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The Polyvagal Theory links the evolution of the autonomic nervous system to 

affective experience, emotional expression, facial gestures, vocalization and social 

engagement behavior. Therefore, the theory provides a plausible explanation for the 

bio-behavioral indices of several psychiatric disorders.  The vagus as a “system” 

provides a rich organizing principle to investigate several of the behavioral, 

psychological, and physiological features associated with compromised social 

behavior in several psychiatric disorders.  The Polyvagal Theory describes this 

integrated system as the Social Engagement System.  Observations of the behaviors 

and physiological responses of autistic individuals suggest that they have great 

difficulties in recruiting the neural circuit that regulates the social engagement system.  

This model predicts that a deficit in the system would produce atypical social 

behaviors such as social withdrawal; improper communication (i.e., poor intonation 

and prosody); difficulty listening (inability to extract human voice from background 

noise); poor eye contact; inappropriate facial expressivity (i.e., flat affect); and 

atypical visceral functioning (i.e., low cardiac vagal tone).  These indices are directly 



related to the atypical behaviors associated with autism, and several other psychiatric 

disorders.  In the current study, measures related to the functioning of these 

components were obtained to test the hypothesis that autistic individuals have a 

compromised social engagement system.  Forty subjects participated in the study (20 

autistic, 31 males, ages 9-24).  Data were collected to assess autonomic functioning 

(i.e., cardiac vagal tone), the ability to extract human voice from a compromised 

environment, an estimate of right ear advantage, and looking behavior (i.e., eye 

contact).  Analyses showed that autistic individuals scored poorer on all measures 

assessing social engagement system functioning.  Compared to controls, the autistic 

group had lower mean cardiac vagal tone and shorter heart periods, performed poorer 

on extracting human voice from a compromised environment, on a dichotic listening 

task, and on a measure of right ear advantage. They also spent significantly less time 

fixating on the eyes and more time fixating off of the face when viewing a movie of a 

person telling them a story.  Results support the hypothesized relation between a 

compromised social engagement system and the atypical features associated with 

autism. 
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CHAPTER I 

INTRODUCTION 

This study investigates the hypothesized relation between the core behavioral 

deficits of social communication in autism and underlying neurobiological processes. 

Fundamental to this hypothesized relation are several key points.  First, diagnostic 

features for several psychiatric disorders (i.e. autism, behavior disorders, attention 

deficit disorders, language and reading disorders, internalizing disorders) include 

compromised social interactions, deficits in verbal and nonverbal communication, and 

atypical patterns of behaviors.  Second, these features emerge as a “cluster” of 

functional deficits in many disorders. Third, it is plausible that underlying this cluster 

of behaviors is a common neurophysiological system.  Fourth, from a systems 

perspective, predictable relations between system component functioning and the 

cluster of atypical behaviors can be proposed.  Finally, these proposed relations can be 

objectively tested to inform theory, research, and practice.   

Many DSM-IV (APA, 1994) classifications include a number of similar 

criteria as defining characteristics of a disorder.  For instance, difficulties in social 

settings or atypical social behaviors are criteria for anxiety disorders (i.e., 

agoraphobia, social phobia), mood disorders (i.e., depression), and several of the 

disorders diagnosed in infancy, childhood, or adolescence (i.e., learning disorders, 

communication disorders, pervasive developmental disorders, attention 

deficit/disruptive behavior disorders).  Within these disorders, a “cluster” of common 

diagnostic features can be extracted that includes deficits in functions related to social 

engagement such as initiating or maintaining social interactions, appropriate eye 
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contact, appropriate facial expression and appropriate social communication.  The fact 

that several of disorders share common behavioral features supports the hypothesis 

that there is a common underlying system involved in the normal functional regulation 

of these behaviors and that the specific disorders may lie along a continuum of 

severity of deficit within that system.  A system such as this would have to be able to 

account for the neurobiological, as well as the behavioral aspects associated with the 

relevant clinical features in a cohesive way.  For example, the system would have to 

be able to link aspects of the atypical social behaviors of social phobia (i.e., social 

withdrawal) with the physical components (i.e., increased heart rate) of the disorder.  

At the same time, understanding a cluster of diagnostic features as evidence of a 

“system” deficit would allow for a better understanding of the dynamics of the 

disorder and would aid in the design of effective treatment strategies.  The current 

study was designed to assess and to expand on information that supports the 

involvement of a specific neurobiologically based system in this core of atypical 

behaviors, and posits that these behaviors may be the adaptive “emergent properties” 

of a deficit in the functioning of this system. 

The Social Engagement System (Porges, 2001, 2003) defines a 

neurobiologically based system that describes the intricate functioning of several 

neural pathways related to social engagement behaviors.  This system is involved in 

the coordination of autonomic activity with social behavior through the use of 

hierarchically organized adaptive strategies for coping with the environment.  Derived 

from an understanding of the evolution of the mammalian nervous system, the social 

engagement system integrates the phylogenetic development of links between various 
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anatomical and neural components and describes the way in which these links support 

adaptive strategies for dealing with the environment.  The system is comprised of 

circuits involved in the regulation of visceral state including heart rate, and control 

muscles of the face and head (i.e., middle ear muscles, striated facial muscles).  The 

social engagement system model describes the integration of visceromotor and 

somatomotor functioning of specific components of the autonomic nervous system 

(ANS) that are involved in social engagement (see Figure 1).   
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Muscles of mastication
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Environment 
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Figure 1:  Representation of the Social Engagement System showing the integration of 
components relevant to social engagement (adapted from Porges, 1995). 

 

The visceromotor component of this system is the Xth cranial nerve (vagus), 

which is responsible for the regulation of the heart (i.e., visceral homeostasis).  The 

somatomotor component consists of special visceral efferent (SVE) pathways 

traveling through cranial nerves V, VII, IX, X and XI that are responsible for the 

regulation of the striated muscles of the face and head.  The system consists of 
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pathways that regulate the middle ear muscles (i.e., extraction of human voice from 

background sounds, listening), eye-lid opening  (i.e., looking behavior), facial muscles 

(i.e., facial expressivity), laryngeal and pharyngeal muscles (i.e., vocalization and 

intonation), head turning muscles (i.e., social gesture, orienting), and muscles of 

mastication (i.e., ingestion).  According to this model, the bi-directional interactions of 

the visceromotor and somatomotor components serve to regulate social experience 

both internally and externally based on an evaluation of the environment (i.e., safe, 

dangerous, life-threatening).  A well functioning social engagement system supports 

our ability to approach and interact with others, which includes maintaining 

appropriate eye contact, listening and communicating, and making appropriate social 

gestures and facial expressions.  Alternatively, a deficit in this system would predict 

atypical features in some or all of these components of social engagement. 

The atypical behaviors predicted by a deficit in the social engagement system 

are contained in the diagnostic features of several psychiatric disorders.  For instance 

the DSM-IV communication disorders all list difficulties in the reception of language 

(i.e., accurately extracting human voice), and/or the expression of language (i.e., 

vocalization, prosody) that interfere with social communication.  Similarly, attention 

deficit disorders and conduct disorders list difficulties in listening, social skills and 

regulation of behavior.  Relevant to the current study, the diagnostic criteria of the 

pervasive developmental disorders (PDD) in general, and autism in particular, 

specifically relate to features predicted by deficits in components of the social 

engagement system.  More specifically, the diagnostic criteria of these disorders 

include impairments in initiating and maintaining social interactions, facial expression, 
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eye contact, social gesture, vocalization and intonation, and atypical behavior 

regulation.  Based on the relation between the diagnostic criteria of certain psychiatric 

disorders and the predictions of features related to a deficit in the social engagement 

system, it is possible to propose that certain disorders (and atypical social behaviors) 

may lie on a continuum of deficits in social engagement system functioning (i.e., from 

shy to PDD).  While research has been conducted that provides evidence to support a 

deficit in specific components described by the model, data integrating the deficits 

across components is lacking.  The current study was designed to test the predicted 

features of a deficit in social engagement system functioning by assessing measures of 

the somatomotor and visceromotor components of the system in autistic individuals. 

Given the tight overlap in the diagnostic features of autism and predicted indices of a 

compromised social engagement system, it is possible that autism represents an 

extreme example of the emergent properties of a compromise in this system.  To 

support this hypothesis, functional differences between clinical populations and 

normal controls on the indices predicted by the model would need to be quantified.  In 

the current study, a number of these predictable indices are tested between individuals 

with autism and normal controls. 

The Social Engagement System model, derived from the Polyvagal Theory, 

provides the basis for understanding features common to a number of psychiatric 

disorders.  From the approach that these features emerge as a cluster of behaviors and 

are associated with a social engagement system, evidence for a deficit in an underlying 

neurobiological system can be quantified based on specific predictable relations 

among the components of the system.  Although research on several psychiatric 
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disorders provides support for the concept of an underlying system deficit, very little 

has been done in the way of understanding the diagnostic features related to autism 

from an integrated neurobiological system perspective.  The hypotheses of the current 

study are derived directly from the social engagement system model, and the emergent 

properties that are predicated by a deficit in this system.  An understanding of the 

behavioral and physiological outcomes of a system deficit facilitates a better 

understanding of both the diagnostic features of certain psychiatric disorders but also 

intervention and treatment strategies that may effectively return the system to a more 

optimal level of functioning. 
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CHAPTER II 

POLYVAGAL THEORY AND  

THE SOCIAL ENGAGEMENT SYSTEM 

Overview of the Polyvagal Theory 

The Polyvagal Theory (Porges, 1995) was developed to relate the evolutionary 

shift in the neural regulation of the autonomic nervous system to the range and 

regulation of emotion expressed and experienced by humans. The theory proposes that 

our physiological state limits the range of available behaviors and psychological 

experiences. The Polyvagal Theory emphasizes the integration via evolution of the 

facial muscles  (i.e., facial expression, looking, listening) and the neural regulation of 

visceral organs (i.e., heart) to regulate behavioral states. The Polyvagal Theory 

proposes that the evolution of the autonomic nervous system provides an organizing 

principle from which we can interpret the adaptive significance of emotional 

processes. The Polyvagal Theory links the evolution of the autonomic nervous system 

to affective experience, emotional expression, facial gestures, vocalization and social 

engagement behavior. Therefore, the theory provides a plausible explanation for the 

bio-behavioral indices of a number of psychiatric disorders. 

Porges (1995, 1997, 1998, 2001) proposed the Polyvagal Theory as a means of 

describing the evolutionary shifts in neuroanatomical structures that have evolved 

through the mammalian phylogeny, as an organizing principle for understanding the 

expression of social and emotional behavior in mammals and especially humans.  

According to the Polyvagal Theory, the mammalian nervous system has evolved for 
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the physiological support of emotional and social behavior and communication.  

Specifically, the theory focuses on the phylogenetic shifts in the neural regulation of 

the viscera (i.e., heart) by the 10th cranial nerve (the vagus) and how these shifts have 

evolved to facilitate specific psychological processes (Porges, 1995).  The theory 

emphasizes the neurophysiological and neuroanatomical distinctions between two 

branches of the vagus nerve that evolved sequentially.  “Polyvagal” is the term used to 

emphasize the functional and neuroanatomical differences between the two branches 

of the vagus and their source nuclei located in the brainstem.  The dorsal motor 

nucleus is the source of the primitive unmyelinated vagal efferents while the nucleus 

ambiguus gives rise to the more modern myelinated vagal efferents.  

The vagus is a primary component of the autonomic nervous system that 

originates in brainstem structures and branches off to regulate muscles of the face and 

head (i.e., facial muscles, middle ear muscles, muscles of mastication, and the larynx 

and pharynx muscles) and visceral organs (i.e., heart). The theory proposes that each 

branch of the vagal system is associated with a different adaptive behavioral strategy.  

Specifically, the Polyvagal Theory describes the phylogenetic shifts that gave rise to 

three hierarchically organized behavioral strategies that emerged during the evolution 

of the mammalian nervous system.  The phylogenetic stages reflect the emergence of 

three distinct autonomic subsystems, 1) the dorsal vagal complex (DVC), the 

sympathetic nervous system (SNS), and 3) the ventral vagal complex (VVC).  The 

most primitive system, the DVC, is linked to immobilization strategies (i.e., freezing, 

death feigning) and provides neural regulation via the dorsal motor nucleus of the 

vagus (DMNX).  The SNS is related to mobilization strategies (i.e., fight-flight 
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behaviors).  The VVC is behaviorally linked to social engagement (i.e., visceral 

regulation, vocalization, facial expressivity, listening) and is associated with the 

mammalian myelinated vagus, which provides neural regulation via pathways 

originating in the nucleus ambiguus (NA).  These three circuits can be conceptualized 

as providing the phylogenetically organized adaptive responses to environmental 

states of safety (i.e., VVC), danger (i.e., SNS), or life threat (i.e., DVC).      

ENVIRONMENT
Internal/External

Safety
Danger

Life Threat

Nervous System
(Neuroception)

Spontaneous Social Engagement
Eye contact, facial expression
Prosody, visceral homeostasis

Defensive Strategies
Mobilization
(fight/flight)

Defensive strategies
Immobilization

(syncope, freezing, death feigning)

Mobilization

Immobilization
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Internal/External

Safety
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(fight/flight)
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Immobilization

(syncope, freezing, death feigning)

Mobilization

Immobilization

 

Figure 2:  Functional representation of the components of the Polyvagal Theory 
(adapted from Porges, 2003).  

This increased complexity and the development of opposing neural systems 

(i.e., SNS and ANS) allows us to assess and react to others (i.e., friend, foe) and the 

environment (i.e., safe, dangerous, life threatening) in adaptive ways (i.e., social 

interactions or survival behaviors).  For instance, when the environment is perceived 

as safe (i.e., interacting with a friend, a familiar setting), the system is responsible for 
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the tonic regulation of visceromotor components (i.e., slowing the heart, promotion of 

calmness) as well as somatomotor components involved in social engagement             

(i.e., looking, listening, communicating).  This state is associated with physiological 

and behavioral strategies that promote appropriate social engagement behaviors.  

Alternatively, vagal control of the heart can be withdrawn in order to react to stimuli 

in the environment (i.e., approach of a stranger) without the need to immediately 

recruit the metabolically demanding sympathetic-adrenal system.  The myelinated 

vagus has an inhibitory effect at the sino-atrial node of the heart, which serves to 

reduce heart rate below the intrinsic rate produced by the cardiac pacemaker cells.  In 

essence, the myelinated vagus acts like a brake on the heart.  The removal of the 

“vagal brake” (Porges et. al., 1996) allows for an increase in heart rate and metabolism 

for transitory periods.  The reapplication of the vagal brake promotes a return to 

visceral homeostasis.  These transitory changes in state are adaptive to mammals in 

that the demands on the nervous system are minimized unless the perception of safety 

is removed (i.e., the stranger becomes threatening).  A perception of danger would 

bring about the inhibition of the vagal system and the recruitment of the SNS (i.e., 

mobilization, fight/flight reactions), which is metabolically costly but adaptive under 

certain circumstances.  Under life threatening conditions, inhibition of both the VVC 

and SNS and recruitment of the primitive vagal system (DVC) would serve to 

immobilize the organism (i.e., freezing, death feigning) in order to promote survival.  

In mammals, and especially humans, the recruitment of this primitive system can 

prove lethal (i.e., via shutdown of necessary functions). 
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According to the Polyvagal Theory, the increased neural complexity associated 

with the phylogenetic development of the autonomic subsystems allows for the 

enrichment of an organism’s affective and behavioral repertoire (Porges, 1997) and 

provides us with the neurobiologically based organizing principle for understanding 

behaviors as “emergent properties” of autonomic nervous system functioning (Porges, 

1998). 

The Social Engagement System 

The Polyvagal Theory can provide a model for understanding the deficits in 

spontaneous social behaviors prominent in autism and several other psychiatric 

disorders.  Collectively, the integration of the visceromotor and somatomotor 

components described by the Polyvagal Theory and their related structures have been 

labeled the Social Engagement System (Porges, 2001).  The social engagement system 

model was proposed as a construct to understand an integrated neural feedback system 

that is responsible for the regulation of social and emotional functioning. 

During embryological development, components of several of the cranial 

nerves (V, VII, IX, X, XI) develop together (Parent, 1996) and form the basis for a 

social engagement system (see also Porges, 1998; 2001).  This system is comprised of 

a control component in the cortex (i.e., upper motor neurons) that regulates the 

brainstem nuclei (i.e., lower motor neurons) to control specific functions related to 

social engagement.  As illustrated in Figure 3, these functions include the regulation of 

visceral organs (i.e., heart, bronchi), facial muscles (i.e., eyelid opening, facial 

expression), middle ear muscles (i.e., the extraction of human voice from background 
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noise), laryngeal/pharyngeal muscles (i.e., vocalization and intonation), head turning 

muscles (i.e., orienting and social gesture), and muscles of mastication (i.e., ingestion).  
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Figure 3: The social engagement system consists of a somatomotor component (i.e., 
special visceral efferent pathways that regulate the muscles of the head and face) and a 
visceromotor component (i.e., the myelinated vagus that regulates the heart and 
bronchi).  Solid blocks indicate the somatomotor component.  Dashed blocks indicate 
the visceromotor component. (adapted from Porges, 2001). 
 

 
Functionally, these muscles are involved in limiting social stimuli and 

determining physiological availability for engagement with the environment (Porges, 

2002).  The model proposes that a key component of social engagement is the 

availability of the system to initiate and maintain these engagements.  In order for us 

to initiate and reciprocate engagement with our environment, the system must be 

functioning properly.  This allows for proper social orienting and appropriate 

communication, listening, eye contact and facial expression and reduces arousal to 

promote calmness and relaxation.  Relevant to the current study are the components 
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involved in regulation of the viscera (i.e., the heart), the facial muscles (i.e., facial 

expression, eye gaze) and the middle ear muscles (i.e., listening). 

Component Functioning 

Paralleling the phylogenetic shift in the neural mechanisms involved in 

regulating cardiac output were shifts in behavioral strategies in response to stimuli in 

the environment.  Changes from non-vagal to vagal, and finally to a multi-vagal 

system has lead to an enriched behavioral and affective repertoire in mammals.  In 

order to regulate the heart, several efferent structures have evolved.  These structures 

represent the sympathetic-adrenal system, which includes chromaffin tissue and the 

spinal sympathetics, and a vagal system that is a major component of the 

parasympathetic nervous system (Porges, 1995).  The vagal system contains branches 

that originate in medullary nuclei that include the dorsal motor nucleus of the vagus 

and the nucleus ambiguus.  A list of the regulatory structures that influence the heart is 

seen in Table 2 (Porges, 1995, Santer, 1994).  A number of key points concerning 

phylogenetic changes in cardiac control can be extracted.  First, there is a phylogenetic 

shift from chromaffin (endocrine) regulatory systems to unmyelinated and finally 

myelinated neural control.  Second, there is a development of opposing systems for 

excitatory and inhibitory innervation.  Third, the increase in cortical development 

provides for greater control over brainstem structures through direct and indirect 

neural pathways for cranial nerves V, VII, IX, X, and XI for regulation of the face, 

head, and viscera.  Finally, the brainstem structures responsible for regulation of the 

muscles of the face and head are intimately linked to the regulation of autonomic state 

(Porges, 2001, 2003). 
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Phylogenetic 
Stage 

Autonomic 
nervous system 

component 

Behavioral Function Lower 
motor 

neurons 

III Myelinated 
Vagus 

Social engagement, 
communication, self- 
soothing and calming, 
visceral homeostasis, 
inhibition of sympathetic 
nervous system 

Nucleus 
Ambiguus 

II Symathetic-
Adrenal  Mobilization (fight/flight) Spinal 

column 

I Unmyelinated 
Vagus 

Immobilization (syncope, 
freezing, death feigning) 

Dorsal 
motor 

nucleus 
 

Table 1:  The three phylogenetic stages of the neural control of the heart proposed by 
the Polyvagal Theory (adapted from Porges, 1995). 
 

Third, the increase in cortical development provides for greater control over brainstem 

structures through direct and indirect neural pathways for cranial nerves V, VII, IX, X, 

and XI for regulation of the face, head, and viscera.  Finally, the brainstem structures 

responsible for regulation of the muscles of the face and head are intimately linked to 

the regulation of autonomic state (Porges, 2001, 2003). 

Morphological changes occurred in the vagus (Morris & Nilsson, 1994) and in 

mammals the vagus consists of two branches.  The first branch is unmyelinated and 

originates in the DMNX in the brain stem.  This branch provides the primary neural 

regulation of subdiaphragmatic organs such as the digestive tract.  At the level of the 

heart, the DMNX fibers do not play a major role in the normal dynamics of cardiac 

functioning (Parent, 1996).  The second branch of the vagus consists of myelinated 

fibers that arise from the NA.  During embryological development in mammals, cells 

migrate from DMNX to the NA (Schwaber, 1986) where they form the cell bodies for 

the myelinated vagal visceromotor pathways that provide potent inhibitory regulation 
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(i.e., the vagal brake) to the sinoatrial node (SA) of the heart.  In general, this 

specialization has led to greater control over the heart via the mammalian vagal 

system.  This specialization allows for up- and down-regulation of cardiac responses 

without a specific need for innervation via sympathetic-adrenal; systems that has a 

high metabolic cost.  As mammals, we can rapidly increase and decrease metabolic 

output via vagal withdrawal, while at the same time maintain the ability to reverse this 

response in order to quickly return to a homeostatic state.  A prolonged challenge will 

still invoke sympathetic activation, but the reciprocal inhibitory effect of vagal re-

innervation, which inhibits the sympathetic response, allows us to self-sooth and calm 

down.  Table 2 provides information regarding the basic anatomy of the many 

components of the vagal system and their general functions.  These components are 

referred to as the branchial motor, visceral motor, general sensory, and special sensory 

components, and each plays a distinct role in vagal innervation dynamics. 

CN X

NA
Innervation to the sinoatrial node of the heart

CNs V, IX, XTerminates in 
NTS

Receives virtually all sensory information 
from the parasympathetic systemVisceral 

sensory

DMNX
Innervation to parasympathetic ganglia in the 
head and abdomen

Visceral motor

CN IXNA
Supplies voluntary muscles of pharynx and 
larynx

Branchial 
motor

Related
Components

Cells of origin
or termination

FunctionComponent

CN X

NA
Innervation to the sinoatrial node of the heart

CNs V, IX, XTerminates in 
NTS

Receives virtually all sensory information 
from the parasympathetic systemVisceral 

sensory

DMNX
Innervation to parasympathetic ganglia in the 
head and abdomen

Visceral motor

CN IXNA
Supplies voluntary muscles of pharynx and 
larynx

Branchial 
motor

Related
Components

Cells of origin
or termination

FunctionComponent

 
Table 2:  Components of the vagal system and their function.  Related connections 
include integration of input/output with other cranial nerves.  NA, nucleus ambiguus; 
DMNX, dorsal motor nucleus of the vagus; NTS, nucleus of the solitary tract.  
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The vagal system has many functions that can be grouped into three main categories, 

each corresponding to one of the medullary nuclei.  The NA is a motor nucleus that 

sends axons to innervate striated muscles throughout the neck and thorax.  This 

includes the palate and pharynx, and to regulate the parasympathetic innervation of the 

heart.  The DMNX is a parasympathetic nucleus, which innervates ganglia in the head 

and abdomen, as well as providing projections to the heart. The NTS is the sensory 

nucleus of the vagus that receives all of the visceral sensory information including 

sensory inputs from blood pressure receptors, blood-oxygen receptors, sensations from 

the pharynx/larynx and trachea, and stretch receptors in the gut.  It should be noted 

that the majority of information related to the vagal system is afferent and that roughly 

80% of vagal fibers are afferent.  Thus, the NTS and the solitary tract function as the 

afferent limb of the vagal system.  The various components of the vagal system serve 

many autonomic functions and play an integral role in autonomic regulation.  

Primarily, the system can be thought of as a tripartite system that includes a primitive 

component (i.e., vagal fibers originating in the dorsal motor nucleus), a modern 

component (i.e., vagal fibers originating in the nucleus ambiguus), and an afferent 

component (i.e., fibers traversing and terminating in the solitary tract).  Table 3 

summarizes the response of autonomic innervation including both motor nuclei of the 

system and the sympathetic nervous system’s input and shows the excitatory and 

inhibitory responses that result from these inputs.  From this we can see that the vagal 

system is integrated with numerous functions of social engagement.  The Social 

Engagement System model was proposed as a means of directly relating the 

neurobiology of the nervous system, to the physiological and behavioral components 
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of social engagement.  It is also possible to extract information pertaining to outcomes 

associated with both normal and deficient functioning within the system.  Under 

normal conditions, the social engagement system facilitates and modulates our 

communicative, behavioral, and emotional interactions with others, which in turn 

provides others with the information and feedback necessary to facilitate reciprocal 

social engagement.  For instance, when we are engaged with others, either directly or 

indirectly, we expect certain features to be present.   

 VVC SNS DVC 

Heart rate +/- + - 

Bronchi +/- + - 

Gastrointestinal  - + 

Vasoconstriction  +  

Sweat  +  

Adrenal  +  

Tears +/-   

Vocalization +/-   

Facial muscles +/-   

Eyelids +/-   

Middle ear +/-   
 

Table 3:  Functional effects of innervation by components of the autonomic nervous 
system.  SNS= sympathetic fibers; VVC = ventral vagal complex including motor 
fibers originating in the NA and the source nuclei of V and VII; DVC = dorsal vagal 
complex including the motor fibers originating in the dorsal motor nucleus of the 
vagus and the sensory fibers terminating in the nucleus of the solitary tract (adapted 
from Porges, 1997). 
 

We expect that the person we are engaged with will look at us and make appropriate 

eye contact, show appropriate facial expressions and affect, gestures, and have 

prosody in their voice.  When we speak we know that others are listening because of 

their eye contact, facial expressions and gestures.  When confronted with individuals 
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who do not conform to these expectations, we may interpret their behaviors as 

stemming from an illness as in the case of a sick child, as a lack of interest in what we 

are communicating, or a disinterest in us personally, which is often accompanied by 

feelings of visceral discomfort and anxiousness.   

A well functioning social engagement system provides us with the neural 

control necessary to engage others in our environment, as well as to interpret our own 

internal states in meaningful ways.  The somatomotor components responsible for 

controlling the striated muscles of the head and face allow us to orient our heads 

toward the person we are engaging.  These same neural pathways are responsible for 

providing some of the muscle control to our faces, allowing for appropriate facial 

expressions.  They allow us to raise our eyelids to look at an individual we are 

engaged with, and these same circuits are linked to the middle ear muscles that when 

flexed are responsible for allowing the transmission of the human voice frequencies to 

pass to the auditory pathways for the perception of speech.  Therefore, when we open 

our eyes during a conversation, our middle ear muscles are also helping us to extract 

the human voice frequencies and dampen the low frequency noise from within our 

environments.  For listening, the middle ear muscles have evolved in a way that 

specifically allows for the extraction of the human voice frequencies from background 

sounds (i.e., a “listening system”). 

A “listening system”
 

The pathways from five cranial nerves control the muscles of the face and 

head.  Collectively, these pathways are labeled as special visceral efferent.  The 

special visceral efferent pathways (i.e., the vagal system) regulate the muscles of 
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mastication (e.g., ingestion via CN V), muscles of the middle ear (e.g., listening to 

human voice via CN VII, V), muscles of the face (e.g., emotional expression via CN 

VII), muscles of larynx and pharynx (e.g., prosody and intonation via CN X, IX), and 

muscles controlling head tilt and turning (e.g., gesture via CN XI).  In fact, the neural 

pathway that raises the eyelids also tenses the stapedius muscle in the middle ear, 

which facilitates hearing human voice.  Thus, the neural mechanisms for making eye 

contact are shared with those that extract human voice from background sounds.  As a 

cluster, the difficulties in gaze, extraction of human voice, facial expression, head 

gesture and prosody are common features of individuals with autism.     

Sound pressure waves from our environment reach the eardrum and cause it to 

vibrate.  The vibrations are transduced from the eardrum to the inner ear by the small 

bones in the middle ear (i.e., ossicles).  When innervated, the stapedius muscle 

(innervated via a branch of the facial nerve) and the tensor tympani  (innervated via a 

branch of the trigeminal nerve), stiffen the ossicles, which functionally dampen the 

amplitude of the low frequency sounds reaching the inner ear.  The impact of these 

muscles on the perceived acoustic environment is to markedly attenuate low frequency 

sounds and to facilitate the extraction of high frequency sounds associated with human 

voice.  For example, our acoustic environment is often dominated by loud low 

frequency sounds that have the functional effect of masking the soft high frequency 

sounds associated with human voice.  In humans, the ossicular chain is regulated 

primarily by the stapedius muscle and tensing the stapedius prevents this masking 

effect (Borg & Counter, 1989).  Individuals who can voluntarily contract middle ear 

muscles exhibit an attenuation of approximately 30 db at frequencies below 500 Hz, 
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while there is no or minimal attenuation at frequencies above 1000 Hz  (see Kryter, 

1985; see also Burns, Harrison, Bulen, & Keefe, 1993).  In a study by Djupesland 

(1965, see also Djupesland 1976) it was shown that manually raising the eyelids also 

contracts the middle ear muscles, which was assumed to be related to an orienting 

reflex.  Salomon & Starr (1963) also showed that the middle ear muscle reflex is 

elicited during certain movements of the head and neck as well as during vocalization. 

Thus, specific neural components described by the social engagement system may be 

conceptualized as a listening system. 

The evolution of the mammalian middle ear enabled low amplitude relatively 

high frequency airborne sounds (i.e., sounds in the frequency of human voice) to be 

heard, even when the acoustic environment was dominated by low frequency sounds.  

This ability to hear low amplitude high frequency airborne sounds in an acoustic 

environment dominated by loud low frequency sounds, could only be accomplished 

when the middle ear muscles are tensed to create a rigidity along the ossicular chain.  

The tensing of these muscles prevents the low frequency sounds from being 

transduced through the middle ear bones from the eardrum to the cochlea, and the 

subsequent masking of high the frequency sounds associated with human voice. 

Studies have demonstrated that the neural regulation of middle ear muscles, a 

necessary mechanism to extract the soft sounds of human voice from the loud sounds 

of low frequency background noise, is defective in individuals with language delays, 

learning disabilities and autistic spectrum disorders (Smith et al., 1988; Thomas et al., 

1985).  Other studies have shown similar findings with introverted and socially 

withdrawn children (Bar-Haim, 2002; Bar-Haim & Marshall, 2001).  Disorders that 
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degrade the neural function of the facial nerve (i.e., Bell’s Palsy), not only influence 

the stapedius reflex (Ardic et al., 1997; Qui, Yen, Stucker, & Hoasjoe, 1997), but also 

affect the patient’s ability to discriminate speech (Wormald et al., 1995).    

The stapedius reflex arc (Figure 5) consists of auditory afferent pathways (i.e., 

outer, middle and inner ear structures and the auditory nerve), the brainstem (i.e., the 

auditory nucleus, superior olivary complex, and facial nucleus), the facial nerve, and 

the stapedius muscle (Jerger & Jerger, 1977).  

 

 
SOC SOC

FN FN 

Stapedius 
Muscle

NC NC

Cochlea Cochlea

Nerve VII 

Nerve VIII 

Stapedius 
Muscle

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  The reflex arc of the middle ear acoustic reflex: NC, cochlear nucleus; SOC, 
superior olivary complex; FN, facial motor nucleus; nerve VIII, auditory nerve; nerve 
VII, facial nerve motor neuron.  The facial nerve also innervates facial muscles 
responsible for control of looking behavior and facial expression. 
 
 
Bi-directional communication between the components of this reflex arc provides for 

the proper functioning of the arc.  Thus, it is plausible to assume that bi-directional 

communication also exists between these components and components of the social 
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engagement system via common neural structures (i.e., facial nerve, brain stem nuclei 

proximity). 

Further evidence of the neural connections comprising a “listening system” is 

found in research investigating the relation between the stapedius reflex and 

olivocochlear reflexes.  Olivocochlear reflexes are elicited by excitation of the outer 

hair cells (OHC) in the inner ear and are dependent on stapedius reflex dynamics 

(Burns, Harrison, Bulen, & Keefe, 1993).  The outer hair cells are responsible for 

“fine-tuning” the frequencies reaching the basilar membrane.  It is widely accepted 

that OHC motility in response to stimulation is the key element of a mechanical 

feedback loop on the basilar membrane (Buki, Wit, & Avan, 2000).  When properly 

functioning, this feedback loop serves to amplify the input to sensory cells by as much 

as 40dB in a frequency selective manner (Dallos & Evans, 1995; Liberman & Dodds, 

1984).  Relative to the concept of a listening system, middle ear muscle functioning 

dynamically regulates the olivocochlear reflex.  When the middle ear muscles are 

functioning properly, the extraction of human voice frequencies is enhanced and the 

OHCs serve to amplify this range of frequencies.  However, at the threshold when a 

middle ear muscle reflex is elicited, the olivocochlear reflex is dampened and the 

amplification of these frequencies is lowered.  To reiterate, the dynamic functioning of 

the middle ear is accomplished via muscles innervated by the facial nerve (CN VII), 

which is directly related to the fine-tuning of the frequencies reaching the basilar 

membrane (and therefore the perception of sound) as well as facial expression and 

eyelid opening (i.e., looking behavior).  It is still unclear what the physiological 

meaning of the olivocochlear reflex is.  It has been proposed that it may serve to 

 22



regulate the dynamic range of the cochlea and the cochlea’s ability to extract low-level 

sounds within background noise (Kawase & Liberman, 1993; Liberman & Guinan Jr., 

1998).  A final important note is that the olivocochlear efferents also originate in the 

brainstem at the superior olivary complex.  This complex is located directly adjacent 

to origin of the vagal system and has direct ties to vagal system pathways (i.e., facial 

nerve).  It is plausible to assume that communication between the nuclei (direct and 

possibly indirect via vagal special sensory pathway connections to vestibulocochlear 

and optic nerves [see Table 2]) may integrate the regulation of the stapedius muscle 

and the olivocochlear reflex into the dynamic feedback loops of the social engagement 

system to enhance the looking-listening connection.  Thus, the observed difficulties 

that many autistic individuals have in extracting human voice from background sounds 

may be dependent on the same neural system that regulates facial expression, looking 

behaviors and consequently, visceral homeostasis. 

The Polyvagal Theory describes the integration of the evolutionary 

development of the mammalian nervous system and several components of the 

nervous system into a system (i.e., the Social Engagement System) that facilitates 

social engagement behaviors.  Phylogenetic shifts in regulatory components of the 

mammalian nervous system have evolved to facilitate the interaction between 

neurobiological components and environmental influences that allows for social 

communication as a behavioral strategy for maneuvering in our environment.  The 

model describes the anatomical and neurological changes that have taken place over 

time, and proposes that the integration of specific neural feedback loops facilitates 

specific adaptive strategies for engagements under various environmental settings.  In 
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a safe environment, a properly functioning system enhances the physiological 

regulation of the viscera, listening and looking behaviors, communicative behavior, 

and social gesture behaviors. In unsafe environments, phylogenetically older systems 

are recruited and defensive mobilization strategies (i.e., fight/flight) are used to protect 

the organism.  In life-threatening environments, the primitive system is recruited and 

defensive immobilization strategies (i.e., syncope, death feigning) are used to promote 

survival.  Several behavioral and physiological predictions that can be extracted from 

an understanding of the functional properties of this system are manifested in 

psychiatric disorders, where evidence of defensive behavioral strategies                   

(i.e., withdrawal, mobilization, immobilization, shut down) often mirror diagnostic 

criteria (psychological, physiological, and physical symptoms). 

The vagus as a “system” provides a powerful organizing principle to 

investigate the behavioral, psychological, and physiological features associated with 

several psychiatric diagnoses.  Observations of the behaviors and physiological 

response of autistic individuals suggests that they have great difficulties in recruiting 

the regulatory neural circuits of the Social Engagement System.  Rather, it appears that 

autism is associated with autonomic states that support the adaptive defensive 

strategies of mobilization (i.e., fight-flight behaviors) or immobilization (i.e., shut-

down).  Behaviorally, the withdrawal of the neural regulation of the Social 

Engagement System would be expressed as limited use and regulation of the muscles 

of the face and head.  Functionally, this retraction would limit facial expressions and 

head gestures, and would result in difficulties extracting human voice from 

background sounds, and a lack of prosody.  It may also compromise the regulation of 
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visceral organs such as the heart.  Although there is a limited scientific literature 

evaluating the role of the vagus in autism, the current study was designed to assess the 

plausibility of system-specific predictions, a key component of which is assessment of 

vagal functioning at the level of the heart. 

Since vagal efferent pathways to the heart are cardioinhibitory, changes in 

cardiac vagal tone can influence the metrics used to monitor heart rate and heart rate 

variability (Porges, 2003).  In general, greater cardiac vagal tone produces slower 

heart rate and regulates the transitory changes in heart rate in response to stimulation.  

The myelinated vagal efferents that synapse on the sino-atrial node have a respiratory 

rhythm.  This rhythmic increase and decrease in cardioinhibitory activity through the 

vagus produces a heart rate rhythm known as respiratory sinus arrhythmia (RSA).   

The greater the cardioinhibitory influence through the vagus, the greater the rhythmic 

increases and decreases in the heart rate pattern.  Therefore, the amplitude of RSA 

provides a sensitive index of the functional impact that the myelinated vagus has on 

the heart.   The rapid changes in heart rate in response to specific stimuli are primarily 

under vagal control.  The dynamic increases or decreases in cardioinhibitory activity 

through the myelinated vagus provide the characteristic heart rate pattern changes of 

an immediate deceleration, followed by either a continued deceleration or an 

acceleration.  The literature suggests that autism is associated with reliable differences 

in the amplitude of respiratory sinus arrhythmia.  For instance, an early publication by 

Hutt et al. (1975) reported that normal children suppressed respiratory sinus 

arrhythmia more than autistic children.   Similarly, Althaus et al. (1999) found that 

PDD-NOS children did not suppress respiratory sinus arrhythmia.  Studies have also 
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reported that autistic children have dampened heart rate responses to a variety of 

stimulation.  Zahn et al. (1987) reported unusually small heart rate decelerations to 

auditory stimulation.  Palkovitz and Wiesenfeld (1980) reported dampened heart rate 

responses to socially relevant speech, nonsense phrases, and a 500 Hz tone.  Corona et 

al. (1998) reported that the heart rate of children with autism did not change across 

conditions. 

The social engagement system model predicts that a deficit in the system 

would produce atypical social engagement behaviors such as a social withdrawal; 

improper communication (i.e., poor intonation and prosody); difficulty listening 

(inability to extract human voice from background noise); poor eye contact; 

inappropriate facial expressivity (i.e., flat affect); and atypical visceral functioning 

(i.e., low cardiac vagal tone).  As discussed, these are precisely the indices associated 

with autism, as well as several other psychiatric disorders.  In the current study, data 

related to a number of these indices were obtained to test the hypothesis that the 

engagement behaviors of autistic individuals may be the emergent properties of an 

adaptive strategy elicited by deficits in the functioning of the social engagement 

system. 
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CHAPTER III 

AUTISM 

 

   “We must, then assume that these children  
have come into the world with innate inability 
to form the usual, biologically provided affective  
contact with people…(Kanner, 1943)” 

 

Definition   

 The DSM-IV (APA, 1994) criteria describe autism as a pervasive 

developmental disorder that is defined by impairments in social and communication 

functions, and by atypical behavior patterns. Areas in which social deficiencies occur 

include poor eye contact, a reduction in the ability to interpret emotion states, failure 

to develop peer relations and deficiencies in social-emotional reciprocity (APA, 1994).  

The central communication problems include either a delay or lack of expressive 

language, as well as a marked impairment in nonverbal communicative behavior 

(facial expression, gesturing).  Reduced prosody and intonation, as well as 

impairments in the use of figurative language are also associated with autism (Ornitz, 

1988).  In cases where individuals do develop language, they often have deficits in 

initiating and sustaining conversations (APA, 1994).  The following sections describe 

research on the core diagnostic components of autism as they relate to the social 

engagement system model.  

While many autistic individuals exhibit normal intelligence, there is a clear 

dysfunction in the way in which they interact with the people in their surroundings.  
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Recently, there has been a shift in autism research to gain an understanding of the 

etiology of the disorder and researchers have focused on specific biological, 

neurological, and genetic indicators of the disorder.  While there is still along way to 

go, studies in the area of autism have provided useful information for guiding 

continuing research, and technological advances have provided the tools for advancing 

methodologies used in this area.  Currently, researchers are studying brain functioning 

(i.e., EEG, fMRI), auditory functioning (i.e., auditory brainstem responses; ABR), 

genetic markers, and eye gaze (i.e., eye tracking systems) to name a few.  Studies in 

these areas are uncovering evidence supporting the concept that autism, and disorders 

with similar features (i.e., anxiety, depression, language and communication 

disorders), is best described as a “spectrum” disorder.  Although the concept of autism 

as a spectrum disorder is not novel, research is beginning to make connections 

between the core deficits of autism and specific biological systems.  Advances in 

technology have provided less invasive and more powerful tools that have enhanced 

the ability to begin making these connections and gain a better understanding of the 

etiological and functional issues associated with the disorder. 

The two primary indices of autism are deficits in social interactions and social 

communication.  The following sections describe research in both of these areas as 

they relate to a specific biologically based systems model for understanding autism-

related behaviors as well as similar behaviors associated with other clinical diagnoses 

Social Interaction

The social engagement system model defines a specific system of neural 

feedback loops responsible for the regulation of our ability to be socially engaging.  
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More specifically, components within the model are intimately linked to eye gaze, 

facial affect, prosody and intonation, and in general our physiological “availability” 

for initiating and maintaining social engagements.  This section describes research 

related to the somatomotor components of the social engagement system and how 

these components are related to the core deficits of autism.  

Faces represent the most important stimuli available in any social interaction 

(Posamentier & Abdi, 2003).  When we look at faces, two important sources of 

information become available to us, identity and emotion.  Normal individuals have a 

looking preference for the eyes and mouths of human faces (Yarbus, 1967; Walker-

Smith, Gale, & Findlay, 1977; Mertens, Siegmund, & Gruesser, 1993).  It has been 

argued that the eyes and mouth portray the largest amount of information conveyed 

from the face.  For instance, information about the mental state of a person and 

affective information can be perceived by looking at another person’s face. From this 

information we have the ability to decide whether or not to engage with a person 

(familiar, unfamiliar) and even how to engage (based on facial expression and 

emotional cues).  For most of us, this decision is made with relative ease and speed, 

suggesting a specialized system for engagement.  In contrast, individuals who cannot 

(or do not) decipher such facial information may have great difficulty in actively 

engaging with, or maintaining interactions with others.  The social engagement system 

proposes just such a specialized system.   

  The social engagement system model proposes that a well functioning system 

enhances our ability to interact with others both verbally and nonverbally.  A key 

component of nonverbal communication relies on facial information exchanged 
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between individuals.  This includes appropriate eye contact and facial expression, as 

well as facial tone and social gestures (i.e., head nodding and orientating).  

Components of the social engagement system provide the efferent and afferent neural 

connections that help us regulate gaze behavior, orienting, and the facial muscles 

associated with these behaviors.    

The literature on the looking behaviors of autistic children has provided 

important information regarding differences in gaze behaviors between children with 

autistic spectrum disorders and normal children.  Since Kanner’s (1943) original 

description of autism, one of the most frequently reported clinical observations of 

autistic children is that they display abnormal looking behaviors towards other 

individuals (Baron-Cohen, 1988, 1995; Rutter, 1978; Volkmar & Mayes, 1990).   

Several studies have shown that autistic children have a lower frequency of looking at 

others as compared to normal children (Hutt & Ounsted, 1966; Klin, Jones, Schultz, 

Volkmar, & Cohen, 2002; Pedersen, Livoir-Petersen, & Schelde, 1989; Volkmar & 

Hayes, 1990). For instance, Klin et. al. (2002) studied visual fixations in a group of 15 

autistic males and a matched control group.  Using eye-tracking technology, fixation 

parameters for specific areas of interest (i.e., eyes, mouth, body, object) were assessed 

and compared between groups.  Fixation patterns were also correlated with measures 

of social competence.  Klin et. al. reported that individuals with autism show atypical 

fixation patterns to all of the areas of interest.  More specifically, the autistic 

individuals fixated twice as much on the mouth, body, and object regions, and half as 

much on the eye regions, than the control group when looking at naturalistic social 

situations.  The best indicator of social competence was the fixation patterns towards 
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the face in general, and more specifically towards the eyes.  This means that 

individuals who spend more time fixating on the face perform better on measures of 

social competence, lending further support to the proposal that the face is a key 

component of social interaction.  In contrast to the Klin et. al. study (2002) which 

utilized a video clip of a movie in which actors engaged with other actors but not with 

the subject, the current study utilized a video clip of an individual talking directly to, 

and maintaining eye contact with the subject. 

Other studies have reported that autistic individuals look at another individual 

as much as normal controls, but that the way autistic individuals look is different.  For 

instance, Buitelaar, van Engeland, de Kogel, de Vries, and van Hooff (1991) have 

shown that autistic individuals will look at the other’s face as long as their attention is 

drawn to it.  Even so, the specific regions that are focused on are different than those 

of normal control individuals.  These results suggest that autistic individuals perform 

similar looking behaviors as controls if they are not actively engaged in the situation.   

Hobson and Lee (1998) showed similar findings in a study designed to test 

engagement-behavior differences between autistic and age and verbal IQ-matched 

non-autistic, mentally retarded individuals.  In this study, individuals engaged with an 

unfamiliar adult through a number of stages (i.e., greeting, conversation, farewell).  

They found that those with autism were less likely to offer spontaneous verbal and 

nonverbal gestures for both the greeting and farewell stages, and were less likely to 

establish eye contact even when they were offered a greeting.  There were also fewer 

autistic subjects who smiled, or who waved goodbye.   
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A recent study by van der Geest, Kemner, Camfferman, Verbaten, and van 

Engeland  (2002a), used eye tracking technology to test whether autistic children show 

a general looking problem reflected in different overall fixation parameters, and 

whether autistic children have a specific looking problem related to social stimuli.  

The results of the study, which used a human figure and neutral objects within the 

same drawing, showed that in general, autistic individuals show similar numbers of 

fixations as normal individuals on the human figure within the drawing.  As far as a 

general looking problem, the study showed that autistic children spent the same 

amount of time inspecting the pictures and looking at the human figure, suggesting 

that the looking behaviors are not necessarily a general looking problem or a social 

stimuli problem. 

Another study on the gaze behavior of children with PDD by van der Geest, 

Kemner, Verbaten, and van Engeland  (2002b) used pictures of human faces in 

different orientations as stimuli and reached similar conclusions.  The children with 

PDD showed the same fixation patterns as controls for upright faces regardless of 

emotional expression and while normal children looked less at upside-down faces, the 

fixation times of the PDD children did not differ according to face orientation.  The 

authors concluded that the abnormal looking behaviors were not due to the presence of 

a social stimulus per se, but instead may be related more to other factors such as 

requirements for social interaction.  

It should be noted that in the first study reported above, the cartoon-like human 

figure drawings within the stimuli picture (similar to what a young child might draw) 

were considered the social stimuli.  This type of stimuli may be inherently different 
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than what might be seen during an interaction with another person, or even watching a 

video of a person telling a story.  Similarly, the latter study used static pictures of 

human faces in various orientations as social stimuli.  Again, the gaze behaviors 

expected from this type of stimuli may be quite different than those elicited from a 

true social interaction.  These studies provide information regarding the gaze 

behaviors of autism individuals when interaction is removed from the social stimuli, 

and therefore provide support for the current studies proposal that the actual 

interaction is the key to understanding deficits in social behavior of individuals with 

autism.  To date there have been no reported studies that have attempted to simulate a 

more realistic situation of a social interaction between an individual with autism and 

another person in order to quantify the gaze behaviors using objective (i.e., eye 

trackers vs. coding of video) measurements for quantifying these behaviors.  Advance 

has allowed more interactive studies of gaze behaviors accessible to researchers, 

providing a greater understanding of the dynamics of these interactions for autism and 

several other psychiatric disorders. 

 The current study focuses on the gaze behaviors of individuals with autism 

during social interactions, and the specific locations (regions of interest) that 

individuals are fixating upon (i.e., eyes, mouth, or off target) when the stimuli are 

more socially engaging.  From a social engagement system model differential looking 

behaviors should be quantifiable in individuals with autism over specific regions of 

interest (ROIs), especially when the stimuli used represents more closely a direct 

social interaction.  
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Social Communication 

The DSM-IV lists a number of qualitative abnormalities in communication 

associated with autism.  These include a delay or a total lack of development of 

spoken language, a failure to initiate or sustain a conversation and a lack of reciprocity 

and communicative spontaneity.  Taken alone, these criteria could describe a number 

of psychiatric diagnoses.  However, when coupled with the atypical social behaviors 

described above, a diagnosis of autism primarily follows.  The lack of intonation and 

prosody exhibited by autistic individuals is incorporated into the diagnostic criteria 

(APA, 1994), and several recent reviews have outlined the qualitative impairments in 

social communication in individuals with autism (see for instance Dissanayake & 

Sigman, 2001; Mundy, 1995).   

Communication differences may also include: echolalia (repeating what has 

been heard; inflexible thinking; obscure speech; repetitive questions and persistent 

monologue about favorite interests without regard for the listener's response.  Most of 

these language issues are a part of pragmatic language which includes facial 

expressions, gestures, body language, and the unspoken nuances of language that give 

meaning to what we communicate.  The social engagement system provides a basis for 

understanding these difficulties.  For example, if the social engagement system were 

not functioning properly, an individual would have difficulty extracting human voice 

from the environment (via middle ear muscle and facial nerve functioning).  It is a 

well-established fact that impairments in audition lead to speech impairments, which 

may account for a number of the speech deficits of autism.  Adding to this plausible 

relation is the fact that a deficit in the social engagement system is also related to 
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neural pathways for the regulation of intonation and prosody (i.e., via vagal and 

glossopharyngeal fibers).  The fact that most of the issues are a part of pragmatic 

(socially relevant) language problems further supports the role of the social 

engagement system.  The social engagement specifically predicts deficits in the 

pragmatic components of language (i.e., facial expression, gesture, body language 

etc.) as an outcome of a compromise in the system. 

Summary 

 The Social Engagement System model was proposed to integrate the 

neurobiological feedback loops that provide the basis for social engagement behaviors.  

Based on the Polyvagal Theory’s description of the phylogenetic shifts in autonomic 

nervous system regulation and dynamics, the Social Engagement System was 

conceptualized to describe the integration of visceromotor and somatomotor 

components of the vagal system that enrich or restrict our social behavior repertoire. 

The model predicts that a deficit in the system would produce atypical social 

engagement behaviors such as a social withdrawal; improper communication (i.e., 

poor intonation and a lack of prosody); difficulty listening (inability to extract human 

voice from background noise); poor eye contact; inappropriate facial expressivity (i.e., 

flat affect); and atypical visceral functioning (i.e., low cardiac vagal tone).  These 

components are precisely the indices associated with autism.  Thus, it is plausible to 

hypothesize that autism represents the extreme end of the emergent properties of 

functional deficits in the system.  Specific hypotheses can be extracted from the social 

engagement system model, many of which directly relate to clinical features of several 

psychiatric disorders.  Currently, the literature on deficits as integrated components of 
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a system is lacking.  However, research on specific components within the social 

engagement system does support the model of an underlying neurobiological system 

deficit.  The current research was designed to test several social engagement system 

components from the position that relations predicted by this system model would 

provide further support for specific atypical behaviors (i.e., those associated with 

autism) as representing a compromised social engagement system.  Thus, research, 

assessment and intervention strategies designed on this system model may provide a 

better understanding of psychiatric disorders such as autism and other disorders with 

similar features. 

Hypotheses 
 
 Based on predictions derived from the Polyvagal Theory and the Social  
 
Engagement System model, the following hypotheses were formulated for the current 

study.  As compared to a non-autistic control group, individuals with autism will have: 

1).   Lower levels of mean cardiac vagal tone  
2).    Poorer SCAN FW scores 
3). Poorer SCAN CW scores 
4). Lower indications of REA  
5). Fewer EYE fixations 
6). More OFF fixations 
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CHAPTER IV 

JUSTIFICATION OF THE MEASURES 

 
Subjects 

 All of the autistic individuals were able to complete the tasks presented in the 

study.  A general characterization of this group would be that they ranged from mid- 

to high functioning.  While it is common for researchers to match autistic subjects on 

age and mental ability and/or verbal ability, the variables included in the current study 

required no cognitive demands that would justify the use of mental age or verbal 

ability as a controlling factor.  The SCAN test, which represents the only cognitive-

type task in the study, was designed as a simple repetition task to avoid the possibility 

of influencing results based on cognitive ability.  This test also provides normative 

data allowing for standardization of scores and enables direct comparisons across age 

groups.  Individual subtest scores were converted to their standardized values using 

standardization tables provided with the test administration manual. Statistically the 

use of a control variable (i.e., mental age) makes the assumption that there is a linear 

relation between the control variable and the dependent variables and therefore, this 

possible relation was assessed for both the control (using age) and autistic group 

(using age, mental age, and age controlling for mental age) on the research variables 

(presented below).  The use of a matching variable other than chronological age for 

physiological measures may be inherently confounding.  Furthermore, several studies 

using age and verbal ability or IQ have reported that no relation was found between 

matching variables and research variables (i.e., Langdell, 1978; Valentine, 1988; 
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Volkmar, Sparrow, Rende, and Cohen, 1989; Tantam, Monaghan, Nicholson, and 

Sterling, 1989, Klin et. al., 1999).  

 
Audiogram 
 
 A standard audiogram procedure was used prior to administration of the SCAN 

tasks and the eye-tracking task for two main purposes.  First, the audiogram was used 

as a screening tool to assess the level of cooperation that the autistic individuals would 

be able to provide during subsequent tasks.  While a standard audiogram is not an 

invasive procedure to most of us, the concept of was constitutes an invasive procedure 

is often very different in individuals with autism.  For instance, many autistic 

individuals are sensitive to sound, light, and contact by both people and objects (i.e., 

headphones).  A primary focus of the current research was to remain non-invasive and 

to consider the difficulties individuals may have with the testing procedures.  Thus, an 

a priori decision of the research was to exclude those who were unable to accomplish 

the screening tasks.  Second, the audiogram test was presented to rule out hearing 

impairments that might possibly affect the SCAN measures, and confound the gaze 

analyses (i.e., more fixations on mouth due to difficulty hearing the story).  All of the 

individuals who agreed to participate completed the hearing assessment, and none had 

difficulties that required withdrawal from the study. 

 

SCAN 
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The SCAN tests (Keith, 1994, 2000) are diagnostic tools for auditory processing 

disorders.  Subtests for both the adult and child versions (A and C respectively) were 

selected to measure specific features of auditory functioning.  The “Filtered Words”  

(FW) subtest was designed to assess an individual’s ability to perceive speech that is 

compromised by a poor acoustic environment.  The FW subtest represents the 

functional auditory abilities in everyday listening situations.  These situations include 

when speech is heard in the presence of background noise.  This subtest was chosen 

because one prediction from the social engagement system model states that a deficit 

in the system would lead to difficulties in the extraction of human voice from 

background noise.  The “Competing Words” (CW) subtest is a dichotic listening task.  

This test assesses the development of the auditory system, auditory maturation, and 

hemispheric lateralization.  Dichotic listening performance, and auditory lateralization 

measures are often used for assessing the difficulties seen in children with language 

and learning disorders (Scanlon & Vellutino, 1996).  The diagnostic criteria for autism 

also include difficulties in language and speech.  Because the primary pathway for the 

perception of human speech is from right ear to left hemisphere, most (but not all) 

individuals show a right ear advantage for processing human speech.  The differential 

score between performances on the right vs. left ear of the SCAN CW subtest provides 

an indication of the right ear advantage (Keith, 1994, 2000).  Extracting from the 

social engagement system model, autistic individuals should show deficits in tasks 

designed to assess dichotic listening ability and the right ear advantage.  This 

conceptualization comes from the fact that the dynamic functioning of the middle ear 

muscles is related to the ability to extract human voice from background sounds.  
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Thus, if there were a deficit in this system, it is plausible that hemispheric 

lateralization may also be affected.  The argument would follow that if regulation of 

the middle ear muscles were compromised, the ability to extract human voice would 

be compromised, which in turn may have an affect on the development of 

lateralization for human voice.   

Tympanometry measurements, where the stapedius reflex threshold differences 

between the left and right ears, are often used to confirm the ear advantage.  However, 

tympanometry tests are somewhat invasive, and often aversive due to the level of 

stimulus that must be presented in order to elicit the reflex (i.e., 70-80 dB above 

threshold).  While the use of tympanometry was considered for the current study, pilot 

testing with a few individuals with autism proved that the measure would be difficult 

to consistently obtain from many of the individuals.  Therefore, in the interest of 

maintaining a non-invasive, non-aversive protocol, it was decided that tympanometry 

would not be used to confirm the results of the SCAN test for ear advantage. 

 The SCAN tests provide standardization algorithms that allow for comparisons 

between age groups.  Because it was assumed that a wide range of participants would 

be involved, the SCAN test provided a way to accurately test individuals of all ages 

and make comparisons between the ages using standardized scores.  Importantly, the 

SCAN test was also chosen because of the low task demands of this particular test.  

The SCAN is an imitative test that requires only that subjects repeat the stimulus 

words.  It requires no higher level cognitive functioning, which might influence the 

scores of special populations such as individuals with autism.  This type of test also 
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avoids the cross modality and cognitive aspects of having to point at a picture in 

response to a word.  

Finally, the SCAN test was chosen because of the validity and reliability 

metrics reported.  For all ages, Cronbach’s alpha for measures of internal consistency 

and test-retest reliability, were above .60 for each of the subtests used.  Tables 5 and 6 

provide psychometric data for the FW and CW subtests for SCAN-A and SCAN-C 

respectively.   

 

 
Internal Consistency Test-Retest Reliability 

 

Test Mean (SD) Cronbach’s alpha 
(SEM) 

Means 
Test/retest 

SD 
Test/retest 

FW 
CW 

35.2 (3.0) 
53.5 (4.0) 

.65 (1.7) 

.69 (2.2) 
34.7 / 34.9 
55.0 / 56.1 

2.1 / 2.5 
3.1 / 2.6 

 
 
 
 
 
 
 

 
 

Table 4:  Psychometric data for the SCAN-A subtests. FW = Filtered words;  
CW = Competing Words. The SCAN-A test is for individuals 12yrs. and older  
(adapted from Keith, 1994). 
 
 
The variation in scores on each of the SCAN-A subtests in the test-retest was too 

limited, therefore alpha coefficients for individual tests were not reported (Keith, 

1994).  The test-retest alpha coefficient for total test score for the SCAN-A was .69.   
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Internal Consistency Test-Retest Reliability 

Age Test Alpha Means 
Test/retest 

SD 
Test/retest 

Alpha 
(corrected) 

5 
FW 
CW 

.83 

.87 

6 
FW 
CW 

.77 

.89 

7 
FW 
CW 

.77 

.87 

 
  FW   10.17/11.63 

 
  CW   10.82/11.99 

 
2.88/2.95 

 
2.67/3.06 

 
.66 

 
.82 

8 
FW 
CW 

.76 

.86 

9 
FW 
CW 

.70 

.85 

10-11 
FW 
CW 

.64 

.79 

 
  FW    9.71/10.79 

 
  CW    9.65/11.43 

 
3.12/2.68 

 
3.00/3.01 

 
.75 

 
.78 

 
Table 5: Psychometric data for the SCAN-C subtests. FW = Filtered words; CW = 
Competing Words. The SCAN-C test is for individuals 5-11yrs. old. The test-retest 
metrics were computed on combined groups (i.e., 5-7yrs. & 8-11yrs.) and Cronbach’s 
alpha was corrected for age (adapted from Keith, 2000). 
 
 
Eye tracking 

 One of the predominant features of autism is the lack of eye contact.  As 

discussed previously, the majority of research on individuals with autism makes note 

of the lack of eye contact.  Recent research on the gaze behaviors of individuals with 

autism also shows differing patterns of looking behavior (Klin et. al., 2002; van der 

Geest et. al. 2002a, 2002b).  However, the extent to which these studies used a social 

stimulus that was directly relevant to the individual is questionable (i.e., a movie of 

other people’s social interactions, photos, and stick-figure drawings).  The current 

study was designed to test the gaze behavior of autistic individuals using a stimulus 

that was more directly targeted to the subject.  The videos used in this study were of a 

person telling a story while looking directly at the individual watching.  Because of the 

importance of information extracted from the eyes and mouth regions, specific regions 
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of interest (ROI) were the variables of interest.  Three specific ROIs were defined a 

priori that included the eye region, the mouth region, and an off region, which 

included any fixations on (or slightly beyond) the presentation monitor, but not in the 

other ROIs (i.e., EYE or MOUTH).  Using this design, differences in the gaze 

behaviors of autistic individuals can be tested when the stimulus more closely 

resembled a direct social interaction. 

 

Vagal regulation of the heart 

 The study of cardiac vagal tone (i.e. the amplitude of RSA) is well established 

in the literature as a means of assessing vagal control of the heart.  The amplitude of 

RSA (i.e., vagal tone) provides a sensitive index of the functional impact that the 

myelinated vagus has on the heart.  As mentioned, the literature suggests that autism is 

associated with reliable differences in the amplitude of respiratory sinus arrhythmia.  

Quantification of cardiac vagal tone was accomplished using collection, editing, and 

analysis methods designed and standardized by Porges (1985).  These standardized 

methods have proven to be reliable measures of the functional impact of the vagus 

nerve on the sino-atrial node of the heart, and are being used by over 100 labs 

worldwide (Porges, personal communication).  A recent study by Denver & Porges (in 

press) showed that this method is related to accurate quantification methods in both 

the time and frequency domains to near unity (see also Porges and Byrne, 1992). 
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CHAPTER V 

METHODS 

Participants 

Inclusion Criteria: Only subjects who passed the audiometry test and had 

verbal capabilities high enough to complete the SCAN task (i.e., were able to repeat 

words verbatim and without pronunciation errors) were considered for the study.  

Also, participants who were taking medication that may affect cardiac vagal tone (i.e., 

antihistamines, anxiolytics, anti-psychotic medications) were excluded from the study. 

A total of forty participants (31 male) between the ages of 9-24 (mean = 16.2, 

SD 3.6) participated in the study.  The majority of the autistic group was recruited 

through the Easter Seals Day School in Chicago.  School officials identified an initial 

pool of 35 candidates who were diagnosed as autistic and currently on no medications. 

Of these 35 potential subjects, 21 met the inclusion criteria.  Of these 21 individuals, 

17 provided consent and participated in the study.  The remaining three autistic 

individuals contacted the lab to inquire about participating in the study after learning 

of the research through advertisements, flyers, or presentations.  The diagnosis for 

these individuals was confirmed using the ADI-R (Lord, Rutter, & LeCouteur, 1994). 

The characteristics of the groups are presented in Table 6. 
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 Group 
 Autistic Control 
 Mean (SD) Mean (SD)
N 20 20 
Males 18 13 
CA 15.9 (2.9) 16.5 (4.2) 
MA 10.1 (2.7)  
Ethnicity   
         AA      11 4 
         Hisp 3 3 
         Cauc 6 13 

 

 
Table 6: Characteristics for autistic and control groups. CA = chronological age; 
MA = mental age; AA= African American; Hisp. = Hispanic; Cauc. = Caucasian. 
 

None of the control group reported a psychiatric diagnosis and each of these 

individuals (or parents) reported appropriate grade-level school performance.  Also, no 

measure of mental age was taken for the control group.  Therefore, the chronological 

age of the control group was also used as the mental age index.  Mental age for the 

autistic group was provided from school records.  

 

Apparatus 

Hearing Assessment 

An MA 41 portable audiometer (Maico Diagnostics, Eden Prairie, MN.) was 

used to perform standard pure-tone audiometric tests.  Specific tones were presented 

via headphones four times each to each ear 500, 1000, 2000, and 4000Hz in a random 

order.   
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Auditory Processing Assessment 

The SCAN-A (over age 12) and SCAN-C  (6-12 yr-olds) tests for auditory 

processing disorders (Keith, 1994, 2000) were used to assess the ability to extract 

human voice from background noise, performance on a dichotic listening task, and to 

obtain an index of right ear advantage (REA).  The specific subtests used were 1) 

Filtered Words and 2) Competing Words.  Presentation of the SCAN tests was 

performed on a stand-alone CD player (Marantz model CC4000, Marantz America, 

Itasca, IL.).  A digital sound level meter (Radioshack SLM 33-2055, Ft. Worth, TX.) 

was used to calibrate the decibel (dB) level of the SCAN test to 60dB-C using the first 

track of the SCAN CD (a 13 second calibration pure tone).  This level was selected 

because it was shown to be a comfortable level for this room during pilot testing.  

Beyerhauser model 801 professional circum-aural, noise-limiting headphones were 

used to present the SCAN subtests. 

Eye-Gaze 

To collect and quantify the eye-gaze data, an ASL model 504 Eye-Tracking 

System was used (ASL, Bedford, MA.).  This system is composed of an illuminated 

optical pan/tilt/zoom camera, a magnetic head tracker unit, a control PC, and a scene 

presentation PC.  To optimize the accuracy of the pupil coordinates obtained by the 

optical camera, the ASL 504 is equipped with a Flock of Birds magnetic head tracking 

unit (Ascension, Burlington, VT).  A small (1 in2 ) transmitter is fixed on a headband 

directly above the eye that will be tracked and a receiver unit is located above and 

behind (6” each) the subject’s head.  The X,Y,Z coordinates and the degrees of 

azimuth, elevation, and roll of the head is collected by the system and used to maintain 
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the accuracy of the pupil coordinates.  Prior to testing, the eye tracking equipment was 

calibrated to the specific equipment setup.  Eye-to-head distance, eye-to-scene monitor 

distance, and head tracker receiver-to-transmitter coordinates were calculated and 

entered into the system’s operating software and tested for accuracy.   

The eye tracking system uses edge detection algorithms to locate and track 

corneal reflection and bright-pupil location and collects the X-Y coordinates of the 

separation between these two using an optical camera.  The system then transposes 

these coordinates to correspond to locations on the monitor showing the scene being 

viewed.  The eye tracking system was run on a PIII computer. A PIII computer with a 

19” monitor at a resolution of 1024 X 768 (60Hz refresh rate) was used for 

presentation of the scene for the eye-tracking task.  

Heart Rate  

An EZ-IBI ambulatory heart rate monitor (UFI, Morro Bay, CA.) was used for 

the collection of heart rate data using self-adhering electrodes in a standard three-lead 

configuration.  Using a sampling rate of 1000Hz., the EZ-IBI detected the peak of the 

R-wave to the nearest millisecond, timed the sequential R-R intervals (i.e., heart 

periods) to the nearest msec. and stored the data on a PII laptop for off-line analysis. 

 

Procedure 

Upon completion of the consent documents and a demographic questionnaire, 

participants were brought to a quiet room and seated in a comfortable chair for the 

audiometric testing.  The pure-tone audiometric test was performed first.  The 

audiometer headphones were placed over the participant’s ears in the correct 

 47



configuration (i.e., right ear cup to right ear).  The experimenter set the tone 

presentation level to 30 dB (SPL) and presented four tones to each ear in a random 

order.  Each of the four tones was presented to each of the ears four times.  

Participants were instructed to respond to the tones by verbally responding or raising 

the hand that corresponded to the ear in which they heard the tone.  The experimenter 

recorded the number of correct responses for each tone in each ear.  Following the 

audiometry test, participants were brought to another room that contained the heart 

rate, SCAN, and eye tracking equipment. 

Participants were seated in a comfortable chair in front of the eye tracking 

camera and presentation monitor.  The ECG electrodes were placed in a three lead 

(right shoulder, V6, right abdomen) configuration and the heart rate monitor was 

started.  Once the monitor was collecting stable data (i.e., free from artifact), 

collection of the heart rate data began and continued throughout the experiment.  Next, 

the experimenter confirmed that the CD player used for the SCAN test was calibrated 

to 60dB-C using the digital sound level meter, after which participants were given 

headphones to start the SCAN test.  The headphones were placed in the proper 

configuration (i.e., right cup/right ear) and the SCAN test CD was started.  During the 

presentation of the two SCAN subtests, the experimenter recorded the participant’s 

responses on the answer sheet provided with the test.  Following the SCAN, 

participants were prepared for the eye-tracking task.   

 For the eye-tracking task participants were seated with their eyes at a distance 

of 39 in. from the monitor used to present the stimuli. The chair was raised or lowered 

in order to bring the participant’s pupil into the eye-tracking camera’s line of site.  A 
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headband for the magnetic head tracker transmitter was placed around the participant’s 

head and the transmitter was attached to the band directly above the appropriate eye.  

In this arrangement, the optical camera’s field of view is approximately 12 ½ degrees 

from center, 5 degrees below and 20 degrees above the horizontal line of gaze of the 

participant.  From this position, each participant’s line of gaze was centered in the 

middle of the presentation monitor.  In order to maintain these parameters for all 

participants, the chair was fitted with four hydraulic lifters that enabled the 

experimenter to raise or lower the individual so that each participant’s line-of-site was 

centered on the presentation monitor.  Using this method, the eye-tracking camera 

could be fixed in place, thereby avoiding any possibility of data being corrupted due to 

movement of the equipment.  Once participants were properly aligned, the lights in the 

room were dimmed and the eye tracking equipment was turned on.  The experimenter 

asked the participant to get comfortable in the chair and refrain from moving their 

head during the eye-tracking task.  After the participant was comfortable, the 

experimenter remotely focused the optics camera on the participant’s pupil. The 

camera’s illuminator was switched on and the experimenter adjusted the pupil and 

corneal reflection parameters so that the system could lock on to the participant’s 

exact point of gaze. Prior to the start of data collection, the eye-tracking system was 

calibrated to each participant.  This was accomplished using a 9-point calibration 

pattern on the scene presentation monitor.  The 9 points were arranged so that there 

was a left, center, and right edge point for the top, center, and bottom of the scene 

presentation monitor, effectively outlining the boundaries of the viewable portion of 

the monitor.  The calibration target points were circles with a diameter of 
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approximately 3/8 inch.  To check the accuracy of the calibration, a second calibration 

target procedure was set up.  This target pattern consisted of three rotating dots located 

in a diagonal pattern across the screen that subtending the entire visible portion of the 

monitor (i.e., top-left to bottom-right corners).  Participants were told that circles were 

going to appear on the screen and were instructed to look at them as quickly as 

possible. The calibration procedure was considered accurate when the crosshairs 

corresponding to gaze location remained within the boundaries of the rotating targets.  

The rotating targets were shown one at a time.  Once the participant was calibrated, 

the calibration data were stored by the system and subsequent data coordinates 

corresponded to precise locations on the scene presentation monitor.  At this point, the 

video presentation was started and eye gaze data collection began.   

 A brief movie (approx. 4 ½ min.) was presented to the participant.  One of 

three possible videos was shown (randomized between participants) while an 

unfamiliar individual read a story.  The video was created so that the storyteller’s face 

was life-sized, as viewed by the participants, when played in full screen mode on the 

monitor.  The storyteller’s face remained stationary during the presentation so that the 

parameters for creating regions of interest  (ROIs) and data corresponding to specific 

ROIs could be assessed off-line.  ROIs were defined as the areas surrounding the eyes 

(EYE) and the mouth (MOUTH).  For all other areas within the boundaries of the 

visible area of the presentation monitor, data was coded as OFF.  For coordinates 

outside of the boundaries of the presentation monitor, the eye-tracking software 

automatically computes the coordinates as invalid data and they are not included in the 

analyses to avoid confounding data coded as OFF.  Invalid data sections were not 
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included in the analysis data segment.  During the video presentation, the 

experimenter assured that the optics camera, corneal reflection, and pupil remained in 

focus and centered in the eye tracker monitor.  Once the video was complete, eye 

tracking data collection was stopped and the participants were told they no longer 

needed to sit still.  Following the eye-tracking task, the head tracker headband was 

removed, the heart rate monitor was turned off, and the electrodes were removed from 

the participant.  This marked the completion of the research.  Prior to being dismissed, 

participants were allowed to ask questions and were thanked for their help in 

conducting the research.   
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CHAPTER VI 

RESULTS 

Data Reduction 

Cardiac Vagal Tone 

Heart period data were edited off-line with MXedit software (Delta Biometrics 

Inc., Bethesda, MD).  Editing is accomplished via visual detection of outlier points 

followed by integer division or summation. Outliers in the data not associated with 

movement artifacts are most often caused by a missed R-peak or the detection of two 

or more R-peaks in a short time interval.  Heart period and RSA were calculated with 

MXedit in accordance with the procedure developed by Porges (1985).  This method 

quantifies the amplitude of RSA in the following steps:  (a) R-R intervals are timed to 

the nearest millisecond to produce a time series of sequential heart periods;  (b) the 

sequential heart periods are converted into a new time-series by resampling into 

sequential 500msec. intervals;  (c) the time-based series is detrended by a 3rd order 21-

point moving polynomial filter (Porges & Bohrer, 1990) that is stepped through the 

data creating a smoothed template;  (d) the template is then subtracted from the 

original time series to generate a detrended residual series;  (e)  the residualized time 

series is band passed to extract the variance in the heart period data contained within 

the band of frequencies associated with spontaneous breathing (i.e., 0.12-.40 Hz);  and 

(f)  the natural logarithm of the variance of the band passed time series is calculated as 

the measure of the amplitude of RSA.  This measure of the amplitude of RSA defines 

the term cardiac vagal tone for the study.  These procedures are statistically equivalent 

to frequency domain methods (i.e., spectral analysis) for the calculation of the 
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amplitude of RSA when heart period data are stationary (Porges & Byrne, 1992; see 

also Denver & Porges, in press). 

SCAN 

 Raw scores for each of the SCAN subtests were converted into standardized 

scores using the procedure outlined in the appropriate SCAN administration manual.  

The standardization of scores allowed for direct comparisons to be made across ages 

and between the two versions of the test (i.e., Adult version, Child version).  

Following the standardization procedure, the distribution of standardized scores was 

identical for all ages (i.e., mean = 10, SD = 3). 

Eye Tracking Data 

 The video presentations for the eye-tracking task were approximately 4 ½ 

minutes long.  In order to maintain consistency in the data files, analysis of each eye-

tracking file was performed on a pre-specified range within the approximately 4½ 

minutes of total data collection time.  To allow for accommodation of the subject to 

the task, the first 10 seconds of eye data were not analyzed.  To maintain a consistent 

data length across subjects, the next 240 seconds of valid data (i.e., data within the 

range of the camera) were used in the analyses.  Data beyond the 240-second mark 

were not used in the analyses.  Thus, 240 seconds of valid data for each participant 

was used in the analyses.  This procedure allowed for a brief period for 

accommodating to the task, and removed the possible confound of variations in eye 

data due to variations in file-length or inclusion of invalid data. 

Test-Retest assessment for Eye-Tracking  

 To test whether the looking behaviors of autistic individuals were stable, nine 

 53



of the autistic group were retested on the eye-tracking task.  The fixation metrics used 

in the current study are described in Table 7.  Retesting was completed approximately 

5 days after the initial testing (mean = 5.33, range =  4-7) using a different video than 

previously seen by each participant.   

 

 
 

Metric 
Abbreviation Definition 

 
Sum of Fixation 
Duration 

SFD Total time in seconds spent fixating a 
specific ROI 

Fixation Duration 
Percent 

FDP Duration of fixations for a specific ROI as 
a percent of total fixations 

Sum of Fixation 
Counts 

SFC Total number of fixations for a specific 
ROI 

Fixation Count 
Percent 

FCP Percent of fixations on a specific ROI 
(number of fixations in a specific ROI 
divided by total fixations) 

Mean Fixation 
Duration 

MFD The mean duration in seconds, of 
fixations on each ROI 

 
Table 7:  Eye tracking metrics and definitions for the current study. ROI= region of 
interest. 
 

Paired samples t-tests (see Table 8) revealed no significant differences for the eye-

tracking variables (all p values >.05) and the correlations between the pairs (n = 9) 

ranged from r = .972 to r = .982 for the OFF ROI, and from r = .806 to r = .955 for the 

EYE ROI.  The analysis also revealed no significant differences for the MOUTH ROI 

(p values were all >.05, r values ranged from .92 - .95).  Thus, it was concluded that 

the eye-tracking task would accurately assess a reliable measure of the normal looking 

behaviors of autistic individuals to the task, and that reliable differences obtained 
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between the research groups could be quantified.   
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Table 8:  Results from the paired samples t-test for the eye tracker test/retest measure. 
There were no significant differences and high correlations for each of the metrics 
collected by the eye-tracking system. 
 

Eye-Tracking coordinate accuracy check 

 To ensure that the eye-tracker coordinates were accurately collected, an 

accuracy mark on a still-frame of the video was tested against manually entered 

coordinates that corresponded to the XY line of sight coordinates collected by the 

system.  Using the eye-tracking Eyenal analysis software (ASL, Bedford, MA), 

coordinates for a mock ROI were entered that corresponded to the coordinates of the 

accuracy mark extracted during the calibration procedure.  Specifically, the crosshairs 

on the eye-tracker monitor were placed directly over a mark (i.e., a freckle) on the face 

of the storyteller, and the tracking coordinates displayed by the system were recorded.  

Coordinates for eye gaze position collected by the system are based on the location of 
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the XY crosshairs.  Thus, placing the crosshairs in a specific area on the presentation 

monitor simulates exactly the coordinate data that would be collected if a subject 

looked in this exact location.  Using the analysis software, a region of interest was 

created using these simulated eye gaze coordinates.  When this “mock” ROI (approx. 

4 pixels x 4 pixels) was placed over the still-frame of the storyteller’s face, it landed 

directly over the accuracy mark on the storyteller’s face.  Thus, the accuracy of the 

eye-tracking coordinates was confirmed.  Figure 5 shows the location of the accuracy 

mark used for accuracy testing and a representation of the ROIs used in the study. 

Accuracy mark

Figure 5:  Location of the accuracy mark on the video still-frame of the storyteller’s 
face.  The 4 x 4-pixel mock ROI (the small red dot within the circle) subtended the 
accuracy mark when the eye-tracker coordinates were used to create the ROI.  The 
EYE and MOUTH ROIs are also represented. 
 
 
Eye-Tracker coordinates 

Tracking Principle: The Eye Tracker optics module is designed so that the 

near infrared eye illumination beam is nearly coaxial with the optical axis of the pupil 
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camera.  The camera lens captures the beam that is reflected back from the retina, and 

the image reaching the camera sensor is that of a backlit bright pupil.  This bright 

pupil image can usually be much more easily discriminated from the iris and other 

background than could a black pupil image.  Note that the amount of reflected light 

that reaches the camera from the retina is proportional to pupil diameter.  Pupil 

brightness therefore varies significantly with pupil diameter.  Even when a subject’s 

pupil is at its largest and brightest, the reflection of the illuminator from the front 

surface of the cornea (corneal reflection or CR) is normally much brighter than the 

pupil.  Thus the pupil can usually be distinguished from the background and the CR 

can be distinguished from the pupil on the basis of brightness.  When a subject’s pupil 

becomes very small (3 to 4 mm diameter), sections of the eyelid, cheek, or sclera that 

are also on the camera field often appear as bright as the pupil.  In these cases, size, 

shape, and smoothness criteria must be used to help identify the pupil.  In some cases 

more than one area will be as bright as the CR.  If more than one bright spot will 

satisfy the proper size and shape criteria, the computer selects the spot closest to the 

pupil center as the CR.  Once the pupil and CR are identified, the computer calculates 

the offset between their centers for use in determining eye line of gaze.  The accuracy 

of the eye-tracker system is reported as ½ degree visual angle.  For the equipment 

setup used in the current study, the accuracy of fixation coordinates was 

approximately +/- 4mm.  The XY coordinates of the separation between pupil and CR 

are used in the calculation of fixation metrics. 
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Analyses 

Subjects 

 A one-way ANOVA revealed no significant differences between the groups for 

age [F (1,38) = .232, p = .633].  A Mann-Whitney test revealed no significant 

differences of gender between the groups (T (40) = -1.87, p = .183). Within groups 

comparisons using a split-half (using chronological age) procedure showed that there 

was no relation between the research variables and age for either the control group or 

the autistic group (all p values > .05, 2-tailed).  Also, a within group analysis revealed 

no relation between mental age and the research variables (all p values > .05, 2-tailed) 

for the autistic group.  The correlation between age and mental age for the autistic 

group revealed a relation between the two age-related variables [r (40) = .68, p < 

.001]. 

Audiogram 

 For inclusion in the study, a score of 75% for each of the four tone sets       

(i.e., 500Hz, 1kHz, 2kHz and 4kHz) presented during the audiometry test was 

required.  As mentioned, normal hearing is a prerequisite of the SCAN tests.  All of 

the subjects tested met the requirements for inclusion.  Of the 40 subjects tested, only 

two missed one of the 16 tones presented during audiometric testing, and each 

responded correctly to a subsequent presentation of the same tone. 

Cardiac vagal tone 

Between groups analysis of variance (ANOVA) showed significant differences 

in mean vagal tone and heart period measures.  The autistic group had lower mean 

vagal tone [F (1,38) = 16.07, p < .001] than the control group, and significantly shorter 
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heart periods [F (1,38) = 13.74, p = .001].  Table 9 shows the results of mean cardiac 

vagal tone and mean heart period analyses. 
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.00113.7487.90
102.95

691.10
893.08

Mean HP
Aut
Ctr

p valueFStd. Dev.Mean

.00016.07.64
1.03

5.79
6.88

Mean VT
Aut
Ctr

.00113.7487.90
102.95

691.10
893.08

Mean HP
Aut
Ctr

p valueFStd. Dev.Mean

 

Table 9:  Mean cardiac vagal tone and heart period for autistic and control subjects. 
Aut = autistic; Ctr = control. 
 
 
SCAN 

Significant differences were found on each of the SCAN subtests, as well as 

the measure of right ear advantage.  Analysis of standardized FW scores revealed that 

the autistic group performed poorer on extracting human voice from background noise 

[F (1,38) = 187.27, p< .001].  Analysis of the standardized CW scores showed that the 

autistic group performed poorer on the dichotic listening task [F (1,38) = 27.40, p < 

.001]. Autistic individuals also scored significantly lower on the SCAN test measure 

of REA  [F (1,38) = 14.15, p = .001].  Table 10 summarizes the results of the SCAN 

variable analyses.  Overall, the autistic group showed a slight left ear advantage, as 

evidenced by the negative mean REA score.  Comparison of individual REA scores 

for the autistic individuals and the control individuals revealed that approximately 

80% of autistic individuals showed evidence of a left ear advantage, while 

approximately 80% of the control group showed a right ear advantage. 
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14.15     (.001) 1.85   (1.45) -.825   (2.83) REA 

27.40     (.000) 9.05   (2.33) 5.05   (2.50) CW 

187.27   (.000) 10.10   (2.02)2.45   (1.45) FW 

F, (p) Control 
Mean (SD)

Autistic 
Mean (SD)

Variable  

 

 

 

 

Table 10:  Results of SCAN variable analyses. FW = Filtered words; CW = 
Competing Words; REA = Right Ear Advantage.  FW and CW scores are standardized 
(mean=10, SD=3). 
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Figure 6:  Mean SCAN Competing Words (CW) and Filtered Words (FW) 
standardized scores for autistic (gray) and control (black) subjects.  The standardized 
scores have a mean of 10 and a standard deviation of 3.  All of the control and only 
three of the autistic individuals were within the standard range.   
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Eye Tracking  
 
 Table 11 summarizes the analyses of the eye-tracker variables.  As compared 

to controls, the autistic group spent less time fixating (SFD) on the Eyes and more 

time fixating off of the face.  Analyses of the time spent fixating on the mouth showed 

no significant differences.  Expressed as percentages (FDP), the autistic group spent 

roughly 66% of their time fixating off of the face and 11% fixating on the eyes.  In 

contrast, the control group spent approximately 26% of fixation time off of the face 

and 55% of fixation time on the eyes.  Both groups spent approximately 20% of their 

time fixating on the mouth.  Analysis of the number of fixations in each ROI also 

showed significant differences.  Autistic individuals fixated fewer times (SCF) on the 

eyes and more times on the mouth than did controls.  Also, the autistic group fixated a 

greater percent of times on the mouth than on any other ROI (FCP).   

 Analysis of the fixation counts (i.e., SFC & FCP) and durations (i.e., SFD & 

FDP) provides important information that might otherwise go unnoticed.  These 

variables provide the information necessary to analyze how many fixations each group 

made, as well as how long those fixations were.  For instance, analyses of the FCP on 

the mouth ROI, revealed that the autistic individuals fixated significantly more times 

on the mouth than on any other ROI.  However, there were no differences in the 

duration variables for the mouth ROI (i.e., SFD, FDP), which means that autistic 

individuals directed their gaze to the mouth more often than any other ROI, but not for 

very long.  Analyses using only count or durations would not have provided this 

information.  Similarly, these differences would be lost using the scan path analyses 

reported by previous eye-tracking research with autistic individuals (i.e., van der Geest 
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2002a, 2002b).  Figure 7 shows the fixation patterns for an autistic individual that 

looked mainly at the face.  Figure 8 shows an exemplar of typical control individual’s 

gaze behaviors.   
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Table 11: Summary of analyses of eye-tracker variables for each group.  As 
hypothesized, significant differences are seen for the Off and Eye regions of interest. 
The only significant difference for the Mouth region was for fixation count percent.  
SFD = sum of fixation duration; FDP = fixation duration percent; SFC = sum of 
fixation counts; FCP = fixation count percent; MFD = mean fixation duration. 
 
 

For the many of autistic subjects, fixation patterns showed that the majority of 

gaze behavior did not focus on the face region, but rather the autistic individuals 

looked away from the face (Figure 9) or off of the presentation monitor (Figure 10).  

When these individuals did spend time looking at the face, atypical fixation patterns 
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were observed.  Fixation patterns for the control individuals followed the expected 

pattern of scanning the eyes and mouth of the storyteller. 

 
Figure 7:  Fixation pattern example for an autistic subject. Dots represent fixation 
points on the storyteller’s face.  Fixations off of the presentation monitor, but still 
within the eye-tracker range (i.e., below the picture) are not shown. 
 
 
 

 
Figure 8:  Fixation pattern example for a control subject. Dots represent fixation points 
on the storyteller’s face.  Most control subjects show a similar pattern of fixations 
clustered around the eyes and mouth.  
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Figure 9:  Fixation pattern for an autistic subject depicting looking behavior that 
avoids the face while maintaining a line of gaze on the presentation monitor.  Similar 

atterns were observed for several of the autistic individuals. p
 

 

 

Figure 10:  Fixation pattern for an autistic subject depicting looking behavior that 
avoids the presentation monitor.  The outer box approximates the boundary of the eye-
tracker for obtaining point of gaze data. 
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Overall, the analyses of the eye-tracker data showed that autistic individual

fixated more times (Figure 11) and for gr

s 

eater durations (Figure 12) off of the face 

than controls.  Autistic individuals fixated a greater percentage of times on the mouth, 

but not more times or for longer durations than controls.  As hypothesized, the autistic 

group also fixated fewer times (Figure 13) and for shorter durations (Figure 14) on the 

eyes than the control group.  These data support the hypotheses related to the looking 

behaviors of autistic individuals proposed by the social engagement system model. 
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igure 12:F   Individual total fixation durations on the OFF region of interest.  Autistic 

 
igure 13:

(gray) individuals spent significantly more time off of the face than control (black) 
subjects.   
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F   Individual number of fixations on the EYE region of interest.  Autistic 
 (gray) individuals fixated significantly fewer times on the eyes than control (black)

subjects. 
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Figure 14:  Individual total fixation durations on the EYE region of interest.  Autistic 
(gray) individuals spent significantly less time fixating on the eyes than control (black) 
subjects.  Two of the autistic subjects did not fixate on the eyes at all (represented by 
the first two missing gray bars).   
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CHAPTER VII 

DISCUSSION 

Overview 

The results of the current study support the hypothesis that behaviors 

associated with a diagnosis of autism represent a compromise in an underlying 

neurobiological system.  The data support current research findings and diagnostic 

indices in that differences in autonomic functioning, eye contact, and listening 

behaviors are evident in individuals with autism.   Similar to the findings by Hutt et. 

al. (1975), Corona et. al. (1998), and Althaus et. al. (1999), the current study showed 

significant differences on indices of autonomic functioning (i.e., cardiac vagal tone) in 

individuals with autism.  Results from the SCAN variables are supported by findings 

related to the listening behaviors of autistic individuals (i.e., Dissanayake & Sigman, 

2001; Mundy, 1995; see also the DSM-IV diagnostic criteria for autism).  Results 

from the eye-tracking task provide important new information regarding the looking 

behaviors of autistic individuals. Unlike recent eye-tracking research (i.e., (Klin et. al., 

2002; van der Geest et. al. 2002a, 2002b), the current study utilized a more socially 

direct task for assessing the gaze behaviors of autistic individuals by using a gaze task 

designed to more directly involve the individual.  By using a video of a person telling 

a story while looking directly at the listener, it was expected that the gaze behaviors of 

the individuals would relate more closely to the natural gaze behaviors during face-to-

face interactions.  The use of this specific variable may explain the differences 

between earlier studies and the current study.  For instance, van der Geest et. al 

(2000a) reported that autistic individuals did not differ from normals on their patterns 
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of looking at a social stimuli.  However, the “social stimuli” was a stick figure 

drawing of a person, within a larger drawing that included other non-social items (i.e., 

a house, tree…etc.).  Differences in looking behaviors found by Klin et. al. (2002) 

more closely relate to the current findings, although they looked more at patterns of 

looking and used a movie clip as a social stimuli.  The Klin et. al. study showed that 

compared to matched controls, autistic individuals showed atypical patterns of looking 

to different regions of interest, and showed significant differences for specific regions 

of the face (i.e., eyes, mouth).   However, this study relates more to the looking 

behaviors of autistic individuals when they are the on-looker rather than directly 

engaged with someone.  Klin et. al. interpret the results as those that may be expected 

when an autistic individual watches everyday social interactions of others (i.e., in the 

lunchroom at school).   

Importance of the current study 

 The current study is the first to explicitly test multiple components of the 

Polyvagal Theory’s social engagement system model.  The study provides strong 

support for the proposed underlying neurobiological system as described by Porges 

(1995, 1998, 2001, 2003).  The results confirm the hypothesized relation between a 

compromise in the system and the atypical behaviors associated with autism.  They 

also provide evidence supporting the proposed components of the social engagement 

system and the integration of these components as a feedback loop associated with 

social engagement behaviors.  The current study is the first to assess the somatomotor 

component of the Polyvagal Theory, and the only study to include assessments of both 

somatomotor and visceromotor components proposed by the theory.  Significant 
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differences were found in all components of the system that were examined, which 

supports the structural accuracy of the model and it’s predictive validity for atypical 

social behaviors associated with autism as well as several other psychiatric disorders. 

The study provides evidence for functional deficits in an integrated system responsible 

for vagal control of the heart, looking behavior, and listening behavior not previously 

reported in autism research.  It employed a design utilizing quantitative assessment of 

these functions, which provides important new information for the field of autism 

research.  Because it was theory-based, it informs the theory, shows the strength of the 

Polyvagal Theory, and provides strong support for the social engagement system 

model as it relates to social engagement behaviors including regulation of 

physiological state, listening behavior, and looking behavior.  The study confirms a 

deficit in this system in autistic individuals, based on the specific hypotheses drawn 

from the model and the Polyvagal Theory from which it was derived. 

This study revealed differences in vagal control of the heart in individuals with 

autism using accurate quantifiable methodologies.  Previous research proposing 

differences in cardiac-related autonomic variables (i.e., heart rate, heart period, RSA) 

utilized non-comparable or methodologically questionable metrics for assessing 

autonomics of individuals with autism.  For instance, Corona et. al. (1998) used a 

natural log conversion of mean heart period as the metric for assessing cardiac 

response.  Furthermore, the authors attempted to analyze 3-second and 10-second 

trials of mean heart period to assess differences between autistic and control subjects.  

This procedure is not sufficient for accurately assessing changes in cardiac functioning 

as specified in the study (i.e., as an index of vagal tone).  The specified trial lengths 
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(i.e., 3 and 10 seconds) would have provided between 3-6 data points (3s trials) and 

10-20 data points (10s trials) for a heart rate ranging from 1 beat per second (bps) to 

2bps, a range that covers the vast majority of the population (i.e., infant to adult) under 

normal conditions.  Using the equipment and software reported in the study (i.e., a 

Vagal Tone Monitor and MXedit software; both developed by Porges), their analysis 

of heart period cannot provide accurate information pertaining to the autonomic 

differences proposed by the study.  The “data reduction” section pertaining to heart 

period in the current paper outlines the specific procedures required for accurate 

quantification of cardiac vagal tone using this methodology (see also Denver & 

Porges, in press).  The discrepancy in methodologies, as described in this study, puts 

the results and interpretation of the cardiac measures in question.  A similar 

methodological problem with the quantification of cardiac measures is found in the 

Zahn et. al. (1987) study.  Overall, measures of cardiac autonomics (i.e., HRV, RSA, 

HP, HR) reported in studies on autistic individuals have used various measures and 

methodologies that make direct comparisons of the results difficult.  The current study 

used a well-documented, standardized, and accurate methodology for the assessment 

of cardiac vagal tone in autistic individuals that can be directly compared to other 

methodologies (i.e., spectral analysis), and has been shown to be directly related to the 

assessment of vagal control of the heart.  The use of the quantification procedure in 

the current study revealed significant differences in cardiac vagal tone in autistic 

individuals, as compared to matched controls.  This finding directly supports the 

hypothesis of autistic individuals having lower mean cardiac vagal tone when 
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compared to age-matched controls.  The use of the standardized methodology allows 

for reliable replication studies in the future. 

 The study also showed significant differences in listening behaviors that are 

directly related to social communication in autistics.  The results of the SCAN task 

provide important information pertaining to differences in listening abilities of autistic 

individuals.  These data show that autistic individuals are impaired in their ability to 

extract human voice from background sounds, their performance on dichotic listening 

tasks, and that they lack the normal right ear advantage for processing human voice.  

These abilities are directly related to language delays, learning disabilities and autistic 

spectrum disorders (Smith et al., 1988; Thomas et al., 1985).  Due to the relation 

between middle ear muscle functioning and the extraction of human voice, the current 

study provides important information pertaining to functional deficits in the middle ear 

muscle dynamics of autistic individuals, and supports the social engagement system 

model’s proposed outcome of a compromise in the system.  These results may help to 

explain the diagnostic symptoms related to the atypical pragmatic language skills of 

autistic individuals (i.e., initiation/maintenance of conversations).  Specifically, the 

inability to accurately extract human voice from the environment may lead to a 

withdrawal from (or avoidance of) situations requiring these skills (i.e., conversations) 

and may be directly related to atypical looking behavior as an adaptive strategy for 

autistic individual’s to overcome this inability by avoiding eye contact during 

conversations.  Evidence for this possibility is found in the eye-tracking data.  

 The current study provides new and important information related to 

differences in the atypical looking behaviors of autistic individuals commonly 
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mentioned in the literature, and included in the diagnostic criteria.  Very limited 

quantitative research has been conducted on gaze behaviors of autistic individuals, and 

this is the only reported study that directly assesses this behavior using a social task 

that directly involves autistic individuals.  Previous studies attempting to assess 

looking behaviors of autistic individuals have used either non-social or indirectly 

social tasks to assess fixation patterns.  For instance, the study by van der Geest et. al. 

(2002a) used a cartoon-like drawing that included a human stick figure as the “social” 

stimuli and neutral objects (car, house, trees…etc.).  Because no significant 

differences were found in fixation data on the human figure or on the picture as a 

whole, the conclusion of this study was that autistic individuals do not show atypical 

looking behavior in general or to social stimuli specifically.  The use of a cartoon-like 

stick figure drawing as a “social stimulus” does not justify this conclusion.  These 

results only provide information showing that autistic individuals look at pictures in 

the same way that non-autistic individuals do.  The study  provides no information 

pertaining to the looking behaviors of autistic individuals to a meaningful social 

stimuli.  A second set of studies by van der Geest et. al., (2002b) used pictures of 

human faces showing different emotions and in different orientations as a measure of 

gaze behavior in autistics.  Again the results showed no differences between autistics 

and controls on gaze behaviors to either emotion faces or neutral faces shown in the 

upright position.  The authors concluded that autistic individuals did not differ in gaze 

behavior in general, but that situational factors may play a role in the atypical gaze 

behavior of autistic individuals.  The studies by van der Geest et. al. (2000a; 2000b) 
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provide no information pertaining to socially relevant gaze-behaviors of autistic 

individuals.  The very nature of autism is atypical social behavior.   

The eye-tracking studies by Klin et. al., (1999, 2002) provide information 

related to gaze behaviors of autistic individuals to static pictures (1999) and a socially 

related stimuli (2002).  In both of the Klin studies, autistic individuals looked more at 

the mouth and less at the eyes presented in the stimuli (i.e., static face pictures and a 

movie clip).  However, similar to the other eye-tracking gaze studies, the results of 

these studies do not provide specific information related to looking behaviors in social 

situations that involve the individual with autism.  In the 2002 study, Klin and 

colleagues collected fixation data while individuals watched a movie portraying a 

complex social interaction between several actors.  Based on differential fixation 

patterns, the authors concluded that autistic individuals demonstrate abnormal visual 

pursuit patterns (i.e., more pursuits that went from the mouth of one actor to the mouth 

of another vs. eyes to eyes) when viewing “naturalistic” social situations.  While the 

conclusions proposed by both of the Klin et. al. studies provide support for the current 

findings that autistic individuals spend significantly less time looking at the eyes of 

others during a directed social task, the results of the Klin et. al., (2002) study should 

be interpreted cautiously.  An important methodological issue that was not addressed 

in the study was the use of visual pursuit patterns (i.e., scan paths) as the metric of 

analysis.  Unlike the current study, which used fixation metrics and utilized a 

test/retest design, Klin et. al. implicitly rely on the assumption that visual pursuit 

patterns are consistent over time.  However, it is highly unlikely that the same visual 

pursuit pattern of any individual would be obtained on a second trial.  Thus, the use of 
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fixation counts and durations provides a more reliable and replicable metric for 

assessing eye-tracking measures than visual pursuit (i.e., scan path) for this type of 

research. 

Although previous eye-tracking studies provide some basic information related 

to the looking behaviors of autistic individuals to non-social stimuli, static pictures, 

and indirect social interactions, they do not provide any specific information 

pertaining to the social engagement deficits defined in the diagnostic criteria for 

autism.  The current study provides evidence relevant to direct social interactions and 

the subsequent looking behavior of autistic individuals.  Future research is being 

planned that will assess looking behavior in a “true” social situation (i.e., during a live 

conversation).   

Summary 

 According to the Polyvagal Theory, the mammalian nervous system has 

evolved in a way that promotes social behavior.  The model used to describe the 

integrated neurobiological system responsible for regulating our social engagement 

abilities has been labeled the Social Engagement System.  Based on the model of a 

hierarchy of potential adaptive strategies for responding to stimuli in our environment, 

the Polyvagal Theory proposes that a well functioning social engagement system leads 

to appropriate social engagement behaviors.  These behaviors include proper eye 

contact, prosody and intonation, listening, and facial expressions as well as a 

supportive physiological state.  Conversely, a compromise in the system would lead to 

a lack of eye contact and facial expression, poor intonation and prosody in our voice, 

the inability to extract human voice from background noise (and therefore lack of a 
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right ear advantage for human voice), and poor physiological functioning.  This study 

was designed to test components of social engagement system functioning.  Due to the 

strong relation between indices of a compromised social engagement system and the 

atypical behaviors associated with a diagnosis of autism, the study was conducted with 

individuals with autism.  The study showed that the indices associated with a 

compromised social engagement system are related to atypical behaviors associated 

autism.  No other study has attempted to examine the hypothesis that a specific 

integrated neurobiological system may be involved in the emergence of these 

behavioral features. Furthermore, while some have proposed a neurobiological basis 

for the disorder, none have attempted to describe an integrated model from which 

predictable relations can be tested.  The social engagement system model provides a 

specific, theoretically-based model for making these assessments.  According to this 

model the core of atypical behaviors seen in autism are predictable as the emergent 

properties of a compromise in this system. 

 According to the DSM-IV, the core behavioral indices of autism include 

difficulties in social interaction that include looking and listening skills.  In fact, the 

defining feature of autism is atypical social engagement.  These are also the predicted 

behaviors of a compromised social engagement system.  The current study supports 

the hypothesis that the atypical behaviors associated with autism are related to a 

compromise in the system.  It has been shown that as compared to control subjects, 

that autistic group performed poorer on indices of looking (eye gaze) and listening 

(extracting human voice from background, right ear advantage).  Furthermore, a 

premise of the social engagement system model is that a person’s physiology 
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regulates, and is regulated by stimuli in our environment.  Accordingly, a compromise 

in the system would lead to atypical autonomic function.  As the primary component 

of the autonomic nervous system, the vagal system provides us with a means of 

assessing autonomic functioning in a non-invasive way (i.e., quantification of cardiac 

vagal tone). Thus, results of the assessment of cardiac vagal tone in the current study 

provide further support for the hypothesis that autism is related to a compromise in the 

social engagement system. 

Taken together, the results of the current study support each of the stated hypotheses 

and support the proposal that autism may be an extreme example of the emergent 

properties of a compromised social engagement system. 

Conclusion 

 The current study provides evidence for quantifiable differences on a number 

of variables related to social engagement system function.  It is the first study to utilize 

a theory driven research design to assess functional differences in multiple 

components of the social engagement behaviors of autistic individuals.  The study 

showed significant differences related to both the visceromotor (i.e., cardiac vagal 

tone) and somatomotor (i.e., looking and listening) components of the social 

engagement system.  Data support each of the hypotheses of the study and provide 

important new information pertaining to social engagement behaviors of autistic 

individuals and the relation between the cluster of atypical behavior and a 

compromised social engagement system 

Limitations 
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 One of the difficulties of assessing social engagement system functioning in 

the autistic population relates to the assignment of a relevant control group.  Because 

the variables assessed included processing abilities (i.e., SCAN variables) as well as 

physiological variables, a straightforward matching scheme is not readily available.  

For instance, if subjects were matched on chronological age only, the possibility of 

confounding the SCAN scores would be present due to the lower mental ages of the 

autistic individuals.  On the other hand, if mental age were used for matching 

purposes, physiological variable would be confounded.  Physiological indices follow 

developmental trends.  This fact precludes a simple matching procedure such as 

matching on age and verbal ability, a common practice in autism research.  The design 

of a standard matching scheme for cross-modal research such as the current study 

should be investigated.   

 A second limitation concerns the assessment of right ear advantage.  Standard 

REA assessments (i.e., dichotic listening test batteries, ABR, tympanometry) may be 

either too difficult or too aversive to many autistic individuals.  The SCAN test used in 

the current study does have good psychometric properties, however it provides only a 

rough estimate of REA based on the standardization group.  Furthermore, even the use 

of the SCAN test eliminates the possibility of assessing lower functioning (i.e., non-

verbal) autistic individuals and limits the generalizability of the study. 

 While the current research used a considerably more “social” stimuli for the 

eye-tracking task than has been previously reported, even the use of a video of a 

person speaking directly to the listener may not yield the same results as a true social 

interaction.  Future research designs should seek to advance the “realism” of the social 
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interaction stimuli.  Also, standardization of analysis metric and methodologies would 

enhance replication. 

 Finally, the inclusion of variables related to social engagement system 

functioning not tested in the current study would lend further support to the relation 

between a compromised social engagement system and autism.  For instance, the 

direct assessment of dynamic middle ear muscle functioning, autonomic reactivity, 

baroreceptor sensitivity and cortical functioning would greatly enhance the available 

information for this population. 

Implications  

 Understanding the atypical behaviors associated with autism from the 

theoretical approach that they are the emergent properties of a compromised social 

engagement system provides useful information for intervention strategies.  For 

instance, if we realize that autistic individuals are in a physiological state that 

promotes defensive behavioral strategies, interventions can be designed that enhance 

the individual’s assessment of their environment as “safe”.  This would lead to less 

invasive intervention tactics, in more quiet and calming settings to enhance the 

individual’s perception of their environment as a safe place.  This in turn may enhance 

a physiological state that is more supportive of social engagement.  Furthermore, 

intervention strategies designed to stimulate the neural components of the social 

engagement system would help to provide the physiological functioning required for 

the perception of a safe environment and the emergence of social engagement 

behaviors. 
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