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A key question in any grand unified theory is whether it satisfies the stringent

experimental lower limits on the partial lifetimes of the proton. In more generic

models, substantial fine-tuning is required among GUT-scale parameters to satisfy

the limits. In the proposed model, the 10, 126, and 120 Yukawa couplings

contributing to fermion masses have restricted textures intended to give favorable

results for proton lifetime, while still giving rise to a realistic fermion sector,

without the need for fine-tuning, even for large tan β, and for either type-I or

type-II dominance in the neutrino mass matrix.

In this thesis, I investigate the above hypothesis at a strict numerical level

of scrutiny; I obtain a valid fit for the entire fermion sector for both types of

seesaw dominance, including θ13 in good agreement with the most recent data.

For the case with type-II seesaw, I find that, using the Yukawa couplings fixed by

the successful fermion sector fit, proton partial lifetime limits are readily satisfied

for all but one of the pertinent decay modes for nearly arbitrary values of the
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is largely sub-dominant to gauge boson decay channels.
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Chapter 1

Introduction

The Standard Model of particle physics [1] is among the most fascinating of mod-

ern marvels, though it is an inconspicuous one. Its mathematical structure is

capable of describing, with unparalleled precision, virtually every aspect of the

statistical behavior of the elementary particles composing normal matter. With

its last key aspects discovered by the early 1970’s, the completed model emerged

as the culmination of some forty years of effort to solve the many mysteries gen-

erated by the discoveries of quantum mechanics and relativity in the early 20th

century.

Yet even as the final pieces were being put in place, physicists were already

certain the model and its implications gave an incomplete version of the story of

our universe: for as many questions as it answered with the utmost of elegance, the

Standard Model (SM) left many mysteries unsolved and also gave rise to a few new

ones. The model gives no indication as to why, in light of electroweak unification,

there were still three separate forces in nature; in fact, it quite conspicuously

gives no description of gravity, and further gives no explanation for dark matter

or matter-antimatter asymmetry. Additionally it suggests that electric charge is

quantized but provides no explanation for why it should be, nor does it relatedly

give any reason for the values of hypercharge.

Furthermore, empirical evidence for other failures of the model were coming

to light even before its completion. One important example of such evidence

indicated a discrepancy in solar neutrino flux, which would ultimately come to

be understood as a consequence of the oscillation of propagating neutrinos from
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one flavor to another [2]. It was already known at the time that such oscillations

occur only among particles having mass, whereas the SM predicted neutrinos to

be massless.

Thus, theorists began working to find an extension of the model that would

solve its problems without disrupting the beautiful predictions of its existing

framework. One of the first notions to lead to some success was Grand Unifi-

cation [3, 4], which nests the symmetry group of the SM in a higher dimensional

group by expanding the potential (or superpotential) to include terms allowed by

the higher dimensional symmetry; the new potential typically introduces heavy

Higgs-like bosons and may include new multiplets of existing particles. Such a

mathematical extension of the model is phenomenologically justified through the

assumption that the “larger” symmetry of the Grand Unified theory would have

been present at higher energies typical in the early universe, and that the SM sym-

metry would emerge at low energies through a spontaneous breaking of the larger

symmetry. Grand Unified theory (GUT) provided understanding for some of the

mysteries of the SM, and, when combined with the seesaw mechanism (see below)

a few years later, it led to a nicely self-consistent and potentially testable expla-

nation for neutrino masses and their apparent smallness. GUT framework again

created some new questions of its own, and it also gave some curious predictions,

such as the existence of proton decay [3].

Over the past few decades, and through the inclusion of Supersymmetry

(SUSY) [5, 6], a few classes of GUT models, especially those based on the SO(10)

symmetry group [7], have come to be realized as significantly more complete de-

scriptions of our universe than the Standard Model. One of the more basic yet

intriguing features of these models is the ability to naturally accommodate a

right-handed neutrino, consequently allowing for a well-motivated implementa-

tion of the seesaw mechanism for neutrino mass [8, 9], a long-uncontested ansatz
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that dynamically explains the smallness of left-handed neutrino masses. The see-

saw was originally implemented in the framework of SUSY SO(10) with 10- and

126-dimensional Higgs multiplets coupling to fermions [10, 11]; the vacuum ex-

pectation value (vev) of the 126 field plays the role of both breaking B−L and

triggering the seesaw mechanism, thereby creating a deep mathematical connec-

tion between the smallness of neutrino masses and the other fermion masses. This

seemingly limited yet elegant approach yielded a realistic neutrino sector, includ-

ing an accurate prediction of the value of θ13 [12, 13], long before experiments were

measuring its value. In the SUSY context, it further provides a clear candidate

for dark matter. This so-called “minimal” SO(10) model has been explored much

more thoroughly over the years by many authors with the arrival of precision

measurements [12–19], and it remains a viable predictor of the neutrino sector

parameters.

Many of the remaining concerns associated with GUT models are on the

verge of being addressed experimentally. Theorists and phenomenologists have

made extensive effort to carefully explore and catalogue in the vast number of

feasible options available when constructing such a model, because each choice

leads to a distinct set of favorable and unfavorable phenomenological features.

It seems that within the next 10-20 years, this formidable tree of models will

finally be pruned substantially as experiments close in on precise values for the

phenomenological outputs whose predictions may distinguish one model from the

next, including the remaining parameters of neutrino oscillation [20] and the life-

time of the proton [21].

Proton decay is arguably the most problematic feature common to nearly all

GUT models. In all SU(5) and SO(10) models, heavy gauge boson exchanges give

rise to effective higher-dimensional operators that allow for quark-lepton mixing

and, consequently, nonzero probabilities for proton decay widths. Furthermore, in

3



SUSY GUT models, although one sees an decrease in the decay widths following

from gauge boson exchange, several additional decay modes are available, as each

of the GUT-scale Higgs superfields contains colored Higgs triplets that allows for

proton decay through exchange of Higgsino superpartners.

No one yet knows whether protons do in fact decay at all; so far, the lower

limit on proton lifetime is known to be at least ∼1033 years, and partial lifetimes

for the various decay modes have been continually rising through the findings of

experiments [22]. Thus, if any SO(10) model is to be trusted, its prediction for the

proton lifetime must be at least so high a number. Most minimal SU(5) models

have already been virtually ruled out by such limits.

There are ways in which the proton lifetime goal can be achieved within the

framework of a given model, but doing so typically requires substantial fine-tuning,

which occurs via rather extreme cancellations (>∼ O(10−4)) among the mixing

parameters of the color-triplet Higgsinos exchanged in the decay. The values

of those mixings cannot be reasonably recognized as more than arbitrary free

parameters, so to expect multiple instances of very sensitive relationships among

them requires putting much faith in either unknown dynamics or extremely good

luck. Restricting the SUSY vev ratio vu/vd, conventionally parametrized as tan β,

to small values can provide some relief without cancellation for Higgsino-mediated

decay channels, but such an assumption is still ad hoc and may ultimately be

inconsistent with experimental findings; hence it is strongly preferable to construct

a model which is tractable for any feasible tan β.

If however the GUT Yukawas, which are 3×3 matrices in generation space,

have some key elements naturally small or zero, then extreme cancellations can

be largely avoided by eliminating most of the dominant contributions to proton

decay width. A paper by Dutta, Mimura, and Mohapatra [23] proposed such a

Yukawa texture for the SO(10) model that includes a 120 coupling in addition

4



to the 10 and 126 Higgs contributions to fermion masses. The authors suggested

that proton decay limits may be satisfied, especially for model with type-II seesaw

dominance and sketched the relationships between key fermion fit parameters and

proton partial lifetimes; however, the work gave mainly heuristic arguments and

leading-order estimates to only tentatively support the hypothesis.

The work I present in this thesis revisits the above hypothesis and exposes

it to robust testing by providing a careful and complete analysis of the char-

acteristics of proton decay in the model. I grounded the analysis in conservative

assumptions, including large tan β, and performed a comprehensive numerical cal-

culation relying on as few approximations as necessary. Furthermore, I extended

the cursory work from ref. [23] for type-I seesaw to fully consider both the type-I

and II seesaw dominance cases. The modes of proton decay that I checked for

sufficiency are those known to be most problematic: p → K+ν̄, K0`+, π+ν̄, and

π0`+, where ` = e, µ.

The calculation consisted of two components: first I found a stable numerical

fit to all fermion mass and mixing parameters, including the neutrino sector (where

values are predictions of the model); then, using the Yukawa couplings fixed by

the fermion fit as input, I searched the parameter space of heavy color triplet

mixing parameters for areas that lead to adequately large partial lifetimes for the

dominant modes of proton decay.

The results not only give satisfactory predictions for the neutrino sector

based on corresponding charged sector fits, but also adequately predict sufficiently

long-lived protons without relying on the usual large degree of tuning. I find

that the ansatz is completely successful in satisfying the proton lifetime limits

without any need for cancellation for the type-I seesaw scenario; a modest O(10−1)

cancellation is needed in the type-II case to satisfy the partial lifetime limit of the

often-problematic p → K+ν̄ mode. These results for type-I versus type-II are
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contrary to the tentative expectations of the authors in [23]; the discrepancy is

due mainly to the unexpected significance of the effect of rotation to mass basis on

the results of the decay width calculations, combined with the numerical details

of the rotation matrices arising from the charged sector mass and CKM fit.

The thesis is organized as follows. In Chapter 2, I give an introduction to the

Standard Model of particle physics and discuss its strengths and weaknesses. In

Chapter 3, I give an introduction to supersymmetry and the Minimally Supersym-

metric Standard Model (MSSM) and again discuss its strengths and weaknesses.

In Chapter 4, I give an overview of Grand Unified theories and their strengths

and weaknesses and an introduction to SO(10) models; I also introduce the de-

tails of the model on which this work focuses, including the superpotential and

the fermion mass matrices following from it, and the details of the Yukawa texture

ansatz. In Chapter 5, I expand further on the model specifics and examine general

GUT proton-decay logistics in order to derive the needed partial decay widths.

In Chapter 6, I present the fermion sector results of the numerical fitting to the

measured masses and mixings, and I present the results of the calculation of the

important partial lifetimes of the proton. In Chapter 7, I discuss the implications

of the results and give my conclusions.
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Chapter 2

The Standard Model

2.1 The Structure of the Standard Model

Strictly speaking, the Standard Model (SM) is a spontaneously-broken non-Abelian

gauge theory of quantum fields. This extremely content-laden tagline can be parsed

as follows.

A quantum field is a function over some space or spacetime that assigns an

algebraic operator, rather than a numerical value, to each point in the space. Such

an operator typically acts on elements of a separate internal vector space; that

action creates (or destroys) discrete excited states of the underlying field called

quanta. The actions of multiple operators are not generally commutative.

In relativistic quantum field theory, elementary particles are realized as exci-

tations in Fock space, which is a generalization of the (non-relativistic) quantum-

mechanical Hilbert space that allows for the accommodation of multi-particle

states in which the number of particles is not fixed. The “value” of a typical

(scalar) quantum field φ at a spacetime point x goes like eip·x â† |0〉 or e−ip·x â |0〉,

where â† is the raising operator (like that of a harmonic oscillator) whose action

on the Fock space ground state |0〉 (“the vacuum”) creates a single quantum of the

field. The new state â† |0〉, explicitly notated as “|1〉” or, more commonly, “|p〉”,

is identified with a plane wave carrying momentum p, “pinned” to spacetime at

the point x, and it can be further associated with a representation of the Lorentz

group, SO(1, 3), which I will describe in detail shortly. The lowering operator â

acting on |p〉 destroys a single field quantum, while â†â† |0〉 creates two quanta,
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corresponding to a two-particle state |p1p2〉, and so on. Note though that states

of more than one identical particles are forbidden for fermionic fields due to the

Pauli exclusion principle. As with any lowering operator, â |0〉 = 0.

Both “non-Abelian” and “gauge” theories of quantum fields are types of

group theories. A group is a set of elements, together with an associative operation,

that

• is closed under the action of the operation on any two elements

• contains a unique identity element

• contains a unique inverse for every element.

The set of elements of a group can be finite and discrete, countably infinite, or a

continuous spectrum. A simple example of a group is the integers with the addition

operation {Z,+}, where zero is the identity element and negative integers are the

inverse elements of positive integers (and vice versa).

If the elements of a continuous group of also form a topological manifold

(i.e., if the space is “smooth”, or continuous and differentiable throughout), then

the group is known as a Lie group.

A non-Abelian group is a group (finite or continuous) for which the group

operation is non-commutative on two elements; i.e., for elements a, b of a group

{G, ·}, a · b 6= b · a.

Before I can give proper discussions of the remaining terms in this “math-

ematical name” for the Standard Model, I will need to introduce quite a bit of

additional terminology.

A group representation is a map from a group G to a set of linear transfor-

mations on a vector space V . More explicitly, the map π is a homomorphism

π : G −→ GL(V )
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with the property

π(g · h) = π(g) ◦ π(h) for g, h ∈ G;

GL(V ) is the general linear group (a group in its own right) consisting of all N×N

matrices acting on an N -dimensional vector space V ; thus the representation of

a group π(G) is always some subgroup of GL(V ). If the homomorphism π is

one-to-one, (injective), then the map is an isomorphism: G ∼= π(G), and the

representation is said to be faithful.

A representation is conventionally named simply with a bold numeral in-

dicating its dimension, as in, for example, the “2” or the “3” representation of

SU(2). In a mild abuse of terminology, physicists are quite prone to referring

to a vector v ∈ V , on which the elements of a group representation act, as a

“representation” of the group as well; in fact, I will often do so in this work.

When a mathematical system is left unchanged by the simultaneous action

of a group on each of the components of the system, the group is called a symmetry

of the system, and the system is said to be invariant under the group action.

To qualify the above concepts in the pertinent context, let me point out

that the Lagrangian of the Standard Model is invariant under the action of the

continuous group

SU(3)C × SU(2)L × U(1)Y ×
(
R1,3 o SO(1, 3)

)
,

where

• SO(N) is the non-Abelian group of orthogonal (i.e., length-preserving) ro-

tations in N -dimensions, with elements O such that OTO = I ∀O ∈ SO(N);

it is naturally equipped with the fundamental or standard1 representation

of N × N matrices satisfying the above property and with determinant 1,

which act on vectors in the space RN .

1“Standard representation” is the conventional term among mathematicians.
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• SU(N) is the analogous group of complex unitary rotations with elements

U such that U †U = I ∀U ∈ SU(N), and with fundamental representation

acting on elements of the complex space CN .

• U(1) is the Abelian group of rotations by a complex phase eiθ for some real

number θ, which acts on single elements of C, i.e., complex numbers.

• the direct products “×” indicate that, although the individual groups are

generally non-Abelian, the actions of the groups commute with one another.

• R1,3 oSO(1, 3) is the Poincaré group, the “spacetime part” of the SM sym-

metry. Poincaré invariance is what makes the SM consistent with the prin-

ciples of special relativity. R1,3 gives the translational symmetry of any SM

process (i.e., the physics is the same whether some interaction happens at

point x or point y), and SO(1, 3), the Lorentz group, contains ordinary

rotations in 3D space plus boosts (time-space mixing rotations). The pres-

ence of the semi-direct product, “o”, is due to the fact that the product

of an SO(1, 3) transformation and an R1,3 translation is another translation

in a different reference frame; hence, for a general spacetime translation

U ∼ eip·x and a general spacetime rotation Λ ∈ SO(1, 3), the commutator

U · Λ − Λ · U ∼ U ′ is nonzero (i.e., they do not commute). The signa-

ture “1,3” carries the distinction between timelike and spacelike directions;

the two have opposite-sign contributions to the metric ηµν used to calcu-

late inner products between elements of the Poincaré group, which creates

the potential for null, or “light-like” propagation, for which the invariant

spacetime interval ds2 ≡ ηµνx
µxν = dt2 − dx2 = 0.2

Note that SO(N), SU(N), and U(1) are all Lie groups.

2I will use the “mostly minus” signature, with spacelike elements of the metric negative, i.e.
η ≡ diag (1,−1,−1,−1).
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A Lie algebra g is related to the Lie group G by the following rule: for all

N × N matrices X ∈ g and θ ∈ R, U = eiθX ∈ G. Note that the factor of i is a

practical convention used by physicists. The real parameter θ sets the magnitude

for the group transformation (extraction of this factor from X is not necessary, but

it is convenient and will be easier to generalize later); in the cases of orthogonal or

unitary transformations, it can be interpreted as a rotation angle. If θ � 1, then

U can be simplified using the infinitesimal form of the exponential U ≈ 1 + iθX.

The generators of a Lie algebra ta are the basis elements through which

all X ∈ g can be constructed; i.e., X =
∑
αata ∀X ∈ g, with αa ∈ R. By

the relationship given in the previous paragraph, any element of the group can

be written as U = eiα
ata , where the rotation angle has been absorbed into the

constants α. This is a general form for the elements of SU(N) in the SM; their

action on fermion fields is ψ → Uψ.

The N(N−1)/2 generators of the Lie algebra so(N) are antisymmetric, and

the N2 − 1 generators of su(N) are Hermitian. The closure of G is guaranteed if

the generators of g satisfy the commutator relationship

[
ta, tb

]
≡ tatb − tbta = ifabct

c,

where fabc are called the structure constants of the algebra. The structure con-

stants are simply numbers that determine the exactly how one generator is con-

structed from the others. It is naturally the case that many of the structure

constants for a particular Lie algebra are zero.

Here I can finally return to the defining the terms appearing in the opening

sentence. A gauge symmetry is an invariance under local group transformations,

as opposed to global transformations. In a global transformation, the rotation

parameters αa are constant real numbers, as described above. In a local transfor-
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mation, the parameters are instead functions of spacetime, αa = αa(x), which is

actually a stronger condition (i.e., local symmetry implies global symmetry).

This promotion of transformations has surprising effects on the nature of a

theory. Before trying to understand gauge symmetry in a quantum field theory,

I will consider a simple example from classical electromagnetism. One may re-

call that an electromagnetic wave has only two degrees of freedom, namely the

polarizations of E and B; yet, the four-vector potential Aµ, whose spacetime

derivatives give rise to those fields, seemingly comes equipped with four degrees

of freedom. Thus it seems the potential has some intrinsic redundancy; in fact,

that redundancy follows directly from the ambiguity in its definition:

Aµ → Aµ + ∂µα, (2.1)

where α(x) is some scalar function (the degeneracy of this notation with that of

the gauge transformation parameters is intentional). Furthermore, the Lagrangian

for Aµ, from which Maxwell’s equations follow, L = −1
4
FµνF

µν , is invariant under

the redefinition (2.1). This is a simple example of a gauge symmetry.

As it turns out, Aµ is a representation of the Lorentz group, and precisely

that which one would promote to an operator if looking to quantize electromag-

netism. If one naively attempts to do so by, for instance, following procedure

analogous to that for a scalar field, serious difficulties arise presently. Given the

equation of motion for the classical photon-to-be,

∂µF
µν = ∂µ(∂µAν − ∂νAµ) = Jν ,

or, after Fourier transform,

(−p2gµν + pµpν)Aµ = Jν ,
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one finds that the naive choice for the corresponding propagator is ill-defined.

However, one can utilize the ambiguity in (2.1) to resolve the issue by adding a

term that depends on the “choice of gauge”, i.e. the form of α(x) (or, traditionally,

an analogous function). In the end one sees that the lack of an “ordinary” prop-

agator is a consequence of neglecting the redundancy of the extraneous degrees

of freedom. Therefore, any quantized theory of electromagnetism will necessarily

also be a gauge theory.

One important consequence of this generalization is that terms in the La-

grangian containing derivatives of matter fields are no longer invariant under group

transformations. For the Abelian group U(1)em of proper quantum electrodynam-

ics (QED), a term involving matter fields such as ψ̄ψ (more on this form later. . . )

is unchanged by the transformation ψ → eiαψ even after the “gauging” of the

symmetry, α→ α(x), because the transformation factors enter as conjugates and

simply cancel; however, the derivative transformation picks up an extra term:

∂µψ → eiα(x)∂µψ + i∂µα eiα(x)ψ.

In order to restore invariance to derivative terms in the Lagrangian, one must

introduce the gauge covariant derivative Dµ ≡ ∂µ + iAµ. Using this form in place

of the normal derivative, as well as the transformations for both Aµ and ψ, one

finds that Dµψ → eiα(x)Dµψ, as desired. The details of the Lagrangian in light of

this formulation will be discussed in more detail later. The generalization of this

process to non-Abelian groups is relatively straightforward.

As the final topic from my opening remark, a spontaneously broken symme-

try is a symmetry of the Lagrangian that is not respected by the ground state of

the theory. In the case of the SM, the SU(2)L × U(1)Y electroweak symmetry is

not a symmetry of the vacuum. The symmetry is “broken” (really more like ob-

13



scured) specifically by the Higgs field via the Higgs mechanism at the electroweak

scale ∼100 GeV. I will discuss the Higgs mechanism and the implications of this

symmetry breaking in more detail shortly.

At this point, all of the terminology I used at the start of the chapter to name

the mathematical structure of the SM has been introduced. Before discussing the

Lagrangian and the interactions at the heart of the model, I will discuss the details

of representations of the SM fields.

2.1.1 The Representations of Standard Model Fields

The SM includes the following quantum fields:

• three copies of four fermionic fields: 3× 2 quark fields, {u, c, t}, and {d, s, b},

and 3 × 2 lepton fields, {νe, νµ, ντ}, and {e, µ, τ}; the “copies”, known as

generations, differ only in mass and have the same quantum numbers oth-

erwise;

• four force-carrying bosonic fields: the photon, Aµ (often notated as “γ”),

the gluons, Ga
µ (often notated as “g”), and the W±

µ and Zµ weak bosons;

• one Higgs boson field, φ.

The force-carrying bosons named here are the physical particles, of definite mass,

which differ from the massless fields found in the model prior to spontaneous

symmetry breaking. Those fields will be discussed shortly, and their relationships

to the above particles will be made clear when I discuss symmetry breaking in

more detail.

Each field above is associated to a particular representation of the SM gauge

group (gauge bosons) or the vector spaces on which it acts (matter fermions and

Higgs). Differences in representation are what give the fields unique properties,
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which lead to our observation of several unique types of elementary particles.

Below I will discuss the representations for each field.

2.1.1.1 Spacetime Representations

The different classes of fields listed above experience spacetime transformations

as different representations of the Poincaré group, which, in a sense, gives rise to

the simplest definition of elementary particle: a state whose degrees of freedom

mix only with each other, as elements of a single representation, under the action

of the Poincaré group, [24]. Furthermore, the nature of translation is generic to

all of the fields, so it is specifically the Lorentz representation of a particle that

determines the nature of the interactions it may have, and even the nature of its

free propagation through empty space.

Lorentz Scalars. The most basic and uninteresting Lorentz representation is the

trivial representation; fields in this representation are invariant under group trans-

formations and are consequently scalars in the formalism of the group.3 The Higgs

boson is the only Lorentz scalar field in the SM.

Lorentz Vectors. The force-carrier gauge bosons of the SM are Lorentz four-

vectors, i.e., 3+1-dimensional elements of the fundamental representation; for the

Lorentz group, this implies transformation via the same 4 × 4 boost or rotation

matrices as xµ, pµ, etc. one sees in basic index-notated special relativity: A′ν =

Λν
µAµ.

Spinors. The matter fermions of the SM are Lorentz or Dirac spinors. A spinor

representation is also realized as matrices acting on multiplets in a vector space,

3Note the concept of a trivial representation is general to all groups and is not a special
feature of the Lorentz group.
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but it is a different vector space, of generally different dimension, from that of

the fundamental representation. The relationship between the two spaces is an

interesting one. The group Spin(N), whose elements act on the spinors, is a

double cover of the orthogonal group SO(N), meaning there are two “copies” of

the SO(N) manifold in that of Spin(N), and there is a 2-to-1 map from the latter

onto the former. As a result, for any rotation of a vector in the space of the

SO(N) fundamental, there are two topologically distinct continuous paths, from

the same initial state to the same final state, through which the spinor can be

rotated. Another important result of this relationship is that an ordinary spatial

rotation of a spinor through 2π results in the negative of the original state; a

second 2π rotation is required to return the spinor to its original orientation.

For the Lorentz group, the double covering group is Spin(1, 3) ∼= SL(2,C),

which is the special linear group over complex numbers, whose elements are 2× 2

matrices with complex entries and determinant 1. The action of SL(2,C) is on

two-component Weyl or chiral spinors ψL,R; the Dirac spinor more commonly

associated with the Lorentz group is actually a bispinor, spinor ⊕ spinor; this

reducibility is manifest in the Weyl basis for the gamma matrices, where the

bispinor corresponding to a SM fermion is the direct sum ψ = ψL ⊕ ψR; many

interactions of bispinors, including those in QED, decouple into left and right parts

in that basis. Four-component Dirac “spinors” are related to Weyl bispinors by a

change of basis.

Interaction of spinors with a Lorentz vector is realized through the Dirac

algebra, which consists of 4×4 matrices γµ that form an anti-commuting Clifford

algebra, meaning they satisfy

{γµ, γν} = 2 ηµν I4,
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where I4 is the identity in the spin space. Note that each matrix carries a Lorentz

spacetime index, which can have values µ = 0, 1, 2, 3 as one would expect; yet, the

γ-matrices are better thought of as a basis for representing four-vectors as group

elements in the spin space (i.e., matrix operators that act on spinors), rather

than as forming a spacetime four-vector themselves, especially as they transform

differently (and passively) under the Lorentz group.

In analogy with non-relativistic angular momentum, the six objects

Sµν ≡ 1

2
γµν ≡ i

4
[ γµ, γν ] ,

are the generators of angular momentum and boosts in the spin space; accordingly,

Sµν , rather than the γ-matrices themselves, satisfy the Lie algebra so(1, 3), and

hence represent the group Spin(1, 3). The Lorentz transformation of a Dirac

spinor is given in terms of these generators:

ψ → Λ 1
2
ψ = exp

(
− i

2
ωµνS

µν

)
ψ,

where ωµν is an anti-symmetric tensor of constant infinitesimal rotation parame-

ters. This Lorentz transformation for spinors is related to the vector transforma-

tion Λµ
ν through the gamma matrices:

Λ−1
1
2

γµΛ 1
2

= Λµ
νγ

ν .

Before I move on, note that the Lorentz invariant contraction of spinors is

ψ̄ψ ≡ ψ†γ0ψ = ψ†RψL + ψ†LψR,

rather than the naive choice of ψ†ψ. It will generally be the case that Lorentz
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tensors constructed from spinors will involve some product of gamma matrices

sandwiched between ψ̄ and ψ: the vector ψ̄γµψ, which couples to ordinary Lorentz

vectors, the pseudo-vector ψ̄γµγ5ψ, the two-tensor ψ̄γµνψ, etc.

2.1.1.2 Representations of the Internal Gauge Group

All three components of the internal symmetry group of the SM are gauged groups.

Fermionic matter fields transform under the action of the fundamental representa-

tions of those groups; i.e., the fields are components of an N -dimensional multiplet

on which a group SU(N) acts in the form of an N ×N matrix.

In particular, fermions with left-handed chirality are known to pair off into

doublets,

q ≡

 uL

dL

 ` ≡

 νL

eL

 ,

which can be rotated by SU(2) group elements; gauge covariance of the group

leads to interactions between the left-handed fermion multiplets above and the W

bosons, giving rise to the weak force, although the details are complicated a bit by

electroweak symmetry breaking (EWSB). The transformations are associated with

left-handed fermions having non-trivial weak isospin charge, T . Right-handed

fermions, uR, dR, and eR, have T = 0, and so each exists only in the trivial

representation of SU(2). In analogy with ordinary spin, the components of each

doublet have eigenvalues T 3 = ±1/2.

Similarly, quarks possess an additional degree of freedom known as color

and consequently form triplets,

u =


ur

ug

ub

 d =


dr

dg

db

 ,
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which can be rotated by SU(3) group elements; gauge covariance of the group

gives rise to the strong force through interactions between the quark multiplets

above and the gluons. Leptons do not carry color charge and so are found in the

trivial representation of this group. Interestingly enough, every known physical

state involving quarks which has been empirically verified is color neutral, or

“white”; individual quarks do not freely propagate at low energies. This property

of quarks, known as confinement, is perhaps not yet fully understood, but is due in

part to the fact that the strength of the coupling constant gs for color interactions

increases as energy decreases.

Finally, all fermionic SM fields individually have nonzero weak hypercharge,

Yw, which is associated with rotations by group elements of the U(1)Y symmetry;

gauge covariance of the group ultimately gives rise to the electromagnetic force

through interactions between fermions and photons, although, again, the details

are complicated by EWSB. The transformations act on individual fields rather

than multiplets, meaning the group elements are simply complex numbers of unit

magnitude.

The corresponding antiparticle fields of the SM fermions, which are the

charge conjugates of the particle fields, are found in analogous conjugate repre-

sentations, named “2”, “3”, etc.; the antiparticle partners themselves are named

by one of a few conventions. One often sees the notation ψC ≡ Cψ̄T = Cγ0ψ∗ to

indicate antiparticle fields, where the C is a unitary matrix with CT = −C; by

this construction, the antiparticle ψC has the same chirality as its partner ψ. Once

I move on from discussing the SM, I will normally use this notation. Note though

that if I want to give the antiparticle partners of the SU(2)L doublets above, I

would write something like

q†R ≡
(
u†R, d

†
R

)
, `†R ≡

(
ν†R, e

†
R

)
,
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to make manifest that only antiparticles with right-handed chirality will form

SU(2)L doublets that interact via the weak force.

Force-carrier gauge bosons experience (and, in a way, exhibit) the action

of the internal symmetry groups of the SM as elements of the adjoint represen-

tations of the groups; the adjoint representation is that which is exhibited by

the generators of the Lie algebra themselves; the group action on the genera-

tors is ta → g tag−1 for some g ∈ group G; more specifically for our purposes,

ta → U ta U † for U ∈ SU(N). The boson fields Aaµ(x) associated with a particu-

lar symmetry group will be in one-to-one correspondence with the generators of

the symmetry. For a gauge symmetry, the transformation of the bosons mimics

that of the generators, but with an important extension: Aa → U Aa U † + dU U †;

taking U = e−iα
ata as before, and for infinitesimal transformations α(x)� 1, this

corresponds to Aaµ → Aaµ+∂µα
a−fabcαbAcµ, which is the generalization of eq. (2.1)

for the abelian gauge field Aµ discussed earlier. The generalized gauge covariant

derivative for a non-Abelian group utilizes the above properties to give the map-

ping of the boson field into the vector space of the group: Dµ = ∂µ − igtaAaµ,

where g is the coupling constant of the interaction with other fields; interactions

with matter fields arise through this minimal coupling of the gauge field to the

derivative.

The vector bosons associated with the unbroken symmetry of the SM are

the single field Bµ for the Abelian group U(1)Y , the three fields W a
µ for SU(2)L,

and the eight gluons Ga′
µ for SU(3)c.

The scalar Higgs field φ is an SU(2)L doublet

φ =

 φ+

φ0

 , (2.2)

with hypercharge Yw = 1/2. Each component field is complex, so φ generally has
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SU(3) rep SU(2) rep Yw
qiL 3 2 1/6
uiR 3 1 2/3
diR 3 1 -1/3
`iL 1 2 -1/2
eiR 1 1 -1
Bµ 1 1 0
W a
µ 1 3 (adj) 0

Ga′
µ 8 (adj) 1 0

φ 1 2 1/2

Table 2.1: Representations and charges of SM fields under the internal gauge symmetries
of the model.

4 degrees of freedom. The non-trivial SU(2)L representation enables electroweak

symmetry breaking when the field acquires a vacuum expectation value, which I

will discuss in more detail shortly. Additionally, the field belongs to the trivial

representation of SU(3)C .

A summary of the charges of all the SM fields under each symmetry group

is given in Table 2.1.

2.1.2 Standard Model Interactions and Lagrangian

In accordance with classical Lagrangian theory, the SM Lagrangian should incor-

porate all of the allowed dynamics of its particles in terms of only the fields and

their spacetime derivatives. A properly formed Lagrangian density L should be

such that the action S ≡
∫
d4xL is invariant under a general transformation of

either the Poincaré group or the internal SM gauge group (at least up to some

total derivative), which implies that each term in L should be written in such a

way that all of its components are contracted to result in a scalar under general

transformations. Also, it follows from S (and ~ = 1) that L must have dimensions

of energy4.

In classical field theory, kinetic terms are ∼ (dΦ)2. For a scalar quantum
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field φ (of dimension [φ] = 1), the analogy is exact: Lkin = (∂µφ)2, where there is

an implied sum over µ (note [∂µ] = [pµ] = 1 also, so that [Lkin] = 4 as desired).

The generalization for a complex field (like the Higgs) is ∂µφ∗∂µφ. I mentioned

the kinetic Lagrangian for the Abelian Aµ field in the earlier discussion on gauge

symmetry; the generalization to non-Abelian bosons follows from F a
µν = ∂µA

a
ν −

∂νA
a
µ+gfabcA

b
µA

c
ν . Note, one can see from this expression that non-Abelian bosons

interact among themselves, i.e., they carry charge under the force they mediate,

which is not the case for electrically-neutral photons. The resulting kinetic terms

for the SM Lagrangian are

LSM 3 − 1

4
Gµν
a′ G

a′

µν −
1

4
W µν
a W a

µν −
1

4
BµνBµν , (2.3)

where Bµν is analogous to the Abelian electromagnetic field strength tensor Fµν .

The kinetic term for fermion fields is a bit more tricky. For one, Dirac spinors

have dimension [ψ] = 3/2, so the operator in question will need to contain only

a single derivative; furthermore, that derivative will still need to be contracted

with another vector-like object. The solution, courtesy of Dirac, turns out to be

iψ̄γµ∂µψ. Note one often sees Feynman slash notation /p = γµpµ for contraction

of four-vectors with the gamma matrices.

The interaction terms for scalars or spinors with the gauge bosons follow

straightforwardly from replacing the derivatives above with the corresponding

gauge covariant derivatives. The components of the Lagrangian consistent with
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the representations described in the previous section are

LSM 3 q̄iL γ
µ

(
i∂µ + gsλ

a′Ga′

µ + gT aW a
µ +

1

6
g′Bµ

)
qiL

+ ūiR γ
µ

(
i∂µ + gsλ

a′Ga′

µ +
2

3
g′Bµ

)
uiR

+ d̄iR γ
µ

(
i∂µ + gsλ

a′Ga′

µ −
1

3
g′Bµ

)
diR

+ ¯̀i
L γ

µ

(
i∂µ + gT aW a

µ −
1

2
g′Bµ

)
`iL

+ ēiR γ
µ (i∂µ − g′Bµ) eiR

+ φ†
(
∂µ + igT aW µ

a +
i

2
g′Bµ

)(
∂µ − igT bW b

µ −
i

2
g′Bµ

)
φ, (2.4)

where the generators T a ≡ σa/2, with a′ = 1, 2, 3, are half the Pauli matrices;

λa
′
, with a = 1, . . . , 8, are the analogous generators of SU(3); and i = 1, 2, 3 are

the generation indices, for which all of the above interactions are diagonal (in the

unbroken, massless case). In this context the spinor fields fL,R with f = u, d, e, ν

are four-component Dirac spinors, rather than two-component Weyl spinors, but

with with the left- or right-handed components set to zero, which can be done

using the chiral projection operators PL,R ≡ 1
2
(1 ∓ γ5 ) such that fL,R = PL,Rf .

Note the quark-lepton asymmetry due to the absence of the right-handed neutrino

field. The implicit transpose in φ† is with respect to its SU(2) components, and

the adjacent derivative acts on it to the left. Also note that the indices for the

internal spaces of SU(2) and SU(3) have been suppressed for clarity; for example,

the fully notated version of the quark doublet term above would be

L 3 q̄iαρL γµ
(
δαβδρσ(i∂µ +

1

6
g′Bµ) + gsδαβλ

a′

ρσG
a′

µ + gδρσT
a
αβW

a
µ

)
qiβσL ,

where α = 1, 2 are the internal SU(2) indices, and ρ = 1, 2, 3 are those of SU(3).

The Higgs field φ also interacts with the matter fields through the Yukawa

23



terms, and has self-interactions allowed by the freedom of the Lorentz scalar rep-

resentation as well:

LSM 3 −yiju εαβ q̄αLiφ∗βuRj − yijd q̄
α
Liφ

α dRj − yije
¯̀α
Liφ

α eRj

+ Hermitian conjugates

+ µ2φ†φ − λ
(
φ†φ
)2
, (2.5)

where I’ve included the SU(2) indices in the Yukawa terms due to their non-

triviality. Note that εαβφ
∗β (with ε12 = 1) transforms identically to φ under SU(2)

but has the opposite hypercharge as well as the necessary component structure

needed to couple φ+ and φ0 to u in the same way as d and e.

The scalar self-coupling parameters µ and λ are unconstrained in principle.

One would expect µ to function as a mass for the field, but note that the term

has opposite the expected sign (assuming µ2 > 0); this subtlety has profound

implications for the potential of φ, as I will discuss in the next section.

2.1.3 Electroweak Symmetry Breaking and the

Broken Lagrangian

Experimentally, matter fermions and weak gauge bosons are known to have mass,

yet I gave no explicit mass terms in the Lagrangian, as stated in eqs. (2.3)-(2.5).

In fact, it is not hard to convince oneself that (a) a mass term like M2AµAµ for a

gauge boson breaks its gauge symmetry, and (b) a Dirac mass term like m(ψ̄LψR +

h.c.) for a fermion is intractable in light of the inequivalent electroweak quantum

numbers (T 3 and Yw) for left- and right-handed fields. It is completely tractable

however to generate effective mass terms for both gauge bosons and fermions using

a dynamic scalar field with the appropriate characteristics. This is the role of the
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V (φ)

Re φ

Im φ

Figure 2.1: The classical potential for the Higgs field as a function of φ.

Higgs field in the SM; the details of the emergence of these masses through the

Higgs mechanism are as follows.

From a classical perspective, one can view the final two terms in eq. (2.5),

which describe the self-interaction of the Higgs field, as a scalar potential4

V (φ) = −µ2φ†φ + λ
(
φ†φ
)2
. (2.6)

In the alternate case where the µ2 term is instead positive, this potential has

a single minimum at φ0 = 0; however, for a negative µ2 term and appropriate

related values for µ and λ, V has the shape seen in Figure 2.1. This potential

is seen to have a continuously degenerate minimum, with a constant magnitude

φ0 = µ/
√

2λ ≡ v but arbitrary phase.

From the perspective of quantum field theory, this nonvanishing minimum

corresponds to a vacuum expectation value (vev) 〈φ〉 for the scalar field φ; how-

ever, a field with such a vev cannot be quantized in the usual manner using

creation/annihilation operators, which demands â |0〉 = 0; yet, there is a simple

way to bypass the issue: one can reparametrize the Higgs doublet given in eq. (2.2)

4an additional symmetry φ → −φ is imposed on the Higgs Lagrangian to guarantee the
presence of a stable minimum.
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as

φ(x) =

 0

v + h0(x)

 , (2.7)

where the dynamical real scalar field h0(x) can be quantized as usual and treated

as fluctuations about the nonvanishing but constant vacuum v; an excitation of

the field h0 is the Higgs boson. The alignment of v with the φ0-direction can be

accomplished without loss of generality through a global SU(2)L transformation;

the complex scalar field φ+ and the imaginary part of φ0 have been set to zero

using SU(2)L×U(1)Y gauge transformations, and thus can be taken as unphysical.

The above construction explicitly breaks the SU(2)L × U(1)Y symmetry of the

theory. Substituting this parametrization for φ into eq. (2.5), one finds masses

proportional to v have emerged for the fermions as a result of the breaking:

L��SM 3 −yiju v ūiLujR − yijd v d̄
i
Ld

j
R − yije v ē

i
Le

j
R + h.c.. (2.8)

The same substitution in the final line of eq. (2.4) yields analogous terms for the

gauge bosons, albeit with the presence of non-trivial mixing among the massless

fields:

L��SM 3 v2

4

[
g2 (W µ

1 + iW µ
2 )
(
W 1
µ − iW 2

µ

)
+
(
−gW 3

µ + g′Bµ

)2
]
. (2.9)

The combinations W 1
µ ∓ iW 2

µ ≡
√

2W±
µ used here were chosen by our forefathers

because the coupling of W 1,2
µ to matter consistently appears in these pairings,

as one can see through the expansion of the q, `, and φ terms in eq. (2.4); since

W µ
+W

−
µ = (W 1

µ)2 + (W 2
µ)2, the mass eigenstates are equivalent. In contrast to

that, the combination −gW 3
µ + g′Bµ appears as a result of the diagonality of

both the T 3 and Y generators and cannot be avoided. Rather than ponder the

curious cross terms, one can view the combination as a change of basis needed to
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describe the mass eigenstates manifestly. In fact, these mixed states correspond

to the physical particles observed in experiment; yet, there were four bosons in

the system prior to the breaking, so where has the fourth state gone? Let me

define the (properly normalized) mixed W 3 +B state discussed above as

Zµ ≡
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
,

and also introduce the angle θW such that tan θW = g′/g, so that Zµ = cos θWW
3
µ−

sin θWBµ. Then there should exist a state

Aµ ≡
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
= sin θWW

3
µ + cos θWBµ,

orthogonal to Zµ, which is also a result of the rotation by θW , and which apparently

corresponds to the generator T 3 +Y ; if I write this generator as an SU(2) element

acting on the Higgs doublet (recall Yφ = +1/2), one can see that it annihilates

the vacuum in spite of the vev:

〈0|
(
T 3 + Y

)
φ |0〉 =

1

2
〈0|
(
σ3 + I

)
φ |0〉 =

 1 0

0 0


 0

v

 = 0;

hence, T 3 + Y generates an unbroken symmetry, whose corresponding boson Aµ

remains massless. As the generator is diagonal, the unbroken symmetry is a U(1),

albeit a different one from that of weak hypercharge. One can easily be convinced

that this symmetry corresponds to electromagnetism, with Aµ as the photon and

the electric charge as Q ≡ T 3 + Y .

In addition to the terms in eqs. (2.8) and (2.9), there is an otherwise iden-

tical set of terms with v → h0 that give the interactions of the massive fermions

(excluding the neutrino) and the gauge bosons with the neutral Higgs boson.
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The covariant derivative in terms of the boson mass eigenstates is

Dµ = ∂µ −
ig√

2

(
T+W+

µ + T−W−
µ

)
− ig

cos θW

(
T 3 −Q sin2 θW

)
Zµ − ieQAµ,

where T± ≡ 1
2
(T 1 ∓ iT 2), and e = g sin θW is the electromagnetic coupling. In

light of this derivative one finds chiral charged currents

L��SM 3 g√
2

(
ūiLγ

µV ij
ckmd

j
L + ν̄iLγ

µeiL
)
W+
µ + h.c; (2.10)

chiral neutral currents

L��SM 3
∑
fL,R

g

cos θW
f̄ iγµ

(
T 3 −Qf sin2 θW

)
f iZµ, (2.11)

where the sum is over both chiralities of all four flavors of fermion excluding νR;

and the electromagnetic currents, coupling to Dirac spinors,

L��SM 3
(

2

3
ūiγµui − 1

3
d̄iγµdi − ēiγµei

)
eA+

µ . (2.12)

Recall that T 3 is +1/2 for uL and νL, −1/2 for dL and eL, and zero otherwise.

Note the presence of the matrix Vckm in the charged currents of the quarks.

Like the bosons, mass eigenstates for the quarks are generally different than flavor

eigenstates; for flavor eigenstates u′i, d
′
i and mass eigenstates ui, di, the mixing is

given by the transformations

ui = Uu
iju
′
j, di = Ud

ijd
′
j,

where Uu,d
ij are 3 × 3 unitary matrices. Inserting these transformations into a

neutral current, one finds that the factors cancel with each other due to Hermitian

conjugation; in the charged current, however, the new factors differ in flavor, and
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the resulting contribution

Vckm ≡ Uu†
R U

d
L (2.13)

does not vanish in general. In fact, experiments have found that Vckm is slightly

off diagonal, implying that its presence in nature is physical. The matrix is

parametrized by three mixing angles (one for each pair of generations) and a

single imaginary phase,5 which induces CP -violation in the model

The same phenomenon does not occur with leptons in the model due to the

masslessness of the neutrino; the single rotation matrix coming from the charged

leptons can be absorbed into a field redefinition. That said, we know that neu-

trinos do in fact have differing flavor and mass eigenstates, as their oscillation

between mass eigenstates has been measured by experiments [2]. The correspond-

ing transformation

νi = U ij
ν ν
′
j ≡ V ij

pmnsν
′
j

again consists of three angles, but generally may have two additional phases, for a

total of three, due to the suspected Majorana nature of the neutrino. The mixing

among generations is quite large in general, and even approximately maximal for

θ23 ∼ 45◦. In fact, the largest (by far) angle of the CKM matrix, θ12
ckm ∼ 12◦ is

only about 50% larger than the smallest angle in the PMNS, θ13
pmns ∼ 9◦. The

phases of the PMNS matrix are yet to be precisely measured, so the nature of

CP - violation there is not yet known.

Returning to the substitution of the redefined Higgs + vev into eq. (2.5), one

also finds that the Higgs boson itself acquires a mass term (with the proper sign)

mh = 2v
√
λ. Note that if I had not made gauge transformations to remove the

additional components of φ, we would see that they show up as massless scalars in

the new Lagrangian. These components are known as Nambu-Goldstone bosons

5Note that a general 3 × 3 unitary matrix has six phases, but here, five of them can be
absorbed into field redefinitions.
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and are a general feature of spontaneously-broken field theories. Upon closer

inspection, one would find terms like

L��SM 3 i

2
gv
(
W+
µ ∂

µφ− −W−
µ ∂µφ

+
)
− v

2

√
g2 + g′2 Zµ∂

µη, (2.14)

where η is the imaginary part of h0; these rather bizarre terms imply the gauge

bosons can “convert” into the Goldstone bosons through two-particle, momentum-

dependent interactions. Further terms show that in the interactions of the Gold-

stones with fermions, the bosons “imitate” the gauge bosons in terms of the con-

figurations of fields with which they interact. These features led to the interpre-

tation that the Goldstones are “eaten” by the gauge bosons, effectively becoming

the longitudinal degrees of freedom absent in the massless states. Any other gauge

choice or interpretation of the Goldstone bosons further confirm that the states

are otherwise unphysical.

2.2 Measurement and The Success of the Standard Model

At this point, I have introduced the basic structure of the model and the interac-

tions that arise from it. Application of the model to real-world measurements is

traditionally built upon Hamiltonian formalism. In particular, if one defines from

the Lagrangian a Hamiltonian

H =

∫
d3x H where H ≡ ∂L

∂Ψ̇i

Ψ̇i − L ∝ â†i âi

for any field Ψi in the model, then using any term Hint ∈ H describing an interac-

tion of Ψi with other fields Ψj, one can define the S-matrix element 〈pkpl| S |pipj〉
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for an interaction ΨiΨj → ΨkΨl via the operator

S ≡ lim
t,t0→±∞

T
[
exp

(
−i
∫ t

t0

dt′Hint(t
′)

)]
= T

[
exp

(
−i
∫ ∞
−∞
d4x Hint(t)

)]
.

This seemingly simple expression hides a great deal of complexity; first note that

Hint(t) = eiH0(t−t0)Hint e−iH0(t−t0),

where H0 is the free part of the Hamiltonian; furthermore, considering the series

expansion of the exponential, the nth term in the series is

S(n) = (−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnHint(t1) . . . Hint(tn)

=
(−i)n
n!

∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn T [Hint(t1) . . . Hint(tn) ] ,

where T implies one must take the time ordered product of the H operators.

If Hint is proportional to some small coupling constant g � 1, as is the case

for QED and electroweak processes at low energies, then each term in the series

will be much smaller than the previous, so that one can treat the calculation of

〈f |S |i〉 perturbatively. This is an especially crucial point because, despite of the

asymptotic shrinking of the terms, the full series is typically divergent; because of

this, entirely different methods are needed in cases of strong coupling g ∼ 1.

To further probe the S-matrix formalism, consider as an example the simple

QED scattering process e−e− → e−e−; in this case, L = iψ̄γµDµψ, or equivalently,

Hint = −Qeψ̄γµψAµ, such as for any term from eq. (2.12). Figure 2.2 shows the

expansion of the scattering process in terms of Feynman diagrams, which are in

one-to-one correspondence with non-trivial terms in the S-operator expansion.

The first such term of the series, known as the tree-level diagram, is typically

straightforward to calculate; for some processes, it may also be a sufficient ap-
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proximation to some low-energy measurement of the matrix element. Note that

in this case, the tree-level diagram corresponds to the n = 2 term in the series.

Consider the pair of Hint operators in that term; each of the two fields ψ ∼ â

act on the two initial electron states to annihilate the incoming particles, each of

the two fields ψ̄ ∼ â† act on the two final electron states to create the outgoing

particles, and the photon fields Aµ are Wick contracted with each other to create

the propagator.

The second term in the expansion in Figure 2.2 (corresponding to the n = 4

term in the series) reveals a deeper mathematical complication with S-matrix

formalism. The loop in the diagram, composed of two fermionic electron prop-

agators, carries an arbitrary momentum `, corresponding to an
∫
d4` in the cal-

culation, which must be taken over all possible values of ` (−∞,∞). Fermionic

propagators are ∼ i//p, so dimensional analysis suggests the integral is quadrat-

ically divergent; these seemingly problematic loop factors are a general feature

of “radiative corrections” in a quantum field theory, i.e., the quantum correc-

tions to tree-level interactions arising from higher-order terms in the S-matrix.

The apparent intractability can be handled using a clever and intricate technique

called renormalization [25], which uses a cut-off energy scale or other regulator to

quarantine the infinite part of the integral, then cancels that infinite part against

counter-terms associated to each of the bare parameters of the theory, namely

the masses, coupling constants, and wave-function normalization factors as they

appear in the original Lagrangian. In doing a complete analysis of the renormal-

ization of a particular theory, one finds not only that the cut-off (ultimately→∞)

is unphysical, but also that the physical values of the parameters of the theory

generally vary with the overall energy scale of a measurement, and this variation

is determined by the finite parts of the higher-order loop diagrams in the series

expansion. The formalism describing this running of parameters with scale has a
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↑ t = +

+ + . . .

Figure 2.2: Feynman diagram expansion to third order of the S-matrix element for
scattering of electrons by a photon.

rich, group-like mathematical structure of its own [26, 27].

With confidence that, despite its superficial complications, S-matrix theory

is mathematically valid, I can return to its use for calculating measurable features

of the SM. The non-trivial part of the S operator can be extracted explicitly by

writing S = 1 + iT ; furthermore, T is related to the Feynman amplitude M ,

generically known as the “matrix element”, by

〈pkpl| iT |pipj〉 = (2π)4 δ4(Σp) iM ,

where δ4(Σp) = δ4(pi+pj−pk−pl) gives the total four-momentum conservation for

the process. Since the Hamiltonian, whose eigenvalues are energy, is a Hermitian

operator, S is a unitary operator; consequently, the absolute square of a T -matrix

element gives the probability for the occurrence of the corresponding interaction if

the following conditions are satisfied: (a) the free incoming particles are present at

t→ −∞,x→∞, (b) the system undergoes eternal time evolution via the operator

exp (−iHt), and (c) the free outgoing particles are present at t → ∞,x → ∞.

Using this prescription and the above definition for 〈f | iT |i〉, one can calculate

the scattering cross section σ of the interaction ΨiΨj → ΨkΨl:

σ =
1

4EiEjv

∫
d3pk

(2π)3 2Ek

∫
d3pl

(2π)3 2El
(2π)4 δ4(Σp) |M | 2,
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where v is the relative velocity of the incoming particles. A similar expression

can be written for the decay width of a massive particle. One can make explicit

measurements of a cross section or a decay width, represented by some S-matrix

element, by observing the output of particle beams incident upon each other, so

long as (a) the interaction occurs in relative isolation, at a “large” distance from

the detectors, and (b) the output is observed a very large number of times, so as

to simulate the eternality of the probabilities.

Indeed, precisely such measurements have been made for decades, at parti-

cle accelerator experiments such as the Tevatron, LEP, and now the LHC; every

probability associated with an interaction predicted by the SM agrees with the

experimental data to truly remarkable and unprecedented levels of precision. Fur-

thermore, several of the particles of the SM were predicted to exist by the com-

pleted framework prior to being observed ; the mass of each particle was accurately

predicted as well. This was the case for the heavy quarks, the W and Z bosons,

and, most recently, the Higgs boson h0, which was not seen until 2012. The mass

of the Higgs was perhaps a bit higher than originally expected, and so its obser-

vation had to wait for the construction of CERN’s Large Hadron Collider; yet,

due to the extremely thorough record of prior successes of the model, physicists

remained confident throughout the years that the Higgs boson would be seen.

The model also makes similarly remarkable predictions involving the pre-

cision of measured values related to the hydrogen atom, the magnetic moment

of the electron, and other low-energy or atomic phenomena. These values were

previously calculated in the context of non-relativistic quantum mechanics or clas-

sical electromagnetism and showed unexplained discrepancies with measurements;

the discrepancies are largely eliminated when the analogous calculations are per-

formed in the context of the SM.
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2.3 The Limitations of the Model and a Need for New Physics

Despite the extreme robustness and precision of the Standard Model, it is at the

same time a manifestly incomplete theory, and it leaves some number of mysteries

unsolved. Some of the most obvious aspects of its incompleteness are:

• The model relies on the presence of roughly 19 parameters, including masses,

coupling constants, and generational mixing parameters, whose values are

known through measurement and are otherwise completely arbitrary; in

some cases, the observed values are arguably fine-tuned. Such tunings in-

clude the more conceptual concern of the presence of the three generations

of otherwise-identical fermions with different masses, where a unique and

unexplained hierarchical mass spectrum exists for each flavor.

• The model predicts that neutrinos are massless, while there is ample ex-

perimental evidence otherwise. Freely propagating neutrinos are known to

oscillate from one generation to another; the only known mechanism for such

a process is through CKM-like mixing among flavor and mass eigenstates.

Hence, neutrinos seem to have mass after all, however small those masses

may be.

• The model makes no mention whatsoever of gravity; furthermore, it conse-

quently gives no explanation for the presence of dark energy and no realistic

explanation for the presence of dark matter.

In addition to these omissions, there are few more subtle peculiarities that suggest

theoretical incompleteness:

• Like the parameters of the model, the internal gauge symmetry group of the

SM is ad hoc, as it was originally determined primarily through phenomeno-

logical arguments.
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• The negative scalar mass parameter and therefore the entirety of electroweak

breaking is similarly arbitrary from the theoretical perspective; the Higgs

mechanism was devised to solve the problem of giving mass to the particles

and is not motivated by any aspect of the mathematical structure of the

model.

• Radiative corrections to the Higgs propagator are quadratically dependent

on the energy scale of the measurement; these strongly divergent contribu-

tions, which are unique to scalar fields, severely renormalize the mass of the

particle. Naively, one would expect this to lead to arbitrarily large correc-

tions to the mass, pushing it all the way up to the Planck scale, where grav-

itational effects become significant, MPl ∼ 1018 GeV. Yet, we see the Higgs

boson to have a comparably minuscule mass of 126 GeV; the SM offers no

explanation for this truly enormous discrepancy. This puzzle is known as

the hierarchy problem.

These unsolved questions have led physicists to pursue a great number of ideas

for the extension of the standard model, to varying degrees of success. So far,

very little has been “officially” added to the theory, as no definitive experimental

evidence has been observed in support of any hypothesis.

Soon after the completion of the SM framework in the early 1970s, a new

class of models emerged from attempts to extend the notion of electroweak unifi-

cation to more fundamental levels. It seemed that if electromagnetism and weak

interactions were unified earlier in the universe, then perhaps that era followed

from the breaking of yet another unification of the electroweak force with the

strong force. This concept, known as Grand Unified theory, offered some relief to

the arbitrariness of the SM gauge group. The first models were developed by Pati

and Salam [4] and then Georgi and Glashow [3] in 1974. Further extensions of

these models in turn led to the development of SO(10) unification, which will be
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a primary topic for the remainder of this work.

Taking a closer look at the Higgs mass corrections, one will notice that they

arise from both bosonic and fermionic loops; furthermore, these contributions

come with opposite signs. This subtlety led some physicists in the 1970s to propose

a practical application of an otherwise-esoteric idea known as supersymmetry,

which relates bosons to fermions through a subtle extension of spacetime itself. I

will introduce this concept in more detail in the next chapter.
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Chapter 3

Supersymmetry

Consider the diagrams for the one-loop corrections to the Higgs boson mass

squared parameter m2
h seen in Figure 3.1; the correction from a generic fermion f

in (a) can be written as

∆m2
h = −

y2
f

8π2
Λ2

UV + . . . , (3.1)

where ΛUV is the cutoff energy scale used to regulate the loop integral for renor-

malization; the analogous contribution from a generic scalar S, seen in Figure

3.1(b) is

∆m2
h =

λS
16π2

Λ2
UV + . . . . (3.2)

The terms in “. . . ” are at most logarithmically dependent on ΛUV. Assuming

no additional physics aside from gravity, the cutoff is at the Planck scale, and

these corrections are at least 25 orders of magnitude larger than the physical

value of (126 GeV)2, depending on the size of the coupling constants. Naively,

this suggests a staggeringly large cancellation between the bare Higgs mass mh

and these corrections. Note that the contributions from the log-divergent terms

are a much more natural O(m2
h).

If instead one requires the Λ2
UV corrections to be similarly natural, then one

fines a need for ΛUV
<∼ O(1) TeV, which naively suggests a need for new physics

at that scale.

There is, however, a more creative solution one might consider. Since the

correction from the fermion is negative but the correction from the scalar is pos-
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(a)

λS

(b)

Figure 3.1: One-loop diagrams from (a) a fermion f and (b) a scalar S for the Higgs
propagator, which give corrections to the bare mass squared parameter m2

h.

itive, under the restriction that y2
f = λS, then a theory with two such bosons for

each fermion would have a cancellation of these problematic terms against each

other; in fact the cancellation would persist to all orders. Since these are interac-

tions with the Higgs field, the above restriction on the couplings corresponds to

the scalar and the fermion having identical masses.

In turns out that such a theory does exist. Supersymmetry employs fermionic

operators to enable transformation of bosons into fermions, and vice versa, through

a subtle extension of spacetime itself. The formalism was discovered in the early

1970s and was explored for mainly novel reasons until the realization of its ap-

plication to the hierarchy problem discussed above. This chapter will introduce

the basic structure of supersymmetry (SUSY) and give the form of a realistic

extension of the standard model that utilizes the concept to address not only the

hierarchy problem, but also several other aspects of the puzzles of the SM.

3.1 Basic Supersymmetry Formalism

Consider a bosonic state |b〉 and a fermionic state |f〉. The generator of supersym-

metry is a fermionic operator Q̂ such that Q̂ |b〉 ∼ |f〉 and Q̂ |f〉 ∼ |b〉. In general,

a proper supersymmetric transformation trades a bosonic degree of freedom for a

fermionic one in a one-to-one manner. More realistically, one can understand the

Weyl spinor operators Q̂α and Q̂†α̇ as a peculiar extension of the Poincaré algebra
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such that

{
Q̂α, Q̂

†
α̇

}
= −2σµαα̇P̂µ, (3.3)

and

{
Q̂α, Q̂β

}
= 0 ;

{
Q̂†α̇, Q̂

†
β̇

}
= 0 , (3.4)

where P̂µ = i∂µ is the generator of momentum and σµαα̇ is the usual extension of

the Pauli matrices (I, ~σ), except I have written the SL(2,C) spinor space indices

explicitly. The indices of Qα (and σµαα̇) are raised and lowered using the Levi-

Civita tensor εαβ, with ε12 = −ε12 = 1. Note also that

[
Q̂α, P̂µ

]
= 0 ;

[
Q̂†α̇, P̂µ

]
= 0 (3.5)

i.e., supersymmetric transformations commute with all translations, implying that

a boson and a fermion transforming into one another under SUSY will have the

same mass. The above relations comprise a closed extension of the Poincaré

algebra, forming what is known as a graded algebra or a superalgebra. This

supersymmetric loophole is the only exception to the Coleman-Mandula “no-go”

theorem, which implies that the only symmetry group of the S-matrix consistent

with QFT is a direct product of Poincaré and some internal compact Lie group.

Since we have not seen superpartner particles for the light SM particles in

nature, it would seem that SUSY is broken symmetry at low energies; however,

in order to preserve the perfect cancellations in the Higgs mass corrections, which

requires that y2
f = λS still holds in the broken theory, the breaking of SUSY

must be isolated from the dynamics. This prescription is known as soft breaking

of the theory, and it is realized mainly through (positive) mass terms for the
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superpartners, which may be the result of some “hidden sector” physics, cut off

from the low energy physics, but are otherwise free parameters. I will discuss this

concept and its implications in more detail shortly.

3.1.1 Constructing a Supersymmetric Model

1 The most basic non-trivial SUSY model one can construct involves a free single

Weyl fermion ψ = ψα and its two free scalar superpartners, which are conven-

tionally treated as one complex field φ = (A + iB)/
√

2. Note that for a realistic

model with both matter fermions and scalar bosons, each type of field will have

the other type as its superpartner; hence, I will keep this discussion very general

so it can apply to either case. The supersymmetric transformation of a field is

defined as

−i
√

2 δ(ε)X ≡
[
εQ̂+ ε†Q̂†, X

]
(3.6)

for any field X and infinitesimal parameter εα, which is a constant Grassmann

(anti-commuting) spinor; the contraction εQ̂ ≡ εαβεαQ̂β, and ε†Q̂† is analogous.

One may expect that the corresponding supersymmetric Lagrangian is simply

L = ∂µφ∗∂µφ+ iψ†σ̄µ∂µψ, (3.7)

where ψ†σ̄µψ ≡ ψ†α̇(σ̄µ)α̇αψα. At first glance, this will seem correct: the transfor-

mations of the fields are

δ(ε)φ = εψ, δ(ε)φ∗ = ε†ψ†,

δ(ε)ψα = i
(
σµε†

)
α
∂µφ, δ(ε)ψ†α̇ = −i (εσµ)α̇ ∂µφ

∗, (3.8)

1This discussion largely follows that of ref. [28]; please see that work for further detail.
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where, e.g.,
(
σµε†

)
α
≡ σµαα̇ε

† α̇; utilizing these transformations in eq. (3.7), one

finds that

δLφ = ε∂µψ∂µφ
∗ + ε†∂µψ†∂µφ,

δLψ = −ε∂µψ∂µφ∗ − ε†∂µψ†∂µφ + total derivatives; (3.9)

since the total derivative vanishes in the action, L is in fact invariant under a

SUSY transformation.

Still, though, one must address the closure of the superalgebra. Considering

successive transformations [ δ(ε2), δ(ε1) ]X, one sees that

[ δ(ε2), δ(ε1) ]φ = i
(
ε2σ

µε†1 − ε1σ
µε†2

)
∂µφ,

[ δ(ε2), δ(ε1) ]ψα = i
(
ε2σ

µε†1 − ε1σ
µε†2

)
∂µψα

+ iε1αε
†
2σ̄

µ∂µψ − iε2αε
†
1σ̄

µ∂µψ. (3.10)

For the scalar field, a product of SUSY transformations returns a derivative of the

field, as suggested by eq. (3.3). The fermion case is similar once one notes that

the two extra terms in the transformation will vanish on-shell, when the classical

equation of motion σ̄µ∂µψ = 0 holds. This is something, but it is not enough to

build a truly consistent supersymmetric quantum model.

This problem can be resolved by introducing an auxiliary field into the

system with the right properties. The field F will be a complex scalar with

[F ] = 2, and the contribution to the Lagrangian is

LF = −F ∗F ; (3.11)

the field has a non-dynamical, algebraic equation of motion, and so should be
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treated as unphysical. The field transforms under SUSY as

δ(ε)F = iε†σ̄µ∂µψ, δ(ε)F ∗ = −i∂µψ†σ̄µε; (3.12)

combining this with an augmentation of the fermion transformations,

δ(ε)ψα = i
(
σµε†

)
α
∂µφ+ εαF, δ(ε)ψ†α̇ = −i (εσµ)α̇ ∂µφ

∗ + ε†α̇F
∗, (3.13)

gives the desired off-shell closure of the complete system.

Therefore, eq. (3.7) together with eq. (3.11) give a complete supersymmetric

Lagrangian for a free scalar, its fermionic superpartner, and the corresponding

auxiliary field, which is known as the Wess-Zumino model of supersymmetry; it

will be the basis for building a realistic model of SUSY-invariant interactions.

3.1.1.1 Yukawa Interactions and the Superpotential

To introduce interactions in the model, I first define the superpotential W :

W ≡ 1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.14)

where the indices i, j, k generically run over any flavor quantum numbers. Note

that W is holomorphic, i.e., analytic in φ, and completely symmetric under ex-

change of indices. Now I can write

Lint = −1

2
W ijψiψj +W iFi + h.c.s, (3.15)
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where

W ij ≡ δ2W

δφiδφj
= M ij + yijkφk and

W i ≡ δW

δφi
= M ijφj +

1

2
yijkφjφk. (3.16)

The F -terms in the full Lagrangian lead to the algebraic equations of motion

Fi = −W ∗
i and F ∗i = −W i,

which I can utilize to rewrite the interaction Lagrangian as

Lint = −1

2
W ijψiψj + h.c.− V (φ, φ∗), (3.17)

where

V (φ, φ∗) ≡ W iW ∗
i =

∣∣∣δW
δφi

∣∣∣2 (3.18)

is the scalar potential for the system, giving the usual mass, cubic, and quar-

tic terms for the scalar field(s)φ; similarly, the W ij term gives a (holomorphic)

fermion mass term and Yukawa coupling with the scalar parter φ.

3.1.1.2 Gauge Fields and Interactions

To expand a Wess-Zumino-type model to include gauge interactions, I will first

need to consider the supersymmetric transformation of gauge bosons. Like a scalar

field, spin-1 fields will also have fermionic spin-1/2 superpartners. For a gauge

field Aaµ, I will denote the “gaugino” superpartner as λaα.2 The Lagrangian for the

2Note that in four-component bispinor notation, the gaugino is a Majorana fermion, meaning
ψC = ψ
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gauge sector is then

Lg = − 1

4
Aµνa A

a
µν − iλ†aσ̄µDµλ

a +
1

2
DaDa; (3.19)

Da is, like F , an auxiliary field that allows the superalgebra to close off-shell; unlike

F , however, it is a real field (since the on-shell boson has only one additional

degree of freedom). F a
µν is defined in the usual manner (e.g., as seen in the

previous chapter), and the covariant derivative acts on the gaugino as Dµλ
a =

∂µλ
a + gfabcAbµλ

c. Both Da and λa transform in the adjoint representation of the

gauge group. The supersymmetric transformations of the fields are

δ(ε)Aaµ = − 1√
2

(
ε†σ̄µλa + h.c.

)
,

δ(ε)λaα =
i

2
√

2
(σµσ̄νε)αA

a
µν +

1√
2
εαD

a,

δ(ε)Da =
i√
2

(
ε†σ̄µDµλ

a −Dµλ
†aσ̄µε

)
. (3.20)

One couples the fermions ψ and scalars φ to Aaµ through the usual promotion

of the derivative ∂µ → Dµ in the Lagrangian eq. (3.7); however, one must also

consider allowed fermion-boson-gaugino interactions, which are of the form

Lg,int = −g
√

2 (φ∗taψ λa + h.c.) + g φ∗taφDa, (3.21)

where ta are the generators of the gauge group. As with F , one can again use the

algebraic equation of motion for the auxiliary field Da = −gφ∗taφ to eliminate it

from the Lagrangian. This also results in an additional contribution to the scalar

potential,

V (φ, φ∗) ≡ W iW ∗
i +

1

2
g2(φ∗taφ)2 . (3.22)

Note this can also be written as V = |F |2 + 1
2
D2, which gives rise to the common
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nomenclature “F-term” and “D-term” when referring to the two scalar potential

contributions. Note that in the presence of multiple gauge groups (as in the SM),

one finds a simple sum of contributions from each.

To guarantee invariance of the entire interacting model under SUSY trans-

formations, one must replace the derivatives in the transformations δψ and δF

with gauge covariant derivatives, and augment the transformation of F by the

inclusion of a term involving the gaugino

δ(ε)Fi = iε†σ̄µDµψi − g
√

2 (taφ)i ε
†λ†a (3.23)

and similar for F ∗i. Now the entire system is invariant (up to total derivatives)

under the transformations given by eqs. (3.20), the gauge covariant versions of

(3.8), and the above transformation for F .

3.1.1.3 Soft Supersymmetry Breaking

As mentioned previously, the absence of superpartners in nature suggests that

SUSY is a broken symmetry. One would like to find that the symmetry is broken

spontaneously, like that of electroweak theory; early on, the possibilities of taking

〈F 〉 6= 0 [29] or 〈D〉 6= 0 [30] were explored thoroughly; both options can be

implemented in general SUSY models to break the symmetry, but in the context

of supersymmetric extension of the standard model, both methods fail to give a

realistic mass spectrum for the superpartners. In the end, one is left to consider

soft breaking of SUSY through terms with couplings of explicitly positive mass

dimension.

Soft breaking terms allowed in the general interacting model described above
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are

Lsoft = −1

2
Mgλ

aλa − 1

2
bijφiφj −

1

6
aijkφiφjφk + c.c.s− (m2)ij φ

∗jφi. (3.24)

We will see more about the consequences of these terms in the context of the

Minimally Supersymmetric SM in the next section. I will also discuss briefly

some mechanisms that could dynamically give rise to these terms.

3.1.2 Superfields

In order to make supersymmetry manifest in a field theory, one needs to consider

superfields, or multiplets containing a field and its superpartner. In order to

accommodate the fundamental spacetime differences between bosons and fermions

in the same object, one needs to expand the spacetime itself to include four new

fermionic coordinates xµ → (xµ, θα, θ†α̇). These new coordinates of dimension

[θ] = −1
2

commute with xµ but anti-commute with themselves and each other.

Products or contractions of thetas are generally the same as those for any Weyl

fermions, but note also that θαθβ = −1
2
εαβθθ for identical spinors.

The Grassmann nature of the thetas has the peculiar implication that the

square of any individual component vanishes, (θ1)2 = (θ2)2 = 0. As a result, any

general function of θ and θ† can be written as a terminating series. Therefore, the

most general superfield S one can write has the form

S(xµ, θ, θ†) = a+ θχ+ θ†ξ† + θ2b+ (θ†)2c+ θ†σ̄µθ vµ

+ (θ†)2θη + θ2θ†ζ† + (θ†)2(θ)2d, (3.25)

where all component fields are functions of spacetime. When comparing to the

fields in the previous section, one can determine that a is scalar-like, χ, ξ is
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fermion-like, η, ζ gaugino-like, and b, c, d auxiliary-field-like. The complex scalar

component fields a, b, c, d give eight real bosonic degrees of freedom, vµ gives eight

more as a complex vector field, and the (always complex) Weyl fermion compo-

nents χ, ξ†, η, ζ† give sixteen fermionic degrees of freedom. S transforms under

general SUSY transformations as a translation in superspace,

S(xµ, θ, θ†)→ exp
[
i
(
εQ+ ε†Q†

)]
S(xµ, θ, θ†)

= S
(
xµ − iεσµθ† + iθσµε†, θ + ε, θ† + ε†

)
;

note that superfields are closed under multiplication, which is a crucial factor for

constructing Lagrangians.

We can write the SUSY generators as differential operators in superspace:

Qα = −i ∂

∂θα
−
(
σµθ†

)
α
∂µ; Q†α̇ = i

∂

∂(θ†)α̇
+ (θσµ)α̇ ∂µ; (3.26)

Using these operators, one can show that supersymmetric transformations written

in terms of these differential operators are equivalent to the transformations in

terms of the quantum operators as seen in eq. (3.6):

[
εQ̂+ ε†Q̂†, X

]
=
(
εQ+ ε†Q†

)
X

for any superfield component X. One can also define the chiral covariant deriva-

tives

Dα =
∂

∂θα
+ i
(
σµθ†

)
α
∂µ; D†α̇ = − ∂

∂(θ†)α̇
− i (θσµ)α̇ ∂µ, (3.27)

such that δ(ε)(DαS) = Dα(δ(ε)S), and similar for D†α̇. Note that these operators

satisfy the same superalgebra as, and also anti-commute with, Q and Q†.
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3.1.2.1 Irreducible Supermultiplets

The general superfield S is a reducible representation in the superalgebra space.

This is perhaps evident in light of the independent supersymmetric closure of each

of the sets of fields {φ, ψ, F} and {A, λ,D}, as seen in the previous section. One

can obtain the desired irreducible multiplets by constraining S in specific ways.

The chiral or left-chiral superfield ΦL, which generically corresponds to an

irreducible supermultiplet containing a matter fermion or scalar boson, arises from

the constraint equation

D†α̇ΦL = 0. (3.28)

Using the convenient change of variables yµ ≡ xµ+ iθσµθ†, one can write a general

chiral superfield as

ΦL(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y); (3.29)

where the component fields {φ, ψ, F} correspond to those from the previous sec-

tion. Note one can quickly determine that a chiral superfield has [Φ] = 1.

Similarly, the anti-chiral or right-chiral superfield Φ∗R is the complex conju-

gate of ΦL and arises from the constraint equation

DαΦ∗R = 0; (3.30)

Using the corresponding change of variables yµ∗ ≡ xµ − iθσµθ†, one can write a

general anti-chiral superfield as

Φ∗R(y∗, θ†) = φ∗(y∗) +
√

2θ†ψ†(y∗) + (θ†)2F ∗(y∗). (3.31)

Finally, the vector superfield A, which is the irreducible supermultiplet con-
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taining a gauge boson field, is obtained by demanding the superfield is real, i.e.,

by imposing the condition S = S∗. Comparing with eq. (3.25), this implies

a = a∗, χ = ξ, b = c∗, vµ = v∗µ, η = ζ, d = d∗.

Note that the combinations of chiral/anti-chiral superfields Φ∗Φ, Φ + Φ∗, and

i(Φ∗ − Φ) are also real and hence are vector superfields.

We can write the generalization of an infinitesimal gauge transformation to

supersymmetric form as

Aa → Aa + i(Ω∗a − Ωa) + gfabcAb(Ω∗c + Ωc) (3.32)

for some chiral superfield gauge transformation parameter Ω; the expression sim-

plifies in the usual manner for Abelian symmetry. Such a transformation will

yield the proper form for a gauge transformation of the gauge boson field, as well

as the proper transformations for the gaugino λa and auxiliary field Da for non-

Abelian cases. Using a convenient supergauge choice Ω∗ = −Ω, known as the

Wess-Zumino gauge, one can write a vector superfield in the form

Aa(xµ, θ, θ†) = θ†σ̄µθ Aaµ + (θ†)2θλa + θ2θ†λ†a +
1

2
(θ†)2θ2Da, (3.33)

where the component fields {A, λ,D} correspond to those for a supersymmetric

gauge model from the previous section. In this form, it is apparent that [A] = 0.

All three types of superfields discussed above close independently under

multiplication.
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3.1.2.2 A Complete Superfield Lagrangian

Using the superfield notation from the previous subsection and the details intro-

duced in Section 3.1.1, one can write a complete supersymmetric action in terms

of integrals of superfields in superspace. One might see the final form as rather

unexpected, in that it relies on several unusual intermediate results.

First I need to discuss how one performs Grassmann integration. Using

these basic rules, ∫
dθα = 0,

∫
dθαθβ = δαβ,

and noting that d2θ = −1
4
εαβdθ

αdθβ, one can see that the integration of a function

f(θ, θ†) over some measure in superspace picks out the coefficient in f of the term

with theta dependence matching that of the signature; e.g.,

∫
d 2θ S = b+ θ†ζ† + (θ†)2d,∫
d 2θd 2θ† S = d, etc.

Now, I can use the above principle to build my superfield Lagrangian by

integrating certain products of superfields over certain portions of superspace.

For instance, in the expansion of the superfield product Φ∗RΦL, one will find that

the “D-term” ∼ (θ†)2θ2 precisely gives the free Wess-Zumino Lagrangian seen in

eqs. (3.7) and (3.11):

[ Φ∗Φ ]D ≡
∫
d 2θd 2θ†Φ∗Φ = ∂µφ∗∂µφ+ iψ†σ̄µ∂µψ − F ∗F + ∂µ(. . . ); (3.34)

similarly, if I reconsider the concept of the Wess-Zumino superpotential W (φ) in

the context of superfields, i.e.,

W (Φ) ≡ 1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk, (3.35)
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one finds that the “F-terms” ∼ θ2 for W (Φ) and W (Φ∗) together give

[W (Φ)]F + [W (Φ∗)]F ≡
∫
d 2θW (Φ) +

∫
d 2θ†W (Φ∗)

= −1

2
W ijψiψj +W iFi + h.c.s, (3.36)

as seen in eq. (3.15), which give the Yukawa interactions between ψ and φ, holo-

morphic fermion mass terms, and the usual self-interaction terms for φ. Therefore,

the complete interacting Wess-Zumino Lagrangian can be written as

LWZ = [ Φ∗Φ ]D + [W (Φ)]F + [W (Φ∗)]F . (3.37)

To expand the model to include a gauge sector, first note that chiral super-

fields transform under supergauge transformations as

Φ→ e2igΩataΦ, Φ∗ → Φ∗e−2igΩ∗ata . (3.38)

Additionally, eq. (3.32) implies that

e2gAata → e2igΩ∗atae2gAatae−2igΩata . (3.39)

Therefore, the product Φ∗e2gAataΦ is a supergauge-invariant vector superfield.

Furthermore, the D-term of this expression gives the terms in eq. (3.21) as well as

the gauge covariant version of eq. (3.34)

[
Φ∗e2gAataΦ

]
D

= Dµφ∗Dµφ+ iψ†σ̄µDµψ − F ∗F

− g
√

2 (φ∗taψλa + h.c.) + g φ∗taφDa. (3.40)

To complete the model, I need a superfield formulation for the gauge kinetic
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terms. One can achieve this by defining the chiral field strength superfield as

2g taFaα ≡ −
1

4
D†D†

(
e−2gAataDαe2gAata) ; (3.41)

in the Wess-Zumino gauge, this superfield has the form

Faα = iλaα −
i

2
(σµσ̄νθ)αA

a
µν + θ2(σµDµλ

†a)α + θαD
a, (3.42)

and similar for F †α̇a . Now one can see that the desired Lagrangian arises from the

F-term of the square of F ,

1

2
[FaαFαa ]F = −1

4
Aµνa A

a
µν − iλ†aσ̄µDµλ

a +
1

2
DaDa +

i

8
Aµνa Ã

a
µν , (3.43)

where the final term, with Ãaµν ≡ εµνρσA
ρσ
a , which contributes to CP -violation

but is known experimentally to be highly suppressed, can be recast as a total

derivative.

Finally, I can write the full Lagrangian for a gauge superfield theory:

L =

∫
d 2θd 2θ†Φ∗e2gAataΦ +

∫
d 2θ

(
W (Φ) +

1

4
FaαFαa

)
+

∫
d 2θ†

(
W (Φ∗) +

1

4
F †α̇a F †aα̇

)
, (3.44)

which describes a complete interacting theory for matter fermions and scalar and

gauge bosons, as one sees in the SM, as well as the interactions of their super-

partners.

3.2 The Minimally Supersymmetric Standard Model

In order to implement supersymmetry as part of the model of the universe, the

most straightforward approach one can take is to assume that each field of the
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Standard Model has a superpartner with which it forms a superfield multiplet.

The result of this extension is the Minimally Supersymmetric Standard Model

(MSSM). In the MSSM, each matter fermion has a scalar superpartner called a

“sfermion” (slepton, squark, stop, etc.), and each gauge boson has a fermionic

gaugino partner (Wino, Bino, gluino, etc.). In each case, the SM field and its

superpartner have the same quantum numbers, with the obvious exception of

spin.

The Higgs scalar field also has a fermionic “Higgsino” superpartner, but some

adjustments have to be made for its case, because (a) adding a single fermion

to the theory with non-zero weak isospin and hypercharge would spoil gauge

anomaly cancellation in the electroweak sector, and (b), as I will show in detail

shortly, the requirement that the superpotential is analytic in Φ (or Φ∗) forbids

the simultaneous use of Φ∗ for up-type Yukawa terms and Φ for down-type terms,

as would be analogous to the SM. As a result, the MSSM must contain two Higgs

superfields, Hu and Hd, to give mass to matter superfields of both flavors. The

fields are both SU(2) doublets, with weak hypercharges Yw = 1/2 for Hu and

Yw = −1/2 for Hd. The explicit forms of the doublet superfields are

Hu =

 H+
u

H0
u

 , Hd =

 H0
d

H−d

 , (3.45)

with analogous forms for the scalar bosons and Higgsino partners. As a result of

this structure, the Higgs particle spectrum is significantly expanded when com-

pared to the SM.

I will denote superfields for matter fermions as the capital letters of their SM

counterparts (Q,U,D,L,E), while I will denote the superfields of gauge bosons

with their usual letters but in the calligraphic font (W ,B,G). Superpartners for all

fields will be denoted with tildes over the SM names (q̃, ẽ, W̃ , etc.). This notation
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will stand for the remainder of the thesis. A summary of the particle content of

the MSSM is given in Table 3.1.

3.2.1 The MSSM Lagrangian and SUSY Breaking

3.2.1.1 The MSSM Superpotential

The superpotential of the MSSM is highly constrained by SM gauge invariance;

starting from the general form in eq. (3.35), out of all possible ΦiΦj and ΦiΦjΦk

combinations of the fields given in Table 3.1, only four terms survive. Its complete

form is

WMSSM = εab
(
−yiju UCi Qa

jH
b
u + yijd D

C
i Q

a
jH

b
d + yije E

C
i L

a
jH

b
d − µHa

uH
b
d

)
, (3.46)

where i = 1, 2, 3 is the generation index, a = 1, 2 is the SU(2) index, and color

indices, which are simply contracted on the two quark fields, are not shown. The

F-term of this superpotential will give rise to the following interactions:

• the SM-like mass-inducing Yukawa couplings of matter fermions {u, d, e} to

the Higgs scalars h0
u,d, of coupling strength yf (f = u, d, e), analogous to

those seen in eq. (2.5);

• couplings of fermions (up-type to down-type) to the charged Higgs scalar

fields h±u,d, again of strength yf ;

• cubic scalar couplings of two sfermions {ũ, d̃, ẽ} to a Higgs scalar of strength

µ∗yf ;

• quartic scalar couplings of two sfermions to two Higgs scalars (e.g., ũũhuhu)

of strength y2
f ;

• Higgsino-fermion-sfermion interactions (e.g., uũh̃u), also of strength yf ;
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Superfield SM field partner SU(3) SU(2) Yw
Qi qi q̃i 3 2 1/6
Ui uCi ũCi 3 1 2/3

Di dCi d̃Ci 3 1 -1/3

Li `i ˜̀
i 1 2 -1/2

Ei eCi ẽCi 1 1 -1

B Bµ B̃ 1 1 0

Wa W a
µ W̃ a 1 3 0

Ga′ Ga′
µ G̃a′ 8 1 0

Hu φu φ̃u 1 2 1/2

Hd φd φ̃d 1 2 -1/2

Table 3.1: Superfields of the MSSM, their components, and their representations and
charges under the gauge symmetries of the model.

• quartic four-sfermion couplings of strength y2
f .

• Higgs scalar mass terms for hu,d with mass µ2;

• Higgsino mass terms µ(h̃+
u h̃
−
d − h̃0

uh̃
0
d) + h.c.

There are actually a few additional terms one could add to the superpo-

tential that are allowed by gauge invariance, but which do not conserve either

baryon number B or lepton number L; these global quantum numbers, which are

automatically conserved in the SM, are assigned as B = ±1
3

for quarks and anti-

quarks, respectively, and L = ±1 for leptons and anti-leptons, respectively (each

is zero otherwise). These values, like other quantum numbers, are present at the

superfield level as well. If one were to allow terms in the superpotential which

violate baryon or lepton number by one unit, i.e., ∆B = 1 or ∆L = 1, then the

following terms arise:

W∆L=1 = εab

(
λijk1 LaiL

b
jE
C
k + λijk2 LaiQ

b
jD
C
k + µ′iL

a
iH

b
u

)
(3.47)

W∆B=1 = λijk3 UCi D
C
jD
C
k (3.48)

56



We can be sure that these terms are somehow absent or extremely suppressed,

because if they were present, and the couplings were O(1), tree level proton decay

would arise at ordinary energies, which is wildly inconsistent with experiment,

and even with the existence of stable matter.

One way to ensure the absence of the B- and L-violating terms is to enforce

the discrete symmetry R-parity, which is defined as

R = (−1)3(B−L)+2s,

where s is spin. One can determine that all SM matter fermions and Higgs bosons

have R = 1, while all SUSY particles have R = −1. Enforcement of R-parity

means every interaction vertex has R = 1 overall, which has several important

implications: (a) any vertex will contain an even number of SUSY fields, and

SUSY particles will always be produced in even numbers, (b) the product of any

SUSY particle decay will contain an odd number of new SUSY fields, and (c)

the lightest SUSY particle (LSP) is stable and will be present at the end of any

SUSY decay process. The stability of the LSP, if taken with the cosmologically-

motivated requirement that it be electrically and color neutral, suggests that it is

an excellent candidate for the composition of non-baryonic dark matter.

While R-parity may seem ad-hoc despite empirical motivations for its exis-

tence, it actually has theoretical motivation as well in the context of Grand Unified

theory and some SO(10) models, in particular, due to its relationship to B − L

symmetry, which is typically gauged at high energies in SO(10) and is central to

the seesaw mechanism for neutrino masses. I will discuss these topics further in

the next chapter.
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3.2.1.2 Soft SUSY Breaking in the MSSM

The soft SUSY breaking terms of the MSSM are those of the forms in eq. (3.24)

that are consistent with gauge invariance and R-parity. They are

Lsoft = −1

2

(
M1B̃B̃ +M2 W̃

aW̃ a +M3 G̃
a′G̃a′ + h.c.

)
+ εab

(
−aiju ũCi q̃ajHb

u + aijd d̃
C
i q̃
a
jH

b
d + aije ẽ

C
i
˜̀a
jH

b
d + h.c.

)
−(m2

q̃)
ij q̃†i q̃j − (m2

˜̀)
ij ˜̀†

i
˜̀
j − (m2

ũ)
ijũCi ũ

C∗
j − (m2

d̃
)ij d̃Ci d̃

C∗
j − (m2

ẽ)
ij ẽCi ẽ

C∗
j

−m2
huh

†
uhu −m2

hd
h†dhd − bεab(h∗au hbd + h.c.); (3.49)

the summation over a, a′ for the gauginos runs over the generators, while the ε

contraction in the a-terms and b Higgs term is over SU(2) indices as it was in

(3.46). The daggers on the scalars in the mass squared terms indicate complex

conjugate of the scalar but transpose in SU(2) space. Note that unlike the Yukawa

couplings yf , the af couplings have mass dimension. Since all the fields here

acquire masses after EWSB from the couplings in WMSSM, one expects physical

masses to be generated by a mixing of all relevant terms.

The soft breaking terms introduce 105 new parameters to the theory, in-

cluding numerous mixing angles and phases in addition to the masses themselves.

This fact is quite disconcerting without further context; however, several im-

portant experimental considerations lead to substantial constraints on the full

parameter space. For instance, the absence of evidence for substantial CP viola-

tion in the universe requires that phases are small or zero. Both the ae and m2
ẽ

terms contribute to lepton flavor violation (LFV), which is the breaking of global

lepton flavor number symmetries present in the SM; this phenomenon occurs in

processes such as µ → eγ and must be at least highly suppressed to agree with

experimental limits [31]. The presence of arbitrary mass matrices m2
f̃

would also
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disrupt the suppression of flavor changing neutral currents (FCNC), which are

exactly zero at tree level in the SM and suppressed even at loop level through

cancellation. Experimental limits on processes such as K0 → K̄0, i.e., ds̄ → sd̄,

strongly constrain the squark mass differences [32].

These considerations motivate an extreme simplification of the soft breaking

parameter space, built on the following assumptions:

aijf ' Afy
ij
f ; (m2

f̃
)ij ' m2

f̃
δij; Im{Af ,Mi} ' 0; (3.50)

These simplifications are the SUSY-scale realization of a high-energy prescription

known as universality, which I will discuss in more detail below.

There are several feasible mechanisms for dynamically generating the soft

breaking terms; each involves a hidden sector, which couples very weakly or not

at all to the “visible” sector of SM superpartners, and a messenger sector, which

mediates the hidden sector physics, i.e. “relays” it to the visible sector, creating

the soft terms seen in (3.49). Popular mechanisms for SUSY breaking are gravity-

mediated breaking, in which a hidden sector auxiliary vev 〈F 〉 is communicated

to the MSSM fields through gravitational effects, and gauge-mediated breaking, in

which a similar vev is coupled to messenger fields charged under the SM gauge

group, so that soft terms arise through multi-loop order interactions between the

messenger fields and MSSM fields via the SM bosons. Since the gauge bosons are

blind to generation and, in some cases, flavor in general, the conditions in (3.50)

may be naturally present. Other possible mediators include anomalies and extra-

dimensions. There is little agreement on which mediator is “most” appropriate

or promising, as every prescription faces a list of at least minor phenomenological

issues.

Gravity and gauge mediation can also be readily explored in supergravity,
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which arises automatically when one considers local supersymmetry transforma-

tions, i.e., gauged supersymmetry. The gauging of supersymmetry unifies global

SUSY with the spin-2 field theory of the graviton. In this theory, the fermionic

Goldstone mode associated with the broken SUSY generator is eaten by the

spin-3/2 graviton superpartner, the gravitino. Depending on the mediator, the

gravitino may have cosmological or even TeV scale consequences. Additionally,

an appropriately “minimal” supergravity model gives rise to flavor universality,

mentioned above, where at the GUT scale MU ,

Au = Ad = Ae ≡ A0, m2
f̃

= m2
hu = m2

hd
≡ m2

0 ∀ f,

b = B0µ, M1 = M2 = M3 ≡ m1/2, (3.51)

where the parameters A0, B0,m0,m1/2 are all determined by the theory in terms

of 〈F 〉 and MPl. The weaker conditions seen in (3.50) arise through the running

of the parameters down from MU to the soft breaking scale MSUSY. As I will

discuss shortly, taking universality at the GUT scale means that it coincides with

unification of the standard model gauge couplings gs, g, g
′ in the MSSM, which

will be a key factor in motivating the synthesis of SUSY with SO(10) grand

unification. I will assume universality throughout the remainder of this work.
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3.2.1.3 The Complete MSSM Lagrangian and EWSB

With WMSSM and Lsoft defined, I can write the complete MSSM Lagrangian, in

terms of superfields, as

LMSSM =

∫
d 2θd 2θ†

{
Q∗i exp

(
2gsGa

′
λa
′
+ 2gWaT a + g′B/3

)
Qi +

UC∗i exp
(

2gsGa
′
λa
′
+ 4g′B/3

)
UCi +DC∗i exp

(
2gsGa

′
λa
′ − 2g′B/3

)
DCi +

L∗i exp (2gWaT a − g′B)Li + EC∗i exp (−2g′B)ECi

+ H∗u exp (2gWaT a + g′B)Hu +H∗d exp (2gWaT a − g′B)Hd

}
+

∫
d 2θ

(
WMSSM +

1

4
Ga′α Gαa′ +

1

4
Wa

αWα
a +

1

4
BαBα

)
+ c.c.+ Lsoft. (3.52)

The D-terms for the chiral superfields in this Lagrangian will give rise to the

following interactions:

• the SM kinetic terms and gauge boson interactions for the fermions {u, d, e}

and Higgs bosons {hu, hd};

• the kinetic terms and gauge boson interactions of the SM superpartners

{ũ, d̃, ẽ, h̃u, h̃d}, which include cubic sfermion-sfermion-boson terms (e.g.,

f̃ f̃W ) of coupling strength g, quartic terms involving two sfermions and

two gauge bosons (e.g., f̃ f̃WW ) of strength g2, and cubic higgsino-higgsino-

boson terms (e.g., h̃h̃W ) of strength g;

• cubic fermion-sfermion-gaugino (e.g., ff̃ W̃ ) terms of coupling strength g;

• quartic four-sfermion and four-Higgs boson terms of strength g2.

The F-terms of the gauge field strength terms in this Lagrangian will give rise to

the following interactions:

• the SM kinetic terms and self-interaction terms for the gauge bosons {Ga,W a, B};
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• the kinetic terms for the gaugino superpartners {G̃a, W̃ a, B̃} and their cubic

gaugino-gaugino-boson self interactions of strength g.

The neutral Higgs scalar potential for the model is

Vh = (|µ|2 +m2
hu)|h0

u|2 + (|µ|2 +m2
hd

)|h0
d|2 − (B0µh

0
uh

0
d + c.c.)

+
1

8
(g2 + g′2)(|h0

u|2 − |h0
d|2)2, (3.53)

where I’ve set h+
u = h−d = 0 at the minimum (without loss of generality) to

avoid disturbing electromagnetism. Both h0
u and h0

d acquire vevs to break EW

symmetry. The values of B0, 〈h0
u〉, and 〈h0

d〉 can all be chosen and real and

positive through field redefinition and U(1)Y gauge transformation. I’ll define

〈h0
u〉 ≡ vu and 〈h0

d〉 ≡ vd; the two vevs relate to the SM vev as v2
u + v2

d = v2,

where v = 174 GeV (or 246 GeV/
√

2, as an alternate convention). It’s customary

to define

tan β =
vu
vd
, vu < vd,

so that vu = v sin β and vd = v cos β.

Of the eight real scalar degrees of freedom in the two complex Higgs doublets,

three become the Goldstone bosons, eaten by the massive gauge bosons after

EWSB, which leaves five physical Higgs scalars in the model. There are two

charged bosons h±, two neutral, CP -even bosons h0 and H0, and one neutral,

CP -odd pseudo-scalar A; the lighter of the neutral scalars corresponds to the

Higgs of the standard model. The tree-level masses of the neutral bosons can be

written as

m2
H,h =

1

2

{
m2
A +M2

Z ±
√

(m2
A +M2

Z)2 − 4m2
AM

2
Z cos2 2β

}
, (3.54)
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where

m2
A = 2|µ|2 +m2

hu +m2
hd
.

One might notice that the lighter SM scalar mass is less than MZ , at least at tree

level and for mA > MZ . If one includes the largest loop correction, coming from

the top and stop couplings, one can obtain mh of up to about 135 GeV or, which

puts the observed Higgs mass near the upper end of the comfortably consistent

parameter space of the MSSM.

In a manner similar to the mixing of the gauge bosons seen in the SM, there

is additional mixing among like-charged superpartners in the MSSM. In particular,

the like-charged Winos W̃± and Higgsinos h̃±u,d mix to give the physical charginos

χ±, and the two neutral gauginos B̃, W̃ 0 and Higgsinos h̃0
u,d mix to give the four

neutralinos χ0
i . Since SU(3)C is unbroken in the model, the gluinos g̃, which would

be massless in the absence SUSY breaking, degenerately share the soft-breaking

Majorana mass M3.

The particle and anti-particle fermion superpartners will also generally mix

with one another. The two physical scalar partners are typically denoted simply

by f̃1,2.

3.2.2 Gauge Coupling Unification

In addition to solving the hierarchy problem, one of the more curious and inviting

features of the MSSM is the rather precise unification of the three SM gauge

couplings at high energies. To understand the meaning of this statement, recall

that, as mentioned briefly in the previous chapter, the physical parameters of

a gauge field theory actually change with the energy scale of interaction due to

renormalization effects. The evolution of a gauge coupling g is governed by the
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beta function [33]

M
∂g

∂M
= β(g), (3.55)

where M is the energy scale in question, referred to as simply the renormalization

scale. The derivative here is often seen written as ∂/∂(lnM) or ∂/∂t, with t ≡

lnM , for simplicity. Taking the above expression as an equation of evolution, one

can see that the running with energy of g is a function of g itself; furthermore, β(g)

will be a smooth function such that the evolution can be viewed as a continuous,

group-like transformation for M → M + δM . As a result, eq. (3.55) is known as

the renormalization group equation (RGE) for g. For a general gauge theory, the

beta function due to single-loop-level corrections is

β(g) =
bg3

16π2
≡ g3

16π2

(
−11

3
C2(G) +

4

3
nfC(r)

)
, (3.56)

where nf is the number of fermions charged under the group in the theory, and

C2(G) and C(r) are group theory factors. For an SU(N) theory, C2(G) = N ,

while C2(G) = 0 for an abelian group; In the SM, C(r) is normalized to 1/2 for

SU(2)L and SU(3)C and to 3Y 2/5 for U(1)Y . This unusual normalization for

U(1)Y is chosen to match the redefinition of the gauge coupling g′ used in SU(5)

and SO(10) Grand Unification, which I will discuss in more detail in the next

chapter. For a semi-simple theory of multiple gauge groups such as the SM, one

can consider a separate, independent RGE for each coupling in the theory:

M
∂gi
∂M

=
big

3
i

16π2
, (3.57)

for multiple couplings gi. Notice that, given the beta function for an SU(N)

coupling, the beta function will be negative for sufficiently small nf , which implies

that the strength of the coupling diminishes with increasing energy. As a result,
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the coupling strength should vanish at some high energy. This property, known

as asymptotic freedom, is a feature of both non-Abelian symmetries of the SM.

For the standard model, careful counting of fields reveals that

bi =

(
41

10
,−19

6
,−7

)
, (3.58)

where I’ve made the identifications g3 = gs, g2 = g, and g1 =
√

5
3
g′; Again,

the change in normalization for g′ is made for compatibility with SU(5) Grand

Unification. Conveniently, if one writes the RGEs above in terms of the parameters

αi = g2
i /4π, the resulting equations (still at one-loop order) are linear in α−1

i :

M
∂α−1

i

∂M
=

bi
2π
. (3.59)

As a result, the running of the couplings will be straight lines on a plot of coupling

strength vs. logM . That plot is given for the three SM couplings in Figure 3.2,

shown as the black dashed lines in the plot. Perhaps unexpectedly, the values of

the three couplings show signs of attempting to merge in the vicinity of 1013 GeV;

this is a very tantalizing concept. . . could it be that at very high energies, and

hence in the very early universe, the strong and electroweak forces were just

different components of a single interaction? This is of course similar to what we

see in electroweak unification; before EWSB, massless W a and B bosons would

have mediated a single and perhaps long-range electroweak force, resulting in a

presumably unrecognizable universe. In the end, it seems reasonable or even wise

to assume that the merging of forces continues as one moves back in time, and up

in energy, toward the big bang.

Yet, this vague trend in the SM is only the beginning of the story. In the
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Figure 3.2: Renormalization group evolution of the inverse gauge couplings α−1
i for

the SM (dashed lines) and the MSSM (solid colored lines) [28]; for the
MSSM case, the red vs. blue colored lines give bounds under variation of
the superpartner masses.

MSSM, due to the additional fields of varying species, the beta function becomes

βS(g) =
g3

16π2

(
−3C2(G) +

∑
φ

C(r(φ))

)
, (3.60)

where the sum over fields φ includes all the matter and Higgs fields in the theory

and their superpartners. The values of the coefficients are

bS
i =

(
33

5
, 1,−3

)
. (3.61)

Note that the beta function for SU(2)L has changed signs. Looking again at

Figure 3.2, the solid colored lines show the running of α−1
i in the MSSM; the red

and blue lines for each coupling give variation for a range of superpartner masses

0.5-1.5 TeV. The merging of the coupling strengths has improved dramatically,
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with a nearly exact agreement between the three coupling values at an energy

scale of ∼ 2 × 1016 GeV. This behavior, known as gauge coupling unification,

seems almost too good to be true, but does in fact arise for reasonable or even

preferred values for the parameters of the theory. Now perhaps one can see why

the prospect of combining theories of SUSY with those of grand unification became

so popular: this feature of the MSSM compels us to explore the possibility that

this merger is no accident. Adding unification to the hierarchy problem solution

and prospects for dark matter, the lucrative nature of the MSSM is clear, and one

might understand why it created so much excitement for BSM physics, and why

its presence in BSM theories persists to this today, even despite an increasingly

long list of phenomenological difficulties.

Note though that I have still made no further mention of neutrino masses,

which, again, are strongly suggested by empirical data. Adding neutrino masses

to the MSSM is quite analogous to adding them in the standard model, although

the allowed soft breaking terms contribute further to lepton flavor violation and

the other phenomenological complications discussed previously in the context of

the charged fermions. Even if one avoids those issues as before, it remains that

extending the MSSM to accommodate neutrino mass phenomenology is starkly

ad hoc. In the context of Grand Unification, however, this is not the case. A

rather attractive mechanism for describing neutrino masses goes hand-in-hand

with SO(10) Grand Unification, which will be the topic of the next chapter.
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Chapter 4

Grand Unification and Neutrino Mass

Once the theory of electroweak unification and its spontaneous breakdown via the

Higgs mechanism were fully understood, grand unification was perhaps an easy

target for physicists looking to go beyond the standard model. If the acquisition of

a vev by a scalar boson could break SU(2)L×U(1)Y down to U(1)em and a short-

range weak force via massive vector bosons, then perhaps there could be more

such scalars, of even larger mass, governing additional spontaneous breakdowns

of higher dimensional groups to SU(3)C × SU(2)L × U(1)Y . Such a breakdown

process would correspond to the physical notion that the original symmetry of

our universe was quite a simple one (which can be taken literally in the context

of group theory), forced into a more elaborate configuration by the nontrivial

internal landscape of the quantum vacuum as spacetime expanded and average

energy density fell.

Yet, as previously mentioned, there are many reasons beyond aesthetics to

pursue unification. In addition to the highly suggestive nature of gauge coupling

unification discussed at the end of the previous chapter, GUT models explain the

seemingly arbitrary values for hypercharge in the SM and consequently offer some

basis for charge quantization; they often restore parity symmetry in the gauge

group; and they may provide a framework more conducive to giving neutrinos

mass. Furthermore, specifically in the case of SO(10), the right-handed neutrino

appears automatically, and neutrino masses arise quite naturally, in connection to

unification-scale breaking of B − L.
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4.1 Earlier Models of Unification

4.1.1 Pati-Salam and Left-Right Symmetry

J.C. Pati and A. Salam proposed the first model of partial unification in 1974 [4],

based on the gauge group SU(2)L×SU(2)R×SU(4)C . The model treated lepton

number as the fourth color, and the resulting multiplets predictably contained

new fields with “lepto-quark” characteristics.

Left-right symmetric models restore the maximal breaking of parity seen in

the SM gauge group. These models were first developed by R.N. Mohapatra, G.

Senjanovic, and Pati [34], also during 1974.1 The simplest L-R model is based on

the gauge group SU(2)L× SU(2)R×U(1)B−L, where the couplings are g2L = g2R

and g′. Such models are really extensions of the SM model rather than unification

models, since no SM model multiplets are merged into larger representations.

With the addition of the SU(2)R gauge group and the presence of U(1)B−L, one

can define electric charge as [36]

Q = T 3
L + T 3

R +
1

2
(B − L);

this definition provides explanations for not only the seemingly arbitrary values

for hypercharge seen in the SM, but also for the quantization of electric charge.

Since SU(4) ⊇ SU(3)×U(1), the left-right model can be naturally embedded

into Pati-Salam.

Left-right symmetry adds right-handed W and Z bosons to the SM and

collects the SU(2)L-singlet fermions into doublets of their own:

qR ≡

 uR

dR

 , `R ≡

 νR

eR

 ; (4.1)

1Right-handed currents had first been proposed in the context of the SM by Mohapatra in
1972, as a possible source of CP violation [35].
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here, finally, one sees the addition of the right handed neutrino to the model.

Since right-handed neutrinos are not observed in our low-energy world, the model

will need some way to understand this. The most popular solution utilizes the

Majorana character of neutrinos as follows. Consider the following scalar fields

with SU(2)L × SU(2)R × U(1)B−L representations [9]:

∆L : (3,1, 2), ∆R : (1,3, 2), φ : (2,2, 0).

I can write interactions between these Higgs fields and the leptons (for one gen-

eration) as

LYuk 3 h ¯̀
Lφ `R + h̃ ¯̀

Lφ̃ `R + if
(
`TLC

−1σ2σa∆
a
L`L + `TRC

−1σ2σa∆
a
R`R

)
+ h.c.s,

(4.2)

where ψTC−1ψ is the Lorentz scalar for Majorana fermions, and where φ̃ = σ2φ
∗σ2.

The chiral Majorana interactions here violate lepton number conservation by 2

units but conserve B−L. The SU(2) structure of these terms couples the neutrino

to the neutral component of ∆ for both the left and right cases; hence, if either field

acquires a vev, the neutrinos will receive Majorana contributions to their masses.

A vev for φ will play the role of breaking EWSB and giving masses to all of the

fermions, including contributions to the neutrinos. However, if 〈∆R〉 � 〈φ〉, 〈∆L〉,

then the right handed neutrinos will acquire masses much heavier than the rest

of the fields, which would explain their absence in nature. The vev 〈∆R〉 will also

serve to break SU(2)R × U(1)B−L −→ U(1)Y if parity is broken in conjunction.

A closer look at the full neutrino mass matrix will reveal that the left-

handed neutrinos are mν ∼ 〈φ〉2/〈∆R〉, and are thus suppressed by the heavy

scale. Furthermore, if the vev 〈φ〉 is inversely hierarchical, then the solutions

to the scalar potential give 〈∆L〉 ∼ 0, resulting in extremely small masses for
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the left-handed neutrinos, also in agreement with observation. This prescription,

known as the seesaw mechanism, has held as the most phenomenologically viable

explanation for neutrino mass for 35 years. It is also quite compatible with SO(10)

unification. I will discuss the mechanism in more detail shortly.

4.1.2 SU(5) Grand Unified Theory

Georgi and Glashow introduced the first model of complete grand unification [3]

in the same year as Pati-Salam, based on the gauge group SU(5). The SM gauge

group has rank r = 4, where the rank of a Lie group is given by the dimension

of its maximal Cartan sub-algebra, i.e., by the number of diagonal generators in

the algebra. A group can only be embedded in a larger group if rsmall ≤ r large,

and SU(5) is the smallest simple Lie group of rank-4; therefore, it is the smallest

simple group in which the SM group can be embedded, and SU(3)×SU(2)×U(1)

is a maximal subgroup.

The 15 matter fields per generation in the SM can be embedded into SU(5)

using the conjugate fundamental representation 5̄ 3 {`, dCρ̄} and the completely

antisymmetric two-index representation 10 3 {qρ, uCρ̄ , eC}; ρ = 1, 2, 3 is the color

index. Their explicit forms are

ψa ≡



dCr̄

dCḡ

dC
b̄

e

ν


L

; χab ≡



0 uC
b̄
−uCḡ ur dr

0 uCr̄ ug dg

0 ub db

0 eC

0


L

. (4.3)

The model has 24 generators, and thus 24 gauge bosons, which decompose

under the SM group as

{24} = G(8,1, 0)⊕W (1,3, 0)⊕ Yw(1,1, 0)⊕Xu,d
ρ (3,2,−5

6
)⊕ X̄u,d

ρ̄ (3̄,2,
5

6
),
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where the first three components correspond to the gluons, W bosons, and hy-

percharge boson, respectively. The remaining two components carry both color

and weak isospin; these fields are understood as 12 new individual SU(5) bosons,

which allow quark-lepton interaction at a single vertex. The coupling g5 to all

bosons is universal, as g5 = g3 = g2 = g1 =
√

5
3
g′ at the unification scale MU.

Note that in order to write the diagonal hypercharge generator such that

it preserves SU(3)C , one will find that the diagonal entires are fully determined

by a single parameter plus the overall normalization, and hence the action of

this generator on the various component fields fixes the values of Yw for all the

SM fermions precisely as needed. Quantization of electric charge follows as an

implication.

The Higgs sector of SU(5) has a minimum content of a 24-dimensional ad-

joint field Φ and a 5-dimensional fundamental field H5. Breaking SU(5) −→ GSM

occurs via a vev 〈Φ〉24, aligned with the diagonal (∼ hypercharge) generator λ24.

The breaking gives masses to the X bosons M2
X ∼ g2

5V
2, where 〈Φ〉 = V λ24.

The 5 Higgs is essentially (Hρ
C⊕φSM), i.e., a color triplet Higgs field and the

SM Higgs doublet in a single multiplet. EWSB occurs through the vev 〈H5〉 =

(0, 0, 0, 0, v)T , which gives mass to the fermions through the couplings

LYuk = hijψ̄
i
a χ

j
abH

†
b + h′ijε

abcdeχT iab C
−1χjcdHe + h.c.s. (4.4)

The down-type and charged lepton masses are both given by the first Yukawa term

in the expression; as a result mi
e = mi

d for i = 1, 2, 3. While these relationships

are given at the unification scale, only third generation Yukawa runnings are

substantial enough to correct the experimental inaccuracy of this relationship at

low energies (because mb ∼ mτ ). In order to give realistic mass eigenvalues to all

the down-type fields, one can introduce a 45-dimensional Higgs field Hc
ab.
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Expansion of the X gauge boson couplings to the matter multiplets gives

interactions with the individual fields of the form

LX = − g5√
2
Xuρ
µ

(
ερστ ū

Cσ
L γ

µuτL + d̄Lργ
µeCL + d̄Rργ

µeCR
)

− g5√
2
Xdρ
µ

(
ερστ ū

Cσ
L γ

µdτL − ūLργµeCL + d̄Rργ
µνCR
)

+ h.c.s. (4.5)

Note that some vertices include quark-lepton mixing. As a result, through the

exchange of an X̄u boson, the process

uu→ de+

is possible. Similarly,

ud→ ue+

can occur through the exchange of a X̄d. Either process may therefore lead to the

decay of a nucleon. In particular, one sees

τ(p→ π0e+) ≈ M4
X

g4
5m

5
p

When SU(5) theory was new, limits on proton lifetime were in the vicinity of

1028-30 GeV [37], which implied MX
>∼ 1014-15 GeV. Since then, lifetime limits have

risen by several orders of magnitude, and consequently the basic SU(5) model has

been virtually ruled out as a viable theory of nature (a few niches in the parameter

space do technically remain). One can make extensions to the model to salvage

its validity, although most require severe tuning of free parameters.

Other shortcomings of the model exist as well. Like the SM, the SU(5)

model suffers from a “gauge hierarchy problem”, in that there is no basis for the

extreme difference of the EW and unification scales. Additionally, as in the SM
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and the MSSM, extension of the model to include neutrino mass is completely ad

hoc. However, the SU(5) model can be embedded into the larger group SO(10),

in which neutrino masses arise naturally. In fact, specifically in the SUSY case,

all of the above concerns see at least partial resolution.

Before discussing SO(10) models, I will discuss the seesaw mechanism for

neutrino mass in more detail.

4.2 The Seesaw Mechanism and Neutrino Masses

Looking back at section 4.1.1, one can take the form of the Higgs fields in the

left-right model as [9]

∆L,R ≡ σa∆a
L,R =

 δ+/
√

2 δ++

δ0 −δ+/
√

2


L,R

, φ ≡

 φ0
1 φ+

1

φ−2 φ0
2

 ;

if the neutral components of the fields acquire vevs, I can write them without loss

of generality as

〈∆L,R〉 =

 0 0

vL,R 0

 , 〈φ〉 = eiα

 κ 0

0 κ′

 . (4.6)

Now if I expand eq. (4.2) into components of the SU(2)L,R multiplets, one finds

the following neutrino mass terms:

LYuk 3 hν ν̄LνR(κ+ κ′) eiα + fvL ν
T
LC
−1νL + fvR ν

T
RC
−1νR + h.c.s. (4.7)

Looking at the resulting neutrino mass matrix, in terms of its Weyl components,

one sees that, neglecting the phase α,
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Mν =

 fvL
1
2
(hκ+ h̃κ′)

1
2
(hκ+ h̃κ′) fvR

 ; (4.8)

The scalar potential for ∆L,R and φ is quite extensive, but under the assumption

that κ′ � κ as well as κ� vR, one finds that

vL '
rκ2

2vR
� 1, (4.9)

where r is a combination of parameters from the potential and is generally small.

Hence, the vev vL will be highly suppressed, and one finds the following eigenvalues

for Mν :

mν ' fvL −
h2κ2

2fvR
, MN ' 2fvR, (4.10)

where N is the heavy ∼right-handed neutrino; the mass eigenstates are generally

linear combinations of νL,R, but the extremely hierarchical nature of the mass

matrix leads to large suppression of the mixing for the single-generation case.

This “seesaw” mechanism can be explored outside of the context of left-

right symmetry as well. In fact, one may consider simply adding the right-handed

neutrino to the SM under the assumptions that it must be sterile, i.e., a singlet

under the full gauge group, and that it is Majorana and heavy. Then the model

is extended through the inclusion of the terms

LSM 3 yijν εαβ ¯̀α
Liφ
∗β νRj +

1

2
M i

N ν
T
RiC

−1νRi + h.c.s; (4.11)

after EWSB, one finds a neutrino mass matrix similar in form to (4.8):

Mν =

 0 yijν v

yjiν v δijM
j
N

 , (4.12)
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which will give left-handed eigenvalues of the form

mν ' −
y2
νv

2

MN

. (4.13)

This form for neutrino mass, involving a Majorana term for the heavy right-

handed neutrinos only, is known as the type-I seesaw. Integrating out the heavy

neutrinos leads to an effective dimension-5 operator of the form

LSM,eff '
y2
ν

MN

¯̀
αφ

α`βφ∗β, (4.14)

first proposed by Weinberg in [38]. Note that to obtain light neutrino masses of

mν � 1 eV, the right-handed mass scale will need to be MN
>∼ 1014 GeV, which

is surprisingly close to the scales of unification seen in MSSM and SU(5).

The alternative case for neutrino mass that includes the left-handed Majo-

rana term, as seen above in the left-right model case, and as will be the case for

SO(10), is known as the type-II seesaw. The corresponding light neutrino masses

for this case will generally be of the form

mν ' fvL −
y2
νv

2

fvR
, (4.15)

with vL ∼ v2/vR. Note that generally the type-I term will be present in the type-II

case, although one may see dominance of either term depending on the couplings

and the scale of vR. One can implement type-II seesaw through extension of the

SM as well, by for instance adding a heavy triplet ∆L with couplings of the form

`Tσ2∆L` and φTσ2∆Lφ, which gives rise to an effective operator similar to that

in (4.14). Other forms are plausible as well but typically require more highly ad

hoc or tuned assumptions.
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4.3 SO(10) Grand Unification

4.3.1 Representations of SO(N) and SO(2N)

For the N-dimensional fundamental representation of the group SO(N), one can

define a basis in the conventional way,

(
Jab
)
mn
≡ −iδa[mδbn] = −i

(
δamδ

b
n − δanδbm

)
such that the Lie algebra bracket condition

[ Jab, Jcd ] = −i
(
δb[cJad] + δa[dJbc]

)
(4.16)

is satisfied. These generators are of course analogous to the usual angular momen-

tum generators in SO(3); thus, I can write the orthogonal transformation (i.e.,

length-preserving rotation) of an N-dimensional vector Vm as

Vm → OmnVn = exp

{
− i

2
θab
(
Jab
)
mn

}
Vn.

Tensor representations of larger dimensions can be constructed in the usual way

Tmn... = Vm ⊗Wn ⊗ . . .

In addition to fundamental and tensor representations, SO(2N) will have

a spinor representation2 in its universal covering group Spin(2N), and the Lie

algebras of the two groups will be isomorphic. In Euclidean analogy to the Dirac

algebra of the Lorentz group, the objects Γm, with m = 1, · · · , 2N , are 2N × 2N

2One can of course construct a spinor representation for SO(N) with N odd as well, though
it requires a bit more consideration.
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matrices that satisfy the Clifford algebra condition

{Γm,Γn} = 2δmnI2N (4.17)

and act on 2N -dimensional spinors ψ. If I define

Σmn ≡ −
i

4
[ Γm,Γn ] , (4.18)

one finds that the Σmn satisfy the SO(2N) algebra (4.16) and are therefore a valid

representation of the group. I can write the transformation of a spinor ψα as

ψα → UαβVβ = exp

{
− i

2
θmn (Σmn)αβ

}
Vβ.

In analogy with γ5 of the Dirac algebra, the object

Γ0 ≡ i2NΓ1Γ2 . . .Γ2N

allows for projection of the 2N -dimensional spinor into two 2N−1-dimensional chiral

components by

ψL,R =
1

2
(1± Γ0)ψ. (4.19)

Also of interest is the Spin(2N) basis as an extension of an SU(N) basis. If

one takes the complex operators χa, for a = 1, 2, . . . , N satisfying

{
χa, χ

†
b

}
= δab,

then the operators Tab = χ†aχb satisfy the su(N) Lie algebra, while the operators

Γ2a ≡
(
χa + χ†a

)
Γ2a−1 ≡ −i

(
χa − χ†a

)
(4.20)
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are 2N objects satisfying the Clifford algebra in (4.17), and therefore form a valid

representation for Γm.

4.3.2 The Basics of SO(10) as an Interacting Gauge Theory

Following the prescription above, the rank-5 simple group SO(10) has a 16-

dimensional Weyl-spinor representation in its covering group Spin(10); 3 the 16

decomposes in SU(5) × U(1) as 10 ⊕ 5̄ ⊕ 1; given the matter field content of

the SU(5) representations, this decomposition is highly suggestive. Taking the

SU(5) representations as usual and the right-handed neutrino as the singlet, one

sees that all matter fermions and anti-fermions of a single generation and chirality

fit exactly into one chiral SO(10) spinor, denoted by ψL,R. Since the anti-particle

fields of some chirality correspond to the particle fields of opposite chirality, one

finds all of the left- and right-handed fields in a single chiral spinor. Therefore,

in building an SO(10) model, I have no need for the full 32-dimensional spinor,

and I will simply denote the chiral spinor by ψ, which I assume left-handed by

convention.

The explicit arrangement of the field content in ψ depends on the choice

of basis for the generators Σmn, and hence the choice of basis for Γm (m =

1, 2, . . . , 10), for which there are many. The end result is quite tedious not of

much use other than for explicit calculation. The kinetic term for ψ, however, can

nonetheless be written in a familiar form:

LU,kin = ψ̄i /Dψ = ψ̄γµ

(
i∂µ +

gU

2
ΣmnW

mn
µ

)
ψ; (4.21)

the matrix
(
ΣmnW

mn
µ

)
ab

is generally 32 × 32 in spin space but will be block

diagonal and redundant for reps based on the 16 spinor. Wmn
µ are the 45 gauge

3In keeping with convention, I will often refer to this representation as the “SO(10) spinor”
rep.
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bosons of the model (i.e.,
(

10
2

)
), which decompose under the SM gauge group as

{45} = G(8,1, 0)⊕WL(1,3, 0)⊕XB−L(1,1, 0)

⊕ Xu,d
ρ (3,2,−5

6
)⊕ X̄u,d

ρ̄ (3̄,2,
5

6
)⊕ Y u,d

ρ (3,2,
1

6
)⊕ Ȳ u,d

ρ̄ (3̄,2,−1

6
)

⊕ Aρ(3,1,
1

3
)⊕ Āρ̄(3̄,1,−

1

3
)

⊕ W+
R (1,1,

1

2
)⊕W−

R (1,1,−1

2
)⊕W 3

R(1,1, 0);

when compared to SU(5), one might notice that (a) the diagonal hypercharge

generator has been swapped for the B−L generator and that of the neutral right-

handed W 3
R, thereby increasing the rank of the group by one, as expected, and (b)

another set of bosons Y with both color and T L weak isospin are present, in addi-

tion to the X bosons of SU(5). In fact, both the X and Y bosons have TR isospin

as well here, and pair off cross-wise under SU(2)R, as (Y u, Xu)ρ ,
(
Ȳ d, X̄d

)
ρ̄
, etc.

For a complete analysis of the bosons, their corresponding generators, and their

decompositions in several bases and for several subgroups, see, e.g., [39].

4.3.3 Fermion Masses and Higgs Representations in SO(10)

Because particles and anti-particles in SO(10) are together in the same chiral

spinor, generating mass terms requires additional complexity when compared to

the familiar low-energy theory. In particular, one sees non-trivial algebraic struc-

ture in the Yukawa couplings.

The tensor product of two chiral spinors decomposes in the group as 16 ⊗

16 = 10⊕ 120⊕ 126; the 10 and 120 are the fundamental rep and the 3-index

totally anti-symmetric rep, respectively, and the 5-index, totally anti-symmetric

rep 252 decomposes into 126 ⊕ 126. Therefore one expects the Yukawa cou-

plings of Higgs fields to matter in the model to appear in one of the three above

representations.
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In the simplest case, an SO(10) model has only a 10-dimensional Higgs field

Hm; its coupling to ψψ has the explicit form

LU,Yuk 3 hijψTi BC−1ΓmψjHm, (4.22)

where the Yukawa coupling hij is symmetric in the generation space. The matrix

B appearing here plays a role analogous to that of C but in the Spin(10) space:

under the spin group, the spinor ψ and its conjugate transform as

δψ = iωmnΣmnψ δψ† = −iωmnψ†Σmn,

where I’ve used that the generators Σmn are Hermitian; however,

δψT = iωmnψ
TΣmn

does not transform like a conjugate field. Therefore, one defines the matrix B

such that

δ
(
ψTB

)
= −iωmn

(
ψTB

)
Σmn.

Explicitly, B can be given as B ≡ Γ1Γ3Γ5Γ7Γ9, which further implies that

B−1ΓmB = −Γm.

As in SU(5) and the SM, I want a vev for H to break SU(2)L in order to

give the fermions mass. Looking at eq. (4.20), note that for the fields χa, the

components a = 1, 2, 3 relate to color, while a = 4, 5 relate to left isospin. I

will take the vev to correspond to a = 5, which implies 〈H9,H10〉 6= 0. If I take

〈H9〉 = v1 and 〈H10〉 = v2, then one finds the following terms for fermion masses
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(considering a single generation for now):

LYuk, /H = h(v2 − v1)
(
d̄LdR + ēLeR

)
+ h(v2 + v1) (ūLuR + ν̄LνR) + h.c.s;

this result implies me = md and mu = mν . Although this is a GUT-scale result, it

cannot be made to agree with low-energy observations, even when running effects

are taken into account. This is even more strongly the case for second generation;

hence, to build a realistic model, one needs additional Higgs Yukawas.

The next available option for Higgs field is the 120-dimensional field Σmno,

which couples to the fermions by

LU,Yuk 3 gijψTi BC−1ΓmΓnΓoψjΣmno; (4.23)

the Yukawa coupling matrix gij is anti-symmetric in order to preserve SO(10)

invariance; therefore, this Yukawa can only contribute to mass mixing among

generations.

There are several potential vevs that do not disturb color invariance. If I

choose 〈Σ789,Σ780〉 6= 0 (I will use “0” instead of “10” for multi-index fields to

avoid confusion), then the resulting mass relationships are

mi
d = 3mij

e , mi
u = 3mij

ν ;

i.e., the contribution to the (ij)-element of electron mass matrix is proportional

to the ith down mass, and similar for the up-type particles. Clearly this Higgs

field would need to be used in conjunction with others to achieve a realistic mass

spectrum.

The final choice for a Higgs is the 126 field ∆̄mnopq; its coupling to the
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fermions is

LU,Yuk 3 fijψTi BC−1ΓmΓnΓoΓpΓqψj∆̄mnopq, (4.24)

where fij is symmetric. The following vevs preserve SU(3)C :

〈∆̄1278m〉 = 〈∆̄3478m〉 = 〈∆̄5678m〉 6= 0, m = 9 or 10,

which give the mass relations

mij
e = −3mij

d , mij
ν = −3mij

u ;

this result nicely predicts the observed me
mµ

: md
ms

ratio, but does not agree with

third generation observations. A realistic mass spectrum can though be obtained

through a combination of H and ∆̄.

The 126 Higgs may play another important role in the fermion mass spec-

trum. Under decomposition to left-right models, the field contains a right-handed

triplet part. A vev for this component breaks B−L, and it couples to νRνR as in

eq. (4.2); furthermore, the field corresponds to the SU(5) singlet, so it does not

disturb SU(3)C × SU(2)L. Hence, if this triplet acquires a vev around the GUT

scale, it will simultaneously explain the suppression of right-handed currents and

activate the type-I seesaw for neutrino mass.

4.3.4 Spontaneous Symmetry Breaking in SO(10)

SO(10) has two maximal subgroups of relevance to symmetry breaking:

SO(10) ⊇ SU(5)× U(1), SO(6)× SO(4);

The context of the former should be clear, as it has been mentioned previously.

To understand the significance of the latter decomposition, note that
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Spin(6) ∼= SU(4), Spin(4) ∼= SU(2)− × SU(2)+;

hence, Spin(6)×Spin(4) ∼= Pati-Salam (PS); more specifically, the breakdown of

SO(10) to PS is

Spin(10) −→ SU(2)L × SU(2)R × SU(4)C × Z2;

in full SO(10) representations, the Z2 symmetry is manifested as D-parity [40];

the explicit form of a D-parity transformation is

D(Vm) ≡ exp(−iπJ23) exp(iπJ67)

D(ψ) ≡ exp(−iπΣ23) exp(iπΣ67) = −Γ2Γ3Γ6Γ7,

which corresponds to a pair of π-rotations in the (23) and (67) planes of the 10-

dimensional vector space of the fundamental. Since the matter field ψ contains

only fields of a single chirality, there can be no well-defined notion of parity in

SO(10); D-parity then plays a role to create to the possibility for the presence of

C and P at lower energies.

As I mentioned earlier, the matter spinor decomposes under SU(5)×U(1) as

16 = 10⊕ 5̄⊕1; under Pati-Salam, the decomposition makes “left-right” splitting

manifest: 16 = (2,1,4)⊕(1,2, 4̄), but let me reiterate that right-handed fields are

still explicitly absent; for example, the doublet one might be inclined to call “qR” is

actually qCL. In breaking SO(10) to Pati-Salam, the Z2 coming from conservation

of D-parity corresponds to 2L ↔ 2R under charge conjugation symmetry. Hence

one finds Pati-Salam with “left-right” symmetry, in the sense that g2L = g2R, but

nonetheless defined with left-handed antiparticle fields rather than right-handed

particle fields.
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For either class of breaking possibilities, one must of course consider only

vevs which leave SU(3)C × U(1)em unbroken; furthermore, since one expects to

find that group as a consequence of breaking the usual SM gauge group, further

restriction to vevs which leave SU(2)L in tact is also needed. Note that in general

the Higgs fields with components that acquire vevs will not be those that couple

to matter; i.e., additional representations of Higgs may be present in the scalar

potential of the SO(10) model, coupled only to other Higgs fields.

SO(10)→ SU(5). To induce the breaking of SO(10) to SU(5), one simply gives a

vev to the SU(5)-singlet component of some appropriate Higgs, which usually also

breaks B − L. Two such choices are the 1 of a 16H or 126. The 2-index, totally

anti-symmetric 45 rep of SO(10) contains the 24 of SU(5), so if one includes that

field, the breaking of SU(5)→ SM proceeds as discussed in section 4.1.2.

Assuming SO(10) breaks at the GUT scale, MU ∼ 2× 1016 GeV and SU(5)

breaks at its canonical scale of MX ∼ 1014-15 GeV, this model would be ruled out

by proton decay constraints; hence any applications of these breaking patterns

would need to be at higher scales in more elaborate models.

SO(10) → PS & Left-Right. Breaking SO(10) to the Pati-Salam gauge group

is a considerably more fruitful choice, with not only many choices for path of

breaking, but also the possibility for robust intermediate scale physics, because

left-right symmetric models are phenomenologically eligible for breaking at scales

as low as 1 TeV, although doing so sacrifices the possibility for implementing the

seesaw mechanism specifically as described in section 4.2.

Some of the most common vev choices for breaking to PS include the (1,1,1)

component of the 2-index, traceless symmetric 54 rep and the (1,1,1) or (1,1,15)

component of the 4-index, anti-symmetric 210 rep. The 54 option preserves D-

parity, while the 210 choices do not. In the 54 case, one can further break to
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SU(3)C × SU(2)L × SU(2)R × U(1)B−L through the (1,1,15) component of 45,

which also breaks D-parity.

In all of the cases described above, breaking to the SM requires SU(2)R ×

U(1)B−L → U(1)Y ; in the PS cases, one must also break SU(4)C as well, but since

SU(4)C ⊇ SU(3)C ×U(1)B−L, the breaking of B−L will accomplish both tasks.4

The most common approaches involve vevs for either the (1,3,10) component of

126, denoted ∆̄R, or the singlet of 16H . The 126 case has clear advantages over

that of 16H :

• One can see from the PS representation of ∆̄R that it is a right-handed

triplet, which is precisely the object present in the right-handed Majorana

neutrino mass term in eq. (4.2). Hence the vev 〈 ∆̄R〉 ≡ vB−L = vR, and

implementation of the seesaw mechanism comes for free from the B − L

breaking; this attractive scenario of a single mechanism performing two cru-

cial duties in the model is quite economical to say the least. Furthermore,

the 126 coupling fij will be highly constrained by the mass spectrum of the

charged fermions, and yet will be present in the Majorana neutrino terms

also; so the economy of the model extends to its number of parameters as

well.

In contrast, one must include higher dimensional operators or singlet fields

to obtain the νC mass term in the case with 16H .

• The ∆̄R breaks of B − L by two units in the emergence of the νCνC mass

term. Note that for a supersymmetric model, this leaves R-parity, R =

(−1)3(B−L)+2s, conserved. This is of course attractive if one would like to

suppress R-parity violating terms and retain the potential for an LSP dark

matter candidate.

4One can instead break only SU(2)R → U(1)R if looking to leave SU(4)C (and hence B−L)
in tact.
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The 16H field, however, corresponds to the νC component and therefore

breaks B −L by a single unit, which is R-parity odd. As a result, one finds

R-parity violating terms among the higher dimensional operators involving

16H .

***

The procedure for constructing a properly broken subgroup at some scale requires

several steps when considering larger groups such as SO(10), especially in the

rank-reducing cases. First, one must rescale all the generators for the “before”

and “after” groups such that they share a common normalization. Next, for a

breaking of the form G1×G2 −→ G0 at energy scale M , where generators T1 and

T2 will merge in the breaking as

T0 = a1T1 + a2T2,

then the corresponding gauge couplings g1, g2, g0 must satisfy the following bound-

ary condition:

1

α0(M)
=

a2
1

α1(M)
+

a2
2

α2(M)
, (4.25)

where αi = g2
i /4π is the fine structure constant for the group Gi. Finally, one must

consider the running of each coupling between the various scales. In particular,

the evolution of αi between two mass scales M2 > M1 follows from the RGE for

the coupling:

1

αi(M1)
=

1

αi(M2)
− bi

2π
ln

(
M2

M1

)
, (4.26)

where bi are model and group-specific beta function coefficients discussed in sec-

tion 3.2.2. Note that in cases involving multi-step breaking patterns and mul-

tiple couplings, these relationships will be used iteratively. In this manner, one

can develop the precise relationships between low-scale measured parameters and
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(heavy:light) mass scale ratios, which can be used to experimentally test GUT

models, set lower limits on heavy scales, etc. One pertinent example is the ability

to constrain GUTs using the experimental limits on sin2 θW = αem/α2L combined

with the higher order corrections to its value coming from the relationship in

(4.26).

4.3.5 Supersymmetry and SO(10)

Since some of the unresolved issues of the SM are obviated by SUSY, and some

others are successfully attended to by SO(10) unification, it would seem quite

wise to consider the merging of the two frameworks into a SUSY SO(10) model

of the universe. Most clearly of importance is that non-SUSY GUT models face

the problems with quadratic divergences in loop corrections to Higgs masses. In

addition to the benefits coming from one framework or the other, a few added

benefits arise from the combination, including possible restrictions of soft CP

phases in SUSY, similar constraint of the strong CP phase, and, as I mentioned

in the previous section, the possibility of automatic R-parity conservation.

The promotion of SO(10) to a supersymmetric model follows quite straight-

forwardly from the process for constructing the MSSM; in particular, the SM

fermion content is unchanged (other than the addition of the right-handed neu-

trino, of course), and all of the same formalism applies for new scalar and gauge

boson superpartners, auxiliary fields, etc.

One caveat does arise with respect to vevs for the various Higgs fields: for

any field with a vev that reduces the rank of the group, one must include the

barred partner for the field, so that their D-terms in the scalar potential cancel

with each other; this keeps SUSY unbroken above the desired scale, which is

thought to be O(TeV). In particular, the breaking SU(2)R × U(1)B−L → U(1)Y

will require 126 + 126 or 16H + 16H .
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As an example, consider the well-known “minimal” SUSY SO(10) model,

which includes 10 and 126 Higgs fields coupling to matter plus a 210 field to

initiate the GUT scale breaking. Yukawa terms in the superpotential for can be

written by simply promoting the fermionic matter spinors and Higgs scalars in

eqs. (4.22) and (4.24) to superfields; the remaining terms will be all quadratic

or cubic superfield products allowed by the SO(10) invariance, of the form in

eq. (3.35). The resulting superpotential for the this model, up to O(1) numerical

factors, is

WU = M210Φ̂2 + λΦ̂lmnoΦ̂nopqΦ̂pqlm +M10Ĥ
2 +M126∆̂ ˆ̄∆

+η Φ̂lmno∆̂lmpqr
ˆ̄∆nopqr + Ĥl Φ̂mnop

(
γ∆̂lmnop + γ̄ ˆ̄∆lmnop

)
+hijΨiBΓΨjĤ + fijΨiB ΓΓΓΓΓΨj

ˆ̄∆, (4.27)

where i, j = 1, 2, 3 are the generation indices, l,m, n, . . . = 1, . . . , 10 are SO(10)

indices, and I have suppressed the SO(10) indices for straightforward contractions.

Here I have used hats in the denotations of the Higgs superfields to distinguish

them from their scalar components; otherwise, my notation conventions from

Chapter 3 for denoting superfields and their components will remain in tact for

the rest of this work.

One more point of interest is that any Higgs superfield in the theory in

an SU(2)L × SU(2)R bi-doublet representation, i.e., with PS quantum numbers

(2,2,x), that also breaks to an SU(3)C singlet will contribute to the linear com-

binations which remain light and play the roles of Hu,d at the electroweak scale.

Contributions will generally come even from components which do not couple to

matter, through mixing with those that do, once vevs are acquired. I will discuss

this topic in more detail in the next section, where I will give the details of the

model on which this work is based.
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4.4 A SUSY SO(10) Model of Unification

The SUSY SO(10) model on which my proton decay analysis is based has 10, 126,

and 120 Higgs superfields with Yukawa couplings contributing to fermion masses;

denotation of each is consistent with the previous section. The superpotential for

the model is given by eq. (4.27) plus the following additional terms due to the

presence of the 120 field:

WU 3M120Σ̂2 + κ Σ̂mnoĤpΦ̂pmno + ρ Σ̂lmpΣ̂nopΦ̂lmno

+ Σ̂lmn Φ̂nopq

(
ζ∆̂opqlm + ζ̄ ˆ̄∆opqlm

)
+ gijΨiB ΓΓΓΨjΣ̂, (4.28)

where again i, j = 1, 2, 3 are the generation indices, and I have suppressed the

SO(10) indices for total contractions. Here Ψi is the 16-dimensional matter spinor

containing chiral superfields for all the SM fermions (of one generation) plus the

left-handed anti-neutrino.

Type-I Seesaw Breaking Pattern. For the type-I seesaw implementation, breaking

of SO(10) to MSSM proceeds as follows:

〈Φ(1,1,1)〉 : SO(10) −→ SU(4)C × SU(2)L × SU(2)R, ( /D)

〈∆̄(1,3,10)〉 ≡ vR : SU(4)C × SU(2)L × SU(2)R −→ MSSM.

Note that 〈∆(1,3,10)〉 = vR is also present such that D-term contributions will

cancel. The value of 〈Φ〉 is taken at the coupling unification scale MU ∼ 2 ×

1016 GeV, and vR at ∼ 1015 GeV; hence any running under PS is negligible. As

discussed previously, the ˆ̄∆R component superfield couples to the right-handed

neutrino N C. Thus the acquisition of the vev vR will lead to the Majorana mass

90



term

WN 3 fij ˆ̄∆RN CN C
〈∆̄R〉−−−→ fvRν

T
RC
−1νR; (4.29)

furthermore, this term will induce a type-I seesaw mass for νL after EWSB:

mν = −y
2
νv

2

fvR
. (4.30)

Type-II Seesaw Breaking Pattern. The coupling to matter of the left-handed PS

(and SM) triplet ˆ̄∆L ≡ ˆ̄∆(3,1,10) as seen in eq. (4.2) is present in any model with

a 126 field; hence, to give a type-II Majorana mass to the neutrino, one simply

must give a vev to the scalar 〈∆̄L〉 ≡ vL. That said, the only motivation for giving

such an extremely tiny vev, O(10−2 eV), is strictly empirical. However, if the vev

for vL were instead inversely related to a heavy scale already present in the theory,

then its small value would be nicely consistent. In order to create such a scenario,

the most straightforward option is to include a 54 multiplet Ŝmn in the Higgs

spectrum. This field adds the following pertinent terms to the superpotential

(among others not important here):

WU 3 ξ ŜmnĤmĤn + η′ Ŝlm∆̂lnopq∆̂mnopq + η̄′ Ŝlm
ˆ̄∆lnopq

ˆ̄∆mnopq. (4.31)

The F-term of Ŝ then gives rise to a scalar operator of the form

[
W (Ŝ)

]
F
3 ξη̄′Hu∆̄LHu∆̄R,

which will consequently appear in the F-term for ˆ̄∆L as well, leading to the scalar

potential

V (∆̄L) = M2
126|∆̄L|2 + ξη̄′Hu∆̄LHu∆̄R;
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now the vevs for h0
u and ∆̄R will induce a vev for ˆ̄∆L of the form

vL ≡ 〈∆̄L〉 =
ξη̄′v2

uvR
M2

126

∼ 1

MU

.

Thus the full low-scale neutrino mass matrix becomes

mν = fvL −
yνv

2yTν
fvR

. (4.32)

However, an examination of this expression in light of the values for the var-

ious parameters will reveal that the type-I and type-II contributions in (4.32)

are generally comparable. Hence this prescription is not enough on its own to

give type-II dominance. To induce a truly dominant type-II seesaw, one needs

additional structure to somehow decouple the mass of ∆̄L from that of ∆̄.

One particularly nice way to accomplish this, which was first discussed in

[41], goes as follows. One first breaks SO(10) together with B − L by giving

a vev to ∆̄R at a scale >∼ 1017 GeV, resulting in SU(5); here, the left-handed

triplet ˆ̄∆L is part of the two-index symmetric 15 representation. Generally the 15

components coming from the 126, 126, and 210, will have comparable masses.

The vev for ˆ̄∆L ∼ 1/M126, so for larger vL ∼ O(eV), one would like to lower

the scale to M126
<∼ 1013 GeV; however, the decomposition of 126 gives rise to

additional SU(5) reps such as 45 and 50, which also have masses ∼ M126 ; if

all such multiplets become so light, gauge coupling unification will be irreparably

damaged. The day is saved, though, by the presence of the 54 Higgs Ŝ, which

decomposes under SU(5) as 15 ⊕ 15 ⊕ 24, and thus contributes to the 15 mass

matrix but not those of 45 and 50. As a result, the masses for 15 can be tuned

to the required light scale without other consequences, and the vev for ∆̄L

vL =
fξη̄′v2

u

M∆̄L
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can be larger as needed for type-II dominance.

With the light mass for ∆̄L on hand, one breaks SU(5) at the usual coupling

unification scale by Φ(24) ∈ 210; hence, the SO(10) breaking chain for type-II

dominance is

〈∆̄(1)〉 : SO(10) −→ SU(5), ( /D)

〈Φ(24)〉 : SU(5) −→ MSSM;

I’ve used notation for the SU(5) reps here, but note that the two components

present correspond precisely to those acquiring vevs in the type-I case.

***

After breaking to MSSM, SU(2)L doublets with SM quantum numbers (
(
1,2,−1

2

)
+ c.c ), which have their origins in the PS bi-doublet components Ĥ(2,2,1),

ˆ̄∆(2,2,15), and Σ̂(2,2,1) + Σ̂(2,2,15), have the following couplings to matter

superfields in the superpotential:

WYuk = hεab

{
Ĥb
u

(
QaUC + LaN C

)
+ Ĥb

d

(
QaDC + LaEC

)}
+
fεab√

3

{
ˆ̄∆b
u

(
QaUC − 3LaN C

)
+ ˆ̄∆b

d

(
QaDC − 3LaEC

)}
+gεab

{
Σ̂1b
u

(
QaUC + LaN C

)
+ Σ̂1b

d

(
QaDC + LaEC

)}
+
gεab√

3

{
Σ̂15b
u

(
QaUC − 3LaN C

)
+ Σ̂15b

d

(
QaDC − 3LaEC

)}
, (4.33)

where I’ve suppressed generation and color indices. As one can see, these doublets

come in pairs with opposite hypercharge and so have the form of the SUSY Higgs

doublets Hu,d. Furthermore, these fields will mix with one another, and also with

doublets from 126 and 210, to form mass eigenstates. If I take all such component
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fields in the obvious basis as

ϕu ≡
(
Ĥu, Σ̂

1
u, Σ̂

15
u , ∆̂u,

ˆ̄∆u, Φ̂u

)
,

and similar for ϕd, but with ∆̂u → ˆ̄∆d and “vice versa”, then the mass matrixMD

is defined such that the mass states are given by ϕTdMD ϕu; the form ofMD can be

seen in [42]. The matrix is diagonalized by a bi-unitary transformation UMDVT ,

giving the mass eigenstates for the doublet superfields as linear combinations of

the component fields. Note that this matrix is fully determined by the couplings

and vevs of the superpotential (although the majority of those parameters are

virtually unconstrained), and so the fields are generally expected to be heavy;

however, one doublet pair must remain light in order to play the role of the

MSSM Higgs doublets Hu,d. This point requires the imposing of the condition

DetMD ∼ 0 (i.e., MSUSY ∼ 0 when compared to the GUT scale), which can be

realized by fine-tuning one of the parameters in the matrix, conventionally chosen

to be the mass of Ĥ, M10. This choice will have implications for proton decay

analysis, which I will discuss in the next section.

In light of this establishment of the MSSM doublets, the effective Dirac

fermion mass matrices can be written as

Mu = h̃+ r2f̃ + r3g̃

Md =
r1

tan β
(h̃+ f̃ + g̃)

Me =
r1

tan β
(h̃− 3f̃ + ceg̃)

MνD = h̃− 3r2f̃ + cν g̃, (4.34)

where 1/ tan β takes vu → vd for down-type fields. The couplings with the tildes
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are given by [43]

h̃ ≡ V11h vu; f̃ ≡ U14fvu

r1

√
3

; g̃ ≡ U12 + U13/
√

3

r1

g vu;

r1 ≡
U11

V11

; r2 ≡ r1
V15

U14

; r3 ≡ r1
V12 − V13/

√
3

U12 + U13/
√

3
;

ce ≡
U12 − U13

√
3

U12 + U13/
√

3
; cν ≡ r1

V12 + V13

√
3

U12 + U13/
√

3
; (4.35)

where UIJ , VIJ are the unitary matrices that diagonalize MD.

The light neutrino mass matrix is given in general by the type-II seesaw

mechanism as

Mν = fvL −MνD (fvR)−1 (MνD)T ; (4.36)

I will separately consider the cases of type-I and type-II dominance as outlined

previously. Note that the inverse dependence on f in the type-I term intimately

connects the neutrino mass matrix to the charged sector matrices, which makes the

model quite predictive. Also note that I will consider only normal mass hierarchy

in this analysis.

The matrices h and f are real and symmetric, and g is pure imaginary

and anti-symmetric; hence, the Dirac fermion Yukawa couplings are Hermitian in

general, and their most general forms can be written as

h̃ =


h11 h12 h13

h12 h22 h23

h13 h23 M

 , f̃ =


f11 f12 f13

f12 f22 f23

f13 f23 f33

 ,

g̃ = i


0 g12 g13

−g12 0 g23

−g13 −g23 0

 . (4.37)
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M ≡ h33 ∼ mt is singled out to stress its dominance over all other elements. The

three matrices as written have a total of 15 parameters; taken in combination with

ratios ri and c`, the model has a total of 21 parameters. Correspondingly, there

are in principle 22 measurable observables, including all masses, mixing angles,

and CP violating phases, associated with the physical fermions, although the

three PMNS phases and one neutrino mass have yet to be observed. Therefore

one would prefer to have no more than 18 parameters in the model, and generally

speaking fewer parameters indicates greater predictability.

Furthermore, as I will discuss in more detail shortly, the dimension-five ef-

fective operators that arise in proton decay go like products of Yukawa coupling

elements, ∼ λijλ
′

kl (λ = h, f, g); therefore, increasing the number of λij elements

that are small or zero will increase the number of negligible or vanishing contri-

butions to the decay width. This idea was given thorough consideration in [23],

and the couplings suggested by the authors are as follows:

h̃ =


0

0

M

 , f̃ =


∼ 0 ∼ 0 f13

∼ 0 f22 f23

f13 f23 f33

 ,

g̃ = i


0 g12 g13

−g12 0 g23

−g13 −g23 0

 . (4.38)

Note that h̃ is an explicitly rank-1 matrix, with M ∼ O(1); thus, at leading order,

the 10 Higgs H ∼ mt contributes to the third generation masses and nothing

more. This feature has been explored in models demonstrating a discrete flavor

symmetry in e.g. [44, 45], and may therefore be dynamically motivated. Taking

f12 ∼ 0 is equivalent to a partial diagonalization of f̃ , which can be done without
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loss of generality in the presence of a rank-1 h̃; the restriction on f11 is clearly

phenomenologically motivated by the smallness of first-generation masses, in the

same way the dominance of the parameter M corresponds to the largeness of

third-generation masses. As a result of these assumptions, the above Yukawa

texture should give rise to sufficient proton decay lifetimes without the need for

the usual extreme cancellations.

It is further preferred for proton decay that f13, g12 � 1, although f13 plays

a role in setting the size of the reactor neutrino mixing angle θ13, so the above

restriction may create some tension in the fitting.

In carrying out the numerical minimization, I will allow f11 and f12 to have

small but non-vanishing values, O(10−4), for the sake of giving accurate first-

generation masses without creating tension in other elements. The results of that

analysis will be discussed in section 6.1, after I discuss the details of calculating

proton decay.
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Chapter 5

The Details of Proton Decay

In addition to the SM doublets present in each of the GUT Higgs superfields,

which contribute to the emergence of Hu,d at the SUSY scale, the heavy fields

similarly contain SM-type SU(3) color triplets (
(
3,1,−1

3

)
+ c.c ) in their decom-

positions. These fields come from the PS components Ĥ(1,1,6), ˆ̄∆(1,1,6) + ˆ̄∆R,

and Σ̂(1,3, 6̄) + Σ̂(1,1,10). Furthermore, there are two more exotic types of

triplets that also lead to B- or L-violating vertices:
(
3,1,−4

3

)
+ c.c, which inter-

act with two up-type or two down-type SU(2)L singlet fermions, and
(
3,3,−1

3

)
+ c.c, which interact with a pair of SU(2)L doublets. The above components have

the following couplings to matter superfields in the superpotential:

W /B/L = h

{
ĤT

(
1

2
εabQ

aQb + UCEC
)

+ ĤT̄
(
εabQ

aLb + UCDC
)}

+f

{
ˆ̄∆T

(
1

2
εabQ

aQb − UCEC
)

+ ˆ̄∆T̄
(
εabQ

aLb − UCDC
)}

+ f
√

2 ˆ̄∆R
T U

CEC

+g
√

2
{(
−Σ̂6

T + Σ̂10
T

)
UCEC + Σ̂6

T̄ U
CDC + εab Σ̂10

T̄ Q
aLb
}

+2f ˆ̄∆C D
CEC + 2g Σ̂C D

CEC + 2g Σ̂C̄ U
CUC

−4f Q iσ2
ˆ̄∆Q̄ L− 2g Q iσ2Σ̂QQ− 4g Q iσ2Σ̂Q̄ L, (5.1)

where I have again suppressed generation and color indices. Note that all of the

terms present violate baryon or lepton number. The terms in the final two lines

represent the exotic couplings.

Like the doublets, the ordinary color triplets will mix after the GUT-scale

breaking to form mass eigenstates; again, this mixing includes triplets contained

98



ĤT ĤT

Qk

Ll

Qj

Qi

x0ĥkl ĥij

M10

ĤT ˆ̄∆T

UC
k

EC
l

DC
j

UC
i

x4ĥkl f̂ij

Φ210

Figure 5.1: Examples of superfield diagrams that lead to proton decay in this model.
The hats on the couplings indicate mass basis, and the parameters xi contain
the triplet mixing information unique to the specific pairing of couplings
present in each diagram (see below).

in the 210 and 126 fields not contributing to fermion masses. The resulting 7× 7

triplet mass matrixMT is diagonalized by XMT YT to give the eigenstates. The

exotic types will mix amongst themselves as well in their own 2 × 2 matrices.

These matrices are again fully determined by the heavy vevs and the parameters

of the SO(10) superpotential. Since there is no light triplet analog to Hu,d found

in the low-scale particle spectrum, all of the fields can be heavy, although the

presence of the same parameters in both the doublet and triplet matrices makes

the decoupling of the doublet-triplet behavior a substantial topic itself.

T -channel exchange of conjugate pairs of any of these triplets, through a

mass term or interaction with a heavy Higgs field such as 54 or 210, leads to

operators that change two quarks into a quark and a lepton; this is the numeri-

cally dominant mechanism through which a proton can decay into a meson and a

lepton; corresponding s-channel decays through the scalar superpartners of these

triplets, as well as s-channel decays through the SU(5)-like gauge bosons X, Y ,

are suppressed by an additional factor of 1/MU and so are generally negligible

in comparison.1 Figure 5.1 shows Feynman diagrams for two examples of the

operators in question.

1The dominant mode in X-boson exchange, p → π0e+, may be comparable if the relevant
threshold corrections are large.
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5.1 The Effective Potential

At energies far below the GUT scale, the triplet fields are integrated out, giving

four-point effective superfield operators, which give rise in turn to four-fermion

operators. The corresponding effective superpotential is

W /B/L =
ερστ
MT

(
ĈL
ijklQ

ρ
iQ

σ
jQ

τ
kLl + ĈR

[ijk]lU
Cρ
i DCσj U

Cτ
k ECl

)
, (5.2)

where i, j, k, l = 1, 2, 3 are the generation indices and ρ, σ, τ = 1, 2, 3 are the color

indices; SU(2) doublets are contracted pairwise. This potential has ∆L = 1 and

∆B = 1 and so also has ∆(B−L) = 0. MT is a generic mass for the triplets, which

I will take ∼MU. Note the anti-symmetrization of i, k in the CR operator; this is

the non-vanishing contribution in light of the contraction of the color indices. The

analogous anti-symmetry for the L operator is ambiguous in the current notation,

but I will tend to the issue shortly.

The effective operator coefficients Cijkl are of the form

CR
ijkl = x0hijhkl + x1fijfkl + x2gijgkl + x3hijfkl + x4fijhkl + x5fijgkl

+ x6gijfkl + x7hijgkl + x8gijhkl + x9filgjk + x10gilgjk

CL
ijkl = x0hijhkl + x1fijfkl − x3hijfkl − x4fijhkl + y5fijgkl + y7hijgkl

+ y9gikfjl + y10gikgjl. (5.3)

The couplings h, f, g as written correspond to matter fields in the flavor basis and

undergo unitary rotations in the change to mass basis, as indicated by the hats

on ĈL,R in eq. (5.2) above; I will save the details of the change of basis for later in

the discussion. The parameters xi, yi ∼ XIJ ,YIJ are elements of the unitary ma-

trices that diagonalize the triplet mass matrixMT , or the corresponding matrices

for the exotic triplets. Note that several identifications have already been made
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here: y0,1 = x0,1 and y3,4 = −x3,4; looking at eq. (5.1), one can see the would-be

parameters y2,6,8 = 0. Also note that x0 ∼ M10 is the 10 mass parameter fixed

by the tuning condition for MD. The parameters x9,10 and y9,10 correspond to the

exotic triplets; the indices of those terms are connected in unique ways as a result

of the distinct contractions of fields.

The left-handed term in eq. (5.2) can be further expanded by multiplying

out the doublets as

W /B/L 3
ερστ
MT

(
ĈL

[ijk]lU
ρ
i D

σ
j U

τ
kEl − ĈL

i[jk]lU
ρ
i D

σ
jD

τ
kNl
)
, (5.4)

where N is the left-handed neutrino superfield. Note that the coefficients CL

are anti-symmetrized in the indices of the like-flavor quarks, again due to the

anti-symmetry of color index contraction, as discussed above for CR. This anti-

symmetry will be crucial in restricting the number of contributing channels for

decay.

5.2 Dressing the Operators

Holomorphism of the superpotential forbids conjugate-mixing mass terms like

MT φT φT for φ = H, ∆̄,Σ scalar boson components of the triplet superfields;

therefore, diagrams of the type in Figure 5.1 can only be realized at leading

order through conjugate pairs of Higgsino triplet mediators. Thus, in component

notation, each vertex will be of the form λ φ̃T q q̃ or similar, with λ = h, f, g as

appropriate. Therefore, the squarks and sleptons must be “dressed” with gaugino

or (SUSY) Higgsino vertices to give d = 6 effective operators of the four-fermion

form needed for proton decay. Depending on the sfermions present, diagrams

may in principle be dressed with gluinos, Winos, Binos, or Higgsinos. Examples

of appropriately-dressed component-field diagrams which give proton decay are
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ẽl c̃, t̃

φ̃T φ̃T

W̃− W̃+

u

νl

d

d

(a)

(s̃, d̃), b̃

h̃+u

ũi

h̃−d

φ̃T φ̃T

νl

uC

(d, s)

(sC , dC)

(b)

d̃Cj

φ̃T

c̃C , t̃C

φ̃T

h̃0d h̃0u

uC

s

eCl

u

(c)

Figure 5.2: Examples of dressed diagrams leading to proton decay in the model.
φ = H, ∆̄,Σ. Diagram (a) shows a contribution to p → π+ν̄l; integrat-
ing out the triplets gives an effective operator of type CLudue. Diagram (b)
shows a CLuddν-type operator contributing to K+ν̄l. Diagram (c) shows a
CRuCdCuCeC-type operator contributing to K0e+

l , for l = 1, 2. Note where
more than one field is listed, each choice gives a separate contributing chan-
nel, except for the dependent exchange of (s↔ d) in (b).

shown in Figure 5.2.

In the following subsections, I will discuss the implications for each type of

dressing and determine which types will contribute leading factors in the proton

decay width. Note that I will give this discussion in terms of B̃, W̃ 0, and h̃±,0u,d ,

rather than Ã, Z̃, χ̃±i , and χ̃0
i , because (a) I am assuming a universal mass spec-

trum for superpartners to satisfy FCNC constraints, meaning the mass and flavor

eigenstates coincide for the gauge bosons, and (b) the mixing of Higgsinos, while

not typically negligible, will result in chargino or neutralino masses different from

Higgsino mass parameter µ by O(1) factors as long as gaugino soft masses are rel-

atively small compared to MSUSY; since precise values of such masses are insofar

unknown, and since so many of the SUSY and GUT parameter values needed for

the decay width calculations are similarly unknown, I will take mh̃± ∼ mh̃0 ∼ µ

in order to simplify the calculation, especially for computational purposes.
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5.2.1 Gluino Dressing

Two limitations are readily apparent when considering dressing by gluinos. First,

the lepton will have to be a fermion leg in the triplet exchange operator, as in

Figure 5.2 (b) or (c), since a slepton cannot be dressed by a gluino. Second,

since SU(3)c interactions are generation-independent, the gluino can only take

ũ → u, s̃ → s, etc. The latter may seem a fairly innocuous idea on its own,

but consider that proton decay to a kaon or pion will involve operators with one

and zero second-generation quarks as external legs, respectively, with all others

first-generation. Taking these two points together with the generation-index anti-

symmetry of the Cijkl operators, which implies that i 6= k for the UiDjUkEl

operators and j 6= k for the UiDjDkNl operators, one can see by inspecting a

dressed diagram that only diagrams with exactly one each of U,D, S in the triplet

operator may be successfully dressed by the gluino. This constraint implies that

gluino dressing can contribute only to p → K+ν̄ decay mode; furthermore, the

absence of UDUE-type contributions implies no right-handed channels.

Taking these constraints into account, and thus looking specifically at vari-

ants of the UDSN operator, there are three independent terms one can write [46],

which correspond to the dressed diagrams shown in Figure 5.3: 2

ερστU
ρDσSτNl 3 ερστ

{
(uρνl)(d̃

σs̃τ ) + (dσνl)(ũ
ρs̃τ ) + (sτνl)(ũ

ρd̃σ)
}
. (5.5)

Applying the gluino dressing to each term gives the following sum of four-fermion

effective operators:

g̃−→ ερστ

(αs
4π

)
{κ1(uρνl)(d

σsτ ) + κ2(dσνl)(u
ρsτ ) + κ3(sτνl)(u

ρdσ)} , (5.6)

2Each term like “(uρνl)” is actually (uρ)TC−1νl; the details have been suppressed simply for
readability.
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D

U

Nl

S

3 ũ s̃

d

u

νl

s

+

d̃

ũ

d

u

νl

s

+

d̃

s̃

d

u

νl

s

Figure 5.3: Gluino dressings of the d = 5 operator M−1
T ĈL1[12]lUDSN that would con-

tribute to p → K+ν̄l; in the limit of universal squark masses, the three
diagrams sum to zero by a Fierz identity. NOTE: gluino mass insertions
have been omitted from the diagrams for readability.

where the parameters κa contain factors from the scalar and gluino propagators

in the loop integral. The scalar propagators are different in general; however,

recall that I am assuming universality, meaning that all sfermion masses are equal

to leading order. In that case, all κs are equal and can be factored out of the

brackets. The sum left inside the brackets is zero by a Fierz identity for fermion

contractions [47], and so the contribution from gluino dressing to the K+ν̄ decay

mode vanishes under the universal mass assumption.

5.2.2 Bino Dressing

As with SU(3)c, U(1)Y interactions are also flavor-diagonal; thus, the same con-

straints apply here as in the gluino case, and possible contributions are to the

K+ν̄ mode only.

Looking again at the UDSN operator, for terms in which the neutrino is

a fermion leg, the argument is analogous to that given for the gluino dressing:

the diagrams involved are identical to the three in Figure 5.3 except with g̃ → B̃;

starting again from expression (5.5) and applying the Bino dressing, one arrives at

an expression similar to (5.6) but containing hypercharge coefficients in addition
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to the κa:

B̃−→ ερστ

(α1

4π

)
{κ1YdYs(u

ρνl)(d
σsτ ) + κ2YuYs(d

σνl)(u
ρsτ ) (5.7)

+ κ3YuYd(s
τνl)(u

ρdσ)};

however, u, d, s ∈ Qi are all left-handed quarks with Y = 1
6
, so the hypercharge

products factor out, and again the fermion sum vanishes by the Fierz identity.

Because leptons carry hypercharge, there are three additional diagrams one

should include in Figure 5.3 if dressing instead by the Bino, namely, those involving

the scalar neutrino; these diagrams are shown in Figure 5.4, and the corresponding

terms from the triplet operator are

ερστU
ρDσSτNl 3 ερστ

{
(dσsτ )(ũρν̃l) + (uρsτ )(d̃σν̃l) + (uρdσ)(s̃τ ν̃l)

}
. (5.8)

Applying the Bino dressing to each of these terms gives another sum of four-

fermion effective operators involving hypercharge:

B̃−→ κ ερστ

(α1

4π

)
{YuYν(dσsτ )(uρνl) + YdYν(u

ρsτ )(dσνl) (5.9)

+ YsYν(u
ρdσ)(sτνl)};

this group of terms has a different product of hypercharges from that of (5.7), but

it still has a single common product among the three terms, so I can again factor

it out, which results in yet another vanishing contribution by the Fierz argument.

Hence, the entire Bino dressing contribution to the K+ν̄ mode also vanishes under

the universal mass assumption.
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Figure 5.4: Bino dressings of the d = 5 operator M−1
T ĈL1[12]lUDSN involving a scalar

neutrino that would contribute to p→ K+ν̄l; again, in the limit of universal
squark masses, the three diagrams sum to zero by a Fierz identity. NOTE:
Bino mass insertions have been omitted from the diagrams for readability.

5.2.3 Wino Dressing

As the flavor-diagonal restrictions of the gluino and Bino also apply to the W̃ 0

but not to the W̃±, the two cases must be considered separately. That said, one

additional restriction applicable in both cases is the ability to interact with only

left-handed particles; thus there will be no contribution here from the R-type

operators.

Neutral Wino. As noted, dressing with the W̃ 0 is also restricted to UDSN con-

tributions to the K+ν̄ mode. The terms to be dressed are the same as those in the

Bino case, given by expressions (5.5) and (5.8); however, in applying the dressing,

one finds a kink in the previous argument:

W̃ 0

−→ κ ερστ

(α2

4π

)
{T 3

dT
3
s (uρνl)(d

σsτ ) + T 3
uT

3
s (dσνl)(u

ρsτ ) + T 3
uT

3
d (sτνl)(u

ρdσ)}

=
κ ερστ

4

(α2

4π

)
{(uρνl)(dσsτ )− (dσνl)(u

ρsτ )− (sτνl)(u
ρdσ)}, (5.10)

W̃ 0

−→ κ ερστ

(α2

4π

)
{T 3

uT
3
ν (dσsτ )(uρνl) + T 3

dT
3
ν (uρsτ )(dσνl) + T 3

s T
3
ν (uρdσ)(sτνl)}

=
κ ερστ

4

(α2

4π

)
{(dσsτ )(uρνl)− (uρsτ )(dσνl)− (uρdσ)(sτνl)}; (5.11)
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the negative weak isospin carried by the down-type fields prevents use of the Fierz

identity argument. Thus it seems I have finally found a non-vanishing contribution

to proton decay, albeit to only this one mode.

There is something yet to be gained from the Fierz identity in this case: the

same zero sum seen in the previous cases tells one that in each expression here,

the sum of the two negative terms is equal to the first term; furthermore, note

that the final expressions in (5.10) and (5.11) are actually identical. Therefore, I

can collect the above contributions into one expression:

W̃ 0

−→ 2 × κ ερστ
4

(α2

4π

)
(−2){(uρsτ )(dσνl) + (uρdσ)(sτνl)}

= − κ ερστ
(α2

4π

)
{(uρsτ )(dσνl) + (uρdσ)(sτνl)}. (5.12)

Including the factors from the triplet operator, I can write an operator for the

entire neutral Wino contribution to K+ν̄:

OW̃ 0 = κ ερστ

(α2

4π

)
M−1
T ĈL

1[12]l {(uρsτ )(dσνl) + (uρdσ)(sτνl)}, (5.13)

where the sign cancels with that from the UDDN term in eq. (5.2). The details

of κ will be discussed in the next subsection. Note I could have instead written

the above expressions in terms of (dσsτ )(uρνl) alone; I choose this version sim-

ply because the up-up- and down-down-type pairings in the latter expression are

not found in Higgsino or charged Wino modes and so are not otherwise used in

calculation.

Charged Wino. The assumption of universal mass means that the sfermions are

simultaneously flavor and mass eigenstates; therefore, the would-be CKM-like uni-

tary matrix for each is simply the identity, U f̃ ∼ I. As a result, the unitary matrix

present in the fermion-sfermion-Wino couplings is not Vckm or Vpmns, but rather
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the single unitary matrix corresponding to the fermion rotation. Nonetheless, this

rotation allows for the mixing of generations at the dressing vertices, and the lim-

itations found on the neutral current dressings are not applicable. This is quite

crucial since it allows for contributions from diagrams with any sfermion propaga-

tor not forbidden by the anti-symmetry of the CL
ijkl operator. Proton decay modes

involving neutral kaons or pions, which have uū or dd̄ as external quarks, would

be intractable without generation mixing. Such mixing will of course come at the

expense of suppression from an off-diagonal element in the pertinent unitary ma-

trix, which will typically be O(10−2-3); hence, one can begin to see an indication

of why the K+ν̄ mode is so dominant in the full proton decay width.

One additional constraint on charged Wino dressing involves the Wino mass

insertion. Unlike the gauginos discussed so far, W± are the antiparticles of each

other, rather than either being its own antiparticle. As a result, the Wino mass

term is of the form MW̃ W̃
+W̃−; in order to involve one W̃+ and one W̃− in the

dressing, the two sfermions involved must be of opposite SU(2) flavor. As a result,

triplet operators of the form ud̃uẽ, ũdũe (or the RH equivalents), ud̃d̃ν, and ũddν̃

do not contribute.

Beyond these constraints, the generational freedom of the sfermions leads to

numerous contributions to each of the crucial decay modes, K+ν̄, K0`+, π+ν̄, and

π0`+, where ` = e, µ. In particular the UDUE- and UDDN -type operators each

contribute to each mode through multiple channels. A list of all such contributions

would likely be overwhelming to the reader no matter how excellent my choices

of notation, but one can find the relevant diagrams in Appendix A.

5.2.4 Higgsino Dressing

When compared to the others, Higgsino dressing is wildly unconstrained. First,

the low-scale Yukawa couplings governing the fermion-sfermion-Higgsino interac-
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tions couple a left-handed field to a right-handed one, so clearly the dressing can

be applied to both CL- and CR-type triplet operators. Also, since charged and

neutral Higgsinos couple through the same Yukawas, both types of interactions

can mix generations, meaning the generation-diagonal constraints on the rest of

the neutral-current dressings do not apply to h̃0
u,d. The only previously-mentioned

restriction that does apply is, like the charged Wino, the mass term for the SUSY

Higgs couples Hu to Hd, so it therefore cannot contribute through the triplet op-

erators with sfermions of like SU(2) flavor. One remaining minor restriction is

that one will not see the triplet operator ũduẽ dressed by h̃± nor ud̃dν̃ dressed by

h̃0 because each would result in an outgoing left-handed anti-neutrino.

One can find cases in the literature (e.g. [47]) of Higgsino-dressed contri-

butions being counted as negligible when compared to those from the Wino; this

is usually because if one exchanges the g2
2 VCabibbo found in a typical dominant

Wino contribution for a yuii′ y
d
kk′ tan β found in a typical dominant Higgsino con-

tribution, the resulting value will be smaller by at least a factor of O(10). Of

course one makes several assumptions in such a comparison: µ ∼ MW̃ for one,

but additionally that (a) tan β is small or moderate, and (b) the Cijkl coefficients

are usually of roughly the same magnitude for any combination of i, j, k, l present.

For this analysis, though, neither assumption is valid: I have already men-

tioned that I will consider large tan β for maximal applicability; furthermore, due

to the rank-1 texture of the h coupling and the related sparse or hierarchical

textures of f and g as shown in eq. (4.38), many of the Cijkl are small or zero, cre-

ating large disparities between the values from one contribution to the next. This

discrepancy from expectation is further enhanced by the tendency for the unitary

matrices U f , which give the off-diagonal suppressions at the dressing vertices in

this model, to individually deviate from the hierarchical structure of Vckm.

To see the extent to which these two properties can lead to surprises in
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numerical dominance, consider that, for example, I find CL
1213 ∼ CL

3213 U
d
31; one

might expect that Ud
31 ∼ Vub and CL

1213 ∼ CL
3213, so therefore the former term is

much larger than the latter, but in fact neither assumption is accurate.

As a result of these model characteristics, I find that the dominant contri-

butions from Higgsino-dressed diagrams are generally comparable to those from

Wino-dressed diagrams. This statement further applies to contributions from

right-handed operators as well. Thus I made no a priori assumptions about which

of the CL- or CR-type Higgsino-dressed contributions might be excluded as neg-

ligible.

Because both the UCDCUCEC operators and the h̃0
u,d dressing contribute to

all of the pertinent decay modes, the complete list of channels dressed by the

Higgsino is considerably more plentiful than that of the Wino and so would be

even more overwhelming, but again one can find all of the pertinent diagrams in

Appendix A.

5.3 Building the Partial Decay Width Formulae

As I discussed above in the Higgsino dressing subsection, the Yukawa texture

seen in eq. (4.38) leads to (a) unusually extreme variation in the sizes of the

Cijkl coefficients, depending strongly on the index values present, and (b) textures

for the unitary matrices U f which deviate substantially from that of Vckm. The

repercussions of these features clearly extend beyond affecting the relative size of

Wino and Higgsino channel contributions. For one, the off-diagonal suppressions

U f
kk′ present in most charged Wino diagrams cannot be dependably approximated

as V ckm
kk′ ; fortunately, the GUT-scale U f are fixed by the fermion fitting, and since

the running of such unitary matrices is small, I can simply use them at the W̃±

vertices as reasonable approximations to their low-scale counterparts.

Another complication due the Yukawa texture is the disturbance of typically
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useful assumptions about which channels dominate the calculation. Such assump-

tions include dominance of Higgsino channels with t̃, b̃, τ̃ intermediate states or

Wino channels ∝ Vii or VCabibbo. In the absence of the general validity of any

such simplification, I am compelled to presume that any channel might be a non-

negligible contribution to decay width.

Thus, I initially treated all possible channels as potentially significant; how-

ever, in the interest of saving considerable computational time, I chose an abridged

set of contributions to include in my numerical analysis through inspection of ten-

tative calculations, although my threshold for inclusion was quite conservative. It

seemed to me that conventional methods of keeping only the most dominant terms

for calculation might easily lead to drastically underestimated decay widths, in

that if I exclude ten “negligible” terms smaller than leading contributions by a

factor of ten, then I have evidently excluded the equivalent of a leading contri-

bution. To fully avoid such folly, I used a cutoff of roughly 1/50 for exclusion,

and made cuts on a per-triplet-operator basis, which translates to three or four

significant figures of precision in the decay widths.

The Feynman diagrams for all non-vanishing channels of proton decay for

the K+ν̄l, K
0`+, π+ν̄l, and π0`+ modes are catalogued in Appendix A.

Calculation of a proton partial decay width can be broken into three distinct

parts. The first part is the evaluation of the “internal”, d = 6 dressed diagrams

discussed in the previous subsection; each diagram corresponds to an effective

operator of the form X qqq`, where X ∼ M−1
T Cijkl . . . is a numerical coefficient

unique to each decay channel. Note that here each q is a single quark fermion, not

a doublet. The second part is the evaluation of a hadronic factor that quantifies

the conversion of the three external quarks of a dressed diagram–plus one spectator

quark–into a proton and a meson. The third and final part is the evaluation of

the “external” effective diagram for p→ M¯̀giving the decay width of the proton.
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I will go through the details of each stage before giving the resulting decay width

expressions.

5.3.1 Evaluating the Dressed Operators

The evaluation of one such dressed d = 6 box diagram involves calculating the loop

integral but no kinematics, because the physical particles carrying real momenta

here are the proton and the meson, not the quarks. The loop factor is not divergent

and is of the same general form for every channel; furthermore, as the heavy

triplets are common to all diagrams and the sfermion masses are assumed to be

equal, the only factors in the loop that vary from one channel to the next are the

couplings and masses associated with either the Wino or Higgsino. The remaining

variation from one diagram to the next depends entirely on the particle flavors,

which is apparent in the external fermions and encoded in the Cijkl coefficients

and the unitary matrices involved in rotation to mass basis. Thus, I can write the

operator for any pertinent diagram as a generic Wino- or Higgsino coefficient times

one of several flavor-specific “sub-operators”; the forms of the general operators

are

OW̃ =
(α2

4π

)( 1

MT

)
I
(
MW̃ ,mq̃

)
CA
W̃

(5.14)

and

Oh̃ =

(
1

16π2

)(
1

MT

)
I (µ,mq̃) CA

h̃
, (5.15)

where3

I(a, b) =
a

b2−a2

{
1 +

a2

b2−a2
log
(a
b

)}
,

3One might notice that this expression for I(a, b) differs from what is usually given in the
literature for analogous proton decay expressions; the discrepancy is due to my inclusion of the
universal mass assumption prior to evaluating the loop integral.
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and the sub-operators CA are4

C I
W̃

=
1

2
(uT C−1 dj) Ĉ

L
[ij1]l U

d
ii′ U

ν
ll′ (d

T
i′ C

−1 νl′)

C II
W̃

=
1

2
(uT C−1 el) Ĉ

L
[1jk]l U

d
kk′ U

u
j1 (dTk′ C

−1 u)

C III
W̃

= −1

2
(uT C−1 dk) Ĉ

L
1[jk]l U

u
j1 U

e
ll′ (u

T C−1 el′)

C IV
W̃

= −1

2
(dTj C

−1 νl) Ĉ
L
i[jk]l U

d
ii′ U

u
k1 (dTi′ C

−1 u) (5.16)

for the (charged) Wino,

C I
h̃±

= (uT C−1 el) Ĉ
L
[1jk]l y

d †
kk′ y

u †
j1 (d C Tk′ C−1 uC)

C II
h̃±

= −(uT C−1 dk) Ĉ
L
1[jk]l y

u †
j1 y

e †
ll′ (uC T C−1 eCl′)

C III
h̃±

= −(dTj C
−1 νl) Ĉ

L
i[jk]l y

d †
ii′ y

u †
k1 (d C Ti′ C−1 uC)

C IV
h̃±

= (uC T C−1 d Cj ) ĈR
[ij1]l y

u
ii′ y

e
ll′ (d

T
i′ C

−1 νl′)

C V
h̃±

= (uC T C−1 eCl ) Ĉ
R
[1jk]l y

u
kk′ y

d
j1 (dTk′ C

−1 u) (5.17)

for the charged Higgsino, and

C I
h̃0

= −(uT C−1 dk) Ĉ
L
[ij1]l y

u †
i1 ye †ll′ (uC T C−1 eCl′)

C II
h̃0

= −(uT C−1 el) Ĉ
L
[1jk]l y

d †
kk′ y

u †
j1 (d C Tk′ C−1 uC)

C III
h̃0

= (dTj C
−1 νl) Ĉ

L
i[jk]l y

u †
i1 yd †kk′ (u

C T C−1 d Ck′)

C IV
h̃0

= −(uC T C−1 d Cj ) ĈR
[ij1]l y

u
i1 y

e
ll′ (u

T C−1 el)

C V
h̃0

= −(uC T C−1 eCl ) Ĉ
R
[1jk]l y

u
k1 y

d
jj′ (u

T C−1 dj′) (5.18)

for the neutral Higgsino, where I have suppressed the color indices everywhere.

Again the hats on ĈL,R indicate ĥ, f̂ , ĝ are rotated to the mass basis, which I will

4I do not list the neutral Wino operator again here, but looking back at eq. (5.13), one can
see that κ = I

(
M
W̃
,mq̃

)
.
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discuss in detail shortly. Note that UDUE and UDDN operators generally differ

by a sign, as do diagrams dressed by h̃±u,d and h̃0
u,d; the latter difference arises

from the SU(2) contraction in the SUSY Higgs mass term. These sign differences

create the potential for natural cancellation within the absolute squared sums of

interfering diagrams, and even for cancellation of entire diagrams with each other

in some cases. Also note that the Yukawa couplings are Hermitian in this model,

hence the distinction above between yf and yf † is not relevant for this work.

I utilized two additional observations to simplify the implementation of

the above operators. First, I took values for the superpartner masses such that

µ,MW̃ � mq̃, which implies I(a, b) ' a/b2. Also, because I am only interested in

the combined contribution of the three neutrinos, and because the total contribu-

tion is the same whether one sums over flavor states or mass states, I made the

replacement Uν
ll′ → δll′ for C I

W̃
and took l = l′ ⇒ yell′ = me

l /vd for C IV
h̃±

.

Since the unitary matrices U f do not appear in the SM (+ neutrino sector)

Lagrangian except in the CKM and PMNS combinations, the non-diagonal SUSY

Yukawas yf present in the CA are not physically determined. Fortunately in our

GUT model full high-scale Yukawas are defined by the completely determined

fermion sector. Furthermore, it is known that unitary matrices such as the CKM

matrix experience only small effects due to SUSY renormalization. Thus, since

the low-scale masses are of course known, I can define good approximations to

the SUSY Yukawas needed by using the high-scale U f to rotate the diagonal mass

couplings at the proton scale, divided by the appropriate vevs:

yu =
1

vu
Uu
(
Mwk

u

)D
U †u,
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where vu = v sin β, or, in component notation,

yuij =
1

vu

∑
k

mu
k U

u
ik U

u ∗
jk . (5.19)

I can similarly write

ydij =
1

vd

∑
k

md
k U

d
ik U

d ∗
jk

yeij =
1

vd

∑
k

me
k U

e
ik U

e ∗
jk ,

where vd = v cos β. Mass values used were taken from the current PDG [48];

light masses are run to the 1-GeV scale, top and bottom masses are taken on-

shell. Note that since the Yukawa factors always appear in pairs of opposite flavor

in the Higgsino operators, and since 1
sinβ cosβ

' tan β for large β, the Higgsino

contributions to proton decay are ∼ tan2 β
v4

for this model.

There are generally two distinct mass-basis rotations possible for each of the

UDUE -, UDDN -, and UCDCUCEC-type triplet operators; the difference between

the two depends on whether the operator is “oriented” (i.e., in the diagram) such

that the lepton is a scalar. For a given orientation, a unitary matrix corresponding

to the fermionic field at one vertex in the triplet operator will rotate every coupling

present in CL,R pertaining to that vertex; an analogous rotation will happen for

the other vertex in the operator. For example, looking at the π+ν̄l channel in

Figure 5.2(a), every coupling λij (λ = h, f, g) from CL
ijkl present at the φ̃T vertex

will be rotated by some form of Ud; similarly all λ′kl present at the φ̃T vertex

will be rotated by some Uu. The down quark field shown is a mass eigenstate

quark resulting from the unitary rotation, which one can interpret as a linear

combination of flavor eigenstates: dj = Ud
jm d

′
m, with j = 1; applying the same

thinking to the up quark, one also has uTk = u′Tp U
uT
pk , with k = 1. To work out
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the details of the rotations, I start with the d = 5 operator written in terms of

flavor states5,
∑

a xa(ũi λ
a
im d

′
m)(u′pλ

′a
pl ẽl), where I have expanded CL

impl in terms

of its component couplings and chosen the indices with the malice of forethought;

now I can write

∑
a

xa(ũ
T
i C

−1λaim d
′
m)(u′Tp λ′apl C

−1 ẽl)

=
∑
a

xa(ũ
T
i C

−1 λaim U
d †
mj︸ ︷︷ ︸

≡ λ̂aij

Ud
jn d

′
n︸ ︷︷ ︸

dj

)(u′Tp UuT
pk︸ ︷︷ ︸

uTk

Uu ∗
kq λ

′a
ql︸ ︷︷ ︸

≡ λ̂′akl

C−1 ẽl).

Using the new definitions for λ̂, one can see that the rotated coefficient ĈL corre-

sponding to the expression in eq. (5.3) has become

ĈL
ijkl = x0ĥijĥkl + x1f̂ij f̂kl − x3ĥij f̂kl + . . .

= x0(hU †d)ij(U
∗
uh)kl + x1(f U †d)ij(U

∗
uf)kl − x3(hU †d)ij(U

∗
uf)kl + . . . (5.20)

Note that this version of ĈL is only valid for ũidjukẽl-type operators, with this

particular orientation in the diagram; there is an analogous pair of rotations for

ud̃ũe, as well as two each for UDDN and UCDCUCEC, giving a total of six possible

schemes.

5.3.2 From Quarks to Hadrons

As mentioned above, the composite hadrons p and K, π (in addition to the lepton)

carry physical momenta in the proton decay process, not the “external”, “physical”

quarks seen in the dressed operators above. Therefore one is in need of calculating

a factor like 〈M| (qq)q |p〉, where M = K, π is the final meson state. More explicitly

5Recall the scalars are both mass and flavor eigenstates under the universal mass assumption.
Also note “λ′” is again my name for the second generic coupling, and the prime has nothing to
do with basis; I will continue to use hats to indicate rotated couplings.
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these objects will look like

〈K+| ερστ (uτsσ)L d
ρ
L |p〉

〈K0| ερστ (uρsτ )R uσL |p〉

〈π0| ερστ (uσdτ )L uρR |p〉
...

Such matrix elements are calculated using either chiral Lagrangian methods or

a three-point function (for M, p, and the (qq)q operator) on the lattice; in ei-

ther case, the result is determined in part by a scaling parameter βH defined by

〈0| (qq)q |p(s)〉 = βHPLup(s), where PL is the left-chiral projection matrix and

up(s) is the Dirac spinor for an incoming proton of spin s. In principle βH is

not necessarily the same for cases where the quarks have different chiralities, but

the values usually differ only in sign, which is irrelevant when the entire factor is

squared in the decay width expression.

While lattice methods have advanced significantly since the early years of

SUSY GUT theory, there is still a substantial amount of uncertainty present in

the calculation of both βH and the matrix element factors; some groups have

even obtained contradictory results when applying the two methods in the same

work [49]. Some more recent works (e.g. [50]) using more advanced statistics

and larger lattices seem to be converging on trustworthy answers, but it is still

normal to see results vary by factors of (1/2 - 5) for a single decay mode from

one method to the next, where the values for the matrix elements themselves are

O(10)× βH . Thus I will simply take the admittedly favorable approach of using

〈M| (qq)q |p(s)〉 ∼ βHPup for all modes.

It is not uncommon to see values as low as βH = 0.003 used in other works

calculating proton decay [51], but while calculated values have indeed varied as

much as (0.003 - 0.65) over the years [50], the value is now most commonly found
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in the range (0.006 - 0.03) [52], with a tendency to prefer βH ∼ 0.015, as seen in

[50]. Again, I will take a slightly optimistic approach and use βH = 0.008.

5.3.3 The p→ M¯̀ Effective Diagram and the Decay Width of the

Proton

Ultimately it is a deceptively simple two-body decay that I am calculating, as

shown in Figure 5.5. The corresponding decay width can be determined by the

usual phase-space integral expression:

Γ =
1

2Mp

∫
d3p

(2π)3 2EM

∫
d3p

(2π)3 2E`
(2π)4 δ4(pp − pM − p`)

1

2

∑
s

|M | 2 (5.21)

where in this case

1

2

∑
s

|M | 2 =
1

2
β2
H (ALAS)2

(
|OW̃ | 2 + |Oh̃| 2

) ∑
s,s′

|vT` (p`, s)C
−1 up(pp, s

′)| 2.

(5.22)

The factors AL and AS arise due to the renormalization of the d = 6 dressed

operators, from Mp to MSUSY and MSUSY to MU, respectively; their values have

been calculated in the literature as AL = 0.4 and AS = 0.9-1.0 [53]. The spinor

factor can be evaluated with the usual trace methods; in the rest frame of the

proton, where −pM = p` ≡ p, and utilizing m2
` � |p| 2 (which is only marginally

valid for the muon but clearly so otherwise), the decay width expression simplifies

to

Γ =
1

4π
β2
H (ALAS)2

(
|OW̃ | 2 + |Oh̃| 2

)
p, (5.23)

where

p ≡ |p| ' Mp

2

(
1− m2

M

M2
p

)
. (5.24)

Note that p ∼ Mp/2 for pion modes, but that value is reduced by a factor of

∼ 25% for kaon modes.
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p

¯̀

M

Figure 5.5: Proton decay to a meson and an anti-lepton; the effective operator vertex
contains hadronic and renormalization factors as well as the sum of all d = 6
dressed operators contributing to the mode.

I now have all the pieces needed to write the working formulae for the partial

decay widths of the proton. Let me first define CA as extended forms of the Cijkl

by

CA
W̃

= CA
W̃

(qq)(q`)

CA
h̃±

= CA
h̃±

(qq)(q`)

CA
h̃0

= CA
h̃0

(qq)(q`), (5.25)

so that these coefficients contain the U f or yf factors as well as the CL,R of the

CA operators in (5.16)-(5.18). Now I can easily translate an operator expression

like

OW̃ (K+ν̄) '
(α2

4π

) 1

MT

(
MW̃

m2
q̃

)
{C I

W̃
+ C IV

W̃
} (5.26)

into a partial decay width statement,

ΓW̃ (p→ K+ν̄) ' 1

4π

(α2

4π

)2 1

M2
T

(
MW̃

m2
q̃

)2

β2
H (ALAS)2 p |CI

W̃
+ CIV

W̃
|2, (5.27)

without losing either information or readability. Note though there is still a “black-

box” nature to the CA (it was there in the CA operators as well), in that without

specifying the generation indices of the external dj,i′ quarks, the sums in eqs. (5.26)

and (5.27) could just as easily apply to π+ν̄. Furthermore, there are at least several

channels present in each CA operator that contribute to any one mode, which are
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determined uniquely by the generations of the internal sfermions in addition to

those of the external quarks.6 If the reader wishes to examine the decay widths

at the full level of detail, he or she should utilize these expressions along with the

operators in eqs. (5.16)-(5.18) and the diagrams in Appendix A.

All remaining limitations aside, I can now present relatively compact and

intelligible expressions for the Wino- and Higgsino-dressed partial decay widths

of the proton for generic mode p→ M¯̀:

ΓW̃ (p→ M¯̀) ' 1

4π

(α2

4π

)2 1

M2
T

(
MW̃

m2
q̃

)2

β2
H (ALAS)2 p

∣∣∣∑
A∈M¯̀

CA
W̃

∣∣∣2 (5.28)

Γh̃(p→ M¯̀) ' 1

4π

(
1

16π2

)2
1

M2
T

(
µ

m2
q̃

)2

β2
H (ALAS)2 p

∣∣∣∑
A∈M¯̀

CA
h̃

∣∣∣2. (5.29)

For the numerical analysis, I used the generic values MT = 2×1016 GeV, MW̃ =

µ = 100 GeV, and mq̃ = 3 TeV. Also, let me repeat here that because of the two

SUSY Yukawa coupling factors in the CA
h̃

, which always come in opposite flavor,

Γh̃ ∝
(

1

v2 sin β cos β

)2

∼ tan2 β

v4
.

Before moving on to the fermion sector fit results, let me remark that because

the Higgsinos vertices change the chiralities of the outgoing fermions, there can be

no interference between Wino- and Higgsino-dressed diagrams, as implied by the

notation in eq. (5.23); however, since diagrams for the right-handed CR operators

have outgoing left-handed fermions by the same Higgsino mechanism, diagrams for

CR- and CL-type operators with the same external particles of matching chiralities

do interfere with each other, and so all such contributions to a given mode do in

fact go into the same absolute-squared sum factor, as suggested by eq. (5.29).

6Indeed I could have defined the coefficients with six indices: CAijklmn, thereby creating a
means of alleviating all degeneracy, but I do not expect such information-dense objects to be so
enlightening to readers, especially since for most modes, at least the Higgsino-dressed expression
would devolve into an entire pageful of terms corresponding to the individual channels.
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Chapter 6

Results of the Analysis

6.1 Fitting the Fermion Mass Matrices

Diagonalizing the mass matrices given in eq. (4.34), with the Yukawa textures

shown in (4.38), gives the GUT-scale fermion masses and mixing angles for a given

set of values for the mass matrix parameters hij, fij, ri, etc. In order to find the

best fit to the experimental data, I used the Minuit tool library for Python [54, 55]

to minimize the sum of chi-squares for the mass-squared differences ∆m2
21 (aka

∆m2
�) and ∆m2

32 (aka ∆m2
atm) and the PMNS mixing angles in the neutrino sector

as well as the mass eigenvalues and CKM mixing angles in the charged-fermion

sector. Type-I and type-II seesaw neutrino masses were each fit independently, so

I report the results for each separately.

Note that throughout the analysis, I have taken vu = 117.8 GeV, which is

calculated with tan β = 55 and for v run to the GUT scale [56]. The corresponding

value for the down-type vev is vd = 2.26 GeV.

Threshold corrections at the SUSY scale are ∝ tan β, and so should be large

in this analysis [57]. The most substantial correction is to the bottom quark mass,

which is dominated by gluino and chargino loop contributions; this correction also

induces changes to the CKM matrix elements involving the third generation. The

explicit forms of these corrections can be seen in a previous work on a related

model [45]. Additionally, smaller off-diagonal threshold corrections to the third

generation parts ofMd result in small corrections to the down and strange masses

as well as further adjustments to the CKM elements. All such corrections can be
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parametrized in the model by

M′
d =Md +

r1

tan β


0 0 δVub

0 0 δVcb

δVub δVcb δmb

 , (6.1)

where Md is given by eq. (4.34). If I simply take this augmented form for Md as

part of the model input, the δ parameters are fixed by the mass matrix fitting,

which results in implied constraints on certain SUSY parameters and the mass

values that depend on them, namely, the Higgs and the light stop and sbottom

masses. This entire prescription and its implications were considered in detail

in [45], and in comparing to that work, one can see that for large tan β and

relatively small threshold corrections, the resulting constraints on the Higgs and

squark masses are less interesting, so I will not consider them in more detail for

this analysis.

6.1.1 Fit Results for Type II Seesaw

If one breaks SO(10) and B − L together at vR >∼ 1017 GeV, and sets the vev

vL ∼ 1 eV through a tuning of the SU(5) 15 mass term for ∆̄L, then the vL term

in eq. (4.36) dominates over the type-I contribution by 2-4 orders of magnitude in

the neutrino mass matrix; therefore eq. (4.36) reduces to

Mν ' vLf (6.2)

Using this prescription, I find a fairly large parameter space for which the sum of

chi-squares is quite low, although some of the output values, such as θ13 and the

down and bottom masses, are quite sensitive to the variation in the minima. This

is problematic for θ13 especially, since it is known to high experimental precision

[58]. Tables 6.1 and 6.2 display the properties of one of the more favorable fits;
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M (GeV) 106.6 r1/ tan β 0.014601
f11 (GeV) -0.045564 r2 0.0090315
f12 (GeV) 0.048871 r3 1.154
f13 (GeV) -0.59148 ce -2.5342
f22 (GeV) -2.06035 cν n/a
f23 (GeV) -1.4013 δmb (GeV) -22.740
f33 (GeV) -1.40644 δVcb (GeV) 1.2237
g12 (GeV) 0.018797 δVub (GeV) 4.2783
g13 (GeV) -0.92510
g23 (GeV) -3.8353

Table 6.1: Best fit values for the model parameters at the GUT scale with type-II seesaw.
Note that cν , which appears in the Dirac neutrino mass contribution to the
type-I term, is not relevant for type-II.

Table 6.1 gives the values for the adjusted model input parameters, and Table

6.2 gives the corresponding output values for the fermion parameters, with exper-

imentally measured values included for comparison. Note that the down quark

mass is seemingly a bit low, which seems to be a general feature in this model, but

I will discuss in the next section why this is not a problem. The precise value of vL

for this fit is 1.316 eV, which sets the overall neutrino mass scale at m3 ∼ 0.05 eV.

In order to calculate the Cijkl proton decay coefficients, as well as for use

in the neutrino mass matrix (4.36), I needed to determine the “raw” Yukawa

couplings, h, f, g, from the dimensionful couplings, h̃, f̃ , g̃, of the mass matrices

given in eq. (4.34), which are obtained directly from the fit; to do so I need to

extract the absorbed vev vu and doublet mixing parameters f(UIJ ,VIJ) discussed

in section 4.4. There is some freedom in the values of those mixing elements

from the viewpoint of this predominantly phenomenological analysis, but they

are constrained by both unitarity and the ratios ri and c`, which have been fixed

by the fermion fit. Again, see [43] for details, or see [45] for an example of such a

calculation. The resulting dimensionless couplings corresponding to this type-II

fit are
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best fit exp value best fit exp value
mu (MeV) 0.7172 0.72+0.12

−0.15 Vus 0.2245 0.2243± 0.0016
mc (MeV) 213.8 210.5+15.1

−21.2 Vub 0.00326 0.0032± 0.0005
mt (GeV) 106.8 95+69

−21 Vcb 0.0349 0.0351± 0.0013
md (MeV) 0.8827 1.5+0.4

−0.2 J × 10−5 2.38 2.2± 0.6
ms (MeV) 34.04 29.8+4.18

−4.5 ∆m2
21/∆m

2
32 0.03065 0.0309± 0.0015

mb (GeV) 1.209 1.42+0.48
−0.19 θ13 (◦) 9.057 8.88± 0.385

me (MeV) 0.3565 0.3565+0.0002
−0.001 θ12 (◦) 33.01 33.5± 0.8

mµ (MeV) 75.297 75.29+0.05
−0.19 θ23 (◦) 47.70 44.1± 3.06

mτ (GeV) 1.635 1.63+0.04
−0.03 δCP (◦) -7.506∑

χ2 6.0

Table 6.2: Best fit values for the charged fermion masses, solar-to-atmospheric mass
squared ratio, and CKM and PMNS mixing parameters for the fit with Type-
II seesaw. The 1σ experimental values are also shown for comparison [56],
[48], where masses and mixings are extrapolated to the GUT scale using the
MSSM RGEs. Note that the fit values for the bottom quark mass and the
CKM mixing parameters involving the third generation shown here include
the SUSY-threshold corrections

h =


0

0

1.207

 ; f =


−0.00053748 0.00057649 −0.0069772

0.00057649 −0.024304 −0.016530

−0.0069772 −0.016530 −0.0165906



g = i


0 0.00033485 −0.016480

−0.00033485 0 −0.0683214

0.016480 0.0683214 0

 (6.3)

Note that in addition to f11 ∼ f12 ∼ 0, this fit satisfies g12, f13 � 1 as is desired

for proton decay.

6.1.2 Fit Results for Type I Seesaw

If one instead takes vR <∼ 1016 GeV and vL ∼ 1 meV, then the type-I contribution

is dominant over the type-II contribution, and eq. (4.36) becomes
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Mν ' −MνD (vRf)−1 (MνD)T , (6.4)

In this case, initial searches again showed that certain output parameters were

quite sensitive to the input and were often in contention with each other or with

the de facto upper bounds on the fij needed for proton decay. In the first cluster

of minima found by the fitting, the output values for one or more of charm mass,

bottom mass, or θ23 was much too small; furthermore, those results came with odd,

large tunings of certain input parameters, such as ce,ν ∼ O(100) or δmb > 40 GeV.

The addition of a small type-II correction to the neutrino matrix led me to a new

swath of parameter space, and ultimately I found a new cluster of minima that did

not require the correction. Table 6.3 gives the values for the adjusted model input

parameters for one such pure type-I fit, and Table 6.4 gives the corresponding

output values for the fermion parameters. Fits in this swath of parameter space

still have cν ∼ 50 and δmb ∼ 25 GeV, but this value for cν , while slightly strange,

can be accommodated by the freedom in the doublet mixing parameters, and such

a value for the largest SUSY threshold correction is actually quite moderate for

large tan β. The precise value for the ∆̄R vev in this fit is vR = 1.21×1015 GeV.

Note also that the top and strange masses are quite a bit lower than in the

type-II fit; however, note I have also quoted different experimental values with

which agreement is maintained. The differences here come from an update to

the work in [56] in determining two-loop MSSM RGEs for fermion masses. The

update [59] reports notably lower masses for all the quarks at tan β = 55 and

µ = 2.0×1016 GeV, especially for the up, down, strange, and top masses, due to

updates in initial values and methodology. Hence, one should not give the specific

values too much weight in such a fit, and I do not consider the reported differences

to be significant. This same thinking applies for the type-II down mass value in

Table 6.2.
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M (GeV) 76.10 r1/ tan β 0.024701
f11 (GeV) 0.010130 r2 0.24414
f12 (GeV) -0.089576 r3 0.00600
f13 (GeV) 0.93973 ce -3.3279
f22 (GeV) 0.8659 cν 45.218
f23 (GeV) 1.4884 δmb (GeV) -28.000
f33 (GeV) 3.5495 δVcb (GeV) -0.84394
g12 (GeV) 0.20048 δVub (GeV) 0.51486
g13 (GeV) 0.05352
g23 (GeV) 0.35153

Table 6.3: Best fit values for the model parameters at the GUT scale with type-I seesaw.

Again I need to determine the raw Yukawa couplings for proton decay anal-

ysis. The resulting couplings corresponding to this type-I fit are

h =


0

0

1.6152

 f =


0.0001623 −0.00143525 0.01505699

−0.00143525 0.01387415 0.02384774

0.01505699 0.02384774 0.05687217



g = i


0 0.0068081 0.0018175

−0.0068081 0 0.0119376

−0.0018175 −0.0119376 0

 (6.5)

Here, one still finds f11 ∼ 0, but each of f12, f13, and g12 is larger by an order of

magnitude than in the type-II case, which is thought to be unfavorable for proton

decay. At the same time, g13 and g23 are smaller by an order of magnitude, so it is

not clear that the net benefit lost is substantial. In the end, a different distinction

will give way to success for this type-I fit; I will discuss those details in the next

section.
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best fit exp value best fit exp value
mu (MeV) 0.72155 0.72+0.12

−0.15 Vus 0.2240 0.2243± 0.0016
mc (MeV) 212.2 210.5+15.1

−21.2 Vub 0.00310 0.0032± 0.0005
mt (GeV) 76.97 80.45+2.9 ∗

−2.6 Vcb 0.0352 0.0351± 0.0013
md (MeV) 1.189 0.930± 0.38∗ J × 10−5 2.230 2.2± 0.6
ms (MeV) 20.81 17.6+4.9 ∗

−4.7 ∆m2
21/∆m

2
32 0.0309 0.0309± 0.0015

mb (GeV) 1.278 1.24± 0.06∗ θ13 (◦) 8.828 8.88± 0.385
me (MeV) 0.3565 0.3565+0.0002

−0.001 θ12 (◦) 33.58 33.5± 0.8
mµ (MeV) 75.29 75.29+0.05

−0.19 θ23 (◦) 41.76 44.1± 3.06
mτ (GeV) 1.627 1.63+0.04

−0.03 δCP (◦) -46.3∑
χ2 1.75

Table 6.4: Best fit values for the charged fermion masses, solar-to-atmospheric mass
squared ratio, and CKM and PMNS mixing parameters for the fit with Type-
I seesaw. The 1σ experimental values are shown [56] (∗ - from [59] instead),
[48]; masses and mixings are extrapolated to the GUT scale using the MSSM
RGEs. Note that again that pertinent fit values include threshold corrections.

6.2 Results of Calculating Proton Partial Lifetimes

In order to give an actual number for any decay width, in addition to choosing

representative values for the triplet, sfermion, and Wino or Higgsino masses, I

also need values for the xi and yi triplet mixing parameters in order to calculate

the Cijkl values. Recall that the 10 mass parameter x0 must be fixed at O(1)

to allow the SUSY Higgs fields to be light; the remaining mixing parameters are

functions of many undetermined GUT-scale masses and couplings found in the

full superpotential for the heavy Higgs fields, the details of which can be seen in

[42]. There are nearly as many of those GUT parameters as there are independent

xs and ys, so it is not unreasonable to simply treat the latter as free parameters.

Ideally, one would find that the width for any particular mode would be

essentially independent of those parameter values, i.e., that for arbitrary choices

0 < |xi|, |yi| < 1, devoid of unlucky relationships leading to severe enhancements,

all mode lifetimes would be comfortably clear of the experimentally determined

lower limits, given in Table 6.5. The reality is quite bleak in comparison. For a
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decay mode τ exp lower limit (yrs)
p→ K+ν̄ 6.0×1033

p→ K0e+ 1.0×1033

p→ K0µ+ 1.3×1033

p→ π+ν̄ 2.7×1032

p→ π0e+ 1.3×1034

p→ π0µ+ 1.0×1034

Table 6.5: Experimentally determined lower limits [60] on the partial lifetimes of dom-
inant proton decay modes considered in this work.

typical GUT model, if the proton decay lifetimes can be satisfied at all, one is

required to choose x and y values very carefully such that either individual Cijkl

or
∣∣∣∑CA

∣∣∣ are small through cancellations among terms. These tunings may need

to be several orders of magnitude in size (e.g., CA = −CB +O(10−3)), and many

such relationships may be needed.

The Yukawa textures shown in eq. (4.38) are intended to naturally suppress

the values of some crucial Cijkl values so that the need for such extreme tuning is

alleviated. In order to test the ansatz, I “simply” needed to find a set of values for

the mixing parameters yielding partial decay widths that satisfy the experimental

constraints; the difficulty in determining those values inversely corresponds to

success of the ansatz. If the ansatz does indeed work optimally, I should be able

to choose arbitrary xi and yi values as suggested above. Realistically though, the

authors of [23] and I expected some searching for a valid region of parameter space

to be required.

To perform that search, I designed a second Python program to find max-

imum partial lifetimes based on user-defined mixing values as well as the raw

Yukawa couplings fixed by the fermion sector fitting. Parameter values are defined

on a per-trial basis for any number of trials. I started with the most optimistic

case by generating random initial values for xi and yi (but x0 ∼ 1 fixed), with

the decay width for K+ν̄ minimized by adjusting those values in each trial. The
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minimization was again performed using the Minuit tool library.

The search based on fully random initial values was unsuccessful, in that

the K+ν̄ mode lifetime consistently fell in the 1031-32 year-range for the type-II

solution and was typically ∼ 1×1033 years for the type-I case;1 at the same time

however all five other modes in question were usually near or above their respective

limits for those same arbitrary mixing values. Hence it was clear even with the

K+ν̄ mode failure that the ansatz was having the desired effect to some extent.

Also, note that this type-I solution for K+ν̄ was short of the limit by only about

a factor of five. This is surprising since the type-I-based Yukawas reported in

eq. (6.5) fell short of meeting the ansatz criteria. Given the differing behaviors of

the two solutions, I will report the remaining details in separate subsections once

again.

6.2.1 Proton Partial Lifetimes for Type II Seesaw

To further explore the properties of the “default behavior” of the lifetime values

in the model, I considered the case in which x0 ∼ 1 and all other xi and yi are set

to zero; one can see this case as defining a baseline for the partial lifetimes, in that

any x0 terms in the Cijkl not suppressed by the Yukawa textures are necessarily

large, and whereas problematic contributions from some other xk with k 6= 0 may

be suppressed simply by setting xk � 1, the x0 contributions can be mitigated

only through cancellation.

The corresponding baseline lifetimes for the dominant modes in the type-II

case are given in Table 6.6. One can see that the K+ν̄ mode decay width must

be lowered by two orders of magnitude through cancellation of x0 terms by the

others. Since it is |C| 2 that appears in the decay width expressions, the needed

cancellation amounts to an O(10−1) tuning among the CA factors. Furthermore,

1The Minuit tool used, Migrad, works using a local gradient-based algorithm, so that in
large parameter spaces, initial values are crucial in locating global minima.
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decay mode baseline for τ (yrs) baseline in ref. [19] (yrs)
p→ K+ν̄ 8.29×1031 6.38×1028

p→ K0e+ 9.73×1034 2.52×1030

p→ K0µ+ 5.68×1033 6.15×1029

p→ π+ν̄ 4.25×1033 4.45×1029

p→ π0e+ 1.08×1036 3.90×1030

p→ π0µ+ 6.45×1034 6.00×1029

Table 6.6: Hypothetical baseline partial lifetimes determined using type-II solution
Yukawas and x0 = 0.95 with all other xi, yi = 0. For comparison, I give
the analogous results for calculation using type-II Yukawas from the 2010
paper by Altarelli and Blankenburg [19], which use general Yukawa texture.
Note in comparing with Table 6.5 that for our model, only the K+ν̄ mode
fails to satisfy the lower limit, while all modes are well below the limits for
the model in [19].

as it would be equally unnatural to see xk � 1 for all k 6= 0, one should expect

O(1) cancellations to be present anyway; therefore, the needed “tuning” is little

more than a very ordinary restriction of parameter space.

In order to elucidate the significance of the improvement created by the

Yukawa ansatz, consider the outcome of this baseline calculation for a case with

more general Yukawa texture. The model from a 2010 paper by G. Altarelli and

G. Blankenburg [19] has the same 10-126-120 Yukawa structure but with general

h and g as in eq. (4.37) and a tri-bimaximal f having no hierarchical texture.2

Using the parameters reported to give a successful fermion fit in the work (see

footnote), I obtain the baseline results shown in the final column of Table 6.6. One

can see here that lifetimes for all modes are far below the experimental limits, by

factors of O(103-5); hence cancellation among the CA factors must be O(10−2-4).

Such sensitive relationships among these factors are seemingly less natural than

the result from our model in the absence of some new symmetry.

In order to locate an area of mixing parameter space which yields a sufficient

2This specific model has already been ruled out due to θ13 ∼ 6-7◦ typical of tri-bimaximal
models.
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Figure 6.1: Comparisons of K+ν̄ partial lifetime to those of other dominant modes in
the model, and that lifetime as a function of the 10 mass parameter x0, for
the type-II case. Note the unsurprising preference for smaller x0.

K+ν̄ lifetime, I wrote a supplementary Mathematica code to search for minima

among strongly abridged versions of |CI
W̃

+ CIV
W̃
| and |CIV

h̃±
| that contribute to

the decay width.3 Specifically I started with x0 terms only, corresponding to the

baseline case, and then iteratively added back the largest contributions one by

one while readjusting the initial values each time. Once all of the most important

terms were present, I took the resulting mixing parameters as my initial values

in the Python code. The resulting minimization gave a large percentage of trials

with all six modes exceeding the lifetime bounds.

With an allowed region of parameter space found, I expanded my searches

3CIII
h̃± and CIII

h̃0
cancel identically for all contributing channels of both the K+ν̄ and π+ν̄

modes.
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Figure 6.2: Comparisons of partial lifetimes among highly-correlated sub-dominant
modes in the model for the type-II case.

to include a slightly wider range of values for the heavily restricted x0. Using

six different “seeds” for parameter values, all of which give every mode sufficient

with τ(K+ν̄) roughly twice the experimental bound, I created a large number

of trials for which the initial values were distributed normally around the seed

values and with large standard deviations. The resulting data for such a search is

shown in scatter plots below. Figure 6.1 gives the relationships between the K+ν̄

mode and other representative modes and also the distribution of K+ν̄ lifetime

for varying x0. Figure 6.2 shows the relationships between other more closely

correlated modes for completeness.

Note the strong correlation between π+ν̄ and π0µ+, which are related by

isospin, and the extreme correlation between K0e+ and K0µ+. The latter is due

to a manifestation of the hierarchical nature of the Yukawas in the Cijkl, as well as

minor features such f11 ∼ f12; similar structure is present in the yf and U f , which

tend to also have 11 ∼ 12 or 11� 12; these properties result in a straightforward

scaling under the replacement l : 1 → 2. Furthermore, the same relationship is

present between π0e+ and π0µ+. These relationships imply that the remaining

plots I omitted differ only trivially from the representatives present.

I also performed simple scans in search of a maximum value for τ(K+ν̄),
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as well as taking note of any especially large values in the previous searches.

While there does not seem to be any analytically-enforced maximum present in

the model, I did consistently find that τ > 1035 years was extremely rare, and I

never saw a value higher than ∼ 6×1035 yr. Given those findings, combined with

the apparent smallness of the swath of parameter space yielding the above results

and the low likelihood of a more global minimum based on my search methods, I

believe that τ(K+ν̄) >∼ 1036 yr is statistically infeasible in this model for type-II

seesaw. If such a value does exist, it is likely contained in a vanishingly small

area of allowed parameter space and accomplished through truly extreme tuning.

Therefore I will take 1036 years as a de facto upper limit on τ(K+ν̄) for the type-II

case, which will not be accessible by Hyper-K and similar experiments [20, 21] in

the near future, but should nonetheless allow the model to be tested eventually.

The other modes of course have similar limits, but it would seem that all

the others are substantially higher and thus either far beyond the reach of the

forthcoming experiments or beyond the contributions from gauge boson exchange,

if not both, with the possible exception of τ(π+ν̄), which is rather highly correlated

with K+ν̄ in this model. Determining that value is tricky though because if I

simply maximize the π+ν̄ mode, then the K+ν̄ mode will be below its bound;

thus, there is some question as to how one defines the maximization.

6.2.2 Proton Partial Lifetimes for Type I Seesaw

I begin again by examining the same baseline case for the partial lifetimes, with

x0 ∼ 1 and all other xi, yi = 0. The resulting values for the dominant modes in

the type-I case are given in Table 6.7. Here I find a much more favorable situation,

in that even the K+ν̄ mode decay width is sufficient, and in fact the other modes

exceed the bounds by 2-4 orders of magnitude. Hence I expect that virtually all

solutions will be adequate for modes other than K+ν̄, and as long as there is no
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decay mode baseline for τ (yrs)
p→ K+ν̄ 7.87×1033

p→ K0e+ 5.93×1035

p→ K0µ+ 2.45×1035

p→ π+ν̄ 2.37×1036

p→ π0e+ 6.11×1038

p→ π0µ+ 2.27×1038

Table 6.7: Hypothetical baseline partial lifetimes determined using type-I solution
Yukawas and x0 = 0.95 with all other xi, yi = 0. Note in comparing with
Table 6.5 that all modes satisfy the lower limits, and most do so by several
orders of magnitude.

enhancement due to (de)tuning among the CA factors, that mode will be adequate

as well.

This is of course a remarkable improvement over traditional models, yet

it seems to contradict our expectations given the properties of the fermion fit.

Why then is the model successful? There are two primary reasons, both of which

are quite subtle. The first reason is that the smaller values for g13 and g23 seen

in eq. (6.5) do in fact improve the situation, as I suggested, while the larger f12

and g12 seem to have less impact. Since M (h33) is such an extremely dominant

factor in the Yukawas, it is generally the case that contributions involving third

generation are larger and more important than the others.

The second reason is even more unexpected, to the point that it was not

even examined in the preceding works on this ansatz. The unitary matrices U f

for the charged fermions are generally ∼ 1, just as one would expect, given the

texture of CKM and the absence of any known mixing among charge leptons.

This model is no exception, with off-diagonal terms generally O(10−1-3); however,

with such sparse or hierarchical (flavor basis) Yukawas due to the ansatz, these

“small” off-diagonal elements lead to “small” rotations of h, f, g resulting in rela-

tively substantial changes to the textures of ĥ, f̂ , ĝ. Especially noteworthy are the

changes in h→ ĥ, where some previously-zero off-diagonal elements are replaced
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by the same O(10−1-3) values seen in the U f .

In light of the surprising non-triviality of the basis rotations, if one compares

Uu,d for the type-I case:

Uu =


0.994 −0.1085 + 0.0057i 0.00298 + 10−5i

0.1084 + 0.0057i 0.994 0.0047 + 10−5i

−0.0035− 10−5i −0.0044 + 10−5i 0.99998



Ud =


0.967 −0.1087 + 0.2309i 0.00175 + 0.001175i

0.1086 + 0.2308i 0.966 0.03935 + 0.00690i

−0.0076− 0.0072i −0.0381 + 0.00613i 0.9992

 , (6.6)

to those for the type-II case:

Uu =


0.972 0.2098− 0.1044i −10−5 − 0.010i

−0.210− 0.1043i 0.971 −0.00012− 0.0414i

−0.0043− 0.001i −0.001− 0.0423i 0.999



Ud =


0.9998 0.00633− 0.0095i 0.00765− 0.01117i

−0.00708− 0.0095i 0.9983 0.03386− 0.04514i

−0.00785− 0.01054i −0.03401− 0.04514i 0.9983

 ,

(6.7)

one sees that the off-diagonal entries are the same size or smaller for the type-I

case in every entry except Ud
12, U

d
21; furthermore, several of the elements involving

the third generation are smaller by an order of magnitude. These differences may

seem rather benign, but in fact each of these slightly suppressed values individually

translates into a factor of 10 suppression in one or more of the dominant Cijkl,

which all tend to involve third generation elements. In some cases, two or even

three such suppressions may affect a single CA factor. The squaring of factors in
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Figure 6.3: Comparisons of K+ν̄ partial lifetime to those of other dominant modes in
the model, and that lifetime as a function of the 10 mass parameter x0, for
the type-I case. Note the unsurprising preference for smaller x0.

the decay width then gives suppressions of generally 2-4 orders of magnitude in

the lifetimes, which is precisely what one can see when comparing Tables 6.6 and

6.7.

Due to the more favorable circumstances, I was able to locate an allowed

region of parameter space for type-I simply by running a large number of trials

with the type-II parameter seeds. I repeated the process of expanding the range

of x0 by again choosing five seeds that gave every mode as sufficient and τ(K+ν̄)

roughly twice the experimental bound, and I again used those seeds to create

scatter plots for a large number of trials. Figure 6.3 gives the relationships between

the K+ν̄ mode and other representative modes and the distribution of τ(K+ν̄)
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Figure 6.4: Comparisons of partial lifetimes among highly-correlated sub-dominant
modes in the model for the type-I case.

as a function of x0, and Figure 6.4 shows the relationships between other more

closely related modes. Note the bifurcation of the solution set in each plot; I have

not yet been able to discover the cause of this behavior.

Again I performed scans to determine a statistical upper bound for the value

of τ(K+ν̄) in the model. I consistently found that τ > 1037 years was rare and

did not see a value higher than ∼ 3×1037 yr. Given those findings, I suspect

that the de facto upper limit on τ(K+ν̄) for the type-II case is slightly lower than

1038 years for the type-I seesaw case. Such a value is certainly out of reach of

Hyper-K and other imminent experiments. Note that as values for the neutral

Kaon and pion lifetimes often exceeded 1038 years in my findings involving K+ν̄

minimization, the upper limits for those modes are surely sub-dominant to gauge

exchange as well as out of reach of experiments and so not of interest.
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Chapter 7

Conclusion

In this work I have presented a full analysis of the nature of proton decay in

an SO(10) model that has 10, 126, and 120 Yukawa couplings with restricted

textures intended to naturally give favorable results for proton lifetime as well as

a realistic fermion sector. The model is capable of supporting either type-I or

type-II dominance in the neutrino mass matrix, and I have analyzed both types

throughout.

Using, numerical minimization of chi-squares, I was able to obtain successful

fits for all fermion sector parameters, including the θ13 reactor mixing angle, and

for both seesaw types. Using the Yukawa couplings fixed by those fermion sector

fits as input, I then searched the parameter space of the heavy triplet Higgs

sector mixing for areas yielding adequate partial lifetimes, again using numerical

minimization to optimize results. For the case with type-II seesaw, I found that

lifetime limits for five of the six decay modes of interest are satisfied for nearly

arbitrary values of the triplet mixing parameters, with an especially mild O(10−1)

cancellation required in order to satisfy the limit for the K+ν̄ mode. Additionally,

I deduced that partial lifetime values of τ(K+ν̄) >∼ 1036 years are vanishingly

unlikely in the model, implying the value can be taken as a de facto lifetime for

the mode, which makes the model ultimately testable. For the case with type-I

seesaw, I found that limits for all six decay modes of interest are satisfied for values

of the triplet mixing parameters that do not result in substantial enhancement,

with limits for modes other than K+ν̄ satisfied for nearly arbitrary parameter

values; furthermore, I deduced a statistical maximum lifetime for K+ν̄ of just
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under 1038 years.

Given these results, I conclude that the well-motivated Yukawa texture

ansatz proposed by Dutta, Mimura, and Mohapatra is a remarkable phenomeno-

logical success, capable of suppressing proton decay without the usual need for

cancellation, and without compromising any aspect of the corresponding fermion

mass spectrum. This result stands out among similar analyses and perhaps rep-

resents a generally more favorable approach for understanding the suppression of

proton decay in grand unified theory models.

139



Appendix A

Feynman Diagrams for Dimension-6 Operators Contributing to

Proton Decay

φ̃T is the Higgsino component of a heavy color-triplet Higgs superfield;

φ = H, ∆̄,Σ.

Channels for p→ π+ν̄

i, l = 1, 2, 3.

(a)

ẽl c̃, t̃

φ̃T φ̃T

W̃− W̃+

u

νl

d

d

(b)

s̃, b̃ ũi

φ̃T φ̃T

W̃− W̃+

νl

u

d

d

−

(c)

s̃, b̃

h̃+u

ũi

h̃−d

φ̃T φ̃T

νl

uC

d

dC

−

(d)

s̃, b̃

h̃0u

ũi

h̃0d

φ̃T φ̃T

νl

dC

d

uC

(e)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃−d h̃+u

uC

νl

dC

d
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Channels for p→ π0`+

j = 1, 2, 3; l = 1, 2 (↔ ` = e, µ), or for diagrams including l′, instead l = 1, 2, 3

and l′ = 1, 2.

(a)

c̃, t̃ d̃j

φ̃T φ̃T

W̃+ W̃−

el

d

u

u

(b)

ν̃l s̃, b̃

φ̃T φ̃T

W̃+ W̃−

d

el′

u

u

−

(c)

c̃, t̃

h̃−d

d̃j

h̃+u

φ̃T φ̃T

el

dC

u

uC

(d)

c̃, t̃

h̃0d

d̃j

h̃0u

φ̃T φ̃T

el

uC

u

dC

−

(e)

c̃, t̃

h̃0d

ẽl

h̃0u

φ̃T φ̃T

d

uC

u

eCl′

−

(f)

ν̃l

h̃−d

s̃, b̃

h̃+u

φ̃T φ̃T

d

eCl′

u

uC

−

(g)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃+u h̃−d

eCl

d

uC

u

(h)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃0u h̃0d

eCl

u

uC

d

−

(i)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃0d h̃0u

uC

el′

dC

u

−
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Channels for p→ K+ν̄

i, l = 1, 2, 3; parentheses indicate coupled choices; absence of diagrams for ũduẽ

dressed by h̃± and ud̃dν̃ dressed by h̃0 is due to resulting external νC.

(a)

ẽl c̃, t̃

φ̃T φ̃T

W̃− W̃+

u

νl

(d, s)

(s, d)

(b)

(s̃, d̃), b̃ ũi

φ̃T φ̃T

W̃− W̃+

νl

u

(d, s)

(s, d)

−

(c)

(s̃, d̃) ũ

φ̃T φ̃T

W̃ 0 W̃ 0

νl

(s, d)

(d, s)

u

(d)

s̃ d̃

φ̃T φ̃T

W̃ 0 W̃ 0

νl

s

u

d

−

(e)

ν̃l (s̃, d̃)

φ̃T φ̃T

W̃ 0 W̃ 0

(d, s)

νl

u

(s, d)

(f)

ν̃l ũ

φ̃T φ̃T

W̃ 0 W̃ 0

d

νl

s

u

−

(g)

(s̃, d̃), b̃

h̃+u

ũi

h̃−d

φ̃T φ̃T

νl

uC

(d, s)

(sC , dC)

−

(h)

(s̃, d̃), b̃

h̃0u

ũi

h̃0d

φ̃T φ̃T

νl

(sC , dC)

(d, s)

uC

(i)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃−d h̃+u

uC

νl

(dC , sC)

(s, d)
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Channels for p→ K0`+

j = 1, 2, 3; l = 1, 2 (↔ ` = e, µ), or for diagrams including l′, instead l = 1, 2, 3

and l′ = 1, 2.

(a)

c̃, t̃ d̃j

φ̃T φ̃T

W̃+ W̃−

el

s

u

u

(b)

ν̃l d̃, b̃

φ̃T φ̃T

W̃+ W̃−

s

el′

u

u

−

(c)

c̃, t̃

h̃−d

d̃j

h̃+u

φ̃T φ̃T

el

sC

u

uC

(d)

c̃, t̃

h̃0d

d̃j

h̃0u

φ̃T φ̃T

el

uC

u

sC

−

(e)

c̃, t̃

h̃0d

ẽl

h̃0u

φ̃T φ̃T

s

uC

u

eCl′

−

(f)

ν̃l

h̃−d

d̃, b̃

h̃+u

φ̃T φ̃T

s

eCl′

u

uC

−

(g)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃+u h̃−d

eCl

s

uC

u

(h)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃0u h̃0d

eCl

u

uC

s

−

(i)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃0d h̃0u

uC

el′

sC

u

−
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