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As promising candidates for spin qubits, semiconductor quantum dots (QDs)

have attracted tremendous research efforts. Currently most advanced progress is

from GaAs QDs. Compared to GaAs, lateral QDs in 28silicon are expected to have

a spin coherence time orders of magnitude longer, because 28Si has zero nuclear spin,

and there is no hyperfine interaction between electron spins and nuclear spins.

We have developed enhancement-mode metal-oxide-semiconductor (MOS) sin-

gle electron transistors (SETs) using pure silicon wafers with a bi-layer gated config-

uration. In an MOS-SET, the top gate is used to induce a two-dimensional electron

gas (2DEG), just as in an MOS field effect transistor. The side gates deplete the

2DEG into a QD and two point-contact channels; one connects the QD to the source

reservoir, and the other connects the QD to the drain reservoir.

We have systematically investigated the MOS-SETs at 4.2 K, and separately in

a dilution refrigerator with a base temperature of 10 mK. The data show that there is

an intrinsic QD in each point-contact channel due to the local potential fluctuations

in these SETs. However, after scaling down the SETs, we have found that the



intrinsic QDs can be removed and the electrostatically defined dots dominate the

device behavior, but these devices currently only work in the many-electron regime.

In order to realize single electron confinement, it is necessary to continue scaling

down the device and improving the interface quality.

To explore the spin dynamics in silicon, we have investigated a single intrinsic

QD by applying a magnetic field perpendicular to the sample surface. The magnetic

field dependence of the ground-state and excited-state energy levels of the QD mostly

can be explained by the Zeeman effect, with no obvious orbital effect up to 9 T. The

two-electron singlet-triplet (ST) transition is first time directly observed in a silicon

QD by excitation spectroscopy. In this ST transition, electron-electron Coulomb

interaction plays a significant role. The observed amplitude spectrum suggests the

spin blockade effect. When the two-electron system forms a singlet state in the dot

at low fields, and the injection current from the lead becomes spin-down polarized,

the tunneling conductance is reduced by a factor of 8. At higher magnetic fields,

due to the ST transition, the spin blockade effect is lifted and the conductance is

fully recovered.
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Chapter 1

Introduction

1.1 Motivation

Exploiting quantum properties of physical systems as a new source of compu-

tational power, has been pursued since 1980s.[1][2][3] However, It was in 1994 that

Peter Shor discovered a remarkable algorithm to factor large integers fast using a

quantum computer.[4] This sparks a tremendous interest in quantum computers,

since they can potentially break many cryptosystems in use today. Shor’s result is a

powerful evidence that quantum computers are indeed more powerful than classical

computers. Another example is the Grover database search algorithm, which speeds

up the data search process on quantum computers.[5]

There are a number of physical implementations, including nuclear magnetic

resonance (NMR) systems, trapped ions, quantum dots (QDs), super conducting cir-

cuits, cavity quantum electrodynamic (QED) systems, and other systems.[6] People

are already able to demonstrate basic quantum computing operations using NMR

systems, trapped ions, but they are difficult to scale up. Silicon single electron tran-

sistors belong to the quantum dot approach. As a solid state implementation, it has

the potential for upscaling, an important merit for practical applications. It is also

compatible with existing microelectronics processing.

The quantum dot quantum computer architecture was first proposed by Daniel

1



Figure 1.1: Schematic diagram of the quantum dot quantum computer architecture.

Single electron spins are manipulated by local electron spin resonance (ESR), and exchange

interaction between two nearby quantum dots is controlled by electrostatic gates. (After

V. N. Golovach and D. Loss, Ref.[8])

Loss and David P. DiVincenzo in 1997.[7] Their implementation uses the spin of

individual excess electrons confined in QDs as qubits. Their idea was further devel-

oped by Golovach and Loss.[8] The schematic diagram of such a system is shown

in Fig. 1.1. Information is encoded in two-level electron spin states (qubits). Local

electron spin resonance (ESR) is used to rotate single electron spins. Exchange in-

teraction between two QDs is controlled by electrostatic gates. By properly turning

the exchange interaction on or off, the square root of swap (
√

SWAP ) operation on

two qubits can be realized. All possible single qubit operations and the square root

of swap operation on two qubits can form a universal operation set for quantum

computation.[7]
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1.2 Silicon quantum dots for quantum computing

Since the scalable quantum dot quantum computer architecture was proposed,[7]

tremendous research efforts have been put into the implementation of basic quan-

tum circuits. Various material systems have been explored, including GaAs/AlGaAs

systems,[9][10] Si/SiGe systems,[11] silicon on insulator (SOI) systems,[12] and metal-

oxide-semiconductor (MOS) systems,[13][14] etc.

Currently the most advanced progress is from GaAs QD approach. Marcus

Group of Harvard University has demonstrated the coherent exchange of two elec-

tron spins in a double dot system, controlled by fast electrical switching of the tunnel

coupling between these two QDs.[9] Thus they have realized the
√

SWAP operation

on two qubits. Kouwenhoven group of Delft University has realized the rotation of

a single electron spin in a QD using ESR.[10] Hence a universal operation set has

been accomplished.[7] But the prominent problem of GaAs is the short electron spin

coherence times T1 and T2, which have been measured roughly to be 1 ms and 1

µs respectively. This is due to the hyperfine interaction, because an electron spin

couples to randomly oriented nuclear spins of surrounding atoms in the crystal lat-

tice. Since all isotopes of Ga and As have nuclear spin, it can not be avoided. On

the contrary, a single electron confined in a silicon QD is expected to have a spin

coherence time orders of magnitudes longer than that in GaAs, because 28Si has

zero nuclear spin, and there is no hyperfine interaction between electron spins and

nuclear spins. This is the major advantage of silicon QDs, as shown in Table 1.1.

Other advantages include the stable and high quality thermal oxide. Silicon

3



Table 1.1: Electron spin coherence times in different material systems. (After Chia-Hung

Yang.)

Si:P 28Si:P Si QD SiGe 2DEG GaAs QD

T1 Hours 100 ms ? 2.3 µs ∼1 ms

T2 - 60 ms ∼1 ms?1 3 µs ∼ 1µs

Temperature ∼2 K ∼7 K ? ∼5 K ∼ 30 mK

Environment Natural Si 28Si ? Si/SiGe QW GaAs/AlGaAs

Technique ESR 2 ESR3 ? ESR 4 Transport 5 , 6

Cause of decoherence Photon Photon ? Rashba SO Hyperfine

1 Because of the quality of Si QDs, T1 and T2 have not been measured. However,

coherence times can be upwards of three orders of magnitude longer than in GaAs.[15]

2 G. Feher and E.A. Gere, Phys. Rev. 114, 1245 (1959).

3 A. M.Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, Phys. Rev. B

68, 193207 (2003).

4 A. M. Tyryshkin, S. A. Lyon, W. Jantsch, and F. Schaffler, Phys. Rev. Lett. 94,

126802 (2005).

5 Kouvenhoven group, Ref. [16].

6 Marcus group, Ref. [9].

4



is also backed by the immense resource from the semiconductor industry.

Compared to GaAs, there are also disadvantages of silicon, including the larger

effective mass and the lower electron mobility. The effective mass m∗ is 0.19me in

silicon, while m∗ is 0.067me in GaAs, which means smaller confinement energy.

The lower electron mobility means a shorter coherent length. We may be able to

overcome these problems by making smaller devices, using high purity wafers, and

optimizing fabrication processes.

Since the first observation of Coulomb blockade oscillations in silicon,[17]

there has been steady progress in the development of silicon-based single electron

transistors using silicon-on-insulator (SOI) structures,[12] Si/SiGe quantum well

structures[11] and metal-oxide-semiconductor (MOS) structures,[13][14] though it

remains a considerable challenge due to material properties.[13] In the SOI approach,

the thin Si layer is sandwiched by oxide on the top and at the bottom, so the size

of the device can be small. But the defects at the silicon/buried oxide interface

cause strong localization, and the last few electrons are difficult to deplete.[18] In

the Si/SiGe quantum well approach, the sample contains a two-dimensional electron

gas (2DEG) from donors in the system prior to nanofabrication. Surface Schottky

gates are used to define QDs and to deplete electrons in QDs from many down to

1. Although this depletion mode approach has been applied in GaAs single elec-

tron transistors (SETs), fabrication of silicon-based SETs suffers from problems due

to material deficiency. For example, gate leakage current due to dislocations in

Si/SiGe quantum wells frequently disrupts the single electron transport. However

they are making progress.[11] In the MOS approach, some people use the tradi-
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tional doped MOS field-effect transistor (FET) structure.[19] Although the process

is readily available, dopant induce disorder reduces the electron mobility, and tunnel

barriers are also not tunable.

Figure 1.2: (a) Schematic top view and (b) cross sectional view of an MOS-SET.(Not

drawn to scale) In (a), the shaded regions, the solid lines, and the rectangular area, depict

the heavily phosphorus-doped Ohmic source (1) and drain (2) leads, the 6 side gates (A-

F), and the top gate (G1), respectively. The top gate induces a 2DEG at the Si/thermal

oxide interface, and the side gates deplete the 2DEG into a quantum dot and two point

contact channels. The schematic potential profile along the 1-2 direction is shown as the

inset (lower right) in (b).

Our device is based on an enhancement-mode MOS structure with a bilayer-

gated configuration. As shown in Fig. 3.1, the top gate can induce a 2DEG at the

Si/thermal oxide interface, so the quality of the 2DEG potentially can be high. It

also has electrostatically defined tunnel barriers, which can be tuned by side gates.

We also use high purity silicon wafers to minimize the concentration of impurities

and to improve the electron mobility. Compared to the SOI and Si/Ge quantum
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well approaches, the difficulties are how to make the device small and to keep the

electron mobility high after fabrication processes.

Because of the flexibility of the bilayer-gated configuration, it has also been

actively pursued by other research groups, most notably one group at the Univer-

sity of New South Wales (Australia),[14] and another group at Sandia National

Laboratories.[20] The Australian group demonstrated a small device with a 40 nm

quantum dot, which works in the few electron regime, although the device qual-

ity still needs to be improved.[14] The Sandia group are working on optimizing

the fabrication processes. Until now their devices only work in the many electron

regime.[20]

1.3 Outline of this thesis

The purpose of this thesis is to investigate QDs in silicon MOS-SETs as po-

tential quantum computing devices. The current understanding of this system is

presented. I also discuss the difficulties and the possible solutions for further im-

provement.

In Chapter 2, I introduce the basic theories of single electron transistors and

double quantum dot systems. The characterization techniques are also explained.

It serves as a background to understand the data in Chapter 5 and Chapter 6.

In Chapter 3, the device structure and the operating principle of an MOS-SET

are explained. The detailed fabrication processes are also discussed.

Our SET device is based on a silicon MOS structure, and the Si/SiO2 interface
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is critical to the device characteristics. In Chapter 4, we examine the quality of the

Si/SiO2 interface in terms of the interface-trap density and the electron mobility.

The 2D electron concentration is also measured.

In Chapter 5, Silicon MOS-SETs are systematically investigated at 4.2 K,

and separately in a dilution refrigerator. The data show that there is an intrinsic

QD in a point-contact channel in addition to the electrostatically defined QD. It

is demonstrated that the intrinsic QD can be removed, when the gap between two

neighboring side gates of the point-contact channel is reduced. Since electrostatically

well defined lateral QDs are a must in order to realize spin qubit devices in silicon,

the future possible improvement is discussed.

For the purpose of investigating single spin in silicon, we focus on a single

intrinsic QD in Chapter 6. The magnetic field dependence of the ground-state

and excited-state energy levels is measured. The two-electron singlet-triplet (ST)

transition is first time directly observed in a silicon QD by excitation spectroscopy.

The observed amplitude spectrum suggests the spin blockade effect. When the two-

electron system forms a singlet state at low magnetic fields, and the injection current

from the lead becomes spin-down polarized, the tunneling conductance is reduced

by a factor of 8. At higher fields, due to the ST transition, the spin blockade effect

is lifted and the conductance is fully recovered.

In Chapter 7, I summarize the major results in the thesis, and discuss the

possible improvements in the future.
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Chapter 2

Theories of single electron transistors and double quantum

dot systems

2.1 Single electron transistors (SETs)

2.1.1 Operating principle of an SET

Like a metal-oxide-semiconductor field–effect transistor (MOSFET), a single

electron transistor (SET) has a source, drain and gate [Fig. 2.1(a)]. It also has

an island, which is capacitively coupled to the source, drain and gate. There is a

special requirement. The capacitor between the island and the gate should have no

leakage, but the capacitors between the island and the source, the island and the

drain should allow electrons to tunnel through. However, the resistance should be

much larger than the resistance quantum h/e2 (∼ 25.8 kΩ),[22] so that the electrons

are well localized on the island.

The basic operating principle of an SET is as follows. Let’s ignore the gate

first. When we apply a bias between the source and the drain, electrons move from

the source to the island. This charges the island up and requires a finite energy.

Because electrons are discrete particles, there is a situation like this [Fig. 2.1(c)], if

we move one more electron from the source to the island, the potential energy of

electrons on the island will be higher than the source. This cannot happen because

9



Figure 2.1: (a) Schematic of a single electron transistor (SET). It has two tunnel

junctions Cs and Cd, connected to a small area, known as the island. The electrical

potential of the island can be tuned by the gate, capacitively coupled to the island. A

tunnel junction is characterized by a tunnel resistor and a capacitor, as shown in the inset.

(b) In the constant interaction model (CI model), an SET can be modeled as a capacitor

network. The capacitor network and voltage sources form an isolated closed system. (c)

The SET is in the blocking state. (d) The SET is in the transmitting state. µs and µd are

the electrochemical potentials (Fermi levels) of the source and drain, respectively. µ(N)

is an electrochemical potential level, defined in Eq. 2.7.(After Ref. [21].)
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of the energy conservation law. If the next highest potential energy level is lower

than the drain potential energy, electrons cannot move to the drain to create a

vacancy. So the device is off. Now we consider the gate. If a positive voltage is

applied on the gate, it will effectively lowers the potential energy of electrons on the

island. If there is a state between the source and drain bias window, the device is

on [Fig. 2.1(d)].

When the island of the SET is a small region of semiconductor, and electrons

on the island are strongly confined in all three spatial directions, the energy spectrum

of the island becomes quantized. This small island is called a quantum dot (QD).

It is also called an artificial atom.[22]

To approximately describe an SET, people often refer to the constant inter-

action model (CI model).[23] There are two basic assumptions in this model. First,

the coulomb interactions of an electron on the island with others, in or outside the

island, are characterized by a constant capacitance C. Second, the discrete single-

particle energy spectrum, calculated for non-interacting electrons, is unaffected by

the interactions.[22]

The SET can be modeled as a capacitor network [Fig. 2.1(b)]. If the capacitor

network is combined with voltage sources, an isolated closed system is formed. When

Vds = 0, we can define a free energy as the total energy of the isolated closed system,

including the capacitors and the voltages sources, and defined up to an additive

constant. Here the free energy is assigned to be 0 when the electric potential of

the quantum dot Vdot is 0. So the free energy is equal to the change of the total

electrostatic energy EΣ stored in the capacitors minus the work done by voltage
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sources when Vdot changes from 0 to V , where V is the electric potential of the dot

at the final state. This free energy determines the transport of the SET. In the

linear regime of conductance, i.e. the difference of the electrochemical potentials of

the source and drain leads µd − µs = −eVds ≈ 0, and the electric potential of the

source Vs = 0, so the electric potential of the drain Vd ≈ 0. The charge on the QD

is

Qdot = CsVdot + CdVdot + Cg(Vdot − Vg)

= CVdot − CgVg (2.1)

CVdot = Qdot + CgVg (2.2)

where Cs, Cd, and Cg are the capacitances between the dot and the source, drain

and gate respectively, the total capacitance C = Cs +Cd +Cg, and Vg is the electric

potential of the gate. The free energy is equal to the work done by an external force

when charges move from the source to the quantum dot, so that Vdot changes from

0 to V . We also notice that the work done by voltage source Vg is equal to the

charge moving from the voltage source to the upper plate of capacitor Cg times Vg,

and this work does not contribute to the process when the charge moves from the
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ground to the QD. So the free energy

U(Q) =

∫ V

Vdot=0

VdotdQdot

=

∫ V

Vdot=0

Vdotd(CVdot − CgVg)

= C

∫ V

Vdot=0

VdotdVdot

=
1

2
CV 2 (2.3)

=
(Q + CgVg)

2

2C
(2.4)

from Eq. 2.1 and Eq. 2.2, where Q and V are the net charge Qdot and the electric

potential Vdot of the dot at the final state. We can define

Qext = CgVg, (2.5)

which is usually called the “external charge”.[24] The physical meaning of this def-

inition and Eq. 2.4 becomes straightforward. −Qext is the polarization charge on

the dot, which is induced by the gate voltage, when Vdot = 0. The work done by the

external force moves additional charge Q− (−Qext) = Q + Qext from the source to

the quantum dot, so the work done by an external force is just Eq. 2.4.

On the QD, the net charge Q is equal to the charge of the free electrons (−eN)

plus the background charge (Q0 = eN0): Q = −eN + eN0 = −e(N −N0), where N

is an integer, N0 can be any real number. If we also consider the quantized energy

levels in the dot, the free energy becomes

U(N) =
[e(N −N0)− CgVg]

2

2C
+

∑
N

En, (2.6)

where N is the number of free electrons on the dot, eN0 is the background charge,
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and
∑
N

En is a sum over the occupied energy states of the QD. The electrochemical

potential of the dot is given by

µ(N) = U(N)− U(N − 1)

= (N −N0 − 1/2)Ec + EN − e(Cg/C)Vg, (2.7)

the energy needed to add the Nth electron to the dot, where the charging energy

Ec = e2/C. So the electrochemical potential µ(N) includes the charging energy

term and the single particle energy EN . We also notice that µ(N) can be measured

by the gate voltage with a conversion factor eCg/C. The energy levels of the dot in

Fig. 2.1(c) and (d), are actually the electrochemical potential levels (..., µ(N − 1),

µ(N), µ(N + 1), ...). The addition energy EA is defined as

EA(N) = ∆µ(N) = µ(N + 1)− µ(N)

= Ec + EN+1 − EN

= Ec + ∆E (2.8)

Electrons can flow through the QD, when there is an electrochemical potential

level between the electrochemical potentials of the source and drain leads, i.e. µs ≥

µ(N) ≥ µd, as shown in Fig. 2.1(d). In the linear region with µs = 0 and µd −

µs = −eVds ≈ 0, when we sweep the gate voltage, the successive peaks happen at

µ(N ; Vg) = 0, so e(Cg/C)V N
g = (N − N0 − 1/2)Ec + EN , as shown in Fig. 2.2(a).

Thus the addition energy is related to the peak spacing in the gate voltage by

EA(N) = Ec + EN+1 − EN = e(Cg/C)(V N+1
g − V N

g ), where V N
g and V N+1

g are the

gate voltages of the Nth and (N + 1)th Coulomb blockade peaks. We also define
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the conversion factor

α = Cg/C, (2.9)

so that the change of the gate voltage can be converted into the change of the

electrochemical potential of the dot by ∆Edot = eα∆Vg.

If we sweep the DC bias between the drain and the source of an SET while

stepping the gate voltage, the differential conductance (∂Ids/∂Vds) produces a 2D

color graph, called a stability chart or “diamond chart” [Fig. 2.2(b)]. The stability

chart can be used to characterize the SET tunnel-barrier capacitances as well as the

size of the quantum dot. The half height (e/C), the width (e/Cg), and the slopes

(−Cg/Cd) and Cg/(C −Cd) of the diamond edges can uniquely determine the SET

structure. By finding these capacitances, we can model the dot as a disc of radius

r and solve for the radius using

C = 8εr, (2.10)

where ε is the semiconductor dielectric constant. Please note that using such a

method, the size is usually overestimated, because the quantum dot is modeled by

an unscreened disc, whereas in reality the Coulomb interaction of electrons in the

dot is partially screened by the nearby leads. For the same size, the capacitance

of a screened disc is larger than that of an unscreened one.[22] In Fig. 2.2(b), the

diamonds labeled by single numbers represent the Coulomb blockade regions, where

electrons can not flow through the SET, and the number of electrons in the dot is

stable.
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Figure 2.2: (a) Coulomb blockade oscillations of an SET. The distance between two

nearest peaks is ∆Vg = e/Cg. (b) Stability chart of an SET, where the source-drain

differential conductance Gds is measured against Vds and Vg, and shows as a 2D color

graph. The rectangle indicates the range of Vds and Vg in the measurement. Gds is zero

in the gray area, and not zero otherwise. The Coulomb blockade regions (gray areas) are

diamond shaped. The minimum half height is ∆Vds = e/C. The slopes of the edges are

(−Cg/Cd) and Cg/(C − Cd), respectively.
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2.1.2 Amplitude and lineshape of Coulomb oscillations

There are two kinds of Coulomb blockade oscillations:[23]

1. ∆E ¿ kBT ¿ e2/C, the classical or metallic Coulomb blockade regime, where

many levels are excited by thermal fluctuations.

2. kBT ¿ ∆E, e2/C, the quantum Coulomb blockade regime, where only one or

a few levels participate in transport.

Where ∆E is the energy level spacing due to size quantization in the dot, kBT is

the thermal energy, and e2/C is the charging energy.

The classical Coulomb blockade regime can be described by the “orthodox”

Coulomb blockade theory. The lineshape of a conductance peak is given by [23]

G

G∞
=

δ/kBT

2 sinh(δ/kBT )
≈ 1

2
cosh−2(

δ

2.5kBT
) for hΓ, ∆E ¿ kBT ¿ e2/C, (2.11)

where δ = eα(Vg − Vg0), Vg0 is the gate voltage at resonance, kB is the Boltzmann

constant, T is the electron temperature, α = Cg/CΣ is the ratio of the gate ca-

pacitance to the total capacitance, and hΓ is the lifetime broadening of the energy

levels in the dot. 1/G∞ = 1/Gl + 1/Gr, is the Ohmic sum of the two barrier con-

ductances, which is independent of the temperature and the size of the dot, and

is characterized completely by the two barriers. So the maximum conductance at

peak Gmax = G∞/2 in this regime, which is independent of temperature.[23]

In the quantum Coulomb blockade regime, electrons tunnel through the dot

by a single level. The single peak conductance is given by [25]

G/G∞ =
∆E

4kBT
cosh−2(δ/2kBT ) for hΓ ¿ kBT ¿ ∆E, e2/C, (2.12)
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where ∆E is assumed independent of E and T . The lineshapes in the classical regime

and in the quantum regime are the same, except for the different “effective electron

temperatures”. The maximum conductance at peak Gmax = G∞ · (∆E/kBT ), in-

creases linearly with decreasing temperature in the quantum regime, while it is con-

stant in the classical regime. This can be used to distinguish a quantum peak from

a classical peak. Due to the quantum phase coherence, the quantum conductance

Gmax can exceed the Ohmic value G∞.

In our silicon SETs, the 2D electron concentration is about n2d = 1 × 1012

cm−2, and the corresponding Fermi wavelength is about 35 nm, which is at the

same order as the device dimension (∼ 100 nm). In the dilution refrigerator, the

electron temperature is about 400 mK, and kBT is about 0.035 meV, whereas ∆E

is about 0.2 ∼ 1.6 meV, and e2/C is about 2 ∼ 6 meV. So our silicon SET is in the

quantum Coulomb blockade regime.

In the above discussion, the tunnel resistance Rt is assumed to be much larger

than the resistance quantum h/e2 (∼ 25.8 kΩ), so that the lifetime broadening hΓ

is much less than the charging energy e2/C, because (hΓ)τ ∼ h, and the lifetime

τ = RtC due to tunneling, hΓ ∼ h/τ = h/(RtC) ¿ h/(C × h/e2) = e2/C. This

implies that the tunnel coupling between the dot and the leads is small, and the

charge is well defined in the dot. In addition, hΓ should be less than the thermal

energy kBT . Otherwise higher-order tunneling processes can not be neglected any

more.[25] When the tunnel resistance Rt is much larger than the resistance quantum

h/e2, the dot is called a closed dot, and the transport behavior is dominated by the

Coulomb blockade effect.
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Figure 2.3: (a) Coulomb blockade oscillations measured at B = 2.53 T. (b) A low Vg

conductance peak from (a) shown fit to a thermally broadened resonance (solid line) when

the life time broadening hΓ ¿ kBT . (c) A conductance peak at higher Vg shown fit to a

thermally broadened Lorentzian (solid line). The dash line is the best fit using the same

line shape as in (b). (After E.B. Foxman et al., Ref. [26].)
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When the barrier conductance increases, the tunnel coupling between the dot

and the lead increases. The charge quantization in the dot is gradually lost, and

the Coulomb blockade is lifted. When the tunnel conductance Gt is larger than

2e2/h, the dot is called a open dot, and the transport behavior is dominated by the

quantum interference effect.[27] In Fig. 2.3(a), with an increasing gate voltage, the

coupling increases. There are two distinct regimes. When Vg < 290 mV, the SET is

in the Coulomb blockade regime (a closed dot), where the conductance minima are

0. The lineshape in this regime is determined by Eq. 2.12, as shown in Fig. 2.3(b).

When Vg > 290 mV, there is no Coulomb blockade any more, and the conductance

minima do not go to zero. Please note that the electron temperature is about 60

mK in the measurement, which is much less than the charging energy. The device

gradually turns into an open dot. In the transition, the electron-electron Coulomb

interaction (the charging energy) decreases, due to the strong coupling between the

dot and the leads.[26] The lineshape is approximately Lorentzian [Fig. 2.3(c)]. In

an open dot regime, the quantum interference effect plays an important role.

2.1.3 Quantum interference in a closed dot and in an open dot

In order to illustrate the characteristics of quantum interference, I consider an

electron tunneling through two identical rectangular potential barriers as shown in

Fig. 2.4. A more general asymmetrical rectangular double barrier case can be found
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Figure 2.4: The potential profile of a rectangular double barrier, with barrier height V0.

in Ref. [28]. We have the wave function in the different regions

for x < 0, ψ = eikx + Re−ikx, (2.13)

for a < x < L + a, ψ = Aeikx + Be−ikx, (2.14)

for x > L + 2a, ψ = Seikx. (2.15)

where k =
√

2m∗E/~, m∗ is the effective mass of the electron. and E is the energy

of the electron.

In the case of a single barrier, the wave function is [29]

for x < 0, φ = eikx + R0e
−ikx, (2.16)

for x > a, φ = S0e
ikx. (2.17)

and

R0 =
(k2 + β2) sinh βa

(k2 − β2) sinh βa + i2kβ cosh βa
= |R0|eiϕ0 , (2.18)
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where β =
√

2m∗(V0 − E)/~, V0 is the height of the potential barrier, |R0| and ϕ0

are the modulus and the phase angle of R0, respectively.

The total transmission coefficient

T = |S|2 =
|S0|4

|1− |R0|2ei2(kL+ϕ0)|2

=
T 2

0

|1− (1− T0)ei2(kL+ϕ0)|2 (2.19)

where T0 = |S0|2, |R0|2 + |S0|2 = 1.

T = 1, when

2(kL + ϕ0) = 2nπ, (2.20)

where n is an integer. So

En =
~2(nπ − ϕ0)

2

2m∗L2
at T = 1. (2.21)

Eq. 2.20 is the quantization condition.

In an SET, the transmission coefficient of each barrier has T0 ¿ 1, and the

wave function in the well can be approximately treated as a bound state. The

quantization condition to determine the eigen energy levels inside a rectangular

potential well is [30]

k tan
kL

2
= β, or k cot

kL

2
= −β, (2.22)

which is exactly the same as Eq. 2.20, when T0 → 0, i.e. βa À 1, as shown below.

At βa À 1, Eq. 2.18 becomes

R0 =
k2 + β2

(k + iβ)2
= eiϕ0 . (2.23)
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From Eq. 2.20, we get

ei(kL+ϕ0) = (−1)n

eikL/2 = in
k + iβ√
k2 + β2

(2.24)

Eq. 2.24 is just the same as Eq. 2.22.

More generally, for an arbitrary potential well in an SET with barriers T0 ¿ 1,

the total transmission coefficient reaches the maxima when the energy of the electron

is equal to the eigen energy levels inside the potential well, which can be understood

in the sense of the law of energy conservation.

For an open dot with E > V0, the results are easily obtained by replacing β

by iβ with β =
√

2m∗(E − V0)/~ in Eq. 2.18. Eq. 2.20 holds even for an open dot.

The only difference is the minimum total transmission coefficient Tmin. For a closed

dot with T0 ¿ 1, Tmin ≈ T 2
0 /4 ∼ 0; for an open dot,

Tmin ≈ T 2
0

(2− T0)2
with T0 =

[
1 +

V 2
0

4E(E − V0)

]−1

, (2.25)

which is not zero.

Fig. 2.5 shows an example of the total transmission coefficient T v.s. electron

energy, where the barrier width a = 10 nm, the potential well width L = 20 nm, the

height of the potential barrier is 50 meV, and m∗ = 0.19m0 as in silicon. There are

two distinct regimes. One is the closed dot regime (E < V0), in which electrons can

be well confined in the potential well. The other is the open dot regime (E > V0), in

which the potential well cannot confine electrons. In the closed dot regime (E < V0),

the total transmission coefficient T is almost 0, except when the resonant tunneling

23



Figure 2.5: The total transmission coefficient T v.s. electron energy E of a a rectangular

double barrier. The barrier width is 10 nm, the potential well width is 20 nm, the height

of the barriers is V0 = 50 meV, and m∗ = 0.19m0 as in silicon. The dash line shows that

the minimum transmission coefficient is not zero when E > V0.
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happens. In the open dot regime (E > V0), the total transmission coefficient T is

always not 0, and there are resonant tunneling peaks due to quantum interference.

In a general asymmetrical rectangular double barriers, the maximum total

transmission coefficient [31]

T =
4TlTr

(Tl + Tr)2
, (2.26)

where Tl, Tr are the transmission coefficients of the left and the right potential

barriers, respectively. When resonant tunneling through the double barriers occurs,

the total transmission coefficient reaches its maximum. In the case of Tl = Tr,

T = 1, which means that the conductance is 2e2/h for one 1D channel, according to

Landauer formula.[32] When E < min(Vl, Vr), the device is in the closed dot regime;

when E > min(Vl, Vr), the device is in the open dot regime, where Vl, Vr are the

heights of the left and the right potential barriers, respectively.

When we compare Fig. 2.3(a) with Fig. 2.5, they share some similarities —

both have a blockade regime and a non-blockade regime. In the case of Coulomb

blockade [Fig. 2.3(a)], the peak spacing also includes the energy difference due to

the electron-electron Coulomb interaction (the charging energy) in addition to the

size quantization [Fig. 2.5]. Another difference is that Fig. 2.3(a) is measured at

finite temperature, and Fig. 2.5 is calculated at 0 K.

2.1.4 Excited states and excitation spectrum

The previous discussion mainly focuses on the linear-response regime, i.e.

the difference of the electrochemical potentials of the source and drain leads µd −
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Figure 2.6: Schematic diagrams of the electrochemical potential levels of a quantum dot

(a) in the small-bias regime and (b) in the large-bias regime. The solid lines are the ground

states, and the dash lines are the excited states. When Vds is large enough, electrons can

also tunnel through the dot by excited states, as in (b).

µs = −eVds ≈ 0, and only the ground state energy levels participate in the trans-

port[Fig. 2.6(a)]. When Vds increases, the bias window between the source reservoir

and the drain reservoir increases. As shown in Fig. 2.6(b), when Vds is so large

that higher-lying excited state energy levels can also contribute to the transport.

These extra tunneling channels are usually detected as an increase in current. How

exactly the current changes depends on the tunnel coupling of these energy levels

involved.[33]

In a stability chart where the source-drain differential conductance is mea-

sured against Vds and Vg, these excited states are shown as parallel lines along the

Coulomb blockade diamond edges. From these signals, the energies of the excited

states of the quantum dot can be mapped out. Fig. 2.7(a) shows the free energies

of different electronic configurations and possible transitions between them. GS(N)
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Figure 2.7: Schematic of an excitation spectrum. (a) Free energies for N electrons

U(N) and for N +1 electrons U(N +1) with possible transitions. (b) The electrochemical

potentials for the transitions depicted in (a). (c) Schematic of a stability chart with excited

state signals (solid lines). Various alignment of energy levels with µs and µd at different

Vds and Vg is also explained. (After R. Hanson et al., Ref. [33].)
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and ES(N) are the ground state and the excited state free energies of the system

when the dot has N electrons in it. GS(N + 1) and ES(N + 1) are the ground

state and the excited state free energies of the system when the dot has (N + 1)

electrons in it. The electrochemical potentials associated with these transitions are

calculated using Eq. 2.7 at a fixed Vg, and they form an electrochemical potential

ladder[Fig. 2.7(b)]. The ladder can be mapped on the gate voltage axis [Fig. 2.7(c)],

when the corresponding electrochemical potential is aligned with µs(= 0) and µd

at Vds = 0 by tuning the gate voltage Vg. However, at small Vds, electrons tun-

nel through the dot only at the gate voltage indicated by GS(N) ↔GS(N+1), i.e.

through the ground state energy level. At larger Vds, when both the ground state

energy level and the excited state energy levels are in the transport window, the

excited states contribute to the transport and show as solid lines in Fig. 2.7(c).

Various alignment of energy levels with µs and µd at different Vds and Vg is also ex-

plained with schematic diagrams. From these relationships, we can get the energies

of the excited states in the dot. Please note that the electrochemical potential of

the transition ES(N) ↔GS(N + 1) is lower than that of the transition between the

two ground states GS(N) ↔GS(N + 1), because when the dot has N electrons in

it, and the system is in the excited state, it will need less energy to add one more

electron in the dot.
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2.1.5 Single-particle states in a two-dimensional elliptic harmonic os-

cillator

In our MOS-SETs, electrons are strongly confined along the z direction, and

form a 2D electron gas (2DEG) on the x − y plane. Then the 2DEG is depleted

into a quantum dot by side gates. So the confining potential can be approximately

modeled as a 2D anisotropic parabolic potential V (x, y) = m∗(ω2
xx

2 + ω2
yy

2)/2 in

general, where ωx 6= ωy, and m∗ is the electron effective mass.

The eigen energies of single-particle states in this potential and a magnetic

field B perpendicular to the 2DEG can be solved analytically.[34, 35] It is

En1,n2 = (n1 + 1/2)~ω1 + (n2 + 1/2)~ω2, (2.27)

where n1 and n2 are quantum numbers, and the frequencies are given by

2ω2
1,2 = (ω2

x + ω2
y + ω2

c )± [(ω2
x + ω2

y + ω2
c )

2 − 4ω2
xω

2
y]

1/2, (2.28)

where ωc = qB/m∗ is the cyclotron frequency.

The right side of Eq. 2.28 becomes

(ω2
x + ω2

y + ω2
c )± (ω2

x + ω2
y + ω2

c − 2ωxωy)
1/2(ω2

x + ω2
y + ω2

c + 2ωxωy)
1/2

=1/2[(ωx − ωy)
2 + (ωx + ωy)

2 + 2ω2
c ]± [(ωx − ωy)

2 + ω2
c ]

1/2[(ωx + ωy)
2 + ω2

c ]
1/2

=1/2{[(ωx − ωy)
2 + ω2

c ]
1/2 ± [(ωx + ωy)

2 + ω2
c ]

1/2}2 (2.29)

From Eq. 2.28 and Eq. 2.29,

ω1,2 = 1/2{[(ωx + ωy)
2 + ω2

c ]
1/2 ± [(ωx − ωy)

2 + ω2
c ]

1/2}, (2.30)
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When ωx = ωy = ω0, from Eq. 2.27 and Eq. 2.30, we can get the well-known

Fock-Darwin states

En1,n2 = 1/2(n1 − n2)~ωc + (n1 + n2 + 1)~(ω2
0 + 1/4ω2

c )
1/2, (2.31)

which play an important role in the GaAs QDs.[22]

At low magnetic field B with ~ωc ¿ ~ω0,

∂En1,n2

∂B
≈ (n1 − n2)

q~
2m∗ . (2.32)

However, for a strong anisotropic parabolic potential and low magnetic field

B with ~ωc ¿ ~(ωx + ωy), ~|ωx − ωy|, from Eq. 2.30,

∂En1,n2

∂B
∝ B ∼ 0 or

∂En1,n2

∂(~ωc)
∝ ωc

|ωx − ωy| ∼ 0. (2.33)

So for a strong anisotropic parabolic potential, the orbital effect ~ωc becomes not

important.

2.2 Double quantum dot systems

2.2.1 Stability diagram of two serial quantum dots

A serial double quantum dot (DQD) system can be modeled as a network of

tunnel resistors and capacitors. In the case of weak tunnel coupling (R >> 25.8

kΩ), the system can also be modeled as a classical capacitor network [Fig. 2.8(b)].

Here we do not consider the discrete quantum states in the QDs. Cross capacitances

and stray capacitances are also neglected for simplicity, although they can be easily

incorporated in the model. All parameters are defined in Fig. 2.8(b), and consistent

with Ref. [36].
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Figure 2.8: (a) Schematic of two coupled quantum dots in series. A tunnel junction is

characterized by a tunnel resistor and a capacitor, as shown in the inset. (b) The serial

double quantum dot (DQD) system is modeled as a capacitor network. When it combines

with voltage sources, an isolated closed system is formed.

31



Only when the capacitor network is combined with voltage sources, an iso-

lated closed system is formed. When Vds = 0, the free energy is defined as the total

electrostatic energy EΣ stored in the capacitors minus the work done by voltage

sources, and defined up to an additive constant: one may arbitrarily choose a con-

dition where the free energy is zero. Here we define the free energy of the double

dot system to be 0 when the electrostatic potentials of the quantum dots are 0.

The discussion will follow Ref. [36], but Ref. [36] doesn’t distinguish the free

energy from the electrostatic energy, and is potentially misleading.

Q1 = CL(V1 − VL) + Cg1(V1 − Vg1) + Cm(V1 − V2),

Q2 = CR(V2 − VR) + Cg2(V2 − Vg2) + Cm(V2 − V1). (2.34)

So 


Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2


 =




C1 −Cm

−Cm C2







V1

V2


 , (2.35)

where C1 = CL+Cg1+Cm and C2 = CR+Cg2+Cm. Here again Q1ext = CLVL+Cg1Vg1

and Q2ext = CRVR + Cg2Vg2 are the “external charge”.



V1

V2


 =

1

C1C2 − C2
m




C2 Cm

Cm C1







Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2


 . (2.36)

More generally, Eq. 2.35 and Eq. 2.36 can be write as

Q̂ = Ccc
~Vc, (2.37)

~Vc = C−1
cc Q̂, (2.38)

where Q̂ =




Q1 + CLVL + Cg1Vg1

Q2 + CRVR + Cg2Vg2


, ~Vc =




V1

V2


, and Ccc =




C1 −Cm

−Cm C2


.
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When VL = VR = 0, the free energy is equal to the work done by an external

force when charges move from the ground to dot 1 and dot 2, so that ~Vc changes from

0 to (V1 V2)
T , where T is the transpose of a vector. We also notice that the work

done by voltage source Vg1 is equal to the charges moving from the voltage source

to the upper plate of capacitor Cg1 times Vg1, and this work does not contribute to

the process when the charges move from the ground to dot 1. This is also true for

voltage source Vg2. It can be proved that the free energy

U(Q1, Q2) =

∫ ~V

~Vc=0

~Vc · d~Q

=

∫ ~V

~Vc=0

~Vc · dQ̂

=

∫ ~V

~Vc=0

~Vc · Cccd~Vc

=
1

2
~V T · Ccc

~V (2.39)

=
1

2
Q̂T · C−1

cc Q̂ (2.40)

where ~V =




V1

V2


 and ~Q =




Q1

Q2


 are the electric potentials and the net charges

of the two dots at the final state.

From Eq. 2.35 and Eq. 2.40, in the case of VL = VR = 0 and Q1(2) = −N1(2)e,

U(N1, N2) =
1

2
N2

1 EC1 +
1

2
N2

2 EC2 + N1N2ECm + f(Vg1, Vg2), (2.41)

and

f(Vg1, Vg2) = −1

e
[Cg1Vg1(N1EC1 + N2ECm) + Cg2Vg2(N1ECm + N2EC2)]

+ U(0, 0),
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where e is the electron charge, EC1 and EC2 are the charging energies of dot 1 and

dot 2 respectively, and ECm is the electrostatic coupling energy, with

EC1 =
e2

C1

(1− C2
m

C1C2

)−1, EC2 =
e2

C2

(1− C2
m

C1C2

)−1, ECm =
e2Cm

C1C2

(1− C2
m

C1C2

)−1.

Here C1(2) is the sum of all capacitances attached to dot 1(2) as before.

The electrochemical potential µ1(N1, N2) of dot 1 is the free energy difference

when the N1th electron is added to dot 1, while dot 2 keeps N2 electrons, so

µ1(N1, N2) ≡ U(N1, N2)− U(N1 − 1, N2)

= (N1 − 1

2
)EC1 + N2ECm − 1

e
(Cg1Vg1EC1 + Cg2Vg2ECm), (2.42)

Similarly, the electrochemical potential µ2(N1, N2) of dot 2 is

µ2(N1, N2) ≡ U(N1, N2)− U(N1, N2 − 1)

= (N2 − 1

2
)EC2 + N1ECm − 1

e
(Cg1Vg1ECm + Cg2Vg2EC2). (2.43)

The additional energy of dot 1 is the change in µ1(N1, N2) when N1 changes

by 1, µ1(N1 + 1, N2) − µ1(N1, N2) = EC1. So the additional energy is equal to

the charging energy in this classical regime. The additional energy of dot 2 is also

µ2(N1, N2 + 1) − µ2(N1, N2) = EC2. And µ1(N1, N2 + 1) − µ1(N1, N2) = µ2(N1 +

1, N2)− µ2(N1, N2) = ECm.

Stability diagrams of a serial double-dot system are shown in Fig. 2.9. In each

domain, the charge configuration is stable. These stability diagrams represent three

different cases, according to the inter-dot capacitance Cm. When Cm = 0, Eq. 2.41

becomes

U(N1, N2) =
(−N1e + Cg1Vg1)

2

2C1

+
(−N2e + Cg2Vg2)

2

2C2

. (2.44)
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Figure 2.9: Schematic stability diagrams of a double quantum dot system with (a)

small, (b) intermediate, (c) large inter-dot capacitive coupling. In each domain, the charge

configuration is stable, and denoted by (N1, N2), where N1 and N2 refer to the numbers

of electrons in dot 1 and dot 2, respectively. The two kinds of triple points corresponding

with the electron transfer process (•) and the hole transfer process (◦) are illustrated in

(d). (After W. G. van der Wiel, etc, Ref. [36].)
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This means that the double-dot system includes two independent dots in series, and

high conductance peaks (the dots) are located at the intersections of horizontal and

vertical lines, as shown in Fig. 2.9(a). When Cm becomes the dominant capacitance

in C1 and C2, and hence Cm/C1(2) → 1,

C−1
cc =

1

C1C2 − C2
m




C2 Cm

Cm C1


 ≈ Cm

C1C2 − C2
m




1 1

1 1


 , (2.45)

so Eq. 2.40 becomes

U(Q1, Q2) =
1

2

Cm

C1C2 − C2
m

(Q1 + Q2 + Cg1Vg1 + Cg2Vg2)
2

=
1

2

Cm

(Cm + C̃1)(Cm + C̃2)− C2
m

(Q1 + Q2 + Cg1Vg1 + Cg2Vg2)
2

≈ 1

2

1

C̃1 + C̃2

(Q1 + Q2 + Cg1Vg1 + Cg2Vg2)
2

=
[−(N1 + N2)e + Cg1Vg1 + Cg2Vg2]

2

2(C̃1 + C̃2)
(2.46)

where C̃1(2) = C1(2) − Cm. This means that a large inter-dot capacitance Cm leads

to one big dot, and high conductance peaks are shown as diagonal lines, as in

Fig. 2.9(c).

When the double dot system is in an intermediate inter-dot coupling, the

stability diagram shows a honeycomb structure [Fig. 2.9(b)]. In the linear regime of

conductance, i.e. the difference of the electrochemical potentials of the left and right

leads µL−µR = −eVds ≈ 0, electrons can only tunnel through the double dot at the

vertices of the hexagonal domains – “triple points” without co-tunneling, through

the following sequences: (N1, N2) → (N1 + 1, N2) → (N1, N2 + 1) → (N1, N2) and

(N1 + 1, N2 + 1) → (N1 + 1, N2) → (N1, N2 + 1) → (N1 + 1, N2 + 1), as shown in

Fig. 2.9(d).
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Figure 2.10: Schematic stability diagram of a double quantum dot system, showing the

Coulomb peak spacings in Eq. 2.47–Eq. 2.50. (After W. G. van der Wiel et al., Ref. [36].)

The nearly vertical edges of the hexagonal domains are defined by equa-

tion µ1(N1, N2; Vg1, Vg2) = 0; the nearly horizontal edges are defined by equation

µ2(N1, N2; Vg1, Vg2) = 0. So the dimensions of the hexagon [Fig. 2.10] can be ex-

pressed in terms of the capacitances from Eq. 2.42 and Eq. 2.43, and ∆Vg1,∆Vg2,

∆V m
g1 and ∆V m

g2 are defined in Fig. 2.10.

µ1(N1, N2; Vg1, Vg2) = µ1(N1 + 1, N2; Vg1 + ∆Vg1, Vg2),

⇒ ∆Vg1 =
e

Cg1

. (2.47)

Similarly,

∆Vg2 =
e

Cg2

. (2.48)

µ1(N1, N2; Vg1, Vg2) = µ1(N1, N2 + 1; Vg1 + ∆V m
g1 , Vg2),
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⇒ ∆V m
g1 =

eCm

Cg1C2

= ∆Vg1
Cm

C2

. (2.49)

Correspondingly,

∆V m
g2 =

eCm

Cg2C1

= ∆Vg2
Cm

C1

. (2.50)

It can be proved that Eq. 2.49 and Eq. 2.50 are correct even if there are cross

capacitances between Vg1 and dot2, and between Vg2 and dot1.[37]

2.2.2 Tunnel coupling between two dots

We have only discussed the regime of weak tunnel coupling between the two

dots, i.e. the tunnel resistance Rm >> 25.8 kΩ. When the tunnel coupling (the

tunnel conductance Gm = 1/Rm) increases, the charge quantization in dot 1 and

dot 2 is gradually destroyed. Fig. 2.11 (A) to (F) show the evolution of the stability

chart from the characteristic honeycomb structure to diagonal lines (one large dot)

when the inter-dot tunnel conductance Gm increases from 0.22G0 to 0.98G0, where

G0 = 2e2/h.[38]

In (A), the inter-dot conductance is small, and the pattern is a hexagonal array

of points, with two triple points split due to the inter-dot capacitance Cm. There

are two distinct effects due to the tunnel coupling. In (B)–(F), when the inter-dot

conductance increases, the triple points develop into crescents, and the splitting

between two nearby crescents increases; the edges of the honeycomb cells become

visible due to the co-tunneling process. (Please note that the inter-dot capacitance

Cm usually increases with the increasing inter-dot conductance, and also contributes

to the splitting.) The condition that both N1 and N2 are quantized, are relaxed into
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Figure 2.11: Logarithm of double dot conductance as a function of gate voltages Vg1

and Vg2, which are offset to zero. Dark indicates high conductance; white regions represent

low conductance. Inter-dot conductances are (A) Gm = 0.22G0, (B) Gm = 0.40G0, (C)

Gm = 0.65G0, (D) Gm = 0.78G0, (E) Gm = 0.96G0, and (F) Gm = 0.98G0 (where

G0 = 2e2/h); (F) is thresholded to a higher value of conductance to accommodate a

higher background conductance.(After C. Livermore et al., Ref. [38].)

a single condition that the total charge N1 + N2 is quantized.

Excluding the splitting due to Cm, the splitting between two crescents mea-

sures the inter-dot interaction energy, which can be modeled by a two-level system

(M,N + 1) and (M + 1, N), where the pair of integers refers to the numbers of

electrons in dot 1 and dot 2, as discussed in Ref. [36]. The inter-dot interaction

energy is an analog of the molecular binding energy. The double dot becomes an

artificial covalent molecule.
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Chapter 3

Device structure and fabrication process

3.1 Device structure

Our silicon single electron transistor (SET) is based on an enhancement-

mode metal-oxide-semiconductor (MOS) structure. Figures 3.1(a) and (b) show

the schematic top view and the cross-sectional view of the device. The device is

fabricated on an N-type, high purity silicon (100) wafer with a resistivity of 3 ∼ 5

kΩ·cm. At cryogenic temperatures, a high purity wafer is non-conductive due to

the lack of thermally generated carriers (dopant freeze-out). When silicon is heav-

ily doped, it undergoes the metal-insulator transition and becomes conductive even

at low temperatures.[39] So the heavily phosphorous-doped regions are used as the

source (1) and the drain (2). A 27 nm thick thermal oxide is grown on the wafer

by dry oxidation. Six side gates (labeled as A-F in Fig. 3.1(a)) are deposited on

the thermal oxide and buried in the second dielectric layer, SiO2, which is 400 nm

in thickness and grown by high-density plasma-enhanced chemical-vapor-deposition

(HDPECVD). Finally the top gate (G1) is deposited on the HDPECVD oxide. The

top gate also laterally overlaps with the Ohmic source and drain regions, as shown

in Fig. 3.1.

The top gate is positively biased to induce 2D electron gas (2DEG) at the

Si/SiO2 interface, similar to an enhancement-mode field-effect transistor. In addi-
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Figure 3.1: (a) Schematic top view and (b) cross sectional view of an MOS-SET. In (a),

the shaded regions, the solid lines, and the rectangular area, depict the heavily phosphorus-

doped Ohmic source (1) and drain (2) leads, the 6 side gates (A-F), and the top gate (G1),

respectively. The schematic potential profile along the 1-2 direction under the single

electron tunneling condition is shown as the inset (lower right) in (b).

tion, 6 side gates, located below the top gate and above the thermal oxide, screen

the electric field from the top gate, depleting only the electrons below the side gates.

Side gates A, B and side gates C, D are used to define the quantum dot and the two

tunneling barriers. Side gates E, F, which are less effective to change the tunneling

barriers, are used to squeeze the electrons out of the quantum dot, so they are called

plunger gates. As shown in Fig. 3.2 (c) and (d), blue areas (low potential energy for

electrons) are the source and drain regions, and the center pit defines the quantum

dot. As the negative depletion voltages on plunger gates E, F are increased, the size

of the quantum dot decreases, which will reduce the number of electrons in the dot.

This bi-layer design offers the flexibility in the device layout and allows independent

control over the 2D electron density, the tunneling conductance and the electron
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Figure 3.2: Electric potential distributions of the 2D electron gas (a), (b), and cor-

responding profiles of the electric potential energy for an electron (c), (d), simulated by

Femlab. In (c), (d), blue areas (low potential energy for an electron) are the source and

drain regions, and the center pit defines the quantum dot. As we increase the negative

depletion voltage on plunger gates E, F from (c) to (d), the size of the quantum dot de-

creases. In the simulation, we assume that silicon is a insulator for simplicity, so these are

only schematic graphs to show the basic operating principle of the device, and scales are

arbitrary.
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population in the quantum dot.

3.2 Fabrication process

The basic fabrication process of Si MOS-SETs is as follows. First, Ion Im-

plantation is used to define the source and drain regions, and then thermal oxide

is grown on it. After that, e-beam lithography and reactive ion etching (RIE) are

used to make trenches to cut the leakage path from the top gate to the 2DEG at

the active region (Fig. 3.5). Next, 6 side gates are defined by e-beam lithography.

The second silicon oxide layer is grown on the top of the device using HDPECVD.

Photolithography is used to define the top gate, and open via holes to make contacts

to the side gates, the source and the drain. The devices are annealed in forming gas

at 420 ◦C for 30 minutes as the last step. The fabrication recipe was first developed

by Greg Jones, et al.,[13] and further improved by me. A complete recipe can be

found in the Appendix C. Some important steps are discussed here.

3.2.1 Ohmic contacts by ion implantation

In order to be conductive at cryogenic temperatures, silicon must be heavily

doped. The metal-insulator transition happens at 3.5× 1018 dopants/cm3 for phos-

phorus in doped silicon.[39] When ions implant into single-crystal material along a

major crystal orientation, channeling can occur. So a 27 nm thick thermal oxide

(amorphous) was grown before ion implantation, and the implantation was done off

axis by 7◦.[41] The conditions necessary to produce a degenerately doped Ohmic
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Figure 3.3: The concentration of phosphorous dopants as a function of depth in silicon

simulated by SRIM. The phosphorous implantation energy is 40 KeV, and the surface has

a 27 nm SiO2 implant mask. (After Greg Jones, Ref.[40])
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contact were simulated using a program called SRIM with different implantation

energies, so that the peak ion concentration is located in silicon near the Si/SiO2

interface. Figure 3.3 shows the 40 keV SRIM simulation result. In addition, these

different implantation energies were tested using real devices, by implanting phos-

phorus into hall bar patterns with implantation energies of 20, 30, 40 keV, and the

dose of 7 × 1014 dopants/cm2. The recipe targets a dopant concentration above

7 × 1018 dopants/cm3, which is well above the metal-insulator transition. The

dopants were activated at 1000 ◦C. The devices were characterized at 4.2 K. It was

determined that the 40 KeV recipe was the best with the lowest sheet resistivity of

63 Ω/square.[40]

After ion implantation, the 27 nm sacrificial oxide layer was removed and a

fresh 27 nm oxide was re-grown at 1000 ◦C for 20 minutes. The thermal oxide

regrowth is the only step which will cause appreciable dopant diffusion in the fol-

lowing process. The SUPREM IV is used to investigate the diffusion in the process.

From the simulation (Fig. 3.4), the contour line for 1× 1018 dopants/cm3 is located

at about 0.38 µm from the ion implantation edge (x = 0). Here we have already

considered the oxidation enhanced diffusion. The minimum distance between two

ion implantation regions is about 2 µm. It looks as if we are safe, but it is still

possible that some phosphorus ions exist near the quantum dot. There is really no

constraint on the minimum distance between two ion implantation regions. The

minimum distance should be increased if we want to improve the device quality.

Also the peak phosphorus concentration is about 1.86× 1019 dopants/cm3 after the

thermal oxide regrowth, which is still well above the critical dopant concentration
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Figure 3.4: The distribution of phosphorous dopants after 1000 ◦C, 20 min annealing,

simulated by SUPREM IV. The phosphorous implantation energy is 40 KeV, and the dose

is 7× 1014 dopants/cm2. The initial phosphorous concentration is 1× 1014 cm−3, and the

surface has a 27 nm SiO2 implant mask.

46



of the metal-insulator transition.

3.2.2 Trench isolation

The device active region should be isolated from the environment to avoid any

potential undesirable side effect. There are two methods. One is the pn junction

isolation, which uses ion implantation to form a reverse biased pn junction structure.

The other is the dielectric isolation, which uses a thick dielectric structure to separate

the device from the environment. The trench isolation is one kind of the dielectric

isolation.

Figure 3.5: (a) Soldering a gold wire to the bonding pad introduces the damage of the

oxide underneath the bonding pad. This forms a leakage path, and causes the gate leakage

problem. (b)Shallow trench isolation can effectively cut the leakage path, and stop the

gate leakage.

As illustrated in Fig. 3.5(a), when the positive-biased top gate induces the
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Table 3.1: Etch rates of PMMA, SiO2, Si using SI1DRH

PMMA SiO2 Si

335 nm/min 54 nm/min 610 nm/min

2DEG at the Si/SiO2 interface, the 2DEG not only exists at the device active region,

but also exists at the gate lead region and all way to the bonding pad region.

When we solder a gold wire to the bonding pad, it causes the damage of the oxide

underneath the bonding pad, and forms a leakage path. This results in the gate

leakage from the top gate to the 2DEG at the device active region. The leakage path

can be effectively cut by using shallow trench isolation underneath the gate lead as

shown in Fig. 3.5(b). Greg first introduced this method in our SET device.[40]

But at that time, the results were still inconsistent. It turned out that the

process to create the shallow trench had a problem. We use e-beam lithography to

define the trenches, and then use reactive ion etch (RIE) (Recipe name: SI1DRH)

for 1 minute to create them. PMMA, used in e-bream lithography as a resist, has

poor resistance to plasma etching. I have measured the etch rates of PMMA, SiO2,

and Si using recipe SI1DRH, and they are shown in Table. 3.1.

In the previous recipe, the thickness of the PMMA layer was 180 nm, and the

thickness of the thermal oxide was 27 nm. So it is clear that after the RIE etch for

1 minute, both the PMMA and the thermal oxide were etched away at the resist

PMMA mask area, and the trench depth was about 0.3 µm at the trenches. Since

the thermal oxide was etched away, this caused a serious leakage problem. After
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this finding, I changed the PMMA 950 A4 (4% 950 PMMA solid in anisole solvent)

into the PMMA 950 A8 (8% 950 PMMA solid in anisole solvent), and the thickness

of the PMMA layer became 800 nm. The gate leakage problem was finally solved.

We have got consistent results since then.

3.2.3 High density PECVD oxide

We have tried benzocyclobutene (BCB) as the second dielectric layer, and

successfully fabricated some devices using it.[13] But there was leakage current be-

tween the top gate and the source, drain leads in most devices. So we switched to

HDPECVD oxide since HDPECVD oxide is stable. We fabricated a MOS structure

with a 27 nm thermal oxide and a 400 nm HDPECVD dioxide without side gates,

and applied up to 155 V (∼ 4 MV/cm) on this double-oxide layer without measur-

able leakage. So the quality of HDPECVD oxide is good. But we still suffered the

leakage problem. Later, as I have discussed in the previous section, the problem

was identified due to the wrong trench process used at that time. Now when I look

back to the leakage problem with BCB, I suspect that this problem was due to the

same cause.

The other problem I encountered is the positive charge in the HDPECVD ox-

ide. As I will discussed in Sec. 4.3.2, once I found that the dielectric constant for this

HDPECVD oxide became about 5.5 after some repair was done on the HDPECVD

machine, which is larger than 3.9 for pure silicon oxide. The flatband voltage was

Vfb = −4.03 V, and the threshold voltage was Vt = −4.85 V for the device. The
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effective oxide charge concentration was Nox = 2.85× 1011 /cm2. This positive HD-

PECVD oxide charge caused a problem, because it induced 2DEG all over the wafer.

Fortunately, after changing the flow ratio of SiH4 and N2O from (4 sccm : 20 sccm)

to (4 sccm : 40 sccm), (sccm: Standard Cubic Centimeters per Minute) the positive

oxide charge inside the HDPECVD oxide was reduced, because HDPECVD oxide

was changed from silicon-rich to oxygen rich. The dielectric constant also became

about 3.9.

3.2.4 All e-beam defined side gates

The previous side-gate material Al/Ti/Au cannot sustain 400 ◦C annealing.

Only 2 of 12 devices worked. So we switched to Al as the side-gate material. But our

previous side-gate process required two steps: e-beam lithography was used to define

the inner part of side gates (the smaller features), as shown in Fig. 3.6(a), and photo

lithography was used to define the side gates’ leads (the larger features), as shown

in Fig. 3.6(b). Since we used Al as the inner part material, after Al was deposited, it

immediately grew a native oxide layer, which is very difficult to penetrate. We used

high temperature annealing (450 ◦C for 45 minutes) to penetrate the native oxide

layer, but suffered serious side gates leakage. Finally we switched to one step process

– using e-beam lithography to define the whole side gates, as shown in Figure 3.6(c).

It turned out to be good, although it takes 3 hours to finish 12 devices.

After these changes, we have developed a reliable process to fabricate silicon

SETs.
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Figure 3.6: Side gate fabrication process. (a) and (b) are previous two-step process. (c)

is the current all e-beam process. (d) is the final device. In (d), the dashed lines indicate

the locations of the isolation trenches.
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Chapter 4

Silicon metal-oxide-semiconductor field-effect transistors

4.1 Introduction

For a standard n-channel enhancement-mode metal-oxide-semiconductor field-

effect transistor (MOSFET), the device is fabricated on a p-type substrate, with two

heavily doped n-type regions, i.e. the source and the drain regions. A thin layer of

silicon dioxide (SiO2) is grown on the surface of the substrate, and then metal is

deposited on the top of the oxide layer to form the gate. The device is normally

off. When the top gate is sufficiently positively biased, above a threshold voltage,

an electron channel forms at the silicon and silicon oxide interface, so electrons can

flow from the source to the drain, thus the device is on. In addition, the electrons

are strongly confined at the Si/SiO2 interface, so they can only move freely along

the interface and form a 2-dimensional electron gas (2DEG). The 2DEG can be

depleted into a quantum dot using lateral electrostatical gates, and an MOS single

electron transistor (SET) is created.

An MOS capacitor is first discussed in Sec. 4.2. For a practical MOS structure,

interface traps and oxide charges always exist and affect the ideal MOS character-

istics. We have used two methods, i.e. the capacitance-voltage(C-V) method and

the conductance method, to measure the interface trap density in Sec. 4.3. 2D

electron concentration and electron mobility are another two important parameters
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Figure 4.1: Energy band diagram near the surface of a p-type MOS capacitor. Ec, Ev,

Ei and Ef are the energy levels of the conduction band edge, the valence band edge, the

intrinsic Fermi level and the Fermi level, respectively. The band bending ψ is defined as

positive when the bands bend downward with respect to the bulk.

to characterize the 2DEG. Hall measurements and Shubnikov-de Haas oscillation

measurements are used to determine these two parameters in Sec. 4.4.

4.2 Metal-oxide-semiconductor(MOS) capacitors

4.2.1 MOS capacitors at room temperature

First we consider an ideal MOS capacitor without interface traps and oxide

charges. The relations among the surface potential, charge distribution and electric

field in silicon are derived by solving the Poisson’s equation.[42] The band diagram

near the surface of a p-type silicon MOS capacitor is shown in Fig. 4.1. Here we

defined the band bending ψ(x) = ψi(x)− ψi(x = ∞), where x = 0 is at the silicon
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surface, ψi(x) and ψi(x = ∞) are the intrinsic potential at position x and in the

bulk silicon respectively. (Please note that ψ represents the electric potential, not

a wavefunction in this chapter.) So the boundary conditions are ψ(x = ∞) = 0

and ψ(x = 0) = ψs. The surface potential ψs depends on the applied gate voltage.

Poisson’s equation is

d2ψ

dx2
= −dE

dx
= − q

εsi

[p(x)− n(x) + N+
d (x)−N−

a (x)] (4.1)

where E is the electric field, q is the electron charge, εsi is the permittivity of silicon,

p(x) is the hole concentration, n(x) is the electron concentration, N+
d (x) and N−

a (x)

are the densities of the ionized donors and acceptors respectively.

In bulk silicon, charge neutrality condition for a uniformly doped p-type silicon

requires

N+
d (x)−N−

a (x) = −Na +
n2

i

Na

(4.2)

where Na is the density of the acceptors and ni is the intrinsic carrier density.

In the surface region,

p(x) = Nae
−qψ/kT (4.3)

and

n(x) =
n2

i

Na

eqψ/kT (4.4)

So we get

d2ψ

dx2
= − q

εsi

[Na(e
−qψ/kT − 1)− n2

i

Na

(eqψ/kT − 1)] (4.5)
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From Eq. 4.5, we get

E2(x) = (
dψ

dx
)2 =

2kTNa

εsi

[(e−qψ/kT +
qψ

kT
− 1)

+
n2

i

N2
a

(eqψ/kT − qψ

kT
− 1)] (4.6)

At x = 0, let E = Es. By Gauss’s law, the space charge per unit area in silicon

is

Qs = −εsiEs = ±
√

2εsikTNa[(e
−qψs/kT +

qψs

kT
− 1)

+
n2

i

N2
a

(eqψs/kT − qψs

kT
− 1)]1/2 (4.7)

For a p-type silicon, when ψs < 0, the device is in the accumulation region with

Qs ∼ exp(q|ψs|/2kT ). When ψs = 0, the device is in the flat-band condition with

Qs = 0. For 0 < ψs < ψB, the device is in the depletion region with Qs ∼
√

ψs. For

ψB < ψs, the device is in the inversion region. For ψB << ψs, Qs ∼ −exp(qψs/2kT ).

Here ψB is the difference between the Fermi level and the intrinsic Fermi level in

the bulk silicon, and is given by

ψB =
kT

q
ln(

Na

ni

). (4.8)

The onset of the strong inversion is usually defined as ψs(inv) = 2ψB. The

threshold voltage is given by

Vt = Vfb + 2ψB +

√
4εsiqNaψB

Cox

. (4.9)

where Vfb is the flat-band voltage and Cox is the oxide capacitance per unit area

given by

Cox =
εox

tox

, (4.10)
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where εox is the permittivity of the oxide, and tox is the oxide thickness.

The differential capacitance in silicon is

Csi = −∂Qs

∂ψs

. (4.11)

The total differential capacitance of the MOS capacitor at low frequency is

C =
CoxCsi

Cox + Csi

. (4.12)

4.2.2 MOS capacitors at low temperatures

At low temperatures, the Fermi level moves from near the middle of the band

gap to the band edge.

For an n-type silicon with only donors, charge neutrality condition requires

n = N+
d + p, (4.13)

where n is the electron concentration, p is the hole concentration and N+
d is the

concentration of ionized donors.

n = Nce
−(Ec−Ef )/kT , p = Nve

−(Ef−Ev)/kT (4.14)

and

N+
d = Nd[1− f(Ed)] = Nd(1− 1

1 + 1
2
e(Ed−Ef )/kT

). (4.15)

where Nc and Nv are the effective densities of states at the conduction band and the

valence band respectively, Ec, Ev, Ef and Ed are the energy levels of the conduction

band edge, the valence band edge, the Fermi level and the donor respectively.
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At low temperatures, p ∼ 0, so

n ≈ N+
d

Nce
−(Ec−Ef )/kT ≈ Nd

1 + 2e(Ef−Ed)/kT
(4.16)

This is an algebra equation about Ef . We can get

Ef = Ed + kT ln[−1

4
+

1

4

√
1 + 8

Nd

Nc

e(Ec−Ed)/kT ] (4.17)

Since Nc ∼ T 3/2, at very low temperatures, Nd/Nc >> 1, Eq.2.16 becomes

Ef ≈ Ec + Ed

2
+

kT

2
ln(

Nd

2Nc

) (4.18)

At T = 0K, Ef = Ec+Ed

2
.

In the case of a partially compensated semiconductor with Nd >> Na, the

approximate expression for the electron density is [43]

n ≈ (
Nd −Na

2Na

)Nce
(Ec−Ed)/kT (4.19)

for

Na >>
1

2
Nce

(Ec−Ed)/kT .

So

Ef ≈ Ed + kT ln(
Nd −Na

2Na

). (4.20)

And at T = 0K, Ef = Ed.

In practice, there is always a small amount of acceptors (donors) in an n-type

(p-type) silicon, so the Fermi level is located at the ionized-donor (ionized-acceptor)

energy level.
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At cryogenic temperatures, normal silicon wafers are nonconductive. Both n-

type silicon and p-type silicon can be used as the substrate to form the 2DEG. The

threshold voltage is defined as the gate voltage at which the conduction band edge

is aligned with the Fermi level in the bulk.

For a p-type silicon (Fig. 4.1), the band bending is ψs = Eg−(Ea−Ev), where

Eg is the energy gap in silicon and Ea is the acceptor energy level. The threshold

voltage is

Vt = Vfb + ψs +

√
2εsiqNaψs

Cox

. (4.21)

For an n-type silicon, the band bending is ψs = Ec − Ed, and Vt = Vfb + ψs,

since the silicon is in neutral.

For a real MOS capacitor, the threshold voltage is also affected by interface

traps and oxide charges. But the MOS capacitor can still be approximately modeled

as a parallel-plate capacitor

n2d =
Cox

q
(Vg − Vt) (4.22)

where Vg is the top gate voltage, and Vg > Vt.

In this thesis, we mainly use n-type high purity silicon wafers to fabricate de-

vices, since the threshold voltage in an n-type silicon is lower than that in a p-type

silicon. But it also causes some undesirable effect. When the second SiO2 layer, de-

posited by high-density plasma-enhanced chemical-vapor-deposition (HDPECVD),

contains some positive charges, a 2DEG is induced all over the wafer, and the devices

do not work properly.

For a silicon MOS-SET, the device works at Vg around 16 V with n2d =
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8.43 × 1011 cm−2. These electrons are confined in a potential well at the Si/SiO2

interface. The potential well can be approximated as a triangle potential

V (x) =





∞ if x < 0

eExx if x ≥ 0

(4.23)

where Ex is the average electric field perpendicular to the interface, and x is the

distance from the interface into the silicon.

The solutions of the Schrödinger equation with the triangle potential are Airy

functions with eigenvalues Ej given by [44]

Ej =

[
3hqEx

4
√

2mx

(
j +

3

4

)]2/3

, j = 0, 1, 2, ... (4.24)

where h is Planck’s constant, and mx is the effective mass of electrons perpendicular

to the surface which is 0.98me for silicon (100).

For Vg = 16 V,

Ex ≈ qn2d

2εsi

= 6.46× 104 V/cm.

So E0 = 27.4 meV, E1 = 47.9 meV, and ∆E = E1 − E0 = 20.5 meV.

On the other hand, for the 2DEG, the Fermi level is located at

Ef − E0 =
h2n2d

2πm∗g
= 5.3 meV, (4.25)

where the degeneracy g is 4 for silicon (100). So at a temperature T ≤ 4.2 K (0.36

meV) the electrons only occupy the lowest subband of energy E0, and form a 2DEG.

Similarly, for Vg = 55 V with n2d = 2.8×1012 cm−2, E0 = 61 meV, E1 = 106.7

meV, and ∆E = E1−E0 = 45.7 meV, whereas Ef−E0 = 17.5 meV. So the electrons

also occupy the lowest subband only. This is confirmed by the Shubnikov-de Haas
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Figure 4.2: Charges and their locations in thermally oxidized silicon. (After Deal,

Ref. [45].)

oscillations measurements. The Fourier transformation of the data only shows one

major peak, which corresponds to the lowest subband with the degeneracy g = 4 at

Vg = 55 V.

4.3 Oxide charges and interface trapped charges

Oxide charges and interface trapped charges play a significant role in the MOS-

FET transport properties. As shown in Fig. 4.2, they are classified as (1)interface

trapped charge Qit, (2)fixed oxide charge Qf , (3)oxide trapped charge Qot and (4)

mobile ionic charge Qm.[45] (Here Q denotes the charge per unit area.) At cryogenic

temperatures, mobile ionic charges are almost fixed. We can group the last three

types of charges into one, i.e. the effective net oxide charge Qox, because they can

not exchange charges with the 2DEG at the Si/SiO2 interface. They only cause the
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threshold voltage to shift by

∆Vt = −Qox

Cox

, (4.26)

and

Vfb = φms − Qox

Cox

, (4.27)

where φms is the work function difference between the gate and the silicon substrate.

On the other hand, interface trapped charges are electrons and holes trapped

in the Si/SiO2 surface states. These surface states can exchange electrons with

the 2DEG, and reduce the conduction current by trapping them. These trapped

electrons and holes can also act as charged scattering centers at the interface, thus

lowering the electron mobility. So the density of surface states or the density of

interface traps is an important parameter in determining the quality of the Si/SiO2

interface.

We have used two different methods to estimate the density of interface traps.

One is the capacitance method (C-V method), and the other is the conductance

method.

4.3.1 Capacitance method (C-V method)

The most convenient C-V method is the Terman method, a room-temperature,

high-frequency (HF) capacitance method.[46] It assumes that the measurement fre-

quency is sufficiently high that interface traps do not respond to the AC probe

frequency. They only respond to the slowly varying dc gate voltage and stretch

out the C-V curve. The interface-trap density Dit is determined by comparing the
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experimental curve with the ideal curve

Dit =
Cox

q2

d∆Vg

dψs

(4.28)

where ∆Vg = Vg − Vg(ideal) is the voltage shift of the experimental curve from the

ideal curve. This method is considered to be useful for measuring interface trap

densities of 1010 cm−2eV−1 and above. The measurement frequency is usually 1

MHz.

Our silicon wafers are uniformly doped Si(100), and can be described by the

doping concentration Na for p-type or Nd for n-type.

In order to use the Terman method, we need to calculate the theoretical high

frequency curves. First we consider a p-type uniformly doped silicon without oxide

charges and interface trapped charges.

Vg = Vox + ψs = − Qs

Cox

+ ψs, (4.29)

where Vox is the potential drop across the oxide, and Qs is the space charge per unit

area.

The total MOS capacitance is define as

C =
d(−Qs)

dVg

(4.30)

From Eq. 4.11, 4.29 and 4.30,

C =
CoxCsi

Cox + Csi

. (4.31)

When the MOS capacitor is in the inversion region, Eq. 4.11 is valid only at

low-frequency, since it assumes that the minority carriers (the inversion charges) are
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able to follow the applied AC probe signal. In order for the inversion charges to

respond, the space-charge region current Jscr(= qniW/τg) must be able to supply

the required displacement current Jd(= CdVg/dt ≈ CoxdVg/dt), where W is the

depletion layer width and τg is the electron-hole pair generation lifetime. So

dVg

dt
≤ qniW

τgCox

. (4.32)

For oxide thickness tox = 400 nm, W = 1 µm, and τg = 10 µs, dVg/dt = 2.7 V/s,

so the frequency should be less than dVg/dt/(2πVac) = 8.5 Hz for AC excitation

voltage Vac = 50 mV. This is much lower than 1 MHz. So we need to use a different

formula to calculate the high-frequency C-V curve in the inversion region.

When measuring the high-frequency C-V curves, the dc voltage sweep rate

must be sufficiently low to generate the necessary inversion charges, according to

Eq. 4.32.

Here we use the formula derived by J.R. Brews.[47] The basic assumptions are

1. The total number of minority carriers in the inversion layer is fixed by the dc

gate bias and doesn’t respond to the AC probe voltage.

2. The minority carriers can move spatially in the inversion layer in response to

the high frequency probe voltage. These minority carriers are governed by a

constant quasi-Fermi level.

Under these assumptions, the high-frequency capacitance in inversion is

Csi = CFB

[
1− e−us +

(ni

N

)2

(eus − 1)
∆

1 + ∆

+
(ni

N

)2

us
1

1 + ∆

]
[F (us, uB)]−1, (4.33)
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where

∆ =
F (us, uB)

(eus − 1)

[∫ us

0

du

(
eu − e−u − 2u

F (u, uB)3

)
− 1

]
, (4.34)

F (us, uB) =
√

2
[
e−us + us − 1 + e−2uB(eus − us − 1)

]1/2
, (4.35)

us =
qψs

kT
,

and

uB = ln
Na

ni

.

Other equations used in analyzing HF C-V curves are summarized here.

1. Extracting the doping concentration Na

The maximum depletion width

Wdm =

√
4εsikT ln(Na/ni)

q2Na

, (4.36)

and the minimum HF capacitance

1

Cmin

=
1

Cox

+
1

εsi/Wdm

=
1

Cox

+

√
4kT ln(Na/ni)

εsiq2Na

. (4.37)

The gate area s of the MOS capacitor is known. From the measured HF

C-V curve, we can get the maximum capacitance Cm max(≈ Coxs) and the

minimum capacitance Cm min(≈ Cmins). So

Cox

Cmin

= 1 + Cox

√
4kT ln(Na/ni)

εsiq2Na

(4.38)

Cm max

Cm min

≈ 1 +
Cm max

s

√
4kT ln(Na/ni)

εsiq2Na

(4.39)

From Eq. (4.39), Na is approximately determined.
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2. Extracting the oxide capacitance Cox

Cox is extracted when the MOS capacitor is in strong accumulation. In strong

accumulation, Qs ∝ exp(−qψs/2kT ), so Csi = −dQs/dψs = (q/2kT )Qs =

(q/2kT )Cox|Vg − Vfb − ψs|, and the MOS capacitance is

1

C
=

1

Cox

+
2kT

qCox

1

|Vg − Vfb − ψs| . (4.40)

where the flatband voltage Vfb is the gate voltage at the flatband condition.

Since 2kT/q ≈ 0.052 V, ψs is limited to 0.1 to 0.3 in accumulation, and

Vg − Vfb À ψs in strong accumulation.

At the flat band condition, the Debye length

LD =

√
εsikT

q2Na

, (4.41)

and the flatband capacitance per unit area

1

Cfb

=
1

Cox

+
LD

εsi

≈ s

Cm max

+
LD

εsi

. (4.42)

The flatband capacitance is Cm fb = Cfbs. The flatband voltage is determined

from the measured HF C-V curve using the flatband capacitance.

So in strong accumulation, the measured MOS capacitance

1

Cm

≈ 1

Coxs
+

2kT

qCoxs

1

|Vg − Vfb| . (4.43)

where s is the gate area.

After Linear fitting the measured data 1/Cm v.s. 1/|Vg − Vfb| in strong accu-

mulation, the intercept is 1/Coxs. Thus Cox can be accurately determined.
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In addition, Na can be more accurately calculated using Eq. (4.38) with this

Cox.

4.3.2 Experimental MOS C-V curves

C-V curves are measured using an HP 4194A impedance analyzer in series

capacitance and series resistance mode (Cs − Rs mode) while sweeping the bias

voltage. The AC excitation is 50 mV, 1 Mhz. We have used these C-V curves to

extract device parameters, and to estimate the interface-trap density. We have also

investigated the effect of fabrication steps on the interface-trap density.

The thermal oxide is grown using an MOS-grade furnace in NIST. Sample

(P thermal oxide) is an MOS capacitor on a p-type device wafer with 27 nm thermal

oxide, and an aluminum top gate using e-beam evaporation. Fig. 4.3(a) and (c) show

the C-V curves before and after forming gas annealing. The forming gas annealing

effectively reduces the interface-trap density Dit from 1012 cm−2eV−1 to less than

1011 cm−2eV−1, the limit of the Terman method.

We also find that the interface-trap density of ∼ 1012 cm−2eV−1 is due to the

e-beam evaporation process for the top gate metallization, since the device shows

the similar C-V curves (Data not show here.) with Dit ∼ 1012 cm−2eV−1, if it

is forming gas annealed first, and then the aluminum top gate is deposited using a

CHA e-beam evaporator as the last step. (CHA Industries is a company name.) The

similarity is not a surprise, because when the oxide was thermally grown at NIST,

the forming gas annealing was the last step. The Si/SiO2 interface is damaged by the
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Figure 4.3: Characterization of the p-type device wafer using Sample (P thermal oxide).

(a) and (c) are high frequency C-V curves before and after forming gas annealing. The

blue curves are measured data, and the red curves are from theoretical simulation using

J.R. Brews’ formula. (b) and (d) show the interface-trap densities Dit extracted from

(a) and (c) using the Terman method. The limitation of the Terman method is ∼ 1010

cm−2eV−1.
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X-Ray radiation from the e-beam evaporator, and a thermal evaporation process is

preferred, because the resistive thermal evaporation doesn’t have X-Ray radiation.

From these C-V curves and the gate area s = (200 µm)2 = 4 × 10−4 cm2, the

device parameters can be extracted. From Fig. 4.3(c), the doping concentration Na

is 2.75 × 1015 cm−3, which is consistent with the wafer’s resistivity 1 ∼ 10 Ωcm in

the specification from the manufacturer. The oxide thickness d is 26.7 nm, which

is also consistent with the target thermal oxide thickness 27 nm. The flatband

voltage is Vfb = −0.813 V and the threshold voltage is Vt = 0.0033 V for the device.

The effective oxide charge is Qox = Cox(φms − Vfb) = −1.5 × 10−9 C/cm2, and the

effective oxide charge concentration is Nox = Qox/q = −9.4 × 109 /cm2, which is

already in the limit of the Terman method, and thus not a valid result, where the

work function difference between the aluminum gate and the p-type silicon substrate

φms is -0.8247 V here.

For an n-type device wafer, the HF C-V curve after forming gas annealing is

shown in Fig. 4.4(a). From this C-V curve and the gate area s = 4 × 10−4 cm2,

the doping concentration is Nd = 9.23 × 1013 cm−3 and the oxide thickness d is

26.2 nm. The flatband voltage is Vfb = −0.287 V and the threshold voltage is

Vt = −0.769 V for the device. Because φms is −0.283 V here, the effective oxide

charge concentration is less than 1× 1010 /cm2. It is also in the limit of the Terman

method, and not a valid number.

MOS capacitors with oxide deposited by high-density plasma-enhanced chemical-

vapor-deposition (HDPECVD) are also investigated. Sample (N HDPECVD oxide)

is an MOS capacitor on the n-type device wafer with 27 nm thermal oxide and 400
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Figure 4.4: Characterization of the n-type device wafer using Sample (N thermal oxide).

(a) High frequency C-V curve after forming gas annealing. The blue curve is measured

data, and the red curve is from theoretical simulation. (b) Interface-trap density Dit

extracted from (a) using the Terman method. The limitation of the Terman method is

∼ 1010 cm−2eV−1.
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Figure 4.5: Characterization of the n-type device wafer with oxide by high density

chemical vapor deposition(HDPECVD) using Sample (N HDPECVD oxide). (a) and (c)

are high frequency C-V curves before and after forming gas annealing. The blue curves

are measured data, and the red curves are from theoretical simulation as before. (b) and

(d) show the interface-trap densities Dit extracted from (a) and (c) using the Terman

method. The limitation of the Terman method is ∼ 1010 cm−2eV−1.
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nm HDPECVD oxide, and an aluminum top gate. As shown in Fig. 4.5(b) and

(d), the interface-trap density (about 1012 cm−2eV−1) reduces to less than 1011

cm−2eV−1 after forming gas annealing. Since e-beam vapor deposition process can

introduce the interface-trap density of ∼ 1012 cm−2eV−1, it is unclear whether the

HDPECVD process will cause further damage to the Si/SiO2 interface or not. Be-

cause there is a 27 nm thermal oxide protecting the interface, the damage from the

HDPECVD process could be small.

From the HF C-V curve in Fig. 4.5(c) and the gate area s = 4 × 10−4 cm2,

the doping concentration is Nd = 1.20×1014 cm−3. The HDPECVD oxide thickness

is about 400 nm measured by an N&K thin film analyzer, and the capacitance is

Cox = 4.87 pF, so the dielectric constant for this HDPECVD oxide is about 5.5,

which is larger than 3.9 for pure silicon oxide. The flatband voltage is Vfb = −4.03 V

and the threshold voltage is Vt = −4.85 V for the device. Because φms is −0.276 V

here, the effective oxide charge concentration is Nox = Cox(φms−Vfb)/q = 2.85×1011

/cm2. This positive HDPECVD oxide charge causes a problem later, because it

induces 2DEG all over the wafer. Fortunately, after changing the flow ratio of SiH4

and N2O from (4 sccm : 20 sccm) to (4 sccm : 40 sccm), (sccm: Standard Cubic

Centimeters per Minute) the positive oxide charge inside the HDPECVD oxide is

reduced, because HDPECVD oxide is changed from silicon-rich to oxygen rich.
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Figure 4.6: Equivalent circuits for the conductance method. (a) An MOS capacitor

with interface traps. (b) Simplified circuit of (a). (c) Equivalent circuit in measurement.

(d) Including series resistance rs for a real device. (After D. K. Schroder, Ref. [48].)

4.3.3 Conductance method

As we can see, the HF C-V method is useful to extract device parameters, and

to estimate the interface-trap density above 1011 cm−2eV−1, but it is not adequate

to estimate the interface-trap density less than 1011 cm−2eV−1 after forming gas

annealing. In order to estimate the interface-trap density in the final device, the

conductance method is used.

The conductance method was introduced by Nicollian and Goetzberger.[49]

It can detect the interface-trap densities of 109 cm−2eV−1. The technique is based

on measuring the equivalent parallel conductance Gp as a function of frequency in

an MOS capacitor. The conductance comes from the lossy nature of interface-trap

capture and emission of carriers. So it can be used to determine the interface-trap

density.

Fig. 4.6(a) shows the equivalent circuit. It consists of the oxide capacitance
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Cox, the silicon capacitance Cs, and the interface-trap capacitance Cit. The capture

and emission of carriers by Dit is a lossy process, and represented by the resistance

Rit. So

Cp = Cs +
Cit

1 + (ωτit)2
(4.44)

Gp

ω
=

qωτitDit

1 + (ωτit)2
(4.45)

where Cit = qDit, ω is the angular frequency and τit = RitCit, the interface trap

time constant.

Eq. 4.44 and 4.45 are for interface traps with a single energy level. However,

interface traps are continuously distributed in the energy band gap, and the equation

changes to [49]

Gp

ω
=

qDit

2ωτit

ln[1 + (ωτit)
2]. (4.46)

Due to interface-trap time constant dispersion caused by surface potential

fluctuations, the analysis is further complicated. As a simple estimation, the Eq. 4.46

is used here. An approximate expression giving the interface trap density in terms

of the maximum conductance is

Dit ≈ 2.5

qs

(
Gp

ω

)

max

(4.47)

when ωτit ≈ 2, where s is the gate area.[48]

In order to successfully use the conductance method, the series resistance

should be minimized both in the preparation of samples and in the measurement;

otherwise, there will be no conductance peak due to the large series resistance.
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For the n-type high-purity device wafer, the series resistance is more then 10

kΩ in the samples, and the measured conductance curves do not show peaks even

after correction. So we only use the p-type device wafer to estimate the interface-

trap density in the device here.

In strong accumulation, Cox is extracted as in Sec. 4.3.1, and the series re-

sistance rs is determined when the HP 4194A impedance analyzer is in Cs − Rs

mode.

The conductance curve is measured using the HP 4194A impedance analyzer

in Cp−Gp mode while sweeping the frequency at a fixed bias voltage. The measured

data are denoted as Cm and Gm. When the series resistance rs is taken into account,

Gp

ω
=

ωGcC
2
ox

G2
c + ω2(Cox − Cc)2

, (4.48)

where

Cc =
Cm

(1− rsGm)2 + (ωrsCm)2
, (4.49)

and

Gc =
ω2rsCmCc −Gm

rsGm − 1
. (4.50)

Fig. 4.7 shows the measured data Gp/ω v.s. f . The devices are biased near the

middle band gap. Fig. 4.7(a) and (b) are measured on Sample (P thermal oxide)

before and after forming gas annealing. The corresponding interface-trap densities

are 1.09 × 1012 cm−2eV−1 for the device before forming gas annealing, which is

consistent with the result in Fig. 4.3(b), and 8.32 × 1010 cm−2eV−1 after forming

gas annealing. Fig. 4.7(c) and (d) are measured on Sample (P HDPECVD oxide)

before and after forming gas annealing. The corresponding interface-trap densities
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Figure 4.7: Experimental Gp/ω v.s. f curves. (a) and (b) are conductance curves on

Sample (P thermal oxide) before and after forming gas annealing. (c) and (d) are con-

ductance curves on Sample (P HDPECVD oxide) before and after forming gas annealing.

For all devices, the gate area s = 4× 10−8 cm2.
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Figure 4.8: Basic setup for hall measurements.

are 1.16× 1012 cm−2eV−1 before forming gas annealing, and 1.02× 1011 cm−2eV−1

after forming gas annealing.

So the interface-trap density in the final device is estimated to be about 1×1011

cm−2eV−1.

4.4 2D electron concentration and electron mobility

The 2D electron concentration as a function of top gate voltage is determined

using hall measurements[50] and Shubnikov-de Haas oscillation measurements[51].

The characterized device has the same structure as the final MOS-SET, which

is on an n-type high purity Si(100) wafer, but without 6 side gates. The basic setup

for hall measurements is shown in Fig. 4.8. 1 µA 37 Hz AC current Ix runs through

the hall bar pattern. The longitudinal potential difference Vx and the transverse

potential difference Vy are measured using lock-in technique.
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ρxy =
Ey

Jx

=
Eyw

Jxw
=

Vy

Ix

(4.51)

Jx = qnv (4.52)

qEy = qvBz (4.53)

where Ey is the transverse electric field, Jx is the longitudinal current density, n is the

electron concentration, v is the electron drift velocity, and Bz is the perpendicular

magnetic field.

So

Vy

Ix

=
Bz

qn
(4.54)

A more detailed analysis shows that [43]

Vy

Ix

= r
Bz

qn
(4.55)

where r is the hall scattering factor, which is between 1 and 2. At high magnetic

field, r ∼ 1. In our hall measurements, r ≈ 1 after comparing the hall measurement

results with the result from Shubnikov-de Haas oscillation measurements, as we will

discuss later.

The measured Vy/Ix is linearly fitted with Bz, and the 2D electron concentra-

tion is determined using Eq. 4.54. The final results are shown in Fig. 4.9. The solid

line is a linear fit of n2d with Vg using a parallel capacitor model, and

n2d = 3.376× 1010 + 5.059× 1010Vg cm−2. (4.56)

At Vg = 55 V, ρxx is measured while magnetic field B is swept from 0 to 9

T, as shown in Fig. 4.10(a). Shubnikov-de Haas oscillations are observed. After the
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Figure 4.9: 2D electron concentration n2d as a function of top gate voltage Vg using

hall measurements, assuming the hall scattering factor r = 1. The solid line is a linear fit

of n2d with Vg using a parallel capacitor model.

Figure 4.10: (a) Shubnikov-de Haas oscillations at Vg = 55 V. (b) The Fourier trans-

formation of the data in (a).
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Fourier transformation of ρxx as a function of 1/B, the peak is located at β = 28.94

T. The 2D electron concentration is [52]

n2d = g
qβ

h
= 2.807× 1012 cm−2, (4.57)

where the degeneracy g is 4, including the spin degeneracy and the 2 fold valley

degeneracy for silicon(100), and h is the Planck constant. This is consistent with the

result 2.816× 1012 cm−2 from Eq. 4.56. So r ≈ 1 here. The Fourier transformation

of the Shubnikov-de Haas oscillations only shows one major peak, corresponding

to the lowest subband with the degeneracy g = 4, which means that the electrons

only occupy the lowest subband, otherwise there will be multiple peaks at different

frequencies.

Compared Eq. 4.56 with the parallel capacitor model n2d = Cox(Vg − Vt)/q,

Cox = 8.09 nC/cm2 and Vt = −0.667 V. The HDPECVD oxide thickness is about

400 nm measured by an N&K thin film analyzer, so the dielectric constant is about

3.91 in this final device, which is consistent with 3.9 for pure silicon oxide. So

changing the flow rate of SiH4 and N2O not only reduces the positive oxide charge

inside the HDPECVD oxide, but also changes the dielectric constant from 5.5 to

3.91, as previously discussed in Sec. 4.3.2.

At B = 0 T,

ρxx =
Ex

Jx

=
Ex

qnµEx

=
1

qnµ
,

where µ is the conductivity mobility, and n is the electron concentration from pre-

vious measurements. So

µ =
1

qnρxx

, (4.58)
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Figure 4.11: The electron mobility of the hall bar device.

The experimental results are shown in Fig. 4.11. The peak mobility is about

5200 cm2/Vs at Vg=30 V, which is similar to 5000 cm2/Vs in Ref.[14] and 5600

cm2/Vs in Ref.[53]. Because the electron mobility provides information about the

Si/SiO2 interface quality, and the hall bar device went through the same fabrication

process as the final MOS-SETs, we believe that the quality of our MOS-SETs are

comparable with the similar devices from other gourps.

4.5 Summary

In this chapter, we have discussed the physics of the MOS capacitors at room

temperature and at cryogenic temperatures. The device parameters are extracted

from the HF C-V measurement. Oxide charges and interface trapped charges affect

the MOS device operation. The Terman method reveals that the e-beam evaporation
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process introduces the interface-trap density ∼ 1012 cm−2eV−1, although it can be

reduced to less than 1011 cm−2eV−1 after forming gas annealing. The conductance

method is used to estimate the interface-trap densities in the final devices, and they

are about 1× 1011 cm−2eV−1. The 2D electron concentration is determined by hall

measurements and Shubnikov-de Haas oscillation measurements. The results show

that data can be well explained by a parallel capacitor model. The conductivity

mobility is also determined by the hall measurements. The peak mobility is about

5200 cm2/Vs, which is similar to the data from other groups.[14][53] So the quality of

our device is comparable with the quality of the devices from these groups, although

it can be further improved.
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Chapter 5

Silicon SET transport characteristics

5.1 Introduction

Silicon SETs were systematically investigated both at 4.2 K and in a dilution

refrigerator (DR) with a base temperature of 10 mK. The unique side gate config-

uration was used to verify the formation of quantum dots (QDs) and to determine

their locations, which are largely neglected in some early works. The results show

that besides an electrostatically defined QD, there is an intrinsic QD at each point-

contact channel. These intrinsic QDs are due to the potential fluctuations at the

Si/SiO2 interface. The flexibility of the system enables us to investigate a single

intrinsic QD. This will be discussed in Chapter 6 in detail.

Because of the relatively low electron mobility in silicon, in order to remove the

intrinsic QD in an point-contact channel, the device dimensions need to be scaled

down. When the gap between two neighboring side gates of a point-contact channel

was reduced from ∼ 160 nm to ∼ 90 nm, the point contact can turn off the device

without Coulomb oscillations in some devices, which means that there is no intrinsic

QD inside the point-contact channel. In these devices, the electrostatically defined

QD dominates the device behavior.
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5.2 Measurement setup

In simple device characterization, an HP 4142B semiconductor parameter an-

alyzer (including 8 DC Source/Monitor units (SMUs)) is used to do the DC mea-

surement. However, while the source-drain, the side gates and the top gate are DC

biased by the HP 4142B, the source-drain differential conductance is measured by

the standard AC lock-in technique in most experiments, since the AC lock-in tech-

nique can reduce the deteriorating effect from noise, and makes the high precision

measurement possible.

The measurement circuit is shown schematically in Fig. 5.1. A lock-in amplifier

PAR 124A generates a 37 Hz sine wave signal with Vrms = 1 V. The signal goes

through a 1000:1 voltage divider(100 KΩ : 10 Ω), and becomes Vrms = 0.1 mV.

Since the source-drain DC bias in our experiment is about 25 mV, and the minimum

voltage range for the HP 4142B is 2 V, the DC voltage from channel 1 goes through

a 86:1 voltage divider (4.22 KΩ : 50 Ω). Then the AC and the DC voltages are

added together by an AC+DC adder box, and are applied between the source and the

drain of an SET. The source-drain current is amplified by a transimpedance amplifier

(pre-amp) with a gain of 10− 100 MΩ, and measured by the lock-in amplifier PAR

124A. The monitor signal and the reference signal from the PAR 124A are fed

into another lock-in amplifier 7265. Then data from the lock-in amplifier 7265 are

collected by computer programs through GPIB interface. The measurement system

and techniques are discussed in detail in Appendix A.

83



Figure 5.1: Schematic of the AC measurement system. The lock-in amplifier PAR 124A

generates a 37 Hz sine wave signal with Vrms = 1 V, which goes through a 1000:1 voltage

divider(100 KΩ:10 Ω), and becomes Vac = 0.1 mV. The DC voltage from channel 1 of

the HP 4142B goes through an 86:1 voltage divider (4.22 KΩ:50 Ω) and becomes Vdc.

Then the AC and the DC voltages are added together by an AC+DC adder box, and are

applied between the source and the drain of the device under test (DUT). The source-

drain current is amplified by a transimpedance amplifier (pre-amp), and measured by the

lock-in amplifier PAR 124A.
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5.3 Transport characteristics at 4.2 K

5.3.1 Functions of side gates

Figure 5.2: (a) The source-drain conductance G21 vs. the top gate voltage VG1 with

6 side gates (A-F) kept at 0 V. The conductance is in the unit of e2/h = 1/(25.8 kΩ).

The device is SiHB6L20070102(2,1). (b) The source-drain conductance G21 vs. side gate

voltages. The top gate voltage is 22.5 V. When one pair of side gates are tested, the other

two pairs of side gates are set to about 2 V. The inset shows the schematic top view of

the MOS-SET with 6 side gates (A-F), the top gate G1, and the source 1, drain 2 regions.

The device is SiHB6L20070102(2,1), and it turns on at the top gate voltage

VG1 = 15.5 V (Fig. 5.2(a)). When VG1 is set at 22.5 V, the functions of the side

gates are examined. Each pair of side gates A,B, side gates C,D, and side gates E,F

independently define one point-contact channel. Before one pair of side gates are

tested, about 2 V DC bias is applied on the other two pairs, so that the point-contact

channels defined by these two pairs can be fully conductive. Fig. 5.2(b) shows that

side gates A,B and side gates C,D can turn off the device, but side gates E,F can
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not do it up to −3 V. This is because the gap between side gates E,F (∼ 330 nm)

is much larger than that between side gates A,B (∼ 160 nm), and the same is true

for side gate C,D.

5.3.2 Stability charts of silicon SETs

First I adjusted side gate voltages VA,B(= VA = VB) and VC,D(= VC = VD),

and then swept side gate voltages VE,F (= VE = VF ) as plunger gates. Coulomb

blockade oscillations are observed, when the source-drain conductance G21 versus

VE,F is measured at VA,B = 0.23 V, VC,D = −0.5 V and Vds = 0.1 mV (Fig. 5.3(a)),

but the result is rather complicated. Fig. 5.3(b) shows the stability chart at the same

gate bias conditions. There are some diamond structures, but they are distorted.

Later I found that even using only one pair of side gates, we can still get

diamond-shaped stability charts. Fig. 5.4(a) shows a clean Coulomb blockade oscil-

lations, when G21 versus VA,B is measured at VC,D = 2 V, VE,F = 2 V and VG1 = 22.5

V. (When a pair of side gates are applied by 2 V DC bias, the defined point-contact

channel is fully conductive, as shown in (Fig. 5.2(b)).) The corresponding stability

chart also shows a simple diamond structure (Fig. 5.4(b)). Further investigation

revealed that the complex structure in Fig. 5.3(b) is because each pair of side gates

A,B and side gates C,D independently confine one intrinsic QD in their point-contact

channels.
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Figure 5.3: Coulomb blockade oscillations (a) and the stability chart (b) of the device,

when sweeping the side gate voltages VE,F (= VE = VF ) as plunger gates. The bias

conditions are VG1 = 22.5 V, VA,B = 0.23 V, and VC,D = −0.5 V.
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Figure 5.4: Coulomb blockade oscillations (a) and the stability chart (b) of the device,

when sweeping side gate voltages VA,B(= VA = VB). The bias conditions are VG1 = 22.5

V, VC,D = 2 V, and VE,F = 2 V.
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Figure 5.5: The source-drain conductance G21 as a function of side gate voltages VA

and VC shows double QD like behavior, when VG1 = 11 V, Vds = 0 V, VB = VD = VF = 0

V, and VE = 1 V. The device is SiHB6L20070102(3,2), and it turns on at VG1 = 9.5 V.
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5.3.3 Double quantum dot like behavior

Since the capacitance between the QD and the side gate implies the distance

between them, capacitive coupling strength can be used to determine the location of

the QD. When Vds = 0 V, G21 is measured as a function of side gate voltages VA and

VC . We get double QD like behavior. As discussed in Sec. 2.2.1, Fig. 5.5 shows that

there are two weakly coupled QDs in the SET, since the high conductance regions are

only located at the intersections of nearly horizontal and vertical lines, which are the

degenerate triple points at Cm ∼ 0. The nearly horizontal and vertical lines mean

that these two QDs are spatially separated; one is near side gate A, and the other is

near side gate C. A silicon point-contact showing single electron transistor behavior

is not unusual, as previously demonstrated by Hiroki Ishikuro.[54] The possible

sources can be some impurities, local potential fluctuations or Si/SiO2 interface

roughness, etc, which will be further discussed later.

5.4 Transport characteristics in a dilution refrigerator

These SETs were further characterized in a dilution refrigerator with a base

temperature of 10 mK. The basic characteristics are similar to those at 4.2 K, but

more details are revealed with much better resolution. The following data are from

another device SiHB6L20070102(2,4).
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Figure 5.6: (a) The source-drain conductance G21 vs. the top gate voltage VG1 with 6

side gates (A-F) kept at 0 V. The device is SiHB6L20070102(2,4). (b) The source-drain

conductance G21 vs. side gate voltages. The top gate voltage is 16 V, and VE = VF = 1

V. When one pair of side gates is tested, the other pair of side gates is kept at 0 V. The

inset shows the schematic top view of an MOS-SET with 6 side gates (A-F), the top gate

G1, and the source 1, drain 2 regions.
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5.4.1 Functions of side gates

The device turns on at about VG1 = 8 V (Fig. 5.6(a)). When VG1 = 16 V and

VE = VF = 1 V, the functions of side gates A,B and C,D are tested. Each pair of

side gates A,B and side gates C,D independently define one point-contact channel.

When one pair of side gates are tested, the other pair are kept at 0 V, so that the

point-contact channel defined by them can be fully conductive. Fig. 5.6(b) shows

that side gates A,B and side gates C,D can turn off the device, when more than

−2.5 V DC bias is applied on them. The source-drain conductance G21 also shows

Coulomb blockade oscillations before turning off.

5.4.2 Multiple quantum dot behavior

In a dilution refrigerator, we investigated the formation of QDs in detail, and

determined their locations using the specific 6 side gate configuration, because ca-

pacitive coupling strength between a QD and a side gate indicates the distance

between them.

G21 as a function of VA,B and VC,D is measured, when VG1 = 16 V, VE = VF = 1

V, and Vds = 0 V. The result is shown in Fig. 5.7(a), a portion of which is enlarged

and shown in Fig. 5.7(b). The observed characteristics demonstrate double QD

behavior, as at 4.2 K. When VA,B and VC,D are both less than about −1.2 V, the

device is in the weakly coupled double QD regime. In this weakly coupled regime,

two triple points merge into ones, i.e. the high conductance spots as clearly shown in

Fig. 5.7(b), and are located at at the intersections of nearly horizontal and vertical
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Figure 5.7: (a) The source-drain conductance G21 as a function of side gate voltages

VA,B and VC,D shows double QD like behavior, when VG1 = 16 V, VE = VF = 1 V, and

Vds = 0 V. (b) Enlarged section of (a) shows the underlining diagonal lines from the center

large QD.
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Figure 5.8: The source-drain conductance G21 as a function of side gate voltages VC

and VD, when VG1 = 16 V, VA = VB = 0 V, VE = VF = 1 V, and Vds = 0 V. Diagonal

lines suggest that side gate C and side gate D are coupled to the small QD with the same

capacitance.
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lines. These nearly horizontal and vertical lines mean that there are two spatially

separated QDs. One dot is strongly capacitively coupled to side gates A and B,

but only weakly coupled to gates C and D; the other, however, is strongly coupled

to gates C and D, and only weakly coupled to gates A and B. That is, one dot is

physically near side gates A and B, whereas the other dot is located close to side

gates C and D. In addition to these two small QDs discussed above, side gates A,

B, C, D, E, and F, can also electrostatically define a (large) QD. A closer look at

Fig. 5.7(a) indeed reveals the underlining diagonal lines from this dot, as shown in

Fig. 5.7(b). So when VA,B < −1.2 V and VC,D < −1.2 V, the SET is under multiple

QD bias conditions, and the equivalent circuit consists of a large QD at the center

in series with two small QDs, as illustrated in Fig. 5.9(a).

When −1.2 V < VC,D < 1 V, sweeping VA,B reproduces the single electron

tunneling features similar to that shown in Fig. 5.6(b). The same is observed when

sweeping VC,D while keeping −1.2 V < VA,B < 1 V. So when −1.2 V < VA,B < 1 V

(or −1.2 V < VC,D < 1 V), the SET is under single QD bias conditions, and only

the small QD defined by side gates C,D (or A,B) is left, as shown in Fig. 5.9(b).

Furthermore, data shown in Fig. 5.8 suggest that the QD is located in the

narrow point contact channel. Keeping the other two point contacts fully conductive

(VG1 = 16 V, VE = VF = 1 V, and VA = VB = 0 V) and sweeping the voltages of

side gates C and D in the range of interest, the source-drain conductance shows

clear single electron tunneling characteristics. Because the capacitances between

the dot and, separately, side gates C and D are the same, the peak positions in

Fig. 5.8 display diagonal dependence. To be more specific, the QD is physically
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located in the point-contact channel, at equal distances to side gates C and D. The

discontinuity of the diagonal lines is caused by a mere one electron charge change at

a nearby charge trap. Similar characteristics are also observed for the dot defined

by side gates A and B. These observations are consistent with the picture that there

are two weakly-coupled QDs, located in the point-contact channels defined by side

gates A,B, and C,D, respectively.

These pictures capture the major characteristics of the device. However, there

is not always a QD in a point contact. As we will discuss later, when the gap

between two neighboring side gates was reduced from ∼ 160 nm to ∼ 90 nm, the

defined point contact can be smoothly turned off without Coulomb oscillations in

some of our samples. In these devices, the electrostatically defined dot is the only

feature.

5.4.3 Stability chart of an intrinsic quantum dot in silicon

Fig. 5.10(b) shows the stability chart of the SET, while VG1 = 16 V, VA =

VB = 0 V and VE = VF = 0 V (single QD bias conditions). The observation

of Coulomb diamonds confirms the formation of a single QD in the point-contact

channel. Within the orthodox theory, the QD is modeled by a disc with a diameter

d, and the total capacitance CΣ is 4εd, where ε (= 11.9 in silicon) is the dielectric

constant. From the diamond shown in Fig. 5.10(b), we can directly measure the

half height (V21 = e/CΣ), and the obtained charging energy Ec (= e2/CΣ) is about

6 meV. So CΣ is approximately 27 aF, which suggests a disc diameter of about 60

96



Figure 5.9: (a) Equivalent circuit and schematic potential profile when the SET is under

multiple QD bias conditions. (b) Equivalent circuit and schematic potential profile when

the SET is under single QD bias conditions.
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Figure 5.10: (a) The Coulomb blockade oscillations with the first 5 peaks, labeled as

P1–P5, when VG1 = 16 V, VA = VB = 0 V, VE = VF = 1 V (single QD bias conditions).

(b) Stability chart, taken under the same bias conditions as that in (a).

98



nm. Because the top gate threshold voltage is measured to be ∼ 8 V for the SET,

using a parallel capacitor model and that the quantum disc had a diameter of 60

nm, at VG1 = 16 V the number of electrons in the QD is estimated to be at most

∼ 10. As the source-drain dc bias V21 is fixed at 0 V, the SET displays the Coulomb

blockade oscillations, as shown in Fig. 5.10(a).

5.5 Towards an electrostatically well defined quantum dot in silicon

Electrostatically well defined lateral QDs with great versatility and control-

lability are a must in order to realize spin qubit devices in Si. As we have seen,

however, intrinsic QDs are easily formed at point-contact channels in Si, due to

the inherent material properties, especially the potential fluctuations at the Si/SiO2

interface. There are two ways to remove the intrinsic QD in a point-contact chan-

nel. One is to improve the quality of the Si/SiO2 interface, so that the interface

potential fluctuations can be reduced, and the electron localization length can be

increased. The other is to scale down the device, so that within the device di-

mensions, the potential fluctuations are not able to confine an intrinsic QD in a

point-contact channel. Here we demonstrate that the intrinsic QD can be removed

from the point-contact channel, when the device is scaled down.

Due to the limitation of our e-beam lithography recipe, the minimum line

width is about 50 nm, and the standard line width is about 70 nm. After the device

was scaled down, the gap between two neighboring side gates reduced from ∼ 160

nm to ∼ 90 nm, as shown in Fig. 5.11.
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Figure 5.11: Schematic of the device scale-down. After the device scale-down, the gap

between two neighboring side gates reduces from ∼ 160 nm in (a) to ∼ 90 nm in (b).

5.5.1 Removal of intrinsic quantum dots

The basic idea to remove the intrinsic QD in a point-contact channel is to

reduce the effective channel length. Fig. 5.12 shows the cross sections of the potential

profiles along the point-contact channel. At a lower top gate voltage and a lower side

gate voltage, the potential barrier has a wider peak (Fig. 5.12(a)); at a higher top

gate voltage and a higher side gate voltage, the potential barrier becomes sharper

(Fig. 5.12(b)). Thus the effective channel length is shortened. When a sharper

potential barrier is combined with the intrinsic potential fluctuations, the intrinsic

potential fluctuations can be effectively reduced. This lowers the potential barriers of

the intrinsic QD, as shown in Fig. 5.12(c)–(f). As we continue to push the potential

barrier sharper, the intrinsic potential fluctuations are no longer able to confine

electrons in it. That is, we effectively remove the intrinsic QD in the point-contact

channel.
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Figure 5.12: Schematic potential profiles at different gate bias conditions. (a) At a

lower top gate voltage and a lower side gate voltage, the potential barrier has a wider

peak; (b) at a higher top gate voltage and a higher side gate voltage, the potential barrier

is sharper. The dark lines in (c) and (d) illustrate the interface potential fluctuations,

and the dash lines are the electrostatically defined barriers. (e) and (f) show the resultant

potential profiles after combining these two together. For the sharper potential barrier,

the intrinsic potential fluctuations are effectively reduced.
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Figure 5.13: The source-drain current I21 as a function of side gate voltages VA,B when

the top gate voltage VG1 increases from 16 V to 32 V. Each Star labels the position (in

VA,B) where the intrinsic QD transits from an open dot into a closed dot. The dash line

shows the linear dependence between VG1 and VA,B. Each curve is offset linearly with VG1

for clarity.
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One experimental result is shown in Fig. 5.13, where the source-drain current

I21 is measured against VA,B when the top gate voltage VG1 is changed from 16 V

to 32 V. At lower top gate voltages, there are some Coulomb blockade oscillations,

which means that the device is in the closed dot regime. When the top gate voltage

increases, the Coulomb blockade is lifted, which means that the device enters the

open dot regime. At VG1 = 32 V, there is no Coulomb blockade oscillations any more,

which means that the intrinsic QD is removed from the point-contact channel.

5.5.2 Functions of side gates

Figure 5.14: Electrical characteristics of a scaled-down device, measured in a dilution

refrigerator with 10 mK base temperature. (a) The device turns on at about VG1 = 15

V, when 6 side gates (A-F) are kept at 0 V. The device is SiHB6L20080820(2,4). (b) The

source-drain conductance G21 vs. side gate voltages, when VG1 = 33 V, and VE = VF = 0

V. When one pair of side gates are tested, the other pair of side gates are kept at 0 V.

The scaled-down devices were also characterized in the dilution refrigerator.
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Fig. 5.14(a) shows that the device turns on at about VG1 = 15 V, when all of

side gates A-F are kept at 0V. At VG1 = 33 V, VE,F = 0 V and VC,D = 0 V,

side gates A,B can smoothly turn off the device without any Coulomb blockade

oscillations, so there is no QD in this point-contact channel; However, there is one

Coulomb blockade oscillation, when side gates C,D turn off the device, as shown in

Fig. 5.14(b).

5.5.3 The electrostatically defined quantum dot

Since the electrostatically defined QD is located at the center of the 6 side

gates, the capacitances between the QD and, separately, side gates A,B and side

gates C,D should be the same. Indeed, Fig. 5.15 shows that the Coulomb oscillation

peaks are located at the diagonal lines of VA,B and VC,D, which means that side

gates A,B and side gates C,D are equally capacitively coupled to the QD. After

comparing Fig. 5.15 with Fig. 5.7, we conclude that the electrostatically defined QD

dominates the device behavior.

Fig. 5.16(b) shows the stability chart of the electrostatically defined QD,

where diamond-shaped Coulomb blockade regions are clearly visible. When VC,D <

2.05 V, Coulomb blockade oscillations show closely adjacent peaks (double peaks)

(Fig. 5.16(a)), which means that there were two tunnel-coupled QDs at low electron

concentration.

We can use the orthodox theory to estimate the size of the dominant QD by

modeling it as a disc. For a disc with a diameter d, the total capacitance CΣ is 4εd,
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Figure 5.15: (a) The source-drain conductance G21 as a function of the side gate voltages

VA,B and VC,D, when VG1 = 33 V, VE = VF = 0 V, and Vds = 0 V. Diagonal lines suggest

that side gates A,B and side gates C,D are coupled to the QD with the same capacitance.

where ε (= 11.9 in silicon) is the dielectric constant. From the diamond shown in

Fig. 5.16(b), we can get the half height (V21 = e/CΣ), and the obtained charging

energy Ec (= e2/CΣ) is about 2 meV. So CΣ is approximately 80 aF. This suggests

a disc diameter of about 190 nm, which is consistent with the gap between two

diagonal side gates (∼ 160 nm) in Fig. 5.11(b). Because the top gate threshold

voltage is measured to be ∼ 15 V for the SET, using a parallel capacitor model
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Figure 5.16: The Coulomb blockade oscillations of the electrostatically defined QD,

when VG1 = 33 V, VA = VB = −1.85 V, and VE = VF = 0.4 V. (b) Stability chart under

the same bias conditions as that in (a).
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and that the quantum disc has a diameter of 190 nm, at VG1 = 33 V the number

of electrons in the QD is estimated to be about ∼ 250. So the device is in the

many-electron regime. When many electrons are in the QD, they can smooth out

the potential fluctuations, and one electrostatically defined QD can be formed.

5.6 Origin of intrinsic quantum dots

It is important to find out the origin of intrinsic QDs in our devices, so that we

can better understand them and improve the device quality in the future. There are

at least three different theories in the literature. H. Ishikuro and T. Hiramoto think

that QDs are probably from Si nanoparticles in their point-contact SOI devices.[54]

This is not likely in our devices, since in our devices, the QDs are located at the

silicon/thermal oxide interface, and there are no nanoparticles. H. Sellier et al.,

demonstrated that QDs can be from single dopants such as arsenic or phosphorous

atoms in their silicon SOI SETs.[55] The major characteristic of a single-dopant QD

is the large charging energy, at the order of the first binding energy, which is about

25 meV in silicon. Our observed charging energy (∼ 6 meV in Fig. 5.10(b)) is much

less than that using the single dopant picture. In addition, the single-dopant QD

can only trap a few electrons, 2 for phosphorous. There are at least 5 peaks in

Fig. 5.10(b). In another sample, there are 10 peaks with similar addition energies

between 4 ∼ 8 meV, as shown in Fig. 5.17(b). It is impossible for a single-dopant QD

to trap so many electrons. So the single-dopant quantum-dot picture alone cannot

explain the intrinsic QDs in our devices. They also have different filling pattern.[55]
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Figure 5.17: (a) The Coulomb blockade oscillations with the first 8 peaks labeled

as P1–P8, when VG1 = 25 V, VC = VD = 2 V, VE = VF = 0.8 V. The device is

SiHB6L20070102(2,3). (b) Stability chart, taken under the same bias conditions as that

in (a).

108



Figure 5.18: Schematics of a narrow channel with random trapped charges. The channel

is defined by a metal gate (the shaded area) with a gap. The black diamonds are randomly

distributed charges near the interface. The corresponding electrostatic potential along the

channel is also shown in the figure. (After M. A. Kastner, Ref.[17])
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We believe that the intrinsic QDs are due to the inherent potential fluctua-

tions at the Si/SiO2 interface, caused by the localized nature of interface trapped

charge, oxide fixed charge, and chemical inhomogeneity (stretched, bent, or broken

bonds, and oxide compositional variations).[56] M.A. Kastner proposed that QDs

are from the negatively charged electron traps.[17] As shown in Fig. 5.18, the neg-

ative interface-trapped charges create potential barriers along the one-dimensional

(1D) point-contact channel and form a QD. (Since the oxide fixed charges are pre-

dominantly positive, they cannot create potential barriers.) The interface trapped

charges are always present at the Si/SiO2 interface. As we have measured by the

conductance method using large area devices at room temperature in Sec. 4.3.3, The

interface trap density is about ∼ 1 × 1011 cm−2eV−1, corresponding to an average

spacing between charges to be ∼ 30 nm. This is close to the diameter of the intrinsic

QD (∼ 60 nm) in Sec. 5.4.3, considering the overestimation nature of the simple

disc model. At this time, the exact origin of intrinsic QDs is unknown. But the

interface trap density could be a good indicator of the localization length, thus it

can be related to the size of the intrinsic QDs. Nevertheless, it is still a guess. It

needs a systematic experiment to verify the relationship between intrinsic QDs and

the interface trap densities.

5.7 Coupled double quantum dots in silicon

A coupled double QD system with a tunable inter-dot potential barrier is nec-

essary to realize the CNOT operation, one of the ingredients of a universal operation
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Figure 5.19: (a) Schematic of coupled double dots in silicon. Side gates E,F define a

point-contact channel. Side gates A,B and side gates C,D are used to probe the double

dots. (b) The source-drain conductance G21 vs. side gate voltages VE,F , when VG1 = 33

V, and VA = VB = VC = VD = 0 V. In contrast to side gates A,B and C,D, more then −10

V is applied on side gates E,F to turn off the device. The device is SiHB6L20080820(2,4).
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Figure 5.20: The stability chart of the device with VG1 = 33 V, VE,F = −9.8 V, which

shows the typical double dot honeycomb structure.

set for quantum computation. Our 6 side gate Silicon SET structure is flexible. As

shown in Sec. 5.5.3, when side gates E,F are biased at 0 V, side gates A,B and

side gates C,D can electrostatically define one large QD. On the other hand, if side

gates E,F are used to define one point-contact channel, and side gates A,B and side

gates C,D are used to define the other two barriers, two coupled QDs can be formed

(Fig. 5.19(a)).

The measured stability chart shows the typical double dot honeycomb struc-
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Figure 5.21: The stability charts of the device with VG1 = 33 V, and different VE,F :

(a) VE,F = −9.4 V, (b) VE,F = −9.0 V. In (b), the dash line separates the figure into

two parts. The lower left part shows the double dot honeycomb structure; the upper right

part shows the evolution into a single dot.
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ture (Fig. 5.20). I have tried to adjust the coupling between these two dots by chang-

ing VE,F . Although there are some small changes when VE,F decreases from −9.8 V

to −9.4 V, and to −9.0 V, over all results are similar (Fig. 5.20, and Fig. 5.21). Also

the tunneling rate between these two dots are substantial, so that the triple points

are not well defined points but regions. This means that these two dots are not well

separated, but form a molecule. We also notice that there are two distinct regimes

in Fig. 5.21(b), separated by a dash line. The lower left part shows the double dot

honeycomb structure, and the upper right part shows the evolution into a single

dot. But whether these two dots are truly electrostatically defined, or mainly due

to the interface potential fluctuations cannot be distinguished well. The later one is

most likely. Considering the size of our current device, it is quite possible that these

two dots are mainly from the interface potential fluctuations. Further scaling-down

is necessary to create an electrostatically defined double dots.

5.8 Summary

In this chapter, we have presented the transport results of the silicon SETs

both at 4.2 K and in a dilution refrigerator. We have discovered that each pair of

side gates A,B and C,D can confine one intrinsic QD in its point-contact channel

due to the interface potential fluctuations. In the dilution refrigerator, we have

found that in addition to these two smaller intrinsic QDs, there is also one larger

electrostatically defined QD. Thus we are able to establish equivalent circuits to

describe the observed device characteristics.
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But the electrostatically well defined QD is necessary to realize spin qubit

devices. After scaling down the device and reducing the effective channel length

of the point-contact channel by increasing the top gate voltage and the side gate

voltages, we have demonstrated that the intrinsic QD can be removed from the

point-contact channel. Thus the electrostatically defined QD dominates the device

behavior. However, the device only works in the many-electron regime. At low

electron concentration, the electrostatically defined QD separates into multiple dots.

We have discussed the origin of intrinsic QDs. We believe that they are not due

to Si nano-particles or single dopants, but from the intrinsic potential fluctuations

at the Si/SiO2 interface. There may be some signals from single dopants, but most

of Coulomb blockade oscillations cannot be from the single dopants.

We have also demonstrated that our 6 side gate structure can form a coupled

double dot system, although the inter-dot coupling cannot be tuned efficiently. The

interface potential fluctuations probably play a major role in forming the inter-dot

tunnel barrier.

In order to realize electrostatically well defined QD in silicon, we need to

continue scaling down the device and improving the interface quality, so that the

device dimensions can be smaller than the localization length. Someone may argue

that the physical dimensions are not necessary to be small, because the size of the

QD can be electrostatically confined small. But we should keep in mind that an SET

includes three inseparable parts: two tunnel barriers and a QD. Each of them can

be electrostatically confined small, but the overall size is determined by the physical

dimensions of the device. From the size of the intrinsic QD, we can estimate that the
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device dimension should be less than 60 nm for our current interface quality, which

is reachable. The current industrial standard provides an interface trap density of

approximately 1× 1010 cm−2, so the device dimension can be ∼ 100 nm.
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Chapter 6

Excited states and magnetic field spectra of a single

quantum dot

6.1 Introduction

For the purpose of investigating single spin in silicon, we focus on a single

intrinsic quantum dot confined in a point-contact channel in this chapter. Due to

their small size and large quantization energy, intrinsic quantum dots provide us

an important tool to explore quantum dots in silicon beyond the limitation of our

lithography system.

Under single dot bias conditions, the investigated SET is comprised of a single

intrinsic quantum dot, as discussed in Chapter 5. In addition to single electron

tunneling behavior, we also measured its magnetic field dependence. In a magnetic

field perpendicular to the sample surface, the observed magnetic field dependence

of the ground-state and excited-state energy levels mostly can be attributed to the

Zeeman effect. Furthermore, the spectrum enables us to directly observe the singlet-

triplet (ST) transition. In this two-electron ST transition, electron-electron Coulomb

interaction plays a significant role. The evolution of Coulomb blockade peaks with

magnetic field was also measured. The data suggest that the ground state energy

levels also shift with the applied magnetic field owing to the Zeeman effect. Up to

9 T, there is no obvious orbital effect. The evolution of peak amplitudes can be
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explained by the spin blockade effect. When the two-electron system forms a singlet

state at low magnetic fields, and the injection current from the lead becomes spin-

down polarized, the tunneling conductance is reduced by a factor of 8. At higher

magnetic fields, due to the ST transition, the spin blockade effect is lifted, and

the conductance is fully recovered. In a magnetic field parallel to the source-drain

current direction, the shifts of the ground state energy levels can also be attributed

to the Zeeman effect.

The stability chart near the first Coulomb blockade peak shows some fine

features. When the magnetic field sweeps from 0 T to 9 T, the energy differences

between the ground state and some “excited states” are barely changed. We suspect

that these “excited states” are false. It is expected that the electron concentration in

the source and drain regions is lower near the first Coulomb blockade peak than that

near other peaks, so the local potential fluctuations are rougher, and the quantum

interference effect is more pronounced. Using this quantum interference picture, we

are able to qualitatively explain some observed phenomena.

6.2 Singlet-triplet transition in a silicon SET

Here we continue our investigation on device SiHB6L20070102(2,4). Under

single quantum dot bias conditions, the device has a single quantum dot in the

channel defined by side gates C,D (Fig. 6.1). Fig. 6.2 shows the stability chart of

the SET, when VG1 = 16 V, VA = VB = 0 V, VE = VF = 1 V. In this stability

chart, there is an excited state near peak 4 (the dashed line). We first focus on the
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Figure 6.1: (a) The equivalent circuit and (b) schematic potential profile under single

quantum dot bias conditions. It also shows two different directions of magnetic field

B. One (B||) is parallel with the source-drain current direction, and the other(B⊥) is

perpendicular to the sample surface.
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Figure 6.2: (a) The Coulomb blockade oscillations with the first 5 peaks, labeled as

P1–P5, when VG1 = 16 V, VA = VB = 0 V, VE = VF = 1 V (single quantum dot bias

conditions). (b) Stability chart, taken under the same bias conditions as those in (a). The

dashed line indicates an excited state.

120



Figure 6.3: Source-drain differential conductance G21 as a function of V21 and VC,D,

near peak 4, at the magnetic fields of 3.3, 4.8, 6.2, and 8.8 T, respectively. The excited

state moves toward the ground state as the magnetic field increases.
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Figure 6.4: (a) The excitation stripe taken at V21 = −4.7 mV with B between 1 and

9 T. (b) Peak positions as a function of B are extracted from the raw data in (a) using

Gaussian fitting, and then converted into electrochemical potential by E = eαVC,D with

an arbitrary offset. The straight lines are from linear fitting of the data. The ground

state E0 is only fitted from 1 to 3 T. Their slopes are labeled in the graph. (c) Schematic

showing the evolution of single-particle energy levels E0 and E1 driven by the Zeeman

effect, where E0 is the ground state with a spin-up electron, and E1 is the first excited

state with a spin-down electron, depicted in solid lines. In a two-electron system, the B

dependence of the singlet and the triplet states follows E0(B) and E1(B), respectively.

Therefore we also label the singlet state as E0 and the triplet state as E1. The crossing

between E0 and E1, the singlet-triplet transition, occurs at Bt.
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evolution of the corresponding ground state and the excited state in magnetic field.

For the data presented in this section and Sec. 6.3, the field is applied perpendicular

to the sample surface. Figure 6.3 shows that this excited state moves toward the

ground state as the magnetic field increases. When the source-drain DC bias V21 is

fixed at −4.7 mV, and the source-drain conductance G21 is measured against B and

VC,D, the excitation stripe near peak 4 is shown in Fig. 6.4(a). With the increase of

magnetic field (0 < B < 6 T), the distance between the first excited state E1 and

the ground state E0 decreases. As B > 6 T, the state E1 becomes the new ground

state. The maxima in Fig. 6.4(a) are fitted with Gaussians (as functions of VC,D),

and VC,D can be converted into electrochemical potential, using E = eαVC,D, where

the ratio of the gate capacitance to the total capacitance α = 0.09, extracted from

the slopes of nearby diamonds in the stability chart.[22] After an arbitrary offset,

the resulting peak positions (in electrochemical potential) are shown in Fig. 6.4(b).

The absolute energy position of a peak in the excitation spectrum is determined

by practical experimental parameters; we therefore focus on the difference between

the most important features, that is, the energy difference between the E0 state

and the E1 state. To first order, both E0 and E1 show apparent linear dependence

on magnetic field B. We therefore fit E0(B) (in the range 1 T < B < 3 T) and

E1(B) (in the range 1 T < B < 9 T) by linear lines. Straight lines for the guidance

of the eye are shown in Fig. 6.4(b). The energy difference, E1(B) − E0(B), (=

[−0.137 − (−0.018)](meV/T)·B), is −0.119 meV/T. The Zeeman splitting in bulk

silicon is 0.116 meV/T (= gµBB, with g = 2, µB is the Bohr magneton.). It is clear

that the energy difference mostly can be attributed to the Zeeman effect.
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Figure 6.4(c) illustrates the Zeeman effect and the ST transition. Here we

only consider the two electrons in the outmost shell. The lower lying electrons,

if any, are ignored, because they have less influence on the spin dynamics. For

a one-electron system, the ground state is a spin-down state in a magnetic field.

The Zeeman splitting has the linear magnetic field dependence, ±gµBB/2. In Fig.

6.4(c), the spin of the second electron is depicted by solid black arrows. When this

second electron is added to the quantum dot, it would interact with the electron

already in the dot and form either singlet or triplet states. As shown in Fig. 6.4(c),

quantum selection rule dictates the spin of incoming electrons, that is, a spin-up

electron for the singlet state E0, and a spin-down electron for the triplet state E1.

At low magnetic fields, 0 < B < Bt, the singlet state has a lower energy than that

of the triplet state. While at a higher magnetic field (B > Bt), the triplet state

E1 becomes the ground state. The spin configuration of the ground state of the

two-electron system is therefore controlled by the magnetic field. Were the Zeeman

splitting the only effect to be considered, the magnetic field induced ST transition

should occur at about 14 T. This estimate is based on the data shown in Fig. 6.4(b),

and there is ∼ 1.6 meV energy difference between E1 and E0 at zero field. But the

observed ST transition happens at about 5 T. This discrepancy can be explained by

the direct Coulomb interaction and the exchange interaction using a two electron

model.

First, we introduce two single particle spatial wave functions: ψ0 with energy

E ′
0 and ψ1 with energy E ′

1. Because of the Zeeman effect, energy levels E ′
0 and

E ′
1 will split in a magnetic field (the same as E0 and E1 in Fig. 6.4(c)). Then we
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use these two single particle wave functions to construct the singlet and the triplet

states of the two electron system

ΦS = ψ0(~r1)ψ0(~r2)|00〉, (6.1)

and

ΦT =
1√
2
[ψ0(~r1)ψ1(~r2)− ψ0(~r2)ψ1(~r1)]|1− 1〉, (6.2)

where ~r1 and ~r2 label the two electrons, and |00〉 and |1 − 1〉 are the spin parts of

the wave functions.

When the electron wave functions shrink with increasing magnetic field B, the

interdependence of Coulomb interaction and single-particle states should be taken

into account. If we consider the first-order corrections due to the direct Coulomb

interaction and the exchange interaction, the total energy of the two electron singlet

state is

US(2) = E ′
0↑ + E ′

0↓ + C00(B), (6.3)

and the total energy of the two electron triplet state is

UT (2) = E ′
0↓ + E ′

1↓ + C01(B)−K01(B), (6.4)

where ↑ and ↓ are spin-up and spin-down of an electron, C00(B) is the direct Coulomb

interaction when both electrons are in the ψ0 state, and C01(B) and K01(B) are

the direct Coulomb interaction and the exchange interaction respectively when one

electron occupies the ψ0 state and the other occupies the ψ1 state. For the wave

functions ψi and ψj, the direct Coulomb interaction Cij and the exchange interaction
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Kij are

Cij =

∫∫
|ψi(~r1)|2[e2/4πε|~r1 − ~r2|]|ψj(~r2)|2d~r1d~r2

Kij =

∫∫
ψ∗i (~r1)ψ

∗
j (~r2)[e

2/4πε|~r1 − ~r2|]ψj(~r1)ψi(~r2)d~r1d~r2.

The energy of the one electron ground state is

U(1) = E ′
0↓. (6.5)

So the electrochemical potential is µS(B) = US(2)−U(1) = E ′
0+gµBB/2+C00(B) =

E0(B) + ∆C00(B) for the singlet state, where E ′
0 + C00(0) = E0(0), and ∆C00(B) =

C00(B) − C00(0). For the triplet state, the electrochemical potential is µT (B) =

UT (2)−U(1) = E ′
1 − gµBB/2 + C01(B)−K01(B) = E1(B) + ∆C01(B)−∆K01(B),

where E ′
1 + C01(0)−K01(0) = E1(0), ∆C01(B) = C01(B)− C01(0) and ∆K01(B) =

K01(B)−K01(0).[22] Both the direct Coulomb interactions and the exchange inter-

action increase with increasing B, since the size of the wave functions decreases. For

the triplet state, we hypothesize that ∆C01(B) is largely compensated by ∆K01(B),

due to the apparent linear B dependence of the triplet state; while the singlet elec-

trochemical potential µS(B) rapidly increases with increasing B, because the two

electrons both occupy the same single particle spatial wave function ψ0, and the

∆C00(B) term can increase fast near the ST transition. So the electron-electron

Coulomb interaction (including the direct Coulomb interaction and the exchange

interaction) plays a significant role here and drives the singlet-triplet transition at

a much lower magnetic field between 4 and 6 T.

There are some minor deviations from the linear B dependence of the triplet

state, which can be from the ∆C01(B)−∆K01(B) term, and also can be from other
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effects, for example the corrections from a more accurate self-consistent Hartree-Fock

treatment or the electron correlation effect beyond the Hartree-Fock approximation,

and the possible orbital effect in a high magnetic field, etc.[22] A detailed analysis

requires the precise information of the electrostatic potential in the quantum dot,

which is beyond the scope of this dissertation.

There is another interesting phenomena in Fig.6.4(a). The conductance of the

singlet state drops when B > 4 T, and it becomes invisible after the ST transition,

whereas the conductance of the triplet state doesn’t change much. This can be

understood by the transport blockade effect, which will be discussed in the next

section.

6.3 Electron spin blockade in a silicon SET

The magnetic field dependence of the first five Coulomb blockade peaks is

shown in Fig. 6.5. Peak position and peak amplitude are extracted from this raw

data by fitting each peak with equation, [25]

G/Gmax = cosh−2(eα(Vg − Vg0)/2kBT ), (6.6)

where G is the source-drain conductance, Gmax is the maximum conductance at the

peak, Vg0 is the gate voltage at resonance, kB is the Boltzmann constant, T is the

electron temperature, and α = Cg/CΣ, the ratio of the gate capacitance to the total

capacitance. The shift of a peak position (in VC,D) can be converted into the change

in electrochemical potential using the formula:∆E(B) = eα[V Peak
C,D (B) − V Peak

C,D (0)].

In the stability chart [Fig. 6.2(b)], from the slopes of Coulomb diamonds, α is about
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Figure 6.5: Evolution of Coulomb blockade peaks with magnetic field B. Drain current

of the first 5 peaks (P1–P5) is measured with Vac = 0.1 mV, VG1 = 16 V, VA = VB = 0

V, VE = VF = 1. Each trace is offset linearly with B.
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Figure 6.6: Peak spacing between successive peaks as a function of B, extracted from

the raw data in Fig. 6.5 by fitting each peak with Eq. (6.6). The peak spacing is in

electrochemical potential and is offset for clarity. The straight lines have slopes of gµBB

or −gµBB, assuming the Zeeman splitting with g = 2.
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0.15, 0.088, 0.090, 0.090 and 0.061 for peaks 1 to 5, respectively.[22] These changes

in electrochemical potential reflect the evolution of the ground state energy levels.

Figure 6.6 shows the peak spacing (in electrochemical potential) between successive

peaks as a function of magnetic field. Using the energy difference in our analysis not

only minimizes the uncertainty due to charge fluctuations and the long term drift

in analog electronics, but also helps in identifying the role of spin in the addition

energy spectrum. Based on the Zeeman splitting, four straight lines with slopes of

either gµBB or −gµBB, with g=2, are plotted. Since the second peak only appears

between 2 T and 8 T, we compare the first 5 peaks in this field range. Each curve

is arbitrarily offset for clarity. Because the electrochemical potential differences

between successive peaks show the alternate slopes of gµB and −gµB, it is clear

that the shifts of the ground states show an spin-down spin-up filling pattern and

are dominated by the Zeeman effect at low magnetic field (B < 4 T). The fact that

the data are well explained by the Zeeman splitting is consistent with our earlier

finding that the magnetic field dependence of energy levels (both the ground state

and the excited state) is owing to the Zeeman effect.

For the data reported in this work, the magnetic field is applied perpendicular

to the sample surface, therefore, the orbital effect might be expected. However, all

of the observed magnetic field dependence can be well explained by the Zeeman

effect with a g-factor of ∼ 2, leaving orbital effect not a significant factor in our

system. This is probably caused by the specific shape of our quantum dot. When

we squeeze side gates C and D, the electron wave function is elongated along the

source-drain direction, the orbital effect becomes not important. This leaves the
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B dependence of the peak positions dominated by spin effects.[57] The spin-down

spin-up filling pattern requires that the two-fold valley degeneracy is lifted,[57] and

the excitation spectrum suggests that the valley splitting should be larger than 1.6

meV. This is probably due to the strong lateral confinement in our quantum dot.

The valley splitting in Si quantum dots has not been systematically investigated in

experiments, presumably due to the lack of the excitation spectrum data. Some

speculate that it is 0.35 ∼ 0.46 meV.[51, 58] Others indicate that it is of order of a

few meV and greater even at B = 0 T.[59, 18] Further investigation is necessary to

reach an affirmative conclusion.

Finally, we turn our attention to the tunneling peak amplitudes in Fig. 6.5. In

a lateral quantum dot device, an electron tunnels into and out of the quantum dot

from the two-dimensional electron gas (2DEG) leads. As illustrated in Fig. 6.7(b),

the electron concentration varies from the bulk value to zero near the tunnel barriers;

the Zeeman splitting effect causes the separation of the conduction band minima of

the spin-up and spin-down electrons in a magnetic field, which results in the differ-

ent populations of the spin-up and spin-down subbands. In GaAs, spin polarized

injection is due to edge states in a magnetic field perpendicular to the 2DEG.[60]

This edge-state picture is probably not valid in our silicon devices, because the

Shubnikov-de Haas oscillation minima are not zero up to 9 T in the test hall bar

device. However, magnetic field can fully spin polarize a 2DEG with n2d = 1.5×1011

cm−2 for B = 5 T solely with spin effects in a high mobility Si MOSFET.[61, 62] In

the test hall bar device, the Shubnikov-de Haas oscillations show that the 2DEG is

spin polarized at least at B = 9 T for n2d = 7.12×1011 cm−2, as we will discuss later.
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Figure 6.7: (a) Peak amplitude as a function of B. The arrows in the squares indicate

the spin configurations of peak 3 (P3) and peak 4 (P4). (b) In a magnetic field, the

conduction band minima of spin-down and spin-up electrons split due to the Zeeman

effect with Ez = gµBB/2. Electrons are fully spin-down polarized in the source and

the drain leads near the quantum dot. (c) Schematic showing the transport of a two-

electron system with spin-down polarized leads. When B < Bt, the ground state is a

singlet, which only allows a spin-up electron to tunnel through, i.e., the spin blockade

state. When B > Bt, the ground state becomes a triplet, which permits a spin-down

electron to tunneling through. The spin blockade is thus lifted.
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So it is reasonable to expect that electrons will be polarized into the spin-down state

in the 2DEG leads near the tunnel barriers above some magnetic field, as illustrated

in Fig. 6.7(b). This effectively makes the spin-up electrons tunnel through a thicker

barrier, so the injection current is dominated by spin-down electrons, assuming there

is no effective spin scattering. Due to the low spin-orbit scattering and lattice inver-

sion symmetry,[63] spin-polarized electrons have long lifetime and transport length

in silicon. It has been demonstrated that conduction-band spin-polarized electrons

can coherently transport across 10 µm undoped Si.[63] So the assumption should

hold well.

In theory, peak amplitude is proportional to the tunneling probability and

depends exponentially on how much wave functions in the dot and in the contacts

overlap with each other.[57] There are two different mechanisms governing the am-

plitude modulation of Coulomb blockade peaks in a magnetic field. One is the

spatial mechanism when an electron tunnels into different spatial wave functions in

a quantum dot, not related to spin; the other is the spin-blockade mechanism due

to spin-polarized injection.[64] The lower edge of the excitation stripe in Fig. 6.4(a)

reflects the evolution of peak 4 as a function of magnetic field in Fig. 6.5. The

conductance of the singlet state drops dramatically when B > 4 T, while the con-

ductance of the triplet state doesn’t change much, as shown in Fig. 6.4(a) and Fig.

6.5. This difference can be explained by both the spatial effect and the spin-blockade

effect, since the singlet state requires a spin-up electron which occupies a smaller

wave function at the center, while the triplet state requires a spin-down electron

which occupies a larger wave function. However, the electron states corresponding
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to peak 3 (a spin-down single electron state) and peak 4 (a singlet state) should

have similar (single-particle) spatial wave functions; their peak amplitude should

have similar dependence on the magnetic field if there is no spin blockade effect. In

Fig. 6.7(a), the amplitude of peak 4 decreases much faster than peak 3 when the

magnetic field is larger than 4 T. A reasonable explanation is the spin polarized

injection from the leads.[64] For 0.1 mV small ac excitation between the source and

the drain, only the ground state can lie in the transport window. For a singlet state,

only a spin-up electron can tunnel into and out of the quantum dot, the amplitude

of peak 4 decreases dramatically owing to this spin polarized injection, and as shown

in Fig. 6.7(a), it occurs at B > 5 T. This forms the spin blockade. After B > 6

T, the amplitude of peak 4 increases with the magnetic field, because the ground

state corresponding to peak 4 changes from a singlet state to a triplet state. For the

triplet state, the incoming spin-down electron experiences lower and thinner barri-

ers, thus the higher conductance. Since the amplitude of Coulomb blockade peaks

is determined by the two-electron spin configuration in the dot with spin polarized

leads, it can be used to distinguish a singlet state from a triplet one. Monitoring

the amplitude is thus a form of spin blockade spectroscopy.[60]

6.4 Further discussion

6.4.1 Orbital effect

To further verify the orbital effect, I have repeated the peak position as a

function of magnetic field B measurement at two different orientations of B, i.e.
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Figure 6.8: (a) Peak spacings between successive peaks as a function of B⊥. Since only

peaks 5, 6, 7 and 8 are well visible in the magnetic field range between 0 and 9 T, they

are analyzed. The peak spacings are in electrochemical potential and offset for clarity.

The straight lines have slopes of ±gµBB or 0, assuming the Zeeman splitting with g = 2.

The device is SiHB6L20070102(2,3). The Coulomb blockade oscillations and the stability

chart are shown in in Fig. 5.17 in Chapter 5. (b) Possible spin configurations for peaks 5,

6, 7 and 8, corresponding to the straight lines in (a), assuming only the Zeeman splitting

effect.
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B|| and B⊥, as shown in Fig. 6.1. Because a non-rotating sample holder was used,

I had to cool down the device twice. After the first measurement (in B⊥), the

device was de-soldered from the sampler holder, mounted parallel to the magnetic

field, and then measured in B||. There is no direct comparison between these two

measurements because of the change of device characteristics, but we still can reach

some basic conclusions.

The investigated device is SiHB6L20070102(2,3). The Coulomb blockade os-

cillations and the stability chart in B⊥ are shown in Fig. 5.17 in Chapter 5. Because

peak 2 disappears between 4 and 6 T, and peak 4 becomes a double peak in some

B range, I only compare peaks 5, 6, 7 and 8. The peak spacings between successive

peaks (in electrochemical potential) are shown in Fig. 6.8(a). The straight lines have

slopes of ±gµBB or 0, assuming the Zeeman splitting with g = 2. So the shifts of

the ground state energy levels as a function of B mostly can be attributed to the

Zeeman effect. The corresponding spin configurations are shown in Fig. 6.8(b).

Figure 6.9 shows the Coulomb blockade oscillations and the stability chart in a

magnetic field parallel to the direction of the source-drain current. Because peaks 2

and 3 are not visible between 4 and 6 T, only peaks 4, 5, 6, and 7 are analyzed. The

peak spacings between successive peaks (in electrochemical potential) as a function

of B are shown in Fig. 6.10(a). It is expected that there is no orbital effect in a

magnetic field parallel to the direction of the source-drain current. As shown in

Fig. 6.10, the shifts of the ground state energy levels as a function of B can also be

explained by the Zeeman effect.

For a quantum dot with a two-dimensional (2D) parabolic confining potential
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Figure 6.9: (a) The Coulomb blockade oscillations with the first 7 peaks, labeled as

P1–P7, when VG1 = 25 V, VA = −3.4 V, VC = VD = 1 V, VE = VF = 0.8 V. The device is

SiHB6L20070102(2,3). (b) Stability chart, taken under the same bias conditions as those

in (a).

137



Figure 6.10: (a) Peak spacings between successive peaks as a function of B||. Since

only peaks 4, 5, 6, and 7 are well distinguishable in the magnetic field range between 0

and 9 T, they are analyzed. The peak spacings are in electrochemical potential and offset

for clarity. The straight lines have slopes of ±gµBB or 0, assuming the Zeeman splitting

with g = 2. (b) Possible spin configurations for peaks 4, 5, 6, and 7, corresponding to the

straight lines in (a), assuming only the Zeeman splitting effect.
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and cylindrical symmetry, when the magnetic field is applied perpendicular to the

2D electron gas, the orbital effect causes the shift of peak spacing between two

successive peaks by ∼ ~ωc = ~qB/m∗ = 0.6 (meV/T)·B in silicon, where ωc is

the cyclotron frequency, and m∗ is the electron effective mass.[22] (In contrast, the

shift of peak spacing between two successive peaks is about 0.116 meV/T due to

the Zeeman effect.) Both Fig. 6.6 and Fig. 6.8(a) do not show such large shift of

peak spacing when the magnetic field is swept. When the quantum dot doesn’t have

cylindrical symmetry, and the 2D parabolic confining potential is elongated along

one direction and strongly confined along the other direction, the orbital effect

becomes not important, as shown in Sec. 2.1.5.[65]

Here I want to point out that the spin configuration analysis based on the

peak position as a function of magnetic field B measurement is not always reliable,

because such measurement is not quite accurate, and the contribution from electron-

electron Coulomb interaction and other effects can further complicate the result.

For example, in Fig. 6.6, the peak spacing (P4-P3) is well aligned with the straight

line with the slope of gµBB between 2 and 8 T, but we know from the excitation

spectrum that the electron for peak 4 is spin-up between 2 and 4 T, and spin-down

between 6 and 8 T, while the electron for peak 3 is spin-down in the whole range,

so it should be a horizontal line between 6 and 8 T.

Comparing Fig. 6.8(a) to Fig. 6.10(a), we don’t find any obvious difference

when the device is in a perpendicular magnetic field or in a parallel magnetic field.

We conclude that there is no obvious orbital effect within the accuracy of the mea-

surement. If there is any orbital effect, it is less than the Zeeman effect in the
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Figure 6.11: An example of the oscillations of the conductivity observed by Kobayashi

and Komatsubara (Ando et al., 1972a; Komatsubara et al., 1974) in an n-channel inversion

layer on a Si (100) surface at B = 9.5 T. The effective mobility and the corresponding

level width Γ are also shown. After Ando and Uemura (1974a). (p546 in Ref.[51])

discussed magnetic field range.

6.4.2 Spin polarization in silicon

In a Si(100) inversion layer, the spin splitting and the valley splitting are

observed in the Shubnikov-de Haas oscillations in strong magnetic fields and at

relatively low electron concentrations, as shown in Fig. 6.11. This is due to the Lan-

dau level broadening. In the presence of scatterers, each Landau level is broadened.
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Within the self-consistent Born approximation, the Landau level width[51]

Γ =

√
2

π
~ωc

~
τf

=
q~
m∗

√
2B

πµ
∼

√
B

µ
, (6.7)

in the case of short-range scatterers (d < l/
√

2ν + 1), where the cyclotron frequency

ωc = qB/m∗, the relaxation time τf = µm∗/e, m∗ is the electron effective mass, µ is

the electron mobility, d is the order of the range, l =
√
~/eB is the magnetic length,

ν is the Landau level index. The Zeeman splitting is Ez = gµBB ∼ B, so the relative

resolution Ez/Γ ∼ √
B increases with an increasing B. The valley splitting also

increases with an increasing magnetic field, although a detailed relationship is not

available yet. The mobility peak is located at a relatively low electron concentration,

where the width of the Landau level also reaches its minimum. This improves

the resolution of the spin splitting and the valley splitting. It is believed that the

enhancement of the spin splitting and the valley splitting also improves the resolution

at low electron concentrations.[51]

For our test hall bar device, the longitudinal conductivity σxx was measured

at B = 8.8 T (Fig. 6.12). Backscattering is strongly suppressed, when the Fermi

level is located at the middle of two landau levels. This results in the conductivity

peaks in σxx, which coincide with the hall conductivity σxy plateaus for 2D electron

gas. The conductivity peaks corresponding to ν = 8, 12 can be clearly identified.

Although it is not quite clear, the features near VG1 = 15 V should correspond to

ν = 3, 4. The observation of a conductance peak corresponding to ν = 3 requires

both the valley splitting and the spin splitting. In this test hall bar device, µ = 5000

cm2/Vs and B = 8.8 T, so Γ = 2.1 meV (using Eq. 6.7). On the other hand, the
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Figure 6.12: The longitudinal and the Hall conductivities of the test hall bar device at

B = 8.8 T. ν is the Landau level index.
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Figure 6.13: The longitudinal and the Hall resistances of the test hall bar device at at

VG1 = 14 V with n2d = 7.12× 1011 cm−2.

Zeeman splitting Ez = gµBB = 1 meV with g = 2. Even with the enhancement of

the spin splitting and the valley splitting, the resolution still can be not great, but

there should be some signature.

In addition, the Shubnikov-de Haas oscillations were measured at VG1 = 14

V with n2d = 7.12 × 1011 cm−2. The hall resistance ρxy begins to nonlinearly

depend on magnetic field when B = 4.5 T, as in Fig. 6.13. If we fit ρxx in 8

T< B < 8.8 T with a parabolic function, the ρxx reaches its minimum at B = 9

T, with a plateau ρxy ≈ 0.3h/e2. The filling factor is about 3, since n2d/(eB/h) =

7.12×1011cm−2/2.2×1011cm−2 = 3.2. The hall resistance plateau corresponding to

an odd number of filling factor only can be explained by the different populations

at spin-up and spin-down subbands and the valley splitting. Although it is difficult
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to determine the ratio of the densities of the spin-down and spin-up electrons due

to the limited data, the spin polarization of electrons is resolvable at least at B = 9

T with n2d = 7.12× 1011 cm−2 in this test hall bar device.

6.5 Quantum interference and false excited states

In Fig. 6.2(b), when we look closely on the stability chart near the first

peak, some fine features are revealed, i.e. the parallel lines in the conducting re-

gion (Fig. 6.14(b)). We believe that these “excited states” are false, based on two

facts. First, the energy differences between these states are only about 0.5 meV,

which are much less than 1.6 meV that we observed in the stability chart near the

fourth peak. Second, the excitation spectrum shows that the difference between the

first “excited state” and the ground state doesn’t change much (less than 0.5 meV)

when the magnetic field is swept from 0 T to 9 T, as shown in Fig. 6.16. This is in

contradiction with the Zeeman effect. For real excited states, we would expect some

obvious motion of the energy levels and energy level crossing when the magnetic

field is swept from 0 T to 9 T, since the Zeeman splitting energy is about 1 meV

at B = 9 T. These “excited states” are most likely from the quantum interference

effect at the source/drain leads.[66][67]

It has long been known that conductance fluctuations occur in a mesoscopic

system, when its dimensions are smaller than the phase coherence length lϕ (limited

by inelastic scattering). Electron waves travel coherently along different paths in

the device. Because these paths have different phase shifts, quantum interference
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Figure 6.14: (a) Cross section at VC,D = −2.035 V. (b) Stability chart at B = 0 T. The

dash line is the location of the cross section. The device is SiHB6L20070102(2,4). The

data were measured in the first cool-down.
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Figure 6.15: Stability charts at (a) B = 0 T, (b) B = 4.8 T, and (c) B = 8.8 T.The

dash line in (a) is at V21 = −4.7 mV, where the excitation spectrum is measured. The

device is SiHB6L20070102(2,4). The data were measured in the second cool-down.
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Figure 6.16: The excitation spectrum near the first peak at V21 = −4.7 mV. The peak

positions are in electrochemical potential, E = eαVC,D, with an arbitrary offset. The

energy difference between the ground state and the first “excited state” is barely changed.
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causes the conductance fluctuations. In previous experimental studies, the quantum

interference pattern depends on the configuration of disorders. The phase shifts of

different paths are sensitive to changes in magnetic field, electric field, and the

configuration of scatterers. Any changes of these parameters will induce variations

in the phase shifts, so the conductance fluctuations exhibit the random nature,

as shown in the universal conductance fluctuations (UCF).[68] In contrast, some

“excited states” are nearly equally spaced in Fig. 6.14(b) and Fig. 6.15, and keep

unchanged when the magnetic field is swept from 0 T to 9 T (Fig. 6.16). These

features are also stable after thermal cycling (Fig. 6.14 and Fig. 6.15). Since the

magnetic field is applied perpendicular to the sample surface, and there is little

motion of some features when the magnetic field is swept, these fine “excited states”

are probably from an open quantum dot defined electrostatically in the point-contact

channel and by local potential fluctuations, similar to the previous intrinsic quantum

dot. Thus the possible paths that electron waves travel through are quasi one-

dimensional, and the phase shifts of these paths are not sensitive to the changes of

the magnetic field.

Here I discuss a simple one-dimensional example to illustrate that the quantum

interference can introduce these fine features. It includes an SET with 2 rectangular

potential barriers, and a parabolic potential well at the drain (Fig. 6.17). In the

quantum Coulomb blockade regime, the conductance is given by[25]

G ∝ ΓlΓr

Γl + Γr
, (6.8)

where Γl and Γr are the tunneling rates from the quantum dot to the left and
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Figure 6.17: The one-dimensional potential profile of an SET with a parabolic potential

well at the drain lead.

the right leads respectively. So the conductance of the SET is modulated by the

transmission coefficients of the source and drain potential barriers. Here it is also

modulated by the transmission coefficient of the parabolic potential well. I have nu-

merically calculated the transmission coefficient of the parabolic potential well using

the Numerov algorithm.[69] The result is shown in Fig. 6.18. There are transmission

coefficient peaks with approximately equal distances, which are consistent with the

results in the excitation spectrum. As shown in Fig. 6.19, the quantum state (EQD)

inside the quantum dot acts as a probe to detect the transmission coefficient of an

electron (or the local density of states).[66]

If we consider the spin blockade effect, only spin-down electrons can effectively

tunnel through the quantum dot. Because the electron energy is relative to the

conduction band minima in the relationship between the electron energy and the
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Figure 6.18: The transmission coefficient of an electron with energy E, flying over a

parabolic potential well with ~ω0 = 0.3 meV. The potential width is 200 nm. The inset

shows the potential profile.
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Figure 6.19: Schematic of the conductance fluctuations caused by the quantum inter-

ference in the drain lead (V 21 < 0). The quantum state (EQD) inside the quantum dot

acts as a probe to detect the transmission coefficient of an electron (or the local density

of states).

transmission coefficient, and the magnetic field induced Zeeman splitting only causes

the common motion of the potential profile, the energy difference between the first

“excited state” and the ground state will not change even when the magnetic field

is swept.

However, there are some more features in the data that I cannot explain. The

quantum interference effect at the source/drain leads provides a general explanation.

Many-body effects can also play a role here. For example, the peak spacing can

also include the electron-electron interaction (charging energy) when electrons are

partially localized in the parabolic potential well, as we discussed in Chapter 2.
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6.6 Summary

In this chapter, we have investigated a single intrinsic quantum dot electro-

statically defined in a point-contact channel and by the local potential fluctuations

both in a perpendicular magnetic field and in a parallel magnetic field.

In the perpendicular magnetic field, excitation spectroscopy was used to probe

the excited states as well as the ground state, so the ST transition was observed

unambiguously and analyzed in detail. The results show that the magnetic field

dependence of the excitation spectrum mostly can be attributed to the Zeeman

effect; however, the electron-electron Coulomb interaction plays a significant role in

the ST transition, and thus it happens at a much lower magnetic field.

In addition, the evolution of Coulomb blockade peaks with the magnetic field

B was also measured. The data suggest that the ground state energy levels also

shift with the applied magnetic field owing to the Zeeman effect. However, such

measurement is not quite accurate. And the spin configuration analysis based on

these data is not always reliable. So the excitation spectroscopy has inherent advan-

tage. The evolution of peak amplitudes illustrates the spin blockade effect, which is

also confirmed by the excitation spectrum.

After comparing the peak position shifts of Coulomb blockade oscillations in

a perpendicular magnetic field and in a parallel magnetic field, we didn’t find any

obvious difference. So we conclude that the orbital effect is less than the Zeeman

effect in the investigated magnetic field range.

Later, we have demonstrated that the quantum interference effect at the
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source/drain leads can introduce some excited-state like signals in the excitation

spectrum. This makes the excitation spectrum complicate. Fortunately the ground

states are unique, because they are the boundaries of Coulomb blockade diamonds,

and can not be false. So the excitation spectrum near the fourth peak is still valid.
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Chapter 7

Conclusion and future work

7.1 Conclusion

When we design the metal-oxide-semiconductor single electron transistor (MOS-

SET), we would expect that the device consists of an electrostatically defined quan-

tum dot (QD). It is always interesting to find out the difference between reality

and expectation. In this case, we have systematically investigated the MOS-SETs.

Our specific 6 side-gate structure enables us to verify the formation of QDs and to

determine their locations, because the capacitive coupling strength between the dot

and the gate implies the distance between them. This approach provides us much

more insight to understand the device operation than the traditional method in the

literature, i.e. Coulomb blockade oscillations and diamond-shaped stability chart

method. The traditional method only proves the existence of a quantum dot, but

doesn’t provide any information about its location. However, some authors pre-

sumed that their quantum dots are completely electrostatically defined with little

direct evidence.[70][13] Here we have demonstrated that intrinsic QDs can easily

form in point-contact channels, and QDs can be from the potential fluctuations.

This can explain the discrepancy between the size of observed dots and the dimen-

sions of the devices in early works.[70][13] We believe that intrinsic QDs are due to

the potential fluctuations at the Si/SiO2 interface, an inherent property of the inter-
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face. We have also demonstrated that intrinsic QDs can be removed. One possible

explanation of the origin of intrinsic QDs is from negatively charged interface traps,

as has been proposed by M. A. Kastner.[17] But there can be other explanations.

The exact origin of the intrinsic QDs is not clear yet. We believe that intrinsic QDs

are caused by the localized nature of interface trapped charge, oxide fixed charge,

and chemical inhomogeneity.[56] The interface quality can be characterized by the

interface trap density, so the size of intrinsic QDs can also relate to the interface

trap density.

One interesting question is the strength of lateral confinement of a point-

contact channel in our devices. Due to the difficulty of the self-consistent simulation

at low temperatures, I only simulated it at room temperature, and found out that

the parabolic potential can be represented as an harmonic oscillator with ~ω0 ≈

7 meV, which is larger than ~ωc = 5.5 meV at 9 T in silicon, where ωc is the

cyclotron frequency. Another interesting thought is the explanation of Fig. 5.8.

When VC 6= VD, the center of the point-contact channel can move away from the

middle of the side gates C and D, and signals in the graph can be related to the

different electrostatic potential profiles at different locations (Fig. 7.1). Can we get

any information of the potential fluctuations from this? There are some interesting

questions here.

On the other hand, we have taken advantage of our understanding on the MOS-

SETs, and isolated out one single intrinsic QD. We have investigated the quantum

dot in a magnetic field, and observed the singlet-triplet transition and spin block-

ade effect, which had not been reported previously. The magnetic field is applied
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Figure 7.1: In (a) and (b), side gates C and D are at the top of SiO2 and Si layers.

The parabolic lines are the lateral confinement of the point-contact channels. In (a), when

|VC | > |VD|, the center of the point contact channel moves towards side gate D. In (b),

when |VC | < |VD|, the center moves towards side gate C. (c) The source-drain conductance

G21 as a function of side gate voltages VC and VD, when VG1 = 16 V, VA = VB = 0 V,

VE = VF = 1 V, and Vds = 0 V. Signals in the graph can be related to the different

electrostatic potential profiles at different locations (a) or (b).
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perpendicular to the sample surface. However, the magnetic field dependence of the

ground-state and excited-state energy levels of the QD mostly can be attributed to

the Zeeman effect, with no obvious orbital effect up to 9 T. We believe that it is due

to the strong lateral confinement in the point-contact channel. But it is still open

for debate.

Finally, we return to the electrostatically defined silicon quantum dots. We

have demonstrated that intrinsic QDs can be removed, and an electrostatically de-

fined dot can be created by scaling down the devices. Now the size of the observed

dot and the dimensions of the device are consistent. But these devices currently

only work in the many-electron regime.

7.2 Future work

Single electron confinement in an electrostatically well defined silicon quantum

dot is our goal. At this point, it is still an open question whether this goal can be

reached or not. In order to realize single electron confinement, substantial improve-

ments are necessary. As we have discussed in Sec. 5.5, there are two length scales

— the device dimensions and the localization length. The device dimensions should

be smaller than the localization length. So there are two basic approaches. One is

to improve the quality of the Si/SiO2 interface, so that the localization length can

be increased. The other is to scale down the device, so that the device dimensions

are reduced.

The fabrication process should be further optimized. For example, probably we
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Figure 7.2: (a) Device structure of a small Si SET with a 40 nm quantum dot (d < 40

nm). (b) Stability chart of the SET, working in the few electron regime. (After S. J.

Angus et al., Ref.[14])

need better thermal oxide. It has been shown that the e-beam evaporation process

used in the metal gate deposition can introduce many interface traps because of

the x-ray radiation (Sec. 4.3.2), which can be replaced by the resistive thermal

evaporation. It is possible that e-beam lithography can also damage the interface.

UV-cured Nanoimprint lithography (NIL) can be a solution, or high temperature

post annealing can also help to solve the issue. People at Sandia National Lab are

working on optimizing the fabricaion process.[20]

Device down-scaling is also necessary. From the size of the intrinsic QD, we
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can estimate that the device dimension should be less than 60 nm for our current

interface quality, which is not difficult to reach. An Australian group demonstrated

a small device with a 40 nm quantum dot(Fig. 7.2), which works in the few electron

regime, although the device quality must still be improved.[14]

With continuous down-scaling and improvement, it is quite possible to reach

the few-electron regime, and even realize single electron confinement.
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Appendix A

Measurement system and techniques

A.1 Introduction

In this appendix, we will discuss the measurement system and techniques

in detail. There are 20 pairs of twisted wires which run from room temperature

to cryogenic temperatures, and each device needs 9 signal wires, so 4 devices are

installed on the sample holder in each cool-down.

The whole measurement system includes three parts: a dilution refrigerator,

a superconducting magnet and its power supply, and measurement electronics, as

shown in Fig. A.1.

A.2 Dilution refrigerator

In order to resolve small energy differences, such as excited states and the

Zeeman splitting, devices should be measured at low temperatures as possible. We

use a powerful MNK 126-700 dilution refrigerator from Leiden Cryogenics B.V.. Its

base temperature is about 10 mK, and the cooling power at 120 mK is about 700

µW. In our measurement, the electron temperature is estimated about 400 mK.

There is a superconducting magnet inside the liquid helium dewar, which can

be used to apply a magnetic field up to 9 T on the sample. As shown in Fig. A.2(b),

samples can be mounted vertically or horizontally, so that the sample surface can
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Figure A.1: Schematic of the measurement system, including a dilution refrigerator, a

superconducting magnet and its power supply, and measurement electronics. The mea-

surement electronics and the superconducting magnet power supply are controlled by

computer programs. Blue lines form the DC measurement signal paths. Red lines form

the AC measurement signal path; the AC signal from the PAR 124A and the DC signal

from the interface box are divided by voltage dividers before entering the AC+DC adder

box.
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be parallel or perpendicular to the magnetic field.

A.3 DC measurement system

The DC measurement system consists of an HP 4142B semiconductor pa-

rameter analyzer (including 8 DC Source/Monitor units (SMUs)), a triax to coax

converter box, and a shielding room interface box. Inside the shielding room, DC

signals are connected from the interface box to the dilution refrigerator breakout

box. The DC signal paths are shown as blue lines in Fig. A.1. The HP 4142B is

controlled by computer programs through GPIB interface, and data are collected

at the same time. Since the HP 4142B has 8 SMUs, it can independently control

6 side gates, the top gate, and the source-drain voltage. At the same time, it can

measure the gate leakages and the source-drain current. This is quite convenient.

A detailed wiring for each channel is shown in Fig. A.3. Since we short the

sense and the force terminals of each channel in the triax-to-coax converter box, and

the HP4142B is not well calibrated, there is an offset voltage between −5 ∼ 5 mV

when the SMU is set to 0 V. So the source-drain voltage is set at 10 mV in the DC

measurement.

A.4 AC measurement system

A.4.1 Basic setup of the AC measurement system

In the AC measurement system, the source-drain conductance is measured by

the standard AC lock-in technique using a 37 Hz, 0.1 mV excitation voltage, since
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Figure A.2: Sample wiring near the mixing chamber. (a) RF powder filters are installed

underneath the mixing chamber, and all signal wires are filtered by them. Then signal

wires are connected to the interface plates. (b) Samples can be mounted vertically or

horizontally. Horizontally mounted samples are not shown here. (c) After samples are

installed on the sample holder, a copper plate is attached at the top of the sample holder.

Then the copper plate is screwed on the lower end of the threaded rod in (a). Two 20-pin

DIP heads of the sample holder are plugged in the DIP sockets on the interface plates.
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Figure A.3: Detailed wiring of the DC measurement system, from the HP 4142B, the

triax to coax converter box, to the shielding room interface box.

AC lock-in technique can effectively filter out noise, and makes the high precision

measurement possible. As shown in Fig. A.1, the AC measurement system includes

an analog lock-in amplifier PAR 124A, some voltage dividers, an AC+DC adder

box, a pre-amplifier, and another lock-in amplifer SIGNAL RECOVERY 7265.

The measurement circuit is shown schematically in Fig. A.4. The PAR 124A

generates a 37 Hz sine wave signal with Vrms = 1 V. The signal goes through

a 1000:1 voltage divider(100 KΩ : 10 Ω), and becomes Vrms = 0.1 mV. Since

the required source-drain DC voltage in our experiment is about 25 mV, and the

minimum voltage range for the HP 4142B is 2 V, the DC voltage from channel 1 goes

through a 86:1 voltage divider (4.22 KΩ : 50 Ω). Then the AC and the DC voltages

are added together by an AC+DC adder box, and are applied between the source

and the drain of an SET. The source-drain current is amplified by a transimpedance

amplifier (pre-amp), and measured by the lock-in amplifier PAR 124A. The monitor
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Figure A.4: Schematic of the AC measurement system. The lock-in amplifier PAR

124A generates a 37 Hz sine wave signal(Vrms = 1 V), which goes through a 1000:1

voltage divider(100 KΩ:10 Ω), and becomes Vac = 0.1 mV. The DC voltage from channel

1 of the HP 4142B goes through an 86:1 voltage divider (4.22 KΩ:50 Ω) and becomes

Vdc. Then the AC and the DC voltages are added together by an AC+DC adder box,

and are applied between the source and the drain of the device under test (DUT). The

source-drain current is amplified by a transimpedance amplifier (pre-amp), and measured

by the lock-in amplifier PAR 124A.
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signal and the reference signal from the PAR 124A are fed into the lock-in amplifier

7265. Then data from lock-in amplifier 7265 are collected by computer programs

through GPIB interface.

The AC+DC adder box is essentially a high-pass filter with f3dB = 1/(2πRC) =

4 Hz. From Fig. A.4, the transfer function T is 0.99∠6◦, and the output impedance

is about 213 Ω at 37 Hz. In the AC measurement, the source-drain impedance is

usually above 25.8 kΩ, so the output impedance of the adder box can be neglected.

The frequency response of the adder box is also measured by an HP 41941A gain-

phase analyzer with output channel impedance 50 Ω and test channel impedance 1

MΩ, while the DC IN input of the adder box is shorted by a 50 Ω terminator. The

result is shown in Fig. A.5.

In order to minimize the ground loop issue and noise, care has been taken to

separate the AC power line ground, the shielding room ground, and the electronic

circuit common. The electronic circuit common is shorted to the shielding room

ground in the lock-in amplifier PAR 124A. The pre-amp common can also be shorted

to the shielding room ground directly or through 50 Ω terminator (the semi-floating

ground). In principle, there should be only one ground point, but I have found that

these two grounding configurations both work fine.

A.4.2 Filtering

When wires run from room temperature to the device in the dilution refrig-

erator, they need to be carefully filtered to reduce the injection of radio frequency
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Figure A.5: The frequency response of the AC+DC adder box with f3dB = 4 Hz,

measured by an HP 41941A gain-phase analyzer with output channel impedance 50 Ω

and test channel impedance 1 MΩ, while the DC IN input of the adder box is shorted by

a 50 Ω terminator.
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Figure A.6: The frequency response of an RF powder filter, measured in a 50 Ω en-

vironment with a Rohde & Schwarz vector network analyzer. The inset shows the cross

sectional view of the RF powder filter. A copper wire spiral is inside a copper tube. The

stainless steel powder is packed inside the tube. One DC feedthrough is soldered at each

end of the spiral, and is sealed on the tube.

energy into the cryostat. In addition to the shielding room, three different filtering

stages are used to cover the different frequency ranges.

At base temperature, all signal wires are filtered by RF powder filters.[71][72]

We use stainless steel powder instead of copper powder, since stainless steel powder

is more efficient than copper powder.[71] The stainless steel powder is from Alfa

Aesar with Stock #88390 (type 316-L, 325 mesh, nominal 44um). For each RF

powder filter, one 0.6 m gauge 36 copper wire (coated with heavy formvar) is wound
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into a 3 mm diameter 70 turn spiral, and half of the spiral is counterwound to reduce

magnetic field pick up. This spiral is fitted in a 4 mm diameter, 25 mm long cavity

in a copper tube. We solder one DC feedthrough at the end of the spiral, and use

stycast 2850FT epoxy to seal this feedthrough on the tube. After the spiral goes

through the tube, another DC feedthrough is soldered on it. The stainless steel

powder is packed inside, and the second DC feedthrough is sealed on the tube. The

cross sectional view of an RF powder filter is shown in Fig. A.6 as an inset. The

powder filter can effectively absorb the high-frequency noise, and attenuate signal

above 1 Ghz by 40 dB, as shown in Fig. A.6.

Commercial low-pass filters (BLP-1.9+ from Mini-Circuits) are installed on

the breakout box, before signals enter the dilution refrigerator. The 3 dB frequency

of the BLP-1.9+ is 2.5 MHz. The attenuation is better than 20 dB above 3.4 MHz,

and 40 dB above 4.7 MHz.

In addition, homemade low-pass (LP) filters are used after the shielding room

interface box. The schematic of an LP filter is shown as an inset in Fig. A.7. It is

a second-order RLC LP filter with R = 100 Ω, L = 47 mH, and C = 10 µF. The

designed bandwidth is about 200 Hz with Q ≈ 0.707 (A 2nd-order Butterworth filter

with maximally flat response). But due to the inherent resistance in the inductor

(about 25 ∼ 30 Ω), the measured bandwidth is about f3dB = 160 Hz. The frequency

response of the LP filter is measured by an HP 41941A gain-phase analyzer with

output channel impedance 50 Ω and test channel impedance 1 MΩ. The result is

shown in Fig. A.7. The attenuation is better than 20 dB above 700 Hz, and 50 dB

between 5 KHz and 10 MHz. Due to the parasite capacitance between the input
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Figure A.7: The frequency response of a homemade 2nd-order low-pass (LP) filter with

f3dB = 160 Hz. The blue line is the result, measured by an HP 4194A gain-phase analyzer

with output channel impedance 50 Ω and test channel impedance 1 MΩ. The red line is

the simulation result. The inset shows the schematic of the LP filter. Due to the parasite

capacitance between the input and the output, the attenuation decreases above 1 MHz.
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and the output, the attenuation decreases above 1 MHz. The LP filter increases the

output impedance of each SMU to about 130 Ω. But the load of each channel is

much larger than that, so it is not a issue here.

After combining all these filters, the heating from RF noise can be effectively

reduced.

A.4.3 Transimpedance amplifier (pre-amp)

The transimpedance amplifier (current amplifier) is an essential component in

the AC measurement system. They are well discussed by C. Julian Chen in Ref. [73].

Because of the different center frequency and bandwidth requirements between the

STM application and the AC lock-in technique, the noise from each component is

reevaluated here.

In AC measurement, Vac is a 37 Hz, 0.1 mV sine wave, and the feedback

resistor of the amplifier is 100 MΩ. The measurement resolution is limited by two

components: the 100 MΩ feedback resistor and the input capacitance at -IN node

of the op-amp from the coaxial cable.

The noise from Vac, Vdc are measured both less than 1 × 10−15 V2/Hz. In

the AC+DC adder box, the thermal noise of Ra is 4kBTRa = 3.3 × 10−17 V2/Hz,

where kB is Boltzmann’s constant, T = 300 K is the room temperature, and Ra = 2

kΩ is the resistor value. An OPA602 from TI is used as the op-amp. The volt-

age noise at -IN node of the op-amp is less than 5.3 × 10−16 V2/Hz. (All noise

data of the op-amp is from the OPA602 datasheet.) As shown in Fig. A.8, the
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Figure A.8: The frequency response of the transimpedance amplifier with f3dB = 578

Hz, while the input of the amplifier is first connected to a 1 MΩ resistor in series, then

connected to the test channel of the HP 4194A gain-phase analyzer. Here an OPA602

from TI is used as the op-amp.
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Figure A.9: Noise of the transimpedance amplifier with three different input configura-

tions: (a) the input of the amplifier is open, (b) 1 m coaxial cable is connected to the input

of the amplifier, and (c) 2 m coaxial cable is connected to the the input of the amplifier.

Data are measured by an HP 35665A dynamic signal analyzer. Noise gain Ao noise due to

the 100 pf input capacitance is also shown in the graph.

amplifier bandwidth is measured to be f3dB = 578 Hz, and the equivalent noise

bandwidth is about 1.57× f3dB = 907 Hz.[74] So the total voltage noise is less than

√
(10 + 10 + 0.33 + 5.3)× 10−16 × 907 = 1.6 µV, which is applied on the device

under test (DUT), and also appears at the amplifier output. Since Vac is 0.1 mV,

and much larger than 1.6 µV, the voltage noise is not a limiting factor.

The current noise from the feedback resistor is one of the limiting factors. The

current noise is
√

4kBT/Rfb = 12.9× 10−15 A/
√

Hz and the corresponding voltage
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Figure A.10: Output noise due to the input capacitance. The smaller the input

impedance, the larger the noise at the output. So the input capacitance generates a large

high-frequency noise, and the noise gain is only limited by Cin/Cfb. Since Rfb ∼ 100 MΩ

and Ci ∼ 100 pF, the 3dB noise gain is at 16 Hz.

noise is 4kBTRfb = 1.66 × 10−12 V2/Hz. The noise spectrum of the amplifier is

measured by an HP 35665A dynamic signal analyzer, while the input of the amplifier

is open. The result is shown as (a) in Fig. A.9. The noise at f < 8 Hz is artificial

from the measurement system, since it exists even the HP 35665A input is shorted

by a 50 Ω terminator, and is not shown here. The voltage noise is indeed about

1.6× 10−12 V2/Hz in the amplifier bandwidth. The roll-off of the noise is due to the

parasite capacitance Cfb in the amplifier. At 37 Hz, the noise is about 1.6 × 10−12

V2/Hz, which is corresponding to current noise
√

1.6× 10−12/Rfb = 12.6 × 10−15

A/
√

Hz.

The input capacitance Ci at -IN node of the op-amp is another limiting factor.

Because we use a coaxial cable to connect the DUT to the amplifier, and the length
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of the coaxial cable is about 1 m, the input capacitance Ci is about 100 pF. The

acoustic noise in the shielding room deforms the coaxial cable, and changes the

capacitance. This is called microphone effect.[73] The current is

I =
dQ

dt
= C

dV

dt
+ V

dC

dt
. (A.1)

Since the voltage on the coaxial cable is almost zero, this is not an important effect.

But the cables should avoid large motion when the measurement is in progress. I

usually tape the cables on the rigid frame.

The input capacitance at the -IN node has another important effect. At the

input of the op-amp, there is always a small voltage noise. As shown in Fig. A.10,

this small voltage noise will be amplified by the op-amp. Here the input noise is

modeled as an AC source en at the +IN node of the amplifier. The output noise

voltage is

Vo noise = en(1 +
Zfb

Zin

), (A.2)

and the noise gain is

Ao noise = 1 +
Zfb

Zin

, (A.3)

where Zfb = Rfb/(1 + jωCfbRfb) and Zin = 1/(jωCin), and ω is the angular fre-

quency. First, the input noise en should be minimized. In our previous measurement

system, Burr-Brown ISO100 optically-coupled linear isolation amplifier was used to

to drive the +IN node. Since the voltage noise from ISO100 is quite large, the

measurement resolution was limited at ∼ 1 pA. Now the +IN node is grounded, so

the input noise is less than 5.3 × 10−16 V2/Hz, the intrinsic noise of the OPA602.

Because the bandwidth of the amplifier is f3dB = 578 Hz, Cfb is estimated to be
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1/(2πf3dBRfb) = 2.5 pF. Cfb about 0.5 pF is common,[73] and the larger Cfb helps

reduce the noise, but it also reduces the bandwidth. Fortunately f3dB = 578 Hz

is still sufficient for the AC lock-in measurement. One important difference be-

tween the STM application and the AC lock-in technique is the center frequency

and bandwidth requirements. In the AC lock-in technique, the center frequency is

normally less than 100 Hz, and the bandwidth of the low-pass filter in the lock-in

amplifier is about 1 Hz. These two factors almost eliminate the deleterious effect

of the noise due to the input capacitance. In our system, 37 Hz sine wave is used,

so Vo noise = 2.58en = 2.58 × 23 = 59.3 nV/
√

Hz or 3.52 × 10−15 V2/Hz, which is

much less than the thermal noise (1.6 × 10−12 V2/Hz) from the feedback resistor.

However, the noise can overload the lock-in amplifier, when high sensitivity is used.

As shown in Fig. A.9, the noise gain Ao noise increases with an increasing frequency.

So the input capacitance generates a large high-frequency noise, and the noise gain

is only limited by Ci/Cfb. For example, at 10 kHz, if a 1 m coaxial cable is con-

nected to the input of the amplifier, the noise is about 0.3 pV2/Hz; if it is a 2 m

coaxial cable, the noise is about 1.1 pV2/Hz, as shown in Fig. A.9. Thus the input

capacitance effectively increases the noise at high frequency, and makes the output

of the amplifier noisy. The band-pass filter in the lock-in PAR 124A helps reduce

the overloading problem.

Here an FET-input OPA602 is used, because FET-input op-amps have smaller

bias current and lower current noise than bipolar-input op-amps. For OPA602, the

current noise is about 0.6 × 10−15 A/
√

Hz, which is also much smaller than the

thermal noise (12.6× 10−15 A/
√

Hz) from the feedback resistor.
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After the careful design of the AC measurement system, the system noise is

only dominated by the thermal noise of the feedback resistor. The measurement

resolution is also related to the bandwidth of the LP filter in the lock-in amplifier.

The smaller the bandwidth is, the higher the measurement resolution is, but the

measurement time increases. A good trade-off is that the time constant (TC) of the

LP filter is set at 100 ms, and the equivalent noise bandwidth is 1/(8TC) = 1.25

Hz for the 12 dB/octave two section filter.[75] So the current resolution is

Irms = 12.6× 10−15A/
√

Hz×
√

1.25 Hz = 14.1 fA. (A.4)

A measurement example is shown in Fig. A.11. The current measurement

resolution is about 25 fA, which is consistent with Ipeak =
√

2× 14.1 fA = 20 fA.

To further increase the current resolution, a 1 GΩ resistor can be used as the

feedback resistor. I found that it does help improve the current resolution, which

also means that the thermal noise of the feedback resistor is the main source of the

system noise, but the system response becomes slow. The 100 MΩ feedback resistor

is used in most measurements here.
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Figure A.11: A Coulomb oscillation peak measured by the AC lock-in technique,

shown as the dots. The measurement resolution is about 25 fA. The electron tem-

perature is about 400 mK by fitting the Coulomb blockade peaks with the equation,

I/Imax = cosh−2(eα(Vg − Vg0)/2kBT ), where I is the source-drain current, Imax is the

maximum current at the peak, Vg0 is the gate voltage at resonance, kB is the Boltzmann

constant, T is the electron temperature, and the ratio of the gate capacitance to the total

capacitance α = Cg/CΣ.[25]

178



Appendix B

AC measurement system

Figure B.1: Detailed wiring of the AC measurement system part 1/2
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Figure B.2: Detailed wiring of the AC measurement system part 2/2
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Appendix C

Recipe for silicon MOS-SETs

Summary: Thermal oxide + HDPECVD oxide and 6 side gates with
trenches under top gate.

Name: Sample #: Run Name:

Step 1: Top Gate Trenches (isolation)

I. Pirahanna Clean: 4 H2SO4: 1 H202

¤ H202, 15ml in the beaker, add H2SO4 60ml slowly with stirring. Put the
samples in and continue heating at 100◦C (not higher than 120 ◦C) for 15
min. Rinse with DI thoroughly.

II. Sample Preparation Time:

¤ Solder In dots for secondary electron emission collection and check resistance

¤ PMMA A8 5 krpm 60 sec (expected 8000 Å)

¤ Pre-bake: 180◦C, 3min. w/vac. (Actual Temp = ◦C, Time = s )

III. E-Beam Writing Time:
1. 4pt focusing :

¤ Check resistance between spring and other In dot (0.5MΩ typical)

¤ Drop one drop gold solution at each corner of the sample

¤ Global correction : degree

¤ Focus at each point and run 4pt2.exe to get the fitting plane function

2. E-beam Writing : Runfile name : .rf6 : .rf6 : .rf6
: .rf6 : .rf6 (marker and alpha step)

Line dose : 5nC/cm, c-t-c = 43 Å, current ∼ 12 pA
Area dose : 500uC/cm2, c-t-c = 101Å, line spacing = 101 Å, current ∼ 12 pA
Actual dose :

¤ Pinhole current : pA for CC =

pA for CC = before writing
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¤ Pinhole current : pA for CC =

pA for CC = after writing

IV. Development Time:

¤ Develop: MIBK: IPA(1:1) 80 seconds

¤ Overlap Rinse: IPA 80 sec

¤ Overlap Rinse: DI water 80 sec ;

¤ Blow dry

V. Dry Etch Time:

¤ Process “SI1DRH” 1 minute target 0.3um deep

VI. Clean:

¤ Using ACE 30min (Actual dip time: ) + IPA +DI

¤ DI Rinse.

Step 2: Surface Gates

I. Sample Preparation Time:

¤ Solder In dots for secondary electron emission collection and check resistance

¤ MMA EL11 5 krpm 60 sec (expected 3800-4200Å)

¤ Pre-bake: 150◦C, 60 sec. w/vac. (Actual Temp = ◦C, Time = s )

¤ PMMA A4 5 krpm 60 sec (expected 1800 Å)

¤ Pre-bake: 180◦C, 60 sec. w/vac. (Actual Temp = ◦C, Time = s )

II. E-Beam Writing Time:
1. 4pt focusing :

¤ Check resistance between spring and other In dot (0.5MΩ typical)

¤ Drop one drop gold solution at each corner of the sample

¤ Global correction : degree

¤ Focus at each point and run 4pt2.exe to get the fitting plane function

2. E-beam Writing : Runfile name : .rf6 : .rf6 : .rf6
: .rf6 : .rf6 (marker and alpha step)

Small area: (1000X) Line dose : 2.5nC/cm, c-t-c = 43 Å, current ∼12 pA
Area dose : 250uC/cm2, c-t-c = 101Å, line spacing = 101 Å, current ∼12 pA
Actual dose :
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¤ Pinhole current : pA for CC = before writing

¤ Pinhole current : pA for CC = after writing

Lead area:
(100X) Area dose : 300uC/cm2, c-t-c = 800Å, line spacing=800Å, current ∼ 0.8 nA
(30X) Area dose: 300uC/cm2, c-t-c=3000 Å, line spacing=3000Å, current ∼ 7nA

¤ Pinhole current : pA for CC = 8

pA for CC = 5 before writing

¤ Pinhole current : pA for CC = 8

pA for CC = 5 after writing

III. Development Time:

¤ Develop: MIBK: IPA(1:1) 80 seconds (1:20)

¤ Overlap Rinse: IPA 20 sec (1:40)

¤ Develop: MIBK: IPA(1:2) 90 seconds (3:10)

¤ Overlap Rinse: IPA 80 sec (4:30)

¤ Overlap Rinse: DI water 30 sec (5:00)

¤ Blow dry

V. Evaporation Time:

¤ Evaporate: Process # (50) Al (1000) Å

VI. Clean: Using heated ACE (Actual dip time: ) + IPA +DI . . .
Alpha step

Step 3: HDPECVD SiO2 deposition Time:

¤ Recipe Name

Pressure (1mTorr), Temperature (300 ◦C),
SiH4 flow rate (4sccm) N2O flow rate (20sccm)
Deposition rate (312 Å /m), time
Thickness 4000 Å, actual

Step 4: Top Gate

I. Sample Preparation Time:

¤ NR-7 1500PY 4000 RPM
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¤ Pre-bake: 120◦C, 60 sec. w/vac. (Actual Temp = ◦C, Time = s )

II. Photolithography Time:

¤ UV exposure using 5x stepper with vacuum.

Mask: HB/QPC/Cross“Top Gate 4of3”
exposure time 4.2 sec (check)
focal number 0
XL=XR=10, YF=10, YR=10

¤ Post-bake: 110◦C, 60 sec. w/vac. (Actual Temp = ◦C, Time = s )

¤ Develop in RD-6 3 sec (exactly)

¤ DI water rinse 1-2 min

III. Evaporation Time:

¤ Evaporate: Process # ( ) (Al with 2% Si) (3600) Å

IV. Liftoff: RR2 Hot plate heated to 100C for 10 min Remove metal with
DI spray, Soak another 5 min, Rinse 3 min with DI (hall bars may take
up to 30 min to liftoff properly)

Step 5: Bonding Pad Via Holes Date:

Via to ion implantation:
I. Sample Preparation Time:

¤ Spin HMDS adhesion promoter at 3 krpm, 60 sec

¤ Spin positive PR OiR 908-35 at 3 krpm, 60 sec (4µm thick)

¤ Bake wafer at 90◦C, 3 min

¤ UV exposure using 5x stepper with vacuum.

Mask No: 2 (2865030A00)
exposure time 1.8 sec (check) (normal 1.6 sec, overexpose for thick edge)
focal number 0

¤ Develop in OPD 4262 90 sec (above 1 Hz stirring)

¤ DI water rinse 3 min

¤ Alpha step: thickness:

II. Dry Etch Time:

¤ SIO2PT 12min, target 390nm, (32nm/min),
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power (175W), Pressure (100mTorr)
Gas (CHF3 18sccm, O2 2sccm)

III. Wet Etch for ohmic

¤ Wet Etch BOE 6:1, 90sec@25◦C (<2 min), Make sure Air bubbles are gone
from surface at features (∼100nm/min).

¤ Verify by probe station.

IV. Liftoff: Using ACE 60min (Actual dip time: hr) + IPA + DI

¤ Alpha step: thickness:

Via to side gates:
I. Sample Preparation Time:

¤ Spin HMDS adhesion promoter at 3 krpm, 60 sec

¤ Spin positive PR OiR 908-35 at 3 krpm, 60 sec (4um thick)

¤ Bake wafer at 90◦C, 3 min

¤ UV exposure using 5x stepper with vacuum.

Mask No: 2 (2865030A00)

exposure time 1.8 sec (check) ) (normal 0.37 sec, overexpose for thick edge)

focal number 0

¤ Develop in OPD 4262 90 sec (above 1 Hz stirring)

¤ DI water rinse 3 min

¤ Alpha step: thickness:

II. Dry Etch Time:

¤ SIO2PT 15min 05sec, target 450 nm and over etch 1 min, (32nm/min),

power (175W), Pressure (100mTorr)
Gas (CHF3 18sccm, O2 2sccm)

¤ Verify by probe station

IV. Liftoff: Using ACE 60min (Actual dip time: hr) + IPA + DI

¤ Alpha step: thickness:

Step 6: Annealing Date:

Forming gas (H2+N2) annealing, 420◦C for 30 minutes.
Switch to forming gas at 250◦C
Switch back to N2 after devices cool down under 300◦C.
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