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In this thesis, we will introduce the innovative concept of a plenoptic sensor that can 

determine the phase and amplitude distortion in a coherent beam, for example a laser 

beam that has propagated through the turbulent atmosphere.. The plenoptic sensor can 

be applied to situations involving strong or deep atmospheric turbulence. This can 

improve free space optical communications by maintaining optical links more 

intelligently and efficiently. Also, in directed energy applications, the plenoptic 

sensor and its fast reconstruction algorithm can give instantaneous instructions to an 

adaptive optics (AO) system to create intelligent corrections in directing a beam 

through atmospheric turbulence. The hardware structure of the plenoptic sensor uses 

an objective lens and a microlens array (MLA) to form a mini “Keplerian” telescope 

array that shares the common objective lens. In principle, the objective lens helps to 

detect the phase gradient of the distorted laser beam and the microlens array (MLA) 

helps to retrieve the geometry of the distorted beam in various gradient segments. The 

software layer of the plenoptic sensor is developed based on different applications. 



  

Intuitively, since the device maximizes the observation of the light field in front of 

the sensor, different algorithms can be developed, such as detecting the atmospheric 

turbulence effects as well as retrieving undistorted images of distant objects. Efficient 

3D simulations on atmospheric turbulence based on geometric optics have been 

established to help us perform optimization on system design and verify the 

correctness of our algorithms. A number of experimental platforms have been built to 

implement the plenoptic sensor in various application concepts and show its 

improvements when compared with traditional wavefront sensors. As a result, the 

plenoptic sensor brings a revolution to the study of atmospheric turbulence and 

generates new approaches to handle turbulence effect better. 
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Impacts of this Thesis 

Atmospheric turbulence effects have been studied for more than 50 years (1959-

present). Solving turbulence problems provides tremendous benefits in fields such as: 

remote sensing (RS), free space optical (FSO) communication, and directed energy 

(DE). A great number of studies on turbulence modeling and simulations have been 

published over the past few decades. Unfortunately, 2 fundamental questions remain 

unsolved: (1) Every model can tell how things get WORSE, but how do we know 

which one is correct? (2) How to get things RIGHT (solve turbulence problems)? The 

answers to these 2 fundamental questions seem surprisingly EASY, but rely on one 

difficult assumption: the complete knowledge of beam distortion must be known, 

including the phase and amplitude distortion. Intuitively, given the complex 

amplitude of the distorted beam, the best model to characterize a turbulent channel 

can be determined. Similarly, correction algorithms can also be figured out easily. For 

example, for FSO communications, the phase discrepancy at the receiver can be 

rectified. For DE applications, one can transmit a conjugated beam to an artificial 

glint signal on the target site, so that the power of a beam can be best focused near 

that spot. 

The plenoptic sensor is designed as an advanced wavefront sensor. Compared with 

conventional wavefront sensors, the turbulence regime is extended from weak 

turbulence distortions to medium, strong and even deep turbulence distortions. In 

other words, the plenoptic sensor is much more powerful than any conventional 

wavefront sensor in recording and reconstructing wavefronts of incident beams. With 

the actual waveform data, the correctness of past atmospheric turbulence models will 
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be comprehensively examined in addition to indirect statistical data on scintillation 

and beam wanders. Intelligent and immediate correction become realizable based on 

the actual waveforms. Therefore, this innovation will greatly reform thoughts, 

methods and strategies in the field of turbulence studies. Furthermore, it makes the 

dream of overcoming turbulence effects real and practical. 
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Chapter 1: Fundamentals of Atmospheric Turbulence 

1.1 Fundamental Effects of Atmospheric turbulence 

Atmospheric turbulence is generally referred to as the fluctuations in the local density 

of air. These density fluctuations causes small, random variations in the refractive 

index of air ranging from 10
-6

 to 10
-4

 [1]. These “trivial” disturbances on light ray 

trajectories generate a number of significant effects for remote imaging and beam 

propagation. In general, light rays will deviate from their expected trajectories and 

their spatial coherence will degrade. Over long propagation distances, the accuracy of 

delivering signal/energy carried by the wave deteriorates with increased turbulence 

level and propagation distance. As a result, this limits the effective ranges for RS, 

FSO and DE applications.  

1.1.1 Distortion of coherent beams 

When a laser beam propagates through atmospheric turbulence, the inhomogeneity of 

the air channel’s refractive index accumulatively disturbs the phase and amplitude 

distribution of the beam. The outcomes include: 

(1) Fluctuations of signal intensity at the receiver around expected values, known 

as “scintillation” [2]. 

(2) The centroid of the beam wanders randomly (referred to as “beam wander”) 

[3]. 

(3) The beam breaks up into a number of patches (small wavelets that act like 

plane waves), which is referred to as “beam break-up” [4]. 
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These effects are detrimental to the reliability of free space optical (FSO) 

communication systems as well as directed energy applications. For example, in FSO 

systems, beam wander and scintillation effects will degrade the channel capacity by 

jeopardizing the alignment and disturbing signal quality. In directed energy 

applications, beam break-up will scatter the energy propagation into diverged and 

random directions. The beam break-up effect is primarily caused by the reduced 

spatial coherence of the beam, which can be characterized by the “Fried Parameter” 

[5]. The spatial coherence length of a laser beam r0 decays roughly with L
-3/5

: 

3/5
2 2

0
0.423 ( ') 'npath

k C z dzr


 
                                                (1) 

In equation (1), k=2π/λ is the wavenumber. Cn
2
 denotes the strength of atmospheric 

turbulence [6]. Without employing adaptive optics [7], the Fried parameter r0 dictates 

the fundamental limit of spatial coherence of a propagating laser beam. Therefore, it 

is not difficult to find that a stronger turbulence level or longer propagation distance 

will cause more distortions of a laser beam. 

1.1.2 Distortion of incoherent beams 

In normal cases, light sources are incoherent, such as lamps and LEDs (active 

illumination) and sunlight (passive illumination).  Atmospheric turbulence won’t 

cause phase disorder problems for incoherent light sources. However, the degradation 

of clear and accurate visions of objects will lead to blurring effects and recognition 

failures. For example, in remote photography, we often find it hard to get a focused 

image. One can also find distant objects along the road might be shimmering and 

moving around on a hot summer day. Without loss of generality, the turbulence 
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effects for incoherent light sources can be analyzed in the same manner as coherent 

sources. Therefore, we focus our discussions of turbulence primarily on coherent 

waves. And for some special cases such as imaging through turbulence, we will 

provide a detailed discussion about turbulence effects on incoherent waves.  

1.2 Scintillation 

Scintillation is commonly observed as the “twinkling” effect of a star. In a wide sense, 

scintillation describes the time varying photon flows collected by a fixed optic 

aperture. Scintillation is often a good indicator for the magnitude of atmospheric 

turbulence. Intuitively, based on perturbation theory (Rytov method [8]), a larger 

scintillation value implies that there are more rapid changes in the channel and a 

smaller scintillation value means the turbulence conditions in a channel are typically 

weaker and change more slowly. 

1.2.1 Causes of scintillation 

Due to the fluid nature of air, the turbulence has an inertial range marked by the inner 

scale (l0, typical value is 1 mm near the ground) and the outer scale (L0, typical value 

is 1 m near the ground). Most turbulence cell structures fall within the inertial range, 

and inside these temporally stable structures, the refractive index of air can be 

regarded as uniform. Structures with diameters close to the outer scale of turbulence 

primarily generate refractive changes on the beam, including diverting the 

propagation direction of the beam, applying additional converging/diverging effects 

as well as imposing irregular aberrations on the shape of the beam. Turbulence 

structures with diameters close to the inner scale often cause diffractive phenomena, 
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which impose high spatial frequencies terms onto the wavefront. Diffraction effects 

resulting from these high frequency orders divert part of the beam’s energy away 

from the expected trajectory in further propagation.  

The power spectrum of scintillation is largely focused in the frequency range of 10Hz 

to 100Hz. Low frequency (around 10Hz) scintillation is primarily affected by the 

refractive behavior of atmospheric turbulence. Higher frequency (around 100Hz) 

scintillation is primarily affected by the diffractive behavior of atmospheric 

turbulence. If the beam is sampled at a much higher frequency (for example, 10kHz), 

neighboring sample points don’t show significant variations. This is often called 

Taylor’s hypothesis, where turbulence is regarded as stationary or “frozen” for time 

scales less than 1ms.  

 

 

1.2.2 Scintillation analysis 

To analytically examine the scintillation effects, a common practice is to calculate the 

normalized intensity variance collected through a lense’s aperture. As: 

                                             
22

2

2I

II

I



                                                          (2)  

Intuitively, equation (2) denotes the proportional variation of received power and it 

helps to classify turbulence levels into 3 major regimes. In the weak turbulence 

regime (where σI
2
 <0.3 [8]), equation (2) equals the Rytov variance. In strong 

turbulence regime (where σI
2
 >1), the power of the noise signal in the channel is at 

least the same magnitude as the signal in transmission. And the intermediate level 
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(0.3<σI
2
 <1), is often called medium turbulence. Weak turbulence is typical for 

astronomical imaging applications and can be corrected with conventional adaptive 

optics system or imaging processing algorithms. Medium turbulence is common in 

horizontal paths for FSO communication applications, where digital signal of on/off 

can still be reliably sent through the channel. Strong turbulence represents the worst 

case in turbulence, where there are severe distortions of phase and amplitude 

distortions on a propagating laser beam. Performing imaging and communication 

tasks in  strong turbulence situations are challenging topics in the field of adaptive 

optics, and many unique techniques have been developed over the past decade to 

ameliorate the situation [9] [10] [11]. 

1.2.3 Scintillation measurement 

The commercial device for measuring scintillation is called a scintillometer [12]. In 

principle, a scintillometer pair (transmitter/receiver) transmits a known signal pattern 

to the receiver to mimic free space optics (FSO) communication.  By detecting the 

distortion of the received signal, the scintillation index can be calculated either by 

equation (2), or by calculating the variance of log normal amplitude of intensity. For 

example, if the transmitter can generate a square wave over time (on/off over time), 

the receiver is expected to receive the same signal sequence with amplitude 

modifications. The scintillation amplitude can be determined by comparing the 

received waveform with the transmitted waveform [13], which profiles the strength of 

the turbulent channel. An alternative index for scintillation is the refractive index 

structure constant, Cn
2
 (unit: m

-2/3
). The “density” of atmospheric turbulence is 

determined by the Cn
2
 values as the coefficient in the power spectrum density 
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functions. In practice, it is meaningful to combine Cn
2
 measurements with channel 

length L to reflect the actual turbulence effects. Intuitively, the same scintillation 

effect can either result from strong turbulence level over a short propagation distance 

or from weak turbulence level over a long propagation distance. In addition, to match 

with the units of Cn
2
, one should note that the correlation of refractive index changes 

or degrades with r
2/3

 (unit: m
2/3

), often referred as the “2/3” law [14]. 

1.3 Beam Wander 

The centroid of the beam also wanders in propagating though the atmospheric 

turbulence. Intuitively, the inhomogeneity can be viewed as a wedge effect, which 

randomly refracts the beam off its propagation axis. A typical example is that one can 

observe a traffic light shimmering on a hot summer day. This is caused by the vision 

signals getting distorted by large volumes of turbulent hot air before entering our 

eyes. Beam wander effect often causes alignment failure in FSO and directed energy 

applications where the main beam is deviated from the target area. 

1.3.1 Causes of beam wander 

Beam wander is caused by inhomogeneity in the refractive index of air. Due to 

Taylor’s hypothesis, turbulence is “frozen” when analyzed at high frequencies (more 

than 1 kHz). The gradient of the refractive index along the transverse plane causes a 

weak tip/tilt effect on the propagating beam’s wavefront profile. The viscidity of air 

fluid tends to keep similar changes (gradient value) within an inertial range. 

Therefore, in each small segment of the propagation channel, the primary turbulence 

effect will tilt the beam with a small angular momentum mimicking the effect of a 
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random walk. In the long run, the overall beam wander is an aggregated effect of 

those small random walks.  

1.3.2 Beam wander analysis 

As the beam wander effect can be effectively modelled as a random walk process 

[15], it can be treated as a subset of the random walk problem. A good approximation 

can be expressed as: 

2 1/3 32
02.2 nL

C l L
                                                          (3)  

In equation (3), the LHS represents the RMS value of wandering centroid of the beam. 

On the RHS, Cn
2
 is the index for the strength of turbulence. The inner scale of 

turbulence is expressed by l0 and the propagation distance is represented by L. The 

inertial range of turbulence structures often refers to the range between the inner and 

outer scales. 

1.3.3 Beam wander measurement 

Beam wander can be determined by many approaches [16] [17]. Normally, the 

essential problem is to determine the probability that the beam wander effect will 

significantly deviate the entire beam from the target aperture [18] (this often causes 

failures in signal transmission). Therefore, a larger receiving aperture tends to get less 

affected by the beam wander effect, where the probability of alignment failure drops 

exponentially with increased aperture sizes (also called aperture averaging effects) 

[19]. Normally, increasing the aperture size will effectively suppress scintillation and 

beam wander problems in FSO communication systems.   
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1.4 Beam Break Up 

Beam break up happens as a result of propagation through long turbulent channels 

(typically for distances over 1 km). The deteriorating spatial coherence of the beam 

varies from point to point across the beam’s transverse profile. For the areas where 

the beam passes without significant change of coherence, the phase front remains 

coherent as a patch (a small wavelet that acts like plane waves). Comparatively, for 

the regions where its coherence breaks down dramatically (temporal spatial coherence 

length is close to the inner scale of turbulence structure), the beam splits into two or 

more irregular intensity patterns. As an overall phenomenon, the original coherent 

beam breaks up into several major patches of different sizes. This result is commonly 

referred to as beam break-up [20]. 

1.4.1 Causes of beam break up 

Beam break-up is caused by the structural fluctuations in the refractive index of an 

atmospheric channel. The coherence of the wavefront degenerates fastest at the 

boundaries of the turbulence structures, while wavefront coherence is maintained 

within a structure.  The deterioration of average coherence length in the wavefront 

can be estimated by equation (1) as the Fried parameter. Since most of the coherence 

is still maintained in the patches, the Fried parameter also describes the average size 

of the coherent sub-wavelets after the beam break-up. In general, the beam break up 

generates a group of sub-beams that can be treated as coherent wavelets. In other 

words, the beam breaks down into smaller wavelets, and the geometric wandering of 

each wavelet makes respective contribution to the final intensity pattern of the 

arriving beam on the target site. Under these circumstances, the centroid of the beam 
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doesn’t wander much (due to WLLN), but the spatial fluctuations of the beam’s 

intensity distribution is significant.  

1.4.2 Beam breakup analysis 

Some theoretical analysis predicts that beam breakup only happens at L>kL0
2
 [21]. 

This is obviously incorrect as it doesn’t takes into account the turbulence strength. 

However, if the transmitted beam has spot size of w0, the beam diameter and range L 

are related as: 

0
0

2 2
L

w w
w




                                                     (4)  

In the diffraction limit, w denotes the projected width of the beam without being 

affected by turbulence. The actual size of a patch can be denoted as Si, where i 

represents index for the patch at the moment. The following expression serves as a 

metric for measuring the beam break-up strength: 

 max
b

i

w
R

D
                                                    (5)  

Equation (5) describes the relation between the projected beam width and the largest 

patch after the propagation. Intuitively, Rb is a temporal index that describes the lower 

bound of the beam break up effect. When Rb∞, it means there is no coherence in 

the beam. On the other hand, if Rb=2, it means that there are at most 4 (~Rb
2
) equal 

powered dominant patches in the channel that contain major parts of the power of the 

beam. When Rb
2
 is relatively low (<25), it is possible to use adaptive optics to correct 

the beam to generate a large patch that retains the major power of the beam. 
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1.4.3 Beam break up measurement 

It is technically difficult to study the beam breakup effect by directly make 

measurements based on equation (5). However, Fourier transforms performed by a 

thin lens are a convenient tool to reveal the beam breakup effects. Normally, when the 

arriving beam (distorted by atmospheric turbulence) enters a thin lens with large 

aperture, each bright spot at the back focal plane of the lens represents a unique patch. 

Therefore, by counting the bright spot numbers we can retrieve a relatively reliable 

Rb
2
 number, and determine the situation of beam breakup accordingly. 

1.5 Theoretical Explanations 

Andrews and Phillips [21] have developed a fundamental optical flowchart to 

theoretically explain atmospheric turbulence effects. In general, the simplest way is to 

express the complex amplitude of an optical field as U(r, L), where r represents the 

geometric vector in the transverse plane and L represents distance in propagation. 

Therefore, the statistical properties can be described by the following chart: 

 

 

Figure 1. 1: Flow chart of turbulence's primary effects 
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In the flow chart of figure 1.1, the polarization direction of the laser beam is ignored 

for simplicity and the light field is given by a complex amplitude U(r, L) to represent 

its magnitude and phase. For polarized beams, it is possible to integrate the analytic 

methods with unit vectors in the polarization directions. 

1.5.1 Second-order statistics 

Second order statistical parameters have the same units as irradiance. Intuitively, this 

means these statistics can be used to indicate a patch’s quality, such as the spot size, 

degree of coherence, spreading angle and wandering range. Without loss of 

generality, we express a second order statistic as:  

     *
2 1 2 1 2

, , , ,r r L U Ur L r L                                            (6) 

Equation (6) describes the field correlation based on the complex amplitude. When 

equalizing the space vector r1 and r2, the irradiance information is revealed. Accurate 

analysis of weak turbulence effects is achieved by phase screen models (also known 

as the Rytov method) [22]. In general, the complex amplitude of the beam affected by 

turbulence is expressed as: 

 0 1 2( , ) ( , )exp ( , ) ( , ) ...U r L U r L r L r L                                 (7)  

In equation (7), U0(r, L) is the free space beam at the receiver site, and ψ(r, L) is the 

complex phase perturbation of the field. In general, the free space beam (U0) takes 

any form of beam modes (Gaussian beam, plane wave, spherical and etc.). The real 

part of ψ denotes the change in the magnitude of the field and the imaginary part 

controls the phase change of the beam. Theoretically, the Rytov method equalizes the 

turbulence effect with a phase screen before the receiver. Therefore, the statistics of 
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atmospheric turbulence is simplified from 3D to 2D. The proof of the simplification 

can be partially verified by the practice of using adaptive optics (AO) systems in 

astronomy to correct for the atmospheric turbulence of celestial images [23].  

A simple and significant conclusion drawn from second order statistics is expressed 

as: 

 
5/3

2 exp,
pl

L





  
    

   

                                               (8) 

Where ρpl is the reference coherence length defined by the turbulence level, in the 

case of plane wave and no inertial range, as: 

2 2 3/5(1.46 )pl nC k L                                                    (9)  

The power index for coherence length degeneration is commonly regarded as the 

Kolmogorov law [24] which sets the base line that all theoretical models for 

atmospheric turbulence should satisfy.  

The second order statistics can also be used to estimate the beam width [25], beam 

wander [26], and angle of arrival fluctuations [27]. However, in most experiments the 

strength of the turbulence (Cn
2
) can’t be consistently obtained by differing approaches 

and measurements.  

   

1.5.2 Fourth-order statistics 

The fourth order statistics have the same units as irradiance squared, which equals the 

variance of irradiance. Intuitively, it can be used to indicate the variation of photon 

power in an area as well as the coherence between multiple patches. Without loss of 

generality, the expression for the fourth order statistic is: 
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         * *
1 2 3 44 31 2 4
, , , , ,, , ,r r r r L r LU U U Ur L r L r L                     (10)  

And in the form of the Rytov method, equation (10) can be written as: 

         

       

* *
1 2 3 4 34 0 0 0 01 2 4

* *
31 2 4

, , , , ,, , ,

exp ,, , ,

r r r r L r LU U U Ur L r L r L

r Lr L r L r L   

 

     

    (11)  

Despite the complexity view of this equation, a common practice in the fourth order 

statistics studies is to equate r1=r2, and r3=r4. Therefore, the fourth order statistics can 

be similarly treated as the second order statistics based on irradiance distributions. 

The fourth order reveals certain properties such as scintillation [28] and phase 

structure [29]. 

 

1.5.3 Spectral density functions 

Spectral density functions are used to mathematically determine the correlation 

structure of atmospheric turbulence in terms of refractive index fluctuations. For 

weak turbulence situations, phase screen models as well as Rytov methods have used 

those spectral density spectra to produce results that resemble actual turbulence 

situations. However, since the power spectral density function outlines the long term 

averaged variation values of atmospheric turbulence at steady strength levels, there is 

no actual match with turbulence happening in reality.  In general, the power spectral 

functions can be classified in 2 ways: power spectrum function in the frequency 

domain and power spectrum function in the spatial domain. 

In the frequency domain, the spectrum property of a random process x(t) is described 

by the covariance function: 
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         
**

xB x xx x t tt t                                       (12)  

And the power spectral density Sx(ω) can be retrieved through the Weiner-Khintchine 

relations: 

     
0

1
cosx xS B d  




                                         (13) 

     
0

2 cosx xB S d  


                                          (14) 

Simply, the power spectral density and the covariance function are Fourier transforms 

of each other. Similarly, in the spatial domain, we have the relations: 

     
2 0

1
sin

2
u uB RdRR R 

 


                                   (15) 

     
0

4
sinu uB dR R

R


  


                                    (16) 

In equation (15) and (16), the spatial power spectral density function is represented by 

Φu(κ) and the spatial covariance function is represented by Bu(R). For simplicity, 

spherical symmetry is assumed in expressing the above equations. 

Therefore, the frequency spectral density function indicates how fast the turbulence 

situation changes and the spatial spectral density function indicates the turbulence 

structure. For example, if the coherence length is extremely small for the turbulent 

channel (~1mm), we would expect a very sharp peaked covariance function and a 

relatively smooth and long-tail power spectral density function. In this circumstance, 

we would expect the beam to degenerate to a rather incoherent light field and fully 

developed speckles should be the dominant pattern at the receiver site. 
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1.6 Challenges for Mathematical Analysis 

The mathematical analysis of turbulence structure, however delicate and accurate, 

can’t provide a solution to overcome turbulence problems in reality. For example, in 

directed energy research, to achieve more power (improve energy delivery efficiency) 

in the target spot, the actual temporal structure of atmospheric turbulence is needed 

instead of the theoretical statistical mean values. In FSO communication systems, 

more signal power can be coupled into the receiver with AO if the temporal 

dispersion modes are detected. In the remote imaging process, the turbulence effect is 

embedded in the spatially dependent point spread functions, and intelligent 

deconvolution can happen if and only if the temporal 4D point spread function are 

known [30]. Obviously, great improvement can be achieved if the detailed structure 

of actual turbulence can be determined. And, accordingly, a more thorough and 

kinetic 3D model of atmospheric turbulence can be built. The following limits on the 

theoretical studies of atmospheric turbulence should be mentioned. 

 

1.6.1 Model restrictions 

Theoretical models don’t track the dynamic changes in the turbulence structure. In 

other words, no model can predict the temporal and spatial result of how the 

atmospheric turbulence will distort the wavefront and intensity distribution of the 

beam. Another restriction is the inaccessibility of the models’ input. For example, the 

turbulence level denoted by Cn
2
 must be given in order to facilitate the calculation of 

turbulence effects. But Cn
2
 itself is also a factor dependent on the consequence of the 

turbulence. In other words, it is logically wrong to require Cn
2
 first and then 
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determine the turbulence effect later. Given that turbulence levels are not stationary 

(even in a time window of a few seconds), theoretical analysis models are more like 

empirical fitting curves instead of indicators for real time turbulence.  

 

1.6.2 Computation difficulties 

Basically, all the working models of turbulence simulations are based on 2D phase 

screen models. The phase screen models are established based on the Rytov method, 

where the beam goes through a 2-step process in a segmented propagation distance: 

free propagation (step 1) and phase screen modification (step 2). These simulation 

models do provide a seemingly correct result for temporal turbulence effects that 

satisfy the models’ parameters. In the transverse planes that are perpendicular to the 

propagation axis, the correlation statistics of atmospheric turbulence are still observed. 

While along the propagation axis, neighboring phase screens are independent. More 

complex 3D simulation models have been proposed [31] [32], but have proven to be 

not computational tractable. In other words, the actual turbulence changes occur 

much faster than the speed of achievable simulation. It is also pointless to feed the 

simulation with real time data and make predictions of the subsequent behavior of 

turbulence. 
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Chapter 2: Conventional Wavefront Sensors 

 

In order to detect the complex field amplitude of a coherent wave, one needs to obtain 

both the phase and magnitude distribution. However, any image sensor can only tell 

the intensity distribution of the incident light field at the cost of losing phase 

information. Special optical designs are needed to retrieve the phase information of 

the beam. In general, an optical system that provides wavefront information about an 

incident beam is defined as a wavefront sensor. In this chapter, several conventional 

designs of wavefront sensors will be introduced and discussed. 

 

2.1 Shack Hartmann Sensor 

The Shack-Hartmann sensor [1] is a very effective tool for measuring weak wavefront 

distortions. It has already been successfully applied in the astronomy field to measure 

the weak distortion generated by the Earth’s atmosphere on celestial images [2]. 

2.1.1 Mechanisms 

A Shack-Hartmann sensor is made up of a micro-lens array (MLA) and an image 

sensor. The basic structure of a Shack-Hartmann sensor can be shown by the 

following diagram [3]: 
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Figure 2. 1:Structure diagram of the Shack-Hartmann sensor 

 

The Shack-Hartmann sensor uses a micro-lens array (MLA) and an image sensor at 

the back focal plane of the MLA. The incident beam is spatially divided by the MLA 

lenslet cells into small grid points and the gradient of the local wavefront is reflected 

by the shift of focal point at the back focal plane of each lenslet. With the assembled 

local gradient of the wavefront, the global reconstruction of the wavefront can be 

achieved by satisfying the following constraint: 

       2* min, , ,SH
x y gx y x y                                (1)  

In other words, the reconstructed phase front has the minimum mean square error 

(MMSE) in its gradient when compared with the retrieved local gradient information.  

2.1.2 Wavefront reconstructions 

The accuracy of the wavefront reconstruction in the Shack-Hartmann sensor depends 

on the accuracy of local gradient retrieval. In other words, in each MLA cell, the shift 

of the focus needs to be determined with a certain level of accuracy. The rule of 
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thumb is to calculate the intensity weighted center for each MLA cell, which can be 

expressed as: 
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 
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 
                             (2)  

In general, if the local wavefront distortion is concentrated in tip/tilt, the local image 

cell under the MLA lenslet will have a sharp focus. If the local distortion is 

concentrated in higher orders of distortion, the result provided by equation (2) will be 

inaccurate. To gain more accuracy in revealing local phase front gradient, one can 

increase the numerical aperture of the MLA unit (enlarge the f/#), so that each pixel 

shift will correspond with a smaller tip/tilt value. However, the dynamic range of 

measurable wavefront gradient will be reduced with increased numerical aperture. 

Theoretically, within the diffraction limits, the sensitivity of the Shack-Hartmann 

sensor can be infinitely increased. Therefore, the Shack-Hartmann sensor provides a 

more accurate result in handling weak distortion cases than the results acquired under 

strong distortions.  

On the other hand, smart algorithms in handling more complex local phase front 

distortions in the Shack-Hartmann sensor have been proposed.  For example, adding 

blob detection before the intensity weighted averaging algorithm to find a more 

accurate center shift [4]. This helps to remove random high order phase oscillation 

structures. Also, attempts to extract more complex distortion orders in each cell image 

of the Shack-Hartmann sensor provide more insight into interpreting the Shack-

Hartmann images. 
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The global result defined by equation (2) states that a reliable wavefront 

reconstruction should minimize “mismatches” with the retrieved local gradient 

field on the Shack-Hartmann sensor. Intuitively, if the phase front is assumed to be 

continuous, the curl of the local phase front gradient should be zero. MMSE is 

applied in order to assure the non-zero curl of the field. 

On a Shack-Hartmann sensor, however, each data point (representing the local 

gradient of the phase front) is retrieved independently. The curl of the gradient field 

can result either from the error/inaccuracies of local data or from actual branch points 

in the distortion (discontinuity of the phase front). We will ignore the branch point 

problems for the moment, because one can always divide the phase front into 

continuous blobs and reconstruct them separately. To remove the data error, two 

approaches are commonly taken by researchers: 

(1) Averaging over multiple integral paths. 

(2) Solving the MMSE equations. 

The first approach is based on the weak law of large numbers (WLLN) [5]. As each 

data point is independently retrieved, the round-off error with the local gradient 

should be independent of its neighboring MLA cells. By picking different integral 

paths, the averaged error will statistically approach a mean value of zero. The second 

approach is more exact, but may take extra computation power to solve [6] for a large 

number of phase samples. In fact, the standard approaches have been implanted in 

imaging processing where an original image can be retrieved from the gradient 

information. 

The averaging path integral can be illustrated by the following diagram: 
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Figure 2. 2: Averaging path integral for Shack-Hartmann sensors 

The benefit of averaging path integrals is the convenience of retrieving any arbitrary 

point on the phase front (without strictly satisfying MMSE).  

The solution of MMSE defined by equation (2) can be mathematically described as: 

      , yx ggx y
x y

 
 

        
                                 (3) 

In equation (3), gx and gy denote the gradient data retrieved from the Shack-Hartmann 

sensor. And the above equation in the discrete Fourier transform (DFT) domain can 

be rewritten as: 

   2 2 ,x y x yx y
g g

x y
  

  
   

  
                            (4)  

In equation (4), the right hand side can be directly retrieved from the Shack-Hartmann 

image, and the left hand side denotes each frequency spectrum point in the Poisson 

equation defined by equation (3). A discrete Fourier transform is used because of the 

quantization of image sensors. It can be proved that the result of equation (4) satisfies 

the MMSE requirement defined by equation (2) under a continuous assumption [7].  

For more general cases where branch points are allowed and the phase front is not 

necessarily continuous, the MMSE result typically leads to a large mismatch [8]. A 
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common practice is to use the MMSE as a metric to determine the continuity of the 

phase front by comparing it with a pre-set threshold value. If the MMSE turns out to 

be larger than the threshold value, the reconstructed wavefront is determined to have 

branch points. For any arbitrary phase front, one can always break it down into a 

finite number of continuous segments and apply MMSE separately to realize 

continuous phase reconstruction and stitch them together.  

2.1.3 Limitations 

The Shack-Hartmann sensor is effective in revealing wavefront distortions in weak 

turbulence regimes. In medium and strong turbulence cases, reconstruction errors will 

show up based on several well-known effects, including scintillation, branch point 

problems, self-interference and beam break-up. In principle, the fundamental unit of a 

Shack-Hartmann sensor is the cell image for each lenslet in the MLA. The 

fundamental unit provides reliable results if and only if it contains a sharp focus. 

Therefore, the Shack-Hartmann sensor can’t interpret cell images with more complex 

geometric patterns. For example, self-interference happens in strong/deep turbulence 

where various parts of the beam begin to overlap geometrically due to the beam 

wander effect. When those interfering patches enter the same MLA cell, the cell 

image shows more than one focal point and the local gradient is ambiguous. In 

another case, when a branch point problem happens (typically when the loop sum 

phase distortion equals a multiple of 2π), the centroid cell at the branch point will be 

dark and no information can be provided.  

The following notes should also be considered when using the Shack-Hartmann 

sensor to perform wave front reconstruction: 



 

 27 

 

(1) Enlarging the focal length of the MLA improves the angular resolution at the 

cost of reducing the angular range (and vice-versa).  

(2) The dynamic range for each cell is limited by a single pixel (typically ranging 

from 0 to 255). 

Fortunately, one can determine the reliability of the Shack-Hartmann sensor directly 

by examining the cell images. If a certain number of image cells don’t present a 

distinctive focus, the reconstruction can’t be trusted. In other words, the distortion 

level exceeds the capacity of the Shack-Hartmann sensor.  

 

2.2 Curvature Sensor 

The curvature sensor was developed by F. Roddier (since 1988) [9] to measure 

distributed weak distortion curvatures. Compared with Shack-Hartmann sensors that 

reveal the tip/tilt of local phase front, the curvature sensor is able to tell the local 

focus/defocus by taking two images at the same time. 

2.2.1 Mechanisms 

The diagram of the curvature sensor can be shown by the following figure: 
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Figure 2. 3: Principle diagram of curvature sensor 

Normally, if the incoming wave is a plane wave, the focus of the telescope 

(represented by the front objective lens in the diagram figure) is able to image a sharp 

focus at its back focal plane. If the incident plane wave is slightly distorted, the 

corresponding area will be focused either before the focal plane (if the extra curvature 

is concave) or after the focal plane (if the extra curvature is convex).  

As shown by figure 2.3, two images are taken at symmetric distance (marked by l) 

from the focal plane. Based on geometric optics, the two images (marked by I1 and I2) 

correspond with the geometry of the objective lens’s aperture. Therefore, by 

analyzing the intensity distribution on I1 and I2, one can retrieve the extra curvature 

distribution of the incident wavefront. Intuitively, for the same arbitrary spot on the 

pupil image pair I1 and I2, the ratio between the brighter spot and the dimmer spot 

denotes the strength of the extra curvature. The location of the extra curvature is 

linear with the pupil image’s coordinates. As a result, the curvature sensor’s function 

can be revealed by the simplified equation: 

 
   

   

  21 2

1 2 2

I I F FrF lr r

I I l lr r






   
    

  
                                     (5)  



 

 29 

 

In equation (5), r represents the coordinates in the image plane and F represents the 

focal length of the telescope (objective lens). The distance between the image plane 

and the focal plane is marked by l and the wavelength is represented by λ. The 

Laplacian operator in equation (5) shows that the second order of wavefront distortion 

(divergence of the phase front gradient) determines the normalized intensity 

difference for the same geometric spot on the aperture plane.  

2.2.2 Wavefront reconstructions 

The wavefront reconstruction algorithm for the curvature sensor (CS) is very similar 

to the reconstruction process of the Shack-Hartmann sensor. In fact, under the 

continuous phase front assumption, the processing of equation (3) under MMSE 

requirement aims at extracting the Laplacian of the phase front. The curvature sensor 

retrieves the same Laplacian of the phase front by using 2 images taken at the same 

time. Therefore, the reconstruction of the curvature sensor can be solved with the 

same DFT process: 

   
1 2

2 2

1 2

,x yx y

Fr Fr
I I

l l
kl

Fr Fr
I I

l l

  

   
   

      
   

   
   

                            (6)  

Detailed computer simulation shows that the performances of a Shack-Hartmann 

sensor and a curvature sensor are almost identical [10].  

2.2.3 Limitations 

In a similar way as the Shack-Hartmann sensor, the design principle of the curvature 

sensor is based on perturbation of plane waves under weak turbulence conditions. 
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When the turbulence gets stronger, complex effects such as self-interference, branch 

point problems and beam wander effect will greatly compromise the reliability of the 

curvature sensor. In a wide sense, the curvature sensor’s performance equals the 

Shack-Hartmann sensor. However, the technical challenges of acquiring two images 

simultaneously brings in extra cost in using the CS. 

 

2.3 Interferometer 

An interferometer can be used to determine both the intensity and phase distribution 

of a distorted beam. In principle, a interferometer uses a reference beam with known 

phase and intensity distribution to interfere with a distorted beam with the same 

wavelength. Therefore, by observing the enhancement or degeneration of intensity of 

the combined beam, the phase information of the distorted beam can be revealed as 

well as its intensity distribution. 

 

2.3.1 Mechanisms 

In general, when two mutually temporally coherent beams of the same wavelength 

encounter each other, the intensity distribution results from interference and forms 

steady patterns of intensity enhancement/diminishment depending on the summation 

of complex field amplitudes of the two beams. Brighter patterns happen for spots 

where field amplitude are in phase while dimmer patterns happen where the field 

amplitude are out of phase [11].  

The operation of an interferometer can be shown by the following diagram: 
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Figure 2. 4: Diagram of an interferometer 

 

In figure 2.4, the distortion is specified by a deformable mirror for simplicity, and in 

more general cases, the distortion can be caused by beam propagation/reflection in 

inhomogeneous media. The intensity profile of the distorted beam can be obtained by 

imaging the beam with a camera system. The phase profile of the distorted beam can 

be obtained by imaging and analyzing the interference pattern. 

Without loss of generality, we can express the phase difference for any arbitrary point 

by the following equation: 

         1 2 1 2 1 22cos( )I I I I Ir r r r r 
                         (7)  

In the above equation, the left hand side represents the intensity of the interference 

pattern. The right hand side of equation (7) writes the interference pattern as the sum 

of the two beams’ intensity plus their interference term. As long as the intensity 

distributions are retrieved, the relative phase difference between the reference beam 
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and the distorted beam can be calculated besides a logic error (because the phase 

difference is expressed in absolute value). The following diagram explains the logic 

error for interferometer reconstruction: 

 

Figure 2. 5: Logic error in interferometer reconstruction 

In the above figure, we assume that there is only a phase difference between the two 

beams, and their intensity distributions are identical. Therefore, where the phases are 

differenced by , a dark spot will show up correspondingly (and vice versa). However, 

for brighter pixels near the dark spot, we find there are two equivalent way to express 

the variation trend of the phase change. This is regarded as a “logic error” as one of 

the two choices is wrong in wavefront reconstruction. In general, for weak phase 

distortions, “logic error” can be corrected while for strong phase distortions, the logic 

error prevents reliable wavefront reconstruction because of the large number of 

ambiguities. 

 

2.3.2 Wavefront reconstructions 

Interferometers are useful tools to reveal simple patterns of phase changes. In general, 

the reference beam is assumed to be uniform in both phase and intensity. The best 
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reconstruction can be achieved when the beam to be measured has similar intensity 

distribution. Various approaches have been proposed to reconstruct the phase of the 

distorted beam [12] [13] [14]. For simplicity, we only demonstrate a quick and robust 

method based on the curl shapes of the dark lines (line with lowest intensities). 

Without loss of generality, this approach is called “contour reconstruction”. 

Intuitively, each dark curve denotes that the spots on the line are out of phase with the 

reference beam.  

The contour reconstruction takes the following steps: 

(1) Index marking: mark each dark curve with integers and neighboring curves 

should be different by ±1. Note: the marking may not be unique due to the 

logic error. 

(2) Interpolation, multiply the indices for the dark curves by 2 and interpolate a 

curve between neighboring curves and mark the phases by the averaged phase. 

Note: now each neighboring curves will have phase difference of . 

(3) Repeat step (2) iteratively for smaller phase difference of /2, /4, /8, ... until 

the resolution requirement is satisfied. 

The “contour reconstruction” is simple and effective in revealing the basic phase 

information based on image processing approaches. In principle, it takes advantage of 

the deterministic properties of dark lines and assumes that the phase changes between 

them are linear. More complex methods to retrieve detailed phase information is 

available, but more computation resources are required in order to perform the 

reconstruction instantly (<1ms). 
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2.3.3 Limitations 

The connection between the interferometer, the Shack-Hartmann sensor and the 

curvature sensor is that they respectively reveal the phase front based on reference 

value, first order of phase front and the second order of phase front. In a wide sense, 

those three types of wavefront sensors have the same effectiveness based on their 

correlated mathematical principles.   

The limitations of interferometer in measuring atmospheric turbulence are also 

evident: 

(1) An extra mutually temporally coherent reference beam with known or 

controllable phase and amplitude information is required. 

(2) The size of the reference beam needs to be larger than the distorted beam in 

order to minimize logic errors. 

(3) The intensity knowledge of the distorted beam is required, which involves 

imaging the distorted beam simultaneously. 

(4) The logic error is inevitable whenever there is a contour line that extends to 

the geometric boundary of the reference beam, making the reconstruction non-

deterministic. 

(5) Beam wander can cause misalignment between the reference beam and the 

distorted beam. 

Admittedly, an interferometer can directly reveal detailed small phase changes. 

However, its limitations prevent the practical uses of interferometers in sensing 

atmospheric turbulence in open paths. Intuitively, the interferometers used in the near 
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field might not be a good candidate for measuring beam distortions in strong and deep 

turbulence, which is typically classified as the far field and contains phase distortions 

that are much larger than 2π.   

 

2.4 Orthogonal Polynomial Point Detector 

A new thought on the wavefront detection [15] can effectively speed up the detection 

and reconstruction process by interpolating the phase front as a summation of low 

order Zernike polynomials. This approach uses a series of phase plates that match the 

basic orders of Zernike polynomials (all the phase plates have fixed radius as 

common observing windows). For an arbitrary incident wavefront, the mode 

matching (in phase distribution) will cast the power in each mode onto its 

corresponding point detector. Therefore, the power concentration in each basic 

Zernike mode is revealed directly and the wavefront distortion is the summation of 

those Zernike polynomials. The concept of the design can be back traced to 

holographic wavefront sensors [16] proposed by G.P. Andersen.  

2.4.1 Mechanisms 

The fundamental structure of the Orthogonal Polynomial Point Detector (OPPD) in 

wave front sensing can be shown as: 
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Figure 2. 6: Structure diagram of OPPD 

 

Because 2 identical copies of the wave front can be achieved with one beam splitter, 

the diagram shown by figure 2.6 can detect the first 2
n
 Zernike polynomials with 2

n
-1 

beam splitter and 2
n
 branches. Based on the 2

n
 data acquired on the point detectors, 

the wavefront distortion is summed without any complex computation. 

2.4.2 Wavefront reconstructions 

The wavefront reconstruction can be directly written as: 

 
2

1

( , ),

n

i i

i

C Z x yx y


                                                    (8)  

In equation (8), the real number detected by the i
th

 point detector is expressed as Ci, 

and Zi(x, y) represents the i
th

 Zernike polynomial. As each point detector can operate 

as fast as 100 kHz, the wavefront reconstruction by OPPD can reach 100 kHz.  

2.4.3 Limitations 

Theoretically, OPPD can reach very high speed wavefront sensing for weak phase 

distortions. However, for strong phase distortions in medium to strong turbulence 

cases, OPPD is not effective. Intuitively, if the beam only suffers from large tip/tilt 
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and a stronger turbulence doubles the tip/tilt, one needs to increase the number of 

branches in OPPD by 2
n
. In fact, the complexity of the OPPD system increases 

exponentially in response to increased level of turbulence. 

A few other limitations need to be considered: 

(1) Interfering beam patterns can’t be reconstructed by OPPD. 

(2) When the coherence length of the wavefront degenerates to be much smaller 

than the aperture size of OPPD, the result is unreliable. 

(3) Free space lasers can’t be strictly characterized by low orders Zernike models 

[17].  

(4) Actual size of the point detector needs to be considered. 

(5) Synchronization of the point detectors is challenging. 

Although the OPPD has proved to be effective in some fiber laser systems, more 

complex research needs to be done to fit into sensing long range beam distortion by 

atmospheric turbulence. However, the advantage of OPPD’s high speed and concise 

algorithm is potentially  promising. 

 

2.5 Light field sensor 

Light field cameras [18] [19] have been invented to acquire images that can be 

readjusted for different focal depths. To achieve the refocusing, more information 

than that in a simple an image needs to be recorded. Therefore, this type of light field 

camera records elements that are more fundamental than image pixels: individual 

light rays. Alternatively, if the light rays of a laser beam are recorded, the 

atmospheric distortion can be measured in a more fundamental way. Similarly, one 
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type of plenoptic camera (CAFADIS) based on the light field principles have been 

proposed and demonstrated by JM Rodríguez-Ramos [20] [21] [22] in the Canary 

Islands (Spain) to image and observe atmospheric turbulence effect at the same time 

for celestial objects. This significant achievement has demonstrated that light field 

imaging principles have the potential to acquire more information than conventional 

wavefront sensors.  

 

2.5.1 Mechanism 

The light field sensor is made up of an imaging lens set and a microlens array (MLA) 

in front of the image sensor. The MLA is placed at the imaging plane of the imaging 

lens set while the image sensor locates at the back focal plane of the MLA. The light 

field sensor can be shown by the following diagram: 

 

Figure 2. 7: Diagram of the light field camera 
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In this diagram of the light field camera, the MLA samples the original image by a 

normal camera’s configuration as if each MLA cell acts like a pixel. After the MLA, 

the rays coming through the same MLA unit will continue propagating and hit 

corresponding pixels on the image censor at the back focal plane of the MLA. 

Therefore, the image on the MLA plane can be interpreted ray by ray. By picking 

different pixels under the same MLA unit, once can choose an object that lies at a 

different depth in the field. 

Based on the variable refocus ability of the light field, the atmospheric turbulence 

effect can be extracted by analyzing the stableness of images at different focal depths. 

For example, by analyzing the image wandering effect for objects that are 100m, 

200m, and 300m away from the camera helps to reveal the distributive strength of 

turbulence in each depth. Also, the scintillation of distributed parts of a refocused 

image facilitates the analysis of a detailed turbulence structure over the transverse 

plane. 

 

2.5.2 Wavefront reconstructions 

Without loss of generality, we assume that the image at different depths in the 

channel is a horizontal line with fixed length [23]. When turbulence get involved, the 

horizontal line begin to show primary distortions in the vertical direction, while in 

horizontal direction, the length of the line change is regarded as secondary changes 

(and normally regraded as constant). Therefore, the gradient of the wavefront along 

the vertical direction can be retrieved by the ratio of vertical displacement versus the 
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length of the line. The following expression can be used to reconstruct the wavefront 

distortion in linear format: 

  
    0'

x

y yL x x
t x

l


                                            (9) 

In equation (9), y’(x) is the pixel location along the reference line, while y0(x) is the 

expected pixel location along the reference line. The actual length of the reference 

line is expressed by L, while its length in pixels is expressed by lx. The negative sign 

corresponds with the typically reversed image in the light field camera. Intuitively, 

the wavefront reconstruction classifies all the orthogonal distortion of line features as 

turbulence distortion. For example, if an uplift of a horizontal line is observed, the 

wavefront must have tilted down to cause the corresponding change. The scaling 

factor L/lx, helps to calibrate image reconstruction at various focal depths. Without 

loss of generality, the wavefront reconstructions of the light field camera have extra 

capacity to analyze the progressive changes caused by atmospheric turbulence along 

the propagation direction.  

 

2.5.3 Limitations 

The limitations for light field camera are obvious: (1) the indirect imaging approach 

is very complicated; (2) direct imaging of a coherent beam provides meaningless 

information (in the next chapter, we will show how the plenoptic sensor is developed 

based on light field cameras to solve this problem). Intuitively, distributed objects 

with excellent features along the channel are required, which are commonly 

unavailable in a real environment. And the light field approach has to reconstruct the 
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features in each focal stack, analyze the distortions from expected results and derive 

the actual magnitude and direction of turbulence distortions. Therefore, the first point 

addresses the fact that this approach requires an ideal condition to extract turbulence 

information, which is impractical. For the second point, the point spread function 

(PSF) of a conventional light field camera is formed in each cell. This causes severe 

incompatibility in directly imaging a distorted beam. As there is no actual “point” in a 

propagating beam, the PSF formed in each cell carries no meaning. Since patches 

(small wavelets that act like plane-waves in the near field) with similar propagation 

momentum within a distorted beam will typically fall into the same MLA cell, the 

image acquired in the cell will result from interference and leads to ambiguity. 

Therefore, the light field camera’s passive sensing techniques can’t be directly 

applied to sensing coherent laser beams. However, the plenoptic sensor to be 

introduced in the next chapter overcomes these shortcomings and can be applied 

directly to image and analyze a distorted laser beam. 

 

2.6 Cooperative Sensors 

The idea of cooperative sensors is to examine the distortion with wavefront sensors of 

various configurations, and combine their reconstruction results to enlarge the 

solution set. For example, one can use 2 Shack-Hartmann sensors where the MLAs 

are of the same size but different f/#. The MLA with larger numerical aperture (NA) 

can sense the weak phase front distortion delicately, while its lack of dynamic range 

is compensated by the other MLA with smaller NA (worse resolution but more 

dynamic range). As discussed in section 2.1.3, the self-check mechanism of Shack-
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Hartmann sensors enables a merged result: the strengths of angular resolution and 

dynamic range are obtained at the same time. 

 

2.6.1 Mechanisms 

In principle, the cooperative sensor is a stitching of results provided by non-identical 

sensors. For simplicity, the mutual information (where two sensors agree on each 

other) is marked as I(Φ1,Φ2) [24], and the information provided by the sensors 

respectively is H(Φ1), H(Φ2). Then, when their result is stitched, a more detailed 

results containing H(Φ1)+H(Φ2)- I(Φ1,Φ2) can be obtained. 

 

2.6.2 Wavefront reconstructions 

The wavefront reconstruction is achieved by using the following steps: 

(1) For areas reliably detected by more than one sensor, use the result that 

maximizes the consensus.  

(2) For areas that are reliably detected by only one of the sensors, use that 

sensor’s result. 

Point (1) requires that for overlapping areas, the sensors should agree with each other. 

Intuitively, this solves the areas covered by I(Φ1,Φ2) in the 2 sensor scenario. Point (2) 

states that without consensus, individual reconstruction should be trusted. This solves 

for areas indicated by H(Φ1) - I(Φ1,Φ2) and H(Φ2)- I(Φ1,Φ2)in the 2 sensor scenario.  
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2.6.3 Limitations 

A multi-sensor system will inevitably have a more complex hardware structure than 

conventional single sensor systems. Meanwhile, the synchronizing process where all 

sensors are required to operate at the same speed is not easily realizable. In fact, the 

multi-sensor system may be required to operate at the speed of the slowest branch. In 

addition, examining compatibility between devices is difficult. For example, it is hard 

to determine whether a Shack-Hartmann sensor and a curvature sensor are compatible 

with each other. Since those two sensors are mathematically identical, one can’t 

extract significantly “more” information by combining their results.  
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Chapter 3: The Plenoptic Sensor 

The plenoptic sensor [1] is an unconventional imaging tool that maps a light field into 

its 4D phase space. It records the scattered light field and performs data mining to 

find and track patterns inside the light field. With the recovered light field, multiple 

functions can be applied such as: retrieving the phase front and amplitude changes in 

the laser beam, correcting a distorted image, and decoding optic communication 

signals. Many conventionally complicated problems turn out to be extremely simple 

within the framework of a plenoptic sensor. In this chapter, we will discuss the 

plenoptic sensor’s mechanisms and associated algorithms. 

 

3.1 Basics in light field cameras 

The light field camera is an innovation in imaging technique that records the light 

field of an image formation process instead of directly imaging the object. This 

indirect imaging technique provides extra degrees of freedom to perform image 

processing. For example, the blurring areas in conventional imaging devices can be 

refocused to be sharp on a light field camera [2]. And the image can be tilted slightly 

in a semi-3D way to allow for multiple viewing angles [3]. 

3.1.1 Light field rendering 

Traditional 2D imaging models treat each resolution point of an object as a 

fundamental building block. Without occlusions, each illuminated point spherically 

“scatters” a fan of rays in all possible angles. A good imaging process converges the 
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rays back into a sharp point, while blurring defects in the imaging process refer to the 

points with blurred features.  

In the advanced light field imaging models, the “blurring points” turn out to be 

informative. This is because the formation of the blurring points has been 

decomposed into individual rays as more fundamental building blocks. The 

requirements for an imaging lens to produce sharp point spread function are no longer 

needed. In other words, rays originating from the same point do not necessarily need 

to converge in the light field imaging system. In fact there are no “blurring” problems 

in the light field models [4] because all rays can be back traced and edited. 

For simplicity, light field rendering is the recording and reconstruction of light rays. 

To express the light field explicitly, the concept of the plenoptic function that can 

uniquely define each ray [5] [6] provides great convenience. In general, the plenoptic 

function is a cluster of parameters and functions that can define the ray’s interactions 

and propagation behavior in a specified coordinate system. For example, in the 

Cartesian coordinate system, the 4D phase space (x, y, θx, θy) for any arbitrary point 

on plane Z=z0 can define the ray behavior in free space propagation. In the 4D phase 

space, x and y represent the ray’s interception point with plane Z=z0, θx and θy 

represents the ray’s propagation angle with regard to the plane normal of Z=z0. In 

addition, the light rays can carry wavelength information (λ) to express “color” 

properties and photon density information (ρ) to express local brightness. If two or 

more rays are intercepted by the same pixel, functions are needed to describe their 

interactions such as interference (coherent) or color mixing (incoherent).  
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Without loss of generality, the plenoptic function can be treated as a “class” for ray 

objects [7], which contains all the necessary components to specify optic events of 

interest. The lowest order of a plenoptic function is 4D [8] that projects the linear 

trajectory of rays in absence of refraction and reflection. For simplicity we use the 

following plenoptic function for light field rendering: 

 , , ,x yx yP                                                  (1) 

Evidently, the plenoptic function contains all the information of 2D imaging models 

as a point spread function can be easily expressed by: 

   
,

, , ,,

x y

x y x y
x ys d dx y

 

                                       (2)  

In equation (2), ρ represents the corresponding light field of a point source. Similarly, 

the image formation in the light field model is expressed as: 

   2

,

, , ,,

x y

x y x y
x yI d dx y

 

                                       (3) 

A more rigid model is to consider the actual polarization of the field, which replaces 

the photon density with the complex field amplitude: 

     *

, ,

, , , , , ,,

x y x y

x y x yi x y i x y

i

x y x yI E d d E d dx y

   

                       (4)  

In equation (4), both incoherent and coherent conditions have been taken care of. 

Intuitively, equation (3) and (4) state that images are formed by applying integrals of 

the plenoptic function over its angular space on the image plane. 

A significant convenience of using the plenoptic function is that optic events are 

computationally tractable. For example, a spherical wave can be described by the 

plenoptic function as radially outgoing rays. The field magnitude of a spherical wave 
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degenerates as 1/r, where r is the radical distance. Traditional geometric optics 

models begin to show problems with increased distance from the point source as rays 

diverge spatially. However, with plenoptic functions, one can always modify the 

number of rays in the system: 1) rays leaving the domain of interest will be deleted; 2) 

rays can be added by interpolation to increase resolution. In the case of the spherical 

light wave of a point source, one can linearly interpolate rays at increased radical 

distances to assure adequate spatial resolutions. In fact, besides a few trivial 

differences, the plenoptic function is equivalent to the wave analysis in computational 

optics [9]. 

3.1.2 Image reconstruction 

Image reconstruction in the light field camera refers to the transformation from light 

field images to actual images of objects. Technically, the maximum number of rays 

that can be acquired by a light field camera is determined by the resolution of the 

image sensor. As discussed in section 3.1.1, enriched ray information acquired 

through interpolation and computed/synthetic images can be achieved with image 

reconstruction algorithms. 

The image formation of a light field camera can be shown as [10]: 
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Figure 3. 1: Diagram of light field rendering inside a light field camera 

In figure 3.1, we show that the center of a MLA cell is treated as a local retrieval 

center and the straight line between the retrieval center and a local pixel interprets a 

ray. Theoretically, each pixel represents a ray. By back tracing the rays to the primary 

rendering area (area between the zoom lens and the MLA), the primary plenoptic 

function can be established. The image and geometric dot array of the MLA centers 

contains all the necessary information of the light field camera. If the density of light 

rays is not adequate in the primary rendering area, interpolations can be added. 

Similarly, one can add a calibration process to account for the small aberrations 

caused by the MLA cells. 

The fundamental ray interaction rule in the plenoptic function is free and linear 

propagation in a free space. To reconstruct the light field in the real world (outside the 

light field camera), additional functions need to be added. For example, in figure 3.1, 
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the light field outside the zooming lenses is retrieved by ray tracing through the 

lenslet set (with all geometric information known). And a computed scene can be 

reconstructed through the back tracing by a simulation sweep through the depth of 

view. In other words, the focused spot at arbitrary depth z=z0 can be determined if 

rays with similar properties converge to the same geometric spot. Simultaneously, 

rays passing the vicinity of the same spot but fail to share similar properties with 

other rays can be intelligently filtered out. 

Since most applications focus on the image site instead of the reality site, we narrow 

our discussions in the primary light field rendering area (inside the light field camera). 

A more general scenario can be applied by back tracing through the imaging lens to 

explore objects in the scene. In the primary rendering area, the following benefits are 

naturally acquired: 

(1) An image point focused before/on/after each MLA cell can be determined by 

the pattern of ray spreading on the image sensor. 

(2) The change of focal depth can be correspondingly achieved by 

computationally making rays converge before/on/after each MLA cell. 

(3) Only a little knowledge of the zoom lens such as its f/# is required to reveal 

the light field changes of an image formation process. 

Intuitively, if a perfect image point (sharp point spread function) falls on a MLA cell, 

the fan of rays matches the f/# of the image lens. If the image point is formed before 

the MLA cell, the fan of rays will be smaller than the f/# of the image lens. 

Comparatively, the fan of rays gets larger than the f/# of the image lens happens when 

the image point is formed behind the MLA cell. Based on the above principles, a 
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sharp image point can be identified and reconstructed locally by the ray spreading 

patterns under each MLA cell.  

Technically, an all-sharp image can be reconstructed on the light field camera, where 

points at various focal depths are simultaneously sharp on the image [11]. However, 

based on human vision principles, the all-sharp image doesn’t look natural and even 

causes some discomfort in viewing. Therefore, for the commercial version Lytro 

cameras [12], it only allows one specified focal depth that is variable by the user.  

3.1.3 Incompatibility with coherent beam sensing 

The Lytro camera, unfortunately has failed to achieve great commercial success. The 

major shortcoming of the light field cameras in its commercial implementation is the 

sacrifice of high image resolution in exchange for adjustable focal depth. Especially 

when auto-focusing becomes a standard technique for all digital cameras (including 

cellphone cameras), the ability of re-acquiring a focused image is less attractive.  

The possibility of using the light field camera to perform wavefront sensing has been 

discussed by Researchers in the Canary Islands (as introduced in chapter 2). However, 

since all rays inside a laser beam have identical wavelength, the light field image will 

also be corrupted to some extent like ordinary camera images. Therefore, it can’t 

apply in wavefront sensing directly. Besides, indirect methods such as imaging 

changes of sharp features (chapter 2.5) of object features are inconvenient.  

 

3.2 Modified plenoptic camera 

To acquire an informative image of coherent light sources, two preconditions need to 

be satisfied: 
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(1) Avoid interference conditions as much as possible. 

(2) The phase front and amplitude information should be interpreted 

simultaneously. 

Point (1) states that when interference is ruled out, each pixel value corresponds with 

the field amplitude information of one wave component instead of summarized field 

amplitude of several waves. Otherwise, the interpretation of the pixel value will be 

complicated. And the single point sample by a pixel can’t be used to uniquely define 

all its wave components. The second precondition (Point 2) states that the complex 

amplitude of a coherent wave requires both the phase and amplitude distribution of 

the beam to be measured/retrieved successfully. 

In general, the two preconditions can be treated as “coding/mapping” conditions in 

wavefront sensing that generates a decodable image of the laser beam. Then, a 

reconstruction process/algorithm is a “decoding” method that interprets the image 

back to the plenoptic function (that contains the phase front and amplitude 

distribution) of a laser beam. 

Our study shows that by several modifications of the light field camera, it is possible 

to convert it into a wavefront sensor that can measure the phase and amplitude 

distortion in a coherent beam. In fact, the modification will cause a light field camera 

to lose its capacity to refocusat different focal depths but as a tradeoff grant it the 

ability to image a coherent beam. For convenience, we name the modified light field 

camera as “a plenoptic camera” as it maps the light field of a laser beam into an 

image. 

 



 

 56 

 

3.2.1 Structure diagram 

The fundamental structure diagram (2D and 3D) of the plenoptic camera can be 

shown by the following figures [13] [14]: 

 

Figure 3. 2: 2D structure diagram of the plenoptic camera 

In figure 3.2, f1 and f2 are the focal lengths of the objective lens and MLA cell 

respectively. The diameter of the objective lens is expressed by d1, and the diameter 

of the MLA cell is expressed by d2. Besides, we regulate that f1>>d2 to justify the use 

of paraxial approximation. In fact, the typical ratio between f1 and d2 is 2500. 
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Figure 3. 3: 3D structure diagram of the plenoptic sensor 

In figure 3.2 and figure 3.3, we show that a plenoptic camera is made by matching the 

f/# of the objective lens and the MLA and overlapping the back focal plane of the 

object lens and the front focal plane of the MLA. In short, the structure of the 

plenoptic camera can be treated as a mini “Keplerian” telescope array that shares a 

common objective lens.  

Without loss of generality, the plenoptic image is obtained at the back focal plane of 

the MLA by an image sensor. The entrance pupil of the plenoptic sensor is defined as 

the front focal plane of the objective lens. The numerical aperture of the objective 

lens and a MLA cell is matched so that each cell image does not overlap with its 

neighbors. The requirement of the numerical aperture can be loosened as: 

objective MLANA NA                                                   (5) 

However, in order to maximize the viewing aperture, equalization in equation (5) is 

typically used.  
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Intuitively, for an arbitrary patch (small wavelet that acts like a plane wave) that 

incident on the front focal plane of the plenoptic sensor, its phase front will be 

sampled by the front objective lens into a corresponding MLA cell. And its amplitude 

information will be sampled by the local MLA cell into an intensity pattern. For any 

other patch that overlaps geometrically but with slightly different propagation 

direction, it will be mapped to a different MLA cell and the interference pattern is 

avoided. Therefore we can use the MLA cell index to represent the phase information 

and the relative patterns inside a MLA cell to represent the intensity information. 

3.2.2 Analysis with geometric optics 

The matching of numerical aperture can be expressed by: 

1 2

1 2

d d

f f
                                                                        (6)  

Without loss of generality, we express an arbitrary ray at the entrance of the plenoptic 

sensor in a 7D plenoptic function: 

 1 1 1 1 1 1 1 1, , , , , ;P x y z                                                        (7)  

In equation (7), ρ1 is the photon density of the light ray. z1 is the location of the 

entrance plane along the optic axis. The geometric coordinates of the ray at the 

entrance plane is expressed by x1 and y1. The angular information of the ray under 

paraxial approximation is expressed as α1 and β1. The phase of the ray is resembled 

by φ1. 

Similarly, the corresponding plenoptic function for the same ray at the image plane 

can be expressed as: 

 2 2 2 2 2 2 2 2, , , , , ;P x y z                                                      (8) 
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Then the relations between P1 and P2 can be expressed as: 

2 1 1 22 2z z f f                                                                (9) 
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Equation (9) and (10) can be easily obtained by the geometric configuration of the 

plenoptic sensor. The integer pair (M, N) in equation (11) represents the 

corresponding MLA cell that the light ray will propagate through. Equation (12) and 

(13) can be derived by analyzing the telescope formed by the objective lens and the 

MLA cell indexed by (M, N). Equation (14) states that the phase change of the ray is 

stationary against small angular variation (also known as Fermat’s principle).  

Equation (6) to (14) state the rules of the plenoptic camera in imaging the laser beam 

in the forward direction (with geometric ray models). Intuitively, a plenoptic camera 

maps/codes the light field into an image. Similarly, the inverse mapping to “decode” 

the image can also be explained with geometric ray models. However, since the 

image sensor has a finite pixel size, quantization effects must be considered. 
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In general when the ray is sampled by each pixel on the image sensor, its geometric 

information and its photon contribution are recorded, while angular and phase 

information of the ray is lost. For simplicity, we can express the image formation of 

the plenoptic sensor as: 

1 2 2

2 2 1

( , )

( , )
P x y

I x y S 


                                                    (15) 

In equation (10), γ represents the linear response between the pixel’s numerical value 

and the total number of photons it collects. S□ denotes the size of the pixel. By inverse 

mapping, the contributive rays for specific pixel with coordinates (x2, y2) must 

satisfy: 
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Equation (16) determines the cell indices on a plenoptic image. Equation (17) is 

derived directly from equation (12), and it means each spot on the plenoptic image 

corresponds with a particular location in the incident beam. Equation (18) is derived 

from equation (11), which determines the narrow fan of rays that illuminate the same 

spot on the plenoptic image. For simplicity, we pick the center value in equation (18) 

for the directional information of the back traced rays. Therefore, the maximum 

round-off error for rays’ angular accuracy is d2/2f1. Besides, the pixel width d□ can’t 

be infinitively small, and the maximum spatial round off error is f1d□/2f2. For example, 

given f1:d2=2500, d□=6μm and f1:f2=100, the maximum spatial and angular round off 
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errors are 0.3mm and 0.2mrad respectively. Intuitively, if the whole beam is confined 

by adaptive optics approaches into one image cell on the plenoptic sensor, it means 

that the arriving beam has maximum divergence of 0.4 mrad in the above 

configurations. It can also be shown that by increasing f1, more angular accuracies 

can be achieved at the cost of losing spatial accuracy and vice versa.  

With the acquired plenoptic function of the laser beam, a reconstruction of the phase 

front can be achieved by inverse mapping the light field to reality (real world). 

Typically, the reconstruction is performed on the front focal plane of the object lens. 

Intuitively, by tracking the angular momentum to the entrance pupil, the phase 

information is acquired. Similarly, by tracking the intensity to the entrance pupil, the 

field amplitude information is acquired. A simplified 2D phase reconstruction 

diagram can be shown by the following diagram. Since the reconstruction interprets 

the rays into binary signals of “1” and “0”, we call it a “0
th

 order reconstruction” or 

“Naïve” reconstruction (because it is extremely simple). 
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Figure 3. 4: 2D simplified diagram of phase front reconstruction 

In figure 3.4, the phase reconstruction algorithm is implemented by back tracing the 

rays in different cells to the front focal plane. Since the phase distortion scatters the 

rays into different MLA cells, the back tracing process will determine where the rays 

originate from in the entrance pupil. Simultaneously, the cell indices carried by the 

rays represent the distribution of phase distortions. To increase the SNR (signal noise 

ratio) of the phase front reconstruction, we use a threshold intensity (pixel value) to 

select pixels that satisfy the minimum illumination condition. More formal 

reconstruction algorithms will be elaborated on in section 3.4. 

3.2.3 Analysis with wave optics 

As discussed in section 3.1, the plenoptic function equalizes the wave analysis with 

adequate resolution. We can also use wave analysis to explain the function of the 

plenoptic camera by using concepts in Fourier optics [15]. A fundamental conclusion 

in Fourier optics states that in the paraxial approximation, the complex amplitude of 

light fields at the front and back focal planes of a lens are Fourier transforms of each 
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other. The terms “front” and “back” are dictated by the propagation direction of the 

light. An illustration diagram can be shown as: 

 

 

Figure 3. 5: Diagram of basic Fourier optics concept 

An analytical formula for the Fourier transform of a thin lens is expressed as: 

                                2 1

1 2
, , expt u v t x y j xu yv dxdy

j f f
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 
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 
                    (19) 

In equation (19), t1(x, y) and t2(u, v) are the complex amplitude of the field at the front 

and back focal plane of the thin lens respectively. The focal length is represented by f. 

A Fourier transform is achieved by regarding the spatial frequency components as: 

                                                                ,x y

u v
f f

f f 
                                      (20)    

Thus, neglecting aperture limiting effects, the Fourier transform conducted by a thin lens 

swaps the geometric and angular information of the incident light field. The structure diagram 

of our plenoptic sensor is replotted in figure 3.6 as: 
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Figure 3. 6: Diagram for wave analysis of the plenoptic sensor 

The wave analysis of the objective lens in the plenoptic sensor is the same as in 

equation (19). However, the Fourier transform by each MLA cell should consider the 

aperture limiting effects since the width of the light field at the back focal plane of the 

objective lens is larger than the width of a MLA cell. Thus, a pupil function should be 

added to the integral when applying equation (19). Without loss of generality, one can 

express the field of t3(s, t) as a superposition of transforms performed by each MLA 

cell: 

,
3 3

,

( , ) ( ', ')M N

M N

t s t t s t                                             (21) 

In equation (21), the integer pair (M, N) corresponds to the index for each MLA cell 

in a Cartesian layout. (s’, t’) are the local coordinates in the domain of each MLA cell 

with relation to the “global” coordinates (s, t), as: 

                                              ( ', ') ( , )s t s Md t Nd                                        (22) 

Symbol d in equation (22) represents the pitch of the MLA (spacing between neighboring 

micro-lens centers). Therefore, the field at the back focal plane of the MLA for each micro-

lens can be solved as [14]: 
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    (23) 

In equation (23), function rect(*) denotes the rectangular pupil function for each MLA cell. 

(u’, v’) are local coordinates for the light field t2(u, v) viewed by each MLA cell that satisfy 

the relation:  

( ', ') ( , )u v u Md v Nd                                              (24) 

The aperture limiting effect is generally regarded in optics as the “vignetting” effect 

to indicate the reduced effective aperture for off-axis points. It is reflected in equation 

(24) by the pupil function. Often “vignetting” effects are treated as disadvantages that 

should be carefully avoided or compensated for in optic designs. However, these 

effects serve as an inter-block relation in the plenoptic sensor since the coordinates 

(u’, v’) and (s’, t’) are included in the same pupil function. In other words, each point 

(s’, t’) in a MLA cell collects information from a slightly different area on the field of 

t2(u, v), where (u, v) represent the angular spectrum of the field. Thus the “vignetting” 

effects provide finer adjustments of angular information in addition to the information 

provided by the index of the MLA cell (M, N).  

Combining equation (22) and (24) one can derive the wave solution for the plenoptic 

sensor. Due to the limited range of (M, N), one can swap the order of summation and 

integration. As a result, the general solution is expressed as: 
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An intuitive observation from equation (25) is that the effective integral area is a 

square of size d × d (d is the pitch length of the MLA) for any pixel with fixed 

coordinates (s, t). Each integral is based on the value of t2(u, v) with a linear phase tilt 

modulation. Thus the intensity obtained on I3(s, t) is the magnitude of a local Fourier 

transform with a linear geometric shift depending on the value of (s, t).  

For example, if the incoming light field consists of a group of interfering light patches 

(small “plane waves” with apertures), t2(u, v) will be a sum of delta functions in the 

form: 

2
1

( , ) ( , )i

N
j

i i i
i

t u v A e u u v v 


                                  (26) 

After propagation through the MLA, the situation can be classified into 2 major cases: 

Case 1: All the (ui, vi) are distinctive enough that they are observed by 

different MLA cells. 

Case 2: There exists more than one pair (ui, vi) that falls in the same domain 

of a single MLA cell. 

In case 1, one can easily determine the first order tilts in the complex amplitude of the 

field as each patch is imaged by an individual MLA cell. Thus the complex amplitude 

can be expressed as:    
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                    (27) 

In equation (27) γ0 is a constant coefficient relating the optic field strength to the 

square root of pixel values. (γ0)
2
 represents the ratio between local wave intensity and 

corresponding pixel value on an image sensor. Ii is the pixel value for the i
 th

 patch 

that represents the intensity. We arbitrarily neglect the intensity distribution to 
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emphasize the capability of the plenoptic sensor in extracting the phase gradient. In 

fact, the intensity distribution is preserved under the transforms of the plenoptic 

sensor’s lens system down to the limit of pixel sizes. However the initial phase 

information (DC value of phase) is lost as the patches don’t interfere with each other 

when imaged by different MLA cells.  

In case 2, if more than one patch propagates through the same MLA cell, their initial 

phase difference as well as their first order phase tilts can be revealed. Without loss of 

generality, assume 2 patches with amplitude A1 and A2 and phase difference Δφ are 

observed by the same MLA cell. Then, the complex amplitude after the MLA cell can 

be expressed as: 
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(28)  

Note that we have ignored the common phase that has no influence on the image. The 

corresponding sub-image can be written as: 
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In equation (29), {A(s’, t’)} is the integral area determined by (s’, t’) from equation 

(23). We use η as a coefficient representing the linear relation between pixel value 
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and field intensity to simplify the result. Thus if the two patches are imaged by the 

same MLA cell, their initial phase difference as well as their first order phase tilt can 

be retrieved.  

An overall relation between complex amplitude of the field and the final image can be 

derived by combining equation (19) and equation (25). The final result is expressed as:                                      
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       (30)  

It is not surprising to find that the geometrical optics approach provides results very 

close to the analytical result in a wave solution approach, unless the wavefront 

oscillates at a high spatial frequency. Thus either approach can be used for extracting 

light field information from the image obtained by the plenoptic sensor. Nevertheless, 

it is a little more complex to perform the inverse mapping from a plenoptic image to 

the actual wavefront of the beam. Typically, under the assumption that all the patches 

in the plenoptic image have a flat phase front (each patch can be assigned a unique 

value of phase front), we can back propagate the wavelets to the front focal plane of 

the plenoptic camera and determine the phase difference by a continuity assumption 

[16] (no step function at the edge of two merging patches in back propagation). 

 

3.3 Plenoptic sensor 

The plenoptic sensor is a streaming plenoptic camera that can track the dynamic 

changes of phase and amplitude distribution in a laser beam. Since atmospheric 
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turbulence structure changes all the time, it requires adaptive optics to perform instant 

detection and correction on the distorted phase front. Conventionally, Shack-

Hartmann sensors [18] have been proved to be useful in correcting image distortions 

in astronomy applications when optic signals of a celestial image get weakly distorted 

in passing through the Earth’s atmospheric layer. In horizontal paths on the earth, due 

to the greatly increased level of turbulence, Shack-Hartmann sensors can’t reconstruct 

the wavefront reliably due to effects (as discussed in section 2.1) of scintillation, self-

interference, large oscillation in angle of arrival as well as beam wander effect. 

Therefore, the plenoptic sensor is developed as a much more powerful wavefront 

sensor than the Shack-Hartmann sensor. 

Without loss of generality, the plenoptic sensor creates a plenoptic function that has 

an extra parameter of time, expressed as: 

 1 1 1 1 1 1 1 1, , , , , ; ,P x y z t                                           (31) 

In equation (31) we add the universal time parameter to track the change of the light 

field inside a distorted laser beam. In the worst case, when the light fields between 

neighboring time stamps are irrelevant to each other (which may be caused by a slow 

frame rate of the sensor or rapid changes in the turbulence), the complexity of the 

plenoptic function is increased by 1D. With adequate streaming speed, the correlation 

time τ needs to be considered. Equivalently, this means that frames recorded earlier 

than τ are independent of the current turbulence situation and can therefore be 

discarded. In fact, the correlation time serves as the fundamental speed requirement 

for the plenoptic sensor to sense and figure out a correction solution. Intuitively, if 
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turbulence changes at 100 Hz, the minimum time budget for the plenoptic sensor is 

10ms. 

3.3.1 Structure diagram 

The structural diagram of the plenoptic sensor can be illustrated by the following 

figure: 

 

 

Figure 3. 7: Basic structure diagram of the plenoptic sensor in sensing and correcting laser beam 

propagation problems 

Figure 3.7 show that when a collimated laser beam gets distorted by atmospheric 

turbulence, it is decomposed into patches that scatter in disordered directions. By 

using a plenoptic sensor to capture the distribution of those patches and reconstruct 

the “disorder” patterns (a phase screen that causes the most identical effect), the 

adaptive optics module can insert a compensation phase screen to bring down the 
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disorder effects of scattering patches and “deliver” the power of the beam onto 

intended target. 

The time span between the wave front sensing and adaptive optics compensation 

operation needs to be smaller than the correlation time τ. This time span includes: 

image acquisition time, algorithm processing time, and set up time for AO system. 

Therefore, a good arrangement of data structure, streaming controls, information 

storage and processing help to optimize the efficiency of the AO system in 

collaborating with the plenoptic sensor. 

3.3.2 Streaming controls 

The streaming of information in the plenoptic sensor and its cooperative AO system 

can be shown by the following diagram: 

 

 

Figure 3. 8: Structure of information stream in the overall wavefront sensing and correcting AO 

system (integrated with a plenoptic sensor) 

Figure 3.8 shows the data flow in the plenoptic sensor, computer (or any computation 

module), AO device respectively. The data stream on the plenoptic sensor is 3D, as a 

stream of time varying plenoptic images. On the computer site, each plenoptic image 

is translated into plenoptic functions and further assembled into the actual phase front 
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distortions. By the reconstructed wavefront patterns within the correlation time τ, the 

actual phase front deformation can be credibly determined. On the AO system site, 

due to the finite number of actuators used to achieve phase front compensation, the 

reconstructed wavefront deformation is further compressed to a vector array of 

actuators’ displacement commands. 

Therefore, a naïve (simple and direct) approach is to arrange the flow in series order 

(queue). And the overall loop time is determined by: 

I A Dt t t t                                                           (32)  

In equation (32), tI represents the image acquisition time, tA represents the algorithm 

processing time and tD represents the AO device’s set up time. Because the data 

stream is arranged in sequential order, the stack of time in equation (32) means that 

each data processing stage needs to wait for its previous stage of processing to finish. 

Evidently, the naïve data flow arrangement makes the sensing and control loop 

simple and easy to diagnose. Intuitively, at any arbitrary moment only one of the 

three modules is enabled. It is also clear that if any part of the data processing 

becomes considerably longer than the others, it becomes the bottleneck for the 

system’s operation speed. 

A more advanced data flow control can be arranged by allowing each module to work 

independently so that the following loop time can be achieved: 

 max , ,I A Dt t t t                                                   (33)  

The following diagram helps to illustrate the achievement of the advanced data 

stream arrangement (we arbitrarily assume that the computation time is the longest in 

the loop): 
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Figure 3. 9: Advanced structure of information stream and data processing 

Figure 3.9 shows the advanced arrangement of the data flow structure that can 

achieve the minimum loop time regulated by equation (33). Assume that the image 

processing time is the longest (which is typically the case in reality), we can let the 

plenoptic sensor to work in a free running mode and allow the AO device to perform 

a few other iteration trials of optimization (such as SPGD [17]) before the 

computation loop is finished. Therefore, the overall loop time is optimized to be the 

time consumption of the slowest module in the system. Improvement can be made by 

further optimizing the slowest module (such as using parallel computing devices to 

speed up the algorithm). In fact, by redesigning the flow process and using a parallel 
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reconstruction algorithm, the system can operate at a speed that is comparable with 

the maximum frame rate of the plenoptic sensor.  

3.3.3 Information storage and processing 

The plenoptic sensor and its cooperative adaptive optics (AO) system are different 

devices and each carries certain type of memory storage hardware such as cache, 

buffer or RAM. Therefore, a careful consideration of the form of data in each 

processing step is necessary. 

Without loss of generality, we can break down the data processing and transmission 

in the following categories: 

(1) Image stream: raw images are acquired on the camera’s buffer and copied to 

the computer’s memory. 

(2) Light field rendering: the image data stored on the computer site are processed 

into the plenoptic function of the light field at the entrance pupil of the sensor. 

(3) Phase front reconstruction: the most likely (ML) phase front that causes the 

scattering patterns of the light field are generated on the computer site. 

(4) Sending commands to AO: the computer samples the reconstructed phase 

front based on the format of the AO device and the vector command is sent to 

each actuator. 

Evidently, the computer compresses the plenoptic image flow onto a vector of control 

commands for the AO device. Therefore, it is of vital importance to perform the 

processing as swiftly as possible. In general, the algorithm is linear if it satisfies the 

following relation: 

   i iP Pf f                                                    (34)  
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Equation (34) states that in a linear algorithm the set assembly and processing 

algorithm are interchangeable with each other. Parallel computing can be invoked to 

speed up the process. Ideally, for a plenoptic image with basic resolution of 

1024×1024, the parallel algorithm can be 1 million times faster given 1024
2
 threads. 

 

3.4 Reconstruction algorithms 

The reconstruction algorithms establish the relations between plenoptic images and 

certain optic events in the plenoptic sensor’s field of view. For the purpose of this 

chapter in detecting laser beam distortion through random media, we describe the 

optic event as the phase and amplitude distortions of the beam at the entrance of the 

plenoptic sensor. Other optic events such as image distortion and partial reflection 

can be analyzed with specific reconstruction algorithms, which will not be elaborated 

on in this chapter. 

The fundamental translation from a pixel on plenoptic image to a pencil of rays in the 

light field can be illustrated by the inter-cell indices (M, N) that represent which cell 

the pixel locates in and the intra-cell indices (S, T) that represent the location of the 

pixel inside a cell image. In general we use I(M, N, S, T) to represent the pixel, where 

I stands for the pixel value ranged from 0-255 in monochrome 8-bit machine vision 

cameras. For simplicity, we assume symmetry is satisfied where the center cell is 

indexed by (0, 0) and the center pixel inside a cell is indexed by (0, 0).  

The phase front tilt can be expressed for the pencil of rays as: 

 
1

,
d

M N
f

                               (35)  



 

 76 

 

The location of the pencil of rays can be expressed as: 

 1

2

,
f d

r S T
f

                                                   (36) 

In equations (35) and (36), d represents the pitch length of the MLA and d□ 

represents the width of the pixel. The focal length of the objective lens and MLA are 

represented by f1 and f2 respectively. The field intensity of the pencil of rays is 

represented by I(M, N, S, T). It is evident that the translation algorithm from the 

plenoptic images to the light field rays is simple and linear. Based on the light field, 

different algorithms depending on the accuracy and speed requirement of 

reconstruction are available.  

3.4.1 Full reconstruction algorithm 

The full reconstruction algorithm is defined if the algorithm has used all the pixels in 

a plenoptic image. For instance, if the plenoptic image is composed of 1024×1024 

pixels, the input of the algorithm is 1 million pixels. Since the entire image is used for 

reconstruction, the full reconstruction is regarded as “lossless” reconstruction. The 

detailed steps are shown as: 

1. Select an MLA cell and its corresponding block image as a geometric reference. 

2. Shift all nonzero block images to the block of the reference image and extend the scalar 

pixel values to a cluster of vectors with baseline directions extracted from MLA index 

(M, N) and their length proportional to the pixel brightness (ray intensity). 

3. Adjust the vectors’ direction according to their relative locations in the block due to the 

“vignetting” effect, or alternatively use equation (16). 

4. Back propagate the rays to the depth of the optic event (dominant turbulence location). 
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5. Filter out rays that are traced out of the reasonable range and rays with abruptly 

different angles from their geometric neighboring rays (ignore unreasonable rays). 

6. Project the beam propagation to the reconstruction plane assuming no turbulence and 

reshape it in a vector form with the same geometric resolution as in step 4. 

7. Combine the ray patterns before and after the “phase screen” to extract the gradients of 

phase screen. 

8. Build the phase screen according to its gradient profile. 

Intuitively, the gradients of the phase will cause variations of Poynting vectors in the wave 

that can be picked up by the plenoptic sensor. Therefore, the phase screen’s scattering 

patterns can be largely retrieved by backward ray tracing. The gradient of phase distortion 

can be reconstructed as: 
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The integral area in equation (37) is the area of the PSF (point spread function) for 

each point source located at (x, y; z=z’) with z=z’ indicating the plane of 

reconstruction. In addition, due to the continuity of a phase screen, an extra layer of 

filtering can be applied based on the fact that any integral loop of the phase gradient 

equals zero. In fact, this law should be satisfied for all reconstruction algorithms of a 

continuous phase screen. 

A demonstrative example for the full reconstruction algorithm can be shown by a “defocus” 

Z(2, 0) phase distortion, the reconstruction result is shown as: 
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Figure 3. 10: Result for Zernike Z(2,0) phase distortion with full reconstruction algorithm 

In figure 3.10, the upper-left plot shows the shape and magnitude of the phase distortion that 

is applied to the deformable mirror. A contour plot of the deformation is shown on X-Y plane.  

The upper-right plot in figure 3.10 shows the image on the plenoptic sensor when a 

“Defocus” command is sent to the DM. We only show the illuminated blocks on the image 

sensor. The size of the image sensor (resolution=1024×1024, pixel pitch=5.5μm) supports a 

maximum number of 18×18 blocks of sub-images. Equivalently, the maximum detectable 

distortion for the plenoptic sensor is ±1.4λ/mm. In the case of the “Defocus”, the furthest 

block from the center is (M=4, N=0) and the corresponding maximum tilt can be calculated 

as 0.6λ/mm. The “Defocus” can be expressed as: 
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            0 2
2 ( , ) 0 1, [0, 2 )Z A                                   (38) 

The symbol “A” in equation (38) represents the magnitude of the distortion (A=4095 in the 

case of “Defocus”), while ρ and θ represent the normalized radius and angle respectively for 

the Zernike polynomial. Intuitively, the gradient of the “Defocus” function increases 

symmetrically when the radius ρ increases. The gradient at each spot (ρ, θ) is mapped into 

different blocks of the deformable mirror. Furthermore, the observation that the most outside 

blocks are illuminated with larger areas reflects that the gradients changes faster when the 

radius ρ increases. 

 The lower-left plot in figure 3.10 shows the reconstruction result of the deformable mirror’s 

surface. According to the algorithm steps of single phase screen reconstruction (algorithm 1), 

the center block of the plenoptic image is selected as the reference block and the 

reconstruction achieved by examining all the illuminated blocks. The clipping at the edges of 

the reconstruction are because of the lack of boundary conditions. There is no information 

about further phase variation outside the edge of the reconstructed surfaces. Therefore, we 

simply set the reconstructed phase value outside the edges to be zero. A contour plot is 

presented on the X-Y plane.  

The lower-right plot in figure 3.10is a detailed contour map of the reconstructed surface. The 

contour plot projects the 3D result of the reconstructed phase screen into a 2D plot and helps 

to show the details of the reconstruction. In the case of “Defocus”, the contour plot shows the 

concentric rings of the deformation. It looks similar to the contour plot of the commands at 

the upper-left plot in figure 3.10.  

Using the reconstruction algorithm, one can determine: 
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(1) The geometrical information of light patches (rays) at the plane of distortion. 

(Algorithm steps 1, 2 and 4) 

(2) The angular information of light patches (rays) at the plane of distortion 

(Algorithm steps 1, 2 and 3) 

(3) The phase gradient along the X axis and Y axis. (Algorithm steps 5, 6 and 7) 

A detailed explanation of the algorithm can be illustrated by figure 3.11:  

 

Figure 3. 11: Detailed explanation for full reconstruction algorithm on the "Defocus" phase 

distortion case 

In figure 3.11, the upper-left plot shows the geometric distribution of light patches at 

optimized back tracing depth, with each dot representing a small patch (or single ray). The 

optimized depth (the plane of reconstruction) is determined by back propagating the rays until 



 

 81 

 

the intensity distribution resembles the beam profile before encountering the phase screen (a 

Gaussian distribution in our experiment). The upper-right plot shows the distribution of the 

directions of the patches (rays), with each dot representing a small patch (or single ray). The 

angular distribution of patches results from the gradient of the phase change and is extracted 

from the image on the plenoptic sensor primarily by the block index (M, N) and adjusted by 

the actual positions of rays on the reconstruction plane. Based on the geometric and 

directional information of light patches (rays), the phase gradient graphs can be determined 

by equation (37). The results of the phase gradient along the X axis and Y axis are presented 

in the lower-left and lower-right plots in figure 8 respectively. With all the necessary 

information, algorithm step 8 can be completed to derive the results demonstrated in figure 

3.10. 

It is easy to see in equation (37) that the full reconstruction algorithm uses the statistical 

weighting average of each pixel to provide the overall results. In other words, each pixel 

suggests a piece of information about the phase and intensity distribution of the beam at the 

entrance pupil, and the reconstruction is achieved by examining through the entire image. In 

the full reconstruction algorithm, no information will be arbitrarily ignored and the outliers of 

pixels will be neutralized due to the weak law of large numbers (WLLN).  

3.4.2 Fast reconstruction algorithms 

Admittedly, the full reconstruction algorithm that examines every pixel in a plenoptic 

image provides a reliable and complete result that includes the phase and amplitude 

distribution of the beam. However, a lot of situations and applications don’t require 

full knowledge of the distorted beam. For instance, knowing the phase distortion is 

adequate to make significant improvement in remote imaging, free space optics (FSO) 
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communication and directed energy applications. Therefore, a fast reconstruction 

algorithm that can quickly resolve the phase front of the beam is favored over a 

thorough and complete solution.  

In general, a fast reconstruction algorithm only requires a small portion of pixels on a 

plenoptic sensor. Typically, “information loss” will happen in a fast reconstruction 

algorithm due to the ignorance of raw image data. However, as a tradeoff, a much 

faster speed can be achieved and the overall AO corrections can be improved. 

In this section, we will elaborate on a “Tree” reconstruction that is based on graph 

theory and a “Checkerboard” reconstruction based on the Poisson equation of the 

phase front.  

“Tree” Reconstruction Algorithm: 

The overall purpose of image processing is to translate a plenoptic image into executable 

commands on a deformable mirror (DM) that has a finite number of actuators. If the DM has 

N actuators, the algorithm result is an N-dimension vector. If the phase screen is 

reconstructed on the surface of a deformable mirror (named as the “correction plane” in the 

following discussion) and each recovered spot geometrically corresponds to one of the 

actuators in the device, the vector can be explicitly expressed as: 

1

2
j ij ig f                                                             (39) 

In equation (39), fi is the reconstructed phase front value for the i
th
 channel of actuator on the 

DM. The phase front values are real numbers calculated based on a common reference point. 

The j 
th
 actuator’s displacement value is expressed by g j and the value -1/2 accounts for the 

DM’s reflective surface. Intuitively, equation (39) points out that a simple compensation 

command can be formed if the reconstruction happens on the plane of the DM and only the 
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spots coincide with the actuators need to be reconstructed. Therefore, the situation resembles 

a graph theory problem: we can generate a graph that maps the actuators in a DM into 

vertices and the edge connecting two vertices represents the retrieved phase difference 

between them.  

An illustration diagram of the phase compensation can be shown as: 

 

Figure 3. 12: Illustration diagram of DM's phase compensation idea 

In figure 3.12, d is the spacing between neighboring actuators, and L is the distance between 

the reconstructed phase screen and the correction plane. It is assumed that the layout of gj is 

identical with the layout of fi. 

The task of the fast reconstruction is to find the minimum requirement to reconstruct all the 

phase front values of the vertices. It is a fundamental conclusion in graph theory that for a 

graph with N vertices, it only requires N-1 edges to form a spanning tree that connects the 

graph. As shown by the full reconstruction algorithm, a more illuminated blob has larger 

influence on the reconstruction result. In other words, a large and bright blob in the plenoptic 

image tends to provide more information. If the N-1 edges correspond with the brightest 

blobs, a fast reconstruction can be formed. 



 

 84 

 

Because the neighboring actuators in an AO device are usually equally spaced, we only make 

use of the shortest edges that join nearest pairs of vertices together. For example, in a 

Cartesian layout of actuators where neighboring elements are equally spaced, all the edges 

used to form a spanning tree will have the same length. Thus the total number of edges to be 

retrieved from a plenoptic image can be expressed as: 

1

1

2

N

i

i

dE


                                                                (40) 

In equation (40), di is the number of nearest vertices of the i
th

 vertex, and |E| denote 

the cardinality of the set of edges. The spanning tree with N-1 edges is a subset of the 

edges in equation (40), denoted as set { E }. 

We show next how to select the most informative edges to obtain the spanning tree, and 

therefore retrieve the phases on the vertices. For simplicity, a “dummy” AO system with only 

seven channels of control is used in our explanation. Its actuators form a hexagonal layout as 

shown in Figure 3.13: 

 

Figure 3. 13: Simple example of reconstruction diagraph 

In Figure 3.13, the directional red edges represent the selected edges of the spanning tree. The 

numbered vertices are the geometric locations of the actuators of the device. The gray dashed 
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edges are not selected by the fast reconstruction algorithm. The phase information retrieved 

from the plenoptic sensor is marked in pair with each corresponding edge. Thus, with the 

selected spanning tree, the phases on the vertices are deterministic.  

A normal plenoptic image and the edge selection algorithm for the spanning tree is 

illustrated in Figure 3.14: 

 

Figure 3. 14: Edge selection process on the plenoptic image for maximum spanning tree on the 

digraph presented by Figure 3.13 

In Fig.4, the solid black lines mark the division of image cells and the red islands are the 

images of the light patches when the distorted wavefront is imaged by the plenoptic sensor. 

We virtually make copies of the layout of the vertices of the “dummy” AO into each image 

cell to show their corresponding locations. Based on the previous discussion, there are 12 

edges in the graph: E{1,2}, E{1,3}, E{1,4}, E{1,5}, E{1,6}, E{1,7}, E{2,3}, E{3,4}, E{4,5}, E{5,6}, E{6,7}. The 
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direction of these edges can be arbitrarily assigned. We then use a box counting method to 

sum up (over all M and N indexes) the pixel values covering each edge and rank them in 

descending order. Using the summed-up intensity as the weight for each edge, the edges 

selection process is converted into a maximum spanning tree problem [18]. The “Greedy” 

method [19] can be used to practically determine the structure of the tree with the following 

steps: 

(1) Start with a graph with all the vertices and zero edge. 

(2) Take the first element in the edge set E (the edge with highest weight) and put it into 

the graph. 

(3) If the edge doesn’t form a circuit in the graph, keep it. 

(4) Delete the selected edge from the edge set E. 

(5) Go back to step (2) until N-1 edges are selected. 

Once the structure of the maximum spanning tree is determined, the phase information of the 

edges can be calculated by the following equation: 
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In equation (41), I(s, t) is the pixel value with coordinates (s, t) on the plenoptic image. (M, N) 

are the indexes for an image cell with width d0. VE is the unit directional vector of the edge 

and l0 is the length of the edge. λ is the wavelength and  f1 is the focal length of the plenoptic 

sensor’s objective lens.  E{j, k} is the edge between vertices j and k. Then, by arbitrarily 

appointing any vertex to be the reference point (φ=0), one can find the phases of other 
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vertices by traversing the tree structure and using the phase difference information carried by 

its branches. 

If the reconstruction requires more resolution points, one can use a denser set of vertices and 

go through the same procedure. Accordingly, a more complex form of equation (39) should 

be determined to relate the higher resolution of reconstruction to the lower resolution of 

wavefront correction on the AO system. 

The construction for the spanning tree can be shown by the following figure based on the 

simple example in figure 3.11: 

 

Figure 3. 15: Illustration of spanning tree formation based on "greedy" method for fast 

reconstruction for a plenoptic image 

In conclusion, the “tree” reconstruction algorithm looks for cell indices of N-1 edges 

that are covered by the most illuminated blobs and resolves the local tip/tilt of 

neighboring actuators with priority. Therefore, instead of using 2D images for 
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reconstruction, the “tree” reconstruction algorithm only examine the pixels covered 

by the pre-defined edges (1D data). 

 

“Checkerboard” reconstruction algorithm: 

The checker board reconstruction algorithm is invented based on the Shack-Hartmann 

sensor’s reconstruction algorithm. A Hartmann-graph representing the sampled 

wavefront tip/tilt serves as an intermediate step between a Shack-Hartmann image 

and the reconstructed wavefront. In a wide sense, the Hartmann-graph is a small light 

field with reduced resolution. In fact, the geometric information of the light field is 

contained in the MLA indices (inter-cell) in a Shack-Hartmann sensor while the 

angular information of rays is reflected by the focus shift (intra-cell). Similarly, in the 

plenoptic sensor, the angular information is contained in the MLA cell indices (inter-

cell) and the geometric information is reflected by the actual cell image (intra-cell).  

It is not difficult to show that the Shack-Hartmann sensor and the plenoptic sensor 

have flipped representations of angular and geometric information. Therefore, a 

similar reconstruction algorithm to retrieve the Hartmann-graph can be achieved. 

However, the “Checkerboard” reconstruction algorithm typically uses a much larger 

data base than those used in the Shack-Hartmann reconstruction algorithm. The 

amount of data acquired by each sensor will be elaborated on in section 3.5. 

The process of the checker board reconstruction algorithm is stated as follows: 

(1) In each MLA cell image, divide the image into grids as a desirable Hartmann-

gram. 
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(2) Search for each grid point to find the image cell index (Mi, Ni) that has the 

highest intensity in that grid area. 

(3) The cell index for each grid is the most credible angular information, and the 

Hartmann-gram can be built accordingly. 

For simplicity, we use the following dummy example to illustrate the “Checkerboard” 

reconstruction algorithm: 

 

Figure 3. 16: Dummy example to illustrate the "Checkerboard" reconstruction algorithm 

In figure 3.16, we use a uniform grid method to divide each cell into a 2 by 2 cell as 

the predefined checkerboard. The checkerboard grid has identical copies in all the cell 

images. Therefore, for each checkerboard unit, we only need to find which cell 

contains the most illuminated pixels and return the search with the cell indices. Then 

the overall Hartmann-graph can be retrieved based on the checkerboard’s resolution 

(2 by 2 in this dummy example). The rest of the reconstruction converges with the 

Shack-Hartmann sensor’s reconstruction. In fact, when the Hartmann-graph is 

derived, we get the mathematical Poisson equation of the phase front and the solution 

can be derived accordingly.  

The complexity of the “Checkerboard” reconstruction algorithm is the same as the 

algorithm of a Shack-Hartman sensor. The checkerboard grid serves as the same 
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principle as the MLA in a Shack-Hartmann sensor. Similar to the searching of 

displacement in the focus points, the “Checkerboard” reconstruction looks for the 

brightest patch among all the possible scattering angles. In other words, the 

computation complexity for each spot on the Hartmann-graph is equal in both 

sensors. 

For the same example of “Defocus” deformation as shown in the full reconstruction 

(section 3.4.1), the “Checkerboard” reconstruction algorithm provides its result as: 

 

Figure 3. 17: "Checkerboard" reconstruction on "Defocus" deformation case 

The result shows that the “Defocus” deformation has been reliably recognized by the 

“Checkerboard” reconstruction algorithm. In fact, it has 90% similarity to the Shack-

Hartmann sensor’s result regardless of their respective errors. It is also interesting to 

point out that the “Checkerboard” reconstruction is lossy but accurate: as many other 
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patches that are less illuminated have been ignored in the process. A quick 

explanation can be shown by the following diagram: 

 

Figure 3. 18: Data compression from the plenoptic sensor's information set to the Shack-

Hartmann sensor's information set 

Figure 3.18 shows that the “Checkerboard” reconstruction algorithm is actually 

compressing its information set to fit into a Hartmann-graph. Intuitively, in each cell 

of a Shack-Hartmann sensor, only one sharp focusing point is allowed while the other 

pixels are treated as “dark” (low value pixels). However, in the plenoptic sensor, the 

restriction has been removed where each cell image is free to be any arbitrary pattern 

and each pixel is equivalently informative. Therefore, the “Checkerboard” 

reconstruction fetches a small portion of the plenoptic image and uses that to mimic 

what a Shack-Hartmann sensor would do. The associated speed up when compared 

with full reconstruction algorithm is obtained by using one computation thread for 

each spot on the Hartmann-graph. The “Checkerboard” reconstruction algorithm is 
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also more robust when compared with a Shack-Hartmann sensor, which will be 

proved later (in section 3.5). 

3.4.3 Analytical phase and amplitude retrieval equations 

In some occasions, detailed reconstruction is preferred over speed parameters. For 

example, in calibrating a deformable mirror, it is desirable to acquire the weak 

displacement as well as the reflectivity of the surface. In other words, if the complex 

field is to be reconstructed, analytical solution serves as an optional reconstruction 

algorithm. 

In general, a complex optic field contains two real number parts for any point in space 

along a specified polarization direction: amplitude and phase. At least 2 equations are 

required to solve one spatial point of a complex optic field. Thus, to resolve an area of 

complex field with N×N points, 2N
2
 equations need to be listed.  

The analytical equations are listed by treating each patch to be uniform in phase and 

assume that each point on the entrance pupil has a unique phase. Therefore, the 

geometric bounding conditions can be obtained on the plenoptic image and the phase 

bounding conditions can be obtained at the entrance pupil of the plenoptic sensor. By 

solving the corresponding equations group with MMSE standard, an analytical 

complex field result can be acquired. 

“Dummy” Example: 

In a discrete sample array of 3 3 points on the front focal plane, one can actually 

predict how they evolve into blocks of images as presented in the following figure. 
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Figure 3. 19: Dummy example in analytical solution of the complex field on a plenoptic image 

To reconstruct the phase information, we need the assumption that in each block, the 

phase change can be neglected, which results from the fact that rays within a patch of 

the beam would basically end up in the same block with identical angular and phase 

information.  Hence we have the equation group: 
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In the above equations, matrix 

i h g

f E d

c b a

 is the interference pattern observed on the 

front focal plane of object lens and the blocks are assigned with uniform phase 

information 3 3  . These real numbers can be obtained by adding all the corresponding 

pixel intensities on the image of a plenoptic camera, or can be alternatively obtained 

by using a standard imaging camera and setting the image sensor at the back focal 

plane of lens. By solving the equation group, the patches in the light field are initially 

retrieved, including their relevant phases. Then further adjustments can be used in 

iterations to satisfy that in the reconstruction, the phase map doesn’t have any 

discontinuities: 

  tolS r dr error                                                   (51) 

Equation (51) can be invoked under continuous phase change assumptions. However, 

the consumption of computation power for the analytical solution and its optimization 

is considerable and is not linearly tractable. For N=100, it requires 10000 interweaved 

equations and the complexity to solve this goes with the trend of N
3
ln(N). 

Therefore, it is not practical to use the analytical equations to adaptively observe and 

reconstruct the phase distortion caused by atmospheric turbulence. For static phase 

and amplitude distortions, however, the analytical algorithm provides reasonable and 

reliable results. In fact, it maximizes the use of all the information on a plenoptic 

image as all the bounding conditions have been considered. 
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3.5 Use basic concepts of information theory to review the plenoptic sensor 

The fundamental difficulty in overcoming atmospheric turbulence is the incomplete 

knowledge of the turbulence situation. Simply, given the actual refractive index of the 

air channel, a theoretical optimization can be figured out to optimize laser beam 

propagation through the channel. Similarly, one can use a special coding method to 

ensure reliable signal communication through the channel. However, full knowledge 

of the turbulence distribution is unrealistic. Therefore, how much useful information 

about the turbulent channel can be obtained is a challenging topic. And it is very 

interesting to think about the turbulence channel with ideas in information theory. In 

fact, we will introduce a very “different” understanding of the turbulence with 

concepts of information entropy [22]. 

3.5.1 Entropy and mutual information 

Entropy has been widely used to measure the size of information content. Without 

loss of generality, the “information” can be quantized and represented by binary 

strings. For example, the result of a coin toss can be represented by a 1 bit digit as “0” 

for the heads and “1” for the tails. If the coin is fair, with equal probability of both 

outcomes, the entropy is 1 bit for the coin toss game. On the other hand a biased coin 

with a 99% chance to show heads and 1% chance to show tails will have an entropy 

rate of 0.08 bit. This means that on average the biased coin provides little information 

for each toss since the result is almost certain. 

In studying the  effect of atmospheric on beam propagation, normal ideas treat the 

turbulence as a source of noise that degrades the beam quality in propagation, and 

methods of beam corrections have been developed to provide a less distorted beam 
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after propagation through the turbulent channel. Therefore, the noise of the 

atmospheric channel is time-varying without being a fixed distribution. It will be 

difficult to send a “message” through the atmospheric channel, where the “message” 

is a desired, less distorted beam at the receiver site. Innovatively, we can think in the 

reverse direction: the atmospheric turbulence is the source that provides the 

“message”, while the beam at the transmitter site is totally controllable “noise”. Thus, 

the highest frequency of the turbulent channel is the rate at which “information” is 

sent. The noise can be controlled (at least we can keep it static in the case of no 

applicable adaptive optics devices) to help us decode the information faster and 

easier. 

The strength of atmospheric turbulence is measured by path-averaged values of 

refractive index structure constant Cn
2
 (unit: m

-2/3
). Cn

2
 is commonly acquired by 

placing a point detector at the receiver site to measure the intensity fluctuation within 

a finite aperture. Cn
2
 is usually effective in revealing the fundamental turbulence 

situations: whether the turbulence is weak, medium or strong at the current time. 

However, the structure constant Cn
2
 is almost “useless” in giving actual information 

about the turbulence, not only because it is a statistical averaged value, but also 

because of its low dimensional properties. In other words, given the same value of 

Cn
2
, the beam can be distorted in countless ways and gives no information on how to 

get a less distorted beam. Therefore, in terms of “information content”, the structure 

constant Cn
2
 provides quite limited information about the channel. 

Comparatively, the Shack-Hartmann sensor provides better information compared to 

using a point detector at the receiver site. In fact, a Shack-Hartmann sensor provides 
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an array of points that expands the information set from 1D (in time dimension) to 3D 

(2D in geometric and 1D in time dimension). Therefore, the entropy of the data 

provided by a Shack-Hartmann sensor will be much greater than that of a 

scintillometer. Without loss of generality, we express the entropy measure of an 

arbitrary sensor as: 

2log ( ) ( )i i

k i

H p p bits                                    (52) 

In equation (52), the index k goes over all channels of the device and the index i goes 

over all the quantized evaluations of each individual channel. For example, suppose a 

scintillometer provides 8 evaluations of the turbulence per second and the analyzed 

Cn
2 

data can equally ranges from 10
-16

 m
-2/3

 to 10
-12

 m
-2/3

 with “super accuracy” (in 

fact, it is pointless to achieve such accuracy) of 10
-16

 m
-2/3

. Then the cardinality of 

index k is 8, and the maximum entropy (when the distribution of Cn
2
 is i.i.d and 

uniform over the range) of the data provided by the scintillometer per second is 106 

bits. For comparison, suppose a 128fps Shack-Hartmann sensor has 64×64 cells and 

each cell has size 16×16 pixel
2
. It is easy to find that with each focal spot in a cell of 

the Shack-Hartmann sensor, its location can specify 16×16 gradient directions and its 

intensity values can vary from 1 to 255. Therefore, the cardinality of channels is 

4096, and each channel provides 16 bits of information in maximum, so the overall 

maximum entropy measure of the data provided by a Shack-Hartmann sensor per 

second is 2
23

 bits (8,388,608 bits). Compared with a scintillometer’s result (106 bits), 

the amount of information provided by a Shack-Hartmann sensor is abundant. 

Evidently, the Shack-Hartmann sensor tells much more about the details of the 

atmospheric turbulence when compared with a scintillometer. 
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The entropy measure of information content on various devices gives us an 

approximation of the devices’ capacities in providing details of the turbulent channel. 

Without loss of generality, we can draw the diagram of the swapped source-channel 

detection as: 

 

Figure 3. 20: Diagram of swapped source-channel detection in atmospheric turbulence modeling 

In figure 3.20, the transmitted beam profile is injected at the transmitter site, and it 

can be modified with known phase and amplitude distribution with the help of AO 

devices such as a spatial light modulator or deformable mirror, etc. Since the receiver 

signal is picked up at the receiver site, the equivalent noise signal in the turbulent 

channel should be the projected outcome of the transmitted beam in the absence of 

turbulence. Regarding the fact that the optic signal is carried by the beam, all the 

symbols in figure 1 represent the logarithm magnitude of the original signal. Thus, 

the value of the turbulence signal X won’t be revealed at points with zero optic 

intensity (Y would be -∞ for that point). By taking the logarithm of the signals we 

have the convenience of expressing the turbulence source in a more uniform manner 

for weak turbulence, deep turbulence and strong turbulence situations: 

2log (1 )iX x                                                      (53) 
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In equation (53), xi represents the amplitude and phase change in the i
th

 small segment 

of the channel length within which the amplitude and phase changes are trivial. On 

average, the real part of xi is negative and the imaginary part of xi reflects the phase 

change in each segment. 

Because the noise signal is unbounded for its negative real parts, we can empirically 

define a finite threshold to regulate so that normalized signals below the threshold are 

meaningless for our detection. The process is illustrated as: 

 

Figure 3. 21: Diagram of handling low intensity data 

In figure 3.21 we show that the subset of the data with low intensity (points below the 

threshold) is discarded so that all the informative data points should lie within the 

“Data Range”. In practice, however, one can simply define the corresponding dark 

areas (that can’t provide credible information) as “Meaningless Data”.  

Whenever the detecting device is changed, the coding alphabet of the source signal 

and channel noise signal will be changed accordingly. For example, an interferometer 

uses the intensity variation and reference beam’s profile to determine the distorted 

wavefront. On the other hand, the Shack-Hartmann sensor uses focus shift to tell the 

local phase gradient of the distorted wavefront. Therefore, it is hard to establish a 
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certain standard to evaluate various approaches. The entropy rate, however, can serve 

as a fair measure. If the maximum capacity of the device can’t cover the data rate 

(entropy measure per second) of the turbulence channel, we know that the 

observation is inadequate. 

Nevertheless, there are alternative ways to claim inadequate observation, but we can 

always quantify with the entropy concepts. For instance, one can claim that a Shack-

Hartmann sensor is “inadequate” when the focal spot reaches outside the boundary 

pixel of a cell. Intuitively this means that the SH sensor is short of angular range to 

express the local tilt, while the concept of entropy will explain that outcome as an 

“error” code (not because the cell is empty, but because there exist 2 distinctive spots 

in the neighboring cell). In fact, as long as the outcome doesn’t resemble a Hartmann-

gram
3
, the entropy way will treat the outcome as an error. This is because the 

maximum entropy measure of a Shack-Hartmann sensor is calculated based on an 

ideal Hartmann-gram. 

An interesting question to ask is whether we can determine the entropy measure of 

the plenoptic sensor, and whether the plenoptic sensor is capable of communicating 

with the source at a higher data rate than the Shack-Hartmann sensor mentioned 

above. We can assume that the plenoptic sensor uses the same image resolution as the 

Shack-Hartmann sensor, and the MLA is identical in both sensors with 64×64 cells 

and each cell has size 16×16 pixels. Each block is an individual angular spectrum, 

and each cell image is a geometric copy of the real world. Thus we have 

(64×64×16×16) individual channels and each channel gives 8 bits information. When 

the plenoptic sensor is sampling at the same frame rate as the Shack-Hartmann sensor 
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(128 fps), with each pixel revealing 8 bits information, the maximum information 

content measured by the plenoptic sensor is 2
30

 bits (1,073,741,824 bits). Intuitively, 

this means with the same MLA and image resolution, the plenoptic sensor has 128 

times more possible outcomes than the Shack-Hartmann sensor. In other words, if one 

wants to characterize the turbulence channel, the plenoptic sensor can provide more 

details than a Shack-Hartmann sensor. Note that the comparison depends on how the 

image resolution is divided by the MLA’s property. For convenience, we can use the 

following chart to see the comparison between those two types of wavefront sensors: 

Table 1. 1. Information size comparison between the plenoptic sensor and the Shack-Hartman 

sensor 

Image cell 

size  

Image cell 

number 

Information size of a plenoptic 

sensor per second 

Information size of a Shack-

Hartmann sensor per second 

64×64 16×16 2
30

 bits ~2
19

bits 

32×32 32×32 2
30

 bits ~2
21

bits 

16×16 64×64 2
30

 bits 2
23

 bits 

8×8 128×128 2
30

 bits ~2
25

 bits 

4×4 256×256 2
30

 bits ~2
27

 bits 

2×2 512×512 2
30

 bits ~2
28

 bits 

 

From Table 1.1, it is not difficult to see that with the changes of a MLA cell size (cell 

number will be changed accordingly if the MLA has fixed size), the plenoptic sensor 

has a constant size of maximum information output, while the Shack-Hartmann 
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sensor increases the total number of information output with smaller cells. However, 

two distinctive observations can be made: 

(1) The increased amount of information on a Shack-Hartmann sensor is at the 

cost of smaller angular detection range. 

(2) The plenoptic sensor strictly provides a larger amount of information than the 

Shack-Hartmann sensor with the same hardware (same MLA, same image 

resolution, and same frame rate). 

In fact, in the limit of the Shack-Hartmann sensor (if the cell size is just 1 pixel) its 

information size provided in 1 second equals that of the plenoptic sensor. But the 

Shack-Hartmann sensor provides less meaningful information since there is no 

angular information provided. Thus, in the practice of changing the MLA cell size to 

realize tradeoffs between angular and geometric resolutions, the plenoptic sensor 

provides a smooth trade-off without harming the capacity of the observing device. 

The Shack-Hartmann sensor, however, doesn’t have stable capacity in the trade-off 

practice. This is due to the restriction that a Shack-Hartmann sensor can only have 

one focus interpreted under each cell image.  

Nevertheless, in low illumination conditions (such as astronomy applications), the 

Shack-Hartmann sensor does provide good SNR ratios. For weak illumination 

sources, a Shack-Hartmann sensor is more sensitive than the plenoptic sensor because 

all photons within a MLA cell are concentrated to 1 pixel (while the plenoptic sensor 

distributes the photons into many pixels). As a consequence, the Shack-Hartmann 

sensor may out-perform the plenoptic sensor in extreme low-illumination conditions. 

In normal conditions where illumination is sufficient (especially in laser imaging), the 
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Shack-Hartmann sensors will lose the sensitivity advantage when compete with a 

plenoptic sensor. In fact, the ultimate use of an image sensor’s capacity is to use 

every pixel to resemble a ray in the light field, and the plenoptic sensor has achieved 

this. In other words, the plenoptic sensor is the optimized realization of light field 

sensing. 

3.5.2 Data compression 

The purpose of advanced wavefront sensing is to obtain as much information about 

the complex amplitude of the field as possible. It is regulated by the data processing 

inequality (DPI) that any reconstruction algorithm can’t retrieve/recreate information 

lost in the wavefront sensing part. Intuitively, given a uniform beam U(x, y), 

turbulence caused point spread function X(s, t, x, y; L), and an arbitrary 2D sensor 

acquires an image of Im(s, t). The sensing process can be expressed as a convolution 

result of: U(x, y)*X(s, t, x, y; L)  Im(s, t).  Since the transmitted beam and the image 

on the wavefront sensor is known, Im(s, t) is treated as an indicator of the 

atmospheric turbulence: X(s, t, x, y; L)  Im(s, t). On the other hand, a reconstruction 

algorithm can be applied to use the wavefront sensing information to estimate the 

turbulence situation Im(s, t)  X
*
(s, t, x, y; L). Then the DPI states that: 

   * , Im,I I XX X                                               (54)  

Equation (54) suggests that from any reconstruction algorithm, one can’t obtain any 

extra information about the turbulence than the sensing process. The equality of 

equation (54) is achieved if and only if the reconstruction algorithm is lossless. Based 

on this conclusion, the full reconstruction algorithm provides more facts about the 

turbulence than the fast reconstruction algorithms. 
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As discussed in the fast reconstruction algorithm (section 3.4.2), a Hartmann-graph is 

a lossless reconstruction algorithm result for a Shack-Hartmann image, while it is a 

data compression result for a plenoptic image. For low orders of atmospheric phase 

distortion where a Hartmann-graph has a larger entropy measure than the distortion, 

the Shack-Hartmann and the plenoptic sensor should provide very similar results. 

However, ambiguities happen on the Shack-Hartmann sensor because the local phase 

gradient for each spatial point depends entirely on one MLA cell. In other words, if 

the cell image is interfered, the data from the same cell will be lost and the 

reconstruction result will be affected. Admittedly, interpolation from neighboring data 

points help to produce a smoother result, but the entropy measure of the data can’t be 

increased. 

However, on the plenoptic sensor’s site, since we only use a subset of the plenoptic 

image, the remaining set of plenoptic image pixels might be useful. Thus, we can run 

the “checkerboard” reconstruction once again after we experience the tragic scenario 

where the critical information has been lost. The result is shown as: 
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Figure 3. 22: Checkerboard reconstruction result on the plenoptic sensor when we lose all the 

information in the previous reconstruction practice 

Figure 3.22 shows that a credible reconstruction can be conducted on the plenoptic 

image, even if we have removed all the pixels used in the previous reconstructions 

(by setting their values to zero). Since the pixels on the plenoptic image represent 

light rays that are mutually exclusive, there is no redundancy in the received plenoptic 

image. Therefore, we can see that the second reconstruction reflects the wavefront 

with accuracy. In fact, the correlation with the result of a Shack-Hartmann sensor is 

95.4% (The first reconstruction trial has 99% agreement with the Shack-Hartmann 

sensor’s result). 

For additional interest, we run the “checkerboard” reconstruction again after 

removing all the pixels used for the previous reconstructions. The result is shown as: 
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Figure 3. 23: Extra trial with checkerboard reconstruction assuming that a significant amount of 

information is lost 

As shown in figure 3.22, we find that the dominant Zernike distortion is still 

“defocus”, and the similarity of the third attempt drops to 74.3%. Therefore, when we 

iteratively remove relevant information from the data set, the reconstruction result 

will be increasingly affected by the irrelevant information. Thus, compared with a 

Shack-Hartmann sensor that provides only one copy of the Hartmann-gram, the 

plenoptic sensor provides extra robustness in revealing the wavefront information. 

The difference in accuracy begins to show up in reconstructing a “trefoil” 

deformation (higher order of distortion) with both the Shack-Hartmann sensor and the 

plenoptic sensor. The “trefoil” deformation contains more spatial oscillations of the 
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wavefront and is comparatively more difficult to reconstruct than a “defocus” case. 

The result of the “trefoil” deformation reconstructed by a Shack-Hartmann sensor is 

shown in figure 3.24, while the result from a plenoptic sensor is shown in figure 3.25. 

As the distortion is known to be a “trefoil” case, it is evident that the plenoptic sensor 

reveals the details better than the Shack-Hartmann sensor with the same hardware 

configuration. Admittedly, we built the Shack-Harman sensor with comparatively 

larger image cell size (54×54 pixel
2
) to reconstruct low order distortions more 

accurately. Therefore, when facing the higher order Zernike modes, the Shack-

Hartmann sensor’s performance begin to degrade (because of lack of enough grid 

points in the geometry). The plenoptic sensor, however, has smooth performance in 

revealing higher order wavefront distortions. Thus the “trefoil” deformation is 

reconstructed credibly by the plenoptic sensor. In order to make a Shack-Hartmann 

sensor to work for higher Zernike modes, we need to make tradeoffs by reducing the 

angular range (the cell size of MLA) and increasing the number of grid points (the 

number of cells in a MLA).  
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Figure 3. 24: Trefoil deformation and reconstruction by the Shack-Hartmann sensor 
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Figure 3. 25: Trefoil deformation and "checkerboard" reconstruction by the Plenoptic sensor 

In conclusion, a fast reconstruction algorithm (such as the “Tree” reconstruction 

algorithm and “Checkerboard” reconstruction algorithm) is a data compression 

process on the plenoptic image, while a full reconstruction algorithm (such as the full 

reconstruction algorithm or the panorama reconstruction algorithm) maximizes the 

use of a plenoptic image. 

3.5.3 Channel capacity 

How to determine whether a wavefront sensor is adequate for typical atmospheric 

turbulence situation is of great importance. In this section, we will introduce a rule of 

thumb to solve this fundamental question.  
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As described in section 3.5.1, with a swapped source channel module, the turbulence 

can be viewed as a transmitter that emits signals to the receiver. And the entropy 

measure can be conducted on the source to determine the actual size of information 

variety that is achievable on the source. For simplicity, we mark the entropy measure 

of the source as Hs. 

Similarly, the maximum entropy measure on an observing device can be determined 

by asymptotic equal partition (AEP) assumption where each outcome is equally 

possible. For simplicity, we use Hi to mark the i
th

 sensor for sensing the distorted 

laser beam. Then, if Hs>Hi, we can determine that the i
th

 sensor is inadequate in 

handling the current turbulence situation. In other words, there will be some different 

turbulence structures that can’t be differentiated by the wavefront sensor. Only a 

lower resolution of the turbulence situation is possible when Hs>Hi happens. For the 

cases where Hs<Hi, it is “possible” that the wavefront sensor is adequate to reveal the 

turbulence situation. The quoted word “possible” refers to the actual distribution of 

outcomes in the wavefront sensing. Intuitively, if the outcomes are not uniformly 

distributed, the entropy measure of the device Hi is overestimated and a tighter bound 

needs to be determined as Hi
*
 based on asymmetric outcome distribution. And the 

device is adequate for observing turbulence if Hs<inf{Hi
*
} and alignment is correct. 

An extension for this theorem can be applied to AO devices under the help of a 

wavefront sensor (as a translator for different deformation). Without loss of generality, 

the entropy measure of the AO has an entropy measure of Ha with regard to the 

wavefront sensor it cooperates with. Then the system entropy measure can be 

determined as HAO=min{Ha, inf{Hi
*
} }. And similar rules can be applied to determine 
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whether the adaptive optics system is adequate to correct the turbulence situation by 

comparing Hs and HAO. 
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Chapter 4: 3D simulations 

Although the real time 3D dynamic sensing of atmospheric turbulence structure is 

unrealistic, it is possible to perform 3D simulation of atmospheric turbulence to 

economically test system design and figure out solutions in overcoming turbulence 

effects. There are two major approaches to conduct the 3D turbulence simulation. 

One is based on geometric ray modeling that simulates each ray’s trajectory and 

phase change. The other is based on wave theory and uses phase screens to resemble 

the changes caused by the channel. The major advantage of the geometric ray 

modeling is its simplicity where the fundamental task is to track individual ray in the 

shared atmospheric channel, while wave properties of the beam might be lost in the 

tracking process (no diffraction). Wave analysis keeps track of the continuous 

changes in the beam but the setup of the turbulence channel is based on 2D models 

rather than 3D models. In this chapter we will introduce both approaches and propose 

a “pseudo” diffraction model to account for the wave properties in geometric ray 

modeling. 

4.1 Basic concepts in geometric optics 

Geometric optics is widely applied in optical studies. It has been applied in automatic 

optic system design software such as Code-V and Zemax [1], computer vision [2], as 

well as some virtual reality studies [3]. In the field of atmospheric turbulence, 

geometric optics can be used to describe/analyze/simulate the beam propagation 

process. In fact, given the distributive refractive index of the channel and the 
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transmitted beam (with adequate ray samples), the resulted distorted beam can be 

calculated.   

In general, the ray geometrics can be expressed as: 

d dr
n grad n

ds ds

 
 

 
                                                  (1) 

Where n is atmospheric refractive index and r  is a single ray’s geometric trajectory 

with regard to its path length s. Because the majority of rays have weak deviation 

from sight to sight alignment, a paraxial approximation can be generally applied. 

Also, by taking into account the fact that all rays collected by the receiver shares a 

common propagation axis, we can express the displacement equations along the 

transverse plane of the optical axis as: 

( )
(1 )

d dx d n
n

dz dz dx




 
  

 
                                                  (2) 

( )
(1 )

d dy d n
n

dz dz dy




 
  

 
                                                  (3) 

Where atmospheric turbulence has been expressed directly by deviation in refractive 

index, thus by further quantizing the process in evolution steps, we have: 

( , )x

z
x z n x y

x




                                                        (4) 

( , )y

z
y z n x y

x




                                                       (5) 

Where Δ is a symbol that handles the increments in ray propagation, and δ handles 

increments in the distribution of atmospheric refractive index (note that the ray 

simulation and turbulence simulation use different resolutions). Therefore, for any 

arbitrary ray in the system, the trajectory of the ray can be tracked geometrically if all 
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the channel distortion is known. However, the diffractive behavior of the ray has been 

ignored and the associated error in long range propagation conditions may cause 

severe deviation from reality. 

4.1.1 Eikonal equation 

It is of great importance to determine the source of error in using geometric optics 

without considering the minor effect of diffraction [4]. The original form of the wave 

equation can be expressed as: 

2 2 2

0 ( ) ( ) 0u k n r u r                                                      (6) 

In equation (6), u(r) represents the complex optical field and k0 represents the 

wavenumber of the light rays. The refractive index of the channel is expressed by 

n(r).  

Without loss of generality, we can assume the standard solution form: 

( )( ) ( ) i ru r A r e                                                        (7) 

In equation (7) the amplitude information is A(r) and the phase information is ψ(r). In 

general, atmospheric turbulence satisfies the following term: 

0

| || |
, min( , , )

| | | | | |

j

j

kA n
L L

A k n
 

  
                                     (8) 

In equation (8), it is assumed that the atmospheric turbulence causes much more 

gradual changes (instead of rapid spatial oscillation) than the scale of the wavelength. 

Therefore, we can introduce a scaling parameter as: 

0

1 1
1

2kL k nL L





  

                                              (9) 
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In addition, dimensionless wave equations can be obtained by the following 

transformation: 

2 2 2
2 2 2

1 1 1 0 1 0 1 02 2 2

1 1 1

0, ,u n u x k x y k y z k z
x y z

  
         
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                 (10) 

2 2 2 2
2 2

2 2 1 1 12 2 2 2

2 2 2

0, ,
n x y z

u u x y z
x y z L L L

  
         
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                   (11) 

Equation (10) and (11) are 2 different methods to derive a dimensionless wave 

equation. The relations between amplitude and phase scaling are expressed as: 

1 2( ) ( )A A r A r 
                                                   (12) 

1 1 1 2( ) ( )
( )

r r
r

  


 
                                                (13) 

1 1 1
2 1 2

( )
( )

r
r

 
 




                                               (14) 

Similarly, the solution for the dimensionless equation can be transformed as: 

1 1 1 2( )/ ( )/

1 2( ) ( )
i r i r

u A r e A r e
     

                                  (15) 

And the original wave equation can be reformed as: 

2
2 2 2 2 2

2 1 2 2 1 2 1 2 1 12 2

1
[ ( ) ] (2 ) exp( / ) 0

n i
u u n A A A i     

  

 
            

    

(16) 

A general series solution by expanding the amplitude in powers of μ can be given as: 

1 2( )/

2 2

0

( ) ( / ) ( )i r m

m

m

u r e i A r  




 
                                          (17) 

By matching each power of μ, the following Eikonal equation group can be obtained: 
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In Cartesian coordinates (x, y, z representation), the Eikonal equation group is 

reformed as: 
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It can be directly followed in equation (19) that geometric optics is the approximation 

of the first two orders of the Eikonal equations. To increase the accuracy of geometric 

optics, higher order equations can be taken into the system as a “perturbative” 

refinement. However, it is often not worthwhile in practice due to the required large 

computation power. 

Simply, assume that the geometric parameter can be written as r=(q1,q2…), each ray’s 

Eikonal equation can be written as: 

1 2

1 2
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q q q
q q q

     
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                               (20) 

Or equivalently, as: 
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p q p q
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Equation (21) is a simplified form of equation (20). And the momenta of a ray is 

marked by pj (j=1, 2, 3 in Cartesian coordinates). The first order differential equation 

can be expressed as: 

1

/ /
( / )

j j

n

j j
j j

j

dq dp d

H p H q
p H p





  
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 
                                 (22) 

The expression of equation (22) can be simplified by adding the differential 

equations: 
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In equation (23)-(25) qj represents the universal geometric parameter and pj 

represents the universal momenta parameter. For example, in Cartesian coordinates 

we can express the coordinates as: 

dr

d p
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Therefore, the Eikonal equation for a ray is a quadratic one, and the solution can be 

expressed in a general form as: 

0

0 p d
p




  


 

                                              (30) 

/

d
d

p


 

 
                                                       (31) 

In equation (31), arc length σ is applied as a tracing of the rays’ trajectories. The 

remaining question is to derive the actual form of Hamiltonian equation H. And due 

to the quadratic equation (19), the 1st form of Hamiltonian equation can be simply 

written as: 

2 21
( ) 0

2
p n r     

                                           (32) 

Where 

 p                                                      (33) 

Based on the above Hamiltonian form, the ray equation can be written as: 

21
, ( )

2

dr dp
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                                                (34) 
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d d
d

p n

 
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                                                     (36) 

Equation (34) is the geometric ray tracing function, equation (35) is the phase 

tracking function and equation (36) is the trajectory function.  

Similarly, the 2
nd

 form of the Hamiltonian equation can be written as: 

( ) 0H p n r                                                  (37) 
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2p p
                                                         (38) 

Equation (37) and (38) can de derived directly from solving equation (32). 

Correspondingly, the ray equations are changed to: 

,
dr p dp

n
d n d 

 
                                             (39) 

Despite the seemingly different forms of these Hamiltonian equations, a generalized 

expression is shown as: 

2
2

2

1
,

2

d r d dr
n n n

d d d  

 
   

                                     (40) 

In conclusion, geometric optics is a low order solution of the Eikonal equations in 

wave analysis. When the condition of equation (8) is satisfied, geometric optics can 

be safely applied to provide an accurate and reliable solution.  

4.1.2 Meridional ray and skew rays 

The meridional ray is generally used in optical fiber systems to describe the ray 

passing through the axis of a fiber. Skew rays refer to those rays that pass through the 

optic fiber in zig-zag paths/trajectories. As an extension, we can use a gradually 

expanding light pipe to describe the behavior of a congruence of light rays. 

Geometrically we call the center ray of the light pipe “Meridional ray” while rays at 

the edge of the light pipe as “Skew rays”.  

Without loss of generality, the light pipe profiles a patch (a small wavelet that acts 

like a plane wave with flat phase front). Since all the rays inside the pipe are 

geometrically close to each other, they pass through the same turbulence cells and 

stays coherent at the end of the propagation channel. Based on the meridional ray and 
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skew rays, the analytical wave expression can be reconstructed. In other words, 

geometric optics and wave analysis are interchangeable in solving atmospheric 

turbulence problems as long as spatial resolution is adequate. With the established 

turbulence channel (in simulation), it is convenient to use geometric optics to 

simulate the propagation process in 3D. 

 

4.2 2D phase screen simulations 

Wave analysis of the turbulence effects on laser beam propagation is conventionally 

achieved by 2D phase screen models. In general, a phase screen characterizes the 

concentrated atmospheric distortion effect for a segmental channel length L. The 

propagation is ideally simplified to free propagation plus a one-time interaction with a 

phase screen. In fact, different from geometric optics, which focuses on the 

accuracies in describing the channel while causing inaccuracies in waveforms, phase 

screen methods focus on the accuracies of the waveforms but cause inaccuracies in 

describing the turbulent channel. 

4.2.1 Mathematical model 

Atmospheric turbulence has an inertial range where correlation between the 

fluctuations in the refractive index of the air serves as a fundamental fluid property of 

the air. In a simplified mathematical model (without investigating the actual viscidity 

of air), the correlation can be implied by the correlation and structure function of 

turbulence
 
[6] as: 

     1 2 1 1 1 2,nB R R n R n R                                      (41) 
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     2 0n n nD R B B R                                         (42) 

2 1R R R                                                     (43) 

Equation (41) describes the auto-correlation function of fluctuations in the refractive 

index of air. In equation (42) we have made an isotropic assumption about the 

structure function. Anisotropic results can be saved in matrix forms similarly. The 

correlation can be obtained from field measurements on temperature distributions, 

wind speed and humidity levels. With this data, the structure properties of refractive 

index can be implied to the extent of equipment limits (which prevent measurements 

from retrieving further accuracy). For example, the refractive index structure constant 

Cn
2
 that measures fluctuation strength can be inferred from: 

2

2 6 2

2
79 10n T

P
C C

T

 
  
 

                                       (44) 

Where CT
2
 is the temperature structure constant, retrieved from temperature 

measurements. This approach neglects other possible effects such as correlations with 

humidity. Alternatively, the autocorrelation function can be inferred from theoretical 

models, since the auto-correlation function and the spatial power spectrum density 

function are Fourier transform pairs of each other: 

 
 

    3

3

1
exp

2
n nK B R iK R d R






                             (45) 

In isotropic cases this equation can be simplified into a 1D situation: 

     2 0

1
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2
n nB R R dR 

 



                                     (46) 

Simply, one can derive the auto-correlation by using the power spectrum function as: 
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      3expn nB R K iK R d K



                                    (47) 

Similarly, in isotropic cases, the equation can be simplified as: 

     
0

4
sinn nB R R d

R


   



                                     (48) 

Based on these facts, theoretical auto-correlation restrictions can be achieved through 

a Fourier transform of the spatial power spectral density functions. Several basic 

spatial power spectral density functions are shown in figure 4.1. For convenience, we 

list only 4 of the major spectra used in most research articles: 

(1) Kolmogorov law is expressed as: 

  2 11/3

0 00.033 1/ 1/n nC L l   
                           (49) 

(2) Tatarskii spectrum: 
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(3) Von Karman spectrum: 
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              (51) 

(4) Modified atmospheric spectrum (Hill spectrum): 
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Symbols l0 and L0 are inner and outer scales of turbulence respectively. The modified 

atmospheric spectrum model is also called the “Hill spectrum” in some articles. 

 

Figure 4. 1: Normalized auto correlation function for various models of spatial power spectrum 

density 

Based on the correlation function, a 2D phase screen that satisfies the statistical 

analysis can be generated to add phase and amplitude modifications to the beam to 

mimic the atmospheric turbulence effects. 

4.2.2 Generation of 2D phase screens 

The generation of a phase screen is simply compression of atmospheric turbulence 

from 3D to 2D, expressed as [5]: 

   
0

0
0, , ,

sz z

z
x y k n x y z dz 



                                           (54) 
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Where k0 is the wavenumber of the laser beam, and if the laser has a broad spectrum, 

an extra convolution layer can be applied to handle the situation: 

   
max 0

min 0
0 0, , ( ) , , ,

sk z z

k z
x y k k k k n x y z k dz dk  



                  (55) 

For each spectrum the phase screen is assumed to be made up of: 

       1/2

0, 2 , ,x yi x y

s x y n x y x yx y z k e d d  
     

 
                  (56) 

Where Kx and Ky are spatial frequencies of turbulence in the transverse plane, α(Kx, 

Ky) is  a random complex amplitude with a standard normal distribution, and  Φn(Kx, 

Ky) is power spectrum density along the transverse plane. Therefore, the distance 

along the propagation direction that a phase screen represents must satisfy the 

precondition: 

0sz L                                                          (57) 

The symbol L0 in equation (44) is the outer scale of turbulence. This precondition 

gives mathematical convenience in setting up a number of phase screens to achieve 

similar effect of turbulence by lowering the complexity by one dimension (the 

propagation direction is suppressed). 

4.2.3 Limitations to phase screen simulations 

The limitation of phase screen simulations is the mismatch between the 2D set up of 

the channel structure and the actual 3D structure of the channel. Normally, the 

correlation between neighboring phase screens is ignored by setting them far apart. 

And the track of how turbulence evolves dynamically has become impossible in this 

model. In fact, phase screen models are rather static than dynamic due to the 

compression of channel structure complexity from 3D to 2D. Advanced models of 3D 
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phase screens have been proposed [6], which consider the correlation between phase 

screens that lies within the inertial range. However, the conciseness of the phase 

screen will be lost and the computation requirement has been greatly increased. 

 

4.3 Pseudo diffraction functions for wave propagation 

The weakness of a geometric optics approach is its inconsistency with the wave 

properties. Intuitively, if a plane wave passing through a tiny hole is simulated in 

geometric optics, the straight trajectory of light can’t mimic the diffraction pattern 

such as Airy rings [7]. In this section, a technical “trick” is proposed to introduce a 

“Pseudo diffraction function” that counteracts part of the complexity in generating 3D 

turbulence.  In other words, the 3D turbulence generation can be simplified while 

diffraction behavior in geometric optics can be obtained. 

4.3.1 “Diffraction” in refractive index 

In principle, an Airy pattern will be generated if one image beam passes through a 

circular hole around the similar size to the wavelength. The refractive index 

distribution can be described as unity everywhere besides infinity at blocking 

(obstructing) areas. In reality, the boundary of the channel is fixed while the wave 

property of photons causes the photons to end randomly (with certain distribution) 

behind the small optic opening. Mathematically, the diffraction pattern is 

mathematically described by the Fresnel diffraction equation, which computes the 

scaled Fourier transform of the geometry of the optic opening. In the laser beam 

propagation studies, the incident wavelets can be assumed to be plane waves and the 



 

 129 

 

diffraction pattern can be simply computed by the geometric properties of the optical 

openings directly.  

Based on the above facts, by a small philosophical change, if we treat an individual 

photon as a reference center and view/watch the small optic opening, the optic 

opening would have already caused diffraction. In fact, instead of calculating the 

diffraction patterns while the beam is propagating, one can compute the diffraction 

pattern first and convolute with illumination on the optic opening to get wave analysis 

results. Therefore geometric optics can be used directly as the setup of the media has 

already considered the diffraction condition. For convenience, we name this as 

“pseudo diffraction process” to mark the special treatment in geometric optics to 

diffract first and then propagate. 

4.3.2 Intuitive interpretation of pseudo diffraction method 

The generation of the diffracted envelope pattern is illustrated as: 

 

 

Figure 4. 2: Truncated envelope extends its influence in Fourier domain 

  Therefore, when the turbulence frames are generated, the hard aperture of the filter 

causes a similar “diffraction” pattern and a pseudo-diffraction pattern can be 

generated because rays passing through the general turbulence cells would be added 

with weak moment variations. However, we claim that our diffraction algorithm 

works not because it connects physics principles, but that it functions as both a relief 
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for computational resources and parasitic diffraction generator. In fact, one has to 

scale the local fluctuations on the turbulence grids to match with the wavelength used 

in the simulation.  The philosophy that encouraged our treatment of the turbulence 

grids is a simple switch from the standpoint of the real world to the world of light 

rays, and for the light rays, it seems that the world (turbulence structure) is diffracting 

instead.   

The “Pseudo diffraction” can be demonstrated by a simple example where a group of 

parallel rays pass through a tiny rectangular aperture and the far field pattern through 

the above algorithm gives the following diffraction pattern that resembles the Airy 

patterns for rectangular apertures: 

 

 

Figure 4. 3: Demonstration of pseudo diffraction mechanism 
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As a result diffraction can be interweaved into the process of generating turbulence 

grids, which will allows for future convenience in propagating rays with diffraction 

taken into account. 

 

4.3.3 Benefits of pseudo diffraction processing 

The pseudo diffraction processing serves as a modification of the geometric optics 

result that can account for the diffraction facts in long range propagation. The 

diffraction angle, however small, will bend the ray trajectory significantly with 

adequate propagation distance. Therefore, inserting the diffraction treatments to 

geometric optics helps to increase the accuracy of ray tracing results. However, it is 

obvious that extra computation power is required. In fact, for a 3D channel, the 

pseudo diffraction processing requires convolution between a 3D diffraction kernel 

and the 3D channel. 

 

4.4 3D simulation of turbulence 

In the 3D simulation of turbulence, we find a “coincidence” case exists that the extra 

computation process to generate a “pseudo diffraction” channel can be achieved by 

“sloppily” generating the 3D turbulence grid. This special arrangement seems like 

“killing two birds with one stone”. 

4.4.1 Generation of 3D turbulence 

With knowledge of the correlation functions of fluctuations in refractive index, the 

turbulence grids can be set up accordingly. The problem is simplified by finding a 

random distribution that satisfies equation (5). And a theoretical solution can be 



 

 132 

 

achieved by the convolution of an envelope function and wide sense stationary 

random grids. A simple proof is shown as: 

     
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Where “0” is a reference point for simplification, which can be replaced with an 

arbitrary geometric coordinate r. The evaluation of the RHS of equation (13) can be 

written as: 
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         (59) 

In this evaluation we use the fact that the autocorrelation function is the convolution 

of a function with its “mirrored” self, where we have: 

              ;
r

X r X r X r X r R X r X R r dr X X R           (60) 

As a result, a direct solution exists where X(r) is WSS noise (can be obtained from a 

3D random matrix) and the envelope has the form of: 
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Therefore, the turbulence grids are generated by: 
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It is clear to see that the generation of 3D turbulence grids deals with a 3D 

convolution process. And if the situation is isotropic, it can be done separately. 

Otherwise, a texture filter (isotropic in 2D and anisotropic in another direction) or a 
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box filter (anisotropic in all directions) needs to be applied. For simplicity, we use the 

isotropic case that involves independent convolutions along 3 orthogonal directions.  

To differentiate the propagation direction and its transverse plane, we build a stock of 

independent 2D transverse planes first and then perform the envelope filter along the 

propagation direction. The diagram is shown as: 

 

 

Figure 4. 4: generation of turbulence grids of refractive index 

Generally, the generation sequence of turbulence can be swapped. We chose to build 

the transverse plane first to make the process similar to the phase screen model. 

However, turbulence grids allow for dense sampling along the propagation direction. 

In fact, if one modifies the phase screens to make them correlated for close ranges, 

eventually the turbulence generation process would lead to identical results. As a 

result, our proposed method of generating 3D turbulence grids is mathematically 

simple and a straightforward application of physics. For example, when we set 

Cn
2
≈10

-13
 m

-2/3
, we present the 2 turbulence grids that are 10mm apart from each other 

by using the modified atmospheric spectrum model as mentioned above:  
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Figure 4. 5sampled 2D turbulence frames that are 10mm apart 

The Cn
2
 in our 3D turbulence grids generation is a reference of local fluctuation 

strength of refractive index. 

4.4.2 Imbedded pseudo diffraction in 3D turbulence generation 

It is not difficult to discover that the so called “eddies” or turbulence cells do exist 

and behave more or less in groups. Since the turbulence grids are just generated by 

WSS noise and an envelope filter, it is obvious to relate the envelope filter size to the 

actual controls on the diameters of turbulence cells. That is when the envelope filter is 

truncated at an arbitrary length within the inertial range l0<lx<L0, it results in an 

aperture that matches with the turbulence cell size and it diffracts the turbulence grids 

a little. And it is not difficult to find the local diffraction patterns for the turbulence 

frames generated above. 

4.4.3 Channel and signal separation 

The channel and signal separation can be achieved by the “pseudo diffraction” 

processing where the turbulence channel and the various beam profiles are generated 

separately. The propagation law of the rays stays the same as in conventional 
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geometric optics. In general, the propagation process is an interaction between the 

beam and the channel. Some of the quantization steps in beam propagation process 

based on the “pseudo diffracted” channel are discussed as follows: 

Geometric optics solves the refractive behavior of inhomogeneous media in a 

straightforward way. Since we have already arranged a mechanism in the turbulence 

channel that can cause pseudo-diffraction phenomenon for high density rays that 

propagate through, in the propagation algorithm we can make use of the geometric 

optics equations. In fact, the generation of 3D turbulence grids depends on the 

method of propagation. Because the beam’s future behavior in diffraction has already 

been taken into account in the turbulent channel, it will be problematic if one 

propagates the beam in wave forms instead of ray forms. 

To describe the propagation algorithm, we make use of a cluster of functions called 

“Plenoptic” functions that keep all the necessary information of a light field including 

ray location, momentum, phase and energy. The Plenoptic function is widely adopted 

by researchers in the imaging processing field
13

, and we have modified it for use in 

turbulence simulations
14

. In general, the Plenoptic function can be written as: 

    , , , , ;x yP x y z                                                         (63) 

Where {} represents the cluster set for all rays in the light field, and x, y, θx, θy, ϕ, z 

are the geometric and phase parameters for each ray. ρ(x, y, θx, θy, ϕ, z) is the weight 

function for the ray, and it can be amplitude or intensity for coherent or incoherent 

applications respectively. The convenience of the plenoptic function lies in that it is 

easier to describe and implement operations on the light field. For example, {2x} 
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means a horizontal stretching of the light field by a factor of 2. And the Plenoptic 

function is automatically energy preserving because: 

 * constant                                                            (64) 

One can treat the Plenoptic function as a class in computer programing that includes 

parameters and functions. The function used in this thesis is simply an energy carrier 

(amplitude of rays) and is designed to describe the interaction between rays such as 

diffraction and interference. However, to avoid nonlinear functions with these 

behaviors, we separate the diffraction into the turbulence generation and thus the 

function can be kept in the simplest form. In other words, each ray is independent and 

can be computed in parallel. Therefore, the light field is updated at each step 

following the Plenoptic function: 

(1) Location update: 

     xx x dz                                                     (65) 

     yy y dz                                             (66) 

(2) Momentum update: 
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(3) Phase update: 

   
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1
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dx dy
k n dz

dz
 
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 
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                            (69) 

(4) Energy update: 
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                                                         (70) 

Clearly, propagating the beam through turbulent grids will simultaneously distort and 

diffract the rays. The geometric optics approach attributes the moment change by 

gradients in the distribution of refractive index as: 

d dr
n grad n

ds ds

 
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 
                                             (71) 

Where ds is the evolutional steps along the ray’s trajectory and ds≈dz in the paraxial 

approximation. Therefore equation (67) and (68) is the quantized version of equation 

(71), expressed as: 
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dnd dx
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 
                                          (73) 

The other equations in the Plenoptic function follow normal rules of linear 

propagation of rays. 

As a result, the propagation of a laser beam through atmospheric turbulence has been 

reduced to updating a Plenoptic function through a turbulent grid. The computation 

algorithm has been designed to be a linear process and parallel computing can help 

speed up the calculation. 
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4.5 Simulation implementation and optimization with GPUs 

The computation task and arrangement for the “pseudo diffraction” integrated 

geometric optics simulation of atmospheric turbulence needs to be carefully 

considered in order to be carried out on a normal GPU enabled computer. Normally, 

infinite computation power is not available. Therefore, we will discuss how to 

economically conduct the 3D geometric turbulence simulation. 

4.5.1 Memory assignments and management 

Although the algorithm introduced in previous sections seems feasible for a super-

computer, the required data volume is overwhelming and therefore may be difficult to 

realize on a standard computer. For example, the spacing between grid points should 

be no greater than the inner scale l0. This implies that a 2m×2m×1km channel with 

double precision data would require about 32TB (1TB≈2
40

 bytes). Therefore, both the 

algorithm and memory management must be carefully designed to reduce the 

computation power required. A major step of complexity compression is achieved by 

focusing only on the wavefront activity instead of the whole channel situation. This 

means that there is no need to build the turbulence channel all at once, it can be built 

step by step before the beam propagates through certain frames. And in the limit, one 

can generate one turbulence frame, propagate the wavefront and generate another and 

so on so forth. Therefore, the required memory storage problem is reduced to only 

32MB (1MB≈2
20

bytes), which allows computation to be done using only the memory 

on the GPU. 

A second step is to make use of the parallel structure of GPUs to flatten the 

computation stacks. For each thread on the GPU, it only needs to follow a single ray’s 
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updating problem. The recondition of this compression process is that each ray 

behaves relatively independently and is satisfied by our special treatment in the 

previous section. If careful consideration of the wave behavior is required, higher 

orders of the Plenoptic function are required and communication between threads is 

unavoidable. Therefore, all the evolutional propagation steps of the Plenoptic function 

are tailored to a similar image processing problem. 

A third step is to generate enough of a number of independent 2D turbulence frames 

before the simulation and randomly load them in sequence and apply a correlation 

filter along the propagation axis to generate new turbulence grids. Therefore, the 

complexity of box convolution is reduced to 1D convolution. Also, the turbulence 

frame can be stored in the shared memory of a GPU to allow for parallel access by 

each thread. 

4.5.2 Beam propagation 

The arrangement of the GPU is shown as: 
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Figure 4. 6: GPU arrangement for evolutionally updating the light field through turbulence 

As a result of the above efforts, the 3D turbulence simulation can be carried out by a 

normal computer that facilitates GPU computing. Clearly, the most resource 

consuming task is to generate turbulent grids that involve convolution. For example, 

it takes 19ms on a CUDA enabled GPU NVidia G-Force 770 ($400 general purpose 

GPU) to generate a new turbulence frame with 1024×1024 and filter size 

255×255.And the overall complexity growth of the problem is linear with 

propagation distance. Thus it takes 50 min for simulating 3D beam propagation 

through static turbulence. If the optimization of using a pool of pre-generated 2D 

turbulence grids is used, the efficiency can be improved by 10 times. Yet to overcome 

the obstacles in field assessment with undetermined Cn
2
, an additional scaling factor 

should be invoked because most spatial power spectra are linear with Cn
2
 values. 
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Nevertheless, it needs to be pointed out that the arrangements of the computation 

resources depend on various applications. For example, if reciprocity is not 

considered, the past frames can be freed immediately, otherwise one has to store all 

the generated frames in the computer. Indeed the data volume with 3D turbulence 

simulation is strikingly large. This section gives general suggestions to manage the 

3D simulation on a lab computer. 

For some primary results, we set the turbulence channel with Cn
2
=10

-13
 m

-2/3
 and 

propagation distance 1 km. The inner scale of turbulence is 1 mm and the outer scale 

is 1.00 m. The filter uses the modified atmospheric spectrum and is truncated at 

L=0.3m. The scale factor for pseudo-diffraction is selected by: 
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Where D is the turbulence cell size, X and E represent normalized WSS noise and 

envelope filter respectively from the turbulence grid generation algorithm. The 

wavelength used is 600 nm. And for each simulation presented, 2
20

≈1M rays are 

traced. 

4.5.3 Simulation results for various turbulence conditions 

For a collimated Gaussian beam with w0=0.2 m, the beam distortion over 1km range 

looks like: 
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Figure 4. 7: Gaussian beam distortion through 1km turbulence (strong) channel 

It is inferred from this result that the beam breaks up at the receiver aperture.  If the 

beam is initially stretched with asymmetric wx=0.1m, wy=0.2m, then the result 

becomes: 

 

 

Figure 4. 8: Oval shaped Gaussian beam propagation through turbulence (strong) channel 

 If the turbulence gets lower with Cn
2
=10

-14
 m

-2/3
 with all the other conditions 

unchanged, the result of the same Gaussian beam propagation looks like: 
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Figure 4. 9: Gaussian beam distortion through 1km turbulence (medium) channel 

Though a speckle effect is still observable, the color scale suggests that the beam is 

less distorted since the intensity profile is more uniform. Similarly, if we stretch the 

initial Gaussian beam to be wx=0.1m, wy=0.2m, the received beam looks like: 

 

Figure 4. 10: Oval shaped Gaussian beam propagation through turbulence (medium) channel 

In all of the above examples, diffractive vertical and horizontal lines are discernible 

since we use separable convolution to generate the turbulence grids in Cartesian 

coordinates. More application relevant simulations can be realized by the proposed 



 

 144 

 

3D simulation algorithm. Yet in our work, we focus on the demonstration that the 

method of 3D geometric simulation and its individual uses for different cases can be 

explored similarly to the 2D phase screen models. 

Since the results are presented by a ray counting method, the wave result can be 

derived by the methods introduced in section 4.1.2.  

In conclusion, our proposed algorithm is an attempt to evolve from 2D phase screen 

simulation to 3D turbulence simulation. It innovatively creates a diffraction involved 

turbulence grid that simultaneously causes the ray refractive and diffractive behavior 

simply by using linear geometric ray functions. Therefore, the method is cost 

effective and can be computed by a normal computer with enabled GPU computation. 

And the invention of this 3D approach explores the aspect of turbulence’s weak and 

continuous distorting mechanisms on the beam, which is generally neglected by 2D 

phase screen models. Therefore, the 3D simulation approach can serve as a more 

robust tool to develop and evaluate various beam correction strategies. 
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Chapter 5:  Experimental Results of the Plenoptic Sensor 

In this chapter, we will demonstrate the functions of the plenoptic sensor through 

experimental results. The algorithms mentioned in chapter 3 will also be illustrated 

with intermediate steps and varying cases to help readers to gain better understanding 

on the principles of the plenoptic sensor. 

5.1 Basic experimental platform 

The basic experimental setup is shown as: 

 

Figure 5. 1: Basic experimental setup picture 

The illustrative diagram for this experimental setup can is shown as: 
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Figure 5. 2: Diagram for basic experimental setup picture 

 

In figure 5.2, a laser beam is distorted by a deformable mirror and sensed by the 

plenoptic sensor. The plenoptic images are transferred to the computer and 

reconstruction algorithms can be applied to retrieve the distorted wavefront. To verify 

the algorithms’ correctness, one can compare them with a known deformation applied 

to the deformable mirror. To implement a correction algorithm, the computer can give 

deformation orders to the DM based the result on the plenoptic sensor and check if 

the DM can be set flat again. The following experiments are built based on the basic 

platform.  

5.2 Full reconstruction algorithm 

In the full reconstruction algorithm, an OKO deformable mirror (piezoelectric, 37 actuators, 

30mm diameter) is used to generate a known phase distortion. The plenoptic sensor is applied 
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to reconstruct the phase distortion independently. A collimated Gaussian beam is used at the 

transmitter’s site. The detailed experiment diagram and layout are as shown [1]: 

 

Figure 5. 3: Experimental setup for full reconstruction algorithm 

The plenoptic sensor contains a thin objective lens with a 2 inch diameter and focal length of 

750mm. The MLA used is 10mm by 10mm with 300μm pitch length and 1.6° divergence 

(EF = 5.1mm). The image sensor is an Allied Vision GX1050 monochrome CCD camera 

with a max frame rate at 109fps. A detailed diagram of the OKO 37-channel deformable 

mirror and its actuators’ locations are shown in Figure 5.4. 
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Figure 5. 4: OKO 37-channel PDM and its actuators' positions (observed from the back of the 

mirror) 

The commands sent to the deformable mirror consist of 37 individual integer numbers 

ranging from 0 to 4095. The maximum number 4095 corresponds to a voltage of 150V, 

which drives a piezoelectric actuator in the DM to move to its full magnitude of 5.5λ 

(λ=632.8nm). When a deformation needs to be applied by the 37-actuators beneath the 

surface of the DM, one can use the experimentally determined scaling factor of 740/λ to form 

the distortion command. 

The results for the reconstruction algorithms are shown as: 
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Case A: Defocus Z(2, 0) deformation 

 

Figure 5. 5: Reconstruction results of a phase screen with Z(2, 0) 

The “Defocus” can be expressed as: 

            0 2
2 ( , ) 0 1, [0, 2 )Z A                                 (1) 

The symbol “A” in equation (1) represents the magnitude of the distortion (A=4095 

in the case of “Defocus”), while ρ and θ represent the normalized radius and angle 

respectively for the Zernike polynomial. Intuitively, the gradient of the “Defocus” 

function increases symmetrically when the radius ρ increases. The gradient at each 

spot (ρ, θ) is mapped into different blocks of the deformable mirror. Furthermore, the 

observation that the most outside blocks are illuminated with larger areas reflects that 

the gradients changes faster when the radius ρ increases. 
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A detailed explanation of figure 5.5 has been discussed in section 3.4.1, which will not be 

elaborated on here. Based on the reconstruction results, the channel (actuator) values on the 

deformable mirror can be quantitatively extracted by sampling the reconstructed surface at 

the geometries of the 37-channel actuators of the DM. Then by multiplying the same scaling 

factor of 740/λ, the channel based values can be compared with the original commands sent 

to the deformable mirror. The compact results in the “Defocus” case is listed in the table 5.1: 

Table 5. 1: Channel values of “Defocus” 

 

Channel  Distortion  Reconstruction Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

0 

455 

455 

455 

455 

455 

455 

1365 

1820 

1365 

1820 

1365 

1820 

1365 

0 

742 

641 

633 

782 

916 

794 

1828 

2276 

1862 

2267 

1904 

2225 

1716 

0 

287 

186 

178 

327 

461 

339 

463 

456 

497 

447 

539 

405 

351 
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15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

1820 

1365 

1820 

1365 

1820 

3185 

3185 

4095 

3185 

3185 

4095 

3185 

3185 

4095 

3185 

3185 

4095 

3185 

3185 

4095 

3185 

3185 

4095 

2247 

2064 

2611 

2045 

2149 

2671 

2977 

3443 

3005 

2976 

3730 

3302 

3229 

3453 

2963 

2821 

3361 

3167 

3313 

4095 

3374 

3238 

3040 

427 

699 

791 

680 

329 

-514 

-208 

-652 

-180 

-209 

-365 

117 

44 

-642 

-222 

-364 

-734 

-18 

128 

0 

189 

53 

-1055 
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The first column of table 5.1 is the index of the actuators as demonstrated as in figure 5.5. 

The second column is the commands sent to the actuators of the DM, and the third column is 

the information extracted from the reconstruction at each position of the actuators. The fourth 

column (Error) in table 5.1 is derived by subtracting the third column by the second column. 

It reflects the overshoot of the reconstruction result compared with the original commands 

sent to the deformable mirror. Compared with the scaling factor of 740/λ, most channels are 

reconstructed within an absolute error of λ/2 when the maximum deformation (5.5λ) is 

applied. Without loss of generality, we can use the correlation between the original 

commands and the reconstruction results to reflect how closely the deformation is 

recognized.  A correlation value of “1” represents the complete recognition of the distortion; 

while a correlation value of “0” means that the reconstructed surface is completely irrelevant 

to the actual distortion. In the “Defocus” case, the correlation value is 0.956. According to 

figure 5.3, once the distortion pattern is recognized, the AO device can be intelligently 

arranged to compensate for the major phase distortion. The remaining distortion can be 

corrected by iteratively using the sensing, reconstruction, and compensation process, or by 

using conventional AO strategies such as SPGD [2] or SIMPLEX [3] methods. 

The time consumption in a control-feedback loop in our experiment is about 13ms, which 

includes the image acquisition time (9.2ms), the algorithm processing time (3.1ms on CPU) 

and setup time for the DM (≈1ms). These times do not reflect the faster performance that 

could be achieved with more advanced (and costlier) components. 
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Other cases of Zernike polynomials expressed as Z(m, n) or equivalently  can be sensed 

and reconstructed accordingly. For example, figure 9-12 show the reconstruction results of 

Z(1, 1), Z(2, 2), Z(3, 3) and Z(4, 4) respectively: 

Case B: Tilt Z(1, 1) deformation: 

 

Figure 5. 6: Reconstruction results of a phase screen Z(1, 1) 

The function of Z(1, 1) can be expressed as: 

     1
1 ( , ) 0 1, [0, 2 )Z A                                               (2) 
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Case C: Astigmatism Z(2, 2) deformation: 

 

Figure 5. 7: Reconstruction results of a phase screen Z(2, 2) 

The function Z(2, 2) can be expressed as: 

 2 2
2 ( , ) 0 1, [0, 2 )cos(2 ) 1

2

A
Z                                    (3) 

Case D: Trefoil Z(3, 3) deformation: 
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Figure 5. 8: Reconstruction results of a phase screen Z(3, 3) 

The function Z(3, 3) can be expressed as: 

 3 3
3 ( , ) 0 1, [0, 2 )cos(3 ) 1

2

A
Z                                (4) 

Case E: Tetrafoil Z(4, 4) deformation 
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Figure 5. 9: Reconstruction results of a phase screen Z(4, 4) 

 The function Z(4, 4) can be expressed as: 

 4 4
4 ( , ) 0 1, [0, 2 )cos(4 ) 1

2

A
Z                             (5) 

The accuracies of the above reconstruction results can be evaluated similarly to the 

“Defocus” case by extracting the values for individual actuators and compared them with the 

original commands. The results are listed in table 5.2 and table 5.3: 

Table 5. 2: Channel values of “Tilt” and “Astigmatism” 

 Z(1, 1) Z(2, 2) 

Channel Distortion Reconstruction Distortion Reconstruction 
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1     2048         2037     2048 1797 

2 1367 1224 1820 1521 

3 1367 1195 2275 2191 

4 2048 1928 2048 1917 

5 2728 2796 1820 1541 

6 2728 2796 2275 2343 

7 2048 2054 2048 1883 

8 1367 1250 1365 1017 

9 686 575 1137 934 

10 686 491 2048 2011 

11 686 497 2958 3010 

12 1367 1213 2730 2782 

13 2048 1952 2048 2023 

14 2728 2777 1365 1048 

15 3409 3456 1137 950 

16 3409 3493 2048 2164 

17 3409 3526 2958 3327 

18 2728 2817 2730 2701 

19 2048 2092 2048 1832 

20 1336 1428 865 727 

21 711 886 236 68 

22 5 583 0 230 

23 0 106 1418 1797 
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24 0 0 2677 2678 

25 5 6 4095 3622 

26 711 544 3859 3658 

27 1336 1249 3230 2972 

28 2048 1997 2048 1953 

29 2759 2791 865 828 

30 3384 3375 236 0 

31 4090 3783 0 216 

32 4095 4095 1418 1905 

33 4095 4084 2677 3054 

34 4090 4004 4095 4095 

35 3384 3508 3859 3640 

36 2759 2787 3230 2715 

37 2048 2117 2048 1678 

 

Table 5. 3: Channel values of “Trefoil” and “Tetrafoil” 

 Z(3, 3) Z(4, 4) 

Channel Distortion Reconstruction Distortion Reconstruction 

1     2048         2052     1484 1591 

2 2048 1871 1468 1583 

3 2048 1854 1468 1545 

4 2048 2281 1516 1529 

5 2048 2103 1468 1634 
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6 2048 2174 1468 1677 

7 2048 2314 1516 1590 

8 1384 1258 1339 1554 

9 2048 1926 1226 1286 

10 2711 2845 1774 1803 

11 2048 2066 1226 1515 

12 1384 1557 1339 1683 

13 2048 2664 2000 2606 

14 2711 2955 1339 1566 

15 2048 2275 1226 1462 

16 1384 1416 1774 1989 

17 2047 2794 1226 1445 

18 2711 2992 1339 1500 

19 2048 2434 2000 2354 

20 0 638 1758 2407 

21 0 0 0 409 

22 2047 2063 178 481 

23 4095 3579 2694 1955 

24 4095 3844 2694 2118 

25 2048 2258 178 947 

26 0 256 0 1027 

27 0 1070 1758 3100 

28 2047 2878 4095 3834 
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29 4095 3518 1758 2297 

30 4095 3957 0 481 

31 2048 2287 178 800 

32 0 364 2694 2212 

33 0 1396 2694 2242 

34 2047 3269 178 1007 

35 4095 4095 0 0 

36 4095 3343 1758 2649 

37 2048 2042 4095 4095 

 

In table 5.2 and table 5.3, the “Distortion” columns are the commanded deformation values 

for the DM to enforce different Zernike Polynomials. The “Reconstruction” columns are the 

value of the actuators extracted from the reconstructed phase distortion. The reconstructed 

channel values closely resemble the imposed distortions.  

The largest mismatch in the case “Tilt” is actuator #22 with absolute error of 578 (equivalent 

to 0.78λ). The largest mismatch in the case “Astigmatism” is actuator #36 with absolute error 

of 515 (0.7λ). For the case “Trefoil”, the largest mismatch is actuators #33 with absolute error 

of 1396 (1.9λ). And for the case “Tetrafoil”, the largest mismatch is actuator #27 with 

absolute error of 1342 (1.8λ). Although the deformable mirror’s surface condition is invariant 

under a constant shift (add the same value to each actuator), the worst reconstructed values 

can serve as an upper limit of the reconstruction errors. All of the largest mismatched 

actuators are at the edge of the DM (actuator #20 to actuator #37). This can be explained by 

the fact that the reconstruction algorithm integrates the gradients of the phase distortion from 
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the center point to the edge points of the DM’s surface, and therefore the reconstruction errors 

accumulate and propagate to the outside actuators. 

Table 5.4 provides the correlation and absolute RMS errors between the distortion values and 

reconstructed values for all achievable modes of Zernike polynomials on the deformable 

mirror. The mode  and modes higher than  can’t be accurately enforced by the DM used 

in the experiment because the number of actuators in the DM is not adequate enough to 

represent spatial oscillations in the radius (ρ) direction.   

Table 5. 4: Difference between imposed distortions and reconstructed distortions in basic 

Zernike polynomials 

Zernike Polynomial Correlation RMS  Error 

Tilt ( ) 0.993 0.20λ 

Defocus( ) 0.956 0.59λ 

Astigmatism( ) 0.975 0.32λ 

Coma( ) 0.936 0.49λ 

Trefoil( ) 0.932 0.62λ 

Secondary Astigmatism ( ) 0.842 0.60λ 

Tetrafoil ( ) 0.904 0.59λ 

 

In table 5.4, the “Correlation” column shows that how closely the mode is recognized 

compared to the reconstruction results. The results show that all the basic polynomial modes 
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are recognized by the plenoptic sensor with the reconstruction algorithm. The “RMS Error” 

column demonstrates the average error for each reconstructed case of Zernike polynomials. 

Compared with the maximum phase distortion in each case (5.5λ), “RMS Error” accounts for 

on average 10% of the maximum magnitude of phase distortion.  

To demonstrate a more general case where the distortion is a superposition of various Zernike 

polynomials, a case of half “Trefoil” + half “Tetrafoil” is shown as: 

 

Figure 5. 10: Reconstruction results of a phase screen that combines 2 basic Zernike modes 

The function of the distortion used is: 

       4 3( , ) cos(4 ) cos(3 ) 2
4

A
Z                                           (6) 
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where the parameters satisfy: 

                             0 1, [0, 2 )                                                          (7) 

Figure 5.10 shows that for an arbitrary distortion, the plenoptic sensor is able to use a single 

reconstruction process to recognize the major distortions in phase. In fact, the Zernike 

polynomials can be treated as Eigen-modes for a phase distortion and an arbitrary distortion 

can be expressed with combinations of basic Zernike polynomials plus small local 

distortions. Therefore, the reconstruction case in figure 5.10 is as accurate as the cases of 

single mode Zernike polynomials. The correlation between the initial distortion and the 

reconstructed results in terms of channel values is 0.917 and the “RMS Error” is 0.54λ.  

The detailed channel values of the initial distortion and reconstructed distortion for figure 

5.10 are listed in table 5.5: 

Table 5. 5: Channel values for combined Zernike Polynomial “Trefoil” + “Tetrafoil" 

Channel  Distortion  Reconstruction Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2144 

2133 

2133 

2167 

2133 

2133 

2167 

2397 

1962 

1994 

2266 

2232 

2330 

2237 

2317 

2239 

2400 

2551 

2016 

2375 

122 

99 

197 

70 

184 

106 

233 

154 

54 

381 
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11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

1962 

2397 

2509 

1687 

1962 

2705 

1962 

1687 

2509 

3434 

2192 

1222 

1903 

1903 

1222 

2192 

3434 

3990 

1242 

0 

1222 

4095 

4095 

2428 

2419 

3005 

1864 

2196 

2724 

1696 

1911 

3023 

3283 

2419 

1842 

2126 

2488 

2107 

2701 

3864 

4095 

1962 

950 

2074 

3848 

3108 

466 

22 

496 

177 

234 

19 

-266 

224 

514 

-151 

227 

620 

223 

585 

885 

509 

430 

105 

720 

950 

852 

-247 

-987 
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34 

35 

36 

37 

1222 

0 

1242 

3990 

1142 

0 

2053 

3386 

-80 

0 

811 

-604 

 

Similar to the previous discussions in different Zernike distortion cases, the channel values 

from the reconstruction resemble the initial distortion imposed by the deformable mirror. 

Based on the full reconstruction results, corrections in the experimental setup can be quickly 

applied by subtracting values sampled on the reconstructed phase front. In fact, a minimum 

of 90% phase correction can be achieved in the one step “observe and subtract” correction 

algorithm in this experimental platforms.  

 

5.3 Fast reconstruction algorithm 

The experiment diagram and picture of the instruments are shown as in figure 5.11: 
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Figure 5. 11: Experimental setup for fast reconstruction algorithm 

In the diagram shown in figure 5.11, a 5mW 632.8nm He-Ne laser source (Thorlabs: 

HNL050L) is used and expanded to a collimated beam with 40mm diameter. The beam 

propagates through a 50mm cubic beam splitter and reflects off the surface of the DM. The 

reflected beam is truncated by the DM to an aperture with 30mm diameter and a superposed 

phase change. Then the distorted beam with 30mm diameter is directed to the plenoptic 

sensor to measure the phase distortions as shown by the solid red arrows in Figure 5.11. A 

secondary channel directs the distorted beam to a photodetector to measure the undistorted 

amount of optical intensities as shown by the red dashed arrow in Figure 5.11. This 

secondary channel uses an aspherical lens of focal length of 150mm and a pinhole with 
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0.1mm diameter placed at the back focal spot of the lens. A photodetector (Thorlabs: 

PDA100A) is put behind the pinhole. Thus, any significant distortion will deviate part of the 

beam away from the focal spot and reduce the intensity value on the photodetector. 

The plenoptic sensor uses an Allied Vision GX1050 monochrome camera (1024×1024 in 

resolution with 5.5 μm  pixel width, and operating at 109 fps) as its image sensor. The 

objective lens has a clear aperture of 50mm and focal length of 750mm. The MLA used is a 

10mm×10mm microlens array with 300μm cell width and 5.1 mm focal length (Edmund 

Optics: #64-476). Limited by the size of the image sensor, the plenoptic sensor has 18×18 

(324) as the maximum number of image cells. 

When no distortion is applied to the beam, the photodetector obtains the highest intensity 

value and the plenoptic sensor shows a round beam in one image cell (defined as the center 

block). When a distortion is applied by the DM, the photodetector shows a drop of value and 

the plenoptic sensor shows distributed patches in different image cells. Therefore, the goal of 

SPGD correction (based on the feedback from the photodetector) is to maximize the intensity 

value on the photodetector. The goal of guided correction (based on the feedback from the 

plenoptic sensor) is to rehabilitate the image of the beam to the center block. 

The image metric used on the plenoptic sensor is “power out of the bucket (POB),” which 

measures the intensity sum outside the center block divided by a constant scaling factor. The 

photodetector measures the power of the undistorted optic flux and is conventionally referred 

to as “power in the bucket (PIB)” [4]. We choose POB as our image metric for the plenoptic 

sensor because of its simplicity and its complementary property with the PIB measurement 

on the photodetector. Based on POB, one can implement an advanced image metric that 

varies significantly when some patches move further away from the center block.  
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To initiate the phase distortion, we use the DM to mimic various modes of Zernike 

Polynomials with peak to peak value of 5.5λ (λ=632.8nm). This maximum deformation is 

experimentally determined, and a larger magnitude of deformation can’t be accurately 

enforced by the DM due to hysteresis effects in the piezoelectric actuators. Note that the 

when the beam is reflected from the surface of the DM, the actual peak to peak phase 

distortion is <11λ. Since the Zernike Polynomials are Eigen modes of an arbitrary 

deformation on the DM, the expected iteration steps are bounded by the best and worst cases 

of correcting those Zernike modes.   

To correct the phase distortion, we use an algorithm called “Guided SPGD” method, which 

first uses the plenoptic sensor to iteratively use our fast reconstruction algorithm to correct for 

the major phase distortion, and then start a conventional SPGD algorithm for optimization 

when the beam is almost corrected (lower than a threshold image metric value). For 

comparison, the “Pure SPGD” method is applied to correct the same deformation, which 

strictly uses SPGD algorithm for each iteration step of correction. 

For convenience of illustration, we will first introduce the results on “Tree” reconstruction 

algorithm. The results of “Checkerboard” reconstruction has already been discussed in 

chapter 3 in the entropy theory part (section 3.5.2). In fact, the “Checkerboard” reconstruction 

is a mini version of the full reconstruction algorithm, and the speed up effect lies between the 

“Tree” algorithm and the full reconstruction algorithm. For simplicity, we can treat the 

“Checkerboard” reconstruction algorithm as a balance between the full reconstruction and the 

fast “Tree” reconstruction. 
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5.3.1 Static distortion 

A detailed result of the fast reconstruction algorithm can be explained in figure 5.12 by using 

the Trefoil deformation as an example. The upper-left plot shows the plenoptic image when 

the Trefoil deformation is applied (the non-illuminated image cells are not shown in this 

plenoptic image). The upper-right plot is the maximum spanning tree that the algorithm 

derives to recognize the major phase distortion pattern. The bottom-left plot shows the 

original command on each actuator of the DM to generate the deformation. The bottom-right 

plot shows the reconstructed phase for the actuators by using the fast reconstruction 

algorithm. The maximum spanning tree indicates which set of pixels the fast reconstruction 

should use to form a “sub-optimal” reconstruction of the phases on the vertices (optimal 

reconstruction can be achieved by using all the pixels). In other words, the fast reconstruction 

algorithm makes use of the pixels that represent the location of the N-1 edges rather than the 

whole 2D plenoptic image, which brings down the input data requirement from 2D to 1D. It 

is clear that the fast reconstruction recognizes the dominant phase distortion correctly. In 

other words, the one step phase compensation will be sufficient to fix most of the phase 

distortion in this “Trefoil” case. 

Meanwhile, since the “Tree” reconstruction uses only the pixels covered by the edges and 

each edge represents the local tip/tilt between neighboring actuators, it is looking for the most 

significant and non-overlapping N-1 local tip/tilt deformations and connect them with a 

“global” tree structure. Parallel algorithm can also be invoked to extract the edge information 

simultaneously because they are geometrically separated on the plenoptic image.  
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Figure 5. 12: Fast reconstruction result for “Trefoil” deformation 

5.3.2 Adaptive optics corrections 

To correct the phase distortion, we use an algorithm called “Guided SPGD” method, which 

first uses the plenoptic sensor to iteratively use our fast reconstruction algorithm to correct for 

the major phase distortion, and then start a conventional SPGD algorithm for optimization 

when the beam is almost corrected (lower than a threshold image metric value). For 

comparison, the “Pure SPGD” method is applied to correct the same deformation, which 

strictly uses SPGD algorithm for each iteration step of correction. 

We start with a simple tip/tilt case in Zernike Polynomials as shown by figure 5.13: 
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Figure 5. 13: Fast reconstruction results for correcting Tip/Tilt deformation 

In Figure 5.13 a tip (or equivalently tilt) deformation is applied by the DM. The deformation 

can be expressed as: 

1
1 ( , ) 0 1, [0, 2 )Z A                                       (8) 

In equation (8), “A” is the magnitude of the phase deformation (A=11λ), while ρ and θ 

represent the normalized radius and angle respectively. 

 As shown by the legend, the solid blue line represents the improving curve of the “Guided 

SPGD” method.  It is obvious that the major correction is completed in one step through the 

guidance of the plenoptic sensor. Then the correction enters the SPGD mode to make tiny 

random iterations to minimize the image metric (or equivalently, maximize the power 

collected by the photodetector).  At the 10
th
 iteration step, the beam has already reached the 

vicinity of the optimum point. This result of “Guided SPGD” mode is also reflected by the 

“PIB” curve on the photodetector data, which is a complement for the “POB” curve. As 

shown by the solid red line, when the “Pure SPGD” method is applied to correct for the same 
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distortion, it takes about 150 iteration steps to reach the threshold for the “Guided SPGD” 

method and many more iteration steps (about 800) to get close to the optimum point. The 

difference can be intuitively explained: when the tip/tilt deformation is applied, it moves the 

beam from one image cell to another on the plenoptic sensor. The movement is recorded by 

all the 90 edges and the spanning tree will have every branch indicating the phase tip/tilt (the 

deformation can be fully recognized regardless of which branches are selected). Thus the 

correction orders for the actuator on the DM will correct the deformation directly in the 1
st
 

step.  

The “SPGD” method, on the other hand, will generate an identical and independent 

distribution (i.i.d) of Bernoulli (p=0.5) over set {+ε, - ε} for each actuator, where ε is a small 

deformation. Then, it determines the gradient of the image metric over this small step and 

tells the next movement whether to either forward this step (if it decreases the “POB” image 

metric) or reverse this step (if it increases the “POB” image metric) in proportion to the 

magnitude of the gradient. Thus, improvement can be guaranteed in terms of every 2 iteration 

steps. In practice, we make slight improvements on the SPGD to make assured convergence 

in roughly every 1.5 steps by empirically equalizing the magnitude of the trial step ε with the 

actual correcting deformation determined by SPGD. Note that we make ε linearly scaled by 

the image metric value to accelerate the convergence (similar to the gain coefficient γ in the 

formal theory of SPGD). Then, the SPGD method will either keep the deformation or reverse 

the deformation to make assured decreasing in 1.5 steps (the trial step is actually the 

correction step). However, with 37 actuators, the convergence is relatively slow because the 

typical result of a random trial step makes little improvement on the image metric 

(statistically half of the actuator get closer to the correct deformation while the other half of 
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the actuators get farther away from the correct deformation). Intuitively, for a DM with N 

actuators, each iteration step has (1/2)
N
 chance to guess the perfect directions of movement 

for all the actuators. Therefore, given N=37, the chance that SPGD can generate significant 

improvement in the first step is almost zero. The plenoptic sensor, however, has the capability 

to recognize the major phase distortion and inform the actuators to move correctly not only in 

terms of directions, but also in terms of proper magnitude. Thus, the extra intelligence 

provided by the plenoptic sensor can dramatically reduce the overall steps needed for beam 

correction (or equivalently make convergence to optimization more quickly). 

We should also account for the fact that the image based feedback loop takes longer per 

iteration than the time required for a photodetector feedback loop. For example, in our 

experiment, the image based feedback loop operates at 65 fps (9.2ms for image acquisition, 

1.5ms for DM control and 4.6ms for computer process time including calculating the image 

metric). Comparatively, the photodetector feedback loop operates at 482 fps (1.5ms for DM 

control and 0.57ms for photodetector data acquisition plus computer process time). 

Therefore, by regarding each guidance step from the plenoptic sensor as about 8 iterations in 

SPGD mode, we can find the corresponding improvement in terms of time. For the tip/tilt 

deformation, since there is only 1 step guidance from the plenoptic sensor, the improvement 

by “Guided SPGD” method is still significant when compared with “Pure SPGD” method. 

We also stress that these execution times are currently constrained by working in a Microsoft 

Windows environment with its associated overhead, and the max operational speed of our 

current deformable mirror.  Execution times per iteration can be dramatically improved by 

implementing FPGA operation with a faster response deformable mirror. More results are 

shown as follows: 
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Figure 5. 14: Fast reconstruction result for correcting Defocus deformation 

 

 

Figure 5. 15: Fast reconstruction result for correcting Astigmatism deformation 
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Figure 5. 16: Fast reconstruction result for correcting Coma deformation 

 

 

Figure 5. 17: Fast reconstruction result for correcting Trefoil deformation 
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Figure 5. 18: Fast reconstruction result for correcting Secondary Astigmatism deformation 

 

 

 

Figure 5. 19: Fast reconstruction result for correcting Tetrafoil deformation 
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Figure 5.13-5.19 show the comparison between the “Guided SPGD” method and “Pure 

SPGD” method for different orthogonal modes that are achievable on the DM.  Given “A” as 

the magnitude of the phase deformation (A=11λ), ρ and θ as the normalized radius and angle. 

We can express those deformations as: 

0 2
2: ( , )Defocus Z A                                                  (9)                                      

 2 2
2: ( , ) cos(2 ) 1

2

A
Astigmatism Z                                  (10) 

 3 3
3: ( , ) (3 2 ) cos(4 ) 1

2

A
Coma Z                           (11) 

 3 3
3: ( , ) cos(3 ) 1

2

A
Trefoil Z                                      (12)                  

 2 4 2
4: ( , ) (4 3 ) cos(4 ) 1

2

A
Secondary Astigmatism Z               (13)  

 4 4
4: ( , ) cos(4 ) 1

2

A
Tetrafoil Z                             (14)    

The parameters from equation (9) to equation (14) should satisfy: 

0 1, [0, 2 )                                                     (15) 

As shown by the results in figure 5.13-5.19, the “Guided SPGD” method converges to 

optimized phase correction much more effectively than the “Pure SPGD” method. The blue 

“PIB” curve (provided by the photodetector) for the “Guided SPGD” method in each 

deformation shows the exponentially increasing intensity on the receiver. This is also 

reflected by the blue “POB” curve for the “Guided SPGD” method in each deformation. In 

comparison, note that the red “POB” curve for “Pure SPGD” in each deformation is 

generally a concave curve with regard to the logarithm of iteration steps. This reveals that 
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SPGD is more efficient in correcting weak distortion than in correcting strong distortion. 

Equivalently, the same conclusion can be drawn by inspecting the convexity of the red “PIB” 

for the “Pure SPGD” method in each deformation. Intuitively, the major proportion of 

iteration steps is conducted by SPGD in both methods, while the “Guided SPGD” uses 

guidance from the plenoptic sensor to find a much better starting point for SPGD than the 

unguided “Pure SPGD” method.  It costs very few steps to find the starting point with the 

help of the plenoptic sensor, and therefore, much faster convergence can be achieved by the 

“Guided SPGD” approach. 

For some cases such as “Defocus” in figure 5.14 and “Coma” in figure 5.16, the “Guided 

SPGD” needs more than one step to accomplish the major correction (bring the image metric 

value down to the threshold value of “9” to trigger SPGD mode for optimization). This 

means that one step fast reconstruction does not suffice to recognize all the major phase 

distortions. However, the algorithm will iteratively recognize the most “significant” phase 

distortion patterns and suppress them with phase compensation. Intuitively, the word 

“significant” means the light patches that illuminated the pixels of certain edges most. The 

plenoptic image sequence for the first 4 guided correction steps in the “Defocus” case (figure 

5.14) are shown by figure 5.20. 

The step-by-step plenoptic images of the guided corrections show how the initial 4 correction 

steps by the plenoptic sensor can effectively make a distorted beam converge to an almost 

corrected form and trigger SPGD to perform the optimization. The upper-left image shows 

the collimated beam on the plenoptic sensor. The upper-middle image shows how the 

deformation distorts the beam on the plenoptic sensor. Since “Defocus” deformation 

introduces a hyperbolic phase deformation to the collimated beam and makes the beam 
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diverges over a range of angles, the plenoptic image sees all kinds of patches in different 

blocks. The fast reconstruction algorithm picks up the outside patches (since they are largest 

and most illuminated compared with other patches) and uses them to reconstruct the phases 

on the actuator to form a phase compensation suggestion for the next iteration. The upper-

right image shows the result of first step correction. Clearly, the large and bright patches in 

the outside image cells are eliminated and packed into inner image cells. Then, similar 

corrections are formed iteratively in the second iteration (bottom left image), third iteration 

(bottom middle image) and fourth iteration (bottom right image). After the fourth guided 

correction step, the defocus is almost compensated as most of the optic flux is directed back 

to the center image cell. If the image metric drops below the threshold value of 9, the fast 

reconstruction will not see significant phase changes between vertices and we can invoke the 

SPGD method to make further optimization with a few iterations. 
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Figure 5. 20: Plenoptic images for each guided correction for “Defocus” deformation case (4 

guided correction steps were taken) 

The image metric values over the first 10 iteration steps with the “Guided SPGD” method for 

all the applicable Zernike modes (as shown in figure.5.12~5.19) on the DM are presented in 

Figure 5.21. 

It can be concluded from figure 5.21 that the major phase correction can be done by the 

plenoptic sensor and its fast reconstruction algorithm within few iteration steps (N≤5 in our 

experiments). Whenever the image metric value drops below the threshold value (M=9), the 

SPGD optimization process will be triggered to fix the remaining weak distortions in phase. 

Since SPGD utilizes random guesses (+ε or –ε, where ε is an arbitrary and small iteration step 

size) on each actuator of the AO device, the actual number of iteration steps fluctuates a lot to 

achieve correction for the same distortion. Thus it can be argued as “unfair” to compare the 

“Guided SPGD” and “Pure SPGD” methods by plotting outcomes from a single experiment 
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since the “Pure SPGD” may get unlucky and result in a long convergence sequence. To rule 

out “bad luck” we repeated 100 trials using the “Pure SPGD” method to correct each Zernike 

Polynomial phase distortion case and selected the best correction case that requires minimum 

steps to converge. The minimum step is denoted by an integer n0, where starting with n>n0, 

the normalized variation of intensity on the photodetector is less than 2% (equivalently, the 

image metric value is smaller than 2). The results are shown in table 5.6. The correction uses 

the “Pure SPGD” method where the metric is the photodetector readouts.  

 

Figure 5. 21: First 10 corrections steps for each deformation case by using “Guided SPGD” 

method 

Table 5. 6:  Minimum iteration steps using “Pure SPGD” method  

(best result through 100 repeated corrections in each case) 

Zernike Polynomial Minimum Number of 
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Modes  SPGD Iterations 

Tip/Tilt ( ) 199 

Defocus( ) 238 

Astigmatism( ) 162 

Coma( ) 214 

Trefoil( ) 240 

Secondary Astigmatism( ) 304 

Diamond( ) 210 

 

It is easy to find that in the case of a 37-channel AO device, the best “Pure SPGD” results 

cost around 200 iteration steps. Those results still can’t beat the “Guided SPGD” method 

without best case selection.  The presented “Guided SPGD” corrections typically completes 

at around 100 iterations. Thus, it is evident that the guided steps strongly speed up the 

convergence of correction. 

In fact, the philosophy behind the improvement is that we have implemented a wavefront 

sensor that can extract the major phase distortion within the channel. Therefore, with 

deterministic direction and magnitude instructions for individual actuators in the AO device, 

the phase distortion is significantly suppressed within few iteration steps (for example, ≤5 in 

our experiments). For the remaining weak distortion, the plenoptic sensor can’t provide 

further guidance since the center block will become the most illuminated cell,  and SPGD can 

be invoked to complete the correction (perform optimization).  
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5.3.3 Real time correction for strong turbulence distortion 

Based on the fast reconstruction algorithm, laser beam distortions caused by strong 

atmospheric turbulence effects can be accomplished in real time. Because the 

frequency of atmospheric turbulence, which predominantly varies from 10Hz to 

100Hz, real time correction is possible when the correction speed of the adaptive 

optics system exceeds 100Hz. The lab-scale experimental platform is shown as: 

 

Figure 5. 22: Experimental platform of real time correction of strong turbulence effects 

In figure 5.22, a He-Ne laser source with wavelength of 633nm is located near 

position label “A”. In propagation, the laser beam first propagate through a 10X beam 

expander near position label “B” and expanded to a collimated beam with diameter of 

10mm. The collimated beam is re-directed by a flat mirror near position label “C” 

into a second stage beam expander to be expanded into a 50mm wide beam. Then the 

expanded beam propagates through an extremely turbulent channel (2m) simulated by 

a hotplate (near position label “D”) and a large griddle plate (near position label “E”). 
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The surface temperature of the hotplate and the griddle is typically larger than 200°F, 

and the associated strong turbulence effects will cause significant interference 

patterns on the laser beam. At the end of the propagation channel, the distorted laser 

beam propagates through a 50mm wide non-polarizing cubic beam splitter (near 

position label “F”) and arrives at a deformable mirror (OKO DM with 37 actuators, 

near position label “G”). The deformable mirror takes commands from the 

reconstruction results to add a controllable phase to the distorted beam through 

reflection. Because the deformable mirror has a diameter of 30mm, the correction is 

focused to the center area of the 50mm wide beam. The phase modulated 30mm wide 

beam is reflected from the DM’s surface to the beam splitter (near position label “H”) 

and re-directed into the equivalent objective lens in the plenoptic sensor (near 

position “I”). The objective lens has an effective focal length of 3000mm and 30mm 

diameter. The flat mirror near position label “J” and the 50mm wide non-polarizing 

beam splitter near position label “K” reroute the light path after the objective lens into 

the microlens array (MLA) and fast frame rate camera near position label “L1”. The 

MLA used is an Edmund optics MLA with pitch length of 500μm and effective focal 

length of 46.7mm. The fast frame rate camera used is an AVT bonito camera with 

400 fps. In order to assist measuring the quality of the correction, we also setup a side 

branch from the beam splitter near position label “K” to a tiny pinhole (<1mm in 

diameter) and a photodetector near position label “L2” to measure power in the bucket 

(PIB). The PIB value helps to indicated how much power of the corrected beam can 

be directed into a target area. Intuitively, without any turbulence and phase 

modulation on the DM, the PIB reflects the entire power of the 30mm wide beam at 
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the diffraction limited focal spot after the objective lens. When turbulence is 

involved, the distorted beam can’t be focused into a tight spot due to the phase and 

amplitude distortion on the beam. And the goal of the correction is to compensate the 

phase distortion in the beam so that a relatively tight focus can be achieved on the 

photodetector.  

In the correction process, the plenoptic sensor acquires a plenoptic image on the 

distorted laser beam and the fast reconstruction algorithm quickly analyzes the 

plenoptic image and forms a correction command to the DM. The DM will instantly 

apply the phase correction to finish a unit iteration step of wave-front sensing, 

analyzing and correction. As a result, the correction helps to maintain a good optic 

link and high PIB value. To show the difference with/without the correction, we 

added a control signal to periodically turn on/off the correction.  

The result of the PIB is shown as follows for various turbulence levels (all of them 

fall in strong turbulence regime): 
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Figure 5. 23: Correction result for 180°F 

 

 

Figure 5. 24: Correction result for 250°F 



 

 188 

 

 

Figure 5. 25: Correction result for 325°F 

In figure 5.23-5.25, we show the control signal, PIB signal and quantized evaluation 

of the PIB signal respectively with the red, black and blue curves in each plot. When 

the red curve reaches level “1”, the guided correction from the plenoptic sensor is on. 

When the red curve reaches level “0”, the correction is turned off and the DM is set 

flat. The black curves are plotted by the readout on the photodetector divided by the 

corresponding readout without turbulence (ideal alignment). The blue curves reflect 

the logical outcomes of whether the instant PIB value passes a basic threshold value. 

As shown in the previous section (5.3.2), the fast reconstruction can correct a major 

beam distortion with almost one step (the worst case may require 5 steps). The major 

correction will guarantee a PIB of 60% for correcting static distortion cases. It is 

evident to show the same conclusion in correcting real time turbulence. The overall 

FPS of the correction is 200, which means there are 200 iterative corrections in each 
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second. In other words, each correction step takes only 5ms, where 2.5ms is the 

image acquisition time, 1.5ms is the processing time for the fast reconstruction 

algorithm and 1ms is the setup time for the DM. Therefore, a good optic link can be 

maintained when the correction is on. Note that we have slightly increased the 

threshold value from 60% to 70% in the 180°F case to show that when turbulence 

gets weaker, the correction will produce a better result (because correction will also 

become easier).  

The correction is not perfect (restoring 100% PIB) as there is still a 5ms time delay 

before each correction is applied. In other words, the correction doesn’t account for 

the small changes in the turbulence structure within the 5ms time delay. Therefore, 

the real time correction is good enough to maintain a major power of the beam on the 

desirable target area by considering this small imperfection reason due to limited 

correction speed. In fact, the Cn
2
×Lvalues can be determined on the plenoptic sensor 

by measuring the angle of arrival. The Cn
2
×L values are 3.3×10

-9
 m

1/3
, 1.7×10

-8
 m

1/3
, 

3.8×10
-8

 m
1/3

 respectively for figure 5.23-5.25 respectively. These data is equivalent 

to normal Cn
2
 values of strong turbulence (from 10

-13
 m

-2/3
 to 10

-12
 m

-2/3
) for at least 

3km channels. In application, it shall greatly benefit free space optics (FSO) 

communication systems and directed energy (DE) applications, where the effective 

range of a laser beam is severely limited by time-varying atmospheric turbulence. 
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Chapter 6:  Combined Turbulence Measurements: From Theory 

to Instrumentation 

In this chapter we will introduce some practical platforms/approaches that facilitate 

the study of atmospheric turbulence. In section 6.1, a resistor temperature detector 

(RTD) system will be discussed that can measure the local turbulence level by 

measuring the coherence structure in weak temperature fluctuations. In section 6.2, a 

large aperture LED scintillometer systems will be introduced that can measure strong 

turbulence levels. The transmitter of the large aperture scintillometer also has a laser 

module that facilitates the measure of lower levels of turbulence. In section 6.3, we 

will talk about the modification of our plenoptic sensor into a remote imaging 

platform that can identify the distribution of turbulence distortion in image formation. 

With our plenoptic image processing algorithm, we can remove most of the 

turbulence distortion. In section 6.4, we show an enhanced back scattering (EBS) 

system that exploit the reciprocity of a turbulent channel, which shows high potential 

in turbulence analysis as well as aiming, tracking, and imaging applications. 

The above instrumentations, when combined with advanced wavefront sensing of the 

plenoptic sensor, will be able to push turbulence studies to  new levels. In fact, as the 

phase and intensity distribution of a distorted beam can be obtained, it expands the 

statistical characterization of turbulence experiments from intensity fluctuation to the 

complex field of a laser beam. For example, EBS improves beam alignments between 

the transmitter and the receiver, the knowledge of distributed turbulence level by 

RTD as well as imaging analysis of the target can be combined into the wavefront 
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sensing result by a plenoptic sensor to form more intelligent analysis to improve 

beam propagation by an adaptive optics (AO) system.    

 

6.1 Resistor Temperature Measurement (RTD) system 

Local atmospheric turbulence is primarily results from temperature fluctuations in the 

air. As the equilibrium in local air pressure is dynamically maintained, Charles’ law 

regulates that increased air temperature results in decreased density of air and 

refractive index. Therefore, for point measurement on the atmospheric turbulence 

levels, one can use the temperature fluctuations to indicate the refractive index 

fluctuations. In other words, we can use a precise temperature probe system to 

estimation local Cn
2
.  

In general, by extending Komogorov theory of structure functions to statistically 

homogenoeous and isotropic temperature fluctuations
1
, a  power law can be derived 

as: 

 
2 2 2/3

1 2 0 0( ) ,T TD R T T C R l R L                       (1) 

In equation (1), T1 and T2 are temperature measurements at two close spots (separated 

within inertial range of atmospheric turbulence). The directionless spacing between 

the spots is represented by R and the inner scale and outer scale of atmospheric 

turbulence are represented by l0 and L0 respectively. To verify this power law we we 

made use of 4 ultra precise air and gas RTD sensors (OMEGA P-L-1/10-1/8-6-1/8-T-

3)  for point measurement of temperature as shown in figure 6.1: 
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Figure 6. 1: Experimental platform of using RTD system to estimate local Cn
2
 values 

After callibration, these probes can respond sensitively to a temperature change of 

0.002K.  As a result, if roughly arranged R≈1cm-50cm, the 2/3 law of temperature 

fluctuation structure is generally satisfied: 
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Figure 6. 2: Examination of the 2/3 degradation power law in spatial structure of air 

temperature fluctuation 

Thus the turbulence parameter Cn
2
 can be inferred from temperature measurement of 

CT
2
 as: 

6 3 2 ( )
( ) 1 77.6 10 (1 7.52 10 )

( )

P R
n R

T R
                                    (2) 

2 6 2 2

2
(79 10 )n T

P
C C

T

                                                     (3) 

Consequently, the 3D spectrum of temperature fluctuations is expressed as: 
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Due to the precision of temperature measurement, this requires a minimum value of 

Cn
2
 to satisfy: 

2 2 2 14 2/3

,min , ,, 4 10n n error n errorC N C C m                                   (5) 

This suggests that the temperature measurement approach wouldn’t be accurate for 

weak turbulence cases. However, for strong turbulence levels, it can effectively 

provide Cn
2
 data where saturation can become a problem for conventional 

scintillometers. 

In order to verify the RTD system in providing reliable Cn
2
 values, we combined the 4 

RTD probes, a data acquisition and memory module, adapting mounts as well as 

weather proof housing into a compact platform and compared with data from 

commercial available scintillometers. The platform is shown in figure 6.3: 

 

Figure 6. 3: Instrumentation of point Cn
2
 measurement with RTD probe system 



 

 196 

 

The verification experiment was conducted from Thursday, October 22 to Friday 

October 23. Simultaneous measurements of Cn
2
 were made with two conventional 

optical scintillometers, the Scintek BLS 900 and the Scintek SLS 20, and two RTD 

temperature probe systems that measure CT
2
 directly and convert this to Cn

2
. 

The measurements were made on the 1 km long TISTEF range at the Kennedy Space 

Center. The BLS 900 was deployed over the full range with the transmitter at the far 

end of the range and the receiver at the near end of the range (adjacent to the 

buildings.) The SLS20 was deployed over a 200 m range near to the buildings. Two 

RTD temperature probe units were deployed, one at the far end of the range, near the 

BLS 900 transmitter, and one at the near end of the range near the SLS 20 receiver. 

At the beginning of experiments the two RTD units were operated next to each other 

in the laboratory to verify that they were providing readings in good agreement. All 

the computers collecting and storing data were time synchronized so that diurnal 

variations of Cn
2
 from the scintillometers and Cn

2
 measurements from the RTD units 

could be computed. Figure 6.4 shows a composite of all the results obtained. 
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Figure 6. 4: Scintillation data from two optical scintillometers and two RTD systems 

It is interesting to note that the SLS20 system and RTD system near it agree quite 

well, and the BLS 900 and the RTD system near its transmitter also agree quite well. 

But, the Cn
2
 data from the full range and the Cn

2
 from the region near the buildings 

are quite different. During periods of low turbulence the RTD systems generate some 

noise and can’t measure the smallest Cn
2
 values directly. All these effects are shown 

in detail in Figure 6.5.  
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Figure 6. 5: Scintillation data with comments 

Figure 6.6 shows the correlation between the BLS 900 and the far RTD system. These 

data have been corrected for the RTD system by subtracting the effects of the average 

noise on the measurements so as to increase the lower turbulence measurement range 

of the RTD system. 
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Figure 6. 6: Correlation between measurements made with the SLS 20 and the adjacent RTD 

system 

Figure 6.7 shows the correlation between the BLS 900 and the adjacent RTD system. 

These data have been corrected for the RTD system by subtracting the effects of the 

average noise on the measurements so as to increase the lower turbulence 

measurement range of the RTD system. 
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Figure 6. 7: Correlation between measurements made with the BLS 900 and the adjacent RTD 

system 

We conclude from these measurements that the Cn
2
 values measured on the range are 

not uniform along its length. The data suggest that the turbulence is stronger near to 

the buildings at the near end of the range. It is also interesting to note that if the BLS 

900 data is multiplied by a factor of 2 then the data from the two scintillometers lines 

up quite well. Given the assumption that Cn
2
 is gradually declining (from the near end 

to the far end) over the test range of 1km, the following expectation should be 

satisfied: 
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1) Cn
2
 close to the building (old RTD system)>Cn

2
 for short range average near the 

building (SLS20) > Cn
2
 for the full range average (BLS900)> Cn

2
 close to the end 

(new RTD system) 

2) Averaged Cn
2
 values for RTD systems at both end ~ Cn

2
 for the full range average 

(BLS900) 

Figures 6.6-6.8 show the good agreement between the expected results and 

experimental outcomes.  

 

Figure 6. 8: Comparison of data from the two scintillometers 
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Thus, we are confident that it is adequate to use a precise RTD system to obtain good 

estimates of local Cn
2
 data. 

 

6.2 Large Aperture Scintillometers 

Commercial scintillometers can be used to measure path averaged Cn
2
 values. In 

principle, a digital on/off signal is sent through the transmitter and collected by the 

receiver in a commercial scintillometer pair. Cn
2
 is measured by the scintillation 

effects of the received signal. Due to aperture averaging effects, the sensitivity and 

measuring range of a scintillometer varies with different configurations. Especially in 

measuring strong and deep turbulent channels, conventional scintillometer tend to 

saturate because the significant scattering degradation and beam wandering effects on 

the transmitted signal. Therefore, we customized our own large aperture 

scintillometer to assist field measurement for strong turbulence conditions. In 

addition, to supply Cn
2
 data when turbulence is relatively weak, we implement a laser 

transmitter in the same channel.  

The experimental platform of our laser and LED integrated scintillometer transmitter 

can be shown as: 
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Figure 6. 9: Laser and LED integrated scintillometer’s transmitter 

 

The scintillometer’s transmitter in figure 6.3 uses a 10 inch wide LED beam that 

sends 25Hz on/off signals. When the LED signal is off, the ambient sunlight signal is 

measured and when the LED signal is on, the summed signal of ambient light and 

LED signal is measured and the actual LED signal can be detected by subtraction 

(assuming that sunlight changes much slower than the transmitted signal). On top of 

the scintillometer, there is a 2 inch diameter laser beam transmitter that sends 50Hz 

on/off signals.  

The field deployment of our customized scintillometer pair is shown in figure 6.10: 
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Figure 6. 10: Pictures of scintillometer in experiments 

 

To verify that our scintillometer provides reliable data, we made side by side 

comparison with commercial scintillometers over a 240m channel. The results are 

shown in figure 6.11. This is sufficient to show that our scintillometer provides 

reliable data on Cn
2
 when compared with data provided by commercial scintillometers. 

Note that a systematic ratio (2-3) between our large aperture LED scintillometer data 

and commercial scintillometer data can be seen. This is not surprising since different 

scintillometers give different results for various reasons, such as sampling rate, height 

above the ground, range length, etc. But the general up/down trends over time should 

agree with each other. 
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Figure 6. 11: Side by side comparison between our customized LED large aperture scintillometer 

and a commercial scintillometer (Kipp and Zonen LAS MK II) 

6.3 Remote imaging system 

Imaging through atmospheric turbulence in horizontal directions has been widely 

studied over the past decades. Progresses in imaging through atmospheric turbulence 

can be made through both hardware and software approaches. The hardware approach 

will typically use a deformable mirror (or other adaptive optics device) to modify the 

distorted wavefront so that the point spread functions on the image will be resolvable. 
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The software approach generally uses image/video processing algorithm to retrieve 

images that are relatively clear of turbulence effects. Both approaches have been 

proved to be effective in specific well-defined cases. No general (wide-sense) 

solution to imaging through atmospheric turbulence problems has been developed. In 

fact, most of the approaches are based on 2D imaging models and require external 

references. It is evident from a light field angle that conventional 2D images don’t 

provide adequate information about turbulence. And cooperative references, such as 

guide stars,  will be absent in general applications. 

The idea of using a light field camera to tactically solve the problems of imaging 

through turbulence in 4D provides a new direction. In this section, we will 

demonstrate a few convenient methods of using a plenoptic sensor to record images 

through turbulence and retrieve the undistorted image. The major trick is to use a 

plenoptic sensor to further analyze a traditionally formed image behind a camera lens. 

Without loss of generality, we assume that the image is formed at the entrance pupil 

of the plenoptic sensor. Intuitively, if the light field at the entrance pupil of the 

plenoptic sensor happens to be light patterns of a focused image, each MLA cell will 

form an image in uniformly distributed sub-angular space. In other words, each MLA 

cell images the same object with slightly different light path from each other. 

Therefore, a 3D lucky imaging algorithm can be realized on the plenoptic sensor. The 

word “3D” refers to 1D in time dimension and 2D in spatial dimensions. In other 

words, besides the image sequence acquired over time, the extra 2 dimensions are 

provided by the MLA cells (as an image array). 

Mechanisms: 
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When the optical signal of a scene propagates through an atmospheric turbulent 

channel, the light field that carries the information will suffer from random temporal 

and spatial changes. For example, the image may be wandering around when we take 

a sequence of images. Without loss of generality, one can simply express the 

distortion of an image by the superposition law as: 

*

1 1( , ) ( , ) ( , )t x y t x y t x y                                                                         (6) 

In equation (6), t1*(x, y) is the ideal image without turbulence, δt(x, y) is the change in 

the image caused by atmospheric turbulence. For simplicity, we will call δt(x, y) 

distortion, which is a 2D random variable. The ideal image t1*(x, y) can be generally 

regarded as the mutual information for the image sequence collected at different 

timestamps.  

Intuitively, if the distortion is weak and purely identical independent distributions 

(i.i.d) over time, the imaging processing algorithm will be strikingly simple: 

averaging over many frames. Unfortunately, the actual turbulence has correlations 

within an inertial range marked by outer scale (L0) and inner scale (l0). The wandering 

of an image is typically caused by turbulence structures comparable to the outer scale, 

while the local intensity scintillation and oscillation of pixels are typically caused by 

turbulence structures comparable to the inner scale. If an image processing approach 

just blindly uses the averaging methods, the sharp features of the image will be 

blurred. 

However, lucky imaging turns out to be a useful alternative approach. In general, one 

can make segments on the imaging area, and collect an image sequence over a time to 

select the best features in each segment to assemble the overall less distorted image. 
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In other words, the lucky imaging approach is to search for the minimum distortion 

moment for each segment and stitch them together.  

With the plenoptic sensor, the image is an array of cell images that are differentiated 

by slightly different viewing angles. Two extra spatial dimensions can be added to the 

lucky imaging process. In fact, since the point spread function for a spot in the scene 

is distributed into an array of point spread functions in different image cells, it 

facilitates the selection of a cell image that contains the sharpest point spread 

function. Therefore, besides the time dimension, the plenoptic sensor provides 2 extra 

geometric dimensions to perform the lucky imaging process, as shown by figure 6.12: 

 

Figure 6. 12: Diagram of selecting the most stable pixels in 3D lucky imaging method on the 

plenoptic sensor 

In figure 6.12, we show the principle of 3D lucky imaging in finding the most stable 

spot (in the scene) over time and space. Intuitively, the stableness in time represents 

the minimum scintillation. The stableness over space (M and N indices) represents 

the compensating gradient of the distorted wavefront. In other words, the first order 
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of local phase distortion can be directly compensated by a certain image cell that 

represents the same tip/tilt. Therefore, the 3D lucky imaging not only provides points 

that are stable over scintillations, but also stable over wavefront tip/tilt. For 

convenience, we call the set of pixels selected in the 3D lucky imaging process 

“steady patterns”. Once the steady patterns are determined for each spot in the scene, 

one can assemble the patterns to form an image that is strictly better than any cell 

image in the recorded image space (the plenoptic image sequence). The assembling 

process can be demonstrated with the following diagram: 

 

Figure 6. 13: Assembling process for the steady patterns 

Figure 6.13 shows that when the image pattern is spatially disrupted by atmospheric 

turbulence, the spatial oscillation of a spot will cause minor movement of pixels 

inside an image cell, and the angular oscillation of a spot will cause intensity 

redistribution of the corresponding pixels between the image cells. Therefore, by 

using 3D lucky imaging to select the best features among all the collected cell 

images, a strictly better image can be obtained. And in circumstances where 

traditional lucky imaging can’t be used, the plenoptic sensor still has extra 2 

dimensions of spatial freedom to perform lucky imaging. 
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Practically, the 3D lucky imaging on the plenoptic sensor requires solving a few more 

technical problems. One of the problems is how to perform the image stitching once 

the best patterns are acquired from the set of plenoptic images. This is because each 

MLA cell has a slightly different view of the scene, and there is pairwise wandering 

of cell images between any two arbitrary cells. This wandering between neighboring 

cells can be solved by finding the maximum spot in the cross correlation function 

between 2 cell images (since the majority of the pixels describe the same scene). The 

different view of the scene can be handled by re-projection to remove the trivial 

difference of viewing angles. The image stitching problem can be illustrated by the 

following diagram: 

 

Figure 6. 14: Image stitching problem to assemble the 3D lucky image 

The second problem is to track the pixels in a uniform pattern. Intuitively, a pixel 

corresponds to a spot in reality, and if the neighborhood of a pixel is a uniform 

pattern, it will be hard to track the spot’s movement. Thus, the stability of the spot’s 

representative pixels on the plenoptic sensor is hard to determine. To solve this 

problem, we use the feature points for each cell image instead of all the pixels. The 
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feature points are points with sharpest local features in an image that can describe the 

pixels with significant gradient to its vicinity. In other words, the feature points can 

be traced much more easily than ordinary points in the image. The pixel tracing 

problem can be illustrated by the following diagram: 

 

Figure 6. 15: Diagram of using feature points to replace ordinary points for 3D lucky imaging on 

the plenoptic sensor 

Without loss of generality, we use a “Harris” corner detector to determine the feature 

points in each cell image on the plenoptic sensor. The “Harris” corner detector uses 

the gradient of the image intensity map to find the corners of an image pattern. Since 

all the cell images are on the same scale, we are not worried about the scaling variant 

problem of the “Harris” corner detector. Intuitively, the scaling variant problem 

means if the image is magnified, some corner features will become smoother and the 

“Harris” corner detector may be affected. 

For example, if we use the plenoptic sensor to image a checkerboard, by applying the 

“Harris” corner detector, we can capture its grid points as shown by figure 6.16: 
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Figure 6. 16: Feature point detector on a plenoptic image 

In Figure 6.16, we show that the feature points describe the corners of the checker 

board. By using these feature points, we can describe the stableness of the cell image. 

In other words, the 3D lucky imaging can be simplified to tracking the stability of 

those feature points. If a local feature becomes unstable, it may appear/disappear 

among various frames as well as its neighboring cells. Therefore, an image cell is 

stable at a certain frame if and only if it captures the maximum number of stable 

features. A feature is stable if and only if it is repeatedly discovered by other cell 

images (consensus between different cell images). The stable feature points determine 

where to fetch information to reconstruct the image that is turbulence free. 

The third problem is to identify the same feature point over different image cells. 

Because small atmospheric turbulence structures cause local distortions, distortion on 

local features inside a cell image will cause errors in alignment with neighboring 

cells. Typically the displacements for corresponding feature points in two image cells 

(can be viewed as a straight line between the two feature points) are not equal. 
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Therefore, we need to apply random sample consensus (RANSAC) test for the feature 

points in 2 image cells to rule out the outliers. The outliers include: 

(1) Temporal formation of feature points caused by turbulence. 

(2) Pairs of feature points that deviate significantly from the displacement 

between corresponding cell centers. 

(3) Pairs of feature points that don’t have enough number of similar supporting 

pairs. 

For the above categories for outliers, point (1) refers to the image elements that have 

been severely distorted by atmospheric turbulence. Intuitively, if part of an image has 

been significantly distorted by turbulence, the corresponding feature points will be 

temporal and the easiest to detect (because they are not repeatable in a probability 

sense). Point (2) means if we treat the feature points in 2 cells as a bipartite group and 

draw straight lines between them, the lines that deviate significantly from the line 

connecting the image cell centers should be discarded. This is because the line 

connecting the image cell centers can be served as a reference to matching 

corresponding feature point pairs (although it excludes the fact that each cell image 

has a slightly different view). Therefore, any large deviation from that reference line 

should be treated as wrong pairing of feature points. Point (3) means that if the cell 

image doesn’t have enough feature points to pair correctly with another cell, at least 

one of them have been distorted (or they can be both be distorted in uncorrelated 

ways). 
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Once the RANSAC has been done, we can pick the center cell as reference view to 

stitch/replace patterns that are found more stable in other neighboring cells. There are 

two minor aspects to mention:  

(1) For minor distortions between the pairs of feature points that passed the 

RANSAC test, we can re-project to the center cell’s view to correct for the 

distortion.  

(2) For the illumination differences when we replace an original patch with a 

more stable (less distorted) patch from another cell, one should also multiply 

by the illumination ratio (the sum of pixel values in original patch divided by 

the sum of pixel values in the replacement patch). 

Since the overall process for the image reconstruction is very similar to the panorama 

process in imaging processing, we call the algorithm “panorama” reconstruction. As 

long as Cn
2
 of turbulence is strong enough (>10

-14
 m

-2/3
), the “panorama” 

reconstruction will be able to select patches from different time and space and we get 

a synthetic image that is strictly less distorted than all the cell images collected by the 

plenoptic sensor. Intuitively, the whole process looks like using a camera array to 

observe the target in very close angles with each one contributing their best 

observation to the final 3D lucky imaging. 

Experimental results: 

Strong turbulence over a short distance often causes blurring and shimmering effects. 

Those effects can be commonly seen in a hot summer day, when one looks 

horizontally along the road and sees objects floating around. Intuitively, the hot and 

fast air flow will cause relatively large refractive gradient and the overall effects of 
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strong turbulence in a short distance works as a randomly placed lens/wedge. 

Therefore, the visual effect is as if the image is moving around with uncertain blurry 

parts. 

The experimental platform is shown as: 

 

Figure 6. 17: Experimental platform to generate lab scale turbulence and apply imaging with 

plenoptic sensor 

In Figure 6.17, the protected area contains 4 heating strips that can generate the total 

volume of 0.3×3.3×0.25 m
3
 of turbulent hot air and also introduce air flow in multiple 

directions. The target is a 50 mm×50 mm checkerboard that is located 6 meters away 

from the plenoptic camera. An average temperature of 50
°
C is simulated by the 

system, and the camera (Allied Vision GX1050) captures the image though this 

turbulence environment at 109 fps with resolution 1024×1024. We collected 25 

frames of plenoptic images in sequence (time span is about 0.25 second). Then we 

apply the “panorama” reconstruction to process the plenoptic video. 
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The intermediate steps for the “panorama” reconstructions are shown as: 

(1) Most stable cells over time: 

 

Figure 6. 18: synthetic plenoptic image made by the most stable cells over time 

Figure 6.18 shows the assembled plenoptic image by selecting the most stable image 

cells over time sequence. The method used for the selection is to count for each cell’s 

feature points and track their scintillations (deviation from averaged intensity over 

time). The most stable frame for a cell image can be determined if that frame contains 

the most stable feature points. 

The frame indices for the most stable cells in Figure 6.18 are shown by the following 

table: 
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Table 6.1: Frame indices for the most stable image cells selected from the plenoptic video 

 

15 12 12 11 11 11 15 12 12 

15 12 12 12 15 15 15 12 12 

15 12 12 12 15 15 15 12 12 

12 12 12 11 15 15 15 12 12 

12 12 12 15 15 15 15 12 12 

15 12 12 15 15 15 15 12 12 

12 12 12 15 15 15 12 12 12 

12 12 12 15 15 15 15 12 12 

15 12 15 15 15 15 15 12 15 

 
 

(2) RANSAC and panorama reconstruction: 

 

 

Figure 6. 19: Result of RANSAC process to determine how to stich the cell images 
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Figure 6.19 shows the most stable features on the synthetic plenoptic image (figure 

6.18). Compared with the dense feature points in Figure 6.16, only a small portion has 

remained due to the removal of unstable features. Then, all the cell images that are 

connected by the green lines in figure 6.19 are selected to assemble the final image. 

The result is shown as: 

 

 

Figure 6. 20: Reconstructed image by panorama algorithm 

For comparison, we can turn off the turbulence, and use the center image of the 

plenoptic sensor as the goal of image retrieval, as: 
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Figure 6. 21: Ideal image for reconstruction (no turbulence) 

Note that the reconstruction result in figure 6.20 shows a slightly larger area than 

figure 6.21 because of the image stitching. In other words, more stable features are 

added to the result by combining the view from different image cells. The similarity 

(image correlation) between the ideal image and the reconstructed result is 98.2%. 

Therefore we can see that turbulence effects are significantly removed. Besides, the 

sharpness of an image depends on many factors such as lens aberration, illumination 

conditions, and depth variation of the object as well as post stage image processing. 

Based on these facts, our algorithm only aims at turbulence removal. Further image 

processing algorithms such as resampling and deburring can be applied to further 

improve the image quality.  

If an ordinary camera is used to perform imaging through turbulence at the same 

location of the plenoptic sensor, the image obtained by the same level of artificial 

turbulence is shown as: 
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Figure 6. 22: Image obtained by a normal camera through turbulence 

Not surprisingly, turbulence causes more blurring effects on a normal camera image. 

This is caused by the superposition law of adding all deviated rays on the image plane. 

Comparatively, the plenoptic sensor can distinguish the blurring and wandering 

effects and make corresponding corrections. Thus turbulence can be safely removed 

by the panorama algorithm on a plenoptic image. 

Another strong turbulence condition can be found in water, whose refractive index 

has a much greater gradient when turbulence gets involved. In fact, the underwater 

vision distortion will be more obvious and slower than the strong turbulence effects 

happening in the air. Therefore, the panorama treatment won’t be effective because of 

the lack of consensus between neighboring cells. Instead, direct 3D lucky imaging is 

performed for imaging through water turbulence (which makes the algorithm much 

simpler). 

The common diagram of the system is shown as: 
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Figure 6. 23: Hardware Diagram for simultaneously imaging with normal camera and plenoptic 

sensor 

 

The imaging lenses in the diagram are used to zoom and focus on the object of 

interest. We insert a beam splitter to form 2 identical copies of the image. One copy 

of the image is sampled by a camera directly, which forms a normal image of the 

object of interest. The other copy of the image is sampled by the modified light field 

camera to form an array of images in the image’s sub-angular space. The extra 

propagation distance of the second image before it enters the modified light field 

camera is marked by d2-d1, which equals the focal length (f1) of the objective lens in 

the modified light field camera. 
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Without turbulence distortion, all the image cells present an array of identical images. 

When turbulence is involved, each image cells begin to show difference with its 

neighboring (top, bottom, left, right, previous, next) cells. In general, the cell image 

difference can be measured by mean square errors of pixel values between the 

neighboring cell images. The gradient of the cell difference can be defined as the 

difference between the cell differences. Larger cell image difference means more 

turbulence effect is concentrating in the corresponding cell when compared with other 

cell images collected at the same time.  

The “Laplacian Metric” is defined to be the multiplication of the gradient of cell 

image difference along horizontal (M) direction, vertical (N) direction and 

progressive time (t) direction. The best image cell (targeted lucky image cell) can be 

proved to be located at the cell with maximum magnitude of Laplacian Metric.  

We can show the result by a twisted letter “A” through the following experimental 

platform: 
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Figure 6. 24: Experimental platform for water vision distortion and correction 

The results for the plenoptic video processing for the best image cell are shown as: 

 

Figure 6. 25: 3D lucky imaging results on the plenoptic sensor 



 

 224 

 

 

The results suggest that by differentiating images formed at different propagation 

path in strong turbulence, blurring and shimmering effects caused by turbulence 

distortion can be intelligently avoided. 

Similar experiments can be conducted in extremely strong air turbulence caused by 

hot plates. The observing platform is shown as (will be elaborated on in chapter 6):  

 

Figure 6. 26: Experimental platform for remote imaging through atmospheric turbulence 

In figure 6.26, a long range binocular is used to render the view. Each front objective 

lens in the binocular has a diameter of 3 inches. One branch of the binocular is 
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connected with a normal camera, while the other branch connects to a plenoptic 

sensor. Therefore, the plenoptic sensor can resolve imaging problems caused by a hot 

plate similarly as the water tube. The results are shown as (with an object letter “H”): 

 

Figure 6. 27: Randomly selected plenoptic image in the recording process when the hot plate is 

turned on and the object is placed 60 meters away 
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Figure 6. 28: Image cell counting for different metric values in the 3D lucky imaging process 

 

Figure 6. 29:  Processing results of 3D lucky imaging on the plenoptic sensor 

Figure 6.27 shows a randomly picked plenoptic image, where it is easy to notice the 

cell image difference caused by air turbulence generated by the hotplate. Figure 6.28 

shows the box counting results for different metric values. The best image is selected 

at the tail, which is shown in figure 6.29. The result states that the “Mutated 

Laplacian Metric” is effective in retrieving a relatively undistorted image.  

Another experiment was done by cascading the hotplate and the water tube to cause 

combined distortion effects on the image. The system picture and the result are shown 

as: 
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Figure 6. 30: System picture for combined lab-scale turbulence experiment 

Figure 6.30 shows the experimental platform of using the plenoptic sensor branch in 

our remote imaging platform to resolve image distortion caused by the water tube and 

a hot plate. With the help of the water tube, we could concentrate severe turbulence 

distortions to lab scale experiments. The imaging distance is 3m, with a 1.5m length 

water tube to generate large distortions and a hotplate at the end to generate high 

frequency distortions.   
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Figure 6. 31:  Processing results of 3D lucky imaging on the plenoptic sensor 

The result in figure 6.31 shows that the auto-selection metric (mutated Laplacian 

metric) is effective in resolving imaging problems under severe turbulence distortions. 

The upper-left plot is the reference image without turbulence. After turbulence is 

turned on, the upper-right image is selected for the cell with maximum metric value. 

The lower-left image is a randomly selected cell image and the lower-right image is 

cell image that has the maximum correlation with the reference image. Since the 

lower-right image is selected through brute force search, it is the best image under 

turbulence condition. However, as there is no reference image to compare to, it is 

impossible to realize the brute force search. Therefore, the best result is picked by the 

metric in reality. In fact, the correlation between the lower-right image and the 
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reference image is 0.9768, while the upper right image is 0.9729 correlated with the 

reference image. Therefore, the metric can reliably select an optimized image cell. 

 

6.4 Enhanced back scatter system for alignment and tracking purposes 

A huge challenge in directing laser energy to a confined area on an arbitrary target’s 

surface is to find robust guidance. Atmospheric turbulence plays a disruptive role in 

messing up phases on the wavefront. For example, for 0.01ppm deviation in 

refractive index, the range of phase deviation on the wavefront would match up to 

15λ per kilometer in propagation. In addition, the turbulence is varying swiftly over 

time with major oscillation frequencies from 10Hz to 100Hz. Therefore, even for 

advanced adaptive optics system that can operate at 1 kHz or even higher, the 

maximum number of trials to find optimized adjustments for the transmitted beam is 

around 20, which is too few to enforce satisfying corrections at random selected start 

points. 

A promising approach to overcome the above difficulties lies in using the reciprocity 

of atmospheric turbulence in the propagation channel. In other words, if the 

wavefront is phase conjugated and propagated backwards, the exact initial beam can 

be achieved. Yet this approach is technically “impossible” for point to point 

observation and operation on the wavefront. 

A more realistic approach is to use a phenomenon called “enhanced back scattering” 

(EBS) resulted from the reciprocity of the turbulent channel. The theory of enhanced 

back scattering predicts that for long range beam propagation through random 

medium, the part of the echo wave near the optic axis of alignment would show some 
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coherent effects. If the echo wave is collected by a lens, there exists ONE point on the 

focal plane of the lens that shows both doubled average intensity and doubled 

scintillation index. Besides the echo wave’s ability in revealing the location of an 

object, our study on the echo wave of a laser beam demonstrates that the parasite EBS 

effects shows high potential in providing an excellent starting point to perform 

adaptive optics. 

The principal of enhanced back scattering can be illustrated by the following ray 

tracing diagrams: 

 

Figure 6. 32: Ray tracing diagram to illustrate the enhanced back scatter 

It is not surprising to discover that the process of encouraging enhanced backscatter is 

to regulate the coherence of the echo beam. This leads to the instinctive thought that 

if the EBS kernel part of the echo wave (round trip) is more coherent, it is highly 

possible that the coherence target beam’s wavefront (single trip) can be improved. 

The improvement of EBS kernel’s coherence is demonstrated in the following graph: 
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Figure 6. 33: Extraction of the EBS by using a thin lens to image the focal plane 

As an experimental demonstration, we show the weak-localization (also called 

“enhanced backscatter”) effects with the following platform: 

 

Figure 6. 34: Experimental platform for studying weak localization effects 

Intuitively, the experimental structure of figure 6.34 can be illustrated by the 

following diagram: 
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Figure 6. 35: Illustration diagram for figure 6.34 

When the back-scattered beam is Fourier transformed, there exists a spot that doubles 

the scintillation and intensity when compared with spots in the vicinity. And the slope 

of ambient intensity near the spot determines the small tip/tilt between the pointing 

laser and the surface normal of the target. The results are shown as: 
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Figure 6. 36: Weak localization effect when the incident beam is normal to the target's surface 
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Figure 6. 37: Weak localization effect when the incident beam is tilted with the surface normal of the 

target 

The above results show that by exploiting the details of the backscattered wave, extra 

information can be obtained. Note that on the above figure a cliff is observed on a 1D 

slice of averaged intensity due to the limited aperture of our optical components. If 

the entire echo wave can be collected, it shall resemble the Gaussian fit curve as 

shown in the graph. We also reduced the number of frames to get the EBS effect in 

the misaligned case by slowing the frame rate of the camera, yet the overall time to 
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distinguish the EBS effect from randomness remains the same as about 3-4 seconds. 

As a result, it is sufficient to point out:  

(1) EBS effect exists in a variety of cases of coherent echo waves, whose location 

and shape depend mostly on the transmitter site. 

(2) EBS is a good indicator for maintaining a good alignment with a remote target 

in adaptive optics. 

 

6.5 Combined turbulence measurements with new instrumentations 

In this section, we will discuss the benefits of combined turbulence measurements 

and list a few examples on how those instruments can be combined to characterize or 

solve atmospheric turbulence problems. 

The plenoptic sensor maximizes the efficiency of using an image to extract phase and 

amplitude information of a distorted beam. The RTD system provides the 

convenience in sampling turbulence levels at an arbitrary spot and orientation. The 

large aperture scintillometer pair provides a larger data range in measuring Cn
2
 

values. The Remote imaging system helps visualize the beam pattern on the target 

area.  The EBS can be used to optimize alignments with the receiver and facilitate 

tracking of a moving target. 

For example two plenoptic sensors can be deployed on both sides of a free space 

optics (FSO) communication channel to realize a feedback loop of complete 

knowledge of the beam’s phase and amplitude information. The diagram can be 

shown as: 
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Figure 6. 38: A turbulent channel featured with plenoptic sensor on both sides 

In figure 6.38, the two observed wavefront data are instantly compared and analyzed 

to instruct an adaptive optics (AO) module to perform beam correction. Intuitively, if 

the previous transmitted beam is collimated Gaussian beam, one can use the 

reciprocity and phase conjugation idea to impose the conjugated phase for the 

correction. Then a relatively clean beam can be obtained on the target and the 

plenoptic images are swapped and flipped on the sensors. Also, one can use the 

complete waveforms on both sensors to extract/characterize the system function of 

the turbulent channel. 

Another example of combined turbulence study is to combine several RTD systems, 

the scintillometer pair and the plenoptic sensor to characterize deep turbulence. The 

RTD systems can sample the turbulence level at various spots in the channel. The 

scintillometer provides the path averaged measurement of turbulence level. The 

plenoptic sensor describes the wavefront behavior at various levels of atmospheric 

turbulence. Thus, the combination of the devices provide insight into how an overall 
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Cn
2
 value is made up of distributed turbulence conditions at different locations of the 

channel as well as how the Cn
2
 is related to the distorted wavefront. A verification 

experiment for this idea can be shown as: 

 

Figure 6. 39: Experimental picture of using the plenoptic sensor to observe scintillation index 

In figure 6.39, a plenoptic sensor with the objective lens replaced by a Cassegrain 

telescope lens with 6” diameter is connected to a Lenovo W550 workstation and a 

power generator to detect the optical turbulence parameter Cn
2
. The test range is 

located at the ISTEF range with 1 km distance. The recording speed is 30fps on the 

plenoptic sensor and 15 continuously acquired plenoptic images are shown as: 
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Figure 6. 40: 15 frames of continuously acquired plenoptic images on a distorted laser beam 

Correspondingly, the beam intensity at the aperture of the objective lens can be 

reconstructed as: 

 

Figure 6.41: Reconstructed beam intensity profile on the aperture of the objective lens 
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Based on the intensity profile shown in figure 6.41, the Cn
2
 value can be evaluated by 

the intensity scintillation on the receiving aperture as: 

 

Figure 6. 42: Normalized intensity on the receiving aperture after reconstruction 

Equivalently, the Cn
2
 value is 7.124×10

-13 
m

-2/3
 at the corresponding time (03/21/2016, 

15:09). Comparatively, the Cn
2
 value from the record of a commercial scintillometer 

pair over the same channel is 8.41×10
-13 

m
-2/3

, which indicates that the plenoptic 

sensor’s evaluation is quite accurate. Similarly, the plenoptic sensor can also be used 

to analyze the angles of arrival of the beam, which are shown as: 
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Figure 6. 43: Angle of arrival of the laser beam after the plenoptic sensor’s reconstruction 

Based on the angle of arrival, the Cn
2
 contribution from X (horizontal) and Y 

(vertical) axis are 5.29×10
-13 

m
-2/3

 and 6.99×10
-13 

m
-2/3

 respectively, which also agree 

with the data on the scintillometer. Therefore, the plenoptic sensor can be used as a 

comprehensive tool to reveal detailed information in the beam distortion. In addition, 

the reconstructed wavefront of the 15 continuously required frames is shown as: 
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Figure 6. 44: Reconstructed wavefront distortion for the arriving beam after propagating 

through the 1 km turbulent channel 

Without loss of generality, turbulence effects can be comprehensively understood by 

combining the results on the plenoptic sensor, the RTD systems and the scintillometer 

pairs together. In fact, there are countless algorithms and experimental configurations 

that can be applied to the field of studying atmospheric turbulence. A general trend in 

experimental study of atmospheric turbulence (especially deep turbulence, which 

affects the effective range of FSO and DE systems) is to use a much larger dataset 

and computation power to analyze more detailed structure of the turbulent channel. 

We believe that the plenoptic sensor greatly enhances the study of atmospheric 

turbulence. 
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Conclusions and Future Work 

The plenoptic sensor introduced in this thesis is a valuable system to solve turbulence 

problems. Accurate and robust wavefront sensing for all kinds of turbulence 

situations guarantees the successfulness of optical communication, laser defense as 

well as remote surveillance applications. In general, an arbitrary beam with phase and 

amplitude distortions will be mapped to a plenoptic image that contains an image 

array. All the wavelets with same wavefront gradient will be casted into the same 

image cell, while their intensity distribution over the entrance pupil is linearly scaled 

and reversed on each cell image. When all the cell images are combined, the phase 

and amplitude distortion of the incident beam can be uniquely determined. The 

innovation of the plenoptic sensor, shall find numerous applications including: FSO 

communication, directed energy and remote imaging/surveillance.  

Future work will be dedicated to integrating the plenoptic sensor into a 

comprehensive system including sensing and analyzing. Efforts in several areas will 

be made: 

(1) The processing speed will be increased with hardware upgrade and software 

optimization. The minimum speed specification will be larger than 300Hz. 

(2)  Plenoptic sensor with large format objective lens will be developed to capture 

wider/more complex beam distortions. 

(3) Past models of atmospheric turbulence will be re-examined with actual 

experimental data collected by the plenoptic sensor to verify their correctness. 
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(4) Several application platforms will be improved. This includes: the remote 

imaging platform, the adaptive optics platform, and the scintillometer 

platform. 

(5) Extend the advanced wavefront sensors to wider application areas. 
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