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Understanding species abundances and distributions is a major goal of ecology. While 

manipulative experiments can reveal mechanistic properties of interactions among a 

small number of species, and macroecological studies can draw fundamental insights 

from patterns at a large scale, inference about local communities as a whole requires a 

combination of these approaches. I used a suite of techniques to better understand the 

ecological dynamics of a group of insect herbivores, the assemblage of moth caterpillars 

feeding on box elder, a common riparian tree. I examined the landscape ecology of the 

assemblage to determine the degree of turnover at multiple scales, and how diversity of 

the assemblage depended on host plant context. I found apparent homogeneity of 

caterpillar diversity masked important differences in co-occurrence even at small scales, 

though the expected influence of host plant diversity was not observed. Examining the 

species through time, I investigated how species abundance was related to body size, 



 

intrinsic population growth rate, and diet breadth. Whereas body size did not scale 

significantly with abundance in this group of species, and diet breadth had a complex 

relationship with abundance, the population growth rate developed in association with the 

host plant explained the differential abundance of species on the plant quite well. Finally, 

I quantified elemental content of species in the group, to determine how stoichiometric 

constraints related to size and growth rates of caterpillars in the assemblage. I found some 

support for a theory connecting elemental composition to ecological interactions, though 

the results were species-dependent. Throughout these investigations I explicitly 

considered the evolutionary relatedness of co-occurring species using phylogenetic 

methods. By merging ecological and phylogenetic data, a more unified picture of the 

important mechanisms underlying species properties can be obtained. Through tests of 

theory at the landscape, community, and individual level, I have presented a clearer 

picture of the forces structuring this assemblage of caterpillars, and provided a template 

for investigations of community dynamics at a similar scale. 
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High beta diversity between trees drives landscape-level homogeneity of 
a temperate forest caterpillar assemblage 
 

Abstract 

Beta diversity in temperate forest herbivorous insect communities is thought to be low, in 

part due to polyphagy, but neither insects nor ecological interactions are distributed 

evenly in space. I investigated -diversity of caterpillars feeding on a single host plant 

species at spatial scales from individual trees to the landscape. I used a spatially explicit, 

nested sampling design to document relative contributions of each scale to the landscape 

diversity using additive diversity partitioning, and to ask at multiple scales whether the 

vegetation context of the focal host plant explained any of the variance in herbivore 

species composition and abundance. Over two years, -diversity of species richness was 

found to be partitioned proportionally among scales, and generally resembled the null 

model of random distribution of individuals across the landscape, though differences 

were significant at the lowest and highest scales. When species identity and abundance 

were considered, non-metric multidimensional scaling (NMDS) and analysis of similarity 

(ANOSIM) found -diversity was low at multiple scales. Despite clear differences in 

vegetation type between sampled sites, vegetation context explained little to none of the 

-diversity of the assemblage, while latitude was the only variable significantly 

associated with assemblage composition in both years. Finally, although -diversity 

across the landscape was low, turnover was consistently high between individual trees 

without respect to distance, so that pairs of trees separated by 8 m or 80 km had similarly 

high turnover in their herbivore fauna. Heterogeneity of interactions at the tree level may 

thus lead to apparent homogeneity of the herbivore assemblage at higher scales.  
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Introduction 

     eta () diversity in communities of herbivorous insects figures prominently in 

debates about global biodiversity patterns. Erwin’s (1982) famous estimate of global 

insect species richness, and subsequent revisions (e.g., Novotny et al. 2002) are based on 

the turnover of herbivore communities between tree species, under the assumption that 

diet breadth of herbivores determines the -diversity across host plants. High estimates of 

tropical insect species richness have therefore been premised on a higher degree of diet 

specialization in tropical than in temperate zones. Novotny et al. (2006) challenged this 

longstanding notion, instead positing that herbivore load per plant species remained fairly 

constant, while the latitudinal gradient in plant diversity explained much of the increase. 

Using rearing records from across a latitudinal gradient, Dyer et al. (2007) responded by 

showing generalized diets were more common at high latitudes in larval Lepidoptera, 

which supported the hypothesis that higher specialization in the tropics contributed to the 

latitudinal gradient in herbivorous insect -diversity across host plant species. Both 

arguments presume temperate herbivore -diversity to be relatively low among host 

species, as studies have demonstrated in neotemperate (Summerville et al. 2003b) and 

paleotemperate (Murakami et al. 2008) forests. However, no study to date has examined 

the spatial structure of temperate forest caterpillar -diversity on scales from individual 

trees to the landscape. 

     Many eastern North American temperate forest caterpillars have a wide diet breadth 

(Dyer et al. 2007, Tietz 1972), but performance on all recorded hosts is not necessarily 

equivalent. Even some of the most polyphagous and abundant species vary widely in 

feeding performance on different host plants (Barbosa and Greenblatt 1979). From a tri-
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trophic perspective, some host plant species provide increased protection from natural 

enemies at the expense of nutrition, and vice versa, potentially leading to trade-offs 

among hosts (Singer and Stireman 2005). Therefore a given plant host may provide a 

higher relative fitness in one stand of trees than in another, depending on the surrounding 

host plants, the oviposition preference of female moths and the success of their offspring. 

Thus, shifts in the composition of caterpillars present on a given host plant might be 

expected to depend on the vegetation context. 

     Variance in herbivore community composition among individuals of a given host 

plant species can also result from localized ecological interactions. Bottom-up factors 

such as genetically determined variation in host plant quality (Whitham et al. 2006) and 

other variation within and between individuals of the same host species (Gripenberg et al. 

2007) can influence herbivore -diversity. Behavioral patterns of oviposition and plant 

selection by adult females can lead to intraspecific aggregation (Veech et al. 2003), such 

that similarity of an herbivore assemblage might be expected to decline with distance 

between host plant individuals (Nekola and White 1999). The abundance of important 

members of an herbivore guild on a given plant individual can also influence community 

composition (Lill and Marquis 2003). Natural enemy pressure on herbivores is known to 

vary by host plant species (Barbosa et al. 2001, Lill et al. 2002), resulting in strong 

differences in the local food web across sympatric plant hosts of different species 

(Barbosa et al. 2007).  These factors may vary across individuals of a single host plant 

species as well. 

     Despite the importance of interactions at the host plant scale for creating spatial 

dynamics in turnover, most recent investigations of -diversity of Lepidoptera in the 
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temperate zone have focused on patterns of adult moths collected at lights (Miller et al. 

2003, Summerville et al. 2003a, Summerville and Crist 2004, Grand and Mello 2004, 

Beck and Khen 2007, Hirao et al. 2007).   To better quantify and explain the -diversity 

of a group of temperate forest herbivores, I therefore focused on a group of caterpillars 

regularly found on the same host plant species. To understand the -diversity of this 

assemblage on the focal host in the context of shifting host plant resources across a 

landscape, I used a spatially explicit, nested sampling design. I aimed to determine the 

relative contributions of hierarchical spatial scales to the overall landscape diversity of 

the assemblage, to quantify the relationship between -diversity and geographic distance, 

and to test the hypothesis that the vegetation context of the host plant was correlated with 

the variance in composition of the caterpillar assemblage. Our results confirm temperate 

herbivore -diversity can be low when considered across a landscape, but this apparent 

homogeneity masks high turnover in caterpillar composition at smaller scales, suggesting 

high variance in the strength of important ecological interactions.  

 

Methods 

Study System. In this study I focus on externally feeding caterpillars found in the 

mid-Atlantic region of the United States feeding on box elder maple (Acer negundo L.), 

an herbivore assemblage studied extensively over the past 15 years (Barbosa et al. 2000, 

Barbosa et al. 2001, Barbosa et al. 2004, Barbosa et al. 2007). In mid- to late-summer, the 

assemblage is heavily dominated by two species, each making up at least 20% of 

individuals collected: the maple Zale (Zale galbanata (Morr.), family Noctuidae) and the 

common angle (Macaria aemulataria (Wlk.), Geometridae). Four other species each are 
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typically encountered as more than 5% of individuals: the fall webworm (Hyphantria 

cunea (Dru.), Arctiidae); the one-spotted variant (Hypagyrtis unipunctata (Haw.), 

Geometridae); the white-marked tussock moth (Orgyia leucostigma (J.E. Smith), 

Lymantriidae); and the American dagger moth (Acronicta americana (Harr.), Noctuidae). 

I consider all other species observed (numbering nearly 60) numerically subdominant, in 

that each makes up less than 5% of individuals collected. Most species in this assemblage 

are known to feed as larvae on host plants in at least three families (based on host records 

in Tietz 1972), and can therefore be considered polyphagous.  

Sampling. To investigate the effects of spatial structure and vegetation context on 

the constituent species of the assemblage, a nested sampling design was employed 

(Figure 1). Six mesic forests in central Maryland, USA were sampled: C&O Canal 

National Park (abbreviated CO; 3858’17”N 7709’58”W); Little Bennett Regional Park 

(LB; 3916’07”N 7717’13”W); Patapsco Valley State Park (PVSP; 3919’25”N 

7652’12”W); Patuxent Research Refuge (PRR; 3903’50”N 7646’34”W); Patuxent 

River State Park (PRSP; 3917’06”N 7707’15”W); and Smithsonian Environmental 

Research Center (SERC; 3853’04”N 7633’17”W). The PRR and SERC sites are 

located in the Coastal Plain ecoregional province; all four other sites are in the Piedmont 

province (U.S.E.P.A. 2003). Within each forest, two large stands of box elder along a 

stream or drainage were identified and sampled, separated by 3-5 km within the forest 

(Figure 1). At each, 10 mature box elder trees of trunk diameter  15 cm were selected 

randomly.  

     In both 2006 and 2007, each tree within a stand was sampled for larvae on a single 

day over a two-week period in August. A timed (10 min) visual inspection of leaves and 
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branches of the tree (from base to up to 3m with the aid of a tree ladder) was performed, 

and all externally feeding Lepidoptera were collected. Following the timed search, 

branches which had been visually inspected were struck with a wooden rod, dislodging 

any remaining larvae onto a canvas sheet below. Larvae were returned to the lab and 

reared in plastic containers on field-collected box elder leaves until they could be 

identified as larvae or adults, parasitoids emerged, or individuals died. Due to our prior 

sampling efforts most caterpillars could be identified to species as larvae, though some 

died before pupating and could be identified only to family.  

     In July 2007, a vegetation sample was taken at each stand to quantify alternative host 

plant density. A geographic information system was used to generate three random lat-

long pairs within the delineated boundary of each stand. In the field, a circular .04 ha plot 

(11.33 m radius) was marked out at each location. Within each plot, trees with diameter 

at breast height (dbh) greater than 1cm were identified, and dbh recorded. Plants were 

identified to species in most cases, with the exception of oaks (due to the high degree of 

hybridization occurring in Maryland, oaks were recorded as belonging to “red oak group” 

or “white oak group”). Using species-specific forestry regression equations (Wharton and 

Griffith 1993), dbh values were transformed to foliage biomass, a better approximation of 

the variable of interest to caterpillars than wood density. 

Diversity Partitioning. I used an additive diversity partitioning approach to 

examine the contributions of different landscape scales to the diversity of the landscape 

assemblage (Crist et al. 2003). The hierarchical levels were defined as tree (n=120), stand 

(n=12), forest (n=6), and ecoregional province  (n=2, piedmont with 4 forests and coastal 

plain with 2 forests). Diversity partitioning was carried out using the software package 
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PARTITION v.2 (Veech and Crist 2007). I used the individual randomization option with 

999 randomizations, to evaluate both species richness and the Simpson diversity index 

against the null hypothesis that the contribution of diversity at each scale was no different 

from a random selection of individuals from the scale below. 

eta diversity and distance. In addition to testing for effects of scale, I also tested 

the hypothesis that turnover between samples increased with geographic distance (Nekola 

and White 1999). There are a wide variety of -diversity measures which have been used 

in the literature (Koleff et al. 2003), but I chose a measure which includes relative 

abundance and uses rarefaction to estimate shared species in pairs of assemblages, a 

method which is particularly appropriate for samples containing large numbers of rarely 

observed species (Chao et al. 2005). For samples of tree, stand, and forest in both years, 

the pairwise -diversity from a sample to all others was calculated (function vegdist, 

method=chao using the ‘vegan’ package in R software; Oksanen et al. 2007, R 

Development Core Team 2007). These -diversity matrices were tested for correlation 

with the corresponding matrix of geographic distance between samples, using a mantel 

test (N=999 randomizations; Legendre and Legendre 1998).  

Vegetation and spatial explanatory variables. Multivariate techniques (all performed 

using the ‘vegan’ package in R; Oksanen et al. 2007) were employed to characterize the 

caterpillar and vegetation communities, and to test explanatory relationships between 

variables measured at each stand and the -diversity in the caterpillar fauna. Explanatory 

variables were: observed species richness of woody plants; foliar biomass by species of 

the local vegetation; total vegetation biomass per stand; relative density of the focal host 

A. negundo; total basal area (m2 / ha) of trees in the stand; geographic area of the stand; 
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and the latitude and longitude of the center of the stand. Because there were many more 

plant species than caterpillar samples, the full stand-foliage matrix could not be 

correlated with the assemblage response. Instead, I attempted to find tree species which 

represented the different vegetation types found across the sampled area. The variance in 

the plant community types was characterized by principal components analysis (PCA) of 

the foliage biomass data, following Hellinger standardization by site total (Legendre and 

Gallagher 2001). I then tested for non-random correlation between plant species biomass 

and position of a stand in the PCA (R function envfit, 999 permutations), with foliage 

biomass of tree species found to be non-randomly associated with stand vegetation 

subsequently used in the analysis as explanatory variables.  

Composition of caterpillar assemblages. The composition of larval assemblages at 

multiple scales was depicted using non-metric multidimensional scaling (NMDS), an 

ordination technique which graphically depicts relationships found in a dissimilarity 

matrix (Clarke 1993). I performed NMDS on the caterpillar assemblage samples at two 

scales: the tree level, and the stand level. At the tree level I sought evidence of clustering 

by stand, and asked which caterpillar species were important to defining assemblage 

types. At the stand level, I tested the ordination of stands by caterpillar community for 

association with the explanatory variables described above. 

     I first performed NMDS on the caterpillar-tree matrix which had been transformed by 

species maximum after removal of tree samples in which no caterpillars were found, 

reducing the effect of the assemblage shifts due to varying abundance of larvae from 

stand to stand. A Bray-Curtis similarity distance matrix was then used in the NMDS 
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ordination. Caterpillar species were plotted by their weighted averages (R function 

wascores) of abundance from each site.  

     To test the hypothesis that unique assemblages occurred within stands, I used analysis 

of similarity (ANOSIM, R function anosim; Clarke 1993). The technique uses a bootstrap 

randomization (we used 999 bootstrap replicates) to determine the relative fraction of 

within-stand versus between-stand variance in the community, and determine the 

probability of group membership of a given sample. Like NMDS, ANOSIM is based on 

rank distances between samples (we used the same Bray-Curtis distance matrices used for 

the NMDS). An overall ANOSIM within each year was conducted to test whether there 

was significant nesting of assemblages by tree into stands. Within a year I also conducted 

all pairwise comparisons between stands (66 comparisons in each year) to test whether 

the caterpillars found on trees within a stand were significantly different from those 

found in other stands. I used an experiment-wise Type I error of 0.05 with a Bonferroni 

correction for multiple comparisons in evaluating the ANOSIM results. 

Influence of vegetation variables on caterpillar assemblage. I conducted an 

indirect gradient approach to determine whether any of the measured variables was non-

randomly associated with the NMDS ordination of stand caterpillar composition. A 

randomization permutation procedure (R function envfit, 999 permutations) evaluated the 

strength and significance of the hypothesized correlations. I tested for correlations within 

in each year using NMDS ordinations of the 12 stand assemblages in the same manner as 

was constructed for the samples from individual trees. 
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Results 

Caterpillar fauna. A total of 1168 caterpillars of 60 unique species were collected 

(437 individuals of 42 species in August 2006, 731 individuals of 34 species in August 

2007). In both years the variance in number of caterpillars encountered per host plant was 

high, and larvae as a group followed an aggregated distribution. For instance in 2007, out 

of 120 trees there were 12 on which no larvae were encountered, whereas 44 caterpillars 

were collected from one tree and 27 larvae from two others.  

     The same six species were numerically dominant in both years, though the order of 

their rank abundance changed. The two specialist species made up the vast majority of 

caterpillars in each year, though not in the same proportions (Z. galbanata comprised 

25% of individuals in 2006, 32% in 2007; M. aemulataria 39% in 2006, 12% in 2007). 

Together with the next four most abundant species [H. cunea, H. unipunctata, 

Melanolophia canadaria (Gn.) (Geometridae), and Halysidota tessellaris (J.E. Smith) 

(Arctiidae)], these six species comprised 72% of individuals in 2006 and 90% in 2007. 

The full stand-species abundance matrices are given in Appendix 1.  

Diversity partitioning. Diversity partitioning found a consistent pattern across 

years, though patterns differed for the diversity measures (Table 1; Figure 2). 

Considering species richness, contributions to total diversity from mean alpha tree 

diversity and mean turnover between trees within a stand were lower than expected. 

Turnover among ecoregional provinces contributed the largest fraction of regional 

species richness in both years. While statistically significant, however, often the 

differences between expected and observed diversity components were not of great 

magnitude (e.g. in 2006 the expected mean number of species per tree sampled was 2.8 
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and observed mean was 2.6). Overall the contribution of each nested scale to regional 

diversity was approximately equal, with the exception of the within-forest stand pairs, 

which contributed fewer species. 

     The Simpson diversity index, which incorporates relative abundance of observed 

species, produced a different pattern when partitioned. In both years, the largest 

contributions to regional diversity were from the mean alpha values found on individual 

trees. Turnover between trees was expected to make a large contribution to regional 

diversity, but the observed mean -diversity within stands was much lower than expected, 

and nearly nonexistent in 2007. As with the species richness measure, however, a larger 

than expected contribution to regional diversity came from turnover across the ecoregion 

boundary.  

eta diversity and distance. Mantel tests of the correlation between -diversity 

and geographic distance matrices found a significantly positive relationship at the tree 

level in 2006, though it explained only a small fraction of the variance (mantel r = 

0.04313, p<.05; Figure 3). This result appears to result from a lack of similar caterpillars 

on trees separated by > 60 km. No significant correlation was found at the tree level in 

2007 or at the stand and forest levels in either year. Plots in all cases were similar to 

Figure 3, indicating a constant, high variation in caterpillar communities across the 

sampled area, such that at multiple scales, turnover between samples can be as high 

within short distances as across a larger landscape. 

 Vegetation type. Principal components analysis captured the vegetation data into 

orthogonal vectors of variance, of which the first five represented >90% of the variance 

in the site-vegetation matrix. The stands separated into groups along the first two axes, 
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associated with six significant tree species (Figure 4). The first PC axis, accounting for 

35% of the variance in foliage biomass among stands, separates stands according to 

abundance of tulip poplar (Liriodendron tulipifera L.), sweetgum (Liquidambar 

styraciflua L.), and sycamore (Platanus occidentalis L.). The four stands in the coastal 

plain ecoregion grouped together, characterized by high density of tulip poplar and 

sweetgum, and low density of sycamore, while a group of three Piedmont stands (one 

each in PRSP, LB, and PRSP) grouped with high density of sycamore. The second PC 

axis, capturing 22% of the vegetation variance, separated stands on the basis of density of 

the focal host plant box elder (A. negundo) or red maple (Acer rubrum L.). Two stands 

(CO_E and PVSP_W) had extremely high densities of box elder, and separated from the 

remaining stands which had more red maple. The remaining three stands were variously 

intermediate in vegetation structure. The full stand-vegetation biomass matrix is given in 

Appendix 2, along with plant species loadings on the PCA.  

Composition of caterpillar assemblages. Ordination of caterpillar assemblages by 

tree with NMDS (Figure 5a,b) revealed high within-site variance in both years, without 

clear clustering by forest. This overlap, or low -diversity, of the composition of stands 

was due to the high variance in tree-level assemblages of caterpillars. Overall ANOSIM 

showed evidence of grouping of trees into stands (2006: R=0.1795, p<0.001; 2007: 

R=0.1581, p<0.001). However, of 132 pairwise comparisons only six significant 

differences between stands within a year were found using ANOSIM (Figure 5a,b). These 

significant differences in stand composition were all driven by large disparities in 

abundance of one or more of the dominant caterpillar species. In 2007, for instance, trees 

at the Little Bennett (LB) stands had an abundance of Z. galbanata with few to none of 
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M. aemulataria or the main subdominants, and were significantly different from trees in 

stands which had fewer Z. galbanata and a higher concentration of Hyphantria cunea. 

The same pattern occurred in 2006, between different pairs of stands but with the same 

contrast: H. cunea was present in large numbers on trees in two stands found to be 

different from two others that were rich in M. aemulataria or Z. galbanata. Plotting 

species onto the tree-level NMDS (Figure 5a,b) also emphasized the ubiquity of the 

abundant species M. aemulataria, which fell near in the center of the plots in both years.  

Influence of vegetation variables on caterpillar assemblage. Of the twelve 

vegetation and spatial variables tested in the indirect gradient analysis only latitude was 

significantly correlated with ordination location in both years (2006: r2=0.5659, p<0.05; 

2007 r2=0.5597, p<0.05; Figure 5c, d). In 2006, the area of the box elder stand was also 

significantly correlated with the NMDS ordination (r2=0.5061, p<0.05). In 2007, the 

foliar biomass of two trees was correlated with caterpillar composition: Acer rubrum 

(r2=0.6639, p<0.05) and Platanus occidentalis (r2=0.7279, p<0.01). The red maple 

gradient paralleled the latitudinal gradient, so that its significance may be more 

associated with the distribution of that host plant in northern sites, rather than a direct 

influence of the host plant on the caterpillar composition (Figure 5c, d).  

 

 

Discussion 

     The -diversity of this assemblage of caterpillars is highly dependent on scale and 

sampling unit. Though not as large as expected (Table 1), turnover is universally high 

between samples of the assemblage by tree (Figure 3). At this level, -diversity, 
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measured by the complement of the probability of two samples sharing species (Chao et 

al. 2005), is nearly as high between trees separated by meters as it is between trees 

separated by 80 km. While this high variance in the assemblage may be due in part to the 

small sample size drawn from any given tree, it is striking that equivalent turnover could 

be captured through sampling within a stand as across a landscape. Summerville et al. 

(2003b) also found indications of higher than expected turnover in temperate caterpillar 

fauna between trees of the same species, though they sampled fewer trees, from a single 

site.   

     The high -diversity observed at the lowest scales contrasts with the low turnover 

observed between aggregated groups of trees in stands and forests, as within-site variance 

overwhelms between-site variance. This was demonstrated by the lack of significant 

differences in assemblage composition by stand, except in a few cases (Figure 5a,b). The 

large contribution of the smallest scale to the overall diversity is also evident when 

relative abundance is taken into account in the partition analysis in the form of the 

Simpson index (Table 1). This index represents the probability of randomly drawing 

individuals from two different species (Magurran 2004), and that probability across the 

landscape is mostly determined by the diversity at the level of the tree. The low 

contributions from higher scales of -diversity is probably due to the overwhelming 

dominance of the most common species. In other words, adding more samples at higher 

levels gives a greater chance of selecting two individuals of the same (dominant) species, 

which overwhelms any contribution of novel, scarce species to the regional diversity. 

Thus the overall picture at the landscape level is one of low turnover in the assemblage, 

but this masks a great deal of -diversity at smaller scales. 
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     On a similar landscape scale in the tropics, though with more intensive sampling, 

Novotny et al. (2007) recently reported a very similar pattern in caterpillars on selected 

tropical host plants, where the pattern of low -diversity across long distances was more 

unexpected. Whether the latitudinal gradient in caterpillar specialization demonstrated in 

the Western Hemisphere by Dyer et al. (2007) is a general global pattern remains under 

investigation, but an assumption of both sides of the debate is that in the temperate zone, 

-diversity is low due to more widespread polyphagy among herbivores. At the landscape 

level, this assumption holds for the polyphagous species I studied. However, the pattern 

of -diversity in herbivores from tree to tree in the temperate zone may not be very 

different than that commonly observed in the tropics, where tree-to-tree variation has 

been the basis for macroecological speculation (Erwin 1982, Novotny et al. 2002).  

     Just as diversity can be partitioned into contributions of different scales, the 

mechanisms responsible for variation in assemblage composition may vary by scale as 

well (Loreau 2000). The large variance in tree-to-tree composition of caterpillar 

assemblage found here has also been observed as high -diversity patterns at the smallest 

scale in other insect groups, including other caterpillar assemblages (Franklin et al. 2003, 

Hirao et al. 2007, Summerville and Crist 2004), moths at light traps (Summerville et al. 

2003a), beetles (Gering et al. 2003), and entire arthropod communities (Gruner 2007). 

These results emphasize the generally clumped distribution of insects (Veech et al. 2003), 

but even in monospecific host plant stands clustering by herbivores has been well 

documented without being satisfactorily explained (Hunter et al. 1991). Local 

heterogeneity in plant nutrient content (Gripenberg et al. 2007), defensive chemistry 

(Haviola et al. 2007, Kapari et al. 2006, Singer et al. 2004), and natural enemy 
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interactions (Barbosa et al. 2007) could create the observed high tree-to-tree -diversity if 

conditions favorable to the herbivores were scarce but effective in promoting survival 

when encountered. Further spatially explicit research into these factors on the landscape 

might help document the underlying causes of this basic pattern of herbivorous insect 

distribution. 

     At the stand level I hypothesized that the vegetation context of the host plant would be 

correlated with turnover in the assemblage found there. Clear differences in the 

vegetation types were observed between some stands, manifested as the dominance of 

different common tree species (Figure 4). If the identities of the generalist species 

collected from the focal host plant are influenced by the other potential host plants in a 

given site, then the composition of the assemblage should be correlated with the 

vegetation type to some degree. I found scant evidence for this, though the biomass of 

two host plants (red maple and sycamore) were correlated with the caterpillar community 

in 2007 (Figure 5d). The two stands with highest sycamore density were separated from 

the majority of stands in the NMDS plot, due to lower than average abundance of 

caterpillars, especially of the dominant M. aemulataria (Figure 5d).  

     Even though a clear gradient of plant species separated the stands by ecoregional 

province (Figure 4), longitude did not correlate with caterpillar composition. 

Surprisingly, a latitudinal gradient was observed instead in both years. The majority of 

caterpillars under study have wide distributions throughout the eastern half of the U.S. 

(Covell 2005), so edge-of-range effects are unlikely to be responsible for such a pattern. 

The north-south separation apparent in both years of caterpillar sampling was not 

reflected in the separation of stands by vegetation type (Figure 4) suggesting that other, 
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unmeasured  environmental gradients may be structuring the moth assemblage. An 

obvious choice might be temperature, as even slight changes in microclimate can affect 

larval development patterns (Kingsolver 2000). The sampling procedure attempted to 

control for climate effects by cycling through each forest twice over two weeks, rather 

than sampling the same forest twice in a row. But climate may play a role in influencing 

the assemblage even across this short (30 km) gradient.  

     Understanding how biodiversity is structured through multiple scales on a landscape is 

one key to understanding the ecological dynamics of that biodiversity (Loreau 2000). 

While on a landscape scale -diversity was low as represented by few differences in 

caterpillar species composition (Figure 5), -diversity among host plant individuals was 

consistently high (Figure 3). Ecologically the latter pattern may be the more important 

one, since trophic interactions thought to be paramount to species abundance occur at this 

scale, and high variance observed in the caterpillars may also reflect heterogeneity in 

these selection pressures (Hunter and Price 1992). In addition, the diversity partitioning 

results, while significant, were often not qualitatively different from the null expectation 

of randomly distributed individuals. Taken together, these patterns suggest samples at 

multiple scales across the landscape were equivalent to random draws from a 

homogeneous regional species pool. In that case, variance in species composition may be 

modeled more effectively by considering dispersal limitation (Alonso and McKane 

2004), about which little is known in forest moths. 

 



18 

Tables 

Table 1. Results of diversity partitioning for species richness (S) and Simpson’s diversity index (D). Mean observed diversity at each 

level is compared against the mean of a null distribution generated by 999 randomizations of individuals within the site-species 

matrix. Observed diversity components significantly different from the random expectation are marked (* = p<.05, ** = p<.01, *** = 

p<.001.) 

  2006 2007 

Level Sobserved Sexpected 1-Dobserved 1-Dexpected Sobserved Sexpected 1-Dobserved 1-Dexpected 

tree 2.6*** 2.8 0.7613*** 0.7275 2.7*** 3.1 0.7246*** 0.6632 

tree 8.3*** 10.2 0.0456*** 0.1108 7*** 7.7 0* 0.0371 

stand 5.9 5.5 0.0282*** 0.0099 4* 4.7 0.0077 0.0091 

forest 11.2 11.8 0.0144 0.0105 11.3 12 0.0235* 0.0502 

ecoregion 14*** 11.7 0.0085* 0 12** 9.4 0.0091*** 0 

Total 42 42 0.858 0.8587 37 37 0.7649 0.7596 
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Figures 

Figure 1. Sampling areas in central Maryland, USA. Black dots represent locations of box elder stands, 

where 10 random trees were sampled for Lepidopteran larvae. Gray polygons are forest boundaries (CO: 

C&O Canal National Historical Park; LB: Little Bennett Regional Park; PRR: Patuxent Research Refuge; 

SERC: Smithsonian Environmental Research Center; PRSP: Patuxent River State Park; PVSP: Patapsco 

Valley State Park). The dashed line shows the approximate fall line between the Piedmont ecoregional 

province to the west and the coastal plain ecoregional province to the east. 

 

Figure 2. Observed and expected diversity components of caterpillar communities across four scales in (a) 

August 2006 and (b) August 2007. Fractions of total gamma diversity are plotted for the mean contribution 

of each scale: mean diversity per tree sampled (“alpha tree”); mean turnover between trees within a stand 

(“beta tree”); mean turnover between stands within a forest (“beta stand”); turnover between forests within 

an ecoregion (“beta forest”); and turnover across ecoregions (“beta ecoregion”). Expected values are 

generated by 999 randomizations of individuals within a given site-species matrix using PARTITION v2 

(Veech and Crist 2007). 

 

Figure 3. Pairwise species turnover (1 – pr[shared species]) versus geographic distance between samples of 

herbivore assemblage by tree in August 2006. A mantel test shows a weak positive correlation between 

distance and turnover (solid line; mantel r = 0.04313, p<.05). A lowess smoothing curve (dotted line) 

shows the locally weighted relationship between turnover and distance is consistently high across the study 

area. No significant correlation between turnover and distance was found at the tree level in 2007 or at the 

stand or forest level in either year. 

 

Figure 4. Principal components biplot of vegetation community, showing ordination of sampled stands and 

key tree species. Stem measures of trees sampled in three 0.04 ha plots in each stand were transformed to 

foliage biomass, then standardized by Hellinger transformation before PCA (Legendre and Gallagher 
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2001). The variance of vegetation explained by the first two components are labeled on the respective axes. 

Tree species (boxed abbreviations) are those non-randomly associated (p < 0.05 under 999 permutations) 

with stand position in the PCA, plotted by their loadings on the first two PC axes. Tree species codes: 

ACNE Acer negundo (the focal host plant); ACRU Acer rubrum; JUNI Juglans nigra; LIST Liquidambar 

styraciflua; LITU Liriodendron tulipifera; PLOC Platanus occidentalis. The foliage biomass of these six 

tree species was used in the indirect gradient analysis (Figure 5).  

 

Figure 5. Non-metric multidimensional scaling (NMDS) of caterpillar assemblages and key species found 

on Acer negundo trees at 12 stands in 6 forests of central Maryland, for (a, c) August 2006 and (b, d) 

August 2007. (a, b) Ordination biplot of centroid NMDS axis values +/- standard error are plotted for trees 

sampled within a stand. Stands within a year sharing superscript (*, #) are significantly different according 

to ANOSIM. Only trees on which caterpillars were found (n=112 in 2006; n=108 in 2007) were included in 

the analysis. (c,d) Ordination tri-plot of caterpillar assemblage NMDS ordination by stand showing key 

species and vectors of significant explanatory variables. Significant (association with stand caterpillar 

assemblage composition p<0.05 according to 999 permutations) vectors are plotted as arrows pointing in 

the direction of increasing variable value. Variable codes: “ACRU” biomass of Acer rubrum foliage; 

“Area” area of box elder stand; “Lat” latitude of centroid of stand polygon; “PLOC” biomass of Platanus 

occidentalis foliage.  In all plots key caterpillar species (letters) are plotted by their weighted average of 

abundance by site. Species codes: “Aa” Acronicta americana; “Ec” Eutrapela clemataria; “Hc” 

Hyphantria cunea; “Ht” Halysidota tessellaris; “Hu” Hypagyrtis unipunctata; “Ma” Macaria aemulataria; 

“Mc” Melanolophia canadaria; “Os” Oligocentria semirufescens; “Tc” Tetracis crocallata; “Zg” Zale 

galbanata. 
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Metabolic and life history models of abundance in an assemblage of 
forest caterpillars 
 

Abstract 

Metabolic ecology theory predicts abundance should be related the to mass of the 

constituents of a community of species sharing a resource base using a simple power 

equation. This relationship holds well at large spatial and temporal scales, but is not 

supported in many animal communities sampled at a relatively small scale. At these 

scales, ecological factors may be more important than the inherent limits to energy use 

set by allometric scaling of mass. I hypothesized that incorporating those factors (in the 

form of an estimate of intrinsic population growth rate for the species in the local 

community, and a quantification of resource availability) would improve the 

understanding of the mechanisms driving species abundance. Using an assemblage of 

forest caterpillars found co-occurring on a single host plant species, I tested whether 

species abundance could be explained by mass allometry, intrinsic population growth, 

diet breadth, or some combination of these traits. I included life history traits of the 

caterpillars in association with the host plant in both field and lab settings, so that the 

population growth estimate was specific to the plant on which abundance was measured.  

     Using a generalized least squares regression method incorporating phylogenetic 

relatedness, I found no scaling relationship between abundance and mass, but a strong 

positive relationship between abundance and intrinsic population growth rate, which was 

most affected by survivorship and larval development time on the host plant. Diet breadth 

showed a non-linear relationship with abundance. Metabolic constraints may determine 

limits to abundance levels for species, while abundance in a local community may be 
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better predicted by a quantification of the potential population increase of that species in 

a local environment.  
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Introduction 

     The theory of metabolic ecology (Brown et al. 2004) predicts density of species 

should be inversely related to body size due to fundamental limitations of metabolic 

processes. The prediction of an abundance-size relationship is derived from the scaling of 

metabolism and resource use according to a mass exponent (Brown et al. 2004). For 

species sharing a common resource base and experiencing the same temperature spectra, 

mass (M) is hypothesized to influence the density of species (N) in the form: 

N M b  (1) 

where the exponent b is close to -0.75 (Damuth 1987). This theoretical prediction often 

explains >80% in variation in density when applied to compilations of data from across 

large scales (White et al. 2007). However, when applied to groups of locally co-existing 

species, the hypothesized linear relationship often becomes more polygonal, and is 

reduced in terms of both slope and fit (Blackburn and Gaston 1997, White 2007).  

     One possible explanation for the decrease in explanatory power of the allometric 

relationship is that as species are not at their maximum density everywhere, in most 

communities most species are kept well below the limits to abundance that might be 

imposed by metabolic rates (Blackburn and Gaston 1997). Further obfuscation of the 

pattern occurs because species vary in body size and energy use within local communities 

(Ernest 2005). The increased variance in such a fundamental relationship suggests that 

ecological interactions modify the basic allometry of abundance and mass. Instead of 

being driven by metabolic limitation, local species density may be proportional to the 

fitness of individuals of that species in the local environment. For instance, the 

competitive ability of birds to acquire resources in a given forest type can result in a 
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positive slope of the mass-abundance relationship within ecological guilds (Russo et al. 

2003). Thus, incorporating these types of dynamics into a model of abundance may 

improve our understanding of the mechanisms driving differences between species 

sharing a common resource.  

     In order to account for fitness in a local community, I summarize individual traits into 

an intrinsic population growth rate for the species on the shared resource, proportional to 

the vital rates of survivorship and fecundity through time. In population dynamics terms, 

given a starting density N0, species densities at time t [N(t)] may be predicted by the 

single-species population growth model: 

N(t)  N0e
rt  (2) 

where r is the intrinsic growth rate of the population. To examine the impact of local 

population dynamics on density with regard to body size, I substitute the expected density 

under the allometric metabolic relationship as the base density to be modified by the 

growth parameter: 

N M ber  (3). 

That is, the abundance of a species in a local system is proportional to the fundamental 

constraints of mass allometry, interacting with the potential for growth of the population 

in the local environment (Gaston and Lawton 1988). Because intrinsic growth (r) is a rate 

of change through time, the abundance expectation will change over the length of time 

this model is evaluated, and if there are significant differences in intrinsic growth rates 

the effect will be amplified with time. Nonetheless, if it is a property of a species in a 

given environment, r should also covary with abundance of the species in that 

environment independent of time.  
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     Equation (3) forms the basis for examining the predictive power of local vital rates 

once the metabolic relationship has been taken into account. It predicts that density in a 

local community should depend both on limitations imposed by scaling metabolic 

functions due to size, as well as population dynamics driven by species-specific life 

history traits. The vital rates can vary within a species depending on local conditions and 

interactions with other species, as documented in studies of metapopulations (e.g. Hassell 

et al. 1991). At equilibrium densities in a given habitat, or at large scales where data are 

gathered from near-maximum densities of species, all species r would be expected to be 

at or near zero, and the equation would revert to the basic expectation of proportionality 

to mass-specific metabolic rate. 

     Herbivorous insects provide an ideal group for examining these dynamics for a 

number of reasons. Insect herbivores share a defined resource base in a local community, 

and quantification of vital rates is manageable. In addition, insect herbivore life histories 

are tied intimately to the host plant on which individuals develop, meaning resource 

acquisition and population growth may be different even among sympatric host plants of 

different species, which might also be reflected in their densities on those hosts.  

     Polyphagous insects are known to experience conflicting pressures regarding the 

chemical and nutritional properties of their plant hosts. For instance, individuals 

sometimes gain increased defense against parasitism (and thus increased survivorship) at 

the cost of growth (decreased fecundity or lengthened development time; Singer et al. 

2004). Both predation (Murphy 2004) and parasitism (Barbosa et al. 2001; Lill 2002) 

rates are known to sometimes vary on the same herbivore, depending on the host plant on 

which it is feeding. Population success on a given host plant also may be diluted across 
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other possible hosts in polyphagous species. Abundance on a given host plant may be 

negatively associated with diet breadth, as oviposition choices or larval wandering spread 

local abundance of a species across multiple plants. Alternatively, species with wide diet 

breadth may be able to support a larger population size at a given site due to the greater 

availability of acceptable food resources, and therefore abundance may positively 

correlate with diet breadth. The interaction between body size, abundance and diet 

breadth can also change depending on the spatial scale considered (Summerville et al. 

2006).  

     Using an exponential relationship to account for the different possibilities of potential 

host plants on herbivore abundance, the interaction of diet breadth (D) with mass and 

population growth can be modeled as: 

Nhost M b1eb2rhost Db3  (4) 

where the b1 and b3 exponents are the forms of the relationships and b2 represents the 

influence of time on the growth model. This equation quantifies the interaction of 

allometric mass limitation, local population dynamics, and resource availability on 

abundance of herbivores on a host plant sampled as a local community. 

     I used an abundance dataset together with vital rates developed from lab rearings and 

field collections, and published information on diet breadth, to test the combined 

metabolic and life history model on an assemblage of forest caterpillars. Because in 

comparative work, the relatedness of species cannot be ignored (Felsenstein 1985, Nee et 

al. 1991, Blackburn and Gaston 1998, Harvey and Pagel 1991), I used a newly developed 

phylogenetic hypothesis of the Lepidoptera (Mitter et al. in prep) to test for effects of 

evolutionary lineage on the traits used in the analysis, and to correct for this effect in the 
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model where appropriate. I sought to determine the relative ability of the parameters, 

alone or in combination, to predict abundance in this group of insects. Specifically, I 

asked (1) how phylogenetic relatedness influenced the distribution of trait values among 

species; (2) whether mass predicts species abundance in the local community, and if so 

with what exponential slope; (3) whether intrinsic population growth as calculated from 

vital rates predicts abundance; and (4) whether diet breadth predicts abundance in a 

community of mostly polyphagous herbivores.      

 

Methods 

Abundance dataset. Barbosa et al. (2000, 2001) quantified abundance of 

externally feeding macrolepidopteran caterpillars on host plants including box elder (Acer 

negundo L.) as part of a study on differential parasitism across host plants.  When 

summed across five years of collections, the relative abundance of species in the 

assemblage follows a typical pattern of relative abundance, with most members occurring 

as scarce species (Fig 1; McGill et al. 2007). With the exception of a handful of species 

including the two most abundant ones, most caterpillars in the assemblage are known to 

feed from host plants in at least three families (Tietz 1972). I collected enough data to 

parameterize the full statistical model (equation 4) for 27 of the species in the 

assemblage, including ten of the twelve species comprising the top 85% of the abundance 

spectrum (filled circles in Fig 1).   

Rearing. The vital rates of survivorship, fecundity, and generation time can be 

combined to determine the per capita population growth rate, r: 

r 
lnlxmx

T
 (5) 
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where lx and mx respectively represent survivorship to, and fecundity at, age x; and T 

represents generation time (Clark 2007). Life history parameters (Table 2) were estimated 

from both laboratory rearings and field collections. Adult moths of target species were 

collected from UV and mercury vapor lamp traps placed in box elder stands in the 

Patuxent Research Refuge (Laurel, MD; 39˚ 03.639’ N, 76˚ 44.244’ W) during summer 

2005-2007. Eggs laid from females were counted and monitored daily. Upon hatching, 

larvae were kept in plastic deli containers with field-collected box elder leaves which had 

been sterilized for 20 minutes in a 10% sodium hypochlorite (bleach) solution, rinsed 

twice with fresh water for 20 minutes, and air dried. After five days, 25 larvae per egg 

mass were placed individually into 8-inch plastic Petri dishes with moistened filter paper 

and a sterilized box elder leaf. These dishes were kept in a growth chamber set to mimic 

seasonal temperature and light patterns (Table 1). Every other day leaves were changed 

and the dishes cleaned of frass. Upon pupation the individual was set aside for two days, 

and then pupal mass was recorded. For those species not entering diapause to overwinter 

as pupae, adults were mated as they emerged, paired with adults from egg batches 

different than their own whenever possible. Any eggs resulting from these matings were 

likewise counted and used in rearing trials where appropriate.  

Survival.  The survival estimate for each species was modeled as a joint 

probability of two mortality processes intimately associated with the host plant: 

development or “bottom-up” survivorship, and parasitism, which is specific to the host 

plant (Barbosa et al. 2001). Bottom-up survivorship was modeled as an exponential 

process with a constant mortality rate  throughout development while feeding on the 

host plant.  The time from hatch to either death or pupation for each reared larvae was 



41 

used to fit  for each species (function survreg in the survival package of R; R 

Development Core Team 2008). Parasitism rate was modeled as a binomial process with 

constant probability of survival  throughout the development of a caterpillar on the host 

plant.  The maximum likelihood estimator of  is given by the fraction that survived 

without being parasitized from the collection dataset (Clark 2007). I estimated parasitism 

rate from the five year survey dataset (Barbosa et al. 2001). This estimate is biased by 

sample size, and for some scarce species no parasitoids were collected.  The estimate of 

S(pupa), the mean species probability of survivorship from hatching to pupation in 

association with the host plant, is 

S( pupa)  eT  (6) 

where T = species mean development time from hatching to pupation. 

Fecundity. Fecundity was calculated as lifetime number of eggs per female, based 

on females reared on box elder in the lab, and supplemented with data from wild-caught 

females where lab data was absent or of low replication. Both mean and maximum values 

were calculated, the latter as a measure of the influence of unusually productive 

individuals to the growth of the population. While fecundity and mass are often 

correlated within and across insect species, I did not correct for mass in the fecundity 

variable within the intrinsic growth calculations because it was explicitly contained in the 

larger model.  

Generation Time. In population dynamics using life tables, generation time can be 

represented as 
xlxm

x

R0

, where x is a given age class, l is probability of survival to the 

beginning of age class, m is the reproductive output of the age class, and R0 is lxmx 



42 

(Clark 2007). Here I reduce survivorship to a single value to the reproductive step. This 

reduces the sum to 
xlxmx

R0


xlxmx

lxmx

 x . Thus generation time can be represented by T, 

mean species time from egg to pupation. This measurement does not address 

development time of eggs and pupae, or adult longevity.  However, evaluation of the 

length of these parts of the life cycle is complicated by species overwintering in one or 

more of the life stages.  Additionally, stages outside the larval period may not be as 

directly influenced by the host plant.  

Diet breadth. For polyphagous species, relative abundance on any one host may 

be a function of the available host species. I used the number of plant genera occurring in 

Maryland known to be utilized as food by each species (Tietz 1972, Wagner 2005, Covell 

2005) as a measure of diet breadth. 

Phylogenetic relationships. While the abundance of a given species is an 

emergent phenomenon unlikely to be directly inherited by common ancestry, other 

species properties such as mass or fecundity are not necessarily independent of 

evolutionary history and cannot be treated as independent observations in traditional 

statistics (Felsenstein 1985). To account for this possible influence I used a permutation 

test to evaluate the significance of association between the phylogenetic relatedness of 

species and the trait values (Blomberg et al. 2003). A phylogenetic hypothesis was 

constructed using a recently inferred tree of the “backbone” relationships of all 

Lepidoptera (Mitter et al. in prep). I substituted the taxa in this study for members of the 

same genus or tribe in the tree, keeping the branch lengths as developed in the full 

analysis (Fig 2).  Where I had more taxa at a given tip than were resolved in the original 

tree, I added equal branch lengths of arbitrarily short size (0.01 change units) below the 
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given node. I modeled the variance of each variable using generalized least squares 

(GLS), a modification of linear models which incorporates phylogenetic distance into the 

error structure (Martins and Hansen 1997; Blomberg et al. 2003). For this analysis I 

assumed a Brownian motion model of evolution of the trait variables, which treats 

variables as randomly evolving along branches (Martins and Hansen 1997). The 

significance of the phylogenetic component of the trait variance was evaluated following 

Blomberg et al. (2003) using log Likelihood scores from the GLS model of each trait 

against a constant (function gls of the package ape in R software; Paradis et al. 2004). 

The likelihood value of the observed data was compared against a distribution of 1000 

values calculated after permuting the trait data on the tips of the phylogeny.  In this one-

tailed test, if the observed likelihood value was larger (smaller –Log likelihood) than 95% 

of the permutation values, the phylogenetic relatedness of the species was said to 

significantly impact the trait variance. The phylogenetic variance of traits showing 

significant signal in this way was incorporated into the statistical analysis. 

Data analysis. I evaluated the impact of mass, intrinsic population growth, and 

diet breadth using the log-transformed version of equation (4): 

ln(N )  b0 b1 ln M b2

ln(Spupam)

T
b3 ln D  (7) 

where N = mean abundance, M = pupal mass (g), D = diet breadth, Spupa = joint 

probability of survival to pupation, m = maximum number of eggs laid, T = time to 

pupation (d), b1, b2, and b3 are exponential slopes indicating the form of the relationships 

of the variables with abundance, b0 = an intercept, and  = a residual variance term. The 

middle term is shown in its component parts but was evaluated as the single variable, r, 

the intrinsic rate of population growth for the species on the host plant. To include the 
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impact of relatedness of the species (where necessary as tested above), I used a GLS 

version of the linear model where error terms are structured according to the phylogeny 

(function gls of the ape package in R).  

     I used a model selection approach (Stephens et al. 2006) to determine the significance 

of each of the variables mass, intrinsic growth rate, and diet breadth. I used likelihood 

ratio tests to evaluate the contribution of each term by evaluating the fit of data to the 

models with and without that term. Individual terms were dropped from the full model, 

and the significance of a difference in likelihood was evaluated by comparing the ratio of 

log likelihoods and change in degrees of freedom against a chi-square distribution. 

Variables which did not significantly decrease the likelihood of the model when absent 

were dropped, and the process repeated to find the best model. Finally, to explore 

potential interaction of life history variables, I calculated covariance and Pearson 

correlation statistics between the measured traits. 

 

Results 

     Nearly all measured traits of species were above or near the threshold for non-random 

phylogenetic signal, including the calculated intrinsic population growth rate (Fig 3). The 

exception was number of eggs produced by females, which did not show evidence of 

influence of phylogeny (Fig 3c). As expected, species abundance showed no evidence of 

being correlated with phylogeny (Fig 3a). However, because each of the predictor 

variables in the model did show such evidence, the GLS analysis including phylogenetic 

structuring of the error was used to fit the linear model.  
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     The results of the model selection show that abundance on the host plant is best 

explained by the calculated intrinsic growth rate alone (Table 4, Fig 5a). Neither mass 

(LR=0.511168, df=1, p=0.4746) nor diet breadth (LR=0.292784, df=1, p=0.5884) 

significantly affected the likelihood of the model when dropped. In contrast, the 

likelihood of the model was significantly worse when intrinsic growth rate was not 

included (LR=18.55188, df=1, p<0.0001, AIC=16.5519). Sequentially removing terms 

resulted in the single best model including only r, regardless of the order in which terms 

were dropped.  

     The value of the mass exponent in relation to abundance differed based on the model 

used. The full linear model coefficients (given in Table 4) suggested an allometric mass 

exponent around 0.14, while the GLS model of abundance including only mass as an 

explanatory variable estimated the coefficient at -0.10. In neither case was this 

relationship significantly different from zero (mass only model tested against null model 

of abundance set to a constant, LR=0.0279542, df=1, p=0.8672).  

     Measured traits showed surprisingly few significant correlations among species (Table 

3).  Mean pupal mass was positively correlated with egg production across species 

(Pearson r=0.385, p=0.048). However, mass did not correlate with development time or 

the calculated intrinsic growth rate. One surprising significant correlation was between 

egg number and diet breadth, which covaried positively across species (Pearson r=0.441, 

p=0.021).  

     Species differed strongly in survivorship on the host plant in lab rearings (Fig 3a). The 

joint model incorporating parasitism rates differentially lowered survival estimates for the 

most abundant species (Fig 3b), since they carry a disproportionate load of recorded 
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parasitism (Barbosa et al. 2004). In species for which no parasitism was recorded the 

joint estimate was treated as equal to the bottom-up estimate. Joint survivorship was not 

correlated with any of the other measured variables, but was significantly correlated with 

intrinsic population growth (Pearson r=0.552, p=0.003).  

  

Discussion 

     I did not find a significant relationship between the metabolic rate, as expressed in an 

allometric mass exponent, and abundance in this assemblage of caterpillars. In addition, 

the calculated exponents for the abundance-mass relationship ranged from -0.1 to 0.14, 

depending on the model, but not close to the -0.75 expected under metabolic ecology 

theory. This weakening or changing of the abundance-body size relationship is still 

somewhat of a puzzle (White et al. 2007), and has been demonstrated in numerous other 

locally surveyed groups including fish (Ackerman et al. 2004), mammals (Ernest 2005) 

and birds (Nee et al. 1991, Russo et al. 2003), though the predictive power of mass for 

abundance appears relatively scale-invariant for trees (Enquist and Niklas 2001). The 

reasons for the mismatch between theory and empirical data in local systems result from 

mechanisms other than metabolic rate limiting species density. Two mechanisms tested 

here are the amount of available resources, and the match of the species to the local 

conditions as measured by intrinsic population growth rate. 

     Carbone et al. (2007) attempted to address the lack of fit of the metabolic theory in 

local animal communities by modeling the spatial distribution and amount of the resource 

base of the community, arguing dimensionality of resources could skew or flatten the 

abundance-mass relationship. In this study the insects shared a common resource (the 
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focal host plant) but most of the species had alternative resources (alternative known host 

plant genera), possibly diluting their abundance on the focal host. There was not a 

significant linear effect of diet breadth on the abundance of species in the model (Table 

4). However, diet breadth (and thus resource availability) may have a more intriguing 

relationship with abundance. Of the top four most abundant species, two (Zale galbanata 

(Morr.) and Macaria aemulataria (Wlk.)) feed on two or fewer genera of host plants, 

while the other two (Hyphantria cunea (Dru.) and Orgyia leucostigma (J.E. Smith)) are 

each known from over 80 genera occurring in Maryland (Table 2). This “u-shaped” 

relationship between diet breadth and abundance is not captured in the linear modeling 

approach tested here, and suggests divergent life history strategies (specialist and 

generalist) associated with high abundance on the host plant. This idea is reinforced by 

the strong positive correlation between diet breadth and fecundity in the group (Table 3). 

A combination of high reproductive output and large diet breadth is known to be 

indicative of outbreaking Lepidoptera (Hunter 1991), and may play a similar role in non-

outbreak high density populations as well. Insect herbivore species with high resource 

availability by way of wide diet breadth may be more limited by their metabolic ability to 

process those resources, if not limited in abundance by other factors. 

     In keeping with the idea of local interactions rather than metabolic limitation 

determining species densities, I found that abundance was best predicted by an estimate 

of intrinsic population growth, reflecting interactions with the resources of the herbivores 

as well as mortality sources from natural enemies. Survivorship and development time on 

the host plant had strong, independent impacts on the overall intrinsic growth rate (Table 

3). These variables describe the probability of successful growth of individuals of 
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different species in their larval association with the host plant, in terms of extracting 

nutrition, processing or avoiding plant defensive chemicals, avoiding parasitism, and 

successfully pupating.  

     Individual development time on the host was especially important in predicting r, and 

thus abundance, in our model. On average the most abundant species grew fastest, 

independent of mass, suggesting abundant species may be those better able 

physiologically, or even behaviorally, to extract needed nutrition from the host upon 

which they feed. This match between herbivore and host plant could lead to higher 

abundance through the preference-performance hypothesis (Thompson 1988), wherein 

females oviposit on host plants on which their offspring will do best. Evidence for this 

hypothesis has been mixed, though there have been well-documented cases in support 

(Poykko 2006). At least two other explanations for the association of fast development 

with abundance exist. Development time may reflect the influence of voltinism, since 

abundance of the species I studied reflects counts through time, and more abundant 

species may simply be the ones with multiple generations per season. This explanation is 

not well supported because species such as Pyrrharctia isabella and Xanthotype urticaria 

undergo multiple generations in our area (Covell 2005), but, nevertheless, are scarce and 

develop slowly on the focal host plant. Although multiple generations may be a necessary 

element it is not sufficient to explain higher abundance. Second, the faster development 

time may correlate with a lower risk of natural enemy attack, under the slow-growth-

high-mortality hypothesis (Clancy and Price 1987). However, this hypothesis has not 

been well supported with experimental evidence (Medina et al. 2005), and the strongest 
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evidence in favor to date (Benrey and Denno 1997) involved mortality from parasitoids, 

which was included in our model.  

     I did not account for mortality sources from predation, which may affect the results by 

skewing survivorship estimates. Predation by birds and invertebrate predators such as 

wasps may depend on morphological or behavioral differences of the caterpillars 

(Castellanos and Barbosa 2006), as well as preferences of the predators (Altegrim 1992). 

Incorporating predation into the population growth model may improve the explanatory 

power of r with regard to abundance.  

     I found one glaring exception to the success of the intrinsic population growth rate to 

predict abundance in the assemblage: the most abundant species (Z. galbanata) is a clear 

outlier (Fig. 5b). This species has high survivorship on the host plant in the lab, relatively 

high parasitism in the field, and slightly lower than average fecundity and development 

time (Table 2), which led the model to place it among most species scarce on the host 

plant. Yet Z. galbanata abundance is orders of magnitude greater than that of most of the 

other species in the assemblage, suggesting a missing component to understanding 

numerical dominance in this species. That missing component may be the impact of diet 

breadth: Z. galbanata feeds only on plants the genus Acer, and may well be a functional 

specialist on box elder locally (Barbosa et al. unpublished data). Whatever population 

growth occurs will be reflected solely on this host plant, in contrast to species with wider 

resource bases. 

     Overall, the success of our estimate of intrinsic population growth rate in predicting 

abundance raises an interesting possibility in the light of the documented relationships 

between abundance and mass in other local animal communities. The expected 
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relationship of abundance to a -0.75 mass exponent is reduced on average to -0.25 in 

these studies (Blackburn and Gaston 1997, White et al. 2007). Notably, metabolic 

ecology theory predicts expected population growth rates should also vary with respect to 

mass to the -0.25 (Brown et al. 2004). This correspondence suggests ecological 

interactions impacting the abundance of animals through their population growth rates 

may be stronger than metabolic limitations in some local communities. While I did not 

see a significant abundance-mass relationship in this study, I did demonstrate the  

power of intrinsic population growth to explain differential species abundance. Local 

animal communities with an log-transformed abundance-mass slope of -0.25 may be 

reflective of similar underlying dynamics. 
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Tables 

Table 1: Temperature and light settings for caterpillar growth chamber used in rearing. 

Month 
Light Cycle 

(hours light : hours dark) 
Temperature Cycle 

min : max ˚C 
May 14 : 10 11.5 : 23 
June 15.5 : 8.5 16.8 : 28.5 
July 16 : 8 19 : 31 

August 14.5 : 9.5 18.7 : 29.6 
September 12.5 : 11.5 14.9 : 26.3 
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Table 2. Species, data sources and parameters used in regression model. 

Species 

 
 
 
Code Mean N Pupal mass (g) rho theta 

Mean lifetime 
eggs / female 

Max 
lifetime 
eggs / 
female 

Mean 
development 

time (d) 

Diet 
(No. 

Genera) 
Acronicta americana (Harr.) Aa 34.4 0.5665 ± 0.4321 0.0270 0.6744 549.8 ± 407.0 1128 44.5 ± 7.5 23 

Acronicta impleta Wlk. Ai 0.6 0.3048 ± 0.0432 0.0278 0.6667 143.7 ± 83.7 208 64.3 ± 6.7 15 

Achatia distincta (Hbn.) Ad 0.6 0.3199 ± 0.0957 0.0011 1.0000 148.0 ±  148 53.7 ± 1.5 5 

Acronicta oblinita (J.E. Smith) Ao 0.2 0.4426 ± 0.1530 0.0127 1.0000 469.0 ±  469 103.7 ± 22.9 25 

Acharia stimulea (Clemens) As 4 0.0663 ± 0.0086 0.0073 0.6000 75.4 ± 87.0 229 63.3 ± 12.3 14 

Automeris io (F.) Aui 0.6 0.3217 ± 0.1334 0.0065 1.0000 179.0 ± 119.6 360 76.2 ± 13.0 39 

Euchlaena amoenaria (Gn.) Ea 2.6 0.1044 ± 0.0910 0.0054 1.0000 199.7 ± 138.7 433 50.8 ± 4.4 2 

Euclea delphinii (Bdv.) Ed 0.2 0.1300 ± 0.0344 0.1024 1.0000 191.5 ± 72.4 279 66.3 ± 6.9 9 

Euchlaena obtusaria (Hbn.) Eo 0.8 0.1474 ± 0.0834 0.0082 1.0000 158.7 ± 133.7 269 56.8 ± 9.8 6 

Eutrapela clemataria (J.E. Smith) Eucl 18 0.2912 ± 0.1967 0.0047 0.8444 485.1 ± 313.0 889 37.9 ± 4.7 19 

Glena cribrataria (Gn.) Gc 1.8 0.2056 ± 0.0864 0.0270 0.8889 55.0 ± 62.7 162 30.8 ± 3.5 6 

Heterocampa biundata Wlk. Hb 7.2 0.1634 ± 0.0196 0.1000 0.7500 115.0 ± 124.4 271 30.8 ± 3.2 8 

Hyphantria cunea (Dru.) Hc 50.2 0.2989 ± 0.1450 0.0020 0.6972 627.3 ± 462.4 1066 34.6 ± 5.9 81 

Halysidota tessellaris (J.E. Smith) Ht 15.4 0.1308 ± 0.0733 0.0116 0.9091 105.5 ± 91.0 287 60.9 ± 10.2 29 

Hypagyrtis unipunctata (Haw.) Hu 45 0.0464 ± 0.0090 0.0163 0.8844 213.7 ± 289.1 793 36.5 ± 4.8 11 

Macaria (=Semiothisa) aemulataria 
(Wlk.) 

Ma 140.2 0.1451 ± 0.1106 0.0077 0.7347 48.7 ± 58.4 253 22.4 ± 3.6 2 

Melanolophia canadaria (Gn.) Mec 21.2 0.2263 ± 0.0611 0.0349 0.8396 168.3 ± 198.8 397 39.1 ± 4.5 14 

Morrisonia confusa (Hbn.) Moc 10.6 0.2622 ± 0.0361 0.0043 0.8868 156.0 ±  156 104.9 ± 17.3 22 

Nemoria lixaria (Gn.) Nl 0.4 0.2386 ± 0.0384 0.0166 1.0000 25.7 ± 6.1 31 51.0 ± 11.2 3 

Orgyia definita (Pack.) Od 13.4 0.4788 ± 0.2429 0.0000 0.8060 190.2 ± 70.6 281 29.9 ± 3.1 11 

Orgyia leucostigma (J.E. Smith) Ol 77.4 0.6065 ± 0.3575 0.0033 0.7028 205.1 ± 180.0 574 29.3 ± 8.3 89 
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Pyrrharctia isabella (J.E. Smith) Pi 2.8 0.5123 ± 0.0818 0.0225 1.0000 494.8 ± 383.4 1076 97.3 ± 14.8 10 

Prochoerodes lineola (Goeze) Pl 7.6 0.2497 ± 0.1986 0.0118 0.8947 61.2 ± 40.1 140 39.0 ± 4.1 27 

Spilosoma virginica (Dru.) Sv 0.6 0.1554 ± 0.1148 0.0099 1.0000 383.6 ± 228.5 639 50.3 ± 9.8 56 

Tetracis crocallata Gn. Tc 4.4 0.2352 ± 0.1261 0.0127 0.9545 206.0 ±  206 42.8 ± 4.8 6 

Xanthotype urticaria Swett Xu 1.4 0.2781 ± 0.1608 0.0022 0.8571 148.3 ± 119.0 221 47.3 ± 6.8 13 

Zale galbanata (Morr.) Zg 167.8 0.2759 ± 0.0347 0.0078 0.6961 67.0 ± 39.2 102 32.1 ± 3.6 1 
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Pupal mass survival Max egg 1/T diet r

Pupal mass -0.0017868 0.38468736 0.00640599 0.37259026 0.16673484

survival -6.516E-05 -0.1218667 0.23957329 0.16167255 0.55182165

Max egg 17.9664088 -9.5939823 -0.0034462 0.44099329 0.30244114

1/T 8.2918E-06 0.00052271 -0.0096292 0.0962347 0.81887936

diet 1.2297198 0.89943845 3141.94872 0.01900235 0.34853176

r 0.00143987 0.00803257 5.63804823 0.00042307 0.45914681

 

Table 3. Trait correlation matrix for life history measurements of 27 caterpillar species 

feeding on box elder (Acer negundo). Values below the diagonal indicate covariance 

between variables.  Values above the diagonal are Pearson correlation r statistics.  

Correlation values in bold are significantly different from random at p<0.05. Pupal mass: 

mean mass (g) recorded two days after pupation of caterpillars reared on box elder in the 

lab; survival: joint probability of caterpillar survival on box elder due to successful 

development and avoiding parasitism (see text for details); Max egg: maximum lifetime 

number of eggs laid by a female moth; T: mean development time (d) from hatching to 

pupation for caterpillars reared on box elder in the lab; diet: number of host plant genera 

occurring in Maryland recorded in literature as hosts for each species; r: estimated 

intrinsic population growth rate, calculated as ln(Survival*Max egg)/T. 
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Table 4. Model selection to determine significance of parameters shows intrinsic 

population growth r, but not body mass or diet breadth, explains significant variance in 

abundance of an assemblage of caterpillars feeding on box elder (A. negundo). Data from 

Table 1 were used to parameterize the full log-transformed linear model, using 

generalized least squares to structure the error term according to phylogenetic 

relatedness. Likelihood ratio tests were used to evaluate the significance of each term by 

comparing the full model to one without the specified variable. Where the reduced model 

was not significantly (probability <0.05 in Chi-square test) worse than the full model, the 

term was dropped, and the tests repeated with the remaining terms. The best model was 

identified through this sequential dropping procedure. df: difference in degrees of 

freedom between models being evaluated (full model df=23); LR: ratio of likelihood 

values; p-value: probability of observed ratio under Chi-square distribution; AIC: 

difference in Akaike Information Criterion between reduced and full model. The AIC 

values for the full and best models are also reported.  

Model term 
dropped from full 

model 

 df LR p value  AIC 

r 1 18.55188 <0.0001 16.5519 

log(mass) 1 0.511168 0.4746 1.4888 

log(diet) 1 0.292784 0.5884 0.5884 

     

Full model    AIC 

log(N) = -1.302 + 0.143*log(mass) + 26.19*r + 0.0554*log(diet) 124.919 

Best model     
log(N)=-1.382 + 26.31*r  121.1031 
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Figures 

Figure 1. Dominance-diversity curve showing abundance of species collected 1993-1997 

from box elder (Acer negundo L.) in central Maryland.  Species are ordered by rank 

abundance and plotted as a fraction of total caterpillars collected (overall N=4220).  

Filled circles indicate species used in the current analysis. 

 

Figure 2. Phylogenetic hypothesis used to structure variance in GLS model for species in 

the assemblage. Tree is based on a Lepidoptera-wide phylogenetic analysis by Mitter et 

al. of 26 protein-encoding nuclear loci, constructed using heuristic branch swapping 

evaluated by Maximum Likelihood (details of the loci and protocol available at 

http://www.leptree.net). Species in the assemblage were substituted at the lowest possible 

taxonomic level (usually tribe) with arbitrarily chosen equal branch lengths of 0.01 

change units below the most resolved node. Species codes are as in Table 1. 

 

Figure 3. Histograms depicting permutation tests of influence of phylogeny on measured 

species traits (a) abundance, (b) pupal mass, (c) fecundity, (d) survival, (e) development 

time, (f) diet breadth, (g) calculated intrinsic population growth rate. Likelihood of each 

trait as observed (dotted line) was compared against the distribution of 1000 permutations 

of the trait data across the tips of the phylogeny (Fig. 2). Observed values outside the 

95% range of the permutation results (solid lines) were considered significantly 

influenced by phylogenetic relatedness. 
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Figure 4. Survival probability curves for 27 caterpillar species from (a) host plant and (b) 

joint host plant and parasitism sources. Host plant-derived mortality was estimated by 

rearing caterpillars on box elder, recording time to death or pupation, and fitting an 

exponential decay parameter representing constant mortality through time (rho, Table 1). 

This was multiplied by the mean length of development time. Parasitism was estimated 

from field collections on the host plant (Barbosa et al. 2001), modeled as a binomial 

probability, and multiplied by bottom-up rearing through time. Caterpillars with few 

collected individuals often had zero recorded parasitism, and so for these species the 

curves do not differ between (a) and (b).  

 

Figure 5: Intrinsic population growth rate predicts observed caterpillar abundance on box 

elder, with an important exception of the most abundant species (Zale galbanata).  (a) 

Best-fit linear model (Table 3) of log mean abundance versus intrinsic growth rate: ln(N) 

= -1.382 + 26.31*r. Circled point depicts Z. galbanata. (b) Observed, and predicted count 

data transformed from the best model, by species, showing misplacement of Z. galbanata 

by orders of magnitude.  
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Figure 3. 
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Figure 4. 
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Variation in phosphorus content in an ecological assemblage of 
Lepidoptera: testing predictions of mass allometry and relationship to 
growth rate 

 

Abstract 

     Ecological stoichiometry connects biochemical processes to organismal interactions 

through a common currency of elemental composition. A central hypothesis of ecological 

stoichiometry, termed the growth rate hypothesis (GRH), proposes that organismal 

development rates should covary positively with phosphorus (P) content, since growth 

depends ultimately on cellular reproduction using P-rich RNA. Despite the knowledge 

that terrestrial phytophagous insects face strong P limitation in their food, as well as 

selection pressure to develop rapidly, little is known about how the P levels of these 

herbivores vary among species, and whether they correspond with growth rates in an 

ecological setting. I used a group of moth caterpillar species known to feed on a shared 

host plant to ask how whole-body P varied with mass and phylogenetic relatedness, and 

to examine the relationship between P content and growth rates at the individual and 

species level.  

     Species differences in whole-body percent P were significant despite small within-

species replication (n5), and the low percent P of two species including the gypsy moth 

was primarily responsible for the observed differences. The percent P of individuals 

sampled did not scale negatively with mass. Across individuals I found a non-significant 

relationship between mass-specific growth rate on the host plant and percent P. 

Comparing species mean values and accounting for phylogenetic relatedness showed a 
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significant positive relationship between growth rate and percent P at the species level. 

These data suggest P limitation could have ecological impacts on success of insect 

herbivores, and call for additional investigation into the heretofore underappreciated role 

of P in plant-insect ecology, including the role of P limitations in insect outbreaks and the 

success of invasive species. 

 

Introduction 

     Ecological stoichiometry (Sterner and Elser 2002) attempts to connect biochemical 

processes to properties of individuals, species, and communities through the common 

currency of elemental ratios (Elser 2006). One fundamental pattern revealed by 

quantifying stoichiometric ratios is the strong difference in micronutrients such as 

nitrogen (N) and phosphorus (P) across trophic levels, for instance between terrestrial 

insect herbivores and their plant hosts (Fagan et al. 2002), or between insect predators 

and their prey (Fagan and Denno 2004). While plant-herbivore theory has long 

considered the role of host plant quality in herbivore performance, ecological 

stoichiometry provides a new framework for understanding the connection between 

nutrient limitation and life history in herbivorous insects. 

     Elemental nutrients are characteristically associated with different essential cellular 

processes (Elser et al. 1996; Sterner and Elser 2002; Elser et al. 2003). Phosphorus is 

particularly important because individual growth is ultimately driven by cellular division, 

which is in turn limited by the amount of P-rich ribosomal RNA. The growth rate 

hypothesis (GRH) formally proposes that organismal P content should vary with growth 
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rates, reflecting differential allocation to the molecular machinery of growth (Elser et al. 

2000). Research supporting the GRH in herbivores has come mainly from freshwater and 

marine aquatic systems (Elser et al. 2003; Hessen et al. 2007). Relatively few studies 

have considered the role of P limitation in the performance of terrestrial herbivorous 

insects (but see Fagan et al. 2004; Huberty and Denno 2006). Although the linkage 

between growth rates and P can be complicated by other limiting nutrients (Elser et al. 

2003), the GRH is a fundamental hypothesis in need of exploration in a terrestrial 

ecological setting. 

     The larval stage is often a key factor influencing the population dynamics of 

Lepidoptera (Dempster 1983), and growth rate is a commonly used metric of 

performance and fitness in caterpillars (e.g. Coley et al. 2006). Historically, most field 

and laboratory studies of insect herbivore performance have focused mainly on the roles 

of nitrogen and plant defensive chemistry (Awmack and Leather 2002). However, 

experimental evidence demonstrates P content of food can also be a limiting factor in 

growth of the tobacco hornworm Manduca sexta L. (Perkins et al. 2004). There is also 

suggestive ecological evidence for the importance of P to herbivores. In deserts, 

herbivore density increases with increasing plant percent P (Schade et al. 2003). Leaf 

phosphorus content has been found to predict winter moth caterpillar outbreaks in a 

monsospecific host plant stand, where most other variables did not (Hunter et al. 1991). 

Similarly the spatial distribution of high densities of herbivores can correspond with the 

distribution of plants with low C:P ratios (i.e., high percent P) (Fagan et al. 2004). 

However, in an explicit test of P limitation in a lace bug feeding on oaks under different 
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burning regimes, other environmental factors overwhelmed any stoichiometric effect 

(Kay et al. 2007).  

     In this study I focused on a group of caterpillars feeding on a shared host plant. First, I 

determined whether differences in percent P were detectable across species sharing a 

resource base, and asked whether some species face a stronger nutrient limitation than 

others. I also evaluated the relationship between percent P and mass, as P has been 

hypothesized to decline with body size in an allometric relationship (Gillooly et al. 2005).  

Finally, to explore the relevance of the GRH to this group of herbivores, I examined the 

relationship between mass-specific growth rate and percent P by comparing the percent P 

of individuals reared on the same host plant, and determining whether there is a 

relationship between mean species growth rates and mean species percent P.  

 

Methods 

Herbivore species and host plant. I focused on a group of caterpillars known to 

feed on leaves of box elder (Acer negundo L.), a maple occurring alongside streams and 

in moist soils throughout the much of the USA. Field surveys have shown P content of 

box elder leaves is highly variable from tree to tree, and declines from May (0.31 ± 

0.006, mean ± standard error %P by mass) to August (0.19 ± 0.003 %P; n=120 trees in 

each month; E. M. Lind unpublished data). To standardize measurements of percent P by 

species I conducted stoichiometric analysis on the adult moths. Moths for analysis were 

either reared (see below) or in some cases collected as adults. 
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Rearing and growth rate measurements. I reared caterpillars from eggs laid by 

adults collected by light trap from the Patuxent Research Refuge (Laurel, MD; 39˚ 

03.639’ N, 76˚ 44.244’ W). Larvae were reared on field-collected, sterilized box elder 

leaves under controlled light and temperature regimes (further details in Chapter 2). Five 

days after hatching 25 larvae were weighed and then placed individually into 8” Petri 

dishes with moistened filter paper and a box elder leaf. Leaves were changed every other 

day from hatching until pupation. I measured pupal mass two days after pupation. The 

mass-specific growth rate µ (d-1) was calculated as ln(M2/ M1)/T where T is time in days 

between measurements of mass M1 and M2 (Elser et al. 2003).  

Chemical analyses. Upon collection or emergence adults were placed in a -22˚C 

freezer until processing. Moths were placed in a drying oven at 60˚C for at least three 

days. Each whole body mass was recorded and the moth was ground to powder using a 

mortar and pestle. Two to five moths (females wherever possible) of each species were 

used to quantify elemental composition. Two subsamples (1-2 mg) of each individual 

were used to quantify whole body percent P using the method of persulfate digestion 

followed by colorimetric analysis (Clesceri et al. 1998). Subsample values were averaged 

to get a percent P estimate for individuals, and individual estimates were then averaged to 

get species-specific values. Twenty-two species from the assemblage of macrolepidoptera 

co-occurring on box elder were analyzed. 

Phylogenetic relatedness. I included the influence of evolutionary relatedness on 

the P composition of the moth species using a recently developed phylogenetic 

hypothesis (Mitter et al. in prep). I substituted moth species used in this study into a 
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phylogeny generated from 26 nuclear genes sampled from across the Lepidoptera. I 

placed the species included in this study at the lowest corresponding sampled taxonomic 

unit (usually tribe, though some of our sampled species were included in the original 

phylogeny). Where there were more than one species to insert into the given point on the 

tree, uniform branch lengths of arbitrarily short size (0.01 change units) were used to join 

our focal taxa to the tip.  

Statistical analyses. Statistical analyses were conducted in R software (R 

Development Core Team 2008). I tested for species differences in mean percent P using a 

fixed effects analysis of variance with species identity as the explanatory variable. I 

tested all pairwise mean differences using Tukey’s honestly significant difference 

(function TukeyHSD in R).  

     To analyze relationships of P to mass and growth rate I used a generalized least 

squares (GLS) approach. This approach allows incorporation of relatedness into the error 

structure of a linear model, by utilizing a covariance matrix of species phylogenetic 

distance (Martins and Hansen 1997). I used a Brownian model of evolution where traits 

evolve randomly along branch lengths (Martins and Hansen 1997), using the assembled 

phylogeny. Because this analysis includes phylogenetic distance (and thus differences 

between species), the GLS models did not include a separate species term.  

     Using the gls function of the R package ape (Paradis et al. 2004), I tested for linear 

effects of log-transformed dry mass (GLS model %P = ln(dry mass)). To test for effects 

of percent P on individual growth rate, I regressed percent P on mass-specific growth rate 

for individuals (GLS model %PIND = µIND). To account for species for which individual 
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growth rate data was not available, I used the same model using the species means (GLS 

model %PSP = µSP). For each GLS model, I tested the significance of the explanatory 

variable using log likelihood ratio tests, evaluated against the expectation of a Chi-square 

distribution with degrees of freedom equivalent to the difference in degrees of freedom 

between the models.  

 

Results 

     As expected, the overall mean percent P by mass was much higher in the herbivores 

(grand mean ± SE, 0.875 ± 0.106 %P) than in their shared host plant foliage. Though 

within-species replication was low (n=2-5), species differed, in some cases strongly, in 

their mean percent P (Fig 1; overall F21,58=7.911, p<0.001). Two species had 

extraordinarily low P content, Lymantria dispar L. (0.473 ± 0.027 percent P) and 

Automeris io (F.) (0.501 ± 0.032 percent P). These two species were significantly lower 

in P than all other species, except each other. Few other pairwise mean comparisons were 

significantly different from random using Tukey’s HSD, though Zale galbanata (Morr.) 

(1.079 ± 0.056) was significantly higher in percent P than Hyphantria cunea (Dru.) 

(0.783 ± 0.047), which is notable because both species are found in high numbers on the 

host plant. Interestingly, the four numerically dominant caterpillar species (Z. galbanata, 

H. cunea, Alsophila pometaria (Harris), and Orgyia leucostigma (J. E. Smith)) were 

significantly higher in percent P than the subdominant species included in this analysis 

(post-hoc contrast p<0.001), though without the two low percent P species this pattern 

was less well-supported (post-hoc contrast p=0.08 without L. dispar and A. io). 
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       When phylogenetic distance is incorporated using the GLS model, percent P did not 

decline significantly with body mass (Fig 2; LR=0.048, df=1, p=0.8266). At the 

individual level, percent PIND did not relate significantly to µIND, the mass-specific growth 

rate, though the trend was positive (Fig 3; LR=0.833, df=1, p=0.3613). In contrast, 

mean species P (percent PSP) was significantly associated with faster mean species 

growth rate (Fig 4; LR=5.1998, df=1, p=0.023). The difference in the results was the 

inclusion of the mean values for L. dispar and A. io, both of which have low µSP on the 

host plant, but for which there were no samples in the individual analysis (individuals 

analyzed for percent P did not have individual growth rate information). Removing these 

two low P species, and redoing the GLS model of mean percent PSP = µSP gives a non-

significant relationship similar to the individual analysis (LR=1.038, df=1, p=0.3083).  

 
 

Discussion 

     This ecological assemblage of species sharing a host plant is marked by strong 

differences in P between the herbivores and their food source, as has been found in other 

taxa (Woods et al. 2004) and within different trophic levels (Martinson et al. 2008). The 

overall mean percent P by mass of 0.875 ± 0.106 reported here falls within the range of 

estimates given by the one published study on P content in Lepidoptera, in which 12 

species of Lepidoptera surveyed from the Sonoran Desert averaged around 0.9 percent P 

by body mass (Woods et al. 2004). The greater mean percent P by mass content of the 

caterpillars compared to that of the foliage they consume occurs even in the early 
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growing season, when foliar nutrient levels are highest. Most species were not 

significantly different from each other in percent P. This was both because within-species 

variation was not negligible, and because sample sizes (n=2-5) were low. Recent 

evidence indicates this type of intraspecific variation in stoichiometric ratios can be 

extensive and should not be discounted (Bertram et al. 2008), which may make resolution 

of patterns more difficult with the small sample sizes used to date in most studies of 

ecological stoichiometry.  

     Contrary to the general pattern, the extremely low whole body percent P values for the 

gypsy moth (L. dispar) and io moth (A. io) nearly overlapped the mean percent P found in 

early season leaves, a surprising finding given the severe limitation in herbivore diet 

usually revealed when analyzed in a stoichiometric context (Fagan et al. 2002). This may 

be important for understanding the ecology of the gypsy moth, an invasive exotic 

caterpillar of economic importance. Gypsy moths complete one generation per year on 

early season foliage, and the low percent P by mass demonstrated here implies they are 

much potentially less limited by that micronutrient than most other Lepidoptera. Release 

from this particular limitation could mirror the release from natural enemies known to 

accompany the exotic herbivore (Elkinton and Liebhold 1990), reinforcing the potential 

for large population growth rates.  

     Mechanistic explanations for the low percent P observed in gypsy moth and io moth 

are not clear. One possible explanation is morphological, as a connection between 

ecological context, morphology, and stoichiometry has been proposed for groups such as 

ants (Davidson et al. 2005) and detritivores (Martinson et al. 2008). Both L. dispar and A. 
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io have thick, hair-like wing scales which in the case of gypsy moth are used by the 

flightless female to encase an egg mass, but may also have defensive purposes as the 

scales readily dislodge from the animal upon disturbance in both species. As these scales 

are composed of chitin, an N-rich structural molecule, these species may be expected to 

exhibit much higher percent N and N:P ratio than similar species lacking such scales.  

     Although the two low P species were also among the largest by dry body mass, I did 

not find the hypothesized negative allometric relationship between percent P and body 

size (Fig 2; Gillooly et al. 2005). The species sampled here may represent too narrow a 

range of sizes to detect such a pattern, which as demonstrated in Gillooly et al. (2005) has 

a slight negative exponential slope across 10 orders of magnitude in animal body size. 

Woods et al. (2004) found an overall negative relationship between body size and percent 

P across eight Orders of arthropods, but across their 12 species of Lepidoptera this 

pattern was not significantly different from random. Martinson et al. (2008) did not find 

an overall mass-percent P relationship for detritivores, but suggested that within-taxa 

negative scaling relationships did exist. However, in the group of herbivores in this study, 

body mass did not predict percent P.  

     One question related to mass scaling of P elided by the whole-body analyses 

conducted here and in other stoichiometric studies is the elemental composition of cells 

with different functional roles, for instance the eggs of a female adult moth. In some 

moth females, like the flightless Orgyia species studied here, eggs make up a large 

proportion of overall body mass. Given the connection between percent P and RNA in 

ecological stoichiometry (Sterner and Elser 2002), and the fact that egg cells are built 
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specifically for rapid growth and division, egg number per female should vary strongly 

with whole body adult female percent P. If such a relationship can be demonstrated, it 

will be important to untangle the causation loop as to whether, for instance, higher P food 

in larvae results in more eggs in an adult female. Especially in non-dispersing females 

which do not feed as adults, larval access to P may be crucial to determining fecundity, 

and thus may impact population dynamics of the herbivore. 

     To examine the importance of the GRH in this group of Lepidoptera I explored the 

relationship between percent P and growth rate in these herbivores. Such an approach has 

revealed strong correspondence of percent P to growth rates for a range of aquatic 

animals under conditions where P is limiting (Elser et al. 2003).  Growth rate of 

individuals has previously been demonstrated to influence abundance of 

macrolepidoptera on box elder (Chapter 2). In addition, fast development on a host has 

long been associated with higher fitness in caterpillars, whether because of associations 

with increased fecundity (Awmack and Leather 2002) or because of a decreased time of 

exposure to natural enemies (Benrey and Denno 1997). Yet P has been neglected in the 

plant-insect literature on both sides of the trophic interaction. Finding a link between 

growth rate and P content of these herbivores would thus have important new ecological 

implications.  

     I did find such a relationship when I tested the relationship between percent PSP and 

the mass-specific growth rate µSP while accounting for their phylogenetic relatedness (Fig 

4). I found no such pattern when analyzed across individuals (Fig 3). The main difference 

between the two was the inclusion of the two very low percent P species in the species 
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mean model. It happened that I did not have µ, and percent P, for the same individuals in 

these two species, which meant they could only be included at the species mean level. In 

any case the relationship between percent PSP and µSP was driven by A. io and L. dispar, 

as shown by the non-significance of the relationship without the inclusion of those two 

points in the model (dashed line in Fig 4).  

     Is the significant statistical relationship between percent PSP and µSP ecologically 

meaningful? One complication in comparative work across species is standardizing 

measurements, and to do here I evaluated percent P in the adult of each species. In doing 

so I avoided the complications of comparing life stages, instars, and feeding behavior. 

However I also assumed an as-yet untested relationship exists between larval percent P 

and adult percent P within individuals. Formalizing this relationship will be difficult 

given the destructive nature of the P analysis as conducted here. But stronger evidence 

for the GRH in caterpillars may be provided by utilizing late-stage caterpillars, or perhaps 

pupae, in the growth rate-percent P comparison. To the degree to which percent P does 

correlate with life history strategies or morphological differences, the observed 

correspondence between low percent P and low growth rate in the two outlying species 

may indicate a fundamental difference in the ecology of these species. These species may 

face much less of a limitation from acquiring P through their foliar food, which may then 

emphasize other limiting factors such as N content in their development.  

     Although much of the debate over the control of population cycles such as observed in 

the gypsy moth has contrasted natural enemy effects with those of plant quality as 

measured in terms of nitrogen and defensive chemistry, future models may wish to take 
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into account the apparently low relative need of gypsy moths for P. This may be among 

the factors contributing to the success of this invasive outbreak species in eastern North 

America.  
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Figures 

Figure 1. Whole-body percent phosphorus and phylogenetic relationships of moth 

species used in the study. Phylogenetic relationships shown as cladogram without branch 

lengths, though data analysis was conducted with branch lengths included (tree from 

Mitter et al. in prep). Percent whole body percent P calculated from two averaged 

subsamples of n=2-5 adult moths. Bar shows mean percent P +/- pooled SE for the 

ANOVA model percent P = species. All pairwise contrasts with Tukey’s HSD adjustment 

found species Ld and Aui were significantly different than every species except each 

other. Species in order as drawn (taxonomic family in capital letters): ARCTIIDAE: Sv 

Spilosoma virginica (Dru.); Hc Hyphantria cunea (Dru.); Ht Halysidota tessellaris (J.E. 

Smith); LYMANTRIIDAE: Ol Orgyia leucostigma (J.E. Smith); Od Orgyia definita 

(Pack.); Ld Lymantria dispar L.; NOCTUIDAE: Zg Zale galbanata (Morr.); Aa 

Acronicta Americana (Harr.); NOTODONTIDAE: Hb Heterocampa biundata Wlk.; 

GEOMETRIDAE: Nl Nemoria lixaria (Gn.); Pl Prochoerodes lineola (Goeze); Eucl 

Eutrapela clemataria (J.E. Smith); Alp Alsophila pometaria (Harris); Ea Euchlaena 

amoenaria (Gn.); Eo Euchlaena obtusaria (Hbn.); Xu Xanthotype urticaria Swett; Gc 

Glena cribrataria (Gn.); Pp Protoboarmia porcelaria (Guenee); Hu Hypagyrtis 

unipunctata (Haw.); Mec Melanolophia canadaria (Gn.); Ma Macaria (=Semiothisa) 

aemulataria (Wlk.); SATURNIIDAE: Aui Automeris io (F.). 

 

Figure 2. Relationship between percent P and whole body dry mass (g) for individuals 

sampled (note log scale of x-axis). Line indicates best fit for GLS model: percent P = 
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0.898 + 0.006*log(body mass). Model including mass was not significantly different 

from random.  

Figure 3. Relationship between individual percent P and mass-corrected growth rate µ (d-

1) on the host plant. Individual caterpillars were reared from eggs on field-collected box 

elder under controlled conditions (see text). Growth rate calculated as µ = ln(M2 / M1)/T 

where Mi = mass at time i, and T = time in days between measurements. Adult moths 

were used for the percent P calculations. Line is best fit for GLS model: percent P = 0.86 

+ 0.474*µ. Model was not significantly different from random. 

 

Figure 4. Relationship between mean species percent P and mean species µ on the host 

plant. Using species means expands dataset to include the two species lowest in percent 

P, L. dispar and A. io, which also have very low mean µ values. Solid line is best fit for 

GLS model: percent PSP = 0.655 + 1.43*µSP. Model was significantly different from zero 

(LR=5.1998, df=1, p=0.023). Dotted line shows best fit GLS model without L. dispar 

and A. io: percent PSP = 0.863 + 0.394*µSP. This reduced model was not significantly 

different from random. 
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Figure 1. 
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Appendix 1 

 August 2006 Caterpillars collected from Acer negundo 
 CO_E CO_W LB_E LB_W PRR_N PRR_S PRSP_E PRSP_W PVSP_E PVSP_W SERC_N SERC_S 

Acronicta americana 0 0 1 1 0 0 5 4 0 0 0 3 
Acronicta oblinita 0 2 0 0 0 0 0 0 0 0 0 0 
Acronicta retardata 0 0 0 0 0 0 0 0 0 1 0 0 
Adoneta spinuloides 0 0 0 0 0 0 0 0 0 2 0 0 
Anacamptodes defectaria 0 0 0 0 1 0 0 0 0 1 0 0 
Cepphis armataria 0 0 0 0 0 0 0 0 0 2 0 0 
Cepphis decoloraria 0 0 0 0 0 0 0 0 1 0 0 0 
Ectropis crepuscularia 1 0 0 0 0 0 0 1 0 0 0 0 
Elaphria versicolor 0 0 0 0 0 0 1 1 1 2 0 0 
Euchlaena amoenaria 0 0 0 0 0 0 0 0 1 0 0 0 
Euchlea delphinii 0 0 0 0 0 0 0 0 0 0 1 0 
Eutrapela clemmataria 0 0 1 1 1 0 1 1 0 1 0 5 
GEOM10 0 0 0 0 1 0 0 0 0 0 0 0 
GEOM11 0 0 0 0 0 0 0 0 0 0 0 1 
GEOM12 0 0 0 0 0 0 0 0 0 0 0 1 
GEOM13 0 0 0 0 0 0 0 0 0 0 0 1 
GEOM14 0 0 0 0 0 0 0 0 0 2 0 0 
GEOM15 0 0 0 0 0 0 0 0 0 1 0 0 
GEOM16 0 0 0 0 0 0 0 0 0 1 0 0 
GEOM7 0 0 0 0 0 0 0 0 0 0 1 0 
GEOM8 0 0 0 0 0 0 0 0 0 0 1 0 
GEOM9 0 0 1 0 0 0 0 0 0 0 0 0 
Halysidota tessellaris 0 0 2 4 2 0 4 6 1 2 3 4 
Heterocampa umbrata 0 0 0 0 0 0 0 0 0 1 0 0 
Hypagyrtis unipunctata 0 2 3 1 4 3 6 1 0 5 1 5 
Hyphantria cunea 2 5 0 0 3 4 0 0 3 8 0 0 
Lithacodes fasciola 0 0 0 0 0 0 0 0 1 0 0 0 
Macaria aemulataria 2 0 10 1 3 12 1 3 1 3 4 10 
Melanolophia canadaria 1 0 6 1 2 2 3 4 5 6 2 8 
Nemoria sp  0 0 0 0 0 0 0 1 0 0 0 0 
NOCT5 0 0 0 0 0 0 0 0 6 0 0 0 
NOCT6 0 0 0 0 0 0 1 0 0 0 0 0 
Oligocentria semirufescens 0 0 2 1 1 0 2 0 2 3 0 0 
Orgyia definita 1 0 0 0 2 1 6 0 0 5 0 0 
Orgyia leucostigma 0 1 0 0 2 0 1 0 0 1 0 9 
Palthis angulalis 0 0 0 1 1 0 0 0 0 0 0 0 
SATR1 0 0 0 0 0 0 0 0 0 1 0 0 
Sibine stimulea 0 0 3 2 1 0 1 0 0 1 0 0 
Tetracis crocallata 0 0 1 0 0 0 0 0 1 0 0 0 
Thyridopteryx 
ephemeraeformis 

0 0 0 0 0 0 0 2 0 0 1 0 

Zale galbanata 7 6 13 8 20 14 6 16 3 7 13 27 
Zanclognatha cruralis 0 0 0 0 0 0 1 0 0 1 0 0 
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 August 2007 Caterpillars collected from Acer negundo  

 CO_E CO_W LB_E LB_W PRR_N PRR_S PRSP_E PRSP_W PVSP_E PVSP_W SERC_N SERC_S 

Acronicta.americana 0 0 5 0 0 1 0 0 2 2 1 1 

Anacamptodes.defectaria 0 0 0 0 1 0 0 0 0 0 0 1 

Bomolocha.baltimoralis 0 0 0 0 0 0 0 1 0 0 0 0 

Dasychira.obliquata 0 0 0 0 0 0 0 0 0 1 0 0 

Euchlaena.amoenaria 0 0 0 0 0 0 0 0 1 1 0 1 

Euchlaena.sp 0 0 0 0 0 0 0 0 0 0 1 1 

Eutrapela.clemmataria 0 0 0 0 0 0 0 0 3 1 0 0 

GEOM1 0 0 0 0 0 0 0 0 1 1 0 0 

GEOM2 0 0 0 0 0 0 0 1 0 0 0 0 

GEOM3 0 0 0 0 1 0 0 0 0 0 0 0 

GEOM4 1 0 0 0 0 0 0 0 0 0 0 0 

GEOM5 0 0 1 0 0 0 0 0 0 0 0 0 

Halysidota.harisii 0 0 0 0 0 0 1 0 0 0 0 0 

Halysidota.tessellaris 0 1 1 0 1 0 0 1 2 5 0 3 

Heterocampa.biundata 0 0 0 0 0 0 0 0 0 1 0 0 

Heterocampa.sp 0 0 1 0 0 0 0 0 0 0 0 0 

Hypargyrtis.unipunctata 3 4 9 0 10 9 1 2 3 10 4 11 

Hyphantria.cunea 6 10 0 0 7 22 0 0 0 3 5 28 

Iridopsis.larvaria 0 0 0 0 0 0 0 1 0 1 0 0 

Isa.textula 0 0 0 0 0 1 0 0 0 0 1 0 

Lophocampa.caryae 0 0 0 1 0 0 0 0 0 0 0 0 

Lytrosis.unitaria 0 0 1 0 0 0 0 0 0 0 0 0 

Macaria.aemulataria 12 36 2 3 50 16 2 3 21 45 23 70 

Melanolophia.canadaria 1 1 5 2 2 1 0 0 6 4 1 4 

NOCT1 0 0 2 0 0 0 0 0 0 1 0 0 

Oligocentria.semirufescens 0 0 0 4 0 0 0 0 2 2 0 0 

Orgyia.definita 0 0 3 0 0 1 0 1 0 2 0 0 

Orgyia.leucostigma 0 0 3 0 1 2 0 0 0 0 0 1 

Prochorodes.lineola 0 0 0 0 1 0 0 0 1 0 0 0 

Protoboarmia.porcelaria 0 0 0 1 0 1 0 0 0 0 0 0 

Pyrrharctia.isabella 0 0 0 0 0 0 0 0 0 1 0 0 

Tetracis.crocallata 0 0 1 3 0 0 0 0 0 0 0 0 

Thyriodopteryx.ephemerata 0 0 1 0 0 0 0 0 0 1 0 0 

Zale.galbanata 5 8 33 21 24 9 3 2 26 10 8 35 
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Appendix 2 
 

Biomass of foliage by species (values are kg foliar biomass estimated by regressions from diameter of trunk) 
Abbreviatio
n 

Species CO_E CO_W LB_E LB_W PRR_N PRR_S PRSP_E PRSP_W PVSP_E PVSP_W SERC_N SERC_S 

ACNE Acer 
nugundo 

1216.70674
5 

243.497641
7 

0 301.036661
8 

12.8677717
7 

103.738263
9 

238.002100
4 

4.68346333
5 

256.731452
8 

715.191612 68.3513904
9 

113.513697
6 

ACRU Acer 
rubrum 

0 122.838659
7 

186.290150
8 

299.264860
6 

93.6945117
4 

0 80.2006747
4 

742.303242
8 

20.6289482
9 

0 50.9764257
6 

99.2644045
4 

ACSA Acer 
saccharinum 

237.687673
2 

0 0 0 0 0 0 0 0 0 0 0 

ASTR Asmina 
triloba 

94.5594853
6 

10.7643615
3 

0 0 1.77394554
2 

25.4374469
7 

0 0 0 0 0 6.52185954
9 

BELE Betula lenta 0 0 0 0 0 0 0 52.1191391
4 

0 0 0 0 

BENI Betula nigra 0 0 0 0 1.51646303
2 

0 0 0 0 0 0 0 

CACA Carpinus 
caroliniana 

0 3.59216566
8 

16.4934600
9 

0 98.2201188
6 

94.5085848
2 

38.4736774
6 

0 15.1229253
9 

0 24.1892364
2 

0 

CAGL Carya 
glabra 

0.02506576
5 

136.194078
9 

0 0 15.8312305
5 

0 0 0 79.5919637
5 

13.5957979
9 

0 0 

COFL Cornus 
florida 

0 0 5.46246544 0 31.0106389
1 

0 0 0 0.89655911
3 

0 20.4593062
4 

0 

CRAT Crataegus 
sp. 

0 0 0 0.75082119
1 

0.89655911
3 

0 0 0 0 0 0 0 

DIVI Diospyros 
virginiana 

0 0 0 0 0 0 89.9315502
6 

0 0 0 0 0 

FAGR Fagus 
grandifolia 

0 0 0 0 135.646878
8 

798.403530
4 

0 0 20.1310818
4 

0 0.75082119
1 

0 

FRAM Fraxinus 
americana 

0.50334717
6 

10.4147847 236.954962
8 

0 33.2364829
8 

144.987041
7 

0 137.881416
6 

16.4800701
2 

128.583805
9 

10.0258025
7 

7.44627525
2 

GYDI Gymnoclad
us dioica 

0 0 0 0 0 0 0 0 0 32.3373250
4 

0 0 

HAVI Hamamelis 
virginiana 

0 0 0 0 0 0 0 0 0.28476807
1 

0 0 0 

ILOP Ilex opaca 0 0 0 0 0 0 0 0 0 0 1.05755678
3 

0 

JUNI Juglans 
nigra 

0 560.689920
9 

125.908114
1 

127.429049
3 

0 0 35.6179990
1 

212.542798
8 

0 272.142434
2 

0 0 

JUVI Juniperus 
virginiana 

0 0 21.5516432 0 0 0 0 0 0 0 0 0 

LIBE Lindera 
benzoin 

0.99551017
6 

0.48211282
8 

4.50671834
8 

4.05874065
2 

0.21028680
7 

0.19122319
6 

2.77593978
5 

4.08407867
5 

0.21028680
7 

3.29954514
1 

3.80799660
4 

2.31512935
7 

LIST Liquidamba
r styraciflua 

0 0 0 0 317.656399
9 

478.692193
9 

0 0 0 0 720.788833
8 

42.4409613
6 

LITU Liriodendro
n tulipifera 

324.941918
8 

126.088805
3 

224.014770
4 

1326.22175
6 

780.927884
9 

2040.95642
2 

59.5375190
7 

352.730004
4 

1078.49859
2 

0 1192.36889
1 

2513.59625
1 
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MOAL Morus alba 0 0 0 0 0 0 0 0 0 0 0 9.53753834
7 

NYSY Nyssa 
sylvatica 

0 35.4297784
2 

12.5455736
3 

0 9.78692510
5 

0 0 0 0 0 0 0 

OSVI Ostrya 
virginiana 

0 0.17060249
1 

0 0 0 8.41421864
9 

0 0 0 0 0 0 

PLOC Platanus 
occidentalis 

0 434.017748
9 

20.7030934
9 

3498.34208
2 

26.5857088
9 

0 2747.86494 1246.29139
1 

350.973284
8 

0 0 0 

PRSE Prunus 
serotina 

0 0 413.973577
9 

0 0 0 9.59537658
3 

145.963110
8 

0 10.9959225
3 

26.387297 527.545315
4 

QUAL Quercus 
alba 

0 0 0 0 0.50334717
6 

0 0 0 9.08377797
4 

0 0 0 

QUPR Quercus 
prinus 

0 0 0 0 0.13172691
6 

154.479357
3 

0 0 1.63623091
7 

0 0 0 

QURU Quercus 
rubra 
GROUP 

1775.77671 0 8.61692674
9 

0 447.385015
1 

73.5144598
6 

0 0 781.737254
3 

0 0 0 

RHCA Rhamnus 
cathartica 

0 0 0.22771699 0 0 6.65017332
3 

0 0 0 0 0 0 

ROPS Robinia 
pseudoacaci
a 

0 0 0 0 0 0 0 0 0 137.353998 0 0 

SAAL Sassafras 
albidum 

0 0 57.1290904 0 2.36645985
6 

0 0 0 6.01153598
2 

42.0545197
2 

7.62729888
9 

12.3958288
2 

STTR Staphylea 
trifolia 

1.4691161 2.12637229 0 0 0 0 0 0 0 0 0 0 

TILI Tilia sp. 0 0.31135155 0 0 0 0 0 0 0 0 0 0 
ULRU Ulmus rubra 0.92359368

9 
216.922245

6 
106.863679

4 
0 121.195209

3 
326.502765 0 0 79.1022692

6 
12.2297997

6 
39.3596236

8 
0 
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First five PC Axis loadings by plant species (captures 90% of overall variance in stand-vegetation matrix) 

Abbrev
iation 

Species PC1 PC2 PC3 PC4 PC5 

ACNE Acer nugundo 0.030279338 -0.196774199 -0.018694423 -0.034453062 -0.060155728 

ACRU Acer rubrum 0.067181694 0.097795567 0.042171783 0.051368497 0.037438668 

ACSA Acer saccharinum -0.014032815 -0.041891272 -0.027174241 0.03144782 -0.009161561 

ASTR Asmina triloba -0.016836128 -0.023177244 -0.013904797 0.006770383 0.003028768 

BELE Betula lenta 0.013515418 0.012051802 0.003275423 0.009057633 0.002387333 

BENI Betula nigra -0.002586196 0.000738597 -0.001427158 -0.000464702 0.003539988 

CACA Carpinus caroliniana -0.031498843 0.021447696 -0.007599775 -0.020648499 0.041257982 

CAGL Carya glabra 0.015343358 -0.030136489 -0.001943566 -0.019332461 0.04370177 

COFL Cornus florida -0.021935803 0.011915034 0.004776208 -0.001881165 0.014366661 

CRAT Crataegus sp. -0.000899011 0.001315067 -0.00200218 -0.000686351 0.001935064 

DIVI Diospyros virginiana 0.022855667 0.004854432 -0.01452703 -0.006764285 -0.007336662 

FAGR Fagus grandifolia -0.078183221 0.017576736 -0.024633652 -0.054682358 0.05986603 

FRAM Fraxinus americana -0.002720078 -0.011637166 0.101749076 0.021365957 0.049337711 

GYDI Gymnocladus dioica 0.006964521 -0.029647165 0.020075004 -0.01192273 -0.008345326 

HAVI Hamamelis virginiana -0.00031688 -0.000230297 -0.001157671 0.000663257 0.000502971 

ILOP Ilex opaca -0.002241224 0.001412358 0.000725132 -0.00224057 -0.001877193 

JUNI Juglans nigra 0.126900395 -0.053873178 0.111223488 -0.025766375 0.052790292 

JUVI Juniperus virginiana 0.000356048 0.005505169 0.020051086 0.017674726 0.011366979 

LIBE Lindera benzoin 0.00504079 0.000458419 0.011960971 0.002780066 -0.004684414 

LIST Liquidambar styraciflua -0.142520641 0.063887008 0.003165092 -0.099055601 0.001443217 

LITU Liriodendron tulipifera -0.189536699 0.153008894 -0.032395207 0.007271691 -0.039927419 

MOAL Morus alba -0.004032097 0.003577362 0.003057005 0.003772688 -0.009085273 

NYSY Nyssa sylvatica 0.006261535 0.001476531 0.016407909 0.001332888 0.032640757 

OSVI Ostrya virginiana -0.004176256 0.000844688 0.0001219 -0.00630246 0.003476098 

PLOC Platanus occidentalis 0.289155757 0.121070646 -0.136438822 -0.015297554 0.013442716 

PRSE Prunus serotina -0.005477591 0.06225448 0.12667908 0.10032614 -0.030395274 

QUAL Quercus alba -0.003279686 -0.000875172 -0.007360641 0.003478289 0.004880214 

QUPR Quercus prinus -0.023150558 0.004652688 -0.004081212 -0.02228952 0.012690775 

QURU Quercus rubra GROUP -0.114075069 -0.106961111 -0.147376669 0.107523694 0.07650534 

RHCA Rhamnus cathartica -0.004450987 0.001600607 0.001877337 -0.003109321 0.003334919 

ROPS Robinia pseudoacacia 0.014353568 -0.061101486 0.04137369 -0.024572215 -0.017199345 

SAAL Sassafras albidum -0.006780316 -0.017110453 0.053869754 0.015930855 0.000324201 

STTR Staphylea trifolia 0.001973727 -0.004420368 -0.000976353 -0.000215516 0.00294836 

TILI Tilia sp. 0.001177412 -0.000431228 0.000443895 -0.001028533 0.001403814 

ULRU Ulmus rubra -0.038239102 -0.001336172 0.038100828 -0.034448704 0.100420376 
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