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Ascomycete powdery mildew (PM) fungi belonging to the order of 

Erysiphales cause diseases on more than 10,000 plant species including 

economically important staple food crops and numerous horticultural plants. 

The Arabidopsis protein RPW8.2 confers broad-spectrum resistance against 

all infectious powdery mildew pathogens. RPW8.2 is unique among 

characterized plant R proteins in that it activates broad-spectrum resistance 

to PM fungi, and the protein is specifically targeted to the extra-haustorium 

membrane (EHM). However, how RPW8.2 is regulated to exert haustorium-

targeted defenses remains poorly characterized. 



  

 

To understand how RPW8.2 is regulated, I first performed a thorough site-

specific mutagenesis of potential serine or threonine residues in RPW8.2 and 

identified two residues, threonine at 64 and serine at 138 to be critical for 

RPW8.2’s function. While the T64A mutation makes RPW8.2 auto-active, the 

S138A mutation abolishes RPW8.2’s ability to activate cell death and defense, 

with S138A being dominant over T64A. This suggests that RPW8.2 is 

negatively and positively regulated by (de)phosphorylation at T64 and S138, 

respectively. One candidate phosphatase and two kinases were genetically and 

biochemically tested for a potential role in (de)phosphorylation of RPW8.2.  

I also investigated how an RPW8.2-interacting protein 14-3-3λ 

regulates RPW8.2’s function. To this end, I developed a novel, divalent 14-3-

3-sequestering protein named RYC to circumvent likely functional 

redundancy among different 14-3-3 isoforms. Our results demonstrate that 

RYC can effectively sequester multiple 14-3-3 isoforms from plants and 

human. When expressed in guard cells of Arabidopsis, RYC sequestered 14-3-

3s away from H+-ATPases, thereby inducing stomatal closure, which in turn 

increased drought tolerance of transgenic Arabidopsis. When expressed in 

powdery-mildew-invaded cells, RYC abrogated RPW8.2-mediared resistance 

to powdery mildew, yet did not grossly affect its EHM-specific localization, 

suggesting that the C-terminus of RPW8.2 may exert a self-inhibition function 

which can be relieved when 14-3-3λ binds to the C-terminus during fungal 

infection. Taken together, our results lead to a better understanding of the 

molecular mechanisms regulating RPW8.2. 
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Chapter 1 Introduction 

Food Security 

The world population is expected to reach almost 10 billion in 2050 putting 

increased strain on planetary resources (United Nations Department of Economic and 

Social Affairs Population Division (2017), 2017).  Hence, food security has become a 

greater global challenge. Today, one billion people are estimated to be malnourished, 

and widespread dependence on single crops like cassava and rice especially in 

developing countries increases a population’s susceptibility to losses (Fletcher et al., 

2006). This is in part because plants are not only food for humans; they’re also meals 

for all kinds of microorganisms from every kingdom including viruses, bacteria, 

oomycetes, nematodes and fungi that have evolved to attack and/or co-survive with 

plants. In the United States alone, an estimated 50,000 pathogens attack plants and 

account for 10-15% of crop losses (Fletcher et al., 2006; Madden, 2001; Madden & 

Wheelis, 2003). Increasing temperature changes and climate disruption may increase 

susceptibility as spatial and temporal disruptions aid the development of some 

pathogens (Rosenzweig, 2001).  

Historically, there are numerous examples of large-scale crop destruction by 

aggressive pathogens. The potato late blight disease caused by Phytophthora 

infestans devastated potato crops in 1845 in Ireland, triggering the Great Famine 

(Saville et al., 2016). This oomycete pathogen still troubles potato production around 
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the world today (Fry et al., 2015). The chestnut blight fungus, Cryphonectria 

parasitica, destroyed ~4 billion American chestnut trees in the first half of the 20th 

century after its introduction to the US in 1904 (Grunwald, 2012). Ug99, a new 

aggressive strain of wheat stem rust fungus (Puccinia graminis f. sp. tritici) capable 

of overcoming resistance of most commercial cultivars, has spread from Africa to the 

Middle East and parts of South Asia, posing serious threat to global wheat production 

(Singh et al., 2011, 2015). The most recent example is the citrus greening disease 

caused by Candidatus liberbacter asiaticus, an intracellular bacterial pathogen. This 

disease has rapidly spread to most citrus orchards in Florida and is now seriously 

affecting the citrus industry in Florida (da Graça et al., 2016; Manjunath, Halbert, 

Ramadugu, Webb, & Lee, 2008). The above examples demonstrate the importance of 

pathogen detection, disease spread and control, and particularly the understanding of 

the mechanisms of host resistance and pathogenesis in order to better protect crop 

plants against various pathogens. 

 Plants are sessile; they cannot run away from their invaders, and unlike 

animals, they lack an adaptive immune system. Consequently, every plant cell has to 

rely on its own activation of defense to fight against pathogen invasion. Yet, in nature 

despite the presence of a myriad of microorganisms, most plants are resistant to most 

potential pathogens. This is because, apart from preformed physical barriers such as 

the rigid cell wall, the cuticle epidermis, and leaf hairs (trichomes) (Hülskamp, 2004; 

Malinovsky, Fangel, & Willats, 2014; Serrano, Coluccia, Torres, L’Haridon, & 

Métraux, 2014), plants have evolved a robust innate immune system to effectively 
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protect themselves from attack by the vast majority of potential pathogens. The innate 

immune system of plants consists of two layers that are evolutionarily interrelated and 

mechanistically interconnected (Chisholm, Coaker, Day, & Staskawicz, 2006a; Jones 

& Dangl, 2006; Nürnberger, Brunner, Kemmerling, & Piater, 2004). The first layer is 

called PAMP-triggered immunity (PTI), which is activated upon perception of 

conserved pathogen molecules by plant cell-surface localized pattern recognition 

receptors; The second layer is called effector-triggered immunity (ETI), which is 

activated when pathogen effectors are recognized by plant intracellular immune 

receptors. 

PAMP-Triggered Immunity (PTI) and Effector-Triggered Immunity 

(ETI) 

As briefly mentioned above, instead of trying to avoid provoking PTI by 

mutating conserved PAMPs (which often results in fitness cost), most pathogens 

secrete effector proteins into the host cells and use them to interfere with and disrupt 

PTI, and subsequently establish ETS (Janjusevic, Abramovitch, Martin, & Stebbins, 

2006; Xiang et al., 2008) (Chisholm et al., 2006) (Jones and Dangl, 2006). To protect 

themselves against such adapted pathogens, plants have evolved intracellular immune 

receptors often called resistance (R) proteins that contain a nucleotide-binding site 

(NB) and leucine rich-repeats (LRRs) to detect the presence or virulence activity of 

specific pathogen effectors. This specific recognition activates the R protein and then 

a conserved SA-dependent downstream signaling pathway leading to defense gene 
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expression and in most cases the hypersensitive response (HR) (Cui et al., 2015; 

Harris et al., 2015).  This so-called effector-triggered immunity (ETI) is 

mechanistically connected to PTI with some key signaling components being engaged 

in both layers of defenses(Bigeard, Colcombet, & Hirt, 2015; Y. Kim et al., 2014; 

Tsuda, Sato, Glazebrook, Cohen, & Katagiri, 2008). and to some extent 

mechanistically resembles the innate immunity activated by animal NB-LRR receptor 

(NLR) proteins upon recognition of intracellular PAMPs (Lukasik & Takken, 2009; 

van Ooijen et al., 2008). Though the structure for any full-length plant NB-LRR R 

protein has yet to be resolved, the LRRs of NLRs located at the C-terminus of are 

believed to have ideal characteristics for ligand-specific binding. LRRs’ slender 

conformation maximizes surface area and their bent shape mediates flexible binding; 

Such structural properties confer LRRs the capacity to tolerate high levels of 

variability (Padmanabhan, Cournoyer, & Dinesh-Kumar, 2009). For historical 

reasons, an effector known to be recognized by a cognate NLR R protein is termed 

avirulent factor (Avr). R-Avr recognition occurs at the top of the ETI signaling 

cascade and this step is subjected to natural selection in pathogens for evading 

recognition and in plants for regaining recognition, resulting in the host-pathogen 

arms-race (Maor & Shirasu, 2005; Ravensdale, Nemri, Thrall, Ellis, & Dodds, 2011; 

Tiffin & Moeller, 2006; Yunzeng Zhang et al., 2015). The evolutionary struggle can 

be represented by a zigzag model of immunity (Jones and Dangl, 2006) (Figure 

1-1A). 
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Figure 1-1 Models of PTI and ETI in Plants 

(A) Four phases of plant-pathogen co-evolutionary interaction. In phase 1, plants evolved 

PRRs to detect pattern associated molecular patterns (PAMPs) (diamonds). PAMP-triggered 

immunity (PTI) effectuates plant resistance. In phase 2, pathogens evolved effectors (red 
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circle) which act to subvert PTI. This results in effector-triggered susceptibility (ETS). In 

phase 3, plants evolve resistance (R) proteins which interact directly or indirectly with 

effectors (Avr once identified), leading to effector-triggered immunity (ETI) that is often 

accompanied by hypersensitive response (HR). In phase 4, pathogens mutate the recognized 

effectors (blue circles) thereby escaping detection and subverting ETI. Figure modified from 

(Jones & Dangl, 2006). (B) Bacteria like Pseudomonas syringae possess PAMPs like 

flagellin and EF-Tu (pink and purple shapes) that are detectable by pattern recognition 

receptors (PRR)s. A PRR recognizing a PAMP like flagellin associates with protein BAK1. 

Transphosphorylation of the PRR-BAK1 complex recruits BIK1 and other immune signaling 

distributors like MAP-kinases (MAPKs) and calcium-dependent protein kinases (CDPKs). 

Figure adapted from (Dodds & Rathjen, 2010a). 
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Based on this model depicted in Figure 1-1A, the amplitude of defense during 

ETI is higher than PTI and in most cases, the hypersensitive response (HR), i.e. 

programmed cell death (PCD) around the infection site ensues. ETI also often results 

in systemic defense signaling, leading to systemic acquired resistance (SAR) that 

protects plants from subsequent infection by a broad range of virulent pathogens 

(Dodds & Rathjen, 2010b; Jones & Dangl, 2006).  

Plant resistance from ETI is often race-specific (with a very narrow spectrum). 

Based on early genetic studies of plant-pathogen interactions, Flor proposed the 

“gene-for-gene” hypothesis which predicts that the product of a plant R gene 

functions as a receptor that specifically interacts and recognizes a ligand encoded by 

an Avr gene from the pathogen, triggering defense responses (Flor, 1971). However, 

experimental evidence for R-Avr direct interaction is the exception rather than the 

rule. The “gene-for-gene” hypothesis has been replaced by a more mechanistically 

accommodative theory called the “guard hypothesis”. According to the new model, 

pathogen effectors target and manipulate key host proteins for increased virulence. R 

proteins associate with host target proteins and activate defense when detecting a 

modification or perturbation of a “guarded” host protein, or “modified-self”. Thus, R 

proteins recognize cognate Avr proteins by detecting their virulence activity rather 

than their physical presence in the plant cells (Dangl & Jones, 2001; Van Der Biezen 

& Jones, 1998). The “guard hypothesis” has been supported by many studies where R 

and Avr do not show direct interaction but both are associated with a host protein 

(Axtell & Staskawicz, 2003; Mackey, Holt, Wiig, & Dangl, 2002; Ntoukakis, Saur, 



 

 

8 

 

Conlan, & Rathjen, 2014; F. Shao, 2003). This new hypothesis offers a more rational 

explanation for the phenomenon that plants with a limited number of R genes are 

capable of protecting themselves against numerous pathogens: this is because 

watching for modifications to only a limited number of key host proteins by various 

effectors reduces the number of R proteins required to adapt and respond to attacks 

from multiple pathogens each with a distinct repertoire of effectors.  

Plant NB-LRR R proteins belong to a superfamily that can be further divided 

into three sister subclasses based on their N-terminal domains. The first subclass 

possesses an N-terminal Toll and human interleukin receptor (TIR) domain. The 

second subclass possesses an N-terminal coiled-coil (CC) domain, and the third 

subclass contains a domain that shows homology to RPW8 (which is an atypical R 

protein identified in Arabidopsis; see later sections for details) (Zhong and Cheng, 

2016; Qian et al., 2017). Intriguingly, while these three subclasses of NB-LRR R 

genes are ancient and present in angiosperms, only the CC-NB-LRR subclass R genes 

are found in monocots (Marone, Russo, Laidò, De Leonardis, & Mastrangelo, 2013; 

McHale, Tan, Koehl, & Michelmore, 2006; Z.-Q. Shao et al., 2016). Functionally 

characterized NB-LRR proteins, regardless of subclasses, are able to activate immune 

responses, i.e. ETI, but their immediate downstream signaling is transduced via 

dichotomous pathways (Eitas & Dangl, 2010). While TIR-NB-LRR R proteins 

require EDS1 (a lipase-like protein; (Falk et al., 1999)) for downstream signaling, 

CC-NB-LRR R proteins require NDR1 (an integrin-like protein; (Falk et al., 1999)) 

for signal transmission (Aarts et al., 1998). The signaling events from both types of R 
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proteins converge at the step of elevated biosynthesis of SA and regulation by the 

downstream component NPR1 before leading to the same or similar defense response 

featured with expression of pathogenesis-related protein (PR) genes, oxidative burst, 

and ultimately, the HR (Glazebrook, 2001; Yan and Dong, 2014). Most R genes 

activate narrow-spectrum resistance to one or a few strains of a particular pathogen 

and their resistance can be overcome by pathogens in a relatively short period of time. 

Thus, R genes conveying broad-spectrum resistance against many different species of 

adapted pathogens are valuable (Büschges et al., 1997). 

The HR and SHL Responses 

The hypersensitive response (HR) is manifested during ETI in most cases. 

Although the HR is believed to create a physical barrier for plants to block further 

aggression of biotrophic pathogens (Staskawicz, Ausubel, Baker, Ellis, & Jones, 

1995) (Figure 1-3A), its precise role in defense signaling and plant resistance remains 

unclear. While the HR shares similar features of mammalian programmed cell death 

(PCD), it is probably mechanistically distinct from animal PCD, as caspases 

necessary for PCD in mammalian cells are dispensable for HR development (Coll, 

Epple, & Dangl, 2011). However, it was noted that in certain cases, caspase-like 

enzymes such as vacuolar processing enzymes were found to be involved in 

activating HR (Mur, Kenton, Lloyd, Ougham, & Prats, 2008; Rojo et al., 2004). It has 

also been established that both chloroplasts and mitochondria are critical to the 

production of reactive oxygen species like H2O2 and nitrous oxide during the HR 
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(Zago, 2006). Because the HR is often associated with activation of ETI, spontaneous 

HR-like cell death (SHL), or accelerated cell death (ACD), or lesion mimic cell death 

has been used as a visual marker for identification of mutations that either results in 

auto-activation of NB-LRR receptor proteins (Zhang et al., 2003) (Dong et al., 2016), 

or inappropriate functioning of ETI signaling components (Lorrain et al., 2003) (Yao 

and Greenberg, 2006) (Lu et al., 2003), leading to a better understanding of the 

molecular mechanisms regulating ETI . 

Protein Phosphorylation and Plant Immunity 

A single phosphate attached to a protein can change all properties of that 

protein (P. Cohen, 2000). A phosphate is covalently attached to a protein by a kinase 

at physiological pH; phosphatases evolved to remove this post translational 

modification (PTM). The presence or absence of a phosphate activates or inactivates, 

allows or disallows a protein’s location or functionality through surface charge 

augmentation (Karin & Hunter, 1995). Even though protein phosphorylation is one 

among ~200 protein modifications, its extraordinary evolutionary success especially 

in network signaling is in part attributed to its reversibility (Hunter, 2012; Milo & 

Phillips, 2016; Minguez et al., 2012; Pawson, 2004).  

Threonine, serine, and tyrosine and six other amino acids have the potential to 

be phosphorylated (Hunter, 2012). In plants and animals, amino acids serine and 

threonine are typically phosphorylated (Li et al., 2007; Lu et al., 2010), although 

recent studies are beginning to discover a greater abundance of tyrosine 
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phosphorylation in both kingdoms (Molina, Horn, Tang, Mathivanan, & Pandey, 

2007; Olsen et al., 2006; Sugiyama et al., 2007).  

Proteins can be quickly activated or deactivated in seconds to milliseconds via 

(de)phosphorylation (Humphrey, James, & Mann, 2017; Kennedy, 1983). Moreover, 

a protein's phosphostatus is reversible; and a network of proteins can be tuned, 

mitigated and switched off through phosophorylative changes to any of its members.  

These characteristics make phosphorylation a critical post-translational modification 

necessary for transducing a multitude of physiological signals including defense 

signals. Consequently, many immune-related proteins are phosphorylated in the 

course of PTI and ETI.  

Flagellin-sensitive 2 (FLS2) is a PRR that recognizes flagellin, a basic protein 

needed for assembling flagella. A 22-residue peptide, flg22, from flagellin is able to 

elicit an immune response (Gómez-Gómez & Boller, 2000). In as few as 20 minutes, 

cells respond to treatment and begin to alkalinize as a preemptive defense strategy. In 

fact, Navarro et al. (Navarro, 2004) estimate about 3% of 8200 Arabidopsis genes are 

transcriptionally altered upon flg22 introduction in suspension cultures leading to 

reactive oxygen species (ROS) production, alkalinization, and activation of mitogen-

activated protein (MAP) kinases (Felix, Duran, Volko, & Boller, 1999; Navarro et al., 

2004, 2004; T S Nühse, Peck, Hirt, & Boller, 2000).  

FLS2-initiated signaling depends on phosphorylation. After FLS2 binds the 

flg22 ligand it interacts with BAK1 (BRI-associated receptor kinase 1) in as little as 

15 seconds (Chinchilla, Zipfel, Robatzek, Kemmerling, Nürnberger, et al., 2007; 
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Schulze et al., 2010). The co-receptor BAK1 is also a LRR-RLK (J. Li et al., 2002; 

Nam & Li, 2002) that heterodimerizes with many other immune proteins (Antje 

Heese et al., 2007; Roux et al., 2011) and is itself regulated by phosphorylation 

(Schwessinger et al., 2011; X. Wang et al., 2008). The association with BAK1 causes 

both BAK1 and FLS2 to transphosphorylate, and is sufficient for a signaling complex 

to further regulate downstream immune proteins. BAK1 is shown to be critical for 

initiating PTI in the presence of biotrophic pathogens (Roux et al., 2011). 

Upon recognition of flagellin, activated FLS2 and BAK1 phosphorylate BIK1 

(BOTRYTIS-INDUCED KINASE 1), which links flg22 binding with downstream 

intracellular signaling (Lu et al., 2010b). BIK1 belongs to a family of receptor-like 

cytoplasmic kinases (RLCKs) that function downstream of different PRRs.  Recent 

studies have identified several additional RLCKs including PCRK1 , PBL1, PBL13, 

and PBL27 to be key signaling components downstream of PTI (Lin et al., 2015; 

Sreekanta et al., 2015; Kong et al., 2016; Yamada et al., 2016). Activated RLCKs 

appear to further phosphorylate downstream components such as specific 

MAPKKKs, resulting in activation of a MAPK phosphorylation cascade. This PRR-

RLCK-MAPK signaling module seems to be highly conserved in different plant 

species and perhaps across plant and animal kingdoms (Yamada et al., 2017)(Couto 

and Zipfel, 2016).  

 Not only are PTI proteins the instigators of downstream phosphorylation, NB-

LRR R-proteins interacting with effectors are also regulated by phosphorylation. The 

NB-LRR protein RPM1 “guards” RPM1-INTERACTING PROTEIN4 (RIN4) 
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targeted by Pseudomonas syringae effectors AvrB and AvrRpm1. Interestingly, RIN4 

is hyperphosphorylated in the presence of AvrB and AvrRpm1 (Chisholm, Coaker, 

Day, & Staskawicz, 2006b; Mackey et al., 2002). This modified state of RIN4 

activates RPM1, which triggers plant resistance (Boyes, Nam, & Dangl, 1998).  

PTI and ETI associated phosphorylation eventually leads to the 

phosphorylation of WRKY transcription factor (TF) proteins. The WRKY TF family 

consists of 74 members in Arabidopsis (Eulgem & Somssich, 2007) and some contain 

at least one DNA-binding domain which binds to the W-box in the promoters of 

defense related genes and initiate transcription of these gene during PTI and ETI. 

Several WRKYs have been confirmed to contain a conserved motif known as the “D” 

motif, which is a site for phosphorylation by MAP kinases (C. Y. Kim & Zhang, 

2004; Popescu et al., 2009).  

 

14-3-3 Proteins Play a Role in Immunity 

14-3-3 proteins are conserved, eukaryotic proteins that interact with typically-

phosphorylated proteins involved in diverse cellular networks (Dreze et al., 2011). 

14-3-3s have been implicated in  the regulation of plant immunity (Oh & others, 

2010). For example, 14-3-3ω seems to associate with BAK1 and 7 WRKY TFs (I.-F. 

Chang et al., 2009). Tomato 14-3-3 protein 7 positively regulates immunity-

associated programmed cell death by enhancing protein abundance and signaling 

ability of a MAPKKK (Oh et al., 2010; Oh and Martin, 2011). A rice 14-3-3 protein 

OsGF14e positively regulates panicle blast resistance in rice (Liu et al., 2016). Not 
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surprisingly, 14-3-3s have been shown to be host proteins targeted by pathogen 

effectors for interfering with plant defense activation and increased virulence. For 

instance, Pseudomonas syringae Effector HopQ1 interacts with 14-3-3 proteins for its 

subcellular localization and stability in the host cells (W. Li, Yadeta, Elmore, & 

Coaker, 2013). HopM1, another P. syringae effector, binds 14-3-3k from Arabidopsis 

to suppresses stomatal closure and ROS production (Lozano-Durán, Bourdais, He, & 

Robatzek, 2014). 

Powdery Mildew 

Powdery mildew (PM) fungi as a pathogen group make the list of the top 10 

fungal pathogens based on science and economic importance (Dean et al., 2012). 

Nine-hundred species of PM exist in sixteen genera (Takamatsu, 2013). PM is one of 

the most common diseases of crops caused by Ascomycete fungi in the order of 

Erysiphales (Göllner, Schweizer, Bai, & Panstruga, 2008). The PM disease reduces 

yield and quality of agronomically-important crops like wheat and barley and various 

vegetable and fruit crops such as tomato, cucumber, strawberry and grape. 

Ornamental crops like roses and crape myrtle are also susceptible. PM fungi are a 

ecto-parasitic, obligate biotrophs, strictly requiring living hosts to complete their life 

cycle (Takamatsu, 2013) (Figure 1-2A). White, dust-like mycelia of any PM fungus 

develop on the leaves, stems, flowers and fruits of their hosts, thus earning ‘powdery 

mildew’ its name. PM pathogens do not kill their host, but they steal nutrients from 

host cells causing impaired growth and development of infected plants.  
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Figure 1-2 Powdery Mildew Phylogeny and Characteristics 

(A) Golovinomyces cichoracearum is one of the causal agents of powdery mildew. 900 

species of powdery mildew exist in 16 genera. G. cichoracearum can colonize Arabidopsis, 

cucurbits, and many other dicot plants. Not all members are ecto-parasitic. A 
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monophylogenetic clade evolved endo-parasitism (blue arrow). Figure adapted from 

(Takamatsu, 2013). (B) Within an hour a conidium (spore) landing on a suitable surface 

begins growing a primary germ tube. From this germ tube extends a specialized hypha, the 

appressorium. Figure adapted from (Zeigler, Leong, & Teng, 1994). (C) Powdery mildews 

have both sexual and asexual lifestyles. Powdery mildew propagation and host colonization 

can be completed by conidia as a result of conidiogenesis in the asexual cycle. To overwinter, 

powdery mildew may produce sexual spores in a fruiting body, cleistothecium. Here, haploid 

cells fuse (karyogamy) to form diploid cells. Diploid cells in an ascus undergo meiosis to 

form haploid ascospores which germinate on a suitable host forming appressoria and 

haustoria. Figure from (Schumann, 1991). 

 
 
  



 

 

17 

 

Life Cycle of Powdery Mildew 

Powdery mildew has both a sexual and asexual life cycle. The sexual cycle 

produces ascocarps (cleistothecia), or fruiting bodies, which contain asci and 

ascospores (Figure 1-2C). This cycle is initiated late in the growing season as 

ascospores are resistant to drought and low temperatures in the winter. The asexual 

cycle produces conidia, or asexual, ovoid spores about 40μm in length. Successful 

sporulation and growth of the fungus generates more conidia. A square millimeter on 

a leaf surface containing successfully growing powdery mildew can generate tens of 

thousands of conidia usually with a few days of establishment. A single colony can 

generate 200,000 conidia (Z. Zhang et al., 2005). The exponential growth of conidia 

can lead to area epidemics (Pscheidt, 2015).  

A conidium begins to grow a primary germ tube 30-180 minutes after landing, 

usually aerially, on a potential host (Wright, Thomas, & Carver, 2002). After 10 

hours the primary germ tube forms an appressorium which penetrates the cuticle and 

cell wall with a penetration peg (Edwards, 2002) (Figure 1-2B). The penetration peg 

is a specialized hypha capable of puncturing and rupturing the cell wall and cuticle 

barriers of a plant cell probably through a combination of enzymatic and mechanical 

methods like lytic enzymes and turgor pressure (PRYCE-JONES, CARVER, & 

GURR, 1999). The plant resists penetration with the papilla, or an apoplastic, 

callosic-cell wall buildup (apposition), around the penetration site (WR Bushnell & 

Bergquist, 1975). Successfully avoiding or burrowing through the papilla, the 

penetration peg swells and differentiates to form a bulb-like feeding structure called 



 

 

18 

 

the haustorium. The haustorium is a fungal feeding appendage uptaking and 

transporting host nutrients to the fungus. 

The Haustorium 

Pre-invasion resistance strategies like the plant wall and cell-wall appositions 

are sufficient for warding off non-host pathogens. For an adapted PM fungus such as 

Golovinomyces cichoracearum on Arabidopsis, it can avoid or suppress the defensive 

mechanisms of its hosts and develop a functional haustorium. The role of the 

haustorium in establishing pathogen-host interactions includes secreting effector into 

the host cell to subvert host defenses and direct nutrient flow to the fungus. Despite 

its critical importance for successful fungal pathogenesis, the haustorium is still a 

poorly understood, enigmatic feature of host-pathogen tête-à-tête (WR Bushnell, 

2002)(O’Connell & Panstruga, 2006).  
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Figure 1-3 RPW8-Mediated HR and RPW8.2’s Specific Localization to the EHM 

(A) The hypersensitive response (HR) (white arrows) is often an ETI response to PM 

pathogens and is typically characterized by lesions indicating local fungus-induced cell death. 

(B) The RPW8 locus from Arabidiopsis accession “MS-0” contains two genes, tandemly 

located, RPW8.1 and RPW8.2. (C) RPW8.2 is predicted to contain a putative transmembrane 

domain (TM) at the C-terminus and two coiled-coils. (D) When expressed by the native 

promoter, RPW8.2 in fusion with YFP at the C-terminus localizes to the extra-haustorial 
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membrane (EHM). (E) A haustorial complex stained with lipophilic FM4-64 dye shows the 

haustorium (H), nucleus (Nu), extra-haustorial matrix (EHX), extra-haustorial membrane 

(EHM), and fungal plasma membrane (PMF). The narrow neckband delineated with white 

arrows. The EHM can also be observed in the YFP-channel due to localization of RPW8.2-

YFP (white arrowhead). (F) Another image showing an FM4-64 stained haustorial complex 

with an encasement of the haustorial complex (EHC). Note, two immature conidia attached to 

a conidiophores are visible on the right.  Scale bars = 20μm.  
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The PM haustorium is a specialized fungal cell that maintain its own nucleus, 

cell wall, mitochondria and organelles (William. Bushnell, 2012; Coffey, Palevitz, & 

Allen, 1972) and is both a dock and a launching pad. Transporters and H+-ATPases 

dock here to import plant-derived glucose and nutrients (Voegele, Struck, Hahn, & 

Mendgen, 2001b). Effector proteins are launched from the haustorium across the 

EHM---the host-pathogen interface, targeting immune-related proteins (Petre & 

Kamoun, 2014; Whisson et al., 2007). Thus, the haustorium is a biological hive of 

activity, each action and interaction impacting fitness. With the development of 

functional haustoria, rapid conidiogenesis typically occurs within 3-7 days in a fungal 

network indicating successful colonization (WR Bushnell, 2002). 

Similar to the interaction between plants and other pathogens, to fight against 

PM invasion, any given plant host has evolved both pre- and post-invasion resistance 

strategies to stop the fungal penetration and /or restrict the fungal growth, 

respectively (Thordal-Christensen, 2003). Adapted PM fungi overcome PTI and are 

able to establish functional haustoria, leading to successful colonization. In response, 

host plants employ post-invasive resistance strategies most likely in the form of ETI 

to constrain the haustorium (W. Wang, Wen, Berkey, & Xiao, 2009; Wen et al., 

2011). Thus, concerning host defense, the haustorium is the Achilles Heel of the PM 

fungi because for most PM fungi the haustorium is the only fungal structure in the 

host cells.  
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The Extra-Haustorial Membrane 

Microscopic examinations reveal that the PM haustorium is surrounded by an 

interfacial membrane called the extra-haustorial membrane (EHM) (Gil, F., Gay, 

1977; C. O. Micali, Neumann, Grunewald, Panstruga, & O’Connell, 2011). The EHM 

provenance is unknown. Two models of biosynthesis are proposed by Koh et al. 

(Koh, André, Edwards, Ehrhardt, & Somerville, 2005). First, the membrane may be 

derived from invagination of the plasma membrane at the time of haustoria formation. 

Gradually, the membrane is changed and modified through exocytosis and 

microdomain augmentation (Assaad, 2004). Second, the membrane may result from 

de novo synthesis instantiated through EHM-specific vesicles. The second mode 

explains the unique molecular feature of the EHM, which is unlike the PM (C. O. 

Micali et al., 2011; O’Connell & Panstruga, 2006). Recent evidence supports a de 

novo synthesis model for the EHM (Berkey et al., 2017). The extracellular space 

between the haustorial cell wall and the EHM is the extra-haustorial matrix (EHX). 

Collectively, the EHM, EHX and the haustorium comprise the haustorial complex.  

It is believed that molecular exchange must occur across the EHX, as recent 

transmission electron microscopy images showed that the EHX was filled with plant-

derived vesicles in a plasm of plant cell wall polymers and membrane-bound, fungal-

derived vesicles (C. O. Micali et al., 2011). With each organism attempting to gain an 

advantage over the other, the EHM and the EHX as the host-pathogen interface serves 

as the critical battleground of bioactivity. Unfortunately, despite the high importance 

of the host-pathogen interface to the success of the host's defense and the pathogen's 
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pathogenesis, very little is known about the molecular interactions. and the origin and 

biogenesis of the EHM.  

RPW8.1 and RPW8.2 are Unique Resistance Proteins 

  Aiming to understand how plants fight against haustorium-forming 

pathogens, Xiao et al. identified a gene locus in Arabidopsis thaliana accession Ms-0 

that confers resistance to multiple powdery mildew isolates belonging to four 

different PM species (S Xiao et al., 2001). This locus contains two functional, 

tandemly-located genes named Resistance to Powdery Mildew (RPW)8.1 and 

RPW8.2. Both RPW8.1 and RPW8.2 are predicted to encode small (~20kDa), basic 

proteins containing a possible N-terminus transmembrane domain (TMD) and two 

coiled-coil domains (Xiao et al., 2001). While RPW8.1 and RPW8.2 are dissimilar to 

other R-proteins in that the they confers broad-spectrum, rather than race-specific, 

resistance to powdery mildew pathogens, they are similar to R-proteins in two ways: 

1) they activate defense via the conserved salicylic acid (SA)-dependent signaling 

pathway, and 2) their expression is linked to hypersensitive (HR) cell death at the site 

of pathogen invasion (Shunyuan Xiao et al., 2005)(Xiao et al., 2001). Intriguingly, 

RPW8.1 and RPW8.2 show homology to the N-terminal domain of one subclass of 

NB-LRRs (Collier et al., 2011), raising the possibility of its evolution through gene 

fission of R8-NB-LRR (Zhong and Cheng, 2016). 

Transgenic plants expressing RPW8.1 and RPW8.2 display typical HR at 3-4 

days post-inoculation (dpi) with powdery mildew (S Xiao et al., 2001; Shunyuan 
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Xiao, Brown, Patrick, Brearley, & Turner, 2003). Despite being an atypical R 

proteins in terms of protein structure, RWP8.1 and RPW8.2 activate defense and the 

HR via the EDS1- and SA-dependent pathway (Xiao et al., 2005). When 

overexpressed from their native promoters, RPW8.1 and RPW8.2 are capable of 

activating spontaneous HR-like (SHL) cell death (Shunyuan Xiao, Brown, et al., 

2003), so are some RPW8.2 mutants (W. Wang et al., 2013).  

Interestingly, expression of both RPW8.1 and RPW8.2 has recently been 

shown to be positively upregulated by PTI (Y. Li et al., 2017; W. Wang et al., 2009). 

In addition to rendering resistance to powdery mildew and oomycete pathogens in 

Arabidopsis (X. F. Ma et al., 2014), RPW8.1 was recently shown to also respond to 

bacterial pathogens as its expression was correlated with PTI signaling in the 

presence of bacterial pathogens Pseudomonas syringae in Arabidopsis and 

Xanthomonas oryzae pv. oryzae in rice (Y. Li et al., 2017). RPW8.1 localizes to the 

chloroplast in mesophyll cells (Y. Li et al., 2017; X. F. Ma et al., 2014). Because the 

chloroplast plays an important role in the HR (Zago, 2006), the association of 

RPW8.1 with the chloroplast and its localization in puncta bodies near the chloroplast 

may serve to prime and activate defense responses via a connection with an unknown 

regulator (Y. Li et al., 2017).  

RPW8.2 is Localized to the Plant-Pathogen Interface 

How RPW8.2 functions to confer resistance to PM fungi has been a research 

focus in the Xiao laboratory for the past 10 years. Interestingly, a fusion of RPW8.2 
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with yellow fluorescent protein YFP “RPW8.2-YFP” is specifically targeted to the 

EHM within 16-20 hours after inoculation (W. Wang et al., 2009) (Figure 1-3B-F). 

Additional analysis discovered that the localization of RPW8.2-YFP at the EHM 

correlates with two haustorium-directed defenses: the formation of a cell wall-like 

callosic encasement of the haustorial complex (EHC) and the accumulation of H2O2 

in the host-pathogen interface.(W. Wang et al., 2009). These results provide a 

physical explanation for the broad-spectrum nature of RPW8-mediated mildew 

resistance. However, how RPW8.2 is specifically targeted to the EHM and how it 

activates haustorium-targeted defenses is still unknown. Revealing RPW8.2-

interacting partners may provide a clue to its molecular function and highly specific 

localization to the EHM.  

RPW8.2 Might Be Regulated by Phosphorylation and 14-3-3s 

To understand how RPW8.2 functions to activate haustorium-targeted 

defense, a previous yeast-two-hybrid screen identified two RPW8.2-interacting 

proteins, a protein phosphatase type 2C (PAPP2C) and 14-3-3λ. Genetic analyses 

indicate that RPW8.2 is negatively regulated by PAPP2C (Wang et al., 2012), while 

positively regulated by 14-3-3λ (Yang et al., 2009). Additionally, genetic evidence 

suggests that RPW8.2 is negatively regulated by EDR1, a putative MAPKK kinase. 

Given that 14-3-3s often interact with phosphorylated proteins, these early protein-

protein interaction studies suggest that RPW8.2 is regulated by (de)phosphorylation 
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and 14-3-3s. However, the physiological relevance of these interactions vis-à-vis 

RPW8.2 functionality remains elusive.  

The goals of my thesis project are to (1) determine if RPW8.2 is indeed 

regulated by (de)phosphorylation, and to test putative phosphatase and kinase 

interacting proteins. (2) Elucidate the mechanisms by which 14-3-3λ regulates 

RPW8.2’s defense and/or EHM-specific localization.  
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Chapter 2 RPW8.2 Regulation by Phosphorylation 
 

Introduction 

Phosphorylation is a critical post-translational modification (PTM) of proteins 

in response to environmental stimuli. The phosphate group acts like a molecular 

switch endowing proteins new functionality or inactivating their functionality. 

Proteins can also be phosphorylated in multiple sites providing greater flexibility and 

regulation for kinases, which are proteins that phosphorylate, and phosphatases, 

which are proteins that dephosphorylate (Hunter, 1995).  

Plant immune proteins need to be quickly activated, responsive and tunable. 

Consequently, the phosphorylation of plant immune proteins is essential, and is the 

most common PTM in signal transduction. For example, in Arabidiopsis cell cultures, 

the introduction of xylanase and flg22 caused 472 proteins to be phosphorylated 

creating 1,168 phosphopeptides (Joris J. Benschop et al., 2007).  

Pattern recognition receptors (PRRs) respond to conserved pathogen 

morphologies like flagella and chitin on potential pathogens. Recognition of 

pathogen-associated molecular patterns (PAMPs) by PRRs activates an innate layer 

of immunity, PAMP-triggered immunity (PTI) (Schwessinger & Ronald, 2012). 

Other receptor-like kinases (RLKs) interact with PRRs and relay signals typically 

through phosphorylative means. Reactive oxygen species and other defensive 

measures can be generated by plants in response to PTI (Segonzac & Zipfel, 2011).  
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PTI-related proteins are phosphorylated. For instance, two PRRs, flagellin 

sensitive 2 (FLS2) (AT5G46330) and chitin elicitor receptor kinase 1 (CERK1) 

(AT3G21630) become phosphorylated in response to bacterial flagellin and fungal 

chitin, respectively (Wan et al., 2008; Zipfel, 2009). FLS2 perceives flagellin or 

flagellin-peptide, flg22, and oligomerizes with BAK1. This complex is 

transphosphorylated by BIK1 which is itself activated via phosphorylation at T237 

(Lu et al., 2010a). Flg22 activates MAPK cascades but BIK1’s role in this is currently 

unknown (Asai et al., 2002a; Meng & Zhang, 2013).  

Insect exoskeletons, crustacean shells and fungal cell walls contain chitin, a 

polymer of N-acetyl-D-glucosamine. In Arabidopsis chitin is detected by PRR 

CERK1 (Miya et al., 2007; Wan et al., 2008). CERK1 contains a lysine motif 

(LysM), a subfamily of receptor-like kinases, that interacts with chitin, dimerizes and 

phosphorylates (Liu et al., 2012; Petutschnig, Jones, Serazetdinova, Lipka, & Lipka, 

2010). Phosphorylated CERK1 feeds into the MAPK cascade by phosphorylating 

MAPKKK5 via PBL27 to activate disease resistance (Yamada et al., 2016). 

Golovinomyces cichoracearum strain UCSC1 (Gc UCSC1) is one of four 

powdery mildew fungi that can evade PTI and have successfully adapted Arabidopsis 

as a host (C. Micali, Göllner, Humphry, Consonni, & Panstruga, 2008; W. Wang et 

al., 2009; S Xiao et al., 2001). Colonization includes epidermal-cell insertion of a 

penetrating specialized hypha that develops into a parasitic organelle called the 

haustorium (Gil, F., Gay, 1977). The haustorium is a unicellular body that diverts to 
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itself host cell nutrients and glucose through its panoply of transporters (Voegele, 

Struck, Hahn, & Mendgen, 2001a).  

Although pre-invasion strategies are largely ineffective against Gc UCSC1, 

post-invasion strategies like effector-triggered immunity (ETI) are successful for 

some Arabidopsis ecotypes like MS-0 (Orgil, Araki, Tangchaiburana, Berkey, & 

Xiao, 2007). A broad-spectrum powdery-mildew resistant locus, RPW8, was isolated 

from this ecotype (S Xiao et al., 2001). One of these two proteins, RPW8.2, encoded 

by the two tandemly linked homologous genes in this locus, is an atypical resistance 

protein because it does not possess a canonical leucine rich repeat but instead 

possesses two coiled-coils and a transmembrane domain (Göllner et al., 2008; W. 

Wang et al., 2009; Shunyuan Xiao et al., 2005). RPW8.2 localizes to a membrane 

separating the haustorium from the plant cytoplasm, the extra-haustorial membrane 

(EHM). The ectopic expression of RPW8.2 increases Arabidopsis post-invasive 

resistance via generation and accumulation of H2O2 in the haustorium-complex and 

formation of the encasement of the haustorial complex (W. Wang et al., 2009). 

However, how RPW8.2 is activated and regulated to induce these defenses is 

unknown. This work explores the possibility of phosphorylation as a PTM essential 

for RPW8.2 functionality. 

Evolutionary Data Suggests T64 May be Phosphorylated 

The RPW8 locus confers broad-spectrum resistance to powdery mildew 

species (Göllner et al., 2008; Jorgensen & Emerson, 2008; S Xiao et al., 2001). The 
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locus contains two homologous genes, RPW8.1 and RPW8.2, both of which act acts 

in a dominant or semi-dominant manner and are highly polymorphic among different 

Arabidopsis accessions (Xiao et al., 2001; Orgil et al. 2007). Analysis of intraspecific 

allelic polymorphism revealed that two sites, i.e. amino acid positions 64 and 116, in 

RPW8.2 from 51 different Arabidopsis accessions are statistically associated with 

resistance to Gc UCSC1 an adapted powdery mildew pathogen (Figure 2-1) (Orgil et 

al., 2007).  
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Figure 2-1 Allelic Diversity of RPW8.2 in Ten Arabidopsis Ecotypes and 
Resistance to Powdery Mildew 

Orgil et al.(Orgil et al., 2007) surveyed 51 Arabidopsis ecotypes. In this modified 

figure, nine of ten Arabidopsis ecotypes show resistance(R). Can-0 displays intermediate 

resistance (I) with two polymorphisms at positions 190 and 475. Dots indicate identical 

nucleotides and dashes represent gaps. Intronic substitutions are shaded. Vertically-written 

numbers at the top indicate the nucleotide position relative to the start codon of the Ms-0 

allele. Amino acid replacements caused by nucleotide substitutions are indicated at the 

bottom. Arrowheads depict significant nonsynonymous substitutions statistically correlated 

with disease resistance phenotype. “Accession” is the Arabidopsis ecotype and protein 

category groups polymorphic proteins according to the most closely related protein. For 

instance, the RPW8.2 amino acid sequence in accession “Ei-5” is most closely related to the 

RPW8.2 sequence from MS-0. Thus, this is one group, the first group labeled “(1)”. 

The two T64S and D116G substitutions are found in 34 Arabidopsis 

accessions of which 27 displayed intermediate resistance or susceptibility compared 

to the resistant accession Ms-0 from which the RPW8 locus was characterized (Orgil 

et al., 2007). The mutation from threonine to serine at residue 64 suggests the 

increased susceptibility may result from inhibition or augmentation of 

phosphorylation at site T64.  
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Results 

Expression of RPW8.2T64S accelerate spontaneous HR-like cell death (SHL)  

To assess if the T64S substitution indeed is important for RPW8.2’s 

functionality both in terms of defense activation and protein localization, RPW8.2 

alleles carrying a T64A, T64E or T64S substitution were fused with YFP at the C-

terminus, and the fusion genes were expressed from the RPW8.2 native promoter in 

Col-0, a mildew-susceptible accession in which the RPW8 locus is absent (Xiao et al., 

2001). Because alanine is never phosphorylated it is frequently used to test a putative 

phosphorylation site (Sun, Enslen, Myung, & Maurer, 1994; Traenckner et al., 1995). 

Serine is phosphorylatable but at this position may not be modified due to 

nonrecognition by its cognate kinase. Glutamate is a phosphomimetic and closely 

mimics the structure and charge at neutral pH (Dephoure, Gould, Gygi, & Kellogg, 

2013). 

A population of T1 transgenic lines for each of the RPW8.2 variant alleles, 

along with the wild-type (wt) allele (from accession Ms-0) were phenotypically 

examined. First, spontaneous HR-like lesions (SHL), which indicates constitutive 

defense activation, were found in ~2.4% of T1 lines expressing the RPW8.2 wt allele; 

by contrast, 37% and 47% of T1 lines respectively expressing RPW8.2T64S and 

RPW8.2T64A, were found to have developed SHL (Table 1). This result indicates that 

RPW8.2T64S has similar functional consequence as RPW8.2T64A, implying that serine 
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at T64 cannot be phosphorylated. This is in an agreement with the prediction from 

NetPhos2 (see later text). 
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Table 1 Resistance and Cell Death Phenotypes for Four RPW8.2 Mutants 
Compared to Wildtype 

 
 

Consistent with this, only 11% of T1 lines expressing RPW8.2T64E showed SHL. 

Combined, these results suggest that phosphorylation at T64 may negatively regulate 

RPW8.2’s function in activating defense and cell death in the absence of any 

pathogen and that the RPW8.2T64S substitution probably abolishes this capacity. 

Second, the same T1 populations were inoculated with spores of Gc UCSC1, and 

examined for the development of hypersensitive response (HR) and resistance (R) 

(Figure 2-2A-D). The HR is a defense response manifested as localized programmed 

cell death at the site of infection that may prevent spread of the pathogen and is 

therefore often correlated with resistance to pathogens (Coll et al., 2011)(Hammond-

Kosack & Jones, 1997).  

RPW8-mediated resistance to powdery mildew features with a typical HR that 

is preceded by production and accumulation of ROS (such as H2O2) in the invaded 

epidermal cells (Xiao et al., 2003, 2005). Interestingly, the frequency of HR and 

resistance in the T1 lines expressing each of the four RPW8.2 alleles correlated that of 
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the SHL (Table 1, Figure 2A-D), supporting the speculation about the functional 

consequences of the three substitutions at the T64 site.  

Mutations at T64 did not change the localization pattern of RPW8.2. Similar 

to wildtype, all T64 mutant proteins were found be correctly targeted to the EHM. 

YFP-expressed leaves were included as susceptible controls, which showed no signs 

of HR or resistance. HR is twice as frequently observed in RPW8.2T64A and 

RPW8.2T64S T1 lines compared to WT and the phosphomimetic RPW8.2T64E (Figure 

2-2E). Phenotypic data from plants expressing RPW8.2D116G are included in the figure 

as a susceptible comparison. Microscopically, HR manifests as autofluorescing foci 

as shown here with a representative sample from plants-expressing RPW8.2T64A 

(Figure 2-2F)(Yu, Parker, & Bent, 1998).  

Taken together, the genetic and phenotypic data suggest the threonine at 

position 64 is phosphorylated and this phosphorylation is important for resistance vis-

à-vis powdery mildew, consistent with the inference from a previous study on the 

intraspecific polymorphism at RPW8.2 (Orgil et al., 2007).  
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Figure 2-2 Increased Hypersensitive Response in Three RPW8.2 T64 Mutants 

(A) Resistant RPW8.2 wildtype leaves display HR (white arrowheads) 7 days post 

inoculation (dpi) with Gc UCSC1. Leaves expressing RPW8.2wt are resistant (R) to Gc 

UCSC1, but leaves expressing YFP show susceptibility. The localization of YFP-tagged 

RPW8.2 is to the plant-haustoria interface, the EHM. (B-D) Plants expressing RPW8.2T64A, 

RPW8.2T64E, or RPW8.2T64S also show HR and necrotic cell death (red arrowheads) and 

appear mostly resistant to Gc UCSC1 similar to wildtype. All mutant proteins were correctly 

targeted to the EHM, as shown by a representative confocal image concerning the 

localization of RPW8.2T64S in cells invaded by haustoria stained by propidium iodide (PI) 

7dpi after inoculation. These percentages include plants identified with SHL in Figure 2-3 
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wildtype and phosphomimetic T64E mutants. (E) Table 1 data in columnar form displaying R 

and HR in T1 lines. (F) Merged fluorescence in two filters (rhodamine and FITC) is used to 

verify autofluorescence indicative of cell death in leaves expressing RPW8.2T64A. Scale bar 

distances indicated in each figure.  
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Figure 2-3 Three RPW8.2 T64 Mutants Show Increased SHL 

(A) SHL lesions (white arrowheads), an indication of protein toxicity, are evident on leaves 

of unchallenged plants. SHL is observed in RPW8.2 wildtype and mutant plants. Red arrows 

indicate necrotic cell death in mutants T64A and T64S. Both of these mutants display the 

SHL-phenotype with greater frequency in T1 populations. (B) The percentage of plants 

displaying SHL in the T1 generation, which are a visual presentation of the data shown in 

Table 1.  
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NAAIRS-Replacement Mutagenesis Suggests Other Sites May Be Phosphorylated 

A NAAIRS-replacement mutagenesis was tiled across RPW8.2 to discover 

functional residues important for EHM targeting. The six-residue NAAIRS motif is 

frequently found in α-helices and β-sheets and has been used to replace the 

indigenous residues of a protein for functional analysis. NAAIRS-replacement 

mutants minimize conformational changes while revealing functional residues 

(Marsilio, Cheng, Schaffhausen, Paucha, & Livingston, 1991). Plants transgenic for a 

mutated NAAIRS site containing RPW8.2(T64) showed normal EHM localization 

consistent with results from site-directed mutagenesis with T64.  

However, no EHM localization or fluorescence was observed in other 

transgenic plants expressing NAAIRS-replacement RPW8.2 alleles containing 

potentially phosphorylated sites like T42, S138 and T139 (Figure 2-4A) (Wang, et al., 

2013). Undetectable YFP fluorescence at the EHM or anywhere in the haustorium-

invaded cells suggests that mutations at these sites may contribute to protein 

instability or degradation perhaps through phosphorylation or other mechanisms. 

Missense mutations and phosphorylation abnormalities are known to accelerate 

protein degradation (PJ, 2001). Thus, the NAAIRS study may suggest other 

functionally relevant, potentially phosphorylated RPW8.2 residues for further 

analysis.  
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Figure 2-4 Scanning RPW8.2 for Probable Multisite Phosphorylation 

(A) NAAIRS mutagenesis tiled across RPW8.2 reveals two sites without any detectable 

fluorescence (black boxes) and two sites with significant reduction in EHM localization (red 

boxes). The red arrow indicates the position of T64. Black arrows indicate potentially 

phosphorylatable residues within NAAIRS mutants. (B) Twelve serine and eight threonine 

residues account for 12% of 174aa in RPW8.2. (C) Most probable sites for RPW8.2 
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phosphorylation are discovered taking into account several approaches including in silico 

prediction and previous polymorphism studies and genetic screens e.g. NAAIRS. (D) The 

RPW8.2 amino acid sequence was subjected to three phosphorylation prediction algorithms, 

DISPHOS, MuSite and NetPhos (two versions). Probability predictions were compared to 

each other at each site. Arrows mean the same as in (A). 
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In Silico Analysis of RPW8.2 Candidate Phosphorylation Sites 

Natural polymorphism-guided mutagenesis and NAAIRS replacement suggest 

that RPW8.2 might be regulated through (de)phosphorylation. There are twelve serine 

and eight threonine residues in RPW8.2, accounting for about 12% of the total amino 

acids (Figure 2-4B). Previous genetic screens and phosphorylation predictive 

algorithms were invoked to narrow down likely candidates (Figure 2-4C) as 

computational methods can inform and direct biological hypotheses (Brodland, 

2015). To understand which site or if multiple sites could potentially be 

phosphorylated in RPW8.2, I used three prediction algorithms: NetPhos, Musite, and 

DISPHOS.  

NetPhos uses a neural network or machine learning to predict probable 

phosphorylation sites using proteins cataloged in large-scale phosphoproteomic 

databases.(Blom, Gammeltoft, & Brunak, 1999) Two NetPhos versions were 

available. NetPhos 3.1 adds kinase-specific predictions to NetPhos 2.0’s generic 

predictions. Musite’s algorithm utilizes a training set composed of several large scale 

phosphorylation studies from multiple organisms (Gao, Thelen, Dunker, & Xu, 

2010).  DISPHOS uses protein ordered and disordered regions to help differentiate 

between phosphorylatable and non-phosphorylatable sites (Iakoucheva et al., 2004). 

The probabilities for each site were stratified by algorithm (Figure 2-4D).  

All twenty-one phosphorylatable amino acids are represented in the prediction 

algorithms. That is, every site had some probability of being phosphorylated. 
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Tyrosine phosphorylation was excluded from analysis as it is rarely phosphorylated in 

planta (Hrabak et al., 2003). The probabilities were summed and ranked highest to 

lowest (Table 2). 

A probability equal to 4 (p=4) represents a 100% probability of 

phosphorylation predicted from all four algorithms. Bias exists in the sum as two 

different versions of NetPhos were included in the results. The top eight sites were 

selected for site-directed mutagenesis. Six residues are serine. Two are threonine. All 

sites were mutated to alanine. 
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Table 2 RPW8.2 Phosphorylation Probabilities from Three Prediction Sites 

 
 
 
 

RPW8.2 Containing Seven S/T-Site Mutation Appears to Be Dominant Negative  

Plant immune proteins can be multiply phosphorylated in response to 

pathogens (Benschop et al., 2007). The possibility of multiple RPW8.2 

phosphorylation sites were also investigated. Using the data from Table 2, an 

RPW8.2 mutant was created in which serine or threonine residues were mutated to 

alanine at seven sites. RPW8.2T64 was not mutated. The RPW8.2 mutant was in-frame 

fused with YFP at the C-terminus (the fusion gene is named MUT7) and stably 

expressed from the RPW8.2 native promoter in Arabidopsis accession “Col-0” 

containing the glabrous mutation (gl) (i.e. Col-gl). One homozygous line transgenic 

for RPW8.2(wt)-YFP (named R2Y4 as in (W. Wang et al., 2009)) was used as control 

(Figure 2-5A). (Note, R2Y4 is also depicted as “R82(MS-0)” in Table 1). R2Y4 was 
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compared to T1 lines transgenic for MUT7 (Figure 2-5B). MUT7 leaves showed no 

abnormalities in growth and development (Figure 2-5C) compared to Col-gl wt 

plants, whereas leaves of transgenic plants expressing RPW8.2T64A showed 

diminished size, chlorosis and necrosis (Figure 2-3A). MUT7 T1 leaves showed no 

difference in resistance compared to R2Y4.  

MUT7 was also introduced into a Col-gl transgenic line named S5 line. S5 is 

transgenic for a genomic fragment containing RPW8.1 and RPW8.2 under control of 

their native promoters (Shunyuan Xiao et al., 2005). This homozygous line exhibits 

stable, broad-spectrum resistance to powdery mildew.  

MUT7 T1 lines in S5 background displayed no SHL in the absence of 

powdery mildew inoculation. Remarkable, at 9dpi, these same lines showed 

significant susceptibility comparable to untransformed Col-0(gl) (Figure 2-5E-F), 

indicating loss-of-function for the RPW8.2 wt gene. This result suggests that MUT7 is 

not only unable to activate defense but also can exert a dominant negative effect over 

the wt RPW8.2 and possibly wt RPW8.1 proteins，resulting in loss of resistance in 

S5 transgenic plants.  

How MUT7 exerts a dominant negative effect over the functional RPW8 

proteins is unknown. In this particular case, an apparent reason may be the absence of 

key phosphorylation sites in RPW8.2 that are essential for its functions. Two 

functional arms have been characterized for RPW8.2; these are (i) activation of SA-

dependent defense responses, and (ii) mobilization of such defenses to the host-

pathogen interface through localization of RPW8.2 to the EHM. Obviously, MUT7 
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fails to activate defense, which was evidenced by the observation that none of the 

twelve T1 transgenic plants was resistant to Gc UCSC1 (Figure 2-5E). However, 

whether the YFP-tagged RPW8.2 mutant protein is correctly targeted to the EHM is 

not known. Both Col-gl lines transgenic for MUT7 and S5 lines transgenic for MUT7 

were used for localization analysis. Since the wt RPW8 proteins in S5 are not 

fluorescently labeled, all YFP fluorescence detectable at the EHM and/or elsewhere 

in this background must derive exclusively from MUT7. At 9dpi, leaves of T1 MUT7 

transgenic plants inoculated with Gc UCSC1 were examined using confocal 

microscopy.  

RPW8.2wt-YFP is mostly found in the EHM with occasional punctate 

distribution in the invaded epidermal cells especially when overexpressed, but is 

never found in the plasma membrane (PM) (W. Wang et al., 2009). Interestingly, in 

both S5 and Col-gl backgrounds, apart from typical EHM localization, MUT7 was 

also found in the PM, which is in a sharp contrast to the RPW8.2wt-YFP control 

(Figure 2-6A-B). This result suggests that lack of proper phosphorylation not only 

abrogates RPW8.2’s ability to activate defense but also affects its EHM-targeting. It 

is conceivable that non-functional proteins loaded into the same vesicles may 

negatively impact the transport of the functional residents. Indeed, a YFP-tagged 

truncated RPW8.2 fusion protein exerts dominant negative effect on RPW8.2wt-YFP 

and render S5 susceptible to Gc UCSC1 (Q. Zhang et al., 2015). Taken together, 

these results indicate that one single or multiple mutations contained in MUT7 

disrupt(s) the localization of RPW8.2 from the EHM to the PM. 
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Figure 2-5 Phenotyping Plants Expressing RPW8.2 "MUT7" Pre- and Post-
Inoculation 

(A) The RPW8.2 genomic sequence with 1262bp of its native promoter and 216bp of its 3’ 

untranslated region (UTR) was in-frame fused with YFP at the C-terminus. The fusion gene 

was cloned into vector pPZP212. (B) RPW8.2 in the fusion construct “MUT7” contains Ala 

mutations for seven most likely phosphorylated Ser or Thr as indicated. (C) T1 lines of Col-gl 

transgenic for MUT7 showed no phenotypic differences compared to wildtype at 8 weeks 

before inoculation. (D) Similarly, no difference in growth phenotypes were observed for 

MUT7 T1 lines in the S5 background which contain a single copy of both RPW8.1 and 
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RPW8.2 compared with S5 alone. (E) At 7dpi MUT7 T1 lines were moderately susceptible, 

whereas T5 generation plants of R2Y4 (expressing RPW8.2wt-YFP) were moderately 

resistant (Note, T5 plants of R2Y4 were not as resistant as T1 plants due to transgene 

silencing). Similarly, MUT7/S5 lines were more susceptible than S5. (F) Spore counts 

demonstrate MUT7/S5 background is more susceptible to powdery mildew than S5 alone. 
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Figure 2-6 Confocal Microscopy Showing PM Localization of MUT7 in Col-0(gl) 
and S5 Backgrounds 
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(A) Representative confocal images showing that while the MUT7 RPW8.2 mutant protein 

was found in the EHM (white arrowhead), it was also detected in the plasma membrane 

(white arrow).  Scale bars are 100µm. (B) Closeup images showing both EHM-localization 

and PM-localization of MUT7 in the same or neighboring cells. Scale bars are 50µm. 
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MUT8-Containing T64A Is Mistargeted to the PM and Does Not Activate Cell 

Death 

RPW8.2T64A (or RPW8.2T64S) appear to be super-active in activation of cell 

death and defense, whereas seven Ser/Thr to Ala mutations in MUT7 render RPW8.2 

nonfunctional (unable to activate HR). To determine if any of the seven 

phosphorylation sites may be required for T64A- or T64S-conferred cell death 

activity, an RPW8.2 variant containing all eight Ala mutations including T64A was 

made and in-frame fused with YFP (named MUT8) (Figure 5B).  

Typically, transformed plants expressing the T64A mutation are diminutive 

with focal lesions of necrosis and SHL (Figure 2-3A). By contrast, none of the 

twenty-four T1 lines transgenic for MUT8 appear phenotypically indistinguishable 

from those transgenic for RPW8.2wt in the absence of powdery mildew infection 

(Figure 2-7A), indicating one or more of the seven Ser/Thr to Ala mutations 

abolished T64A-mediated SHL and reduced plant stature. Subcellular localization of 

MUT8 in cells invaded by powdery mildew was then examined. Intriguingly, while 

the mutant protein showed typical localization to the EHM in some cells, it was also 

mis-targeted to the PM (Figure 2-7B) in both Col-0(gl) and S5 backgrounds. These 

observations suggest that (i) RPW8.2 needs to be phosphorylated at T64 to prevent it 

from being super-active, (ii) activation of RPW8.2 by dephosphorylation of T64 or 

non-phosphorylation (e.g. in the case of T64S) requires phosphorylation of one or 

more Ser/Thr residues in RPW8.2.   
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Figure 2-7 MUT8 Displays Both EHM and PM Localization 
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(A) T1 Arabidopsis plants transformed with the MUT8 construct appear similar to 

untransformed WT, Col-0(gl). MUT8 plants have average stature and do not have SHL or 

necrosis (red arrows) despite containing the same T64A mutation. (B) Multiple images show 

that after 9dpi with powdery mildew MUT8 localizes to the EHM (arrowhead) and to the PM 

(arrow) in both S5 and Col-0(gl) backgrounds.  
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S138 plays an important role for RPW8.2 defense function and EHM-targeting   

To further identify which Ser/Thr residue(s) among the seven assayed sites is 

required for T64A-mediated cell death and defense activation, seven RPW8.2 mutants 

containing a single Ala mutation in each of the seven Ser/Thr sites were made and in-

frame fused to YFP and stably expressed from the RPW8.2 native promoter in Col-gl. 

Eight-week-old T1 plants were inoculated with Gc UCSC1 and examined for disease 

infection phenotypes and subcellular localization of the respective RPW8.2-YFP 

proteins.  

T1 transgenic plants from a population of 12-24 for each construct were 

photographed before and after inoculation of Gc UCSC1 (Figure 2-8A). At 9 dpi all 

mutants but one, RPW8.2S138A, showed comparable resistance or increased resistance 

to RPW8.2wt-YFP. Specifically, T1 lines of seven mutants RPW8.2(S29A, T31A, S57A, 

S63A, T64A, S65A, or S135A) displayed SHL in the absence of any pathogens with a 

frequency between 0-10% which is comparable to RPW8.2wt-YFP (Figure 2-8B). 

Resistance to Gc UCSC1 varied among individual T1 lines of the same population 

and among different populations, conforming with the notion that RPW8.2 is semi-

dominant and its mediated resistance is dosage dependent (Shunyuan Xiao et al., 

2005). Such variations are illustrated by leaves from T1 lines transgenic for 

RPW8.2S57A and RPW8.2S135A  (Figure 2-8C). . As shown in Figure 8D, except for 

RPW8.2S138A, all other RPW8.2 mutant constructs containing a single Ser/Thr to Ala 

mutation showed either similar or even better resistance to Gc UCSC1 compared to 

RPW8.2wt.   
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P-values refute the null hypothesis claiming no difference in resistance 

between wildtype and mutant phenotypes using a one-tailed binomial test 

(Wasserstein & Lazar, 2016).  P-values less than 0.05 comparing wildtype with 

mutants are denoted with an asterisk. Based on the disease infection phenotypes and 

statistical data in Figure 8D, one may infer that while five single Ala mutations (29, 

31, 57, 65, 135) had no significant impact on the disease resistance function of 

RPW8.2, the RPW8.2S63A and RPW8.2T64A single mutations each can enhance the 

resistance function of RPW8.2. By contrast, the RPW8.2S138A mutation appears to 

compromise the defense function of RPW8.2. This result suggests that RPW8.2S138A 

and its likely phosphorylation play an important role in RPW8.2’s defense function. 
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Figure 2-8 Functional assessment of the Seven Individual Ser/Thr mutations in 
RPW8.2  
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(A) Uninoculated (UN) plants are compared to 9dpi (9dpi) inoculated T1 plants. The “false” 

column of 9dpi plants has been false colored to show powdery mildew (white) and cell death 

(yellow). (B) RPW8.2 defense functionally inferred by presence of SHL (arrowheads) in six 

T1 lines. No HR was apparent in RPW8.2S138A lines. (C) Leaves from T1 Arabidopsis plants 

with a single RPW8.2 mutation, RPW8.2S57A, and RPW8.2S135A, demonstrate spectrum of 

resistance from resistant leaves displaying HR to intermediate to susceptible. These leaves are 

from 9dpi Arabidopsis plants RPW8.2S57A and 15 dpi RPW8.2S135A. (D) Percentage of 

resistant lines from T1 populations. Significant resistance or susceptibility defined as p<0.05 

was calculated using one-tailed binomial test. 
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RPW8.2’s phosphorylation is hypothesized to impact its defense functionality, 

localization or both. In addition to resistance phenotype, EHM localization was also 

surveyed. All YFP-tagged RPW8.2 mutants with a single mutation showed normal 

EHM targeting, as evidence by homogenous YFP signal in the EHM encasing 

haustoria (Figure 2-9). EHM-targeting efficiency may vary among these RPW8.2 

mutant proteins, but this was not determined because the quality and age of haustoria 

and the expression level of the RPW8.2 mutant proteins all affect our ability to detect 

and quantify true YFP signal at the EHM.  
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Figure 2-9 Eight Rpw8.2 Mutants with A Single Ser/Thr Site Mutation Show 
Normal EHM Localization 

Individual mutants RPW8.2(wt), RPW8.2S29A, RPW8.2T31A, RPW8.2S57A, RPW8.2S63A, 

RPW8.2S65A, RPW8.2S135, RPW8.2S138 (top to bottom) show normal EHM localization. 
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RPW8.2S138-YFP Is Aberrantly Localized to the Plasma Membrane  

Despite showing normal localization to the EHM (Figure 2-10), RPW8.2S138A-YFP 

also appeared to be mis-targeted to the PM. Incorrect targeting of RPW8.2S138A-YFP 

may be attributable to this particular mutation or it may be due to overexpression of 

this mutant protein. However, given that (i) all the fusion constructs were expressed 

from the RPW8.2 native promoter, and (ii) none of the remaining seven YFP-tagged 

RPW8.2 mutant proteins showed PM localization, and (iii) both MUT7 and MUT8 

containing S138A were also found in the PM, it can be speculated that the S138A 

mutation somehow affects RPW8.2’s EHM targeting, and consequently also 

compromises RPW8.2’s ability to activate haustorium-targeted defenses. 
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Figure 2-10 Localization of RWP8.2S138A-YFP to the EHM and the PM  

RPW8.2S138A shows typical localization to the EHM (arrowheads) and aberrant localization to 

the PM (arrow) after inoculation with Gc UCSC1.(B) Another image from the same line 

showing more PM localization (arrow) and punctate (arrowhead).  
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S138A Suppresses T64A-Mediated Cell Death and Defense Activation 

The RPW8.2S138A mutation compromises RPW8.2’s ability to activate 

resistance against powdery mildew not only in T1 plants expressing RPW8.2S138A but 

also in T1 plants expressing all the eight mutations including RPW8.2S64A. Given that 

expression of RPW8.2S64A activates massive SHL and enhances HR and resistance, 

one would speculate that RPW8.2S138A may exert an intragenic epistasis over 

RPW8.2T64A. To further test this, I created RPW8.2S64A/S138A-YFP and generated 

stable transgenic T1 plants. Unfortunately, disease data was not collected at this time, 

but will be in the near future. Disease tests showed that only 8.3% (3 of 36) of the T1 

lines transgenic for RPW8.2S64A/S138A-YFP showed weak HR and resistance, whereas 

26% (28 of 110) and 53% (24 of 45) of T1 plants respectively transgenic for 

RPW8.2wt-YFP and RPW8.2S64A displayed HR and resistance (Figure 2-11A and B). 

To exclude the possibility that any other Ser to Ala mutation could also 

produce similar impact due to mutation additive effects (Parera & Martinez, 2014), a 

RPW8.2 T31A/T64A double mutant was created as control to demonstrate that 

RPW8.2S138A is the functionally dominant mutation. As expected, T1 plants 

transgenic for RPW8.2 T31A/T64A-YFP showed similar HR and resistance compared to 

those transgenic for RPW8.2-YFP (Figure 2-11B). To further evaluate disease 

resistance function of these mutant RPW8.2 proteins, number of spore per milligram 

of infected leaf tissue was counted at 14 dpi. The average spore count from four 

pooled leaf samples for T1 plants expressing RPW8.2S64A/S138A-YFP was more than 

6x higher than that for resistant control S5. No significant difference was observed 
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between T1 plants expressing RPW8.2S64A/S138A-YFP and un-transformed control; 

however, the former were less susceptible than SA-pathway-defective susceptible 

Col-0(nahG) plants (Figure 2-11C). Only about 1% of the T1 plants transgenic for 

RPW8.2S64A/S138A-YFP exhibited some limited resistance (Figure 2-11D). Taken these 

data together, it can be concluded that RPW8.2S138A largely suppressed RPW8.2S64A-

conditioned enhanced activity of RPW8.2. 
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Figure 2-11 Susceptibility of Mutant RPW8.2(64, 138) to Powdery Mildew 
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(A) The mutant RPW8.2T64A/S138A compared to Col-0, Col-0(NahG) and S5 (RPW8 locus) at 

12dpi with powdery mildew Gc UCSC1. (B) Mutant RPW8.2T64A/S138A is less resistant (8%) 

compared to RPW8.2 wt (25%). Double mutant RPW8.2T31A/ S138A is resistant while double 

mutant RPW8.2T64A/ S138A is not, reflecting the functional impact of site RPW8.2S138A. This 

result is also corroborated by compromised resistance of the RPW8.2S138A single mutant. (C) 

Spore counts demonstrate fungal growth on RPW8.2T64A/ S138A no different than Col-0 and 6x 

less resistant than S5 plants. (D) False colored imaging of inoculated plants show resistant 

plants like S5 demonstrate HR (yellow) while susceptible plants like Col-0 and most of the 

double mutant RPW8.2T64A/ S138A T1 population support hyphal growth (white). 
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T1 lines expressing double mutants RPW8.2T31A/ T64A or RPW8.2T64A/ S138A 

displayed localization of the respective mutant proteins to the EHM (Figure 2-12A). 

T2 lines show similar EHM targeting for RPW8.2T64A/ S138A (Figure 2-12B). However, 

only the double mutant RPW8.2T64A/ S138A was found both in the EHM and in the PM. 

RPW8.2T64A/ S138A was observed in both susceptible and resistant T1 and T2 lines 

(Figure 2-13A-C). One resistant line displayed mesophyll localization in the same 

frame as EHM localization (Figure 2-13D), whereas a susceptible line displayed PM 

localization (Figure 2-13E). Taken together the data suggest that the RPW8.2S138A 

mutant protein results in abnormal fluorescence localization to the PM, and that this 

mislocalization is persistent in both susceptible and resistant T1 and T2 lines.  

RPW8.2S64A/S138A-YFP Accumulates to Detectable Levels in Uninoculated Plants  

Arabidopsis plants transgenic for RPW8.2-YFP under control of the native 

RPW8.2 promoter only accumulate RPW8.2-YFP to a level detectable by confocal 

microscopy in powdery mildew infected leaves. Interestingly, YFP signal was readily 

detectable in uninoculated T1 and T2 lines transgenic for RPW8.2S64A/S138A-YFP 

under control of the same native promoter (Figure 14A-B). This suggests that the 

mutant protein may be more stable compared to the wt protein. To further test this, a 

western blot was performed using the microsomal fraction of the total protein 

extracted from leaves of different genotypes (Figure 2-14C). As expected, RPW8.2-

YFP was hardly detectable in uninoculated leaves but induced by ~2x in inoculated 

leaves (Figure 2-14D). This observation further suggests that the RPW8.2 wt protein 
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may be constitutively expressed but removed in the absence of any pathogen 

infection, however the RPW8.2S138A mutation renders the mutant protein more stable, 

hence the accumulation before inoculation. However, since the RPW8.2S138A mutant 

protein largely loses its defense function, there is little or no SA-dependent 

transcriptional amplification (as seen for the wt protein; (Shunyuan Xiao, Brown, et 

al., 2003)) for the mutant protein, and there may be even powdery mildew-induced 

degradation of the mutant (and wt) RPW8.2 protein, explaining the relatively higher 

level accumulation of RPW8.2S64A/S138A-YFP in uninfected plants.  

Taken together, my results from site-directed mutational analysis on 

predicated phosphorylation sites in RPW8.2 demonstrate that at least two residues, 

i.e. RPW8.2T64A and RPW8.2S138A, play important roles in negative (RPW8.2T64A) and 

positive (RPW8.2S138A) regulation of RPW8.2, with the RPW8.2S138A mutation being 

dominant over RPW8.2T64A. These results further suggest that RPW8.2 is most likely 

phosphorylated and regulated by a kinase(s) and/or a phosphatase(s).  
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Figure 2-12 RPW8.2 Double Mutants Are Correctly Localized to the EHM 

(A) The double mutant RPW8.2T31A/ T64A is targeted to EHM (white arrowhead). (B) EHM 

localization was also observed in RPW8.2T64A/ S138A T1 lines and subsequent T2 lines. The 

mutant protein in puncta (white arrow) is also visible in this image.  
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Figure 2-13 PM Localization of RPW8.2T64A/S138A in Both Susceptible and 
Resistant Lines 
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(A-C) The double mutant RPW8.2T64A/S138A showed correct EHM localization (white 

arrowheads) and aberrant PM-localization (B) in resistant T1 transgenic lines, with similar 

results observed with T2 lines (C). (D) Expression of RPW8.2T64A/S138A was also detected in 

mesophyll cells (white arrow) adjacent to the haustorium-invaded cells. (E) The 

RPW8.2T64A/S138A mutant exhibited similar PM and EHM localization. 
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Figure 2-14 RPW8.2S64A/S138A Accumulates in Uninoculated Arabidopsis Plants 

(A-B) The RPW8.2T64A/S138A mutant protein was detected in the PM (arrow) in epidermal cells 

(A) and mesophyll cells (B) of uninoculated plants. (C) A Western blot confirmed expression 

of RPW8.2T64A/S138A in leaf tissues of uninoculated (uninduced) plants and inoculated 

(induced) plants. The YFP band served as control. (D) Semi-quantification of the relative 

levels of expression of RPW8.2T64A/S138A detected in the Western blot in (C) using ImageJ.  
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In Silico Model of RPW8.2 Predicts Surface Exposure of T64 and S138  

Because phosphorylation is a protein-surface PTM, I sought to understand the 

location of T64 and S138 in the RPW8.2 protein structure. Discovering cytosolically-

oriented residues provides additional evidence the residues can be phosphorylated by 

a kinase. Internally phosphorylated residues are possible and can help stabilize 

conformational states (Johnson, 2009), but internal phosphorylation is rare. To wit, an 

analysis of phosphorylated-regulated mechanisms in the Saccharomyces cerevisiae 

protein cyclin-dependent kinase (cdk1) found that more than 90% of sites are 

predicted to be in cytosolically-exposed loops and disordered regions (Holt et al., 

2009). My efforts in expressing and purifying soluble RPW8.2 to sufficient purity 

were unsuccessful. Efforts in folding RPW8.2 via Rosetta were also unsuccessful 

(Darrell Hurt, private communication). We used I-TASSER to provide a RPW8.2 

structure. 

I-TASSER(Roy, Kucukural, & Zhang, 2010; J. Yang et al., 2015; J. Yang & 

Zhang, 2015; Yang Zhang, 2008) is a folding prediction algorithm that identifies 

structural similarities to solved protein structures using primary sequences. 

Generating a fold using a protein’s primary sequence has biological precedent as most 

tertiary protein folds available in the protein database are considered structurally 

complete (Garma, Mukherjee, Mitra, & Zhang, 2012). 

Mapping T64 and S138 onto the structure generated by I-TASSER shows that 

both residues are cytosolically-oriented and capable of phosphorylation (Figure 2-15). 
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Figure 2-15 I-TASSER Model Predicts That T64 and S138 Are on RPW8.2 

Surface 

(A) RPW8.2 was folded with in silico method I-TASSER. A ribbon model shows the 

placement of residues T64 and S138 within the predicted four alpha helices. (B) 
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Space-filling model shows that both are cytosolically oriented for possible 

phosphorylation by kinase.  
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Phos-Tag Detects Phosphorylated Proteins 

The Phos-Tag system can be used to interrogate the phosphostatus of proteins 

using an SDS-PAGE gel. The system requires no radioactive or chemical labels. 

Also, costly phospho-specific antibodies are not needed. Furthermore, not only 

phosphorylation status can be interrogated but also phosphomultiples can be detected 

as well. Some reports suggest phos-tag can differentiate site-specific phosphorylation 

(E. Kinoshita et al., 2008, 2009).  

Phos-tag is a molecule that forms complexes with two bivalent cations like 

Mn2+ or Zn2+ to chelate phosphate groups covalently attached to proteins (Figure 

2-16A).(E. Kinoshita, Kinoshita-Kikuta, Takiyama, & Koike, 2006) Bound Phos-tag 

retards a phosphorylated protein's migration through an acrylamide gel. 

Phosphorylated proteins are detected as a size shift compared to nonphosphorylated 

controls. Multiple bands represent different phosphoforms of phosphorylated 

proteins. 

An archaeal kinase, SsoPK4 (kind gift from Peter Kennelly), from Sulfolobus 

solfataricus known to autophosphorylate was tested on an acrylamide gel doped with 

Phos-tag.(Ray, Potters, Haile, & Kennelly, 2015) SsoPk4 phosphorylates at two 

positions; once in the fused S-tag and another in the kinase domain (Figure 2-16B). 

Both positions were accessible and dephosphorylateable by calf-intestinal 

phosphatase (CIP). Both phosphorylated and dephosphorylated isoforms were 

detectable on Coomassie-stained SDS-PAGE and western blot (Figure 2-16C). The 
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Phos-tag system was used to determine if RPW8.2 is indeed (de)phosphorylated and 

analyze putative RPW8.2-interacting phosphatases and kinases. 
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Figure 2-16 Phos-tag Acrylamide Gel Detects SsoPK4 Phosphorylation 

(A) Phos-tag molecule preferentially binds phosphorylated proteins. (B) SsoPK4 protein was 

used to test phos-tag’s ability to detect phosphorylation and multiply-phosphorylated 

proteins. (C) Un-doped acrylamide cannot distinguish between three SsoPK4 phosphoforms 

using a Coomassie stain. Acrylamide gels with Phos-tag show all SsoPK4 isoforms with one 

and two phosphates. The addition of dATP in a kinase reaction is dispensable as sites on 

SsoPK4 are phosphorylated before purification and addition to the kinase assay. Calf-

intestinal phosphatase (CIP) successfully dephosphorylates SsoPK4. 
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Immunoprecipitated RPW8.2 is Detectable in Microsomal Pellets 

We wished to purify the RPW8.2 protein and assay its phosphostatus using a 

phos-tag-doped acrylamide gel. The RPW8.2 protein comprises a putative 

hydrophobic transmembrane domain at its N-terminus. Low-abundant, membranous 

proteins are challenging to purify.(Y. Qi & Katagiri, 2009) Therefore, I explored 

several purification strategies for RPW8.2 using an anti-YFP immuno-pulldown 

strategy. Powdery mildew infected leaves of plants expressing RPW8.2-YFP-HA 

were collected between 5 to 12 dpi and ground in liquid nitrogen, and a microsomal 

pellet was resuspended and incubated with anti-YFP immune-complexes as shown in 

Figure 2-17A. RPW8.2-YFP-HA was incubated with GFP nanobody (Chromotek) or 

anti-GFP magnetic beads (Miletenyi Biotec) and detected with anti-YFP or anti-HA 

antibodies.  

To see if phosphorylation is indeed important for the defense function of 

RPW8.2, the RPW8.2D116G mutant was used as control, as this mutant protein is 

defective in defense activation even though it is correctly targeted to the EHM(W. 

Wang et al., 2013). Stable expression in Arabidopsis as well as Agrobacterium-

mediated transient expression in N. benthamiana were explored. Although both 

RPW8.2D116G-YFP-HA and RPW8.2-YFP-HA bands are detectable When anti-YFP 

antibody is used, neither the Chromotek nor the magnetic beads provided a 

homogenous or abundant sample (Figure 2-17B-C).  
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Figure 2-17 Detecting RPW8.2 in a Western Blot Using anti-GFP Nanobodies 
and Beads 

(A) Schematic overview of process for removing RPW8.2 from solution using Chromotek’s 

anti-GFP nanobody. (B) Chromotek-GFP successfully immunoprecipitates RPW8.2D116G-

YFP (47.2kDa) and RPW8.2-YFP-HA(55.2kDa) in microsomal fractions as detected with 

western blot and αYFP antibody. (C) Magnetic anti-GFP beads (Miltenyi Biotec) also 
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immunoprecipitate RPW8.2-YFP (47.2kDa) (red dots) when transiently expressed from N. 

benthamiana and Arabidopsis RPW8.2D116G-YFP. 
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Immunoprecipitated RPW8.2 Protein from Inoculated Arabidopsis Leaf Samples is 

Not Phosphorylated 

Immunoprecipitations from lysates using Chromotek and Miltenyi Biotec 

αYFP resin was too impure for downstream analysis like mass spectrometry. Instead 

of further optimization with these two methods, I opted to use a more recently 

published technique using microsomal pellets (Avila, Lee, & Toriia, 2015). 

 Purifications with RPW8.2-YFP was purified from 15 dpi Arabidopsis plants. 

RPW8.2-YFP bands were detectable in the microsomal portion but not the lysate 

(Figure 2-18A). Another protein, R18-YFP-CT59 (RYC), which is a chimeric protein 

containing a 20aa peptide sequence that binds to 14-3-3 proteins (see Chapter 3 for 

details) known to express well in stable Arabidopsis and transient in N. benthamiana 

was used as control.  

The reconstituted microsomal pellet was subjected to calf intestinal 

phosphatase (CIP) treatment in two different buffers, a buffer containing MgCl2, BSA 

and other additives (NEB 2.1) and phosphate buffered saline (PBS, pH 8.0). CIP 

possesses strong, non-specific phosphatase activity and can dephosphorylate proteins 

(Swarup, Cohen, & Garbers, 1981). 

The treated and untreated eluates were run on a phos-tag-doped acrylamide 

gel. CIP treatment failed to produce a band shift in RPW8.2-YFP from inoculated, 

Arabidopsis samples (Figure 2-18B). This suggests that either CIP failed to 

dephosphorylate RPW8.2-YFP or RPW8.2-YFP is not phosphorylated, or it is 

phosphorylated in vivo but dephosphorylated during extraction.  
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Figure 2-18 Detection of RPW8.2-YFP by Western Blotting  

(A) RPW8.2-YFP was detected in microsomal portions but not in lysates. RYC was used as a 

positive control as this fusion protein is abundantly expressed cytosolically and in the PM. L 

= Spectra protein ladder (Thermo Fisher, cat. No. 26634) (B) Calf intestinal phosphatase 

(CIP) incubated with purified RPW8.2-YFP from Arabidopsis microsomal pellets did not 

show band-shifting after treatment. Two buffers were attempted, NEB2.1 and PBS. 3X= 3 

time mass of starting material used, ~3g. (C) The RPW8.2-YFP-HA construct cloned in a 

binary vector, pCX-DG. (D) Three phosphatases incubated with immunoprecipitated protein 
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RPW8.2-YFP-HA from Arabidopsis did not detect phosphorylation. Phosphatases: CIP = calf 

intestinal phosphate (NEB 0290S), PP2C11 = recombinantly purified PAPP2C11 

(At1G22280), λ = lambda phosphatase (NEB P0753S)t 
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It is possible that the microsomal samples were impure, which might have 

prevented CIP from functioning properly. To exclude this possibility, RPW8.2-YFP 

was further fused with a triplicated human agglutinin (HA) epitope tag (Figure 

2-18C). Homozygous T3 lines were generated and inoculated with powdery mildew. 

Microsomal pellets were incubated with anti-HA magnetic beads to pull down 

RPW8.2-YFP-HA. In addition to CIP, two additional phosphatases, Lambda 

phosphatase (NEB) and phytochrome-associated protein phosphatase type 2c 

(PAPP2C, AT1G22280) (which is a protein phosphatase type 2C that has been shown 

to interacts with RPW8.2 3 were also incubated with the immunoprecipited RPW8.2-

YFP-HA. Lambda phosphatase is a nonspecific phosphatase recommended for the 

dephosphorylation of proteins. However, none of the three phosphatases produced a 

detectable band shift (Figure 2-18D). These results suggest that RPW8.2 prepared 

from leaves infected by powdery mildew is unlikely phosphorylated. This, however, 

does not exclude the possibility that RPW8.2 is dephosphorylated by endogenous 

phosphatases during protein extraction. 

 

No RPW8.2 Phosphorylated Fragments Identified using Mass Spec 

Unable to identify phosphorylation via acrylamide-doped-phos-tag, a mass 

spectrometry approach was used. Mass-spec is a popular technique for the detection 

of phosphorylated protein in plants including plasma membrane proteins.(Mattei, 

Spinelli, Pontiggia, & De Lorenzo, 2016; Thomas S Nühse, Stensballe, Jensen, & 

Peck, 2004; Umezawa et al., 2013).  
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Leaves from Arabidopsis T3 lines were used. The same was homozygous for 

RPW8.2-YFP-HA. A T2 control line was used expressing Low Temperature Induced 

Protein 6B (Lti6B, AT3G05890). Lti6B was also fused with YFP-HA at its C-

terminal end (Earley et al., 2006). Lti6B was chosen as a negative control for mass 

spectrometric analysis because it is localized to the PM but not to the EHM 

(Thompson & Wolniak, 2008). 

Figure 2-19A shows the resistance of Arabidopsis plants transgenic for 

RPW8.2-YFP-HA compared to the susceptibility of plants expressing Lti6B-YFP-HA. 

RPW8.2-YFP-HA localizes at the EHM (Figure 2-19B). The presence of RPW8.2-

YFP-HA was confirmed with a western blot (Figure 2-19C). Another gel run 

concurrently was stained with silver nitrate. Bands corresponding to the size of 

RPW8.2-YFP-HA were excised, purified and trypsinized (Figure 2-19D). Extracted 

peptides were dried and prepared for analysis using a LC MS/MS Agilent QTOF 

mass spectrometer. Sizes were searched against Mascot database using "Arabidopsis" 

taxonomy. The top scoring peptides are pooled for the RPW8.2 samples and 

background and listed in Table 3. No phosphorylated peptides matching RPW8.2 

were discovered using mass spectrometry. 
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Figure 2-19 Expression and purification of RPW8.2-YFP-HA for Mass 
Spectrometry 

(A) Arabidopsis plants transgenic for RPW8.2-YFP-HA are more resistant to powdery 

mildew compared to Lti6b plants. (B) RPW8.2-YFP-HA correctly localizes at the EHM. 

White scale bar is 100µm. (C) R82-YFP-HA can be immunoprecipitated with anti-HA 

magnetic resin, eluted, and probed with anti-HA antibody. (D) Silver stain of samples as in 

(C), but red squares indicate removed gel portions for mass spectrometric analysis.  
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Table 3 Peptide Mascot Matches for Trypsinized RPW8.2-YFP-HA from 
Arabidopsis 

 
 

Towards Identifying Kinases that phosphorylates RPW8.2: Kin11  

Phosphoproteomic studies have uncovered a plethora of phosphorylated 

proteins; yet, most cognate kinases remain unknown (Humphrey et al., 2017). 

Understanding the role of RPW8.2 phosphorylation would be elucidated by 

identifying RPW8.2-interacting kinases.  

A yeast two-hybrid screen revealed an association with Kin11 (AT3G29160) 

and Rpw8.2 KIN11 is a Snf1-related protein kinase (SnRK1). This conserved 

subfamily of serine/threonine kinases with yeast and mammalian orthologues restores 

homeostasis especially energy metabolism efficiency after abiotic and biotic stresses 

(A. Rodrigues et al., 2013). Despite several interacting partners like the 26s 

proteasomal subunit PAD1 and the SCF subunit SKP1/ASK1(Farrás et al., 2001), and 

also knowing that KIN11 is presumed to have many downstream interactors (Polge & 
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Thomas, 2007), and knowing that itself is phosphorylated at a conserved T-loop 

T176, KIN11 has not yet been shown to phosphorylate any protein except the SAMS 

peptide (Fragoso et al., 2009). 

Kin11 was cloned into the GST-4TI vector for E. coli expression under the T7 

promoter. Purified KIN11 was incubated with recombinantly expressed RPW8.2 in 

kinase-specific conditions. After 1 hour, the samples were removed and run on a 

SDS-PAGE with and without phos-tag (Figure 2-20A-B). No noticeable size shift 

was observed with RPW8.2. This suggests KIN11 is unable to phosphorylate RPW8.2 

or that the in vitro conditions were not optimized for phosphorylation to occur. This 

experiment was repeated three times with similar results.  

We further tested for a possible interaction by performing BiFC between 

Kin11 and RPW8.2 in N. benthamiana. No interaction was observed (Figure 2-20). I 

attempted to validate this genetically by transgenically inserting RPW8.2-YFP-HA 

into a kin11 background. The kin11 knockout background was confirmed with RT-

PCR. In this background Arabidopsis plants were susceptible even though RPW8.2-

YFP-HA properly translocated to the EHM (Figure 2-20E-F). 
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Figure 2-20 No Interaction Observed Between Kin11 and RPW8.2 

(A) Recombinant KIN11 and RPW8.2 were expressed and purified from E. coli. Purified 

products were co-incubated under kinase conditions and then run on a 10% acrylamide gel. 

(B) No observed phosphorylation between KIN11 and RPW8.2 ON 10% acrylamide gel with 

phos-tag. (C) No BiFC between KIN11 and RPW8.2 transiently expressed in N. 

benthamiana. (D) RT-PCR confirms two lines are knocked out for Kin11. (E) RPW8.2-YFP-

HA in kin11 background. (F) RPW8.2-YFP-HA localizes at the EHM. 
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Future studies will investigate the phosphostatus of RPW8.2-YFP-HA in the 

kin11-ko background or better in a double kin11/kin10 knockout background as both 

have been previously shown to act redundantly.(Baena-González, Rolland, Thevelein, 

& Sheen, 2007)  

Towards Identifying Kinases that phosphorylates RPW8.2: EDR1  

Preliminary genetic data suggests EDR1 and RPW8.2 may interact or function 

in the same pathway (Xiao et al., 2005). EDR1 (Enhanced Disease Resistance 1, 

AT1G08720) is a MAPKKK and negatively regulates salicylic acid (SA) responses.  

EDR1 has two domains, an C-terminal catalytic domain and an N-terminal 

recognition domain. The N-terminal domain interacts with mitogen activated protein 

kinase kinase 4 (MKK4) and MKK5 (Zhao et al., 2014). Acting redundantly, MKK4 

and MKK5 target FRK1 to activate plate defenses (Asai et al., 2002b). The catalytic 

domain belongs to the “serine/threonine kinase (STK)-MAP3K” protein subfamily 

(Figure 2-21A).  

Edr1 mutants are phenotypically indistinguishable from wildtype counterparts 

until inoculated with powdery mildew like Gc UCSC1; edr1 mutant plants are more 

resistant to infection (Frye & Innes, 1998). The edr1 mutant harbors a transversion 

(CG) at nucleotide1176 resulting in a premature stop codon and producing a 

truncated protein of 265 amino acids before the catalytic domain (Figure 2-21B) 

(Frye, Tang, & Innes, 2001). The EDR1 kinase domain autophosphorylates (Tang & 

Innes, 2002a).  
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RPW8.2 was also cloned into the same vector. The full length protein did not 

express consistent with previous results (Dingzhong Tang unpublished 

communication). However, the kinase domain was expressable in Novagen 

RosettaBlue(DE3)pLysS E. coli cells. Edr1’s kinase domain autophosphorylates as 

demonstrated in the phos-tag-doped acrylamide gel. The autophosphorylation did not 

require incubation with dATP suggesting it autophosphorylated before incubation 

most likely in E. coli.  

To verify the phosphorylation status of EDR1 as a prelude to validating its 

phosphostatus when incubated with RPW8.2 I performed an in vitro kinase assay 

with the mostly-soluble EDR1 kinase domain (Figure 2-21C). The coding sequences 

of full length Edr1 (kindly provided by Roger Innes) and the Edr1 kinase domain 

(aa658-934) (kindly provided by Ping He) were cloned into a Gateway-modified 

ligated pGEX-4ti vector (Kindly given by Shiv Kale). No band shift is observed for 

EDR1 in a western blot incubated with CIP (Figure 2-21D). I interpret the result of a 

single band shift in phos-tag-doped SDS-PAGE gel to mean that this kinase region is 

only phosphorylated once and that λ phosphatase, not CIP or PAPP2C11, is able to 

successfully dephosphorylate the autophosphorylated EDR1 kinase domain (Figure 

2-21E). 

To collect supporting data for the hypothesis that EDR1 and RPW8.2 interact 

I performed an in vitro kinase assay. The input was microsomal pellet resuspensions 

containing RPW8.2-YFP-HA from 9dpi Arabidopsis plants. No band shift is observed 

when resuspensions are incubated with EDR1 under conditions for kinase assays. CIP 
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also failed to dephosphorylate RPW8.2. This may be because CIP cannot recognize or 

dephosphorylate a RPW8.2 site or because RPW8.2 is not phosphorylated. Strangely, 

RPW8.2-YFP-HA band intensity increases when co-incubated with CIP and the 

EDR1 kinase domain. This might be a stabilizing interaction between EDR1 and 

RPW8.2.  
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Figure 2-21 Edr1 Topology and Phosphorylation 

(A) Two domains comprise the MAPKKK, Edr1, a N-terminal recognition domain and a C-

terminal catalytic domain. (B) Edr1 mutant at position 1176 results in a premature stop codon 

(TACTAG) insertion before the catalytic domain. (C) SDS-PAGE failed to observe soluble 

Edr1 expressed as a fusion peptide with GST (GST-Edr1). However, the kinase terminus 
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consisting of the last 278 amino acids of Edr1 fused with GST was partially soluble (GST-

Edr1(kinase)). (D) The kinase domain of EDR1, if phosphorylated, is not dephosphorylated 

with calf-intestinal phosphatase (CIP) as observed on a phos-tag SDS-PAGE. (E) Lambda 

phosphatase and not CIP or PP2C11 are able to dephosphorylate the EDR1 kinase domain. 

The kinase domain is singly phosphorylated. GST-2x FYVE is a positive control. (F) 

Immunoprecipitated RPW8.2-YFP-HA from Arabidopsis leaves infected with powdery 

mildew at 9dpi was unaffected by incubation with the kinase domain. 
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We further probed the interaction between Edr1 and RPW8.2 using 

bimolecular fluorescence complementation (BiFC) in N. benthamiana. Both 

orientations of RPW8.2 were fused with the C-terminus of YFP and tested for 

interaction with EDR1. Agrobacteria containing the plasmids was infiltrated into 8-

wk old N. benthamiana leaves. Three days post infiltration the leaves were 

microscopically observed to have no YFP fluorescence between YFPn-Edr1 and 

YFPc-RPW8.2 or RPW8.2-YFPc (data not shown). However, YFPn-Edr1 has been 

shown to successfully interact with a known interacting protein MMK4 (Zhao et al., 

2014). Genetic crosses made between Edr1 and RPW8.2 are ongoing.   
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Discussion 

Genetic Data Suggests that RPW8.2 is Phosphorylated at More Than One Site 

Phosphorylation is a critical post-translational modification especially for 

immune-related proteins (L. Li et al., 2014a; Peck et al., 2001a; Tena, Boudsocq, & 

Sheen, 2011). A phosphorylation site can become fixed if it beneficially regulates a 

protein’s interactions, localization and functionality (Hückelhoven, 2007; Jans, 1995; 

Ranjeva & Boudet, 1987). Given that RPW8.2 contains eight predicted 

phosphorylation sites, interacts physically with a phosphatase (PAPP2C) (W.-M. 

Wang et al., 2012) and genetically with EDR1 (Shunyuan Xiao et al., 2005), it is 

reasonable to hypothesize that RPW8.2 is functionally regulated by 

(de)phosphorylation. In this work I have collected extensive genetic data to suggest 

that RPW8.2 is likely phosphorylated in more than one site. Phosphorylation at 

RPW8.2T64 may prevent RPW8.2 from autoactivation and triggering cell death, 

whereas phosphorylation at RPW8.2S138 is likely required for RPW8.2 to activate 

defense. 

The first piece of circumstantial evidence for a possible role of 

phosphorylation in RPW8.2’s resistance function came from a study on the 

intraspecific allelic polymorphisms at RPW8.2 (Orgil et al., 2007). Most mildew-

susceptible Arabidopsis accessions contain RPW8.2 alleles with the T64S 

nonsynonymous substitution. Interestingly, all these RPW8.2 variants also harbor the 

RPW8.2D116G mutation (Orgil et al., 2007). Coincidently, while RPW8.2T64 is 
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predicted to be phosphorylated (95% probability by NetPhos3.1), RPW8.2S64 is not, 

(19%), raising the question whether Thr to Serine mutation at amino acid 64 is 

partially responsible for the mildew susceptibility phenotype. Surprisingly, I found 

that both RPW8.2T64S and RPW8.2T64A are likely auto-active in defense, respectively 

resulting in SHL in 37% and 46% T1 transgenic lines in the Col-0 background where 

RPW8.2 is absent. Agreeing with this result, the phosphomimetic RPW8.2T64E 

behaves just like RPW8.2 wt (Wang, et al., 2013). While these observations suggest 

that RPW8.2 is indeed regulated by phosphorylation at RPW8.2T64, the SHL and 

pronounced HR and resistance phenotypes are unexpected and prompted me to check 

if RPW8.2D116G could suppress RPW8.2T64S/A-mediated autoactivation of RPW8.2. 

Indeed, the RPW8.2 T64A/D116G mutant allele did not activate SHL and showed reduced 

HR and resistance (Wang, et al., 2013). Taken together, these results confirm that the 

RPW8.2T64A site may perform a regulatory role in RPW8.2-mediated resistance rather 

than a role in localization. 

I hypothesized that there might be additional RPW8.2 phosphorylation sites 

considering Arabidopsis proteins are known to multiply phosphorylate in response to 

phytohormones like salicylic acid (SA) and abscisic acid (ABA) (Takashi Furihata, 

Kyonoshin Maruyama, Yasunari Fujita, Taishi Umezawa, Riichiro Yoshida, Kazuo 

Shinozaki, 2006), and RPW8.2-mediated resistance is functionally dependent on SA 

pathways (Shunyuan Xiao et al., 2005; Shunyuan Xiao, Brown, et al., 2003). Also, 

Arabidopsis proteins from phosphoproteomic studies show differentially 
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phosphorylated proteins (J. J. Benschop et al., 2007). Consequently, I looked for 

additional phosphorylated sites that may play a role in resistance. 

My work builds on previous work initiated by Wang et al (W. Wang et al., 

2013). He used a NAAIRS replacement strategy (which minimize structural 

perturbations) to tile 6-amino-acid-mutants across RPW8.2. This analysis uncovered 

three potential phosphorylation sites as NAAIRS mutants substituted at these sites 

failed to produce detectable fluorescence. Combining this data and an in silico 

approach, an eight and a seven-site RPW8.2 mutant proteins, MUT7 and MUT8, were 

created and stably expressed in Arabidopsis. My work did not include tyrosine-

mutated sites because evidence for tyrosine phosphorylation in Arabidopsis is 

limited.(Q. Xu, 1998)  

MUT7 and MUT8 T1 transgenic lines were phenotypically characterized by 

resistance to powdery mildew and EHM localization. These lines were as susceptible 

as Col-0(gl) to powdery mildew verified by mycelia growth and spore counts (Figure 

2-11C), indicating that these two RPW8.2 mutant proteins are functionally 

compromised. Unexpectedly, YFP fluorescence was also observed in PM of 

epidermal cells of these transgenic lines suggesting at least partial abnormal 

localization of MUT7 and MUT8. PM fluorescence has not been previously 

associated with RPW8.2 driven by the native promoter unless pharmacologically 

treated with actin inhibitors like cytochalasin E.(W. Wang et al., 2009). Homolog of 

RPW8 1 (HR1), HR2, HR3 and HR4, which are encoded by RPW8 family members 

located tandemly with RPW8.1 and RPW8.2,  also show PM localization when driven 
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by the 35S promoter (Berkey, 2013), but only when YFP was fused at the N-termini 

of these proteins (thus are not functional). Consequently, it is possible that the loss of 

either one or more particular phosphorylation sites or secondary structural 

perturbations resulting from cumulative mutations in MUT7 and MUT8 was 

responsible for reduced resistance. 

Each serine (six) or threonine (two) in MUT8 was individually mutated to 

alanine and inserted into Arabidopsis via Agrobacterium. All T1 transgenic lines 

containing single-residue mutations correctly localized to the EHM 7-15 dpi. 

Except for one mutant, RPW8.2S138A, all seven individual mutants displayed 

some resistance comparable to RPW8.2 wt. Transgenic plants expressing 

RPW8.2S138S, or  RPW8.2T64A/S138A displayed susceptibility and showed PM-

localization of the mutant proteins both before inoculation and post-uninoculation. 

Thus, my genetic data suggest that site RPW8.2S138A may be phosphorylated and that 

its phosphorylation is important for RPW8.2-mediated powdery mildew resistance.  

That RPW8.2S138A, MUT7 and MUT8 confer susceptibility to the respective 

transgenic plants in Col-gl and S5 backgrounds (Figure 2-11C) suggests that the 

S138A mutation is a loss-of-function mutation and that RPW8.2S138Aexert a 

dominant-negative effect over the RPW8.2 wt. It is possible that RPW8.2S138A might 

affect RPW8.2’s interaction with other partners necessary for defense activation or 

accurate and timely targeting to the EHM.  

 



 

 

100 

 

In Vitro Assays Fail to Find Evidence for RPW8.2 Phosphorylation 

I sought to biochemically uncover RPW8.2’s interacting network by 

surveying known and putative kinases and phosphatases thought to interact with 

RPW8.2. Because RPW8.2 contains a putative transmembrane domain and because it 

localizes to the EHM and also because its concentration is limited I employed two 

techniques in assaying its phosphorylation. (1) A phos-tag-doped acrylamide capable 

of detecting a phosphorylated protein by pronounced band shift; (2) Mass 

spectrometry following trypsin digestion. Both techniques have been successfully 

used to detect phosphorylation (Bu et al., 2017; Kadota et al., 2014; Komis, Takáč, 

Bekešová, Vadovič, & Šamaj, 2014; L. Li et al., 2014b). I employed the first 

technique in testing known and putative RPW8.2 interacting partners. 

Recombinantly purified PAPP2C was incubated with RPW8.2. No band shift 

resulted on a phos-tag gel suggesting PAPP2C cannot dephosphorylate RPW8.2. This 

might be because although they do interact their interaction is not phosphospecific. 

Instead, they could be assembled together as part of a complex or EHM-destination 

vesicle. Alternatively, the recombinantly-produced PAPP2C may not be active.  

I attempted to purify other published known interactors of PAPP2C like 

phytochrome A (PHYA, AT1G09570) and CPK28 (AT5G66210) to serve as controls. 

These proteins did not purify either. Consequently, without a positive control, I had 

no way of determining whether PAPP2C can dephosphorylate RPW8.2 but is 

improperly folded due to purification procedures or if PAPP2C does not 

dephosphorylate RPW8. 2.  
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I also tested two kinases EDR1 and KIN11 for possible phosphorylation of 

RPW8.2. KIN11 did not seem to phosphorylate RPW8.2-YFP judging from the lack 

of band shift in a phos-tag assay. No positive control was used with KIN11 because 

of previous reports demonstrating successful functionality of a recombinant KIN11 

orthologue, AMPK, with the SAMS peptide  (Neumann, Woods, Carling, Wallimann, 

& Schlattner, 2003; Sanders, Grondin, Hegarty, Snowden, & Carling, 2007).  

The full length EDR1 protein did not express in E. coli, but the kinase domain 

was successful (kdEDR1). This domain autophosphorylated with a single phosphate 

consistent with previous reports (Asai et al., 2002c; Tang & Innes, 2002b). Three 

protein phosphatases were incubated with kdEDR1: λ protein phosphatase (P. T. W. 

Cohen & Cohen, 1989), CIP and PAPP2C11. λ protein phosphatase, with activity 

towards serine, threonine and tyrosine residues, successfully dephosphorylated 

kdEDR1, a finding not previously reported. Neither CIP nor PAPP2C11 had any 

phosphatase activity towards EDR1. 

Thus, despite a lot of efforts, I found no evidence of RPW8.2 phosphorylation 

after incubating kdEDR1 and Arabidopsis-purified RPW8.2-YFP-HA protein 

determined by band shift in phos-tag acrylamide gel. The non-interaction between 

kdEDR1 and RPW8.2 may be attributed to the loss of the regulatory domain at the N-

terminus of EDR1 which has been shown to be important for EDR1 functionality and 

protein-protein interactions.(Tang, Christiansen, & Innes, 2005; Zhao et al., 2014)  

RPW8.2-YFP-HA samples were also immunoprecipitated from reconstituted 

microsomal pellets and separated by SDS-PAGE. Bands approximately RPW8.2-
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YFP-HA's molecular weight were excised from the gel and submitted for LC MS/MS 

mass spectrometry analysis. No RPW8.2 peptides were detected. This may be 

partially due to difficulty in isolating and purifying RPW8.2 because of its relative 

low abundance and special EHM-localization. Future studies will need to purify 

greater quantities of Arabidopsis leaves or engineer the protein with a double affinity 

tag like the tandem affinity purification tag before subsequent MS/MS processing (R. 

B. Rodrigues et al., 2014; Stotz et al., 2014; Van Leene et al., 2014; Van Leene, 

Witters, Inzé, & De Jaeger, 2008). Additional purification using immobilized metal 

affinity chromatography (IMAC) like TiO2 or Ni-NTA resin that preferentially binds 

to phosphorylated peptides may also aid discovery (Chen, Hoehenwarter, & 

Weckwerth, 2010; Lenman, Sörensson, & Andreasson, 2008; Roitinger et al., 2015).  

Reasons for not Detecting RPW8.2 Phosphorylation--RPW8.2 Protein Stability 

A dianionic phosphate attached to RPW8.2 and to other phosphorylated 

proteins may change its spatio-chemical properties and enhance or weaken its 

interaction with other proteins or with the environment. For instance, XA21, is a 

protein receptor-like kinase that confers resistance to Xanthomonas oryzae pv. oryzae, 

a bacterium that causes rice blight. XA21 autophosphorylates at three sites and 

interacts with a kinase at one site. Mutating each of the three autophosphorylation 

sites to alanine and the kinase site to the phosphomimetic causes degradation of 

XA21 in 1 hr. The mutant protein was also at a much lower concentration than the 
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wildtype protein (W.-H. Xu et al., 2006). The instability was noticed in both in vivo 

and in vitro applications.  

The absence of phosphorylation can promote degradation but also the 

presence of phosphorylation can promote degradation. For instance, protein BZR1 is 

a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. This 

phytohormone has important implications in Arabidopsis growth and regulation. 

BZR1 is positively regulated by brassinosteroid which keeps it in a unphosphorylated 

stated. Phosphorylation by negative regulator kinase BIN2 causes BZR1 degradation 

via the proteasome (W.-H. Xu et al., 2006).Thus, in this case, phosphorylation targets 

a protein for degradation. 

Analogously, RPW8.2’s phosphostatus may be undetected in our assays due to rapid 

instability or degradation. Optimizing conditions specific for the protein in the 

extraction buffer or processing buffer may allow phosphodetection. For instance, 

proteasomal degradation may be inhibited by the addition of pharmacoagent MG132. 

Unstable protein may be stabilized by the addition of β-mercaptoethanol or 

detergents. The optimization of processing procedures may be critical for RPW8.2’s 

PTM analysis.  

Limitations of the Phos-Tag Assay 

A protein can exist in multiple forms: phosphorylated vs unphosphorylated. A 

phosphorylated protein typically only represents 5-10% of protein’s form in a sample 

(W.-H. Xu et al., 2006). A western blot is a sensitive technique capable of detecting 
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300 pg of protein (Schneppenheim, Budde, Dahlmann, & Rautenberg, 1991). Thus, 

although low abundant proteins are detectable with a western blot, their lower 

abundant phosphorms can escape undetected (Mao et al., 2011). With bacteria protein 

SSoPK4 I showed both phosphorylated and non-phosphorylated proteins are 

simultaneously present and detected. I wished to overcome this low abundance 

limitation by identifying phosphatases and kinases to boost RPW8.2’s phosphoforms 

and subsequent detection.  

In its current embodiment, the phos-tag assay is unable to distinguish between 

a band representing completely phosphorylated RPW8.2 that is unable to be 

dephosphorylated by the three phosphatases I tested, or whether RPW8.2 is entirely 

unphosphorylated and the two kinases I attempted were non-phosphorylating. 

Tandem mass spectrometry is more sensitive and can detect femtomoles of a protein 

(Peck et al., 2001b; Shevchenko et al., 1996).  

Unoptimized Assay Conditions in Mass Spectrometry 

Tandem mass spectrometry (MS/MS) is a useful technique for analyzing 

PTM’s on proteins. However, some PTM’s like glycosylation and phosphorylation 

are labile and susceptible to loss before detection during the gas phase and especially 

during the process of collision activated dissociation, a technique of further 

fragmenting peptides by inducing collisions and breakage with neutral molecules (Chi 

et al., 2007; Ficarro et al., 2002; Udeshi, Shabanowitz, Hunt, & Rose, 2007). Thus, 

RPW8.2 peptides and their corresponding phosphates may be preserved by instead 
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using an electron-capture dissociation (ECD) or electron-transfer dissociation (ETD), 

a fragmentation technique different than collision activated dissociation and more 

conducive to detecting sensitive phosphorylated proteins (H. Zhang & Ge, 2011; 

Zubarev, Zubarev, & Savitski, 2008). ECD/ETD can then be coupled to an instrument 

like the ThermoFisher Orbitrap Fusion Lumos because of its high sensitivity (Parker, 

Mocanu, Mocanu, Dicheva, & Warren, 2010). 

 

Acknowledging the Null Hypothesis: RPW8.2 Isn’t Phosphorylated 

The work here could be obfuscated by several variables including incorrectly 

operating phosphomimetics. Several of our candidate phosphorylation sites are two or 

three amino acids away from another phosphorylation site and adjacent 

phosphorylation has been shown to have a big impact on a protein’s activity 

especially regulatory proteins (McDonald et al., 1998; Rabinovitz, Tsomo, & 

Mercurio, 2004). The regulation and differentiation of phosphorylation sites strongly 

contributes to phenotypic diversity in magnitude with transcriptional regulation 

(Studer et al., 2016). Thus, if a RPW8.2 mutant contributed to the mRNA stability or 

to its translation this might be interpreted to impute phosphorylation when none 

exists.  
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Future Experiments 

Is Phosphorylated RPW8.2 EHM-Targeting Efficiency Important for Resistance? 

Wang showed that RPW8.2 targeting depends on two internal motifs (R/K-

R/K-x-R/K) (W. Wang et al., 2013). However, this report did not investigate the 

consequence of phosphorylation on targeting. Understanding how phosphorylation 

augments or compliments these two internal localization motifs and other core 

residues shown important for targeting would be helpful in elucidating the enigmatic 

EHM-destined pathways. For instance, VAMP721 is an Arabidopsis soluble SNARE 

protein shown by Hyeran et al. to be indispensable for RPW8.2 trafficking (H. Kim et 

al., 2014). This data suggests that RPW8.2 is packaged into cargos carried by 

VAMP721 and other vesicles passing through the trans-golgi network. VAMP721 

displays a ubiquitous expression pattern in plant tissue(Lipka, Kwon, & Panstruga, 

2007) and quickly localizes to the site of fungal penetration as a first-response host 

defense (Yun, Panstruga, Schulze-Lefert, & Kwon, 2008). Perhaps the 

phosphorylation of RPW8.2 or other phosphorylation-dependent interacting proteins 

augment or moderate the targeting of vesicles containing RPW8.2 to the EHM instead 

of to other locations. This hypothesis has biological precedence as another defense 

protein, PEN1, requires phosphorylation for full defense via SNARE-mediated 

pathways.(Pajonk, Kwon, Clemens, Panstruga, & Schulze-Lefert, 2008)  

My experiments did not measure the efficiency of the RPW8.2 mutant to 

target the extra-haustorial membrane (EHM) vs other location like the plasma 
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membrane (PM). Future studies could determine whether the mistargeting of RPW8.2 

to the PM is consequential to the functionality of resistance. To accomplish this, 

haustoria could be stained with propidium iodide (PI) in RPW8.2+ and RPW8.2S138A  

and other mutants transgenically selected in plants inoculated with powdery mildew. 

The number of RPW8.2-YFP-labeled EHM could be summed and divided by the total 

number of haustoria in a specific area size. Comparing EHM-targeting ratios would 

help determine if the functional cause of RPW8.2S138A susceptibility is a result of 

RPW8.2 mistargeting and provide evidence for a role of possible S138 

phosphorylation in RPW8.2 functionality.  

Detecting Site Specific Phosphorylation 

Having generated eight RPW8.2 site mutants I envisioned a phos-tag assay in 

which Arabidopsis RPW8.2+ samples would be simultaneously run with RPW8.2 

mutants on the same acrylamide gel. Mutant band patterns matching no 

phosphorylation would be interpreted as site-specific phosphorylation. Thus, in one 

assay I could show the phosphorylation of RPW8.2 and also show it occurred at a 

specific site, hypothetically RPW8.2S138A and RPW8.2T64A. However, this assay will 

require first detecting the presence or absence of phosphorylation.  

Site-directed mutagenesis like RPW8.2S138T and RPW8.2S138E will further 

clarify the phosphorylation role of S138. Should S138E partially restore S138 

resistance this would add additional credibility to this site being phosphorylated and 

functionally relevant to RPW8.2-mediated disease resistance. A restorative mutant at 
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this residue would refute arguments that instead of being phosphorylated, S138 is 

critical for RPW8.2 structure. Confirming T1 plants are morphologically similar to 

RPW8.2+ transgenic plants and also resistant to powdery mildew inoculation would 

be considered additional evidence that S138A is a loss of function mutation acting 

dominantly over its phosphorylated form.  

  

Repeat Studies to Confirm S138A-conferred Susceptibility 

Science is undergoing a reproducibility crisis (Begley & Ioannidis, 2014; 

Christie Aschwanden, 2016; Peng, 2015). The crisis is exasperated by small sample 

sizes, unreplicated experiments and over-reliance on p-values (Ioannidis, Chen, 

Kodell, Haug, & Hoey, 2005; Wasserstein & Lazar, 2016). I used binomial 

distributions, a pairwise test, to help calculate resistance significance among RPW8.2 

mutant T1 populations. The RPW8.2S138A data was repeated twice in Col-0 

background. All T1 results were duplicated except for RPW8.2S57A, RPW8.2S63A, 

RPW8.2S65A and RPW8.2S135A, which were performed once. Despite being performed 

once I believe the magnitude of the observed resistance, an indication of RPW8.2 

functionality, will obviate multiple testing (Shrier, 2005). Permitted more time I 

would like to have triplicated resistance experiments and then tested for multiple 

variables and their interactions with ANOVA (Brady et al., 2015). 
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Conclusion 

Significance of Plant Resistance Protein Research 

Three criteria have been used to score food security in 118 nations for the 

previous five years: availability, affordability, and health and safety. Three-quarters 

of the nations report improvements. Technology and innovation can ensure increasing 

improvements despite challenges like climate change, soil erosion and pathogen 

susceptibility (The Economist, 2016). The rate of innovation in food crops will need 

to increase if food security is to increase among the earth’s projected 10 billion 

inhabitants.  

Technology improvements to crops can come in many forms including genetic 

improvements. For example, barley cultivars containing the resistant barley locus 

(mlo) to powdery mildew Blumeria graminis f. sp. hordei (Bgh) now account for 

more than 30% of the spring planting in western Europe (J. H. Jørgensen, 1992). 

Although breeding barley with the mlo locus may seem to be less technological and 

more traditional especially since it has been known for 80 years (I. H. Jørgensen, 

1992) consider that only recently has an understanding of the recessive allele mlo-

functionality been elucidated with modern technological methods like forward 

genetic suppressor screens (Acevedo-Garcia et al., 2013) and orthologous transient 

expression studies (Acevedo-Garcia, Kusch, & Panstruga, 2014; Holub & Cooper, 

2004). In fact, only a few months ago was the barley genome been sequenced 

(Mascher et al., 2017). The high number of repetitive elements and lack of 
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recombination especially around the centromere made a full-genome assembly 

challenging requiring analysis of 3D chromosomal structure (Keller & Krattinger, 

2017). Genome engineering tools like CRISPR continue to reveal functionality of the 

MLO gene family in barley, wheat, and other crops (Appiano et al., 2015; Pessina et 

al., 2016; Y. Wang et al., 2014). 

Although mlo-mediated resistance to powdery mildew has been propagated by 

conventional breeding, some traits, like decoy engineering (S. H. Kim, Qi, Ashfield, 

Helm, & Innes, 2016) or natural insecticide resistance (Bravo, Gill, & Soberón, 2007) 

can never be achieved by conventional breeding. Thus, future resistance (R) proteins 

may be modified and customized from many sources and transformed into species. 

Transgenic crops have been around for 25 years and will undoubtedly become more 

popular (Giddings & Miller, 2016; National Academies of Sciences, 2016). Proteins 

conveying broad-spectrum and multi-pathogen resistance without reducing fitness or 

yield will be especially desirable. 

Utility of RPW8.2 Research 

Resistance proteins discovered in one species have been bred into other 

species to also confer similar protective benefits. For example, Haverkort et al. 

(Haverkort et al., 2008; Haverkort, Struik, Visser, & Jacobsen, 2009) used R-proteins 

from wild potato species  germplasm to protect potatoes from Phytophora infestans. 

Traits introduced this way are cisgenic.  
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Transgenic traits have also been introduced. Castanea dentata (American 

Chestnut) was protected against increased oxalic acid production from the fungus 

Cryphonectria parasitica when transformed with the wheat protein oxalate oxidase 

(B. Zhang et al., 2013). The expression of sweet pepper protein “Hypersensitive 

response-assisting protein” (Hrap) in banana conferred resistance to gram negative 

bacteria Xanthomonas campestris pv. musacearum, which is the causal agent of 

Banana Xanthomonas wilt (Tripathi, Mwaka, Tripathi, & Tushemereirwe, 2010).  

Whether acting cistronically in Arabidopsis (S Xiao et al., 2001; Shunyuan 

Xiao, Brown, et al., 2003) or acting transgenically (Shunyuan Xiao, Charoenwattana, 

Holcombe, & Turner, 2003), RPW8.2 has been shown to confer broad-spectrum 

resistance to powdery mildew species. Elucidating the mechanism of RPW8.2 

functionality may allow RPW8.2 to be engineered to be constitutively active without 

fitness costs (Orgil et al., 2007), or to provide resistance to more than four powdery 

mildews capable of colonizing Arabidopsis like tobacco, grape, strawberry or tomato 

mildew. Further, because RPW8.2 is currently the only protein known to localize to 

the EHM, it may act as a targeting scaffold to deliver other pathogen-specific 

payloads like anti-fungal or anti-bacterial effectors or pharmacological agents.  

Two Phosphorylation Sites in RPW8.2 

 Based on a comprehensive site-directed mutagenesis, I identified two 

residues T64 and S138 in the broad-spectrum disease resistance protein RPW8.2 that 

may be phosphorylated with consequential impact on RPW8.2’s function. While the 
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T64A mutation makes RPW8.2 autoactive implying negative regulation of RPW8.2 

by phosphorylation of this site, the S138A mutation abolishes RPW8.2’s ability to 

activate cell death and defense implying positive regulation of RPW8.2 by 

phosphorylation of this site. Interestingly, S138A suppresses T64A-mediated effect, 

suggesting distinct yet intrinsically connected phosphorylation mechanisms acting on 

RPW8.2. While phosphorylation at S138 appears to be required for efficient EHM-

targeting of RPW8.2 as well as defense activation, further studies are required to 

determine how (de)phosphorylation at T64 and S138 by responsible kinases or 

phosphatases may results in functional changes of RPW8.2.  
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Materials and Methods 

Arabidiopsis and Nicotiana benthamiana Growth 

Arabidopsis plants and mutants (Col-0, Col-gl, Col-0(nahG), S5) were sown 

on MetroMix 360 or Sunshine Mix #1 (Maryland Plants and Supplies). Seedlings 

were stratified at 4°C for 2-4 days before placing at 22°C, 75% RH. Light strength 

was about ~125-170 μmol•m-2•sec-1 for 10 hours and 14 hours dark cycle for 5-8 

weeks. N. benthamiana seedlings were sown on the same soil but not stratified. 

Growing light was around 125-150 μmol•m-2•sec-1 for 14 hour days (10 hour dark) 

cycles for 4-8 weeks before being used for transient Agrobacteria tumefaciens 

infiltrations.  

DNA Construction 

RPW8.2 mutants were generated by overlapping PCR. Primers were 

generated by PrimerX (Bioinformatics.org, http://www.bioinformatics.org/primerx/), 

and are listed in table below. Ex Taq (Takara) polymerase was used to generate PCR 

fragments. Fragments were purified from 1% agarose gels using Promega Wizard SV 

Gel purification kits (Promega, A9281). Purified fragments were added to a new, 

overlapping PCR reaction at approximate equimolar concentrations. Whole-length 

fragments were again gel purified, digested with BamHI and ligated into same vector 

as that used in (W. Wang et al., 2009). Primers contained BamHI restriction sites.  
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Table 4 Overlapping PCR Primers for RPW8.2 Mutant Generation 

 
 
Arabidopsis Agrobacterium-mediated Transformation and Seedling Selection 

Agrobacterium-mediated transformation of Arabidopsis was similar to that 

detailed here: (Clough & Bent, 1998). Seeds were sown on MS Agar and kanamycin 

antibiotic to select for positive transgenic plants. Positive plants were transplanted on 

soil. 

 
Pathogens strains, inoculation and phenotyping 

Powdery mildew isolate Golovinomyces cichoracearum UCSC1 (Gc-UCSC1) 

was maintained on live Col-0 or Col-NahG plants for generation of fresh conidia for 

inoculation purposes. Inoculation, visual scoring, photographing and quantification of 

disease susceptibility were done as previously described (Xiao et al., 2005).  

Primer Name Sequence
S29A-F CAAAAGAGCAAAAGATAGAGCTGTAACCACAAGATTCATC

S29A-R GATGAATCTTGTGGTTACAGCTCTATCTTTTGCTCTTTTG

T31A-F GAGCAAAAGATAGATCTGTAGCCACAAGATTCATCTTACACC

T31A-R GGTGTAAGATGAATCTTGTGGCTACAGATCTATCTTTTGCTC

S57A-F GTGGTTCAAATTGATAAGTTCGCTGAAGAAATGGAAGATTCAAC

S57A-R GTTGAATCTTCCATTTCTTCAGCGAACTTATCAATTTGAACCAC

S63A-F GTGAAGAAATGGAAGATGCAACATCGAGGAAAGTC

S63A-R GACTTTCCTCGATGTTGCATCTTCCATTTCTTCAC

S65A-F GAAATGGAAGATTCAACAGCGAGGAAAGTCAATAAAC

S65A-R GTTTATTGACTTTCCTCGCTGTTGAATCTTCCATTTC

S135A-F GAACTCAAGGCCAAGATGGCTGAAATCAGCACTAAAC

S135A-R GTTTAGTGCTGATTTCAGCCATCTTGGCCTTGAGTTC

S138A-F GATGTCTGAAATCGCCACTAAACTTGAC

S138A-R GTCAAGTTTAGTGGCGATTTCAGACATC

BamR82F CACCGGATCCATGATTGCTGAGGTTGCCGCA

BamR82RA CGCGGATCCAGAATGCAGAACGTAAA
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Statistical Analysis of Resistance/Susceptibility Compared to RPW8.2 WT Plants 

The binomial test was performed with GraphPad Prism 6. The number of 

resistant/susceptible plants for each mutant was compared to the number of 

resistant/susceptible plants in wildtype background (no RPW8.2 mutation). The null 

hypothesis that no difference exists in the number of expected/observed resistant 

plants was rejected with p<0.05. The binominal test was selected over a chi-square 

test because the binomial test is an exact test and the chi-square is an approximation. 

The binomial test is favored to the Fisher’s exact test because of its ability to interpret 

smaller sample sizes. 

Microscopy and Image Analysis 

Zen software version (Zen 2.3 lite, Zeiss) was used to capture images. Images 

were captured in the following way: LSM 710, AxioObserver, unidirectional 

scanning with 4x averaging and an Plan-Apochomat 20x/0.8 objective was used with 

beam splitter MBS 458/514/594. Laser power for 514nm laser was 5.6% and other 

settings as below: 

 

 Track 1 Track 2 
Contrast Method Fluorescence Fluorescence 
Channel Channel 1 Channel 2 Channel 3 
Channel Name Ch1-T1 T PMT-T1 Ch2-T2 
Excitation 
Wavelength 514   561 
Emission 
Wavelength 549   596 
Detection 
Wavelength 519-578   544-648 
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Depth of Focus   1.72m   
Binning Mode  1x1 1x1 1x1 
Detector  PMT   PMT 
Detector Gain 727.3 277.1 700.9 
Detector Offset 0 0 0 
Detector Digital 
Gain 1.5 1.1 1.0 

 
Pixel time was 0.45μs and an image size of 2840. Total frame time was 68.74 sec 

with an average of 4. Specifics taken from image “S:\XiaoShared\Current Lab 

Members\Harley King\EXPERIMENTS\Exp703\N.benth.P2Y13.and.pm-

rb\N.benth.7.dpi.pm-rb.and.Supp.fluor.image5” 

Mass Spectrometry 

The resuspended microsomal pellets from 10dpi, UCSC1-inoculated 

Arabidopsis plants were incubated with anti-HA magnetic beads. The eluate 

containing potentially phosphorylated RPW8.2 protein was further purified on an 

acrylamide gel. Approximate locations were excised from the gel and digested with 

0.5 µg trypsin in 25 mM ammonium bicarbonate. Extracted peptides were dried and 

reconstituted in water containing 5% acetonitrile and 0.1% formic acid for analysis by 

mass spectrometry. Data-dependent acquisition of digests was performed by LC-

MS/MS using an Agilent 6550 QTOF. Peptides were eluted from an Agilent ProtID 

C18 nanochip (75 µm x 150 mm, 300 nm) over 120 min gradient from 3% to 35% 

acetonitrile containing 0.1% formic acid at a flow rate of 300 nL/min. Acquisition 

method in positive mode used capillary temperature 275 °C, fragmentor 180 V, 

capillary voltage 1950 V, a 300 m/z to 2000 m/z mass window at 8 spectra/s scan rate 
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for precursor ions, 1.3 m/z isolation window, and a 80 m/z to 1700 m/z mass window 

at 3 spectra/s scan rate for product ions. Peptide results scores are derived from 

MS/MS searches which is derived from the ions scores. Top scoring peptides (Mascot 

score >20) are kept.  

Highlighting Cell Death or Fungus in Arabidopsis Leaves 

Previous instances image analysis have been performed. For example, 

Schikura et al. previously developed an algorithm to quantify the symptoms of 

Salmonella virulence on Arabidopsis (Schikora et al., 2012). Photoshop CC Release 

2017.0.1 (20161130.r.29x64) was used to highlight damage to leaves whether due to 

HR or fungal. HR appears yellow whereas fungal hyphae appears white. Selecting the 

image layer, “Select”>”Color Range”. In pop-up box, “Midtones” was used. Fuzziness 

= 62%, Range 140-211 > “ok”. Next, a new “levels” adjustment layer was added. To 

associate the color range selection with the levels layer 

“Image”>”Adjustments”>”Invert”. The image layer was selected, then color range 

was de-selected: “Select”, “Deselect”. Levels adjustment layer was selected. Again, 

“Image”>”Adjustments”>”Invert”. Input levels were modified from 0, 1.00 and 255 to 

0, 1.00 and 72. This YouTube tutorial was followed, 

https://www.youtube.com/watch?v=nqjUtwuemEo. 

For Individual Plants in RPW8.2(64, 138): each photograph had to be individually 

assessed when false colored especially due to factors like age, lighting and fungus age 

on plants. Layers were selected and grouped. Select->color fuziness: 62% Range 
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1..92..211. The group layer blend mode changed from "Pass Through" to "Normal". 

New "levels Adjustment" layer added. This was clipped to the group layer below.  

Levels were adjusted to 0..1.00..85 

Western Blots 

A 40% acrylamide solution was used to make SDS-PAGE according to 

BioRad protocol (BioRad, n.d.). Prior to loading, samples were boiled at 100°C for 

2.5 min in 1x Laemmli buffer. Antibodies used for detection on Antibodies: Anti-

GST antibody (Amersham cat no. 27-4577-01). Anti-GFP (abcam 290). Anti-HA 

(Roche, 1815016). In Phos-Tag doped gels, manufacturer’s procedure was followed. 

 
Western Blot Image Analysis 

RPW8.2-YFP expression increased 2x after inoculation. This expression 

increase is lower than previously reported for RPW8.2 levels, which discrepancy may 

be attributed to RPW8.2 protein from microsomal fractions in this assay and cDNA 

used as template in quantitative RT-PCR in other assays.(Shunyuan Xiao et al., 2005) 

The discrepancy may also be explained by the low amount (<50mg) of total leaf used 

and the also by the automatic band calculation technique by ImageJ and Photoshop. 

Consequently, total increase may be underestimated. 
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Chapter 3 Investigating the Roles of 14-3-3s in Biotic and 
Abiotic Stress Responses with A Novel Divalent 14-3-3–
Sequestering Protein 

Introduction 

14-3-3s, A Family of Conserved Regulatory Proteins in Eukaryotic Organisms 

Moore and Perez (Moore & Perez, 1967) are credited with first identifying 

acidic proteins from bovine brain extracts after purifying with DEAE-cellulose 

chromatography and then separating with 2-D starch-gel electrophoresis. The 

“fourteen” in “14-3-3” refers to the 14th fraction tube from the chromatography, and 

3-3 refers to the band identified after 2-D electrophoresis. Since their detection in 

bovine brain, 14-3-3 proteins have been detected in all eukaryotic organisms. 

Multiple 14-3-3 isoforms exist in a given genome. For examples, two isoforms are 

found in yeast and seven in mammals (G. P. H. van Heusden, 2009), and at least 13 

isoforms are identified in the Arabidopsis genome (Rosenquist, Alsterfjord, Larsson, 

& Sommarin, 2001).  

Arabidopsis and human 14-3-3 isoforms were originally distinguished by 

Greek letters. Then, Arabidopsis 14-3-3 proteins were discovered to interact with the 

G-box binding protein complex and were subsequently called G-box factor 14-3-3 

homologs (GF14). When genomic clones were identified the 14-3-3 isoforms were 

labeled GRF for “General Regulatory Factor” (Wu, Rooney, & Ferl, 1997). Numbers 

designate the order in which the clones were identified. Today, Arabidopsis 14-3-3 
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proteins are known by the Greek and GRF nomenclature. For example, GRF6 is 14-3-

3λ. The Greek names are kept throughout this document. 

14-3-3 proteins typically bind phosphorylated target proteins within an 

amphipathic groove formed by homo- or heterodimers of 14-3-3s. The dimeric 

structure is resistant to perturbations and very rigid due to stabilizing interactions 

between its nine helices causing some to liken it to a “molecular anvil” (Yaffe, 2002). 

This allows the 14-3-3 protein family to act as a inviolable shape upon which a bound 

protein may be modified (Obsil & Obsilova, 2011; Yaffe, 2002). 

Proteins that interact with 14-3-3s and are functionally impacted by the 

interaction are called 14-3-3 client proteins. The 14-3-3 family proteins have been 

shown to interact with many client proteins. For example, it is estimated that at least 

300 Arabidopsis proteins may bind 14-3-3s (I. F. Chang et al., 2009). These proteins 

are found to be involved in a myriad of cellular functions including metabolism, 

hormone signaling and abiotic and biotic stress responses (Coblitz, Wu, Shikano, & 

Li, 2006; Denison, Paul, Zupanska, & Ferl, 2011; Christian Ottmann et al., 2007; 

Rosa Lozano-Durán, 2015; Uhart, Flores, & Bustos, 2016). Some 14-3-3–client 

proteins are conserved in Arabidopsis, yeast and human suggesting that these 

interactions and their underlying regulatory mechanisms are highly conserved (Paul et 

al., 2009). Given the conservation of interactions and the diversity of client proteins, 

14-3-3 proteins act as nodes in signaling networks and connect functions of diverse 

pathways (Oecking & Jaspert, 2009). 
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Figure 3-1 14-3-3 Discovery, Binding and Redundancy 

(A) The position 3-3 (red arrow) from the 14th fraction from bovine brain came to be the 

initial discovery of 14-3-3 proteins. Imaged modified from (Moore & Perez, 1967) (B) A 

phylogenetic tree of thirteen Arabidopsis proteins using Phylogency.fr (Dereeper et al., 2008) 
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(C) 14-3-3 proteins bind client proteins for one of four reasons. i) Binding to phosphorylated 

proteins—blue shape with red knobs—14-3-3proteins, green horseshoes,—prevent 

degradation. ii)14-3-3 proteins can change the conformation of a interacting proteins. ii) 14-

3-3 proteins can acts as scaffolding for two proteins. iv) 14-3-3 proteins can shuttle their 

proteins to organelle. Figure from (Oh & others, 2010) (D) Three canonical modes of 14-3-3 

binding. Each mode requires phosphorylation. (E) Reproductive tissues in Arabidopsis 

Columbia show differentiable 14-3-3 expression levels using microarray data from 

ArrayExpress database. Figure from (Paul, Denison, Schultz, Zupanska, & Ferl, 2012).  
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Actions Modes of 14-3-3 Proteins with Interacting Proteins 

Proteins interact with each other for many reasons. There are four reasons 

why client proteins have evolved to interact with 14-3-3 proteins (Figure 3-1C) (Oh 

& others, 2010). First, 14-3-3 proteins increase stability of the interacting protein by 

limiting their interaction with ubiquitinating proteins or proteases. Second, 14-3-3 

proteins can change the conformation of an interacting protein. The change can 

induce activation or inhibition of a client protein’s activities. Third, 14-3-3 proteins 

may serve their client proteins by acting as scaffolding proteins. The scaffolding can 

recruit other proteins necessary for completing a reaction. Finally, a 14-3-3 

interaction may result in translocation of the client protein to another organelle 

(Aducci, Camoni, Marra, & Visconti, 2002; O’Kelly, Butler, Zilberberg, & Goldstein, 

2002a). 

In most cases, 14-3-3 proteins bind phosphorylated proteins (Moorhead et al., 

1999; Petosa et al., 1998). Three phosphorylated motifs are considered canonical 14-

3-3 binding motifs (Figure 3-1D). All canonical 14-3-3 binding motifs contain a 

phosphorylated serine or threonine denoted p(S/T). Instances of non- phosphorylated 

motifs and non-canonical binding have also been noted (Liou et al., 2001; Tzivion & 

Avruch, 2002).  

The later mode three binding is best characterized by the C-terminus of plant 

H+-ATPase binding (Axelsen, Venema, Jahn, Baunsgaard, & Palmgren, 1999; Bartel, 

Schäfer, Stevers, & Ottmann, 2014) (Figure 3-2A). The plant plasma membrane H+-

ATPase is a proton pump that uses ATP to transport hydrogen ions out of the cell to 
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establish an electrochemical gradient that is required for the opening of a stoma, a 

pore created by two specialized plant cells called “guard cells” (Figure 3-2B). The 

binding of 14-3-3s to the C-termini of H+-ATPases activates the latter so that stomata 

remain open allowing for gas exchange and water transpiration (Figure 3-2C). The 

interaction between H+-ATPases and 14-3-3s is blue light-induced phosphorylation-

dependent and reversible, rendering plants close their stomata during night to save 

water. 
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Figure 3-2 14-3-3 Interacts with Proton Pumps to Open Stomatal Pores 

(A) PMA2 is kept inactive (inhibited state). The blue light-induced phosphorylation of its C-

terminus creates a mode III binding site for 14-3-3 proteins. 14-3-3 proteins bind and lock up 

the autoinhibitory region permitting the activation of PMA2. In activated state PMA2 

transports H+ extracellularly creating electromotive force for water molecule transport into 

the guard cell. Image taken from (T. Kinoshita & Shimazaki, 2001). (B) Activation of PMA2 
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contributes to opening of stomata (pores on leaf surface), allowing for exchanges of gases 

including water vapor. (C) Stoma opening and closing is tightly regulated by CO2, water 

concentration, phytohormone abscisic acid (ABA) and small molecules like fusicoccin. (D) 

Fusicoccin, a fungal toxin, is known to interact with 14-3-3s and irreversibly lock up the 

binding between PMA2 and 14-3-3s, causing constitutive activation of PMA2. 
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Interestingly, it has been reported that Fusicoccum amygdali, a fungus on 

peach and almond trees (Ballio et al., 1964), produces a toxin capable of enhancing 

the binding between 14-3-3s and H+-ATPases, resulting in irreversible binding 

between 14-3-3s and H+-ATPases, which leads to the opening of stomatal pores and 

subsequent wilting of the infected plant (Marre, 1979).  

The X-ray crystal structure for tobacco 14-3-3c binding to the C-terminal 52 

amino acids (CT52) of the plant plasma membrane H+-ATPase (PMA2) from 

Nicotiana plumbaginifolia has been resolved (Christian Ottmann et al., 2007). The 

interaction between 14-3-3c and PMA2 is a typical mode III interaction (Figure 

3-1D), the 14-3-3 interacting with a penultimate phosphorylated threonine (YpTV-

COOH) on PMA2. This H+-ATPase and many other H+-ATPases are regulated by 

phosphorylation (Haruta, Gray, & Sussman, 2015), and PMA2 exhibits autoinhibition 

until phosphorylation and 14-3-3 binding to the C-terminus (Dambly & Boutry, 

2001).  

The crystal structure shows that one CT52 ligand interacts with a 14-3-3 

monomer (Figure 3-3A). The 14-3-3 dimer coordinates two CT52 peptides in an anti-

parallel manner with both exiting orthogonally from the 14-3-3 interface due to their 

unusual loop formation (Figure 3-3B) (Christian Ottmann et al., 2007). Twenty-seven 

amino acids from CT52 interact with each 14-3-3 monomer. These residues comprise 

two helices and a loop region that binds in the 14-3-3 groove (Figure 3-3C). 

Fusicoccin fits into the 14-3-3 groove and prevents the CT52 loop from exiting 

(Figure 3-3D). 
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Figure 3-3 Crystal structures showing the binding between a 14-3-3c and a H+-
ATPase. 

(A) CT52 (black ribbon), the C-terminal 52 amino acids of an H+-ATPase from N. 

plumbaginifolia, is used for co-crystallization with a 14-3-3 dimer. Crystal structure 2098. 

The images for were generated using Autodesk Molecule Viewer software, Version [0.2.1]. 

Copyright © 2017 Autodesk Inc., San Francisco, California, USA. Available at: 
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moleculeviewer.lifesciences.autodesk.com.) (B) Each CT52 binds to the groove of each 

monomer of a dimerized tobacco 14-3-3 protein. (C) Surface plots showing the interaction 

between Ct52 and a dimerized 14-3-3. (D) The same structure rotated 90° showing the C-

terminal tail of CT52 inserted into the 14-3-3 binding groove with additional electron density 

provided by residues and the binding of fusicoccin (drawn in ball-and-stick mode) in the 

bottom of the groove, locking CT52 into binding groove 
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Functional Redundancy Among 14-3-3 Isoforms 

14-3-3 proteins are highly conserved. The thirteen Arabidopsis isoforms share 

77 identical sites in a total length of 322 amino acids. The average pairwise identity is 

62% determined using Clustal Omega with Benchling (Biology Software. (2017). 

Retrieved from https://benchling.com). Inferring protein redundancy can’t rely solely 

on protein sequence due to complexity (Devos & Valencia, 2000). However, multiple 

experiments demonstrate redundancy among the 14-3-3 proteins. For instance, 

primary root growth demonstrated overlapping function for six 14-3-3s in abiotic 

stress when plants contained 14-3-3 knockout mutations (Van Kleeff et al., 2014). 

Four Arabidopsis 14-3-3 proteins can individually rescue a lethal, double knockout of 

14-3-3 genes in Saccharomyces cerevisiae, showing that variation in the non-

conserved regions is tolerated and that heterologous proteins from the same family 

can perform redundant functions (G. P. van Heusden, van der Zanden, Ferl, & 

Steensma, 1996). Paul et al. used microarray data from untreated Arabidopsis (Col-0 

accession) plants to show expression profiles for the 14-3-3 genes across tissues like 

roots, hypocotyls and siliques. They conclude that most isoforms are found in most 

tissues, and distinct localization of some individual 14-3-3 proteins may be due to 

their interaction with different client proteins (Paul et al., 2012; Paul, Sehnke, & Ferl, 

2005). Ten 14-3-3 proteins are expressed in non-specific tissue and in a non-

developmentally regulated manner (Keicher et al., 2017). Absence of noticeable 

phenotypes for single and combinatorial 14-3-3 T-DNA insertions is also evidence 

for the existence of functional redundancy among 14-3-3 isoforms (Krysan, Young, 
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Tax, & Sussman, 1996; W. Ma et al., 2016; Mayfield, Folta, Paul, & Ferl, 2007; Van 

Kleeff et al., 2014). A human protein-protein interaction phosphorylation network 

was resistant to perturbations when each of the 14-3-3 isoforms was systematically 

removed from the network. This was possible due to “redundant wiring”(Uhart et al., 

2016). 

  

14-3-3 Proteins Involved in Plant Immunity 

Like in animals, innate immune proteins of plants are first-response defenders 

that must initiate and quickly ramp up plant responses to pathogenic threats. For 

instance, FLAGELLIN SENSING 2 (FLS2), recognizes flagellated bacterial 

pathogens and phosphorylates interacting BRASSINOSTEROID INSENSITIVE 1-

ASSOCIATED KINASE 1 (BAK1), a leucine rich repeat receptor kinase (Chinchilla, 

Zipfel, Robatzek, Kemmerling, N?rnberger, et al., 2007; A. Heese et al., 2007). This 

reaction happens in as little as 30-60 seconds after contact (Schulze et al., 2010). 

Plant innate immunity is a phosphorylation-driven event due to its speed and 

reversibility. Due to their interaction with phosphorylated proteins, 14-3-3 proteins 

act as phospho-sensors. Chang et al. used 14-3-3ω fused with a tandem-affinity-

purification tag to identify interacting partners with mass spectrometry. They 

discovered an interaction between 14-3-3ω–BAK1 and BR1, which was missed in 

yeast two hybrid assays probably due to phosphorylation and 14-3-3 acting as a 

scaffold (I. F. Chang et al., 2009; Gampala et al., 2007). 14-3-3 proteins also undergo 

expression changes in response to pathogen attack. For example, an observed 
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decrease in expression of 14-3-3λ is due to its proteasomal degradation facilitated 

upon phosphorylation by a mitogen-activated kinase (MPK11), and a 14-3-3λ-null 

mutant is more resistant to potyvirus infection (Carrasco et al., 2014). This suggests 

that removal of 14-3-3λ is part of the infection strategy by potyviruses. In general, 14-

3-3 proteins may be targeted by pathogens because of their strategic importance in 

phosphorylation networks and their servicing of a large client cadre (Mukhtar et al., 

2011).  

  

14-3-3λ Interacts with RPW8.2 for defense  

14-3-3λ is upregulated in response to powdery mildew infection (X. Yang et 

al., 2009), so is RPW8.2 (W. Wang et al., 2009). Yang et al. provided evidence for an 

interaction between 14-3-3λ and RPW8.2 and showed that the interaction depends on 

the C-terminus of RPW8.2 (X. Yang et al., 2009). Thus, 14-3-3λ may bind RPW8.2 

in a mode III manner for trafficking or a masking function (O’Kelly, Butler, 

Zilberberg, & Goldstein, 2002b; Shikano, Coblitz, Wu, & Li, 2006).  

Yang et al. also demonstrated that a 14-3-3λ knockdown (14-3-3λ-kd) mutant 

(SALK_129554) is slightly more susceptible to infection of a well-adapted powdery 

mildew pathogen Gc-UCSC1. When this 14-3-3λ-kd allele was introduced into an 

Arabidopsis transgenic lines expressing both RPW8.1 and RPW8.2 (which act 

synergistically and cooperatively to protect against powdery mildew) (Ma et al., 

2014, Plant Cell Physiol 55, 1484-1496.), it compromised RPW8-mediated resistance 
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against powdery mildew Gc-UCSC1 (X. Yang et al., 2009). This suggests that the 

interaction with 14-3-3λ is important for RPW8.2’s resistance function.  

However, how 14-3-3λ regulates RPW8.2’s resistance function is not known. 

Given RPW8.2’s functional features, one may speculate the following two possible 

mechanisms by which 14-3-3λ regulates RPW8.2 via binding to the C-terminus of 

RPW8.2: (1) 14-3-3λ-binding is required for RPW8.2 to activate defense, and (2) 14-

3-3λ-binding is required for efficient targeting of RPW8.2 to the EHM. Even though 

genetic data based on a 14-3-3λ-kd mutant already support a positive and unique role 

for 14-3-3λ in regulation of RPW8.2, the residual expression of 14-3-3λ and/or 

potential functional redundancy between 14-3-3λ and other isoforms needs to be 

assessed in order to fully define the role of 14-3-3s in regulating RPW8.2-mediated 

resistance. More importantly, the underlying mechanisms for 14-3-3λ’s regulation 

needs to be clarified. 

 

 14-3-3 Sequestration as An Alternative Strategy to Study 14-3-3 Functions? 

Engineered proteins have been previously described to bind and sequester 

metal and organic molecules (Drummond, Cundari, & Wilson, 2012; Krishnaji & 

Kaplan, 2013) and other proteins (Cooke, Prigge, Opperman, & Wickens, 2011; 

Kariolis et al., 2014; Karuppanan et al., 2017). It can be envisioned that an engineered 

protein capable of sequestering 14-3-3 proteins can (1) address likely functional 

redundancy among different 14-3-3 isoforms, (2) reveal mechanisms with a higher 

spatiotemporal resolution if the engineering protein is expressed in a controlled 
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manner. Hence, I explored the engineering of such a 14-3-3-sequestering protein and 

used it as a tool to elucidate 14-3-3-dependent regulatory mechanisms with a focus on 

biotic and abiotic stress responses.  
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Results 

R18 Binds to Human 14-3-3ζ and Six Arabidopsis Isoforms  

To further investigate how 14-3-3λ regulates RPW8.2-mediated resistance and 

circumvent the likely functional redundancy among different 14-3-3 isoforms, I 

sought to overexpress R18, a 20 amino acid peptide 

(PHCVPRDLSWLDLEANMCLP) in Arabidopsis plants because R18 has been 

shown to bind human 14-3-3ζ with a high affinity with a high affinity (Wang et al., 

1999) and inhibit 14-3-3s’ binding with endogenous client proteins (Petosa et al., 

1998; Du et al., 2005; Dong et al., 2007; Dong et al., 2008; Mu et al., 2008; Kent et 

al., 2010; Qi et al., 2010). A crystal structure shows that amino acids WLDLE of R18 

tightly engages the 14-3-3 binding groove (Figure 3-4B-C) (Petosa et al., 1998). The 

acidic residues, glutamate and aspartate, of WLDLE mimic the serine/threonine 

phosphorylation of 14-3-3 ligands. A single mutation in R18 (D12R) abrogates 

binding with 14-3-3s probably due to electrostatic repulsion (Jin et al., 2004). 

Expression of R18 as a GFP-fusion protein also appeared to affect the subcellular 

distribution of 14-3-3s in trichome and guard cells of Arabidopsis (Paul et al., 2005). 

Thus, I speculated that R18, if expressed in Arabidopsis leaves, may be able to act as 

a competitive ligand to inhibit 14-3-3s’ binding with RPW8.2, thereby compromising 

RPW8.2’s resistance function.  



 

 

136 

 

Before stably expressing R18 as a transgene in Arabidopsis, I first used bimolecular 

fluorescence complementation (BiFC) to confirm if R18 indeed interacts with 14-3-

3λ and other 14-3-3 isoforms in planta.   
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Figure 3-4 R18 but not R18m Binds 14-3-3λ Protein 

(A) R18 vs R18m sequences. A single amino acid change, D12R, renders R18 unable to bind 

14-3-3 (B. Wang et al., 1999). Red line above peptide indicates residues WLDLE. (B) Crystal 

structure showing WLDLE residues (red arrows) in R18 protein bind in the 14-3-3ζ binding 

groove of each monomer in the dimerized structure. Images created with MolViewer 
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(Autodesk). (C) Space filling model shows R18 in the cleft. (D) Two R18 molecules tagged 

with YFPc or YFPn are capable of reconstituting YFP when transiently expressed in tobacco 

leaf epidermal cells. (E) In vivo confirmation of 14-3-3 heterodimerization by transient 

expression.  
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Briefly, yellow fluorescent protein (YFP) was split into two halves. The N-

terminus (YFPN) half contained amino acids 1 to 154. The C-terminus comprised 

amino acids 155 to 239. Each half was fused to an R18 peptide. Re-constitution of 

YFP demonstrates interaction between two separate R18 peptides mediated by their 

binding to the same dimerized 14-3-3 molecule in tobacco leaf cells (Figure 3-4D). 

BiFC was also used to confirm in vivo heterodimerization between 14-3-3λ and 14-3-

3Ψ (Figure 3-4E) as a validation of BiFC with the 14-3-3 isoforms.  
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Figure 3-5 14-3-3λ Interacts R18 but not R18m as shown by BiFC at Both 
Orientations 
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(A) R18 interacts with human 14-3-3ζ in tobacco epidermal cells. (B) R18m does not interact 

with 14-3-3ζ. (C) R18 interacts with 14-3-3λ. (D) R18m does not interact with 14-3-3λ.  
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The interaction between R18 and 14-3-3ζ has not been verified with BiFC. I 

fused YFPN to 14-3-3ζ and confirmed its interaction with R18-YFPC in leaf 

epidermal cells of tobacco. An abundance of YFP fluorescence indicated a positive 

association between the two proteins (Figure 3-5A) compared to the lack of 

fluorescence when 14-3-3ζ-YFPN or R18-YFPC was transiently expressed alone (data 

not shown). Moreover, no YFP fluorescence was detected between 14-3-3ζ-YFPN 

and a YFPC-tagged mutant version of R18 (designated R18m) in which the 14-3-3 

binding motif SWLDLE was mutated to SWLRLE in leaf epidermal cells expressing 

these two DNA constructs (Figure 3-5B), demonstrating that BiFC can faithfully 

report direct binding between R18 and 14-3-3ζ in plant cells.  

R18 has been previously employed as a potential competitor for 14-3-3–

binding to release endogenous proteins bound with 14-3-3s in Arabidopsis (Paul et 

al., 2005). However, it has not directly been shown that R18 can indeed bind different 

Arabidopsis 14-3-3 isoforms in vivo. I thus tested if R18 binds different Arabidopsis 

14-3-3 isoforms starting from 14-3-3λ. As shown in Figure 3-5C and 3D, and Figure 

3-6A to 4C, R18 indeed interacts with all four isoforms (i.e. λ,Ψ, ε and κ) albeit 

seemingly at different levels with 14-3-3κ repeatedly having the weakest interaction 

as reported by the detection of only rare and sporadic YFP-expressing cells (Figure 

3-6A-C). 
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Figure 3-6 R18 Binds Three Other 14-3-3 Arabidopsis Isoforms 

(A) R18 binds psi, (B) epsilon and (C) kappa. 
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Overexpression of R18 renders plants more sensitive to drought stress 

In order to stabilize R18 and visualize its subcellular distribution in plant cells, I 

translationally fused an R18 coding sequence (with codons optimized for plant 

expression) with that of DsRed and expressed the DsRed-R18 fusion protein from the 

35S promoter. Confocal imaging of Arabidopsis plants transgenic for 35S::DsRed-

R18 showed that DsRed-R18 preferentially accumulated in guard cells and is 

ubiquitously distributed (data not shown). Infection tests with the adapted powdery 

mildew isolate Gc UCSC1 showed no difference between the transgenic plants and 

wild-type control (data not shown). Serendipitously, I found that plants of two 

homozygous transgenic lines expressing DsRed-R18 in Col-0 were more sensitive to 

drought stress compared to the non-transgenic control plants (Figure 3-7A). 

Consistent with this, water-loss rate of the detached leaves from the two transgenic 

lines was significantly higher than that of the wild-type plants (Figure 3-7B). These 

results suggest that R18 might facilitate activation of H+-ATPases in guard cells, 

thereby promoting stomatal opening, which is opposite to what one would predicted 

based on H+-ATPase-14-3-3 interaction.  
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Figure 3-7 DsRed-R18 Enhances Drought Sensitivity 

(A) Transgenic Arabidopsis expressing DsRed-R18 are more sensitive to drought compared 

to wildtype plants. R18m plants however are similar to WT. (B) Water loss calculated as a 

percentage over time shows DsREd-R18-expressing plants lose more water compared to WT 

control. 
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To test if the increased sensitivity to drought is indeed due to R18’s 

interaction with 14-3-3s, I used R18m and fused it to fluorescent protein DsRed 

(DsRed-R18m) and stably expressed it in Col-gl from the 35S promoter. Interestingly, 

transgenic plants expressing DsRed-R18m displayed similar performance during 

drought stress as WT plants (Figure 3-7A). Thus, our results, though puzzling, 

suggest that unlike in many other cases, R18’s binding with 14-3-3s in guard cells 

may actually facilitate 14-3-3s’ interaction with and activation of H+-ATPases as their 

client proteins, hence resulting in more stomatal opening when R18 is constitutively 

expressed in guard cells.  

This mode of action is reminiscent of the mechanism by which the fungal 

toxin Fusicoccin (FC) induces stomatal opening. Structural studies showed that FC 

occupies the bottom of the binding grooves of a 14-3-3 dimer (Figure 3-3C-D), 

thereby stabilizing the otherwise reversible binding of the C-termini of H+-ATPases 

with the 14-3-3 dimer, which in turn results in activation of the H+-ATPases in guard 

cells, leading to irreversible stomatal opening and subsequent wilting of plants due to 

excessive loss of water (Korthout and de Boer, 1994; Oecking et al., 1994; Ottmann 

et al., 2001; Wurtele et al., 2003; Ottmann et al., 2007). A logical inference is that 

R18 might occupy a space in a 14-3-3 dimer in a manner, to some extent, similar to 

FC. As a result, R18 may be able to facilitate and/or stabilize 14-3-3’s binding with 

H+-ATPases, thereby promoting stomatal opening  
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Identifying an Additional 14-3-3-Binding Protein  

The C-terminus of PMA2 interacts with 14-3-3. In the presence of fusicoccin, 

the dissociation constant is measured to be 14nM (Christian Ottmann et al., 2007). 

Because the wildtype strength of this interaction is already quite strong but is subject 

to modulation via mutation or small molecule I decided to investigate the C-terminal 

portion of PMA2 for binding to 14-3-3. Specifically, I used PMA2’s Arabidopsis 

orthologue, AHA2 (AT4G30190.2), rationalizing that an Arabidopsis 14-3-3λ 

isoform will have greater affinity for an Arabidopsis proton pump. 

The C-terminal 59 amino acids (CT59) from AHA2 were fused with YFPC. 

Driven by the CaMV 35S promoter, YFPC-CT59 shows positive interaction with 14-

3-3λ-YFPN (Figure 3-8A). Additionally, YFPC-CT59 successfully interacts with three 

other isoforms: 14-3-3ζ, 14-3-3κ and 14-3-3ε (Figure 3-8A-C).  
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Figure 3-8 CT59 Interacts with 14-3-3 Isoforms 

(A) YFPC-CT59 interacts with 14-3-3λ, (B) 14-3-3κ, (C) 14-3-3ε, and (D) 14-3-3ζ.Bars = 

100μm. 
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 CT59 Contains Multiple 14-3-3 Binding Sites 

Structural studies with human 14-3-3zeta in complex with R18 showed that 

the five residues (WLDLE) involved in binding 14-3-3 occupies the bottom of the 

groove of each monomer (Petosa et al., 1998). Overlay of these two structures 

showed that the space WLDLE  overlaps with that of FC in the groove of 14-3-3 but 

also likely interferes with the binding of the last two or three residues of the C-

terminus of H+-ATPases with 14-3-3 (Figure 3-3A). Hence, based on the available 

protein structural information, it is rather difficult to infer if R18 would mimic FC in 

stabilizing H-ATPase or competing against its binding with 14-3-3 binding. However, 

our genetic data strongly indicate that R18 stabilizes H-ATPase-14-3-3 binding, since 

transgenic lines expressing Ds-Red-R18 were more sensitive to drought stress, 

whereas lines expressing the mutant version of R18 had no differences compared with 

untransformed control plants (Figure 3-7A-B). One possible explanation is that Ct59 

contains 14-3-3-binding sites in addition to the C-terminal YDV-COOH (YpTV-

COOH in endogenous H+-AYPases). 

To test this hypothesis, I decided to make a series of deletion/truncation Ct59 

mutants and test if they can still bind 14-3-3s. To facilitate this process, I first 

compared the Arabidopsis CT59 of AHA2 to that of C-terminal 59 amino acids of 

PMA2 using Benchling with the Clustal Omega algorithm. Alignment of these two 

sequences identified 41 Identical sites (including the last three residues) with 65% 

identity (Figure 3-9A). Because the last three amino acids were shown to be critical 

for the mode III binding in Nicotiana plumbaginifolia PMA2 at T947 (Coblitz et al., 
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2006; Fuglsang et al., 1999; Ganguly et al., 2005; Maudoux et al., 2000), I first 

deleted the three C-terminal residues including the phosphomimetic aspartic acid 

(Figure 3-9A, orange arrow). BiFC analysis with this new construct designated 

“CT56” showed that CT56 is still able to interact with 14-3-3 (Figure 3-10A-B). This 

indicates that there is at least one additional 14-3-3-binding site in CT59. 

Ottmann et al. showed that individual mutation H930A, T931A, L932A, 

S938E, K943A in CT52 of PMA2 abrogate protein interaction with 14-3-3 (Figure 

3-9A,C red arrows) (Christian Ottmann et al., 2007). These sites are conserved in 

CT59 and occur in the last small helix before the tail. Consequently, I mutated all 

three residues (H, T and L) to alanine and tested this new construct with an intact C-

terminus. New construct was designated CT59m. I also truncated the last 3 residues 

and called this CT56m (Table 1Table 5). Interestingly, both CT59m and CT56m were 

still capable of interacting with 14-3-3 as reported by positive results from BiFC 

analysis. This suggests the existence of other 14-3-3-interacting site in CT56m 

(Figure 3-10C-D). 
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Figure 3-9 Alignment and Mutations of Conserved Residues in C-termini of 
Some Plant H+-ATPases 
(A) Alignment of PMA2 orthologues from Arabidopsis thaliana and Nicotiana 

plumbaginifolia. Overall pairwise identity is 68% with 41 identical sites. Sites with 

red arrows are mutations shown to be also critical for 14-3-3 interaction in a previous 

report (Ottmann et al., 2007). (B) Alignment of Arabidopsis thaliana H+-ATPase 

proteins with the first fragment encoded by exon1 of CT59, “CT59.ex1.f1” performed 

using clustal omega. (C) The CT52 structure showing positions of the mutations 

indicated by arrows in the pairwise alignment (A) .  
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To identify additional 14-3-3-interacting sites, mutants were created by 

splitting CT59 into two fragments based on its exonic sequence. “CT59.ex1” contains 

the N-terminal 29 amino acids of CT59. “CT59.ex2” contained the C-terminal 31 

amino acids of CT59 (Table 5). The same arginine residue encoded by a codon in the 

exon-exon boundary was present in both fragments. The mutated residues are 

numbered with respect to the full length AHA2. Fluorescence was detected for both 

of these constructs in three independent BiFC analysis, suggesting an interaction 

between each of them with 14-3-3λ (CT59.ex1.f1 observed in Figure 3-14). 

Intriguingly, these two fragments also gave positive BiFC results when co-expressed 

with human 14-3-3ζ (Figure 3-11A-C).  

A shorter fragment CT59.ex1.f2 was further derived from CT59.ex1. This 

fragment contained 20 amino acids (AVNIFPEKGSYRELSEIAEQ, Table 5). When 

the YFPC-tagged construct was co-transiently expressed with 14-3-3λ-YFPN, YFP 

fluorescence was observable (Figure 3-11C), again suggesting an interaction with 14-

3-3s. Eight amino acids were further removed from CT59.ex1.f2 to yield YFPC-

CT59.ex1.f1, and surprisingly this 12 amino acid (AVNIFPEKGSYR) was also 

capable of interacting with 14-3-3λ-YFPN (Figure 3-12A-C). To further confirm the 

interaction between the 12 amino acid peptide and 14-3-3, I created YFPN-

CT59.ex1.f1 and found that it also interacted with 14-3-3λ-YFPC (Figure 3-12A,C).  
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Figure 3-10 Interaction between 14-3-3λ and CT59 derivatives  
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YFP Fluorescence reporting in vivo interaction was observed between 14-3-3λ-YFPn and 

YFPC-CT59 (A), or YFPC-CT59 interacts with 14-3-3λ (B), or YFPC-CT56 in which three 

terminal residues of CT59 (Table 5) were deleted, also interacts. (C) CT59m contains a three-

residue mutation (H, T, L) and interacts with 14-3-3λ. (D)The final three residues have been 

deleted and three residues (H, T, L) have been mutated to alanine (YFPC- CT56m) in which 

Bars = 100µm. 
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Table 5 A Summary of Ct59-Derived DNA Constructs and Their Interaction 
with 14-3-3λ As Reported by BiFC Analysis
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A surface plot of the 14-3-3-CT52 crystal structure (PDB:2O98) shows 

interaction between five residues (Thr898, Glu902, Leu903, Leu906 and Ala907) of 

the N-terminal regions of CT52 with human 14-3-3ζ (Figure 3-13B-C) (Christian 

Ottmann et al., 2007). This is part of an autoinhibitory region of CT52 known for 

dimerizing (Dambly & Boutry, 2001; Jelich-Ottmann, Weiler, & Oecking, 2001). I 

also mutated two of the interacting residues Tyr933, Arg934 shown by the 14-3-3ζ-

CT52 crystal structure (Christian Ottmann et al., 2007) to Ala, and the resulting 

fragment “CT59.ex1.f1.m2” still retained interaction with 14-3-3λ -YFPN in BiFC 

(Figure 3-11D). 

To identify other residues important for mediating the interaction between 14-

3-3λ with CT59.ex1.f1, corresponding sequences of five Arabidopsis H+-ATPases 

were aligned. Three amino acids, F927, P928, E929, show the highest consensus 

score and were thus mutated to Gly, Ala and Ala, respectively (Figure 3-9B). This 

construct “CT59.ex1.f1.m3” when used for BiFC analysis also showed interaction 

with 14-3-3λ (Figure 3-12B). Interaction was still detected when CT59.ex1.f1m3 was 

fused with YFPN instead of YFPC and co-expressed with 14-3-3λ-YFPC (Figure 

3-12D). 
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Figure 3-11 Interaction of CT59 Mutants with 14-3-3 
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All indicated DNA constructs were transiently co-expressed with 14-3-3λ-YFPN or 14-3-3ζ-

YFPN in N. benthamiana. YFP Fluorescence indicates interaction. (A) Ct59.ex1 (which 

encodes the first 29 aa of Ct59) + 14-3-3λ; (B) CT59.ex2 (which encodes the last 31 aa of 

Ct59) + 14-3-3λ; (C) Ct59-ex1.f1 (which encodes only 12 amino acids of Ct59) + 14-3-3λ; 

(D) Ct59-ex1.f1.m2 (which encodes only 12 amino acids of Ct59 with mutations in two 

residues) + 14-3-3λ; (E) Ct59-ex1.f1.m7 (which encodes only 12 amino acids of Ct59 with 

mutations in seven residues); (F) CT59.ex1 + 14-3-3ζ. Bars = 100µm. 
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To generate a CT59.ex1.f1 mutant that is unable to interact with 14-3-3, I 

made mutant constructs “CT59.ex1.f1.K” that encodes the 12 amino acids with only 

one mutation K930A , and “CT59.ex1.f1.VIK” that encodes the 12 amino acids with 

three mutations, V924A, I926A, K930A. However, fluorescence still resulted when 

transiently co-expressed with 14-3-3λ. (Figure 3-13A-B). I then mutated seven of the 

12 residues (V924A, I926A, F927G, E929A, K930A, Y933A, R934A) encoded by 

this construct to Ala, resulting in construct CT59.ex1.f1.m7. Transient co-expression 

of this YFPC-CT59.ex1.f1.m7 with 14-3-3λ-YFPN failed to produce fluorescence 

(Figure 3-12E), indicating this mutant fusion protein is unable to interact with 14-3-

3λ, and further demonstrating that all other interactions are true and specific. 
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Figure 3-12 Confirmation of BiFC for Two Ct59-derived Constructs by 
Switching the YFP Fragment in BiFC 
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The two indicated DNA constructs were transiently co-expressed with 14-3-3λ-YFPN (A and 

B) or 14-3-3λ-YFPC (C and D) in N. benthamiana. YFP Fluorescence indicates interaction. 

Bars = 100µm 

  



 

 

162 

 

The Interaction of R18 and CT59 via 14-3-3 Proteins 

R18 and Ct59 were tested for their ability to interact with each other. BiFC 

was used to confirm this interaction transiently in N. benthamiana. The presence of 

fluorescence between R18-YFPN and YFPC-CT59 confirms their interaction (Figure 

3-14A). 14-3-3 isoforms act as a scaffold for the interactions of R18 and CT59 

because there is no evidence for these two proteins interacting directly, but multiple 

experiments confirming their interaction each with 14-3-3s. In addition to full length 

CT59, fluorescence was also generated between R18 and CT59.ex1, a 20-amino acid 

truncation of CT59 (Figure 3-14B). Because previous results showed truncated 

peptides of CT59 interacting with a PMA2 monomer, the fluorescence with R18 

provides additional evidence that R18 and CT59 interact via a 14-3-3 dimer 

intermediary instead of with each other.  
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Figure 3-13 CT59 Mutants Interact with 14-3-3 in BiFC Probably by Interacting 
with Autoinhibitory Region II of CT59 

(A-B) The indicated DNA constructs were transiently co-expressed with 14-3-3λ-YFPN in N. 

benthamiana. YFP Fluorescence indicates interaction. Bars = 100µm 
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(C) The autoinhibitory region contains CT52 helices that interact with each other in an 

antiparallel manner. Surface model shows contact between the two helices. (D) Model rotated 

90° to show top and interacting helices.  
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My results on Ct59 mutagenesis and the subsequent BiFC analysis of various 

Ct59 mutants with 14-3-3 demonstrate that there are indeed multiple 14-3-3 binding 

sites in Ct59. Although the number and precise topography of the binding from Ct59 

that occur when Ct59 and R18 are co-expressed and occupy the same 14-3-3 groove 

remain unknown, these results provide a mechanistic explanation why R18 and Ct59 

in R18-YFP-Ct59 fusion protein can sequester 14-3-3s away from H+-ATPases in 

guard cells, thereby inducing stomatal closure and drought tolerance. 

Can Fusicoccin Compete against R18 in Binding to 14-3-3s? 

Fusicoccin is a small molecule known to facilitate 14-3-3-PMA2 interaction 

by locking the C-terminus loop region of PMA2 into the 14-3-3 binding groove. To 

test if R18 occupies the same or similar space as Fusicoccin, and verify that the 

observed interaction between R18 and Ct59 in BiFC is via binding to the same 14-3-3 

dimer (as scaffold), I used Fusicoccin as a competitor for 14-3-3-binding in BiFC. 

Two days after infiltration of Agrobacterium cells harboring R18-YFPN and YFPC-

CT59, water, or fusicoccin dissolved in water at 1 or 10μm concentration was 

infiltrated into the same leaves of N. benthamiana. The following day fluorescence 

was measured using an IVIS Lumina XR (Caliper Life Sciences). The benefit of 

using IVIS is that whole-spot fluorescence may be quantified, a feature unavailable to 

confocal microscopy. Image analysis performed in Living Image software (v4.5, 

Perkin Elmer) allowed total area of fluorescing regions to be inscribed, and total 

fluorescence measured and autofluorescence from the same area subtracted. Two 
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filter sets, dsRed and Cy5.5, confirmed the presence of YFP fluorescence and the 

absence of autofluorescence (Figure 3-14C). Spots infiltrated with either 1 or 10μm 

fusicoccin showed significantly less YFP fluorescence compared to water treated 

spots, and there was no significant difference observed between leaf spots treated 

with 1 or 10μm fusicoccin (Figure 3-14D-E). Given that fusicoccin can facilitate the 

binding between C-terminus (e.g. Ct59) and 14-3-3s, these results suggest that 

fusicoccin may indeed compete against R18 for binding 14-3-3s, thereby disrupting 

the 14-3-3-mediated interaction between R18 and CT59.  
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Figure 3-14 14-3-3-Mediated Interaction between R18 and Ct59 Can Be Reduced 
by Fusicoccin Treatment 
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(A-B) The indicated DNA constructs were transiently co-expressed in N. benthamiana. YFP 

Fluorescence indicates interaction. Bars = 100µm. (C) The IVIS system (Caliper Life 

Sciences) was used to quantitate fluorescence. No YFP fluorescence detected in dsRed filter 

set, whereas Cy5.5 detects far-red fluorescence and chlorophyll a. Numbered spots indicated 

infiltrations containing no fusicoccin (1), 1μM or 10μM FC (2, 3, respectively) or buffer(4) 

(D) Competition for 14-3-3 binding using fusicoccin. Fluorescence from BiFC and 

autofluorescence in the infiltrated leaf areas were measured and quantified (blue outline 

circles) one day after fusicoccin treatment using IVIS. Spots 1-4 were first infiltrated with 

agrobacterium cells harboring R18-YFPN and YFPC-CT59, and two days afterwards further 

infiltrated with 0, 1 or 10 μM fusicoccin, respectively. (E) A one-way ANOVA analysis 

shows significant difference (p<0.05) between areas 2 and 3 infiltrated with fusicoccin 

compared to area 1 infiltrated with water, and no significant difference between areas 

infiltrated with 1 or 10μM fusicoccin. Error bars are SEM. 
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Can R18 Binds in the 14-3-3λ Groove in the Presence of the CT52Peptide? 

A crystal structure exists showing the C-terminal 52 peptides from PMA2 

interacting with tobacco 14-3-3c in the presence of fusicoccin (Christian Ottmann et 

al., 2007). I thus used this structure as a base model to explore whether the binding 

groove of a 14-3-3 monomer is able to simultaneously host CT52 and R18 peptides. 

Fusicoccin was first removed from the structure, then R18 and dimerized 14-3-3c 

were fitted using FlexPepDock (London, Raveh, Cohen, Fathi, & Schueler-Furman, 

2011; Raveh, London, & Schueler-Furman, 2010). It was inferred that only when the 

CT52 loop region containing about the C-terminal 27 amino acids is removed from 

the model is R18 able to fit into the groove (Yizhou Yin (Moult Group at IBBR) 

personal communication, 2017). Removing the CT52 loop region has little 

perturbation to the 14-3-3 dimer, which is consistent with the rigidness previously 

noted with 14-3-3 dimers (Obsil & Obsilova, 2011; Yaffe, 2002).  
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Figure 3-15 R18 Binding in the 14-3-3 Groove in the Presence of CT52 

(A) Ten overlaid models of R18 fitting into a 14-3-3c binding groove representing the lowest 

energy among 200 simulations from FlexPepDock. The entire 20 amino acid-long R18 

peptide is too big for the groove but residues WLDLE (10-14) bind with high affinity 
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consistent with the crystal structure (≈80nM) (Petosa et al., 1998). To test for R18 (1-20aa) 

groove-binding, the loop region of CT52 (27aa), previously engaged in the groove, needed to 

be removed from the structure. (B-C) Terminal residues of R18 like proline-20 (B) and 

leucine-19 (C) do not bind in the groove and do not have a fold. 
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The top ten lowest energy models were overlaid on each other (Figure 3-15A). 

An alignment in the groove between the models shows little movement between the 

amphipathic sequence WLDLE and the 14-3-3 groove, suggesting multiple 

alignments in this space have the lowest energy. This is consistent with the crystal 

structure showing that these five residues also interact most tightly within the 14-3-3 

groove. The groove cannot accommodate the entire R18 peptide thus terminal 

residues like proline-20 (Figure 3-15B) and leucine-19 (Figure 3-15C) do not bind 

with specificity. Hence, the C-terminal loop of CT52 and R18 are unlikely to co-

occupy the 14-3-3 binding groove; however, the model leaves open the possibility 

that specific residues like WLDLE from R18 may partially bind while also 

accommodating residues in CT52 from PMA2 or in C-termini (such as Ct59) from 

other H+-ATPases in the 14-3-3 binding groove.  

 

Chimeric R18-YFP-CT59 Binds and Other Derivatives Bind 14-3-3 Isoforms 

Given that both R18 and CT59 can bind 14-3-3λ and other isoforms, and that 

their binding position may be different, a divalent chimeric protein containing R18 

and Ct59 in cis spaced by a linker may be able to effectively sequester 14-3-3s from 

their endogenous client proteins such as H+-ATPases. I thus made a chimeric DNA 

construct R18-YFP-Ct59 (designated RYC), considering that 1) YFP would act as a 

linker connecting both R18 and CT59 allowing each to bind a 14-3-3 monomer with 

flexibility, 2) the fluorescence generated by YFP would allow the expression of the 

fused protein to be conveniently monitored at the cellular and subcellular levels. 
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Before deploying RYC as a 14-3-3-trapping protein, I first assessed if such a protein 

can interact with multiple 14-3-3 isoforms as predicted. Briefly, I replaced YFP in the 

RYC or YRC with either YFPN or YFPC to enable BiFC assays. RYCC was first 

tested for its interaction with 14-3-3λ-YN, which was positive in BiFC (Figure 

3-16A). RYCC also interacted with RYNC (Figure 3-16B), consistent with the 

prediction that either or both these molecules can bind the same 14-3-3 dimer. This 

self-interaction was not tested with CT59. However, based on earlier confirming 

interactions with 14-3-3λ, and understanding that a crystallization model shows 

dimerized 14-3-3c interacting with two CT52 termini (Christian Ottmann et al., 

2007), I hypothesize CT59 to also exhibit similar dimerization behavior like R18.  I 

also showed that YCRC interacted with 14-3-3λ-YFPN (Figure 3-16C) and RYNC, 

interacted with 14-3-3λ-YN RYCC (Figure 3-16D). In addition, to determine if R18-

YFPC-CT59 (RYcC) interacts with 14-3-3 in a non-isoform-specific manner, I tested 

RYcC with YFPN-tagged five different 14-3-3 isoforms including human 14-3-3ζ and 

observed YFP fluorescence indicative of interaction (Figure 3-17A). Thus, these 

results indicate that cis-linked R18 and Ct59 with a spacer can bind (and sequester) 

the same 14-3-3 dimer and suggest that YFP can probably also act as a flexible linker 

to allow both R18 and CT59 to simultaneously engage a 14-3-3 dimer and report 

where and how much the fusion protein is expressed.   
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Figure 3-16 Both RYCC and YCRC Interact with 14-3-3λ  

The indicated DNA constructs were transiently co-expressed in N. benthamiana. YFP 

Fluorescence indicates interaction. Bars = 100μm (A) R18-YFPC-CT59 (RYCC) + 14-3-3λ-
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YFPN. (B) RYCC + R18-YFPN-CT59 (RYNC). (C) YFPC-R18-CT59 (YC-RY) + 14-3-3λ-

YFPN. (D) RYNC + YFPC-14-3-3λ.  
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Figure 3-17 RYCC Interacts with Five 14-3-3 Isoforms 

The indicated DNA constructs were transiently co-expressed in N. benthamiana. YFP 

Fluorescence indicates interaction. Bars = 100μm. Note, 14-3-3ζ is from human and rest 

isoforms are from Arabidopsis.  



 

 

177 

 

A synthetic promoter renders guard cell-specific expression of target proteins 

To minimize potential negative impact of constitutive expression of RYC on 

plant growth and development, I searched for promoters that could render drought-

inducible and guard cell-specific expression of RYC. It was reported that a synthetic 

promoter combining a core element (~250bp) of the drought-inducible (and ABA-

responsive) promoter of the Arabidopsis rd29A gene (Yamaguchi-Shinozaki and 

Shinozaki, 1994) and a core element (~250bp) of the guard cell-specific promoter of 

the potato kst1 gene (which encodes a potassium inwardly rectifying channel) (Plesch 

et al., 2001) seemed to confer desirable drought-inducible and guard cell-specific 

expression of the GUS reporter (Li et al., 2005). Therefore, I made a similar chimeric 

promoter by combining a drought-inducible promoter element (261bp from -443 to -

182bp upstream of the ATG start codon of rd29A, which contains 2x TACCGACAT, 

a drought-responsive element) and a guard cell-specific promoter element (253bp 

from -253 to -1 bp upstream of the ATG start codon of Kst1, which contains 2x 

TAAAG, a guard-cell-specific element). Stable expression of RYC from this chimeric 

sequence (named DG for simplicity) was barely detectable indicating low promoter 

activity before and after drought stress (data not shown). However, when placed 

downstream of the 35S promoter (35S-DG), the resultant chimeric promoter appeared 

to possess high constitutive and guard cell-specific promoter activity in expressing 

RYC. YFP signal intensity from RYC in guard cells is ~100X fold higher than that in 

the neighboring pavement cells (Figure 3-18A-B) in about 80% of the independent 

transgenic lines. However, drought-stress (8 days without water supply) did not 
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seemed to further increase RYC expression, presumably because the basal-level 

expression is already too high.  

Expression of R18-YFPC-CT59 Increases Drought Tolerance in Arabidopsis 

Confirming R18-YFPC-CT59 (RYC) interacts with several 14-3-3 isoforms, I 

wondered if it could be used for increasing drought tolerance in plants by 

sequestering away 14-3-3λ. I made and stably expressed RYC in plants driven by the 

35S promoter. The inclusion of the full-length YFP sequence gives a convenient 

means to assess expression levels and localization patterns of the fusion protein. 

Fluorescence microscopy showed that the fusion proteins are preferentially expressed 

in guard cells in all transgenic lines (>25) examined (Figure 3-18A-B), presumably 

because 14-3-3s accumulate at higher levels in guard cells compared to surrounding 

pavement cells (Leonhardt et al., 2004; Zhu et al., 2009), and 14-3-3‒binding may 

stabilize RYC, resulting in its preferential accumulation in guard cells. Two 

independent lines with higher levels of guard cell-preferential expression of RYC 

were tested for drought tolerance. Excitingly, I found that plants of both transgenic 

lines expressing RYC showed enhanced drought tolerance (one line shown Figure 

3-18C), whereas the two transgenic lines expressing YRC showed weak or no 

obvious enhanced drought tolerance (data not shown), suggesting that RYC may 

indeed sequester 14-3-3s from H+-ATPases, thereby promoting stomatal closure. I 

also monitored the growth and development of these plants and did not notice any 

abnormal morphological phenotypes from these transgenic lines (data not shown).  
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Water-loss measurement showed that detached leaves from two representative 

T3 homozygous lines transgenic for 35-DG::RYC had significantly reduced water 

loss rate compared to the wild-type plants (Figure 3-18D). Thus, my results 

demonstrate that sequestration of 14-3-3s in guard cells by expression of a bivalent 

14-3-3-interacting protein provides a novel and effective strategy to create drought-

tolerant plants.  

  



 

 

180 

 

 
Figure 3-18 RYC Accumulates in Guard Cells and Enhances Drought Tolerance 

(A) RYC localizes to guard cells (arrowhead) and the plasma membrane (arrow). (B) 

Increased magnification showing fluorescence is specific to guard cell localization. (C) 

Transgenic plants expressing RYC are more resistant to control plants Col-gl. (D) Water loss 

in RYC plants is less than control plants. 
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Overexpression of R18-YFP-Ct59 Has No Significant Impact on Basal Resistance 

to Powdery Mildew  

Because 14-3-3λ has been shown to interact with RPW8.2 (X. Yang et al., 

2009), I assessed whether RYC could play a role in basal resistance against powdery 

mildew. I also generated Arabidopsis Col-gl T1 and T2 plants expressing RYC from 

the 35S promoter or the RPW8.2 promoter (as shown in the figure?). RYC was found 

to be expressed in pavement and preferentially guard cells in the leaf epidermis 

(Figure 3-19A-B). T2 plants from 3-5 selected independent T1 lines were inoculated 

with Gc UCSC1 and assessed for their disease susceptibility compared to Col-gl 

plants. No significant phenotypic differences were observed between any of these 

transgenic lines and WT controls (Figure 3-19C). I also made Col-gl transgenic lines 

expressing RYCC from the 35S promoter and found no significant phenotypic 

difference compared to controls (Figure 3-19C). Quantification of disease 

susceptibility by counting total number of fungal spores per mg fresh infected leaf 

tissue also did not show significant difference between transgenic plants and WT 

control (Figure 3-20D). 
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Figure 3-19 Expression of RYC in Leaf Epidermal Pavement Cells of 
Arabidopsis Col-gl Plants 

(A) Expression of the chimeric protein R18-YFP-CT59 (RYC) from the constitutive 35S 

promoter in the PM of pavement cells. Guard cells (arrowhead) are also observed but RYC 

probably not guard cell specific due to constitutive expression. (B) 2x zoomed in image of 

RYC in the PM of pavement cells and guard cells (arrowhead). Scale bars are 100μM. (C) 

Examples of disease phenotypes of transgenic plants expressing RYC or RYCC from the 35S 
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promoter and WT Col-gl plants. No enhanced disease susceptibility was seen in transgenic 

plants.  
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I thus introduced the RYC or YRC construct under control of the RPW8.2 

promoter or the 35S promoter into line S5 that contains both RPW8.1 and RPW8.2. I 

obtained T2 transgenic lines and tested them along with S5 Wild-type plants for 

resistance to GC-UCSC1 (Figure 3-20A). Counting total number of fungal spores per 

mg fresh infected leaf tissues can be used to assess the severity of disease 

susceptibility or resistance especially in the later stages of the fungus’s life cycle 

(Weßling & Panstruga, 2012). Therefore, I quantified spores from a pool of leaves 

collected from 12 plants for each selected transgenic T2 lines (two lines for each 

transgene) (Figure 3-20B). Ordinary one-way ANOVA analysis comparing S5 to all 

lines showed that two of the three representative RYC T2 lines supported 

significantly more spores (which is comparable to Col-gl) than S5, but the three YRC 

T2 lines did not show significant difference compared to S5 (Figure 3-20B). This may 

be because like the drought tolerance, RYC binds to 14-3-3s with greater affinity than 

YRC and our sample size did not have power to find a small effect. I also generated 

T2 plants expressing RYC or YRC from the 35S promoter in Col-gl and compared 

them with T2 Col-gl plants expressing RYC from the RPW8.2 promoter. I found no 

significant phenotypic difference between the transgenic lines and Col-gl (Figure 

3-20C and Figure 3-20D).  

Given that 14-3-3λ knockdown in the S5 background only moderately 

attenuated RPW8-mediated resistance (X. Yang et al., 2009), my results that RYC (to 

a lesser extent YRC) expression in S5 largely abolished RPW8-mediated resistance 

(Figure 18A and 18B) suggest the following: (1) RYC can effectively sequester 14-3-
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3s in powdery mildew-invaded epidermal cells where RPW8.2 expression is induced 

upon infection; (2) 14-3-3λ indeed plays an important role in RPW8.2 (possibly 

RPW8.1 as well) mediated resistance to powdery mildew; and (3) other 14-3-3 

isoform other than 14-3-3λ may also contribute to RPW8-mediated resistance. 
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Figure 3-20 14-3-3 Sequestration by RYC or YRC Compromises RPW8-
Mediated Resistance  

(A) Representative leaves from plants of the indicated genotypes showing infection 

phenotypes at 10 dpi of Gc UCSC1. Note the DNA constructs were under control of the 

RPW8.2 promoter.  (B) Quantification of fungal spores for the indicated transgenic lines and 

control plants. One-way ANOVA was used to test the statistical significance of the 

differences in susceptibility of the transgenic lines compared to that of the S5 controls. 

Asterisks indicate significance (p<0.05). (C) Representative leaves from Col-gl lines 

expressing RYC or YRC from 35S or expressing RYC from the RPW8.2 native promoter at 

10 dpi of Gc UCSC1. (D) Spore counts for representative leaves from each sample show no 
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difference compared to Col-gl controls. (E) A Western blot showing RYC is distributed in the 

soluble (lysate) and membrane (microsomal) fractions prepared from leaves of a 

representative RYC transgenic line. Col-gl served as a negative control. An anti-YFP 

antibody (ABCAM ab-290) was used to detect YFP-containing proteins. (F) The intensity of 

the band corresponding to RYC increases with increasing leaf mass processed. (G) The area 

of cytoplasmic RYC (circles) and YFP (squares) band size increases commensurate with leaf 

mass. Size of error bars in (C) and (D) represent SEM.  
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RYC Expression Does Not Seem to Alter EHM-Specific Targeting of RPW8.2 

14-3-3-binding to RPW8.2 may be required for RPW8.2 to 1) activate SA-

dependent defense responses (Xiao., et al., 2005) and/or 2) localize to the host-

pathogen interface, the EHM. Several 14-3-3-interacting membrane proteins that 

contain mode III binding sites recruit 14-3-3 to their C-termini for efficient forward 

trafficking and correct membrane localization (Coblitz et al., 2006; Shikano et al., 

2006). C-terminal recognition by 14-3-3 proteins for surface expression of membrane 

receptors (Shikano et al., 2006). Genetic isolation of transport signals directing cell 

surface expression (Heusser et al., 2006). A multimeric membrane protein reveals 14-

3-3 isoform specificity in forward transport in yeast. Given that RPW8.2 is 

specifically localized to the EHM, I hypothesized that 14-3-3λ binding to the C-

terminus (-SDDS-COOH) of RPW8.2 might change RPW8.2’s conformation and/or 

masking potential ER retention motifs as 14-3-3-binding does for some other 

membrane proteins (O’Kelly et al., 2002b; Shikano et al., 2006), and thereby 

promoting its ER /Golgi export and EHM-oriented vesicle trafficking. To test this 

hypothesis, I generated Col-gl transgenic plants expressing RPW8.2-CFP (Earley et 

al., 2006) and RYC from the RPW8.2 native promoter. Confocal imaging showed that 

RPW8.2-CFP exhibited typical EHM-localization (Figure 3-21A), as previously 

observed for RPW8.2-YFP (Wang et la., 2009). This result seemingly suggests that 

14-3-3 sequestration by RYC has no impact on RPW8.2’s EHM localization. 

However, it is likely that fusion of CFP or YFP to the C-terminus of RPW8.2 may 
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abrogate the mode III binding of 14-3-3λ to RPW8.2’s C-terminus (X. Yang et al., 

2009), and that fusion of CFP (YFP) to the C-terminus of RPW8.2 may mimick the 

effect of mode III 14-3-3-binding, thereby obviating the binding of 14-3-3 to RPW8.2 

for EHM-targeting. This would mean that results from RPW8.2-CFP (YFP) and RYC 

co-expression may not be informative or adequate in determining if mode III binding 

of 14-3-3 to the C-terminus of RPW8.2 is required for the EHM-localization of the 

latter. Given that YFP-RPW8.2, though not functional in defense, can still be targeted 

to the EHM (W. Wang, Berkey, Wen, & Xiao, 2010). Accurate and adequate 

spatiotemporal expression and localization of RPW8.2 is key to activation of 

resistance at the host-pathogen interface. I translationally fused mCherry to the C-

terminus of RPW8.2 (the resulting DNA construct is designated RPW8.2-mCh) and  

generated stable Arabidopsis transgenic lines co-expressing two additional constructs, 

RYC and YFP-RPW8.2 (Wang et al., 2010) from the RPW8.2 promoter and use them 

for assessing if 14-3-3 sequestration can impact RPW8.2’s EHM-localization. My 

rationale behind this experiment is as follows: 1) YFP-RPW8.2 has an intact C-

terminus of RPW8.2. Hence its EHM-localization may require 14-3-3-binding to its 

C-terminus. RYC-mediated 14-3-3-sequestration may completely or partially affect 

YFP-RPW8.2’s EHM-localization; 2) RPW8.2-mCherry should have normal EHM-

localization in the presence of RYC due the reason explained above; 3) Confocal 

imaging of haustoria and their associated EHM for both YFP and mCherry should 

conveniently and accurately identify potential absence of YFP-RPW8.2 in the EHM 

where RPW8.2-mCherry is efficiently localized. Luckily, I obtained transgenic lines 
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that stably express YFP-RPW8.2, RPW8.2-mCh and RYC from the RPW8.2 

promoter by co-transformation. The T1 transgenic plants were inoculated with Gc-

UCSC1 and subjected to confocal imaging. In order to readily identify haustoria and 

grossly assess the EHM-targeting efficiency of the two RPW8.2 fusion protein, I also 

stained the infected leaves with propidium iodide (PI) to label haustoria (Koh et al., 

2005). Confocal imaging revealed that the EHM of most (70% of  >40 haustoria) was 

clearly labeled by both YFP and mCherry (Figure 3-21C), indicating that both 

RPW8.2 fusion proteins are correctly and efficiently targeted to the EHM. Based on 

the above results, it appears that 14-3-3-binding is not required for RPW8.2’s 

targeting to the EHM. As a corollary, it can be inferred that 14-3-3-binding is 

probably important for the RPW8.2 protein to activate defenses against powdery 

mildew pathogens.  
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Figure 3-21 R18-YFP-CT59 (RYC) Expression Does Not Affect RPW8.2’s EHM-
Localization 

(A) Representative confocal images showing EHM-localization (arrowhead) of RPW8.2-CFP 

in Arabidopsis Col-0 T1 lines co-expressing RYC which is mainly found in the plasma 

membrane (PM) (arrow). Leave of transgenic plants were subjected to imaging at 2 dpi with 

Gc UCSC1. (B) RPW8.2 chimeric proteins, one fused at the N-terminus with YFP (YFP-

RPW8.2), and the other at the C-terminus with mCherry (RPW8.2-mCh) appear to co-

localize to the EHM (arrowhead). However, YFP fluorescence can’t be distinguished by RYC 

that may also be localized here due to indiscriminate sloughing due to constitutive promoter, 

35S. This leaf section was stained with propidium iodide. (B) Representative confocal images 

showing co-localization of YFP-RPW8.2 and RPW8.2-mCh to the same haustoria (arrow) in 
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leaves of transgenic plant co-expressing RYC in addition to these two RPW8.2 fusion 

proteins. Bar = 100µm? 
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Western Blot Unable to Resolve RYC Multiple- or Specific-14-3-3 Binding  

In addition to fluorescence confirmation, RYC-transformed lines were 

accessed for RYC expression via western blot. Cytoplasmic localized RYC was 

unknown as RYC was previously observed to localize to the plasma membrane and to 

guard cells when interacting with 14-3-3λ (Figure 3-19A-B). However, RYC 

expression was identified by western blot to both localize in the cytoplasm and in the 

PM (Figure 3-20E). To confirm cytoplasmic expression, different numbers of leaves 

were processed from 1 leaf (29 mg) to ≈40 leaves (≈1000mg). Cytoplasmic RYC 

concentration increased commensurate with tissue weight processed (Figure 3-20F). 

RYC and YFP band size increased proportionally to tissue weight (Figure 3-20G). ] 

RYC binds multiple 14-3-3 isoforms in BiFC when tested individually. Whether RYC 

binds multiple 14-3-3 isoforms in vivo has not been tested. To address this question, I 

first tried to obtain commercially or lab-derived antibodies and test if they could 

distinguish individual 14-3-3 isoforms. Despite extensive Western blotting with ? 

different antibodies, I could not find one or a set of antibodies that could distinguish 

different Arabidopsis 14-3-3 isoforms endogenously or when they were transiently 

expressed in leaves of N. benthamiana. 
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Table 6 Arabidopsis 14-3-3 Isoform Characteristics 

 

 
Figure 3-22 Detection of 14-3-3 Isoforms by Different Antibodies 

(A) Detection of endogenous 14-3-3 proteins from N. benthamiana by an anti-14-3-3 “at-82” 

(Discontinued antibody from Santa Cruz Biotechnology). (B) Detection of endogenous 14-3-

3 proteins from N. benthamiana by two monoclonal anti-14-3-3 antibodies made by Dr. R. 

Ferl. 
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Most commercially-available antibodies recognize 14-3-3 proteins from 

humans. Three plant-specific antibodies were tested, one of them, anti-14-3-3 (Santa 

Cruz Biotechnology “at-82”, since discontinued) was commercially available. Two 

monoclonal antibodies, 2A3, 4B9, were produced in mouse ascites (kind gift from 

Robert Ferl) (Sehnke, Laughner, Cardasis, Powell, & Ferl, 2006). These antibodies 

were first tested for reactivity against Arabidopsis proteins transiently expressed in N. 

benthamiana. The same 14-3-3 isoforms were used as in previous BiFC experiments; 

thus, the 14-3-3 proteins were fused to YFPN at their C-termini. A list of 14-3-3 

isoform molecular weights as wildtype and YFPN fusion products is available in 

Table 6. 

Three days post infiltration with Agrobacteria expressing their respective 14-

3-3 isoform, N. benthamiana leaves were ground in liquid nitrogen. The lysates were 

purified, denatured, and probed by western blot using anti-14-3-3 antibodies. Bands 

around 35 kDa are visible on the blot using commercially available  (anti-14-3-3 “at-

82”). This suggests that endogenous 14-3-3 isoforms were detected (Figure 3-22A) 

rather than chimeric proteins. Band sizes were confirmed with monoclonal, 14-3-3 

Arabidopsis-specific antibodies 2A3 and 4B9. Both monoclonal antibodies detected 

bands around 35kDa suggesting that rather than 14-3-3-YFPN proteins, the 

endogenous 14-3-3 proteins were detected (Figure 3-22B). Negative control 

Arabidopsis Columbia also shows bands around the same size consistent with 

detection of its endogenous 14-3-3 proteins. 
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Abundance may provide an explanation for the detection of N. benthamiana 

endogenous 14-3-3 isoforms over 14-3-3-YFPN isoforms. In Arabidopsis, 14-3-3chi 

and phi (35.8 and 33.3 kDa) were the most abundant isoforms in several tissues (Paul 

et al., 2012). Orthologous N. benthanmiana 14-3-3 proteins may be similarly 

abundantly expressed. That no chimeric bands are detected at the 14-3-3-YFPN 

expected size (≈45kDa) suggests that the sample size was too little or that the 

heterologous isoform did not express well in host N. benthamiana. Localization may 

have been altered by fusion with YFPN and moved from soluble to insoluble 

consistent with BiFC data above. Steric hindrance may have also played a 

contributing factor as 4B9’s epitope is at the C-terminus and fusion of YFPN may 

have prevented the antibody from interacting with its epitope (Sehnke et al., 2006). 

Taken together, without first purification from endogenous proteins, 14-3-3 

heterologous proteins expressed in N. benthamiana are unlikely to be detected and 

differentiated. Due to the similarity of 14-3-3 proteins, 14-3-3-specific antibodies are 

cross-reactive. Thus, other techniques like tandem affinity purification (R. B. 

Rodrigues et al., 2014; Stotz et al., 2014; Van Leene et al., 2014, 2008) followed by 

mass spectrometry may be more amenable for determining which 14-3-3 isoforms 

RYC binds. Low abundance of heterologously expressed 14-3-3 proteins may be 

boosted by co-expressing with a protein capable of host suppression like the coat 

protein of Turnip Crinkle Virus (Qu, Ren, & Morris, 2003).  

  



 

 

197 

 

Quantitating the RYC-14-3-3λ Interaction In vitro  

How efficient is the 14-3-3 sequestration by RYC? To address this question, I 

used in vitro models to quantify the interaction between RYC and 14-3-3λ. RYC was 

cloned into pFN18A and purified using the HaloTag purification system (Ohana et 

al., 2009). 14-3-3λ cDNA was cloned into pET26b vector with a C-terminal 6xHis 

epitope tag. One advantage of using YFP as a linker protein is the ease of following it 

through the heterologous expression and purification process (Figure 3-23A). 
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Figure 3-23 Quantification of RYC Interaction with 14-3-3 
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(A) RYC purification aided by protein fluorescence. (B) The 6x-His epitope tag on 14-3-3λ is 

able to immunoprecipitate RYC (36.8kDa) when incubated with Ni-NTA resin as assessed by 

western blot using an anti-YFP antibody. The band below RYC is probably a nonspecific 

band this is removed with the addition of Ni-NTA resin.(C) Interaction of 14-3-3λ and RYC 

confirmed by size exclusion chromatography. In the absence of RYC, 14-3-3λ elutes at 

12.24mL as a dimer (blue line). When RYC and 14-3-3λ were co-incubated, a 14-3-3λ-dimer-

RYC complex eluted faster at 11.99mL. Smaller unbound RYC eluted slower at 13.64mL. 

(D) Isothermal titration calorimetry (ITC) reveals a dissociation constant between RYC and 

14-3-3λ, KD of 4.1 μM. Stoichiometry also reveals N = 0.7. (E) A range of globular proteins 

eluting from a size exclusion column can be used to measure (interpolate) the molecular 

weight of unknown eluting proteins. (F) The measured size can be evaluated against the 

calculated size for comparison.  
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Purified proteins RYC and 14-3-3λ were co-incubated together. Nickel resin 

was used to capture 14-3-3λ and any bound proteins. A western blot probing with 

αYFP (Abcam ab290) identified RYC in eluates confirming in vitro binding between 

14-3-3λ and RYC (Figure 3-23B). This binding was also validated on a gel filtration 

(size exclusion) column. By itself, 14-3-3λ was eluted as a dimer at 12.24 mL. 

However, after co-incubation with RYC and subsequent run on the same column, two 

species were observed. First, the heavier 14-3-3λ-dimer bound to RYC eluted earlier 

at 11.99mL. Second, the unbound RYC eluted at 13.64 mL (Figure 3-23C). A 

globular size-standard (BioRad #151-1901) with a size range from 1.35 to 670 kDa 

run on this column can be used to interpolate the sizes of the eluted peaks (Figure 

3-23E). For instance, the 12.24 mL elution corresponds to a measured molecular 

weight of about 69.8 (Figure 3-23F). This value is consistent with previous reports of 

14-3-3 elutions (Giles, Forrest, & Gabrielli, 2003; Sluchanko, Sudnitsyna, Chernik, 

Seit-Nebi, & Gusev, 2011). Calculated sizes for dimerized 14-3-3 protein bound to 

RYC and unbound RYC are also roughly estimated by interpolated measured sizes. 

The variability in size can be explained by the protein’s Stokes radius, a characteristic 

of solute mobility (Erickson, 2009).  

Isothermal titration calorimetry (ITC) was further used to evaluate the 

interaction between 14-3-3λ and RYC. RYC was subcloned into pET26b and purified 

and expressed from E. coli. Both RYC and 14-3-3λ proteins were purified to > 95% 

purity and dialyzed in the same buffer. RYC was slowly titrated into a solution 

containing 14-3-3λ. A dissociation constant of 4.1 μM was calculated with a 
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stoichiometry of N = 0.71. A value less than 1 is possible depending on the shape of 

binding molecule (Dutta, Rosgen, & Rajarathnam, 2015). Taken together, ITC, size 

exclusion chromatography and immunoprecipitation experiments confirm that RYC 

and 14-3-3λ interact in vitro.  
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Discussion 

I bioengineered a chimeric protein consisting of two 14-3-3 interacting 

proteins: a 20-residue peptide from a library and 59-C-terminal residues from an H+-

ATPase. “R18”, the 20-residue peptide, was shown in this study to bind 14-3-3λ and 

five other Arabidopsis 14-3-3 isoforms including one human isoform, 14-3-3ζ, using 

bimolecular fluorescence complementation (BiFC). To our knowledge, this is the first 

time BiFC was used to confirm the interaction between R18 and 14-3-3 isoforms.  

“CT59”, the 59-amino acid peptide from H+-ATPase, was also confirmed to interact 

with five Arabidopsis 14-3-3 isoforms, including 14-3-3ζ, using BiFC. My CT59 

truncation and mutation studies may have revealed a previously uncharacterized 

interaction with 14-3-3λ.  

Both R18 and CT59 were fused in a single protein interspaced with yellow 

fluorescent protein (YFP) called “RYC”. I hypothesized this chimeric protein to bi-

dentally engage 14-3-3 proteins such that its expression could be used to sequester 

14-3-3 isoforms, which may prove useful in characterizing client proteins and their 

association within 14-3-3-networks. 

Western blot assays failed to categorize the 14-3-3 proteins with which RYC 

interacts. Future studies will need to adopt other techniques like mass spectrometry to 

convincingly identify interacting 14-3-3 isoforms. Data collected in support of the 14-

3-3-RYC sequestering hypothesis shows that plant backgrounds expressing the 

RPW8 locus, a locus conferring immunity to powdery mildew species in Arabidopsis, 
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are compromised in resistance when RYC is expressed. Preliminary data suggests that 

RYC doesn’t affect RPW8.2, a protein in the RPW8 locus, in its trafficking to the 

extra-haustorial membrane (EHM). But future studies will be designed in a way as to 

provide greater resolving power in teasing apart this relationship.  

In vitro experiments confirm in vivo observations: RYC and at least one 

isoform, 14-3-3λ interact with a KD of 4.1 μM.  

 

Is the CT59.ex1.f1 and 14-3-3λ Interaction in BiFC Real? 

This study confirms the interaction between the 59 C-terminal amino acids 

“CT59” from an Arabidopsis H+-ATPase, AHA2 (At4G30190.2), and an Arabidopsis 

14-3-3 isoform, 14-3-3λ (At5G10450). CT59 truncated of the last three amino acids 

also generated fluorescence when previously shown to abolish an orthologous 

interaction in yeast due to disruption of the penultimate phosphorylate tyrosine 

residue (Christian Ottmann et al., 2007). The positive BiFC interaction was originally 

suspected to be background fluorescence, a common concern with in planta BiFC 

experiments (Horstman, Antonia, Tonaco, & Boutilier, 2014). To confirm the positive 

interactions, mutants should be used to disrupt the protein interactions (Kerppola, 

2006). Ironically, it was in searching for a CT59 mutant incapable of binding 14-3-3λ 

that prompted the truncational and mutational analysis. Twelve more derivative 

truncations and mutants also generated fluorescence. Surprisingly, a 12-residue 

peptide called “CT59.ex1.f1” also fluoresced when co-expressed with 14-3-3λ, 

confirming an interaction. Six observations support the conclusion of an interaction:  
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1) Individual BiFC experiments were conducted multiple times. The interaction 

between 14-3-3λ and CT59.ex1.f1 was repeated 4x.  

2) The abundance of fluorescence suggests this interaction is authentic. The 

fluorescence in truly positive interactions is much more robust than in false negatives. 

3) I swapped split YPF domains between 14-3-3λ and CT59.ex1.f1 and recapitulated 

results. 

4) More parsimonious to consider a previously uncharacterized interaction than false 

negatives in fourteen truncation/mutant experiments with replication. 

5) Crystal structure supports hypothesis of CT59.ex1.f1 interaction with 14-3-3λ. 

6) Small peptides (<21) including R18 in this study have been documented to produce 

fluorescence with BiFC (Lin et al., 2011; Speltz, Sawyer, & Regan, 2016).  

Taken together, I believe the interaction between CT59.ex1.f1 and 14-3-3λ is 

authentic and replicable.  
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Figure 3-24 Aligned PMA2 and AHA2 C-terminal Region 

(A) PMA2 can be used as a guide in understanding the dimerization of AHA2 in creating the 

autoinhibitory region II. The overlap between Δ52 and CT59.ex1.f1 contains four amino 

acids. Mutating two residues Y899A and R900A (CT59.ex1.f1.m2) failed to abolish 

fluorescence and an interaction with 14-3-3λ. Mutating all four was not attempted. Also 

shown is ΔCT27 from PMA2. When deleted, this region did not permit the growth of yeast 

suggesting autoinhibition region upstream. 
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The Mechanism of CT59.ex1.f1 and 14-3-3λ Interaction 

An orthologous interaction has been researched extensively using 14-3-3c and 

“CT52,” the 52 C-terminal amino acids from PMA2, a H+-ATPase from Nicotiana 

plumbaginifolia. The preeminence of this interaction in the literature is due to the 

unique role a fungal phytotoxin plays in strengthening the binding between PMA2 

and 14-3-3c. A protein crystal structure for this interaction has been solved and was 

used to support my analysis (Corinna Ottmann, Weyand, Wolf, Kuhlmann, & 

Ottmann, 2009).  

The structure shows that the terminal 27 residues of CT52, including the 

phosphorylated penultimate tyrosine residue, of PMA2 are critical for 14-3-3 groove-

binding. CT52 forms two α helices. One shorter helix coordinates loop binding in the 

14-3-3 binding groove and spans the binding region between the two 14-3-3 

monomers. The longer helix escapes from the center of the 14-3-3 dimer and also 

interacts with the other CT52 peptide helix at its N-terminus. This interaction among 

others may be responsible for observations that the PMA2 protein is known to 

dimerize and be inactive (Almeida, Martins, & Carvalho-Alves, 2006; Kanczewska et 

al., 2005). 

CT52 contains known autoinhibitory regions, region I and region II. In the 

absence of 14-3-3 binding, the CT52 peptides anti-parallelize to create an 

autoinhibitory region that prevents PMA2 functionality. Region II is not exactly 

defined but includes portions of the CT52 helix region protruding from the 14-3-3 
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dimer. Two CT52 helices emanate from the 14-3-3 dimer in an antiparallel manner 

and interact as shown in the crystal structure. The autoinhibitory action of region II 

depends on these intermolecular contacts.  

Peptide CT59.ex.f1 contains amino acids hypothesized to be important for 

these intermolecular interactions especially F907. In AHA2, the coordinating 

phenylalanine is a tyrosine, which could still maintain the hydrophobicity necessary 

for contacts with the opposite, antiparallel CT59 helix. The crystal structure identifies 

other upstream residues which may further coordinate region II auto-inhibiting 

cooperativity. Thus, this work provides additional clarification regarding the strength 

of this interaction and also suggests additional residues which may coordinate and 

interact together for the auto-inhibition of region II.  

We propose a model in which the 12-residue peptide CT59.ex1.f1 and all 

mutants except CT59.ex1.m7 maintain enough identity to coordinate with at least one 

antiparallel, endogenous N. benthamiana PMA2 protein at the autoinhibitory region 

II. CT59.ex1.f1 interacts with 14-3-3λ when it binds to the C-terminal region of 

PMA2 upon phosphorylation to activate PMA2. This suggests a one-to-one ratio 

typically ascribed to BiFC. However, a cryoelectron microscopy (cryo-EM) model for 

the 14-3-3-PMA complex reveals that the 14-3-3λ-CT59.ex1.f1 ratio may be higher 

creating bias towards interaction and BiFC. 

The cryo-EM model suggests that three PMA2 dimers hexamerize with three 

14-3-3 dimers for the activation of PMA2. Hexamerization increases the probability 

that CT59.ex1.f1 and 14-3-3λ will interact, for the hexamer provides up to three 
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binding sites for at least one CT59.ex1.f1 to interact with another PMA2 in the 

autoinhibitory II region. The odds are similar for 14-3-3λ. Only one 14-3-3λ-YFPN 

protein need homodimerize or heterodimerize with another endogenous 14-3-3 

isoform to be part of the complex and brought into close enough proximity with 

CT59.ex1.f1 to generate fluorescence. 

Although distances of at least 100Å are needed for FRET with BiFC 

(Kerppola, 2008), no specific distance exists for BiFC, and two tethered, flexibly 

linked split-YFP particles can generate fluorescence (Kerppola, 2006). The cryo-EM 

hexamer shows a mostly-cylindrical shape with diameter 147Å and 120Å height. 

Thus, these dimensions clearly allow a close enough association for the generation of 

fluorescence. FRET may be troublesome but still probable due to the centrally-

concentrated 14-3-3λ-PMA2 interactions.  

 The hexamerization of this complex and the N. benthamiana host in which it 

was expressed may have fortunately contributed to revealing this interaction.  

 

Why Does BiFC Show an Interaction While Yeast Studies do not?  

YAK2 is a specialized yeast strain in which previous 14-3-3-PMA2 

interactions were performed. Two endogenous H+-ATPase genes have been removed 

YAK2 (De Kerchove d’Exaerde et al., 1995). The removal of both PMA1 and PMA2 

allows survival testing of mutant, heterologous H+-ATPases like Nicotiana 

plumbaginifolia PMA2 (De Kerchove d’Exaerde et al., 1995). Wildtype N. 
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plumbaginifolia PMA2 permits yeast growth due to partial activation by endogenous 

14-3-3 proteins (Piotrowski, Morsomme, Boutry, & Oecking, 1998). 

The mutation of the penultimate residue (tyrosine) in CT52 was enough to 

abolish growth in yeast. Without the phosphorylated tyrosine T955A, PMA2 does not 

engage 14-3-3 to overcome the PMA2 autoinhibitory region II for activation and 

subsequent growth on glucose medium (Christian Ottmann et al., 2007). 

Unexpectedly, CT56 (Δ3 terminal residues containing tyrosine) interacted with 14-3-

3λ in N. benthamiana even though this reaction was confirmed not to occur in YAK2.  

Deleting the terminal 27 residues did not restore the growth of yeast, 

suggesting the autoinhibitory domain was still engaged preventing growth. Deleting 

CT52 (Δ52) restored growth, and demonstrates that autoinhibitory region II is located 

between Δ27 and Δ52. Four residues, including one critical residue, F907, in Δ52 are 

found in CT591.ex1.f1. Mutating the last two residues in CT59.ex1.f1 to alanine did 

not abolish fluorescence with 14-3-3λ. CT59.ex1.f1 is seven amino acids longer than 

CT52 which may allow for interaction not able to be tested by Ottmann et al. Also, 

there may be orthologous differences between the autoinhibitory region II of AHA2 

and PMA2.  

Given the data above, the discrepancy between positive BiFC in N. 

benthamiana and non-growth in YAK2 is due to CT56 and CT59.ex1.f1 and other 

variants interacting with endogenous H+-ATPases orthologues like PMA2 in N. 

benthamiana. In YAK2, orthologous interactions are impossible because yeast H+-

ATPases PMA1 and PMA2 have been deleted. This confirms the functional 
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redundancy of 14-3-3 isoforms and AHA2, and the dimerization of the C-terminal 

region in forming autoinhibitory region II. 

 

Discrepancies Between KD in ITC vs SPR  

The dissociation constant, also affinity, is a measure of the binding strength of 

a complex to dissociate into a protein and ligand. This study used isothermal titration 

calorimetry to calculate a KD of 4.1 μM between RYC and 14-3-3. This was higher 

(lower affinity) than the KD of 14nM calculated by Ottmann et al. using surface 

plasmon resonance spectroscopy (SPRS) (Christian Ottmann et al., 2007). SPRS was 

used to investigate CT52’s affinity for 14-3-3 in the presence of mutations and small 

fusicoccin. The discrepancy between the two KD values is the presence of fusicoccin, 

which has been shown to irreversibly lock the C-terminal tail into the binding groove 

of 14-3-3. Fusicoccin was not used in ITC, but the presence of fusicoccin in planta 

was shown to inhibit the interaction between R18 and CT59, both of which have been 

demonstrated to bind 14-3-3 proteins. The molecular basis for this is not known, 

though the presence of fusicoccin may act as a competitive inhibitor of R18 binding. 
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Figure 3-25 The Hexamerization of PMA2 and 14-3-3c and RYC Binding 
Possibilities 

(A) The hexamerization of PMA2 and 14-3-3c provides a model for the explanation of the 

12-residue CT59.ex1.f1 interacting with 14-3-3λ. The C-terminal ends of PMA2 dimerize to 

create autoinhibitory region II (1-2). Upon phosphorylation and 14-3-3-binding, PMA2 

undergoes hexamerization and subsequent activation (3-6). PMA2 residues in the C-terminal 

end continue to associate (5). Only one YFPC-CT59.ex1.f1 molecule is needed to interact 

with at least one other PMA2 endogenous full length H+-ATPase to be brought into contact 

with one molecule of 14-3-3-YFPN which may have homodimerized or heterodimerized with 

endogenous 14-3-3 isoforms. (B) The molecular binding between RYC and 14-3-3λ is 

unknown but could be cooperative(1), coordinated(2), preferred(3), heterodimeric(4) or 

homodimeric(5) binding. 
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Future Experiments 

R18-YFP-CT59 (RYC) is a sequestering protein that in vivo engages six 14-3-

3 isoforms. In vitro RYC binds 14-3-3λ with a KD of 4.1 μM. Despite confidence in 

its interaction the molecular mechanism of interaction is unknown. Does RYC 

interact with 14-3-3 isoforms in a mono- or bidentate manner? Do both 14-3-3-

binding moieties bind equally, or does one bind preferentially due to different 

affinities? There are 5 possible states of RYC-14-3-3λ binding: 

1. Cooperative Binding: One RYC molecule binds a single 14-3-3λ 

dimer. 

2. Coordinated Binding: One moiety from RYC binds 14-3-3λ dimer 

while the other moiety partially binds or blocks groove. 

3. Single Binding or Preferred Binding: Both moieties can bind, but only 

one does due to competitive binding or steric hindrance. 

4. Heterodimeric Binding: Two different moieties from two RYC 

molecules bind a single 14-3-3λ dimer.  

5. Homodimeric Binding: The same moiety from two RYC molecules 

bind a single 14-3-3λ dimer. 

Two techniques can aid in clarifying this relationship: 

1. Western Blot 

2. Surface plasmon resonance (SPR) using Octet 
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Immunoprecipitation followed by western blots can clarify the interaction. R18 can 

be synthesized with N-terminal biotin. CT59 can be cloned with glutathione S-

transferase (GST), and 14-3-3 can be cloned into a vector containing the 6xHIS tag. 

Following expression and purification from E. coli, 14-3-3λ can be incubated with 

each protein individually and together. Nickel resin can be incubated with the 

proteins. Once pulled from solution the bound proteins could be washed and eluted. I 

would expect to find both R18 and CT59 pulled out of solution by their association 

with 14-3-3λ. These associations could be confirmed by antibodies specific for R18, 

streptavidin, and CT59, anti-GST. As a control, proteins R18 and CT59 incubated 

together would not be expected to bind the Ni resin. This would confirm that both 

proteins need 14-3-3λ to bind, and that they do not bind to each other. Taken together, 

immunoprecipitations and western blots can confirm the R18 and CT59 interaction 

are specific for 14-3-3λ. However, western blot data can’t be used to calculate 

dissociation constants. 
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Figure 3-26 Recombinant RYC and Derivatives Expression in E. coli 

(A) RYC and derivative fragments cloned into vector containing GST and N-terminus. Some 

fragments were also fused to YFP to more closely mimic the functionality of YFP as a fusion 

protein in RYC. 80% of the proteins did not express solubly in the lysate at 37°C. The 

lowered temperature, 30°C, also failed to enhance solubility. Protein solubility was ranked on 

a score of 0 – 10 with 10 being the most soluble. (B) The lysate expression profiles for two 

proteins at 37 and 18°C. Protease cleavage observed with GST-CT59. This same cleavage 

was also observed in a previous study (Jelich-Ottmann et al., 2001). 
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Measuring the affinity of each 14-3-3 binding moiety can be provided by SPR 

using an instrument like the Octet (Pall ForteBio). The Octet could be a useful 

platform for verifying the interaction of 14-3-3 binding moieties, R18 and CT59, for 

14-3-3λ. These proteins could also be mixed and tested with 14-3-3λ.  

I’ve cloned R18, CT59 and variants into a vector containing a N-terminal 

GST fusion tag with a TEV protease cleavage site. YFP was also fused to the proteins 

to act as a visual marker through expression and purification and also to more closely 

approximate the value of the YFP protein in “RYC” in its interaction with 14-3-3λ 

(Figure 3-26A). Eighty-percent of proteins were not found in the soluble lysate at 

37°C. 30°C increased the solubility for some proteins slightly. A temperature of 18°C 

was used to express GST-CT59. A striated pattern was observed in the purified 

fraction. It was confirmed with western blot (data not shown) indicating protease 

cleavage (Figure 3-26B). This cleavage has been seen in previous purifications 

containing the C-terminus of PMA2 (Jelich-Ottmann et al., 2001).  

The presence of an interaction between CT56 and 14-3-3λ in N. benthamiana 

but its absence between CT52 (with a penultimate, phosphorylation-null alanine 

mutation) and endogenous 14-3-3 proteins in yeast suggests that this interaction can’t 

be explored with recombinant protein. CT56 binds to the autoinhibitory region II of 

an endogenous PMA2. The C-terminal of PMA2 is necessary for 14-3-3 interaction 

and subsequent hexamerization. Thus, without full length PMA2 capable of 

hexamerization, the CT59.ex1.f1 peptide would not be predicted to interact with 14-

3-3λ. The Octet could be used to confirm this negative-interaction hypothesis.  
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Producing CT59 Negative Interacting Protein and Testing with Multiple 14-3-3 

Proteins 

Seven mutations were required to nullify the fluorescence between 

CT59.ex1.f1 and 14-3-3λ. However, this mutated peptide wasn’t cloned into the 

larger CT59 fragment and observed for BiFC intereaction with 14-3-3λ. Thus, these 

same mutations made in the CT56 fragment may be enough to abolish interaction. 

Also, mutating residues G897, S898, Y899 and R900 to alanine may also abolish 

interaction. Previous analysis mutating Y899 and R900 to alanine failed to abolish 

interaction. The four amino acids overlap with CT52 from PMA2. The deletion of 

Δ52 removed the autoinhibition of autoinhibitory region II caused by dimerization of 

PMA2 C-terminus. Thus, mutating these four amino acids may also abolish 

interaction.  

The CT59 fragment was confirmed to interact with other isoforms like 14-3-

3ζ. However, quantitative readings were not conducted. Maybe this could be done 

with IVIS. To show that CT59 preferetially interacts with certain 14-3-3 isoforms will 

show specificity among the isoforms and may be important for further characterizing 

14-3-3 H+-ATPase interactivity. Transformed Arabidopsis plants could be used to 

substantiate this interaction. 
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Conclusion 

The Importance of Transgenics in Crop Improvement 

The Golden Banana reports at least 20 μg/g of β-carotene (Paul et al., 2017). 

This amount represents ≈7x increase over the wildtype banana and will administer 

an essential vitamin to 190 million preschool children (World Health Organization, 

2011). The higher concentration of β-carotene is obtained by engineering phytoene 

synthase 2a (MtPsy2a) gene from a wildtype banana and driving it with a 

constitutively-active maize polyubiquitin promoter. β-carotene concentration was not 

as high with cisgenic promoters. The transgenic combination of promoter and gene 

produced the targeted amount β-carotene beginning at development and continuing 

until fruit ripening (Paul et al., 2017). Thus, only transgenics are able to deliver on 

increased β-carotene. Plant improvement and development can be enhanced with 

traditional breeding using germplasm (cisgenics), but some traits and characteristics 

like increased β-carotene concentration will only be attainable with transgenics 

(National Academies of Sciences, 2016).  

Transgenics in Drought Tolerance 

A requirement for all life on earth, including plants, is water (Benner, Ricardo, 

& Carrigan, 2004). Severe drought decreases survival and fruit development. Climate 

change is expected to create both wetter and dryer areas (IPCC, 2014), and future 

crops will both need to be thermally and drought tolerant (Howden et al., 2007).  
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Plants also need to defend themselves. In addition to drought tolerance, future 

crops will need to be more disease resistant as climate change affects pathogenicity of 

organisms including fungi (Karkowska-Kuleta, Rapala-Kozik, & Kozik, 2009; 

Pennisi, 2010). The introduction of resistance genes or modification to immune 

pathways via transgenic means will allow swift responses to plant pathogens (Jones et 

al., 2014).  

RYC and 14-3-3  

14-3-3 proteins are conserved Eukaryotic proteins involved in multiple 

cellular pathways including cell cycle division, apoptosis and biotic and abiotic 

stresses (Denison, Paul, Zupanska, & Ferl, 2011; Lozano-Durán, Robatzek, & 

Lozano-dur, 2015; Oecking & Jaspert, 2009; Van Kleeff et al., 2014). Thus, 

modification of the 14-3-3 proteins and their client proteins may be able to provide 

durable trait modification in plants (Jaspert, Throm, & Oecking, 2011). 

 Using in vivo and in vitro techniques I’ve demonstrated interaction between 

two 14-3-3 binding proteins: R18 and CT59. The mechanism of R18 binding 14-3-3 

has been elucidated with a crystal structure (Ottmann et al., 2007). CT59 binding to 

14-3-3 has also been elucidated and show C-terminal binding, but my in vivo BiFC 

experiments truncating CT59 do not recapitulate this data. The discrepancy is 

understood to be a result of the expression system in yeast where only one mutant 

copy is expressed versus N. benthamina in which multiple homologs exist. Bias 
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towards interaction may also result from hexamerization of CT59 and 14-3-3 proteins 

and suggest caution when using BiFC for membranes known to oligomerize. 

A bidentate fusion protein capable of interacting with 14-3-3 proteins was 

created. With its expression in Arabidopsis I demonstrated drought tolerance and 

RPW8.2-mediated resistance to powdery mildew. Which 14-3-3 isoforms RYC binds 

and the exact nature of its interactions will be queued for future experiments.  
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Methods and Materials 

 
Arabidiopsis and N. benthamiana Growth 

Arabidopsis and N. benthamiana plants were grows as detailed above in 

Chapter 2. 

 
DNA construction 

Derivative and truncated CT59 constructs were created based on R18-YFP-

CT59 (RYC) sequence. RYC was created by overlapping PCR. 

 
N. benthamiana infiltrations 

Agrobacterium tumefaciens (hereafter: Agro) strain carrying gene of interest 

were prepared in binary vector. The day before infiltration, growing colonies from a 

plate or glycerol stock were streaked into 5mL LB broth (half salt concentration with 

antibiotics (25 mg/mL Rifampicin, 25 mg/mL Gentomycin and 50mg/mL of 

kanamycin or 100 mg/ml spectinomycin) depending on the vector resistance. 

Following day, Agro cultures were spun down at 4500g for 10 to 20 minutes at RT in 

5mL conical tubes. Tubes were decanted and pellets were resuspended in 5mL 

dionized water containing 10mM MgCl2. OD600 using a Shimadzu UVmini 1240 

spectrophotometer was between 1.8 and 2.5. Culture was aspirated into needless 

syringe with the air removed. Next, syringe was applied to abaxial leaf surface and 

infiltrated into leaf using steady force. Infiltration spots ranged between 0.5 cm2 to > 

5 cm2. Agro strains transformed with vectors were co-infiltrated with Agro containing 
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vector expressing turnip crinkle virus coat protein (TCV-CP) which has been shown 

to tamper down host immunity allowing greater ectopic expression (Qu et al., 2003; 

Thomas, Leh, Lederer, & Maule, 2003). 

 
Protein Expression and Purification 

14-3-3 Expression and Purification 

14-3-3 cds was cloned into pET26 into NdeI and XhoI sites. Ligation into 

these sites granted C-terminal 6xHis tag and now pelB sequence. A 40mL culture 

overnight culture was incoulated the following morning into 800mL.   Reaching 

OD600 0.8 to 1 in about 1.5 hours, broth previously incubating O/N in incubator at 

37C. Culture was induced with 1mm IPTG for between 3.5-4 hours. Culture was 

pelleted and resuspended in 50mL buffer containing 20mM sodium phosphate pH7.5 

and 150mM NaCl. Added 100ul of HALT phosphatase and protease inhibitor.  A 

digital sonicate was used for lysis. Amplitude 30%, 10 sec on, 10sec off for 3min 

processing time. Sample was centrifuged for 30min at 10000g at 4C  1mL Ni-

NTA beads from Invitrogen were incubated with sample with end-over-end rotation 

for two hours and then O/N at 4C. The following morning, Ni_NTA resin was 

washed with same buffer as lysis buffer but with 40mM imidazole. Protein was eluted 

with 500mM imidazole. Polishing step was done with Sephacryl S-200. 14-3-3 was 

dialyzed overnight with 20mM Tris pH7.5 and 20mM NaCl.   
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Ni-NTA Pulldown 

Purified proteins were incubated together overnight in 20mM Tris pH7.5 and 

20mM NaCl. The following morning 50 ul of Ni-NTA beads were added to the 

samples and incubated for about 30minutes. Samples were washed several times with 

150mM NaCl and 20mM phosphate buffer and eluted in 500mM imidazole in 25ul. 

1x SDS was added to the sample and then boiled and run on 12% SDS-PAGE gel. 
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Addendum: Exploring Divalent 14-3-3 Sequestration as A Potential 

Anticancer Therapy 

Introduction 

Bidentate protein R18-YFP-CT59 (RYC) contains N- and C-terminal moieties 

capable of simultaneously engaging 14-3-3 proteins. 14-3-3 proteins are conserved 

eukaryotic proteins that serve phosphorylated client proteins in plants and humans 

(Oecking & Jaspert, 2009; Yaffe, 2002). 14-3-3 proteins play roles in cell-cycle 

regulation, apoptosis and proliferation (van Hemert, Steensma, & van Heusden, 

2001). Consequently, many types of cancer like oral squamous cell carcinoma(J. T. 

Chang et al., 2005), breast (Ferguson et al., 2000; Umbricht et al., 2001) and lung (W. 

Qi, Liu, Qiao, & Martinez, 2005) note 14-3-3 misregulation. The upregulation of 14-

3-3ζ  in cancers may act to antagonize proapoptotic protein Bad allowing cells to 

detach from the extracellular matrix without apoptosing increasing risk of metastasis 

(Cantley, 2002; Z. Li et al., 2008). Consequently, 14-3-ζ may potentiate targeted 

therapies or prognoses (Fan et al., 2007; Matta, Siu, & Ralhan, 2012).  

Building on previous data demonstrating interaction between R18-YFPC-

CT59 (RYCC) and 14-3-3ζ using bimolecular fluorescence complementation (BiFC) 

in planta, I hypothesized that the bidentate modality of RYC may bind and sequester 

14-3-3ζ. Additional 14-3-3-binding proteins were also cloned to use as potential 

substitutes for Arabidopsis CT59 (AT4G30190.2, AHA2) should it not bind human 

14-3-3 isoforms. “p85”, the regulatory subunit of PI3K shown to bind 14-3-3ζ was 
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probed as a potential substitute  (Neal et al., 2012). “CT54”, the 54 C-terminal 

residues from ExoS, a bacterial toxin from Pseudomonas aeruginosa, was also tested. 

ExoS has been shown to interact with 14-3-3ζ through hydrophobic residues and not 

via one of the three 14-3-3-canonical binding motifs (Yasmin et al., 2006, 2010).  

Using a combination of the 14-3-3ζ-binding proteins in combination with 

R18, I hoped to show 14-3-3ζ sequestration resulting in a remediation of 14-3-3ζ-

induced survival. 

  

Results 

14-3-3ζ-Binding Proteins Interact with 14-3-3ζ In Planta 

The ORF of 14-3-3ζ-binding protein R18-YFP-CT59 and variations were 

cloned into plant binary vectors. The N-terminus of YFP (YFPN) was fused to 14-3-

3ζ. The YFP C-terminus was fused to the 14-3-3ζ-binding proteins. Previous data 

showed 14-3-3ζ binding to both R18 and CT59. The same procedure was used to 

verify binding between 14-3-3ζ and multiple constructs. p85 was verified to interact 

with 14-3-3λ, a plant 14-3-3 isoform, in addition to 14-3-3ζ (Figure 3-27A-B).  CT54 

was observed to interact with 14-3-3κ along with 14-3-3ζ (Figure 3-27C-D). 14-3-3ζ 

and binding interactors were tested for interaction in cell lines.   
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Table 7 Size (kDa) of 14-3-3ζ-Binding Proteins 
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Figure 3-27 14-3-3ζ binds Both p85 and CT54 in BiFC 

(A) YFPC-p85 fluorescently interacts with 14-3-3λ-YFPN, an Arabidopsis 14-3-3 isoform in 

BiFC assay in N. benthamiana.  (B) YFPC-p85 fluorescently interacts with 14-3-3ζ-YFPN, a 

human 14-3-3 isoform. (C) The C-terminal fifty-four amino acids from a bacterial toxin from 

Pseudomonas aeruginosa CT54 successfully interacts with 14-3-3κ(D) 14-3-3ζ also interacts 

with CT54. 
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14-3-3ζ-Binding Proteins Express in Cell Lines 

We cloned RYC into mammalian-specific expression vector pCDNA3.1(+) 

(Thermo Fisher) containing constitutive promoter (CMV) from cytomegalovirus. The 

size and orientation of the 14-3-3ζ-binding proteins can be seen in (Table 7). Three 

cancerous cell lines were used for testing. HCT 116 is a human colorectal carcinoma 

cell line. This line contains a mutation in in the ras proto-oncogene at codon 13 (A549 

ATCC) (R. Wang, Kobayashi, & Bishop, 1996).PC-3 is a human adenocarcinoma cell 

line derived from metastatic bone (PC-3 ATCC) (Su et al., 1996). A549 is an lung 

epithelial carcinoma cell line (A549 ATCC) (Lieber, Todaro, Smith, Szakal, & 

Nelson‐Rees, 1976). 14-3-3ζ co-transfected with R18-YFPC-CT54 generated very 

little fluorescence in PC-3 and HCT 116 lines (Figure 3-28A). A control, Monster 

Green® fluorescent protein (phMGFP, Promega), successfully transfected both cell 

lines.  

The expression of 14-3-3ζ and binding proteins was assayed in cell lines with 

a western blot and three different αGFP antibodies (Figure 3-28B). Two antibodies 

did not recognize YFPN terminus of 14-3-3ζ. However, αGFP (SC-8334) did 

successfully detect confirming expression of 14-3-3ζ in these two cell lines.  
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Figure 3-28 14-3-3 Binding Proteins Express in Cells but Interact Weakly with 
14-3-3ζ 
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(A) 14-3-3ζ does not interact or only interacts weakly with R18-YFPC-CT54 in HCT 116 or 

PC-3 lines compared to transfection control. Transfection control is Monster Green® 

fluorescent protein (phMGFP, Promega). (B)Testing expression of 14-3-3ζ-binding DNA 

constructs in human cancer cells using different αGFP antibodies. Eight DNA constructs 

were transiently expressed in two types of cancer cell lines, HCT-116 and PC-3. Total 

proteins were extracted from transfected cells, gel blotted and assayed with three different 

anti-GFP antibodies (Santa Cruz Biotech and MACS company). α-GFP (sc-8334) could 

detect both YFPN and YFPC, whereas the other two antibodies could only detect YFPC. Based 

on the Western results, all the constructs appear to be expressed in the two types of human 

cancer cells. R18-YFPC (12kDa) and YFPC (10kDa) alone may be too small and ran out of 

gel, explaining the lack of a band in the gel blots. (B) Three αGFP antibodies confirm 

expression of 14-3-3ζ-binding proteins in cells on western blot. Only αGFP (sc-8334) is able 

to detect YFPN terminus fused to 14-3-3ζ (red arrow). 
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14-3-3ζ-Binding Proteins Do Not Modify Cell Proliferation 

Cells that would normally undergo apoptosis are prevented by the 

upregulation of 14-3-3ζ interfering with pro-apoptotic proteins (Cantley, 2002; Z. Li et 

al., 2008). Thus, removing 14-3-3ζ should allow cells to resume apoptosis. Three 

cancer cell lines, HCT-116, PC-3 and A549,  were transfected with 14-3-3ζ-binding 

proteins. Cell proliferation was measured at 0, 24, 48 or 72 h after transfection. Next, 

cells were transfected and subjected to western blot to analyze six proteins implicated 

in apoptosis, cell cycle and EMT (epithelial mesenchymal transition). PARP, or 

poly(ADP-ribose) polymerase is a 116 kDa protein involved in DNA repair. When 

cells undergo apoptosis, this protein is cleaved by caspase-3 in a 89 kDa fragment 

(Lazebnik, Kaufmann, Desnoyers, Poirier, & Earnshaw, 1994). No significance 

difference in survival or protein cancer protein expression markers is observed.  
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Figure 3-29 Post-transfection assays of treated human cancer cells using various 
protein markers. 

(A) Effects of 14-3-3 sequestrating constructs on proliferation of cancer cell. HCT-116, PC-3 

and A549 cells were plated on 96-well plate and transfected with different 14-3-3 constructs 
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for 0, 24, 48 or 72 h. (B) Cells were transfected with the indicated constructs and subjected to 

gel blotting assays. In the case of HCT-116 and PC-3 cancer cell lines, apart from actin (as an 

internal control), six proteins implicated in apoptosis, cell cycle and EMT (epithelial 

mesenchymal transition) were analyzed using specific antibodies.  In the case of A549 cancer 

cell line, apart from actin, two indicated proteins markers were analyzed.  No significance 

difference in protein expression was observed in this pilot study. 
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Discussion 

The in planta interaction observed between p85 and CT54 for two Arabidopsis 

14-3-3 isoforms confirms the amino acid conservation of 14-3-3 proteins across 

different kingdoms. A clustal omega alignment between 14-3-3ζ, 14-3-3λ and 14-3-

3κ shows 143 identical sites among 254 amino acids with 69% pairwise identity. This 

is the first study in which the binding of both CT54 and p85 to Arabidopsis isoforms 

has been demonstrated.  

Three cancer cell lines transfected with 14-3-3ζ-binding and sequestering 

constructs failed to reduce 14-3-3ζ as measured by cell proliferation assays and gel 

blots probing for signature cancer proteins. The data can be explained with the 

following hypotheses. (i) The 14-3-3ζ-binding proteins have successfully engaged 

and interacted with 14-3-3ζ, but they binding did not prevent 14-3-3ζ activation or 

interaction with pro-apoptotic proteins like Bad. (ii) 14-3-3 proteins are known to 

play redundant roles in human disease (Toyo-oka et al., 2003). Thus, although 14-3-

3ζ may have been successfully sequestered, other misregulated 14-3-3 isoforms were 

untouched. (iii) The expression of 14-3-3ζ-sequestering proteins was not large enough 

compared to overall 14-3-3ζ concentration. This is born out in the data noting that 

BiFC interactions in cell lines were weak compared to interactions observed in planta, 

yet western blots with three αGFP antibodies confirm expression (Figure 3-28A-B). 

Future experiments will need to consider ectopic expression yield compared to 14-3-

3ζ concentration. 
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