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Preface

The nonlinear Schrödinger equation (NLSE) arises in various physical contexts. It

plays a natural role in nonlinear fiber optics [17] describing nonlinear waves such

as water waves at the free surface of an ideal fluid and plasma waves. In quantum

field theory [10] it is used to study the statistical mechanics aspects of its measure

preserving flow. It also appears in the study of geometric problems such as binormal

motion of a curve inR3. This type of motion is particularly important because it

preserves the length of the curve. For the particular case when the binormal velocity is

proportional to the curvature, which is a crude approximation of the motion of a line

vortex , Hasimoto [8] showed that this motion is governed by the celebrated nonlinear

Schrödinger equation, namely

i∂φ + ∂xxφ+
1

2
|φ|2φ = 0. (1)

This equation is completely integrable and it has propagating localized solution

called solitons that have the remarkable property of retaining their shape after colli-

sions. The one-soliton solution of equation (1) is given by the simple formula

ψ(t, x) = 2ν sec h[ν(x− ct)],

wherec is the propagation velocity andν is the amplitude. Equation (1) and particular

periodic solutions have been extensively studied in connection with the propagation of
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vortices, see [14].

It is also known, for instance, that for anyφo ∈ H1(R) there is a unique solutionφ

in C(R, H1(R)) satisfying the initialφ(0, x) = φo(x), x ∈ R. Furthermore, it posses

the following conserved quantities

N(t)
def
=

∫
|φ|2(t, x) dx = N(0) (2)

H(t)
def
=

∫ (
|∇φ|2(t, x) − 1

4
|φ|4(t, x)

)
dx = H(0) (3)

and its flow is Hamiltonian. A similar result holds in the periodic case, i.e., the space

variablex belongs toT, whereT denotes the unit circleS1. For details, see [4].

This dissertation is divided into four chapters. Chapter 1 is concerned with the ex-

tension of Hasimoto’s results to motion by binormal curvature of a curve embedded in

a three-dimensional Riemannian manifold. We construct an appropriate orthonormal

frame, the Frenet-Serret frame, at every point of the curve and we then study its evolu-

tion in time in order to deduce that a nonlinear Schrödinger-type equation governs the

motion of the curve.

In chapter 2 we discuss global existence of a periodic solution for the Cauchy

problem derived in chapter 1. The evolution equation is not Hamiltonian and in partic-

ular, there is no conservation ofL2-norm under the flow. As matter of fact, there are no

obvious conserved quantities. The above observations meanthat the standard global

existence argument does not work in the present case. Therefore, we reformulate the

initial problem as an equivalent integral equation and use Picard’s fixed point theorem

in order to construct a local solution with initial data inL2(T). Careful analysis of the

growth of the size ofL2-norm of a local solution previously constructed allow us to

extend it globally.
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Chapter 3 considers existence of a global solution for the same Cauchy problem

as in Chapter 2 but with the space variablex in R. We start by constructing a local

solution using an approximate sequence and then we extend itglobally by analyzing

carefully again the size of theL2-norm of the local solution.

In chapter 4 we study the motion by mean curvature of a surfaceembedded in the

four-dimensional Euclidean spaceR4. We introduce the language of gauge fields as

an appropriate framework for presenting the structural properties of the surface and

the evolution equations of its geometric quantities. We finally derive that a nonlinear

Schrödiger-type equation is satisfied by the introduced complex mean curvature of the

evolving surface.

iv



DEDICATION

A mi amado hijo Diego y a mis preciosas nietas Ivanna y Arianna.

v



ACKNOWLEDGEMENTS

I would like to acknowledge gratefully the guidance and assistance I have

received from my advisor Dr. M. Grillakis. I would also like to thank

especially the Organization of American States and Universidad del Valle

for having granted me with a fellowship during two years of mygraduate

studies.

All my love and my gratitude to my wife Margarita. She has beenwith me

in every stage of my graduate education. She has supported mewithout

hesitation or boundaries. One of the main reasons I have finished is her

belief that I could do it.Margaret, lo logramos.

vi



TABLE OF CONTENTS

1 Binormal Motion of a Curve in a Three-dimensional Riemannian Mani-

fold 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structural Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Binormal Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Periodic in space Solutions 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 An Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 A Priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Local Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Global Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 A Schrödinger Multiplier Estimate . . . . . . . . . . . . . . . . .. . 39

3 Non-periodic Solutions 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 A Basic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 A Basic Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Existence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



3.5 A Priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Motion by Mean Curvature of a Surface in R4 78

4.1 A Surface embedded inR4 . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Binormal Motion by Mean Curvature . . . . . . . . . . . . . . . . . 90

Bibliography 99

viii



Chapter 1

Binormal Motion of a Curve in a Three-dimensional Riemannian

Manifold

1.1 Introduction

The present chapter studies the motion by binormal mean curvature of a curve em-

bedded in a three-dimensional Riemannian manifold. Since the motion is related to

the local geometry of the curve, it is advantageous to describe it in terms of intrinsic

properties that do not depend on the choice of a coordinate system. The basic idea is

to construct an appropriate frame, the Frenet-Serret frame, at every point of the curve

and then examine its infinitesimal changes. The first sectionis dedicated to achieve

this goal. The next step will be to deduce the evolution equations for the Frenet-Serret

frame, the curvature, and the torsion. Finally, under some assumptions on the metric,

we derive a nonlinear Schrödinger equation that governs the motion of the curve.

1.2 Structural Equations

Let us consider a curveζ moving in a three-dimensional Riemannian manifoldM. We

describe the curve byX(t, s), wheret is the time variable ands, a parameter, is the
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space variable. We assume thatX : Ω 7→ M is a smooth map with(t, s) ∈ Ω. HereΩ

is eitherR × R or R × T. T stands for the unit circleS1.

We define

Xs
def
= dX(∂s), Xt

def
= dX(∂t). (1.2.1)

Xs, Xt are vector fields onM . If X lies in the domain of a chart(U, ϕ), ϕ =

(x1, x2, x3), then its coordinates functionsX i = xi ◦ X, i = 1, 2, 3, are real-valued

functions onU and we can write

Xs = ∂sX
i

∂i, Xt = ∂tX
i

∂i, (1.2.2)

where summation over repeated indices is assumed and∂i is theith coordinate vector

field ofϕ.

The components of the metrich (first fundamental form) ofM onU are given by

hij =
〈
∂i,∂j

〉
(1 ≤ i, j ≤ 3). (1.2.3)

At each point ofU , the matrixhij is positive definite and invertible and its inverse

matrix will be denoted byhij, i.e.,

(hij)
−1 = (hij) ; hikh

kj = δ j
i .

For a smooth vector fieldZ onX, its partial covariant derivatives∇XsZ and∇XtZ

are, respectively, the covariant derivative ofZ alongs-parameter curves and the covari-

ant derivative ofZ alongt-parameter curves. In terms of coordinates,Z is expressed

asZ = Z i
∂i and we therefore have

∇XαZ
k =

[
∂αZ

k + Γk
ijZ

i∂αX
j
]
, α ∈ {s, t}, (1.2.4)
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whereΓk
ij are Christoffel symbols.∇XαZ will be also denoted by eitherZα or∇αZ.

The following well known facts will be very useful in the sequel.

Proposition 1.2.1. (a)

∇XtXs = ∇XsXt. (1.2.5)

(b) If Z is an arbitrary vector field onM , then

∇Xt∇XsZ −∇Xs∇XtZ
def
= [∇Xt ,∇Xs ]Z = R(Xt,Xs)Z, (1.2.6)

whereRl
ijk is the Riemannian curvature tensor ofM .

Proof. From (1.2.2) and (1.2.4) we have

∇Xt∇XsZ =
[
∂stX

k + Γk
ij∂sX

i∂tX
j
]
∂k. (1.2.7)

SinceΓk
ij is symmetric ini andj, (1.2.7) is symmetric ins andt. This proves (1.2.5).

For the proof of identity (1.2.6), a coordinate computationgives

[∇Xt ,∇Xs]Z =
[
∂t

(
∂sZ

k + Γk
ijZ

i∂sX
j
)

+ Γk
ij

(
∂sZ

i + Γi
lmZ

l∂sX
m
)
∂tX

j
]
∂k

=
[
∂t

(
Γi

li

)
Z l∂sX

i − ∂s

(
Γk

lj

)
Z l∂tX

j
]
∂k

+
[
Γk

ijΓ
i
lmZ

l∂sX
m∂tX

j − Γk
ijΓ

i
lmZ

l∂tX
m∂sX

j
]
∂k.

The proof is completed by noticing that the last formula on the right-hand side is the

corresponding expression ofR(Xt,Xs)Z in coordinates. See [1, page 102]

Remark.We also utilize∇[t,∇s] to denote the commutator[∇Xt ,∇Xs].
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Let us now assume thats is the arc length. This assumption implies thatXs is a

unit tangent vector to the curveζ at any point and consequently it will be called the

tangentvector and denoted byT. It is worthwhile to note that

|T|2 = hij∂sX
i∂sX

j = 1.

It follows that the vector fieldTs = ∇XsT given by

T k
s = ∂ssX

k + Γk
ij∂sX

i∂sX
j (1.2.8)

must be orthogonal toT. Thecurvatureκ of the curveζ is defined to be the length of

Ts and thenormal vectorN as the unit vector in the direction ofTs , i.e., we define

κ
def
= |Ts| , Nk def

=
1

κ
T k

s . (1.2.9)

provided of course that the vectorTs does not vanish. In order to construct a vector

field orthogonal toT andN, we need to define a totally antisymmetric tensor onM .

For this, letǫrjk be the antisymmetric tensor

ǫrjk =





1 if (r, j, k) is an even permutation of(1, 2, 3),

−1 if (r, j, k) is an odd permutation of(1, 2, 3),

0 otherwise.

We define

ǫijk = hirǫrjk. (1.2.10)

Now, we can set the vector fieldB on ζ to be
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Bi def
= ǫijkT

jNk. (1.2.11)

B is called thebinormal vector fieldand it is orthogonal toT and toN. A straightfor-

ward but tedious computation shows|B| = 1. The three orthogonal unit vectorsT,N,

andB define an orthonormal basis of the tangent space toM at any point of the curve

and it is called theFrenet trihedron. This frame satisfies theFrenet-Serret equations:

∇XsT = κN, ∇XsN = −κT + τB, ∇XsB = −τN, (1.2.12)

whereτ , called thetorsion, is the projection ofNs on the binormalB. That is, we set

τ
def
=

〈
∇XsN,B

〉
. (1.2.13)

Notice that the projections of the vector∇XsB onT andN are fixed by the identities

∂s

(〈
T,B

〉)
= 0 and∂s

(〈
T,B

〉)
= 0. Curvature and torsion define locally the rota-

tion of the Frenet frame and they therefore determine the shape of a smooth curve. If

the functionsκ(., t) andτ(., t) are known, the curve can be reconstructed, in principle,

by integrating equations (1.2.12), which are a system of ODE’s.

The complexified version of the Frenet-Serret equations (1.2.12) is obtained by

expressing them through the complex null vector

m
def
= N + iB. (1.2.14)

We adopt the convention for the inner product of two complex vectorsa andb

〈
a,b

〉 def
= hija

ibj =
〈
b, a

〉
, (1.2.15)

whereak andbk are the complex component ofa andb respectively. The following

orthogonality relations form are immediate
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〈
m,m

〉
= 2 ,

〈
m,m

〉
= 0 ,

〈
T,m

〉
= 0.

Herem denotes the complex conjugate ofm. In the present context equations (1.2.12)

are therefore transformed into a compact form

∇XsT =
1

2
κ (m + m) , (1.2.16a)

∇Xsm = −κT − iτm. (1.2.16b)

Let us now introduce an arbitrary angle functionθ(t, s), defined on the curveζ ,

that rotates the vectorm by eiθ. This new vector will be denoted byM and it is then

defined to be

M
def
= eiθ (N + iB) . (1.2.17)

Remark.M satisfies the orthogonality relations

〈
M,M

〉
= 2 ,

〈
M,M

〉
= 0 ,

〈
T,M

〉
= 0. (1.2.18)

Our next step is to define a complex curvatureφ and a gauge fieldA on ζ by

φ
def
= κeiθ, A

def
= ∂sθ − τ. (1.2.19)

Equations (1.2.16) can be now rewritten in a gauge invariantform as

∇XsT =
1

2

(
φM + φM

)
, (1.2.20a)

∇XsM = −φT + iAM. (1.2.20b)
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The equations above are manifestly gauge invariant under gauge transformations

φ 7→ eiβφ, M 7→ Meiβ , A 7→ A+ ∂sβ. (1.2.21)

Hereβ denotes an arbitrary function depending on(t, s).

1.3 Binormal Motion

Suppose we wish to set in motion the curve so that it satisfies the equation

Xt = κB. (1.3.1)

We are interested in obtaining the evolution equations of the frame{T,M,M} and of

the functionsκ andτ .

In terms on the complex notation introduced in Section 1.2 wecan reformulate the

equation of motion as follows

Xt =
i

2

(
−φ̄M + φM

)
. (1.3.2)

From Proposition 1.2.1 and (1.2.20) the evolution equationof the tangent vector

T reads

Tt =
i

2

[(
−∂A

s φ
)

M +
(
∂A

s φ
)
M

]
. (1.3.3)

Here∂A
s denotes the covariant derivative with respect to the gauge fieldA, i.e.,

∂A
s

def
= ∂s − iA. (1.3.4)

Remark.Equation (1.3.3) can be also written classically as
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Tt = −τκN + (∂sκ)B (1.3.5)

The orthogonality relations (1.2.18) imply

〈
Mt,T

〉
= −

〈
M,Tt

〉
;
〈
Mt,M

〉
= 0 ; ℜ

(〈
Mt,M

〉)
= 0.

Therefore, the evolution equation of the complex vectorM must be of the form

Mt = i∂A
s φT + iBM. (1.3.6)

Since equations (1.3.3) and (1.3.6) are invariant under gauge transformations

φ 7→ eiβ, M 7→ Meiβ , A 7→ ∂sβ + A, B 7→ B + ∂tβ, (1.3.7)

the real scalar functionB can be determined uniquely only when we fix the gauge.

We next proceed to find the evolution equations of the vectorsN andB. Invoking

equations (1.2.6), (1.2.9), (1.2.12),and (1.3.5), we obtain the string of equalities

Nt = ∇t

(
1

κ
Ts

)

= −1

κ
(∂tκ)N +

1

κ
(∇sTt +R(Xt,Xs)T)

= τκT − 1

κ2

(
1

2
∂tκ

2 + ∂s(τκ
2) + κ2

〈
R(T,B)T,N

〉)
N

+
1

κ

(
∂ssκ− τ 2κ− κ

〈
R(T,B)T,B

〉)
B.

Requiring the projection
〈
N,Nt

〉
to vanish gives us the evolution equation of the cur-

vatureκ
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1

2
∂tκ

2 + ∂s(τκ
2) + κ2

〈
R(T,B)T,N

〉
= 0. (1.3.8)

Therefore, the evolution equation ofN reduces to

Nt = −τκT +
1

κ

(
∂ssκ− τ 2κ− κ

〈
R(T,B)T,B

〉)
B. (1.3.9)

Since{T,N,B} is an orthonormal set, the evolution equation of the vector fieldB is

of the form

Bt = −
(
< B,Tt > T +

〈
B,Nt

〉
B
)
. (1.3.10)

Hence, we can write the evolution equation of the binormalB as

Bt = −(∂sκ)T − 1

κ

(
∂ssκ− τ 2κ− κ

〈
R(T,B)T,B

〉)
N (1.3.11)

with the help of equations (1.3.5) and (1.3.9).

Now, a straightforward calculation shows

∇t∇sXt = ∇t (∇s (κB)) = ∇t ((∂sκ)B − τκN) = aT + bN + cB,

where, for simplicity, we set

a = −τ 2κ2 − (∂sκ)
2,

b =
1

κ
(∂sκ)

[
−∂ssκ− τ 2κ + κ

〈
R(T,B)T,B

〉]
− ∂t(τκ),

c = ∂tsκ− τ∂ssκ + τ 3κ+ τκ
〈
R(T,B)T,B

〉
.

On the other hand, we have
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∇s∇tXt +R(Xt,Xs)Xt = ∇s (∇t(κB)) + κ2R(B,T)B = aT + (b1 + b2)N + cB

with the notation

b1 = −τ∂tκ− κ2∂sκ− ∂sssκ+ 2κτ∂sτ + τ 2∂sκ+ κ∂s

(〈
R(T,B)T,B

〉)
,

b2 = −(∂sκ)
〈
R(T,B)T,B

〉
− κ2

〈
R(T,B)B,N

〉
.

Proposition 1.2.1 states the equality

∇t∇sXt = ∇s∇tXt +R(Xt,Xs)Xt. (1.3.12)

This identity implies that the components of the vector fields in (1.3.10) with respectN

are equal. It follows thatb = b1+b2. After some manipulation, this identity transforms

into the evolution equation of the torsionτ given by the formula

∂tτ = −∂s

(
τ 2 − 1

2
κ2 − 1

κ
∂ssκ+

〈
R(T,B)T,B

〉)
+ κ
〈
R(T,B)B,N

〉
. (1.3.13)

Remark.The evolution equation (1.3.8) of the curvatureκ can be also deduced from

the identity

∇tTs = ∇sTt +R(Xt,Xs)T. (1.3.14)

1.4 Equation of Motion

Let us adopt the notation
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F
def
=
[
T,M,M

]
(1.4.1)

with T,M, andM written as column vectors.

Equations (1.2.20) are therefore reformulated in matrix notation as

∇sF =
1

2
FS

≡ 1

2

[
T,M,M

]




0 −2φ −2φ̄

φ̄ 2iA 0

φ 0 −2iA



. (1.4.2)

Similarly, evolution equations of the frame{T,M,M} take the form

∇tF =
1

2
FE

≡ 1

2

[
T,M,M

]




0 −2i∂a
sφ 2i∂A

s φ

−i∂A
s φ 2iB 0

i∂A
s φ 0 −2iB



. (1.4.3)

Notice thatS andE are complex3 × 3 matrices.

A direct calculation gives

∇[t∇s]F =
1

2
F [∂tS − ∂sE + ES − SE] =

1

2
F [∂tS − ∂sE + [E, S]] . (1.4.4)

After computing all terms in (1.4.4), we get

∇[t∇s]F =
1

2
F




0 −2Φ −2Φ

Φ 2iΨ 0

Φ 0 −2iΨ



, (1.4.5)
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where

Φ
def
= (∂t − iB)φ− i∂A

s

(
∂A

s φ
)

(1.4.6a)

Ψ
def
= ∂tA− ∂s

(
B − |φ|2

2

)
(1.4.6b)

On the other hand, the complexified version of (1.2.6) yields

∇[t∇s]F = R(Xt,T)F = |φ|
[
R(B,T)T, R(B,T)M, R(B,Y)M

]
. (1.4.7)

Expanding each column vector in the right-hand side of (1.4.7), we obtain

R(B,T)T = āM + aM ; a
def
=

1

2

〈
R(B,T)T,M

〉
, (1.4.8)

R(B,T)M = −2aT + ibM ; b
def
= − i

2

〈
R(B,T)M,M

〉
, (1.4.9)

R(B,T)M = −2āT − ibM. (1.4.10)

Remark.Notice that

〈
R(B,T)M,M

〉
= 0 and

〈
R(B,T)M,M

〉
= 2i

〈
R(B,T)B,N

〉
.

Therefore,b is a real number.

Consequently, equation (1.4.7) becomes

∇[t∇s]F = |φ|
[
T,M,M

]




0 −2a −2ā

ā ib 0

a 0 −ib



≡ F|φ|Q. (1.4.11)
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From (1.4.5) and (1.4.11) we deduceΦ = 2a|φ| andΩ = b|φ|, i.e.,

(∂t − iB)φ− i∂A
s

(
∂A

s φ
)

= a|φ|, (1.4.12a)

∂tA− ∂s

(
B − |φ|2

2

)
= b|φ|. (1.4.12b)

Remark.Equation (1.4.12b) is equivalent to

∂tA = ∂s

(
B − |φ|2

2
+

∫
b|φ| ds

)
. (1.4.13)

We therefore chooseβ such that

∂sβ = A and ∂tβ = B − |φ|2
2

+

∫
b|φ| ds. (1.4.14)

Let us defineψ asψ
def
= φe−iβ and consider the equalities (1.4.14). Since equations

(1.4.12) are clearly invariant under the gauge transformations in (1.2.21), equation

(1.4.12a) transforms into

∂tψ − i∂ssψ − i

( |ψ|2
2

−
∫
b|ψ| ds

)
ψ = 2aψ, (1.4.15)

which is equivalent to

i∂tψ + ∂ssψ +
1

2
|ψ|2ψ = W (ψ)ψ, (1.4.16)

in view of (1.4.9). HereW (ψ) stands for

W (ψ)
def
=
〈
R(T,B)T,B

〉
−
∫
|ψ|
〈
R(T,B)B,N

〉
ds

− i
〈
R(T,B)T,N

〉
. (1.4.17)
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Following [8], we next discuss another way to deduce (1.4.16). Let us first recall

equations (1.3.8) and (1.3.13). They are

1

2
∂tκ

2 + ∂s(τκ
2) + κ2

〈
R(T,B)T,N

〉
= 0, (1.4.18a)

∂tτ = ∂s

(
−τ 2 +

1

2
κ2 +

1

κ
∂ssκ −

〈
R(T,B)T,B

〉)
+ κ
〈
R(T,B)B,N

〉
.

(1.4.18b)

Let ψ be a function such that

(a) ψ = κ exp(iθ) with θ(s, t) =
∫
τ(t, s) ds.

(b) κ andτ satisfy equations (1.4.18).

Using the mentioned equations a straightforward computation gives

i∂tψ = (h+ i∂tκ) e
iθ, (1.4.19a)

∂ssψ =
[
∂ssκ− τ 2κ− i

(
∂tκ + κ

〈
R(T,B)T,N

〉)]
eiθ, (1.4.19b)

where

h = κτ 2 − 1

2
κ3 − ∂ssκ+ κ

〈
R(T,B)T,B

〉
− κ

∫
κ
〈
R(T,B)B,N

〉
ds.

Combining (1.4.18) and (1.4.19) yields (1.4.16).

We conclude this chapter giving an example. Letg be a real-valued smooth func-

tion onM . We now assume thatM has curvature tensor given by

R(V,Y)Z = g[
〈
Z,V

〉
Y −

〈
Z,Y

〉
V].
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This curvature formula has a simple geometric meaning. Ifx,y is an orthonormal

basis for a tangent planeΠ at the pointp ∈ M , thenR(x,y) is zero onΠ⊥, and on

Π is the rotation sendingx to y andy to −x, followed by a scalar multiplication by

g(p). It follows that the sectional curvature of any tangent plane Π to M at p is g(p)

and that the following relations are valid.

R(T,B)T = gB,

R(T,B)B = −gT,

R(T,B)N = 0.

Hence, equation (1.4.16) reduces to

i∂tψ + ∂ssψ +

[
1

2
|ψ|2 − g

]
ψ = 0. (1.4.20)

However, the Schur lemma [13, page 96] implies thatg is a constant function onM ,

say g(p) = c for every p ∈ M . Settingϕ = ψeict ϕ satisfies the famous cubic

nonlinear Schrödinger equation

i∂tϕ+ ∂ssϕ +
1

2
|ϕ|2ϕ = 0.
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Chapter 2

Periodic in space Solutions

2.1 Introduction

Our main concern in this chapter is existence of a global solution of the initial value

problem for the nonlinear Schrödinger type equation (NLSE)

i∂tψ + ∂xxψ = −1

2
|ψ|2ψ +W (ψ)ψ, t ∈ R, x ∈ T, (2.1.1a)

with initial condition

ψ(0, x) = ψo(x), x ∈ T. (2.1.1b)

T denotes the unit circleS1 andW is a complex-valued function.

In this setting, this Cauchy problem is different from theR-case. The local the-

ory for solution of the NLSE inR uses the dispersive effect of the free Schrödinger

operator in the form of the Strichartz inequalities. When the domain is periodic such

inequalities do not hold. However, it is still possible to prove existence of a solution of

(2.1.1) for small enough timet (local existence) by solving the integral equation

ψ(t) = U(t)ψo − i

∫ t

0

U(t− s)F (ψ)(s) ds

16



using a Picard’s fixed point technique whereU(t) is the linear Schrödinger group and

F is an appropriate mapping. Although there is no conservation of ‖φ(·, t)‖L2(T) under

the flow, existence for all time (global existence) holds by estimating carefully the

growth in size of theL2-norm of the local solution.

In the case of pure power nonlinearity, i.e.,W ≡ 0, equation (2.1.1) has been

studied by Bourgain [4]. Using refined properties of trigonometric series, he developed

estimates similar to classical Strichartz inequalities and established that the solution for

this particular case is inC(R, Hs(T)) for all φo ∈ Hs(T), s ≥ 0.

2.2 An Integral Equation

Here and in the sequel, we will consider functions of two variables,ψ(t, x), with t ∈ R

the time variable andx ∈ T the space variable. We will denote bỹψ the partial Fourier

transform of the functionψ with respect to the space variable and byψ̂ the Fourier

transform ofψ with respect to both the space variable and the time variable, i.e.,

ψ̃(t, ξ) =
1√
2π

∫

T

e−ixξψ(t, x) dx and ψ̂(τ, ξ) =
1

2π

∫

R×T

e−i(xξ+tτ)ψ(t, x) dxdt.

We will also denote numerical constants byC and without loss of generality, we will

assume thatC ≥ 1.

The free Schrödinger operatorU(t) := eit∆ plays an essential role in the study

of the equation (2.1.1). Recall that in the case of periodic boundary conditions, the

operatorU(t) is given by an exponential sum

U(t)φ(x) =
∑

ξ∈Z

φ̃(ξ)ei(xξ−tξ2) (2.2.1)

and thatφ(t, x) = U(t)φo(x) is the solution of the Schrödinger equation
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i∂tφ+ ∂xxφ = 0 t ∈ R, x ∈ T,

φ(0, x) = φo(x), x ∈ T.

(2.2.2)

Our first step is to reformulate equation (2.1.1) as an equivalent integral equation.

Proposition 2.2.1.Consider the Cauchy problem

iψt + ψxx = F (ψ) , (t, x) ∈ R × T, (2.2.3a)

ψ(0, x) = ψo(x), x ∈ T, (2.2.3b)

whereF is a complex-valued function. Ifψ is a solution of(2.2.3), thenψ satisfies the

integral equation

ψ(t) = U(t)ψo − i

∫ t

0

U(t− s)F (ψ)(s) ds. (2.2.4)

Proof. We use the partial Fourier transform to calculate

iψ̃t − ξ2ψ̃ = F̃ (ψ), (2.2.5a)

ψ̃(0, ξ) = ψ̂o(ξ). (2.2.5b)

Solving (2.2.5), we obtain

ψ̃(t, ξ) = e−itξ2

ψ̂o(ξ) − i

∫ t

0

e−i(t−s)ξ2

F̃ (ψ)(s, ξ) ds. (2.2.6)

(2.2.4) follows from (2.2.6) by taking inverse Fourier transform. This completes the

proof.

In view of Proposition 2.2.1, we replace the equations (2.2.3) by the equivalent

equation (2.2.4) and try to solve forψ using Picard’s fixed point theorem. Let us

denote byT the mapping defined by the right side of (2.2.4), i.e.,
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T (ψ) = U(·.)ψo − i

∫ ·

0

U(· − s)F (ψ)(s) ds. (2.2.7)

Now, we want to use a cutoff function to decompose the integral in (2.2.4) into

parts near and away from the level curves ofτ + ξ2. For this reason, let us introduce

a smooth function̂b such that0 ≤ b̂ ≤ 1, b̂ = 1 on a neighborhood[−r, r] of 0 and

supp̂b ⊆ [−2r, 2r], wherer is a positive number to be determined later. Letĉ be the

function given bŷc
def
= 1 − b̂.

Proposition 2.2.2. T̂ (ψ) can be written as

T̂ (ψ)(τ, ξ) = δ(τ + ξ2)
(
ψ̂o(ξ) + B̂0(ξ)

)
−
F̂ (ψ)f(τ, ξ)

τ + ξ2

−
∞∑

k=1

(−2r)k−1

k!
δ(k)(τ + ξ2) B̂k(ξ) (2.2.8)

where

F̂f(ψ)(τ, ξ) = F̂ (ψ)(τ, ξ) ĉ(τ + ξ2), (2.2.9a)

F̂n(ψ)(τ, ξ) = F̂ (ψ)(τ, ξ) b̂(τ + ξ2), (2.2.9b)

B̂0(ξ) =

∫

R

F̂f (ψ)(σ, ξ)

σ + ξ2
dσ, (2.2.9c)

B̂k(ξ) =

∫

R

[
σ + ξ2

2r

]k−1

F̂n(ψ)(σ, ξ) dσ, k = 1, 2, . . . . (2.2.9d)

Proof. Let beχ[0,t] be the characteristic function defined by

χ[0,t](s) =





1 0 ≤ s ≤ t,

0 otherwise.

The second term on the right-hand side of (2.2.6) can be rewritten as
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∫ t

0

e−i(t−s)ξ2

F̃ (ψ)(s, ξ) ds = e−itξ2

∫

R

eisξ2

χ[0,t](t)F̃ (ψ)(s, ξ) ds. (2.2.10)

We have by Parseval’s formula

∫ t

0

eisξ2

F̃ (ψ)(s, ξ) =

∫

R

χ̂[0,t](τ + ξ2)F̂ (ψ)(τ, ξ) dτ. (2.2.11)

A straightforward computation allows us to obtain

χ̂[0,t](τ) =

∫ t

0

e−isτ ds = −i(1 − e−itτ )

τ
. (2.2.12)

Substituting (2.2.12) back to (2.2.11) and then in (2.2.10), we get

∫ t

0

e−i(t−s)ξ2

F̃ (ψ)(s, ξ) ds =

∫

R

e−itξ2 − eitτ

τ + ξ2
F̂ (ψ)(τ, ξ) dτ. (2.2.13)

Therefore,

T̃ (ψ)(t, ξ) = e−itξ2

ψ̂o(ξ) +

∫

R

e−itξ2 − eitτ

τ + ξ2
F̂ (ψ)(τ, ξ) dτ. (2.2.14)

Now, we writeF̂ (ψ) = F̂n(ψ) + F̂f (ψ), see (2.2.9a) and (2.2.9b) , and substitute

it in (2.2.13) to obtain

−i
∫ t

0

e−i(t−s)ξ2

F̃ (ψ)(s, ξ) ds = e−itξ2

∫

R

F̂f(ψ)(τ, ξ)

τ + ξ2
dτ −

∫

R

eitτ F̂f (ψ)(τ, ξ)

τ + ξ2
dτ

− e−itξ2

∫
ei(τ+ξ2)t − 1

τ + ξ2
F̂n(ψ)(τ, ξ) dτ. (2.2.15)

If we expand the expressionei(τ+ξ2)t − 1 in power series, the last term in (2.2.15)

becomes
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eitξ2

∫

R

∞∑

k=1

(it)k

k!
(τ + ξ2)k−1F̂n(ψ)(τ, ξ) dτ, (2.2.16)

and hence

T̃ (ψ)(t, ξ) = e−itξ2

ψ̂o(ξ) +
1

2π

(
e−itξ2

∫

R

F̂f (ψ)(τ, ξ)

τ + ξ2
dτ −

∫

R

eitτ F̂f (ψ)(τ, ξ)

τ + ξ2
dτ

)

− eitξ2

2π

∫

R

∞∑

k=1

(it)k

k!
(τ + ξ2)k−1F̂n(ψ)(τ, ξ) dτ. (2.2.17)

Finally, we take Fourier transform int variable of 2.2.17. Recall that

(it)keiξ2t Fourier transform−−−−−−−−→ δ(k)(τ + ξ2),

with δ denoting the delta distribution. Therefore, we obtain

T̂ (ψ)(τ, ξ) = δ(τ + ξ2)
(
ψ̂o(ξ) + B̂0(ξ)

)
− F̂f (ψ)(τ, ξ)

τ + ξ2

−
∞∑

k=1

(−2r)k−1

k!
δ(k)(τ + ξ2) B̂k(ξ).

The proof is completed.

SinceT̂ (ψ) contains the delta distribution and its derivatives, we need to localize

them in the variablet. For this reason, we consider a smooth cutoff functiona(t) which

is 1 if |t| ≤ 1, identically0 if |t| ≥ 2, and0 ≤ a(t) ≤ 1 for any real numbert. Denote

by aβ(t) = a( t
β
), β > 0, its dilation. The next proposition is a very useful technical

result.

Proposition 2.2.3. Assume that0 < β ≤ 1 and 0 ≤ γ < 1. If k is a nonnegative

integer, then the following inequality holds.
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I
def
=

(∫

R

(1 + |τ |)2γ|âβ
(k)(τ)|2 dτ

)1/2

≤ K(γ, a)(3β)k+ 1
2
−γ. (2.2.18)

Proof. Observe that

t̂kaβ(τ) = βk+1t̂ka(βτ), k ∈ N. (2.2.19)

Identity (2.2.19) and the change of variableu = βτ yield

I2 =

∫

R

(1 + |τ |)2γ|t̂kaβ(τ |2 dτ = β2(k+1)

∫

R

(1 + |τ |)2γ|t̂ka(βτ)|2 dτ

= β2k+1−2γ

∫

R

(β + |u|)2γ|t̂ka(u)|2 du.

Since0 < β ≤ 1, we have

I2 ≤ β2k+1−2γ

(∫

|u|≤1

(1 + |u|)2γ|t̂ka(u)|2 du+

∫

|u|≥1

(1 + |u|)2γ

u2
|ut̂ka(u)|2 du

)
.

Invoking the inequality

(1 + |u|)2γ

u2
≤ 22γ , if |u| ≥ 1

and properties of the Fourier transform, we have the following string of inequalities

I2 ≤ 23/4 β2k+1−2γ

(∫

|u|≤1

|t̂ka(u)|2 du+

∫

|u|≥1

|ut̂ka(u)|2 du
)
,

≤ 22γ β2k+1−2γ

(∫

R

|tka(t)|2 dt+

∫

R

| d
dt

(tka)(t)|2 dt
)

= 22γ β2k+1−2γ

(∫

R

|tka(t)|2 dt+

∫

R

|ktk−1a(t) + tka′(t)|2 dt
)
. (2.2.20)
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The condition suppa ⊆ [−2, 2] and the inequalities

(a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R,
(

1 +
k2

2

)
≤
(

9

4

)k

for anyk ∈ N

imply that

I2 ≤ 22γ β2k+1−2γ

(
4k‖a‖2

L2(R) + 2

∫

R

(
|kt(k−1)a(t)|2 + |tka′(t)|2

)
dt

)

≤ 22γ β2k+1−2γ
(
4k‖a‖2

L2(R) + 2
(
k24k−1‖a‖2

L2(R) + 4k‖a′‖2
L2(R)

))

= 22γ β2k+1−2γ 4k

(
(1 +

k2

2
)‖a‖2

L2(R) + 2‖a′‖2
L2(R)

)

≤ 22γ+1 β2k+1−2γ 9k‖a‖2
H1(R)

≤ 2

3
62γ (3β)2k+1−2γ‖a‖2

H1(R)

≡ K2(γ, a) (3β)2k+1−2γ. (2.2.21)

Notice thatK(γ, a) ≤ 2
√

3‖a‖H1(R). This completes the proof.

The product ofT (ψ)) andaβ will be denoted byTβ(ψ). From (2.2.8), its Fourier

transformT̂β(ψ) can be written in the following manner:

T̂β(ψ)(τ, ξ) = âβ(τ + ξ2)
(
ψ̂o(ξ) + B̂0(ξ)

)
− Φ̂(τ, ξ)

−
∞∑

k=1

(−2r)k−1

k!
âβ

(k)(τ + ξ2) B̂k(ξ), (2.2.22)

where

Φ̂(τ, ξ) = (âβ ∗ Ĝ)(τ, ξ), Ĝ(τ, ξ) =
F̂f(ψ)(τ, ξ)

τ + ξ2
. (2.2.23)
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2.3 A Priori Estimates

The estimates needed to prove that equation (2.2.3) has a solution locally in time are

provided in this section. Let us define the multiplier

Ŝ(τ, ξ) = 1 + |τ + ξ2|. (2.3.1)

Theorem 2.3.1.Let f(t,x) be a function with(t, x) ∈ R × T and denote bŷf(τ, ξ) its

Fourier transform, with(τ, ξ) ∈ R × Z. The following estimates hold

‖f‖L4(R×T) ≤ C‖Ŝ 3
8 f̂‖L2(R×Z) (2.3.2)

and its dual

∥∥∥ f̂

Ŝ
3
8

∥∥∥
L2(R×Z)

≤ C‖f‖
L

4
3 (R×T)

. (2.3.3)

The proof of Theorem 2.3.1 will be given in the last section ofthis chapter.

Theorem 2.3.2.Assume thatψo ∈ L2(T). Then there is a constantC such that

‖Tβ(ψ)‖L4(R×T) ≤ C β
1
8

(
‖ψo‖L2(T) + β

1
8 ‖F (ψ)‖

L
4
3 (R×T)

)
. (2.3.4)

Proof. From Theorem 2.3.1 we have

‖Tβ(ψ)‖L4(R×T) ≤ C‖Ŝ 3
8 T̂β(ψ)‖L2(R×Z). (2.3.5)

In order to control the right member of (2.3.5), we have to consider the contributions

of
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Â(τ, ξ) = Ŝ
3
8 (τ, ξ)âβ(τ + ξ2)ψ̂o(ξ), (2.3.6a)

B̂(τ, ξ) = Ŝ
3
8 (τ, ξ)âβ(τ + ξ2)B̂0(ξ), (2.3.6b)

D̂(τ, ξ) = −Ŝ 3
8 (τ, ξ)(âβ ∗ Ĝ)(τ, ξ), Ĝ(τ, ξ) =

F̂f (ψ)(τ, ξ)

τ + ξ2
, (2.3.6c)

Ê(τ, ξ) = −Ŝ 3
8 (τ, ξ)

∞∑

k=1

(−2r)k−1

k!
âβ

(k)(τ + ξ2) B̂k(ξ). (2.3.6d)

See equations (2.2.9) and (2.2.22).

Step 1. We invoke equation (2.2.18), withk = 0 and γ = 3/8, to bound the

L2-norm ofÂ.

‖Â‖2
L2(R×Z) =

∑

ξ∈Z

∫

R

|âβ(τ + ξ2)|2Ŝ 3
4 (τ, ξ)|ψ̂o(ξ)|2 dτ

=

[∫
|âβ(σ)|2 (1 + |σ|)

3
4 dσ

]∑

ξ∈Z

|ψ̂o(ξ)|2

≤ K2(a)β
1
4‖ψo‖2

L2(T).

Consequently,

‖Â‖L2(R×Z) ≤ Cβ
1
8‖ψo‖L2(T). (2.3.7)

Step 2. Following the lines in step 1., we can show that

‖B̂‖2
L2(R×Z) ≤ Cβ

1
4‖B̂0‖2

L2(Z). (2.3.8)

We now have by Hölder’s inequality
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‖B̂0‖2
L2(Z) =

∑

ξ

(∫
F̂ (ψ)(τ, ξ)

τ + ξ2
ĉ(τ + ξ2) dτ

)2

≤
∑

ξ

[∫ |F̂ (ψ)(τ, ξ)|2

(1 + |τ + ξ2|)3/4
dτ

] [∫
(1 + |τ + ξ2|)3/4

|τ + ξ2|2 |ĉ(τ + ξ2)|2 dτ
]

= 2‖Ŝ− 3
8 F̂ (ψ)‖2

L2(R×Z)

∫ ∞

r

(1 + τ)3/4

τ 2
|ĉ(τ)|2 dτ. (2.3.9)

Assuming thatr ≥ 1 the last term of (2.3.9) is estimated in the form

‖B̂0‖2
L2(T) ≤ C‖Ŝ− 3

8 F̂ (ψ)‖2
L2(R×Z)

∫ ∞

r

1

τ 5/4
dτ

≤ C

r1/4

∥∥∥ F̂ (ψ)

Ŝ3/8

∥∥∥
2

L2(R×Z)
. (2.3.10)

Thus, by (2.3.3), inequality (2.3.10) becomes

‖B̂0‖2
L2(T) ≤

C

r1/4
‖F (ψ)‖2

L4/3(R×T). (2.3.11)

Combining (2.3.8) with (2.3.11) and settingrβ = 1, we get

‖B̂‖L2(R×Z) ≤ Cβ1/4‖F (ψ)‖L4/3(R×T). (2.3.12)

Step 3. Taking in account (2.2.23) and the triangle inequality, we can write

‖D̂‖2
L2(R×Z) =

∑

ξ

∫
|
∫

Ŝ
3
8 (τ, ξ) âβ(τ − σ)

F̂ (ψ)(σ, ξ)

σ + ξ2
dσ|2 dτ

≤
∑

ξ

∫ [∫ (
|τ − σ| 38 + Ŝ

3
8 (σ, ξ)

)
|âβ(τ − σ)||Ĝ(σ, ξ)| dσ

]2

dτ

≤ 2
∑

ξ

∫

R

[
J2

β(τ, ξ) +H2
β(τ, ξ)

]
dτ, (2.3.13)
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where

Jβ(τ, ξ)
def
=

∫

R

|τ − σ|3/8 |âβ(τ − σ)||Ĝ(σ, ξ)| dσ,

Hβ(τ, ξ)
def
=

∫

R

Ŝ
3
8 (σ, ξ) |âβ(τ − σ)||Ĝ(σ, ξ)| dσ.

Invoking Hölder’s inequality, we derive

J2
β(τ, ξ) ≤

[∫

R

|F̂ (ψ)(σ, ξ)|2

(1 + |σ + ξ2|) 3
4

dσ

]

·
[∫

R

|τ − σ| 34
|σ + ξ2|2 |âβ(τ − σ)|2 Ŝ 3

4 (σ, ξ) |ĉ(σ + ξ2)|2 dσ
]

≡
(∫

R

|F̂ (ψ)(σ, ξ)|2

(1 + |σ + ξ2|) 3
4

dσ

)
V 2

β (τ, ξ). (2.3.14)

The changes of variablesu = τ + ξ2 andρ = σ + ξ2 allow us to show thatΥ2
β

def
=

∫
R
V 2

β (τ, ξ) dτ does not depend on the variableξ. Moreover, sinceρ ≥ 1 andrβ = 1,

we obtain by (2.2.18)

Υ2
β =

∫ ∫
|u− ρ| 34 |âβ(u− ρ)|2 |ĉ(ρ)|2 (1 + |ρ|) 3

4

ρ2
dρdu

≤
(∫

R

|v| 34 |âβ(v)|2 dv
)(∫

|ρ|≥r

(1 + |ρ|) 3
4

ρ2
dρ

)

≤ Cβ
1
4

∫ ∞

r

(1 + ρ)
3
4

ρ2
dρ

≤ Cβ
1
2 . (2.3.15)

Therefore, equation (2.3.13) transforms into

‖D̂‖L2(R×Z) ≤ Cβ
1
2

∥∥∥ F̂ (ψ)

Ŝ
3
8

∥∥∥
2

L2(R×Z)
+ 2

∑

ξ

∫

R

H2
β(τ, ξ) dτ. (2.3.16)
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On the other hand, we have

Hβ(τ, ξ) =

∫

R

Ŝ
3
4 (σ, ξ)

|σ + ξ2| |âβ(τ − σ)| |F̂ (ψ)(σ, ξ)|
Ŝ

3
8 (σ, ξ)

ĉ(σ + ξ2) dσ

≤ Cβ
1
4

(
|âβ| ⋆

(
|F̂ (ψ)|
Ŝ

3
8

(·, ξ)
))

(τ). (2.3.17)

As a consequence of the last inequality, we obtain

‖Hβ(· , ξ)‖2
L2(R) ≤ Cβ

1
2‖â‖2

L1(R)

∥∥∥ F̂ (ψ)

Ŝ
3
8

( · , ξ)
∥∥∥

2

L2(R)
. (2.3.18)

We plug (2.3.18) into (2.3.16) to get

‖D̂‖2
L2(R×Z) ≤ C β

1
2

∥∥∥ F̂ (ψ)

Ŝ
3
8

∥∥∥
2

L2(R×Z)
. (2.3.19)

Employing (2.3.3), we can rewrite the inequality (2.3.19) as

‖D̂‖L2(R×Z) ≤ Cβ
1
4‖F (ψ)‖

L
4
3 (R×T)

. (2.3.20)

Step 4. Let us express (2.3.6d) as

Ê(τ, ξ) = −
∞∑

k=1

(−2r)k−1

k!
Êk(τ, ξ)

with

Êk(τ, ξ) = Ŝ
3
8 (τ, ξ) âβ

(k)(τ + ξ2)

∫

R

[
σ + ξ2

2r

]k−1

F̂n(ψ)(σ, ξ) dσ. (2.3.21)

In order to estimate‖Ê‖L2(R×Z), we will estimate‖Êk‖L2(R×Z) and then using the

triangle inequality, we will have
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‖Ê‖L2(R×Z) ≤
∞∑

k=1

(2r)k−1

k!
‖Êk‖L2(R×Z). (2.3.22)

For eachk ≥ 1 we have by (2.2.9d) and by Proposition 2.2.3 that

‖Êk‖2
L2(R×Z) =

∑

ξ∈Z

∫

R

(1 + |τ + ξ2|) 3
4 |âβ

(k)(τ + ξ2))|2 |B̂k(ξ)|2 dτ

u= τ+ξ2

=

(∫

R

(1 + |u|) 3
4 |âβ

(k)(u)|2 du
)(∑

ξ∈Z

|B̂k(ξ)|2
)

≤ K2(a)(3β)2k+ 1
4 ‖B̂k‖2

L2(Z). (2.3.23)

We will denote‖B̂k‖2
L2(Z) by Λ2

k.

We utilize (2.2.9d) and Hölder’s inequality to compute

Λ2
k ≤

∑

ξ∈Z

[∫

|τ+ξ2|≤2r

|σ + ξ2

2r
|k−1 |F̂ (ψ)(σ, ξ)| b̂(σ + ξ2) dσ

]2

≤
∑

ξ∈Z

(∫

|σ+ξ2|≤2r

|F̂ (ψ)(σ, ξ)| dσ
)2

≤
∑

ξ∈Z

(∫

R

|F̂ (ψ)(σ, ξ)|2

Ŝ
3
4 (σ, ξ)

dσ

)(∫

|σ+ξ2|≤2r

(1 + |σ + ξ2|) 3
4 dσ

)

≤ C(2r)
7
4

∥∥∥ F̂ (ψ)

Ŝ
3
8

∥∥∥
2

L2(R×Z)
. (2.3.24)

Inserting (2.3.24) and (2.3.23) into (2.3.22) gives the estimate

‖Ê‖L2(R×Z) ≤ (2r)
7
8C
∥∥∥ F̂ (ψ)

Ŝ
3
8

∥∥∥
L2(R×Z)

(
∞∑

k=1

(2r)k−1(3β)k+ 1
8

k!

)

= C

(
β

r

) 1
8
[
e6rβ − 1

6rβ

] ∥∥∥ F̂ (ψ)

Ŝ
3
8

∥∥∥
L2(R×Z)

. (2.3.25)
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Sincerδ = 1, the last inequality is equivalent to

‖Ê‖L2(R×Z) ≤ Cβ
1
4‖F (ψ)‖

L
4
3 (R×T)

(2.3.26)

because of Theorem 2.3.1.

Collecting equations (2.3.5), (2.3.7), (2.3.12), (2.3.20), and (2.3.26), we have the

desired estimate (2.3.4). This concludes the proof.

2.4 Local Solutions

We want to prove existence of a global solution of (2.2.3), but we will start by con-

structing a local in time solution of the equation

i∂tψ + ∂xxψ = −1

2
|ψ|2ψ +W (ψ)ψ, t ∈ R, x ∈ T,

with initial condition

ψ(0, x) = ψo(x), x ∈ T,

using a fixed point argument. The construction will be accomplished in an interval

[0, β] with β chosen appropriately small. After the local construction,a global exis-

tence will be achieved by an iteration scheme.

In what follows, we assume thatW is a complex-valued function satisfying the

following conditions:
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|W (u) −W (v)| ≤ C|u− v|, u, v ∈ C, (2.4.1a)

|W (ψ)(t, ·)| ≤ C(1 + ‖ψ(·, t)‖L2(T)), (2.4.1b)

ℑW (u) ≤ K, u ∈ C, (2.4.1c)

whereK is a constant.

Remark.It is clear that ifψ ∈ L4(R × T), then

‖|ψ|2ψ‖
L

4
3 (R×T)

= ‖ψ‖3
L4(R×T). (2.4.2)

Remark.In Section 1.4 we proved that the equation governing the binormal motion

of curveζ embedded in a three-dimensional Riemannian manifoldM is given by (see

(1.4.16) )

i∂tψ + ∂ssψ +
1

2
|ψ|2ψ = W (ψ)ψ,

whereR is the Riemannian curvature tensor of the manifoldM , {T,N,B} is the

Frenet trihedron onζ , andW (ψ) stands for

W (ψ)
def
=
〈
R(T,B)T,B

〉
−
∫
|ψ|
〈
R(T,B)B,N

〉
ds

− i
〈
R(T,B)T,N

〉
.

If we assume thatR is smooth and bounded, then the conditions (2.4.1b) and (2.4.1c)

follow immediately.

Proposition 2.4.1.Letψ, φ ∈ L4(R × T). If W satisfies condition(2.4.1b), then

‖aβW (φ)ψ‖
L

4
3 (R×T)

≤ Cβ
1
4

(
β

1
4 + ‖φ‖L4(R×T)

)
‖ψ‖L4(R×T). (2.4.3)
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Proof. Sinceφ ∈ L4(R × T), it follows that‖φ(t, ·)‖L4(T) <∞ almost everywhere in

time. Therefore,

‖φ(t, ·)‖L2(T) ≤ C‖φ(t, ·)‖L4(T), a.e. t ∈ R. (2.4.4)

Combining (2.4.1b) and (2.4.4), we have

|W (φ)(t, ·)| ≤ C
(
1 + ‖φ(t, ·)‖L4(T)

)
. (2.4.5)

By Hölder’s inequality, (2.4.5) and the inequality(1+ y)4 ≤ 8(1+ y4), y ∈ R, we

obtain

‖aβW (φ)ψ‖
L

4
3 (R×T)

≤ ‖aβ‖
1
2

L2(R×T)‖ψ‖L4(R×T)

(∫

R×T

|aβ(t)|2|W (φ)(t, x)|4 dxdt
) 1

4

≤ Cβ
1
4‖ψ‖L4(R×T)

(∫

R×T

|aβ(t)|2
(
1 + ‖φ(t, ·)‖4

L4(T)

)
dt

) 1
4

≤ Cβ
1
4

(
β

1
4 + ‖φ‖L4(R×T)

)
‖ψ‖L4(R×T) (2.4.6)

as asserted.

Let us recall the definition of the mapTβ

Tβ(ψ)(t) = aβ(t)

(
U(t)ψo − i

∫ t

0

U(t− s)F (ψ)(s) ds

)
. (2.4.7)

Since we are looking for a local solution of (2.2.3), we set

F (ψ) = −1

2
|ψ|2ψ + aβW (ψ)ψ. (2.4.8)

Theorem 2.4.2.Assume thatψo ∈ L2(T). The mapTβ, with F given by(2.4.8), is

a contraction of the unit ball inL4(R × T) into itself, providedβ is small enough.

Moreover,β depends on theL2-norm of the initial dataψo.
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Proof. We combine Theorem 2.3.2, equation (2.4.2), and Proposition 2.4.1 to get

‖Tβ(ψ)‖L4(R×T) ≤ Cβ
1
4

[
‖ψ‖3

L4(R×T) + β
1
4

(
β

1
4 + ‖ψ‖L4(R×T)

)
‖ψ‖L4(R×T)

]

+ Cβ
1
8‖ψo‖L2(T). (2.4.9)

Hence,

‖ψ‖L4(R×T) ≤ 1 ⇒ ‖Tβ(ψ)‖L4(R×T) ≤ 1, (2.4.10)

provided we make the choice

β
1
4 =

1

4C2(ρ+ ‖ψo‖2
L2(T))

, ρ ≥ 3. (2.4.11)

We consider next the differenceTβ(ψ)−Tβ(φ). The first term in (2.4.7) disappears

andF (ψ) in the integral term has to be replaced byF (ψ)−F (φ). Repeating previous

estimates in the proof of Theorem 2.3.2, we get

‖Tβ(ψ) − Tβ(φ)‖L4(R×T) ≤ Cβ
1
4‖F (ψ) − F (φ)‖

L
4
3 (R×T)

. (2.4.12)

We have by Hölder’s inequality

‖F (ψ) − F (φ)‖
L

4
3 (R×T)

≤ 1

2
‖ψ|ψ|2 − φ|φ|2‖

L
4
3 (R×T)

+ ‖aβ [W (ψ)ψ −W (φ)φ]‖
L

4
3 (R×T)

. (2.4.13)

The following algebraic manipulations

ψ|ψ|2 − φ|φ|2 = (ψ − φ)|ψ|2 + φψ(ψ − φ) + φ2(ψ − φ), (2.4.14a)

W (ψ)ψ −W (φ)φ = W (ψ)(ψ − φ) + (W (ψ) −W (φ))φ, (2.4.14b)
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Hölder’s inequality once more, Proposition 2.4.1, and condition (2.4.1a) give the esti-

mates

‖ψ|ψ|2 − φ|φ|2‖
L

4
3 (R×T)

≤
(
‖ψ‖L4(R×T) + ‖φ‖L4(R×T)

)2 ‖ψ − φ‖L4(R×T), (2.4.15a)

‖aβW (ψ) (ψ − φ)‖
L

4
3 (R×T)

≤ Cβ
1
4

(
β

1
4 + ‖ψ‖L4(R×T)

)
‖ψ − φ‖L4(R×T), (2.4.15b)

‖aβ (W (ψ) −W (φ))φ‖
L

4
3 (R×T)

≤ Cβ
1
4‖φ‖L4(R×T)‖ψ − φ‖L4(R×T). (2.4.15c)

We substitute equations (2.4.15) back into (2.4.13) and then the resulting inequality

back into (2.4.12) to obtain

‖Tβ(ψ) − Tβ(φ)‖L4(R×T) ≤ Cβ
1
4‖ψ − φ‖L4(R×T)

(
‖ψ‖L4(R×T) + ‖φ‖L4(R×T)

)2

+ Cβ
1
2

(
β

1
4 + ‖ψ‖L4(R×T) + ‖φ‖L4(R×T)

)

· ‖ψ − φ‖L4(R×T). (2.4.16)

Hence, forβ given by (2.4.11), we get the inequality

‖Tβ(ψ) − Tβ(φ)‖L4(R×T) ≤
1

2
‖ψ − φ‖L4(R×T). (2.4.17)

This establishes the theorem.

Picard’s theorem yields a functionψ ∈ L4(R × T) satisfyingTβ(ψ) = ψ. We

therefore have proved the theorem

Theorem 2.4.3.Consider the problem





i∂tψ + ∂xxψ = −1
2
|ψ|2ψ +W (ψ)ψ, t ∈ R, x ∈ T,

ψ(0, x) = ψo(x) x ∈ T.

(2.4.18)
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Assume that the initial dataψo ∈ L2(T). Then the Cauchy problem(2.4.18)has a

unique weak solution fort ∈ [−β, β] whereβ depends on the initial data.

Remark.The same argument that we used in the construction of a local solution also

proves well-posedness, i.e., continuous dependence on theinitial data,

‖Tβ(ψ) − Tβ(φ)‖L4(R×T) ≤ C‖ψo − φo‖L2(T). (2.4.19)

2.5 Global Solutions

Our next purpose is to show that problem (2.4.18) has a globalsolution. We con-

structed a solution of that problem in a slice

T × [0, β],

whereβ is given by

β =
1

(
4C2

[
ρ+ ‖ψo‖2

L2(T)

])4 , (2.5.1)

with ρ being any real number greater than 3 (recall (2.4.11)) andC is a given constant.

The drawback of the previous argument in section 2.4 which establishes local well-

posedness is that the size ofβ depends onL2-norm ofψ on which we do not have a

priori bound.

To simplify matters, we assume thatψo is smooth so thatψ is also smooth and we

adopt the notationX(t) = ‖ψ(t, ·)‖2
L2(T). AlthoughX(t) is not conserved by the flow

in (2.4.18), we have an inequality of the form

dX(t)

dt
≤ KX(t), (2.5.2)
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by invoking the condition (2.4.1c), whereK is an a priori constant. Therefore,

X(τ) ≤ eK(τ−σ)X(σ). (2.5.3)

In order to show global existence, let us start settingt0 = β0 = 0. We next define

β1
def
= β =

1

(4C2 [ρ+ X(t0)])
4 ,

t1
def
= t0 + β1,

and by induction

βn+1
def
=

1

(4C2 [ρ+ X(tn)])4 , (2.5.4a)

tn+1
def
= tn + βn+1 . (2.5.4b)

Setting

Xn = X(tn), (2.5.5)

λ =
K

44C8
, (2.5.6)

the estimate in (2.5.3) together with (2.5.4) implies that

Xn+1 ≤ exp

(
λ

(ρ+ Xn)4

)
Xn. (2.5.7)

Denoting the constant|λ|e4λ by ν, we now claim

Proposition 2.5.1. There exists a numberρ ≥ 3 such that ifn is any nonnegative

integer, then the following inequality holds:
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Xn ≤ 4

√
(ρ+ X0)

4 + 8νn. (2.5.8)

Proof. If λ ≤ 0, then equation (2.5.7) implies that

Xn+1 ≤ Xn, n ∈ Z, n ≥ 0, (2.5.9)

from where (2.5.8) is deduced for anyρ ≥ 3.

On the other hand, inequality (2.5.8) is obviously true forn = 0. Assume that

Xn ≤ 4

√
(ρ+ X0)

4 + 8νn. We consider two cases:

Xn ≤ e−λ 4

√
(ρ+ X0)

4 + 8νn, (A)

Xn ≥ e−λ 4

√
(ρ+ X0)

4 + 8νn. (B)

For the case (A), we have by (2.5.7) and by induction hypothesis

Xn+1 ≤ exp

(
λ

(ρ+ Xn)4

)
Xn

≤ eλXn

≤ eλe−λ
[
(ρ+ X0)

4 + 8νn
] 1

4

≤
[
(ρ+ X0)

4 + 8ν(n+ 1)
] 1

4 .

We next consider case (B). Using again (2.5.7) and inductionhypothesis we obtain

Xn+1 ≤ exp

(
λ

(ρ+ Xn)4

)
Xn

≤ exp

(
λ

(ρ+ Xn)4

)[
(ρ+ X0)

4 + 8νn
] 1

4

≤ exp

[
ν

(ρ+ X0)
4 + 8νn

] [
(ρ+ X0)

4 + 8νn
] 1

4 . (2.5.10)
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It is therefore enough to check that

[
(ρ+ X0)

4 + 8νn
] 1

4 exp

[
ν

(ρ+ X0)
4 + 8νn

]

≤
[
(ρ+ X0)

4 + 8ν(n + 1)
] 1

4 , (2.5.11)

or equivalently,

ν

(ρ+ X0)
4 + 8νn

≤ 1

4
ln

(
1 +

8ν

(ρ+ X0)
4 + 8νn

)
. (2.5.12)

Let

xn =
ν

(ρ+ X0)
4 + 8νn

.

Then inequality (2.5.12) can be written as

4xn ≤ ln(1 + 8xn). (2.5.13)

Since ln(1 + 8x) − 4x ≥ 0 holds for x ∈ [0, 0.3], we chooseρ ≥ 3 such that

ν

(ρ+ ‖ψo‖2
L2(T))

4
≤ 0.3. (2.5.14)

Hence, inequality (2.5.13) holds by (2.5.14) proving the claim made above.

Corollary 2.5.2. The Cauchy problem(2.4.18)is globally well-posed.

Proof. Inequality (2.5.8) and the inequality(a+ b)4 ≤ 8 (a4 + b4) , a, b ∈ R allow us

to compute
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tn+1 =
n∑

k=0

βk+1 =
n∑

k=0

C

(ρ+ Xk)
4

≥ C

8

n∑

k=0

1

ρ4 + X4
k

≥ C

8

n∑

k=0

1

ρ4 + (ρ+ X0)
4 + 8νk

≥ C

8

n∑

k=0

1

9ρ4 + 8X0 + 8νk
. (2.5.15)

Therefore,tn+1 ∼
∑n

k=1
1
k

implying thattn → ∞. This gives the desired conclusion.

2.6 A Schr̈odinger Multiplier Estimate

We begin by restating Theorem 2.3.1.

Theorem 2.6.1.Let f(t,x) be a function with(t, x) ∈ R × T and denote bŷf(τ, ξ) its

Fourier transform, with(τ, ξ) ∈ R × Z. The following estimates hold

‖f‖L4(R×T) ≤ C‖Ŝ 3
8 f̂‖L2(R×Z). (2.6.1)

and its dual

∥∥∥ f̂

Ŝ
3
8

∥∥∥
L2(R×Z)

≤ C‖f‖
L

4
3 (R×T)

. (2.6.2)

Proof. With some modifications, we will proceed as in the proof of Theorem 2.1 in

[7]. We start making a dyadic decomposition off̂ as f̂ =
∑

j f̂j with f̂j supported

in the region2j−1 ≤ τ + ξ2 ≤ 2j+1. Without loss of generality, we can assume that

j ≥ 1. Next, we write
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f̂ =
∑

j

f̂j ↔ f =
∑

j

fj , (2.6.3)

wherefj = F∗[f̂j ] with F∗ denoting inverse Fourier transform. Let us consider the

quadratic expression

fjfk(t, x) = C

∫ ∑

ξ1.,ξ2

ei[t(τ1+τ2)+x(ξ1+ξ2)]f̂j(τ1, ξ1) f̂k(τ2, ξ2) dτ1 dτ2. (2.6.4)

Again, without loss of generality, we can supposej ≥ k. Our next step is to change

variables as follows:

ξ1 + ξ2 = ξ, ξ2
1 + ξ2

2 = ν, (2.6.5a)

τ1 + τ2 = τ, τ2 + ξ2
2 = ρ, (2.6.5b)

i.e.,(τ1, τ2, ξ1, ξ2) 7−→ (τ, ρ, ξ, ν). Observe that the inverse formulae are

ξ1,2 =
ξ ±

√
2ν − ξ2

2
,

τ2 = ρ− ξ2
2 with 2k−1 ≤ ρ ≤ 2k+1,

τ1 = τ − τ2. (2.6.6)

Let us callµ
def
= τ1 + ξ2

1 so that2j+1 ≤ µ ≤ 2j+1 Since we have2k−1 +2j−1 ≤ ρ+µ ≤

2k+1 + 2j+1, we conclude that

2k−1 + 2j−1 − τ ≤ γ ≤ 2k+1 + 2j+1 − τ, (2.6.7a)

γ
def
= ξ2

1 + ξ2
2. (2.6.7b)
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Equation (2.6.4) can be expressed in the new variables as

fjfk(t, x) = C

∫ ∑

ξ

ei(tτ+x)

∫

ρ∼2k

∑

γ

f̂j(τ1, ξ1) f̂k(τ2.ξ2) dρ dτ. (2.6.8)

We apply Plancherel’s theorem to the equation above to obtain

‖fjfk‖2
L2(R×T) = ‖

∫ ∑

γ

f̂j f̂k dρ‖2
L2(R×T) =

∫ ∑

ξ

|
∫ ∑

γ

f̂j f̂k|2 dτ, (2.6.9)

which is bounded by

B ≡ 2k|{#γ}|
∫ ∑

ξ,γ

|f̂j|2|f̂k|2 dτ dρ.

This bound can be estimated in an equivalent way as

B = 2k|{#γ}|
∫ ∑

ξ1,ξ2

|f̂j (τ1, ξ1)|2|f̂k (τ2, ξ2)|2 dτ1 dτ2

= 2k|{#γ}|‖f̂j‖2
L2(R×T)‖f̂k‖2

L2(R×T), (2.6.10)

where|{#γ}|is the number ofγ that satisfies restriction (2.6.7) for a givenξ ∈ Z, i.e.,

{#γ} = {γ = ξ2
1 + ξ2

2 ∈ Z+ : ξ = ξ1 + ξ2 ; 2k−1 +2j−1−τ ≤ γ ≤ 2k+1 +2j+1−τ}.

(2.6.11)

As in [7], there is a constantC such that the size of the set{#γ} satisfies

|{#γ}| ≤ C2
j
2 . (2.6.12)

Therefore, equation (2.6.9) reads
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‖fjfk‖2
L2(R×Z) ≤ 2k2

j
2‖fj‖2

L2(R×Z) · ‖fk‖2
L2(R×Z). (2.6.13)

The triangle inequality and estimate (2.6.13) allow us to compute

‖f‖L2(R×Z) ≤
∑

j,k

1

2
j−k
4

[
2

3k
8 ‖fk‖L2(R×Z)

] [
2

3j
8 ‖fj‖L2(R×Z)

]

≤ C
[
2

3j
8 ‖fj‖L2(R×Z)

]2
. (2.6.14)

The preceding equation can be rewritten as

‖f‖2
L4(R×T) ≤ C

[
2

3j
8 ‖fj‖L2(R×Z)

]2

∼ C ‖Ŝ 3
8 f̂‖L2(R×Z). (2.6.15)

This proves (2.6.1).

In order to prove (2.6.2), we just write for a test functionh

|< f̂ Ŝ− 3
8 , ĥ >| = |< f,F∗

(
ĥ Ŝ− 3

8

)
>|

≤ ‖f‖
L

4
3 (R×T)

‖F∗
(
ĥ Ŝ− 3

8

)
‖L4(R×T), (2.6.16)

with the help of Hölder inequality. Finally, estimate (2.6.1) implies that the right-hand

side of (2.6.16) is bounded by

‖f‖
L

4
3 (R×T)

‖ĥ‖L2(R×T).

This finishes the proof.
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Chapter 3

Non-periodic Solutions

3.1 Introduction

This present chapter concentrates on global existence of solutions of the initial value

problem for the nonlinear Schrödinger-type equation (NLSE)

i∂tφ+ ∂xxφ = −1

2
|φ|2φ+W (φ)φ, (t, x) ∈ R × R, (3.1.1a)

with initial condition

φ(0, x) = φo(x), x ∈ R. (3.1.1b)

HereW denotes a complex-valued function.

As in the periodic case, the problem (3.1.1) will be rewritten conveniently in the

the integral equation

φ(t) = U(t)φo − i

∫ t

0

U(t− s)(−1

2
|φ|2φ+W (φ)φ)(s) ds, (3.1.2)

where the Schrödinger operatorU(t) := eit∆ defines an one-parameter unitary group.

The existence of a solution for small enough t (local existence) will be obtained by

constructing a family of approximate solutions. Although there is no conservation of
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‖φ(·, t)‖L2(R) under flow, existence for all time (global existence) holds by extending

the local solution in the large in time by means of priori estimates for theL2-norm of

the local solution.

3.2 A Basic Framework

In the following,φ(t, x) will denote a complex-valued function of two variables(t, s)

with t ∈ R the time variable andx ∈ R the space variable. Numerical constants will

be also denoted byC as in Chapter 2.

Let us recall that the equation





i∂tφ+ ∂xxφ = 0, (t, x) ∈ R × R,

φ(0, x) = φo(x), x ∈ R,

(3.2.1)

is solved asφ(t, x) = U(t)φo(x), whereU(t) given by

U(t)φo(x) =

∫

R

φ̃o(ξ)e
i(xξ−tξ2) dξ (3.2.2)

defines a unitary transformation group inL2.

The observation that (3.1.1) can be reformulated equivalently as the integral equa-

tion (3.1.2) is a direct consequence of the next proposition.

Proposition 3.2.1.Consider the Cauchy problem

iφt + φxx = F , (t, x) ∈ R × R, (3.2.3a)

φ(0, x) = φo(x), x ∈ R, (3.2.3b)

whereF is a complex-valued function of the variable(t, x). If φ is a solution of(3.2.3),

thenφ satisfies the integral equation

44



φ(t) = U(t)φo − i

∫ t

0

U(t− s)F (s) ds. (3.2.4)

Proof. Proof is quite similar to that for Proposition 2.2.4. Calculating the partial

Fourier transform of the solutionφ to equation (3.2.3), we get

iφ̃t − ξ2φ̃ = F̃ (t, ·), (3.2.5a)

φ̃(0, ξ) = φ̂o(ξ). (3.2.5b)

We next solve (3.2.5). Its solution can be expressed as

φ̃(t, ξ) = e−itξ2

φ̂o(ξ) − i

∫ t

0

e−i(t−s)ξ2

F̃ (s, ·)(ξ) ds. (3.2.6)

Equation (3.2.4) follows from (3.2.6) by taking inverse Fourier transform. This com-

pletes the proof.

Exactly as in Chapter 2, we introduce a smooth functionb̂ such that0 ≤ b̂ ≤ 1, b̂ =

1 on a neighborhood[−r, r] of 0 and supp̂b ⊆ [−2r, 2r], wherer is a positive number

to be determined later. Let̂c be the function defined bŷc def
= 1 − b̂.

The same argument used to prove Proposition 2.2.8 can be utilized to prove the

next result. Its proof therefore will be omitted.

Proposition 3.2.2. If φ is a solution of(3.2.3), thenφ̂ can be written as follows

φ̂(τ, ξ) = δ(τ + ξ2)
(
φ̂o(ξ) + B̂0(ξ)

)
− F̂f(τ, ξ)

τ + ξ2

−
∞∑

k=1

(−2r)k−1

k!
δ(k)(τ + ξ2) B̂k(ξ), (3.2.7)
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where

F̂f (τ, ξ) = F̂ (τ, ξ) ĉ(τ + ξ2), (3.2.8a)

F̂n(τ, ξ) = F̂ (τ, ξ) b̂(τ + ξ2), (3.2.8b)

B̂0(ξ) =

∫

R

F̂f (σ, ξ)

σ + ξ2
dσ, (3.2.8c)

B̂k(ξ) =

∫

R

[
σ + ξ2

2r

]k−1

F̂n(σ, ξ) dσ, k = 1, 2, . . . (3.2.8d)

Sinceφ̂ contains the delta function and its derivatives, we need to localize them in

the variablet. For this reason. we consider a smooth cutoff functiona(t) which is1 if

|t| ≤ 1, identically0 if |t| ≥ 2, and0 ≤ a(t) ≤ 1 for any real numbert. Denote by

aβ(t) = a( t
β
), β > 0, its dilation. From (3.2.7)̂aβφ is then given by the formulae

âβφ(τ, ξ) = âβ(τ + ξ2)
(
φ̂o(ξ) + B̂0(ξ)

)
− Φ̂(τ, ξ)

−
∞∑

k=1

(−2r)k−1

k!
âβ

(k)(τ + ξ2) B̂k(ξ) (3.2.9)

with

Φ̂(τ, ξ) = (âβ ∗ Ĝ)(τ, ξ), Ĝ(τ, ξ) =
F̂f (τ, ξ)

τ + ξ2
. (3.2.10)

3.3 A Basic Estimate

Let us define the multiplier

Ŝ(τ, ξ) = 1 + |τ + ξ2|. (3.3.1)
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Theorem 3.3.1.Assume thatφ is a solution of (3.2.3), with φo ∈ L2(R), and that

1
2
< γ < 1. Then there is a constant C(γ, a) such that

‖Ŝγâβφ‖L2(R×R) ≤ C(a, γ)

(
1

βγ− 1
2

‖φo‖L2(R) +
∥∥∥ F̂

Ŝ1−γ

∥∥∥
L2(R×R)

)
. (3.3.2)

Proof. We will proceed in a similar way as in the proof of Theorem (2.3.2). In order

to bound the left member of (3.3.2), we need to consider the contributions

Â(τ, ξ) = Ŝγ(τ, ξ)âβ(τ + ξ2)φ̂o(ξ), (3.3.3a)

B̂(τ, ξ) = Ŝγ(τ, ξ)B̂0(ξ), (3.3.3b)

D̂(τ, ξ) = −Ŝγ(τ, ξ)(âβ ∗ Ĝ)(τ, ξ), Ĝ(τ, ξ) =
F̂f (τ, ξ)

τ + ξ2
, (3.3.3c)

Ê(τ, ξ) = −Ŝ 3
8 (τ, ξ)

∞∑

k=1

(−2r)k−1

k!
âβ

(k)(τ + ξ2) B̂k(ξ), (3.3.3d)

according to equation (3.2.9). We then proceed in four steps.

Step 1. We employ (2.2.18) withk = 0 to bound theL2-norm of Â. In fact, we

have

‖Â‖2
L2(R×R) =

∫

R2

|âβ(τ + ξ2)|2Ŝ2γ(τ, ξ)|φ̂o(ξ)|2 dτ dξ

=

[∫

R

|âβ(σ)|2 (1 + |σ|)2γ dσ

] ∫

R

|φ̂o(ξ)|2 dξ

≤ K2(γ, a)β1−2γ‖φo‖2
L2(R). (3.3.4)

Therefore,

‖Â‖L2(R×R) ≤ C(γ, a)β
1
2
−γ‖φo‖L2(R), (3.3.5)
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as desired.

Step 2. By calculations similar to those leading to (3.3.4),we can obtain

‖B̂‖2
L2(R×R) ≤ C(γ, a)β1−2γ‖B̂0‖2

L2(R). (3.3.6)

Now, we have by Hölder’s inequality

‖B̂0‖2
L2(R) =

∫

R

(∫

R

F̂ (τ, ξ)

τ + ξ2
ĉ(τ + ξ2) dτ

)2

dξ

≤
∫ [∫ |F̂ (τ, ξ)|2

(1 + |τ + ξ2|)2−2γ dτ

]

·
[∫

(1 + |τ + ξ2|)2−2γ

|τ + ξ2|2 |ĉ(τ + ξ2)|2 dτ
]
dξ

=
∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)

∫

|u| ≥ r

(1 + |u|)2−2γ

u2
|ĉ(u)|2 du. (3.3.7)

Assuming thatr ≥ 1 the last term of (3.3.7) is estimated in the form

‖B̂0‖2
L2(R) ≤ 23−2γ

∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)

∫ ∞

r

1

u2γ
du

≤ 23−2γ

2γ − 1
r1−2γ

∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)
. (3.3.8)

At this stage, we have proved that

‖B̂0‖2
L2(R) ≤ C(γ, a)r1−2γ

∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)
. (3.3.9)

Substituting (3.3.9) into (3.3.6) and settingrβ = 1, we get

‖B̂‖L2(R×Z) ≤ C(γ, a)
∥∥∥ F̂

Ŝ1−γ

∥∥∥
L2(R×R)

. (3.3.10)

Step 3. We utilize (3.2.10) and the triangle inequality to write
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‖D̂‖2
L2(R×R) =

∫

R2

|
∫

R

Ŝγ(τ, ξ) âβ(τ − σ)
F̂ (σ, ξ)

σ + ξ2
dσ|2 dτ dξ

≤
∫

R2

[∫

R

(
|τ − σ|γ + Ŝγ(σ, ξ)

)
|âβ(τ − σ)||Ĝ(σ, ξ)| dσ

]2

dτ dξ

≤ 2

∫

R2

[
J2

β,γ(τ, ξ) +H2
β,γ(τ, ξ)

]
dτ dξ, (3.3.11)

where

Jβ,γ(τ, ξ)
def
=

∫

R

|τ − σ|γ |âβ(τ − σ)||Ĝ(σ, ξ)| dσ,

Hβ,γ(τ, ξ)
def
=

∫

R

Ŝγ(σ, ξ) |âβ(τ − σ)||Ĝ(σ, ξ)| dσ.

Applying Hölder’s inequality, we can see that

J2
β,γ(τ, ξ) ≤

[∫

R

|F̂ (σ, ξ)|2
(1 + |σ + ξ2|)2−2γ

dσ

]

·
[∫

R

|τ − σ|2−2γ

|σ + ξ2|2 |âβ(τ − σ)|2 Ŝ2−2γ(σ, ξ) |ĉ(σ + ξ2)|2 dσ
]

≡
(∫

R

|F̂ (σ, ξ)|2
(1 + σ + ξ2)2−2γ

dσ

)
V 2

β,γ(τ, ξ). (3.3.12)

The changes of variablesu = τ + ξ2 and ρ = σ+ ξ2 show thatΥ2
β,γ

def
=
∫

R
V 2

β (τ, ξ) dτ

does not depend on the variableξ. Moreover, a straightforward computation gives

Υ2
β,γ ≤

(∫

R

(1 + |v|)2γ |âβ(v)|2 dv
)(∫

|ρ|≥r

(1 + |ρ|)2−2γ

ρ2
dρ

)
. (3.3.13)

Whereas Proposition (2.2.3) implies

∫

R

(1 + |v|)2γ |âβ(v)|2 dv ≤ K2(γ, a)β1−2γ, (3.3.14)
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conditionsr ≥ 1 and2γ > 1 yield

∫

|ρ|≥r

(1 + |ρ|)2−2γ

ρ2
dρ ≤ C(γ)r1−2γ . (3.3.15)

Sincerβ = 1, the two last inequalities allow us to deduce

Υ2
γ,β ≤ C(γ, a). (3.3.16)

Therefore, equation (3.3.11) transforms into

‖D̂‖2
L2(R×R) ≤ C2(γ, a)

∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)
+ 2

∫

R2

H2
β(τ, ξ) dτdξ. (3.3.17)

On the other hand, we have

Hβ,γ(τ, ξ) =

∫

R

Ŝ(σ, ξ)

|σ + ξ2| |âβ(τ − σ)| |F̂ (σ, ξ)|
Ŝ1−γ(σ, ξ)

ĉ(σ + ξ2) dσ

≤ 2

(
|âβ| ∗

(
|F̂ |
Ŝ1−γ

(·, ξ)
))

(τ). (3.3.18)

We apply Young’s inequality, Theorem 4.2 in [11], to obtain

‖Hβ,γ(· , ξ)‖2
L2(R) ≤ C‖â‖2

L1(R)

∥∥∥ F̂

Ŝ1−γ
( · , ξ)

∥∥∥
2

L2(R)
. (3.3.19)

As consequence of the inequalities (3.3.17) and (3.3.19), we have

‖D̂‖2
L2(R×R) ≤ C(γ, a)

∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)
. (3.3.20)

Step 4. Let us express (3.3.3d) as

Ê(τ, ξ) = −
∞∑

k=1

(−2r)k−1

k!
Êk(τ, ξ) (3.3.21a)
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with

Êk(τ, ξ) = Ŝ2γ(τ, ξ) âβ
(k)(τ + ξ2)

∫

R

[
σ + ξ2

2r

]k−1

F̂n(σ, ξ) dσ. (3.3.21b)

According to (3.3.21), we will estimate‖Êk‖L2(R×R) and then using the triangle in-

equality, we will have

‖Ê‖L2(R×Z) ≤
∞∑

k=1

(2r)k−1

k!
‖Êk‖L2(R×Z). (3.3.22)

For eachk ≥ 1 we have by (3.2.8d) and by Proposition 2.2.3

‖Êk‖2
L2(R×R) =

∫

R2

(1 + |τ + ξ2|)2γ|âβ
(k)(τ + ξ2))|2 |B̂k(ξ)|2 dτ dξ

=

(∫

R

(1 + |u|)2γ|âβ
(k)(u)|2 du

)(∫

R

|B̂k(ξ)|2 dξ
)

≤ K2(a)(3β)2k+1−2γ

(∫

R

|B̂k(ξ)|2 dξ
)

(3.3.23)

We will denote
∫

R
|B̂k(ξ)|2 dξ by Λ2

k.

By (3.2.8d) and by Hölder’s inequality, we obtain

Λ2
k ≤

∫

R

[∫

|τ+ξ2|≤2r

|σ + ξ2

2r
|k−1 |F̂ (σ, ξ)| b̂(σ + ξ2) dσ

]2

dξ

≤
∫

R

(∫

|σ+ξ2|≤2r

|F̂ (σ, ξ)| dσ
)2

dξ

≤
∫

R

(∫

R

|F̂ (σ, ξ)|2

Ŝ2−2γ(σ, ξ)
dσ

)(∫

|σ+ξ2|≤2r

(1 + |σ + ξ2|)2−2γ dσ

)
dξ. (3.3.24)

A direct computation verifies the following estimate

∫

|ρ| ≥ 2r

(1 + |ρ|)2−2γ dρ ≤ C(γ)r3−2γ . (3.3.25)
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Thus

Λ2
k ≤ C(γ) r3−2γ

∥∥∥ F̂

Ŝ1−γ

∥∥∥
2

L2(R×R)
. (3.3.26)

Inserting (3.3.26) and (3.3.23) into (3.3.22) gives the estimate

‖Ê‖L2(R×R) ≤ (2r)
3−2γ

2 C(γ, a)
∥∥∥ F̂

Ŝ1−γ

∥∥∥
L2(R×R)

(
∞∑

k=1

(2r)k−1(3β)k+ 1
2
−γ

k!

)

= C(γ, a)(rβ)
1
2
−γ

[
e6rβ − 1

6rβ

] ∥∥∥ F̂

Ŝ1−γ

∥∥∥
L2(R×R)

= C(γ, a)
∥∥∥ F̂

Ŝ1−γ

∥∥∥
L2(R×R)

. (3.3.27)

Recall thatrβ = 1.

Collecting equations (3.3.5), (3.3.10), (3.3.20), and (3.3.27), we have (3.3.2) as

desired. This concludes the proof.

3.4 Existence Results

In this section our goal is to obtain a global solution to the problem

i∂tφ+ ∂xxφ = −1

2
|φ|2φ+W (φ)φ, (t, x) ∈ R × R,

subject to the boundary condition

φ(0, x) = φo(x), x ∈ R.

We will construct a family of approximate solutions for which we apply Strichartz’s

estimates in order to get a solution local in time.We will prove that such solution can

be extended to a global one by estimating the time interval ofexistence.
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Strichartz’s estimates are space-time estimates that are essential for solving non-

linear Schrödinger equations. We begin by introducing thenotion of an admissible

pair.

Definition. A pair (q, r) is said to be admissible if

2

q
=

(
1

2
− 1

r

)
(3.4.1)

and2 ≤ r ≤ ∞.

Remark.The pairs(∞, 2), (8, 4), (6, 6), and(4,∞) are some examples.

The two following theorems state Strichartz’s estimates that we will use in this

section. Their proofs can be found in [17, page 43–48].

Theorem 3.4.1.(Strichartz’s estimate ) For everyϕ ∈ L2(R) and for every admissible

par (q,r), the function t7→ U(t)ϕ belongs to

Lq(R, L2(R)) ∩ C(R, L2(R)).

Furthermore, there is a constantC depending only onq such that

‖U(·)ϕ‖Lq(R,L2(R)) ≤ C‖ϕ‖L2(R) for every ϕ ∈ L2(Rd). (3.4.2)

The next theorem establishes an extension of the previous result to solutions of the

non-homogeneous linear Schrödinger equation.

Theorem 3.4.2.(Strichartz’s estimate) Let I be an interval ofR, J = I, andto ∈J. Let

(µ, ν) an admissible andf ∈ Lµ′

(I, Lν′

(R)), whereµ′ and ν ′ denote the conjugates

of µ andν, respectively. Then, for every admissible pair (q,r), the function
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t ∈ I 7−→ Φf (t) =

∫ t

to

U(t− s)f(s) ds (3.4.3)

belongs toLq(I, Lr(R))∩C(J, L2(R)). Moreover, there exists a constantC depending

only onq andµ such that

‖Φf‖Lq(I,Lr(R)) ≤ C‖f‖Lµ′(I,Lν′ (R)). (3.4.4)

Remark.When there is no risk of confusion, we denote‖ ‖Lp(I,X) by ‖ ‖Lp(I).

In what follows, we assume thatW is a complex-valued function satisfying the

following conditions:

(i) There exists a constantK such that

ℑm W (z) ≤ K for all z ∈ C, (3.4.5a)

(ii) There is a constantC such that ifu, v ∈ L2(R), then

‖h(u) − h(v)‖L2(R) ≤ C ‖u− v‖L2(R), (3.4.5b)

whereh(z) = zW (z).

We next construct a sequence of approximate solutions. In order to do this, we first

setϕ0 = 0 and

f(z)
def
= −1

2
|z|2z + zW (z) ≡ g(z) + h(z).

Givenφo ∈ L2(R), letϕ1 be the function defined by

ϕ1(t) = U(t)φo. (3.4.6)
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It is well known that‖ϕ1(t)‖L2(R) = ‖φo‖L2(R) for eacht ∈ R. Moreover, for every

admissible pair(q, r), ϕ1 ∈ C(R, L2(R)) ∩ Lq(R, Lr(R)) and

‖ϕ1‖Lq
t Lr

x
≤ C(q)‖φo‖L2(R). (3.4.7)

Here‖ ‖Lq
t Lr

x
also denotes the norm inLq(I, Lr(R)).

We claim that the mappingt 7→ f(aβ(t)ϕ1(t)) belongs toL1(R, L2(R)) and satis-

fies the inequality

‖f(aβϕ1)‖L1
t L2

x
≤ 2β

1
2‖ϕ1‖L∞

t L2
x

(
2Cβ

1
2 + ‖ϕ1‖2

L4
t L∞

x

)
. (3.4.8)

Indeed, since (4,∞) is an admissible pair, Theorem 3.4.1 implies thatϕ1(t) ∈ L∞(R)

for a.e.t ∈ R. Invoking Hölder’s inequality, we get

‖g(aβ(t)ϕ1(t))‖L2(R) ≤ a3
β(t)‖ϕ1(t)‖2

L∞(R)‖ϕ1‖L∞

t L2
x
. (3.4.9)

Consequently, we obtain

‖g(aβϕ1)‖L1
t L2

x
≤ 2β

1
2‖ϕ1‖2

L4
t L∞

x
‖ϕ1‖L∞

t L2
x
, (3.4.10)

by using Hólder’s inequality in time and (3.4.9).

On the other hand, we have from (3.4.5b)

∫

R

‖h(aβ(t)ϕ1(t))‖L2(R) dt ≤ C

∫

I2β

‖ϕ1(t)‖L2(R) dt

= 4βC‖ϕ1‖L∞

t L2
x
, (3.4.11)

whereIβ
def
= (−β, β). Next we can combine (3.4.10) and (3.4.11) to obtain (3.4.8)as

claimed.

55



Assume thatϕk is given satisfyingf(aβϕk) ∈ L1(R, L2(R)). We defineϕk+1

inductively to be

ϕk+1(t) = U(t)φo − i

∫ t

0

U(t− s)f(aβ(s)ϕk(s)) ds, t ∈ R. (3.4.12)

Thusϕk+1 is inLq(R, Lr(R))∩C(R, L2(R)) for any admissible pair(q, r). Moreover,

calculations similar to those leading to (3.4.8) give

‖f(aβϕk+1)‖L1
t L2

x
≤ 2β

1
2‖ϕk+1‖L∞

t L2
x

(
2Cβ

1
2 + ‖ϕk+1‖2

L4
t L∞

x

)
. (3.4.13)

Hence, we have proved the following theorem.

Theorem 3.4.3.If φo is in L2(R) andβ is an arbitrary positive number then there is

a sequence{ϕk}∞k=0, withϕ0 = 0 andϕk+1 given inductively by(3.4.12), such that

(i) For any admissible pair(q, r)

ϕk ∈ C(R, L2(R)) ∩ Lq(R, Lr(R)).

(ii) For eachk ≥ 1 and for any bounded open intervalI, with 0 ∈ I,

ϕk ∈W 1,1(I,H−2(R)),

and satisfies





i∂tϕk + ∆ϕk = f(aβϕk−1), t ∈ I,

ϕk(0) = φo.

(3.4.14)
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Remark.The property(ii) above is a well known result in theory of semi-groups of

linear operator. See [5, page 90].

We define

φk = aβϕk, k ≥ 0. (3.4.15)

It is easy to check directly that

(i) For every admissible pair(q, r), φk ∈ Lq(RLr(R)).

(ii)

‖φk‖L2(R×R) ≤ 2
√
β‖φk‖L∞

t L2
x
. (3.4.16)

(iii) φk ∈ L6(R × R).

Thusφk ∈ Lp(R × R), p ∈ [2, 6], and

‖φk‖Lp(R×R) ≤ (4β)
3
2p

− 1
4‖φk‖

3
p
− 1

2

L∞

t L2
x
‖φk‖

3( 1
2
− 1

p)
L6(R×R). (3.4.17)

For the proof of Theorem 3.4.5, we will use the following result.

Proposition 3.4.4. Let p be an increasing function onI = (a, b). Supposep has a

fixed pointxo ∈ I. If {xk}∞k=1 is a sequence of real number inI such that

(a) x1 ≤ xo,

(b) xk+1 ≤ p(xk), k ≥ 1,

thenxk ≤ xo for everyk.

Proof. By (a), our conclusion is true fork = 0. Assumexn ≤ xo. Sincep is increas-

ing,p(xn) ≤ p(xo). Plugging this inequality into(b), we obtain the desired conclusion

for k = n + 1.
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Theorem 3.4.5.Supposeφo ∈ L2(R). Then there is a positive numberβo such that if

β ∈ (0, βo) is given, then there existsφβ in L2(R × R) so that

(i) aβϕk → φβ in L2(R × R),

(ii) Ŝ
5
8 âβϕk → Ŝ

5
8 φ̂β in L2(R × R),

(iii) ‖Ŝ 5
8 φ̂β‖L2(R×R) ≤ C(β)‖φo‖L2(R).

Furthermore,βo depends onL2-norm ofφo.

Proof. We proceed in six steps. It is very important to track carefully all of constants

involved in this proof.

Step 1. We begin by applying the estimate in Theorem 3.3.1 toφk+1 with the choice

γ = 5
8

to get

‖Ŝ 5
8 âβϕk+1‖L2(R×R) ≤ C(a, γ)

(
1

β
1
8

‖φo‖L2(R) +
∥∥∥ f̂k

Ŝ
3
8

∥∥∥
L2(R×R)

)
, (3.4.18)

where we set upfk = f(φk) ≡ gk + hk.

From Corollary 3.5.4, (3.4.17), (3.5.6), and (3.5.7), we deduce withα = 3/8 and

ǫ = 1/4

∥∥∥ ĝk

Ŝ
3
8

∥∥∥
L2(R×R)

≤ C(α)‖φk‖3
L4(R×R)

≤ 4
√

2C(α)K
9
4 (ǫ)M

3
4 (ǫ)‖Ŝ 5

8 φ̂k‖3
L2(R×R). (3.4.19)

Similarly, we employ (3.5.7) and (3.4.16) to obtain
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∥∥∥ ĥk

Ŝ
3
8

∥∥∥
L2(R×R)

≤ ‖ĥk‖L2(R×R) = ‖hk‖L2(R×R)

≤ C‖φk‖L2(R×R)

≤ 2CM(ǫ)β
1
2‖Ŝ 5

8 φ̂k‖L2(R×R). (3.4.20)

We used assumption (3.4.5b) onh in the second line.

Setting

xk
def
= ‖Ŝ 5

8 φ̂k‖L2(R×R), (3.4.21a)

A ≡ A(a)
def
=

4
√

2C(a, γ)C(α)K
9
4 (ǫ)M

3
4 (ǫ), (3.4.21b)

B ≡ B(a)
def
= 2CC(a, γ)M(ǫ), (3.4.21c)

D ≡ D(a)
def
= C(a, γ), (3.4.21d)

E ≡ E(a)
def
=

27AD2

4
, (3.4.21e)

we can state the following recursive formula

xk+1 ≤ Aβ
3
8x3

k +B
√
βxk +

D

β
1
8

‖φo‖L2(R) (3.4.22)

by substituting (3.4.19) and (3.4.20) into (3.4.18)

Step 2. Let

pβ(x) = β
3
8Ax3 +

√
βBx+

D

β
1
8

‖φo‖L2(R).

We first observe that (3.4.22) reads

xk+1 ≤ pβ(xk), k ≥ 0. (3.4.23)
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Defining

ℓβ(x)
def
= pβ(x) − x,

we claim that there existsβo > 0 such that if0 < β < βo, then(Ŝ
5
8 âβϕk)k∈N is

bounded inL2(R × R).

To see this, let

ζ(β)
def
=

2A

D

[
1 − δ4B

3 3
√
δA

] 3
2

, δ = β
1
8 . (3.4.24)

It is not difficult to verify thatζ is a decreasing function and that

lim
β→0+

ζ(β) = ∞.

Hence, there isβo such that

‖φo‖L2(R) = ζ(βo), (3.4.25a)

‖φo‖L2(R) < ζ(β) for anyβ ∈ (0, βo). (3.4.25b)

Notice that the inequality‖φo‖L2(R) < ζ(β) is equivalent to

δE‖φo‖2
L2(R) < (1 − δ4B)3, δ = β

1
8 . (3.4.26)

Fix 0 < β < βo. A straightforward computation shows that if

xβ =

√
1 − δ4B

3δ3A
, δ = β

1
8 , (3.4.27)

thenℓ′β(xβ) = 0 and
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ℓβ(xβ) =
D‖φo‖L2(R)

β
− 2

3

(
1 − δ4B

)
xβ (3.4.28a)

=
D

δ

(
‖φo‖L2(R) − ζ(β)

)
(3.4.28b)

< 0. (3.4.28c)

Consequently, there iszβ ∈ (0, xβ) such thatl(zβ) = 0.

By (3.4.28a), we can deduce

D‖φo‖L2(R)

δ
<

2

3

(
1 − δ4B

)
xβ, δ = β

1
8 . (3.4.29)

from where the next inequality follows immediately

D‖φo‖L2(R)

δ
< xβ , δ = β

1
8 . (3.4.30)

Sinceℓ is decreasing on(0, xβ) andℓ(pβ(0)) > 0, we have

pβ(0) < zβ . (3.4.31)

Proposition 3.4.4 allows us to conclude

xk ≤ zβ, for all k ≥ 0. (3.4.32)

We remark that the next inequality also holds for everyk ≥ 0

xk < xβ. (3.4.33)

Step 3. We now want to estimate

mk
def
= ‖Ŝ 5

8

(
φ̂k − φ̂k−1

)
‖L2(R×R), k ≥ 1. (3.4.34)
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Sinceu
def
= ϕk+1 − ϕk satisfies





i∂tu+ ∆u = fk − fk−1, t ∈ R,

u(0) = 0,

Theorem 3.3.2 implies withγ = 5
8

mk+1 ≤ C(a, γ)
∥∥∥

̂fk − fk−1

Ŝ
3
8

∥∥∥
L2(R)

. (3.4.35)

Using the inequality

‖u|u|2 − v|v|2‖
L

4
3 (R×R)

≤
(
‖u‖2

L4(R×R) + ‖u‖L4(R×R) ‖v‖L4(R×R) + ‖v‖2
L4(R×R)

)

‖u− v‖L4(R×R).

and proceeding as in step 1., we can show that the sequence(mk)k≥1 satisfies the

recursive formula

mk+1 ≤
(
β

3
8A
[
x2

k + xk xk−1 + x2
k−1

]
+ β

1
2B
)
mk. (3.4.36)

Let us point out thatA andB are the same constants as in (3.4.22).

We combine the above formula and (3.4.32) to obtain

mk+1 ≤ (3β
3
8Az2

β + β
1
2B)mk ≡ λ(β)mk (3.4.37)

for everyβ ∈ (0, βo).

Step 4. This step is the crux of the proof. We assert

λ(β) < 1, β ∈ (0, βo). (3.4.38)

In fact, sincezβ ∈ (0, xβ), we have by (3.4.27)
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λ(β) < 3β
3
8Ax2

β + β
1
2B = 3β

3
8A

1 − β
1
2B

3Aβ
3
8

+ β
1
2B = 1,

as asserted.

Step 5. Fix0 < β < βo. Step 4 tells us that(Ŝ
5
8 φ̂k)k≥0 is a Cauchy sequence in

L2(R × R). Therefore,(i) and(ii) follow immediately.

Step 6. According to (3.4.33), the right hand side of (3.4.22) is bounded by

Aβ
3
8xkx

2
β +B

√
βxk +

D

β
1
8

‖φo‖L2(R),

which is equal to

1

3

(
1 + 2B

√
β
)
xk +

D

β
1
8

‖φo‖L2(R) (3.4.39)

by (3.4.27).

Consequently, inequality (3.4.22) transforms into

xk+1 <
1

3

(
1 + 2B

√
β
)
xk +

D

β
1
8

‖φo‖L2(R). (3.4.40)

Taking limit whenk → ∞ on both side of the previous inequality, we obtain

‖Ŝ 5
8 φ̂β‖L2(R×R) ≤

1

3

(
1 + 2B

√
β
)
‖Ŝ 5

8 φ̂β‖L2(R×R) +
D

β
1
8

‖φo‖L2(R). (3.4.41)

Hence

‖Ŝ 5
8 φ̂β‖L2(R×R) ≤

3D

2δ (1 − δ4B)
‖φo‖L2(R), δ = β

1
8 . (3.4.42)

The proof is complete.
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Remark.The same arguments used in the proof of Theorem 3.4.5 can be utilized to

show well-posedness, namely

‖Ŝ 5
8 (φ̂β − ψ̂β)‖L2(R×R) ≤ C(β)‖φo − ψo‖L2(R). (3.4.43)

In the rest of this section, we assumeβ ∈ (0, βo). Also, when there is no risk of

confusion, we writeφ instead ofφβ. As a direct consequence of the previous theorem

and Theorem 3.5.3, we have

Theorem 3.4.6.Let I be a bounded interval ofR andr ∈ [2, 6]. Then(φk)k∈N also

converges toφ in Lr(R × R) and inL∞(I, L2(R)). In particular,

ϕk → φ in L∞(Iβ, L
2(R)). (3.4.44)

Theorem 3.4.7.Let I be a bounded interval ofR. Then sequences(g(φk))k≥0 and

(h(φk))k≥0 converge tog(φ) andh(φ), respectively, inL1(I, L2(R)).

Proof. An elementary calculation based on the identity

u|u|2 = |u|2(u− v) + uv(u− v) + v2(u− v)

and on the inequality

‖uvw‖L2(R) ≤ ‖u‖L6(R) ‖v‖L6(R) ‖w‖L6(R),

shows that

‖g(φk(t)) − g(φ(t))‖L2(R) ≤ ‖φk(t) − φ(t)‖L6(R) Θ, (3.4.45)

where
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Θ
def
= ‖φk(t)‖2

L6(R) + ‖φk(t)‖L6(R) ‖φ(t)‖L6(R) + ‖φ(t)‖2
L6(R).

Applying Hölder’s inequality in time, we obtain

‖g(φk) − g(φ)‖L1(I) ≤
√

|I| ‖φk − φ‖L6(R×R) Υ, (3.4.46)

Υ
def
= ‖φk‖2

L6(R×R) + ‖φk‖L6(R×R) ‖φ‖L6(R×R) + ‖φ‖2
L6(R×R),

from where we can conclude that(g(φk))k≥0 converges tog(φ) in L1(I, L2(R)).

On the other hand, we have from (3.4.5b)

∫

I

‖h(φk(t)) − h(φ(t))‖L2(R) dt ≤ C

∫

I

‖φk(t) − φ(t)‖L2(R) dt

≤ C |I| ‖φk − φ‖L∞

t L2
x
. (3.4.47)

Theorem 3.4.6 implies

‖h(φk(t)) − h(φ(t))‖L1(I,L2(R)) → 0 as k → ∞.

The main result of this section is now the following theorem.

Theorem 3.4.8.Let I be a bounded, open interval ofR, with 0 ∈ I, andφo ∈ L2(R).

Then there exists

ϕ ∈ L∞(I, L2(R)) ∩ C(I, L2(R))

such that
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(i) ϕk → ϕ in L∞(I, L2(R)).

(ii)

ϕ(t) = U(t)φo − i

∫ t

o

U(t− s)f(φ(s)) dt, t ∈ I. (3.4.48)

(iii) ϕ ∈ W 1,1(I,H−2(R)) and





i∂tϕ+ ∆ϕ = f(φ) for t ∈ I,

ϕ(0) = φo.

(3.4.49)

Proof. We start the proof by recalling thatϕk+1 is defined by the recursive formula

ϕk+1(t) = U(t)φo − i

∫ t

0

U(t− s)f(aβ(s)ϕk(s)) ds, t ∈ R. (3.4.50)

Sincef(φk) → f(φ) in L1(I, L2(R)), Theorems 3.4.1 and 3.4.2 imply that there ex-

istsϕ ∈ L∞(I, L2(R)) such thatϕk → ϕ in L∞(I, L2(R)) andϕ satisfies (3.4.48).

Moreover,

ϕ ∈ Lq(I, Lr(R)) ∩ C(I, L2(R))

for all admissible pair(q, r).

Finally, (3.4.49) is well-known result in theory of semi-groups of linear operator.

The following corollary is an immediate consequence of the previous result and

(3.4.44)

Corollary 3.4.9. Supposeφo ∈ L2(R). If β ∈ (0, βo) is given, thenφβ satisfies the

following properties:
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(i) For every admissible pair (q,r)

φβ ∈ Lq(Iβ, L
r(R)) ∩ C(Iβ, L

2(R)) ∩W 1,1(Iβ, H
−2(R))

Recall thatIβ denotes the open interval(−β, β).

(ii) 



i∂tφβ + ∆φβ = −1
2
φβ|φβ|2 + φβW (φβ) for t ∈ Iβ,

φβ(0) = φo.

(3.4.51)

Now that we have established local existence, we are ready tostudy global exis-

tence. First of all, a remark is needed at this point.

Remark.Assume thatµ is a nonnegative real number. If3B + µ ≥ 1, then

δ =
1

3B + µ+ E‖φo‖2
L2(R)

, δ = β
1
8 , (3.4.52)

satisfies (3.4.26).

According to this remark, we set

β =
1

E8
(
ρ+ ‖φo‖2

L2(R)

)8 Eρ ≡ 3B + µ ≥ 1 (3.4.53)

with ρ to be determined. All of results in Section 2.5 can be now easily adapted to

prove

Theorem 3.4.10.Letφo ∈ L2(R). Then the problem

i∂tφ+ ∆φ = −1

2
|φ|2φ+W (φ)φ, (t, x) ∈ R × R,

subject to the initial condition
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ψ(0, x) = φo(x), x ∈ R,

has a global unique solution. Moreover,

φ ∈ Lq
loc(R, L

r(R)) ∩ C(R, L2(R)) ∩W 1,1
loc (R, H−2(R))

for any admissible pair (q,r).

3.5 A Priori Estimates

This last section is devoted to establish the estimates needed to prove that the equation

(3.2.3) has a solution local in time. We start by reviewing briefly a few properties of

linear Schrödinger operator. The estimates discussed here play an important role in the

proof of Theorem 3.5.3. Although results quoted below hold in more general context,

we restrict ourselves to the one-dimensional case.

The conservation of theL2-norm‖U(t)ϕ‖L2(R) = ‖ϕ‖L2(R), together with the clas-

sical estimate|U(t)ϕ(x)| ≤ (4π|t|)− 1
2‖ϕ‖L1(R) leads to the following result

Theorem 3.5.1. (Decay estimates) Ifp ∈ [2,∞], t 6= 0, thenU(t) mapsLp′(R)

continuously toLp(R), 1
p

+ 1
p′

= 1, and

‖U(t)ϕ‖Lp(R) ≤
1

(4π|t|) 1
2
− 1

p

‖ϕ‖Lp′(R) for all ϕ ∈ Lp′(R). (3.5.1)

The proof of Theorem 3.5.1 relies on Riesz-Thorin interpolation theorem and on the

following proposition

Proposition 3.5.2.Givent 6= 0, define the functionK(t) by
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K(t)(x) =
1√
4iπt

e
ix2

4t for x ∈ R. (3.5.2)

It follows thatU(t)ϕ = K(t) ∗ ϕ, i.e.,

U(t)ϕ(x) =
1√
4iπt

∫

R

e
i(x−y)2

4t ϕ(y) dy (3.5.3)

for all t 6= 0 and allϕ in the Schwartz spaceS(R).

A remark is in order.

Remark.By duality,U(t) can be extended toS ′(R) and

U(t)ϕ ∈ C(R,S ′(R))

for everyϕ ∈ S ′(R). For example, the generalized solution of the initial valueproblem





i∂tu+ ∆u = 0,

u(0) = δ

is given by (3.5.2) and it satisfies

K̂(t)(ξ) =
1√
2π
e−itξ2

. (3.5.4)

We now proceed to establish the main theorem in this section.

Theorem 3.5.3.Let f(t,x) be a function with(t, x) ∈ R × R and denote bŷf(τ, ξ)

its Fourier transform, with(τ, ξ) ∈ R × R. If 0 ≤ α < 1 and ǫ > 0, the following

estimates hold:
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‖f‖Lp(R×R) ≤ C(α)‖Ŝ α
2 f̂‖L2(R×R), p(α) =

6

3 − 2α
, (3.5.5)

‖f‖L6(R×R) ≤ K(ǫ)‖Ŝ 1+ǫ
2 f̂‖L2(R×R), (3.5.6)

‖f‖L2
xL∞

t
≤M(ǫ)‖Ŝ 1+ǫ

2 f̂‖L2(R×R). (3.5.7)

Proof. • We will prove (3.5.5) and (3.5.6) by a TT* argument.

We first make the substitutionσ = τ + ξ2 to find

F∗(Ŝ−α)(t, x) =
√

2π

(
1√
2π

∫
eitσ

(|σ| + 1)α dσ

)(∫
ei(xξ−tξ2) 1√

2π
dξ

)
(3.5.8a)

=
√

2π

(
1√
2π

∫
eitσ

(|σ| + 1)α dσ

)
1√
4iπt

e
ix2

4t (3.5.8b)

≡
√

2π Pα(t)
1√
4iπt

e
ix2

4t . (3.5.8c)

HereF∗ denotes inverse Fourier transform.

Let us call

Eα(t, x)
def
=

√
2πPα(t) K(t)(x). (3.5.9)

and consider the extension operator defined by

Oα(t)[ϕ]
def
=

∫

R

Eα(t, · − y)ϕ(y) dy. (3.5.10)

It is important to remark that

Oα(t)[ϕ] =
√

2πPα(t)U(t)ϕ. (3.5.11)

Therefore, Theorem 3.5.1 gives the following estimate
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‖Oα(t)[ϕ]‖Lp(R) ≤
√

2π |Pα(t)|
(4π|t|) 1

2
− 1

p

‖ϕ‖Lp′(R) for all ϕ ∈ Lp′(R), (3.5.12)

where1
p

+ 1
p′

= 1.

Denote by< ·, · > the pairingf, g 7→
∫
fgdx. Forf ∈ L2(R×R) andg ∈ C∞

0 (R×R),

Parseval identity and Cauchy-Schwarz inequality allow us to obtain

|< f, g > | = |< f̂,F∗g > | = |< Ŝ
α
2 f̂ , Ŝ−α

2 ̂̄g > |

≤ ‖Ŝ α
2 f̂‖L2(R×R) ‖Ŝ−α

2 ̂̄g‖L2(R×R). (3.5.13)

Invoking Parseval identity again and (3.5.8), we can express‖Ŝ−α
2 ̂̄g‖2

L2(R×R) as

‖Ŝ−α
2 ̂̄g‖2

L2(R×R) =< Ŝ−α̂̄g,F∗g >

=
1√
2π

< (̂Eα ⋆ ḡ),F∗g >=
1√
2π

< Êα ⋆ ḡ, g > . (3.5.14)

Fubini’s Theorem justifies an interchange of order of integration giving

‖Ŝ−α
2 ̂̄g‖2

L2(R×R) =
1√
2π

∫ (∫
Eα(t− s, x− y)ḡ(s, y) dsdy

)
g(t, x) dtdx

=
1√
2π

∫
< Oα(t− s)[ḡ(s)], g(t) > dsdt,

which is bounded by

1√
2π

∫
‖Oα(t− s)[ḡ(s)]‖Lp(R)‖g(t)‖Lp′(R) dsdt,

1

p
+

1

p′
= 1. (3.5.15)

Reintroducing (3.5.12) in (3.5.15), we deduce easily that
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‖Ŝ−α
2 ̂̄g‖2

L2(R×R) ≤
∫

|Pα(t− s)| 1

(4π|t− s|)
1
2
− 1

p

‖g(s)‖Lp′(R) ‖g(t)‖Lp′(R) dsdt.

(3.5.16)

(a) If we setα = 1 + ǫ, ǫ > 0, thenPα ∈ L∞(R) and for everyt ∈ R

|Pα(t)| ≤ Pα(0).

Hence, equation (3.5.16) becomes

‖Ŝ−α
2 ̂̄g‖2

L2(R×R) ≤ Pα(0)

∫
1

(4π|t− s|)
1
2
− 1

p

‖g(s)‖Lp′(R) ‖g(t)‖Lp′(R) dsdt.

Now, Hardy-Littlewood-Sobolev inequality, [16, page 119], implies

‖Ŝ−α
2 ̂̄g‖2

L2(R×R) ≤ K(ǫ)‖g‖2
Lp′(R×R)

(3.5.17)

provided 2
p′

+ 1
2
− 1

p
= 2, i.e.,p = 6. By density and duality from (3.5.13), we obtain

(3.5.6).

(b) Assume that0 ≤ α < 1. Notice that ifα = 0, then the estimate (3.5.5) is trivial.

Theorem (3.5.5) states for every0 < α < 1 there is a constantD(α) such that

|Pα(t)| ≤ D(α)

|t|1−α
, t 6= 0. (3.5.18)

In this case, (3.5.16) transforms into

‖Ŝ−α
2 ̂̄g‖2

L2(R×R) ≤ D(α)

∫
1

(4π|t− s|)
3
2
− 1

p
−α

‖g(s)‖Lp′(R) ‖g(t)‖Lp′(R) dsdt.

(3.5.19)
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According to Hardy-Littlewood-Sobolev inequality, the right hand side of the last in-

equality is bounded byC(α)‖g‖2
Lp′(R×R)

if p′, p andα satisfy

2

p′
+

3

2
− 1

p
− α = 2.

It follows thatp′ must be equal to 6
3+2α

. Consequently, we have

|< f, g > | ≤ C(α)‖Ŝ α
2 f̂‖L2(R×R)‖g‖

L
6

3+2α (R×R)
, g ∈ C∞

0 (R × R). (3.5.20)

Our desired estimate (3.5.5) follows immediately.

• Finally, we want to prove the inequality

‖f‖L2
xL∞

t
≤M(ǫ)‖Ŝ 1+ǫ

2 f̂‖L2(R×R) (3.5.21)

The above inequality is local in time. We then consider a smooth cut-off functiona(t)

depending only on variablet and write

âf =
1√
2π
Ŝ−α

2 ĥ, α = 1 + ǫ,

with ĥ defined by

ĥ(τ, ξ) = Ŝ
α
2 (τ, ξ)

[
â ∗
(
f̂(·, ξ)

)]
(t)

We now claim that

‖ĥ‖L2(R×R) ≤ C(a, α)
(
‖f̂‖L2(R×R) + ‖Ŝ α

2 f̂‖L2(R×R)

)
. (3.5.22)

Indeed, utilizing inequality|τ + ξ2| ≤ |τ − σ| + |σ + ξ2|, (a+ b)2 ≤ 2(a2 + b2), and

definingJ(τ)
def
= |τ |α

2 |â|(τ), we have
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|ĥ(τ, ξ)|2 ≤ C(α)

([
J ∗ |f̂ |(·, ξ)

]2
+
[
|â| ∗

(
Ŝ

α
2 (·, ξ)|f̂ |(·, ξ)

)]2
(τ)

)
. (3.5.23)

We next obtain by applying Young’s inequality (Theorem 4.2 in [11] )

‖ĥ‖2
L2(R) ≤ C(α)

(
‖J‖2

L1(R) ‖f̂‖2
L2(R×R) + ‖â‖L1(R) ‖Ŝ

α
2 f̂‖2

L2(R×R)

)
, (3.5.24)

from where (3.5.22) can be deduced. This establishes our claim.

Denoting byf̃ the partial Fourier transform (only in thex-variable) off , we have

a(t)f̃(t, ξ) =
1

2π

∫

R

Pα
2
(t− s)e−i(t−s)ξ2

h̃(s, ξ) dξ. (3.5.25)

This follows from (3.5.8) by noticing that

Ẽ(t, ξ) = Pα/2(t)e
−itξ2

.

Applying Minkowski’s integral inequality, we obtain for each t

|a(t)|‖f(t, ·)‖L2(R) ≤
1

2π

∫

R

[∫

R

|Pα/2|2(t− s) |h̃|2(s, ξ) dξ
]1

2

ds

=
1

2π

∫

R

|Pα/2|2(t− s)‖h̃(s, ·)‖L2(R) ds. (3.5.26)

Theorem (3.5.5), Hölder’s inequality, and (3.5.22) give (3.5.7)

Corollary 3.5.4. Under the same hypothesis in Theorem 3.5.3, we assert that

∥∥∥ f̂

Ŝ
α
2

∥∥∥
L2(R×R)

≤ C(α)‖f‖Lq(R×R), q =
6

2α+ 3
. (3.5.27)
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Proof. Inequality (3.5.27) can be proved by a standard duality argument.

Remark.Notice that we obtain from (3.5.5) withα = 3/4

‖f‖L4(R×R) ≤ C(α)‖Ŝ 3
8 f̂‖L2(R×R). (3.5.28)

Finally, we define the functionpα to be

pα(σ) =
1

(1 + |σ|)α , 0 < α. (3.5.29)

Therefore,

Pα(t) =
1√
2π

∫

R

eiσt pα(σ) dσ. (3.5.30)

The next result was used in the proof of the Theorem 3.5.3.

Theorem 3.5.5.The following properties hold:

(a) For every0 < α < 1 there exists a constant D(α) such that

Pα(t) ≤ D(α)

|t|1−α
. (3.5.31)

(b) Pα ∈ L2(R), 1 < 2α.

Proof. It is easy to check

Pα(t) =
2

|t|1−α
ℜ
(∫ ∞

|t|

eiu

uα
du

)
t 6= 0, (3.5.32)

by making the substitution|t|(1 + σ) = u.

A long but straightforward computation using a contour integral shows that
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|Pα(t)| ≤ 2

|t|1−α

(∫ ∞

|t|

e−x

xα
dx+

|t|1−α

e|t|
C(α) + Aα(t)

)
, (3.5.33)

where we set

C(α) =

∫ 1

0

1

(1 + x2)α dx, (3.5.34a)

Aα(t) =

∫ |t|

0

e−x

(1 + x2)α sin(αθ(x)) dx, (3.5.34b)

θ(x) = arctan

(
x

|t|

)
, 0 ≤ x ≤ |t|.

From (3.5.33) we obtain (3.5.31) by taking

D(α) = 2

(
Γ(1 − α) + C(α) sup

0<z

z1−α

ez

)
. (3.5.35)

HereΓ denotes the gamma function.

It remains to prove(b). We first observe that 0pα ∈ L1(R)
⋂
L2(R) for 1 < α.

In this case, Plancherel’s theorem implies thatPα ∈ L2(R). Hence it is enough to

consider the case0.5 < α ≤ 1. Substitutionx = |t|u allows us to rewrite (3.5.31) as

|Pα(t)| ≤ 2

(∫ ∞

1

e−|t|u

uα
du+

1

e|t|
C(α) +

∫ 1

0

ue−|t|u

(u2 + 1)(α+1)/2

)
. (3.5.36)

Using inequalities

(a+ b+ c)2 ≤ 2(a2 + b2 + c2),

√
a2 + b2 + c2 ≤ |a| + |b| + |c|,

and Minkowski’s integral inequality, we can deduce that theL2-norm ofPα is bounded

by
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2
√

2



∫ ∞

1

1

uα+ 1
2

du+

√
2C(α)

2
+

∫ 1

0

√
u

(u2 + 1)
α+1

2

du


 ,

which is finite under our assumption onα. This completes the proof.
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Chapter 4

Motion by Mean Curvature of a Surface in R4

The purpose of the present chapter is to examine the motion bymean curvature of a

two dimensional surface embedded in a four dimensional space. We will start with the

examination of the basic structural properties of the embedded surface before we pro-

ceed to the examination of the rule of motion in the section 4.2. The idea is to examine

the infinitesimal changes of an appropriate frame i.e. orthogonal tetrad of vectors,

constructed on every point on the surface. Section 4.1 will be devoted to this aim. We

will see that a natural gauge structure arises connecting the curvature tensor with the

torsion of the surface. Overall the theme will be the language of gauge fields as an

appropriate framework for presenting the structural relations among various geometric

quantities.

4.1 A Surface embedded inR4

Let us consider a surface embedded in four dimensional space, i. e., we will con-

siderΣ ⊂ R4. The surface can be described in terms of some internal, but otherwise

arbitrary, coordinates(u1, u2) by an expression of the type
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Σ
def
= {x ∈ R4 : xj(uα)} where j = 1, 2, 3, 4 and α = 1, 2. (4.1.1)

Let us also assume thatR4 is equipped with the flat Euclidean metric. Throughout the

rest of this presentation we will use the summation over repeated indices convention.

Let us use the notation

δjkx
jxk def

=< x ,x > (4.1.2)

to denote the usual inner product inR4. We will use bold letters to denote vectors in

R4.

Our aim is to derive the structure equations for this surface. These equations will

give us information on how the surfaceΣ is embedded inR4. Let us start by construct-

ing an appropriate frame on the surfaceΣ. We can construct two tangent vectors on

every point of the surface as follows

tα
def
=

∂x

∂uα
, α = 1, 2. (4.1.3)

For simplicity we will denote in what follows the partial derivative with respect to the

uα-coordinate by

∂α
def
=

∂

∂uα
, α = 1, 2, (4.1.4)

The metric (first fundamental form) on the surface is given bythe tensor

gαβ
def
=< tα, tβ > . (4.1.5)

The square root of the determinant is an important quantity,which we will denote by

g,
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g
def
=
√

det (gαβ). (4.1.6)

The importance ofg lies in the fact thatdσ
def
= gdu1du2 is the infinitesimal area on the

surface. We will denote the inverse of the matrixgαβ by gαβ , i. e.,

gαβ def
= (gαβ)−1 ; gαγg

γβ = δ β
α . (4.1.7)

The Christoffel symbols (first kind) are defined by

Γαβ;γ
def
=
〈
∂α∂βx, ∂γx

〉
. (4.1.8)

We will raise or lower Greek indices using the metricgαβ on the surfaceΣ. For exam-

ple, we have

Γ γ
αβ = gγδΓαβ;δ. (4.1.9)

A tedious calculation using the symmetries ofΓαβ;γ gives the equation

Γαβ;γ =
1

2
[∂αgβγ + ∂βgαγ − ∂γgαβ ] , (4.1.10)

i.e., the Christoffel symbols are uniquely determined by the metric. From (4.1.10)

above we can obtain the useful relation

Γ α
αβ =

∂βg

g
. (4.1.11)

There is an intrinsic way to pick a vector normal to the surface by calculating the

Laplacian with respect to the metricgαβ of the position vectorx(uα), i.e., let us com-

pute
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∆gx
def
=

1

g
∂α

(
g gαβ∂βx

)
. (4.1.12)

Using (4.1.11) it is easy to check the orthogonality relations< ∆gx, tα >= 0, α =

1, 2, which means that the vector∆gx is indeed orthogonal to the surfaceΣ. Now, we

can define the unit normal vectorn by

n
def
=

∆gx

|∆gx|
, (4.1.13)

provided of course that the vector∆gx does not vanish. Once we have a choice for the

normal vector we can pick a binormal vector which we will callb so that the tetrad of

vectors{t1, t2,n,b} form a frame at each point on the surface. If we differentiatethe

frame, we obtain a set of structure equations of the following type

∂αtβ = Γ γ
αβ tγ + καβn + ταβb, (4.1.14a)

∂αn = −κ γ
α tγ +Qαb, (4.1.14b)

∂αb = −τ γ
α tγ −Qα,n. (4.1.14c)

In the above equations the tensorsκαβ , ταβ andQα are defined by these relations, i.e.,

we define

καβ
def
=
〈
∂α∂βx,n

〉
, (4.1.15a)

ταβ
def
=
〈
∂α∂βx,b

〉
, (4.1.15b)

Qα
def
=
〈
∂αn,b

〉
. (4.1.15c)

The mean curvature, sayH, is defined as the trace of the tensorκαβ , namely the scalar

quantity
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H
def
= gαβκαβ. (4.1.16)

Notice thatταβ is traceless by construction. There is an inherent ambiguity in this

construction, if∆gx vanishes, then the choice of the normal and binormal vectorsis

ambiguous.

We can complexify the equations (4.1.14) as follows. Let us define the complex

vectorm and a complex tensorλαβ to be

m
def
= n + ib ; λαβ

def
= καβ + iταβ , (4.1.17)

and use the convention for the inner product of two complex vectors, saya andb,

〈
a,b

〉 def
= δjka

jbk, (4.1.18)

whereaj andbk are the complex components ofa andb respectively. The following

orthogonality relations for the complex vectorm are immediate

〈
m,m

〉
=
〈
m,m

〉
= 2 ;

〈
m,m

〉
=
〈
m,m

〉
= 0. (4.1.19)

In the present context the structure equations (4.1.14) read

∂αtβ = Γ γ
αβ tγ +

1

2

[
λαβm + λαβm

]
, (4.1.20a)

∂αm = λ γ
α tγ − iQαm. (4.1.20b)

Let us now introduce an arbitrary angle functionθ(uα), defined on the surfaceΣ and

rotate the vectorm and the complex tensorλαβ by eiθ. The new quantities will be

denoted by the same name
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λαβ
def
= eiθ (καβ + iταβ) , (4.1.21a)

m
def
= eiθ (n + ib) . (4.1.21b)

Next, we can define a complex scalar mean curvatureΨ and a gauge fieldAα on the

surface via the relations

Qα
def
= −Aα + ∂αθ ; Ψ

def
= gαβλαβ . (4.1.22)

Finally, let us adopt the notation

∂A
α

def
= ∂α − iAα ; α = 1, 2 (4.1.23)

for the covariant derivative with respect to the gauge fieldAα. Equations (4.1.20) can

be written in a gauge invariant form as

∂αtβ = Γ γ
αβ tγ +

1

2

[
λαβm + λαβm

]
, (4.1.24a)

∂A
α m = −λ γ

α tγ. (4.1.24b)

The equations above are manifestly gauge invariant under a gauge transformation

Ψ 7→ eiθΨ ; λαβ 7→ eiθλαβ, (4.1.25)

whereθ(uα) is an arbitrary function. We can impose an extra restrictionon the gauge

field in order to fix the gauge. This question will be addressedlater. Notice that the

angle function,θ, may not be trivial. For a closed path, sayC, on the surface we will

require that
∫

C
dθ = 2πn, wheren is an integer. This restriction assures us that all

complex quantities are well defined.
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The Gauss and Codazzi-Mainardi equations are derived from the equality of sec-

ond derivatives, namely the fact that∂γ∂βtα = ∂β∂γtα for the tangent vectors on the

surface and that∂α∂βm = ∂β∂αm for the complex normal vector. The first restriction

gives, after a tedious calculation, the following set of equations

∂γΓ
δ

βα − ∂βΓ δ
γα + Γ σ

βαΓ δ
σγ − Γ σ

γαΓ δ
σβ

=
1

2

[
λβαλ

δ

γ + λβαλ
δ

γ − λγαλ
δ

β − λγαλ
δ

β

]
.

(4.1.26)

by equating the coefficients of the tangent vectors,tα, α = 1, 2. After equating the

coefficients of the vectorm, we obtain one more set of equations

∂A
γ λβα + Γ δ

βαλδγ = ∂A
β λγα + Γ δ

γαλδβ . (4.1.27)

Remark.The computations above are made more transparent after the observation

∂γ (λβαm) =
(
∂A

γ λβα

)
m + λβα∂

A

γ m. (4.1.28)

At this point, it is appropriate to introduce covariant differentiation of a tensor with

respect to the metric, specifically we define

∇A
γ λβα

def
= ∂A

γ λβα − Γ δ
γβλδα − Γ δ

γαλβδ. (4.1.29)

The left hand side of (4.1.26) is, by definition, the Riemann curvature tensor, i.e.,

R δ
γβα

def
= ∂γΓ

δ
βα − ∂βΓ δ

γα + Γ σ
βαΓ δ

σγ − Γ σ
γαΓ δ

σβ , (4.1.30)

while equation (4.1.27) can be written, using covariant derivatives, see (4.1.29),

∇A
γ λβα = ∇A

β λγα. (4.1.31)
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A crucial property of the covariant derivative is the fact that∇γgαβ = 0, which means

that we can raise or lower indices in an equation with covariant derivatives without

introducing extra terms. The Ricci tensor is defined via a contraction of the Riemann

tensor, namely

R̂γα
def
= R δ

γδα . (4.1.32)

Contracting equations (4.1.30) and (4.1.31), we obtain therelations

R̂γα =
1

2

[
λ δ

γ λδα + λ
δ

γ λδα − λγαΨ − λγαΨ
]
, (4.1.33a)

∇A
γ Ψ = ∇A

αλ
α

γ . (4.1.33b)

Let us notice here, first that sinceλαβ andgαβ are symmetric, we have

λ β
α = λβ

α, (4.1.34)

second that the covariant derivative of a scalar quantity coincides with the standard

partial derivative, i.e. for scalars we have∇A
γ Ψ = ∂γΨ − iAγΨ. It is a well known

fact, easily checked, that for a surface the Ricci tensor is in factRγα = 1
2
Rgγα where

R is the Gauss or scalar curvature. Contracting the Ricci curvature gives the Gauss

equation

R =
〈
λ;λ

〉
−
∣∣Ψ
∣∣2, (4.1.35)

where we adopted the notation

〈
ν ; ν

〉 def
= ναβ ν̄αβ (4.1.36)
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for the total contraction of a tensorναβ . Let us introduce now the traceless symmetric

complex tensor

µαβ
def
= λαβ − 1

2
gαβΨ. (4.1.37)

Using the tensorµαβ the Gauss and Codazzi-Mainardi equations reduce to the equa-

tions

R+
1

2

∣∣Ψ
∣∣2 =

〈
µ ;µ

〉
, (4.1.38a)

∇A
βµ

β
α =

1

2
∇A

αΨ. (4.1.38b)

It is a fundamental fact that the Gaussian curvature dependsonly on the first funda-

mental form, i.e., the metricgαβ. This is immediately apparent from the observation

that the Christoffel symbols can be derived from the metric,see (4.1.10). One can view

(4.1.38) as a set of restrictions onΨ andµαβ , for example, given the metricgαβ and

the gauge fieldAα, the complex mean curvature andµαβ are not arbitrary but satisfy

the restrictions (4.1.38). We will see later that givengαβ, Ψ,Aα, one can computeµ by

solving an elliptic equation. The fact that∂β∂αm = ∂α∂βm gives one more equation.

First, notice the commutation relation

[
∂A

α ∂
A
β − ∂A

β ∂
A
α

]
m = −i (∂αAβ − ∂βAα)m, (4.1.39)

and the calculation

∂A
β (λ γ

α tγ) = (∂A
β λ

γ
α )tγ + λ γ

α ∂βtγ. Another tedious calculation gives two equa-

tions more. The first is is obtained by equating the coefficients of the tangent vectors

in the resulting equation

86



∇A
αλ

γ
β −∇A

β λ
γ

α = 0, (4.1.40)

which is the same as (4.1.31).

Remark.The covariant derivative of the tensorλ γ
β is defined as follows

∇A
αλ

γ
β = ∂A

α λ
γ

β + λ δ
β Γ γ

αδ − λ γ
δ Γ δ

αβ . (4.1.41)

The new equation is obtained after equating the coefficientsof the complex normal

vectorm, i.e., we have the relation

∇αAβ −∇βAα =
1

2i

[
µ γ

α µγβ − µ γ
α µγβ

]
. (4.1.42)

The equation above describes the torsion on the surfaceΣ. Let us introduce at this

point the totally antisymmetric invariant tensor on the surfaceǫαβ . It is well known

that there is a unique antisymmetric tensor on the surface such that∇γǫαβ = 0, as a

matter of fact, we can write

ǫαβ = gǫ̂αβ where ǫ̂αβ ,
def
=




0 1

−1 0


 . (4.1.43)

We will define the torsion to be the antisymmetric real tensor

Tαβ
def
= ∇αAβ −∇βAα. (4.1.44)

Let us use the notation[· ; ·] for the commutation of two matrices, i.e., we define

[
µ ;µ

]
αβ

def
=

1

2i

[
µ γ

α µγβ − µ γ
α µγβ

]
, (4.1.45)

so that the equation of torsion reads
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Tαβ = [µ ;µ]αβ. (4.1.46)

The scalar torsion will be defined as the quantity

T
def
=

1

2
ǫαβTαβ . (4.1.47)

The torsion is obviously gauge invariant as well as the Codazzi-Mainardi equations.

We can fix the gauge by requiring, for example, the Coulomb restriction ∇αA
α = 0.

In conclusion. we have discovered the equations

R+
1

2
|Ψ|2 =

〈
µ ;µ

〉
, (4.1.48a)

∇A
βµ

β
α =

1

2
∇A

αΨ, (4.1.48b)

∇αAβ −∇βAα = [µ ;µ]αβ . (4.1.48c)

A few remarks are in order. Notice that by differentiating the equation∇A
αλ

α
β =

∇A
β Ψ we obtain

∇A
γ ∇A

αλ
α
β = ∇A

α∇A
γ λ

α
β + ∇A

[γ∇A
α]λ

α
β

= ∇A
α∇A,αλγβ + ∇A

[γ∇A
α]λ

α
β = ∇A

γ ∇A
β Ψ. (4.1.49)

In order to compute the commutation of derivatives, let us observe that the fundamental

property of the Riemann tensor is that for any vector field, say Xγ, we have

∇[α∇β]X
γ = R γ

αβσX
σ.

From the above equation we can obtain the commutation relation for a tensor, namely
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∇[α∇β]λ
γ
δ = R γ

αβσλ
σ
δ − R σ

αβδ λ
γ
σ (4.1.50)

and contracting theβ, γ indices, renamingδ asγ we derive

∇[α∇β]λ
β
γ = R̂ασλ

σ
γ −R σ

αβγ λ
β
σ. (4.1.51)

It is a well known that the Riemann curvature tensor for surfaces is in fact very simple.

There is only one new quantity, the Gaussian (or scalar ) curvatureR so that

Rαβγσ =
1

2
R [gαγgβσ − gασgβγ ] (4.1.52)

Thus equation (4.1.51) reads

∇[α∇β]λ
β
γ = R

[
λαγ −

1

2
Ψgαγ

]
= Rµαγ . (4.1.53)

Let us use the convention

∇A
α∇A,α def

= ∆A
g (4.1.54)

for the Laplacian. The commutation of derivatives reads, see (4.1.53),

∇A
[γ∇A

α]λ
α
β = −iTγαλ

α
β +R

(
λγβ − 1

2
Ψgγβ

)
. (4.1.55)

Hence, combining (4.1.54), (4.1.55) in (4.1.49) we can obtain an equation forµαβ

∆A
g µαβ + Rµαβ − iTαγµ

γ
β = Ω̂βα +

i

2
TαβΨ, (4.1.56)

where

Ωβα
def
= ∇A

α∇A
β Ψ ; Ω̂βα

def
= Ωβα − 1

2
gαβ∆AΨ. (4.1.57)
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The important point in equation (4.1.57) is that given the mean curvatureΨ and the

gauge fieldAα we can determine the tensorµαβ. Finally, let us observe the useful

formula

µ γ
α µ

β
γ =

1

2

(
R+

1

2
|ψ|2

)
δ β
α + iT β

α . (4.1.58)

4.2 Binormal Motion by Mean Curvature

Let us consider again a surfaceΣ embedded in the four-dimensional spaceR4, i.e.,

Σ ⊂ R4. We describeΣ in terms of its position vectorxj(uα), wherej = 1, 2, 3, 4 and

uα are some coordinates withα = 1, 2. Recall that the tangent vectors to the surface

aretα = ∂αx and the metric on the surface is given by

gαβ
def
=
〈
tα, tβ

〉
; g

def
=
√

det (gαβ). (4.2.1)

The surface Laplacian with respect to the metricgαβ is defined to be

∆gx
def
=

1

g
∂α

(
g gαβ∂βx

)
. (4.2.2)

It is easy to check that
〈
∆gx, tα

〉
= 0 for α = 1, 2, hence it is a natural choice for the

normal direction to the surface provided of course that it does not vanish. Once the

choice of the unit normaln is made so that it is parallel to∆gx there is an essentially

unique choice of the unit binormal vectorb and the tetrad{t1, t2,n,b} forms a frame

on the surface. Let us define an antisymmetric surface formσlm on the surface using

the two tangent vectorstα = ∂αx and the totally antisymmetric formsǫαβ on the

surface by
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σlm def
= ǫαβ

(
tlαt

m
β

)
(4.2.3a)

and its dual normal formωjk using the antisymmetric tensorǫjklm on the ambient space

R4 by

ωjk
def
= ǫjklm

(
tlαt

m
β

)
ǫαβ . (4.2.3b)

It is easy to see thatσlm vanishes for vectors normal to the surface, whileωjk vanishes

for tangent vectors. Suppose we wish to move the surface using the mean curvature,

which is the length of the vector∆gx. We have two possible directions to move,

namely the normaln and the binormalb. A general equation of motion will be

Dtx
j =

(
aδj

k + bωj
k

)
∆gx

k, (4.2.4)

wherea, b are two real numbers normalized so thata2 +b2 = 1. The variablet denotes

the time parameter andDtx stands for

Dtx
def
= ∂tx −Xγtγ, (4.2.5)

with Xγ an arbitrary vector field defined on the surface. It is obviousthat the term

Xγtγ simply slides the points on the surface without changing thesurface itself. Thus

the vector fieldXγ introduces an extra gauge freedom in our motion. We can choose

Xγ in order to fix the evolution of the metric. In terms of the complex notation intro-

duced in the first section we can write the equation of motion as

∂tx =
1

2

[
Ψc̄m + Ψcm

]
+Xγtγ, (4.2.6)

wherec = eia is an arbitrary unit complex number. Different choices ofa give different

motions. We will be interested in particular ina = π
2

which describes motion in the
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binormal direction. The equation of motion for the tangent vectortα can be derived

directly from (4.2.6). Differentiating with respect touα, we obtain

∂ttα =
1

2

[(
∂A

α Ψ + cλαγX
γ
)
c̄m +

(
∂

A

αΨ + c̄λαγX
γ
)
cm

]

+

[
−1

2

(
Ψc̄λ

γ

α + Ψcλ γ
α

)
+ ∇αX

γ

]
tγ.

(4.2.7)

In deriving the equation above the following elementary calculation helps

∂α (Ψm) =
(
∂A

α Ψ
)
m + Ψ

(
∂

A

αm.
)

Equation (4.2.7) can be presented in a more compact form if weadopt the notation

Lα
def
= ∂A

α Ψ + cλαγX
γ ; N γ

α
def
= −1

2

[
Ψc̄λ

γ

α + Ψcλ γ
α

]
, (4.2.8)

so that we can write equation (4.2.7) as

∂ttα =
1

2

[
Lαc̄m + Lαcm

]
+ (N γ

α + ∇αX
γ) tγ. (4.2.9)

From (4.2.9) we can derive the evolution of the metric. In fact, sincegαβ =
〈
tα, tβ

〉
,

we have

∂tgαβ = 2Nαβ + ∇αXβ + ∇βXα. (4.2.10)

Moreover, the identitygαγgγβ = δα
β allows us to obtain the evolution equation of the

inverse matrixgαβ

∂tg
αβ = −2Nαβ −∇αXβ −∇βXα. (4.2.11)

A simple observation concerning the determinant, namely the fact that
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∂tg
2 = ∂t (g11g22 − g12g21) = g2gαβ∂tgαβ

gives the evolution ofg

∂tg = g (tr(N) + divX) . (4.2.12)

Let us set (compare with (4.1.10))

Y β
α

def
= 2N β

α − tr(N)δ β
α + ∇αX

β + ∇βXα − div(X)δ β
α (4.2.13)

and denote bŷN the traceless part of the tensorN , i.e.,

N̂αβ
def
= Nαβ − 1

2
tr(N)gαβ. (4.2.14)

The evolution equation forgαβ can be written as

∂tgαβ = Y γ
α gγβ +

(
tr(N) + divX

)
gαβ. (4.2.15)

We can choose the vector fieldX so thatY β
α = 0, namely, we set

∇αX
β + ∇βXα −

(
divX

)
δ β
α = −2N̂ β

α . (4.2.16)

From the last equation we can obtain an elliptic equation forthe vector fieldXα. Tak-

ing the covariant derivative∇β, we obtain the equation

(
∆g +

1

2
R

)
Xα = −2∇βN̂

β
α . (4.2.17)

With this choice ofX, the evolution equation of the metric reads

∂tgαβ =
(
tr(N) + divX

)
gαβ. (4.2.18)
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Now, the time evolution of the complex vectorm must be of the form

∂tm = −c̄ Lαtα + iBm, (4.2.19)

where the projection of∂tm onto tα is easily found from the fact that the vectors

m and tα are orthogonal, i.e.,< ∂tm, tα >= − < m, ∂ttα >. The relations<

m,m >= 2 and< m,m >= 0 imply that the quantityB must be a real scalar

potential to be computed. Indeed, the gauge invariance of the equations means thatB

can be determined uniquely only after we fix the gauge. We willwrite

∂B
t m = −c̄Lαtα where ∂B

t
def
= ∂t − iB, (4.2.20)

and think ofB as a temporal gauge field. We can derive evolution equations of λ β
α and

Aα as follows. First, observe that

(
∂B

t ∂
A
α − ∂A

α ∂
B
t

)
m = −i (∂tAα − ∂αB)m. (4.2.21)

Next, we can compute the two sides and set them equal. On the left hand side, we have

∂B
t

[
∂A

α m
)

=
(
−∂B

t λ
β

α − λ γ
α

(
N β

γ + ∇γX
β
)]

tβ

− 1

2

[
λ γ

α Lγ c̄m + λ γ
α Lγcm

]
.

(4.2.22)

On the right hand side, we have

∂A
α

(
∂B

t m
)

=
(
−c̄ ∇A

aL
β
)
tβ − c̄

2

(
Lγλαγm + Lγλαγm

)
. (4.2.23)

Substituting (4.2.22), (4.2.23) in (4.2.21) and equating the coefficients for the tangent

vectorstα and the normalm, we deduce the following two equations
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∂B
t λ

β
α + λ γ

α

(
N β

γ + ∇γX
β
)

= c̄ ∇A
αL

β , (4.2.24a)

∂tAα − ∂αB =
1

2i

[
c λ γ

α Lγ − c̄ λ
γ

α Lγ

]
. (4.2.24b)

At this point, we can substituteLβ , see (4.2.8), to obtain

∇A
αL

β = ∇A
α

(
∇AβΨ + cλβ

γX
γ
)

= ∇A
α∇AβΨ + cXγ∇A

γ λ
β
α + cλβ

γ∇αX
γ , (4.2.25)

where in the equation above we used (4.1.31) to commute the derivatives on the tensor

λαβ. Remember thatλ β
α = λβ

α becauseλαβ is symmetric. Let us also define the

tensor

Ωβα
def
= ∇A

α∇A
β Ψ (4.2.26)

for the second derivatives ofΨ. Notice thatΩ is not symmetric, but it satisfies

Ωαβ − Ωβα = −iTαβΨ, (4.2.27)

whereTαβ = ∇αAβ −∇βAα. Equation (4.2.24a) can be written as

DB
t λ

β
α + λ γ

α N β
γ +

(
λ γ

α ∇γX
β −∇αX

γλ β
γ

)
= c̄Ωβ

α, (4.2.28)

where

DB
t

def
= ∂B

t −Xγ∇A
γ . (4.2.29)

Contracting (4.2.28) gives an evolution equation ofΨ, namely
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DB
t Ψ + 〈λ;N〉 = c̄∆A

g Ψ. (4.2.30)

Equation (4.2.24b) can be written, after a straightforwardcalculation,

∂tAα − ∂αB =
1

2i

[
c λ β

α ∇A

β Ψ − c̄ λ
β

α ∇A
β Ψ
]

+ TαβX
β. (4.2.31)

We can derive one more equation for the evolution of the Christoffel symbols of the

second kind. Let us now compute

∂β (∂ttα) =
1

2

[(
∂A

β Lα + cS γ
α λγβ

)
c̄m +

(
∂

A

βLα + c̄S γ
α λγβ

)
cm
]

+

[
∂βS

γ
α + S σ

α Γ γ
βσ − 1

2

(
Lαc̄λ

γ

β + Lαcλ
γ

β

)]
tγ.

(4.2.32)

Differentiating with respect to time the structure equation (4.1.24a), we obtain

∂t (∂βtα) =

(
∂tΓ

γ
βα − 1

2

(
cλβαL

γ
+ c̄λβαL

γ
)

+ Γ σ
βαS

γ
σ

)
tγ

+
1

2

[(
∂B

t λβα + c̄Γ γ
βαLγ

)
m +

(
∂

B

t λβα + cΓ γ
βαLγ

)
m

]
.

(4.2.33)

Equating the coefficients of the tangent vectors we obtain anevolution equation for

Γ γ
βα, namely

∂tΓ
γ

βα = ∇βS
γ

α +
1

2

(
cλβαL

γ
+ c̄λβαL

γ
)
− 1

2

(
cλ γ

β Lα + c̄λ
γ

β Lα

)
. (4.2.34)

Recall our definition ofLα = ∇A
αΨ + cλασX

σ in (4.2.8). Substituting back into

(4.2.34) and using the Gauss equation (4.1.35) and the symmetries of the Riemann

curvature tensor, we obtain

∂tΓ
γ

βα = ∇αD
γ

β + ∇βD
γ

α −∇γDβα, (4.2.35a)
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where the tensorDαβ is defined by

Dαβ
def
= Nαβ +

1

2
(∇αXβ + ∇βXα) . (4.2.35b)

Thus the time derivative of the Christoffel symbols is a tensor although they are not

tensors.

Let us define two tensors that will appear often in subsequentcalculations

Mαβ
def
=

1

2

[
µαβΨ + µαβΨ

]
; Pαβ

def
=

1

2i

[
µαβΨ − µαβΨ

]
. (4.2.36)

Let us now make the choice the choicec = i. This means that we evolve the surface

in the binormal direction. It is easy to see that from (4.2.8)we haveN β
α = P β

α , hence

tr(P ) = 0 and, see (4.2.31),

1

2

[
λ β

α ∇A

β Ψ + λ
β

α ∇A
β Ψ
]

= ∇βM
β

α . (4.2.37)

The evolution equation ofλ β
α becomes

DB
t λ

β
α + λ γ

α P β
γ +

(
λ γ

α ∇γX
β −∇αX

γλ β
γ

)
= −iΩβ

α. (4.2.38)

After contraction in (4.2.33), we have the evolution equation ofΨ

DB
t Ψ +

〈
λ ;P

〉
= −i∆A

g Ψ, (4.2.39)

while the equation (4.2.31) becomes

∂tAα − ∂αB = ∇βM
β

α + TαβX
β. (4.2.40)

Let us compute
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〈
λ;P

〉
=
〈
µ;P

〉
= − i

2

〈
µ;µ

〉
Ψ +

i

2

〈
µ;µ

〉
Ψ. (4.2.41)

Making use of (4.1.48a), we obtain the equation ofΨ

DB
t Ψ − i

2

〈
µ ;µ

〉
Ψ = −i

(
∆A

g +
1

2
R+

1

4
|Ψ|2

)
Ψ. (4.2.42)

Moreover, we can compute, using (4.2.36) and (4.1.58),

λ γ
α P

β
γ = − i

2
|Ψ|2 µ β

α +
i

2
Ψ2µ β

α − i

2
µ γ

α µ
β

γ Ψ

+
i

2

[
1

2

(
R+

1

2

∣∣Ψ
∣∣2)δ β

α Ψ + iT β
α Ψ

]
.

(4.2.43)

Using equation (4.2.38) above, the fact

µ γ
α µ

β
γ − 1

2

〈
µ;µ

〉
δ β
α = 0,

and (4.1.56), we obtain an equation for the tensorµ β
α

iDB
t µ

β
α − 1

2
Ψ2µ β

α + i
(
µ γ

α ∇γX
β −∇αX

γµ β
γ

)

=

[(
∆A

g +R− 1

2
|Ψ|2

)
µ β

α − iTαγµ
γβ

]
.

(4.2.44)

Let us rewrite the evolution equation ofΨ in a way that resembles a Schrödinger-type

equation

iDB
t Ψ +

1

2

〈
µ;µ

〉
Ψ =

(
∆A

g +
1

2
R+

1

4
|Ψ|2

)
Ψ. (4.2.45)

The presence of the term
〈
µ;µ

〉
Ψ means that the density

∣∣Ψ
∣∣2 is not conserved in

general. However, the Gaussian curvature must satisfy a conservation law. Starting

from the relationR =
〈
λ ;λ

〉
−
∣∣ψ
∣∣2, see (4.1.35), we can obtain a conservation law
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for the Gaussian curvature. Contract (4.2.38) withλ and (4.2.42) withΨ, and subtract

them to obtain

∂tR−Xγ∇γR+ 2∇α∇βP
αβ = 0 (4.2.46)

and to get after integration

d

dt

∫

Σ

Rdσ =

∫

Σ

∇α

{
−2∇βP

αβ +RXα
}
dσ. (4.2.47)

Moreover, the square mean curvature satisfies an evolution equation

∂t

(1
2

∣∣Ψ
∣∣2)−Xγ∇γ

(1
2

∣∣Ψ
∣∣2)+

〈
P ;M

〉
= ∇αJ

α, (4.2.48)

where the covectorJα is defined by

Jα
def
=

1

2i

(
Ψ∇A

αΨ − Ψ∇A

αΨ
)
. (4.2.49)

Thus we have after integrating over the surface

d

dt

∫

Σ

(
1

2
|Ψ|2

)
dσ = −

∫

Σ

〈
P ;M

〉
dσ. (4.2.50)

Some final words. The equation (4.2.45) is very complicated.A possible first step

in order to establish local existence could be to study the cited equation in the case of

radially symmetric surfaces.
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