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How do some countries, or sectors of it, overcome potentially disastrous events 

while others fail at it? The answer lies on the concept of resilience, and its importance 

grows as our environment’s deterioration escalates, limiting the access to economic, social, 

and natural resources. This study evaluates resilience from a transportation perspective and 

defines it as “the ability for the system to maintain its demonstrated level of service or to 

restore itself to that level of service in a specified timeframe” (Heaslip, Louisell, & Collura, 

2009). The literature shows that previous evaluation approaches usually do not directly 

integrate all perspectives of a transportation system. In this manner, this study introduces 

the concept of Transportation Resilience Architecture (TRA) as a framework for 

evaluating resilience of a transportation system through the cumulative effect of a system’s 

Infrastructure, Agency and User layer. 

This research introduces three quantitative methodologies as a way to evaluate 

resilience through TRA. For Infrastructure, a practical tool for measuring the level of 



   

 

accessibility to “safe zones” is presented, which takes advantage of the logsum measure 

resulting from Statewide Transportation Models. Results from the two locations analyzed 

(Frederick, MD and Anacostia, D.C.) suggest a positive correlation between income and 

accessibility. For Agency, metrics collected through a thorough literature review where 

combined with survey data to develop an evaluation framework based on Fuzzy 

Algorithms that yields to an index. The end product highlights the importance of 

interoperability as a disaster preparedness and response enhancing practice. Finally, for 

User, a dynamic discrete choice model was adapted to evaluate evacuation behavior, taking 

into account the disaster’s characteristics and the population’s expectations of them—a 

first from an evacuation perspective. The proposed framework is estimated using SP 

evacuation data collected on Louisiana residents. The result indicates that the dynamic 

discrete choice model excels in incorporating demographic information of respondents, a 

key input in policy evaluation, and yields significantly more accurate evacuation 

percentages per forecast. 
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Chapter 1: Introduction 

At any moment, “the most vulnerable are those whose lives are the most 

constrained, such as the poor, who have the least access to coping resources” (Godschalk, 

2003, p. 140). 

 

How do some countries, or sectors of it, overcome potentially disastrous events 

while others fail at it? The answer lies on the concept of resilience, and its importance 

grows as our environment’s deterioration escalates, limiting the access to economic, social, 

and natural resources. Resilience is an abstract measure that has been studied in an ample 

selection of fields, and it is commonly defined as the capacity to absorb shocks and 

maintain operations during disrupting events. This study evaluates resilience from a 

transportation perspective—particularly it provides quantitative methodologies to evaluate 

Transportation Resilience (TR henceforth) of low-income populations to disrupting events. 

TR is defined as “the ability for the system to maintain its demonstrated level of 

service or to restore itself to that level of service in a specified timeframe” (Heaslip, 

Louisell, & Collura, 2009). It should be noted that disruptive events can be either planned 

(e.g., work-zone congestion), recurrent (e.g., rush hour) or non-recurrent (e.g., terrorist 

attack, natural disaster). This study focuses on non-recurrent (disastrous) events, which 

usually pose a major threat to communities, cities, countries, or regions—especially the 

disadvantaged ones—due to their randomness and magnitude.  

In order to evaluate resilience to disasters, it is necessary to first clearly define what 

a disaster is (and its consequences). This research embraces the Centre for Research on the 

Epidemiology of Disasters’ (CRED) definition of disaster: “a situation or event, which 

overwhelms local capacity, necessitating a request to national or international level for 

external assistance.” The CRED states that in order for an event to be considered a disaster, 
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at least one of the following criteria must be fulfilled: a) ten or more people reported killed, 

b) 100 people or more reported affected, c) declaration of a state of emergency, and/or d) 

call for international assistance (CRED, 2009). In the first decade of the 21st century the 

world experienced a variety of unseen and unexpected man-made and natural disasters; 

some notable examples are the “9/11” attacks on 2001 with almost 3,000 casualties, the 

2004 South Asian Tsunami, and Haiti’s earthquake in 2010— the latter two with over 

220,000 casualties each. Table 1 presents examples of large natural disaster that occurred 

during the period of 2000-2012.  In all these events, transportation played an important 

role, if not the most, in the process of preparing for, coping with, and recovering from them. 

Table 1. Examples of major natural disasters impacting cities between years 2000-2012. 

Popular 

Name 

Countries 

Affected 

Date of 

Event 

Type of 

Hazard 

Main 

Cities 

Affected 

Total 

Death 

Total 

Affected 

(millions) 

Damages 

(US$) 

Hurricane 

Sandy 

US, 

Bahamas, 

Dominican 

Republic, 

Canada 

Oct-12 Hurricane 

US East 

coast,  

New York 

286 n.a. 68 billion 

Haiti 

earthquake 
Haiti Jan-10 Earthquake 

Port-au-

Prince 
222,570 3.4 n/a 

Cyclone 

Nargis 
Myanmar May-08 

Tropical 

cyclone 
Yangon 138,366 2.42 4 billion 

Hurricane 

Katrina 

United 

States 
Aug-05 

Tropical 

cyclone 

New 

Orleans 
1,833 0.5 125 billion 

Mumbai 

floods 
India Jul-05 Flood Mumbai 1,200 20 3.3 billion 

South Asian 

tsunami 

Indonesia, 

Sri Lanka, 

India, 

Thailand, 

Malaysia, 

Maldives, 

Myanmar 

Dec-04 

Earthquake 

and 

tsunami 

Banda 

Aceh, 

Chennai 

(some 

damages) 

226,408 2.32 9.2 billion 

Hurricane 

Ivan 

Venezuela, 

Jamaica, 

Cuba, US 

Sept-04 Hurricane 

Grenada, 

Alabama, 

Florida, 

Louisiana 

122 n.a. 1.2 billion 

Partly extracted from: EM-DAT: The OFDA / CRED International Disaster Database (www.emdat.net), 

Université Catholique de Louvain – Brussels – Belgium. Modified from International Federation of Red 

Cross and Red Crescent Societies (2010). 
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A review of weather-events record shows that between 1970 and 2009, the average 

number of cyclones Category 1 and 2—following the Saffir-Simpson scale—decreased on 

an annual basis, cyclones Category 3 and 4 increased, and there was no significant change 

in the average number of Tropical Storms and cyclones Category 5 per year. Interestingly, 

even though the frequency of severe tropical cyclones has increased, overall worldwide 

mortality risk has decreased, whereas economic loss risk associated with these natural 

events has increased (UNISDR, 2011). Nevertheless, these endeavors have not been 

equally distributed across all income levels. On its 2009 disaster assessment report, the 

United Nations’ International Strategy for Disaster Reduction (UNISDR) found that for a 

given number of persons exposed to risk, and within the context of powerful Category 3 

and 4 tropical cyclones, low-income countries are far more likely to suffer higher mortality 

rates and low economic loss than high-income countries, which, on the contrary, are more 

likely to suffer higher economic loss, and lower mortality (ISDR, 2009). Figure 1 illustrates 

the latter and highlights the necessity of studies of resilience that target low-income 

population. 

 
Figure 1. Average distribution of yearly fatalities and economic loss from tropical 

cyclones. Source: International Federation of Red Cross and Red Crescent Societies, 2010 

81.3

16.4

0.9

1.3

3.1

16.8

5.9

74.1

0 20 40 60 80 100

LOW-INCOME NATIONS

LOWER-MIDDLE INCOME 
NATIONS

UPPER-MIDDLE INCOME 
NATIONS

HIGH-INCOME NATIONS

Percentage (%)

Economic loss

People killed



   

4 

1.1 Problem Statement  

Transportation resilience has proven to be important in securing economic stability 

and decreasing the number of casualties from a disruptive event, both desirable goals of 

many systems. In recent years, the demand for resilience evaluation models has grown 

significantly as a result of more frequent disastrous events and new policy concerns. For 

instance, in the United States on February 12th, 2013 the Presidential Policy Directive on 

Critical Infrastructure Security and Resilience advanced a national unity of efforts to 

strengthen and maintain critical infrastructure in order to improve their resilience (The 

White House Office of the Press Secretary, 2013). However, despite the interest in TR, 

consensus on how to measure it has not been reached (Madhusudan & Ganapathy, 2011; 

P. Murray-Tuite, 2006), which therefore limits policy evaluation.  

A review of the literature shows that progress has been made on conceptualizing 

resilience; however, there is a lack of empirical work and development of an evaluation 

framework. For example, Bhamra, Dani, and Burnard (2011) reviewed 74 papers from a 

wide interdisciplinary selection that provided a direct link to the concept of ‘resilience’. 

They concluded that more real world-based research needs to be done in order to give value 

to theory. Particularly, work based on empirical methods can significantly add to and 

validate theoretical constructs around the resilience theme.  

This dissertation will then focus on how to quantitatively and empirically evaluate 

TR of low-income populations while using, to the extent possible, existing and readily 

accessible information, therefore enhancing the flexibility and applicability of the proposed 

framework. 
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1.2 Research Objectives and Scope 

Taking a step forward from previous studies that mostly focus on TR from a single 

perspective (e.g., network characteristics), the overall objective of this study is to provide 

an evaluation framework that could serve as the umbrella—common starting point—for 

future transportation resilience research, by proposing a multi-perspective real world-data 

based quantitative methodology to evaluate TR.  

The study is divided into six main chapters: 

1. Introduction. Introduces the research background, objectives, and the expected 

contributions from this research.  

2. Theoretical Framework. Provides a comprehensive overview of relevant literature 

surrounding TR, identifying the different evaluation approaches previously used. 

Identifies shortcomings in the existing studies and proposes a research 

direction/conceptual framework for this dissertation.  

3. Infrastructure Resilience. Provides a quantitative analysis of the physical 

environment as a component of TR, using accessibility as a proxy for it. 

4. Agency Resilience. Presents an analysis of the institutional aspect of TR. Data is 

collected through a survey and a framework to develop an index is presented.  

5. User Resilience. Suggests the use of a dynamic discrete choice estimation model 

approach of user behavior to evaluate users as a component of TR. 

6. The final chapter presents the conclusion and suggests the way forward for future 

research. 
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1.3 Contributions 

This study will contribute to the literature of TR by closing the existing knowledge 

gap with an innovative and quantitative real world-data driven evaluation framework that 

is flexible and transferable in nature, that is, one that can be easily applied across different 

types of disruptions and locations. To do so, the literature surrounding resilience of 

transportation networks and communities is explored and perspectives on the state of the 

practice in evaluating resilience is provided. The proposed approach could serve as a 

uniting conceptual framework of future research, facilitating the identification of voids 

within the literature. The tools developed in this research are evaluation frameworks for 

analyzing accessibility to safe zones, an agency preparedness and response capability, and 

user behavior during disasters, all through innovative approaches within the transportation 

field. These tools are useful for different transportation problems and most importantly, 

will help decision makers implement more effective policies by narrowing the alternatives 

of when, where, and how to invest available resources in order to increase resilience. 

Furthermore, it is expected that the availability of a robust evaluation tool will 

increase the number of real case studies about TR. It is also expected that participants 

involved will increase awareness and promote the need of practical resilience evaluation 

tools, taking us one step closer to using resilience as a standard measure of performance 

and preparedness to disaster for transportation systems at all scales.  
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Chapter 2: Theoretical Framework 

This section provides a detailed literature review, helping identify gaps within the 

current state of practice – one being that research evaluating resilience of transportation 

systems focus on targeted aspects of resilience and specific perspectives or  elements of 

the transportation system. For example, Madhusudan, and Ganapathy (2011) focused on 

resilience of ports, Reggiani (2013) on resilience from transport security perspective, 

Bhamra, Dani, and Burnard (2011) on organizational and enterprises resilience, Ortiz, 

Ecola, and Willis (2009) on freight TR, and Caplice, Rice, Ivanov, and Stratton (2008) 

proposed guidelines for developing state-wide freight resilience plans. This work provides 

a broader approach by linking the infrastructure, agency and user perspectives of a 

transportation system, under what this study designates as Transportation Resilience 

Architecture.  

2.1 Review Methodology 

The objective of this research is to bridge the knowledge gap that exists in TR. A 

literature review is a necessary step in constructing a research field and forms a 

fundamental part of any research conducted (Easterby-Smith, Thorpe, & Lowe, 2002), 

yielding a comprehensive view of the available literature. This study explores the literature 

surrounding resilience, providing perspectives on the state of the practice in its evaluation. 

This review follows an adapted version of Srivastava’s (2007) literature evaluation 

framework. The steps are briefly explained below and the outcomes are presented in Tables 

2 and 3. 
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 First, the unit of analysis is selected: in this study, the unit of analysis is a single 

research paper, book or report.  

 Second, the process for collecting the material and delimiting the scope is defined: 

the literature review targeted journal articles, books, conference papers, theses, and 

reports. The materials were collected based on their availability on library databases 

and “Google Scholar”. Given the multidisciplinary nature of resiliency, researches 

in several fields were considered, although transportation remained as the main 

focus of the search. Keywords such as ‘transportation resilience’ and ‘evaluating 

resilience’ were used for the search. No time span or peer-reviewed limitations were 

considered in the sources collection process. Overall, 41 interdisciplinary research 

materials were selected for the analysis given their direct link to resilience.  

 Finally, the classification context is defined: each material was analyzed and sorted 

based on two contexts –perspective and methodology– which led to the 

identification of relevant issues. While the perspective indicates the viewpoint of 

the material, the methodology indicates its approach – literature review, theoretical 

framework, and practical framework. In addition, information about whether the 

research contained a case study is presented.  

To delimit the number of publications, when possible, methodological 

redundancies and highly descriptive papers (rather than analytical research) were 

disregarded. With this threshold the review process is optimized and diversity is ensured. 

Moreover, the objective of evaluating current state of practice is fulfilled.  



   

9 

2.3 The Concept of Resilience 

Resilience is an abstract measure that has been studied in an ample selection of 

fields. Examples of these fields are economics (Briguglio, Cordina, Farrugia, & Vella, 

2009), community disaster (Bruneau et al., 2003; Carreño, Cardona, & Barbat, 2007; S. E. 

Chang & Shinozuka, 2004; Godschalk, 2003; Mayunga, 2007), infrastructure (Omer, 

Mostashari, & Nilchiani, 2011), ecology (Cumming et al., 2005; Holling, 1973), and 

transportation (P. Murray-Tuite, 2006; Pitera, 2008; Ta, Goodchild, & Pitera, 2009; N 

Urena Serulle, Heaslip, Brady, Louisell, & Collura, 2011). There have been several 

definitions proposed for resilience, each slightly altered dependent on context (Bhamra et 

al., 2011). Although expressed differently, most definitions have common factors, such as 

“capacity to absorb shocks” and “maintain operation during disruptive events.” Table 2 

presents a summary of definitions of resilience in several fields. This research follows 

Heaslip, Collura, and Louisell’s (2009) definition of TR as the ability for the system to 

maintain its demonstrated level of service or to restore itself to that level within a given 

timeframe.  

Table 2. Definitions of resilience in different fields. 
Author(s) Year Perspective Definition 

Holling  1973 Ecology 

Persistence of systems and their ability to absorb change 

and disturbance and still maintain the same relationships 

between populations or state variables. 

Comfort 1999 
Disaster 

Management 

Capacity to adapt existing resources and skills to new 

situations and operating conditions. 

Mileti 1999 Community 

A locale is able to withstand an extreme natural event 

without suffering devastating losses, damage, diminished 

productivity, or quality of life and without a large amount 

of assistance from outside the community. 

Bruneau et al. 2003 
Community 

(Seismic) 

Ability of social units (e.g., organizations, communities) 

to mitigate hazards, contain the effects of disasters when 

they occur, and carry out recovery activities in ways that 

minimize social disruption and mitigate the effects of 

future earthquakes. 
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Cumming et al. 2005 Social-Ecology 

Ability of a system to maintain its identity (i.e., property 

of key components and relationships and their continuity 

through space and time). 

Mohammad, 

Hutchison, & 

Sterbenz 

2006 Communication 

Network that has the ability to operate and maintain 

acceptable level of service under the presence of adverse 

conditions. 

Falasca, Zobel, 

& Cook 
2008 

Freight 

Transportation/ 

Supply Chain 

Ability of a supply chain system to reduce the probability 

of disruptions, to reduce the consequences of those 

disruptions, and to reduce the time to recover normal 

performance. 

Briguglio et al. 2009 Economy 
Ability to recover from or adjust to the negative impacts 

of external economic shocks. 

Madni & 

Jackson 
2009 System Eng. 

Ability to anticipate and circumvent accidents, survive 

disruptions through appropriate learning and adaptation, 

and recover from disruptions by restoring the pre-

disruption state as closely as possible. 

Ta et al. 2009 
Freight 

Transportation 

Ability for the system to absorb the consequences of 

disruptions to reduce the impacts of disruptions and 

maintain freight mobility 

Heaslip et al. 2009 Transportation 

Ability for the system to maintain its demonstrated level 

of service or to restore itself to that level of service in 

specified timeframe. 

National 

Research 

Council 

2010 Climate Change 

A capability to anticipate, prepare for, respond to, and 

recover from significant multi-hazard threats with 

minimum damage to social well-being, the economy, and 

the environment. 

Leu, Abbass, & 

Curtis 
2010 

Transportation/ 

Network 

System’s ability to keep focusing on and meeting key 

objectives when faced with challenges in the surrounding 

operating environment. 

U.S. 

Department of 

Transportation 

2013 Transportation 

A resilient transportation infrastructure will be able to 

function in the face of threats, and will be able to absorb 

shocks and adapt to changing conditions 

 

The different definitions above raise the following questions: is resilience the 

ability to adapt to or prepare for? To recover or to maintain operation? All of the prior or a 

combination? A clear, universally accepted, and tailored to the unique characteristics of 

the transportation environment definition of resilience is needed. It is the belief of many 

researchers that the first step in measuring resilience is the understanding of it. In this 

context, the purpose of this study is not to present a new definition of resilience in the 
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context of transportation; instead, it is to fuel a discussion by highlighting the small but 

meaningful differences in the definition of resilience across and within fields of study.  

2.4 Resilience Literature 

Given that transportation resilience is the main focus of this study, a higher weight 

was given to this perspective when selecting the reviewed literature. However, it should be 

noted that community resilience research presented high correlation with the field of 

transportation; therefore it was given a significant weight as well. From the 41 research 

pieces evaluated, 35 related to community and transportation. This sample highlights the 

strongest areas within the transportation and community resilience literatures. Around half 

of the material consists on theory building material –literature reviews and/or conceptual 

frameworks. The rest of the selected sources present some sort of practical framework, 

with only a few evaluating resilience by incorporating different aspects of its environment. 

Approximately half of the transportation literature evaluates resilience concentrating only 

on the network’s characteristics (e.g., topology, connectivity, capacity), with little to no 

consideration of the user and management’s effect on the overall resilience. In addition, 

only one research used survey as an approach to develop its framework, corroborating 

Bhamra et al.’s (2011) finding that survey and model development are the least preferred 

methods for evaluating resilience. One can only presume that the economic burden of 

surveys may be a reason for disregarding this method.  

The next subsections describe relevant properties and evaluation techniques of 

resilience found in the literature. However, not all the papers are discussed in order to avoid 

redundancy and enhance the analysis. The reader is referred to Table 3, which summarizes 

the perspectives, methodologies, and approaches to conceptualize and measure resilience 
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of all reviewed literature; the Table is organized by perspectives. It should be noted that 

this is not meant to be an exhaustive list, but a comprehensive one instead. The purpose is 

to provide researchers with a sample of the different approaches that can be found in the 

TR literature.  
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Table 3. Perspectives and methodologies in the resilience literature. 

     Methodologies    

Author(s) Year Perspective 
Literature 

Review 

Theoretical  

Framework 

Practical 

Framework 

Case 

Study 
Approach 

Mohammad, 

Hutchison, & 

Sterbenz 

2006 Communication  X   
Provides different network statuses depending on 

performance ranges. 

Comfort & Haase 2006 Communication   X X 
Graph theory to evaluate robustness of communication 

network. 

Tobin 1999 Community  X   

Qualitative assessment of community resilience based on 

physical, social/cultural, economic, and political 

characteristics. 

Bruneau et al. 2003 Community  X   
Conceptualized resilience along interrelated dimensions 

(TOSE) and 4 properties (4R’s). 

Godschalk 2003 Community X    
Summarized properties of resilient systems suggested by 

previous literature. 

Chang & 

Shinozuka 
2004 Community   X X Probability of meeting goals. 

Mayunga 2007 Community  X   Weighted sum of variables. 

Carreño et al. 2007 Community   X X 
Fuzzy algorithms to combine different community-

related attributes. 

Cutter et al. 2008 Community X X   

Propose measuring total impact of disasters as the 

cumulative effect of antecedent conditions, event 

characteristics, and coping responses. 

Mayunga & 

Peacock 
2010 Community   X X Average of 75 standardized capital livelihood indicators. 

Global Adaptation 

Institute 
2011 Community   X  

Sum of standardized vulnerability and readiness related 

variables. 

Tilio, Murgante, 

Trani, Vona, & 

Masi 

2011 Community   X X 
Spatial multi-criteria approach using GIS to map 

standardized variables. 

Briguglio et al. 2009 Economy   X  Sum of standardized averages of economic metrics. 

Pitera 2008 
Freight 

Transportation 
  X X 

Surveyed freight enterprises to identify state of practice 

in resilience enhancement strategies. 
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     Methodologies    

Author(s) Year Perspective 
Literature 

Review 

Theoretical  

Framework 

Practical 

Framework 

Case 

Study 
Approach 

Caplice et al. 2008 
Freight 

Transportation 
 X  X 

Propose a three-phase guideline (i.e., identification, 

assessment, and implementation) to develop state-wide 

freight resilience plans. 

Falasca et al. 2008 
Freight 

Transportation 
  X  

Propose quantitative measures to evaluate the 

determinants of resilience within a supply chain (i.e., 

density, complexity, and node criticality) which enabled 

the simulation of resilience enhancing alternatives and 

their cost/benefit analysis. 

Ta et al. 2009 
Freight 

Transportation 
X    

Review of literature to define resilience of freight 

systems. 

Ortiz, Ecola & 

Willis 
2009 

Freight 

Transportation 
X X   

Defined actions and performance measures that affect 

freight resilience from a public agency (e.g., DOT, MPO) 

perspective. 

Mansouri, 

Nilchiani, & 

Mostashari 

2010 
Freight 

Transportation 
 X  X 

Combined Risk Management and Decision Analysis 

techniques to assess investments on resilience enhancing 

strategies of port infrastructure systems  

Adams, Bekkem, 

& Toledo-Duran 
2012 

Freight 

Transportation 
  X X 

Plotted resilience triangles (first proposed by Bruneau et 

al., 2003) and show how to quantify two composite 

measures –reduction and recovery – based on the 

triangle’s geometry.    

Chen & Miller-

Hooks 
2012 

Freight 

Transportation/ 

Network 

  X  

Formulated a stochastic mixed-integer program to 

measure resilience of multimodal freight networks. 

Resilience is defined as the ratio between the network’s 

capacity before and after a disruptive event. 

Bhamra et al. 2011 Organizational X    Multidisciplinary literature review. 

Cumming et al. 2005 Social-Ecology X X   
Qualitative assessment of the likelihood that a system will 

change. 

Madni & Jackson 2009 System Eng. X X   
Review of literature to define and understand resilience 

of systems. 

Losada, Scaparra, 

& O’Hanley 
2012 

System Eng./ 

OR 
  X X 

Incorporated facility recovery time into a bilevel mixed 

integer linear program for protecting an uncapacitated 
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     Methodologies    

Author(s) Year Perspective 
Literature 

Review 

Theoretical  

Framework 

Practical 

Framework 

Case 

Study 
Approach 

median type facility network against worst-case losses. In 

addition, they analyzed the tradeoff between added 

protection investments and possible efficiency gains. 

Battelle 2007 Transportation  X   
Proposed several indicators of redundancy as a proxy of 

resilience. 

Heaslip et al. 2009 Transportation  X   
Suggested individual, community, economic, and 

recovery metrics to evaluate TR. 

Cox, Prager, & 

Rose 
2011 Transportation   X X 

Measured resilience as the percentage avoidance of the 

maximum economic disruption that a particular shock 

could bring about (i.e., Direct Static Economic 

Resilience), focusing on changes in passenger journeys 

and passenger kilometers by mode in London after the 

terrorist attacks of 2005.  

Urena Serulle et 

al. 
2011 Transportation   X X 

Fuzzy algorithms to combine performance and 

management metrics. 

Freckleton, 

Heaslip, Luoisell, 

& Collura 

2012 Transportation   X X 
Weighted sum of individual, community, economic and 

recovery metrics. 

Oswald, McNeil, 

Ames, & Gayley 
2013 Transportation   X X 

Used GIS to map performance measures to infer 

resilience and analyze current and future (projected) 

status. 

Croope, McNeil, 

Deliberty, & Nigg 
2010 

Transportation/ 

Infrastructure 
  X X 

Decision support framework for critical infrastructure 

policy evaluation. 

Madhusudan & 

Ganapathy 
2011 

Transportation/ 

Infrastructure 
X    

Review of resilience literature from a transportation port 

infrastructure perspective. 

Murray-Tuite & 

Mahmassani 
2004 

Transportation/ 

Network 
  X  

Measured the reliability of all links within a network 

based on the availability of alternate paths, excess 

capacity, and travel time. 

Murray-Tuite 2006 
Transportation/ 

Network 
  X X 

Applied UE and SO traffic assignment techniques to 

obtain performance values. 
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     Methodologies    

Author(s) Year Perspective 
Literature 

Review 

Theoretical  

Framework 

Practical 

Framework 

Case 

Study 
Approach 

Berche, Ferber, 

Holovatch, & 

Holovatch 

2009 
Transportation/ 

Network 
  X X 

Evaluated resilience of public transportation to attacks 

using L-space and P-space representation of their 

network, and evaluating their properties (e.g., 

segmentation concentration, shortest path length, and 

Molly-Reed parameter) when important components 

were removed. 

Ip & Wang 2009 
Transportation/ 

Network 
  X  

Node resilience: weighted average number of reliable 

independent paths between nodes.  

Network resilience: weighted sum of all node resilience. 

Leu, Abbass, & 

Curtis 
2010 

Transportation/ 

Network 
  X X 

Graph theory to evaluate physical resilience, focusing on 

lost connectivity and cost of repair. 

Omer et al. 2011 
Transportation/ 

Network 
  X X 

Ratio between the network’s travel time before and after 

a disruption. 

Nagurney 2011 
Transportation/ 

Network 
  X  

Developed a Network Efficiency/Performance Measure, 

based on network's topology and demand. 

Vugrin & 

Turnquist 
2012 

Transportation/ 

Network 
  X X 

Developed a stochastic optimization model that finds a 

set of pre- and post-event investment and operational 

decisions that result in smaller total impacts of 

disruptions. 
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2.4.1 Properties of Resilience 

Bruneau et al. (2003) suggested that resilience could be conceptualized along the 

following four interrelated dimensions: technical, organizational, social, and economic 

(TOSE). In addition, Bruneau et al. identified four properties of resilience: robustness, 

rapidity, redundancy, and resourcefulness (4 R’s). The authors explained that robustness 

and rapidity could be viewed as the goal of resilience, and redundancy and resourcefulness 

as the way to achieve them. Godschalk (2003) compiled a set of suggested properties of 

resilient systems based on existing literature. He found that resilient systems tend to be 

redundant, diverse, efficient, autonomous, strong, interdependent, adaptable, and 

collaborative. Murray-Tuite (2006) summarized the properties of resilience found in the 

literature with ten indicators –diversity, efficiency, autonomous components, redundancy, 

strength, adaptability, collaboration, mobility, safety, and the ability to recover quickly. 

Similarly, Battelle (2007) related resilience to redundancy. According to Battelle, 

redundancy depends on excess capacity, level of intermodality, vulnerabilities (e.g., 

chokepoints), stochastic behavior of the network’s users, and the effects of network 

management techniques. Mohammad et al. (2006) suggested different parameters for 

evaluating network resilience: density (e.g., number of nodes), mobility (e.g., speed), 

channel (e.g., capacity), node resources, network traffic, and derived properties (e.g., 

connectivity, delay). Ta et al. (2009) concluded that redundancy, autonomous components, 

collaboration, efficiency, adaptability, and interdependence were consistently mentioned 

as properties within evaluation frameworks in the literature of freight TR. 

The definition of performance measures and standards for these properties is 

essential to the quantification of resilience. According to Cumming et al. (2005), 
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recognizing the resilient nature of a system’s property is the key in identifying actions that 

alter the system’s resilience or strategies that focus on enhancing or reducing particular 

concerns. Nevertheless, the multi-dimensional nature of resilience challenges the 

development of measures that are quantifiable, concise, and significant (S. E. Chang & 

Shinozuka, 2004). To the best of our knowledge, no single metric has been widely accepted 

as the measure of performance for most of the suggested resilient properties.  

2.4.2 Practical Frameworks 

The debate on how to measure resilience has become more attractive over the past 

two decades. Bhamra et al. (2011) reviewed 74 papers from a wide interdisciplinary 

selection that provided a direct link to the concept of resilience. They concluded that more 

real world-based research needed to be done in order to give value to theory. Particularly, 

work based on empirical methods can significantly add to and validate theoretical 

constructs around the resilience theme. Several practical approaches have been used in the 

literature, a subset of them are discussed next. 

Following Bruneau et al.’s framework, Chang and Shinozuka (2004) established 

robustness and rapidity goals for each TOSE dimension (e.g., less than 5% of the 

community lose water) and proposed quantifying resilience as the probability of achieving 

those goals during the disastrous event. The probability indicates the percent of simulations 

for which outcomes meet these standards.  

Briguglio et al. (2009), Mayunga and Peacock (2010), and the Global Adaptation 

Institute (2011) used the sum of and the average of standardized variables as part of their 

methodology to compute an index. On the one hand, Briguglio et al. (2009) suggested the 

use of macroeconomic stability, microeconomic market efficiency, good governance, and 
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social development as indicators of an economic resilience index (ERI). On the other hand, 

Mayunga and Peacock (2010) analyzed 75 different variables categorized by their relation 

to each livelihood capital (i.e., social, economic, physical, and human) and linked them to 

each disaster phase (i.e., preparedness, response, recovery, and mitigation). Lastly, the 

Global Adaptation Institute (2011), which uses adaptation as a synonym of resilience, 

developed an adaptation index by standardizing vulnerability based on water, food, health, 

and infrastructure factors, and readiness based on upper and lower thresholds of economic, 

governance, and social indicators. The final index is obtained by summing up the 

vulnerability and readiness sub-indexes and then adjusting for the country’s per capita 

Gross Domestic Product. 

Another methodology found in the literature is fuzzy sets.  Fuzzy sets present a 

more flexible way of combining variables by allowing partial membership to a set. Carreño, 

Cardona, and Barbat (2007) used fuzzy algorithms to develop a risk management index. 

Their approach averaged four public policy indicators: risk identification, risk reduction, 

disaster management, and governance and financial protection.  

Other authors have also used operational research and graph theory as a way to 

analyze resilience of networks; Comfort and Haase (2006) used graph theory to analyze 

the resilience of a communication network in disaster environments. Next, some of the 

practical frameworks found in the TR literature are presented. 

2.4.2.1 Practical Frameworks in Transportation 

In transportation, the term resilience has been associated to similar concepts like 

vulnerability, reliability, robustness, risk management, and redundancy, providing a 

starting point on how to measure resilience. These concepts have been quantitatively 
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evaluated in detail, mostly from the topological and operational aspect of a transportation 

network (Ip & Wang, 2009; Miller-Hooks, Zhang, & Faturechi, 2012; Murray-Tuite, 2006; 

Murray-Tuite & Mahmassani, 2004). Some of these evaluation frameworks are described 

next.  

Murray-Tuite and Mahmassani (2004) measured the reliability of all links within a 

network based on the availability of alternate paths, excess capacity, and travel time 

between a given pair of nodes. Later on, Murray-Tuite (2006) proposed several metrics to 

analyze the network’s properties of adaptability, mobility, safety, and ability to recover 

quickly. The metrics used were mainly based on the results of traffic assignment techniques 

(e.g., travel time of private and emergency vehicles, queue length and time, traffic volume) 

and physical characteristics of the network (e.g., available capacity of all modes and 

infrastructures).  

Omer, et al. (2011) proposed a Network Infrastructure Resiliency Assessment 

(NIRA) framework which uses the ratio between the travel time prior to and after a 

disruption as an indicator of resilience. Similarly, Chen and Miller Hooks (2012) used a 

ratio to estimate resilience, this time between the network’s capacity before and after a 

disruptive event. They formulated a stochastic mixed-integer program to obtain capacity 

measures of multimodal freight networks.  

Adams, Bekkem, and Toledo-Duran (2012) plotted resilience triangles (first 

proposed by Bruneau et al., 2003) based on truck counts and travel time through a corridor 

before, during and after significant weather events. They quantified two composite 

measures –reduction and recovery – based on the triangle’s geometry.  
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Oswald et al. (2013) proposed capturing resiliency of corridors through 

performance measures while adding spatial and temporal scales. For this, they suggested 

using GIS to map different indicators of performance (e.g., infrastructure age, travel time 

index, connectivity, commute time) and visually identify any current problem and trends. 

It should be noted that the methodology presented by Oswald et al. does not yield to a 

resilience index. Instead, it only highlights current and potential problems of the corridor 

and based on the findings, the planners and agencies can then develop and evaluate possible 

strategies that could improve the resilience of the corridor.   

Urena Serulle et al. (2011) used fuzzy sets to develop a TR index; they posited that 

TR could be measured using nine metrics that indicate the availability, accessibility, cost 

of travel, performance and management of the transportation network. The resilience 

evaluation process estimates the pre-event level of resilience of the system and allows 

policy evaluation through sensitivity analysis.  

While most research focus on defining resilience and proposing measures to 

achieve it, few focus on how resilience is perceived and what strategies are currently being 

implemented to achieve it (Pitera, 2008). Pitera explored and evaluated resiliency efforts 

being used in freight transportation. For this, the researcher interviewed 11 staff members 

responsible for transportation activities and operations of different enterprises. Discussions 

included the topics of resiliency, vulnerabilities, disruptions, and disruption procedures. 

Overall, 15 strategies were identified and the enterprises were ranked, among other things, 

based on the number of strategies implemented, the impact of these strategies on the entire 

supply chain process, the amount of resources spent on resiliency efforts, the cost saved 

due to resiliency efforts, and the types of disruptions accounted for. 
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In conclusion, two common aspects were found in the literature of TR: the 

dependence on performance measures and the focus on the topological and operational 

aspects of the network. As research on TR advances, so will the robustness of its variables, 

making it possible to achieve consensus on how to proxy them. However, the problem of 

being myopic in the evaluation approach still remains. The next subsection provides a 

framework for analysis which overcomes this limitation.  

2.5 Transportation Resilience Architecture  

The literature shows that most resilience evaluation frameworks rely on 

performance measures, even if indirectly. However, merely identifying the measures that 

affect or reflect resilience is not enough to assess it. These approaches usually do not 

directly integrate other perspectives of a transportation system, such as the human aspect, 

and the effects they have on the system’s overall resilience level in their analyses. In this 

manner, this study introduces the concept of Transportation Resilience Architecture (TRA) 

as a framework for evaluating resilience of a transportation system, where it is proposed 

separating TR into infrastructure, agency and user layers, and evaluating the overall 

resilience as the cumulative effect of each layer. The assessment framework suggested here 

partly builds upon three studies: 1) Leu, Abbass, and Curtis’ (2010) assumption that a 

transportation system can be laid out in linked layers; 2) Little’s (2003) statement that 

complex systems have critical institutional and human elements that should be understood 

and integrated into the analytical framework; and 3) Cutter et al.’s (2008) notion that the 

overall impact of a disaster is a cumulative effect of the existing conditions, characteristics 

of the event, and coping responses of the community.  
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The TRA provides a framework comprised of three layers that allows a 

comprehensive evaluation of TR-enhancing strategies (see Figure 2). The Infrastructure 

Layer comprises the physical environment – including subsystems, their interfaces and 

underlying functionality that are required for each transportation and community service. 

The Infrastructure Layer is shown as the base because solid infrastructure are prerequisite 

to an effective resilient system. The Agency Layer includes the institutions, policies, 

processes and resources that are required for effective implementation, operation, and 

maintenance of resilient strategies. This is where the objectives and requirements for TR 

are established. Finally, the User Layer provides insight into the characteristics of the 

(potentially) affected population and their resilient capability. 

 
Figure 2. Transportation Resilience Architecture. 

An analytical framework should possess the resilient qualities of each layer because 

in order to achieve a specific objective (e.g., economic, social welfare, optimized service) 

one cannot separate the network from the people managing and using it; however, logic 

suggests that a hierarchy exists between these layers. This study suggests that infrastructure 
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resilience is the most important layer, followed by agency and then user resilience. The 

justification for this priority order is best illustrated by an example. Imagine a community 

living in a floodplain near a dam. Imagine also that hurricane-like heavy rain has been 

forecasted for the area. The ability of the dam, and the entire physical environment, to 

withstand the additional water and strong wind is of upmost importance since it will 

diminish overall damages, injuries and mortality while enabling response/recovery 

processes. Even if the infrastructure can withstand the rain, it is the responsibility of the 

agencies in charge of the dam and the community to be prepared to deal with the 

unpredictable consequences of drastic situations and provide guidance to the population, 

such as evacuation-related activities (if needed). Finally, the community is responsible for 

preparing themselves for the event by taking actions that could lower the probability of 

injuries and casualties (e.g., buying supplies, making sure their vehicles have gas, and 

evacuating within the suggested time, if applies).  

The proposed assessment framework is flexible and transferable in nature, as it can 

be easily applied across different types of disruption and location. These characteristics 

were important objectives since not all disruptions have the same impact and not all data 

is available at all locations.  

2.6 Conclusion 

This review analyzed 41 studies in resilience, mostly related to transportation and 

community, and found that transportation and community resilience have been well 

investigated independently, but not together. In general, most studies have had a narrow 

perspective, excluding or giving very limited participation to other dimensions of the 

environment (e.g., social, economic, political, ecology, community) that affect resilience. 
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Based on the literature review, this chapter summarizes major studies related to this 

research and identifies promising research directions for this dissertation. In here, a 

summary of the research papers surrounding resilience of transportation and communities 

is provided, as well as a conceptual framework for analyzing TR. Transportation systems 

are complex by nature, as they overlap physical, technical, and human disciplines. In order 

to successfully and efficiently evaluate TR, the analysis framework must differentiate each 

components of the transportation system that affects its resilience. A review of the literature 

shows that progress has been made on measuring resilience, but there is a gap yet to be 

filled in evaluating resilience from the different components of a transportation 

environment –the infrastructure, the management agencies, and the users. This dissertation 

contributes to the literature by reducing this gap through the development of robust, yet 

flexible, quantitative methodologies to evaluate each component.  
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Chapter 3: Infrastructure Resilience 

The key to a successful evacuation is being able to move people at risk to safer 

areas –  (Levinson & Granot, 2002). 

Infrastructure resilience (IR) comprises the physical environment where all 

transportation-dependent activities (e.g., social, economic, leisure) take place. It should be 

noted that this layer of resilience is not limited to transportation infrastructure, as it can 

consider other service infrastructures (e.g., water and electricity) that could hinder 

transportation in the case of a disruptive event. This being said, this dissertation recognizes 

the difficult task of evaluating IR in its entirety and proposes to proxy it as the level of 

accessibility of a specific population. In more detail, this study evaluates the accessibility 

of low income population to safe zones using transportation models, specifically the 

Maryland Statewide Travel Model (MSTM). This approach allows for a more robust  

analysis of accessibility as it simultaneously take into account all available modes of 

transportation and the many other variables that influence their usage, such as in vehicle 

travel time, parking cost, walk time, toll cost, and transit fare. 

The remaining of this chapter is organized as follows: Section 3.1 provides a 

background on accessibility analysis; Section 3.2 presents the methodology used to 

calculate network accessibility to recovery sites during evacuation; Section 3.3 defines low 

income households, in addition to methods and data available to locate them in the study 

areas; Section 3.4 explains the two real case studies developed in this study (evacuation 

due to localized floods of Frederick, MD and Anacostia, Washington DC); Section 3.5 

provides a detailed accessibility analysis; and Section 3.6 summarizes the conclusions and 

suggestions for future investigations. 
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3.1 Background 

Evacuations are more common than many people realize. While people along the 

Gulf and Atlantic coasts evacuate in the face of approaching hurricanes almost every year, 

these events are unusual in the Washington, DC region. Nevertheless, Agnes in 1972, Floyd 

in 1999, and Isabel in 2003 are examples of hurricanes-turned-tropical-storms that caused 

significant damages for the Washington, DC region in recent history. Furthermore, during 

the months of June and July, 2013, flash floods became a trend in the area, forcing people 

to leave their homes and causing damages as well. Such recent events make it clear that 

research is needed to develop evacuation-oriented evaluation frameworks that could 

complement existing robust traffic simulation techniques. For example, Chakraborty, 

Tobin, and Montz (2005) used a geographical information systems framework to determine 

the magnitude of evacuation assistance need of zones within the coastal area of 

Hillsborough County, Florida. For this, they combined various geophysical patterns (i.e., 

flood estimates) and social vulnerability indicators (i.e., population’s demographics). 

However, socioeconomic demographics are not the only factors influencing the 

effectiveness of evacuation strategies (Dash & Gladwin, 2007). Murray-Tuite and 

Mahmassani (2003) modelled household evacuation behavior by incorporating people’s 

desire to find relatives prior to leaving an area and then evacuate as an unit. The model 

yielded higher (and more realistic) evacuation time when compared to traditional 

evacuation models, which assume that people immediately move away from the danger.  

Of the many factors influencing evacuation behavior, accessibility is of upmost 

importance, especially to the disadvantaged population (e.g., low income individuals and 

people with special needs). It is important to understand that the disadvantaged have a 
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different transportation network than the rest of the population, mainly because of their 

limited access to a full set of transport alternatives and resources, restrictions that are 

exacerbated in the midst of a disaster. Having access to transportation alternatives, even 

partially, provides individuals freedom from social, economic, and physical isolation 

(Sohail, 2005). Hence, transportation plays an important role, if not the most, in the process 

of preparing for and recovering from a disaster. This was evident in New Orleans with 

Hurricane Katrina and in Haiti with its earthquake.  

In this study, disadvantaged individuals (DIs) are defined as those below the 

poverty line (as set by the 2010 National Poverty Guidelines) or those who may require 

special assistance. According to the Federal Transit Administration (2006), individuals 

who may require special assistance include: 1) individuals who cannot independently get 

to a pick up (evacuation) point; 2) individuals who live independently and require 

transportation from their location; 3) individuals who live in a group setting (e.g., group 

home, assisted living center) and require transportation directly from their location; 4) 

individuals in acute care/in-patient facilities; 5) individuals with disabilities; and 6) 

individuals with limited English proficiency. 

The preliminary work of this research was performed as part of the “Regional 

Public Transportation Capacity Study for the Washington, DC Metropolitan Region” 

petitioned by the Metropolitan Washington Council of Government (MWCOG). This study 

builds upon this work and adds to it by using transportation models, such as the Maryland 

Statewide Travel Model (MSTM). The MSTM is a state of the practice model system 

developed to support policy analysis and decision making, and is currently used by MPOs 

and Maryland SHA. This study proposes to use an available planning tool to evaluate 
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accessibility in the case of emergency and presents a simple yet revealing practical method 

for measuring the level of accessibility to “safe zones.” For this study, safe zones are 

defined as locations that provide safe haven to evacuees or serve as transition points to 

such locations. Examples of these are pick-up/meeting points, shelters, hospitals, high 

altitude (flood-free) areas, and locations at least 5 miles away from the affected area. 

However, this definition can change as it depends on the magnitude, type and location of 

the event.  

The tool allows for visual analysis of accessibility though GIS by superposing 

layers of information and identifying deficiencies. This provides practitioners, first 

responders, planners and other decision makers with insight into the mobility capabilities 

of different communities to take the necessary steps to ensure the efficient and optimal 

distribution of resources. The tool is flexible in its application and easily transferable to 

any location for which the necessary data is available. 

3.2 Methodology 

Transport modeling measures what would people do based on existing behavior. 

On the other hand, accessibility measures what could people do (Abley, 2010). Being able 

to measure accessibility enables comprehensive policy evaluation by taking into account 

all potential alternatives of transportation linked with demographic data. Usually, 

accessibility is reported as the amount of people or percentage of a population that can 

access a destination within a specified threshold, generally time-, distance- or cost-related, 

or a combination of them. Apparicio, Abdelmajid, Riva, and Shearmur (2008) measured 

geographical accessibility of residential areas (i.e. census tracts) to selected health care 

services using different distance types (i.e., Cartesian and network) and aggregation 
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methods (e.g., population weighted mean). Abley (2010) developed a methodology to 

assess the accessibility of a neighborhood, as commissioned by the New Zealand Transport 

Agency. Their methodology yielded color-coded maps indicating the accessibility level of 

a given neighborhood based on a desired time, distance or cost bound. In their 2011 report, 

“Missed Opportunity,” Tomer, Kneebone, Puentes, and Berube (2011) measured how 

effectively transportation networks in metropolitan areas connect workers to jobs.  For this, 

they measured how many people, grouped by skill sets, were covered by transit and how 

many jobs they can reach within a reasonable amount of time, usually 90 minutes. 

Yigitcanlar, Sipe, Evans, and Pitot (2007) measured accessibility to basic community’s 

services through public transportation based on walking distance and travel time. Nicholls 

(2001) measured accessibility to recreation locations (i.e., parks) through a 0.5 mile 

coverage-radius and walking-distance threshold. In addition, authors have measured 

accessibility between locations by using a distance-based gravity calculation approach (i.e, 

sum of attraccion measure –such as number of doctors or jobs– divided by distance-based 

attribute –such as travel time or area), see Kockelman (1997) and Thouez, Bodson, and 

Joseph (1988). 

Although practical, these approaches lack in simultaneously taking into account all 

available modes of transportation and the many other variables that influence their usage, 

such as in vehicle travel time, parking cost, walk time, toll cost, and transit fare. Kwan and 

Weber (2003) stated the need to go beyond conventional spatial and temporal frameworks 

to measure accessibility. Geurs and Wee (2004) and Litman (2003) suggested that more 

advanced, yet easy to interpret, utility- and activity-based accessibility measures are needed 

to improve current practice in measuring accessibility. Hence, this research attempts to fill 
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such void and bypass the stated limitations by taking advantage of the logsum measure 

resulting from transportation models.  

3.2.1 Consumer Surplus (CS) 

CS is the utility a person receives from a choice situation. A researcher is often 

interested in measuring the change in CS that is associated with a particular policy (e.g., 

building a new metro line or applying a new parking policy) since it is important to measure 

the benefits of the project and compare them to the costs. Similarly, a change in the 

attributes of an alternative can have an impact on CS that is important to assess. Consumer 

surplus is CSn = (1/αn) maxj(Unj) where Unj is the utility of alternative j for person n and αn 

is the marginal utility of income: dUn/dYn= αn, with Yn the income of person n. The division 

by αn translates utility into dollars, since 1/αn= dYn/dUn. The researcher only observes Vnj 

instead of Unj, where Vnj is the known part of the utility Unj. Furthermore, the researcher is 

able to calculate the expected CS as 𝐸(𝐶𝑆𝑛) =  
1

𝛼𝑛
𝐸[𝑚𝑎𝑥𝑗(𝑉𝑛𝑗 + 𝜀𝑛𝑗) ∀𝑗]. If each εnj, the 

unknown part of the utility of alternative j for person n, is iid extreme value and the utility 

is linear in income (so that αn is constant with respect to income), then: 

𝐸(𝐶𝑆𝑛) =  
1

𝛼𝑛
ln(∑ 𝑒𝑉𝑛𝑗𝐽

𝑗=1 ) + 𝐶, where C is an unknown constant that represents the fact 

that the absolute level of utility cannot be measured. Note that the argument in parentheses 

in the previous expression is the denominator of the logit choice probability. The expected 

consumer surplus in a logit model is simply the log of the denominator of the choice 

probability, and can be estimated for any population that has the same representative utility. 

This is often called the logsum term. The reader is referred to Train (2003) for more details 

on discrete choice models and their application. 
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3.2.2 A Logsum Approach 

Logit models are frequently used in transportation. They provide the basis for 

consumer surplus, measured by the logsum (LS). In practice, logsums are rarely used in 

project assessments. Instead, the benefits of a project are based on changes in cost and time 

to travelers. This study applies the concept of CS to evaluate the accessibility within the 

Metropolitan Washington Council of Government (MWCOG) region. The computation of 

CSs are made based on a disaggregate logsum accessibility measure using the Maryland 

Statewide Transportation Model (MSTM). The logsum provides a robust solution to 

measure the full accessibility benefits from land-use and transport policies, taking 

advantage of the availability of discrete choice travel-demand models. The MSTM 

accounts for changes in generalized transportation costs and destination utility; moreover, 

it is a multi-layer model working at a regional, statewide and urban level. Key input data 

to the MSTM include population and employment, by income category, for each traffic 

zone, in addition to highway and transit networks, including the Washington Metropolitan 

Area Transit Authority (WMATA), the Maryland Transit Administration (MTA), and 

MARC Train commuter rail system and all local transit systems within the Baltimore-

Washington area.  

Due to limitations in the data, this study uses income as the only discerning factor 

between disadvantaged and non-disadvantaged population. The accessibility analysis was 

divided by income level. Income data was available in 1999 dollars (see Table 4). 

Furthermore, information on several combinations of transportations was available for the 

calculation of utility. Such combinations include all transportation modes – drive alone, 

share ride/carpooling, and if the person walked or drove to the different transit alternatives 
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available (e.g., bus, express bus, metro, commuter rail). The analysis was performed using 

all modes of transportation available to the population of the selected zones. Ideally, the 

analysis would separate also by vehicle ownership, but such disaggregation was not 

available in the data and approximation through drive alone or carpooling information is 

ill-advised due to Washington, DC’s high attraction of transit users who own or have access 

to a vehicle.  

Table 4. Income Groups (in 1999 Dollars). 

Income Group Income Range Median Income 

Lower Quartile < $20,000 $10,720 

Lower-Middle Quartile $20,000 to $39,999 $29,840 

Middle Quartile $40,000 to $59,999 $49,240 

Upper-Middle Quartile $60,000 to $99,999 $76,350 

Upper Quartile > $100,000 $161,330 

 

The end result of this approach is a measure of accessibility that can be mapped 

from one origin zone to all the possible destinations in the MWCOG region. It represents 

accessibility benefited by population groups making the same trip – segmentation is based 

on income. In addition, historical and estimated weather information is used to locate 

vulnerable locations. By applying the LS framework to the vulnerable location, it is 

possible to evaluate their accessibility level to “safe zones” (i.e., shelters, hospitals, and 

unaffected areas) and evacuation routes.  

3.2.3 Maryland Statewide Travel Model 

The MSTM relies on a four-step model, in which the parameters obtained from the 

model outputs are used for this accessibility analysis. Some assumptions were made in the 

analysis, as applied by the MTSM: 1) only MWCOG statewide modeling zones (SMZs) 

are considered in the analysis; 2) the coefficients calibrated for the work trip purpose was 
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used in the analysis; 3) accessibility is considered by 5 income groups; 4) a total of 11 

mode choices were available; 5) utility was specified considering a nested logit structure 

and with predefined specification and parameters.  This research recognizes that choices 

and behavior under distress situations are different from normal condition. Therefore, only 

considering commuter’s trips allow us to better proxy accessibility during evacuation by 

assuming that in the event of a disaster evacuees will use the modes and routes that they 

are most familiar with. Furthermore, using travel models allow us to modify mode and 

route alternatives (e.g., eliminating access to links or transit stations) in order to better 

represent choices under evacuation situation.  

The four steps model is structured as follow: a) 866 SMZs where used as input for 

the MSTM, each zone contained the aggregated information necessary for estimating the 

generation of trips (e,g, number of households, workers, employment, schools, and whether 

the zone is a CBD or not); b) MSTM trip distribution was based on a gravity model 

formulation that employs composite travel time functions by purpose, a function of 

highway and transit time, as well as roadway tolls, and value of time; c) Mode choice is a 

nested logit choice model. The model divides the options into transit and auto. Transit 

consists of nests that groups transit alternatives, such as “Rail” (light rail and Metro), 

“Commuter Rail” (AMTRAK and MARC), and “Bus” (all bus services). Auto is 

disaggregated into drive-alone and share-ride alternatives. Information on in vehicle time, 

operating cost, waiting time, parking cost, among other, was used in the utility function; 

and d) Travel demand forecasts from both the MSTM statewide model components are 

assigned to a network through factors of the respective daily trip matrices, deriving peak 

and off-peak trip matrices for network assignment.  
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For a complete explanation of the MSTM model the reader is referred the ‘MSTM 

Users Guide’, which is available from Maryland State Highway Administration upon 

request.  

3.3 Identifying Low Income Population in the MWCOG Region 

The first part of this study consists on locating the areas with highest percentage of 

low-income population. In this study, low income population consists of households whose 

total income is below 1.5 times the 2010 National Poverty Guidelines for the respective 

household size. These guidelines are updated each year and issued in the Federal Register 

by the Department of Health and Human Services (HHS), see Table 5.  

For this task, the American Community Survey (ACS) 2006-2010 5-year estimates 

were used. The information is aggregated at the Public Use Microdata Areas (PUMAs) 

level. This data set has proven to be a valid source of information because of its wide-

ranging sample size and reputation of its collector, the U.S. Census Bureau. Figure 3 

illustrates the location of the PUMAs that characterize the scope of this study. However, it 

should be noted that PUMAs vary in shape and size, hence encompassing different 

communities. In addition, household and individual weights provided by the ACS were 

used to reduce sampling bias and error of over- and under-represented subpopulations. 

Table 5. 2010 Poverty Guidelines for the 48 Contiguous States and D.C. Source: U.S. 

Department of Human Health Services. 

Persons in family/ household Poverty guideline 

1 $10,830 

2 $14,570 

3 $18,310 

4 $22,050 

5 $25,790 

6 $29,530 

7 $33,270 
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8 $37,010 

For families with more than 8 persons, add $3,740 for 

each additional person. 

 

Overall, nearly 10% of Maryland’s households fall within the low income criteria, 

with PUMAs 00300 and 01005, part of Frederick and Prince George’s County, having the 

highest percentage of low income households with 1% and 0.8%, respectively. 

Astoundingly, nearly 45% of all low income households are located in Prince George’s 

County. Finally, 18% of the households within PUMA 01101 (i.e., College Park-

Hyattsville area) are low income. As for Washington, DC, approximately 19% of its 

households are low income. The center and south-east DC regions, PUMAs 00105 and 

00104 respectively, have the overall highest percentage of low income households, with 

6.8% and 4.3% low income households, respectively. Also startlingly, 30.8% of the 

households within the south-east region are low income. For contrast, this study will focus 

on two subareas, Anacostia, DC, and Frederick City, MD. The locations were selected for 

analysis based on their different concentration of low income population, the variety of 

available transportation modes, and difference in proximity to a metropolitan area, which 

helps in demonstrating the range of the LS approach, see Table 6. 

Table 6. Case studies for accessibility analysis. 

Location PUMA SMZ Reference City Median HH Income 

Washington DC 00104 1268 Anacostia $19,238 

Frederick County 00300 956 Frederick City $42,529 
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Figure 3. PUMA location for the Washington DC Metropolitan Region. 

3.4 A Real Case Study: Evacuation Due to Localized Floods 

Every year, on average, hundreds of lives and billions of dollars are lost across the 

United States due to extreme weather events. According to National Weather Service 

(NWS, 2012), floods and flash floods are the second deadliest weather phenomenon in the 

United States, taking more lives than hurricanes and tornados combined (see Figure 4). A 

flash flood is defined by the NWS as a flood that develops in under six hours; however, 
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sometimes they form in a matter of minutes, hence their danger. They tend to occur in low-

lying areas with poor drainage, with urban areas particularly at risk. A significant 

percentage of the people who die due to floods make the mistake of attempting to drive or 

walk through flooded areas and are swept away by the rapid water. Some causes of flash 

flooding include heavy rain, ice jams, and dam or levee break. 

 
Figure 4. Average weather-related fatalities from 1975 to 2004. Source: NOAA (2006). 

3.4.1 Case Study 

In this study two case scenarios will be evaluated: 1) an evacuation of Frederick, 

MD and 2) an evacuation of Anacostia, Washington DC due to localized floods. The case 

scenarios were developed as realistically as possible using available information from 

several official sources. Each case is based on information about ‘Storm Surge’ and ‘100-

year flood’, which were extracted from Maryland’s OSPREY imap, developed by the 

Maryland Emergency Management Agency (MEMA). The ‘Storm Surge’ map shows 

potential flood heights resulting from historical, hypothetical, or predicted hurricanes by 

assessing pressure, size, forward speed, track, and wind data. The calculations are applied 
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to an area’s shoreline, analyzing its physical features (e.g., bay and river configurations, 

water depths, bridges, and roads) and presenting the worst-case scenario for the entire 

basin. ‘Storm Surge’ has been developed for category 1-4 hurricanes represented by the 

Saffir-Simpson Scale. On the other hand, the ‘100-year Flood’ shows hazard areas 

corresponding to floods that have a one-percent chance of being equaled or exceeded on 

an annual basis. Official information on shelter and hospital locations, as well as evacuation 

routes, were provided by the Maryland State Highway Administration (MDSHA); this list 

includes 170 locations approved to serve as shelters (including schools, recreational 

centers, and fire stations) and 175 hospitals. While the totality of these locations is spread 

across Maryland, Virginia, and Washington, DC, only 109 shelters and 36 hospitals are 

located within the MWCOG region and therefore incorporated into the analysis. Finally, 

the evacuation routes used in this study are the ones served out by the MEMA and the 

MDSHA in events such as hurricanes to get people away from high risk areas; these routes 

were complemented with information on “routes prone to flood” also extracted from 

Maryland’s OSPREY imap, which are identified as routes that present recurrent and 

occasional floods problems.  

The MWCOG region is peculiar in that it comprises two states, Maryland and 

Virginia, and the District of Columbia (DC), with the Potomac River and Anacostia River 

(a branch of Potomac) passing through all three locations. Communities close to these 

rivers tend to be at high risk during hurricane and flood events. Figure 5 compares the 

MWCOG region at a normal state and under the effect of extreme water events, represented 

by the light blue color. It should be noted that data about the effect of the ‘100-year Flood’ 

was not available for all counties, hence the missing information to the east of DC. Figure 
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5 also illustrate the location of hospitals, shelters and evacuation routes as provided by 

official agencies. The subareas to be analyzed are highlighted with a purple circle. 

Figure 6 presents the affected zones in more detail. In Figure 6a it is visible how 

the high water levels covers part of downtown Frederick and its municipal airport – roughly 

0.75 square miles. The effects of the ‘100-year Flood’ are also noticeable in Figure 6b, 

where the flood covers around 0.6 square miles of the Anacostia’s rivershore, in addition 

to the flooding in central DC. Finally, Figure 6c highlights the roads that are prone to 

flooding (the dots mark location and data availability on the OSPREY map, although not 

all dots contain information). In the event of a major flood, these roads should be expected 

to be unreliable, or chokepoints, based on their flooding history.  

a) b)  
Figure 5. a) MWCOG region; b) Effect of storm surge and 100-year flood on the MWCOG 

area. 
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a)    

b)   

c)  

Figure 6. a) Hurricane storm surge effect on Frederick, MD; b) 100-year flood effect on 

Anacostia, Washington DC; c) Roads prone to flood. 
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3.4.2 Accessibility Analysis 

The proposed methodology allows for a sketch-level assessment of the accessibility 

of targeted communities to safe zones by income level. The following are the major 

findings from the analysis conducted for Frederick City and Anacostia’s (marked with the 

white star on Figure 7 and Figure 8): 

 The visual result suggests that income and accessibility are positively correlated.  

o In both locations, Frederick City and Anacostia, there is a clear inequality in 

accessibility to safe zones between the different income levels (see Figure 7 and 

Figure 8). 

 Income, or an overall lack of resources, may not be the sole limitation of 

accessibility. 

o Location, the privation of access to a vehicle, dependency on transit services, 

and longer travel times, among other factors, also play a role in inducing 

accessibility inequality. This is evident when each location’s income levels are 

compared, making it clear that Frederick’s residents can reach more locations 

than Anacostia’s.  

 According to the American Community Survey (ACS) 2006-2010 5-year 

estimates, only 23% of households within Frederick County do not own a 

vehicle whereas in Southeast DC almost 70% of households do not own a 

vehicle. In addition, it should be noted that Southeast DC residents have 

access to a more developed transit network (e.g., DC metro), which may 

affect vehicle ownership decision.  

 Safe zone availability is correlated to how much the population can travel.  
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o Frederick’s low income population have a moderate amount of shelters they can 

get to in the case of a flood, and options increases as income increases. 

However, the county lacks in hospitals, having only one in the center of the city, 

which also puts residents on high risk if a flood occurs. It is not until income 

level 3 that a significant amount of hospitals become accessible.  

o Anacostia’s lower income population has very limited access to shelters and 

hospitals. However, a significant improvement in accessibility can be perceived 

starting on income level 2, making available to the population a significant 

amount of alternatives in the event of an evacuation due to their proximity to 

DC.   

 Potential floods on major roads could diminish accessibility within the MWCOG 

region. 

o Roads connecting Frederick to hospitals located to the south (closer to DC and 

Leesburg) and Anacostia to northern located shelters are prone to flood (see  

o Figure 6c), further increasing the probability of casualties of the disadvantaged.  

o Road and rail transit could also be affected by excessive surface water, partially 

or completely interrupting services to different locations.   

 The spatial distribution of shelters does not adequately cover the MWCOG region. 

o A large cluster of shelters is located south of DC, making them more accessible 

to DC’s low income population – recall that the highest percentage of low 

income households is located in the southern areas of DC. Nonetheless, there is 

a striking lack of shelters west and, to a lesser degree, east of DC. In both 
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directions, the population outside the beltway may be at the highest risk because 

of the lack of shelters, having little to none alternatives to stay at. 

SMZ 956 Income level 1        SMZ 956 Income level 2 

 
SMZ 956 Income level 3                   SMZ 956 Income level 5 

 
Figure 7. Accessibility to safe zones of Frederick City's population by income level. 

Accessibility levels: = High; = Medium-High; = Medium; = Medium-Low;      

= Low. 
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SMZ 1268 Income level 1                   SMZ 1268 Income level 2 

 
SMZ 1268 Income level 3                   SMZ1268 Income level 5 

 
Figure 8. Accessibility to safe zones of Anacostia's population by income level.   

Accessibility levels: = High; = Medium-High; = Medium; = Medium-Low;      

= Low. 

3.5 Application of Results: Shelter Location Analysis 

In order to showcase potential application of the proposed accessibility measuring 

framework, this research considers the problem of building shelters in the optimal location 

based on the accessibility of all Origin-Destination (O-D) pairs. Here, the Logsum 

accessibility value is used as the base of obtaining two objective alternatives: (i) one that 
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maximizes the minimum accessibility and (ii) another that maximizes overall accessibility. 

Given the nature of the Logsum values obtained from the MSTM, within-zone accessibility 

may not be the highest of a SMZ. For the location problem, this research assumes that the 

accessibility within a given zone is 20% higher than the maximum of such zone, allowing 

the model to yield more realistic results.  

The results are obtained through binary integer programs that optimally locates 

shelters at the regional level. The analysis is limited to the MWCOG region, which is 

composed of 525 SMZs, with 67 of them having at least one shelter. For this location 

analysis it is assumed that this number can be increased to 100 zones—thus 33 new shelters 

could be built if necessary, with the limitation that only one shelter will be placed per 

selected zone. 

3.5.1 Model 1: Maximization of Minimum Accessibility (M1) 

This model ensures that a relatively accessible shelter is provided to all the zones 

(i.e., remote zones would still have access to a shelter). Let I denote a set of zones indexed 

by i and j. Define yj as a binary variable which equals 1 if a shelter is located within zone j 

∈ I and 0 otherwise. Let aij be the Logsum accessibility value of zone i ∈ I to zone j ∈ I. 

Define a binary variable xij which equals 1 if the most accessible shelter to zone i ∈ I is 

located in zone j ∈ I (note that i may equal j). Using this variable, it is possible to compute 

the accessibility from zone i ∈ I to the most accessible shelter as 𝑑𝑖 = ∑ 𝑥𝑖𝑗𝑎𝑖𝑗𝑗∊𝐼 . Also let  

𝜓 = 𝑚𝑖𝑛𝑖∊𝐼𝑑𝑖 be the minimum of all the previously computed accessibility factors. 

The objective is to open at most m shelters in a way that would maximize the 

minimum accessibility to a shelter. This optimization problem is formulated as a binary 

integer program: 
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max
𝑥𝑖𝑗,𝑦𝑖∈{0,1}

𝜓                                                                   (3.1) 

𝑠. 𝑡.                ∑ 𝑦𝑗

𝑗 ∈ 𝐼

       ≤         𝑚                                                    (3.2) 

𝑥𝑖𝑗              ≤         𝑦𝑗              ∀𝑖, 𝑗 ∈ 𝐼                       (3.3) 

∑ 𝑥𝑖𝑗

𝑗 ∈ 𝐼

      =         1                   ∀𝑖 ∈ 𝐼                       (3.4) 

𝑑𝑖               =      ∑ 𝑥𝑖𝑗

𝑗 ∈ 𝐼

𝑎𝑖𝑗      ∀𝑖 ∈ 𝐼                       (3.5) 

 𝜓               ≤        𝑑𝑖                  ∀𝑖 ∈ 𝐼                       (3.6) 

The objective function (3.1) maximizes the minimum accessibility 𝜓. The 

constraint (3.2) ensures that at most m shelters are opened. The constraints (3.3) ensure that 

xij = 0 if there is no shelter located at j ∈ I (i.e., if yj = 0). Equations (3.4) and (3.5) compute 

the minimum accessibility for each zone. The last set of constraints (3.6) ensures that  𝜓 

indeed denotes the smallest accessibility of all the zones. Note that xij can be linearly 

relaxed without altering the problem (i.e., if xij ≥ 0). Finally, note that M1 can account for 

existing shelters by letting yi = 1 for the corresponding zones and by increasing m by the 

number of existing shelters. 

3.5.2 Model 2: Maximization of Overall Accessibility (M2) 

Model 1 targets a justifiable objective because it ensures that a relatively accessible 

shelter is provided to each zone. In contrast with M1, this alternate model (M2) maximizes 

the average accessibility which may leave some zones without easily accessible shelters, 

but would likely yield an increased accessibility for most other zones. Using the same 

notation as before, this problem is formulated as a binary integer program. 
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max
𝑥𝑖𝑗 ,𝑦𝑖∈{0,1}

1

|𝐼|
∑ 𝑑𝑖

𝑖∈𝐼

                                                                   (3.7) 

𝑠. 𝑡.                ∑ 𝑦𝑗

𝑗 ∈ 𝐼

       ≤         𝑚                                                    (3.8) 

𝑥𝑖𝑗              ≤         𝑦𝑗              ∀𝑖, 𝑗 ∈ 𝐼                       (3.9) 

∑ 𝑥𝑖𝑗

𝑗 ∈ 𝐼

      =        1                   ∀𝑖 ∈ 𝐼                     (3.10) 

𝑑𝑖               =     ∑ 𝑥𝑖𝑗

𝑗 ∈ 𝐼

𝑎𝑖𝑗       ∀𝑖 ∈ 𝐼                    (3.11) 

The objective function (3.7) maximizes the average accessibility from a zone to its 

most accessible shelter, while constraints (3.8)-(3.11) model the same relations as in the 

previous formulation. Note that dropping 1/|I| from the objective function does not change 

the optimal allocation of shelters, which implies that maximizing average accessibility is 

equivalent to maximizing overall accessibility (i.e., ∑ 𝑑𝑖𝑖∈𝐼 ). 

3.5.3 Results from Location Models 

As formulated, both model seek to maximize their respective objective function, 

based on the accessibility level between all O-D pairs. This value of accessibility is defined 

by the Logsum measure, which for the selected zones range from 0.639 to 3.40 units of 

utility. The models are limited by a maximum number of potential shelters m. This 

limitation should not be confused with the number of shelters that would be built—notice 

that the constraint is  ∑ 𝑦𝑗𝑗 ∈ 𝐼 ≤ 𝑚 instead of  ∑ 𝑦𝑗𝑗 ∈ 𝐼 = 𝑚. Hence, m should be viewed 

as the maximum number of shelters that could be built if demand, from an accessibility 

point of view, is sufficiently high. In a real case, m would be limited by available resources, 

both economic and non-economic, affecting the number of shelters to be built. Given this, 



   

49 

several iterations were performed of both models to discern accessibility gain with relation 

to m. Table 7 details the results of these iterations and their resulting locations. 

Table 7. Optimal Shelter Locations. 

Model m* Logsum** New Locations 

1 

100 2.216 

i624, i631, i632, i657, i678, i683, i692, i706, i740, i743, 

i744, i756, i758, i759, i761, i762, i764, i771, i780, i782, 

i783, i797, i805, i806, i878, i895, i896, i902, i924, i953, 

i962, i965, i1353 

85 2.215 
i624, i631, i632, i678, i683, i692, i740, i743, i744, i756, 

i764, i771, i780, i782, i797, i896, i902, i1353 

70 2.215 i624, i908, i1319 

69 2.215 i902, i1353 

68 2.106 i905 

2 

100 2.385 

i611, i614, i659, i661, i680, i682, i687, i694, i709, i731, 

i907, i946, i1189, i1192, i1193, i1194, i1195, i1196, 

i1197, i1201, i1202, i1203, i1205, i1213, i1216, i1224, 

i1225, i1237, i1240, i1242, i1243, i1258, i1320 

85 2.371 
i611, i659, i661, i680, i682, i694, i709, i731, i907, i946, 

i1192, i1193, i1196, i1197, i1201, i1216, i1237, i1320 

70 2.356 i907, i1192, i1320 

69 2.355 i907, i1320 

68 2.352 i907 

*Includes 67 existing shelters     **Base accessibility of 2.015 for M1 and 2.298  for M2 

 

Results of M1 indicate that with the addition of two shelters, one in Prince 

George’s, MD (i902) and another in Fairfax, VA (i1353), accessibility is increased to a 

similar level as if 33 new shelters were added across the MWCOG region. In other words, 

adding shelters in other locations beyond these two will marginally influence regional 

accessibility to shelters given other zones limitations. Conversely, results from M2 indicate 

a more significant increase of accessibility as more shelters are added. This is an expected 

result as M2 locates the shelter in zones that serve as destinations with highest overall 

accessibility. 

Figure 9 illustrates the two locations identified by M1 (highlighted within the red 

squares) as the best alternatives for locating new shelters, and after which adding new 
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shelters provides limited improvement of accessibility. The results could be viewed as low, 

but recall that there are 67 zones with existing shelters in the area, which significantly 

simplifies the optimization problem given the vast covered area. Additionally, Figure 9 

also shows the first three locations suggested by M2 (highlighted within the orange 

squares) that should be considered to improve overall accessibility. Notice that one of the 

suggested SMZ is in the heart of D.C. Mapped results from both models when m equals 85 

and 100 can be viewed in Annex 1. 

Finally, the same analysis was performed relaxing the existing shelters constraint 

on M1 and with the objective of locating 10 and 100 shelters. Surprisingly, the results 

indicate that an accessibility of 2.215 and 2.216 can be reached with 10 and 100 shelters, 

respectively. These findings corroborate the findings of M1, indicating that, although not 

necessarily economically feasible, building shelters with sufficient capacity within a 

limited number zones would be enough to ensure that a reasonable level of accessibility to 

shelters is obtained from any location within MWCOG region.  
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Figure 9. Optimal location of new shelters. 

It should be noted that the proposed models do not account for the capacities of 

shelters and population size at each zone, as well as other significant variables that may 

affect the selection of the optimal location and the amount of shelters to be built, such as 

sociodemographic data (e.g., income, household sizes and number of vehicles) and 

available budget. Therefore, the results obtained here should not be taken as final. Instead, 

the goal is to showcase the type of analysis that could be perform if one were to introduce 

the Logsum accessibility measure into location problems. Once more robust information is 

acquired, it will be possible to extend these models to also account for more contributing 

factors. 
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3.6 Conclusions 

The approach proposed in this study, which is based on the logsum measure for 

accessibility, accounts for many other factors influencing population’s accessibility level 

(e.g., transit frequency, waiting time, number of transfer, transfer time, parking cost) when 

compared to more traditional measuring approaches – which proxy accessibility through 

travel time, travel cost, or trip distance. Furthermore, this method allows us to perform a 

disaggregated analysis by income level (and potentially by any other population 

characteristic), overcoming a limitation of traditional approaches. Finally, the logsum 

approach utilizes coefficients from the transportation model which captures behavioral 

responses to changes in trip attributes, making it possible to capture trips within the study 

area regardless of travel times. 

The visual results suggest that there is a positive correlation between accessibility 

and income level; however, it can be affected by the attributes of the location. Logistics 

problems were also found in the location of shelters, leaving some areas without nearby 

alternatives to go to. It is clear that low income population need careful attention and that 

a great deal of resources should be dedicated to enhance their mobility in the event of an 

evacuation. Furthermore, results from the optimal shelter location problem indicate that 

two more shelters are needed to increase accessibility, one in Prince George’s, MD and 

another in Fairfax, VA. 

This approach is the first iteration in the development of a comprehensive and 

practical assessment tool that evaluates IR through an accessibility analysis. The main goal 

is to highlight the areas that are lacking, and could potentially hinder the evacuation 

processes, in a simple and presentable manner. Future iterations could address the present 
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limitations, among which are the incomplete information on disadvantaged population, the 

need for more accurate weather data, and the lack of non-commuter trips. In addition, 

statistical analysis is needed to increase reliability of the results. Future research is also 

needed to identify other factors impeding evacuation mobility and to incorporate temporal 

constraints (e.g., departure time) into the accessibility analysis. Finally, the limitations of 

the proposed location optimization models should be addressed in parallel with the ones 

stated for the accessibility analysis. 
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Chapter 4: Agency Resilience 

Agency Resilience (AR) refers to the institutions, policies, processes and resources 

that are required for effective implementation, operation, and maintenance of resilient 

strategies. It is at this layer where the objectives and requirements for TR are established. 

At a higher level, AR provides the basis for understanding who the implementers are and 

the roles these implementers could take within an architecture-based resilient system. At a 

lower level, AR improves preparedness and response capability of agencies by taking into 

account more operational, rather than only managerial, characteristics of an agency. This 

study focuses on such lower level and presents a comprehensive set of easily measurable 

metrics, based on previously and newly proposed indicators, allowing for a broader 

assessment of AR. These variables are classified based on their contribution to the agency’s 

“sustainable livelihood” and combined using fuzzy algorithm, yielding to an AR index. 

This research recognizes that in reality no one agency is fully responsible for all disaster 

management processes. Therefore, whenever a reference is made about agency it should 

be understood as a network of institutions that influence preparedness and response 

capability to disasters.  

The rest of the chapter is organized as follows: Section 4.1 provides a background 

on evaluating an agency’s risk management capability; Section 4.2 describes the evaluation 

framework proposed in this study; Section 4.3 describes the data collection process; 

Section 4.4 summarizes and analyzes the data; and Section 4.5 presents results from 

simulated data. 
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4.1 Background  

The role of agency before, during, and after a disaster is of extreme significance, 

especially nowadays when technological advances in warning and communication systems 

facilitate coordination and quicker response across and within different levels of 

organization (i.e., community, city, state, national and international). Measuring agency 

preparedness and agency response to different kinds of disasters has been at the center of 

American public policy after 9/11, the anthrax attacks, and hurricane Katrina; but the 

absence of clear metrics to evaluate preparedness and response is still problematic (Elliott, 

2010). Specifically, Hurricane Katrina in 2005 exposed a failure of policy and leadership 

at the federal level which paralyzed managerial and administrative capacity at the local 

level, resulting in a lack of coordination and an effective command system (Cigler, 2006; 

Farazmand, 2005). 

Formal (rigorous) theories establishing the assessment process are still absent from 

the literature. Most recent efforts have focused on assessing preparedness with “yes/no” 

surveys and checklists that allow each agency to evaluate their preparedness levels, as well 

as to conduct cross-sectional comparisons across organizations, states or regions. Jackson 

(2008) suggests that efforts have been concentrated not only on inputs (e.g., response 

personnel, existence of an evacuation plan), but also on capabilities—an agency’s capacity 

to deliver on such inputs. However, too much emphasis is put on quantity (whether an input 

or capability is in place or not, or how much of a given input exists), rather than in the 

quality or time stability/adaptability—highlighting an important shortcoming of the 

checklist approach. Jackson explains that the latter might be more important when 

responding to a disaster. Variations of surveys and checklists are many, examples follow. 
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The Target Capabilities List (TCL), developed by the U.S. Department of 

Homeland Security (DHS), encompasses four areas related to DHS’s mission: prevention, 

protection, response, and recovery. Including 37 core capabilities, this list provides a basis 

for the assessment of preparedness and establishes a standard for national agency’s 

preparation for major disasters (DHS, 2007). “Each capability includes a definition; 

outcome; preparedness and performance activities, tasks, and measures. The TCL also 

identifies the role of governmental and non-governmental organizations, the private sector, 

and citizens in building and maintaining capabilities.” (DHS, 2007, p. 1). FEMA 

understands this list as a dynamic document that must be refined as lessons are learned 

over time.  

Another example is the United Nations’ Disaster Preparedness for Effective 

Response guidance and indicators package from the Hyogo Framework for Action (HFA). 

The HFA has a holistic approach in the measuring of objectives, outputs and activities that 

strengthen disaster preparedness capabilities for disaster reduction of a nation. Their 

approach includes indicators regarding “early warning systems, ongoing risk and 

vulnerability assessment, capacity building, the creation and maintenance of stand-by 

capacities and the stockpiling of humanitarian supplies” (UNISDR & UNOCHA, 2008, p. 

25). Specifically, they divide their assessment tool in three areas and several subareas. 

1) Holistic Approaches, Strategies and Institutional Frameworks: (a) Holistic 

Approaches and Preparedness, (b) National Institutional and Legislative 

Frameworks, and (c) Coordination at the Local, National, Regional and 

International Level. 

2) Preparedness Planning: (a) Contingency Planning, (b) Capacity Analysis and 
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Capacity-building, (c) Hazard Monitoring, Forecasting and Early Warning, and (d) 

Information Management and Communication. 

3) Readiness for Response: (a) Emergency Services and Stand-by Arrangements, (b) 

Incorporation of Early Recovery into Preparedness Planning, and (c) Resource 

Allocation and Funding. 

For each sub-area, the HFA looks at specific qualitative indicators for governments, 

civil society, regional organization and international actors, following customized yes/no 

checklists per sub-area. No details in regard to quantification and aggregation of responses 

are provided; expected outcomes, however, are presented for each sub-area. 

Another case of usage of surveys and checklist is presented on Sutton and Tierney 

(2006). The authors identify common metrics (which stem from qualitative questions) used 

by different organizations/agencies for public sector preparedness assessment.  Specifically 

they look at the data archives at the UCLA Center for Public Health and Disasters, FEMA, 

DHS, the Infrastructure Security Partnership, the Environmental Monitoring and 

Assessment Program and The Joint Commission on the Accreditation of Healthcare, 

regarding earthquakes. Such common metrics belong to the following five areas: 1) hazard 

knowledge, 2) management, direction and coordination, 3) formal and informal response 

plans and agreements, 4) life safety protection, and 5) initiation of recovery. 

Public opinion data has also been looked at as an approach to evaluate agency. For 

example, when evaluating agency preparedness in Hawaii, Prizzia (2007) asked three 

questions to survey senior managers about their opinions on the appropriateness of current 

coordination efforts to response to disasters, the way in which improvements can be 

achieved, and the way in which the media can assist in increasing preparedness and 



   

58 

coordination. Kirschenbaum (2004) made an interesting use of opinion data for assessing 

an organization effectiveness in this regard. He starts from the statement that “what the 

organization claims to be its client oriented stated goals and its constituents’ perception of 

actual delivery of these relevant service-goals, form the basis for a measure of 

organizational effectiveness”, assuming the agencies do want to deliver on their promises 

(p. 77). The author obtained stated goals from public documents, among which were: “(1) 

informing the civilian population of potential emergencies; (2) providing instructions to 

emergency organizations how to deal with civilian populations; (3) control and 

management of Hazmat materials and coordinating organizations to maximize civilian 

safety; (4) providing, maintaining and informing the population about warning systems; 

(5) preparation for, and response to, biochemical and atomic threats through the 

distribution of gas mask kits, shelters and their maintenance; (6) authority over the civilian 

population, including evacuations and post disaster rehabilitation; (7) the recruitment of 

civilian manpower during emergencies; (8) coordinating civilian logistic and supply 

organizations; (9) preparing civilian emergency health and medical facilities; and (10) 

having the authority over the requisition of all civilian emergency types of equipment.” 

(p.86). For measuring these metrics, and as described for other studies/tools above, 

Kischenbaum relied on “yes/no” questions only that were based on respondents’ 

perceptions of whether the organization has delivered on a particular goal or not. 

Finally, an interesting approach to assessing agency’s risk management capabilities 

is that of Cardona (2005) and Cardona (2007). He developed an index based on a composite 

of qualitative indicators modeled with fuzzy theory.  With their selected indicators for the 

index, Cardona sought to have a set of “transparent, robust, representative and easily 
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understood” measures for policymakers (p.79). Moreover, the author wanted to build an 

index that allowed for cross-city, region, country and other territorial levels comparisons, 

and with a methodology of evaluation easy to carry across time. The index consists of six 

public policy areas which receive a performance score ranging from 1 to 5, where 1 is low 

and 5 is optimal. They included indicators within the four areas of: 1) risk identification, 

2) risk reduction, 3) disaster management, and 4) governance and financial protection. Each 

indicator within each public policy area was weighted depending on its relative importance, 

which was established based on experts’ inputs. 

Given the limitations of the approaches presented, and the stated need for 

complementing current assessment tools, this chapter presents a new attempt at measuring 

an agency’s preparedness and response capability of an agency with quantitative indicators 

(without disregarding quality). 

4.2 Evaluation Framework: a Sustainable Livelihood Approach 

This study proposes an approach that recognizes the necessity of classifying each 

variable based on its contribution to the agency layer. For this, the well-known sustainable 

livelihood approach, also known as the capital-based approach, is combined with the notion 

of AR. The Institute of Development Studies defines sustainable livelihoods as capabilities, 

assets, and activities required for a means of living, which in hand can cope with and 

recover from stresses and shocks, while not undermining the natural resource base 

(Scoones, 1998). The Department for International Development (1999) defines these 

capitals as follows: 

 Human capital refers to the skills, knowledge, good health and physical capability, 

which are important for the successful pursuit of different livelihood strategies. 



   

60 

 Physical capital comprises the basic infrastructure and producer goods (e.g., tools, 

equipment, shelter, and energy) needed to support livelihoods.  

 Economic capital (also known as financial capital) refers to the available stock (e.g., 

cash, credit/debt, and savings) and regular inflows (e.g., income and remittances), 

which are essential for the pursuit of any livelihood strategy. 

 Natural capital encompasses the natural resource stocks (e.g., soil, water, air, and 

genetic resources) and environmental services, such as hydrological cycle and 

available land, from which resource flows and services useful for livelihoods are 

derived. 

 Social capital refers to the social resources (e.g., networks, affiliations, 

associations) upon which people draw when pursuing different livelihood strategies 

requiring coordinated actions.  

These capitals relate to AR as follows: 1) Physical capital entails the physical 

environment that makes an agency capable to efficiently maintain and harden the 

transportation network; 2) Human capital entails the personnel, from both private and 

public organizations, needed to competently manage a transportation network before, 

during and after a disaster, and recover it in the latter situation; 3) Economic capital entails 

the financial stability of a transportation agency, which enables the implementation of 

proactive and reactive disaster management strategies; and 4) Social capital entails the 

agency’s ability to efficiently support, coordinate and implement preparedness and 

response activities, procedures, methods, and tools. Natural capital will not be considered 

as it does not relate to an agency structure. The final framework is presented in Figure 10. 
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Figure 10. Proposed framework for evaluating AR through sustainable livelihoods. 

Fouracre (2001) explains that roads and transport are a key element of a country's 

infrastructure (physical capital), as they improve livelihood outcomes through better access 

to natural assets and management of forest resources (natural capital). Transport is also the 

means of access to other facilities and services (which may be uneconomic to provide 

locally), and a means to social bonding and development (social capital). The development 

of rural transport infrastructure and services improves access to human assets such as health 

and education (human capital), and stimulates improved agricultural production and 

marketing potential, therefore increasing income generation and surplus capital which can 

be expended on essential services (economic capital).  

The capital-based approach allows for easier identification of deficiencies, since it 

first separates AR into the capitals that affect it, leading to more thorough and tailored 

recommendations and proving to be a suitable tool for assessing one-dimensional systems. 
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The sustainable livelihood approach and its application have been well documented in 

many studies. The reader is referred to Scoones (1998), DFID (1999), Davis (2000), Sohail 

(2005), Alexander, Chan-Halbrendt, and Salim (2006), and Mayunga (2007) for more 

details. 

The decision to use sustainable livelihood capitals highlights an inherent problem 

when dealing with different perspectives: how to evaluate and combine the certainly 

different types of data (i.e., qualitative and quantitative) that could be used to explain each 

capital. In order to overcome this challenge, this study suggests the use of Fuzzy 

Algorithms, as explained in the Subsections 4.2.1 and 4.2.2 that follow. 

4.2.1 Fuzzy Algorithms 

Classical set theory reaches its limits when the property that determines the 

membership of an element to a set is defined in such a way that a clear distinction between 

membership and exclusion is no longer possible (Hanss, 2005). Fuzzy Sets fill this gap by 

working with undefined limits, allowing elements of a universal set to gradually belong or 

not to a specific set. Fuzzy Sets allow for mathematical processes to recognize different 

types of values, allowing the analyst to represent a wider range of values than conventional 

numbers. The final objective of the Fuzzy Set is the mathematical representation of 

linguistic or qualitative responses, such as strongly agree/disagree, significant influence, 

little effort, moderate satisfaction.  

Figure 11 presents a comparison between a Fuzzy Set and a Regular Set. In this 

comparison, Fuzzy Sets are represented using triangular shaped membership functions; 

however, several types of membership functions can be used to explain the interaction 

between the different levels of a variable and diverse degrees of ‘softness’. The most 
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common types are triangle, trapezoidal, exponential, type S, and bell shape. In general, the 

base of the membership function and the degree of overlap represent the degree of 

‘fuzziness’ when evaluating the values to be used in the Fuzzy Inference System (FIS) 

computational environment.  

 
Figure 11. A Comparison of fuzzy (left) and precise (right) sets. 

FIS translate the variable’s raw measure (input) into a fuzzy number and effectively 

combines measured quantitative data with operational experience and with qualitative and 

imprecise information (Babuska, Verbruggen, & Hellendoorn, 1999). Urena Serulle (2010) 

explains the benefits of this approach when evaluating TR given the uncertainty about the 

event that will affect the system and the variety of variables needed to evaluate the different 

aspects of TR. Within a FIS, all rules that apply are called on simultaneously and a result 

for each applicable rule is determined. The output from each partially fulfilled rule is a 

contribution to the aggregate output, which is represented in a shape with a measurable 

area, yielding a final “crisp” value through a process known as defuzzification. For a set of 

rules such as “if Input 1 is X and Input 2 is Y and Input 3 is Z … then, the output is n,”  the 

resulting value n is obtained by combining a defuzzification technique with an inference 

method. Figure 12 illustrates an example that applies a centroid defuzzification, where the 
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center of mass of the result provides the crisp value, and a min-max inference method, 

where the output membership function is given the value generated by the rule that apply 

to each input. It should be noted that there is a variety of defuzzification and inference 

methods. The reader is referred to Hanss (2005) for a detailed description of Fuzzy 

Arithmetic.  

  
Figure 12. Illustration of the geometric FIS computational method. 

4.2.2 Interaction of Variables 

The main objectives of any agency that seeks to be resilient are to increase its level 

of preparedness and improve its response capability. The interaction of these objectives 

can be presented through a resilience triangle, which was first introduced by Bruneau et al. 

(2003) within an earthquake disaster resilience context. The resilience triangle shows the 

loss of operation performance of an agency over time due to a disruption, as well as the 

pattern of recovery (see Figure 13). The higher the level of preparedness of the agency, the 
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lower the effect of the disruption (P1-P2). Similarly, the higher the response capability of 

the agency, the shorter the time of recovery (T2-T1). As can be seen, after a disaster, an 

agency has the opportunity to go back to its original state (P1) or “build back better” (PB). 

 
Figure 13. Agency Resilience Triangle (based on Bruneau et al., 2003). 

The proposed methodology for generating a measure of AR is based on a 

dependency relationship between the sustainable livelihood capitals. Figure 14 illustrates 

the hierarchical structure that serves as the basis of the FIS method used in this study. Each 

node in the system, which is the point where two or more variables combine, is represented 

by a FIS. This study assumes that physical capital directly influences an agency’s 

preparedness to disasters. Similarly, human and economic capitals relate to an agency’s 

response capability, as they represent the available resources in the case of a disaster. Recall 

that preparedness and response grasp the main activities pursued by a resilient agency. 

Therefore these two values are combined in order to obtain a Base Resilience value—the 

agency’s risk management capability without any kind of coordination technique applied 

for optimization of resources. Finally, the social capital is defined as a levering variable, 

as it represents the agency’s ability to efficiently coordinate and implement preparedness 
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and response activities, procedures, methods, and tools. Increased social capital provides 

real time shifting of resources and demands within the agency, which could minimize 

recovery activities. This variable is used as a leverage of the agency’s Base Resiliency 

value because of its secondary contribution to performance optimization, and consequently 

the overall agency’s resiliency.  

 
Figure 14. Dependency diagram as the basis for Fuzzy Inference. 

Each of the capitals can be characterized according to the availability of quality 

data to support valuation within the process. Sections 4.3 and 4.4 explain the process of 

data collection and application within the dependency diagram to obtain an index. 

4.3 Data Collection and Analysis 

The next step of this study is to refine the proposed methodology through the 

collection of real-life data, enabling the development of the Agency Resilience Index. This 

research attempts to provide a comprehensive analysis of AR by including as many 

quantitative variables as possible in order to robustly describe each capital. To the extent 

possible, this research will follow Chang and Shinozuka (2004) suggestion that  metrics’ 

selection, definition and weights should be developed in consultation with decision-

makers, the public, experts in the affected fields, and other potential end-users. However, 
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it should be noted that including a vast number of indicators introduces complexity in the 

evaluation framework as it broadens the concept of resilience—in the past this complexity 

has obstructed the creation and empirical test of broad models of resilience (Cumming et 

al., 2005). While Carreño (2007) suggested the use of a limited amount of indicators in 

order to decrease redundancy and weighting complexity, mixed approaches were found in 

the literature in terms of the amount and type (qualitative or quantitative) of metrics to use, 

with no consensus on which one is best—as much as 75 variables have been used to 

evaluate resilience as a whole. Therefore, this research also considers the applicability of 

the model when selecting the data to be used (recall that the objective is to develop a robust, 

yet flexible methodology).  

A total of 130 practitioners within U.S. transportation-related agencies (e.g., state 

DOT, SHA and MPOs) where contacted to participate in an online survey regarding the 

agency’s and/or their perspective on resilience and what metrics could be used to evaluate 

AR. More than one person within each agency was contacted in order to increase the 

probability of an agency participating. The survey can be viewed in Annex 2. Three survey 

invitation emails were sent. The first invitation was sent between July 10th and 13th, 2015, 

and two subsequent reminders on August 21st and October 5th, 2015. Despite the different 

attempts to contact practitioners across the US, and obtain their perspective on agency 

resilience, 54 surveys were initiated (i.e., opened the webpage), out of which 10 completed 

the survey, with only 5 of them actually providing metrics. Of the ones who did not answer, 

one expressed unwillingness to participate due to data security concerns, and others simply 

stated the lack of information regarding resilience-oriented plans within their agency to 

complete the survey—providing an indication of the (deficient) state-of-knowledge of AR. 
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Regarding the latter, some agencies conveyed that they are about to start or recently started 

efforts to measure resilience of their agency. From the agencies that provided reasons for 

non-participation, all workers were excluded from subsequent attempts of contact.  

As an effort to initiate a consensus-seeking discussion, and to complement the 

information obtained through the survey, this research identifies other candidate variables 

from the literature review process that could be used to proxy each capital, as well as other 

newly suggested (to the best of our knowledge) or adapted by this research. Table 8 

summarizes these variables, as well as the ones from the survey. Following the proposed 

conceptual framework, each variable is linked to a specific Agency Resilience sustainable 

livelihood capital and a brief definition and at least one possible metric for valuation are 

also provided. It should be noted that this is not meant to be an exhaustive list. The 

objective here is to provide a list of metrics to which academics and practitioners could 

turn for guidance in the (type of) information needed when assessing AR, helping close the 

gap related to assessment metrics highlighted by Elliot (2010). In general, the selected 

variables are consistently used in transportation, community, and disaster management 

analyses. Most of them are normally available through metropolitan planning organizations 

and national studies, or are relatively easy to estimate. However, this research’s findings 

suggest that several variables would be better explained by a range or qualitative measures, 

instead of precise values.  

Table 8. Potential metrics to evaluate Agency Resilience. 

Variable Definition Reference(s) Possible Metric(s) Capital 

Disaster Reserve 

Funds 

Availability of a 

special fund 

reserved for 

disasters. 

M. Carreño et 

al., 2007; 

Survey 

(i) % of GDP or millions of 

dollars per 100,000 people 

dedicated to disaster 

management; (ii) % of funds 

allocated for system disasters 

(emergencies) per budget year; 

(iii) Qualitative measure based 

Economic 
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Variable Definition Reference(s) Possible Metric(s) Capital 

on the existence and optimal 

expenditure of the fund. 

Disaster 

Management 

Personnel 

Available 

professionals in 

disaster and 

transportation 

management in 

the area. 

Survey 

(i) Number of 

registered/employed transport 

and disaster management 

professionals in the area or per 

100,000 people; (ii) % of 

employees trained in 

disruption relief activities. 

Human 

Experienced 

Staff 

Available 

experienced staff. 
Survey 

Percentage of staff members 

with 10+ yrs of experience 
Human 

Scalability 

(Alternate relief 

personnel) 

Capability to 

increase 

personnel before, 

during and after 

emergencies. 

Survey 
Percentage change in 

personnel size. 
Human 

Structural 

Recovery 

Personnel 

Presence of 

construction 

personnel that 

could help with 

reconstruction 

after a disaster. 

  

Number of civil engineers and 

construction workers in the 

area or per 100,000 people. 

Human 

Disaster 

Response 

Personnel 

Available 

response 

personnel. 

Carreño, 

Cardona, & 

Barbat, 2006; 

Mayunga & 

Peacock, 2010 

Number of 

registered/employed response 

staff (e.g., firefighters, 

doctors, nurses, and law 

enforcement) in the area or per 

100,000 people. 

Human 

Structural 

Preparedness 

Personnel 

Presence of 

construction 

evaluation staff. 

Mayunga & 

Peacock, 2010 

Number of 

construction/building 

inspectors in the area or per 

100,000 people. 

Human 

Management 

Redundancy 

Availability of 

alternate private 

and public 

transportation 

related agencies. 

Survey 

(i) Number of Transportation 

Management Centers within 

the area; (ii) Number of 

private and public transport 

related agencies in the area or 

per 100,000 people. 

Human/ 

Physical 

Infrastructure's 

Health 

Monitoring 

Systems 

Observation and 

evaluation of 

structural damage 

of key 

infrastructure. 

C. Chang & 

Mehta, 2009; A. 

M. Madni & 

Jackson, 2009; 

Omer et al., 

2011; Survey 

(i) Percentage of key 

infrastructure that is monitored 

for structural damage; (ii) 

Percentage of road covered. 

Physical 

Power 

Redundancy 

Availability of 

back-up 

generators. 

Survey 
Number of back-up generators 

available. 
Physical 

Data 

Redundancy 

Availability of 

back-up servers. 
Survey 

Number of back-up servers 

available. 
Physical 

Alternative 

Infrastructure 

Proximity 

Distance between 

original and 

alternate 

infrastructure. 

Survey 

Distance in miles between 

main location of servers, 

generators, or office space and 

their respective back-ups. 

Physical 



   

70 

Variable Definition Reference(s) Possible Metric(s) Capital 

Infrastructure 

Resistance 

Level of seismic 

resistance of the 

infrastructure. 

 

Percentage of agency 

infrastructure that is seismic 

resistance or has been 

retrofitted. 

Physical 

Age of 

Equipment 

Age of 

supervision and 

response 

equipment. 

Survey 
Average age (in years) of 

equipment. 
Physical 

Structural 

Preparedness 

Presence of 

construction 

evaluation 

policies that help 

prepare for and 

mitigate the 

effects of 

disasters. 

  

Qualitative measure (low to 

high). Percentage of 

construction/building 

inspected within a reasonable 

timeframe 

Physical 

Information 

Dissemination 

Capability 

Ability to 

broadcast 

information to the 

public and 

officials. 

Comfort & 

Haase, 2006; 

Charnkol & 

Tanaboriboon, 

2006 

Percentage of roads covered 

by VMS, AM radio station, 

and 511 telephones, as well as 

presence in social media and 

any other warning method.  

Physical/ 

Social 

Interoperability 

Accurate and 

timely 

communication 

within and across 

agencies.  

 Carreño et al.’s 

(2007); Survey 

Qualitative measure (low to 

high). 
Social 

4.4 Results Based on Simulated Data 

Insightful information regarding potential metrics to evaluate AR was gathered by 

combining the information from the survey with the one from the review of existing 

literature. Subsequently, synthetic information of a hypothetical agency was developed in 

order to validate the proposed “Sustainable Livelihood–Fuzzy Algorithm” approach by 

showcasing its expected results and analysis capability.  

4.4.1 Variables, Metrics and Measurement Range 

For this study, seven variables of interest were selected from Table 8 for AR 

assessment based on their representation of an agency’s important preparedness and response 

attributes that contribute to resiliency. Furthermore, they allow for the assignment of a 

quantitative (or qualitative) performance measurement(s). Next is an explanation of each 
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variable, the selected metric for assessment and the respective measurement range necessary 

for the FIS. It should be noted that value ranges for the following variables are subject to 

size and other characteristics of the agency, as well as to the level of analysis. So these are 

just proposed values for the current case study, but should not be blindly generalized for 

other cases. 

Power Redundancy (PR) 

This variable refers to how vulnerable an agency is to power outage. Lack of energy 

can limit the performance of critical functions of an agency in the eve of a disaster. The 

presence of auxiliary generator(s) will drastically decrease the risk of losing power. 

Therefore, this research assumes that if no generators are being used, then the agency has 

a low PR; whereas if one or two or more are available, then the agency has medium and 

high PR, respectively.  

Data Redundancy (DR) 

This variable refers to how vulnerable an agency is to data/server outage. Similar 

to PR, lack of access to necessary data and/or operating systems can limit the performance 

of critical functions of an agency in the eve of a disaster. The presence of a back-up server 

will significantly lower this risk. In this manner, if no server is available, then the agency 

has a low DR; if one exists, then the agency has a medium DR; and finally, if 2 or more 

back-up servers are available, then the agency has high DR. 

Alternate Infrastructure Proximity (AIP) 

In extreme cases, the possibility still exists of losing access to both the main and 

alternate system. Therefore, the geographical location of the back-up with reference to the 

original should be taken into account to truly guarantee redundancy. This research suggest 

that if the distance between both systems is 5 miles or less, then the agency has low AIP; 
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if the distance is 15 miles, then AIP is Medium; and if the distance is 25 miles or more, 

then AIP is high. 

Disaster Management Personnel (DMP) 

This variable refers to the available professionals with training and/or experience 

in disaster management. Having a significant number of trained personnel will increase the 

strength of the agency’s vertical and horizontal structure, and its execution of disaster 

response plans. In this sense, if an agency has no personnel with specific training and/or 

experience in disaster management, then it has a low DMP; if 20% of its personnel is 

trained, then DMP is medium; and if 40% or more is trained then DMP is high. 

Scalability (SC) 

It is inefficient, from budget perspective, for an agency to keep the amount of staff 

necessary to prepare for and respond to a disaster on active duty all year around. Therefore, 

a key resilient characteristic of an agency is its ability to change its personnel size in order 

to satisfy the new, and many time spontaneously increased, demand. For this research, this 

variable is estimated by a percentage increase in size, where 0% is low, 25% is medium 

and 50% or more is high SC.  

Emergency Funds (EF) 

An agency’s ability to respond during distress is fueled by its available economic 

solvency and funds reserve. Many planning approaches exist in which agencies estimate 

the losses attached to the different types and amount of events that could occur throughout 

a year, along with the economic funds necessary to diminish them. Assuming that a “plan 

for the worse, hope for the best” strategy is commonly applied by agencies, if an agency 
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reserves at most 1% of its yearly budget for emergency response, then it has low EF; if it 

reserves 2%, it has medium EF; and if it reserved 3% or more it has high EF. 

Interoperability (IN) 

By the time of completion of this research, no quantitative value could be obtained 

to measure how well coordination happens within and across transportation agencies. To 

date, qualitative information is necessary to evaluate this variable, under its specific 

condition. This research follows Carreño et al.’s (2007) qualitative scale for “organization 

and coordination of emergency operations,” as presented below, to measure IN: 

1. Different organizations attend emergencies but lack resources and various operate 

with only voluntary personnel. 

2. Specific legislation defines an institutional structure; roles for operational entities 

and coordination of emergency commissions throughout the country. 

3. Considerable coordination exists in some cities, between organizations in 

preparedness, communications, search and rescue, emergency networks, and 

management of temporary shelters.  

4. Permanent coordination for response between operational organizations, public 

services, local authorities and civil society organizations in the majority of cities. 

5. Advance levels of interinstitutional organization between public, private and 

community based bodies. Adequate protocols exist for horizontal and vertical 

coordination at all territorial levels. 

These metrics represent characterizations at the lower level of operation, which is 

the focus of this research. Table 9 provides a summary of the metrics and measurements 

range of each variable used in this study. Recall that the objective of this research is to 
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develop a flexible yet robust tool for evaluating AR, and therefore the proposed ranges 

should be revised on a case by case basis. 

Table 9. Summary of Metrics and Measurement Range. 

Variable Metric Low Medium High 

Power redundancy 
Availability of back-up 

generators 
0 1 2 

Data redundancy 
Availability of back-up 

servers 
0 1 2 

Alternate Infrastructure 

Proximity 

Distance between main 

and back-up systems 
5 mi 15 mi 25 mi 

Disaster Management 

Personnel 

 % of employees trained 

or experienced in 

disruption relief activities  

0% 20% 40% 

Scalability 

Capability to increase 

personnel before, during 

and after emergencies 

0% 25% 50% 

Emergency Funds 

Percentage of funds 

allocated for disasters 

(emergencies) per budget 

year 

1% 2% 3% 

Interoperability 

Accurate and timely 

communication within and 

across agencies. 

1 3 5 

4.4.2 Application of Fuzzy Algorithms: Simulated Results 

An updated dependency diagram was developed based on the selected variables. 

Figure 15 shows the interaction of the input variables used to asses each capital, which are 

characterized as first level metrics. The membership functions for each variable are 

continuous functions derived from the input rule sets that were created specifically for this 

research. Different types of membership functions (e.g., triangular, trapezoidal, etc.) where 

used to best describe each relationship and to account for any changeability within the 

variables. The membership functions along with the relative weights of influence specified 

for each variable provided the output to the following variable. That is, the combination of 

the first level metrics will determine the value of the second level metrics (i.e., capital 
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indexes). The second level metrics determine the third level (i.e., preparedness and 

response indexes) and so forth. Therefore, changes in the input (first level) metrics, along 

with the leveraging Social Capital, will extend through the fuzzy structure to the final AR 

Index. In summary, the estimation of the AR Index is derived from applying the “if-then” 

rules that enable each FIS, and the interaction between membership functions, which in 

hand determines the value of the next level variable.  

 
Figure 15. Agency Resilience Index’s Fuzzy Inference System. 

In general, all rules necessary for evaluating the different FIS (i.e., each node on 

the system) were developed through a two-step process that combines numerical 

calculation and engineering judgment. In the first step input metrics were standardized and 

the output was estimated based on the suggested weight of each metric. Here, all outputs 

are normalized into a 5-level scale membership function, where 1 is ‘Low’ and 5 is ‘High’. 

Any output within a specific range can then be categorized based on the scale—that is, any 

value below 1 is Low, between 1 and 2 is Medium-Low, between 2 and 3 is Medium, 

between 3 and 4 is Medium-High, and above 4 is High. However, given the different scales 

of first level inputs, not all results might be consistent with logic (e.g., two Low values 

yielding a Medium-Low). In the second step engineering judgment was used to validate 
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such outputs and make any necessary changes. This research uses MATLAB’s Fuzzy Logic 

Toolbox for the development and evaluation of all FIS. Details about the logic behind the 

different FIS at each level are provided next.  

 Capital Indexes: The Physical Index is evaluated in two parts. First, Data 

Redundancy (DR) and Alternate Infrastructure Proximity (AIP) are combined. In 

order to obtain real data redundancy it is necessary to not only have a back-up, but 

also for it to be located in a safe location outside of the potential disaster zone. This 

is not the case with power (PR), as it is inefficient from a budget perspective, to 

locate generators far from the users (e.g., buildings and management centers). This 

research assumes that DR is more important that AIP, explaining 70%, under the 

logic that it is necessary to have a back-up in order to locate it. Furthermore, the 

output from this sub-FIS is assumed to always be Low when no alternate system is 

available (i.e., DR is equal to 0). The second part uses the resulting value from 

combining DR and AIP as input with PR to estimate the Physical Index, both with 

equal weight. From a human capital perspective, both the presence of 

experienced/trained personnel and the ability to increase the workforce to satisfy 

increasing demand are of upmost importance for disaster response. Therefore, 

Scalability and Disaster Management Personnel are assumed to have equal weight 

when estimating the Human Index. Finally, the Economic and Social Indexes are 

only influenced by one variable each, Emergency Funds and Interoperability, 

respectively. Hence, no weight assignment is needed; instead, ranges are 

incorporated in the membership functions to accommodate the different values each 

variable may have.  
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 Preparedness and Response: The Preparedness Index explains how able an agency 

is to withstand a disastrous event and it’s estimated directly from the Physical 

Index. On the other hand, the Response Index combines Human and Economic 

Indexes to estimate the agency’s capability to respond to such event. This study 

assumes that the economic component explains 65% of the Response Index, based 

on the logic that response strategies are more significantly limited by the lack of 

(access to) economic resources than human resources. In simple terms, it is easier 

to obtain extra personnel (e.g., volunteers) than it is to obtain extra monetary funds. 

 Base Resilience and Agency Resilience Index: The final steps of the methodology 

consists of combining Preparedness and Response into a Base Resiliency Index 

(BR) for the agency and merging it with the leveraging variable, Social Index, into 

the Agency Resiliency Index (ARI). Preparedness and Response are assumed to 

equally impact BR, since their interaction can be viewed as reciprocal. Base 

Resilience represents the resilience level of an agency based only on its basic 

properties. However, given the common distribution of responsibilities across 

agencies, communication and coordination between them is key to reach an optimal 

resilience level. Therefore, Interoperability and Base Resilience are assumed to 

have equal weight when evaluating the final Agency Resilience Index.  

The tool provides useful visual outputs, such as a result-surface plot of all possible 

combinations of inputs and their respective output and 2D plot of a selected input variable 

the output. As an example, the rules used to obtain the AR Index are presented in Table 10. 

All rules used in this research can be seen in Annex 3. 
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Table 10. Rules for estimating Agency Resiliency. 

IF Base Resilience AND Social THEN Agency  Resilience 

If Low and 1 then Low 

If Low and 2 then Low 

If Low and 3 then Medium-Low 

If Low and 4 then Medium-Low 

If Low and 5 then Medium 

If Medium-Low and 1 then Low 

If Medium-Low and 2 then Medium-Low 

If Medium-Low and 3 then Medium-Low 

If Medium-Low and 4 then Medium 

If Medium-Low and 5 then Medium 

If Medium and 1 then Medium-Low 

If Medium and 2 then Medium-Low 

If Medium and 3 then Medium 

If Medium and 4 then Medium 

If Medium and 5 then Medium-High 

If Medium-High and 1 then Medium-Low 

If Medium-High and 2 then Medium 

If Medium-High and 3 then Medium 

If Medium-High and 4 then Medium-High 

If Medium-High and 5 then High 

If High and 1 then Medium 

If High and 2 then Medium 

If High and 3 then Medium-High 

If High and 4 then High 

If High and 5 then High 

 

The result of “fuzzifying” inputs and applying the “if-then” rules presented in Table 

10 is the 3D surface shown in Figure 16. As can be seen, at their maximum level, both Base 

Resilience and Social Capital yield an AR value of 3 (i.e., Medium). In other words, if one 

of the variables has a value of zero, the other would help the agency obtain a medium level 

of resilience. Additionally, in-between values follow identical slopes, indicating that, under 

these set of rules, investing in Social Capital could returns the same benefits as attempting 

to improve Base Resilience. 
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Figure 16. Agency Resilience result-surface. 

A synthetic agency was simulated to showcase the application and analysis 

capability of the proposed framework. This example was perceived as a medium-level 

transportation office, where the agency, MPOx, is responsible for carrying out the 

transportation planning process of a metropolitan area with a population of 500,000. Table 

11 summarizes the characteristics of the agency under the base case and improvement 

scenarios and their respective AR Index. As can be seen, under its current condition, MPOx 

has an AR Index value of 2––a Medium-Low level of resilience that indicates that the 

agency is somewhat able to withstand a disaster. An analysis of the input variables for the 

base case provides insight of why such value of resilience. In detail: (i) data redundancy is 

significantly narrowed by the small distance between the original and back-up servers, 

having a cascade-effect into Physical Capital and forth; (ii) limited funds and capacitated 

personnel could hinder the capacity of MPOx to apply and manage different response 

processes; and (iii) the low level of Base Resilience is compensated to some degree by the 

average interoperability level, improving its overall resilience level. 

The effect of improving each capital is evaluated in scenarios one through four (the 

change in each variable is highlighted in red font). Of the different improvements possible, 
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enhancing coordination and communication with other agencies provides the biggest 

benefit, increasing the AR Index by 50%. This provides a cost-effective alternative for 

MPOx to improve its overall ability to prepare and respond to disasters, although not 

necessarily the easiest to implement due to political and geographical constraints. The 

second most beneficial improvement comes from ensuring accessibility to information and 

operating systems during disasters. Having servers located in a location with low 

probability of being included in the disaster diameter will increase Base Resilience by 

around 70%. Finally, increasing MPOx’s disaster management capability (e.g., capacitating 

existing personnel or hiring experienced ones) and increasing its funds available for 

disaster response will yield the same AR Index. 

Table 11. Agency Resilience Index for simulated base case and scenarios. 

Variable 
Base 

Case 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Power redundancy 1 1 1 1 1 

Data redundancy 1 1 1 1 1 

Alternate Infrastructure Proximity 10 mi 30 10 mi 10 mi 10 mi 

Physical Index 2.5 4 2.5 2.5 2.5 

Disaster Management Personnel 15% 15% 40% 15% 15% 

Scalability 25% 25% 25% 25% 25% 

Human Index 2.3 2.3 4 2.3 2.3 

Emergency Funds 1.5% 1.5% 1.5% 2.5% 1.5% 

Economic Index 1.84 1.84 1.84 3.55 1.84 

Interoperability 3 3 3 3 5 

Social Index 3 3 3 3 5 

Base Resilience 1.62 2.73 2.5 2.5 1.62 

Agency Resilience Index 2 2.7 2.5 2.5 3 

4.5 Conclusion 

Urena Serulle et al. (2011) states that a measure of resilience could be used to 

substitute other performance indexes since resilience can be viewed as the collection of 

key performance indicators. This research supports this notion and in this chapter 
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introduces an alternate quantitative approach to measure resilience of transportation 

agencies as a way to fill the existing void in the academic literature regarding AR. The 

framework for analysis combines two well-known and used approaches, Sustainable 

Capitals and Fuzzy Algorithms. The first decomposes agency resilience into groups of 

related metrics, whereas the latter enables a flexible multi-criteria analysis. The framework 

is flexible in the sense that it can deal with different type of data (i.e., scales and units) and 

makes it possible to evaluate intermediate values as well as defined values. 

To the best of the author’s knowledge, the first nationwide survey regarding AR 

was conducted here, where transportation professionals within different agencies where 

asked about their perspective on agency resilience specifically and how it could be 

characterized with quantitative data. Despite the low response rate, this research still 

contributes to the discussion on how to evaluate AR. The information collected was merged 

with the one found in or derived from the multidisciplinary literature review (Sections ‘2.4 

Resilience Literature’ and ‘4.1 Background’) to compile a set of potential quantitative 

metrics that could serve as a starting point for future research in this area. Seven variables 

were selected from this list to evaluate AR. The results of the simulated example indicates 

that, under the specified set of rules, improving coordination and developing joint efforts 

across agencies provides a (potentially) cost-effective way to significantly increase an 

agency’s resilience level. 

A noteworthy detail found through the survey is the apparent lack of information 

regarding resilience, specifically of agencies, and the recent attempt to fill this gap—some 

agencies stated they are about to or recently starting research on this topic. Therefore, this 

research recommends that another nationwide survey be conducted in one or two years to 
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collect this information, preferably with stronger support in order to guarantee higher 

participation rate. Future research should focus not only on identifying metrics for 

evaluation but also on their weights. 
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Chapter 5: User Resilience 

The layer User Resilience (UR) provides insight into the characteristics of the 

(potentially) affected population and their resilient capability, making it more 

economically and socially driven than the rest. Similar to previous layers, UR comprises a 

vast number of variables that inform the resilience level of a given population. As a result, 

this study proposes that UR be evaluated through an analysis of the evacuation behavior of 

a given population. Understanding what affects the decision process of a population 

potentially at risk from a disaster is of upmost importance when developing and 

implementing resilience-enhancing policies. For this, a dynamic discrete choice model is 

suggested, taking into account the disaster’s and population’s characteristics.  

The rest of the chapter is organized as follows: Section 5.1 provides a background 

into the problem of evacuation demand estimation and dynamic modelling; Section 5.2 

describes the approach to develop a dynamic model; Section 5.3 describes the data to be 

used for model estimation; Section 5.4 explains the estimated results using SP data; and 

Section 5.5 concludes. 

5.1 Background 

5.1.1 Modelling Evacuation  

In the event of a disaster, the affected population goes through four stages of 

reaction: collection, evaluation, decision, and implementation (Williams, 1964). In the first 

stage, the population collects information on the disaster, mainly through disaster warning 

messages. Then, the information is evaluated, generally based on the perceived relevance. 

Finally, a decision is made and implemented within a selected timeframe. The transition 
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through these stages makes travel demand for evacuation different from ordinary travel 

needs. In order to understand travel needs in disastrous situations, it is necessary to gather 

knowledge on evacuation behavior. For this, research to comprehend evacuation must 

move beyond estimating the amount of evacuees, towards an understanding of what factors 

are crucial in determining the forces behind evacuation travel demand (Dash & Gladwin, 

2007; Lindell, Lu, & Prater, 2005). 

In their research, Dash and Gladwin (2007) found that, historically, factors such as 

age of the decision maker (Mileti, Drabek, & Haas, 1975; Gruntfest, Downing, & White, 

1978; Perry R. W., 1979), presence of kids or seniors in the household (Carter, Kendall, & 

Clark, 1983; Gladwin & Peacock, 1997), gender (Bolin, Jackson, & Crist, 1996; Fothergill, 

1996; Bateman & Edwards, 2002), disability (Van Willigen, Edwards, Edwards, & Hessee, 

2002), ethnicity (Drabek & Boggs, 1968; Perry & Greene, 1982; Perry & Mushkatel, 

1986), and income (Schaffer & Cook, 1972; Sorensen, Vogt, & Mileti, 1987; Bolin, 1986) 

have all been shown to influence evacuation outcomes. Additionally, previous experience 

(Hutton, 1976; Baker, 1979; Perry, Lindell, & Greene, 1982; Sorensen, Vogt, & Mileti, 

1987) and geographic location (Simpson & Riehl, 1981; Gladwin & Peacock, 1997) affect 

the evacuation decision-making process. Similarly, Charnkol and Tanaboriboon (2006) 

found that, as expected, permanent residents, larger families, people living further away 

from the seashore, people that haven’t directly or indirectly experienced a disaster event, 

and people without disaster knowledge are less likely to have a faster response time (i.e., 

time required to physically travel to safer area) than their counterparts—same results are 

found when other types of disasters are evaluated. The reader is referred to Carnegie and 
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Deka (2010) for a more comprehensive review of the array of factors that have been 

reported to influence evacuation decision.  

The suggestion of incorporating time into evacuation modeling is found throughout 

the literature (Pel, Bliemer, & Hoogendoorn, 2011a). Identifying what will get people to 

evacuate in a timely manner would enable more robust traffic-clearing models during 

disasters. A common practice in hurricane evacuation travel demand estimation is to 

estimate the total evacuation demand and departure time through simple relationships such 

as means, rates, and distributions rather than the more sophisticated mathematical 

relationships observed in urban transportation planning (Mei, 2002). These estimates are 

generally determined by applying an exogenous response curve stating the percentage of 

departures in each time interval (Pel, Bliemer, & Hoogendoorn, 2011b). Response curves 

have been vastly studied; however there is still a debate about the distribution it should 

follow—instantaneous departure (Chen & Zhang, 2004; Chiu, Villalobos, Gautam, & 

Zheng, 2006), a Uniform distribution (Liu, Lai, & Chang, 2006; Yuan, Han, Chin, & 

Hwang, 2006), a Poisson distribution (Cova & Johnson, 2002), a Weibull distribution 

(Lindell, Prater, Perry, & Wu, 2002) or sigmoid curve (Kalafatas & Peeta, 2009; Xie, Lin, 

& Waller, 2010), to mention a few. The drawback of the response curve approach is that 

there is no clear behavioral basis to justify the method (Pel et al., 2011a). 

An area that requires much additional effort is the translation of the considerable 

amount of knowledge on evacuees’ behavior during the time of crisis into reliable 

quantitative measures of the timing of evacuee mobilization (Southworth, 1991). Discrete 

choice analysis has been used to address this issue. This research introduces the use of 

dynamic discrete choice models to estimate such evacuation demand as they are gaining 
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significance in the state of practice due to their robust results. Subsection 5.1.2 provides a 

review of the literature surrounding dynamic modelling.  

5.1.2 Dynamic Discrete Choice Models 

Dynamic models estimate decisions as a sequence of discrete choices where at each 

time period the decision maker chooses the utility-maximizing alternative. In his seminal 

work, Rust (1987) developed a regenerative optimal stopping model of bus engine 

replacement based on accumulated mileage, in which at each time period the decision-

maker is faced with the decision of whether to replace the engine of a public transportation 

bus or to wait one more period, risking unexpected engine failure. The model allows for 

recurrent participation of the buses by resetting their mileage to zero after their engine is 

replaced––hence the term regenerative. Rust estimates the utility based on the expected 

cost of operation of each alternative, where expected accumulated mileage is given by a 

draw from an exponential distribution. Other influential papers include Wolpin (1984) on 

fertility and child mortality, Miller (1984) on job matching and occupational choice, and 

Pakes (1986) on patent renewal. 

Since these seminal papers, dynamic discrete choice models (DDCM) has been 

applied in many different scenarios, including labor economics, industrial organization, 

economic demography, health economics, development economics, political economy, and 

marketing. Keane and Wolpin (1997) studied the career choices of young men based on 

the reward of each occupation alternative (i.e., to study or to work) over the life cycle. 

Their model optimize such reward by taking into account the individual’s evolution of 

education (and its related cost), income and skill-sets through a given age range. Similarly, 

Ge (2013) focused on the decision of whether to attend college, work or a combination of 
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both of women with a high school degree. Furthermore, Heckman and Navarro (2007) 

evaluated associated earnings outcomes for different levels of education while considering 

anticipations about potential future outcomes associated with the various choices. For this, 

they provide a semiparametric non-regenerative formulation of dynamic discrete choice 

models of treatment times and the consequences of choice.   

From an employment perspective, Rust and Phelan (1997) and Karlstrom, Palme 

and Svensson (2004) used dynamic discrete choice models to estimate retirement from the 

labor force based on time-dependent retirement benefits (e.g., pension and healthcare). On 

the other hand, Gurmu, Ihlanfeldt and Smith (2008) estimate the participation on full-time 

employment of families that receive welfare through a dynamic probit model which 

incorporates residential location and time-varying variable, such as employment status. 

More broadly, Keane and Wolpin (2002a, 2002b) evaluated the impact of welfare benefits 

on economic and demographic behavior—employment status, household size and 

education to mention a  few.  

In market share analysis, Gönül (1998) asses the effect of time-varying cost and 

preferences (purchase history) on the sales of different over-the-counter medicine brands. 

Whereas Hetrakul (2012) evaluated ticket cancellations and exchanges within railway 

service in response to varying trip schedule, cost, and refund/exchange policy. 

Many other examples of the application of dynamic models exist in the literature. 

The reader is referred to Keane, Todd and Wolpin (2011), Aguirregabiria and Mira (2010) 

and Keane and Wolpin (2009) for a comprehensive survey of the literature surrounding the 

different structures and applications of DDCM. 



   

88 

5.1.2.1 Dynamic Discrete Choice Models in Transportation 

Despite the vast application of DDCM, its use within the field of transportation has 

been limited when compared to other fields. Gao, Frejinger and Ben-Akiva (2010) 

proposed a policy routing choice model with a cumulative prospect theory utility function 

(a non-expected utility framework) to measure choice under risk. Their model is adaptive 

since information is updated as the traveler traverses through a stochastic network (en 

route). Alternatively, Fosgerau, Frejinger, and Karlstrom (2013) developed a dynamic 

route choice model where the path choice problem is formulated as a sequence of link 

choices. At each stage (i.e., node), the traveler chooses the link that maximizes the sum of 

instantaneous utility and the expected downstream utility. On the other hand, dynamic 

models have also been used to estimate car ownership and its related decisions (e.g., type 

of vehicle, tenure and usage), where variables such as income, fuel prices and cumulated 

mileage are treated as stochastic state variables—see de Lapparent and Cernicchiaro 

(2012), Cirillo, Xu, and Bastin (2013), and Glerum et al. (2015). 

In evacuation analysis, dynamic travel demand is usually modelled through 

repeated binary logit models where the share of people who decide to evacuate and depart 

presently, or postpone the decision to evacuate, are estimated at each time period. Fu and 

Wilmot (2004) developed a sequential binary logit model to estimate the decision to 

evacuate when threated by a hurricane at several time intervals before landfall. For this, 

information from 320 households in Southwest Louisiana was collected following 

hurricane Andrew. In their model, travelling speed of the hurricane, time of day, and 

distance from the hurricane were treated as dynamic variables. They concluded that 

sequential binary logit is capable of estimating the decision of whether to evacuate or not. 
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Later, Fu, Wilmot and Zhang (2006) improved the model by including hurricane wind 

speed and time-to-landfall data from hurricane Floyd in South Carolina and tested the 

calibrated model on the hurricane Andrew data. The predicted dynamic travel demand 

yielded similar results to the observed travel demand, indicating that there is potential in 

transferring weights to different location and hurricane scenarios. Similarly, Wilmot and 

Gudishala (2013) developed a sequential logit model following a conventional model 

structure and based on newly collected hurricane data from a State Preference (SP) survey 

in Louisiana.  

The current state-of-practice is to estimate the dynamic utility of evacuating (or not 

evacuating) using prevailing conditions. However, it is logical to assume that people not 

only consider current conditions, but are also capable of predicting future conditions and 

base their decision on this information as well (Pel et al., 2011a). For example, Wilmot and 

Gudishala (2013) developed a sequential nested logit that combines the decision of whether 

to evacuate or stay into time period nests. The nested model linked the utility of a lower 

nest to an upper nest, that is linking time period i+1 to i, by using the Logsum of the 

utilities.  

The purpose of this research is to contribute to the literature of DDCM by applying 

demand estimation during hurricane evacuation by proposing a new approach, founded on 

Cirillo, Xu and Bastin’s (2013) work on dynamic modelling of car ownership and 

Hetrakul’s (2012) work on dynamic modelling of train user’s ticket cancellation/exchange 

behavior. Here, the previous models will be adapted to develop a hurricane evacuation 

model using a dynamic discrete choice regression model capable of combining prevailing 

and expected hurricane conditions, resulting in a more robust estimation of the evacuation 
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response and factors affecting it. The model is then applied using SP data collected from 

Louisiana residents. 

5.2 Evacuation Modeling Framework 

As previously stated, this research builds upon Cirillo, Xu and Bastin (2013) and 

Cirillo and Hetrakul (2012), modifying and updating them to reflect the behavior of 

evacuees in the midst of a disaster, which for this study is a hurricane. This subsection 

provides background on dynamic discrete choice models and explains how it is applied in 

this study. 

5.2.1 General Evacuation Decision Problem 

Consider a population set Ε = {1, . . . ,M} and time periods t = 0, 1, . . .T. In each 

time period t, consumer i has two options: 

1) to evacuate and obtain a terminal period payoff uit; 

2) to postpone and obtain a one-period payoff cit, which is a function of individual i’s 

attributes and the current characteristics of the disaster, i.e. c(xit, qit; θiαi). 𝑥𝑖𝑡 is a 

vector of attributes for individual i at time t (e.g., sex, education, income, age) and 

𝑞𝑖𝑡 is the vector of characteristics of the disaster (e.g., category, time to landfall, 

time of day). θi and αi are parameters vectors for 𝑥𝑖𝑡 and 𝑞𝑖𝑡 respectively. 

Using bold font for random variables and normal font for their realizations, the 

payoff 𝒃𝒊𝒕 (i.e., to evacuate at time t) is expressed as a random utility function:  

𝒃𝒊𝒕 = 𝑢(𝑥𝑖𝑡, 𝒚𝒕, 𝜃𝑖𝑡, 𝜆𝑖 , 𝝐𝒊𝒕)                 (5.1) 

where 

 𝑥𝑖𝑡, 𝜃𝑖 ∈  ℜ𝑄 are defined a above; 
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 𝒚𝒕 ∈  ℜ𝐻 is a random vector of dynamic attributes at time t, which represents the 

evolution of a disaster over time. 𝜆𝑖 is a vector of parameters related to 𝒚𝒕. 

 𝝐𝒊𝒕 is an individual-specific random term, whose components are independently and 

identically GEV distributed amongst individuals and periods. It is assumed that 𝝐𝒊𝒕 

is independent from 𝒚𝒕. 

Although this formulation can be extended to mixed GEV kernel (Bastin, Cirillo, 

& Toint, 2006), the parameters are here assumed to be the same over individuals, i.e. 𝜃𝑖= 

θ, 𝛼𝑖= α, and 𝜆𝑖= λ, i = 1, …,M. A one-step decision process is assumed, in which, at each 

time period t, the individual decides whether to evacuate or to postpone the evacuation 

until the optimal time period τ, time when the consumer decides to evacuate instead of 

postponing. The individual deciding to evacuate or postpone is the optimal stopping 

problem at time t: 

𝐷𝑡(𝒃𝒊𝒕, 𝑐𝑖𝑡) = max
𝝉

{∑ 𝛽𝑘−𝑡𝑐𝑖𝑡

𝝉−1

𝑘=𝑡

+ 𝛽𝝉−𝑡𝐸𝒚𝝉
[𝒃𝒊𝝉|𝑦𝑡]}                    (5.2) 

where 

 β is a discount factor in [0,1); 

 𝑐𝑖𝑡 is the payoff function of individual i’s attributes and the characteristics of the 

disaster when choosing to postpone the evacuation, as defined before. 

It is important to note that the expectation in (5.2) is taken with respect to the 

disaster evolution 𝒚𝒕. 𝐷𝑡 remains a random function due to the terms 𝜖𝑖𝑡 present in the 

random utility functions. According to the previously described assumption about 𝜖𝑖𝑡, 𝑏𝑖𝑡 

is Gumbel distributed with a scale factor equals to 1 and 𝛾𝑖𝑡 is the mode of the distribution 
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of 𝑏𝑡. It is also stressed that if τ = t, the right-hand term in (5.2) reduces to 𝑏𝑖𝑡. It is then 

easy to see the individual’s decision can be transformed from (5.2) into: 

𝐷𝑡(𝑏𝑖𝑡, 𝑐𝑖𝑡) = 𝑚𝑎𝑥{𝒃𝒊𝒕, 𝑐𝑖𝑡 + 𝛽𝐸𝒚𝒕+𝟏
[𝐷𝒕+𝟏(𝒃𝒊,𝒕+𝟏, 𝑐𝑖,𝑡+1)|𝑦𝑡]}                (5.3) 

Equation 5.3 indicates that the decision process consists on evacuating at time t or 

delaying it over one period, taking the payoff 𝑐𝑖𝑡 plus the discounted future return. This is 

a standard optimal stopping problem, with a stopping set given by 

Γ(𝑦𝑡) = {𝑏𝑖𝑡|𝑏𝑖𝑡 ≥ 𝑊𝑖𝑡}                                                 (5.4) 

where 𝑊𝑖𝑡 is the reservation utility level for individual i and its defined as: 

𝑊𝑖𝑡 = 𝑐𝑖𝑡 + 𝛽𝐸𝒚𝒕+𝟏
[𝐷𝒕+𝟏(𝒃𝒊,𝒕+𝟏, 𝑐𝑖,𝑡+1)|𝑦𝑡]                                 (5.5) 

Using (5.5), (5.3) can be simplified to: 

𝐷𝒕(𝒃𝒕) = 𝒎𝒂𝒙{𝑏𝑖𝑡, 𝑊𝑖𝑡}                                            (5.6) 

It is assumed that the random terms 𝜖𝑖𝑡 take specific realizations when selecting an 

individual i, meaning that the individual i has access to all values of his/her utility 

function—the vectors 𝜖𝑖𝑡 are simply the unobserved factors. Simply put, individual i will 

choose to evacuate at time t only when 𝑏𝑖𝑡 > 𝑊𝑖𝑡. If i is randomly drawn from the 

population, the analyst can compute the probability of postponing the evacuation until the 

next period as: 

𝜋𝑖𝑡(𝑦𝑡) ≝ 𝑃𝑖𝑡[𝐷𝑡(𝑏𝑖𝑡) = 𝑊𝑖𝑡|𝑦𝑡] 

= 𝑃𝑖𝑡[𝑏𝑖𝑡 ≤ 𝑊𝑖𝑡]                                                        (5.7) 

= 𝐹𝑣(𝑊𝑖𝑡, 𝑦𝑡) = 𝑒−𝑒−(𝑊𝑖𝑡−𝛾𝑖𝑡)
                                            

Note the probability is taken with the set of random variables 𝜖𝑖𝑙, for l = t, t + 1, …, 

i.e. the variables unobserved by the analyst but with known values for individual i. 
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5.2.2 Dynamic Estimation Process  

The parameter estimation process is done by applying the maximum likelihood 

estimation method to: 

ℒ(𝜃, 𝜆, 𝛽) = ∏ ∏ 𝑃𝑖𝑡[𝐷𝑡(𝑏𝑖𝑡)|𝜃, 𝜆, 𝛽]

𝐻

𝑡=1

𝑀

𝑖=1

                                  (5.8) 

where 

 𝜃 is a vector of stationary preference parameters related to individual attributes 𝑥𝑖𝑡. 

 λ is a vector of parameters related to the dynamic attributes of the disaster, 𝑦𝑡.  

 𝛽 is the discount factor, set to 1 for simplicity. 

The probabilities of (5.8) are taken with respect to the distribution of the variable 

𝜖𝑖𝑡, as in (5.7), given the values of the parameters. H represents the number of time periods 

where observations were collected, which in this case is limited by the number of forecast 

– therefore H is equal to four. 

As explained before, the probability of 𝜋𝑖𝑡 depends on 𝑊𝑖𝑡, which can be calculated 

as is (5.5).  𝑊𝑖𝑡 is composed of two parts: the utility of the current disaster attributes 𝑐𝑖𝑡 

and the expected utility in the next time period 𝛽𝐸𝒚𝒕+𝟏
[𝐷𝒕+𝟏(𝒃𝒊,𝒕+𝟏, 𝑐𝑖,𝑡+1|𝑦𝑡]. The key step 

during the estimation process is to identify how to calculate the expected utility. At each 

time period, the individual is assumed to be forward-looking (i.e., they have a perception 

about the future scenarios), which are characterized by the disaster’s attributes changing 

over time. This research uses a finite horizon scenario tree providing a reasonable 

behavioral rooting since individuals can only perceive future attributes for a limited 

number of time periods (see Shapiro, Dentcheva, and Ruszczynski (2009), Hetrakul (2012) 

and Cirillo et al. (2013) for examples). Therefore, at time period t, the individual faces two 
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alternatives, to evacuate or to postpone evacuation. The individual will continue the 

decision process into the period t +1 only if he/she had decided to postpone evacuation in 

time period t. Therefore, the decision process can be characterized by a scenario tree (see 

Figure 17), which is the base for the expected utility calculation. The following steps describe 

the procedure to calculate 𝜋𝑖1 based on the expectation 𝐸𝒚𝟏
[𝐷(𝒃𝒊𝟏, 𝑐𝑖1)|𝑖], which will be 

indicated by E[D1] because all the expectations in the example are for individual i: 

 Assumption: It is assumed that the individual has the expectation over a limited 

number of future periods. Given that we are dealing with disaster with usually 

limited forecasts, here it is assumed that individuals can only predict one period 

ahead. Therefore, at time period t = 1, the individual can anticipate the future 

characteristics of a disaster (e.g., category and evacuation order) at time period t = 

2. Whereas E[D3] = 0 since the individual knows nothing of time period 3 when 

faced with the decision at time period 1, same for any time period beyond t+1. 

 Evaluation of E[D2]: To obtain the probability of 𝜋𝑖1 it is necessary to estimate 𝑊𝑖1 

(using 5.5), which in hand depends on E[D2]. At time 1, the individual has two 

alternatives for successive time 2, to evacuate or not to evacuate (see Figure 17). 

The right side of the utility function E[D1] = E[max {b1, c1 + βE[D2]}] represents 

the utility of the "do not evacuate" alternative. Based on the above assumption, 

E[D3] is zero when calculating E[D2] at time t=1. 

 These steps are then repeated to calculate  𝜋𝑖2 with the assumption that respondent 

can anticipate the characteristics of the disaster at time period 3 and E[D4] is zero, 

and so on for the rest of the estimations. 
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Figure 17. Scenario Tree. 

5.2.3 Experiment Using Simulated Data 

A synthetic sample of 1,000 households' choices over four potential time periods 

have been simulated to validate the proposed dynamic discrete choice formulation. The 

hypothetical scenario is a hurricane in route to make landfall for which five forecasts are 

provided, t ∊ {1,…,5}. In order to comply with the one period look ahead assumption, 

choices are estimated for the first four periods. At each observation period, there are two 

alternatives in the choice set that mimic respectively the decision to evacuate or do not 

evacuate. It should be noted that this model is not regenerative, therefore, any household 

that decides to evacuate is out of the sample.  

Two types of variables were generated in the simulated dataset, static and dynamic. 

Static variables relate to household characteristics, specifically household’s income, size, 

presence of kids, and previous experience with evacuation; whereas dynamic variables 

provide time-varying information of the disaster, namely hurricane category, time to 

expected landfall, and whether they are at the last forecast. These variables were selected 

based on the information found in the literature review regarding the factors that influence 

… 
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evacuation decisions. The variables in the simulated dataset have been generated using the 

following criteria: 

 Household income varies on 7 levels of variation: (1) Less than $15,000; (2) = 

$15,000 to $24,999; (3) $25,000 to $39,999; (4) $40,000 to $79,999; (5) $80,000 

to $119,000; (6) $120,000 to $149,000; and (7) Over $150,000. It was assumed that 

10% of the population had income level 1, 20% had level 2, 50% were uniformly 

distributed between levels 3 and 4, and the remaining 20% were uniformly 

distributed between levels 5 through 7.   

 It was assumed that 70% of households have between 1 and 3 family members and 

that the remaining 30% have between 4 and 6. 

 Assumption of presence of kids (i.e., under 17 years of age) were made based on 

the size of the household. Single-member households were assumed to contain no 

kids. If the household were composed of 2 members, there were a 5% chance of 

one of them being a kid. Households with 3 or 4 members were given a 50% 

probability of having a kid, whereas families with 5 or more members were given 

an 80% probability of having at least one kid. 

 It was assumed that 50% of households have had previous experience with 

evacuation (either directly or indirectly). 

 For the first forecast, hurricane category was uniformly distributed in the range of 

1-5 following the Saffir-Simpson scale. After this initial forecast, it was assumed 

that hurricanes could only increase or decrease (within the 1 to 5 scale limit) at most 

two categories between forecasts. For example, if in Forecast 2 the category is 2, 

then in Forecast 3 the category was uniformly distributed between 1 and 4. 
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 Time to expected landfall was uniformly distributed within each forecast following 

these ranges: (1) 67-77 hrs, (2) 44-52 hrs, (3) 21-27 hrs, (4) 10-14 hrs, and (5) 4-8 

hrs away. 

 The communication of the last forecast is a dummy variable with 0-1 values that 

takes the value of 1 if the period of observation is forecast 4 and 0 otherwise. 

Respondents are supposed to choose between two alternatives: evacuate and not 

evacuate. Utility of evacuation of household i on time t can then be specified as: 

𝑈𝑒𝑣𝑎𝑐,𝑖𝑡 =  𝛽𝑖𝑛𝑐𝑜𝑚𝑒𝐻𝐻𝑖𝑛𝑐 + 𝛽𝑠𝑖𝑧𝑒𝐻𝐻𝑠𝑖𝑧𝑒 + 𝛽𝑘𝑖𝑑𝑠𝐻𝐻𝑘𝑖𝑑𝑠 + 𝛽𝑒𝑥𝑝𝐻𝐻𝑒𝑥𝑝 + 𝛽𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝐻𝐶

+ 𝛽𝑡𝑖𝑚𝑒𝑇𝑇𝐸𝐿 + 𝛽𝐿𝑎𝑠𝑡 𝐹𝐶𝐹𝐶4 + 𝜀𝑖  

where HHinc is household income, HHsize is household size, HHkids is the presence of at 

least one kid in the family, HHexp is the experience of the household with evacuation, HC 

is the hurricane category, TTEL is the time to expected landfall and FC4 is the last forecast. 

The random term εi is iid extreme-value distributed at a given time period. Three models 

were estimated using the simulated data and the specification defined above: (i) a model 

where decisions are generated following a logit distribution and estimated with a dynamic 

model, LogDyn; (ii) a model where decisions are generated following a dynamic 

distribution and estimated with a logit model, DynLog; and (iii) a model where both 

generation and estimation are done dynamically, DynDyn. In the logit model (DynLog), 

respondents are not considering future disaster evolution when making decisions at each 

time period. The model is simply formulated as a traditional MNL with two alternatives; 

utilities include both static and dynamic variables, for consistency with the dynamic model 

formulation. All models are coded in R language. 
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In order to validate which model better recovers the true values, Root Mean Square 

Deviation (RMSD) is adopted as it aggregates individual differences between the true and 

predicted values into a single measure of predictive power. The bigger the RMSD, the 

poorer the model's ability to reproduce the true phenomenon. The RMSD is defined as 

𝑅𝑀𝑆𝐷(𝜃) = √𝐸((𝜃 − 𝜃)2) = √
∑ (𝜃�̂� − 𝜃𝑖)2𝑛

𝑖=1

𝑛
 

where 𝜃 is the observed (true) value, 𝜃 is the modelled value at time i, and n is the number 

of parameters. Results of the estimations are presented in Table 12.  The last part of the 

table reports the RMSD. Overall, models with dynamic estimation obtained lower RMSD, 

indicating lower bias in its coefficients, with DynDyn model yielding the lowest value of 

all.  

Table 12. Estimation with simulated data. 

Var True Value Model Average SD CI 95% Min Max 

Hurricane 

Category 
0.2 

LogDyn 0.1465 0.0258 0.0051 0.0932 0.2119 

DynLog 0.2635 0.0287 0.0057 0.2004 0.3365 

DynDyn 0.1971 0.0275 0.0055 0.1305 0.2752 

Time to 

Expected 

Landfall 

-0.03 

LogDyn -0.0280 0.0021 0.0004 -0.0341 -0.0235 

DynLog -0.0337 0.0022 0.0004 -0.0402 -0.0289 

DynDyn -0.0302 0.0019 0.0004 -0.0352 -0.0264 

Last Forecast 

(FC4) 
-3.3 

LogDyn -3.1601 0.3534 0.0701 -4.3564 -2.4143 

DynLog -3.5930 0.1910 0.0379 -4.2687 -3.2495 

DynDyn -3.2767 0.3395 0.0674 -4.1807 -2.5989 

Previous 

Experience 
0.9 

LogDyn 0.7650 0.1009 0.0200 0.5055 1.0276 

DynLog 1.0805 0.0971 0.0193 0.8290 1.3691 

DynDyn 0.9001 0.0959 0.0190 0.6623 1.1650 

Household 

Size 
-0.3 

LogDyn -0.2829 0.0460 0.0091 -0.3959 -0.1744 

DynLog -0.3139 0.0436 0.0086 -0.4223 -0.2226 

DynDyn -0.2981 0.0388 0.0077 -0.3852 -0.1719 

Presence of 

Kids 
0.3 

LogDyn 0.2592 0.1456 0.0289 -0.0632 0.5928 

DynLog 0.3024 0.1385 0.0275 0.0272 0.6166 

DynDyn 0.2943 0.1247 0.0248 0.0124 0.5575 

Household 

Income 
-0.15 

LogDyn -0.1550 0.0260 0.0052 -0.2291 -0.0887 

DynLog -0.1402 0.0257 0.0051 -0.2039 -0.0841 
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DynDyn -0.1474 0.0242 0.0048 -0.2195 -0.0874 

 

RMSD 

LogDyn 0.0780     

 DynLog 0.1324     

 DynDyn 0.0092     

5.3 Dataset Description 

Hurricane Katrina came in contact with the city of New Orleans in 2005. Later on 

September 1, 2008, Hurricane Gustav made landfall near Cocodrie, Louisiana as a 

Category 2 hurricane. Gustav originated as a tropical storm southeast of Port-au-Prince, 

Haiti, on August 25, 2008 and developed into a hurricane on August 26. These two 

experiences combined with the closeness between events, highlighted the need of a 

practical and more reliable framework for evacuation behavior analysis. 

On 2010, the Public Policy Research at Louisiana State University conducted a 

survey that collected information on the evacuation behavior of resident of New Orleans. 

The survey had two main parts: 1) a Revealed Preference (RP) section that gathered 

information of the respondent’s evacuation decision during the threat of hurricane Gustav, 

and 2) a Stated Preference (SP) section that registered the respondent’s evacuation behavior 

based on hypothetical hurricane scenarios. The survey used the RP data and adapted it to 

collect dynamic information and enhance the realism of each scenario by presenting it in 

audio-visual form on a DVD. Each household was presented 3 hypothetical storms, where 

each storm contained 4 forecasts. At each forecast the respondent made the decision of 

whether to evacuate or not. A total of nine hypothetical storms were developed, each one 

with time-dependent information on hurricane category (HC), evacuation order (EO), time 

(TOD) of day, time to expected landfall (TTEL) and day of the week (DOW), see Table 

13. The reader is referenced to Wilmot and Gudishala (2013) for a more detailed 

explanation of the survey design and data collection process. 
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Table 13. Hypothetical storms presented to interviewed households. 

Storm Characteristics Forecast1 Forecast2 Forecast3 Forecast4 

1 

HC1 4 4 4 3 

EO1 None Voluntary Mandatory Mandatory 

TOD1 10.25 6.25 0.25 14.25 

TTEL1 70 50 32 18 

DOW1 3 4 5 5 

2 

HC2 5 4 3 2 

EO2 Voluntary Mandatory Mandatory Voluntary 

TOD2 12.50 14.50 16.00 1.00 

TTEL2 72 45 19 8 

DOW2 1 2 3 4 

3 

HC3 3 4 3 3 

EO3 None Voluntary Mandatory Mandatory 

TOD3 6.50 6.50 8.50 15.50 

TTEL3 68 44 18 11 

DOW3 6 7 1 1 

4 

HC4 5 3 2 2 

EO4 None Voluntary Voluntary Voluntary 

TOD4 12.50 13.50 12.50 1.50 

TTEL4 69 44 21 8 

DOW4 3 4 5 6 

5 

HC5 3 5 2 1 

EO5 None Voluntary None None 

TOD5 9.50 12.50 11.50 23.50 

TTEL5 76 49 26 14 

DOW5 2 3 4 4 

6 

HC6 5 3 2 1 

EO6 None Voluntary Voluntary Voluntary 

TOD6 9.50 15.50 16.50 3.50 

TTEL6 75 45 20 9 

DOW6 3 4 5 6 

7 

HC7 1 3 2 2 

EO7 None Voluntary Mandatory Mandatory 

TOD7 11.50 9.50 9.50 0.50 

TTEL7 74 52 28 13 

DOW7 5 6 7 1 

8 

HC8 4 3 3 3 

EO8 None Voluntary Mandatory Mandatory 

TOD8 12.50 9.50 8.50 20.50 

TTEL8 67 46 23 11 

DOW8 7 1 2 2 

9 

HC9 5 3 2 1 

EO9 None Voluntary Voluntary Voluntary 

TOD9 6.50 10.50 6.50 22.50 

TTEL9 75 47 27 11 

DOW9 6 7 1 1 
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A total of 310 households responded to the survey, including 22 households that 

were part of the pilot survey. This study only considered information gathered from the 

main survey – 288 households, which translate into 864 potential observations. However, 

not all data points were could be used. A data cleaning process was undertaken to eliminate 

incoherent answers, such as evacuating before the first forecast. After cleaning the data, 

281 households remained– yielding 250 observations on Storm 1, 253 on Storm 2, and 260 

on Storm 3, for a total of 763 observations. 

5.3.1 Socio-economic Characteristics of Low Income Population 

As previously stated, the final sample size used in this study was 281 households 

(and 763 independent observations). This subsection describes the sampled population 

based on the gathered information, with special interested in “low income households” 

(LIHH). Continuous household income information was not available, instead income 

ranges are provided, making it impossible to follow the US National Poverty Guideline 

provided by the Department of Health and Human Services (2014). Given this, it is 

assumed that LIHH is any household with an income less than USD$25,000, which are 

households that fall within the ranges “Less than $15k” or “$15k-24.9K”.  

It should be noted that all descriptive statistics presented here are based on weighted 

data. The surveyed households are distributed across 10 neighborhoods, all of them highly 

vulnerable to extreme weather events given their low altitude and proximity to the coast. 

Figure 18 illustrates the location of these parishes.  



   

102 

 
Figure 18. Louisiana’s parishes. Sources: www.maps.google.com and http://www.digital-

topo-maps.com 

The sampled households present demographic distributions parallel to Louisiana’s 

2010 National Census data in many of the different characteristics, indicating that a random 

sample was successfully collected. For instance, 64.5% of the sample was white, 20% 

African-american, and 6% other – 9.5% did not respond – whereas the census data yields 

63.9%, 32.8%, and 3.3% for the same races.  

Table 14 shows the income characteristics of the households across the parishes. 

As can be seen, a third of them are located in the Jefferson parish, followed by St. 

Tammany, Orleans and Terrebonne. Saint Bernard and Plaquemines are the parishes with 

the least households, accounting for only 1.5% of the sample combined. Furthermore, 

around 31% of the households earns less than US$25,000, meaning that a significant 

percentage could be considered as low income. Approximately 68% of households in St. 

John the Baptist and 47% in Terrebone are low income. In contrast, 12% of households 

could be considered as high income (HIHH) as they earn US$120,000 or more, with 

Plaquemines and St. Charles having the highest percentage of high income households, 

27% and 23% respectively. 

http://www.maps.google.com/
http://www.digital-topo-maps.com/
http://www.digital-topo-maps.com/
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Furthermore, the data shows that income has no effect on the type of house residents 

live in. The majority (85%) of the sampled population live in a permanent house, with 8% 

living in an apartment/condo and only 5% live in a mobile home, the rest live in other type 

of housing.  

Table 14. Household location and income distribution within each location. 

  Parish Household Income Distribution 

Parish 

Name 

% of 

HH 

Less than 

$15k 

$15k-

$24.9k 

$25k-

$39.9k 

$40k-

$79.9k 

$80k-

$119.9k 

$120k-

150k 

More than 

$150k 

Jefferson 33.1% 5.5% 23.2% 17.8% 26.6% 16.3% 4.7% 5.9% 

St. Tammany 18.5% 20.7% 7.4% 6.2% 39.1% 13.6% 3.3% 9.7% 

Orleans 15.0% 16.8% 13.9% 8.7% 43.1% 8.4% 4.0% 5.1% 

Terrebonne 13.4% 36.6% 10.6% 13.7% 10.5% 14.9% 8.6% 5.2% 

Tangipahoa 6.9% 8.0% 10.7% 19.9% 28.7% 14.3% 11.0% 7.4% 

Lafourche 5.0% 0.0% 24.4% 15.0% 21.1% 31.2% 4.1% 4.1% 

St. John the 

Baptist 
3.9% 12.5% 55.3% 11.9% 20.2% 0.0% 0.0% 0.0% 

St. Charles 2.6% 0.0% 7.9% 7.9% 45.9% 15.3% 15.3% 7.8% 

St. Bernard 0.8% 0.0% 23.8% 0.0% 0.0% 76.2% 0.0% 0.0% 

Plaquemines 0.7% 0.0% 0.0% 0.0% 27.4% 46.0% 26.6% 0.0% 

Overall 14.10% 17.10% 13.00% 29.10% 15.10% 5.50% 6.10% 

 

An analysis of the household size shows that the majority of households (61%) have 

at most 2 members, while 16% have 3 members, 14% have 4, and the remaining 9% have 

5 or more members. This distribution results in a sample’s average household size is 2.44 

members. As expected, as household income increases so does the size of the household, 

see Figure 19. Interestingly, around 50% of the households with an income between $80k 

and $119.9k have only 2 members. In addition, around 25% of households have at least 

one member that is at most 17 years old and 67% of households have no member under 17 

years of age – 8% of households did not answer this age related question. Moreover, 95% 
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of the 2-member households and 41% of 3-member households do not have any young 

member. 

 
Figure 19. Household size by income level. 

The majority of households (75%) have one or two vehicles, whereas 14 % has 

three or more vehicles. The remainders of the households do not own any vehicle. The 

average number of vehicles owned per household is 1.65. As can be seen in Figure 20, over 

40% of households with an income below $15,000 do not own a vehicle. Surprisingly, 

around 10% of high income households do not own vehicle. One could speculate that this 

might be because those households are well located and therefore do not need a vehicle. 
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Figure 20. Vehicle ownership by household income. 

In general, approximately 37% of households achieved at most a high school 

degree. In contrast, 38% of households have at least one member with a bachelor degree 

or higher. The rest of the household attend some college or obtained an associate degree. 

As one would expect, 65% of high income households have obtained at least a bachelor 

degree, whereas 26.4% of low income households did not finished high school and 39.3% 

have at most a high school diploma. This supports the well-known notion that income and 

education are highly correlated. Figure 21 presents the distribution of household education 

by its income.  
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Figure 21. Education level by household income. 

5.3.2 Revealed Preference: Evacuation Behavior thru Hurricane 

Gustav  

This subsection provides a brief summary of the respondent’s evacuation decision 

during Hurricane Gustav, based on the 281 households. Around 74% of the sampled 

population evacuated during Gustav, with most of the evacuation happening within 3 days 

of landfall. Their response curve (i.e., departure time distribution) is shown in Figure 22.  

As expected, 97% evacuated on a private vehicle (4% would get a ride) and a 

significant percentage (around 30%) of evacuees stayed within the State of Louisiana. In 

addition, 20% looked for refuge in Mississippi, 10% travelled to Alabama, 16% where 

equally distributed between Tennessee and Florida, 7% went to Georgia, 6% to Texas, and 

3% to Arkansas – the remainder evacuated to other states. Friends or relative and 

hotels/motels appear to be the go-to refuge for most evacuees, accounting for roughly 52% 

and 36% of the refuge selection, respectively. Surprisingly, only 1.7% went to public 

shelters looking for safe haven.  
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Figure 22. Response curve (of those who evacuate) during Hurricane Gustav. 

Finally, of those who evacuated, nearly 60% stated that they did not felt safe. 

Conversely, of the 26% that did not evacuate, around half (45%) did not do so because they 

believed their house was adequate and/or the storm was not severe. The latter follows a 

cognitive dissonance logic, meaning that households perceive safety yet information on a 

possible threat is received, then these conflicting beliefs are resolved by denying or 

ignoring the warning information. Examples of this behavior were collected by Leach and 

Campling (1982).  

5.3.3 Stated Preference: Evacuation Behavior 

This subsection provides information regarding the evacuation behavior of the 

respondents, based on the 763 observations (each storm is considered an independent 

observation). Table 15 shows the distribution of the households’ evacuation decision, that 

is whether they evacuated or not, and if so, at what point in time. Households decided not 

to evacuate in 43% of the hypothetical scenarios, a low percentage given that 84% of the 

households are located in a flood zone. Also, there is a clear unwillingness to wait until the 
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last moment to evacuate, as indicated by the low percentage of households (0.8%) that 

would evacuate after Forecast 4.  

Table 15. Evacuation decision distribution. 

Evacuation Decision % of Observations % of Evacuees 

Do not evacuate 43.1% - 

Forecast 1 18.3% 32.2% 

Forecast 2 26.3% 46.2% 

Forecast 3 11.5% 20.2% 

Forecast 4 0.8% 1.4% 

Total 100% 100% 

 

The evacuation behavior is explained in more detail in Figure 23, where the 

distribution of evacuation decision for each storm is illustrated. As can be seen, Storms 7 

and 9 have the lowest percentage of evacuees, which might be explained by the low 

hurricane category in the case of Storm 7 and by the lack of a mandatory evacuation order 

in Storm 9. It should be noted that Storm 7 follows the actual characteristics of Hurricane 

Gustav. Furthermore, approximately 66% of the households that were presented with 

Storm 7 evacuated – resembling the 74% evacuation rate of the total sampled population 

during Gustav. Interestingly, 74% of those who evacuated during Gustav would not 

evacuate under the presented scenarios, whereas 32% of those who did evacuate would not 

evacuate now. 
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Figure 23. Evacuation decision by hypothetical storm. 

Generally, households prefer to evacuate sooner rather than later. Now, the decision 

of how much time to wait after a forecast depends, amongst many factors, on the time of 

that forecast. For instance, over 60% of households that would evacuate after the first 

forecast do so 16 hours or more after the forecast, see Figure 24. However, this percentage 

halves on Forecast 2 and drops to almost zero on Forecast 3, indicating that the longer a 

household waits for future forecasts the faster they tend to evacuate after it – which is an 

expected behavior. Overall, 23.2% of households that decided to evacuate do so within the 

first two hours, 10.1% between two and four hours, 14.6% between four and eight hours, 

17.9% between 8 and 16 hours, and 34.2% would wait at least 16 hours to evacuate.  
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Figure 24. Distribution of time between forecast and evacuation. 

Figure 25 shows that there is a positive relationship between income level and the 

decision to wait longer to evacuate. The same results are obtained if education level is 

analyzed, following the well-known notion that income and education are strongly 

correlated. It is also evident that regardless of income the majority of households that 

evacuate do so after the first two forecasts (comprising approximately 79% of the 

evacuees). No reliable information can be inferred from households that would evacuate 

after Forecast 4 because of it’s the low percentage; however, the data (weakly) suggests 

that those who wait until after Forecast 4 are middle income households.  
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Figure 25. Household evacuation decision by income. 

It is sound to assume that households with a high number of members experience a 

more troublesome task of evacuation, and therefore would prefer to wait and see if such 

task could be avoided. The data shows that bigger households prefer to wait for the second 

or third forecast before evacuating (see Figure 26). However, households with 3 or more 

members tend to evacuate more when compared to those that have 1 or 2 members. As a 

side note, 39% of low income households only have one member. 

 
Figure 26. Evacuation behavior of households based on their size. 
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Vehicle ownership is a key factor that affects the decision of whether to evacuate 

or not, since it has a direct connection to the evacuee’s mobility level and time flexibility. 

An analysis of the sampled population yields that household that own either none or at least 

4 vehicles have the lowest percentage of evacuees, with around 46% and 30% respectively. 

Low mobility might explain the non-owners’ evacuation behavior, whereas one can assume 

that the high multi-vehicle owners’ unwillingness to evacuate is explained by their (most 

likely) high household size – 43% of households with 4 or more vehicles have 4 or more 

members. Households that own between 1 and 3 vehicles have a fairly similar behavior, 

with an evacuation rate of approximately 40% and a tendency to evacuate during the first 

and second forecast. 

Physical characteristics of the house, such as type and location, also play an 

important role on the decision to evacuate – if the house provides reliable shelter (or it is 

thought that it can), people might be less prone to evacuate. Around 80% of the population 

lives in a permanent home; however, 84% of all households are located in a flood zone, 

highlighting their vulnerability to water-related threats. One can assume that this was a 

significant factor when the population was faced with the decision to evacuate or not during 

Hurricane Gustav – recall that 73% of the sampled population evacuated during Gustav.  

Households also have secondary traits that can be significant risk factors for 

evacuation failure, one of which is pet ownership (Hunt, Bogue, & Rohrbaugh, 2012). 

Within the sampled population pet ownership is fairly similar with 45% having pets and 

51% not having pets – 4% did not answer. Nevertheless, Figure 27 shows that there is a 

significantly different evacuation behavior, with 17% less evacuees, between pet owners 

and households that do not own a pet.  
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Figure 27. Effect of pet ownership on evacuation decision. 

As previously stated, approximately 57% of the sampled population would attempt 

to evacuate under the presented scenarios. Around 94% of this sub-population would 

evacuate by private vehicle, 5% would get a ride with someone else and 1% would use the 

bus (see Figure 28a). Those who evacuate with the assistance of another (i.e., take a ride) 

tend to wait more until Forecasts 3 to do so. One reason for this might be that they would 

like to avoid the distress of moving from their location to the departure point so they wait 

to confirm whether it is necessary or not to evacuate. Furthermore, as can be seen in Figure 

28b, approximately 71% of the evacuees would do so using only one vehicle, 25% would 

use two vehicles, and 4% would use three or more vehicles. Recall that 51% of the 

population had two vehicles or more, meaning that a significant percentage would leave at 

least one vehicle behind. 
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a) b)  

Figure 28. a) Intended mode of evacuation; b) Intended number of vehicles used for 

evacuation. 

5.3.4 Things to Note 

There are many factors that affect the decision of a household on whether to 

evacuate or not. This section portraits some of these factors and provides insight into the 

characteristics of the sample, from which the following conclusions can be drawn:  

 There is a clear income-based segregation of the population within the surveyed 

area.  

 One could infer that there are very few single-parent households and a significant 

presence of adult couples with no kids (i.e., members less than 17 years of age), 

given the low percentages of kids within 2- and 3-member households. 

 Although the high dependency on private vehicles is evident, a significant 

percentage of LIHH and HIHH do not own vehicle. As a whole, 11% of HHs have 

no vehicle, so they need to evacuate through another means of transportation, such 

as public transportation, take a ride with someone or government assistance.  

 Households with fewer members evacuate less but do so faster than their 

counterpart. Evacuation might be easier for such households, which might explain 

why they prefer evacuating early (before Forecast 3). 

 Based on the socioeconomic data from 5.3.1 Socio-economic Characteristics of 

Low Income Population, a significant percentage (45%) of high income houses 
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have 4 or more members. This could explain why high-income households evacuate 

in advance. 

 Around 8% of the population’s job does required them to stay at home, indicating 

that they are forced to wait until as late as possible before evacuating, which puts 

them in more risk.  

 Even though pet-ownership was not mentioned as a significant reason for not 

evacuating during Gustav, the data shows that it does has some effect on evacuation 

behavior.  

 There is a strikingly high percentage of households located on flood zones. 

Concerning agencies should invest in educating the residents on their risks and how 

to efficiently evacuate. This could increase the evacuation rate and reduce the 

effects of a disaster.  

 In general, there was a negative variation on households’ willingness to evacuate 

when compared to their behavior during Gustav. A detailed study is needed to see 

what changed for these households that might be hindering them to evacuate.  

5.4 Disaster Evolution and Model Estimation with Real Data 

As previously stated, 𝒚𝒕 represents the evolution of the disaster’s attribute over 

time, a key element in the estimation of expected utility. Since the future appears uncertain 

to the individual affected, this (expectation of) evolution needs to be represented in some 

sort. Here, it is proposed to estimate expectation from the respondent’s perspective instead 

of using market (equilibrium) values, as it is commonly used in the literature (Keane & 

Wolpin, 1997; Rust, 1987). In this sense, this research experiments with two different 

disaster evolution assessment methodologies:  

1. Perfect Knowledge: Respondents have perfect knowledge of the future value of the 

dynamic variable. For example, if we consider hurricane category as the dynamic 

variable, at time t respondent i knows the category of the hurricane at time t+1. 
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2. Stochastic Growth: Respondents expectation follows a stochastic growth model 

where dynamic variables change according to a random walk with a drift.     

5.4.1 Perfect Knowledge 

With approximately 75% of households in the US having access to internet (United 

States Census Bureau, 2014), accessibility to historic and real-time information is higher 

than ever, allowing households (and individuals) to make more educated decision. 

Therefore, it is sound to assume that, within reason, they can successfully estimate future 

trends and/or behaviors. With this in mind, the dynamic model was estimated assuming a 

“perfect knowledge” approach for estimating the expected utility of respondents (i.e., 

expectations and future scenarios are an exact match). Given that we only have four 

forecasts, a new forecast scenario (Forecast 5) was developed using a static approach for 

the estimation of the final expected utility with a 6 hours difference from FC4. In here, it 

is assumed that respondent believed that the hurricane category and evacuation order would 

not change between Forecasts 4 and 5. Finally, the sequential model previously presented 

was estimated twice for comparison purposes, one in search of the best model possible and 

another to adapt the dynamic model.  

5.4.2 Stochastic Growth 

As a way to mathematically model disaster evolution, this study proposes an 

assessment methodology where past observations can be used to predict future conditions. 

The first step to do so is obtaining data of past hurricanes. This study uses the dataset “Best 

Track Data” known as Atlantic HURDAT2 collected by the National Hurricane Center 

(NHC). The NHC conducts an analysis of all storms in its area of responsibility to 
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determine the official assessment of the cyclone's history. Additionally, they perform 

ongoing retrospective investigation of any tropical cyclone brought to their attention, and 

update the historical record to reflect any changes found through their analysis. The end 

product is a rich dataset that provides detailed information for every six hours interval on 

location, speed and landfall, to mention a few, of all storms that traversed the Atlantic 

region between the years 1851 and 2014 (Landsea, Franklin, & Beven, 2015).  For this 

study, all events prior to 1950 and those which did not reach a hurricane level within the 

area of study (i.e., Louisiana), following the Saffir-Simpson scale, were filtered out. At the 

end, 27 storms remained (see Table 16) yielding a total of 1,065 data points. 

Table 16. Hurricanes that traversed through Louisiana between 1950 and 2010. 

Name Date  Name Date 

IDA Nov. 10, 2009 JUAN Oct. 27-31, 1985 

IKE Sept. 13, 2008 ELENA Sept. 2, 1985 

GUSTAV Aug. 31, 2008 DANNY Aug. 16, 1985 

HUMBERTO Sept. 13, 2007 BOB July 11, 1979 

RITA Sept. 24, 2005 CARMEN Sept. 7-8, 1974 

KATRINA Aug. 29, 2005 EDITH Sept. 16, 1971 

LILI Oct. 3, 2002 CAMILLE Aug. 17-18, 1969 

GEORGES Sept. 27-28, 1998 BETSY Sept. 9-10, 1965 

DANNY July 18, 1997 HILDA Oct. 2-3, 1964 

OPAL Oct. 4, 1995 CARLA Sept. 10-12, 1961 

ANDREW Aug. 26, 1992 ETHEL Sept. 15, 1960 

GILBERT Sept. 15-19, 1988 AUDREY June 27, 1957 

FLORENCE Sept. 9, 1988 FLOSSY Sept. 24, 1956 

BONNIE June 26, 1986   

Now that historical data is ready for analysis, the next step is to discern how to 

model hurricane’s characteristics. An important aspect to take into account is that the 

dynamic nature of a variable does not guaranty that the variable is independently dynamic 

(i.e., their change is not correlated with other variables). For example, variables such as 

time of day and day of week are continuous variables that progress linearly as time passes 



   

118 

by. Similarly, evacuation order might appear to be random, but in reality it is a subjective 

decision made by officials based on the storm’s severity and distance. On the other hand, 

the latter two characteristics can change independently and randomly from time and each 

other. Of the information available in both the historical and surveyed datasets, hurricane 

category is the only one that truly behaves independently (and randomly), all the rest are 

(to some degree) dependent on time, location and/or the category of the hurricane. 

Therefore, in order to understand the random behavior of a hurricane, the first difference 

is taken with relation to each hurricane’s category. The result resembles a pure noise (i.i.d. 

variations), demonstrating a stochastic behavior which could be characterized as a random 

walk (a sequence of random steps), see Figure 29.  

 
Figure 29. First difference of hurricane category data. 

Autoregressive models are a suitable approach to describe time-varying processes 

based on a linear relation to past values and an error term. This method has been used in 

the past for different purposes. For instance, Melnikov (2013) evaluated the impact of 

technological change on the dynamics of consumer demand based on the consumer’s 

expectations of future product quality and consumers, while illustrating various ways of 

implementing random walks. 
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Several autoregressive models are available, however this study proposes the use 

of an AR(1) model, which depends only on one previous value, with a drift: 

𝑟𝑡 = 𝛼𝑟𝑡−1 + 𝛾 + 𝜀𝑡                                                     (5.9) 

where  

 α is the dependence factor. 

 γ is the drift. 

 εt is a normally distributed error term with mean zero and variance σ2.  

In order to compute the choice probability P, the dynamic model compares the 

reservation utility W and the mode of μ, the maximum of the alternative’s utility (in this 

case only one, to evacuate). These two quantities depend on the predictors used in the 

model, which this study assumes to follow an AR(1) model. Therefore different 

realizations for these predictors will produce different values of W and μ. Therefore, the 

procedure implemented here calculates the expected value of W and μ through simulation. 

The simulation generates B realizations of the AR(1) series of the predictors and compute 

the corresponding W and μ values. Then, the mean is taken of these simulated W and μ to 

compute the choice probability. This simulation is only used to compute the probability of 

doing nothing (i.e., not evacuating, PNotEvac). In the case where the decision is to opt for 

one of the alternatives, then choice probability will be (1- PNotEvac) * Palt, where Palt is just 

a regular static choice probability, hence no requirement to perform a simulation for it. 

However, the value PNotEvac always needs to be computed. 

Using Louisiana’s historical hurricane data to estimate the coefficients in 5.9, it is 

found that the dependence factor (α) is equal to 0.931926, the drift (γ) is equal to 0.072533, 



   

120 

and the standard deviation (σ) of the error term is 0.533634. The dynamic logit model can 

now be estimated using these values as input. 

5.4.3 Results Using Real Data 

For this study, Fu and Wilmot (2004)’s sequential logit model is used as the base 

for comparison. The suggested method allows the use of all observations (i.e., binary 

choices) simultaneously, therefore reducing computational efforts and avoiding small data 

sample size for later time intervals. Their proposed model is as follows: 

𝐿 = ∏ 𝑃𝑛(𝑖)

𝑁

𝑛−1

= ∏ 𝑃𝑛(𝑖)𝑠/𝑐

𝑁

𝑛−1

∏[1 − 𝑃𝑛(𝑗)𝑠/𝑐]

𝑖−1

𝑗=1

                              (5.10) 

where Pn(i) denotes the probability that household n evacuates in time interval i, N is the 

total number of households and Pn(•)s/c is the probability that the utility of a household to 

evacuate is greater than the utility of the household to not evacuate in time interval i, 

provided that the household has not already evacuated. The reader is referred to the source 

paper for in depth explanation of the methodology.  

Table 17 shows the models that were considered the best. It should be noted that 

both dynamic model approaches (Perfect Knowledge and Stochastic Growth) yield 

strikingly similar results. In general, all models estimated significant coefficients with 

expected signs. The models indicate that as hurricane category and evacuation order 

increase, so does the willingness to evacuate and that if the household waits until the last 

forecast, they are less likely to evacuate––recall from Figure 22 that around 98% of 

Gustav’s evacuees did so by at least 24hrs before landfall, highlighting household’s 

willingness to evacuate early. One can assume that latter is due to the fact that households 

may prefer to avoid congestion and the risk of experiencing the hurricane out in the open. 
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However, if the hurricane is too far away, this would lower the probability of evacuating. 

Additionally, having past experience with evacuation (i.e., if the household evacuated 

during Hurricane Gustav) has a significant positive effect on the decision to evacuate. 

Finally, based on the results from the dynamic model, it is clear that households are less 

willing to evacuate during the evening and that household size and income have  negative 

effect on evacuation, whereas the presence of kids has a positive influence on the decision 

to evacuate.  

Table 17. Results of estimating dynamic discrete choice models. 

Variable Name Dynamic  
Logit with PK 

Dynamic Logit 

with AR(1) 
Sequential  

Logit  
Seq. Logit  

(Dyn. Adaptation) 

Hurricane Category 
0.2256***  

(<0.01) 
0.2020***  

(<0.01) 
0.4776***  

(<0.01) 
0.5790***  

(<0.01) 
Evacuation Order     

0.4730***  
(<0.01)   

TOD4  
(6PM-12AM) 

-1.0564          

(0.105) 
-1.2288*          

(0.082) 
  -0.969  

(0.205) 
Time to Expected  

Landfall 
 -0.0294***  

(<0.01) 
 -0.0277*** 

(<0.01) 
 -0.0150**  

(0.02) 
-0.0330***  

(<0.01) 
Last Forecast     

(FC4) 
 -3.3004***  

(<0.01) 
 -3.1979*** 

(<0.01) 
 -2.8623*** 

(<0.01) 
-2.9444***  

(<0.01) 
Evacuation Experience  

(Gustav) 
0.8890***  

(<0.01) 
0.8751*** 

(<0.01) 
1.5740***  

(<0.01) 
1.5520***  

(<0.01) 
Household Size  -0.2733***  

(<0.01) 
 -0.2813*** 

(<0.01) 
  0.0006  

(0.96) 
Number of Kids  

(Less than 17yrs old) 
0.2907***  

(<0.01) 
0.3020*** 

(<0.01) 
  

0.0071  
(0.91) 

Household Income 
 -0.1561***  

(<0.01) 
 -0.1505*** 

(<0.01) 
  

-0.0286  
(0.44) 

Constant     
-3.6673*** 

(<0.01) 
-2.5797***  

(<0.01) 
Number of Observations: 763 763  2155 2155 

L(0):     -1086.63 -1086.63 
LL: -968.51  -970.20 -909.04 -913.83 

LR chi
2
(4):     355.19 345.6 

Prob > chi
2
:     <0.0001 <0.0001 
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Pseudo R
2
:     0.1634 0.1590 

***Significant at the 1% level             **Significant at the 5% level                *Significant at the 10% level 
 

Figure 30 compares the observed evacuation versus the estimated ones. The 

sequential models seem to provide good estimations for earlier periods, but loose prediction 

power on the latter ones. However, the dynamic models yields good estimation in all 

periods with significantly less error per period and cumulative (as can be seen in the 

estimation of Non-Evacuees). 

 
Figure 30. Comparison of observed and estimated evacuation percentages. 

5.5 Conclusions 

Modeling approaches within evacuation behavior analysis generally do not 

incorporate dynamic variables. This chapter presents the result of introducing dynamic 

variables and respondent’s expectations into discrete choice estimation in the context of 

hurricane evacuation. Although Dynamic Discrete Choice Models (DDCM) have been 

(scarcely) used in the past within the field of transportation, to the best of the author’s 

knowledge, this is the first time such model is presented from an evacuation perspective. 
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The resulting model is compared to existing discrete choice methods, namely Logit and 

Sequential Logit. Simpler approaches may yield predictions sufficient for analysis of a 

hurricane evacuation event, but fail in incorporating demographic information, limiting its 

policy evaluation capability. In this sense, it is evident that DDCM are more beneficial and 

insightful, and can serve as a tool for evaluating new policies that could improve the 

efficiency of evacuations and emergency planning. 

This is just the first step in the development of a robust model that allows stochastic 

variables. Further research is needed to better represent the evolution of the disaster’s 

attribute over time (𝒚𝒕 in this research), a key element in the estimation of expected utility. 

This research experiments with two representation of evolution, however more detailed 

and robust approaches are needed in order to improve estimation accuracy. Future research 

could include a random behavior where respondents have no knowledge of the future and 

therefore dynamic variables change randomly over time, selecting a new value at each time 

t from a given array of possible values. For instance, at each evaluation period t a value is 

randomly selected for hurricane category from the 5 potential categories following the 

Saffir-Simpson scale. Additionally, future research could include other formulations of 

random walks and a random behavior of expectations. It would also be interesting to extend 

the dynamic model to include departure time, mode of evacuation and destination to further 

improve the policies regarding shelters location, demand management and distribution of 

resources. Finally, more rigorous datasets are needed to include more socioeconomic 

information, but most importantly, datasets that provide more detailed time periods of 

analysis from a forecast perspective. This will allow to better understand the many different 

(dynamic) factors that influence the evacuation decision 
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Chapter 6: Conclusion 

This chapter concludes the dissertation by summarizing its important findings and 

contributions. We then discuss future avenues for this research and possible improvements 

to the evaluation framework. 

6.1 Findings and Contributions 

This dissertation focuses on improving the analysis of resilience of transportation 

systems. The primary contributions of this research are: 

 Finding 1: literature on transportation resilience is still limited when compared to 

other fields of knowledge. Furthermore, most of the research seems to focus more 

on the operational side of transportation, instead of proving a more general view 

within the field. 

 Contribution 1: This dissertation presents four thorough multidisciplinary literature 

reviews (Chapters 2 through 5) that highlight the voids in the existing academic and 

technical literature on transportation resilience. These reviews serve not only as 

support to the proposed framework, but for any future research in the field.  

 Finding 2: There is a clear need for a guideline or unifying framework of analysis 

of transportation resilience. 

 Contribution 2: One of the main contributions of this research it’s the proposed 

novel framework of evaluation, Transportation Resilience Architecture, which links 

the three components of a transportation system: Infrastructure (Chapter 3), Agency 

(Chapter 4) and User (Chapter 5). A first of its kind within the transportation 

resilience field, this framework could serve as an umbrella for all future research. 
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 Finding 3: Accessibility measures commonly used in transportation are extremely 

limited by fixed thresholds that do not consider other potential factors that affect 

accessibility levels of a targeted population. 

 Contribution 3: A comprehensive and practical assessment tool that evaluates 

Infrastructure Resilience through a Logsum-based accessibility analysis—a new 

framework from a transportation perspective. This analysis showcase how to 

collect and use readily available official information, such as the one inside travel 

models and geographical weather data, to obtain more robust accessibility 

measures. Furthermore, this method allows us to perform a disaggregated analysis 

by income level (and potentially by any other population characteristic), 

overcoming a limitation of more traditional approaches 

 Finding 4: Most analysis of an agency’s resilience level, or performance proxy, 

found in the literature are based on qualitative information, with little consensus on 

how and/or what to measure. 

 Contribution 4: A flexible, yet robust, quantitative framework to analyze Agency 

Resilience that combines the Sustainable Livelihood analysis framework with 

Fuzzy Algorithms. Furthermore, this research contributes by providing newly 

proposed metrics and others suggested by previous literature and several experts in 

the field of transportation (related to different agencies across the nation) that serve 

as a starting point for future research in this area. 

 Finding 5: Modeling approaches within evacuation behavior analysis do not 

incorporate dynamic variables and expected values of such variables.  
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 Contribution 5: An adaptation of dynamic discrete choice models with respondent’s 

expectations as a proxy for User Resilience. Although these models have been 

(scarcely) used in the past within the field of transportation, this dissertation study 

is the first to do so from an evacuation perspective. Additionally, this research 

proposes two methods for incorporating respondent’s expectation into the 

modelling framework. 

6.2 Future Research 

This research presents an innovative analysis framework for transportation 

resilience (TR) that combines the three most important component of a transportation 

system, its infrastructure, agencies and users. The Transportation Resilience Architecture 

(TRA) is able to incorporate a broad cross-section of the resilience-enhancing strategies, 

allowing for better definition, planning and evaluation of alternatives. However, being the 

first time such framework is introduced, future research is needed to better define the 

utilities (i.e., specific information on infrastructure, agency and user) that are required for 

TR analysis and the flow of information between its components. In general, this research 

evaluate resilience through proxies. Future research is needed to develop robust 

quantitative frameworks to identify and evaluate more factors that characterize resilience 

within the architecture’s different perspectives. 

For the accessibility analysis, in terms of data quality, it would be desirable to 

obtain more detail information about disadvantaged population, incorporate more accurate 

weather data, and add non-commuter trips to the analysis. In addition, statistical analysis 

is needed to increase reliability of the results. It would be also interesting to identify and 

integrate other factors impeding evacuation mobility and temporal constraints (e.g., 
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departure time) into the accessibility analysis. Finally, for the location analysis, more 

(official) information on construction budget, shelter’s capacity, actual/expected demand, 

and other variables is needed to fully evaluate the best location of shelters. 

From the agency perspective, this research highly recommends that a strongly 

supported nationwide survey is conducted to assess current state-of-knowledge, including 

recently started and future research, on agency resilience. A second survey is also needed 

to reach consensus not only on quantitative metrics for evaluation, but also on their weight 

and appropriate method of combination. 

For the dynamic model of evacuation, in terms of the evolution of the disaster’s 

attribute(s) over time (𝒚𝒕 in this research), more detailed and robust approaches are needed 

in order to improve estimation accuracy. Future research could include other formulations 

of random walks and a random behavior of expectations. It would also be interesting to 

extend the dynamic model to include departure time, mode of evacuation and destination 

to further improve the policies regarding of shelters location, demand management and 

distribution of resources. Finally, more rigorous datasets are needed to include more 

socioeconomic information, but most importantly, datasets that provide more detailed time 

periods of analysis from a forecast perspective. This will allow to better understand the 

many different (dynamic) factors that influence the evacuation decision. 
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Annex 1: Locations of New Shelters 

a) b)  

c)  d)  
Figure 31. Location of new shelters for m=85 (upper) and m=100 (lower). 

 

 

Model 1 

m = 85 

 

Model 2 

m = 100 
Model 1 

m = 100 

Model 2 

m = 85 
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Annex 2: Agency Resilience Survey 

Introduction 

The objective of this survey is to collect information about your agency’s 

transportation resilience. Transportation resilience refers to the ability of a network to 

maintain its demonstrated level of service or to restore itself to such level of service in a 

given period.  While a transportation network’s resilience involves different levels 

(namely, users, institutions and infrastructure), this study centers on the resilience of 

transportation agencies/institutions. At a higher level, agency resilience provides the basis 

for understanding who the implementers are and the roles that these implementers could 

take within a resilient system. At a lower level, agency resilience improves preparedness 

and response capability of agencies by taking into account more operational, rather than 

only managerial, characteristics of an agency. With this survey, I am hoping to identify a 

comprehensive set of easily measurable metrics to assess agency resilience at such lower 

level. 

Thank you in advanced for your time. 

Nayel Urena Serulle 

PhD Candidate, University of Maryland 

 

Disclaimer 

There are no known risks associated with participating in this research project. 

Participants will be asked to provide their name, agency, position and contact information. 

This information will be available to the investigator and any member of the research team. 

Responses will not be shared with other employees or supervisors at your company. Any 

potential loss of confidentiality will be minimized by storing data in a secure location (i.e., 
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password protected computer). If a report or article is written about this research project, 

your identity will be protected to the maximum extent possible. Your information may be 

shared with representatives of the University of Maryland, College Park or governmental 

authorities if you or someone else is in danger or if we are required to do so by law. Your 

participation in this research is completely voluntary. You may choose not to take part at 

all.  If you decide to participate in this research, you may stop participating at any time.  If 

you decide not to participate in this study or if you stop participating at any time, you will 

not be penalized.  By clicking next, you agree to these conditions and provide consent to 

use any information that is provided in this survey. If you decide to stop taking part in the 

study, if you have questions, concerns, or complaints, or if you need to report an injury 

related to the research, please contact the investigator:    

Nayel Urena Serulle   

8750 Georgia Ave., Unit 817A,   

Silver Spring, MD 20910   

(650)-387-9117   nus@umd.edu 

 

(Survey begins) 

Please state your: 

Name 

Agency 

Position 

Email 

Phone number 

 

mailto:nus@umd.edu
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Recall that the objective of this survey is to identify a comprehensive set of easily 

measurable metrics to assess agency resilience. In this sense, please provide quantifiable 

metrics for the following capitals. 

Q1 Physical capital refers to the physical environment that makes an agency 

capable to efficiently maintain and harden the transportation network. Name (at least three) 

metrics you believe affect the physical resilience of an agency. 

Q2 Human capital refers to the personnel, from both private and public 

organizations, needed to competently manage a transportation network before, during and 

after a disaster, and recover it in the latter situation. Name (at least three) metrics you 

believe affect the human resilience of an agency. 

Q3 Economic capital refers to the financial stability of a transportation agency, 

which enables the implementation of proactive and reactive disaster management 

strategies. Name (at least three) metrics you believe affect the economic resilience of an 

agency. 

Q4 Social capital refers to the agency’s ability to efficiently support, coordinate and 

implement preparedness and response activities, procedures, methods, and tools. Name (at 

least three) metrics you believe affect the social resilience of an agency. 

 

The following are questions to better understand the agency's and/or your 

perspective and work on resilience. 

Q5 What are your agency’s transportation priorities? 

Q6 Have these changed in the last few years? 

Q7 If resilience is not included in the priorities, why do you think this is? 
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Q8 Please define resiliency as understood in your agency 

Q9 How does your agency measure resilience? 

Q10 What makes your transportation agency unreliable or vulnerable? 

Q11 Are you taking any specific actions to reduce these vulnerabilities? Why or 

why not? 

Q11 Do you want to do more to reduce vulnerabilities? If so, what steps are being 

envisioned? 

Q12 Is there anything about your agency (profile, structure, culture) that you feel 

leads to natural resiliency? 

Q13 How are disruptions currently being handled? 

Q14 Do you have a plan to address high impact, low probability disruptions (e.g., 

hurricanes, flash floods, tornados)? What is it? How specific is it? 

Q15 Do you think the current state of our transportation infrastructure impacts the 

resiliency or reliability of your agency (e.g., the amount of roads, quality of roads, and 

potential for failure)? 

Q16 Do you think that improvements to the resiliency of the transportation 

infrastructure network would improve the resiliency of your agency? How so? 

Q17 Do you think that improvements to the resiliency of the population (i.e., users 

or community) improve the resiliency of your agency? How so?  

Q18 What transportation challenges do you foresee for the next years? 
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Annex 3: Fuzzy Inference System’s Rules 

All rules used for the development of the different Fuzzy Inference Systems are 

presented here. It should be noted that given the structure of the dependency diagram, 

Economic Capital and Preparedness Index are only influenced by one input and therefore 

do not need rules. 

Table 18. FIS rules for Initial Redundancy. 

IF Data Red. AND Alt. Inf. Prox. THEN Initial Redundancy 

If 0 and 5 then Low 

If 0 and 15 then Low 

If 0 and 25 then Low 

If 1 and 5 then Medium-Low 

If 1 and 15 then Medium  

If 1 and 25 then Medium-High 

If 2 and 5 then Medium-High 

If 2 and 15 then High 

If 2 and 25 then High 

 

Table 19. FIS rules for Physical Capital. 
 

 

 

IF Initial Red. AND Power Red. THEN Physical Capital 

If Low and 0 then Low 

If Medium-Low and 0 then Low 

If Medium  and 0 then Medium-Low 

If Medium-High and 0 then Medium-Low 

If High and 0 then Medium 

If Low and 1 then Medium-Low 

If Medium-Low and 1 then Medium-Low 

If Medium  and 1 then Medium 

If Medium-High and 1 then Medium-High 

If High and 1 then High 

If Low and 2 then Medium-Low 

If Medium-Low and 2 then Medium 

If Medium  and 2 then Medium-High 

If Medium-High and 2 then High 

If High and 2 then High 
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Table 20. FIS rules for Human Capital. 

IF Scalability AND Dis. Mgmt. Per. THEN Human Capital 

If 0 and 0 then Low 

If 0 and 20 then Low 

If 0 and 40 then Medium-Low 

If 25 and 0 then Low 

If 25 and 20 then Medium  

If 25 and 40 then Medium-High 

If 50 and 0 then Medium  

If 50 and 20 then Medium-High 

If 50 and 40 then High 

 

Table 21. FIS rules for Response Index. 

IF Human AND Economic THEN Response 

If Low and Low then Low 

If Medium-Low and Low then Low 

If Medium  and Low then Medium-Low 

If Medium-High and Low then Medium-Low 

If High and Low then Medium-Low 

If Low and Medium-Low then Low 

If Medium-Low and Medium-Low then Medium-Low 

If Medium  and Medium-Low then Medium-Low 

If Medium-High and Medium-Low then Medium 

If High and Medium-Low then Medium 

If Low and Medium then Medium-Low 

If Medium-Low and Medium then Medium 

If Medium  and Medium then Medium 

If Medium-High and Medium then Medium 

If High and Medium then Medium-High 

If Low and Medium-High then Medium 

If Medium-Low and Medium-High then Medium 

If Medium  and Medium-High then Medium-High 

If Medium-High and Medium-High then Medium-High 

If High and Medium-High then Medium-High 

If Low and High then Medium 

If Medium-Low and High then Medium-High 

If Medium  and High then Medium-High 

If Medium-High and High then High 

If High and High then High 
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Table 22. FIS rules for Base Resilience. 

IF Preparedness AND Response THEN Base Resilience 

If Low and Low then Low 

If Medium-Low and Low then Low 

If Medium  and Low then Medium-Low 

If Medium-High and Low then Medium-Low 

If High and Low then Medium 

If Low and Medium-Low then Low 

If Medium-Low and Medium-Low then Medium-Low 

If Medium  and Medium-Low then Medium-Low 

If Medium-High and Medium-Low then Medium 

If High and Medium-Low then Medium 

If Low and Medium then Medium-Low 

If Medium-Low and Medium then Medium-Low 

If Medium  and Medium then Medium 

If Medium-High and Medium then Medium 

If High and Medium then Medium-High 

If Low and Medium-High then Medium-Low 

If Medium-Low and Medium-High then Medium 

If Medium  and Medium-High then Medium 

If Medium-High and Medium-High then Medium-High 

If High and Medium-High then High 

If Low and High then Medium 

If Medium-Low and High then Medium 

If Medium  and High then Medium-High 

If Medium-High and High then High 

If High and High then High 
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Table 23. FIS rules for Agency Resilience. 

IF Base Resilience AND Social Capital THEN Agency Resilience 

If Low and Low then Low 

If Medium-Low and Low then Low 

If Medium  and Low then Medium-Low 

If Medium-High and Low then Medium-Low 

If High and Low then Medium 

If Low and Medium-Low then Low 

If Medium-Low and Medium-Low then Medium-Low 

If Medium  and Medium-Low then Medium-Low 

If Medium-High and Medium-Low then Medium 

If High and Medium-Low then Medium 

If Low and Medium then Medium-Low 

If Medium-Low and Medium then Medium-Low 

If Medium  and Medium then Medium 

If Medium-High and Medium then Medium 

If High and Medium then Medium-High 

If Low and Medium-High then Medium-Low 

If Medium-Low and Medium-High then Medium 

If Medium  and Medium-High then Medium 

If Medium-High and Medium-High then Medium-High 

If High and Medium-High then High 

If Low and High then Medium 

If Medium-Low and High then Medium 

If Medium  and High then Medium-High 

If Medium-High and High then High 

If High and High then High 
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Glossary 

ACS   American Community Survey 

AR  Agency Resilience 

CRED   Centre for Research on the Epidemiology of Disasters 

CS   Consumer Surplus  

DDCM  Dynamic Discrete Choice Models 

FIS   Fuzzy Inference System 

HIHH   High Income Household 

IR  Infrastructure Resilience 

LIHH   Low Income Household  

LS  Logsum 

MEMA  Maryland Emergency Management Agency 

MSTM  Maryland Statewide Travel Model 

MWCOG  Metropolitan Washington Council of Government 

PUMA  Public Use Microdata Areas 

RP  Revealed Preference 

SMZ   Statewide Modeling Zones 

SP  Stated Preference 

TR  Transportation Resilience 

TRA  Transportation Resilience Architecture 

UR  User Resilience 

 

 



   

138 

Bibliography 

Abley, S. (2010). Measuring accessibility and providing transport choice, (July), 1–15. 

Adams, T., Bekkem, K., & Toledo-Duran, E. (2012). Freight Resilience Measures. 

Journal of Transportation Engineering, 138(11), 1403–1409. 

doi:10.1061/(ASCE)TE.1943-5436.0000415. 

Aguirregabiria, V., & Mira, P. (2010). Dynamic discrete choice structural models: A 

survey. Journal of Econometrics, 156(1), 38–67. 

doi:10.1016/j.jeconom.2009.09.007 

Alexander, B., Chan-Halbrendt, C., & Salim, W. (2006). Sustainable likelihood 

considerations for disaster risk management: Implications for implementation of the 

government of Indonesia tsunami recovery plan. Disaster Prevention and 

Management, 15(1), 31–50. 

Apparicio, P., Abdelmajid, M., Riva, M., & Shearmur, R. (2008). Comparing alternative 

approaches to measuring the geographical accessibility of urban health services: 

Distance types and aggregation-error issues. International Journal of Health 

Geographics, 7, 7. doi:10.1186/1476-072X-7-7 

Babuska, R., Verbruggen, H. B., & Hellendoorn, H. (1999). Promising fuzzy modeling and 

control methodologies. Netherlands.: Delft University of Technology. 

Baker, E. J. (1979). Predicting response to hurricane warnings: A reanalysis of data from 

four studies. Mass Emergencies and Disasters, 9-24. 

Bastin, F., Cirillo, C., & Toint, P. (2006). Application of an adaptive monte-carlo algorithm 

for mixed logit estimation. Transportation Research Part B, 577–593. 

Bateman, J. M., & Edwards, B. (2002). Gender and evacuation: A closer look at why 

women are more likely to evacuate for hurricanes. Natural Hazards Review, 107-

117. 

Battelle. (2007). Evaluation of the Systems ’ Available Redundancy to Compensate for 

Loss of Transportation Assets Resulting from Natural Disasters or Terrorist Attacks. 

Berche, B., Ferber, C. Von, Holovatch, T., & Holovatch, Y. (2009). Resilience of public 

transport networks against attacks. The European Physical Journal. Retrieved from 

http://link.springer.com/article/10.1140/epjb/e2009-00291-3 

Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: the concept, a literature review 

and future directions. International Journal of Production Research, 49(18), 5375–

5393. doi:10.1080/00207543.2011.563826 



   

139 

Bolin, R. (1986). The 1986 California floods: Quick Response Research Rep. No. 02. 

Boulder, Colorado: University of Colorado. 

Bolin, R., Jackson, M., & Crist, A. (1996). Gender inequality, vulnerability, and 

disasters: Theoretical and empirical considerations. En E. Enarson, & B. Morrow, 

The gendered terrain of disasters. Westport, Connecticut. 

Briguglio, L., Cordina, G., Farrugia, N., & Vella, S. (2009). Economic Vulnerability and 

Resilience: Concepts and Measurements. Oxford Development Studies, 37(3), 229–

247. doi:10.1080/13600810903089893 

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., 

… von Winterfeldt, D. (2003). A Framework to Quantitatively Assess and Enhance 

the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733–752. 

doi:10.1193/1.1623497 

Caplice, C., Rice, J., Ivanov, B., & Stratton, E. (2008). Development of a State Wide 

Freight System Resiliency Plan (Vol. 7931). Cambridge, MA. Retrieved from 

http://ctl-

test1.mit.edu/sites/default/files/library/public/paper_freight_system_resilience.pdf 

Cardona, O. D. (2005). System of Indicators for disaster risk management. Washington, 

DC. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:SYSTEM+OF+I

NDICATORS+FOR+DISASTER+RISK+MANAGEMENT#3 

Cardona, O. D. (2007). Indicators for Disaster Risk Management: Disaster Risk 

Communication Tools from a Holistic Perspective. In 20 ANNI DI SVILUPPO E 

PROTEZIONE DEL TERRITORIO (pp. 1–15). Morbegno, Regione Lombardia. 

Retrieved from 

http://understandrisk.org/sites/default/files/01CardonaSystemofIndicators_0.pdf 

Carnegie, J. A., & Deka, D. (2010). Using hypothetical disaster scenarios to predict 

evacuation behavioral response. 89th Annual Meeting of the Transportation 

Research Board. Washington, DC: TRB. 

Carreño, M., Cardona, O., & Barbat, A. (2007). A disaster risk management performance 

index. Natural Hazards, (64), 1–20. doi:10.1007/s11069-006-9008-y 

Carter, M. T., Kendall, S., & Clark, J. P. (1983). Household response to warnings. Mass 

Emergencies and Disasters, 95-104. 

Chakraborty, J., Tobin, G., & Montz, B. (2005). Population evacuation: assessing spatial 

variability in geophysical risk and social vulnerability to natural hazards. Natural 

Hazards Review, (February), 23–33. Retrieved from 

http://ascelibrary.org/doi/pdf/10.1061/(ASCE)1527-6988(2005)6%3A1(23) 



   

140 

Chang, C., & Mehta, R. (2009). Fiber optic sensors for transportation infrastructural 

health monitoring. Control in Transportation Systems, 3(1), 214–221. Retrieved 

from http://www.ifac-papersonline.net/Detailed/40432.html 

Chang, S. E., & Shinozuka, M. (2004). Measuring improvements in the disaster resilience 

of communities. Earthquake Spectra, 20(3), 739–755. doi:10.1193/1.1775796 

Charnkol, T., & Tanaboriboon, Y. (2006). Tsunami Evacuation Behavior Analysis: One 

Step of Transportation Disaster Response. IATSS RESEARCH, 30(2), 83–96. 

Chen, L., & Miller-Hooks, E. (2012). Resilience: An Indicator of Recovery Capability in 

Intermodal Freight Transport. Transportation Science, 46(1), 109–123. 

doi:10.1287/trsc.1110.0376 

Chen, X., & Zhang, F. B. (2004). Agent-Based Modeling and Simulation of Urban 

Evacuation: Relative Effectiveness of Simultaneous and Staged Evacuation 

Strategies. 83rd Transportation Research Board Annual Meeting. Washington DC, 

United States: TRB. 

Chiu, Y., Villalobos, J., Gautam, B., & Zheng, H. (2006). Modeling and Solving the 

Optimal Evacuation-Route-Flow-Staging Problem for No-Notice Extreme Events. 

85th Transportation Research Board Annual Meeting. Washington DC, United 

States: TRB. 

Cigler, B. A. (2006). Who’s in charge: The paradox of emergency management. PA 

Times, 28(5), 7-10. 

Cirillo, C., & Hetrakul, P. (2012). An Integrated Analysis of the Social and 

Transportation Needs of Low Income Populations for the Washington D.C. 

Metropolitan Region: Task 3. 

Cirillo, C., Xu, R., & Bastin, F. (2013). A Dynamic Formulation for Car Ownership 

Modeling. European Transport Conference. College Park, MD. Retrieved from 

http://www.tinbergen.nl/wp-content/uploads/2014/01/A-Dynamic-Formulation-for-

Car-Ownership-Modeling1.pdf 

Comfort, L. K., & Haase, T. (2006). Communication, Coherence, and Collective Action: 

The Impact of Hurricane Katrina on Communications Infrastructure. Public Works 

Management & Policy, 11(1), 1–16. doi:10.1177/1087724X06289052 

Cova, T., & Johnson, J. (2002). Microsimulation of Neighborhood Evacuations in the 

Urban-Wildlife Interface. Environment and Planning A, 2211-2229. 

Cox, A., Prager, F., & Rose, A. (2011). Transportation security and the role of resilience: 

A foundation for operational metrics. Transport Policy, 18(2), 307–317. 

doi:10.1016/j.tranpol.2010.09.004 



   

141 

CRED. (2009). Criteria and Definition. Retrieved from http://www.emdat.be/criteria-and-

definition 

Croope, S., McNeil, S., Deliberty, T., & Nigg, J. (2010). Resiliency of Transportation 

Corridors Before, During, and After Catastrophic Natural Hazards. Retrieved from 

http://trid.trb.org/view.aspx?id=1117583 

Cumming, G. S., Barnes, G., Perz, S., Schmink, M., Sieving, K. E., Southworth, J., … 

Holt, T. (2005). An Exploratory Framework for the Empirical Measurement of 

Resilience. Ecosystems, 8(8), 975–987. doi:10.1007/s10021-005-0129-z 

Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A 

place-based model for understanding community resilience to natural disasters. 

Global Environmental Change, 18(4), 598–606. 

doi:10.1016/j.gloenvcha.2008.07.013 

Dash, N., & Gladwin, H. (2007). Evacuation decision making and behavioral responses: 

Individual and household. Natural Hazards Review, 3(August), 69–77. Retrieved 

from http://ascelibrary.org/doi/abs/10.1061/(ASCE)1527-6988(2007)8:3(69) 

Davis, A. (2000). Transport and Sustainable Rural Livelihoods in Zambia: Case Study. In 

Egypt Social Fund for Development (pp. 1–15). Transport Research Laboratory. 

De Lapparent, M., & Cernicchiaro, G. (2012). How long to own and how much to use a 

car? A dynamic discrete choice model to explain holding duration and driven 

mileage. Economic Modelling, 29(5), 1737–1744. 

doi:10.1016/j.econmod.2012.05.018 

DFID. (1999). Sustainable livelihoods guidance sheets. … Development: London.) 

Available at: www. livelihoods. …. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:SUSTAINABLE

+LIVELIHOODS+GUIDANCE+SHEETS#1 

DHS. (2007). Target Capabilities List: A Companion to the National Preparedness 

Guidelines. Obtenido de FEMA: 

http://www.fema.gov/pdf/government/training/tcl.pdf 

Drabek, T. E., & Boggs, K. (1968). Families in disaster: Reactions and relatives. 

Marriage Family, 443-451. 

Easterby-Smith, M., Thorpe, R., & Lowe, A. (2002). Management Research – An 

Introduction. London: Sage Publications. 

Elliott, R. (2010). Measuring disaster preparedness of local emergency medical services 

agencies. NAVAL POSTGRADUATE SCHOOL. Retrieved from 



   

142 

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA5

31808 

Falasca, M., Zobel, C., & Cook, D. (2008). A decision support framework to assess 

supply chain resilience. Proceedings of the 5th International ISCRAM Conference, 

(May 2008), 596–605. Retrieved from 

http://www.iscramlive.org/dmdocuments/ISCRAM2008/papers/ISCRAM2008_Fala

sca_etal.pdf 

Farazmand, A. (2005). Crisis management or management crisis? PA Times, 28(10), 6-

10. 

Federal Transit Administration. (2006). Disaster Response and Recovery Resource for 

Transit Agencies. 

Fosgerau, M., Frejinger, E., & Karlstrom, A. (2013). A link based network route choice 

model with unrestricted choice set. Transportation Research Part B: 

Methodological, 56, 70–80. doi:10.1016/j.trb.2013.07.012 

Fothergill, A. (1996). Gender, risk and disaster. Mass Emergencies and Disasters, 33-56. 

Fouracre, P. (2001). Transport and sustainable rural livelihoods. Rural Travel and 

Transport Program. East Kilbride, UK. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Transport+and+su

stainable+rural+livelihoods#1 

Freckleton, D., Heaslip, K., Luoisell, W., & Collura, J. (2012). Evaluation of 

Transportation Network Resiliency with Consideration for Disaster Magnitude. In 

91st Annual Meeting of the Transportation Research Board (Vol. 5). Retrieved from 

http://docs.trb.org/prp/12-0491.pdf 

Fu, H., & Wilmot, C. G. (2004). A Sequential Logit Dynamic Travel Demand Model For 

Hurricane Evacuation. Transportation Research Record: Journal of the 

Transportation Research Board, 1882, 19–26. 

Fu, H., Wilmot, C., & Zhang, H. (2006). Modeling the hurricane evacuation response 

curve. Transportation Research Record 2022, 94-102. 

Gao, S., Frejinger, E., & Ben-Akiva, M. (2010). Adaptive route choices in risky traffic 

networks: A prospect theory approach. Transportation Research Part C: Emerging 

Technologies, 18(5), 727–740. doi:10.1016/j.trc.2009.08.001 

Ge, S. (2013). Estimating the returns to schooling: Implications from a dynamic discrete 

choice model. Labour Economics, 20, 92–105. doi:10.1016/j.labeco.2012.11.004 



   

143 

Geurs, K., & Wee, B. (2004). Accessibility evaluation of land-use and transport 

strategies: review and research directions. Journal of Transport Geography, 127-

140. 

Gladwin, H., & Peacock, W. G. (1997). Warning and evacuation: A night for hard 

houses. En W. Peacock, B. Morrow, & H. Gladwin, Hurricane Andrew: Gender, 

ethnicity and the sociology of disasters (págs. 52-74). Routledge, New York. 

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. New York, NY: 

Springer. 

Glerum, A., Vastberg, O. B., Frejinger, E., Karlström, A., Hugosson, M. B., & Bierlaire, 

M. (2015). A dynamic discrete-continuous choice model of car ownership, usage 

and fuel type. Interuniversity Research Centre on Enterprise Networks, Logistics 

and Transportation (CIRRELT). 

Global Adaptation Institute. (2011). Global Adaptation Index: Measuring What Matters. 

Washington, DC. 

Godschalk, D. R. (2003). Urban Hazard Mitigation: Creating Resilient Cities. Natural 

Hazards Review, 4(3), 136–143. doi:10.1061/(ASCE)1527-6988(2003)4:3(136) 

Gönül, F. F. (1998). Estimating price expectations in the OTC medicine market: An 

application of dynamic stochastic discrete choice models to scanner panel data. 

Journal of Econometrics, 89(1-2), 41–56. doi:10.1016/S0304-4076(98)00054-2 

Gruntfest, E., Downing, T., & White, G. F. (1978). Big Thompson Flood. Boulder, 

Colorado: Institute of Behavioral Science, Univ. of Colorado. 

Gurmu, S., Ihlanfeldt, K. R., & Smith, W. J. (2008). Does residential location matter to 

the employment of TANF recipients? Evidence from a dynamic discrete choice 

model with unobserved effects. Journal of Urban Economics, 63(1), 325–351. 

doi:10.1016/j.jue.2007.02.002 

Hanss, M. (2005). Applied fuzzy arithmetic: An introduction with engineering 

applications, . New York: Springer. 

Heaslip, K., Louisell, W., & Collura, J. (2009). A Methodology to Evaluate 

Transportation Resiliency for Regional Network. 88th Transportation Research 

Board Annual Meeting. Washington, D.C.: TRB. 

Heaslip, K., Louisell, W., & Collura, J. (2009). Quantitative Evaluation of Transportation 

Resiliency for Regional Networks. 88th Transportation Research Board Annual 

Meeting. Washington, DC. 



   

144 

Heckman, J. J., & Navarro, S. (2007). Dynamic discrete choice and dynamic treatment 

effects. Journal of Econometrics, 136(2), 341–396. 

doi:10.1016/j.jeconom.2005.11.002 

Herve, M. (2011). Role du signal prix du carbone sur les dcisions d’investissement des 

entreprises. Ph.D. thesis. Paris, France: Universite Paris-Dauphine. 

Hetrakul, P. (2012). Discrete Choice Models for Revenue Management. University of 

Maryland. Retrieved from http://drum.lib.umd.edu/handle/1903/13498 

Holling, C. (1973). Resilience and stability of ecological systems. Annual Review of 

Ecology and Systematics, 4, 1–23. Retrieved from 

http://www.jstor.org/stable/10.2307/2096802 

Hunt, M. G., Bogue, K., & Rohrbaugh, N. (2012). Pet Ownership and Evacuation Prior to 

Hurricane Irene. Animals, 2(4), 529–539. doi:10.3390/ani2040529 

Hutton, J. (1976). The differential distribution of death in disaster:Atest of theoretical 

propositions. Mass Emergencies and Disasters, 261-266. 

International Federation of Red Cross and Red Crescent Societies. (2010). World disaster 

report - focus on urban risk. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:World+Disaste+R

Eport#0 

Ip, W. H., & Wang, D. (2009). Resilience Evaluation Approach of Transportation 

Networks. 2009 International Joint Conference on Computational Sciences and 

Optimization, 618–622. doi:10.1109/CSO.2009.294 

ISDR. (2009). Global assessment report on disaster risk reduction. Geneva, Switzerland. 

Jackson, B. (2008). The Problem of Measuring Emergency Preparedness. Santa Monica, 

CA. Retrieved from http://www.rand.org/pubs/occasional_papers/OP234/ 

Kalafatas, G., & Peeta, S. (2009). Planning for Evacuation: Insights from an Efficient 

Network Design Model. Journal of Infrastructure Systems, 21-30. 

Karlstrom, A., Palme, M., & Svensson, I. (2004). A dynamic programming approach to 

model the retirement behaviour of blue-collar workers in Sweden. Journal of 

Applied Econometrics, 19(6), 795–807. doi:10.1002/jae.798 

Kaufmann, A., & Gupta, M. (1988). Fuzzy mathematical models in engineering and 

management science. North-Holland: Elsevier Science. 

Keane, M. P., Todd, P. E., & Wolpin, K. I. (2011). The Structural Estimation of 

Behavioral Models: Discrete Choice Dynamic Programming Methods and 



   

145 

Applications. Handbook of Labor Economics (Vol. 4). Elsevier Inc. 

doi:10.1016/S0169-7218(11)00410-2 

Keane, M. P., & Wolpin, K. I. (1997). The Career Decisions of Young Men. Journal of 

Political Economy, 105(3), 473–522. doi:10.1086/262080 

Keane, M. P., & Wolpin, K. I. (2002a). Estimating Welfare Effects Consistent with 

Forward-Looking Behavior. Part I: Lessons from a Simulation Exercise. The 

Journal of Human Resources, 37(3), 570–599. 

Keane, M. P., & Wolpin, K. I. (2002b). Estimating Welfare Effects Consistent with 

Forward-Looking Behavior. Part II: Empirical Results. The Journal of Human 

Resources, 37(3), pp. 570–599. doi:10.2307/3069682 

Keane, M. P., & Wolpin, K. I. (2009). Empirical applications of discrete choice dynamic 

programming models. Review of Economic Dynamics, 12(1), 1–22. 

doi:10.1016/j.red.2008.07.001 

Kirschenbaum, A. (2004). Measuring the effectiveness of disaster management 

Organizations. Journal of Mass Emergencies and Disasters, 22(1), 75–102. 

Retrieved from 

http://www.safetylit.org/citations/index.php?fuseaction=citations.viewdetails&citati

onIds%5B%5D=citjournalarticle_55960_4 

Kockelman, M. (1997). Travel behavior as function of accessibility, land use mixing, and 

land use balance: Evidence from San Francisco Bay area. Transportation Research 

Record, 116-125. 

Kwan, M., & Weber, J. (2003). Individual Accessibility Revisited: Implications for 

Geographical Analysis in the Twenty-first Century. Geographical Analysis. 

Landsea, C., Franklin, J., & Beven, J. (2015). The Revised Atlantic Hurricane Database 

(HURDAT2). Retrieved from http://www.nhc.noaa.gov/data/?text#annual 

Leu, G., Abbass, H., & Curtis, N. (2010). Resilience of ground transportation networks: a 

case study on Melbourne. In 33rd Australasian Transport Research Forum 

Conference. Retrieved from http://www.worldtransitresearch.info/research/3825/ 

Levinson, J., & Granot, H. (2002). Transportation Disaster Response Handbook. 

Academic Press. 

Lindell, M., Prater, C., Perry, R., & Wu, J. (2002). EMBLEM: an Empirically based 

Large-scale Evacuation Time Estimate Model. College Station, TX: Hazard 

Reduction and Recovery Center (Texas A&M). 



   

146 

Lindell, M., Lu, J., & Prater, C. (2005). Household decision making and evacuation in 

response to Hurricane Lili. Natural Hazards Review, (November), 171–179. 

Retrieved from http://ascelibrary.org/doi/abs/10.1061/(ASCE)1527-

6988(2005)6:4(171) 

Litman, T. (2003). Measuring Transportation: Traffic, Mobility and Accessibility. ITE 

Journal, 28-32. 

Little, R. (2003). Toward more robust infrastructure: observations on improving the 

resilience and reliability of critical systems. In Proceedings of the 36th Hawaii 

International Conference on System Sciences (p. 9). Hawaii. Retrieved from 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1173880 

Losada, C., Scaparra, M. P., & O’Hanley, J. R. (2012). Optimizing system resilience: A 

facility protection model with recovery time. European Journal of Operational 

Research, 217(3), 519–530. doi:10.1016/j.ejor.2011.09.044 

Liu, Y., Lai, X., & Chang, G. (2006). Two-level Integrated Optimization System for 

Planning of Emergency Evacuation. Journal of Transportation Engineering, 800-

807. 

Madhusudan, C., & Ganapathy, G. (2011). Disaster resilience of transportation 

infrastructure and ports–An overview. International Journal of Geomatics and 

Geosciences, 2(2), 443–456. Retrieved from 

http://www.indianjournals.com/ijor.aspx?target=ijor:ijggs&volume=2&issue=2&arti

cle=009 

Madni, a. M., & Jackson, S. (2009). Towards a Conceptual Framework for Resilience 

Engineering. IEEE Systems Journal, 3(2), 181–191. 

doi:10.1109/JSYST.2009.2017397 

Madni, A. M., & Jackson, S. (2009). Towards a Conceptual Framework for Resilience 

Engineering. IEEE Systems Journal, 3(2), 181–191. 

doi:10.1109/JSYST.2009.2017397 

Mansouri, M., Nilchiani, R., & Mostashari, A. (2010). A policy making framework for 

resilient port infrastructure systems. Marine Policy, 34(6), 1125–1134. 

doi:10.1016/j.marpol.2010.03.012 

Mayunga, J. (2007). Understanding and Applying the Concept of Community Disaster 

Resilience: A capital-based approach. Academy for Social Vulnerability and 

Resilience Building, (July), 22–28. Retrieved from 

https://www.ihdp.unu.edu/file/download/3761.pdf 

Mayunga, J., & Peacock, G. W. (2010). The Development of a Community Disaster 

Resilience Framework and Index. In G. W. Peacock (Ed.), Advancing the Resilience 



   

147 

of Coastal Localities: Developing, Implementing and Sustaining the Use of Coastal 

Resilience Indicators: A Final Report (pp. 2–57). College Station, TX: NOAA. 

Mei, B. (2002). Development of Trip Generation Models of Hurricane Evacuation. Baton 

Rouge, Louisiana: Louisiana State University. 

Melnikov, O. (2013). Demand for differentiated durable products: The case of the u.s. 

computer printer market. Economic Inquiry, 51(2), 1277–1298. doi:10.1111/j.1465-

7295.2012.00501.x 

Mileti, D., Drabek, T., & Haas, E. (1975). Human systems in extreme environments: A 

sociological perspective. Boulder, Colorado: Institute of Behavioral Science, Univ. 

of Colorado. 

Miller, R. a. (1984). Job Matching and Occupational Choice. Journal of Political 

Economy, 92(6), 1086. doi:10.1086/261276 

Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing 

resilience of freight transportation networks. Computers & Operations Research, 

39(7), 1633–1643. doi:10.1016/j.cor.2011.09.017 

Mohammad, A. A. J., Hutchison, D., & Sterbenz, J. J. P. G. (2006). Towards quantifying 

metrics for resilient and survivable networks. In 14th IEEE International 

Conference on Network Protocols (pp. 2–4). Santa Barbara, CA. Retrieved from 

https://wiki.ittc.ku.edu/resilinets_wiki/images/ICNP_poster_v3.pdf 

Murray-Tuite, P. (2006). A comparison of transportation network resilience under 

simulated system optimum and user equilibrium conditions. In 2006 Winter 

Simulation Conference (pp. 1398–1405). Retrieved from 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4117764 

Murray-Tuite, P., & Mahmassani, H. (2003). Model of household trip-chain sequencing 

in emergency evacuation. Transportation Research Record: Journal of 

Transportation Research Board, 1831(January 2003), 21–29. Retrieved from 

http://trb.metapress.com/index/C196482M075N570Q.pdf 

Murray-Tuite, P., & Mahmassani, H. (2004). Methodology for Determining Vulnerable 

Links in a Transportation Network. Transportation Research Record, 1882(1), 88–

96. doi:10.3141/1882-11 

Nagurney, A. (2011). Building Resilience into Fragile Transportation Networks in an Era 

of Increasing Disasters. In 90th Annual Transportation Research Board Meeting. 

Washington, DC. 

Nicholls, S. (2001). Measuring the accessibility and equity of public parks: a case study 

using GIS. Managing Leisure, 201-219. 



   

148 

NOAA. (29 de March de 2006). Floods cost lives and billions of dollars in property 

damamage each year around the United States. Recuperado el 23 de July de 2013, 

de http://www.noaanews.noaa.gov/stories2006/s2601.htm 

NWS. (4 de March de 2012). Floods & Flash Floods: Introduction. Recuperado el 24 de 

July de 2013, de http://www.crh.noaa.gov/dmx/?n=preparefloodintro 

Omer, M., Mostashari, A., & Nilchiani, R. (2011). Measuring the Resiliency of the 

Manhattan Points of Entry in the Face of Severe Disruption. American Journal of 

Engineering and Applied Sciences, 4(1), 153–161. Retrieved from 

http://www.thescipub.com/abstract/10.3844/ajeassp.2011.153.161 

Ortiz, D., Ecola, L., & Willis, H. (2009). Adding resilience to the freight system in 

statewide and metropolitan transportation plans: developing a conceptual 

approach. AASHTO Standing Committee on Planning. Retrieved from 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ADDING+RESIL

IENCE+TO+THE+FREIGHT+SYSTEM+IN+STATEWIDE+AND+METROPOLI

TAN+TRANSPORTATION+PLANS+:+DEVELOPING+A+CONCEPTUAL+APP

ROACH#0 

Oswald, M., McNeil, S., Ames, D., & Gayley, R. (2013). Identifying Resiliency 

Performance Measures for MegaRegional Planning: A Case Study of the BosWash 

Transportation Corridor. Transportation Research Record Practice-Ready Papers. 

Retrieved from http://docs.trb.org/prp/13-1198.pdf 

Pakes, A. (1986). Patents as Options: Some Estimates of the Value of Holding European 

Patent Stocks. Econometrica, 54(4), 755–784. doi:10.2307/1912835 

Pel, A. J., Bliemer, M. C. J., & Hoogendoorn, S. P. (2011a). A review on travel 

behaviour modelling in dynamic traffic simulation models for evacuations. 

Transportation, 39(1), 97–123. doi:10.1007/s11116-011-9320-6 

Pel, A. J., Bliemer, M. C. J., & Hoogendoorn, S. P. (2011b). Modelling traveller 

behaviour under emergency evacuation conditions. EJTIR, 11(11), 166–193. 

Retrieved from http://www.ejtir.tbm.tudelft.nl/issues/2011_02/pdf/2011_02_03.pdf 

Perry, R. W. (1979). Evacuation decision making in natural disasters. Mass Emergencies 

and Disasters, 25-38. 

Perry, R. W., & Greene, M. R. (1982). The role of ethnicity in the emergency decision-

making process. National Emergency Training Center. 

Perry, R. W., Lindell, M. K., & Greene, M. (1982). Threat perception and public 

response to volcano hazards. Journal of Social Psychology, 199-204. 



   

149 

Perry, R., & Mushkatel, A. H. (1986). Minority citizens in disasters. Athens: University 

of Georgia Press. 

Pitera, K. (2008). Interpreting Resiliency: An Examination of the Use of Resiliency 

Strategies within the Supply Chain and Consequences for the Freight 

Transportation System. University of Washington. Retrieved from 

http://courses.washington.edu/cee500/pitera_final_thesis.pdf 

Prizzia, R. (2007). The Role of Coordination in Disaster Management. In J. Pinkowski 

(Ed.), Disaster Management Handbook (pp. 75–98). CRC Press. Retrieved from 

http://scele.ui.ac.id/berkas_kolaborasi/konten/bencana2014genap/bencana25-

28/Disaster_Management_Handbook.pdf#page=106 

Reggiani, A. (2013). Network resilience for transport security: Some methodological 

considerations. Transport Policy, 28, 63–68. doi:10.1016/j.tranpol.2012.09.007 

Rust, J. (1987). Optimal Replacement of GMC Bus Engines : An Empirical Model of 

Harold Zurcher. Econometrica, 55(5), 999–1033. 

Rust, J., & Phelan, C. (1997). How Social Security and Medicare Affect Retirement 

Behavior In a World of Incomplete Markets. Econometrica, 65(4), 781–831. 

Schaffer, R., & Cook, E. (1972). Human response to Hurricane Celia. College Station, 

Texas: Texas A&M University. 

Scoones, I. (1998). Sustainable rural livelihoods: a framework for analysis. Brighton, 

England: Institute of Development Studies. Retrieved from 

http://200.17.236.243/pevs/Agroecologia/Sustainable Rural Livelihhods-

Scoones.pdf 

Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2009). Lectures on Stochastic 

Programming: Modeling and Theory . Philadelphia, PA: SIAM. 

Simpson, R. H., & Riehl, H. (1981). The hurricane and its impact. Baton Rouge, 

Louisiana : LSU Press. 

Sohail, M. (2005). Sustaining livelihoods by improving urban public transport. 

Proceedings of the ICE - Engineering Sustainability, 158(1), 9–15. 

doi:10.1680/ensu.2005.158.1.9 

Sorensen, J. H., Vogt, B. M., & Mileti, D. S. (1987). Evacuation: An assessment of 

Planning and Research. Oak Ridge, Tennessee: Oak Ridge National Laboratory. 

Southworth, F. (1991). Regional Evacuation Modeling: A State of the Art Review. Oak 

Ridge, U.S.A.: Oak Ridge Na- tional Laboratory. 



   

150 

Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature 

review. International Journal of Management Reviews, 9(1), 53–80. 

doi:10.1111/j.1468-2370.2007.00202.x 

Sutton, J., & Tierney, K. (2006). Disaster preparedness: concepts, guidance, and research. 

In Fritz Institute Assessing Disaster Preparedness Conference. Sebastopol, CA: 

Fritz Institute. Retrieved from 

http://www.fritzinstitute.org/pdfs/whitepaper/disasterpreparedness-concepts.pdf 

Ta, C., Goodchild, A. V., & Pitera, K. (2009). Structuring a Definition of Resilience for 

the Freight Transportation System. Transportation Research Record: Journal of the 

Transportation Research Board, 2097, 19–25. doi:10.3141/2097-03 

The White House Office of the Press Secretary. (2013). Presidential Policy Directive: 

Critical Infrastructure Security and Resilience. Retrieved from 

http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-

directive-critical-infrastructure-security-and-resil 

Thouez, J., Bodson, P., & Joseph, A. (1988). Some methods for measuring the 

geographic accessibility of medical services in rural regions. Medical Care, 34-44. 

Tilio, L., Murgante, B., Trani, F. Di, Vona, M., & Masi, A. (2011). Resilient city and 

seismic risk: a spatial multicriteria approach. In International Conference on 

Computational Science and Its Applications (pp. 410–422). Retrieved from 

http://www.springerlink.com/index/E83M354Q59003U32.pdf 

Tobin, G. (1999). Sustainability and community resilience: the holy grail of hazards 

planning? Global Environmental Change Part B: Environmental Hazards, 1(1), 13–

25. doi:10.1016/S1464-2867(99)00002-9 

Tomer, A., Kneebone, E., Puentes, R., & Berube, A. (2011). Missed Opportunity : 

Background, (May). 

Train, K. (2003). Discrete Choice Methods with Simulation. Cambridge: Cambridge 

University Press. 

UNISDR. (2011). Global assessment report on disaster risk reduction. Geneva, 

Switzerland. 

UNISDR, & UNOCHA. (2008). Disaster Preparedness for Effective Response: Guidance 

and Indicator Package for Implementing Priority Five of the Hyogo Framework. 

Geneva, Switzerland. 

United States Census Bureau. (2014). Measuring America: Computer and Internet Trends 

in America. Washington, DC: U.S. Department of Commerce. 



   

151 

Urena Serulle, N. (2010). Transportation Network Resiliency : A Fuzzy Systems 

Approach. Utah State University. 

Urena Serulle, N., Heaslip, K., Brady, B., Louisell, W., & Collura, J. (2011). Resiliency 

of Transportation Network of Santo Domingo, Dominican Republic. Transportation 

Research Record: Journal of the Transportation Research Board, 2234, 22–30. 

Retrieved from http://trb.metapress.com/index/J1326N4285305247.pdf 

Van Willigen, M., Edwards, T., Edwards, B., & Hessee, S. (2002). Riding out the storm: 

Experiences of the physically disabled during Hurricanes Bonnie, Dennis, and 

Floyd. Natural Hazards Review, 98-106. 

Vugrin, E., & Turnquist, M. (2012). Design for Resilience in Infrastructure Distribution 

Networks. Retrieved from 

http://www.sandia.gov/CasosEngineering/docs/Vugrin_resilient_design_2012_6050.

pdf 

Williams, H. (1964). Human factors in warning and response systems. En G. H. Grosser, 

H. Wechsler, & M. Greenblatt, The Threat of Impending Disaster: Contributions to 

the Psychology of Stress (pág. 335). Cambridge, MA: M.I.T. Press. 

Wilmot, C., & Gudishala, R. (2013). Development of a Time-Dependent Hurricane 

Evacuation Model for the New Orleans Area. Baton Rouge, Louisiana. Retrieved 

from http://trid.trb.org/view.aspx?id=1246733 

Wolpin, K. I. (1984). An Estimable Dynamic Stochastic Model of Fertility and Child 

Mortality. Journal of Political Economy, 92(5), 852. doi:10.1086/261262 

Xie, C., Lin, D.-Y., & Waller, S. (2010). A Dynamic Evacuation Network Optimization 

Problem with Lane Reversal and Crossing Elimination Strategies. Transportation 

Research Part E: Logistics and Transportation Review, 295-316. 

Yigitcanlar, T., Sipe, N., Evans, R., & Pitot, M. (2007). A GIS-based land use and public 

transport accessibility indexing model. Australian Planner, 30-37. 

Yuan, F., Han, L., Chin, S., & Hwang, H. (2006). Proposed Framework for Simultaneous 

Optimization of Evacuation Traffic Destination and Route Assignment. 

Transportation Research Record, 50-58. 


