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Preface

The nonlinear Schrodinger equation (NLSE) arises in veriphysical contexts. It
plays a natural role in nonlinear fiber optics [17] descmpbmonlinear waves such
as water waves at the free surface of an ideal fluid and plasavasy In quantum
field theory [10] it is used to study the statistical mecharaspects of its measure
preserving flow. It also appears in the study of geometribleras such as binormal
motion of a curve inR3. This type of motion is particularly important because it
preserves the length of the curve. For the particular cassie binormal velocity is
proportional to the curvature, which is a crude approxiorabf the motion of a line
vortex , Hasimoto [8] showed that this motion is governedt®ydelebrated nonlinear

Schrodinger equation, namely

0y + 0w + 3|6 = 0. 1)

This equation is completely integrable and it has propagatcalized solution
called solitons that have the remarkable property of ratgitheir shape after colli-

sions. The one-soliton solution of equation (1) is givenhmy simple formula

W(t,x) = 2vsec hlv(z — ct)],

wherec is the propagation velocity andis the amplitude. Equation (1) and particular

periodic solutions have been extensively studied in caimewith the propagation of



vortices, see [14].
It is also known, for instance, that for agy € H'(RR) there is a unique solutiop
in C(R, H'(R)) satisfying the initiak)(0, z) = ¢,(z),z € R. Furthermore, it posses

the following conserved quantities

N ® [16P(t,0) dr = N(0) @
1o ® [ (1voPt.0) - Jlol't.0)) do = HO) @

and its flow is Hamiltonian. A similar result holds in the petic case, i.e., the space
variablez belongs tdl', whereT denotes the unit circl§!. For details, see [4].

This dissertation is divided into four chapters. Chaptes doncerned with the ex-
tension of Hasimoto’s results to motion by binormal curvatof a curve embedded in
a three-dimensional Riemannian manifold. We constructpgmapriate orthonormal
frame, the Frenet-Serret frame, at every point of the cundevge then study its evolu-
tion in time in order to deduce that a nonlinear Schrodistgpe equation governs the
motion of the curve.

In chapter 2 we discuss global existence of a periodic swiutor the Cauchy
problem derived in chapter 1. The evolution equation is rexhHtonian and in partic-
ular, there is no conservation 6f-norm under the flow. As matter of fact, there are no
obvious conserved quantities. The above observations theathe standard global
existence argument does not work in the present case. Dherefe reformulate the
initial problem as an equivalent integral equation and usarf's fixed point theorem
in order to construct a local solution with initial datafid(T). Careful analysis of the
growth of the size of.2-norm of a local solution previously constructed allow us to

extend it globally.



Chapter 3 considers existence of a global solution for tinees@auchy problem
as in Chapter 2 but with the space variablen R. We start by constructing a local
solution using an approximate sequence and then we extghabilly by analyzing
carefully again the size of the?-norm of the local solution.

In chapter 4 we study the motion by mean curvature of a sudadgedded in the
four-dimensional Euclidean spa&&. We introduce the language of gauge fields as
an appropriate framework for presenting the structurapertbes of the surface and
the evolution equations of its geometric quantities. Wellfinderive that a nonlinear
Schrodiger-type equation is satisfied by the introducedpex mean curvature of the

evolving surface.
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Chapter 1

Binormal Motion of a Curve in a Three-dimensional Riemannian

Manifold

1.1 Introduction

The present chapter studies the motion by binormal mearatiuey of a curve em-
bedded in a three-dimensional Riemannian manifold. Siheentotion is related to
the local geometry of the curve, it is advantageous to desdtiin terms of intrinsic

properties that do not depend on the choice of a coordinatersy The basic idea is
to construct an appropriate frame, the Frenet-Serret fratrevery point of the curve
and then examine its infinitesimal changes. The first sedtiaedicated to achieve
this goal. The next step will be to deduce the evolution équatfor the Frenet-Serret
frame, the curvature, and the torsion. Finally, under sossemptions on the metric,

we derive a nonlinear Schrodinger equation that govemstbtion of the curve.

1.2 Structural Equations

Let us consider a curuemoving in a three-dimensional Riemannian manifdldWe

describe the curve b (¢, s), wheret is the time variable and, a parameter, is the



space variable. We assume théat 2 — M is a smooth map witk¢, s) € Q. HereQ
is eitherR x R or R x T. T stands for the unit circl&™.

We define

X, &ax(a,), X, Eax(s,). (1.2.1)

Xs, X, are vector fields on\/. If X lies in the domain of a chartU, ¢), ¢ =
(2,22, 2%), then its coordinates function$’ = z' o X,7 = 1,2, 3, are real-valued

functions onl/ and we can write

XS - 8SXZ 32-, Xt - 8tXi 82‘, (122)

where summation over repeated indices is assumedaistheith coordinate vector
field of .

The components of the metric(first fundamental form) ofi/ on U are given by

At each point ofU, the matrixh,; is positive definite and invertible and its inverse

matrix will be denoted by.¥, i.e.,

(hiy) ™t = (hY) 5 hah® =47,
For a smooth vector field on X, its partial covariant derivativégx_ Z andVx,Z
are, respectively, the covariant derivativé/odlongs-parameter curves and the covari-

ant derivative ofZ alongt-parameter curves. In terms of coordinatéss expressed

asZ = 7', and we therefore have

Vx, 2" = [0,2F +T52'0.X7], o€ {s,t}, (1.2.4)



wherel“fj are Christoffel symbolsVx_Z will be also denoted by eithéf,, or V,Z.

The following well known facts will be very useful in the sexju

Proposition 1.2.1. (a)
Vx, X = Vx, X;.

(b) If Z is an arbitrary vector field onV/, then

Vx,Vx.Z — Vx.Vx,Z & [Vx,, Vx.] Z = R(X,, X,)Z,

whereR!. .. is the Riemannian curvature tensorf.

ijk

Proof. From (1.2.2) and (1.2.4) we have

Vx, Vx,Z = [0.X" + T58,X'0,X7] 8.

(1.2.5)

(1.2.6)

(1.2.7)

Sincel“fj Is symmetric ini andy, (1.2.7) is symmetric iz andt. This proves (1.2.5).

For the proof of identity (1.2.6), a coordinate computagores

[Vx,, Vx.Z = [0, (02" + T}, 2'0,X7) + T} (02" + 1}, 2'9,X™) 0,X7] 8,

— [0, (%) Z'0,X — 0, (T) Z9,X7) 8,

+ [TiT, 210, Xm0, X7 — TET,, Z'0,X™0,X7] 8.

The proof is completed by noticing that the last formula om ight-hand side is the

corresponding expression & X;, X;)Z in coordinates. See [1, page 102]

Remark.We also utilizeVy, V, to denote the commutatfVx,, Vx,].



Let us now assume thatis the arc length. This assumption implies tiatis a
unit tangent vector to the cureat any point and consequently it will be called the

tangentvector and denoted BY. It is worthwhile to note that

IT|? = hij0, X0, X7 = 1.

It follows that the vector field's = Vx_ T given by

T = 0, X" +T50,X'0,X7 (1.2.8)

must be orthogonal t@'. Thecurvaturex of the curve( is defined to be the length of

T, and thenormal vectorN as the unit vector in the direction f, , i.e., we define

1

© T, Nt E -7 (1.2.9)
K

provided of course that the vect@, does not vanish. In order to construct a vector
field orthogonal tdI' andNN, we need to define a totally antisymmetric tensorién

For this, lete, ;;, be the antisymmetric tensor

1 if (r,7, k) is an even permutation ¢f, 2, 3),
€rjk = § —1 if (r, 4, k) is an odd permutation dfl, 2, 3),

0 otherwise.

\

We define

eék = h" € i (1.2.10)

Now, we can set the vector field on ¢ to be



B £ ¢, VN, (1.2.11)

B is called theébinormal vector fieldand it is orthogonal td" and toN. A straightfor-
ward but tedious computation sho\#| = 1. The three orthogonal unit vectdis N,

andB define an orthonormal basis of the tangent spad¥ tat any point of the curve

and it is called thérenet trihedron This frame satisfies therenet-Serret equations

Vx,T=xN, VxN=-xT+7B, VxB=-7N, (1.2.12)

wherer, called thetorsion is the projection olN, on the binormaB. That is, we set

r £ (Vx,N,B). (1.2.13)

Notice that the projections of the vectO B on T andN are fixed by the identities
95 ((T,B)) = 0 andd, ((T,B)) = 0. Curvature and torsion define locally the rota-
tion of the Frenet frame and they therefore determine thpesbha smooth curve. If
the functions:(., ) andr (., t) are known, the curve can be reconstructed, in principle,
by integrating equations (1.2.12), which are a system of ®DE

The complexified version of the Frenet-Serret equation®.12) is obtained by
expressing them through the complex null vector

m &N +iB. (1.2.14)

We adopt the convention for the inner product of two complestersa andb

(a,b) £ h;a't) = (b, a), (1.2.15)
wherea” andb”® are the complex component afandb respectively. The following

orthogonality relations fom are immediate



<m,ﬁ>:2 , <m,m> =0 |, <T,m> = 0.

Herem denotes the complex conjugateraf In the present context equations (1.2.12)

are therefore transformed into a compact form

1
Vx,T = Sk (m+m), (1.2.16a)

X

Vx.m = —rT —itm. (1.2.16b)

Let us now introduce an arbitrary angle functié(t, s), defined on the curve,
that rotates the vectan by ¢. This new vector will be denoted dyI and it is then

defined to be

M E' ¢ (N +iB) . (1.2.17)

Remark.M satisfies the orthogonality relations

(MM) =2 , (M\M) =0 , (T,M) =0. (1.2.18)

Our next step is to define a complex curvatdrand a gauge fieldl on ¢ by

oL ke A% 50— 1. (1.2.19)

Equations (1.2.16) can be now rewritten in a gauge invaf@nt as

Vx.T = 3 (GM + 6M) (1.2.20a)

V.M = —¢T + i AM. (1.2.20b)

X



The equations above are manifestly gauge invariant undeyeg@ansformations

d—ePp, M Me? A— A+0,0. (1.2.21)

Heres denotes an arbitrary function depending(oys).

1.3 Binormal Motion

Suppose we wish to set in motion the curve so that it satigfeeequation

X, = kB. (1.3.1)

We are interested in obtaining the evolution equationsefithme{T, M, M} and of
the functionss andr.
In terms on the complex notation introduced in Section 1.Zew reformulate the

equation of motion as follows

X, = o (~OM + M) (1.3.2)

From Proposition 1.2.1 and (1.2.20) the evolution equatibtine tangent vector

T reads

?

T, 5

[(—@) M + (02¢) M] . (1.3.3)

Hered” denotes the covariant derivative with respect to the gaetge A, i.e.,

o4 L'y, —iA. (1.3.4)

Remark.Equation (1.3.3) can be also written classically as



T; = —7kN + (0;x) B (1.3.5)

The orthogonality relations (1.2.18) imply

(M, T) = —(M,T,) : (M,M) =0 ; %((M,M))=0.

Therefore, the evolution equation of the complex vedtbmust be of the form

M, = i02¢T + iBM. (1.3.6)

Since equations (1.3.3) and (1.3.6) are invariant undegg&ansformations

pr— e’ M Me?, A 0,6+ A, Bw— B+ 0, (1.3.7)

the real scalar functio® can be determined uniquely only when we fix the gauge.
We next proceed to find the evolution equations of the ve@®oendB. Invoking

equations (1.2.6), (1.2.9), (1.2.12),and (1.3.5), weialitee string of equalities

Nt = Vt (lTS)
K
1 1
— —E<8tfi)N + E (vsTt + R<Xt7 XS)T)

= 7T — i? (%@m? + 0,(tx%) + K*(R(T,B)T, N>) N
K

+ % (9ssk — 7°k — k(R(T,B)T,B)) B.

Requiring the projecti0|<1N, Nt> to vanish gives us the evolution equation of the cur-

vaturex



%&/{2 + 05(7r*) + K*(R(T,B)T,N) = 0. (1.3.8)

Therefore, the evolution equation bf reduces to

N, = —7xT + % (9ssk — 7°k — K(R(T,B)T,B)) B. (1.3.9)

Since{T, N, B} is an orthonormal set, the evolution equation of the veceid B is

of the form

B,=—-(<B,T,>T+ (B,N;)B). (1.3.10)

Hence, we can write the evolution equation of the binorBals

B; = —(0:x)T — % (0ssk — 7°k — k(R(T,B)T,B)) N (1.3.11)

with the help of equations (1.3.5) and (1.3.9).

Now, a straightforward calculation shows

vtvth = Vt (Vs (HB)) = Vt ((&m)B - TKN) =aT + bN + CB,

where, for simplicity, we set

a = —7'2112 — (8sfi)27
1= K0 (BB~

c= Ok — TOssk + T3k + TK<R(T, B)T, B>.

On the other hand, we have



V.V X, + R(X;, X)X, = V, (Vi(kB)) + £?R(B, T)B = aT + (b + b)N + cB

with the notation

by = —T0Ok — ,‘{288,%' — Ogssk + 26TO,T + 7'283:“& + KO, (<R(T7 B)T, B>) )

by = —(0sx)(R(T,B)T,B) — x*(R(T,B)B,N).

Proposition 1.2.1 states the equality

V.V, X, = V,V,X; + R(X,, X,)X,. (1.3.12)

This identity implies that the components of the vector fetd(1.3.10) with respedy
are equal. It follows that = b, +b,. After some manipulation, this identity transforms

into the evolution equation of the torsiergiven by the formula

O, = —0, (72 _ %,_g _ lﬁssﬁ + <R(T,B)T,B>) + x(R(T,B)B,N). (1.3.13)
K

Remark.The evolution equation (1.3.8) of the curvaturean be also deduced from

the identity

vV, T, = V,T; + R(X;, X,)T. (1.3.14)

1.4 Equation of Motion

Let us adopt the notation

10



F < [T, M, M] (1.4.1)

with T, M, andM written as column vectors.

Equations (1.2.20) are therefore reformulated in matrtation as

VSF:%FS
_0 —2¢ —ng_
E%[T,M,M} 6 2%A 0 |- (1.4.2)
6 0 —2iA

Similarly, evolution equations of the frar{&', M, M } take the form

V.F = %FE
0  —2i0% 2i03¢
= % [T,M,M] |—i93p 2B 0o 1. (1.4.3)
102 0 —2iB
Notice thatS and E are complex x 3 matrices.

A direct calculation gives

Vi VyF = %F 0,5 — O,E + ES — SE] = %F 0,5 — 0,E+[E. 5. (1.4.4)

After computing all terms in (1.4.4), we get

0 —20 —20
1|
V[tvs}F:§F o 20 0 |, (1.4.5)
d 0 —2%U

11



where

® L9, —iB)p—id (019) (1.4.6a)

2
v 29,40, (B - %) (1.4.6b)

On the other hand, the complexified version of (1.2.6) yields

ViVgF = R(X;, T)F = |¢| [R(B,T)T, R(B,T)M,R(B,Y)M|. (1.4.7)

Expanding each column vector in the right-hand side of {},4ve obtain

RB,T)T=aM+aM ; o% %(R(B, T)T, M), (1.4.8)
R(B,TYM = —2aT +iM ; b% —%(R(B, T)M, M), (1.4.9)
R(B, T)M = —2aT — ibM. (1.4.10)

Remark.Notice that

(R(B,T)M,M) =0 and (R(B,T)M,M) = 2i(R(B,T)B,N).

Therefore) is a real number.

Consequently, equation (1.4.7) becomes

0 —2a —2a
a 0 —ib

12



From (1.4.5) and (1.4.11) we dedu®e= 2a|¢| and{? = b|¢|, i.e.,

(0, —iB) ¢ — 0. (0'¢) = a|g), (1.4.12a)

|<b|2
A — 0 = b|¢|. (1.4.12b)
Remark.Equation (1.4.12b) is equivalent to

_ s
8, A = 0, (B - /b|¢| ds) . (1.4.13)

We therefore choosé such that

8,3=A and 9,3=D8— W + /b|¢| ds. (1.4.14)

Let us definey as def e~ and consider the equalities (1.4.14). Since equations

(1.4.12) are clearly invariant under the gauge transfaonatin (1.2.21), equation

(1.4.12a) transforms into

O — i0s51b — i <W /b\m ds) b = 2a1), (1.4.15)

which is equivalent to

0+ Dy + 0P = W)Y, (1.4.16)

in view of (1.4.9). HerdV () stands for

W) = (R(T.B)T.B) — [[0I(R(T.B)B.N) ds

—i(R(T,B)T,N). (1.4.17)

13



Following [8], we next discuss another way to deduce (1.4.16t us first recall

equations (1.3.8) and (1.3.13). They are

%&/—cz + 05(7k%) + K*(R(T,B)T,N) = 0, (1.4.18a)

O =0, <—72 + %Fﬁ + %assm — (R(T,B)T, B>) + x(R(T,B)B,N).

(1.4.18b)
Let +) be a function such that
(@) ¥ = rexp(if) with 0(s,t) = [ 7(t, s) ds.
(b) x andr satisfy equations (1.4.18).
Using the mentioned equations a straightforward compriajives
10 = (h +i0yk) €™, (1.4.19a)
Osst0 = [Ossk — 77k — 1 (B + K(R(T,B)T,N))] €”, (1.4.19b)

where

h = kr? — %H?’ — 055k + k(R(T,B)T,B) — H/H<R(T, B)B,N) ds.
Combining (1.4.18) and (1.4.19) yields (1.4.16).
We conclude this chapter giving an example. Ldte a real-valued smooth func-
tion on M. We now assume that/ has curvature tensor given by

R(V,Y)Z = g[(Z,V)Y — (Z,Y)V].

14



This curvature formula has a simple geometric meaningx, ¥f is an orthonormal
basis for a tangent plari¢ at the pointp € M , thenR(x,y) is zero onll+, and on
IT is the rotation sending to y andy to —x, followed by a scalar multiplication by
g(p). It follows that the sectional curvature of any tangent planto M atp is g(p)

and that the following relations are valid.

R(T,B)T = ¢B,
R(T,B)B = —gT,

R(T,B)N = 0.

Hence, equation (1.4.16) reduces to

10, + Oyt + EIW - g} Y =0. (1.4.20)

However, the Schur lemma [13, page 96] implies th& a constant function o/,
sayg(p) = c for everyp € M. Settingy = e’ ¢ satisfies the famous cubic

nonlinear Schrodinger equation

, 1
10y + Dsstp + 5\@\230 =0.

15



Chapter 2

Periodic in space Solutions

2.1 Introduction

Our main concern in this chapter is existence of a globaltgwiwf the initial value

problem for the nonlinear Schrodinger type equation (NLSE

00+ Datp = —SPY+ W), tER, T €T, (2.1.1a)

with initial condition

¥(0,x) = (x), = €T. (2.1.1b)

T denotes the unit circl§* andWW is a complex-valued function.

In this setting, this Cauchy problem is different from tRecase. The local the-
ory for solution of the NLSE iR uses the dispersive effect of the free Schrodinger
operator in the form of the Strichartz inequalities. Whea domain is periodic such
inequalities do not hold. However, it is still possible toype existence of a solution of

(2.1.1) for small enough time(local existence) by solving the integral equation

16



using a Picard’s fixed point technique whéf&) is the linear Schrodinger group and
F'is an appropriate mapping. Although there is no consematij¢(-, t)|| .2(r) under
the flow, existence for all time (global existence) holds Isyireating carefully the
growth in size of the.?-norm of the local solution.

In the case of pure power nonlinearity, i.€l; = 0, equation (2.1.1) has been
studied by Bourgain [4]. Using refined properties of trigoradric series, he developed
estimates similar to classical Strichartz inequalitiesestablished that the solution for

this particular case is i6'(R, H*(T)) for all ¢, € H*(T), s > 0.

2.2 An Integral Equation

Here and in the sequel, we will consider functions of twoaklés (¢, z), witht € R
the time variable and € T the space variable. We will denote J(Zeythe partial Fourier
transform of the function) with respect to the space variable andz,lADyhe Fourier

transform ofy) with respect to both the space variable and the time variable

_mg 1 —i(z&+tT)
w(t £) = \/%/ ¥(t,x) dr and ¢(T ) = o /ere T (t, z) dadt.

We will also denote numerical constants ©yand without loss of generality, we will
assume that’ > 1.

The free Schrodinger operatdi(t) := ¢~ plays an essential role in the study
of the equation (2.1.1). Recall that in the case of periodigridary conditions, the

operatorl (t) is given by an exponential sum

=) " p(g)elteE ) (2.2.1)

¢ez
and thaty(¢, z) = U(t)¢,(x) is the solution of the Schrodinger equation

17



10t + Opep =0 teR, 2 €T,
(2.2.2)

¢(0,$) = (bo(«r), xeT.

Ouir first step is to reformulate equation (2.1.1) as an etgrivantegral equation.

Proposition 2.2.1.Consider the Cauchy problem

iy + e = F(¥), (t,2) ER X T, (2.2.3a)

(0,2) = Y(z), T €T, (2.2.3b)

wherefl’ is a complex-valued function. df is a solution of(2.2.3) theny satisfies the

integral equation

() = Uy, — i /0 Ut — 5)F()(s) ds. (2.2.4)
Proof. We use the partial Fourier transform to calculate
i — &4 = F(), (2.2.53)
0(0,6) = 1ol(€). (2.2.5b)
Solving (2.2.5), we obtain
6.9 =0 i [ FED O @20

(2.2.4) follows from (2.2.6) by taking inverse Fourier tsdorm. This completes the
proof.

O

In view of Proposition 2.2.1, we replace the equations 8.By the equivalent
equation (2.2.4) and try to solve far using Picard’s fixed point theorem. Let us

denote byl" the mapping defined by the right side of (2.2.4), i.e.,
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T(W)=U(- ) —i /0. U(-—s)F(¢)(s) ds. (2.2.7)

Now, we want to use a cutoff function to decompose the integré2.2.4) into
parts near and away from the level curves-of £2. For this reason, let us introduce
a smooth functior such that) < b < 1, b = 10n a neighborhood—r, r] of 0 and
supp@ C [—2r,2r], wherer is a positive number to be determined later. Edie the

~ def

function given byc = 1 —b.

—

Proposition 2.2.2.7'(1)) can be written as

. FD
TN = 6(r + ) (nle) + Bo(©)) - s E)

T+ &2
(=20 0 B
- i W+ Bu©) (2.2.8)
k=1
where
Fr(@)(r,€) = F)(r,€) &(r +€2), (2.2.92)
Fu(@)(r,€) = F()(7,€) b(r + &), (2.2.9b)
= [ F@)0.9
Bo(f)—/RngdU, (2.2.9¢)
27k-1
B}(g):/ {“;5} Fo(@)(0,€)do, k=1,2,.... (2.2.9d)
R T

Proof. Let bex (o be the characteristic function defined by

1 0<s<t,
X[O,t}(S) =
0 otherwise

The second term on the right-hand side of (2.2.6) can be ttewras
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—_~—

/t 6_i(t—s)£2%(s’ £)ds = o ite? /ReiS§2X[07t}(t)F(¢)(S’ €)ds. (2.2.10)
0

We have by Parseval’s formula

| 6.0 = [T+ FDEga @211
0 R

A straightforward computation allows us to obtain

/\ t . 1 — —itT
Xo.4(7) = / e "Tds = —z'%. (2.2.12)
0

Substituting (2.2.12) back to (2.2.11) and then in (2.2.0@) get

[ i o= [ FRrga @213
0 7 R T+& ’ ' o
Therefore,

— e e~ itE? _ pitt

T = 0O+ [ g PO (@214

——

Now, we write F'(v)) = F,(v) + F¢(¢), see (2.2.9a) and (2.2.9b) , and substitute
itin (2.2.13) to obtain

i [ e T s, 6 ds — it [ EDTE [ W)Y
Z/O6 F()(s,&)ds=e 6/11& — dr /Re — dr

. i(T+§2)t — ] —
_ i / eTTFn(w)(T, £)dr. (2.2.15)

If we expand the expressiori™¢*) — 1 in power series, the last term in (2.2.15)

becomes
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00 it)k —
o [3 8 i @ B (2.2.16)

and hence

T4, = “Tl6) + 5 <§ e dT)

2 T+ 52 T+ 52
ite? 0o -\ E -
o /R 2 (Z;i;) (T + EV TR (Y)(7, ) dr. (2.2.17)

Finally, we take Fourier transform invariable of 2.2.17. Recall that

(it)k€i52t Fourier transform 5(k)(T _'_52)7

with § denoting the delta distribution. Therefore, we obtain

T €) =+ (3©) + o)) - LT

0 (_opyk-1 -
-y B o6 v e) B,

The proof is completed.

O

—

SinceT'(¢) contains the delta distribution and its derivatives, wedneelocalize
them in the variablé. For this reason, we consider a smooth cutoff functign which
is1if |t| <1, identically0 if || > 2, and0 < a(t) < 1 for any real numbet. Denote
by as(t) = a(%), B > 0, its dilation. The next proposition is a very useful teclahic

result.

Proposition 2.2.3.Assume that < § < 1 and0 < v < 1. If k is a nonnegative

integer, then the following inequality holds.
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def 1/2 )
s ( [a+ |T|>2”|@<’f><7>|2d7) < K(ra)3do. (2218
R

Proof. Observe that

thag(r) = B tka(Br), ke N. (2.2.19)

Identity (2.2.19) and the change of variable- 57 yield

= / (14 |7)>|tFag(r|? dr = g2++D / (14 7> |tFa(Br)|? dr
R R

= P [ (54 ) Fa(w)] du.
R
Sincel < ¢ < 1, we have

— 2v
]2 < ﬁ2k+1—2-y (/ (1 + |u|)27|tka(u)|2du+/ (1 + |U|)
jul<1

2
ul>1 u

|ut?a(u)|2du) .

Invoking the inequality

1 el .
w < 227’ if |u| > 1

u

and properties of the Fourier transform, we have the folhgygtring of inequalities

12 < 23/4 ghtl=2y </ |t/k;(u)\2du +/ \ut/kzt(u)ﬁdu) ,
ul<1 ul>1
<9 gk ( [ aopa+ |i<tka><t>|2dt)

=27 g < / tEa(t)|? dt + / Iktk_la(t)+tka/(t)|2dt). (2.2.20)
R R
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The condition supp C [—2, 2] and the inequalities

(a+b)* < 2(a® +1?) foralla,b € R,

2 k
<1 + %) < G) foranyk € N

imply that

P < 2 g2 (4k||a||L2 w2 [ (RO + [t (o)) dt)
R

< 2% B2 (4l Zagy + 2 (K245 alZary + 4410 ey ) )
]{32
— 92 gRkH1-2y gk ((1 + 5 )Ha||L2 + 2||a’ ||L2(R )

< 227—1—1 62]@—1—1—27 9kHa||H1(R)
2
< g 2138l gy
= K*(v,a) (38)%+1727, (2.2.21)
Notice thatK (v, a) < 2v/3||al| g1 (r). This completes the proof. O

The product ofl'(v))) andas will be denoted byls(¢)). From (2.2.8), its Fourier

—

transform?;(¢) can be written in the following manner:

—

Ty()(r,€) = @(r +€%) (Ul(&) + Bol)) — B(r. )

> k—1 A
- Z% ap®(r +€) By(€), (2.2.22)
k=1 :
where
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2.3 A Priori Estimates

The estimates needed to prove that equation (2.2.3) hasigosolocally in time are

provided in this section. Let us define the multiplier
S(r,6) =1+ |1+ €. (2.3.1)

Theorem 2.3.1.Let f(t,x) be a function witlit, z) € R x T and denote by (7, ¢) its

Fourier transform, with(7, £) € R x Z. The following estimates hold
(2.3.2)

/\§ A~
1 fll aexr) < CIIS® fllL2mxz)

and its dual

| 5
S& llr2®xz)
The proof of Theorem 2.3.1 will be given in the last sectiothid chapter.

oolw

Theorem 2.3.2.Assume that,, € L*(T). Then there is a constant such that
ITs ()l @eny < C 8% (Iollzzm + 55 IF W4 gm)) - (2.3.4)

Proof. From Theorem 2.3.1 we have
(2.3.5)

Ts (V)| r2rxz)-

1T5(¥)]| La@xr) < C||§%
In order to control the right member of (2.3.5), we have tosider the contributions

of
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00\04

A(r, &) = 85(7,€)@p(r + €10 (), (2.3.6a)

B(r,€) = S5(,€)as(r + ) Bo(€), (2.3.6b)
D(r,€) = 81 (r, (@  O)(r: ), @@,@:%, (2360
B(r, &) = —8%(r Z a9+ B, (2.3.60)

k=1
See equations (2.2.9) and (2.2.22).
Step 1. We invoke equation (2.2.18), with= 0 and~y = 3/8, to bound the

L2-norm of A.
AL g = / @ + )28 (r, O Ba(e)P dr
E€T
[/m@ > (11 o)’} da}Zw}o
EET
< K@) ol
Consequently,

IA| 2 xz) < CﬁéHonB(T)- (2.3.7)

Step 2. Following the lines in step 1., we can show that

. 1~
HBH%?(sz) < 064”30”%2(2)- (2.3.8)

We now have by Holder’s inequality
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— 2
— F
Billio = 3 ( [P e df>
<Z
~ 3/\ > 1 3/4
= 28 P ey [ el

Assuming that > 1 the last term of (2.3.9) is estimated in the form

~ A3 & 1
IBollecr < CIS @ msy | e
)

2
WH $3/8

L2(RXZ)

Thus, by (2.3.3), inequality (2.3.10) becomes

1Bollee) <~ 1P gy

Combining (2.3.8) with (2.3.11) and setting = 1, we get

1Bl|z2@xzy < CBYIF ()| pars e

€ 2 1+ +§2 3/4 A
J ] [

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

Step 3. Taking in account (2.2.23) and the triangle inegyalie can write

HD||2L2(]R><Z) =

|/ S3(7, ) ay(r — o) %daﬁw

26
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where

Jo(r.€) % / 7 — oY% |a@3(r — 0)||C(0,£)| do
Hy(r,6) & / $3(0,€) |d3(r — 0)|C(0,€)]| do.

Invoking Holder’s inequality, we derive

J5(1,€) <

/ FW)(@.0F O_]
(L+]o+&)i

r=olt - Si(0,€)|é(o >do
~[Rm\aﬁ<r o) §i(0.)|é(o + &)

_ ([ JEGD@OP |\ e
R </ (1ot )Vﬁ( o

The changes of variables = 7 + ¢2andp = o + £* allow us to show thal(;

(2.3.14)

2 def

Je Vﬁ 7,&) dr does not depend on the varialjleMoreover, sincep > 1andrs = 1
we obtain by (2.2.18)

1= [ flu= e - P e A dpa

< ([pf@wPpa) ( / I»“*{)%dp)

gcgi/ Mdp

02
< Cpe. (2.3.15)
Therefore, equation (2.3.13) transforms into
1 % 2 / 2
D12z < CP2||—5 +2 Hi(1,€) dr. 2.3.16
Dl r2@xzy < CB o ||z Zg: g 5(1.€) ( )
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On the other hand, we have

—

(8 F0O ., e,
Hﬁ(Tvg) - " ‘U‘i‘gz‘ ‘ 5( )‘ S%(U,S) ( +§ )d
SCﬁi<Wﬂ*<u§g”h§0)(ﬂ- (2.3.17)

As a consequence of the last inequality, we obtain

—_—

Lo F(y) 2

1Ho( o) < Ol |5 (0, (2318)
We plug (2.3.18) into (2.3.16) to get
. LI F@D) )2
2 <Opz||— : 2.3.1

||D||L (RxZ) = 0/6 Sg L2(RxZ) ( 3 9)

Employing (2.3.3), we can rewrite the inequality (2.3.19) a
|Dll 2@y < COTNE W4 g (2.3.20)

Step 4. Let us express (2.3.6d) as

k!
k=1
with
- s 27 k-1 o
En(r,€) = 55(1,8) @y (1 + €3) /R [U ;5 } E, () (0,€) do. (2.3.21)

In order to estimat¢|E||L2(RXz), we will estimate||ﬁ||Lz(RXz) and then using the

triangle inequality, we will have
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||Ek||L2(R><Z) (2.3.22)

||E1||L2 RxZ) < Z

For eachk > 1 we have by (2.2.9d) and by Proposition 2.2.3 that

1B 22y = / 1+ |7+ &) 1|a® (7 + )2 | Br(€) 2 dr

1357/
e (/Raﬂuwaﬁ |2du) (DBk )
135/
< K(a)(33)* 7 || By |13z (2.3.23)

We will denote]| By |2, ,, by A.
We utilize (2.2.9d) and Holder’s inequality to compute

| /\

2
¢z \T+52\<2r

- </|5 F()(:€) da)2
</R |F(1§ dU) </0+§2§2r(1 +lo+ 52|)% da)

F(v)
5%

IA

S

IN
N

S

2

2

(2r)7 (2.3.24)

IN
Q

L2(RXZ)

Inserting (2.3.24) and (2.3.23) into (2.3.22) gives théeste

/\

e k— 1
1B 2xz) < (2r)3 CH Z (2r) 35) )

3
2 lL2@mxz)
® ( =1

S
- (2) [ ]I

(2.3.25)

L2(RXZ)
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Sincerd = 1, the last inequality is equivalent to

B r2mxz) < COT|F @)

HAgem) (2.3.26)

because of Theorem 2.3.1.
Collecting equations (2.3.5), (2.3.7), (2.3.12), (2.3.20hd (2.3.26), we have the

desired estimate (2.3.4). This concludes the proof.

2.4 Local Solutions

We want to prove existence of a global solution of (2.2.3}, e will start by con-

structing a local in time solution of the equation

104 + Oppth) = —%M% + Wy, teR, zeT,

with initial condition

¢(O,JJ) = ¢o<x)7 reT,

using a fixed point argument. The construction will be accishpd in an interval
[0, 5] with 5 chosen appropriately small. After the local constructi@mglobal exis-
tence will be achieved by an iteration scheme.

In what follows, we assume th&t’ is a complex-valued function satisfying the

following conditions:
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(W (u) —W(w)| <Clu—v|, u,veC, (2.4.1a)
(W)t ) < CA+ [0 Dl o), (2.4.1b)

SW(u) < K, ueC, (2.4.1c)

whereK is a constant.

Remark.ltis clear that ify € L*(R x T), then

NP, § ey = 10y (2.4.2)
Remark.In Section 1.4 we proved that the equation governing thermabmotion
of curve( embedded in a three-dimensional Riemannian manifélg given by (see

(1.4.16))

, 1
10+ 0wt + 5 U0 = W (W),
where R is the Riemannian curvature tensor of the manifdfd {T,N, B} is the

Frenet trihedron og, andV () stands for

W) = (R(T.B)T.B) — [[0I(R(T.B)B.N) ds
— i(R(T,B)T,N).

If we assume thaR is smooth and bounded, then the conditions (2.4.1b) andl(.4

follow immediately.

Proposition 2.4.1.Letv, ¢ € L*(R x T). If W satisfies conditioii2.4.1b) then

lasW ()61, gy < CBF (8% + I0llnsmem ) 146l agery- (2.4.3)

)
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Proof. Since¢ € L*(R x T), it follows that||¢(¢, -)|| 1a(r) < oo almost everywhere in

time. Therefore,

(L, )2y < Cllo(t, )|l L), a.e. t € R, (2.4.4)

Combining (2.4.1b) and (2.4.4), we have

(W () (t,)| < C(1+ [lo(t, M) - (2.4.5)
By Holder’s inequality, (2.4.5) and the inequality+ y)* < 8(1+y%), vy € R, we

obtain

a0l ey < Nl sy [ a0 (00,001 ot

RxT

< 08 Wlln ([ aat (1+ 1006l )
RxT
< CB% (B + I0llagrm ) ¥ llser) (2.4.6)
as asserted. N

Let us recall the definition of the mafy

TH()(t) = as(?) (U(tm —i [ 9rw)s ds) @4

Since we are looking for a local solution of (2.2.3), we set

F($) = ~ 5016 + asW ()0 (249

Theorem 2.4.2.Assume that), € L*(T). The mapl}, with F' given by(2.4.8) is
a contraction of the unit ball in.*(R x T) into itself, provideds is small enough.

Moreover,3 depends on thé2-norm of the initial datay,.
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Proof. We combine Theorem 2.3.2, equation (2.4.2), and Propasttib.1 to get

||T6(?/’)||L4(RxT) < Cﬁ% ||w||?i4(R><T) + ﬁi (5% + ||?/)||L4(Rx1r)> HwHL“(RXT)]
+ CB5 190l 2(ry- (2.4.9)

Hence,

] La@xry < 1= [|T5(¥) |La@xr) < 1, (2.4.10)
provided we make the choice
1

pr = :
AC%(p + 1¥ollZ2(r))
We consider next the differend@g(¢) —7s(¢). The firstterm in (2.4.7) disappears

=

p>3. (2.4.11)

andF'(v) in the integral term has to be replacedBy) — F'(¢). Repeating previous

estimates in the proof of Theorem 2.3.2, we get

IT5(6) = Ts(8)llzsgxr) < CHHNEFW) = FOl 4 gy (2.4.12)

We have by Holder’s inequality

1
IF() = F@ 4 ry < 0101~ 0101, g
as W@ = W@l 4y (2413

The following algebraic manipulations

VI = o = (b = Q) + i (v — ¢) + ¢* (¥ — 9), (2.4.142)
W)Y = W(d)p = W() (¢ — ¢) + (W(¢) — W(9))¢, (2.4.14D)
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Holder’s inequality once more, Proposition 2.4.1, andditbon (2.4.1a) give the esti-

mates

117 = Bl 3 ey < (1¥lzs@ny + [1]]s @) 1 = @llagesr), (2.4.158)
lasW () (& =) 4 gy < Cp (ﬁz + ||?/)||L4(Rx1r> 1 = Ol s@xm), (2.4.15b)

las (W () = W(6)) 0ll 4 ) < CO laem 10 = Dl sgany. (24.150)

We substitute equations (2.4.15) back into (2.4.13) and the resulting inequality

back into (2.4.12) to obtain

IT5(0) — To(@)lusm < OO — Bllasgen) (16l sy + I6lim)”
+CB% (B4 + W lrn, + 9lxen)

1Y — @l La@x)- (2.4.16)

Hence, forg given by (2.4.11), we get the inequality

1
| T5(¢) — Tﬁ(‘b)HL‘l(RxT) < -l — ¢HL4(RX1T)- (2.4.17)

This establishes the theorem. O

Picard’'s theorem yields a function € L*(R x T) satisfyingTs(y)) = . We

therefore have proved the theorem

Theorem 2.4.3.Consider the problem

10 4 Opath) = =3[PV + W (W)Y, teR, zeT,
(2.4.18)

¥(0,2) = () zeT.
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Assume that the initial data&, € L*(T). Then the Cauchy problef2.4.18)has a

unique weak solution far € [— (3, 3] where depends on the initial data.

Remark.The same argument that we used in the construction of a lot#ian also

proves well-posedness, i.e., continuous dependence omitiaédata,

1T5(4) = T(d)l Lamxmy < Cllvvo = ¢oll2(n)- (2.4.19)

2.5 Global Solutions

Our next purpose is to show that problem (2.4.18) has a gleblation. We con-

structed a solution of that problem in a slice

T % [0, 4],

where/ is given by

3= L - (2.5.1)

(102 [0+ 1ol

with p being any real number greater than 3 (recall (2.4.11))amsla given constant.

The drawback of the previous argument in section 2.4 whithbéishes local well-
posedness is that the size/®tlepends or.2-norm of+ on which we do not have a
priori bound.

To simplify matters, we assume thaj is smooth so that is also smooth and we
adopt the notatioX(¢) = ||1(t, -)||%2(T). AlthoughX(t) is not conserved by the flow
in (2.4.18), we have an inequality of the form

dX(t)

— " < KX(0), (2.5.2)



by invoking the condition (2.4.1c), whel€ is an a priori constant. Therefore,

X(7) < KX (o). (2.5.3)

In order to show global existence, let us start setting 3, = 0. We next define

1
8= ,
1 (4C2 o+ X(to))*
t &ef to + B,
and by induction
B & ! (2.5.4a)
e p+ X)) "
tust = to+ Busr - (2.5.4b)
Setting
X, = X(tn), (2.5.5)
K
the estimate in (2.5.3) together with (2.5.4) implies that
A
X1 < expl ——— | X 2.5.7
+1 p < (h+ Xn)4) ( )

Denoting the constani|e** by v, we now claim

Proposition 2.5.1. There exists a numbegr > 3 such that ifn is any nonnegative

integer, then the following inequality holds:
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X, < C/(,o + Xo)* + 8vn. (2.5.8)

Proof. If A < 0, then equation (2.5.7) implies that

Xpi1 <X, ne€Z, n>0, (2.5.9)

from where (2.5.8) is deduced for apy> 3.

On the other hand, inequality (2.5.8) is obviously truefoe= 0. Assume that

X, < </(p + XO)4 + 8vn. We consider two cases:

X, <e™? (L/(p + Xo)* + 8un, (A)

X, >e? C/(p + Xo)* + 8vn. (B)
For the case (A), we have by (2.5.7) and by induction hypaghes

Xn-‘rl S eXp( Xn

#)
(EAXn

IA

< efe M (p+ Xo)! + 8vn| i

N

< [(p+Xo)" +8v(n+1)]*.

We next consider case (B). Using again (2.5.7) and induttygothesis we obtain

Xpr1 < exp( X,

)
< exp(m) [(p+ Xo)* + 8vn] *

v
ex
g {(p +Xo)* + 8vn

INE.

} [(p+Xo)" + 8vn] ™. (2.5.10)
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It is therefore enough to check that

1 v
+ Xo)! + 8vn| " ex { }
v o) ) g (p+Xo)' +8vn
1
< [(p+Xo)' +8v(n+1)]*, (2.5.11)
or equivalently,
1
- <-In (1 + i ) . (2.5.12)
(p+Xo) +8vm ~ 4 (p+Xo)" +8vn

Let

v
(p+ Xo)* + 8vn’

Ty —

Then inequality (2.5.12) can be written as

4z, <In(1+ 8x,). (2.5.13)

Sinceln(1 + 8z) — 42 > 0 holds for x € [0, 0.3], we choosep > 3 such that

1%
(p + H¢0||%2(T))4
Hence, inequality (2.5.13) holds by (2.5.14) proving theeralmade above.

<0.3. (2.5.14)

Corollary 2.5.2. The Cauchy probler(2.4.18)is globally well-posed.

Proof. Inequality (2.5.8) and the inequality + b)* < 8 (a* + b*), a,b € R allow us

to compute
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k=0 \P
C~ 1
>
- 8; 44+ X3
oy
T8 L ph (p+ Xo)' + Svk
C & 1
> 2.5.15
= 8 £ 9pt 48X + Svk’ ( )

e
||

Thereforegt, .1 ~ 22‘21% implying thatt,, — oo. This gives the desired conclusion.

O

2.6 A Schiodinger Multiplier Estimate

We begin by restating Theorem 2.3.1.

Theorem 2.6.1.Let f(t,x) be a function witlit, ) € R x T and denote by (r, £) its

Fourier transform, with(7, ) € R x Z. The following estimates hold

~3

I £l za@xm) < CIIS5 fll2mxz)- (2.6.1)

and its dual

~

14

L2(RxZ) — CHfHL%(RxT)' (2.6.2)

Proof. With some modifications, we will proceed as in the proof of dileen 2.1 in
[7]. We start making a dyadic decomposition phs f = Ej fj with fj supported
in the region2/~! < 7 4 ¢2 < 29+, Without loss of generality, we can assume that

j > 1. Next, we write
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F=>F=f=># (2.6.3)
J J

where f; = ]—"*[fj] with F* denoting inverse Fourier transform. Let us consider the

guadratic expression

fife(t, ) /Z ()@@ (ry €1 fiu(r, &) dry drs. (2.6.4)
162

Again, without loss of generality, we can suppgse k. Our next step is to change

variables as follows:

&1+ & =¢, G+&=v, (2.6.5a)

T+ T =T, T2+£22:p, (265b)

i.e., (1,1, &1,&) — (1,p,&, v). Observe that the inverse formulae are

420 —¢&

2 )
T=p—£ with 281 < p<obl

§12=

TT=T— Ty (2.6.6)

Letus cally &' 7, + ¢2 so that2i+! < ;i < 2/+! Since we have*~! + 291 < p+p <

ok+1 4 23+l we conclude that

okl L 97l _ 7 <y <okt L oitl (2.6.7a)

def

=&+6. (2.6.7b)
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Equation (2.6.4) can be expressed in the new variables as

fifult.z) = C / T eiteren / S F(m.6) fu(rads)dpdr.  (2.6.8)
3 p2k Ty

We apply Plancherel’s theorem to the equation above tombtai

£ Fell2ezury = | Fife dpl2agyr) = | fifil?dr,  (2.6.9)
. /; . /;/;

which is bounded by

B= 2|} [ SIBPIAE drdp
&

This bound can be estimated in an equivalent way as

B = 2" {{#}] / SOUF (1, €0 P (0 £0) 2 iy i
&1,62

= 2" |{HV N 11 semy | 2o ey (2.6.10)

where|{#~}|is the number ofy that satisfies restriction (2.6.7) for a giver Z, i.e.,

{#={1=E+E €l : =6+&; 2" 427 -7 <y <2 g
(2.6.11)

As in [7], there is a constaudt such that the size of the sg#~} satisfies

[{#7}] < C25. (2.6.12)

Therefore, equation (2.6.9) reads
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J
1fifill i@z < 2°22 1 fill 2@z - 1kl 32 @z (2.6.13)

The triangle inequality and estimate (2.6.13) allow us tmpate

1 : 35
If e < 3~ (2% Wileen] (2% 1slleme
J,k

4

34 2
<C [2 8 ||fj||L2(R><Z)} . (2.6.14)

The preceding equation can be rewritten as

35 2
£ sqescry < € [2¥ 1 ill2qmce|

~ C |15 fll2@xz)- (2.6.15)

This proves (2.6.1).

In order to prove (2.6.2), we just write for a test function

< fS 5. h >|=|< f,F* (ﬁﬁ‘%) >|
« (1 ~A—3
< 14 e 1F* (2578 ) sy, (2.6.16)

with the help of Holder inequality. Finally, estimate (ABimplies that the right-hand
side of (2.6.16) is bounded by

15115 g il

This finishes the proof. O
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Chapter 3

Non-periodic Solutions

3.1 Introduction

This present chapter concentrates on global existencdutf@ts of the initial value

problem for the nonlinear Schrodinger-type equation (E)LS

10,0 + Oputd = —%Iél% +W(d)o, (t,z)€eR xR, (3.1.1a)

with initial condition

6(0,2) = ¢o(x), = €R. (3.1.1b)

HerelV denotes a complex-valued function.
As in the periodic case, the problem (3.1.1) will be rewntt®nveniently in the

the integral equation

t
. 1
o) =U)o, — i [ Ut = 5)(=516P6+ W (©)0)(s) ds. (3.1.2)
0
where the Schrodinger operatdf(t) := ¢~ defines an one-parameter unitary group.

The existence of a solution for small enough t (local existgnvill be obtained by

constructing a family of approximate solutions. Althougkere is no conservation of

43



|#(-,t)||L2r) under flow, existence for all time (global existence) holgsektending
the local solution in the large in time by means of priori esttes for thel.2.-norm of

the local solution.

3.2 A Basic Framework

In the following, ¢(t, =) will denote a complex-valued function of two variabless)
with ¢ € R the time variable and € R the space variable. Numerical constants will
be also denoted by’ as in Chapter 2.

Let us recall that the equation

100 + 0pep = 0, (ta l’) € R xR,

(3.2.1)
(b(Ov x) = ¢0($), YIS Ru
is solved as(t, z) = U(t)p,(z), whereld(t) given by
U(t)po(x) = / o (€)' ¢ (3.2.2)
R

defines a unitary transformation groupliA.
The observation that (3.1.1) can be reformulated equitlgias the integral equa-

tion (3.1.2) is a direct consequence of the next proposition

Proposition 3.2.1.Consider the Cauchy problem

i+ bue = F, (t,2) ER xR, (3.2.3a)

$(0,7) = ¢o(z), = €R, (3.2.3b)

whereF is a complex-valued function of the varialftex). If ¢ is a solution of(3.2.3)

theno satisfies the integral equation
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P(t) =U(t)po — ’L'/O Ut — s)F(s)ds. (3.2.4)

Proof. Proof is quite similar to that for Proposition 2.2.4. Caltulg the partial

Fourier transform of the solutiopto equation (3.2.3), we get

iy — €26 = F(t.-), (3.2.53)

$(0,€) = ¢(6). (3.2.5b)

We next solve (3.2.5). Its solution can be expressed as

5(1,€) = e G (€) — i /0 e =9 P (5 2)(€) ds. (3.2.6)

Equation (3.2.4) follows from (3.2.6) by taking inverse Feutransform. This com-
pletes the proof.

O

Exactly as in Chapter 2, we introduce a smooth functisach thad < b < 1, b=
10n a neighborhood—, ] of 0 and supp C [—2r, 2r], wherer is a positive number
to be determined later. Letbe the function defined b@/d:ef 1—0.

The same argument used to prove Proposition 2.2.8 can lieedtilo prove the

next result. Its proof therefore will be omitted.

Proposition 3.2.2.1f ¢ is a solution of(3.2.3) then$ can be written as follows

5 2y (56) 5 Boge)) - 9
3, ) =37 +&) (5,0 + Bo(©)) - L5
L (—2r)F ! —
-2 (2,{;7,) 0 (+€2) Bu(©), (3.2.7)
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where

Fy(r,8) = F(r,€) é(r+€Y), (3.2.8a)
Fo(1,8) = F(r,€) b(r + &), (3.2.8b)
Bo(&) = /R if i"é) do, (3.2.8¢)
k—1
B\k(g):/ [" ;ﬂﬂ Fu(o,6)do, k=1,2,... (3.2.80)
R

Sincengﬁ contains the delta function and its derivatives, we needdalize them in
the variable. For this reason. we consider a smooth cutoff functign which is1 if
[t] < 1, identically0 if |t| > 2, and0 < a(t) < 1 for any real numbet. Denote by

ag(t) = a(é), B > 0, its dilation. From (3.2.73@ is then given by the formulae

as0(7,€) = d3(7+ ) ($o(6) + Bol)) — B(r,)

- P a6 e B (3.2.9)
k=1 ’
with
- . - Fy(r,
Bro) = @+ 0)no. G- @210
3.3 A Basic Estimate
Let us define the multiplier
S(r,6) =1+ |7+ &Y. (3.3.1)
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Theorem 3.3.1.Assume that is a solution of(3.2.3) with ¢, € L?(R), and that

1 -
3 <7 < L. Then there is a constant €,(a) such that

~

F

) 3.3.2
L2(R><R)> ( )

Proof. We will proceed in a similar way as in the proof of Theorem (2)3In order

15756l 2(gxmy < Cla, )<ﬁw”¢0”L2<R |

to bound the left member of (3.3.2), we need to consider théribntions

A(r,8) = S(7,)ap(r + €)00(€), (3.3.3a)

B(r,€) = 87(r,€)Bol¢), (3.3.3b)

D) - S O@=0)ng,  Cro-LTF @
A a3 ° r) k—1

E(r, ¢ Ss (7€) Z 2 ®) (7 4+ €2) By(6), (3.3.3d)

k=1
according to equation (3.2.9). We then proceed in four steps

Step 1. We employ (2.2.18) with = 0 to bound theL?-norm of A. In fact, we

have
AN ) = / G + )28 (1, )| E) 2 dr de
_ [/\aﬁ 2(1 4 |o]) do—}/m (O de
< K*(7,a0) 87| 9oll72m)- (3.3.4)
Therefore,
A 2@y < Cv, @)87 7ol 2w, (3.3.5)
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as desired.

Step 2. By calculations similar to those leading to (3.3m),can obtain

1Bl 72mxr) < C(v,@)8' | Bol[72m)- (3.3.6)

Now, we have by Holder’s inequality

Y

21\2—2v
. U (1+|\Tr:§2||2> ‘6(7+§2)\2d7} d¢

F
1—y

Iy (L™= o
B HS L2(RxR) /|u>r u2 |e(u)]” du. (3.3.7)

Assuming that > 1 the last term of (3.3.7) is estimated in the form

o~

||§ 12 < 932y P 1 du
OllL2(m) = S1=vllrzexr) J,  u?
23—27 ﬁ 2
<= e : (3.3.8)
2y -1 S1=7 Il L2(RxR)
At this stage, we have proved that
Bollagey < Clayrt= ] L (3.3.9)
ollLe@mr) = © 7, 1 || L2y 3.
Substituting (3.3.9) into (3.3.6) and setting = 1, we get
IBl| < CO(y,a) r (3.3.10)
L2Rxz) > U7, a 31 || L2 @xm)” 9.

Step 3. We utilize (3.2.10) and the triangle inequality tat&vr
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- F
Dl = [ || S antr = 0) 28 aoardg
R= JR R )
<[ (r-er+50 s>) @5(r — )Gl )| da | drde
<2 / [J5,(1,6) + Hj (7,€)] dr dE, (3.3.11)
R2
where

Joo(r,€) / 7 — o |@5(7 — 0)||G(0,€)| do,
Haolr. )@ [ §00.0) @il = )Gl )] dor
R

Applying Holder’s inequality, we can see that

F 0, €)|?

|7 — o> 2 §2-2y 2|2
[W @3(r = 0)* ¥ (0.8) [é(o + &) do

([ i

The changes of variables= 7+ ¢?and p = o + &> show thatr's def Je Vi (7,6)dr

does not depend on the varialgleMoreover, a straightforward computation gives

v, < (fasipisors) ([ EH ). @a

Whereas Proposition (2.2.3) implies

/ (14 |[))* |a@s(v))? dv < K2(7, )32, (3.3.14)
R
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conditionsr > 1 and2y > 1 yield

02
Sincer = 1, the two last inequalities allow us to deduce

1 2—2v
/I ( + |p|) dp S C(,y),rl—%/.
pl>r

T?y,ﬁ < C(v,a).

Therefore, equation (3.3.11) transforms into

2

F
S1-9

IDIIZ2 @y < C*(7,0)

+2 /R 2 H3(7,§) drdE.

L2(RxR)

On the other hand, we have

_ [ 809 |F(0.9)
Hyolr§) = [ a1t =)l g o+ €)do

<2 <|az| : (;fi’vc,s))) (7).

We apply Young's inequality, Theorem 4.2 in [11], to obtain

~

F
As consequence of the inequalities (3.3.17) and (3.3.189have

2

1HpA (-, OlTe@ < Cllallig (-, )

L2(R)

/\

2

1D agcsy < O )| 21

51 v LQ(RXR)

Step 4. Let us express (3.3.3d) as

> r)E—1
_Z<2]€7‘)Ek(776)

k=1
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(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)
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with

k— 1
5 ] Fo(0,¢)do (3.3.21h)

Ei(r.6) = (9 ¥ +¢) [

R

{04—52

According to (3.3.21), we will estimat@HLz(RxR) and then using the triangle in-

equality, we will have

|E||L2 RxZ) < Z

For eachk > 1 we have by (3.2.8d) and by Proposition 2.2.3

|Ek |L2®RxZ)- (3.3.22)

1Bl 22 gxm) = /W (L+ |7+ )P @™ (7 + )P [Be(€)* dr dé

- (fasratwpa) ([iEora)

< K2(a)(38)% ( [1Bor dg) (3.3.23)

We will denotefR\B;‘C (6)]*d¢ by Az,
By (3.2.8d) and by Holder’s inequality, we obtain

2 o+ & s 7 2 r
e [ P ol + o]
2
F do) d
S/R</|cr+52ls2r| (%) U) ¢

(e 9P ( . )
: /R ( r 52-21(0, £) da) /0+§2§2r(1 o+ &)Tdo ) d. - (3.3.24)

A direct computation verifies the following estimate

/ (1+[p))**dp < C(y)r* . (3.3.25)
p|>2r
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Thus

~

F
Sl
Inserting (3.3.26) and (3.3.23) into (3.3.22) gives théeste

2

A<Mt

(3.3.26)

L?(RxR)

) . A 0o (2T)k—1(3ﬁ)k+%—~/
1E ]| z2rxmy < (2r) 72 : “Clya HSI L2(RxR) <Z e

L2(RXR)

= C(v,a)(rﬂ)%”{ 6;5 } HSl

~

— (v, a) H F (3.3.27)

513

L2(RXR)
Recall thatrg = 1.
Collecting equations (3.3.5), (3.3.10), (3.3.20), an®.@&), we have (3.3.2) as

desired. This concludes the proof.

3.4 Existence Results

In this section our goal is to obtain a global solution to thebem

06+ 006 =~ 0PO T W(P)s, (1) R xR,

subject to the boundary condition

#(0,2) = ¢o(x), = €R.
We will construct a family of approximate solutions for whiwe apply Strichartz’s
estimates in order to get a solution local in time.We willy@ahat such solution can

be extended to a global one by estimating the time intervekistence.
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Strichartz’s estimates are space-time estimates thatssengal for solving non-
linear Schrodinger equations. We begin by introducingrtbgon of an admissible

pair.

Definition. A pair (¢, r) is said to be admissible if

2 1 1
L (1) o

and2 < r < oo.

Remark.The pairs(co, 2), (8, 4), (6,6), and(4, co) are some examples.

The two following theorems state Strichartz’s estimatex the will use in this

section. Their proofs can be found in [17, page 43-48].

Theorem 3.4.1.(Strichartz’s estimate ) For every € L?(R) and for every admissible

par (q,r), the function t- U(t)¢ belongs to

LY(R, LX(R)) N C(R, LX(R)).

Furthermore, there is a constaat depending only on such that

UGl L@ r2®y) < Cllellizw forevery ¢ e L*(RY). (3.4.2)

The next theorem establishes an extension of the previsu# te solutions of the

non-homogeneous linear Schrodinger equation.

Theorem 3.4.2.(Strichartz’s estimate) Let | be an intervalBf J = I, andt, €J. Let
(1, v) an admissible ang € L* (I, L' (R)), wherey/ and v/ denote the conjugates

of . andv, respectively. Then, for every admissible pair (q,r), tiection
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t
tel— Os(t) = / Ut —s)f(s)ds (3.4.3)
to
belongstal?(I, L"(R))NC(J, L*(R)). Moreover, there exists a constaridepending

only ong andy such that

19 sll Loy < CNFllpw (1.0 wy)- (3.4.4)
Remark.When there is no risk of confusion, we den@té.»; x) by || [|»(1)-

In what follows, we assume th&t’ is a complex-valued function satisfying the

following conditions:

(i) There exists a constaif such that

Sm W(z) <K forall z € C, (3.4.5a)

(i) There is a constan®’ such that ifu, v € L*(R), then

() — b)) < C lu = v 2w, (3.4.5b)
whereh(z) = zW(z).

We next construct a sequence of approximate solutions dier o do this, we first

setyy = 0 and

f(z) @ —%|z\2z + AW (2) = gl2) + h(z).

Giveng, € L*(R), letp, be the function defined by
@1(t) = U(t)po- (3.4.6)
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It is well known that||p,(t)||L2®) = ||PollL2) fOr eacht € R. Moreover, for every

admissible paitq, r), ¢, € C(R, L*(R)) N LY(R, L"(R)) and

||<P1||L§L; < C(Q)[|@oll r2(r)- (3.4.7)

Here|| [|,a;, also denotes the norm it¥ (1, L™ (R)).
We claim that the mapping— f(as(t)p:1(t)) belongs tol!(R, L*(R)) and satis-

fies the inequality

IF(asen) iz <288 onlliens (208 + i3y ). (348)

Indeed, since (4y) is an admissible pair, Theorem 3.4.1 implies thatt) € L>(R)

for a.e.t € R. Invoking Holder’s inequality, we get

lg(as(®) ()2 < az(®)llor ()l 7oeqmllorllzezz. (3.4.9)

Consequently, we obtain

1
lg(aspi)ll iz < 262 ||¢1||%ng0 1oLz, (3.4.10)

by using Hoélder’s inequality in time and (3.4.9).
On the other hand, we have from (3.4.5b)

4Mwﬁwwmm®ﬁsc lor(6) | ey dt

= 48C||l¢1 Loz, (3.4.11)
def

wherels = (—/f, ). Next we can combine (3.4.10) and (3.4.11) to obtain (3.4s8)

claimed.

55



Assume thatp; is given satisfyingf(agpr) € L'(R, L*(R)). We definepy

inductively to be

prst(t) = U(D)D, — i / Ult— ) f(as(s)oe(s)) ds,  tER.  (3.4.12)

Thusyy, 1 isin LY(R, L™ (R))NC(R, L?(R)) for any admissible paifq, r). Moreover,

calculations similar to those leading to (3.4.8) give

1 f(apprii) iz < 262 orsllzore (2055 + ||<Pk+1H%gL;o> : (3.4.13)
Hence, we have proved the following theorem.

Theorem 3.4.3.1f ¢, is in L*(R) and 3 is an arbitrary positive number then there is

a sequencgypy 72, With gy = 0 andyy; given inductively by3.4.12) such that

(i) For any admissible pai(q,r)

o € C(R, L*(R)) N LY(R, L"(R)).

(i) Foreachk > 1 and for any bounded open intervglwith0 € I,

pr € WHI(I, HT*(R)),

and satisfies

i0ypr + Ay = flagpr-1), tel,
(3.4.14)

QDk(O) = ¢o-
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Remark.The property(ii) above is a well known result in theory of semi-groups of

linear operator. See [5, page 90].

We define

Or = agpr, k=>0. (3.4.15)

It is easy to check directly that
(i) For every admissible paiw, ), ¢, € LY(RL"(R)).
(ii)
168l 2@z < 2v/Bl| Gkl =2 (3.4.16)
(i) ox € LO(R x R).

Thuse, € LP(R x R), p € [2,6], and

3
P

el < (485 HloulEos ol Fimmd, (3.4.17)

For the proof of Theorem 3.4.5, we will use the following résu

Proposition 3.4.4. Let p be an increasing function oh = (a,b). Suppose has a

fixed pointz, € I. If {z;}?2, is a sequence of real number irsuch that
(@) r <,
(b) zp1 < plax), k=1,

thenx, <z, foreveryk.

Proof. By (a), our conclusion is true fok = 0. Assumer,, < z,. Sincep is increas-
ing, p(z,) < p(x,). Plugging this inequality int¢»), we obtain the desired conclusion

fork=n+1. O
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Theorem 3.4.5.Suppose, € L*(R). Then there is a positive numbgy such that if

B € (0, 3,) is given, then there exists; in L*(R x R) so that
(i) asgpr — ¢p in L*(R x R),
(i) S3azpn — S3¢, in L2(R x R),
(iif) HS%%HW(RXR) < C(B)Poll L2 (w)-
Furthermore,3, depends ori?-norm ofg,,.

Proof. We proceed in six steps. It is very important to track cafgfall of constants

involved in this proof.

Step 1. We begin by applying the estimate in Theorem 3.3} towith the choice

v = 2 to get

‘fk

s 1
158 dgprsll2@xry < Cla, ) (EH%HLQ(R) + ‘ L RxR)> ; (3.4.18)

where we set ugy, = f(¢x) = gr + hy.
From Corollary 3.5.4, (3.4.17), (3.5.6), and (3.5.7), wdw= witha = 3/8 and

~

L2(RxR)

< V20 () K5 () M3 (€)[| S50k o). (3.4.19)

Similarly, we employ (3.5.7) and (3.4.16) to obtain
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|

A3 < ||hk||L2(]R><R) = ||hk||L2(]R><]R)
S8

L2(RxR)
< C|orll2@xr)

< 2CM(€) 37|55 dp | 12y (3.4.20)

We used assumption (3.4.5b) brin the second line.

Setting

i Z )95 Gl L2y (3.4.21a)
A = Aa) E'V20(a,v)C(a) K (€)M (e), (3.4.21b)
B = B(a) € 20C(a,v)M(e), (3.4.21¢)
D = D(a) ¥ Cla,7), (3.4.21d)
2
E=E()% 27iD , (3.4.21e)
we can state the following recursive formula
3 3 D
MHSAmm+B¢%WT;Wmmm (3.4.22)
by substituting (3.4.19) and (3.4.20) into (3.4.18)
Step 2. Let
3 3 D
ps(x) = B3 Az’ + \/BBx + EH%HL%R)-
We first observe that (3.4.22) reads
Tr1 < pp(ag), k> 0. (3.4.23)
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Defining

ls(a) E ps(a) —

we claim that there exist§, > 0 such that if0 < g < 3,, then(S‘%a/ﬁ\

bounded inL?*(R x R).

To see this, let

ool

= j3s.

=B

D | 3V/5A

It is not difficult to verify that¢ is a decreasing function and that

Hence, there ig, such that

||¢0||L2(1R) = C(60)>
[@ollL2@) < C(8) foranys € (0,3,).

Notice that the inequalityf¢,|| .2y < ((3) is equivalent to

ool

5E||¢o||2L2(R) <(1-0'B)®, =0

Fix 0 < 8 < (,. A straightforward computation shows that if

/1—*B

ool

then/};(x3) = 0 and

60
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(3.4.24)

(3.4.25a)

(3.4.25h)

(3.4.26)

(3.4.27)



Dl[¢ollr2m) 2 4
_ D%llerw 2 _sip
ﬁ 3 ( )xﬁ

(0oll 22y — €(3))

ls(p)

D
)
< 0.

Consequently, there is; € (0, z3) such that(zz) = 0.

By (3.4.28a), we can deduce

Dl|¢ollr2®) 2
Dlolew 24— 55w,

from where the next inequality follows immediately

D||bol| r2(w)

5 < xg, 0 = (5.

Sincel is decreasing of0, z3) and/(pz(0)) > 0, we have

ps(0) < 2.

Proposition 3.4.4 allows us to conclude

x, < zg, forall k> 0.

We remark that the next inequality also holds for eviery 0

T < Zg.

Step 3. We now want to estimate
def , a5 [~ ——
my = ISE (¢k - ¢k—1)||L2(RxR), k>1.
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(3.4.28b)

(3.4.28¢)

(3.4.29)

(3.4.30)
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(3.4.32)

(3.4.33)
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. def L
Sinceu = .1 — oy, satisfies

i@tu + Ay = fk — fk—h t e R,

Theorem 3.3.2 implies with = 2

my1 < Cla, 7)’ L;'H . (3.4.35)
8 L2(R)
Using the inequality
lalal® = 002l g gy < (lelaganiy + Iilzsnmy ollzacesmy + 012 g

Ju— U||L4(RxR)-
and proceeding as in step 1., we can show that the seqyenge-, satisfies the

recursive formula

Mpy1 < (ﬁ%A [xi + X Tp—1 + :)32_1} + ﬁ%B> m. (3.4.36)

Let us point out thatl and B are the same constants as in (3.4.22).

We combine the above formula and (3.4.32) to obtain

My < (305 A22 + B2 BYmy, = A(B)my (3.4.37)

for everys € (0, 5,).

Step 4. This step is the crux of the proof. We assert

ANB) <1, B€(0,5) (3.4.38)

In fact, sincezs € (0, z3), we have by (3.4.27)
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1-3:B

3 +ﬁ%B: 5
3A3%

NB) < 305 Az% + 2B =335 A
as asserted.
Step 5. Fix0 < 8 < §,. Step 4 tells us th&(@%g/b;)kzo is a Cauchy sequence in

L*(R x R). Therefore(i) and(::) follow immediately.
Step 6. According to (3.4.33), the right hand side of (3.%i2bounded by

: D
Aﬁéxkx% + B\/Bl"k + ﬂ_l||¢0||L2(R)
8

which is equal to

Wl =

D
(1 + 23\/5) T+ g_%"¢°||L2(R) (3.4.39)

by (3.4.27).

Consequently, inequality (3.4.22) transforms into

1 D
T < 3 (1 n zB\/B) o + o 160l 22 w- (3.4.40)
8

Taking limit whenk — oo on both side of the previous inequality, we obtain

A5 1 5~ D
HSg ||L2 ]RX]R ~ g (1 -+ 2B\/7) E ||L2 ]RX]R EHéOHLQ(R). (3441)
Hence
&7 3D 1
158 | 2mxr) < m”%”m(m, 0 = fs. (3.4.42)
The proof is complete. O
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Remark.The same arguments used in the proof of Theorem 3.4.5 carnlizedito

show well-posedness, namely

153 (05 — )l 2exry < C(B) 160 — Yol 2. (3.4.43)

In the rest of this section, we assumie= (0, 3,). Also, when there is no risk of
confusion, we writep instead ofps. As a direct consequence of the previous theorem

and Theorem 3.5.3, we have
Theorem 3.4.6.Let I be a bounded interval a&k andr € [2,6]. Then(¢x)ren also
converges t@ in L"(R x R) and inL>°(I, L*(R)). In particular,

or — ¢ in L®(Is, L*(R)). (3.4.44)

Theorem 3.4.7.Let I be a bounded interval dR. Then sequenceg(¢y))r>0 and
(h(¢x))r>0 cOnverge tay(¢) andh(¢), respectively, i (I, L*(R)).

Proof. An elementary calculation based on the identity

ulu|® = [u*(u —v) + wv(u — v) + v*(U — )

and on the inequality

HUUWHB(R) < ||U||L6(R) HU||L6(R) HwHLS(R)a

shows that

l9(2x(t)) = g(6)ll 2@ < l9x(t) = d) o) ©, (3.4.45)

where
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def

6 (E) 176 ) + 106 ()l o) 1) Loy + 1001 70wy

Applying Holder’s inequality in time, we obtain

lg(or) — 9Dy < VI ok — Dl oxry T (3.4.46)

def
0kl 2o rxr) + 0]l Lo@xr) 110l Lo@xry + 101176 xR);

from where we can conclude th@t(¢x)).>o converges tg(¢) in L'(I, L*(R)).

On the other hand, we have from (3.4.5b)

/nwk ()| e dt < C /chk (1) ey

< C | ||or = gz (3.4.47)

Theorem 3.4.6 implies

|h(ox(t)) — R(A())||Lr 1,2y — O ask — oo.

The main result of this section is now the following theorem.

Theorem 3.4.8.Let I be a bounded, open interval Bf with0 € I, and¢, € L?(R).

Then there exists

o € L™(I,L*(R)) N C(I, L*(R))

such that
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() oo — ¢ inL¥(1, L*(R)).
(ii)

o(t) :u(t)qbo—i/ Ut —s)f(p(s))dt, t e I. (3.4.48)
(i) ¢ € WHH(I, H%(R)) and

0o+ Ap = f(¢) fort e I,
(3.4.49)

©(0) = @,

Proof. We start the proof by recalling that,, ; is defined by the recursive formula

prar(t) = U(D)D, — i / Ut —5)f(as(s)pe(s)) ds,  tER.  (3.4.50)

Sincef(¢r) — f(¢)in L'(1, L*(R)), Theorems 3.4.1and 3.4.2 imply that there ex-
istsp € L>(I, L*(R)) such thatp, — ¢ in L>=(I, L?(R)) andy satisfies (3.4.48).

Moreover,

o€ LI, L"(R))NC(I, L*(R))

for all admissible paitq, ).
Finally, (3.4.49) is well-known result in theory of semiegips of linear operator.

O

The following corollary is an immediate consequence of thesijpus result and

(3.4.44)

Corollary 3.4.9. Supposey, € L*(R). If 3 € (0,5,) is given, thenp; satisfies the

following properties:
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(i) For every admissible pair (q,r)

¢s € L(I5, L' (R)) N C(Ig, L*(R)) N Wh! (I3, H*(R))
Recall that/; denotes the open intervat-g3, 3).

(ii)
05 + Ds = —505l051> + ¢sW (¢g) for t € I,
(3.4.51)
$5(0) = ¢o.

Now that we have established local existence, we are readiutly global exis-

tence. First of all, a remark is needed at this point.

Remark.Assume thaj; is a nonnegative real number.3B + p > 1, then

1

5= . =08, (3.4.52)
3B+ pu+ Ell ol
satisfies (3.4.26).
According to this remark, we set
1
g = s Ep=3B+p>1 (3.4.53)

B (p+ 190l32sy)
with p to be determined. All of results in Section 2.5 can be nowlgasiapted to

prove

Theorem 3.4.10.Let ¢, € L*(R). Then the problem
: 1
06+ M0 = —2 |60+ W()g, (1) ERXR,

subject to the initial condition
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Y(0,7) = ¢o(z), =R,

has a global unique solution. Moreover,

e Ll (R, L"(R))NC(R, L*(R)) N WL (R, H2(R))

loc loc

for any admissible pair (q,r).

3.5 A Priori Estimates

This last section is devoted to establish the estimatesedetedorove that the equation
(3.2.3) has a solution local in time. We start by reviewingpfly a few properties of
linear Schrodinger operator. The estimates discusseddtey an important role in the
proof of Theorem 3.5.3. Although results quoted below holchore general context,
we restrict ourselves to the one-dimensional case.

The conservation of the*-norm ||/ (t) ¢ L2) = ||¢| r2(r), together with the clas-

sical estimatél{(t)p(z)| < (47r|t|)—%||<p||L1(R) leads to the following result

Theorem 3.5.1.(Decay estimates) I € [2,00], t # 0, theni{(t) mapsL¥ (R)

continuously ta*(R), ++ - =1, and

’op

1

————— ¢l @ forall ¢ e LF(R). (3.5.1)
(4rt])

Ut Lr@) <

1
P

Nl

The proof of Theorem 3.5.1 relies on Riesz-Thorin interpofatheorem and on the

following proposition

Proposition 3.5.2. Givent # 0, define the functiofC(t) by
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K(t)(x) = \/412_7#6 for z €R. (3.5.2)

It follows thatl{ () = K(t) * ¢, i.e.,

U(t)pl(x) = w;l—m /R T () dy (35.3)

for all ¢ # 0 and all ¢ in the Schwartz spacg(R).

A remark is in order.

Remark.By duality,2/(¢) can be extended t§'(R) and

U(t)p € C(R,S'(R))

for everyp € S’(R). For example, the generalized solution of the initial vgdueblem

10+ Au =0,

u(0) =0
is given by (3.5.2) and it satisfies
——— 1

K(#)(€) = Ee—itf? (3.5.4)

We now proceed to establish the main theorem in this section.

Theorem 3.5.3.Let f(t,x) be a function witlit, z) € R x R and denote by/(, ¢)
its Fourier transform, with(7,£) € R x R. If 0 < a < 1 ande > 0, the following

estimates hold:
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(M)

1 lepexmy < C@)IS% fllzmxmy:  pler) =

1+e

1 Flls@xry < K (]S f

1+e

I fllz2re < M()IS 2 fllr2@xry-

| 2R xR);

Proof. e We will prove (3.5.5) and (3.5.6) by a TT* argument.

We first make the substitution= 7 + £ to find

Fs o =VE (o [ ) ([0 g

™

]_ eito 1 iw2
— /2 ( / ad> e
"\Var ) (ol+ 107 ") Vit ©
1 i:L'2
= V21 P, (t et .
VER P(t) =

Ayt

Here F* denotes inverse Fourier transform.

Let us call

Ea(t, ) E V2 Po(t) K(t)(2).

and consider the extension operator defined by

Ou(t)lg] / Ealts- — y)oly) dy.

It is important to remark that

Oa(t)lp] = V2 Pa(t) U(t)p.

Therefore, Theorem 3.5.1 gives the following estimate
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||Oa(t)[<P]||LP(R)_m|P()‘ Il forall peI/(®),  (35.12)

(4nft])2 >
1 1 _
where; + & = 1.
Denote by< -, - > the pairingf, g — [ fgdx. Forf € L*(RxR) andg € C5°(RxR),

Parseval identity and Cauchy-Schwarz inequality allowousttain

< fig>|=|<fFg>|=|<8:f 82

%\)

IA

U
n|Q

>

L2 @xr) Hg_%EHLQ(RxR)- (3.5.13)

Invoking Parseval identity again and (3.5.8), we can expf85 3 7|2, 5,z as

HS_5§HL2 RxR) <SG, Fg >
1

= <f€a*g),]-“*g >= —— <&y *3J,9 > . (3.5.14)

ﬁ\
=)
DO
)

Fubini’s Theorem justifies an interchange of order of indéign giving

||S—§g||L2 (BXR) = \/12_7r/ </ Ealt — s, —1y)g(s,y) dsdy) g(t, x) dtdx
_ %/ < Oult—5)[5(s)], g(t) > dsdt,

which is bounded by

1 11
= [10a(t = )ag)lr@llg®) |y dsdt,  ~+—=1. (3515
— [10u(t - 9la(6 s 9Ol dsct, o+ (35.15)

Reintroducing (3.5.12) in (3.5.15), we deduce easily that
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o

AN— e 1
15721172 @xm) < /|7’a(t— s)| 1 19() | 2o ) 19| 17 () dsdlt-
(Am|t — s|)2 7>
(3.5.16)

(@) Ifweseta =1+¢, € >0, thenP, € L>*(R) and for every € R

|Pa(t)] < Pal0).

Hence, equation (3.5.16) becomes

1
(4r|t — s|)7 7

15753172 @xr) < Pal0) / 19() | o gy 19 ) 7 gy st

Now, Hardy-Littlewood-Sobolev inequality, [16, page 11i@jplies

197291 2y < K(ON91170r sy (3.5.17)

provided”, + 5 — © = 2,i.e.,p = 6. By density and duality from (3.5.13), we obtain

(3.5.6).
(b) Assume thab < a < 1. Notice that ifa = 0, then the estimate (3.5.5) is trivial.

Theorem (3.5.5) states for evey o < 1 there is a constar?(«) such that

Palt)] < e t#0. (3.5.18)
In this case, (3.5.16) transforms into
A—La=>92 1
IS 2gHLQ(RxR) < D(e) 3_1_, Hg(S)HLP’(R) Hg(t>HLP'(R) dsdt.
(4nt — s))= 7
(3.5.19)
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According to Hardy-Littlewood-Sobolev inequality, thght hand side of the last in-

equality is bounded by («a) ||g||2Lp,(RX]R) if p’, p anda satisfy
2 3 1
4l _a=2
v + 2 «Q

It follows thatp’ must be equal tg&. Consequently, we have

~

< £.9>] < C@)15% Flliagen gl g€CP(RXR). (3520)

6
L3+2a (RxR)’

Our desired estimate (3.5.5) follows immediately.

e Finally, we want to prove the inequality

1+e

Iz < M(e)I1S7= f

|L2(RXR) (3521)

The above inequality is local in time. We then consider a gimoot-off functiona(t)

depending only on variableand write

— 1 N
-5
af V2T

lAz, a=1+e¢,

n[R

with 4 defined by

hr.) = $3(r,0) [ax (. 0)] ®

We now claim that

1llzzaey < Cla, @) (1 lzzem) + 1152 Fllzzese) ) - (35.22)

Indeed, utilizing inequalityr + £2| < |7 — o| + |0 + 2|, (a+b)? < 2(a® + b?), and

defining.J () &' |7|%]a|(7), we have
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9 < cta) ([74110,] + [l (33¢.01710.0)] 7). 529)

We next obtain by applying Young's inequality (Theorem 4 211] )

2

[4l22qe) < CC@) (1 1sge) 17 ey + Nl 195 Feqey ) - (35:24)

from where (3.5.22) can be deduced. This establishes aun.cla

Denoting by/ the partial Fourier transform (only in thevariable) of f, we have

a0t = 5- [ Pyt i gde @525)

This follows from (3.5.8) by noticing that

E(t,) = Pajalt)e ™.

Applying Minkowski’s integral inequality, we obtain for elat

()£ (2 llzcey < %/}R [A\Pa/2|2<t—s>m|2<s,g> ac | ds
= [Pt = sl om s (35.26)

Theorem (3.5.5), Holder’s inequality, and (3.5.22) gi8&(7)
]

Corollary 3.5.4. Under the same hypothesis in Theorem 3.5.3, we assert that

| %

Ao 3527
i (3.5.27)

< C(a)|| fllzamxry, q=

L2(RxR) 200+ 3°
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Proof. Inequality (3.5.27) can be proved by a standard dualityraent.

O
Remark.Notice that we obtain from (3.5.5) wiilh = 3/4
1£llza@xz) < C(@)]IS5 fll2@xn)- (3.5.28)
Finally, we define the functiop, to be
(o) L 0< (3.5.29)
al0) = ——%, Q. 0.
P W+ o))
Therefore,
Pult) = — / ot (o) d (3.5.30)
o = — e o(0) do. 5.
vV 2T R P
The next result was used in the proof of the Theorem 3.5.3.
Theorem 3.5.5.The following properties hold:
(a) Foreveryd < a < 1 there exists a constant B such that
D
Pult) < ‘té‘j‘i (3.5.31)
(b) P, e L*(R), 1< 2a.
Proof. Itis easy to check
2 0 giu
Pa(t) = T% (/ — du) t §£ 0, (3532)
|t]t e o u”

by making the substitutioft|(1 + o) = u.

A long but straightforward computation using a contourgné shows that
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Pa(t)] < It\% ( / T e M oy + Aa(t)) , (3.5.33)
\

¢ xr< eM

where we set

|
it = '
A,(t) :/0 msm(a@(m))dm, (3.5.34b)
0(z) = arctan <%) , 0<z <.

From (3.5.33) we obtain (3.5.31) by taking

D(a) =2 (F(l —a) + C(a)sup Zl;a) : (3.5.35)

0<z €

Herel” denotes the gamma function.
It remains to proveb). We first observe that;) € L'(R) () L*(R) for 1 < a.
In this case, Plancherel’s theorem implies tat € L?(R). Hence it is enough to

consider the caseé5 < o < 1. Substitutionr = |¢|u allows us to rewrite (3.5.31) as

pol<o| [Tt Le P uet 3.5.36
[Pa(t)] < R U+m (o) + ) (@2 1)ee ) (3.5.36)

Using inequalities

(a+b+c)* <2(a® 4+ b* + ),

Va2 4+ b2+ < |a|l + |b] + |,

and Minkowski’s integral inequality, we can deduce thattAenorm of P, is bounded

by
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2V/2 (/OO a1+1 du+\/§g<a)+/l‘/(u1)a+1du)>
1 U "2 0 u? + 2

which is finite under our assumption en This completes the proof.
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Chapter 4

Motion by Mean Curvature of a Surface in R*

The purpose of the present chapter is to examine the motiondan curvature of a
two dimensional surface embedded in a four dimensionalksp&le will start with the

examination of the basic structural properties of the erdbddurface before we pro-
ceed to the examination of the rule of motion in the secti@n #he idea is to examine
the infinitesimal changes of an appropriate frame i.e. guthal tetrad of vectors,

constructed on every point on the surface. Section 4.1 witlévoted to this aim. We
will see that a natural gauge structure arises connectmguhvature tensor with the
torsion of the surface. Overall the theme will be the languafjgauge fields as an
appropriate framework for presenting the structural retetamong various geometric

guantities.

4.1 A Surface embedded irR*

Let us consider a surface embedded in four dimensional spaae, we will con-
siderX c R?*. The surface can be described in terms of some internal,tbatwise

arbitrary, coordinate&u!, u*) by an expression of the type
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y & {xeR" : 27(u*)} where j=1,2,34 and a=12  (41.1)

Let us also assume th&t is equipped with the flat Euclidean metric. Throughout the
rest of this presentation we will use the summation overatggkindices convention.

Let us use the notation

5jk9:j9:k *ic X, X > (4.1.2)

to denote the usual inner productli¥t. We will use bold letters to denote vectors in
R4

Our aim is to derive the structure equations for this surfadeese equations will
give us information on how the surfaZeis embedded ifR*. Let us start by construct-
ing an appropriate frame on the surface We can construct two tangent vectors on

every point of the surface as follows

def OX
“ T Que’

For simplicity we will denote in what follows the partial deative with respect to the

a=1,2. (4.1.3)

u®-coordinate by

def O

= oue’

The metric (first fundamental form) on the surface is givenhgytensor

Oa a=1,2, (4.1.4)

o E< bty > . (4.1.5)

The square root of the determinant is an important quantitych we will denote by

g,
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def

g det (gag)- (4.1.6)

The importance of lies in the fact thatlo def gdutdu? is the infinitesimal area on the

surface. We will denote the inverse of the matix by ¢° , i. e.,

o3 def _
9" E(gas) 5 a9’ =4, (4.1.7)

The Christoffel symbols (first kind) are defined by

def

Fag;,y = <80{85X, 87X>. (418)

We will raise or lower Greek indices using the meyf¢ on the surface&. For exam-

ple, we have

L. =9 Taps. (4.1.9)

Atedious calculation using the symmetried @f;., gives the equation

1
Lasyy = 5 095y + 039y — Dr9as] (4.1.10)

i.e., the Christoffel symbols are uniquely determined by thetric. From (4.1.10)
above we can obtain the useful relation

o _ 99
L5 =2 (4.1.11)

9

There is an intrinsic way to pick a vector normal to the swefay calculating the
Laplacian with respect to the metrjgs of the position vectok(u®), i.e., let us com-

pute
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Ax E é D (9 9°°05x) . (4.1.12)

Using (4.1.11) it is easy to check the orthogonality reladiec A x,t, >= 0, a =
1,2, which means that the vectdy,x is indeed orthogonal to the surfate Now, we

can define the unit normal vectarby

n % Agx
|Agx|’

(4.1.13)

provided of course that the vectdyx does not vanish. Once we have a choice for the
normal vector we can pick a binormal vector which we will dako that the tetrad of
vectors{t;, to, n, b} form a frame at each point on the surface. If we differentiage

frame, we obtain a set of structure equations of the follgvype

Oats =T, 5ty + Kagh + T4sb, (4.1.143a)
dolt = —K,t; + Qub, (4.1.14b)
dab = =77ty — Qq, . (4.1.14c)

In the above equations the tensers, 7,3 andQ),, are defined by these relations, i.e.,

we define

Ko = (0u05%,1), (4.1.15a)
Tap = (9005%, b), (4.1.15b)
Qo £ (9an,b). (4.1.15¢)

The mean curvature, sdy, is defined as the trace of the tensgp, namely the scalar

quantity
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HE P (4.1.16)

Notice thatr,z is traceless by construction. There is an inherent amlyigaithis
construction, ifA x vanishes, then the choice of the normal and binormal veggors
ambiguous.

We can complexify the equations (4.1.14) as follows. Let efné the complex

vectorm and a complex tensov, s to be

mEn+ib ;Mg E kgt iTass (4.1.17)

and use the convention for the inner product of two complexors, saya andb,

(a,b) £'5,albF, (4.1.18)

wherea’ andb® are the complex components @faindb respectively. The following

orthogonality relations for the complex vecior are immediate

<m,ﬁ> = <ﬁ, m> =2 ; <m, m> = <ﬁ, ﬁ> =0. (4.1.19)

In the present context the structure equations (4.1.14) rea

1 _
Oaty =Tog'ty + 5 [MagM + Aasm] , (4.1.20a)

Oom = A Jt, —iQ,m. (4.1.20b)

Let us now introduce an arbitrary angle functiém®), defined on the surfaceé and
rotate the vectom and the complex tensox,; by ¢?. The new quantities will be

denoted by the same name
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Aag L' (Kag + iTag) | (4.1.21a)

m & ¢ (n+ib). (4.1.21b)

Next, we can define a complex scalar mean curvatuend a gauge fieldl, on the

surface via the relations

Q& -4 +0.0 ;  WE AN, (4.1.22)

Finally, let us adopt the notation

AL, —idy  a=1,2 (4.1.23)

for the covariant derivative with respect to the gauge fiéld Equations (4.1.20) can

be written in a gauge invariant form as

1 _
Oaty =Tyt + 5 [AagM + Aasm] (4.1.24a)

I4m = —\t,. (4.1.24Db)

The equations above are manifestly gauge invariant undeugegtransformation

U U Ap = e, (4.1.25)

wheref(u®) is an arbitrary function. We can impose an extra restrictiotthe gauge
field in order to fix the gauge. This question will be addredsget. Notice that the
angle functionf, may not be trivial. For a closed path, s@yon the surface we will
require thatfc df = 2mn, wheren is an integer. This restriction assures us that all

complex quantities are well defined.
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The Gauss and Codazzi-Mainardi equations are derived fnenequality of sec-
ond derivatives, namely the fact thadst, = 030,t, for the tangent vectors on the
surface and thal,0sm = 030, m for the complex normal vector. The first restriction

gives, after a tedious calculation, the following set of &tpns

4 4 o [ o 4
aVFBa - 8,3F’ya +F6ara’y - F'yoz ol

L " (4.1.26)
= 5 [Psady + Rad, " = hady” = Ra"]

by equating the coefficients of the tangent vectogsp = 1,2. After equating the

coefficients of the vectam, we obtain one more set of equations

0 Ao + Tl sy = 05 Ao + T 2 Ass- (4.1.27)

Remark.The computations above are made more transparent aftebsieevation

0y (Mgad) = (0N g0) T + Ao, T (4.1.28)

At this point, it is appropriate to introduce covariant dintiation of a tensor with

respect to the metric, specifically we define

VA0 £ 0 N0 — T 500 — TS As. (4.1.29)

The left hand side of (4.1.26) is, by definition, the Riemaarvature tensor, i.e.,

“/50(3 = awrﬁa(s - 8ﬁr“fa5 + Fﬁor P T, (4.1.30)

a oy Yo~ of )

R

while equation (4.1.27) can be written, using covarianivdives, see (4.1.29),

Vi sa = ViAa. (4.1.31)
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A crucial property of the covariant derivative is the fadtV ., g, = 0, which means
that we can raise or lower indices in an equation with covarterivatives without
introducing extra terms. The Ricci tensor is defined via aremtion of the Riemann

tensor, namely

R R0 (4.1.32)
Contracting equations (4.1.30) and (4.1.31), we obtaimeletions
~ 1 5~ —5 - —
B =5 Mo + 200 Mo = Al = Xa ¥ | (4.1.33a)
A A a
VIU =V A~ (4.1.33b)
Let us notice here, first that sineg; andg,s are symmetric, we have
A =M, (4.1.34)

second that the covariant derivative of a scalar quantitgoddes with the standard
partial derivative, i.e. for scalars we have' ¥ = 9, ¥ —iA, . Itis a well known
fact, easily checked, that for a surface the Ricci tensar faét R, = Ry, where
R is the Gauss or scalar curvature. Contracting the Ricciature gives the Gauss
equation

2
)

R={(\\)— |V

(4.1.35)

where we adopted the notation

(v;7) E 5, (4.1.36)
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for the total contraction of a tensoy;. Let us introduce now the traceless symmetric
complex tensor

def 1
Hap = )\ocﬁ - 59046\1]' (4137)

Using the tensoy,s the Gauss and Codazzi-Mainardi equations reduce to the equa

tions

R+%}‘If\2: (), (4.1.38a)

1
Vin, = §v3x1/. (4.1.38b)

It is a fundamental fact that the Gaussian curvature depenigson the first funda-
mental form, i.e., the metrig,s. This is immediately apparent from the observation
that the Christoffel symbols can be derived from the meseeg, (4.1.10). One can view
(4.1.38) as a set of restrictions dnand s, for example, given the metrig,3 and
the gauge fiel4,,, the complex mean curvature apngs are not arbitrary but satisfy
the restrictions (4.1.38). We will see later that given, ¥, A,, one can compute by
solving an elliptic equation. The fact thétd,m = 9,0sm gives one more equation.

First, notice the commutation relation

(02004 — 0403 ] m = —i (0,45 — 0gAa) m, (4.1.39)

and the calculation
95 (A\Jty) = (04A2)t, + A\, 0st,. Another tedious calculation gives two equa-
tions more. The first is is obtained by equating the coeffisief the tangent vectors

in the resulting equation
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Vs’ —ViA, =0, (4.1.40)
which is the same as (4.1.31).

Remark.The covariant derivative of the tensbg is defined as follows

Viads" = 000"+ ATy = AJT,.5 . (4.1.41)

The new equation is obtained after equating the coefficiehtee complex normal

vectorm, i.e., we have the relation

1 _ _
vaAﬁ - vﬁAa = Z [:uapyldb-yﬁ - /”Laﬁflu“/ﬁ] : (4142)

The equation above describes the torsion on the subfacket us introduce at this
point the totally antisymmetric invariant tensor on thefacee,s. It is well known
that there is a unique antisymmetric tensor on the surfack tatV.e¢,; = 0, as a

matter of fact, we can write

~ ~  def 0 1
€aB = J€up where  €,3,= (4.1.43)
-1 0
We will define the torsion to be the antisymmetric real tensor
T 'V, Ay — VA, (4.1.44)

Let us use the notatidn; -] for the commutation of two matrices, i.e., we define

1
137y 5 0T = T 1100] (4.1.45)

so that the equation of torsion reads
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Taﬁ = [,u ;ﬂ]aﬁ. (4146)

The scalar torsion will be defined as the quantity

1
T & 5eaﬁTaﬁ. (4.1.47)

The torsion is obviously gauge invariant as well as the Coeslainardi equations.
We can fix the gauge by requiring, for example, the Coulomtrioti®n V,A* = 0.

In conclusion. we have discovered the equations

1
R+ U° = (u;7), (4.1.48a)
1
Viul, = §V3‘I" (4.1.48Db)
vaAﬁ - vﬁAa = [,LL ;ﬁ]aﬁ' (4148C)

A few remarks are in order. Notice that by differentiating tquationv/, \, =

Vg‘\If we obtain

ATgA ATgA ATAa
VIV = VaVIAG + VAV
= VoV MB+ VIV, = VIV, (4.1.49)

In order to compute the commutation of derivatives, let useobe that the fundamental

property of the Riemann tensor is that for any vector fielgt, &, we have

X,

afo

ViVs X' =R

From the above equation we can obtain the commutationeeal&r a tensor, namely
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ViV = Ry A% — Roysf N, (4.1.50)

afo

and contracting thg, ~ indices, renaming as~ we derive

ViaVaN) = RagA%, — Rop7 N2 (4.1.51)

afy
It is a well known that the Riemann curvature tensor for sugas in fact very simple.

There is only one new quantity, the Gaussian (or scalar JatureRR so that

1
Rapyo = 5R (9or 960 — Yoo Gpr] (4.1.52)

Thus equation (4.1.51) reads

1
VieVgA\, =R [)\m — éxpgm} = Rlla,- (4.1.53)

Let us use the convention

A A,a def A 4
A\ —Ag (4.1.54)

for the Laplacian. The commutation of derivatives reads,(4€1.53),

1
VAVANG = =T A% + R <W — Expgw) . (4.1.55)

Hence, combining (4.1.54), (4.1.55) in (4.1.49) we can iolda equation foy.s

Al tag + Ritag — iTorpty = Qo + %Taﬁxp, (4.1.56)

where

def

def
Qg =

~ 1
Vavav Qs = Qo — §gaﬁAAx1/. (4.1.57)
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The important point in equation (4.1.57) is that given theameurvaturel and the
gauge fieldA4, we can determine the tenspys. Finally, let us observe the useful

formula

1 1
ppt = 5 (R +3 |¢|2) 67 +4T.P. (4.1.58)

4.2 Binormal Motion by Mean Curvature

Let us consider again a surfa&eembedded in the four-dimensional sp&R% i.e.,
¥ C R%. We describ& in terms of its position vector’ (u®), wherej = 1,2, 3,4 and
u® are some coordinates with = 1, 2. Recall that the tangent vectors to the surface

aret,, = d,x and the metric on the surface is given by

def

gop = (ta,tg) g \/det (gap)- (4.2.1)

The surface Laplacian with respect to the megrig is defined to be

1
Ax gaa (9 9°°05x) . (4.2.2)

It is easy to check tha(tAgx, ta> = 0for o = 1, 2, hence it is a natural choice for the
normal direction to the surface provided of course that ggdnot vanish. Once the
choice of the unit normat is made so that it is parallel th,x there is an essentially
unique choice of the unit binormal vectbrand the tetradt, t, n, b} forms a frame
on the surface. Let us define an antisymmetric surface fdfhon the surface using
the two tangent vectors, = J,x and the totally antisymmetric forms,; on the

surface by
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ol L et (¢ gm) (4.2.3a)
and its dual normal forny,;, using the antisymmetric tenseg;,,, on the ambient space
R* by

Wik Z €jim (8o 17) € (4.2.3b)
It is easy to see that'™ vanishes for vectors normal to the surface, whil&vanishes
for tangent vectors. Suppose we wish to move the surfaceg tisexmean curvature,
which is the length of the vectaf\,x. We have two possible directions to move,

namely the normah and the binormab. A general equation of motion will be

D! = (ad’), + bw,) Aga®, (4.2.4)
wherea, b are two real numbers normalized so that-b?> = 1. The variable denotes

the time parameter anid,x stands for

Dx £ ox — Xt (4.2.5)

with X7 an arbitrary vector field defined on the surface. It is obvitha the term
X"t simply slides the points on the surface without changingstivéace itself. Thus
the vector fieldX” introduces an extra gauge freedom in our motion. We can ehoos
X7 in order to fix the evolution of the