthermore, the model could 

accurately recreate an independent test data set that was not used in the parameterization, 

indicating its robustness in simulating photochemical degradation in an estuarine 

environment. Moving forward, DOM-PD can now be used by the scientific community in 

other systems where observational data exists to parameterize the model. When coupled 

with an ecosystem model, it offers a powerful tool to more accurately represent the 

important transformation of DOM by light. The model can also be generalized so that it 

isn’t necessarily limited to the coastal ocean. This could  be done by including an open 

ocean, highly photodegraded CDOC pool. Key to this addition is understanding how 

photochemical degradation can also decrease the biological reactivity of DOM after 
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exposure, a pathway that is coarsely represented (and unconstrained) in the current 

modeling framework. 

Chapter 4 looked at the physical mechanisms behind the curiosity that fDOM 

observations at a marsh creek were strongly correlated with salinity and in turn wind 

velocity. A 3-D hydrodynamic model was built for the Rhode River to understand how 

changes in wind direction can drive changes in salinity at the marsh creek. Because 

observations of fDOM and salinity showed a tight correlation in spring and fall, the 

modeled salinity variability can be used to infer how the wind velocity would also affect 

fDOM. The model results exhibited an interaction between wind driven variation in 

surface elevation and flow velocity at the marsh creek, with northerly winds driving 

increased freshwater signal and discharge out of the modeled wetland during 

precipitation events. Wind setup of a water surface elevation gradient axially along the 

estuary drives the modeled local sub-tidal flow and thus salinity variability.  On sub-tidal 

time scales (>36 hours, < 1 week) wind is important in mediating dissolved organic 

matter releases from the Kirkpatrick Marsh into the Rhode River. To further understand 

how changes in wind drive changes in flow in tidal marshes, the modeling system should 

be expanded spatially to incorporate non-local effects such as variations in sea level at the 

coastal ocean. An FVCOM model already exists that includes Chesapeake and Delaware 

Bays and the continental shelf, but tidal wetlands are currently unresolved. A top priority 

moving forward is to include tidal wetlands in this regional model so that physical drivers 

associated with changes in wind direction (and other weather and climate variables) can 

be assessed on a larger scale.  
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Chapter 5 used the research from the first three chapters to build a sophisticated 

wetland-estuarine carbon cycle model for a representative estuarine ecosystem. The 

modeling system was used to produce a comprehensive organic carbon budget with 

unprecedented detail. Tidal wetlands and watershed inputs accounted for ~25% of the 

input of dissolved organic carbon (DOC) into the tributary, with 61.9% coming from 

phytoplankton production. 95.7% of the POC within the tributary originated from algal 

production and subsequent mortality, with 19.93 tons of POC exported from the Rhode 

River to the mainstem over the warm seasons of 2005. Overall 87.32 tons of DOC was 

exported to the mainstem, which accounted for 34.2% of the total allochthonous and 

autochthonous inputs to the tributary. Removing the wetland at the head of the tributary 

decreased export of DOC to the mainstem by 20.9%. Furthermore, by removing the 

marsh, total nitrogen in the tributary decreased, while dissolved oxygen increased. A 

geographic relationship derived from the Rhode River modeling system indicated that 

tidal wetlands may contribute ~13% of the total DOC stock of Chesapeake Bay. Moving 

forward, the RhodeFVCOM-ICM system should be updated to contemporary years 

(2015-2017) where high temporal resolution measurement data exists for multiple 

biogeochemical variables at the marsh creek. A top priority with the Rhode River model 

is to understand how variation in tidal forcing on longer time scales (spring-neap 

variability) drives changes in DOM export. With changes in sea level and shoreline 

management strategy, the tides of Chesapeake Bay could change significantly (Lee et al., 

2017). Thoroughly understanding how complex tidal cycles can govern DOM and solute 

exchange is important to predict how wetland inundation and carbon export will manifest 
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in the future. The model coupled with high resolution observations can address these 

questions. 

To advance our understanding of estuarine carbon cycling, the updated ICM-

DOM-PD modeling system should be coupled with the regional FVCOM model on the 

estuary and continental shelf scale (see above) to simulate carbon cycling in wetlands and 

estuaries on a large scale. A large scale model can be used to better constrain the carbon 

budget for an important region on the East Coast of the United States. In addition, the 

inorganic carbon cycle should also be included to quantify the full carbon cycle. 

Dissolved inorganic carbon and alkalinity modules already exist and can be included in 

the current iteration of RhodeFVCOM. Furthermore, a dynamic marsh growth and death 

model could also be included to more realistically represent how a marsh plant 

community might change over time. This further enhanced modeling system could then 

be used in longer term studies related to climate change projections to understand how 

increased atmospheric CO2 drives changes in marsh plant community and inorganic 

carbon cycling in the water column. A long term goal is to develop a regional model that 

includes all relevant inputs and outputs that can be used to make climate change 

projections for both tidal wetlands and estuaries. This would require substantial human 

resources and computer infrastructure, but should be a priority over the next decade.  

Estuaries are complex ecosystems. Quantifying the cycling of any material, plant, 

or animal within them is challenging. The importance of estuaries, however, and the role 

they play at the intersection of the land and the sea, and the intersection of humans and 

nature, means that understanding them is extremely important. This dissertation has 

offered a detailed analysis of a specific, relatively small tributary of Chesapeake Bay, and 
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has produced some general results related to carbon cycling in coastal systems. To 

advance our understanding of the coastal ocean in a more holistic way, the model 

developed here should be used in more diverse ecosystems, where data permits. Tidal 

wetlands have an outsized influence on the total DOC within Chesapeake Bay relative to 

their contribution to the total DOC inputs. Other more oligotrophic estuaries with a larger 

amount of marsh relative to estuary will be more heavily influenced by tidal marshes. 

Developing empirical relationships that can relate not only geographic characteristics but 

also trophic status and physical forcing (e.g., tidal range) is the next step to scaling up 

carbon budgets from small representative ecosystems to large areas. Every estuary is 

different, but with a well parameterized model processes that are difficult to measure can 

be estimated. 
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