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A rich set of experimental and high fidelity simulation data is available to

improve Reynolds Averaged Navier Stokes (RANS) models of turbulent flow. In

practice, using this data is difficult, as measured quantities cannot be used to im-

prove models directly. The Field Inversion and Machine Learning (FIML) approach

addressed this challenge through an inference step, in the form of an inverse prob-

lem, which treats inconsistencies between the models and the data in a consistent

manner. However, a separate learning algorithm is not always able to be learned

from the generated inverse problem data accurately. Two new methods of incor-

porating higher fidelity data into RANS turbulence models via machine learning

are proposed and applied for the first time in this thesis. Both build on the FIML



framework by performing learning during the inference step, instead of considering

the inference and learning steps separately as in the classic FIML approach.

The first new approach embeds neural network learning into the RANS solver,

and the second trains the weights of the neural network directly. Additionally, for

the first time, the inverse problem can incorporate higher fidelity data from multiple

cases simultaneously, promising to improve the generalization of the augmented

model. The two new methods and the classic approach are demonstrated with a

simple model problem, as well as a number of challenging RANS cases. For a 2D

airfoil case, all three FIML augmentations are shown to improve predictions, with

the new methods demonstrating increased regularization. Additionally, a model

augmentation is generated by considering seven angles of attack of an airfoil in the

inference step, and the augmentation is shown to improve predictions on a different

airfoil. Additional cases are considered including a transonic shock wave boundary

layer interaction and the NASA wall-mounted hump. In all cases, the inference is

shown to improve predictions. For the first time, the inverse problem accounts for

the limitations of the learning procedure, guaranteeing that the model discrepancy

is optimal for the chosen learning algorithm. The results in this thesis prove that

learning during the inference step provides additional regularization, and guarantees

the inference produces learnable model discrepancy.
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Chapter 1: Introduction

1.1 Motivation

Many practical fluid dynamic applications require the accurate characteriza-

tion of the dynamics of turbulent boundary layers. Even simple flows, such as

incompressible flow over an airfoil, can require accurate modeling of boundary layer

effects to accurately predict the lift and drag even at moderate angles of attack.

Other examples are readily available, such as shock wave turbulent boundary layer

interactions (SWTBLI). Computational Fluid Dynamics (CFD) is commonly se-

lected to analyze these cases; but, unfortunately turbulence modeling for CFD is

notoriously difficult. Despite immense effort and resources many practical engi-

neering applications are still difficult to predict computationally. The continued

accelerating growth of computational power predicted by Moore’s law has enabled

the development of modeling applications with higher fidelity and potential accu-

racy, such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

However, LES remains out of reach for most practical engineering applications, intro-

duces additional modeling uncertainties, and still requires immense computational

resources. DNS has incredible usefulness for providing the exact solution but will

remain out of reach for anything but the simplest applications for decades. RANS
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modeling will remain essential for fluid dynamics predictions, yet progress in RANS

accuracy improvements has been frustratingly slow. Experiments, DNS, and LES

have provided a wealth of information to leverage for turbulence modeling; unfortu-

nately RANS models have yet to see substantial gains by incorporating inferences

from these more fundamental sources of information.

Machine learning provides an exciting new avenue to incorporate inferences

from these higher fidelity simulations and experiments into RANS simulations, to

increase accuracy and reliability. It has been demonstrated, that by careful problem

definition, corrections to RANS models can be generated for the fluid dynamic

problem of interest to the modeler. These model discrepancies can be used by the

modeler to improve RANS predictions. Additionally, by leveraging machine learning

methods a machine learned model can be generated that corrects and augments the

turbulence model in a predictive environment. The application of these machine

learning methods is not intended to replace the modeler, but rather provide an

avenue of generating inferences and incorporating patterns that are critical to RANS

accuracy, but may not be apparent to the modeler through other traditional analysis

techniques. In summary, the lack of higher order CFD techniques for high-Reynolds

number flows and the difficulty of incorporating higher fidelity data into RANS

models provides strong motivation for developing methods of inferring corrections

and augmenting existing models using machine learning.
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1.2 Physical Problem

Viscosity slows the fluid at the wall to zero when fluid flows over a wall. In

a thin layer near the wall, a velocity profile develops where the velocity is zero at

the wall and increases in velocity away from the wall until it reaches its freestream

value. This thin layer where viscous effects are critical is known as the boundary

layer and its concept is attributed to Prandtl [5]. Boundary layers can be divided

into two types: laminar and turbulent. Laminar boundary layers are characterized

by the streamlines of the fluid being largely parallel to the wall with little mix-

ing between the layers of the boundary layer and negligible motion normal to the

wall. Laminar boundary layers can be destabilized through a variety of mechanisms

(surface roughness, freestream turbulence, curvature, etc) resulting in transition to

turbulent boundary layers. Transition is the process by which the ordered, parallel

streamlines of the laminar boundary layer destabilize into the disordered, chaotic

structure of the turbulent boundary layer.

Despite being contained in a very thin layer near the wall, the turbulent bound-

ary layer is responsible for numerous important fluid dynamic phenomena. Due to

increased mixing in the turbulent boundary layer, the higher momentum from layers

farther from the wall is thrown closer to the wall. This creates an increased velocity

gradient near the wall, resulting in increased skin friction and heat transfer. Ad-

ditionally, the boundary layer can separate when subjected to an adverse pressure

gradient. Turbulent boundary layers are less susceptible to boundary layer separa-

tion due to the increased momentum near the wall, which counteracts an adverse
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pressure gradient. This effect is important both for airfoils at high angles of attack

and for shock boundary layer interactions, as the boundary layer in both cases is

subjected to a strong adverse pressure gradient.

1.3 A Brief History of Turbulent Boundary Layer Analysis

Reynolds first distinguished between laminar and turbulent flows with his

famous experiments in 1883. He observed dyed fluid in pipes and noted the point

at which the dye became irregular (where the fluid transitions from laminar to

turbulent flow). Through dimensional arguments and observations he discovered

the now ubiquitous Reynolds number [6].

Re =
ρUL

µ

This dimensionless quantity measures the ratio of the inertial forces (numer-

ator) to the viscous forces (denominator). Reynolds observed that the flow in a

pipe transitions to turbulence at particular Reynolds numbers, and additionally ob-

served that the transition location is particularly dependent on the upstream flow

conditions (i.e. transition location dependent on upstream disturbances) [6] [7].

The concept of the “law of the wall”, first presented by von Kármán, was

developed from first principles and observations and was quickly accepted. This

foundational work presented a simple relation describing the velocity profile of tur-

bulent boundary layers [8]. Subsequent experiments, such as the experiments of

Coles, found experimental values for the constants in the relation to calibrate the
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theory. The theory has been widely accepted and forms the basis and rationale for

numerous computational models, including RANS turbulence models. Despite the

ubiquitous nature of the law of the wall it is still the subject of some controversy.

There is still significant debate over the constants of the theory, or even if the law of

the wall is valid in a general sense. The debate is perhaps best explained by George

[10].

Turbulent boundary layer analysis has increasingly made use of high fidelity

simulations, due to the continuous advancement of computational resources. The

first fully resolved DNS simulations of a turbulent channel were presented by Kim

et al. [11]. This data is extremely valuable, and DNS data has in general proven to be

the most accurate way of analyzing and understanding turbulent physics. Unfortu-

nately, due to computational limitations DNS remains far out of reach for practical

Reynolds numbers. Experiments can measure flows with Reynolds numbers far out

of reach of DNS simulations, but physical limitations of experimental methods still

prevent direct measurement of turbulent statistics from Reynolds numbers relevant

to large aircraft [10].

1.4 Physics of Boundary Layers

Turbulent boundary layer analysis is a rich field with an immense volume of es-

tablished research and thought. This section briefly introduces the terminology and

underlying physical principles of turbulent boundary layer analysis and modeling.
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1.4.1 Turbulent Boundary Layer Structure

The fluid dynamics of a turbulent boundary layer are extremely complex. It is

often useful to analyze the turbulent boundary layer by looking at the mean velocity

profile. The instantaneous velocity in a turbulent boundary layer is chaotic, but in

a mean sense the velocity will be nearly parallel to the wall similar to the laminar

boundary layer. Thus, we can simplify the velocity field to a mean velocity profile

Ū(y) along the wall with y being the distance from the wall. These are dimensional

variables but typically boundary layer velocity profiles are analyzed using the non-

dimensional plus coordinates:

y+ =
Uτy

ν
(1.1)

U+ =
Ū

Uτ
(1.2)

Uτ ≡
(
τw
ρ

)
(1.3)

Where ν is the kinematic viscosity and τw is the shear stress at the wall. By

noting that the mean velocity profile near the wall will depend on the distance to

the wall (y), the shear stress at the wall (τw), the kinematic viscosity (ν), and the

fluid density (ρ) from dimensional analysis we can find the law of the wall, which

concludes that the mean velocity profile (Ū) will be a function of the distance from

the wall [12].
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U+ = f(y+) (1.4)

Nearest to the wall the viscous forces dominate in a region commonly referred

to as the viscous sublayer. In this region (in plus coordinates) the mean velocity is

equivalent to the distance from the wall (U+ = y+). At approximately y+ ≈ 5 there

begins a buffer layer which connects the viscous sublayer to the log-law region.

von Kármán first proposed the since widely accepted logarithmic law of the

wall [8]. From first principles the law of the wall can be written:

U+ =
1

κ
ln y+ +Bi (1.5)

Conceptually, in plus coordinates, the turbulent boundary layer velocity profile

is illustrated in Figure 1.1.

1.4.2 Factors Affecting Turbulent Boundary Layers

Boundary layer analysis is more difficult when considering more practical engi-

neering flows, such as turbulent flow over an airfoil, or the reaction of the boundary

layer to a sudden increase in pressure from a shock wave. Many factors can influence

a turbulent boundary layer, and some of these factors are introduced in this section.

Real walls are not perfectly smooth, and naturally a viscous fluid interacting

with a wall boundary will be influenced by the roughness of that boundary. Surface

roughness primarily influences the viscous sublayer (nearest layer to the wall) and

has little effect on the more outer layers. As the surface roughness increases the log
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Figure 1.1: Illustration (not to scale) of a typical turbulent boundary layer velocity

profile and a boundary layer subject to an adverse pressure gradient, adapted from

[1, 2, 3].

region will move lower and to the right in Figure 1.1. This will increase the velocity

gradient at the wall. Because the shear stress at the wall is proportional to this

gradient (1.6), an increase in surface roughness is associated with an increase in τw

and associated parameters, such as the skin friction (Cf = τw/(0.5ρv
2)) [1].

τw = µ
∂U

∂y
(1.6)

If surface roughness is considered at all it is often simply correlated only to the
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average roughness size, even though it is clear that this is not the only parameter

required to capture the effects of surface roughness [1]. For all the cases considered

in this thesis, the boundary layer data was obtained from experiments with models

manufactured to be as smooth as possible. Therefore, as is typical, surface roughness

effects are neglected.

Most importantly for the present work, boundary layers are strongly influenced

by pressure gradients. Opposite to surface roughness, pressure gradients have the

strongest effect on the outer layer. If subjected to an adverse pressure gradient

(dp/dx > 0) the fluid will slow, and the boundary layer profile shown in Figure

1.1 will begin to show a slower velocity profile in the outer layer. It has been

shown that the inner layer velocity profile is remarkably resilient to the influence

of pressure gradients [1], however, in a strong adverse pressure gradient the defect

layer begins closer to the wall as the outer layer velocity slows [3]. Conceptually,

this is shown in Figure 1.1. Ultimately, given a strong enough adverse pressure

gradient the momentum in the defect layer can slow to the point that the boundary

layer separates. Therefore, accurately modeling the behavior of the boundary layer

is critical for a variety of practical engineering flows.

1.4.3 Shock Wave Turbulent Boundary Layer Interactions

Another challenge for turbulent boundary layer analysis is shock wave bound-

ary layer interaction. A shock wave marks a very rapid increase in pressure, tem-

perature, and density. In many fluid dynamic problems of interest a shock wave
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impinges on a turbulent boundary. For example, transonic flow over the suction

side of a transonic airfoil, as well as supersonic inlets and isolators are common ex-

amples of flow conditions that result in shock boundary layer interactions. When a

shock wave impinges on a turbulent boundary layer the boundary layer is subjected

to a strong adverse pressure gradient. The reaction of the boundary layer to the

shock wave can be very difficult to predict.

1.5 Challenges in Turbulent Boundary Layer Modeling

Turbulent boundary layer predictions for many practical engineering applica-

tions rely on boundary layer models. Experimental data is often expensive, or diffi-

cult to obtain. Computational fluid dynamic (CFD) models of turbulent boundary

layers are often used to generate predictions. CFD seeks to numerically solve the

physical equations that govern fluid flows: the Navier Stokes equations. Ideally, the

exact equations could be solved (DNS), but for turbulent flows at practical Reynolds

numbers it is not computationally possible to resolve the exceedingly small turbu-

lent eddies that define the dynamics of these problems. The required grid sizes to

do so are exceedingly small, requiring immense computational resources. LES re-

laxes this requirement somewhat, but still requires unattainable resources for high

Reynolds number cases and introduces additional model uncertainties. Therefore,

for practical turbulent CFD predictions it is common to apply the RANS equations.

For RANS, the effects of turbulence are modeled, and the development, calibration,

testing, uncertainty quantification, and validation of these models on all varieties
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of turbulent flows has been an intense area of research for decades. This section

will focus on the difficulties of RANS predictions for two broad classes of turbulent

applications used in the current work: turbulent flow over airfoils and shock wave

turbulent boundary layer interactions.

1.5.1 RANS Modeling of Turbulent Flows Over Airfoils

While RANS models yield excellent predictions for a variety of applications,

there remain many common engineering applications for which RANS models re-

main surprisingly deficient. Specifically, for 2D flow over subsonic airfoils at low

angles of attack predictions of the forces and moments on the airfoil are generally

well predicted by a variety of RANS models. However, as the angle of attack is in-

creased a strong adverse pressure gradient develops on the upper (suction) surface.

Eventually, the boundary layer will separate, and a recirculating region will form.

It has been well documented that RANS models have difficulty predicting the size

of this recirculating region, and therefore have an inaccurate prediction of the forces

and moments once the boundary layer separates [3, 13, 14]. Celic and Hirschel

evaluated a variety of algebraic, one, and two equation eddy viscosity models on

four adverse pressure gradient cases, including separated flow over 2D airfoils. They

concluded that none of the eddy viscosity models showed a clear advantage for all

the considered cases of adverse pressure gradient flows. In particular, it was shown

that the prediction accuracy for the 2D airfoil case was generally far poorer than

the other cases considered; although this could be contributed at least in part to
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additional experimental uncertainty for this case [14]. Matyushenko et al. performed

a detailed investigation into the prediction errors of RANS models for 2D airfoils

at high angles of attack. A variety of turbulence models were examined for a set of

2D airfoils including the S809 wind turbine airfoil. Errors in the transition model

were considered, as well as various sources of experimental error were examined

parametrically, to evaluate the likely sources of observed RANS prediction errors

in the separated angle of attack region of the airfoils. Ultimately it was concluded

that the primary source of error must be the turbulence models themselves [15].

Figure 1.2 shows results for RANS predictions of a two dimensional airfoil designed

for wind turbine applications (S809 airfoil). Experimentally derived lift coefficients

for this airfoil are shown from Somers and Tangler [16], and are compared to RANS

predictions for a range of angles of attack using the Spalart Allmaras turbulence

model [17] with an algebraic transition model [18]. Note that at low angles of at-

tack (< 5◦) the RANS predicted lift coefficient agrees well with the experiment. At

high angles of attack the result is quite poor. This result is typical for a variety of

RANS models for 2D airfoils [14, 15].

All RANS closure models utilize assumptions and some level of empiricism to

provide closure to the RANS equations. One of these assumptions present in the

Spalart Allmaras turbulence model (and others) is the assumption of an equilibrium

boundary layer in the log law region [17]. In the presence of an adverse pressure

gradient this assumption is violated. The adverse pressure gradient slows the flow in

the outer regions of the boundary layer, and the defect layer begins closer to the wall.

As the adverse pressure gradient increases, the momentum in the log law region is
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Figure 1.2: Spalart Allmaras Predicted Lift Coefficient for the S809 Airfoil Com-

pared With Wind Tunnel Data.

decreased, and the equilibrium assumption of the eddy viscosity model is violated.

As demonstrated by Medida, the eddy viscosity is over-predicted in the presence

of an adverse pressure gradient [3, 13]. This over-prediction results in the RANS

prediction of a boundary layer that is less susceptible to separation than observed

in experiments. The resulting predicted separation location is then too far aft, and

the separated region is too small. Ultimately this gives an over-prediction in the lift

coefficient in the separated region. These observations are consistent with Spalart’s

observation in the original presentation of the model, where he noted that the model

has a tendency to under-predict the thickness of the boundary layer under adverse
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pressure gradients, and observed that this may lead to a prediction of a boundary

layer less susceptible to separation [17].

Another violated assumption appears in the recirculating region on the suction

side of the airfoil after the flow separates. RANS turbulence models are calibrated

based on attached turbulent flow over simple geometries, such as flat plate boundary

layers. In this regime it is natural to use the wall distance as a length scale. However,

when the flow separates the wall distance is no longer an appropriate length scale, as

the turbulent flow moves far from the wall. In this region it is more appropriate to

use the length scale associated with the mesh size, as is used in large eddy simulation

(LES) [19, 20]. Therefore, again (due to violated assumptions) it is expected that

the prediction of the eddy viscosity will be inaccurate in the recirculating region.

Figure 1.3 shows the eddy viscosity predicted for the S809 airfoil at a high angle

of attack using the Spalart-Allmaras turbulence model. The eddy viscosity is over-

predicted in the highlighted regions, due to the violated assumptions used in the

formulation of the turbulence model.

1.5.2 RANS Predictions of Shock Wave Turbulent Boundary Layer

Interactions

Another challenge for turbulent boundary layer analysis is shock wave bound-

ary layer interaction. A shock wave marks a very rapid increase in pressure, tem-

perature, and density. In many fluid dynamic problems of interest a shock wave

impinges on a turbulent boundary layer. For example, transonic flow over the suc-
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Figure 1.3: Spalart Allmaras Predicted Eddy viscosity for the S809 airfoil at 14.2◦

angle of attack.

tion side of a transonic airfoil, as well as supersonic inlets and isolators are common

examples of flow conditions that result in shock boundary layer interactions. When

a shock wave impinges on a turbulent boundary layer, the boundary layer is sub-

jected to a strong adverse pressure gradient, and the reaction of the boundary layer

to the shock wave can be very difficult to predict.

Two forms of shock boundary layer interaction will be examined in the current

work. The first is a transonic airfoil as illustrated in Figure 1.4. As shown, the

air accelerates over the suction side of the airfoil and a turbulent boundary layer

develops. Despite the freestream Mach number being less than 1 there is a supersonic

region above the airfoil. As described by Babinsky and Harvey, the upper surface

of the airfoil is convex, which results in the creation of expansion waves from the
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surface. These expansion waves reflect from the sonic line as compression waves,

which coalesce and form a normal shock that ends the supersonic region [4]. This

normal shock is characterized by a sudden increase in pressure and a decrease in

velocity to subsonic conditions.

Figure 1.4: Mach contour of a transonic RAE2822 airfoil at 2.31◦ angle of attack

and Mach 0.725.

When the shock impinges on the boundary layer a shock wave turbulent bound-

ary layer interaction (SWTBLI) occurs. While for supersonic flow no information

can travel upstream, there is a subsonic region at some point close to the wall,

16



separated by a sonic line, because the velocity must stagnate at the wall. For an

attached interaction the subsonic region experiences an adverse pressure gradient

and thickens the boundary layer not only downstream, but also some distance up-

stream of the shock due to the subsonic region in the boundary layer. The sonic line

also moves further from the wall, which creates compression waves in the supersonic

region just ahead of the impinging (nearly) normal shock wave. When visualized,

either through CFD or experimental methods, these compression waves make the

shock appear smeared over a small distance upstream of the interaction, which is the

reason this effect is referred to as a smeared shock-foot [4]. A smeared shock-foot is

illustrated in Figure 1.5.

Also note that unlike the subsonic airfoil, there is a region of favorable pres-

sure gradient in the supersonic region because the airfoil is convex; therefore, the

Mach number increases slightly in the supersonic region with a corresponding slight

decrease in pressure. This favorable gradient is terminated by the strong adverse

pressure gradient of the shock, and the adverse pressure gradient continues in the

subsonic region following the shock. This is illustrated in Figure 1.6.

Additionally, strong transonic SWTBLI can result in flow separations that can

have a substantial impact on airfoil or wing performance. A strong SWTBLI can

result in a separation at the shock, which can either reattach downstream or remain

separated. The increased boundary layer thickness downstream of the shock results

in less momentum near the wall in the boundary layer. This gives the boundary layer

downstream of a SWTBLI a decreased ability to resist separation, and can result in

a separated region near the trailing edge of the airfoil [4]. Accurately predicting the
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Figure 1.5: Illustration of a smeared shock foot, adapted from [4].

interaction location and flow separation remain a challenge for RANS models.

For similar reasoning as discussed for the subsonic airfoils, the boundary layer

reaction to this impinging shock and associated adverse pressure gradient is difficult

to predict with RANS models that are based on reasoning and calibrated for flat

plate boundary layers. Note: it is expected that RANS turbulence models will

perform better in the supersonic region with the favorable pressure gradient than

in the strong adverse pressure gradient of the shock and the subsequent adverse

pressure gradient in the subsonic region.

The second type of SWTBLI considered in this work is a turbulent boundary
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Figure 1.6: Pressure coefficient contour of a transonic RAE2822 airfoil at 2.31◦angle

of attack and Mach 0.725.

layer encountering a supersonic compression corner. An oblique shock forms when

the supersonic air approaches a concave corner. If the compression angle is low

enough, an oblique shock wave will form at the corner and turn the air to the new

wall angle. This shock impinges on the boundary layer and creates a SWTBLI. If

the shock is strong enough the boundary layer will separate, creating a separation

bubble that extends upstream and downstream at the corner. Upstream, the sep-

arated bubble turns the supersonic air creating an oblique separation shock. The

air above the bubble is characterized by a strong shear layer, which then reattaches

downstream of the corner. The reattachment point generates a reattachment shock,
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with a greater shock angle, such that downstream the separation and reattachment

shocks impinge on each other generating a shock-shock interaction. For hypersonic

cases, this interaction is characterized by very high heat fluxes with the peak heat

flux occurring downstream of the reattachment point. Conceptually, the 2D sepa-

rated ramp SWTBLI is shown in Figure 1.7.

Figure 1.7: Flow structure of a ramp induced separated SWTBLI, adapted from [4].

There is a wealth of information from wind tunnel testing for 2D compression

corners and transonic airfoils (and other SWTBLI) [21, 22, 23, 4, 24, 25, 26]. Despite

this widely available experimental data for a variety of SBLI cases, RANS models are

generally very poor at predicting the boundary layer reaction to an impinging shock.
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Numerous studies have been devoted to investigating this error [27, 28, 29, 30, 21].

For transonic shock boundary layer interactions the shock/interaction location is

generally poorly predicted [31, 32, 26], leading to an incorrect prediction of lift and

drag on the airfoil. For compression corner interactions, RANS models are typically

incapable of correctly predicting the separation length in the interaction region, and

wall heat flux predictions are similarly poor [26, 21]. There does not appear to be a

clear consensus whether any particular RANS turbulence model outperforms others.

1.6 Machine Learning with Neural Networks for Regression

Neural networks are commonly used in machine learning applications because

of their flexibility, robustness, and relative ease of computation. Neural networks for

regression allow modelers to connect inputs (features) with outputs, by generating

a function based on example (training) data. What makes neural networks truly

extraordinary is the ability to scale with numerous inputs1, and their ability to be

efficiently trained using massive quantities of data. Neural networks are not a new

technology, but with the progress in modern computing there has been renewed

interest in algorithms that can efficiently process the large quantity of data that is

created by modern computing systems. Additionally, a property of neural networks

that makes them particularly attractive is that they are universal approximators of

nonlinear functions [33, 34].

Note that the properties of neural networks discussed here make them ideal

1or in other applications, numerous outputs as well
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for augmenting RANS turbulence models (or other complex physical models). First,

the required correction to augment a RANS turbulence model has an unknown, and

non-linear functional form. It is difficult, therefore, to augment the model with a

correction that could correct the model in a general sense.2 Additionally, turbulence

models utilize numerous variables in addition to the flow variables, all of which

can influence the turbulent physics, and therefore meaningully affect the required

correction. Neural networks can accept numerous inputs efficiently. In his book,

Dreyfus states, “in general, neural networks make the best use of the available data

for models with more than 2 inputs [33].” It is a safe assumption that any model

aiming to augment a RANS equation will require more than two inputs due to the

complexity of the problem. Due to the ability of neural networks to model general

functions efficiently, incorporate a large quantity of data, and accept as many inputs

as required by the problem, neural networks are employed in this work to produce

augmented RANS turbulence models.

It is important to note here that neural networks do not eliminate the modeler

from the learning process. In fact, like all machine learning methods there are a

number of choices that the modeler must make to implement an effective neural

network. These choices include the choice of inputs, scaling of the inputs, and the

size and structure of the network itself. Additionally, there is a choice of how to

introduce the nonlinearity of the network (activation function). These factors can

2Although some corrections are possible for specific applications, as the SA-APG correction

proposed by Medida can be considered an augmented Spalart Allmaras model for adverse pressure

gradient applications [3].
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dramatically affect the performance of the learning and cannot be neglected.

1.7 Leveraging Machine Learning for Turbulence Modeling

Other researchers have presented the successful application of neural networks

for physics-based simulations. Samareh and Wong used neural networks to model

the dynamics of several complex physical simulations, including CFD, to predict the

output of the simulation. In this way the user could be informed of the likelihood of

success of the simulation before performing the computation [35]. These applications

demonstrate the flexibility and efficiency that machine learning methods can have

on complex physics based simulations.

Specifically for CFD, several researchers have utilized machine learning to

either provide modeling inferences or enhanced models. Wang et al. utilized DNS

solutions to train a machine learned correction to the Reynolds stress tensor using

mean flow features. The resulting data-informed RANS predictions were shown to

be substantially more accurate than the baseline model even for geometries different

than the DNS training case [36]. Wu et al. used a similar methodology to produce a

random forest model that provided an a-priori estimation of prediction confidence of

a RANS solution [37]. Ling and Templeton used DNS and LES solutions to develop

machine learned classifiers to identify where RANS turbulence models were likely

to have large errors or violated assumptions [38].

Unfortunately, LES and DNS training data is unavailable at useful scales for

even moderate Reynolds numbers. Additionally, directly learning from higher fi-
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delity data is not likely to have much success, due to the lack of consistency between

the higher fidelity data and the modeling environment. Measured data contains real,

physical quantities, while RANS models employ empiricism and modeled quantities

that are inconsistent with measured data. To resolve this inconsistency, Duraisamy

and co-workers developed the Field Inversion and Machine Learning (FIML) ap-

proach [39]. Instead of learning directly from the data, an inverse problem is for-

mulated such that information is generated that is consistent with the modeling

environment in an inference procedure. A misfit function (J) between the data and

the model output is formulated. One or more model discrepancy corrections (β)

is (are) embedded within the model at each point on the computational domain

and a gradient based optimization algorithm is used to find the optimal correction

field. Since the discrepancy field is constrained by the model, the inference step

resolves the inconsistency between the data and the model. Following the inference

step, a feature set (η) can be constructed from the model variables and a machine

learned model is trained separate (offline) from the inference step. It has been

demonstrated that given appropriate training cases, the FIML approach produces

a machine learned model that improves predictions [39, 40, 41, 13, 42, 43]. Despite

these demonstrated successes, there remains a drawback to the FIML approach.

While the inconsistency between the data and the modeling environment has been

alleviated, it was not completely removed because there is no guarantee that the

information generated by the inversion can be learned perfectly, if at all. This in-

troduces an inconsistency between the information and the modeling environment

due to the limitations of the chosen machine learning algorithm being neglected in
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the inference step.

1.8 Objectives

The discussion in this chapter has identified several known areas where, despite

a wealth of widely available experimental data, RANS models remain deficient.

Additionally, machine learning with neural networks was introduced, along with a

brief discussion of previous efforts to leverage machine learning methods to improve

CFD predictions. Specifically, the FIML approach was shown to have a strong

advantage over other machine learning augmentation methods, due to the inverse

procedure; but a deficiency was noted in that imperfect training of the machine

learning algorithm introduces an inconsistency between the information generated

in the inversion and the model augmentation.

The objective of this thesis is to improve RANS predictions by leveraging

machine learning approaches to augment RANS turbulence models. The goal is

not to machine learn a new model, but to learn a correction to an existing model

that improves predictions where the model is known to be deficient, but does not

diminish the accuracy where the model already performs well. Additionally, the

augmentation needs to be as consistent as possible to the modeling framework. To

accomplish these broad goals this work builds on the FIML approach, but seeks to

improve the consistency of the FIML framework by accounting for the limitations

of the machine learning framework during the inversion. In doing so, the informa-

tion generated by the inversion will be guaranteed to be learnable, optimal for the
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chosen machine learning method, and as consistent as possible with the prediction

environment. These methods must be able to incorporate enough data to produce

a useful augmentation, and be efficient in order to be practically implemented on a

modern high performance computing system.

1.9 Contributions of Thesis

The primary contributions of this thesis are as follows:

1. Implemented the Field Inversion and Machine Learning (FIML) framework

inside the Stanford University Unstructured (SU2) code, a fully unstructured

RANS solver, demonstrating robustness and practicality of the approach. For

the first time, the SU2 code was adapted to perform the FIML approach.

2. Proposed and developed a new FIML approach that trains the neural network

during inversion (FIML-Embedded) demonstrating improved regularization of

the correction, guaranteeing that the correction can be learned, improving the

consistency between the inversion and the model augmentation, and producing

a neural network augmentation in the inversion step. This is a unique FIML

method, entirely developed and applied for the first time in this thesis. The

new method was demonstrated on both the simple model problem and several

RANS applications.

3. Proposed and developed a new FIML method that utilizes a novel approach of

training neural networks from physics based models (FIML-Direct). This pro-

cedure improves upon the FIML-Classic approach similarly to FIML-Embedded,
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but with less complexity. This is also a unique FIML approach, entirely devel-

oped and applied for the first time in this thesis. This new method was also

demonstrated on both the simple model problem and several RANS applica-

tions.

(a) Developed and applied a novel method of performing field inversions on

numerous cases simultaneously, increasing generalization and preventing

overtraining of the model augmentation. For the first time, the inference

step can incorporate information from an unlimited number of datasets

simultaneously, instead of solving multiple inverse problems as required

by the classic approach.

(b) Developed efficient and scalable algorithms and demonstrated perfor-

mance on high performance computing (HPC) architectures.

1.10 Scope and Organization of Thesis

Two new methods of improving upon the FIML framework were proposed,

developed, and applied to both a simple model problem and a variety of RANS

applications. Both new methods, wholly developed and applied for the first time in

this thesis, improve on the classic FIML approach by accounting for the limitations

of the chosen machine learning algorithm in the inversion process. The development,

application, and results of these new approaches are documented in this thesis with

the following organization.

• Chapter 1 provides an introduction and motivation to the physical problem,
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as well as the major contributions of this thesis.

• Chapter 2 provides a detailed survey of previous work to augment RANS

models with data via machine learning methods. Previous work on the FIML

approach is discussed in particular detail.

• Chapter 3 introduces two new methods, developed for the first time in this

effort, that improve upon the classic FIML approach by accounting for the

limitations of the machine learning algorithm in the inversion process.

• Chapter 4 discusses the numerical methodology for the FIML approaches for

both the RANS applications, and a simple 1D heat equation model problem.

• Chapter 5 presents the results for the FIML applications to the 1D model

problem. The two new FIML approaches are applied here for the first time.

• Chapter 6 presents the results for the RANS applications. The FIML methods

are demonstrated on a variety of canonical and practical RANS cases to explore

the advantages/disadvantages of each approach. For the first time, the two

new approaches are applied to several RANS applications.

• Chapter 7 presents the overall conclusions and summary for this effort, as well

as some suggestions for future work.

• Appendix A presents inference results for a hypersonic wedge application.

• Appendix B presents inference results for the Onera M6 transonic wing.
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Chapter 2: Progress in Data-Informed Turbulence Modeling

A wealth of experimental and high fidelity simulation data sets exist for tur-

bulent flows, and naturally turbulence modelers have leveraged these data sets to

either improve predictions or quantify uncertainties in turbulence models. In this

chapter the various methods of leveraging data for turbulence modeling are exam-

ined. This chapter examines these previous works in two sections, based on the

objective and approach of the effort. The first section reviews efforts to utilize data

to calibrate models. These approaches do not attempt to modify the functional

form of the underlying model, but instead calibrate closure constants such that the

prediction matches observations. The next section discusses efforts to utilize data

to improve predictions by modifying the functional form of the model itself.

2.1 Calibrating Turbulence Models From Data

RANS turbulence models contain a number of free parameters, known as clo-

sure constants, that can modify the behavior of the model. These closure constants

were originally calibrated from simple flows such as flat plate boundary layers, and

therefore many authors have attempted to recalibrate the various closure constants

in order to improve predictions for specific applications. While many authors have
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demonstrated success in improving predictions for various classes of flow, this simple

approach to utilizing data is not likely to improve the model in general, as it does

nothing to address the functional errors contained in the models themselves.

In a calibration exercise, higher fidelity data, θ is identified that the modeler

expects could improve the model, M(c). Free parameters in the model, c, are

identified by the modeler, preferably parameters that have considerable uncertainty

or have violated assumptions for the chosen application [40]. The free parameters

are then calibrated such that the output of the model more closely matches the

chosen data after calibration.

Examples of RANS model calibration include Kato et al. who examined a

single parameter of the k − ω SST turbulence model, and showed that calibrating

the parameter based off of a backwards facing step would also somewhat improve

predictions on other cases, such as the RAE2822 airfoil [44]. Lanzafame et al.

calibrated closure constants in the γ−Reθ−SST transition model to improve force

predictions on wind turbine airfoils [45]. Note that this approach neglects the error

present in the turbulence model itself entirely, and attempts to correct any error

via manipulation of the transition model. Similarly, Mauro et al. calibrated the

γ − Reθ − SST transition model to improve force predictions on a S809 airfoil at

a high angle of attack. This again assumes that the prediction error is due to a

deficiency in the prediction of transition, and neglects the error in the turbulence

model itself, as identified by the analysis of Matyushenko et al. for this airfoil and

others [46, 15]. Rocha et al. examined the k−ω−SST turbulence model calibration

for small wind turbines and demonstrated that modification of a closure constant
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could improve performance for these cases [47, 48].

It is perhaps not surprising that modification of the closure constants can

improve performance for some cases. It is, however, not likely a viable approach

to improve the turbulence model in general because it inherently assumes that the

functional form of the model is sufficient. Additionally, by recalibrating a new

turbulence model variant is created, which can result in confusion and difficulty in

assessing model accuracy [40]. Clearly, the models were originally calibrated based

on certain simple flows, and recalibrating to different flows is unlikely to improve

the accuracy of the model in general.

A more rigorous approach to calibration is provided by statistical inference.

Bayesian analysis is a statistical inference technique that allows the calculation of

posterior distributions of the parameter given the observations. In this approach

both the data, θ, and the parameters of the model, c, have associated probability

distributions. P [c] is termed the prior distribution and represents the probability of

the model without any observations. Given observations, θ, information about the

probability of the model being correct can be determined. Typically this involves

sampling methods such as Markov Chain Monte-Carlo (MCMC). Formally, the like-

lihood, P [θ|c], is the probability of the model being consistent with the observations

which can be found through MCMC sampling. From Bayes’ theorem the poste-

rior probability, the probability of the parameters given the observations, P [c|θ], is

proportional to the likelihood times the prior (2.1).

P [c|θ] ∝ P [θ|c]× P [c] (2.1)
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The posterior distribution gives statistical insight that can be used to cali-

brate the model (given by the values of the parameters that maximize the posterior

probability distribution), along with the uncertainty of those values1.

Several researchers have leveraged Bayesian techniques to recalibrate turbu-

lence models. Ray et al. utilized Bayesian calibration techniques to calibrate closure

constants of the k − ε model, to improve predictions for a jet in crossflow. An-

other Bayesian calibration study was performed by Guillas et al., based on data

for a street canyon. Of note, the best parameters identified by Guillas et al. varied

substantially from those identified by Ray et al. [54, 53]. Oliver and Moser utilized

DNS solutions of channel flow to perform uncertainty quantification and calibra-

tion of four common RANS models [55]. Papadimitriou and Papadimitriou used

DNS solutions of flow over a backwards facing step to find posterior distributions

of closure constants of the Spalart Allmaras model [56]. Edeling et al. used mean

velocity profiles of flat plate boundary layers under various conditions to find pos-

terior distributions for the closure constants of a number of popular RANS models.

The results were remarkable in that the posterior probabilities differed substantially

depending on the experimental data considered, despite the simple flat-plate appli-

cation [57]. In summary, Edeling states: “These results suggest that there is no

single best choice of turbulence model or closure coefficients, and no obvious way to

1This differs from traditional uncertainty quantification where the uncertainties are simply

propagated through the model and to estimate the effect on the output. While this can be valuable

information, it does not require observations. A good example of this manner of (data-free) analysis

for the Spalart-Allmaras turbulence model is given by Schaefer et al. [49, 50, 51, 52]

32



choose an appropriate model a priori [57].”

2.2 Improving Turbulence Models with Data and Machine Learning

In this section, previous efforts to leverage data and machine learning to either

replace model components with machine learned functions, or to augment the model

to improve model accuracy. These approaches modify the functional form of the

model itself to correct for errors in the functional form, as opposed to calibration

exercises which simply modify the closure constants of the model and do not address

errors in the functional form. The resulting data informed model is given by M̃ =

M(θ). The general process these approaches utilize is first to identify higher fidelity

data, θ, that could improve a deficient model, M. A discrepancy is introduced,

δ, to the model and is found. Machine learning is then applied to allow for the

generalization of δ to additional cases.

The use of data to make predictions can be grouped into three separate overall

approaches. The first is to simply use the data to directly make predictions. In this

approach there is no model and the data is used directly. This, in general, is not

practical as it would either require an extreme amount of data of perfect quality,

or very simple physics such that modeling is not necessary. This is certainly not

appropriate for RANS modeling, as turbulence is an extremely complex physical

process, and there is certainly not enough data available to make predictions for all

required cases.

The second category of utilizing data to inform predictions does involve mod-
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eling. In this approach the higher fidelity data is injected directly into the model.

While appealing in its simplicity, this approach is also not appropriate for RANS

modeling. The higher fidelity data (typically from experiments, DNS, or LES)

contain real, physical, quantities. The RANS models however, make use of modeled

quantities that rely on some empiricism and have been carefully calibrated when the

model was created. There is, therefore, a lack of consistency between the data in-

jected into the model and the modeled quantities that will degrade the performance

of the data-augmented prediction. An investigation by Raiesi et al. exemplifies the

pitfalls of this approach. In order to evaluate and examine the underlying assump-

tions of various RANS models Raiesi et al. computed exact turbulent quantities

from LES and DNS solutions. These exact quantities were then injected into the

model and the performance compared to the baseline model. None of the turbu-

lence models were improved by using the exact quantities and most showed inferior

performance [58]. Attempts to inject exact quantities into turbulence models have

not resulted in enhanced insights or improved models [59]. Even though the mod-

eled quantities represent real, physical quantities, the models have been calibrated

such that if exact quantities are injected in a portion of the model the predictive

capability is reduced.

The third approach is appropriate for RANS modeling and other complex

physics-based models. This approach is characterized by an inverse problem by

which useful information is generated from the data. The data is inconsistent with

the modeling environment. As noted, the data contains real, physical quantities,

but RANS models contain numerous assumptions, calibrated quantities, and model
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variables that are not consistent with the data itself. Therefore, to resolve this

inconsistency, an inverse problem is formulated and solved by which information

is generated that is consistent with the modeling environment. Note that in order

to make predictions for new cases a model must be trained on this information

to create an augmented model. This offline learning step introduces an additional

opportunity for inconsistency, as the training introduces additional inconsistency

between the information (from the inverse problem) and the resulting augmented

model.

Emory et al. utilized an eigen-decomposition of the anisotropy tensor to decom-

pose the Reynolds stress tensor and perturb the shape of the Reynolds stresses by

modifying the eigenvalues. Eddy viscosity models typically only produce Reynolds

stress tensor shapes in a very small region of the realizable range due to the Boussi-

nesq assumption. Thus, by perturbing the shape of the Reynolds stresses the struc-

tural uncertainty of eddy viscosity models can be measured. This data-free uncer-

tainty quantification has been applied to a variety of applications [60, 61], and has

also been implemented in the SU2 package [62, 63].

To incorporate inferred Reynolds stress shape error from data, Xiao et al.

utilized a sampling method to infer Reynolds stress anisotropy discrepancies from

higher fidelity simulations. This discrepancy was spatially correlated δ(x) and the

information was not able to be applied to a dissimilar application. Wang et al.

built on this work and utilized machine learning methods (random forests) to build

a function to reproduce the discrepancy from mean flow features, η. The resulting

discrepancy function, δ(η), was then shown to improve RANS predictions on other
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cases (aside from the case it was built from). Wu et al. used a similar Bayesian

sampling method to infer posterior distributions of the model discrepancy, and then

applied those inferences to improve predictions on similar flows in a predictive setting

[36, 64, 66, 65]. Edeling et al. utilized two additional transport equations that

perturbed the Reynolds stress anisotropy from the eddy viscosity model baseline.

In the data-driven approach of this method Bayesian inference was used to infer

the coefficients of these transport equations, such that the prediction of the model

more closely matched the data [67]. Again, sampling methods were used, and the

inference was not learned such that it could be applied in a predictive setting.

In an alternative approach to sampling methods, which can be prohibitively

expensive for RANS applications, the inversion procedure was implemented by Wang

and Dow in order to infer eddy viscosity fields from DNS data. A cost function was

formulated that measured the distance of the RANS velocity field to the average

velocity in the DNS solution. The eddy viscosity was treated as a parameter to be

optimized, and the cost function was minimized, such that the optimal eddy vis-

cosity was found that resulted in the RANS solution that most accurately matched

the DNS solution [68]. This approach, however, completely neglected existing eddy

viscosity models and is therefore not a complete methodology for improving them.

Duraisamy et al. pioneered and developed the Field Inversion and Machine Learning

(FIML) approach. This procedure utilizes a similar inverse problem; however, unlike

the work of Wang and Dow the design variable is a discrepancy function introduced

into the model. The inverse procedure finds the optimal discrepancy to minimize

the distance between the output of the model and the data. This discrepancy
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function is initially spatially correlated (δ(x)), but then machine learning methods

are utilized to create a discrepancy function from the flow features (δ(x) → δ(η))

[40, 69, 43, 13, 70, 41, 71, 72, 73]. Additionally, the methodology was implemented

in a Bayesian framework such that posterior distributions could be determined along

with the optimal correction [41, 39]. A variety of applications have been demon-

strated, including 2D airfoils and shock boundary layer interactions. Additionally,

Singh et al. presented a methodology for incorporating information from a number

of cases into a single machine learned model augmentation. It was shown that an

augmentation built off of inverse information from a 2D S809 airfoil improved pre-

dictions on similar airfoils, demonstrating exciting generalization capabilities of the

approach [72, 13]. It was demonstrated that the FIML augmentations are portable,

and the augmentation was implemented and demonstrated on a separate prediction

code than the implementation used for the inversion [13]. Parish and Duraisamy

demonstrated the FIML approach on a simple model problem that will also be

utilized in this work [39].

2.3 Summary

This chapter reviewed recent efforts by researchers to utilize higher fidelity

data to improve turbulence models. The first section discussed efforts to calibrate

models. In this approach the functional form of the model is not modified, but the

various closure constants of the model are tuned in order to match data. There

are numerous examples of successfully tuning models to match experimental or high
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fidelity simulation data; however, it was noted that this method is unlikely to correct

RANS turbulence models in general. RANS models were developed with simplifying

assumptions, and calibrated based on simple flows such as flat plate boundary layers.

Therefore, for more complicated applications, like flow over an airfoil, it is certain

that the primary source of error in the model is the functional form of the model itself

due to violated assumptions. Therefore, methods that do not seek to modify the

functional form of the model are unlikely to show substantial improvement outside

of the applications considered in the calibration process.

The next section discussed efforts to produce data-augmented turbulence mod-

els. The discussion was delineated by three approaches. The first, taking data and

directly making predictions is the most simple but only appropriate for applications

with exceedingly simple physics, or large quantities of perfect data. The second

approach involves taking higher fidelity data and directly applying that data to

the model. For RANS modeling, some researchers have demonstrated computing

quantities from DNS or LES simulations and injecting those quantities directly into

RANS models. The predictions are typically worse in this approach as there is an

inconsistency between the real, physical quantities and the modeled quantities that

have been calibrated in the model. The FIML approach addresses this inconsistency,

by generating model-consistent information from higher fidelity data. This informa-

tion can then be learned by a machine learning model and used in an augmented

predictive model. This is the framework for the Field Inversion and Machine Learn-

ing approach, and the successes of this approach were briefly surveyed. The next

chapter continues the FIML discussion, beginning with details about the framework

38



developed by previous researchers, and continuing with the new approaches that

build on this body of work.
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Chapter 3: Field Inversion and Machine Learning With Embedded

Neural Network Training Development

3.1 Overview

This chapter introduces the field inversion and machine learning (FIML) frame-

work. First, the methodology pioneered by Duraisamy et al. and utilized by previous

researchers (referred to as FIML-Classic here) is discussed in detail. The motivation

for this approach is discussed, as well as the procedure for incorporating information

from multiple cases. To enable a discussion of the framework, a brief introduction

to neural networks is also provided. Subsequent sections introduce two new meth-

ods proposed and developed for the first time in this effort: 1. FIML-Embedded,

where the backpropagation algorithm was embedded into the solver, and 2. FIML-

Direct, where the weights of the neural network are trained directly. The advantages

and potential drawbacks of both approaches are discussed, as well as procedures to

incorporate information from multiple cases. Specifically for FIML-Direct, a new

approach to performing the inversion on numerous cases simultaneously is discussed,

which provides an exciting path for increased generalization and regularization over

the classic approach.
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3.2 Field Inversion and Machine Learning: FIML-Classic

The Field Inversion and Machine Learning process was pioneered by Du-

raisamy et al. and has been shown to be a flexible framework to derive optimal

RANS correction fields. This approach has been successfully applied to a variety of

RANS problems [40, 43, 69, 13, 70, 41, 39]. Additionally, by casting the model in

a Bayesian framework, posterior distributions can be computed. The discussion of

the FIML process below will be restricted to the specific application in the current

work, and in a non-Bayesian setting.

First an objective function (J) is defined to represent how closely the RANS

solution matches the data. This cost function could take many forms, but typically

J takes the form of a squared error of the model prediction (km) and the higher

fidelity data (kd). To differentiate the objective functions for different methods, we

denote the objective function for FIML-Classic as Jc. For FIML-Classic and the

cases used in the present work the objective function takes the following form:

FIML-Classic: Jc(β) = ‖kd − km(β)‖22 + λ‖β − 1.0‖22. (3.1)

The first part of the objective function (Jc) represents the misfit between the

current design and the higher fidelity data. The second term is the regularization

term, and penalizes corrections far away from the prior (baseline) design and pre-

vents corrections that are unnecessarily large. The regularization constant (λ) is set

to a small value. With analogies to Bayesian inversion, the value of this constant

has an intuitive meaning, and represents the confidence in the prior solution vs the
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confidence in the posterior.

The inversion procedure takes the form of a minimization (optimization) prob-

lem to minimize the objective function: β(x) = arg minβ(Jc). Following the inver-

sion, the optimum correction field (β) is obtained. Note the optimal β is very useful

to the modeler, as it shows the correction required to the model to match the data.

If, however, the modeler wishes to incorporate this information that can be used

to make predictions, a machine learned model, in this case feed-forward neural net-

works, is then trained so that the correction can be reproduced from the features

(η) which are an appropriate selection of variables from the model. Previous works

showed the capability of this approach, including the demonstration that the re-

sulting data-augmented model can improve predictions in applications not in the

training set, and that the augmented model is portable [13].

Conceptually, the FIML process is illustrated in Figure 3.1.

Figure 3.1: Chart of FIML-Classic procedure illustrating learning separate from

inversion process.
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In Figure 3.1 the data box represents the selection of appropriate higher fidelity

data that the modeler has identified to improve the model. Examples of relevant

data for RANS applications could include skin friction, surface pressure distribu-

tions, heat flux distributions, etc. The FIML process utilizes this data to produce

an augmented model that better matches the chosen data. The inversion box for

FIML-Classic represents the determination of an optimal β(x) to minimize Jc. Ad-

joint methods efficiently compute the required gradients to employ gradient based

optimization methods to solve the minimization problem. The learning box then

represents the process of extracting features (η) from the solution to the inversion

step, and training a machine learning model that can produce the correction β(η)

from the features. At the end of the FIML process, the model has been augmented

with a machine learned model on-line so that the correction is applied to the model

without the need to perform the expensive off-line inversion process.

Note that the offline training process introduces an inconsistency into the

FIML-Classic approach. The inverse correction distribution is the solution of the

optimization problem minβ(Jc(β)) which will give the optimal1 spatial distribution

for the correction (β(x)). Regardless of the machine learning method to produce the

function β(η) there will always be residual training error as there is no guarantee that

there is an algorithm that can produce β(η) exactly. For neural networks, a large

1The solution to minβ(Jc(β)) will be a local optimum. Typically due to the cost of evaluating

Jc(β) gradient based optimization methods are employed for this minimization and therefore the

minimization will be susceptible to converging to local optima instead of the preferred global

optimum.
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neural network (a large number of nodes or hidden layers) may be required to reduce

training error, but this network may be too costly to compute. Additionally, overly

large neural networks suffer from overtraining, where the network represents the

training data accurately but exhibits poor generalization to cases not in the training

set. This training error is not accounted for in the inversion and therefore the

evaluation of β(η) will not perfectly reproduce the optimal distribution found in the

inversion. In practice, this training error is significant and results in a degradation

of the performance of the resulting augmented model.

Ideally, we want a model augmentation that improves the model prediction

for a variety of cases. To accomplish this the machine learning model must be

trained on data that sufficiently represents the entire feature space of interest. In

this way, a neural network trained on sufficient data will be interpolating on the data

it was trained on when asked to improve the prediction on a case not considered

in the training set. Because there are features and a correction at every point in

the computational domain in the FIML-Classic approach, there is a relatively large

quantity of training data available per case in the RANS application. However, to

cover the feature space in non-trivial problems it is required to train the neural

network using information from multiple data sets.

In the FIML-Classic information learned from multiple cases is incorporated

in a relatively straightforward manner. First the cases of interest are identified and

higher fidelity data for each case (i) identified that the modeler expects will improve

the model (kid). Then the inversion is performed on each case individually, and the

features ηik and optimal corrections βik are compiled from each case into a single
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training dataset {[η1k, β1
k ], [η

2
k, β

2
k ], [η

i
k, β

i
k]}. The subscript k denotes that there is a

feature and correction defined at every point in the computational domain. Note

that the design variables used in the inversion are different for each case, which

prevents us from performing the inversion on all cases simultaneously. The chosen

neural network is then trained on the information from all cases in the training set.

This generates a model augmentation that can reproduce the correction distribution

from the features (training converts β(xj) → β(η)). This augmentation can be

applied to cases not considered in the training set (holdout cases). Graphically, this

is represented in Figure 3.2.

Figure 3.2: FIML-Classic Procedure for Producing Model Augmentations Incorpo-

rating Information Learned from Multiple Inversions.
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3.2.1 Neural Networks for Regression

In order to better discuss the FIML framework a brief introduction to the

numerical structure of neural networks is presented here, with much more amplifying

detail in Chapter 4. For the FIML problem the authors utilized a fully connected,

feed forward multilayer perceptron with a hyperbolic tangent activation function

on the hidden layers. The input to the neural network is some subset of the flow

variables (the features) at a node in the computational domain, and the output

is the training correction at that node. In a fully connected feed forward neural

network the input to the j-th neuron (xj) is a linear combination of the output of

the (i) neurons in the previous layer. So that:

xj =
∑
i

yiwji (3.2)

The output of node j is then computed using the activation function. For a

hyperbolic tangent activation function:

yj(xj) = tanh (xj) =
1− e−2xj
1 + e−2xj

(3.3)

The output layer in this case is a single linear (yj = xj) neuron and the output

of this neuron is the output of the neural network. The input layer has a number of

neurons equal to the number of inputs to the neural network (number of features).

Following the notation of Dreyfus, a single hidden layer network is given by (3.4)

[33]:
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y(x,w) =
Nc∑
i=1

[
wNc+1,i tanh

(
n∑
j=0

wi,jxj

)]
+ wNc+1 (3.4)

Where Nc is the number of hidden nodes and n is the number of inputs. Note

that the neural network output depends on two variables: the features (η = x for

the input layer) and the weights (w). The weights are determined in the training

process. Typically the data required for the training process is assembled prior to

training, and subsequently the weights are obtained by training the network using

the data via the backpropagation technique [74] or another algorithm. Following

training the weights are fixed so that the neural network is a function of the features.

In backpropagation, the weights are first initialized to small random values and

then iteratively updated to minimize a loss function, in this case the loss function

was chosen to be the sum squared error over N training samples:

SSE =
1

2

N∑
k=1

(y(w)− yTk)2, (3.5)

where w are the weights of the neural network and y is the output of the neural

network. yT is the target output of the network (the output the neural network will

reproduce if well trained).

The derivative of the loss function with respect to the weights is then effi-

ciently computed using reverse mode differentiation, and the weights are updated in

the steepest descent direction as indicated by the gradients. This algorithm is then

repeated until the loss function is small enough or stops improving. Full documen-

tation of the backpropagation algorithm is given by Rumelhart et al. [74], and the
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algorithm is discussed in detail in Chapter 4.

3.3 Field Inversion and Machine Learning with Embedded Backprop-

agation: FIML-Embedded

A new approach was developed and applied for the first time in this thesis,

termed FIML-Embedded, which trains the neural network by backpropagation si-

multaneously with the model such that the features are converging concurrently

with the physics solver (and neural network inputs/features). FIML-Embedded in-

volves the simultaneous solution of two minimization problems with different design

variables. The first is the neural network cost function (3.5) which solves the min-

imization problem minw(SSE(w)) by backpropagation. The second problem is the

minimization of the FIML objective function (minβT (Je)) using the training correc-

tion (βT ) as the design variable:

FIML-Embedded: Je(βT ) = ‖kd − km(βT )‖22 + λ‖βT − 1.0‖22. (3.6)

Note that both minimization problems must sufficiently converge, which re-

sults in added complexity to the inversion procedure as it is sometimes difficult

to sufficiently minimize equation (3.5) throughout the inversion. If minw(SSE(w))

sufficiently converges however, the nonlinearity of β(w) due to the neural network is

effectively hidden from minβT (Je(βT )) resulting in easier convergence of that mini-

mization algorithm. Thus FIML-Embedded has the potential to be much more effi-

cient than FIML-Direct (presented next section), especially for large and/or multi-
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layered neural networks. Conceptually, the FIML-Embedded (and FIML-Direct)

process is illustrated in Figure 3.3.

Figure 3.3: Chart of FIML-Embedded and FIML-Direct procedure illustrating that

offline learning is not required for these approaches.

In Figure 3.3, the data and augmented model blocks are unchanged from the

FIML-Classic chart (Figure 3.1). Now, however, the offline learning step is no

longer required, because machine learning is included in the inversion step. For

FIML-Embedded, the inversion block now represents the simultaneous solution of

two minimization problems: minw(SSE(w)) and minβT (Je(βT )). For both FIML-

Embedded and FIML-Direct, the solution to the inversion procedure is the aug-

mented model so offline training is no longer necessary.

Another potential drawback of the FIML-Embedded procedure is that is it

is not as natural to account for the incorporation of multiple cases into a single
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neural network. In order to provide more generalization to the resulting model aug-

mentation it will be required to consider multiple cases. In other words, the model

augmentation will need to incorporate information from multiple (perhaps numer-

ous) inversions. For FIML-Classic the training data is simply assembled, and the

learning is performed offline separate from the inversion. For FIML-Embedded the

learning is performed in the inversion. This remains an unresolved question: how

to best account for information from multiple inversions in a single model augmen-

tation for FIML-Embedded. There are several possibilities that remain unexplored.

There are concerns about all of these unexplored options:

Unexplored Option 1. Perform FIML-Embedded on many cases, which will

effectively regularize the resulting β distributions by accounting for the limitations

of the chosen machine learning algorithm for each case. Then, similar to the FIML-

Classic procedure, assemble the features from each inversion and train a new model

augmentation that incorporates all the inversions together. This approach is not

ideal, as it is unsatisfying to simply throw out the augmentations for each case and

train another. Additionally, while it would be guaranteed that each β distribution

could be learned by the chosen machine learning algorithm, there would be no

guarantee that the set of inverse solutions could be learned despite the increased

regularization.

Unexplored Option 2. Perform FIML-Embedded inversions sequentially, with

each inversion incorporating the inverse information learned from the previous in-

versions. This approach would be similar to Option 1 however it could poten-

tially alleviate the issue with guaranteeing that the set of inverse solutions could be
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learned. However, each subsequent inversion would become more and more costly

as the training algorithm would be learning on more and more data. Therefore, this

approach would likely become intractable as the number of cases grows.

Unexplored Option 3. Construct an ensemble model from each individual aug-

mentation. Ensemble models for decision trees are utilized effectively in the random

forests machine learning algorithm. The individual model augmentations could po-

tentially be incorporated into an ensemble-averaged model that would incorporate

the information learned from each inversion. This would be the most straightfor-

ward approach however it would still result in a lack of consistency between the

inversion environment and the model augmentation as the augmentation would not

reproduce precisely the same correction distribution.

Unexplored Option 4. Perform training offline (like FIML-Classic) but com-

pute the derivative of the training algorithm so that the limitations of that algorithm

are accounted for in the inversion. Option 4 is perhaps the most interesting of the

unexplored FIML-Embedded options to incorporate multiple cases. This approach

would account for the limitations in the inversion and it would also enable the si-

multaneous inversion of multiple cases (similar to FIML-Direct, discussed in the

next section). In this approach the inversion would be performed using the current

output of the neural network β(η, w) to find that case’s objective function ji, and

the derivative of the cost function would be computed via adjoint methods to find

dji/dβ. Then, the training data would be assembled from each case and a single

neural network trained on the information from each case. The derivative of the

training algorithm, dβT/dβ, could be computed by finite difference methods. Then,
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the chain rule would be applied to each case to provide the required derivative,

dJe/dβT , in order to minimize the composite cost function Je =
∑n

i j
i(βT ) where

n is the total number of cases. There are two potential issues with this unexplored

approach. The first is that the neural network is not defined for the first iteration,

so the solver would be required to use β = 1.0 at the beginning of the inversion

process. The second, and more complicating, is that adjoint methods or any reverse

mode differentiation approach would not be advantageous for the neural network

derivative computation dβ/dβT because the total number of βT elements is equiva-

lent to the number of β elements. Still, this is an embarrassingly parallel problem

that could be easily parallelized. However, for large neural networks, a large number

of cases, or large computational domains this derivative computation could become

costly.

3.4 Field Inversion and Machine Learning with Direct Training: FIML-

Direct

Another new FIML approach was proposed, developed, and applied for the first

time in this thesis: FIML-Direct. For FIML-Direct, we begin with a straightforward

modification to the cost function. Now the design variables are the weights of the

neural network, and the output of the neural network is the correction. So in (3.4),

y = β. The minimization problem is now minw(Jd)

FIML-Direct: Jd(w) = ‖kd − km(w)‖22 + λ‖β(w)− 1.0‖22. (3.7)
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The correction, β, is determined by computing the output of the neural net-

work by applying (3.4). The immediate disadvantage of FIML-Direct is that the

nonlinearity of the neural network is now fully exposed to the optimization algo-

rithm (minw(Jd)). Typically neural networks are trained with static data and the

computation of the gradient by backpropagation is very efficient and tens of thou-

sands of backpropagation iterations can be quickly performed. With FIML-Direct,

each gradient computation is far more costly because km(w) must first be evaluated

by a CFD simulation, followed by the evaluation of dJd/d(wj) by adjoint methods.

Despite the potentially challenging minimization, FIML-Direct has many ad-

vantages over FIML-Classic and FIML-Embedded. First, for turbulent correction

applications, the use of FIML-Direct results in substantially fewer design variables

for typical neural networks as the number of weights is substantially fewer than the

number of points in the computational domain. Second, the optimum solution for

the weights is independent of the computational grid and each particular flow solu-

tion. We are seeking one neural network that corrects the model for all applications

of interest, and therefore the weights should be the same between cases. Because

the weights are independent of the case and computational grid they can be applied

to dissimilar cases (such as different airfoils).

To consider the simultaneous inversion of multiple cases, we first identify data

that can improve each case, i, for n cases. The cost function is then defined as the

composite cost function as the sum of the cost function from each case. So if each

case, i, has objective function ji then the total cost function is given by Jd =
∑n

i=1 j
i.

Note there is no requirement that each ji have the same functional form. This is
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important as the type of data that improves case 1 may not be the same type that

improves case 2. So dataset 1 could use the experimental lift coefficient, and dataset

2 could utilize the heat flux distribution. Both cases would have different functional

forms for ji, but the composite derivative would still simply be the sum of each

case’s derivative (Equation (3.8)). Additionally, the regularization constant, λi can

be tuned for each case. So for a case where the model performs well and the modeler

has high confidence in the result the λi can be increased for that case.

Jd =
n∑
i=1

ji (3.8)

dJd
dw

=
n∑
i=1

dji(w)

dw
(3.9)

The inversion is then carried out as in the single case inversion, where we

minimize the composite cost function with respect to the weights: minw(Jd(w)).

The resulting augmentation is then optimal considering all the data (all kid) and

considering the limitations of the chosen machine learning algorithm. There is also

no inconsistency between the inversion environment and the model augmentation as

the same augmentation found in the inversion is used for prediction. Conceptually,

this approach is illustrated in Figure 3.4.

3.5 Computational Cost

Modern CFD simulations are often extremely computationally expensive. The

FIML-Classic approach requires an inversion utilizing a gradient based optimization

procedure that results in a series of CFD simulations (direct and adjoint) and natu-
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Figure 3.4: FIML-Direct procedure for simultaneous inversion of multiple cases to

produce single augmentation.

rally for large cases this method can become quite expensive. We have proposed two

novel approaches and here we discuss the computational cost of the new approaches

and methods of mitigating the cost through efficient computation on modern high

performance computing (HPC) architectures.

The minimization (min(J)) for the FIML approaches could be performed using

minimization algorithms that do not require gradient information, such as Powell’s

method [75], but in practice more evaluations are required for gradient-free ap-

proaches. Since efficiently computed gradient information is available via adjoint

methods all FIML applications in this work utilize gradient-based minimization ap-

proaches2. Therefore, for the FIML-Classic inversion (minβ(Jc(β))) each new design

2For applications where evaluations of the cost function are efficient, gradient-free genetic algo-

rithms could be utilized [76], at dramatically increased expense, but without gradient information

55



requires at a minimum an updated objective function and gradient. So each iter-

ation costs approximately two CFD simulations (Direct+Adjoint). The required

number of optimizer iterations required to substantially minimize the cost function

is application dependent but is typically on the order of 10-20 iterations correspond-

ing to 20-40 simulations. Thus the inversion cost per case is 20-40 times the cost of

the baseline SA model. The inversion must be performed on enough cases to cover

the feature space of the problem of interest, so for n cases the cost is 20n − 40n

simulations. The cost to perform the offline training is not trivial, but for the ap-

plications here was far less than the cost of the baseline CFD. Following offline

training, the model has been augmented and the only increased cost to utilize the

augmented model is the extra cost of the floating point operations in the neural net-

work; which is trivial compared to solving the extra transport equation associated

with the baseline SA model.

The added cost for FIML-Embedded is associated with the additional opera-

tions that must be performed per iteration inside the direct and adjoint solvers. Each

iteration the features at each node are updated and scaled, the forward propagation

is performed to obtain the current output of the neural network (β(η, w)), and then

the backpropagation algorithm is performed to update the weights to minimize the

error between β and βT . Exact timing studies have not been performed to determine

precisely how much these operations cost; however, in the applications considered

in this work the additional computational cost was not noticeable. However, it was

noted that under some conditions the backpropagation algorithm would not easily

and with an increased ability to locate the global optimum.
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converge and would ultimately affect the convergence of the flow solver, requiring

increased flow solver iterations to sufficiently converge. Improved robustness of the

FIML-Embedded approach has been identified as an area deserving of future work.

No offline training is required following the inversion as the training/augmentation

have already been performed.

For FIML-Direct the added cost is primarily just the cost of assembling the

features every solver iteration and forward propagating to obtain the current β.

The added solver cost for this operation was not noticeable, and the convergence

issues observed for FIML-Embedded were not an issue for the FIML-Direct appli-

cations in this thesis. The number of optimizer iterations required for FIML-Direct

was comparable to that required for FIML-Classic, for the cases considered. There-

fore, the computational cost of FIML-Direct is comparable to FIML-Classic except

that there is no need for offline training following the inversion as the learning and

augmentation has already been performed.

For FIML-Direct with multiple cases, again enough cases must be included

to sufficiently cover the feature space for the application of interest. For n cases,

each optimizer iteration for FIML-Direct will require 2n simulations (n × Direct +

n × Adjoint) to evaluate the cost function Jd(w) =
∑n

i=1 j
i
d(w) and its gradient

dJd(w)/dw =
∑n

i=1 dj
i
d(w)/dw. So again, the cost is roughly comparable to FIML-

Direct, with 20n − 40n simulations required. For FIML-Direct there is also the

potential issue that the inversions are coupled such that all cases must be considered

at the same time during the inversion process. This is not an issue on modern

HPC systems as the computation of the composite cost function and the composite
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gradient is an embarrassingly parallel problem. Additionally, as will be shown it is

also not necessary to compute the full gradient, as a randomly selected subset of

the cases can be considered a batch for that iteration, and only the partial gradient

of the cases in the batch are computed for that iteration. The weights are updated

with the partial gradient and a new batch is selected. This is similar to stochastic

gradient descent and is demonstrated in Chapter 5.

3.6 Summary

The Field Inversion and Machine Learning methodology was introduced. The

FIML-Classic procedure developed by Duraisamy and co-workers was discussed in

detail including the methodology to incorporate numerous datasets (cases) into a sin-

gle model augmentation. The overall advantage of the FIML procedure versus other

machine learning approaches was discussed. Other machine learning approaches for

physics based modeling suffer from an inconsistency between the modeling environ-

ment and the prediction environment. By using the field inversion approaches pre-

sented in this Chapter, information is generated by solving the the inverse problem

that is consistent with the prediction/modeling environment. A potential short-

coming of the FIML-Classic procedure was also presented, in that it requires offline

learning or training separate from the inversion. As discussed, this introduces an

opportunity for inconsistency, as perfect learning is not possible in practice. This

error is not accounted for in the inversion and therefore there is an inconsistency

between the inversion and the prediction environment, albeit much improved over
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not performing the inversion at all.

Two new FIML approaches, both developed and applied for the first time

in this thesis, were introduced in this Chapter. Both new approaches address the

identified deficiency in the FIML-Classic procedure. The first, FIML-Embedded

was described, where the backpropagation algorithm is embedded into the model

solver so that the limitations of the training algorithm would be implicitly consid-

ered in the inversion. Additionally, following inversion the neural network has been

trained and the model augmented. The potential shortfalls of this approach were

also discussed. The first being that there is considerable added complexity over the

FIML-Classic and FIML-Direct approaches. The second is that it is not straight-

forward to include information learned from multiple cases. Potential methods to

overcome this shortfall were proposed, but have not been developed and applied.

The second new FIML procedure, FIML-Direct, was introduced in this chap-

ter. In this approach the weights are trained directly (without backpropagation

or offline training) in the inversion. In this new approach the weights are con-

sidered the design variables of the cost function minimization. The advantages of

this approach were discussed. For FIML-Direct the design variables are consistent

across multiple cases. Therefore the inversion can be performed on numerous cases

simultaneously. Thus, the machine learning model limitations are considered and

the resulting augmentation incorporates limitations from numerous cases. Both of

which are expected to improve the regularization and generalization of the resulting

augmentation.

Finally, the computational cost of all three FIML approaches was discussed.
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It was shown that the two new approaches do not present an unacceptable increase

in computational cost and should be straightforward to perform on modern HPC

architectures.
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Chapter 4: Numerical Methodology

This chapter discusses the numerical methodology utilized in this effort. First

the Navier Stokes equations are presented, followed by a discussion about the RANS

approach. The turbulence models used are then presented. Neural networks, dis-

cussed only briefly in Chapter 3, are discussed in detail in this chapter. Methods

to perform feature selection and scaling, procedures critical to machine learning,

are also presented. The 1D heat equation model problem is presented, which pro-

vides a much simpler environment to examine the FIML methodology compared

to the RANS applications. Finally, details on the numerical implementation of

FIML-Classic, FIML-Embedded, and FIML-Direct are presented for both the model

problem and the RANS applications.

4.1 Governing Equations

The governing equations for fluid flows are given by the Navier Stokes equa-

tions. Their derivation relies on the continuum hypothesis of an ideal gas and the

assumption of a Newtonian fluid. From fundamental laws of conservation of mass,

momentum, and energy the Navier Stokes equations on a rectilinear coordinate

frame (x, y, z) are given by Equation 4.1 [77]
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∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= J (4.1)

U =



ρ

ρu

ρv

ρw

ρ(e+ V 2

2
)



(4.2)

F =



ρu

ρu2 + p− τxx

ρvu− τxy

ρwu− τxz

ρ(e+ V 2

2
)u+ pu− k ∂T

∂x
− uτxx − vτxy − wτxz



(4.3)

G =



ρv

ρuv − τyx

ρv2 + p− τyy

ρwv − τyz

ρ(e+ V 2

2
)v + pv − k ∂T

∂y
− uτyx − vτyy − wτyz



(4.4)
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H =



ρw

ρuw − τzx

ρvw − τzy

ρw2 + p− τzz

ρ(e+ V 2

2
)w + pw − k ∂T

∂z
− uτzx − vτzy − wτzz



(4.5)

J =



0

ρfx

ρfy

ρfz

ρ(ufx + vfy + wfz) + ρq̇



(4.6)

The column vectors F,G, and H are the flux terms and J is a source term. U is

referred to as a solution vector because typically in CFD solvers the elements of U are

the variables that are solved for numerically [77]. The last element in U is the density

times the total energy per unit mass E = internal energy + kinetic energy =

e + V 2/2. The first equation (row) in (4.1) is derived from conservation of mass

(or continuity), the next three from conservation of momentum in all three spa-

tial dimensions, and the final from conservation of energy. ρ is the fluid density,

{u, v, w} are the components of velocity in the x, y, and z directions respectively,

V =
√
u2 + v2 + w2, e is the internal energy, and p is the pressure. The terms in

J represent body forces and is zero if body forces are negligible. As a shorthand

the spatial dimensions x, y, z will also be referred to as xj where i = 1, 2, 3 in the
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following discussion.

The k∂T/∂xj terms are the thermal conduction terms arising from temper-

ature gradients in the fluid, where k is the thermal conductivity. Because k is

typically constant the following relation is used for the thermal conductivity, where

Pr = 0.72 is the Prandtl number for air [78]:

k = cp
µ

Pr
(4.7)

τij is the viscous stress tensor. For Newtonian fluids the shear stress is pro-

portional to the time rate of strain and then the viscous stress tensor becomes:

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)]
+λ

∂uk
xk

δij, δij = 1 if i = j; δij = 0 if i 6= j (4.8)

Where µ is the molecular viscosity of the fluid that can be easily computed as

a function of temperature by Sutherland’s law [79] given by Equation (4.9) along

with the constants for air (4.10).

µ = µref

(
T

Tref

)
Tref + S

T + S
(4.9)

µref = 1.716× 10−5
[
kg

ms

]
, Tref = 273.15 [K], S = 110.4 [K] (4.10)

λ is the bulk viscosity and the Stokes hypothesis given by Equation (4.11).

This hypothesis is widely used and accepted but has not been proven [77], although

there is no evidence that contradicts it [78].
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λ = −2

3
µ (4.11)

For an ideal gas we have the following familiar relationship between pressure,

density, and temperature:

P = ρRT (4.12)

Were R is the ideal gas constant. For a calorically perfect gas we have the

following relationship with the specific heat at constant volume (cv) and constant

volume (cp):

cv =
R

γ − 1
, cp =

γR

γ − 1
(4.13)

We can also rewrite e in terms of the temperature:

e = cvT (4.14)

Thus we ultimately have seven unknowns {ρ, ρu, ρv, ρw, ρE, p, T} that can be

solved for with the five Navier Stokes equations (4.1), the equation of state (4.12)

and equation (4.14) [77, 78].

For all cases considered in this work a calorically perfect gas is assumed where

the ratio of specific heats (γ = cp/cv) is assumed constant γ = 1.4. For all of the

applications with the exception of the hypersonic wedge this assumption is valid.

The extreme temperature range encountered in the hypersonic wedge case somewhat

challenges the calorically perfect gas assumption; however, even in this application
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the variation in γ is expected to be small (about 5%).

4.2 Reynolds-Averaged Navier-Stokes Equations

Solving the Navier Stokes equations (4.1) is typically feasible for laminar flows,

but far more involved and costly for turbulent flows. The issue arises from the need

to accurately resolve all the small turbulent eddies, leading to the need for extremely

spatially resolved grids as compared to the laminar case. This requirement becomes

more and more challenging with increasing Reynolds number, as Blazek presents,

the number of grid points to sufficiently resolve turbulent flows grows proportional

to Re9/4 and the solution time proportional to Re3 [78]. With Reynolds numbers

for typical engineering applications easily in the millions, the RANS equations are

typically solved due to the difficulty of accurately resolving all turbulent length

scales for DNS.

For the RANS equations the velocity components are decomposed into a mean

component and a fluctuating component (4.15). Substituting Equation (4.15) into

(4.1) the resulting RANS equations are almost identical, but now for the mean quan-

tities, and with the addition of the Reynolds stresses in the momentum equations

resulting from the fact that the mean of the product of two fluctuating components

is not zero.

ui = ūi + u′i, p = p̄+ p′, ρ = ρ̄+ ρ′, T = T̄ + T ′ (4.15)

The Reynolds stress is given in (4.16), and represents the mean momentum
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fluxes induced by the turbulence [80]:

τRij = −ρu′iu′j (4.16)

Boussinesq proposed the eddy viscosity concept which models the effect of

turbulence as an additional effective viscosity, referred to as the eddy viscosity, νt.

This reasoning leads to the Boussinesq hypothesis:

τRij = −ρu′iu′j = ρνt

[
∂ūi
∂xj

+
∂ūj
∂xi

]
− ρ

3
u′ku

′
kδij (4.17)

The second term in (4.17) is often rewritten in terms of the turbulent kinetic

energy, k = (1/2)u′ku
′
k. Turbulence models provide the missing terms in (4.17),

namely νt and k.

4.2.1 The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras (SA) turbulence model [17] is a popular one equation

eddy viscosity model used to provide closure to the RANS equations for turbulent

flow simulations. This model is chosen as the baseline to introduce the embedded

model discrepancy.

The transport equation for the SA model is given below:

∂v̂

∂t
+ uj

∂v̂

∂xj
= cb1(1− ft2)Ŝv̂ −

[
cw1fw −

cb1
κ2
ft2

]( v̂
d

)2

+

1

σ

[
∂

∂xj

(
(v + v̂)

∂v̂

∂xj

)
+ cb2

∂v̂

∂xi

∂v̂

∂xi

]
(4.18)
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The terms on the right hand side of (4.18) are referred to as the production

(P ), destruction (D), and diffusion terms of the SA model such that:

P = cb1(1− ft2)Ŝv̂ (4.19)

D =
[
cw1fw −

cb1
κ2
ft2

]( v̂
d

)2

(4.20)

The eddy viscosity is given by µt = ρv̂fv1.

Additionally,

fv1 =
χ3

χ3 + c3v1
; χ =

v̂

v
; cw1 =

cb1
κ2

+
1 + cb2
σ

(4.21)

fw = g

[
1 + c6w3
g6 + c6w3

]
; g = r + cw2(r

6 − r) ; r = min

[
v̂

Ŝκ2d2
, 10.0

]
(4.22)

The ft2 term was originally implemented to model transition but is often ne-

glected as was done in this application (ft2 = 0). This variant of the Spalart

Allmaras turbulence model is referred to as the “SA-noft2” model.

The Spalart-Allmaras model uses some empiricism and a number of closure

constants (κ, σ, cbi, cwi, cti) which have their own uncertainty. Of particular note is

the equilibrium assumption in the log layer of the boundary layer. This assumes that

the terms on the right hand side of equation (4.18) are in balance. In other words,

the production, destruction, and diffusion terms all cancel each other in the log layer.

This assumption is violated in strong adverse pressure gradients. Additionally, note
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that the wall distance, d, is utilized as a length scale in both the production and

destruction terms. This is natural for the problems for which the Spalart Allmaras

was calibrated, namely attached boundary layers. However, this length scale is not

appropriate far from the wall where d becomes large.

Recently, Schaefer et al. have performed sensitivity analysis on the SA model

closure coefficients. The authors concluded that the uncertainty in the von Karman

constant (κ) and the turbulent Prandtl number (σ) were the primary sources of

uncertainty quantities of interest such as pressure coefficient (Cp) [51, 50]. Other

efforts seeking to recalibrate the closure constants of turbulence models were dis-

cussed in detail in Chapter 2. While these calibration efforts consider parametric

uncertainty, it is intuitive to expect that a larger source of uncertainty is a result of

the structural form of the model.

4.3 The Spalart-Allmaras 1-equation BC Transitional Model (SA-

BC)

For many cases of common engineering interest the effects of transition are

significant. For cases where transition was anticipated to be significant the transi-

tion model proposed by Cakmakcioglu et al. was used [18]. Note that a correction

to the original model is documented on the turbulence modeling resource website

maintained by Rumsey, and additional comments and discussion of the model are

also documented there [25]. In order to model laminar to turbulent transition an

intermittency function, γBC , is applied to the production term of the SA-noft2 tur-
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bulence model. The intermittency function approaches 0 for laminar regions and

approaches 1.0 where the flow is predicted to be turbulent. In this way there is min-

imal turbulent production in the laminar regions and the standard SA-noft2 model

in turbulent regions. The intermittency is computed as follows:

γBC = 1− exp(−
√

Term1 −
√

Term2) (4.23)

Term1 =
max(Reθ −ReθC , 0.0)

χ1ReθC
, Term2 =

max(νBC − χ2), 0.0

χ2

(4.24)

Reθ =
Reν

2.193
, Reν =

ρd2

µ
Ω (4.25)

ReθC = 803.73(Tu∞ + 0.6067)−1.027 (4.26)

νBC =
νt
Ud

, χ1 = 0.002, χ2 =
5.0

Re
(4.27)

The variables χ1 and χ2 were calibrated to a flat plate test case and set

to χ1 = 0.002, and χ2 = 5.0/Re, where Re is the freestream Reynolds number.

Reν , Reθ, Reθc are the vorticity, momentum thickness, and experimental transi-

tion onset critical momentum thickness Reynolds numbers respectively. Tu∞ is the

freestream turbulence intensity.

Like other RANS transition models [25, 81, 82, 3], the SA-BC model predicts

transition by comparing the estimated momentum thickness Reynolds number to the
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estimated critical momentum thickness Reynolds number. Unlike other transition

models, the SA-BC model is an algebraic model meaning that there are no additional

transport equations (no additional transported variables).

4.3.1 Strain Adaptive Spalart Allmaras Model: SA-SALSA

The SA-SALSA model was implemented in SU2 in order to better model hy-

personic shock boundary layer interactions. This formulation of the SA model re-

states several terms with the intention of improving its predictive capability under

non-equilibrium conditions [83]. This SA variant has shown an ability to better pre-

dict the separation length in hypersonic SWTBLI [26]. The modifications required

for the SALSA variant of the SA model versus the previous model are documented

below [25, 83, 17]. The Ŝ term is redefined (4.28) along with r (4.29):

Ŝ = S∗
[

1

χ
+ fv1

]
(4.28)

r = 1.6 tanh

[
0.7

√
ρ0
ρ

(
ν̂

Ŝκ2d2

)]
(4.29)

ρ0 is the freestream stagnation density, S∗ is defined S∗ =
√

2S ′ijS
′
ij, and S ′ij

is similar (but not equivalent to) the vorticity (4.30):

S ′ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij (4.30)

The term cb1 is replaced by c′b1 which is not constant and defined by (4.31):
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c′b1 = 0.1355
√

Γ, Γ = min[1.25,max(γ, 0.75)], γ = max(α1, α2) (4.31)

The additional α terms are then defined as:

α1 =

[
1.1

(
ν̂

S∗κ2d2

)]0.65
α2 = max

[
0, 1− tanh

( χ
68

)]0.65
(4.32)

Finally, unlike the standard SA model, the turbulent kinetic energy term in

the Boussinesq equation (4.17) is not neglected, and k is given by:

k =
νtS

∗
√

0.09
(4.33)

4.4 Neural Network Structure and Training

At this point neural networks have been discussed in some detail but only a

cursory discussion of the structure of the network or algorithm to determine the

neural network weights has been presented. This section adds some detail to the

neural network structure used in this thesis, and then presents the algorithm for

training (determining the weights) of the network.

The first task in training a network is to assemble the training dataset. For all

the applications in this thesis the output of the neural network is the correction to

the model, β. The inputs of the neural network are the features (η). For the RANS

applications the features are a subset of the local flow variables discussed in detail

in later sections. Assembly of the training data is a critical step in neural network

72



training, as the features must have a strong functional relationship to the desired

output or any attempt to train a network will be futile. Numerical methodology,

feature selection, and feature scaling are discussed in detail in the next section.

Prior to learning, the neural network structure must be selected. In this ap-

plication we exclusively use fully connected feed-forward neural networks but many

other topologies and variations exist [33, 84, 85]. For this topology the primary

parameters that define the topology (so-called ”hyperparameters”) are the selection

of the number of layers, the number of nodes for each layer, and the choice of “ac-

tivation function” on the nodes. A neural network is made up of “neurons1”. A

single neuron is illustrated in Figure 4.1 [84].

The neurons are placed in layers, such that the inputs are placed in the first

“input layer”. The subsequent layers are termed the hidden layers. If there are mul-

tiple hidden layers then the network can also be referred to as a “deep” network,

although there is some disagreement about how many layers constitute a deep net-

work. The final or output layer of the neural network constructs the output of the

network. In all applications in the present work the network only has a single out-

put, β. Each layer also utilizes bias nodes which are treated as additional inputs

1The term “neural network” is somewhat of a confusing nomenclature as the analogy of a neural

network neuron to a neuron in a biological organism is poor at best. Dreyfus has an excellent

discussion of this inconsistency and states clearly that the progress made in neural networks is

due to understanding the mathematics and statistics and not due to an understanding of how the

human brain functions [33]. Therefore the present work will not attempt to make any comparisons

of the human brain to the functionality of a neural network, however the nomenclature of neural

networks is well established and will be used here.
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Figure 4.1: Illustration of a single neuron in a neural network.

(input of 1.0) to the neurons (each with an associated weight). This topology is

illustrated in Figure 4.2.

Note that neural networks are often displayed graphically to illustrate the

connections between neurons, but they can also be easily written as equations. For

Figure 4.1 the inputs from the previous layer are denoted yj, j = 1, . . . , n where n

is the number of nodes in the previous layer. If the previous layer is the input layer,

then n is the number of inputs and the yj are the inputs. Each input to the neuron

has a weight, wij, where i is the layer of the neuron. The weight multiplies its input,

and then all the weighted inputs are summed to create the input to the neuron. The

neuron applies an “activation function” to create the output of the neuron. There

are many activation functions to choose from (Rectified Linear Unit (ReLU), Radial

Basis Functions (RBF), etc.) but for all applications a hyperbolic tangent (sigmoid)

activation function (yi = tanh(ai)) was employed in the hidden layers. As is typical
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Figure 4.2: Illustration of chosen neural network structure.

for unbounded regression problems the activation function for the output layer was

chosen to be linear (yi = ai). The activation function introduces nonlinearity, so for

this neural network structure the output of the neural network (β) is nonlinear with

respect to the inputs of the network, but linear to the output of the final hidden

layer. Equation 3.4 is equivalent to the topology shown in Figure 4.2 for a single

hidden layer.

The process of determining the weights of the neural network is referred to as

“training” or “learning”. The broad category of learning implemented in this thesis

is called “supervised” learning which simply means that the model is being fitted
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to assembled (known) training data in order to replicate the outputs as closely as

possible given the same inputs. Now that the training data has been assembled

and the structure of the network defined, the next task is to finally determine the

weights of the network. Each line in Figure 4.1 represents a weight so naturally

the number of weights grows substantially with the number of nodes and hidden

layers. Typical neural networks have hundreds of weights that must be trained, and

often there is a large quantity of training data, so the computational efficiency of

the training algorithm is important.

To efficiently train the weights of the neural network gradient descent methods

are typically used, in order to minimize a cost function that measures the distance of

the current output of the neural network to the desired output defined by the train-

ing data. Gradient based methods require a gradient, and the gradient is efficiently

computed by a reverse mode differentiation algorithm referred to as “backpropaga-

tion”. This algorithm was first presented by Rumelhart et al. [74]; here we largely

follow the notation of Reed and Marks [84], with minor changes to notation to reflect

the more specific application in the present work. First, we define the cost function

as the sum squared error in Equation 4.34. For P training samples (input/output

pairs in the training set), E is the total sum squared error of the current output of

the network (β̂) compared to the target output in the training set, β.

E =
1

2

P∑
p=1

(βp − β̂p)2 (4.34)

As a reverse mode differentiation algorithm, the derivative computation starts
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with the output of the neural network by computing the value δi for each node, i,

as defined in Equation (4.35).

δi =
∂Ep
∂ai

=
∂Ep
∂yi

∂yi
∂ai

(4.35)

For the output node, ∂yi/∂ai evaluates to 1 because this a regression problem

using a linear activation function on the output node. The derivative of the error

term for this pattern with respect to the output of the output node (∂Ep/∂yi) is

then simply the derivative of the cost function. For hidden nodes the term ∂yi/∂ai

is evaluated by using the information from nodes upstream. For hidden nodes:

δi =
∂Ep
∂ai

=
∑
k

∂Ep
∂ak

∂ak
∂ai

=
∑
k

δk
∂ak
∂ai

(4.36)

Then to evaluate ∂ak/∂ai :

∂ak
∂ai

=


f ′i
∑

k wkiδk If Node i Connects to Node k

0 Otherwise

(4.37)

The term f ′i is the derivative of the activation function that captures the

nonlinearity of the node at its current activation (ak) value. For the tanh(ai) we

have f ′i = 1− f 2(ai). So we ultimately arrive at the following algorithm to compute

the δ in Equation (4.38). Note that the algorithm begins at the output layer and

works backwards, such that the nodes k are in the next layer closer. So the output

layer provides the k nodes to the last hidden layer (i nodes). The last hidden layer

then provides the k nodes to the i nodes and so on.
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δi =


−(βpi − β̂pi) For Output Node

f ′i
∑

k wkiδk For Hidden Nodes

(4.38)

Finally the derivative of the cost function with respect to each weight is given

by Equation (4.39):

∂Ep
∂wij

= δiyj (4.39)

Summing Equation (4.39) across all patterns in the training set gives the re-

quired total error derivative with respect to that weight (∂Ep/∂wij). Note that while

this algorithm is relatively easy to implement, it is possible to bypass the sometimes

tricky coding of the backpropagation algorithm by using automatic differentiation

[86]. This can greatly simplify the construction of large and/or complicated network

connection structures by computing the gradient in Equation (4.39) with little or

no user burden to implement the derivative computation. It also eliminates the

requirement that the activation function has an analytical derivative. Additionally,

the derivative computation could also be estimated by finite differences if the asso-

ciated increase in cost and decrease in accuracy is tolerable (if using a real-valued

step). In the present effort, the backpropagation algorithm was implemented as

written above due to the relative simplicity of the neural networks implemented.

With the gradient information, the weights can be updated towards a descent

direction in order to minimize the current error. This can be as simple as a constant

step (”learning rate”) in the steepest descent direction (−∂Ep/∂w). The update

rule for the weights would then be given by Equation 4.40:
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w(n+1) = w(n) − α∂Ep
∂w

(4.40)

Where n is the current training iteration, the learning rate (α) is a small

number (often 0.001 or smaller), and w is a vector containing the weights with

corresponding gradient vector (∂Ep/∂w). For the first iteration the weights are ini-

tialized to small random numbers. The update algorithm given by Equation 4.40

is equivalent to steepest descent with a fixed line search step. This is trivial to im-

plement, but will exhibit poor performance compared to more advanced algorithms

such as BFGS or its limited memory variant: “L-BFGS-B” [87, 88]. Both BFGS

variants construct estimates of the Hessian, giving superior performance over the

steepest descent algorithm for minimization problems in high dimensions, such as

neural network training, which will have hundreds of weights/dimensions even for

small networks.

Additionally, we hope that neural network exhibits good generalization, so

that that the model is capable of not only replicating the data it was trained on,

but also cases that were not available in the training set (holdout data). The ma-

chine learning term for a network that performs well on the patterns in the training

set but poorly on other patterns, is an “overtrained” network. The terminology

refers to the phenomenon where a neural network exhibits good generalization for

earlier training iterations, but diminished generalization to holdout data later in the

training evolution. Therefore, it is standard practice to periodically test the network

on holdout data in order to quantify the performance on cases not in the training
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set. Overtraining is particularly troublesome for large networks and therefore it is

advantageous to not over-parameterize the network, by using the smallest network

that provides sufficient accuracy to the training data. Therefore, the modeler choice

for the neural network topology is certainly not trivial and is often problem depen-

dent. The selection of the number of nodes and layers is often set based on previous

work on similar problems, by trial and error, or by a parametric study where nu-

merous networks are constructed with varying hyperparameters and the resulting

performance is examined.

4.4.1 Feature Selection and Scaling

Feature selection and scaling is an important consideration in the construction

of useful neural networks that is sometimes neglected or overlooked. The features

must have a strong functional relationship to the desired output of the model. For

complex physics-based applications, such as RANS modeling, it is clear that there is

a long list of variables that may influence the output, and it is not readily apparent

which features are the most important. As noted, over-parameterizing the problem

can result in over-training, so for generalization (and to minimize complexity) it is

important to try to use the fewest features as possible that still accurately define

the output. The process of determining the features is termed feature selection.

Additionally, certain methods of training machine learning algorithms are sensitive

to outliers and large differences in scales in the features. Neural networks trained

by gradient descent methods are one such training algorithm, in which poor feature
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scaling can result in networks that are difficult or impossible to sufficiently train.

Because of the importance of feature selection, a substantial effort was made

to identify suitable features for the RANS applications in the current work. The

numerical methodologies employed for feature selection are documented individually

below.

Feature Selection Method: Correlation Coefficients

Pearson correlation coefficients2 are a measure of the linear correlation between

two quantities. The correlation coefficient between n samples of two variables x and

y is computed by first finding the sample covariance between two variables and

then dividing by
√
σ2
Xσ

2
Y . The correlation coefficient is therefore given by Equation

(4.41) [89]:

ρXY =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)√

σ2
Xσ

2
Y

(4.41)

Correlation coefficients can help expose strong linear correlations (ρ approaches

1) or strong inverse linear correlations (ρ approaches −1). Potential features with

correlation coefficients with the output near 0 may not be the best choice. Similarly

if two potential features are strongly correlated with each other using only one of the

two in the feature set may provide the same information as using both 3. To further

examine relationships between features two dimensional scatter plots were examined

2Also known as Pearson’s r, the Pearson product-moment correlation coefficient, or bivariate

correlation
3Singular value decompositions were also used on potential features to help identify if features

were providing unique information
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between all features and the desired output (β). The features were assembled and

correlation coefficients computed using the pandas library [90], and plots generated

using the seaborn library which provides an interface to matplotlib [91] that enables

the visualization of large quantities of data.

Feature Selection Method: Sequential Back Selection

Sequential back selection is a costly method of evaluating features but is

straightforward to implement and can be applied to any machine learning algo-

rithm. The machine learning model is trained using all but one of the features and

is scored. This score could be any measure of accuracy such as mean squared error

or maximum absolute error, but in this application the coefficient of determination

was used, given by Equation (4.42).

R2(β, β̂) = 1−
∑n

i=1(βi − β̂i)∑n
i=1(βi − β̄)

(4.42)

Values closer to 1 indicates that additional samples will be predicted well by

the model. After models that have been trained holding each feature out, the fea-

ture set with the best score is carried forward and the feature not in that set is

dropped. This continues until there is only one feature or the desired number of

features is met. Often models improve when certain features are removed. This is

an indication that there are features in the set that are not providing useful infor-

mation, and are complicating training by inappropriately raising the dimensionality

of the problem. Eventually the score begins to decrease when additional features

are removed, indicating that these features are providing useful information to the
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model and should likely be retained. Note that the sequential back selection method

could quickly become impractical with large quantities of training data because so

many models must be trained and compared.

Additionally, two methods of feature scaling were utilized.

Feature Scaling Method: Z-Scaling Normalization

For the RANS applications discussed later the features are of different scales,

and there are very large outliers. Often the inputs have different physical units and

scales, and if not normalized the smallest-scaled features will be ignored in training

[33]. To mitigate the difference in scales Z-scaling was attempted, which is simply to

scale each feature to a mean of 0 and a standard deviation of 1. So for each feature,

i, and pattern, p, we perform the following normalization:

ηpi =
ηpi − η̄i
σηi

(4.43)

For the applications in this thesis this scaling method demonstrated less per-

formance than mapping to a Gaussian distribution.

Feature Transformation Method: Map to Normal Distribution

Extremely skewed data can be mapped to a Gaussian distribution to mitigate

the negative impact of outliers on neural network training performance. Mapping

to a normal distribution tends to spread out closely spaced features, and reduce

the impact or spread of the outliers. Two methods of accomplishing this mapping

were used. For the offline training cases in the FIML-Classic procedure (discussed

in this chapter) the quantile transformer was used in the scikit-learn package [92].
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The second approach was implemented for the neural networks used inside the SU2

solver. First, the min and max of each feature were computed and bins created.

Using the bins, the feature’s probability distribution function was approximated by

computing the estimated distribution function. Typically 10 bins were used, but

testing showed the algorithm was not very sensitive to the number of bins. The

estimated distribution function was then transformed by the logit function, which

is a close approximator to the inverse cumulative distribution function for a normal

distribution. Each feature was then mapped to the transformed estimated distri-

bution function to find its transformed value. While somewhat cumbersome and

costly to iterate through all the features several times to compute the transformed

distribution, it was shown that this transformation dramatically improved the neu-

ral network training for the RANS applications due to its ability to mitigate the

influence of marginal outliers.

4.5 Field Inversion and Machine Learning

Numerical considerations for the FIML methods, introduced in Chapter 3,

are discussed here. Two different implementations were assembled for the present

work: one for the RANS applications, and the other for the 1D heat equation

model problem. The heat equation numerics are considerably more simple and are

discussed later in this chapter. The SU2 framework is the main focus of the following

sections.

The FIML approach for both the 1D heat equation and RANS implementation
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relies on three major computations. The outer-most solver is the minimization (op-

timization) routine. The optimizer minimizes the cost function, J , by manipulating

the design variables, α. For the applications in this work the BFGS optimization

routine and the limited memory BFGS variant, L-BFGS-B were used. The opti-

mizer initializes the design variables and calls the other components to compute the

current value of the objective function, J(α), and the gradient vector, dJ/dα. For

the RANS applications the objective function is determined by solving the RANS

equations using the modified SU2 package for the problem of interest, and compar-

ing the output of the model km(α) to the data kd. The derivative is computed by

solving the corresponding adjoint equations. The modified SU2 autodifferentiated

discrete adjoint solver was used to compute the gradient. The following sections

detail this numerical framework for each FIML approach.

4.5.1 FIML-Classic

For FIML-Classic, the design variables are the correction to the production

term of the SA model at each point in the computational domain (α ≡ β). The

objective function is given by Equation (3.1). The numerical solution procedure is

illustrated in Figure 4.3.

The optimizer initializes the β field4 and passes β to the flow (direct) solver.

The direct solver5 solves the RANS equations with the turbulence model with β

4Typically, β = 1.0 everywhere to start, corresponding to the baseline model solution for Jc
5“direct solver” here refers to the model solver, that is used to evaluate the objective function.

This is also known as the “primal” solver, and the terms are used interchangeably throughout this
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Figure 4.3: Flowchart of FIML-Classic RANS implementation in SU2 illustrating

input and output of major modules.

applied to the production term. This gives the value of km(β), and therefore also

Jc(β) which is returned to the optimizer. The adjoint solver requires the converged

flow variables U∗ from the direct solver as well as the current value of β set by the

optimizer. The adjoint solver is executed and returns the gradient of the objective

function with respect to the correction to the optimizer. With the current objective

thesis. For RANS applications the direct or primal solver is the flow solver used to evaluate J

and obtain converged flow variables U∗. The adjoint solver refers to the solver used to obtain the

gradient of the objective function, dJ/dα, via the adjoint equations.
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function value and gradient, the optimizer can then determine the search direction

and update the correction field to minimize the objective function. This updated

correction is passed to the flow solver, and the process is repeated until no new min-

imum can be found or the modeler terminates the algorithm because the objective

function has been reduced sufficiently. The numerical details of both the optimizer

and the adjoint solver are discussed in later sections of this chapter.

4.5.2 FIML-Embedded

For FIML-Embedded, the objective function (Je) is given by Equation 3.6. The

design variables in this case are the training correction (α ≡ βT ). The backpropaga-

tion algorithm was embedded in the SU2 flow solver (embedded backpropagation).

Every flow solver iteration the required features are assembled from the flow vari-

ables, are scaled, and the current values of the correction β are found at each node

in the computational domain. The current output of the neural network is com-

pared to the training correction and the weights are updated via backpropagation.

Ideally, the backpropagation algorithm will converge well and the converged value

of the weights w∗ will replicate βT well, so that β∗ ≈ βT . The adjoint solver requires

additional information from the direct solver for the FIML-Embedded case, and

the converged values of the weights, flow variables, and β are passed to the adjoint

solver. A flowchart of this method is shown in Figure 4.4.
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Figure 4.4: Flowchart of FIML-Embedded RANS implementation in SU2 illustrating

input and output of major modules.

4.5.3 FIML-Direct

The flow structure of the FIML-Direct approach is largely similar to the FIML-

Classic implementation just substituting the weights for the correction. So for FIML-

Direct the objective function is given by Equation 3.7, and the weights of the neural

network are the design variables (α ≡ w). Inside the flow solver the flow features are

assembled and scaled from the current values of the flow variables, and the current

value of β is updated. The optimizer is therefore influencing the eddy viscosity

by manipulating the weights of the neural network that augments the production
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term of the SA model. The rest of the solver structure is largely similar to the

FIML-Classic implementation, as illustrated in Figure 4.5.

Figure 4.5: Flowchart of FIML-Direct RANS implementation in SU2 illustrating

input and output of major modules.

When considering multiple cases, the flow structure is similar, except that each

evaluation of the composite objective function (3.8) involves multiple flow solutions

(one for each case), and each gradient evaluation involves multiple adjoint solution.

Conceptually this is illustrated in Figure 4.6.
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Figure 4.6: Flowchart of FIML-Direct RANS implementation for multiple cases.

4.5.4 Unconstrained Optimization By Gradient Descent

All three FIML methods require an unconstrained minimization algorithm in

order to efficiently minimize the cost function, J , for each approach. As discussed for

the backpropagation algorithm, it is possible to simply take a small fixed step in the

steepest descent direction (defined by the negative of the gradient with respect to

the design variables). This approach, however, is not efficient especially for problems

such as the FIML approaches here, that are very highly dimensional. The BFGS6

6BFGS stands for four names: Broyden Fletcher Goldfarb and Shanno.
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algorithm [93] is very efficient at minimizing functions with many dimensions, and

most of the objective function minimizations in this thesis utilized either the BFGS

algorithm or the limited memory variant (L-BFGS-B) [88] when constructing the

full Hessian estimate was intractable due to the exceedingly high dimensionality of

the application.

4.5.4.1 The BFGS Method

The gradient7 of the cost function ∇J can be efficiently computed via adjoint

methods. Hessian8 information would be very valuable, if available, as efficient New-

ton methods could be used for the minimization of the cost function. Papadimitriou

and Giannakoglou surveys different approaches for computing the Hessian for CFD

applications via adjoint methods and, at best, the cost of computing the Hessian is

N + 1 primal simulations [94, 95]. That cost is not achievable for applications with

hundreds (potentially millions) of design variables. Therefore, the computational

cost of computing the Hessian of J prevents its exact computation for the FIML

RANS applications.

Quasi-Newton methods provide an alternative to the direct computation of the

Hessian. This family of methods estimates the Hessian from the gradient evaluation

at two points. The quasi-Newton condition relies on the approximation given by

Equation (4.44), where J is the function to be minimized, x is a vector of design

variables, k is an index indicating the current design, ∇J is the gradient of J , and

7Vector of first derivatives.
8Matrix of second derivatives.
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H is the Hessian of J :

H(k+1)(xk+1 − xk) ≈ ∇J(xk+1)−∇J(xk) (4.44)

The algorithm is summarized as follows. The estimate for the Hessian, Bk is

initialized to the identity matrix for the first iteration only. The current search di-

rection, pk, is found by solving Bkpk = −∇J(xk). Note that on the first iteration the

search direction will be the steepest descent direction, but on subsequent iterations

it will be informed by the estimate of the Hessian. If Bk were the exact Hessian we

recover Newton’s method. After pk is found a line search is performed to minimize

J along the search direction. This is a one-dimensional minimization problem to

find αk = arg min J(xk + αpk). Once αk is chosen by the line search algorithm the

variable sk = αkpk is set and the next design is defined by xk+1 = xk + αkpk. The

variable yk is defined as the difference between the gradient of the new design and

the previous: yk = ∇J(xk+1)−∇J(xk). Then the estimated Hessian can be updated

with the new information as shown in Equation (4.45) [93, 87]:

B(k+1) = Bk +
yky

T
k

yTk sk
− Bksks

T
kB

T
k

sTkBksk
(4.45)

Note that the Hessian matrix is a n×n matrix where n is the number of design

variables (elements in x). Therefore the memory required to store Hk for problems

with many design variables can be prohibitively large. For neural network training

n > 100, and for FIML-Classic and FIML-Embedded n > 50, 000 depending on

the application. Thus for FIML-Classic and neural network training applications a
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limited memory variant of BFGS was used, specifically the “L-BFGS-B” algorithm,

which stores vectors containing the Hessian estimate information [88]. In this way

a sparse estimate of the Hessian is used and the memory requirements are dramat-

ically diminished. The L-BFGS-B algorithm can also incorporate design variable

constraints. For the applications in this thesis design variable constraints were only

used to prevent the optimizer from taking unnecessarily large line search steps and

constraints were never active in the optimal designs. For the FIML results the SciPy

implementations of BFGS and L-BFGS-B were utilized [96], and for offline training

for FIML-Classic the L-BFGS-B implementation in the scikit-learn package to train

the weights [92].

4.5.4.2 The Stochastic Gradient Descent Method

In stochastic gradient descent (SGD) method9 is a natural extension of the

steepest descent approach that is sometimes applied when multiple cases (or pat-

terns) are being considered as a composite gradient. This is a common minimization

procedure for weight updates in neural networks [84]. Instead of computing the ex-

act gradient at each iteration only portions of the full gradient are computed, and

a small step (h) in the partial gradient steepest descent direction is taken. In this

effort the SGD method was implemented to minimize the composite cost function

for the FIML-Direct approach, so the full cost function across n cases is given by

J =
∑n

i j
i. In the SGD method, m < n cases are selected at random, and the

9also known as incremental gradient descent, and similar to “on-line” training as presented by

Reed and Marks [84].
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gradient is estimated by Equation 4.46:

dJ

dw
≈

m∑
l

djl

dw
(4.46)

The design variables are then updated by moving the design a small step in the

steepest descent direction approximated by 4.46. Naturally, the gradient estimation

will not be equivalent to the true steepest descent direction, but in some applications

this is advantageous. First, it is less computationally expensive to compute the

partial gradient. Second, the partial gradient introduces some randomness to the

search direction, which in some applications can improve the chances of finding the

true gradient and avoiding local minima [84].

4.6 Complex Step Method

Gradient descent methods require the computation of the gradient. For simple

problems the gradient can often be computed analytically (and exactly). When

the gradient is not available, the gradient is often estimated via finite differences.

Writing the Taylor expansion of a function F (x) about an arbitrary point F (x0) we

have Equation 4.47.

F (x0 + ∆x) = F (x0) + ∆xF ′(x0) +
∆x2

2
F ′′(x0)−

∆x3

3!
F (3)(x0) + · · ·+ (∆xnF (x0)

(n)

n!
(4.47)

It is then straightforward to rearrange Equation 4.47 to obtain the first order

accurate finite difference approximation for the first derivative:
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F ′(x0) =
F (x0 + ∆x)− F (x0)

∆x
+O(∆x) (4.48)

As ∆x goes to 0 we recover the exact estimation of the first derivative, however,

on computing systems using floating point math the accuracy is limited by floating

point accuracy. Floating point numbers can represent extremely small numbers, but

truncation error becomes significant when operating with large numbers. So when

applying Equation (4.48) as ∆x approaches 0 the numerator (F (x0 + ∆x)− F (x0))

will also become very small, but the values of F (x0) will remain constant. If F (x0)

is much larger than F (x0 + ∆x)− F (x0) the truncation error can be severe, and in

practice there is a minimum value at which point ∆x before the truncation error

starts to dominate the error from neglecting higher order terms in Equation 4.47.

Therefore, in practice, machine accurate estimations of the gradient are not possible

with the finite difference method due to subtractive cancellation error. Note that

this introduces another complication: the estimation of ∆x will be dependent on

the step size and the choice of ∆x will be problem dependent.

Alternatively, the complex variable method (or complex step method) enables

the computation of the gradient of real-valued functions to machine accuracy [97]

by leveraging the additional information that is stored in floating point complex

numbers. To compute the gradient we simply take a small complex step (∆x ≡ ih).

The Taylor series expansion for this step is then:
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F (x0 + ih) = F (x0) + ihF ′(x0)−
1

2
h2F ′′(x0)−

1

3!
ih3F (3)(x0) + · · ·+ (ih)(n)F (x0)

(n)

n!
(4.49)

Therefore, by adding a small complex step into any real-valued function the

real part of the result is a O(h2) accurate estimation of F (x0):

Re{F (x0 + ih)} = F (x0) +O(h2) (4.50)

The imaginary part can then then be used to estimate F ′(x0) with O(h2)

accuracy:

F ′(x0) =
Im{F (x0 + ih)}

h
+O(h2) (4.51)

The advantage of using a complex step over a real valued step is that the gra-

dient of a real-valued function can be estimated to machine accuracy, because the

small imaginary step is never added to a much larger number. This causes subtrac-

tive cancellation errors when using a real valued step and limits the smallest step

size that is possible without unacceptably large round-off errors. With a complex

step the subtractive cancellation error is avoided, enabling the use of extraordinarily

small step sizes that can estimate the gradient so accurately that the missing terms

of O(h2) are below the round-off error. At this point the gradient is estimated to

machine accuracy, and the result of the estimation is insensitive to the chosen step

size.
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The complex variable method is easily demonstrated, and we show the re-

sults of the same function used by Squire and Trapp [97]. We use the test function

f(x) = x9/2, and compare complex variable step method (4.51) with the first or-

der forward finite difference method given by (4.48), which requires an additional

function evaluation.

Figure 4.7: Comparison of the error as a function of step size for the finite difference

method and complex variable step method.

As shown in Figure 4.7, the complex variable method has several advantages.

First, the 2nd order accuracy of the complex variable method manifests as a steeper

error convergence slope over the first order accurate real valued finite difference

method. Most importantly, the finite difference method error never approaches a

constant value, and instead grows as the step size is decreased past the point were

subtractive cancellation error begins to dominate the error balance. In fact, the

approximation returns 0.0 as the step size approaches zero because there is so much
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subtractive cancellation error in the numerator of Equation (4.48). The complex

variable method, however, does converge to a very small error at which point the

gradient is estimated to machine accuracy. Note that the machine accurate gradient

is returned for a wide range of step sizes indicating that the estimation is not sensitive

to the step size in this region, which greatly simplifies the choice of step size.

Note that the complex variable method has two potential shortfalls: first, it

only applies to real-valued functions. Second, like the finite difference method it

is a forward differentiation approach. In other words, it can compute the gradient

of any number of outputs for a single input. This can become costly for function

with large numbers of inputs, as each element of the gradient requires a function

evaluation. Despite these drawbacks, the approach is very practical for complicated

and costly simulations as it is extremely easy to implement. Simply by changing

all real type variables to complex type a real-valued simulation can return machine

accurate gradients. The method is now widely used for a variety of physics based

simulations due to its accuracy and ease of implementation [97, 98, 99, 100, 101].

4.7 Adjoint Methods

Adjoint methods allow the efficient computation of the exact gradient (to ma-

chine precision) that is required for gradient based optimization methods. Many

excellent explanations of adjoint methods have been presented (Johnson, for exam-

ple), and we follow the notation and explanation of Giles and Pierce here [103, 102].

Given a linear set of equations Au = f where A is a matrix and f is a vector, it
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is equivalent to solve the dual form where ATv = g. It can be shown that these

formulations are equivalent as shown in (4.52).

vTf = vTAu = (ATv)Tu = gTu (4.52)

Now, given a set of equations that have variables, U and depend on α that

satisfy:

N(U, α) = 0 (4.53)

For the Navier-Stokes equations the variables U would be the flow variables,

but in the model problem discussed in later sections, U is equivalent to the temper-

ature. α is a vector of design variables that we wish to modify to minimize the cost

function, J , that depends on α and U . The gradient of the cost function is given by

(4.54):

dJ

dα
=
∂J

∂U

dU

dα
+
∂J

∂α
(4.54)

In (4.54) the term dU/dα satisfies the linearized form of (4.53):

∂N

∂U

dU

dα
+
∂N

∂α
= 0 (4.55)

Rewriting (4.55):

∂N

∂U
≡ A,

dU

dα
≡ u,

∂N

∂α
≡ −f → Au = f (4.56)
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And we recover the conventional definition of the gradient of the cost function

in (4.57):

gT =
∂J

∂u
→ dJ

dα
= gTu+

∂J

∂α
(4.57)

Note that the term ∂J/∂α is typically easy to compute analytically. The first

term involving ∂J/∂U , however, can be costly. Note that gTu ≡ vTf . Therefore

we can evaluate the first term in (4.57) either by evaluating the direct formulation

Au = f or the adjoint form ATv = g. For a single design variable there is no

difference in the cost and there is no benefit to evaluating the adjoint form. However

for n design variables we must evaluate the direct formulation, (Au = f), n times

because each design variable has a different f = ∂N/∂α. This is not the case for

the adjoint form as there is only a single g = [∂J/∂u]T common to all the design

variables. Therefore, it is far less costly to evaluate the adjoint formulations when

there are many design variables [103].

Alternatively, and perhaps more intuitively, adjoint variables can be derived

by considering them as Lagrange multipliers [103]. Simply, because N(U, α) = 0 the

augmented objective function, I(U, α) can be written (4.58):

I(U, α) = J(U, α)− λTN(U, α), N(U, α) = 0 → I(U, α) = J(U, α) (4.58)

Again λ are the adjoint variables. Differentiating:

dI =

(
∂J

∂U
− λT ∂N

∂U

)
dU +

(
∂J

∂α
− λT ∂N

∂α

)
dα (4.59)
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Note that λ can be chosen to be any value without violating (4.58) so it is

chosen to conveniently eliminate the first term in (4.59). We again then recover the

adjoint equation (4.61) [103]:

(
∂N

∂U

)T
λ =

(
∂J

∂U

)T
(4.60)

And the derivative is computed:

dI

dα
=
∂J

∂α
− λT ∂N

∂α
(4.61)

For FIML-Classic and FIML-Embedded we have a design variable at every

spatial point in the domain. For RANS applications this typically requires tens of

thousands of design variables and direct solutions requiring hours of computational

time. In this framework it is not practical to evaluate Au = f for each design

variable and the adjoint formulation is required. For FIML-Direct the number of

design variables is typically somewhat reduced, where even large neural networks will

only have hundreds of weights. However it would still be far too costly to evaluate

approach and therefore adjoint formulations are again required for the FIML-Direct

approach.

4.7.1 Discrete Adjoint Implementation

In this section the discrete adjoint implementation in the chosen solver (SU2) is

discussed, and the modifications required to implement the various FIML approaches

in SU2 are presented. The SU2 open source CFD software suite was chosen, in part,
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due to its implementation of the autodifferentiated discrete adjoint solver, which

is presented and well explained by Albring et al.. This discrete adjoint solver was

originally developed for aerodynamic design optimization problems, where the de-

sign variables modify an aerodynamic surface to minimize a cost function (minimize

drag, for example). The flexibility of SU2 and the autodifferentiated discrete ad-

joint approach has enabled the extension of the SU2 package to solve a variety of

optimization problems [104, 105, 106, 107, 108, 109]. Given that the present effort

made use of the SU2 discrete adjoint solver, we follow the notation and explanation

of the adjoint solver given by Albring et al. [104] here, with some modification to

represent the changes for the FIML procedures. Given a cost function, J , design

variables, α, and state variables, U , we have the following optimization problem

(4.62):

min
α

J(U(α)) (4.62)

Subject to U(α) = G(U(α), X(α)) (4.63)

Where G(α) results from the discretization of and solution of N(U(α)) = 0:

Un+1 = Un +N(U(α)n) (4.64)

G(Un) ≡ Un +N(U(α)n) (4.65)

N(U(α)) is the residual at the current iteration. If the system of equations

has been solved, denoted by ∗, then N(U∗) = 0 which implies that with converged

U we have U∗ = G(U∗).
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This framework is sufficient for the FIML-Classic and FIML-Direct imple-

mentation. For these cases α = β and α = w respectively. However, for the

FIML-Embedded implementation (α = βT ) there is an additional constraint on the

minimization. Let X(U, α) = H(α) be the backpropagation algorithm which is an

additional constraint on the minimization problem such that (4.62) becomes (4.66):

min
α

J(U(α), X(α)) (4.66)

Subject to U(α) = G(U(α), X(α)) (4.67)

X(α) = M(U(α), α) (4.68)

Then, following the Lagrange multiplier explanation, we write the Lagrangian,

where the additional adjoint variables, λ, are marked with a bar to denote the

association to the variable in question (Ū is adjoint of flow variables, X̄ is the

adjoint of the neural network weights):

I(α, U,X, Ū , X̄) = J(U,X) + [G(U,X)− U ]T Ū + [M(α)−X]T X̄ (4.69)

= O(U, Ū ,X)− UT Ū + [M(α)−X]T X̄ (4.70)

Where O(U, Ū ,X) is introduced as:

O(U, Ū ,X) ≡ J(U,X) +GT (U,X)Ū (4.71)

The values of the adjoint variables are again chosen to eliminate troublesome

variables from the derivative of (4.69), namely ∂U/∂α and ∂X/∂α, giving:
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Ū =
∂

∂U
O(U, Ū ,X) =

∂

∂U
JT (U,X) +

∂

∂U
GT (U,X)Ū (4.72)

X̄ =
∂

∂X
O(U, Ū ,X) =

∂

∂X
JT (U,X) +

∂

∂X
GT (U,X)Ū (4.73)

And the required derivative is then:

dJ

dα

T

=
d

dα
MT (α)X̄ (4.74)

To solve for the adjoint variables, a fixed point iteration is performed such

that:

Ūn+1 =
∂

∂U
O(U∗, Ūn, X∗, X̄n) (4.75)

X̄n+1 =
∂

∂X
O(U∗, Ūn, X∗, X̄n) (4.76)

Following convergence of (4.75), the adjoint variables have been found and

the derivative can be computed. It can be shown that the adjoint fixed point it-

eration inherits the convergence properties of the forward (direct/primal) solution

and therefore if the flow solver converges the adjoint solver will as well. The ad-

ditional adjoint variables for the weights, X̄ are required for the FIML-Embedded

adjoint computation, but are dropped from the computation for the FIML-Classic

approach, as well as the FIML-Direct approach because the weights are not con-

verging (no backpropagation) and therefore the derivative information of the forward

propagation in the FIML-Direct procedure can be computed via autodifferentiation

without the additional adjoint variables.
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Autodifferentiation tools were used to compute the required derivatives in

(4.75). It is possible to compute the derivatives by hand, but autodifferentiation

greatly simplifies the process. Essentially, the code that was used in the primal

solver to produce U∗ is recorded. For the derivative computation, the record is

used to replace every elementary operation with its derivative. This dramatically

simplifies the development process. SU2 makes use of the autodifferentiation tool

CoDiPack [110].

Because of the use of autodifferentiation, the development effort was mini-

mized. The primary effort of modifying SU2 to support the FIML approaches was

to redefine the design variables, assemble and scale the features as required, and

to implement the neural network forward and backpropagation algorithms. For

FIML-Embedded, the additional modification of adding adjoint variables for the

weights was required. For FIML-Direct, additional adjoint variables for the weights

are not required as the weights are held fixed, and therefore the required derivative

information is automatically accounted for by the autodifferentiation algorithm.

4.8 Model Problem: The 1D Heat Equation

To demonstrate all three methods we consider the 1D heat equation given by

equation 4.77 and also presented by Parish and Duraisamy [39].

d2T

dz2
= ε(T )(T 4

∞ − T 4) + h(T∞ − T ), z ∈ [0 . . . 1], h = 0.5 (4.77)

The emissivity, ε, is taken to be a nonlinear function of temperature:

105



ε(T ) =

[
1 + 5 sin

(
3π

200
T

)
+ exp(0.02T ) +N (0, 0.12)

]
× 10−4 (4.78)

To model this problem we use the following imperfect model of the true process.

This imperfect model is missing the linear term, and therefore there is a deficiency

in the functional form of the model. It is, therefore, a good analogy to the RANS

application as the error in the RANS models are not likely due to the uncertainty

in the closure constants, but are likely due to errors in the functional form of the

model:

d2T

dz2
= εo(T

4
∞ − T 4), z ∈ [0 . . . 1], εo = 5× 10−4 (4.79)

To correct the imperfect model through the FIML inversion process we mul-

tiply the right hand side of (4.79) by the function β. For FIML-Classic the inverse

process first solves for β(z) and then trains a neural network to determine β(T, T∞).

FIML-Embedded and FIML-Direct solve for β(T, T∞) in the inverse procedure. For

the 1D heat equation model problem we use the following objective functions:

FIML-Classic: Jc(β) =
1

2

N∑
i

(Ti(β)− Ttruthi)2 (4.80)

FIML-Embedded: Je(βT ) =
1

2

N∑
i

(Ti(βT )− Ttruthi)2 (4.81)

FIML-Direct: Jd(w) =
1

2

N∑
i

(Ti(w)− Ttruthi)2 (4.82)

106



Note, that for this model problem there are essentially only two variables to

use as inputs for an augmented model. Therefore, the features for our augmented

model are chosen to be η = {T, T∞} at each spatial point.

In this form, β has an analytical solution that, if found in the inversion process,

will result in a fully corrected model.

β(T, T∞) =
1

ε0

[
1 + 5 sin(

3π

200
T ) + exp(0.02T ) +N(0, 0.1)

]
× 10−4

+
h

ε0

T∞ − T
T 4
∞ − T 4

(4.83)

Note that it is not guaranteed that the chosen machine learning algorithm

can sufficiently replicate (4.83). For FIML-Classic the procedure is to first perform

the inversion to find the optimal correction β(z) = arg minβ(Jc), and then train a

machine learned model to replicate the solution of the inversion. It is not always

possible to sufficiently replicate β(z) with a machine learning algorithm (β(η)) which

results in a degradation of performance of the augmented model due to imperfect

learning. FIML-Embedded and FIML-Direct have a substantial advantage in this

regard, as the training is performed in the inversion step. This will naturally restrict

the solution of the inversion to what is learnable by the chosen algorithm, and by

including the limitation of the algorithm in the inversion the optimization procedure

will find the optimal solution that can be learned by the machine learning algorithm

The 1D heat equation model problem is considered for two important reasons.

First, the 1D heat equation is substantially more simple than a RANS simulation.

By using a single equation in a single dimension it is substantially easier to under-
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stand the algorithms presented. Second, it demonstrates the applicability of all three

FIML approaches to other physics-based systems. FIML-Classic, FIML-Embedded,

and FIML-Direct are applicable to many physics-based simulations and by demon-

strating these approaches on the 1D heat equation this flexibility is demonstrated.

4.8.1 Model Problem: FI-Classic Implementation

The 1D heat equation implementation is relatively straightforward. First the

correction field β(z) is uniformly initialized to β(z) = 1.0. The correction field is

then applied to the right hand side of (4.79) to give (4.84):

d2T

dz2
= β(z)εo(T

4
∞ − T 4), z ∈ [0 . . . 1], εo = 5× 10−4 (4.84)

Equation (4.84) is then solved by finite differences. In this application, second

order central finite difference approximations were used for the second order deriva-

tives with one sided second order finite difference approximations on the boundaries.

This gives the following discretization:

B = β(z)εo(T
4
∞ − T 4) (4.85)

Where the matrix B is the discrete approximation of second order accurate

spatial derivative of T . The system of equations is then solved by adding a pseudo-

time and marching to the solution of (4.84). This results in the update equation

in (4.87). Dirichlet boundary conditions of T = 0 are enforced at both ends of the

spatial domain.
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B ≡



2 −5 4 −1 0 . . . . . . 0

1 −2 1 0
...

0 1 −2 1

...
. . . . . . . . .

...

1 −2 1 0

... 0 1 −2 1

0 . . . . . . 0 −1 4 −5 2



(4.86)

T (n+1) = T (n) + ∆T, ∆T =
∆t

∆z2
BT −∆tβ(z)εo(T

4
∞ − T 4) (4.87)

To generate the truth temperature distribution, equation (4.77) is solved and

sampled a number of times. This gives a temperature distribution that defines our

data (kd) for our problem. In the applications for this thesis only the mean of 100

samples is used, but in a Bayesian setting, as demonstrated by Parish and Du-

raisamy, the sampling procedure defines the prior distribution required for Bayesian

inference [39]. After solving the model problem for the current design the objective

function (4.80) is computed.

The gradient of the objective function Jc with respect to the design variables,

β(z) is efficiently computed via adjoint methods. First we set u ≡ T (z) and solve

for the adjoint variables (v) via the dual form given by ATv = g. Here, using the

linearized form of the equations to form the matrix A we have:

A = BT − 4βεoT
3 (4.88)
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Note that the temperature distribution (T ≡ u) has been found from the direct

(primal) solver, so the adjoint solver requires a converged solution from the direct

solver. For the model problem we use the objective function Jc given by (4.80) and

therefore we have the following form for g:

g ≡
[
∂J

∂u

]T
= −(T∞ − T ) (4.89)

The adjoint variables, v, are then solved similarly to the direct solution by

solving for ATv = g. Finally, the required derivative is computed from Equation

(4.90):

dJ

dα
=
∂J

∂U

dU

dα
+
∂J

∂α
= gTu+

∂J

∂α
gTu ≡ vTf → dJ

dα
= vT ε0(T

4
∞ − T 4) (4.90)

This gives the required gradient. For each design (each β(z)) the direct solver

produces the temperature distribution T (z) that satisfies the model problem and

returns T (z) and the current objective function value Jc(β). The temperature dis-

tribution is then passed to the adjoint solver which computes the adjoint variables,

v that satisfy ATv = g and returns the gradient, dJ/dβ. The optimizer then gener-

ates a new β distribution that the gradient based optimizer (such as BFGS) expects

will produce a lower cost function and the process is repeated. In this application

the BFGS implementation provided in the open source library SciPy was utilized

[96, 87].
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4.8.2 Model Problem: FIML-Embedded

For FIML-Embedded, the minimization for Je begins with the initialization of

βT (z) = 1.0. This is the “training” correction, and is passed to the direct (primal)

solver to evaluate Je. At the beginning of each new direct solve new weights, w,

are initialized randomly. In other words, we train a new neural network every time

Je is evaluated. To solve for the current temperature distribution first the current

feature values are collected and scaled, for the 1D heat equation the features are η =

{T, T∞}. The weights and the features are then used to solve for the current value of

the correction, β(η, w) using Equation (3.4). The backpropagation algorithm is then

performed to update the weights to minimize the sum squared error between the

current correction (β(η, w)) and the training correction βT (z). Note that βT (z) is

constant every Je evaluation, however η, w, and β are updated every solver iteration.

The temperatures are then updated using Equation (4.87). The process then repeats

(gather and scale η, update β(η, w), update w, update T ) until the temperature

distribution stops changing. In this fashion the temperature distribution converges

with the weights. Following each Je evaluation a neural network has been trained.

Figure 4.8 displays the algorithm for evaluating the current value of Je:

Complex step differentiation was utilized for the gradient computation in the

1D heat equation FIML-Embedded implementation. This greatly simplifies the

algorithm development and still yields machine accurate gradient information, albeit

at a much greater computational cost over the adjoint approach. The complex step

differentiation algorithm is, however, an embarrassingly parallel problem for each
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Figure 4.8: Illustration of the iteration process for 1D Heat direct (primal) solver

for FIML-Embedded.

element of the gradient and therefore the process was parallelized to minimize the

required run time.

With the gradient computation complete, the design variables, βT , are updated

using the BFGS algorithm in order to minimize the cost function. As is likely

apparent from this discussion, the FIML-Embedded approach has more complexity

than the FIML-Classic approach, as well as the FIML-Direct method discussed in

the next section.

4.8.3 Model Problem: FIML-Direct

The solution process for FIML-Direct is largely the same as for FIML-Classic

except the design variables are the weights of the neural network. This modification

requires only minor changes to the direct and adjoint solver.
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First the weights, w, are initialized randomly by the optimizer. This will

initially give a very poor estimate to β, and the initial solution to Jd(w) will not

be equivalent to the baseline model (β(w) 6= 1.0 everywhere). In order to have the

baseline solution for β be close to 1 everywhere for the initial solution we have the

neural network learn ∆β so that β = 1 + ∆β and initialize the weights to small

random values. This is equivalent to setting the output layer bias node to 1 for

the first iteration, and therefore to simplify the notation β will be considered the

output of the neural network in this discussion. This initialization detail is not

strictly necessary but helps avoid potential numerical solution issues with an initial

design far away from the baseline model. Initializing the weights to 0 everywhere

is not possible as this would also result in dJd/dw = 0 because the weights would

have no influence on the value of β.

The initialized weights are given to the direct (primal) solver in order to evalu-

ate Jd. The features are initialized and scaled and the forward propagation algorithm

is performed to find β(w, η). The temperatures are updated and then the process

is repeated (gather and scale features, update β(w, η), update T ) until the temper-

ature distribution stops changing, and then β and T have converged to their final

values. Jd is computed and passed to the optimizer.

To find the gradient the same adjoint numerical method discussed in the FIML-

Classic section of this chapter is performed again with the converged value of β(w, η)

found in the direct solver. This produces the gradient dJd/dβ. Then complex step

differentiation is performed on the forward propagation algorithm to produce the

gradient vector dβ/dw. The chain rule is then applied to find the required gradient
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for the optimizer: dJd/dw. The BFGS optimizer can then update the weights and

the next evaluation of Jd begins until Jd has been sufficiently minimized.

4.9 Summary

In this chapter the numerical methodology was presented. The first section

focused on the equations governing fluid flow and accommodations that must be

made in order to efficiently solve for turbulent problems at practical Reynolds num-

bers. The turbulence models utilized in this work to provide closure to the RANS

equations were then presented.

The next sections provided greater detail on machine learning with neural

networks for regression. Neural networks, only discussed in passing up until this

chapter, were explained along with the algorithmic documentation of the method

for training these networks. A section was devoted to feature selection and scaling

as this is a critical step that any modeler must consider in order to successfully

construct a useful neural network.

Numerical details concerning the three FIML approaches used were then pre-

sented, along with the minimization algorithm used in all three approaches: the

quasi-Newton BFGS method. This method is popular for highly dimensional mini-

mization problems.

The next sections discussed methods of obtaining gradient information in-

cluding the complex step finite difference method and adjoint methods. The adjoint

equations were presented, along with a detailed explanation of the discrete adjoint
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approach implemented and modified in the SU2 code.

Finally, the 1D heat equation model problem was presented. This simplified

problem provides a simple modeling environment to test all three FIML approaches,

and much of the numerical methodology presented in this Chapter. It also demon-

strates that the FIML approach can be applied to other physics-based simulations

(other than RANS simulations). The next chapter begins to present the results of

this methodology, beginning with the 1D heat equation.
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Chapter 5: One-Dimensional Heat Equation Simulations

5.1 Overview

This chapter presents the results of all three FIML methods to augment the 1D

heat equation model problem. Results for the FIML-Embedded and FIML-Direct

methods are presented here for the first time. First, the results of the 1D heat

equation using FIML-Classic are presented for a single case. The inversion is then

performed on four cases and a neural network augmentation trained on the informa-

tion resulting from the inversion. The augmentation is then tested on holdout data.

Then the FIML-Embedded results are presented for a single case. This demonstra-

tion is promising, but as discussed the methodology for considering multiple cases

with FIML-Embedded has not yet been developed so results cannot be presented

here. The results for FIML-Direct are presented for a single case, as well as the

simultaneous inversion of multiple cases. The results from this model problem are

very encouraging and are discussed. Finally, the FIML-Direct procedure is repeated

using the stochastic gradient descent algorithm as an example demonstrating an al-

gorithm that may be more favorable for considering large numbers of cases in certain

computing environments.
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5.2 FIML-Classic

First, the truth distribution (4.77) is sampled which gives the truth tempera-

ture distribution to which we compare our imperfect model given by (4.79). Then

the minimization procedure is performed using gradient descent methods to min-

imize (4.80) with respect to β. In other words, the minimization is finding the

spatially distributed β(z) = arg minβ(Jc). This completes the field inversion process

(FI-Classic)1. An example of the inversion results is shown in 5.1.

Figure 5.1: Figure of FI-Classic results for T∞ = 50.

As shown in 5.1, the uncorrected model shows significant error. This error is

almost completely eliminated following the inversion (right panel Figure 5.1). The

1Note the drop of the “ML” from FIML, this notation will be used to denote cases where the

inversion has been performed to generate the model-consistent information, but the information

has not been learned by a neural network (offline training not yet performed).
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residual error is insignificant.

Figure 5.2: FI-Classic results displaying computed β(z) for T∞ = 50.

However, as shown in Figure 5.2 the inversion did not exactly produce the

β distribution of the analytical solution. This is because there are portions of the

solution for this T∞ where the model performs well and is relatively insensitive to

β. This residual error is not eliminated by additional optimizer iterations.

Figure 5.3 shows the inversion history of (4.80), Jc. The gradient-based opti-

mization (BFGS) substantially reduced the value of Jc indicating that the optimiza-

tion was successful in minimizing the error of the model. As with all gradient-based

optimization procedures, there is no guarantee that the global optimum has been

found. In this case, as there is an analytical solution for the optimum solution

(4.83), we know that the final solution is very close, but not identical to the global
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Figure 5.3: Objective function convergence history of (Jc) for T∞ = 50.

(analytic) optimum. Also note, the inversion initially converges very quickly in the

first 20 iterations. For this simulation it is relatively inexpensive to evaluate Jc and

dJc/dβ, however this convergence behavior could be very beneficial for more expen-

sive applications such as RANS turbulence modeling as substantial improvement

can be made with few optimizer iterations.

At this point only the field inversion process has been completed. The inversion

is repeated for a number of cases (several T∞) in order to generate training data

that the machine learning algorithm will learn from. In this case we choose T∞ =

{20.0, 30.0, 40.0, 50.0} as the training set. The inversion results for each of these

cases is performed and saved.

From our training set we wish to create a machine learning model that can

predict the β without performing an inversion. For this application we use fully
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connected feed forward neural networks for regression. In this application there

are only three variables (T, T∞, z). The inversion created a spatially correlated

correction distribution β(z) and we now want to create a function β(T, T∞). T and

T∞ are our “features” (η) that are the inputs to the neural network. The number of

layers in the neural network and the number of nodes are free parameters that must

be chosen by the modeler. In this application a single layer with 20 nodes was used.

The hidden layer used a hyperbolic tangent activation function (y = tanh(x)) and, as

is typical for regression networks, the output node used a linear activation function

(y = x). The neural network was trained using the Scikit-Learn software [92]. The

limited memory BFGS (L-BFGS-B) algorithm [88] was used to minimize the log

loss function with respect to the weights of the neural network. 20% of the training

data points were chosen at random and used as holdout points in order to test

the algorithm, and guard against overfitting/overtraining, where the trained neural

network performs very well on the training set but exhibits poor generalization for

cases other than the training data (unseen data). The training results are shown

in Figure 5.4. Note that for this neural network structure and activations some

significant error remains following training. Though it is possible another neural

network could perform better, there will always be residual error following learning.

Note that this is error that was not considered during the inversion, and naturally,

this will result in reduced performance of the augmented model due to imperfect

training.

The truth temperature distribution, baseline model, and neural network aug-

mented model results for each temperature in the training set are shown in Figure
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Figure 5.4: FIML-Classic Neural Network Error Following Training.

5.5. The error is almost completely eliminated for the temperatures in the training

set indicating that the errors observed due to imperfect training (Figure 5.4) were

not significant enough to produce significant errors in the augmented model. This

is not true in general, as will be demonstrated in the FIML-Classic application to

the S809 airfoil in Chapter 6.

To further explore the generalization capabilities the augmented model is

tested for conditions that were not included in the training set (conditions that we

did not perform an inversion for). Additionally, the augmented model was tested

for a variable T∞ case, while the neural network was trained using cases uniform

T∞ cases. The performance of the augmented model for these unseen conditions
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Figure 5.5: FIML-Classic results of model augmentation for training temperatures.

is shown in Figure 5.6. The correction β(T, T∞) produced by the neural network

augmentation is shown in Figure 5.7.

Figure 5.6: FIML-Classic results of model augmentation for holdout temperatures.
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Figure 5.7: FIML-Classic neural network correction for holdout conditions.

As shown in Figure 5.6, there is some diminished performance for the holdout

conditions compared to the training conditions. However the error is substantially

reduced in the augmented model compared to the baseline, so the augmentation

is certainly improving the model in all cases. The augmentation improved the

prediction despite some extrapolation, which is illustrated in Figure 5.8. As shown,

the holdout cases not only test the generalization of the network for interpolated

cases, but also in some extrapolation conditions, demonstrating the robustness of

the augmented model resulting from the FIML-Classic process.
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Figure 5.8: Features for FIML-Classic training and holdout cases.

5.3 FIML-Embedded

The FIML-Embedded procedure was also tested on the 1D heat equation

model problem. Again, the truth distribution was sampled 100 times by solving

the full “true” heat equation with the full right hand side (4.77). The weights of

the neural network are initialized randomly at the start of the model (primal) solver

and then updated via backpropagation. The weights converge to their final values

with the temperature distribution. For the initial design the neural network is learn-

ing a uniform distribution (βT = 1.0) and the initial temperature distribution will

closely match that of the baseline model (4.79). The gradient is computed via the
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complex step finite difference method which yields a machine-accurate estimation of

the gradient, but is far less computationally efficient in this application compared

to adjoint methods because it is a forward differentiation approach. This shortcom-

ing is mitigated in this implementation by parallelizing the gradient computation.

The gradient computation is embarrassingly parallel so this implementation is triv-

ial and performs adequately well for a limited number of design variables. For

FIML-Embedded a maximum of 60 nodes (equivalent to the number of design vari-

ables) was used. For RANS applications adjoint methods were used to compute the

FIML-Embedded gradient due to the much larger number of design variables in that

application.

The BFGS method was again used to perform the minimization of the cost

function (4.81). The temperature distribution of the baseline model and the aug-

mented model are shown in Figure 5.9. Note that unlike FIML-Classic, the neural

network training is performed in the inversion. Therefore, following inversion, the

model has already been augmented.

The error following inversion is slightly larger than that shown for the FI-

Classic inversion (Figure 5.1). This is expected, because the FIML-Embedded ap-

proach accounts for the limitation of the chosen neural network in the inversion

process. Therefore, it is guaranteed that the resulting inversion from the FIML-

Embedded procedure can be learned. In other words, the inversion will not accept

a solution that the backpropagation algorithm cannot learn.

FIML-Embedded results in a correction field, β(T, T∞), that does not match

the true distribution (4.83) as closely as the inverse to FI-Classic. This is due to
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Figure 5.9: FIML-Embedded results of model augmentation.

the increased regularization of the FIML-Embedded approach. The correction field

(output of the neural network augmentation) is shown in Figure 5.10.

Additionally, the history of the BFGS minimization of (4.81) is shown in Figure

5.11. This shows strong convergence and a substantial improvement over only a

handful of iterations. By training the neural network inside the iterative solver we

can train the neural network with only slightly increased computational effort in the

model solver, and are still not required to perform excessive minimization iterations.

Note that unlike FIML-Classic and FIML-Direct it is not readily apparent how

to incorporate data from multiple inversion cases (multiple T∞) into a single aug-

mented model. Additionally, FIML-Embedded relies on the sufficient convergence

of two minimization problems: minw(SSE) and minβT (Je). The requirement to suf-

ficiently converge the error term (SSE) by backpropagation inside the solver while

the features are converging is sometimes difficult, and adds substantial complexity
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Figure 5.10: FIML-Embedded correction output from model augmentation.

to the evaluation of the current design (current Je). These are both drawbacks of

the FIML-Embedded approach. However, with FIML-Classic there is no guarantee

that the chosen machine learning algorithm can learn the inverse solution. With

FIML-Embedded the inverse solution is already learned, and there is no need for

offline training. Additionally, FIML-Embedded utilizes the backpropagation algo-

rithm to update the weights. This algorithm provides a very efficient weight update

algorithm that enables the training of very large neural networks. Depending on

the application, neural networks with multiple layers can easily have weights num-

bering in the hundreds. FIML-Embedded, like FIML-Classic, can efficiently train
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Figure 5.11: FIML-Embedded objective function minimization history.

these large networks. This may not be as straightforward when training the weights

directly as discussed in the following section (FIML-Direct).

5.4 FIML-Direct

The FIML-Direct algorithm was also demonstrated using the model problem.

Again the truth model was sampled 100 times to generate the truth distribution

(kd). The weights (FIML-Direct design variables) are initialized randomly. The

model problem is solved by computing the current β(w, T, T∞) and applying to

the right hand side of the model equation. The cost function (Jd) is evaluated by
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Equation (3.7). The gradient for FIML-Direct (dJd/dw) is evaluated through adjoint

methods to compute dJd/dβ and dβ/dw is computed for each weight via complex

step differentiation. The weights are then updated via the BFGS method in order

to minimize the cost function Jd. Once the inversion is complete and a minimum Jd

is found, the augmentation has been generated and is tested on holdout conditions.

The weights are then held constant, and the correction is a function only of the flow

features, β(T, T∞). Figure 5.12 shows the results for FIML-Direct using a uniform

T∞ = 50.0. For this application, a single layer of five neurons using hyperbolic

tangent activation functions.

Figure 5.12: FIML-Direct results of model augmentation for a single training tem-

perature.

The optimal correction, β(T, T∞), is shown in Figure 5.13. The derived cor-

rection shows remarkable agreement with the true correction distribution for this

temperature and neural network configuration. This agreement is not expected in a
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general application because the limitations of the neural network are being consid-

ered in the inversion, and will limit the convergence of the neural network output

to the true distribution in some cases. Despite this fact, the excellent convergence

is very promising especially considering that neural networks are typically trained

using large quantities of training data and thousands of weight updates. As shown

in Figure 5.14, the objective function converged several orders of magnitude in a

few iterations.

Figure 5.13: FIML-Direct correction for a single training temperature.

A major advantage of FIML-Direct over the FIML-Classic and FIML-Embedded

approaches is that the design variables in the inversion minimization problem are
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Figure 5.14: FIML-Direct correction for a single training temperature.

consistent across all cases. In this application: across T∞ distributions. Therefore

the inversion can be performed on numerous cases simultaneously simply by creat-

ing a composite objective function that is the sum of the cost function (Jd) from

each case. The gradient is similarly just the sum of each case’s gradient. This is

demonstrated for the model problem and results are shown in Figure 5.15. Note

that the augmentation is very successful with very little residual error shown for the

training temperatures. This is confirmed by the excellent convergence of Jd shown

in Figure 5.16.

Following the inversion/augmentation on four training temperatures the aug-
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Figure 5.15: FIML-Direct results of model augmentation for four training temper-

atures.

mentation was tested on holdout (unseen) conditions, including a variable T∞ distri-

bution. As shown in Figure 5.18, the augmentation performs extremely well on the

holdout conditions. This shows that the neural network is exhibiting good gener-

alization capability, or using the machine learning terminology: the neural network

is not overtrained. Despite only training on four uniform T∞(z) distributions, the

augmentation is able to substantially improve the prediction on a variable T∞(z)

holdout case. Additionally, some extrapolation is possible as the highest tempera-

ture in the training set was T∞(z) = 50, but the error is still dramatically reduced

when the augmentation is tested on the holdout condition of T∞(z) = 55 and simi-

larly on the variable T∞ distribution that reaches T∞ = 60 as z approaches 1.0.

The feature space is illustrated in Figure 5.20 and shows that the model was
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Figure 5.16: FIML-Direct Objective Function, Jd, Convergence using BFGS mini-

mization for four training temperatures.

tested for both interpolations and modest extrapolation from the training set. Also

note that excessive training conditions were not required to cover the feature space.

This is a promising observation as we seek augmentations that apply to a broad

variety of applications, and the results suggest that excessive sampling may not

be required to cover the feature space of those applications in order to provide a

substantial improvement to the performance of the augmented model.

The 1D heat equation was also tested using the FIML-Direct stochastic gradi-

ent descent approach. This method may be advantageous for performing the train-
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Figure 5.17: FIML-Direct correction, β(T, T∞), for training using four temperatures.

Figure 5.18: FIML-Direct results of model augmentation for four unseen T∞(z)

distributions.
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Figure 5.19: FIML-Direct correction, β(T, T∞), for holdout T∞ distributions.

ing/inversion on numerous cases when limited computational resources are avail-

able, as the gradient computation is substantially more efficient. For four training

T∞ distribution 8 simulations are required to compute the full gradient via adjoint

methods (4 Direct + 4 Adjoint simulations). For the stochastic gradient descent

demonstration on the 1D heat equation only a single case was considered the batch

for the gradient computation. Therefore each gradient computation to update the

weights was computed with the cost of two simulations (1 Direct + 1 Adjoint).

Note that without the full gradient advanced gradient descent methods (like BFGS)

should not be used for the direction finding, so a small step in the steepest descent
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Figure 5.20: FIML-Direct feature space depiction for training and holdout T∞(z)

distributions.

direction is taken after the gradient evaluation for the stochastic descent method.

It is expected, therefore that many more steps will be required for the stochastic

implementation in order for an equivalent drop in the objective function compared

to the full gradient approach, however, each step is far more efficient. Additionally,

the computation of the full gradient is an embarrassingly parallel problem (since the

computation of the partial gradient for each case does not require any information

from the other cases), so given enough computational resources there should be no

need to avoid the computation of the full gradient. The results of the model aug-

mentation for the training temperatures after using stochastic gradient descent for

the inversion/training are shown in Figure 5.21.

Similar to the FIML-Direct results when using the full gradient, the resulting

model augmentation from using the partial gradient shows substantial improvement
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Figure 5.21: FIML-Direct stochastic gradient descent results for training tempera-

tures.

on the holdout cases as (Figure 5.22). As expected, the convergence rate when

using the full gradient is substantially better as compared to only using the partial

gradient as shown in Figure 5.23. However, each evaluation for the SGD method is

roughly 4 times more efficient than using the full gradient for this application.

5.4.1 Inversion Convergence Comparison

The convergence histories for the cases discussed for all three methods are

shown in Figure 5.24. First note that because of the imperfect convergence of the

backpropagation algorithm for FIML-Embedded and random initialization of the

weights for FIML-Direct, the objective function values (Jc, Je, Jd) are not equivalent

on the first evaluation. The objective function values for the multi-temperature
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Figure 5.22: FIML-Direct stochastic gradient descent results for holdout T∞(z)

distributions.

inversions are normalized by the number of T∞ distributions for comparison to the

single temperature cases.

Note that all methods show strong convergence of the objective function (a

drop of at least a few orders of magnitude). The FIML-Classic convergence of Jc

is by far the best of all the methods tested. This is expected, as the FI-Classic ap-

proach does not account for the limitations of the chosen machine learning algorithm

in the inversion process. The FIML-Embedded convergence indicates a successful

augmentation, but is the worst compared to the other approaches. This is likely due

to the imperfect convergence of the backpropagation algorithm that is limiting the

achievable accuracy. As noted previously the robustness of the FIML-Embedded

approach remains an issue, and the added complexity of the FIML-Embedded pro-
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Figure 5.23: FIML-Direct stochastic gradient descent objective function Jd conver-

gence history.

cedure is a drawback of this algorithm. Most remarkable is the convergence of the

FIML-Direct cases. For a single temperature the FIML-Direct algorithm converges

roughly six orders of magnitude; this is excellent convergence considering the algo-

rithm is training the neural network in the inversion process. As more cases are

considered the convergence is somewhat adversely affected when using the FIML-

Direct approach, but the objective functions still show a drop of over five orders

of magnitude. Also note that all methods show strong convergence early in the

inversion history indicating that successful augmentations could still be obtained if
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Figure 5.24: Convergence history of the objective functions for all three methods.

computational cost considerations preclude hundreds of inversion iterations. The

FIML-Direct stochastic convergence is by far the worst on a per-iteration basis, but

because each evaluation is efficient it is possible that the stochastic approach would

be advantageous when considering more cases than considered here.

5.5 Summary

Results were presented for all three FIML methods on the 1D heat equation

model problem. It was shown that all three methods can generate augmentations

that correct the model for the training temperatures. The FIML-Classic and FIML-

Direct methods were able to almost perfectly recover the truth β distribution for a

single training temperature, while it was shown that the FIML-Embedded approach

dramatically reduced the model error but did not converge to the true distribution.
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The FIML-Classic and FIML-Direct methods were also demonstrated by using four

T∞(z) distributions, and it was shown that it was not possible to achieve perfect

offline training for the FIML-Direct approach. This results in a lack of consistency

between the inversion results and the model augmentation that can result in dimin-

ished performance. For this simple implementation, however, nearly perfect model

augmentations were demonstrated for the training temperatures for both FIML-

Classic and FIML-Direct.

It was demonstrated that the FIML-Direct method can efficiently perform the

inversion on multiple cases simultaneously. This is a somewhat surprising result, as

FIML-Direct is training a neural network in an unconventional way. FIML-Direct

does not train a neural network by the typical approach: by acquiring large quanti-

ties of training data and utilizing the backpropagation algorithm (or other approach)

to train the network to reproduce the training set. FIML-Direct operates on the

weights directly by computing the gradient of the cost function (Jd) with respect

to the weights. In this way there really is no training data in the classical sense

(large quantity of input/output pairs). The algorithm is simply finding the weights

that cause the augmentation to minimize the cost function. The only data that is

being utilized is the truth distributions, but the output of the neural network is

β and the inputs are the features, {T∞, T}. For FIML-Classic (and typical neural

network training) we must assemble a representative dataset of inputs and outputs,

but FIML-Direct completely avoids this sometimes cumbersome step. It was antici-

pated, but not observed, that the nonlinearity of the neural network may complicate

the training and give poor inversion results. For the model problem this was not an
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issue, as the FIML-Direct approach required a comparable number of iterations to

perform the inversion and augmentation as the FI-Classic inversion.

In summary, the 1D heat equation provides a simple environment to evaluate

and compare the FIML approaches. Of the two new methods presented in this the-

sis (FIML-Embedded and FIML-Direct), the FIML-Direct approach shows the most

promising results for the model problem. The simultaneous inversion and training

of multiple cases provides an exciting novel approach to train neural networks for

physics based simulations. As demonstrated by the 1D heat equation cases consid-

ered in this Chapter, the FIML-Direct augmentation shows comparable or better

accuracy than the FIML-Classic augmentation without the need for offline train-

ing. By including the limitations of the neural network in the inversion the modeler

guarantees consistency between the inversion environment and the resulting aug-

mentation.
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Chapter 6: FIML Results for RANS Applications

6.1 Overview

This chapter presents results for all three FIML approaches on several histor-

ically challenging RANS applications. Results for the FIML-Embedded and FIML-

Direct approaches for RANS applications are presented here for the first time. The

FIML-Classic, FIML-Embedded, and FIML-Direct methods were implemented in

a modified version of the Stanford University Unstructured code (SU2) [107] for

the first time. This software suite is dramatically more complex than the 1D heat

equation simulation in the previous chapter. This demonstrates the robustness and

flexibility of the FIML approach, however it also complicates the discussion and con-

clusions as the physical problem and numerical methods involved are substantially

more complex. In the first section, results for simulations concerning the S809 airfoil

are presented, and all three methods are demonstrated. Of particular interest are

the FIML-Direct results for this application, which demonstrate the capability of

this new approach to perform the simultaneous inversion of multiple cases. A new

augmentation is constructed from this inversion and it is demonstrated on unseen

data: another airfoil, the S814.

To demonstrate that the methods can also improve predictions for compress-
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ible cases, all three methods are demonstrated on a transonic airfoil with a shock

wave turbulent boundary layer interaction (SWTBLI). Another historically difficult

problem is the NASA Langley wall mounted hump [111]. These applications are

presented in this chapter to demonstrate performance on a variety of problematic

RANS applications. As will be shown in this chapter, the FIML approach demon-

strates promising performance on all of these cases, with the 2D airfoil results being

the most promising as these results are perhaps the most developed of all the appli-

cations presented.

This chapter only presents results for cases where one of the new novel methods

(FIML-Embedded and FIML-Direct) was applied. Additional cases performed for

only the FI-Classic approach are presented in Appendices A and B, which show

results for a hypersonic wedge SWTBLI application and a 3D Onera M6 wing.

6.2 S809 Airfoil

The S809 airfoil is a thick airfoil designed for wind turbine applications. As

discussed in Chapter 1, RANS predictions on 2D airfoils at a high angle of attack

often suffer from an overprediction in eddy viscosity. This results in a boundary

layer more resistant to separation than observed in experiments, leading to an over-

prediction in lift coefficient at angles of attack sufficient to result in separation on

the suction surface [15, 3]. In general the SA model overpredicts eddy viscosity for

adverse pressure gradients as noted by Spalart and Allmaras [17], and regions where

the SA model is anticipated to perform poorly are illustrated in Figure 1.3.
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The S809 airfoil was considered for all three FIML approaches. The data

chosen to improve the baseline model was the experimental lift coefficient [16] (kd =

CLexp) for all cases. In the following sections first the results for the augmentation for

a single angle of attack (single case) are presented for each method. Additionally, a

discussion of the features selected for the neural network augmentation is presented.

Finally, results for the simultaneous inversion of multiple cases using the FIML-

Direct algorithm are presented. This augmentation, only trained using S809 data,

is then tested on another 2D airfoil, the S814.

6.2.1 FI-Classic

The Classic method field inversion “FI-Classic” was performed on the S809

airfoil at α = 14.2◦ angle of attack. The baseline SA-BC model was run for a

number of angles of attack and compared to the experiment. Note that the SA-BC

transition model was used for all of the S809 airfoil cases as the natural transition

experimental data was used. As shown in Figure 1.2, the lift coefficient is substan-

tially over-predicted by the baseline SA-BC model, indicating that there is room for

improvement that could be made by incorporating the information from the data

into an augmented model.

The objective function for the FI-Classic inversion is given by 6.1, where n is

the number of points in the computational domain:

Jc(β) = (CLexp − CL)2 +
1

2
λ

n∑
i=1

(βi − 1.0)2 (6.1)
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For this angle of attack we have CLexp = 1.0546 and λ = 1.0×10−4. Remember

the regularization constant, λ, represents the confidence in the baseline solution

relative to the data, such that higher λ indicates more confidence in the model. In

this case λ was chosen to be similar to that explored by Singh [42]. To show the

effect of the regularization constant values for the objective function without any

regularization constant (λ = 0) will be shown and denoted J ′c such that Jc ≥ J ′c.

The baseline SA-BC model solution (no correction, β = 1.0 everywhere) is

shown in Figure 6.1. There is a large separated region at this angle of attack

indicated by the recirculating streamlines. This solution corresponds to the first

evaluation of Jc in the minimization.

Because there is a β at every node of the domain the gradients can be easily

visualized. The gradients found by the adjoint solver for the first evaluation (β =

1.0 everywhere) are shown in Figure 6.2. Note that most of the design variables

are inactive, meaning that the gradients are equal to 0, they do not affect the

experimental lift coefficient, and therefore will not be modified by the optimization

algorithm during the minimization. The remaining gradients are almost universally

positive, meaning that the downhill direction is to decrease production on the upper

surface of the airfoil, as expected.

The convergence history of the FI-Classic algorithm for the S809 airfoil is

shown in Figure 6.3. Each “evaluation” represents a solution for a chosen β(x)

correction field. A direct (primal) and adjoint solution is found for each evaluation

to find Jc(β) and dJc/dβ. Note that the convergence for this case is very good, with

a substantial decrease in the lift coefficient error in a few iterations. The right side of
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Figure 6.1: Baseline SA-BC streamlines and Cp contours for S809 airfoil.

Figure 6.3 shows good convergence and also shows the purpose of the regularization

constant. Note that J ′c shows a three order of magnitude drop in the objective

function for evaluation 3, however Jc is much higher indicating that the correction

for evaluation 3 is excessively large. The minimum for Jc occurs on evaluation

11, which is a much less intrusive correction that still substantially corrects the lift

coefficient. To further evaluate the inversion convergence history, the L2 norm of the

gradient, ‖∇Jc‖2, is shown in Figure 6.5. Note that the magnitude of the gradient

is substantially reduced throughout the inversion, exhibiting the expected behavior

for convergence to a local minimum.
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Figure 6.2: Initial gradient for FI-Classic.

Figure 6.3: Convergence history of S809 airfoil for FI-Classic.

The optimal correction field, found in evaluation 11, is shown at the top of

Figure 6.11. Note that this correction is rather substantial, and over a limited
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domain in space. The sudden changes in β will complicate the determination of

a function to reconstruct it from local flow features. At this point, the inversion

is complete, but no learning has occurred. There remains the process of taking

the spatially correlated correction field, and learning a function to reproduce it:

β(x)→ β(η).

Figure 6.4: Optimal correction field found by FI-Classic.

6.2.2 Feature Selection and Scaling

The methodology used to examine potential features, η, is discussed in this

section. In order to successfully train a neural network that can reproduce the

correction field, the modeler must select appropriate features that exhibit a strong

functional relationship to the output. Ideally these features will be local and easily

computed in the flow solver so it will be available to the model augmentation. To

start, the features were visualized with scatter plots and correlation coefficients. A
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Figure 6.5: Magnitude of the gradient vector of the objective function during the

inversion for FI-Classic.

large set of features already used in the SA turbulence model were examined. Intu-

itively, these are quantities that have already been identified by previous researchers

as important to accurately model the eddy viscosity, and therefore it is likely that

a subset of these features will be adequate to produce a function to predict the

correction to the production term.

Figures 6.6 and 6.7 shows the scatterplot and correlation coefficient plot of a

large subset of the features considered during this effort. P/D is the (dimensionless)

ratio of the production to destruction terms of the SA model. Ŝ is the SA model

variable. |S|/|Ω| is the ratio of the strain to vorticity magnitudes. δ is the ratio of

the local turbulent strain to the shear stress at the wall that was also used by Medida
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[3] in his PhD Thesis to create an adverse pressure gradient correction to the SA

model 6.2. fw is the SA wall function variable. The features have been scaled to unit

mean and standard deviation. First note that some of the considered features have

extreme outliers. As noted previously this can complicate neural network training.

Additionally, the correlation coefficients are low (with the possible exception of δ),

indicating that the features do not show a strong linear correlation to the correction.

Figure 6.6: Scatterplot pairs for some considered features.
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Figure 6.7: Correlation coefficient pairs for some considered features.

δ =
µt|Sij|
1.5τw

(6.2)

A number of scaling operations were considered in order to account for large

outliers. The most successful of these is shown in Figures 6.8 and 6.9. In this scaling

the features have been mapped to a normal distribution. Note that the outliers

have been dramatically reduced, and the correlation coefficients have also increased

substantially. In practice, mapping the features to a normal distribution produced

far better augmentations than scaling to unit mean and standard deviation due to

152



the more robust treatment of outliers. Also note that there is a strong relationship

between fw and the P/D suggesting that perhaps both features do not need to be

included in the feature set.

Figure 6.8: Scatterplot pairs for some considered features mapped to normal distri-

bution.

The features were also ranked in order of importance in two ways. First,

a random forest regressor was trained on the features. Random forests naturally
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Figure 6.9: Correlation coefficient pairs for some considered features mapped to

normal distribution.

produce a feature ranking as part of the learning process. This may give some

indication of which features show the strongest functional relationship to the output,

but since in this application we are using neural networks it is perhaps not the

most appropriate approach. The feature ranking from the random forest regression

training in order of most to least important was: 1. δ, 2. fw, 3. χ, 4. |S|/|Ω|, 5. Ŝ,

6. P/D.

Next, the sequential back selection (SBS) algorithm was performed on the
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potential features. This algorithm also ranks features, but in this case the proper

learning algorithm is used (neural networks). Note, however, that the results are

dependent on the chosen neural network structure, feature scaling, and specific

training algorithm so again conclusions are difficult. The feature ranking for the

sequential back selection algorithm was: 1. fw, 2. P/D, 3. δ, 4. |S|/|Ω|, 5. χ,

6. Ŝ. Additionally, the R2 scores for each subset of features were plotted. This

can help determine the selection of the optimal number of inputs for the neural

network. Networks with too many features (features that do not provide additional

useful information) suffer from overtraining that can diminish performance. The

scores for each subset of features is shown in Figure 6.10. Note that the network for

all 6 features shows a worse score than the 5 feature subset (P/D removed). This is

likely because fw and P/D are highly correlated (Figure 6.9) and therefore only one

is needed in the feature set. Also note that the R2 score only starts decreasing for

the 2 or 3 feature subsets indicating that perhaps 3-4 features are an appropriate

number of inputs for this application, features selection, training algorithm, and

neural network structure. Definitive conclusions concerning feature selection for

machine learning are difficult to make, because the optimal features are so highly

dependent on choices made by the modeler.

Ultimately, four features were selected given by Equation 6.3:

η =

[
P

D
, χ,

|S|
|Ω|

, δ

]
(6.3)
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Figure 6.10: R2 scores for each subset of features during sequential back selection.

6.2.3 FIML-Classic

The four features selected from the feature selection section were used to train

a neural network augmentation to the SA-BC model. This completes the FIML-

Classic augmentation and creates a model that could be used to make predictions

for additional (unseen) cases, without the need for the expensive inversion process

(and the corresponding need for additional data).

The SciKit-Learn package was used to train the neural network. A rigorous

hyperparameter search was not performed however a 3 hidden layer x 20 node net-

work was selected. The network was trained via the L-BFGS-B algorithm, and the
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resulting output of the neural network is shown in Figure 6.11.

Figure 6.11: Comparison between correction found in inversion and output of neural

network following learning.

Clearly, the residual training error shown in Figure 6.11 will have a negative

effect on the accuracy of the resulting augmentation. While another neural net-

work topology or other machine learning algorithm could likely perform better than

shown [13], no learning algorithm will have perfect training. Therefore, for FIML-

Classic there will always be some level of inconsistency between the inversion and the

prediction environment. For this case, the penalty due to inconsistent augmentation
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CL Error

Target 1.0546 -

Baseline 1.15826 0.10366

Inverse 1.06726 0.01266

Augmentation 1.06914 0.01454

Table 6.1: Comparison of target (kd), inverse, and augmented model lift coefficients.

is shown in Table 6.1. The penalty in this case is an error in the lift coefficient that

is 15% greater than that of the inverse solution. Thus, the achievable performance

for this neural network training increases the error by 15%. Fortunately, for this

case the residual error is still quite low.

The pressure distributions from the experiment, baseline model, and FIML-

Classic augmentation are shown in Figure 6.12. As shown, the improvement in

prediction is due to better prediction of the separation location, consistent with

the known deficiencies in the RANS models discussed previously. Note that for

the FIML-Classic augmentation only the only higher fidelity data used was the

experimental lift coefficient at 14.2◦ angle of attack: a single number. Despite this

limited data set the augmentation has corrected the pressure distribution, indicating

that the augmentation is making a physically relevant prediction.
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Figure 6.12: Pressure distribution plot showing improvement in prediction for the

FIML-Classic augmentation.

6.2.4 FIML-Embedded

The FIML-Embedded approach was performed on the same application (S809

at 14.2◦ AoA). The same features were used however in this application a 2 hid-

den layer x 20 node neural network was used. A two hidden layer network proved

sufficient to minimize the loss function in the flow solver. Again the hyperbolic

tangent activation function was used. The features were again mapped to a normal

distribution, however the method implemented in SU2 to accomplish the mapping is

different than that implemented in the SciKit-Learn package [92]. The SU2 imple-

mentation computes the estimated distribution function of the feature by binning

then applies the inverse cumulative distribution function of a normal distribution as

described in Chapter 4. The objective function for the FIML-Embedded inversion
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is given by 6.4:

Je(βT ) = (CLexp − CL)2 +
1

2
λ

n∑
i=1

(βTi − 1.0)2 (6.4)

The minimization history of the cost function (minβT Je(βT )) is shown in Fig-

ure 6.13. Note that the lift coefficient error has been substantially reduced as shown

on the left hand side figure. On the right, the regularized cost function has been

substantially reduced (Je). The lowest value of Je was obtained on evaluation 6.

Figure 6.13: Convergence history of S809 airfoil field inversion.

As noted previously, a drawback to the FIML-Embedded approach is the ad-

ditional complexity required to perform the simultaneous minimization associated

with the backpropagation algorithm (minimize the SSE loss function) inside the

flow solver, and the minimization of Je. In practice, this sometimes resulted in poor

convergence inside the flow solver. Improving the robustness of the FIML-Embedded
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implementation remains an area for future work, especially for RANS applications.

For this case, the robustness issue prevented further convergence of the minimiza-

tion algorithm and the inversion terminated prematurely. This almost certainly is

limiting the achievable performance of this FIML-Embedded case, so direct compar-

ison to the other FIML algorithms is not appropriate until the robustness issues are

resolved. Nevertheless, for this application Figures 6.14 and 6.15 show the lift con-

vergence and SSE loss function convergence history for evaluation 6 indicating that

the flow solver and backpropagation algorithm are showing sufficient convergence

for this case. Therefore, regardless of the premature inversion termination, because

the objective function is substantially smaller than the initial design, and the back-

propagation algorithm converged, this design is valid and represents a successful

augmentation that improves the prediction of the model. Additionally, Figure 6.16

shows shows the optimal βT and β correction fields. Recall that βT are the design

variables for the optimizer, and β is the correction applied to the production term

and also the output of the neural network being trained by the backpropagation

algorithm.

Note that in Figure 6.16 the neural network training is satisfactory, but not

perfect. The β field is slightly more dispersed and generally of lower magnitude

indicating increased regularization over the βT field. This is due to imperfect learn-

ing in the backpropagation algorithm and is expected. Since this training error is

now inside the inversion, it is accounted for in the optimization process. This en-

sures that the optimal correction can be learned. Also, unlike FIML-Classic, this

implementation trains a neural network in the inversion and therefore guarantees
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Figure 6.14: CL convergence at minimum Je evaluation.

consistency between the inversion solution and the resulting augmentation.

6.2.5 FIML-Direct

The FIML-Direct algorithm was also performed for the same case (S809 at

14.2◦ AoA). Compared to the FIML-Embedded implementation the FIML-Direct

approach is substantially more straightforward. The weights of the neural network

are now the design variables and are set by the optimizer at each Jd(w) evaluation.

The weights remain fixed for each evaluation. The forward propagation algorithm

is still performed each flow solver iteration to find the current correction β(w).

For this application the same features were used, however a smaller network was
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Figure 6.15: SSE convergence at minimum Je evaluation.

selected using a single hidden layer with 20 nodes. More layers were tested but did

not result in improved performance for this case. The objective function for this

FIML-Direct case is given by 6.5 and initially λ = 1.0 × 10−4. Note that unlike

the other methods, the gradient cannot be visualized in the same manner because

the design variables are no longer defined at each node, but are now the weights of

the neural network. Despite being not easily visualized, FIML-Direct substantially

lowers the dimensionality of the inversion for this application (number of weights

much less than the number of nodes in the computational domain). Due to the many

fewer design variables the limited memory BFGS variant (L-BFGS-B) algorithm was

not necessary and the BFGS algorithm was used. The convergence of Jd(w) during

the inversion/optimization procedure, minw(Jd(w), is shown in Figure 6.17.
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Figure 6.16: FIML-Embedded comparison of training correction βT and correction

output by converged neural network augmentation β.

Jd(w) = (CLexp − CL)2 +
1

2
λ

n∑
i=1

(β − 1.0)2 (6.5)

Note that the convergence shown in Figure 6.17 is relatively poor compared

to FIML-Classic and FIML-Embedded. However, the FIML-Direct approach is re-

sulting in substantially more regularization than the other methods, as shown in

Figure 6.18. It is therefore appropriate to lower the regularization constant because

the required regularization is being applied by the limitations of the neural network
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Figure 6.17: Convergence history of S809 airfoil FIML-Direct inversion for λ = 10−4.

in this approach.

Figure 6.18: Correction field (β) for FIML-Direct with λ = 10−4.

Figures 6.19 shows the correction for the same case with λ = 10−5. Note that

the correction has a larger magnitude, and the residual error in the lift coefficient
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(discussed next section) is much lower with the decreased regularization constant.

It is possible to lower the regularization constant for the other methods, with the

risk of the increased difficulty of learning the de-regularized correction. Unlike the

convergence history shown in Figure 6.17 for the λ = 10−4 FIML-Direct case, the

λ = 10−5 results did not demonstrate strong (asymptotic) convergence during the

inversion. However, the achieved minimum gives a much closer match to the data

than the higher regularization constant solution, as expected, due to the decreased

regularization constant allowing a more intrusive correction.

Figure 6.19: Correction field (β) for FIML-Direct with λ = 10−5.

6.2.6 Comparison

Comparisons between the three FIML methods tested on the S809 airfoil for

this single case are presented in this section. First, note that the three methods

are using different neural network structures and numerical approaches so compar-
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CL Error

Target 1.0546 -

Baseline 1.15826 0.10366

FI-Classic, λ = 10−4 1.06726 ± 0.01266

FIML-Classic, λ = 10−4 1.06914 ± 0.01454

FIML-Embedded, λ = 10−4 1.07372 ± 0.01912

FIML-Direct, λ = 10−4 1.09483 ± 0.04023

FIML-Direct, λ = 10−5 1.05834 ± 0.003740

Table 6.2: Comparison of CL following inversion and/or model augmentation for

FIML approaches on the S809 airfoil; the “±” is applied to emphasize that some

results, as discussed, are not fully converged so confident conclusions about the

relative performance of the three FIML approaches cannot be made.

isons must be made with caution. Additionally, the FIML-Embedded solution was

not sufficiently converged due to robustness issues, as discussed. Convergence ver-

ification for the FIML-Direct application with λ = 10−5 also remains an item for

future work. Therefore, because of these considerations, confident comparisons of

the performance of each method will not be made here, and the relative achiev-

able performance of the methods remains uncertain. Table 6.2.6 compares the lift

coefficients achieved for all three FIML approaches.

Note that all the FIML approaches result in augmentations that dramatically
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reduce the error in the predicted lift coefficient. The penalty for imperfect training

for the FIML-Classic approach is shown in Table 6.2.6. The difference in the FI-

Classic and FIML-Classic result is simply due to the fact that the neural network

used for the augmentation cannot perfectly replicate the correction field. FIML-

Embedded for the same regularization constant performs somewhat worse than the

FIML-Classic augmentation for this choice of neural network hyperparameters and

regularization constant. It is certain that the performance of the FIML-Embedded

algorithm would be improved if a solution to the observed robustness issues for

the RANS applications is developed, enabling the inversion to converge further.

The FIML-Direct method performs worse than the other methods for the same

regularization constant, but as the regularization is being provided by considering

the limitations of the neural network in the inversion it is appropriate to decrease

the regularization. The lower FIML-Direct error bar shows the best performance of

all augmentations (λ = 10−5 for that case). Also note that, in general, it is possible

that a different optimization algorithm or improved implementation could achieve

better inversion performance than the results presented here.

The experimental lift coefficient at a single angle of attack was the only higher

fidelity data used to perform the inversions: a single number. It is somewhat re-

markable, therefore, that the entire pressure distribution on the airfoil is corrected

by the augmentations as illustrated in Figure 6.20. Note that the baseline model

shows substantial error in the experimentally observed separation location, but all

the FIML approaches substantially reduce this error. Also note that the three FIML

approaches result in different optimal solutions for the SA production term (β) as
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Figure 6.20: Comparison of pressure distributions for baseline SA-BC model and

FIML augmentations.
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shown in Figure 6.21. This is due to the differing ways of accounting for (or neglect-

ing) the limitations of the learning algorithm in the inverse problem.

Figure 6.21: Comparison of production term correction (β) for FIML inversions.
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6.2.7 FIML-Direct for Simultaneous Inversion of Multiple Cases

As discussed in Chapter 4, because the design variables are consistent across

multiple cases for the FIML-Direct approach, the simultaneous inversion of multiple

cases can be performed. In other words, because we are seeking a single neural net-

work that augments the model for a variety of cases we can perform the FIML-Direct

inversion on multiple cases simultaneously. Figure 3.4 illustrates this process. There

is no requirement for the objective function to be the same for each case, meaning

whatever data is available can be used for each case. Additionally, there is no re-

quirement to use the same computational grid, and therefore multiple geometries

can be considered simultaneously.

To demonstrate the simultaneous inversion of multiple cases the FIML-Direct

inversion is performed on the S809 airfoil at three angles of attack, αtrain = {1.02◦,

8.2◦, 14.2◦}. The individual objective functions were the same form as considered in

the single angle of attack case; however, the regularization constants were different

between the angles of attack considered. This is due to the difference in confidence

between the conditions. At α = 1.02◦ the confidence in the prediction is high, and

therefore the regularization constant was set at λ = 10−4. For the high angles of

attack the model prediction is much less confident due to the high error with respect

to the experimental data. Therefore, the regularization constant for these cases was

set at λ = 10−5. The convergence for this case is shown in Figure 6.22. Note that

each evaluation corresponds to the solution of 3 direct (Jd(w) =
∑3

i ji(w)) and 3

adjoint simulations for roughly the equivalent cost of 6 times the cost of a single
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baseline solution.

Figure 6.22: Convergence history of S809 airfoil FIML-Direct simultaneous inversion

at 3 Angles of Attack.

The minimum was found on Evaluation 14 and the resulting correction for

each angle of attack is shown in Figure 6.23.

To evaluate the generalization ability of the resulting augmentation the net-

work was tested on four additional (unseen) angles of attack that were not included

in the training set. These are referred to as the holdout cases, so αholdout = {5.13◦,

11.21◦, 12.22◦, 15.24◦}. The baseline results were then compared to the augmen-

tation trained on the three αtrain conditions. The results are summarized in Figure

6.24. Note that for all the angles of attack in the training and holdout cases, the
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Figure 6.23: Correction for all three angles of attack at best evaluation.

predicted lift coefficient improved. Additionally, mild extrapolations in angle of

attack from the training set were possible with the augmented model.

To further improve the augmentation the inversion was continued with all

seven angles of attack. This highlights the flexibility of the FIML-Direct approach,

as the modeler can choose to continue training with additional data as necessary,
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Figure 6.24: Summary of augmentation performance for training and holdout cases

for augmentation trained on three angles of attack.

or an existing augmentation could incorporate new data that becomes available.

Following the inclusion of the additional angles of attack the result of the inversion

with all seven cases is shown in Figure 6.25. The drag prediction is also improved,

as shown in Figure 6.26.

To test the augmentation created from S809 lift coefficient data, augmented

predictions were made from the S814 airfoil. The Mach number contour for the

baseline SA-BC prediction on the S814 airfoil at 15.25◦ angle of attack is shown in

Figure 6.27.

The S809 augmentation also improves prediction on the S814 airfoil as shown

in Figure 6.28. The corrections output by the neural network for three of the S814
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Figure 6.25: S809 augmentation lift performance for training set of all seven angles

of attack.

angles of attack are shown in Figure 6.29. Additionally, the pressure distribution

for the S814 at 16.2◦ angle of attack is compared to the experimentally obtained

pressure distribution in Figure 6.30. The pressure distribution has been substantially

improved by the augmentation.

The S814 results demonstrate an important characteristic of machine learn-

ing augmented models. Despite the S814 having a different shape than the S809,

an augmentation trained using the FIML-Direct process on S809 information sub-

tantially improves predictions on the S814. Although the airfoils are different, the

feature space of the S814 has been covered by the S809 cases; and, therefore the
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Figure 6.26: S809 augmentation drag performance for training set of all seven angles

of attack.

model does not need information from the S814 cases to improve predictions. In

other words, while two cases may be different, their features may be closer than

expected and the information learned from one case may be surprisingly effective

on a geometrically dissimilar case.

6.3 RAE2822 Airfoil

The RAE2822 transonic is another canonical RANS test case. This airfoil

exhibits a shock boundary layer interaction on the suction surface that produces
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Figure 6.27: S814 baseline SA-BC pressure and streamline predictions for α = 16.2◦.

a strong adverse pressure gradient. This violates the assumptions in the RANS

models, and the models have difficulty predicting the precise shock location as well

as the response of the boundary layer to the large adverse pressure gradient of

the shock. This error results in incorrect force predictions. RAE2822 wind tunnel

predictions are provided by Cook et al. [24], and the higher fidelity data for the

FIML applications was the experimentally derived pressure coefficient (kd = CPexp).

The freestream Mach number was M∞ = 0.729 and the angle of attack was 2.31◦.

This corresponds to the conditions on the NPARC Wind validation website [112].

The experimental pressure distribution is interpolated onto the boundary points of
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Figure 6.28: S814 CL resulting from augmentation trained on S809 angles of attack.

the airfoil mesh.

6.3.1 FI-Classic

The objective function for the FI-Classic application is given by Equation

6.6, where k is the total number of boundary points defining the airfoil in the

computational domain, n is the total number of points in the domain, and Ĉpexp

represents the interpolated pressure coefficient from the experiment.
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Figure 6.29: S814 β fields for three angles of attack.

Jc(β) =
k∑
i=1

(Ĉpexp,i − CP,i(β))2 +
1

2
λ

n∑
j=1

(βj − 1.0)2 (6.6)

Again, the BFGS optimizer was used. The regularization constant was chosen

to be λ = 10−7. The initial solution is quite good, with the predicted shock location

being relatively close to the experiment. The pressure immediately behind the
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Figure 6.30: Pressure distribution plot for the S814 at 16.2◦ angle of attack showing

improvement in prediction for the model augmentation.

shock is too low, indicating that the model is not predicting the correct boundary

layer reaction to the strong adverse pressure gradient behind in the shock. The

convergence of the objective function throughout the inversion is shown in Figure

6.31.

The pressure distribution of the experiment, baseline SA model, and FI-Classic

inverse solutions are shown in Figure 6.32 and 6.33. As shown, the inversion has

corrected the small error in predicted shock location (inverse solution shock slightly

forward), and the inverse solution shock location agrees better with the experiment.

Also note that the pressure rise through the smeared shock foot is now over a larger

distance that more closely matches the experiment. As noted, it is not expected

that the SA model will be very accurate in this region due to the strong adverse

pressure gradient, and therefore it is expected that the inverse solution will show the
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Figure 6.31: Convergence of RAE2822 FI-Classic objective function.

most improvement in this area. With the improved agreement in the shock location

the pressure following the shock is higher than the baseline model, and in better

agreement to the experiment.

The correction is also largest near the shock foot. Figure 6.34 shows the cor-

rection over the whole airfoil, and Figure 6.35 illustrates the correction and pressure

distribution near the SWTBLI.

6.3.2 FIML-Direct

The FIML-Direct approach was also applied to the RAE2822 airfoil. The

same experimental data was used giving the objective function in Equation (6.7).

λ = 10−6 was used for this case, as well as a neural network with two hidden layers

of 20 neurons each. The same features were used as in the S809 airfoil case. The
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Figure 6.32: RAE2822 FI-Classic pressure distribution results.

convergence is shown in Figure 6.36.

Jd(β) =
k∑
i=1

(Ĉpexp,i − CP,i(w))2 +
1

2
λ

n∑
j=1

(βj(w)− 1.0)2 (6.7)

Note that in Figure 6.36 there is little difference between Jd and J ′d indicat-

ing that the regularization term is not contributing much to the overall objective

function despite setting the regularization term much higher than in the FI-Classic

approach. The reason for this becomes apparent when looking at the optimal correc-

tion field output from the neural network as shown in Figures 6.37 and 6.38, showing

the correction over the entire airfoil and at the interaction region respectively.
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Figure 6.33: RAE2822 FI-Classic pressure distribution results near shock location.

Figure 6.34: FI-Classic correction for RAE2822 application.

Similar to the S809 airfoil results, the FIML-Direct correction is much more

regularized in that the magnitude of the correction is smaller and is spread over

a larger area. This regularization is not being provided by the cost function regu-

larization constant (λ), but is due to the limitations of the network that are now

considered in the inversion.

The pressure distribution resulting from this inversion is shown in Figure 6.39.
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Figure 6.35: Pressure distribution and FI-Classic correction near the smeared shock

foot.

Even with the increased regularization from the neural network the FIML-Direct

inverse solution improved the shock location. This is better illustrated in Figure

6.40. Note, however, that the correction to the smeared shock-foot that was possible

in the FI-Classic application is not shown in the FIML-Direct results. This is likely
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Figure 6.36: FIML-Direct convergence for RAE2822 airfoil test case with λ = 10−6

Figure 6.37: FIML-Direct correction (β(w)) for RAE2822 airfoil test case.

due to the correction near the shock being high in magnitude and in very small

regions near the interaction region. This likely prevented learning of the required

correction to adequately adjust the boundary layer reaction to the shock. It is

possible that improved feature selection or a different neural network structure could

improve the FIML-Direct performance for this case. Also note that to apply the

information given by the FI-Classic inverse solution the information would still need
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Figure 6.38: FIML-Direct correction at the shock interaction location for RAE2822

airfoil test case.

to be learned. For the FIML-Direct result the neural network has already been

trained.

Figure 6.39: FIML-Direct pressure distribution results.
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Figure 6.40: FIML-Direct pressure distribution results at the shock location.

6.4 NASA Langley Hump

6.4.1 Overview

The NASA Langley wall mounted hump was also examined. Similar to the

S809 cases this is an incompressible, 2D, separated flow application. The case is

based on a wind tunnel model hump that was placed directly on the tunnel wall.

A fully developed turbulent boundary layer then passes over the hump and a large

separation region develops on the leeward side. It has been shown that RANS mod-

els are unable to adequately predict the size of the separated region [111]. The

computational domain was developed to mimic the conditions in the tunnel experi-

ment. The top of the domain is an inviscid wall with a contoured shape to account

for blockage effects in the wind tunnel experiment. The bottom of the domain is

a viscous wall with sufficient length to develop the boundary layer consistent with
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the experiment. Details concerning this computational setup are provided on the

turbulence modeling resource website [25]. The pressure contours and streamlines

predicted by the baseline SA model are shown in Figure 6.41.

Figure 6.41: Baseline SA model predictions for pressure coefficient over the NASA

Langley wall mounted hump.

As shown in Figure 6.41 there is a strong adverse pressure gradient just ahead

of the separated region on the top of the hump. Similar to the S809 results we expect

the eddy viscosity to be too high in this region. Additionally, in the separated region

the assumption of the wall distance is invalid and therefore it is expected that the

eddy viscosity is poorly modeled there.
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6.4.2 FI-Classic

The FI-Classic method field inversion was performed on the NASA Langley

2D hump. The experimentally derived pressure distribution was used as the higher

fidelity data kd = CP . Where experimental pressure was available, the pressure

distribution was interpolated onto each point in the computational domain on the

hump. This results in the following objective function for this application 6.8, where

k is the total number of boundary points defining the hump in the computational

domain, n is the total number of points in the domain, and Ĉpexp represents the

interpolated pressure coefficient from the experiment.

Jc(β) =
k∑
i=1

(Ĉpexp,i − CP,i(β))2 +
1

2
λ

n∑
j=1

(βj − 1.0)2 (6.8)

First, a case was run with λ = 0. In general, this is not expected to produce

a useful correction field because it is expected that the resulting correction will be

excessively large. λ = 0 corresponds to no confidence in the baseline model. Clearly

it is not believed that the baseline SA model is completely wrong in this case,

however the resulting inversion illustrates the reaction of the inversion to different

regularization constants. The convergence history of Jc with λ = 0 is shown in

Figure 6.42.

Note the convergence is fantastic. The convergence likely would have continued

however the inversion was terminated because the correction field was extreme, as

shown in Figure 6.43. Despite this, the model shows an incredible match to the

data over the baseline solution as shown in Figure 6.44. This illustrates the effect

189



Figure 6.42: FI-Classic convergence for NASA Langley Hump test case with λ = 0

of the regularization constant: it is a compromise between matching the available

data and the modeler’s confidence in the model.

For a much more useful inversion, λ = 10−6 was chosen. The convergence

for this case is shown in Figure 6.45. The convergence is still quite good, and the

resulting correction field is much more reasonable (Figures 6.46 and 6.47), as it is

much lower in magnitude, and more closely localized to where there are violated

assumptions in the SA model.

Note that in Figure 6.47 the correction is reducing eddy viscosity production

in the strong adverse pressure gradient just before the boundary layer separates.

This is similar to the behavior observed in the S809 cases. Then, also similar to the
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Figure 6.43: FI-Classic correction field β for case with λ = 0

Figure 6.44: FI-Classic Cp comparison to available data kd for test case with λ = 0
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Figure 6.45: FI-Classic convergence for test case with λ = 10−6

S809 cases the turbulent production is reduced in the separated region. Unlike the

S809 cases there is also a large increase in production in the shear layer above the

recirculating region.

Note that only the field inversion process has been performed. If an augmen-

tation were to be created, offline training would be performed on the correction and

flow features found in the inversion.

6.4.3 FIML-Direct

The FIML-Direct method was also performed on the NASA Langley hump.

The computational domain was identical to that used for the FI-Classic application.
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Figure 6.46: FI-Classic correction field β for λ = 10−6

Figure 6.47: FI-Classic correction field β with streamlines for test case with λ = 10−6
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Figure 6.48: FI-Classic Cp comparison to available data kd for test case with λ =

10−6

This results in the following objective function for this case:

Jd(w) =
k∑
i=1

(Ĉpexp,i − CP,i(w))2 +
1

2
λ

n∑
j=1

(βj(w)− 1.0)2 (6.9)

Again, because of the increased regularization caused by the FIML-Direct

method accounting for the limitations of the neural network in the inversion, the

regularization constant was decreased to λ = 10−7 for the FIML-Direct application.

A single hidden layer of 20 hyperbolic tangent neurons was used. The convergence

history of minw Jd(w) is shown in Figure 6.49.

The minimum occurred on evaluation 19 with the optimizer subsequently

struggling to find an appropriate line search step size near the minimum. Note

that the regularization constant appears to not be active J ′d ≈ Jd. Curiously, in-
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Figure 6.49: FIML-Direct convergence for test case with λ = 10−7

creasing the regularization constant severely penalized the achievable match to the

pressure data and therefore the regularization constant was left at 10−7. Looking at

the correction at the minimum (Figure 6.50) the correction has a much larger spatial

extent than the equivalent FI-Classic case. It is possible that the features used could

not sufficiently differentiate between the boundary layer and the rest of the domain,

resulting in corrections far away from the separated region where it is not likely

having much effect on the pressure distribution. Nevertheless, the achieved pres-

sure distribution closely matches the experimental data indicating that the neural

network augmentation has been successful in reducing the prediction error (Figure

6.51). Note that unlike the FI-Classic results, for the FIML-Direct inversion the
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model has now been augmented, and that augmentation could be applied to other

cases.

Figure 6.50: FIML-Direct correction field β with streamlines for test case with

λ = 10−7

Also note that the correction for the FIML-Direct application (Figure 6.50) is

substantially different from the FIML-Classic application (Figure 6.47). Despite the

different correction fields, the achieved pressure distributions both closely match the

experiment. This suggests, as expected, that the optimal correction will be different

when considering what correction can be learned by the chosen algorithm. In other

words, the FIML-Direct correction is optimal for the chosen neural network features,

scaling, and structure.
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Figure 6.51: FIML-Direct Cp comparison to available data kd for test case with

λ = 10−7

6.5 Summary

This chapter built on the 1D heat equation results by presenting the FIML-

Classic, FIML-Embedded, and FIML-Direct results for RANS equations. All three

methods were successfully demonstrated on the S809 airfoil using experimentally

derived lift coefficient data. The full FIML-Classic methodology was performed for

this application, followed by the FIML-Embedded, and FIML-Direct; all of which

produced model augmentations based on the experimental data that improved pre-

dictions. Most exciting, the results of the simultaneous inversion of multiple S809

airfoils at various angles of attack was performed. Performing the inversion on three

angles of attack produced an augmentation that corrected predictions for the en-
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tire angle of attack range. This demonstrated the improved generalization provided

by the FIML-Direct approach, especially when considering multiple conditions in a

single inversion and augmentation. The inversion was then continued considering

the S809 at seven angles of attack. This further improved the augmentation and

demonstrated the improved flexibility of the FIML-Direct method since the design

variables are consistent across any number of cases. The final augmentation, in-

corporating solely experimental lift coefficient data from the S809, was tested on a

different airfoil: the S814. The augmented S814 airfoil predictions showed universal

improvement across the angle of attack range, further demonstrating the general-

ization capabilities of the FIML-Direct approach.

Additionally, results for the FI-Classic and FIML-Direct approaches were ap-

plied to the NASA Langley wall mounted hump. The FI-Classic inversion was shown

both with and without the regularization constant. This demonstrated the effect of

the regularization constant on the result of the inversion. It was shown that with-

out the regularization constant the inverse pressure distribution closely matched the

data and objective function convergence was very good. However, it was shown that

the inverse solution likely is not realistic for that case, as it was extremely high in

magnitude and not localized close to where the SA model is likely inaccurate (ad-

verse pressure gradients and separated regions). It was shown that the regularization

constant allows the modeler to constrain the inversion to more reasonable correc-

tions, without much penalty in accuracy with respect to the available data. The

FIML-Direct results for the NASA Langley wall mounted hump were also presented

in this chapter. It was shown that the FIML-Direct method can provide similar
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inversion performance as the FI-Classic method, while simultaneously training the

network and augmenting the model. The effect of considering the limitations of the

network was also discussed. It was observed that the correction for FIML-Direct

was substantially different than the FI-Classic results. This demonstrates the effect

of considering the neural network limitations, as the inverse solution is now depen-

dent on the feature selection, feature scaling, and network structure. Therefore, the

optimal solution will likely differ in some applications such as the NASA hump, as

the ideal solution adapts to the limitations of the chosen learning method.
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Chapter 7: Conclusions

7.1 Summary

RANS turbulence modeling continues to be a challenging field. Despite decades

of effort in the turbulence modeling community, RANS models continue to be defi-

cient or unreliable for a variety of practical engineering applications. For example,

RANS models typically fail to predict the correct forces on an airfoil at high an-

gles of attack due to an incorrect prediction of the separation location. As DNS

and LES are still decades away from being capable of simulating Reynolds num-

bers high enough for many applications, RANS models will remain the method of

choice for the majority of engineering computations for some time. There has been,

however, substantial investment in high fidelity numerical simulations and physical

experiments. These efforts provide higher fidelity data that turbulence modelers can

draw on to improve RANS models. Despite the availability of this data, progress is

difficult, as measured quantities cannot be used to improve models directly. Thus,

there is substantial motivation to utilize machine learning models to fully leverage

this existing dataset of higher fidelity data to improve the RANS models where

they are deficient. Several researchers have attempted to learn directly from the

higher fidelity data, but this approach suffers from a lack of consistency between
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the higher fidelity data and the model. The FIML approach addressed this concern

by first performing an inference step (in the form of an inverse problem) to generate

model consistent information from the higher fidelity data that can then be learned

and applied in the form of an augmented model. Despite this improvement, there

remained a lingering inconsistency with the FIML approach: the model consistent

information was not always able to be easily learned, or learned sufficiently at all

during offline training. It was this observation that motivated the present work;

the disconnect between the model augmentation and the information generated by

the inversion could be avoided if the learning algorithm were considered during the

inversion.

The current effort attempted to resolve the inconsistency between the inverse

problem and the model augmentation with the following approach, enumerated be-

low as broad tasks.

1. The Stanford University Unstructured (SU2) open source CFD package was

modified to perform the FIML process, referred to in this work as FIML-

Classic. SU2 was selected due to its autodifferentiated (AD) discrete adjoint

solver already configured for optimization problems. The use of AD for this ef-

fort enabled efficient experimentation for the new FIML approaches as much of

the development effort for the adjoint solver is handled automatically through

AD. The FIML method was implemented in SU2 for the first time, and the

FIML-Classic approach was performed on a variety of canonically difficult

RANS problems. Additionally, the FI-Classic information generated from 2D
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airfoil simulation results was used to perform a feature selection analysis. This

enabled the analysis of potential inputs to the model augmentation, and ul-

timately the selection of appropriate features and appropriate feature scaling

for this problem.

2. A new FIML approach, termed FIML-Embedded, was proposed and analyzed.

This unique approach was developed for this thesis and applied for the first

time. The machine learning training algorithm was moved inside the model

solver itself, such that the training is performed while the model variables are

converging, and therefore the inverse procedure will account for the dynamics

of the learning algorithm. Feedforward neural networks for regression were

chosen as the machine learning algorithm, and the backpropagation training

algorithm was implemented. The neural network is trained as the solver is

converging, requiring several additional operations each solver iteration (fea-

ture scaling, backpropagation, and forward propagation). For the first time,

this method was implemented both for a 1D heat equation model problem

and in the modified SU2 code for RANS applications. The 1D heat equation

provided a simple, easily implemented problem that fully demonstrates the

method and numerics involved, while the SU2 implementation demonstrates

that the method can be applied to complex RANS simulations.

3. Another new FIML approach, termed FIML-Direct, was proposed and ana-

lyzed. This new FIML approach was also developed in this thesis and applied

for the first time. In this approach the weights of the neural network are con-
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sidered the design variables of the inversion. This directly trains the neural

network without the need for the backpropagation algorithm. The FIML-

Direct method was also implemented for the 1D heat equation model problem

and the modified SU2 package. Additionally, a methodology for incorporating

information from multiple cases was developed for the FIML-Direct approach.

For the first time multiple cases can be considered in the inference step simul-

taneously. For the 1D heat equation this enabled the simultaneous inversion

of multiple temperature distributions, and for the 2D airfoil results the in-

version was performed for up to seven cases simultaneously. The resulting

augmentation was then shown to improve predictions on a different airfoil,

not included in the training set. This effectively demonstrated the methodol-

ogy for including multiple cases in the inversion and augmentation, which is

a requirement for generating augmentations with adequate generalization for

practical predictions. Additionally, for the first time this approach was also

applied to other individual RANS cases, including the NASA Langley wall

mounted hump and the RAE2822 transonic airfoil.

7.2 Key Observations

For the first time, it was shown that the FIML process can be improved by

accounting for the limitations of the chosen machine learning algorithm inside the

inversion process. By doing so, learning is performed during the inference step, the

model correction will be optimally regularized for the chosen learning algorithm,
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and there is the highest possible consistency between the inference step and the

prediction environment. It was shown that the FIML-Classic inverse information

can be difficult to learn due to insufficient regularization. This can be managed

somewhat through careful construction of the objective function and the regulariza-

tion constant (λ), but ultimately there is no guarantee that the optimal discrepancy

is learnable by the learning algorithm selected by the modeler. Even when the in-

verse information can be learned, it was shown that there is a noticeable decrease

in performance of the augmentation due to imperfect training, which illustrated the

potential inconsistency between the inference and predictive environments in the

FIML-Classic approach. Both new FIML approaches were shown to address this

inconsistency by performing the learning in the inversion process.

First, general conclusions made for the two new FIML approaches and the

FIML-Classic approach are discussed. Then, specific conclusions made from the

FIML applications to the model problem and RANS cases are presented.

7.2.1 FIML-Embedded

The FIML-Embedded approach, developed and applied for the first time in this

thesis, was shown to provide increased regularization over the FIML-Classic method.

Additionally, by performing the backpropagation algorithm inside the solver dur-

ing the inversion the inverse solution was guaranteed to be learnable. The optimal

discrepancies for the FIML-Embedded applications showed increased regularization

over the FIML-Classic procedure for all applications considered. It was also demon-
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strated that the gradient could be efficiently computed through additional adjoint

variables, with only a minor increase in computational cost over the FIML-Classic

approach.

Unfortunately, there were also negative observations associated with this method.

Performing the backpropagation algorithm in the solver itself increased the complex-

ity of the simulation. This added complexity adversely affected the robustness of

the inverse solution and is a drawback to the approach. Additionally, as currently

formulated it is not readily apparent how to incorporate information learned from

multiple cases with the FIML-Embedded approach. Possible solutions to this draw-

back were proposed, but have not yet been explored.

Nevertheless, it was observed that the FIML-Embedded approach could be

performed with similar inverse problem convergence as the FIML-Classic approach.

If the backpropagation algorithm converges sufficiently, the nonlinearity of the neural

network is effectively hidden from the optimizer. By hiding this non-linearity it is

expected that the FIML-Embedded approach could have substantial advantages over

the FIML-Direct approach for large and/or complex network structures. For the

attempted applications considered, however, the convergence of the FIML-Classic,

FIML-Embedded, and FIML-Direct approaches were comparable.

7.2.2 FIML-Direct

The FIML-Direct approach, developed and applied for the first time in this

thesis, was shown to give increased regularization over the FIML-Classic approach
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for the RANS applications. More regularization, in fact, over the FIML-Embedded

approach as well. It was demonstrated that the FIML-Direct approach could effi-

ciently train the neural network by considering the weights as the design variables

directly. This is somewhat of a surprising result, as typically thousands of iterations

of the backpropagation algorithm are required to train a neural network from static

data. It was shown that by considering the weights as the design variables in the

FIML cost function the network could be minimized in a manageable number of

evaluations (typically 10-20 observed). This is an exciting observation, and because

of this result the FIML-Direct approach provides an alternative, efficient, and ad-

vantageous approach to training neural network augmentations that improve models

with data.

It was also demonstrated that the FIML-Direct approach has a substantial

advantage over the FIML-Embedded procedure because the design variables in the

inversion are the same across multiple cases. The model discrepancy is not expected

to be the same across multiple cases, but the weights of the neural network are (a sin-

gle augmentation that improves predictions for multiple cases is desired). Therefore

the inverse problem can be posed for an unlimited number of cases simultaneously

by minimizing a composite cost function. For the first time, the FIML inversion

was performed considering multiple cases simultaneously. It was observed, both for

the model problem and the RANS applications, that the data from multiple cases

could be successfully incorporated into a single augmentation via the FIML-Direct

approach with simultaneous inversion. Additionally, it was demonstrated with the

model problem that it is not necessary to compute the full gradient (which is costly),
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but alternatively the partial gradient could be computed and the stochastic gradient

descent method used to train the augmentation. This method could be advantageous

when considering a large number of cases.

7.2.3 1D Heat Equation Model Problem

The 1D heat equation model problem was shown to be a computationally

efficient problem to evaluate the FIML procedures and make direct comparisons

between algorithms. The FIML-Classic, FIML-Embedded, and FIML-Direct algo-

rithms were all implemented for this problem, and all produced model augmentations

that dramatically reduced the error of the augmented model. Thus it was demon-

strated that FIML-Embedded and FIML-Direct approaches can both produce useful

model augmentations during the inversion step, unlike the FIML-Classic method

which requires offline training following inversion. The exact analytical solution for

the optimal correction is known for the 1D heat equation case. It was shown that the

FIML-Classic and FIML-Direct methods, when applied to a single case, can find the

optimal correction distribution. The FIML-Embedded implementation did not find

the true distribution, but was still capable of producing a model augmentation that

substantially reduced prediction error. The objective function convergence of the

three methods was also compared, and it was shown that, as expected, the conver-

gence of the FI-Classic approach was by far the best because the limitations of the

learning algorithm are neglected in the inverse problem of FI-Classic. The conver-

gence of the FIML-Direct method was perhaps most surprising, as it demonstrated

207



excellent convergence despite learning during the inversion step.

Model augmentations considering information from multiple cases were also

generated and tested for the FIML-Classic and FIML-Direct methods. For the

FIML-Classic method, this requires the solution of the inverse problem for each case

to generate training data. The data from each case is then compiled into a single

training set, and a model augmentation is trained offline. For the FIML-Direct

case, it was shown that multiple cases could be considered simultaneously, such that

the inversion not only learns during the inversion, but also learns information from

multiple cases. For the first time, the inverse problem can incorporate information

from multiple cases simultaneously. The augmentation was trained using several

constant T∞ distributions, and was shown to improve predictions for constant T∞

distributions not in the training set, and also on variable T∞ holdout data.

In summary, the conclusions from the 1D heat equations were:

1. Learning during the inversion process is feasible, either with FIML-Embedded

or FIML-Direct with only a minor penalty on achievable accuracy of the re-

sulting model augmentation over the FIML-Classic approach.

2. The FIML-Direct method exhibits convergence characteristics comparable to

the FIML-Classic approach, while simultaneously learning the model augmen-

tation. This is unexpected and exciting, given the number of iterations often

required to train neural networks.

3. The FIML-Direct method can learn from multiple cases simultaneously, con-

sidering the limitations of the network during the inversion, and producing

208



the optimal model augmentation for the chosen network structure.

4. Only a limited number of training cases are required to produce model aug-

mentations that improve predictions for cases that interpolate in, or mildly

extrapolate from, the feature space of the training set.

5. For FIML-Direct, the full gradient computation is not required to produce

useful augmentations. The stochastic gradient descent method was demon-

strated using a single case as a batch, which may have practical advantages

over the full gradient computation when considering a large number of cases.

7.2.4 2D Incompressible Airfoil Results

All three FIML approaches were applied to the S809 incompressible wind tur-

bine airfoil. The Spalart-Allmaras turbulence model with the algebraic transition

model was used (SA-BC). At high angles of attack it was shown that the baseline

SA-BC model results in a substantial error in predicted lift coefficient, due to a

smaller separated region than observed in experiments. The inverse solutions for all

three methods demonstrate that this error is due to an over-production of eddy vis-

cosity on the upper surface of the airfoil. It was shown that the FI-Classic approach

could correct this error, but that there was a substantial penalty due to imperfect

offline learning that resulted in increased error in the resulting augmentation. Thus

an issue with FIML-Classic was demonstrated: by not accounting for the limita-

tions of the neural network in the inversion there is an inconsistency between the

inverse solution and the model augmentation. The FIML-Embedded approach was
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performed and it was shown that this approach could produce a model augmen-

tation in the inversion step that substantially reduces prediction error. However,

it was also shown that the FIML-Embedded procedure has substantial robustness

issues that prevented the inversion from fully converging. The FIML-Direct appli-

cation for this single angle of attack, however, did not show this robustness issue.

The resulting model augmentation for the FIML-Direct procedure provided a sub-

stantial reduction in error while regularizing the correction. It was shown that the

regularization parameter could be decreased because the required regularization was

being provided by considering the limitation of the neural network in the inversion

process.

In summary, the conclusions from the S809 FIML applications at a single angle

of attack were:

1. The FIML-Classic procedure can result in an inconsistency between the inverse

solution and the model augmentation due to imperfect learning.

2. Both new methods, FIML-Embedded and FIML-Direct, were applied to RANS

cases for the first time and were shown to produce useful model augmentations

for the RANS problems considered.

3. The FIML-Embedded approach, as currently formulated, has significant ro-

bustness issues that can complicate the inversion procedure.

4. The FIML-Direct approach demonstrates surprisingly efficient training of the

neural network on a RANS application, consistent with the heat equation

conclusion.
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7.2.5 2D Incompressible Airfoil Results for Multiple Cases

For the FIML-Direct method, a model augmentation was generated from the

S809 airfoil considering experimentally observed lift coefficient data for up to 7 an-

gles of attack simultaneously. A composite objective function was constructed, and

initially an augmentation was produced considering three angles of attack. It was

shown that the FIML-Direct algorithm could train a neural network that improved

force predictions for the three angles of attack in the training set, and also for four

additional angles of attack that were not. This further demonstrates that only a

limited amount of higher fidelity data is required to produce useful model augmen-

tations. In this case, the only higher fidelity data used was the experimental lift

coefficient at three angles of attack, and the resulting model augmentation reduced

model error for the entire S809 angle of attack range.

The model augmentation training was then continued using the FIML-Direct

method and all seven S809 angles of attack. Minor improvement in the model

augmentation was shown when considering this extra information. This model aug-

mentation, trained exclusively on S809 airfoil data, was then tested on a different

geometry: the S814 airfoil. It was shown that the model augmentation substantially

improved the S814 predictions where the model was deficient (high angles of attack),

but did not hurt accuracy where the model was already accurate (lower angles of

attack).

In summary, the FIML-Direct application to the S809 at multiple angles of

attack resulted in the following conclusions:
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1. The simultaneous inversion of multiple RANS cases, performed for the first

time in this thesis, produces model augmentations with good generalization

capabilities.

2. The FIML-Direct algorithm exhibits good convergence during the inversion,

even when considering multiple RANS cases.

3. Only a limited quantity of higher fidelity information is required to produce

useful model augmentations via the FIML-Direct approach.

7.2.6 Transonic Airfoil Results

The RAE2822 transonic airfoil was considered for both the FI-Classic and

FIML-Direct approaches. For the conditions considered this airfoil has a substantial

supersonic region which terminates in a shock boundary layer interaction. Following

the shock there is a subsonic region with an adverse pressure gradient. The base-

line SA model showed a small error in predicted shock location, and the pressure

distribution was poorly predicted in the vicinity of the SWTBLI.

Wind tunnel pressure coefficient data was used to formulate the objective

function, and the FI-Classic and FIML-Direct methods were performed. The model

results following the FI-Classic inversion compared very well with the experimental

data, and there was a large correction in the SWTBLI region. This modified the

location of the shock and the response of the boundary layer to the shock, which

smeared the pressure rise over a larger area. This is consistent with the dynamics

of a smeared shock-foot that is a characteristic of transonic airfoil SWTBLI. The
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FIML-Direct method yielded a model augmentation that substantially improved

the prediction of the shock location, but was not able to improve the pressure

distribution through the SWTBLI as well as the FI-Classic inversion. This is likely

due to the increased regularization of the FIML-Direct approach that prevented

the precise correction required in the region of the SWTBLI. It is possible that the

features used, chosen for the S809 case, are not optimal for SWTBLI cases. It is

also possible that a more rigorous investigation into the neural network structure

(size of hidden layers, number of neurons, choice of activation function, etc.) could

produce better results.

In summary, the conclusions from the RAE2822 case were:

1. The SA baseline model incorrectly predicts the shock location, and does not

accurately model the pressure distribution through the smeared shock-foot.

2. The inverse solution from the FI-Classic approach can accurately correct the

observed SA model deficiencies, but this correction requires relatively intrusive

corrections at very precise locations, indicating that the inverse solution is

poorly regularized.

3. The FIML-Direct method can be successfully applied to SWTBLI and move

the shock location, but it was not possible to adjust the pressure distribu-

tion through the SWTBLI for the chosen learning algorithm, neural network

structure, and features.
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7.2.7 NASA Langley Hump Results

The NASA Langley wall mounted hump was also considered. This is an ad-

ditional 2D, incompressible, separated flow application that has been shown to be

difficult to successfully model using RANS. Experimentally obtained pressure distri-

bution was used as the higher fidelity data, and both the FI-Classic and FIML-Direct

approaches were applied. Results for the FI-Classic approach both with and without

the regularization constant were presented.

In summary the conclusions for the NASA Langley hump results were:

1. The regularization constant is critical to producing meaningful model aug-

mentations; without this parameter the inverse solution can be unnecessarily

intrusive.

2. When considering the limitations of the neural network, the model correc-

tion from the FIML-Direct approach can be substantially different than the

correction resulting from FI-Classic method.

7.2.8 Other RANS Applications

Two other RANS applications were considered, the 2D hypersonic wedge and

the 3D Onera M6 wing (results in Appendices A and B). The FI-Classic procedure

was performed, and in both applications the inverse solution more closely matched

the higher fidelity data. These cases further demonstrate the capability of the

inverse procedure to generate corrections that improve the model for a wide range
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of historically difficult RANS cases.

7.3 Recommendations for Future Work

In this section recommendations for future work are presented. The FIML

approach up this point has been developed and demonstrated on a variety of difficult

RANS applications. There remains the task of constructing a robust augmented

model that is shown to improve predictions over a broad range of applications. Such

an effort would not be trivial, as it would be necessary to construct inverse problems

that adequately cover the feature space of the problem of interest, and despite

the relative efficiency of the FIML approach over sampling methods substantial

computational resources would still be required. Nevertheless the present work and

the FIML approach in general has certainly demonstrated that such an effort could

be successful.

For the two new FIML methods proposed, implemented, and analyzed in the

present effort, the FIML-Direct approach is comparatively more developed than the

FIML-Embedded method, as evidenced by the results in Chapters 5 and 6 and the

discussion in detail below.

1. Feature Selection: Chapter 6 presented the feature selection approach used

in the current effort, and discussed the reasons that conclusions concerning

feature selection are difficult. In particular, the best features will be appli-

cation dependent. The limited feature selection study in this effort focused

on FI-Classic inversion results for the S809 airfoil, and it is not expected that
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conclusions from this limited dataset apply to RANS applications in general.

Additionally, the appropriate features may depend on the chosen machine

learning algorithm. For FIML-Embedded and FIML-Direct feature selection

is particularly important, as the inversion cannot be successful unless the fea-

tures are appropriately chosen since the limitations of the learning algorithm

are considered in the inversion. In particular, it was observed that the FIML-

Direct correction for the NASA Langley hump case was particularly intrusive

compared to the regularized FI-Classic result. It is likely that improved feature

selection, tailored to this application, could produce a less intrusive augmen-

tation than achieved in this effort.

2. Feature Scaling and Outlier Rejection: A related issue related to the features

is feature scaling and outlier rejection. Extreme outliers were observed in

the selected features that, if not properly accounted for, adversely affected

the training of the neural network. In the current effort, the features were

mapped to a normal distribution. This minimized the effect of outliers and

enabled sufficient training for the FIML approaches presented in the current

work. However, it is likely that the treatment of outliers could be improved,

and this would likely improve the performance of all three FIML approaches.

Perhaps a filtering algorithm could be implemented. The current effort tested a

filtering method based on a shielding function often used in delayed detached

eddy simulations (DDES)1, but it was found that this did not sufficiently

1The SA-DDES shielding function, fd, [113] was used to filter out all points not in the boundary

layer for an S809 airfoil at high angle of attack. This method was found to not sufficiently minimize
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reduce the effect of outliers and therefore was not used for any of the results

presented in this thesis. A more robust treatment of outliers would almost

certainly improve performance.

3. Learning Algorithm: As with all machine learning applications, the results are

highly dependent on the choice of machine learning algorithm. Only neural

networks were considered in the present effort, but many other algorithms

could be applied. In particular for neural networks, the modeler has many

choices including the number of hidden layers, number of nodes, choice of ac-

tivation function, etc. There are also many types of neural networks, and only

fully connected feedforward neural networks were considered. To fully explore

the capability of both FIML-Embedded and FIML-Direct a more rigorous in-

vestigation into all of these choices is required.

4. FIML-Embedded Development: The FIML-Embedded approach was found to

be difficult to perform for RANS applications. To succeed, the implementation

of the backpropagation algorithm must not adversely affect the solver routines.

Unfortunately, this was observed in the RANS applications presented in this

thesis resulting in premature termination of the inversion. Feature scaling

may have some influence on this issue, as it was found that mapping the fea-

tures to a normal distribution substantially improved inversion performance.

More robust treatment of outliers may keep intermediate weight values from

the effect of outliers, and also filtered out some of the separated region which could remove some

areas from consideration that require correction.
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predicting excessive corrections that prevent convergence of the flow solver.

Thus, more effective outlier treatment may also resolve this robustness issue

with the FIML-Embedded approach.

5. FIML-Embedded for Multiple Cases: The ability to perform the inversion in-

corporating the information from data for multiple cases has not been devel-

oped for the FIML-Embedded approach. Currently, this gives a strong incen-

tive to using the FIML-Direct approach as this capability is likely required in

order to adequately cover the feature space for a practical (useful) augmenta-

tion. Several possibilities for how to improve on the current FIML-Embedded

methodology were proposed in Chapter 3, but these concepts remain unex-

plored.

6. Learning Without Forgetting: Perhaps the biggest obstacle to obtaining an

augmentation that improves a RANS model for a wide range of applications is

a practical issue. How can a single researcher or team practically or efficiently

augment a model that applies to every case in an area of interest? Even if

such a model is developed, how do you update such a model if it is found to

be deficient in a new application? Currently, for FIML-Classic, to incorporate

new information all the previous information is also required. It is certainly

possible to retrain an existing augmentation with new data, but if the old data

is not included in the updated training set the augmentation will “forget” the

old data, such that the updated augmentation will have diminished perfor-

mance on the old training set. Therefore, to retrain the augmentation with
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new information, the new information must be added to the old and a new

augmentation learned. This is also an issue with the FIML-Direct approach,

as new data can be incorporated, but the inversion must be continued with

all of the cases (old and new) as was demonstrated with the S809 airfoil aug-

mentation in Chapter 6. Clearly, it will be impractical to share, store, and

distribute large quantities of such data with the turbulence modeling com-

munity. Therefore, there is a need for algorithms that can incorporate new

information without forgetting the old, such that a model augmentation can

be updated efficiently without forgetting what has already been learned. This

is termed “learning without forgetting”, and is the concept of incorporating

new data into an already trained model without access to the original data

used to learn that model. Some algorithms exist [114, 115], and this capability

in the FIML framework would greatly increase the ability for a community to

develop useful model augmentations collaboratively.

7. Uncertainty Quantification: The FIML implementations in this work largely

neglected formal uncertainty quantification. This is a major shortcoming, as

the model and the data both have uncertainties that should be rigorously eval-

uated and quantified. In some applications, the FIML-Classic approach used a

Bayesian formalism to evaluate model posterior uncertainties [39]. For the ap-

plications of the new methods in this thesis, the Bayesian framework was not

used, and only a cursory accounting of the prior model confidence was utilized

through the regularization constant. Additionally, neural networks can incor-
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porate Bayesian uncertainty quantification by formally assigning uncertainty

distributions to their parameters. Thus the model posterior probability can

be evaluated. Utilizing Bayesian neural networks in the FIML approach could

help avoid over-fitting and enable more successful learning from small datasets.

Formal uncertainty quantification for the FIML-Direct and FIML-Embedded

methods remains an area for future work.
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Appendix A: Hypersonic Wedge

A.1 Overview

Accurate prediction of shock wave turbulent boundary layer interactions is

also a difficult problem for the design of hypersonic vehicles. At these much higher

Mach numbers concave corners can create very strong SWTBLI, and the prediction

of the surface heat flux and pressures involved in these interactions can have a

dramatic impact on design decisions for these vehicles. RANS models have difficulty

predicting hypersonic SWTBLI due to the very strong adverse pressure gradients

and strong nonequilibrium effects in the boundary layer.

To examine the FIML ability to improve RANS predictions for a hypersonic

SWTBLI a 2D compression corner was modeled. The 36◦ compression corner pre-

sented by Holden et al. [116, 26] was modeled using the SA turbulence model.

Incoming Mach 11.3 air encounters a flat plate at 0◦ incidence and a turbulent

boundary layer develops1. This turbulent boundary layer encounters a 36◦ ramp

which results in a SWTBLI that separates the boundary layer upstream of the

1The experiment used natural transition [116], but the SA-BC transition model was not used

for this case due to the poor performance of this model for these hypersonic conditions. Therefore

the CFD results are fully turbulent.
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ramp corner. The experiment was performed at the CUBRC shock tunnel facilities,

and the model was wide enough that three-dimensional effects (from finite width)

are not expected to be significant. It has been shown [116, 26] that RANS models

are unable to accurately predict the separation length, pressure distribution, and

heat flux distribution in the interaction region and downstream on the ramp. The

geometry for this experiment is illustrated in Figure A.1.

Figure A.1: Illustration of geometry for hypersonic wedge case.

The SA model used to this point (SA-noft2) [17] was found to produce poor

results for this application. This model predicted no separated region and thus the

physical dynamics of interest for this problem were not predicted at all. Another

variant of the SA model, the SA-SALSA [83], was shown to produce better pre-

dictions for shock boundary layer interactions, and has been implemented in codes

typically applied to hypersonic applications [117]. The SU2 v5.0 package did not

include the SA-SALSA variant, but it is a relatively straightforward modification as

outlined in Chapter 4, and it was implemented for use on this hypersonic SWTBLI

application.

Figures A.2, A.3, and A.4 show the Mach, CP , and temperature contour pre-
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Figure A.2: Mach number contours for baseline SA-SALSA model.

Figure A.3: Pressure coefficient contours for baseline SA-SALSA model.

dictions for the baseline SA-SALSA model at the interaction region. Note the com-

putational domain extends much further in the left and right of the region shown

in order to develop the incoming boundary layer from freestream conditions on the

plate, and to predict the flow conditions downstream of the interaction region on the
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Figure A.4: Temperature (◦K) contours for baseline SA-SALSA model.

wedge. Note that in Figure A.2 the boundary layer separates in front of the corner

and a recirculating region develops. A shock is shown in the boundary layer (sepa-

ration shock) from the separation location that then impinges on the much stronger

shock formed by the wedge. Note that there is a large range of pressure coefficient

magnitudes as shown in Figure A.3. Additionally, extremely high temperatures are

predicted in the interaction region as shown in Figure A.4. These temperatures

are greatest near the reattachment location on the wedge. The wall is modeled as

an isothermal boundary with Twall = 300◦K, and this extremely high temperature

produces very high heat flux at the wall.
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A.2 FI-Classic

The FI-Classic procedure was applied to the hypersonic wedge case using ex-

perimental pressure coefficient information CP . This pressure distribution was in-

terpolated to the wall boundary nodes in the computational domain to produce the

target pressure distribution ĈP . Note that for this application the range of CP val-

ues is very large. Upstream of the wedge the pressures will be low as there will only

be a very weak compression from the boundary layer growth, and a stronger, but

still relatively small compression from the separation shock upstream of the wedge

corner. Downstream of the wedge corner the pressures will be dramatically higher

from the compression of the very strong oblique shock to turn the air to the wedge

angle. To account for this large magnitude range of the target (experimental) pres-

sure distribution, the objective function was normalized by the target distribution

at that point in the domain. The objective function is then given by Equation A.1.

Jc(β) =
k∑
i=1

(
Ĉpexp,i − CP,i(β)

Ĉpexp,i

)2

+
1

2
λ

n∑
j=1

(βj − 1.0)2 (A.1)

The convergence history of Equation (A.1) is shown in Figure A.5. Note

that the convergence is generally quite good, but requires more evaluations than

other cases presented in this thesis. Additionally, the large increases observed in

the intermediate evaluations (12-21) are due to line search steps that resulted in

separation lengths larger than the experiment. This gives a large value for the

numerator in the first term of Equation A.1 that is normalized by a very small value

giving a very large objective function value. This is not an issue, as the optimizer
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quickly found a lower objective value in the subsequent step in the line search.

Despite the good trend in objective function value, the inversion was terminated

after 30 evaluations because subsequent attempts to improve the objective further

were not successful due to flow solver convergence issues.

Figure A.5: Objective function convergence for FI-Classic hypersonic wedge appli-

cation.

The cause of these issues is apparent when the correction is visualized (Figures

A.6 and A.7). Note that at the interaction region (Figure A.6) the magnitude of

the correction is very large ±5 and is very localized. The correction in this case

is required to be very large and in very specific locations in the interaction region.

Note that there is a very large correction at the separation location, followed by a

region where β ≈ 1.0. Then, closer to the wall the shear layer above the separated

region shows β < 1.0 corresponding to destruction of eddy viscosity, while the

adjacent separated region is showing a very large positive correction indicating the
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eddy viscosity should be increased there. Subsequent evaluations of the optimizer

attempted to produce even larger magnitude corrections than shown in Figure A.6,

however this resulted in numerical convergence issues of the flow solver and therefore

the inversion was terminated.

Figure A.6: Correction (β) at interaction region for hypersonic wedge FI-Classic

application.

Nevertheless, the FI-Classic inversion substantially improved the pressure dis-

tribution, and the FI-Classic inverse solution more closely matches the experimental

data as shown in Figure A.8. Note that the separation length is predicted very well

by the inverse solution, and the resulting pressure distribution downstream of the

interaction region is also improved. However, the magnitude of the pressure in the

separated region is improved, but is still substantially lower than the experiment.

Experimental data for wall heat flux is also available for this experiment. The

heat flux distribution results are shown in Figure A.9 in units of W/m2
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Figure A.7: Correction (β) upstream of interaction region for hypersonic wedge

FI-Classic application.

Figure A.8: Pressure distribution near the interaction region for FI-Classic hyper-

sonic wedge application.

Note that the heat flux results show positive and negative trends. The baseline

SA-SALSA model correctly predicts the heat flux on the flat plate ahead of the
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Figure A.9: Wall heat flux near the interaction region for FI-Classic hypersonic

wedge application (W/m2).

interaction region. The large corrections in this region, that are shown to help the

pressure distribution, negatively impact the heat flux prediction on the flat plate.

Additionally, the heat flux prediction was adversely affected in the separated region.

Clearly this is problematic. Nevertheless, heat flux distribution downstream of the

corner shows substantial improvement over the baseline model. The peak heat flux

prediction is poor for the baseline SA-SALSA model, but much improved for the

inverse solution.

A.3 Conclusions

A hypersonic wedge producing a SWTBLI interaction was considered. Com-

pared to the other SWTBLI cases presented in this thesis, this case produces a
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much stronger shock and therefore it is expected that the required correction to the

baseline model will be comparatively larger. The baseline SA model was shown to

produce poor results (no separated region), and therefore the SA-SALSA turbulence

model was implemented in SU2. The SA-SALSA method predicted a separated re-

gion, but the separation length and pressure throughout the interaction region was

still poorly predicted.

The FI-Classic method was applied. Experimentally measured pressure distri-

bution was used to construct the cost function, and the error term was normalized

by the local experiment CP in order to account for the large range in CP magni-

tude for this case. The inversion was performed and the objective function showed

good improvement. However, it was found that eventually the required correction

adversely affected the convergence of the flow solver, and therefore the inversion

terminated while the cost function was still improving. Nevertheless, substantial

improvement in the pressure distribution was observed prior to these numerical

issues. The required correction was very large in magnitude. Specifically in the

interaction region, the correction changes sign and magnitude at very specific lo-

cations in the separated region. This poor regularization could possibly make this

correction difficult to learn, either offline in the FIML-Classic framework, or during

the inversion for FIML-Direct applications.

Additionally, it was observed that the inverse solution negatively affected the

prediction of the wall heat flux on the flat plate and in the interaction region.

Despite this, the heat flux prediction downstream of the interaction region was

improved. Overall, the heat flux results are disappointing, however, it is likely that
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the inverse solution could be improved by including the experimental heat flux data

in the objective function. Exploration for the best objective function for hypersonic

SWTBLI cases remains an area for future work.
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Appendix B: Onera M6

B.1 Overview

The FIML framework was applied to the Onera M6 transonic wing. Unlike

the other RANS applications in this thesis, this case is three dimensional. This

is a good demonstration of the advantage of implementing the FIML framework

in the SU2 package, and demonstrates that the FIML approach can be applied to

more complicated geometries, and to cases with large grid sizes sufficient to model

practical engineering applications.

The Onera M6 transonic wing is a low aspect ratio design with experimen-

tal data presented by Schmitt and Charpin [118]. For the case considered, the

freestream Mach number is M∞ = 0.84 and the wing is at 3.06◦ angle of attack. Un-

der these conditions, the wing is transonic and experimental data shows a “lambda”

shock structure on the upper surface of the wing [119], with the name referring to

the shape of the shock structure on the upper surface of the wing. Similar to the

RAE2822 airfoil this establishes SWTBLIs on the upper surface that have strong

adverse pressure gradients that are difficult to accurately predict with RANS models.

Predictions for the Onera M6 wing were made using the SA turbulence model.

Figure B.1 displays the surface pressure contours for this case. Note the lambda
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shock structure and the adverse pressure gradient behind the shocks similar to the

RAE2822 case.

Figure B.1: Surface pressure CP contours for baseline SA model on upper surface

of Onera M6 wing.

B.2 FI-Classic

The FI-Classic procedure was applied to the Onera M6 wing. The experimental

pressure distribution was used as the higher fidelity data. This data is relatively

sparse and only available at 7 chordwise stations along the wing [120, 118]. A 2D
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interpolation was performed to find the expected (interpolated) pressure coefficient

at each node on the surface of the wing (ĈP ). Note that no extrapolations were

performed, so a portion of the wing near the root and tip are excluded from the

objective function calculation. The objective function for this case is the same as

for the RAE2822 FI-Classic implementation, and given by Equation B.1. For this

case, λ = 10−6 was used.

Jc(β) =
k∑
i=1

(Ĉpexp,i − CP,i(β))2 +
1

2
λ

n∑
j=1

(βj − 1.0)2 (B.1)

The objective function history during the inversion (minβ Jc(β)) is shown in

the bottom right panel of Figure B.2, along with the pressure distribution at span

locations (η) where experimental data is available.

Figure B.2: FI-Classic results for Onera M6 wing.

The largest improvement is shown at stations η = 0.2, 0.44, and 0.95, better
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illustrated in in Figures B.3, B.4, and B.5. This improvement is primarily due to

moving the aft shock location slightly more forward at these locations.

Figure B.3: Inverse results at span η = 0.2.

Additionally, the improvement in prediction can be visualized by looking at the

error scatterplot shown in Figure B.6, which again shows that the most improvement

is near the mid-chord of the wing closer to the root of the span.

In 3D it is more difficult to visualize the correction (β) but in this case the

correction is largely localized near η = 0.2 as shown in Figures B.7 and B.8 with a

small correction at η = 0.95 as shown in Figure B.9. Note that at η = 0.2 the correc-

tion is almost universally decreasing eddy viscosity production, which is consistent

with the observations for the RAE2822 airfoil. The SA model tends to over-predict

eddy viscosity in adverse pressure gradients, and the FI-Classic inversion shows that

corrections are improved if the eddy viscosity is decreased in these regions.
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Figure B.4: Inverse results at span η = 0.44.

Figure B.5: Inverse results at span η = 0.95.
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Figure B.6: Scatterplot colored by error in pressure coefficient (|ĈP − CP |).

Figure B.7: Correction (β) at span η = 0.2.

B.3 Conclusions

FI-Classic results for the Onera M6 wing were presented in this appendix.

These results demonstrate that the FIML approach can also be applied to 3D RANS
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Figure B.8: Correction (β) at span η = 0.2, with wing surface contoured by Cp.

applications at a practical scale. Naturally the computational expense increases,

however, this demonstrates proves that the added cost of considering 3D cases is not

insurmountable. For this application, experimental pressure data were interpolated

onto the surface of the wing at every node in the computational domain.

The inversion had good convergence, and the resulting error distribution showed

that the primary increase in accuracy was towards the root of the wing. The loca-

tion of the second shock was moved forward slightly, which improved the pressure
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Figure B.9: Correction (β) at span η = 0.95.

distribution. When visualizing the correction, it was shown that the largest correc-

tion was in this region, and that the correction almost universally decreased eddy

viscosity production. This result is consistent with the 2D RAE2822 airfoil result

in that the eddy viscosity tends to be over-produced by the baseline SA model.

This 3D application demonstrates that the FIML procedure can be applied to more

complicated geometries and larger computational domains that will be required for

practical engineering applications.
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