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fire sizes and geometrical configurations are analyzed and empirical correlations are 

proposed for the mass flow rate of smoke at the spill edge and for the entrainment as 

the smoke rotates upwards around the spill edge.  These correlations show good 

agreement with experimental data from previous work.  
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𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶 Variable evaluated within the fire compartment (room) 

𝑧𝑧 Variable evaluated in the gas layer flow below the spill edge 

𝑤𝑤 Variable evaluated in the horizontal layer flow at the fire 
compartment opening 

2𝐷𝐷 Two-dimensional spill plume 
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1. Introduction 

1.1 Background 

Modern architectural design trends have led to an increase in the integration of large, 

undivided spaces with many of the storeys.  This feature is regularly found in 

shopping malls, airport terminals and hotels.  The generic term “atrium” can be used 

to describe such large spaces within the building.  The concept of an atrium can be 

found in Roman architecture, where it was used as an entrance hall in a house (1).  

The present day atrium is much larger and taller than the typical Roman house.  At 

present, the tallest atrium at 182 m is located within the Burj Al Arab in Dubai, while 

the atrium with the largest volume of 820,000 m3 is in the Luxor Hotel in Las Vegas, 

Nevada.  The design intent of present day atria is to create visually and spatially an 

ideal external environment, indoors (1).  Hence these atria are usually designed such 

that they are connected directly to the adjacent rooms or spaces over the height of the 

atria and the boundary with the adjacent spaces are usually glazed or completely 

open. 

Atrium design contradicts the traditional compartmentation approach of fire 

protection to limit the spread of fire and smoke to areas of the building not directly 

affected by the fire.  This lack of physical separation between spaces allows smoke to 

travel freely to areas remote from the fire source within short periods of time, hence 

putting more building occupants at risk at an early stage of the fire.  Furthermore, 

atrium buildings can contain large amounts of combustibles and house a large number 
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of occupants.  Hence, any fire occurring in these buildings would expose a large 

number of people to smoke, heat and toxic gases and the spread of fire and smoke 

would cause significant property damage.   

Unprotected openings between adjacent rooms and the atrium, also known as 

communicating spaces, allows the unimpeded movement of smoke and affecting 

other areas of the building.  Thus, the use of an effective smoke management system 

is essential to allow safe egress of occupants from the building by separating the 

occupants from the smoke or by providing a tenable condition for egress.  An 

effective smoke management system also provides improved conditions for fire-

fighting operations and rescue operations, and limits the spread and temperature of 

smoke by venting. 

1.2 Smoke Hazards 

Smoke is defined in NFPA 92B (2) as “The airborne solid and liquid particulates and  

gases evolved when a material undergoes pyrolysis or combustion, together with the 

quantity of air that is entrained or otherwise mixed into the mass.”  Smoke is 

generally recognized as the major cause of fatalities in fires and smoke has been 

known to cause death to building occupants who are remote from the fire (3), as in 

the case of the MGM Grand Fire where the majority of the 85 fatalities were at least 

16 floors away from the fire which was located on the ground floor.  People who are 

exposed to smoke for a sufficient period of time can be harmed as a result of exposure 

to toxic gases and high temperature.  Smoke can also reduce visibility due to light 

obscuration, causing disorientation and increased evacuation time. 
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1.2.1 Smoke Toxicity 

Smoke toxicity is as a result of exposure to asphyxiant gases, such as carbon 

monoxide (CO), carbon dioxide (CO2) and hydrogen cyanide (HCN) and irritants, 

such as halogen acids, oxides of Nitrogen (NOx), present in the combustion products.  

Generally, asphyxiant gases disturb the normal respiratory process after a sufficient 

dose has been inhaled.  CO causes anemic hypoxia, which is the decrease in oxygen-

carrying capacity of the blood to tissues (4).  HCN prevents the cells of the body from 

utilizing oxygen properly (5).  Excessive CO2 stimulates breathing thus increasing the 

uptake of gases.  It may also be an asphyxiant when the concentration level is greater 

than 5% (5).  Asphyxiant gases may not have an immediate effect, but once 

incapacitation occurs, serious injuries or death is likely to occur within minutes.  

Irritant gases cause sensory and pulmonary irritations which reduces the efficiency of 

the building occupant to escape from the fire.  Irritation of the eyes causes pain, reflex 

blinking and tearing, with severe irritation possibly leading to eye damage.  Victims 

may shut their eyes, alleviating these effects temporarily, but impairing their egress, 

hence prolonging their exposure.  Pulmonary irritation affects the lungs, causing 

coughing and bronchoconstriction, which leads to tissue inflammation and damage.  

In severe cases, it causes death within 6 to 48 hours (4).  

1.2.2 Elevated Temperatures 

Building occupants in a fire can be exposed to elevated temperatures by means of 

convected heat or radiant heat.  When subjected to elevated temperatures, people may 

be incapacitated by hyperthermia (heat stroke), body surface burns and respiratory 
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tract burns.  Tenability limits for radiant heat flux, temperature and exposure times 

are provided by Purser (5). 

1.2.3 Light Obscuration 

Light obscuration is not lethal by itself, but causes reduction in visibility, which 

results in the disorientation of building occupants and thus increases the evacuation 

time and exposure to smoke.  Reduction in visibility also increases the susceptibility 

of building occupants tripping over obstacles and falling over railings.  It also hamper 

fire-fighting and rescue operations.  Limiting values of extinction coefficient ranging 

from 0.23 to 1.2 m-1 has been suggested (6).  Design guidance by Spearpoint (7) 

suggests values of visibility of 5m for small rooms and 10 m for other rooms, 

equivalent to optical density of  0.2 m-1 and 0.1 m-1 respectively.  Jin (8) suggests that 

tenability limits for egress purposes depends on the degree of familiarity with the 

building, with 3-5 m for those familiar with the building and up to 20 m for those who 

are not. 

1.3 Atrium Smoke Management 

1.3.1 Objectives 

The five atrium smoke management objectives given by Milke (9) are: 

1. Maintain a tenable environment in the means of egress in the atrium during the 

time required for evacuation. 

2. Confine the smoke in the atrium to a limited region in that space. 
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3. Limit the migration of smoke into adjacent spaces from the atrium. 

4. Provide conditions in the atrium to assist emergency response personnel in 

conducting search and rescue operations and locating and controlling the fire. 

5. Contribute to the overall protection of life and reduction in property loss. 

The smoke management system may be designed to meet one or a combination of the 

five objectives.  To evaluate the design objectives, Milke suggests the use of one of 

the following hazard parameters which would have to be maintained within 

acceptable levels by an appropriate system.  The hazard parameters are as follows: 

• Smoke layer depth 

• Visibility through smoke layer 

• Carbon monoxide concentration 

• Temperature rise in smoke layer 

1.3.2 Atrium Smoke Management Methodologies 

Various smoke management methodologies are available for atrium buildings (2), (3), 

(10).  Some of these methodologies are briefly described below: 

1.3.2.1 Smoke Filling 

The approach of smoke filling is applicable when the time for evacuation is less than 

the atrium filling time (3).  Generally, this approach is applicable for atria with a very 

large volume.  The time for evacuation is the modeled evacuation time multiplied by 
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the evacuation efficiency plus the time delay in initiating an evacuation.  The atrium 

filling time is the time for the smoke layer to descend to the critical level above the 

highest occupied floor.  Empirical relationships to determine the smoke layer height 

above the fire with respect to time for steady fire and developing fire are given by 

NFPA92B (2). 

1.3.2.2 Mechanical Exhaust 

Mechanical smoke exhaust can be employed to remove smoke from a space such that 

the smoke layer is maintained at a predefined height in the space for an indefinite 

period of time or such that the rate of descent of the smoke layer is reduced for a 

period that allows the safe egress of building occupants (2).  This methodology is also 

known as smoke and heat exhaust ventilation as described by Morgan et al. (10).  

Section 1.4 describes this methodology in more details. 

1.3.2.3 Natural Venting 

Natural smoke venting makes use of the buoyancy of hot smoke to drive smoke out of 

open vents at or near the top of the atrium.  This form of smoke management 

generally has a high reliability due to the simplicity of design and operation.  The 

major drawbacks of natural venting are the possibility of the smoke losing buoyancy 

due to sprinkler operation or positive wind pressure at the vent locations which could 

interfere with the venting of the hot smoke.  Empirical equations for the steady 

conditions are given by Klote and Milke (3), while zone models can be used to 

analyze smoke flows for unsteady conditions. 
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1.3.2.4 Tenability Systems 

Tenability systems are designed to maintain tenable conditions with building 

occupants exposed to smoke, as opposed to the previously discussed methodologies 

which have the objective of preventing occupants from being exposed to smoke 

during egress (3).  Tenability systems are designed based on hazard analysis, which 

assesses the development of conditions generated by a fire considering the fire 

scenario, smoke transport, people movement and tenability. 

1.3.2.5 Atrium depressurization 

When the boundary between the atrium and adjacent spaces is not tightly sealed or 

there are small openings, smoke may travel from the atrium into the adjacent spaces.  

To prevent this from occurring, natural venting or mechanical exhaust can be 

provided for the atrium such that the neutral plane of the building is above the highest 

leakage path.  While this methodology prevents the spread of smoke into the space 

adjacent to the atrium, it is not intended to provide smoke management for the atrium 

(10). 

1.3.2.6 Hybrid design 

A combination of the above methodologies can be applied for smoke management in 

atrium buildings.  A common strategy is atrium depressurization with mechanical 

exhaust (10). 
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1.4 Smoke and Heat Exhaust Ventilation  

When a fire occurs, the smoke from the fire rises as a plume and entrains air as it 

rises, reducing its temperature and velocity in the process.  The smoke stops rising 

when it has reached a horizontal obstruction such as the ceiling, or when the 

temperature of the smoke is lower than the layer of air in the upper region of the 

space.  For the former case, the smoke will be contained within the ceiling void, 

forming a smoke layer, which descends as more smoke is supplied from the plume.  

In the latter case, the smoke layer forms below the hot layer of air in the top of the 

atrium.  For atrium buildings, the tall atrium allows large quantities of air to be 

entrained as the plume rises and hence increases the production of smoke.  Thus, 

some form of smoke management is essential to allow safe egress of building 

occupants. 

Smoke and heat exhaust ventilation systems (SHEVS) can be in the form of 

mechanical exhaust or natural venting.  The mechanical exhaust form is the most 

common method of atrium smoke management in North America (3).  Smoke is 

removed from the upper region of the atrium, to prevent or delay its descent and 

hence provides a clear layer beneath the buoyant hot smoke layer for the purpose of 

safe egress of building occupants.  Physical barriers such as smoke curtains or 

channeling screens may be part of the integrated design to contain the smoke or direct 

the smoke to its intended path.  Provision of inlet air to replace the removed hot gases 

is essential to ensure the effectiveness of SHEVS.  The inlet air should be introduced 

in such a manner that it does not interact directly with the fire, the smoke plume or 

the smoke layer (6).  In addition to providing favorable conditions for the egress of 
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building occupants during a fire, SHEVs can also provide improved conditions for 

fire-fighting and rescue operations and property protection by limiting the spread of 

smoke and temperature.   

A critical design parameter of SHEVS is the height of the base of the buoyant smoke 

layer from the level of the fire, also known as the clear layer height.  The clear layer 

height forms the basis of SHEVS design and is usually determined by the height 

above the highest occupied floor that is open to the atrium.  Figure 1.1 shows a 

schematic of the clear layer height for a multi-storey atrium. 

 

 

 

 

Figure 1.1: Schematic of clear layer height for multi-storey atrium 

Factors that must be taken into consideration in the determination of the design clear 

layer height include (9): location of means of egress within the open space, separation 

of adjacent space from the open space and environmental and geometric factors.  The 

clear height requirement according to NFPA 101 (11) states that the smoke layer 

interface should be kept above the highest unprotected opening to an adjoining space, 

or 1.83 m above the highest floor level of exit access open to the atrium, for a period 

equal to 1.5 times the calculated egress time or 20 minutes, whichever is the greater.  
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Current UK requirements are dependent on building type.  For public buildings, a 

minimum clear height of 3.0 m above the highest egress route is required.  For non-

public buildings, the height is 2.5 m.  For cases where the predicted smoke 

temperature is less than 50 °C above ambient temperature, the minimum clear height 

is increased by 0.5 m as the smoke layer interface may not be well defined. 

1.5 Smoke Production 

In the design of SHEVS, the amount of smoke to be removed has to be determined.  

For an atrium fire, the amount of smoke produced depends on the fire size and the 

amount of air entrained into the smoke plume.  The fire size depends on the type and 

amount of fuel present, while the amount of entrainment depends on the configuration 

of plume.   

1.5.1 Fire Size 

Fire size is one of the factors affecting the production of smoke.  For pre-flashover 

fires, fire size depends on the amount of fuel present.  For a post-flashover fire, all the 

combustibles in the compartment are burning and the size of the fire is limited by the 

amount of air being supplied to the fire.  The fire size is expressed in terms of growth 

rate, area, heat release rate per unit area or maximum heat release rate.  Fire size for 

design purposes can be specified as a steady state fire with a constant heat release rate 

or a time-dependant fire, perhaps growing in accordance with a power law.  Time-

dependant fire growth rates given by NFPA72 (12) are as follows: 
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• Slow, �̇�𝑄 = 0.00293𝑟𝑟2 

• Medium, �̇�𝑄 = 0.01172𝑟𝑟2 

• Fast, �̇�𝑄 = 0.0469𝑟𝑟2 

Traditionally, steady state design fires have been used for design of SHEVS due to a 

lack of robust data on fire growth rates for different building occupancies and fire 

scenarios.  Morgan et al. (10) provides some data for steady state design fire sizes 

based on occupancy types.  This approach uses the probable maximum fire size for 

the scenario hence simplifying the design process and also allows a conservative 

design to be developed.  However, the use of a time-dependent fire has its merits as a 

more realistic solution. 

1.5.2 Plume Configurations 

Five plume configurations that may exist within an atrium are identified by Klote and 

Milke (3): 

1. Axisymmetric plume 

2. Wall Plume 

3. Corner Plume 

4. Spill Plume 

5. Window Plume 

1.5.2.1 Axisymmetric Plume 
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Axisymmetric plumes are formed when the fire is remote from walls, hence 

entraining air from all sides along the entire clear height of the plume.  This plume 

configuration is expected from a fire located near the center of the atrium floor from 

which can rise freely to the atrium ceiling.  Morton et al. (13) carried out analysis of 

axisymmetric plumes and the analysis was extended to turbulent plumes by Cetegen 

et al. (14) and Zukoski (15).  Figure 1.2 shows a schematic drawing of an 

axisymmetric plume. 

 

Figure 1.2: Schematic drawing of axisymmetric plume (2) 

1.5.2.2 Wall and Corner Plumes 

Fires near walls and corner entrain air only along the surface of the plume away from 

the wall or corner; hence the amount of smoke produced is reduced compared to 

axisymmetric plumes.  Using the concept of reflection, a fire against a wall entrains 

air from half its perimeter and hence the smoke production rate is estimated as half of 

that from a fire that has twice its heat release rate (6).  For corner plume, where the 

wall forms a 90 degree angle, it is estimated to be a quarter of the smoke production 

rate from a fire that is four times as large.  Recent work by Poreh et al. (16) suggests 
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further research on wall and corner plume entrainment.  Figure 1.3 shows schematic 

drawings of wall and corner plumes. 

        

Figure 1.3: Schematic Drawing of Wall and Corner Plumes (6) 

1.5.2.3 Balcony Spill Plume 

A balcony spill plume occurs when smoke from a fire rises to an intermediate 

obstruction and travels horizontally under it towards the edge and then turns and rises 

vertically once past the edge.  Characteristics of the balcony spill plume depends on 

the characteristics of the fire, width of the spill plume, height of the ceiling above the 

fire and the path of horizontal travel from the plume to the balcony edge.  More 

details of balcony spill plumes are given in Section 1.6.   

1.5.2.4 Window Plume 

Window plumes arise when the plume from a post-flashover fire flows through an 

opening (window or doorway) into the atrium.  In a post-flashover fire, all 

combustibles in the room are burning and the fire is in the ventilation controlled 

regime, where the heat release rate depends on the amount of air that is supplied to 
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the fire.  Hence, window plumes usually have flames projecting out of the opening, 

where the interface of the volatized fuel and oxygen is located. Entrainment 

correlations for window plumes are given by Klote and Milke (3).  Figure 1.4 shows a 

schematic of a window plume. 

 

Figure 1.4: Schematic of a window plume (3)  

1.6 Spill Plumes 

When a fire occurs in a communicating space next to an atrium, the smoke from the 

fire rises vertically until it is impeded by an overhead obstruction such as the ceiling 

of the compartment.  The smoke then spreads radially as a thin horizontal layer, 

known as a ceiling jet (17) until it reaches vertical obstructions which cause the 

ceiling jet to rotate downwards and back towards the fire or spill under the soffit of a 

doorway.  If the compartment opening extends all the way to the ceiling, the smoke 

flows unhindered out of the compartment.  In the presence of a balcony (horizontal 

projection) beyond the compartment opening, the smoke continues its horizontal path 

beneath the balcony and also spreads in the lateral direction, unless channeling 

screens are present.  When the smoke reaches the edge of the balcony, it rotates 

upwards due to its buoyancy and rises as a plume into the atrium space as a thermal 
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spill plume.  The edge of the balcony is commonly referred to as the “rotation” or 

“turning” region of the plume.  As the plume is usually relatively long and narrow 

after the rotation, it is also known as a thermal line plume.   

Thermal spill plumes are generally classified as balcony or adhered spill plume 

depending on the characteristics of the plume as it rises to the atrium space.  Figure 

1.5 shows a schematic drawing of a typical balcony spill plume.   

 

Figure 1.5: Schematic drawing of a balcony spill plume (3) 

An adhered spill plume forms when there is no horizontal projection beyond the 

compartment opening and a wall is present above the spill edge, which is now at the 

compartment opening.  The spill plume adheres to the wall as it rises in the atrium 

space.  Hansell et al. (18) also suggested that adhered plumes can also be formed 

when the breadth of the horizontal projection is less than 2m and more likely with 

wider plumes.  Intuitively, adhered spill plumes entrain less air into the plume as 

compared to a balcony spill plume since the entrainment process only takes place on 
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one side of the plume.  Hence, adhered spill plumes are also known as single-sided 

plume.  Figure 1.6 shows a schematic drawing of an adhered spill plume. 

 

Figure 1.6: Schematic drawing of an adhered spill plume (10) 

1.7 Entrainment process 

The total mass flow rate of smoke in a spill plume is determined by the total amount 

of entrainment as the smoke flows from the compartment of fire origin to the point 

where it enters the smoke layer at the atrium space.  Milke (6) compared the smoke 

production rate for axisymmetric plumes to balcony spill plumes, showing that for the 

same fire size, a balcony spill plume produces more smoke than an axisymmetric 

plume at lower heights as shown in Figure 1.7. 
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Figure 1.7: Comparison of smoke production rates for axisymmetric and balcony 

spill plume (6) 

The entrainment processes for a balcony spill plume can be broadly divided into three 

regions, within the fire compartment, between the compartment opening and the spill 

edge and beyond the spill edge.  The entrainment processes in each of these regions 

are defined below. 

1.7.1 Entrainment in the Fire Compartment 

Poreh et al. (19) identified the mass flow rate of gases at the compartment opening to 

be consisting of the mass flow rate of the fuel, mass flow rate of air entrained into the 

plume above the fire, mass flow rate of air entrained as the plume impinges into the 

smoke layer and entrainment of air into the horizontal flow layer in the fire 

compartment.  These entrainment processes are shown in Figure 1.8. 
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Figure 1.8: Entrainment processes in the fire compartment 

The mass flow rate of the fuel, mass flow rate of air entrained due to plume 

impingement and entrainment of air into the horizontal flow layer are considered 

negligible compared to the entrainment into the rising plume.  Hence, the mass flow 

rate of gases at the compartment opening is approximately equal to the smoke 

produced by the rising plume, which is dependent on the geometry of the 

compartment, location of the vents and location of the fire.  Methods to determine the 

mass flow rate from the compartment opening is described in Section 2.1. 

1.7.2 Entrainment between the fire compartment opening and the spill edge 

The main entrainment process between the fire compartment opening and the spill 

edge occurs when the flow rises from beneath the downstand at the compartment 

opening to the balcony, as shown in Figure 1.9.  In the absence of a downstand, it is 

generally recognized that there is no significant entrainment.  Section 2.2 describes 

the methods to determine the under balcony entrainment.  Channeling screens or 

other obstructions may be present beneath the balcony to prevent the lateral spread of 

smoke under the balcony.  While the lateral spread of smoke does not cause 
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additional entrainment, a wider spill plume will entrain more air when it rises into the 

atrium space.   

 

Figure 1.9: Entrainment process between the fire compartment opening and the spill 

edge 

1.7.3 Entrainment beyond the spill edge 

The two main entrainment processes beyond the spill edge occur when the smoke 

layer rotates around the spill edge and as the rotated plume rises into the atrium space.  

The entrainment rate during the plume rise into the atrium space depends on the type 

of spill plume produced.  For a balcony spill plume, entrainment occurs on all 

surfaces of the plume as it rises.  For an adhered plume, entrainment can only occur 

on the surface of the plume that is not in contact with the wall.  Figure 1.10 shows 

these entrainment processes.  Methods to calculate the entrainment are described in 

section 2.3. 
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 (a) balcony spill plume (b) adhered plume 

Figure 1.10: Entrainment processes beyond the spill edge (10) 

1.8 Research Objectives 

There are several calculations methods to determine the smoke production rate of a 

thermal spill plume within an atrium building.  Reasonably accurate and robust 

design formulae would allow engineers to design an efficient and cost effective 

SHEVS.  However, there are limitations to these calculation methods and there are 

also areas of uncertainties and controversy of the accuracy and robustness of some of 

these design formulae.  An area that warrants additional attention is the entrainment 

process as smoke flows out of the fire compartment, under the balcony before rotating 

and rising into the atrium as a thermal spill plume.  The mass flow rate of smoke after 

rotation around the spill edge forms the source of spill plume.  There are a few 

methods to calculate this mass flow rate, mainly with channeling screens under the 

balcony to limit the lateral spread of smoke. However, the current design guidance 

(10) suggests a rough estimation.  Therefore, a comprehensive study is necessary to 

characterize the flow and entrainment processes.   



 

   21 
 

The objectives of this research are described below: 

1. Analyze the entrainment processes between the compartment opening and the 

spill edge for different compartment opening widths, downstand heights and 

balcony breadths. 

2. Analyze the entrainment process as the flow rotates around the balcony edge. 

3. Analyze the entrainment processes for different configurations of downstands and 

channeling screens 
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2. Literature Review 

This chapter reviews some of the research in the characterization the entrainment of 

air into a balcony spill plume.  The entrainment process can be broadly separated into 

three different regions, namely: 

• Within the fire compartment 

• Between the fire compartment opening and the spill edge 

• Beyond the spill edge 

This chapter will focus mainly on the first two regions and the rotation region at the 

spill edge.   

2.1 Mass Flow Rate at the Fire Compartment Opening 

This section gives a brief description of the various methods to calculate the mass 

flow rate of hot gases flowing out of a fire compartment under steady state 

conditions.   

2.1.1 Steckler, Quintiere and Rinkinen 

Flow through an opening is created by pressure difference across the opening.  In the 

case of a compartment fire, one source of pressure difference is caused by the 

temperature difference between the room and its surroundings.  Quintiere, et al. (20), 

applied Bernoulli’s equation and hydrostatic principles with the assumption of 
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horizontal streamlines starting from rest to formulate an equation describing the mass 

flow rate of hot gases flowing out of the fire compartment as shown, 
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By considering steady state conditions and approximating the temperature to be 

independent of position, Steckler, et al. (21) reduced Equation (2-1) to 
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Steckler, et al. (21) also conducted full-scale experiments, using a methane diffusion 

burner, to determine the effects of heat release rate and location of fire on the flow 

rate through a doorway and window opening, for “small” compartment fires in the 

developing period of a fire.  From the experimental data, Steckler, et al. observed that 

the mass flow rate is highest when the fire is in the center of the room, reduced when 

the fire is at the back wall and lowest when at the corner of two walls.  This reduction 

is attributed to the decreasing effect of the door jet as well as reduced entrainment due 

to the proximity of the walls.  The door jet effect is also observed Quintiere, et al. 

(20), where the plume entrainment increases when the plume is blown over by the 

door jet.  By correlating the experimental data to Equation (2-2), the average flow 

coefficient, 𝐶𝐶𝑑𝑑  was found to be 0.73 and the mass flow rates can be predicted to 

within 7% given the height of the neutral plane and temperatures of the room, at the 

opening and the ambient.  The height of the neutral plane can be determined from the 

temperature distribution at the opening, hence the mass flow rates can be predicted 

from temperature measurements alone.  The flow coefficient of 0.73 obtained in these 
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methane experiments is marginally higher than that of 0.68 suggested by Prahl and 

Emmons (23) for their water-kerosene analog experiments.   

2.1.2 Thomas, Hinkley, Theobald and Simms  

Thomas, et al. (24) developed an identical equation for wide fire compartment 

openings with a deep downstand, i.e. the width of the compartment opening greater 

than the height, as follows, 

 �̇�𝐶𝑤𝑤 = 2
3
𝐶𝐶𝑑𝑑�2𝑔𝑔𝜃𝜃𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤𝑇𝑇∞�

1/2 𝑊𝑊0𝜌𝜌∞
𝑇𝑇𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤

𝑑𝑑𝑤𝑤
  3/2 (2-3) 

Thomas applied Bernoulli’s equation and assumed the gases in the fire compartment 

had zero initial velocity to obtain an expression for the velocity distribution of the 

outflow gases from the opening and hence the mass flow rate. Assuming a uniform 

vertical temperature profile, a flow coefficient of 0.6 was obtained by correlation with 

experimental data.   

2.1.3 Morgan 

Morgan (25) used the assumption of a virtual vena contracta outside the compartment 

opening, hence ignoring the upward acceleration of buoyant gases and that the gases 

were not accelerated from rest, but have an established velocity at the compartment 

opening.  Instead of assuming a uniform vertical temperature profile in the flow layer, 

Morgan applied a correction factor, 𝜅𝜅𝐶𝐶 , to account for the variation in the 

temperature.  The mass flow rate expression by Morgan is, 
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 �̇�𝐶𝑤𝑤 = 2
3
𝐶𝐶𝑑𝑑

  3/2�2𝑔𝑔𝜃𝜃𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤𝑇𝑇∞�
1/2 𝑊𝑊0𝜌𝜌∞

𝑇𝑇𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤
𝑑𝑑𝑤𝑤

  3/2𝐾𝐾𝐶𝐶  (2-4) 

Morgan suggests that for a realistic layer flow, the value of 𝜅𝜅𝐶𝐶  should be halfway 

between that of a uniform profile and triangular profile for the same 𝜃𝜃𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤 .  For 

design purposes, Morgan suggests a value of 𝜅𝜅𝐶𝐶 = 1.3 for Equation (2-4).  For 

compartment openings with a flat ceiling, the suggested value of the flow coefficient 

is 𝐶𝐶𝑑𝑑 = 1.  For compartments with a downstand at the opening, the value of 0.6 is 

proposed, which reduces Equation (2-4) to an expression that is practically identical 

to Equation (2-3) developed by Thomas et al.  For the case of a flat ceiling, Morgan’s 

expression predicts a higher mass flow rate by 30 %, compared to Equation (2-3). 

2.1.4 Hansell 

Drawing on work by Zukoski (26) and Quintiere, et al. (22) to modify earlier studies 

by Thomas, et al. (24) and Hinkley (27), Hansell (28) showed that the entrainment 

into a vertical rising plume within a fire compartment can be described by, 

 �̇�𝐶𝑚𝑚 = 𝐶𝐶𝑒𝑒𝑚𝑚𝑧𝑧𝑚𝑚 3/2 (2-5) 

𝐶𝐶𝑒𝑒  is an empirical entrainment coefficient which takes into account the various factors 

affecting entrainment in the fire compartment such as compartment geometry, effects 

of wall jets, proximity of the fire to walls and the tilt of the plume due to the 

incoming flow of air from the compartment opening.  The following values of 𝐶𝐶𝑒𝑒  are 

given for the various scenarios: 
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• 𝐶𝐶𝑒𝑒 = 0.19 (kg/s/m5/2), for large-area rooms where the ceiling is well 

above the fire, e.g. auditoria, stadia and atrium floors. 

• 𝐶𝐶𝑒𝑒 = 0.21 (kg/s/m5/2), for large-area rooms where the ceiling is 

close to the fire, e.g. large open-plan offices. 

• 𝐶𝐶𝑒𝑒 = 0.34 (kg/s/m5/2), for small rooms where the compartment 

opening is predominantly to one side of the fire, e.g. unit retail shops, 

cellular offices, hotel rooms and etc. 

In the current BRE design guidance (10), it is suggested to use 𝐶𝐶𝑒𝑒 = 0.21 wherever 

𝑧𝑧𝑚𝑚 < 3�𝐴𝐴𝑓𝑓  for large area rooms.  Demarcation of cellular rooms and open-plan 

layout, is determined by the ability of the plume to entrain air from all sides.  A 

narrow room would restrict the flow of air to the back of the plume. The BRE design 

guide (10) suggests to use 𝐶𝐶𝑒𝑒 = 0.34 when the maximum room dimension is less than 

or equal to five times the effective fire diameter, 𝐷𝐷𝑓𝑓 , and the incoming air into the 

compartment is from one direction. 

From Equation (2-5), Hansell (28) developed a simplified equation to describe the 

horizontal flow of gases from a compartment opening as follows, 

 �̇�𝐶𝑤𝑤 = 𝐶𝐶𝑒𝑒𝑚𝑚𝑊𝑊𝑟𝑟ℎ𝑟𝑟
  3/2

�𝑊𝑊𝑟𝑟
 2/3+ 1

𝐶𝐶𝑑𝑑
�𝐶𝐶𝑒𝑒𝑚𝑚2 �

2/3
�

3/2 (2-6) 

The number ‘2’ in the denominator in Equation (2-6) is the result of combining 

various parameters and has dimensions.  For compartment openings with a flat 
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ceiling, the suggest value of 𝐶𝐶𝑑𝑑 = 1, while for compartment openings with a 

downstand, a values of 𝐶𝐶𝑑𝑑 = 0.65 is suggested.   

Equation (2-6) presents a very useful design tool as the only fire parameter required is 

the perimeter of the fire, 𝑚𝑚 as compared to previous works which require the input of 

variables, such as smoke layer depth and temperature, which may not be known. 

2.1.5 CIBSE  

CIBSE (29) and BS 7974 (30) provide an expression to describe the mass flow rate of 

gases from a compartment opening given by, 

 �̇�𝐶𝑤𝑤 = 0.09�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑟𝑟

 2/3ℎ𝑟𝑟   (2-7) 

Like Equation (2-6), Equation (2-7) provides a very useful expression for design 

purposes as the only fire parameter required is the convective heat release rate, 𝑄𝑄𝑄𝑄 .   

2.2 Mass Flow Rate between the Fire Compartment and the Spill Edge 

The presence of a downstand at the fire compartment opening with a projecting 

balcony that is higher than the compartment opening would cause additional 

entrainment as the hot gases flow from the compartment to the spill edge.  Some of 

the research into this additional entrainment is described below. 
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2.2.1 Hansell 

An iterative calculation method was developed by Hansell (18) to determine the 

entrainment of air as the hot gases from a compartment opening with a downstand to 

a projecting balcony that is higher than the height of the compartment opening.  This 

method was included in a previous BRE design guide (31).  The method was derived 

from a limited set of full scale experimental data with a maximum compartment 

opening width of 5m and height of 3m and channeling screens below the balcony.   

A simplified procedure for the calculation included in previous BRE guidance (31) is 

as follows: 

• Calculate the mass flow rate from Equation (2-6) with 𝐶𝐶𝑑𝑑 = 0.65 

• Calculate the buoyant depth layer from the following, 

 𝑑𝑑𝑤𝑤 = 1
𝐶𝐶𝑑𝑑
��̇�𝐶𝑤𝑤

2𝑊𝑊𝑟𝑟
�

2/3
 (2-8) 

• Calculate the discharge coefficient from the following, 

 𝐶𝐶𝑑𝑑 = 0.65 �𝑑𝑑𝑤𝑤+d𝑑𝑑
𝑑𝑑𝑤𝑤

�
1/3

 (2-9) 

• Use the new value of 𝐶𝐶𝑑𝑑  and repeat calculation of the mass flow rate 

until the difference between the current value of �̇�𝐶𝑤𝑤  and that from the 

previous calculation is less than 0.1 %.   
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Note: the number ‘2’ in the denominator of Equation (5-8) is the result of combining 

various parameters and has dimension. 

2.2.2 BRE 

Due to the limited sets of experimental data used in the development, the method by 

Hansell (31) gives rise to predicted values of 𝐶𝐶𝑑𝑑  that are unbelievably large when it is 

used for circumstances that are too different from the original geometries from which 

the correlations are based on.  For cases where the design conditions are close to the 

experimental geometry, most of the calculated values of 𝐶𝐶𝑑𝑑  for “intermediate-depth 

downstand” using Hansell’s full method are approximately 0.8.  Hence a simpler 

alternative is proposed in the current BRE guidance by Morgan et al. (10) as follows, 

• Calculate an initial value of mass flow rate from Equation (2-6) using 

a trial value of 𝐶𝐶𝑑𝑑   

• Calculate the flow layer depth, 𝑑𝑑𝑤𝑤  from Equation (2-8) 

It is suggested by BRE, without evidence, that if the depth of downstand is less than 

¼ of the flow layer depth, i.e. 𝑑𝑑𝑑𝑑 < 0.25𝑑𝑑𝑤𝑤 , the presence of the downstand can be 

ignored, hence 𝐶𝐶𝑑𝑑 = 1.0.  For cases where 𝑑𝑑𝑑𝑑 ≫ 𝑑𝑑𝑤𝑤 , (BRE suggested without 

evidence to be 𝑑𝑑𝑑𝑑 > 2𝑑𝑑𝑤𝑤 ), the value of 𝐶𝐶𝑑𝑑  is assumed to be 0.65.  For all 

intermediate cases, the value of 𝐶𝐶𝑑𝑑 = 0.8 is suggested. 

Due to the nature of this approach, it is deemed as an unsatisfactory position which is 

expected to be superceded once a more comprehensive experimental study can lead to 
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a better validated correlation.  As such, for purposes of engineering design, an 

entrainment rate of 100 % is suggested.  Hence the mass flow rate at the spill edge is 

given by, 

 �̇�𝐶𝑧𝑧 = 2�̇�𝐶𝑤𝑤  (2-10) 

2.2.3 Harrison  

Harrison (29) performed a series of 25 simulations of 1/10th scale models, using Fire 

Dynamics Simulator (Version 3) (33), to analyze the under balcony entrainment of 

balcony spill plumes.  The geometry of the simulated fire compartment was similar to 

that of his physical model experiment.  The fire compartment has a floor area of 1 m 

x 1 m and 0.5 m height.  The width of the compartment opening was varied from 0.2 

m to 1.0 m and the depth of downstand was varied from 0.1 m to 0.25 m.  All of the 

simulations were carried out with the flows being channeled by screens from the 

compartment opening to the spill edge, such that the width of the flow at the spill 

edge is the same as the width of compartment opening.  These channeling screens 

extend from the floor to the ceiling.  The fire source is modeled as a block with a 

floor area of 0.17 m x 0.17 m and 0.05 m height, located along the longitudinal axis 

of the fire compartment, 0.05 m from the rear wall.  The simulated heat release rate 

was mainly 10.3 kW, equivalent to a full-scale fire size of approximately 3,257 kW.  

An additional two simulations with heat release rates of 6 kW and 16 kW each, full-

scale equivalent of 1,897 kW and 5060 kW, respectively were also carried out.  For 

the majority of the simulations, the balcony breadth is fixed at 0.3 m.  One simulation 

was carried out with the balcony breadth at 0.2 m and two with 0.5 m.  The entire 



 

   31 
 

computational domain was 1.8 m long, 1.0 m wide and 1.0 m high, which extends 0.5 

m above and beyond the spill edge, to capture the initial flow beyond the spill edge.  

Five equally-spaced temperature and velocity measurements, 10 mm below the 

ceiling surface, were taken laterally across the width of the compartment opening and 

spill edge as a check for uniformity across the flow path.  Temperature and velocity 

measurements were also taken at the center of the compartment opening and at the 

spill edge.  These measurements were taken at equal intervals of 10 mm from the 

floor to the ceiling level.  Assuming temperature and velocity uniformity across the 

compartment opening and spill edge, the mass flow rate at these respective locations 

were calculated using these temperature and velocity measurements. 

From the FDS predictions, Harrison developed the following correlation to describe 

the under balcony entrainment, 

 �̇�𝐶𝑧𝑧 = 0.89 �ℎ𝑟𝑟
𝑊𝑊𝑟𝑟
�
−0.92

�ℎ𝑏𝑏�̇�𝐶𝑤𝑤
𝑊𝑊𝑟𝑟

� (2-11) 

Due to its empirical nature, the correlation is subject to the following constraints,  

 1.16 < �ℎ𝑟𝑟
𝑊𝑊𝑟𝑟
�
−0.92

�ℎ𝑏𝑏
𝑊𝑊𝑟𝑟
� < 2.23  (2-12) 

 �ℎ𝑏𝑏
ℎ𝑟𝑟
� � 𝑏𝑏

ℎ𝑏𝑏−ℎ𝑟𝑟
� ≥ 2.5  (2-13) 

As a validation, four experiments were carried out with a fire size of 10.3 kW and the 

prediction of the mass flow rate using the correlation below agreed well with the 

experimental results.  In general, the entrainment rate is greatest for wide 

compartment openings with a deep downstand. 
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2.2.4 Ko  

Ko (34) carried out a series of 52 simulations of full-scale balcony spill plumes, using 

FDS, to analyze the under balcony entrainment for flows that are both channeled and 

unchanneled.  The heat release rate was varied from 1 MW to 5 MW located in the 

center of a fire compartment with a floor area of 13.6 m x 5.0 m and 5 m height with 

three different widths of the compartment opening ranging from 5 m to 10 m.  The 

balcony breadth was 4.2 m, downstand depth was 1.6 m and channeling screens depth 

was 3 m.  The simulated fire compartment has the same dimensions as the full-scale 

test facility at the National Research Council of Canada (NRCC).  The mass flow rate 

at the spill edge is given by 

 �̇�𝐶𝑧𝑧 = 1.2 �ℎ𝑏𝑏
ℎ𝑟𝑟
�

0.5
�̇�𝐶𝑤𝑤  (2-14) 

Ko et al. also examined flows without downstand and/or channeling screens below 

the balcony and provided a simple expression as follows, 

 �̇�𝐶𝑧𝑧 = 𝑤𝑤�̇�𝐶𝑤𝑤  (2-15) 

The suggested values of the entrainment coefficient, 𝑤𝑤 is given in Table 2-1. 

Table 2-1: Values of Entrainment Coefficient by Ko (34) 

Case Downstand Channeling 
Screens 

Entrainment 
Coefficient, 𝑤𝑤 

1 No Yes 1.15 
2 Yes Yes 1.6 
3 No No 1.4 
4 Yes No 2.0 
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Temperature and velocity predictions by FDS were compared to the experimental 

data from the full-scale tests conducted at NRCC.  Generally, there was an under 

prediction of the maximum temperature and velocity of 10 – 20 % which was 

attributed to uncertainties in the experimental data and discrepancies in the domain 

boundaries and deemed as acceptable.   

2.3 Mass Flow Rate beyond the Spill Edge 

This section gives a brief description of the methods to predict the entrainment as the 

hot gases flow from the spill edge into the atrium void as a balcony spill plume.  As 

the majority of spill plume formulae are based on the assumption that the plume is 

generated from a line plume with a virtual source of zero width located below the 

spill edge, a brief description of studies of entrainment into thermal line plumes is 

also included.  The rest of this section focuses on the entrainment as the hot gases 

rotate around the spill edge. 

2.3.1 Single Storey Malls 

Earlier BRE design guidance by Morgan and Gardner (35) gives an expression 

(Equation 2-16) to evaluate the mass flow rate of hot gases for low height of rise of 

less than 2 m.  This equation is based on work by Heselden (36). 

 �̇�𝐶𝑚𝑚 = 0.38𝑚𝑚𝑧𝑧𝑧𝑧
 3/2  (2-16) 
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2.3.2 Thermal line plumes 

Lee and Emmons (37) performed experimental and theoretical studies of the behavior 

of line plumes.  The plumes were characterized by measuring the horizontal 

temperature and velocity profiles with respect to height.  The theory made the 

assumptions of self-similar Gaussian profiles for the horizontal temperature and 

velocity across the plumes and constant empirical entrainment coefficient, 𝛼𝛼, over the 

height of rise of the plume, where plume entrainment is proportional to the centerline 

velocity.  With the assumption of Boussinesq approximation, the mass flow rate per 

unit width of the line plume is described as follows: 

 �̇�𝐶𝑚𝑚

𝑊𝑊
= 𝐶𝐶𝐶𝐶 � 𝜌𝜌∞2 𝑔𝑔�̇�𝑄𝑄𝑄

𝑄𝑄𝑚𝑚 ,𝑤𝑤𝑎𝑎𝑟𝑟 𝑊𝑊𝑇𝑇∞
�

1/3
(𝑧𝑧 + 𝑧𝑧0) 

 �̇�𝐶𝑚𝑚 = 𝐶𝐶𝐶𝐶 � 𝜌𝜌∞2 𝑔𝑔
𝑄𝑄𝑚𝑚 ,𝑤𝑤𝑎𝑎𝑟𝑟 𝑇𝑇∞

�
1/3

�̇�𝑄𝑄𝑄
 1/3𝑊𝑊2/3(𝑧𝑧 + 𝑧𝑧0) (2-17) 

Where, 

 𝐶𝐶𝐶𝐶 = √𝜋𝜋𝛼𝛼2/3(1 + 𝜆𝜆2)1/6  (2-18) 

The values of the constants are empirically determined to be 𝛼𝛼 = 0.16, 𝜆𝜆 = 0.9 which 

gives 𝐶𝐶𝐶𝐶  = 0.58.  Using typical values, � 𝜌𝜌∞2 𝑔𝑔
𝑄𝑄𝑚𝑚 ,𝑤𝑤𝑎𝑎𝑟𝑟 𝑇𝑇∞

�
1
3
 is approximately 0.36 and hence 

Equation (2-17) is commonly expressed as 

 �̇�𝐶𝑚𝑚 = 𝐶𝐶�̇�𝑄𝑄𝑄
1/3𝑊𝑊2/3(𝑧𝑧 + 𝑧𝑧0)  (2-19) 

Where, 



 

   35 
 

 𝐶𝐶 = 𝐶𝐶𝐶𝐶 � 𝜌𝜌∞2 𝑔𝑔
𝑄𝑄𝑚𝑚 ,𝑤𝑤𝑎𝑎𝑟𝑟 𝑇𝑇∞

�
1/3

  (2-20) 

Line plume studies by other researchers resulted in variations in the values of 𝐶𝐶𝐶𝐶  and 

𝛼𝛼.  Poreh et al. (19) noted that the differences in the constants arise from the methods 

of determining the mass flow rate, whether from direct measurements or from 

calculations using temperature and velocity distributions.  The values of  𝐶𝐶𝐶𝐶  and 𝛼𝛼 

are shown in Table 2.2. 

Table 2-2: Values of Coefficients 𝐶𝐶𝐶𝐶  and 𝛼𝛼 for Thermal Line Plumes 

Researcher 𝐶𝐶𝐶𝐶  𝛼𝛼 

Yuan and Cox (38) 0.51 0.126 

Rouse et al. (39) 0.57 0.162 

Zukoski (26) & Yokoi (40) 0.52 0.125 

Kotsovinos (41) 0.66 0.20 

Ramparian et al. (42) 0.48 0.117 

2.3.3 Morgan and Marshall 

Morgan et al. (43) conducted a series of 1/10th scale experiments simulating smoke 

flow from a compartment in the form of a balcony spill plume.  The compartment was 

0.5 m in depth and 0.5 m in height with a balcony breadth of 0.4 m.  Two 

compartment opening widths of 0.7 m and 1.4 m were examined with channeling 

screens to prevent lateral spread of smoke from the compartment.  The results from 
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the experiment were used to develop the BRE spill plume method which is included 

in the BRE design guides (10), (31).   

The BRE spill plume method applies to cases where a horizontally flowing, thermally 

buoyant layer of hot gases approaches an opening in the compartment and rising at 

the spill edge as a balcony spill plume.  The following assumptions are made, 

• The horizontal flow of hot gases is beneath a flat ceiling or with a 

downstand at the compartment 

• The flow is channeled by walls or screens 

• The flow is fully developed and has parallel flow-lines which are 

perpendicular to the opening 

• There is no immersed ceiling jet 

• The velocity of the clear air below the smoke layer has a values 

smaller than that of the layer 

The mass flow rate at the compartment opening is evaluated using Equation (2-4). 

While the entrainment in the rotation region is given by, 

 �̇�𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 2
3
𝜌𝜌∞𝑊𝑊𝑧𝑧𝛼𝛼′ �

2𝑔𝑔𝜃𝜃𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑧𝑧
𝑇𝑇∞

�
1/2
𝑑𝑑𝑧𝑧

3/2 (2-16) 

The value of the entrainment coefficient, 𝛼𝛼′  was originally given by 0.9.  It was later 

updated by Morgan and Hansell (44) to 1.1, which implies a large amount of 

entrainment.  As explained in the current BRE guide (10), this large value is a result 

of treating all anomalous entrainment above the spill edge as if it occurred in the 
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rotation region.  Later work by Miles, et al. (45) using CFD modeling and Yii (46) 

using salt water experiments show that the entrainment in the rotation region is small.   

Combining Equation (2-4) and Equation (2-16) gives the mass flow rate of the 

vertical plume at the spill edge, 

�̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0 = 2
3
𝜌𝜌∞𝑊𝑊𝑧𝑧𝛼𝛼′ �

2𝑔𝑔𝜃𝜃𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑧𝑧
𝑇𝑇∞

�
1/2
𝑑𝑑𝑧𝑧

3/2 + 2
3
𝐶𝐶𝑑𝑑 3/2�2𝑔𝑔𝜃𝜃𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤𝑇𝑇∞�

1/2 𝑊𝑊0𝜌𝜌∞
𝑇𝑇𝐶𝐶𝑤𝑤𝛿𝛿 ,𝑤𝑤

𝑑𝑑𝑤𝑤
3/2𝜅𝜅𝐶𝐶   (2-17)  

Using the theory of Lee and Emmons (37), Morgan et al. (43) calculated a virtual 

“Equivalent Gaussion Source” (EGS) in the horizontal plane and determined the 

source characterisitics of the vertical flow at the spill edge with entrainment 

coefficient, 𝛼𝛼 = 0.16, similar to that determined by Lee and Emmons.  This method, 

with the assumption of constant entrainment coefficient and self similar Gaussian 

temperature and velocity profiles, allows the calculation of mass flow rate of the 

plume without entrainment into the ends of the plume.  Morgan and Marshall (47), 

using the assumption that the ends of the plume are rectangular-shaped instead of 

conical, gave an expression to determine the entrainment into the ends of the plume.  

The methods of calculation are included in the current BRE design guide (10).  

2.3.4 Poreh, Morgan, Marshall and Harrison 

Poreh et al. (19) developed Equation (2-17) describing the mass flow rate of a 2D 

spill plume using dimensional analysis with the assumption of a linear relationship 

between the mass flow rate and height, 𝑧𝑧𝑧𝑧  with a correction for the virtual source, 𝑧𝑧𝑟𝑟 . 

 �̇�𝐶𝑚𝑚 = 𝐶𝐶�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3(𝑧𝑧𝑧𝑧 + 𝑧𝑧0)  (2-17) 
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Where  

 𝐶𝐶 = 0.3𝐶𝐶𝐶𝐶𝑃𝑃∞   (2-18) 

By allowing the smoke layer in the reservoir to drop to the same level as the base of 

the smoke layer in the compartment, it was assumed that there was no additional 

entrainment into the flow beyond the spill edge, hence the mass flow rate in the 

plume, �̇�𝐶𝑚𝑚 = �̇�𝐶𝑧𝑧 .  Using Equation (2-17), Poreh, et al. deduced that the mass flow 

rate at the spill edge is given by, 

 �̇�𝐶𝑧𝑧 = 𝐶𝐶�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3(−𝑑𝑑𝑧𝑧 + 𝑧𝑧0)  (2-19) 

Therefore, the location of the virtual origin is given by, 

 𝑧𝑧0 = 𝑑𝑑𝑧𝑧 + �̇�𝐶𝑧𝑧

𝐶𝐶�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3  (2-20) 

Experimental data from studies of 2D spill plumes by Marshall et al. (48) were used 

to determine the value of 𝐶𝐶.  The correlation results in the value of 𝐶𝐶 = 0.16 and 𝐶𝐶𝐶𝐶  = 

0.44.  Hence, the mass flow rate of a 2D spill plume can be determined by 

 �̇�𝐶𝑚𝑚 = 0.16�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3 �𝑧𝑧𝑧𝑧 + 𝑑𝑑𝑧𝑧 + �̇�𝐶𝑧𝑧

0.16�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3�  (2-21)  

Re-arranging Equation (2-21) gives an expression of the amount of air entrained into 

the plume beyond the spill edge, which is given as guidance on balcony spill plumes 

in BS 7974 (30). 

 �̇�𝐶𝑚𝑚 − �̇�𝐶𝑧𝑧 = 0.16�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3(𝑧𝑧𝑧𝑧 + 𝑑𝑑𝑧𝑧)  (2-22) 
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By setting 𝑧𝑧𝑧𝑧  = 0 in Equation (2-22), the entrainment at the rotation region can be 

determined in terms of the mass flow rate at the spill edge and the layer depth, with 

the assumption of negligible entrainment from the bottom of the smoke layer in the 

reservoir. 

 �̇�𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 0.16�̇�𝑄𝑄𝑄
 1/3𝑊𝑊𝑧𝑧

 2/3𝑑𝑑𝑧𝑧    (2-23)  

2.3.5 Thomas, Morgan and Marshall 

Previous work by Poreh et al. (19) used the assumption of self-similarity in the 

temperature and velocity profiles across the plume and a constant entrainment 

coefficient.  Thomas et al. (49) used dimensional analysis to develop a simplified spill 

plume formula, which does not require a term for the virtual source, nor does it make 

the assumption of self-similarity and constant entrainment coefficient.  The 

dimensional analysis produced the general formula, 

 �̇�𝐶𝑚𝑚
′

�̇�𝑄𝑄𝑄′
= 𝛾𝛾 𝑧𝑧𝑧𝑧

�̇�𝑄𝑄𝑄′
2/3 + 𝛿𝛿 �̇�𝐶𝑧𝑧

′

�̇�𝑄𝑄𝑄′
+ 𝜀𝜀  (2-24) 

Where 

 �̇�𝐶𝑚𝑚
′ = �̇�𝐶𝑚𝑚

𝑊𝑊𝑧𝑧
      �̇�𝐶𝑧𝑧

′ = �̇�𝐶𝑧𝑧
𝑊𝑊𝑧𝑧

      �̇�𝑄𝑄𝑄′ = �̇�𝑄𝑄𝑄
𝑊𝑊𝑧𝑧

  (2-25) 

Using the experimental data from Marshall et al. (48), which was also used by Poreh 

et al. (19), the following correlation for 2D balcony spill plume was developed, 

 
�̇�𝐶𝑚𝑚 ,2𝐷𝐷
′

�̇�𝑄𝑄𝑄′
= 0.16 𝑧𝑧𝑧𝑧

�̇�𝑄𝑄𝑄′
2/3 + 1.2 �̇�𝐶𝑧𝑧

′

�̇�𝑄𝑄𝑄′
+ 0.0027  (2-26) 
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Using data by Poreh et al. and method by Morgan (25), Thomas et al. derived an 

empirical relationship describing 𝑑𝑑𝑧𝑧 . 

 
𝑑𝑑𝑧𝑧�

�̇�𝑄𝑄𝑄
𝑊𝑊𝑧𝑧

�

��̇�𝐶 𝑧𝑧
𝑊𝑊𝑧𝑧

�
= 2.5 �1 + �̇�𝑄𝑄𝑄

𝑄𝑄𝑚𝑚 ,𝑤𝑤𝑎𝑎𝑟𝑟 𝑇𝑇∞ �̇�𝐶𝑧𝑧
�  (2-27) 

Using Equation (2-27) and Equation (2-22), Thomas derived Equation (2-28) which is 

an alternative form of expression of the spill plume formula by Poreh et al. (19) but 

with the redundancy of requiring the calculation of both �̇�𝐶𝑧𝑧  and 𝑑𝑑𝑧𝑧  removed. 

 
�̇�𝐶𝑚𝑚 ,2𝐷𝐷
′

�̇�𝑄𝑄𝑄′
= 0.16 𝑧𝑧𝑧𝑧

�̇�𝑄𝑄𝑄′
2/3 + 1.4 �̇�𝐶𝑧𝑧

′

�̇�𝑄𝑄𝑄′
+ 0.0014  

 ⇒ �̇�𝐶𝑚𝑚 ,2𝐷𝐷 = 0.16�̇�𝑄𝑄𝑄
1/3𝑊𝑊𝑧𝑧

2/3𝑧𝑧𝑧𝑧 + 1.4�̇�𝐶𝑧𝑧 + 0.0014�̇�𝑄𝑄𝑄   (2-28) 

By setting 𝑧𝑧𝑧𝑧  = 0 for Equation (2-26) and Equation (2-28), hence reducing to 

Equation (2-29) and (2-30) respectively, the mass flow rate of the plume after the 

rotation region can be determined using the following equations. 

 �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0 = 1.2�̇�𝐶𝑧𝑧 + 0.0027�̇�𝑄𝑄𝑄   (2-29) 

 �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0 = 1.4�̇�𝐶𝑧𝑧 + 0.0014�̇�𝑄𝑄𝑄   (2-30) 

Thomas et al. then correlated four sets of experimental data for 𝑧𝑧𝑧𝑧  = 0, using both 

Equation (2-29) and �̇�𝐶𝑚𝑚 ,2𝐷𝐷 = 1.4�̇�𝐶𝑧𝑧, with both showing good agreement to the 

experimental value.  Hence, suggesting that the additional entrainment in the rotation 

region is 40% of the total mass flow rate at the spill edge.  Thomas had concerns that 

the calculated mass flow rate, �̇�𝐶𝑚𝑚 ,2𝐷𝐷  at 𝑧𝑧𝑧𝑧  = 0, using Equation (2-21) were on average 
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11% higher than the measured values, indicating an overestimation and suggested 

further studies into it. 

2.3.6 Ko 

From the series of FDS simulations described in the section 2.24, Ko (34) derived the 

mass flow rate of the plume at the spill edge as follows: 

�̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0 = 3.0 ���̇�𝑄𝑄𝑄
 1/5𝑊𝑊𝑒𝑒 ,𝑧𝑧

   3� × 1

�ℎ𝑏𝑏ℎ𝑟𝑟
�

1+𝐾𝐾𝑄𝑄 × 1

� 𝑏𝑏ℎ𝑟𝑟
�
�

−0.57

× � ℎ𝑏𝑏
𝑊𝑊𝑒𝑒 ,𝑧𝑧ℎ𝑟𝑟

�
−2

× �̇�𝐶s  (2-31) 

Where 𝐾𝐾𝑄𝑄 = 𝑊𝑊𝑧𝑧
𝑊𝑊𝑟𝑟

 

The correlation is applicable to compartment geometries with and without downstand 

and/or channeling screens and was originally developed for buoyant jets with 

Richardson number ranging from 0.14 to 0.7.  The correlation is not applicable to 

adhered plumes.  The correlation shows good agreement when validated with 

experimental data from the NRCC test, Harrison (32) and Marshall et al. (48).   

2.3.7 Harrison and Spearpoint 

Harrison et al. (50) noted that the characterization of the entrainment in the rotation 

region carried out by Poreh et al. and Thomas et al. contains only 3 data points at 𝑧𝑧𝑧𝑧  = 

0, hence an additional 20 experiments were performed to determine the mass flow 

rate of the plume at 𝑧𝑧𝑧𝑧  = 0.  With data from previous studies by Marshall and 

Harrison (48) and Harrison and Spearpoint (51) included, Harrison developed the 
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following correlation to describe the mass flow rate per unit width of the spill plume 

at 𝑧𝑧𝑧𝑧  = 0, 

 �̇�𝐶𝑚𝑚 ,𝑧𝑧=0 = 1.34�̇�𝐶𝑧𝑧  (2-32)  

This is marginally lower than that suggested previously by Thomas et al. (49), which 

was deemed to be possibly overestimated due to inaccuracies, as described in the 

previous section.      

2.4 Computer modeling of fire and smoke transport 

The rapid advancement in computer technology in the past decade has led to the 

increase in use of computer modeling for fire and smoke transport (52).  A 

comprehensive survey of computer models for fire and smoke carried out by Olenick 

et al. (52), identified 168 such computer modeling programs.  This growth in 

computer modeling programs is also due to a move towards the use of performance-

based building codes by North-European countries such as UK and Sweden, New 

Zealand, Australia, USA, Canada and Japan (7).  Computer fire models can be 

broadly categorized into five different categories namely, zone models, field models, 

detector response models, fire endurance models and egress models.   

Zone models are used for the prediction of the development of a fire inside a 

compartment or a series of compartments.  Usually, the approach divides the 

compartment into two distinct zones, a hot upper smoke layer and a cool lower layer 

of air and solves the conservation equations of mass, momentum and energy for each 
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of these zones.  Zone models are able to provide a reasonable approximation of 

compartment fires using minimal computer resources. 

Field models divide the compartment into a large number of control volumes, also 

known as cells, and solve the conservation equations within each of these control 

volumes.  Field models provide a more detailed solution and can also be used for 

more complex geometries which cannot be properly describe using two zones.  

However, field models require more input information and require more 

computational resources. Field models are essentially comprised of a computational 

fluid dynamics (CFD) code which provides the basic transport mechanisms for mass, 

momentum and energy and a fire model which contains detailed description of the 

combustion processes.  

A brief description of computer modeling studies utilizing zone models and field 

models for balcony spill plumes is described in the next section.  Detector response 

models, fire endurance models and egress models will not be discussed. 

2.4.1 Modeling of Balcony Spill Plumes 

Miles et al. (45) used the CFD package, JASMINE (53), to simulate 1/10th physical 

scale model experiments by Marshall, et al. (48).  Plumes were generated using 

temperature and velocity profiles at the spill edge, instead of modeling the fire and 

compartment.  The model gave predictions that generally agreed well with the 

correlations by Poreh, et al. (19) and Thomas, et al. (49).  From the analysis, Miles, et 
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al. concluded that there was only a small amount of entrainment in the rotation 

region. 

Chow, et al. (54) developed CL-Atrium, a two-layer zone model, to analyze smoke 

filling in an atrium from a 2D balcony spill plume, with steady-state and unsteady t2-

fires.  The smoke filling rate was compared using design formulae by Poreh et al. 

(19), Thomas et al. (49) and NFPA92B (55).  A comparison was also made with the 

CFAST (56) zone model.  The predictions from the model showed that the layer 

height and layer temperature in the atrium were similar using either Poreh et al. or 

Thomas et al. methods.  The predictions using NFPA 92B formula were similar to 

that predicted by CFAST for both steady-state and unsteady t2-fires and are greater 

than that predicted using Poreh et al. and Thomas et al. formulae. 

Li et al. (57) used the CFD package, PHOENICS with FLAIR module (58), to 

analyze the smoke filling in an atrium from 2D and 3D balcony spill plumes.  The 

predictions of mass flow rate of 2D spill plumes using PHOENICS is marginally 

lower than those by Poreh et al. (19) and Thomas et al. (49).  The CFD prediction 

show better agreement to the BRE spill plume method (31) with the entrainment 

coefficient, 𝛼𝛼, set to 0.11 instead of 0.16.  For 3D balcony spill plumes, predictions 

by PHOENICS are generally lower than methods by Thomas et al. (59), NFPA 92B 

(55) and BRE with entrainment coefficient set as 0.16. 

McCartney (60) carried out CFD modeling of balcony spill plumes using FDS 

(version 4) for elevations of 50m.  The simulated fire compartment had the same 

dimensions as that of the full-scale test facility in NRCC.  From grid optimization 
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studies, McCartney recommend a grid cell size of 0.1 m in the 5m tall fire 

compartment and 0.5 m grid cell size in the atrium.  Predicted centerline temperatures 

in the fire compartment are significantly lower than the experimental data and the 

variation is as much as 750 °C.  The prediction of the smoke layer height in the 

compartment opening and atrium are in good agreement with the experimental data.  

McCartney attributed the large margin of error to radiation errors in the experimental 

data, which measured almost 1,200 °C in the fire compartment for a fire with heat 

release rate of 2 MW and compartment opening of 12 m width and 5 m height.  For 

the studies of the balcony spill plume at high elevations of 50 m, 13 simulations were 

carried out heat release rates of 1 MW, 2 MW and 5 MW, and compartment opening 

widths of 5 m, 8 m and 10 m.  Most of the flows were channeled by 2 m deep screens 

and had no downstand at the compartment opening.  A small number of simulations 

were carried out with 1.5 m downstand at the compartment opening and others 

without channeling screens.  A new correlation for mass flow rate of the balcony spill 

plume was suggested as follows: 

 �̇�𝐶𝑚𝑚 = 0.52�̇�𝑄𝑄𝑄
1/3𝑊𝑊𝑧𝑧

0.2𝑧𝑧𝑧𝑧 + �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0 (2-33) 

The use of the correlation is restricted to scenarios with channeling screens and no 

downstand at the compartment opening.  It was suggest that the mass flow rate at the 

spill edge be estimated by existing guidance. 

Ko et al. (34) and Harrison et al. (32), (50) carried out CFD modeling of balcony spill 

plumes using FDS.  Sections 2.23, 2.24, 2.36 and 2.37 describe these studies in detail. 
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2.4.2 Modeling of Ceiling Jets 

Balcony spill plumes are developed from hot gases flowing out of a compartment into 

the connecting atrium.  The initial flow of the hot gases beneath the ceiling and 

balcony is in the form of a ceiling jet.   A brief description of modeling of ceiling jets 

using fire dynamics simulator (FDS) is given in the following sections. 

2.4.2.1 McGrattan, Hostikka, Floyd, McDermott and Prasad  

McGrattan et al. (61) carried out validation of experiments using FDS as part of the 

FDS model validation process.  Two of such validation involves the measurement of 

the temperature of the flow of hot gases beneath a relatively flat ceiling.   

The first validation is for the series of 25 large scale experiments conducted by 

Factory Mutual Research Corporation (FMRC), under the direction of Sandia 

National Laboratories (SNL), for the U.S. Nuclear Regulatory Commission (NRC) 

(62).  The fire compartment measures 18 m x 12 m x 6 m in height and the peak fire 

size was 516 kW.  3 of the 25 experiments are included in the validation study.  The 

domain is defined as the entire fire compartment and it was divided into 5 meshes.  A 

uniform fine grid of 5 cm is applied to the mesh near the fire source and a uniform 

course grid of 20 cm is applied to other meshes.  The thermocouples closest to the 

ceiling (12 cm away from the ceiling, about 2% of ceiling height) and located along 

the longitudinal axis centerline furthest from the fire source are chosen as a surrogate 

for the ceiling jet temperature.  FDS was able to give rather good prediction of the 

temperature, compared to the experimental data, after the initial growth period of the 
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fire.  The discrepancies during the growth period is possibly attributed to the fact that 

the modeling of the fire growth in FDS is by means of linear “ramps” and did not 

accurately replicate the actual growth of the fire which follows approximately a 

power-law relationship. 

The second validation is for the series of 15 large scale experiments, sponsored by 

NRC, conducted by NIST (63).  The experiments have fire sizes ranging from 350 

kW to 2.2 MW in a fire compartment of 21.7 m x 7.1 m x 3.8 m height.  All 15 

experiments were included in the validation study.  The fire compartment was defined 

as the domain and mesh stretching using polynomial transformation was applied to 

the x and y co-ordinate directions, resulting in grid cell sizes that ranges from 

approximately 10.8 – 42.9 cm in the x co-ordinate direction, 9.8 – 37.8 cm in the y 

co-ordinate direction and 12 cm in the z co-ordinate direction.  Similar to the FMRC 

experiments, the thermocouple closest to the ceiling (32 cm away from the ceiling, 

about 8.4% of the ceiling height) located along the longitudinal axis centerline 

furthest from the fire source is chosen as a surrogate for the ceiling jet temperature.  

For 8 of the experiments, the temperature in the compartment reaches a relatively 

steady state for duration of about 20 minutes.  For these cases, FDS predictions were 

within 5 – 10 % of the experimental values. 

2.4.2.2 Hurley and Munguia 

Hurley et al. (64) compared predictions of fire plume and ceiling jet temperatures 

using FDS to experimental data from full scale tests conducted by Underwriters 

Laboratory (UL) (65).  The experiments were conducted in a 36.6 m x 36.6 m facility 
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with a height-adjustable, smooth, flat, horizontal ceiling.  The heat release rates from 

the heptane burner ranges from 350k W to 10.4 MW, while the ceiling height ranges 

from 3 m to 12.2 m.  The domain of the FDS model does not cover the entire 

experimental facility as it was deemed that certain areas of the facility do not have 

influence nor were influenced by the fire.  The domain consists of two meshes, a 10 

m x 10 m space enclosing the fire and extending to the ceiling and another 10 m x 10 

m space, located adjacent to the first mesh extending from the ceiling to half the 

distance of the ceiling height.  The first mesh models the flow of the plume from the 

fire and the portion of the ceiling jet nearer to the plume axis, while the second mesh 

models the ceiling jet at greater radial distance from the plume axis.  Temperature 

measurements were taken at the plume axis and at radial distances of 2.2 m, 6.5 m 

and 10.8 m, all at a distance of 10cm below the ceiling. 

Grid convergence studies were performed using uniform grid cell sizes of 10 cm and 

6.6 cm for scenarios with ceiling heights of 3 m and 6.1 m.  The studies show that 

grid convergence was achieved for the ceiling jet region, but not for the plume region.  

Further studies to determine the grid convergence for the plume region were not 

carried out due to the large computational resource and time required.  Validation 

studies carried out by McGrattan et al. (61) determined that FDS was able to predict 

the plume centerline temperature based on McCaffrey’s correlation with very good 

accuracy for far field conditions, using a uniform grid cell size which is 0.1 times the 

characteristic diameter of the fire.  With the limitation of non-convergence in the 

plume region, FDS prediction for gas temperatures were within a factor of 1.9 of the 

experimental data. 
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2.4.2.3 Ierardi and Barnett  

Ierardi et al. (66) compared FDS predictions of temperature and velocity in the ceiling 

jet region with Alpert’s ceiling jet correlation.  Two scenarios similar to the 

experiments that form the basis of Alpert’s ceiling jet correlations were modeled.  

The first scenario was a 1 m x 1 m ethanol fire with a heat release rate of 670 kW 

under an unconfined ceiling of 7 m height.  The second scenario was a 0.6 m x 0.6 m 

heptane fire with a heat release rate of 1 MW under an unconfined ceiling of 7.2 m 

height.  Uniform grid cell sizes of 20 cm to 60 cm were used for the models and 

temperature and velocity predictions were made for locations at radial distances from 

0.6 m to 7.2 m, corresponding to the dimensionless r/H values of 0.083 to 1.  From 

this study, FDS generally gave better predictions of the maximum ceiling jet gas 

temperature than velocity.  For the first scenario, the grid cell size of 33.3 cm gave 

the best prediction compared to Alpert’s correlation, while for the second scenario, 

the grid cell size of 60 cm gave the best prediction.  There is more discrepancy in the 

prediction of maximum velocity as compared to maximum temperature.  For both 

cases, the coarsest grid gave the better velocity prediction.  However, a grid 

convergence analysis was not performed as the sole purpose of this study was to 

demonstrate the suitability of different error analysis techniques and not a validation 

study. 
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3. CFD modeling using Fire Dynamics Simulator 

3.1 Fire Dynamics Simulator 

FDS is a CFD fire simulation software developed by the Building and Fire Research 

Laboratory at the National Institute of Standards and Technology (NIST).  The 

software is based on Fortran 90 and the first version was released in 2000.  The 

current version, version 5, was released in 2007 (67). (Version 5.2 parallel is used for 

the simulations carried out in this research) FDS was developed to solve practical 

problems in fire protection engineering and provide a tool in the study of fundamental 

fire dynamics and combustion.  It can be used to model phenomena such as, low 

speed transport of heat and combustion products from fire, radiative and convective 

heat transfer between the gas and solid surfaces, pyrolysis, flame spread and fire 

growth, sprinkler and detector activation, and sprinkler sprays and suppression by 

water.  FDS is widely used in fire research and engineering communities due to its 

accessibility, simplicity and open source nature which allows modifications and 

improvement to be made fairly easily. 

3.1.1 Hydrodynamic model 

FDS uses an approximate form of the Navier-Stokes equation appropriate for low 

Mach number applications.  The approximation filters out acoustic waves but allows 

for large variation in temperatures and densities.  Computations can be treated as 

Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES).  For DNS, the 
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dissipative processes of viscosity, thermal conductivity and material diffusivity are 

computed directly.  This usually requires very small grid cell sizes of the order of 

1mm or less.  In LES, the large-scale eddies are resolved while those smaller than the 

grid cell sizes, also known as sub-grid scale (SGS) eddies, are modeled.  This is based 

on the assumption that the smaller eddies contribute a small amount of the total 

kinetic energy of the flow and can be approximated.  The use of LES is intended to 

increase the temporal and spatial accuracy of predicted flow properties compared to 

Reynolds-averaged Navier-Stokes (RANS) turbulence models, where temporal 

averaging leads to an artificial smoothing of the predicted flow properties.   

3.1.2 Combustion model 

Two combustion models are available in FDS.  The mixture fraction model is the 

default, and the other is the finite-rate reaction model.  The finite-rate reaction model 

is used for DNS computations where the fine grid resolution allows the diffusion 

process of the gas species to be resolved.  Mixture fraction is a conserved scalar 

quantity defined as the ratio of the mass of a species to the total mass present at a 

given point in the flow field.  For most applications, a single-step, instantaneous 

reaction is a reasonable assumption, where the reaction of oxygen and fuel occurs 

rapidly and completely upon mixing.  Hence, the gas mixture can be uniquely 

determined by solely the mixture fraction.  There are situations, such as under-

ventilated compartments, where the assumption of complete reaction is not valid.  In 

such cases, a single-step with local extinction and two-parameter mixture fraction 

allows for the co-existence of unburned fuel and oxygen, where the mixture fractions 
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of burned fuel and unburned fuel are computed explicitly.  Simple empirical rules are 

used to predict local extinction based on oxygen concentration and temperature of 

gases in the vicinity of the flame sheet.  To account for the higher soot and carbon 

monoxide productions in under-ventilated fires, a two-step reaction is used where the 

first step is the oxidation of fuel to carbon monoxide and the second step is the 

oxidation of carbon monoxide to carbon dioxide.  For this case, there are three 

mixture fraction parameters of unburned fuel; fuel that has completed the first 

reaction step and fuel that has completed the second reaction step. 

3.1.3 Radiative transport model 

Radiative heat transfer is modeled in FDS by solving the radiation transport equation 

for a non-scattering grey gas, with the option of a wide band radiation model.  The 

radiation equation is solved using a similar technique as the finite volume method for 

convective transport.  Using approximately 100 discrete angles, this finite volume 

method takes up approximately 20 % of the total CPU time of a calculation.  FDS 

uses a default radiative fraction value of 0.35 which is applicable for most common 

fuels and commodities.  For the simulations conducted as part of this thesis, the fuel 

used is enthanol which generates lower combustion products and thus has a lower 

radiative fraction of 0.25.   

3.1.4 Tangential Velocity boundary condition 

Theoretically, the velocity at a solid surface has a value of zero and increases rapidly 

through the narrow boundary layer region.  For most practical applications, the grid 
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cell is too large to accurately resolve the boundary layer.  To overcome this, a 

velocity boundary condition factor, known as the slip factor, is used to set the velocity 

at the wall to be a fraction of its value in the cell adjacent to the wall.  This slip factor 

ranges from -1 to 1, representing a no-slip boundary condition and free slip boundary 

condition, respectively.  For DNS computations, the slip factor is set to -1 to give no-

slip boundary conditions.  For general applications of fire simulations with grid cell 

sizes that are too course to resolve the boundary layer, it is recommended to use the 

default value of 0.5, representing a partial slip condition. 

In FDS 5.4, Werner and Wengle (WW) wall model (68) is used to model wall flows.  

This is a significant improvement to the previous method of arbitrarily assigning a 

velocity value that is a fraction of the value of the first grid cell.  A brief description 

of the WW wall model is described here.  The nondimensional streamwise velocity 

and nondimensional wall-normal distance are given by: 

 𝑢𝑢+ ≡ 𝑢𝑢/𝑢𝑢∗ (3-1) 

 𝑧𝑧+ ≡ 𝑧𝑧/𝑙𝑙 (3-2) 

where 𝑢𝑢∗ = �𝜏𝜏𝑤𝑤 𝜌𝜌⁄  is the near wall region friction velocity and 𝑙𝑙 = 𝜇𝜇/𝜌𝜌𝑢𝑢∗.  The law 

of the wall is given by, 

 𝑢𝑢+ ≡ 𝑧𝑧+ for 𝑧𝑧+ < 5 (3-3) 

 𝑢𝑢+ ≡ 2.4𝑙𝑙𝑙𝑙𝑧𝑧+ + 5.2 for 𝑧𝑧+ > 30 (3-4) 
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The buffer layer, where both viscous and inertial stresses are important, lies within 

the region where 5 < 𝑧𝑧+ < 30.  Werner and Wengle propose a simplification to the 

law of the wall as follows: 

 𝑢𝑢+ ≡ 𝑧𝑧+ for 𝑧𝑧+ ≤ 11.81 (3-5) 

 𝑢𝑢+ ≡ 𝐴𝐴(𝑧𝑧+)𝐵𝐵  for 𝑧𝑧+ > 11.81 (3-6) 

where 𝐴𝐴 = 8.3 and 𝐵𝐵 = 1/7.  A comparison of the WW model and the log law is 

shown in Figure 3.1. 

 

Figure 3.1: Comparison of log law and WW model 

The WW model as implemented in FDS is given by 

 |𝜏𝜏𝑤𝑤 | = 2𝜇𝜇�|𝑢𝑢�|
∆𝑧𝑧

  for 𝑧𝑧+ ≤ 11.81 (3-7) 

 |𝜏𝜏𝑤𝑤 | = �̅�𝜌 �𝛼𝛼 � 𝜇𝜇�
𝜌𝜌�∆𝑧𝑧

�
𝛽𝛽

+ 𝜂𝜂 � 𝜇𝜇�
𝜌𝜌�∆𝑧𝑧

�
𝐵𝐵

|𝑢𝑢�|�
𝛾𝛾

 for 𝑧𝑧+ > 11.81 (3-8) 

Where  𝛼𝛼 = 1−𝐵𝐵
2
𝐴𝐴

1+𝐵𝐵
1−𝐵𝐵  
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 𝛽𝛽 = 1 + 𝐵𝐵 

 𝜂𝜂 = 1+𝐵𝐵
𝐴𝐴

 

 𝛾𝛾 = 2
1+𝐵𝐵

 

The first off-wall velocity component is denoted by 𝑢𝑢� , �̅�𝜌 and �̅�𝜇 are the average 

density and average molecular viscosity from the neighboring cell values, 

respectively.  The effects of the change in the modeling of the near wall flows are 

discussed in Section 3.3.4.  

3.2 Ceiling jet correlations 

Ceiling jets are formed when the smoke from the rising fire plume impinge onto the 

ceiling and are deflected radially outwards as a shallow horizontal flowing layer (69).    

As the ceiling jet spreads along the ceiling, it entrains air from the room, causing the 

ceiling jet to grow thicker.  The entrained air causes the velocity and temperature of 

the ceiling jet to reduce.  Heat transfer to the ceiling also reduces the temperature of 

the layer of ceiling jet that is adjacent to the ceiling.  Alpert’s correlations for 

maximum excess temperature and velocity in the ceiling jet are as follows: 

 𝑇𝑇 − 𝑇𝑇∞ = 5.38 �̇�𝑄
2
3 𝐻𝐻

5
3�

(𝑟𝑟 𝐻𝐻⁄ )
2
3
 (3-9) 

Subject to 𝑟𝑟/𝐻𝐻 ≥ 0.18 

 𝑢𝑢 = 0.195 (�̇�𝑄 𝐻𝐻⁄ )
1
3

(𝑟𝑟 𝐻𝐻⁄ )
5
6
 (3-10) 



 

   56 
 

Subject to 𝑟𝑟/𝐻𝐻 ≥ 0.15 

Heskestad (70) developed non-dimensional correlations for maximum ceiling jet 

excess temperature and velocity based on alcohol pool fire tests.  Alpert analyzed 

these correlations and suggests that Heskestad’s correlation for excess temperature 

and Alpert’s theory for velocity be used for prediction of ceiling jet flows.  These 

expressions are as follows: 

 𝑇𝑇−𝑇𝑇∞
𝑇𝑇∞

= 𝑄𝑄𝐻𝐻∗
2
3 �0.225 + 0.27 𝑟𝑟

𝐻𝐻
�
−4

3 (3-11) 

Subject to  0.2 ≤ 𝑟𝑟/𝐻𝐻 ≤ 4 

 𝑢𝑢
�𝑔𝑔ℎ

= 1.06𝑄𝑄𝐻𝐻∗
1
3 �𝑟𝑟

𝐻𝐻
�
−0.69

 (3-12) 

Subject to 0.2 ≤ 𝑟𝑟/𝐻𝐻 ≤ 4 

The locations of these maxima are expected to range from about 1 – 2 % of the 

ceiling height for 𝑟𝑟/𝐻𝐻 from less than 1 – 2.   

In more recent work, Alpert (17), reanalyzed his original data and developed a set of 

new correlations based on the convective heat release rate and also introduced the 

location of the virtual origin.  The new correlations are as follows: 

 𝑇𝑇 − 𝑇𝑇∞ = 7.14 �̇�𝑄𝑄𝑄
2
3

(𝐻𝐻−𝑧𝑧0)
5
3
� 𝑟𝑟
𝐻𝐻−𝑧𝑧0

�
−0.647

 (3-13) 

Subject to  𝑟𝑟
𝐻𝐻−𝑧𝑧0

> 0.144 
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 𝑢𝑢 = 0.229 �̇�𝑄𝑄𝑄
1
3

(𝐻𝐻−𝑧𝑧0)
1
3
� 𝑟𝑟
𝐻𝐻−𝑧𝑧0

�
−1.017

 (3-14) 

Subject to 𝑟𝑟
𝐻𝐻−𝑧𝑧0

> 0.228 

Where the location of the virtual origin (70) is given by 

 𝑧𝑧0 = 0.083�̇�𝑄2/5 − 1.02𝐷𝐷𝑒𝑒   (3-15) 

Thickness of the ceiling jet is defined as the distance below the ceiling where the 

excess gas temperature above the ambient value drops to 1/e or 0.368 of the 

maximum excess temperature.  In general, the thickness of the ceiling jet is about 10-

12 % of the ceiling height.  Motevalli et al. (72) developed a correlation to determine 

this thickness, based on temperature measurements. 

 𝑙𝑙𝑇𝑇
𝐻𝐻

= 0.112 �1− e−2.24 r
H � (3-16) 

Subject to 0.26 ≤ 𝑟𝑟
𝐻𝐻
≤ 2.0  

3.3 CFD modeling of ceiling jet 

The purpose of the preliminary studies is to determine the grid sensitivity of FDS in 

the prediction buoyant flows in close proximity to ceiling surfaces.  Evaluation of 

FDS in the prediction of the temperature of such ceiling jets have been discussed in 

Section 2.4.  FDS is able to predict the temperature to fairly accurately after the initial 

growth period of the fire.  This gives confidence to the use of time-averaged steady-

state temperature predictions by FDS.  However, these validations do not evaluate if 
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FDS is able to accurately predict the temperature profile of the ceiling jet and the 

characteristics of the flow layer close to the ceiling.  Therefore a more detailed 

analysis is required to give confidence to the use of FDS for such flow scenario and 

also to analyze the grid sensitivity of FDS in such predictions. 

3.3.1 Preliminary CFD modeling of ceiling jet 

A grid sensitivity study similar to that performed by Ierardi et al. (66), described in 

Section 2.4.2.3, was carried out to determine the grid cell size that would allow the 

predictions in FDS to converge.  A 1 m x 1 m Ethanol fire with a heat release rate of 

1000 kW was simulated under an unconfined ceiling of 5 m.  Similar to Hurley et al. 

(64), 2 meshes were used to define the domain, as shown in Figure 3.2 with 

temperature contours.   

 

Figure 3.2: Computational domain for ceiling jet simulation 

The first mesh, which models the fire source and the plume, covers an area of 5 m x  

5 m with the fire at the center and extending to the ceiling.  The second mesh of 5.25 
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m x 5 m, modeling the ceiling jet, is located adjacent to the first mesh, extending 

from the ceiling to 3m above the floor.  Five simulations were carried out using grid 

cell sizes ranging from 2.5 cm to 25 cm.  The simulation with the smallest grid cell 

size was used as a reference simulation for comparison with the other simulations.  

For the reference simulation, linear transformation was applied to cells within 1 m of 

the ceiling, reducing the grid cells in the z-direction (vertical) to 2.5c m.  The 

dimensions in the x and y directions are 5 cm.  Other grid cells are of uniform cubic 

dimensions of 5 cm.  This transformation was necessary as the small grid cells meant 

that an impractically large number of cells are needed to fill the entire domain.  Gas 

temperature and velocity measurements are recorded at regular intervals of 0.5 m, 

from radial distances of 1.5 m to 7 m.  At each of these locations, the measurement 

devices are located at the center of each cell from the underside ceiling to a distance 

of 1m away.    The maximum temperature and velocity at these locations are 

compared with the existing correlations by Alpert and Heskestad (17) as shown in 

Figure 3.3 and Figure 3.4. 

 

Figure 3.3: Comparison with ceiling jet correlations (temperature) 
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Figure 3.4: Comparison with ceiling jet correlations (velocity) 

Alpert’s previous ceiling jet correlation is shown in dotted line and his current 

correlation in dashed line.  From the temperature plot, FDS predictions are generally 

higher than the correlations.  The predictions from the reference simulation shows 

excellent agreement to Alpert’s new correlation and Heskestad correlation for r/H 

values from 0.6 to 1.4.  The simulations with 5 cm and 25 cm grid cell size gave 

predictions that are approximately within 15% of the correlations, with the latter 

showing better agreement throughout the whole range of r/H.  Simulations with grid 

cell sizes of 10 cm and 20 cm gave predictions that are significantly higher.   

The velocity predictions are lower than Alpert’s theory but show better agreement to 

Alpert’s new correlation.   The reference simulation shows excellent agreement to 

Alpert’s new correlation.  The simulation with 5 cm grid cell size shows good 

agreement at smaller radial distances of r/H values of less than 1.  In general, all the 

predictions are within 20 % of Alpert’s new correlation.  From these comparisons to 

the ceiling jet correlations, it seems that the simulation with 25 cm grid cell size gives 
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reasonably good temperature and velocity predictions.  Due to this inconsistency of 

simulations with a larger grid cells giving better predictions than those with smaller 

grid cells sizes, the vertical temperature and velocity profiles were compared. 

Figure 3.5 and Figure 3.6 show plots of the vertical temperature and velocity profiles 

of the five simulations at radial distance of r/H = 0.5.  From the temperature plot, only 

the reference simulation shows a temperature drop at the grid cell adjacent to the 

ceiling.  This is an indication of heat transfer from the gas to the ceiling.  The 

simulation with 5cm grid cells shows a change in temperature gradient, hinting 

possible heat transfer, while the temperature gradient for the other simulations do not 

have significant changes.  The simulation with 5 cm grid cells also shows the best 

agreement with the reference simulation.  This is followed by the simulation with 25 

cm grid cells.  The simulation with 10 cm grid cells shows the highest temperature, 

about 30 % greater than that predicted by reference simulation.  In general, at 

distances further from the ceiling, but still within the ceiling jet flow, all the 

simulations show a good match to the reference simulation. 

 

Figure 3.5 Temperature Profile at r/H=0.5 
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From the velocity plot, the profile of the 3 smallest grid cell sizes shows a decrease in 

velocity at the grid cell adjacent to the ceiling.  The simulation with the 5 cm grid cell 

shows very good agreement with the reference simulation and predicted the same 

location of maximum velocity, 12.5 cm from the ceiling or 2.5 % of the ceiling 

height.  The simulation with 10 cm grid cell predicted the location of the maximum 

velocity to be 15 cm from the ceiling and shows good agreement with the reference 

simulation at locations further from the ceiling.  The two simulations with larger grid 

cells predicted maximum velocities that are lower in magnitude at the center of the 

grid cell adjacent to the ceiling, which happens to be 10 cm and 12.5 cm; hence the 

location is not far from the reference simulation.  Appendix A shows all the 

temperature and velocity profiles for the various radial positions. 

Alpert observed in his experiments that the position of the maxima is approximately 1 

– 2 % of the ceiling height, which translates to a distance of 5 – 10 cm from the 

ceiling.  Even with a grid cell size of 2.5 cm, the distance from the ceiling to the 

maximum is covered by 2 – 4 grid cells, which is far less than the generally accepted 

criteria of 8 – 10 grid cells within the characteristic length scale.  Hence, an in-depth 

study is required to characterize the boundary layer flow, from the ceiling to the point 

where the maxima occur. 
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Figure 3.6: Velocity Profile at r/H=0.5 

3.3.2 Characterization of  the boundary layer 

A study was carried out to fully characterize the retard layer by having at least 8 grid 

cells within the thickness of the retard layer.  Due to the large number of grid cells 

required, it was necessary to run the simulation with multiple meshes.   

The main concern of running simulations with multiple meshes is inaccuracies arising 

from the improper transfer of information from cells in one mesh to cells in a 

different mesh.  This can be alleviated by ensuring that the temporal and spatial 

gradients are minimized when crossing the mesh boundaries.  For ceiling jets formed 

by a circular or rectilinear fire source, the ceiling jets travel radially, which forms 

significant gradients in both the x-coordinate and y-coordinate directions, while the 

rising plume forms significant gradients in the z-coordinate directions.  This results in 

a situation where the gradients in all directions are significant.  To overcome this 

difficulty, an infinite line fire source is prescribed such that the significant gradients 

are in the x-coordinate and z-coordinate directions only as shown in Figure 3.7. 
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Figure 3.7: Computational domain for characterization of boundary layer 

Six narrow meshes 16 m long and 1 m wide are placed adjacent to each other forming 

a domain that is 16 m long and 6 m wide and mirror symmetry is used at two ends of 

the domain to create an infinite line fire source.  The fire source is a 1 m wide line 

source with a heat release rate of 1000 kW/m2, located 4 m from one end of the 

domain, such that the ceiling jet can develop for a distance of 12 m under a 8 m tall 

unconfined ceiling.  The ceiling is defined as having isothermal properties of 20 °C 

and non-slip boundary condition where the gas velocity at the ceiling is zero.  The 

non-slip boundary condition is applicable in this case, since the small grid cells would 

allow the boundary layer to be sufficiently resolved. 

Using Alpert’s prediction of the maxima occurring within 1 – 2 % of the ceiling 

height as an estimate, the thickness of the boundary layer was assumed to be about 16 

cm.  This requires the grid cells to be about 1.6 cm, or about 31 million grid cells in a 

single mesh, which is technically and economically infeasible.  Hence, mesh 

stretching using polynomial transformation in the z-coordinate direction was applied 
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such that there are 10 grid cells within the retard layer.  The gird cell dimensions for 

the other two directions are 4 cm.  Polynomial transformation has the advantage that 

the grid cell sizes are gradually changed to ensure a smooth transition.  The 

drawbacks are that polynomial transformation is more difficult to define and the grid 

cell sizes vary throughout the entire range.  To ensure that the flow in the other 

regions of the ceiling jet is properly characterized, grid size of less than 10cm is 

prescribed to ensure that the transition of grid cells is not too drastic.  Furthermore, 

from Section 3.2, it is shown that predictions in this region with larger grid sizes 

show reasonable match to that of smaller grid sizes.  To ensure proper 

characterization of the near field flows near the fire source, the grid cells in that 

region are specified to be no more than 10cm such that there are 10 grid cells across 

the width of the line fire source. 

As a gird convergence study, simulations with larger grid sizes are also performed 

with a range of 2, 5 and 7 grid cells within the retard layer, all satisfying the criteria 

of 10cm within the ceiling jet region and 10 cm in the fire plume.  The simulation 

with 10 grid cells in the retard layer is used as a reference simulation.  Larger grid cell 

sizes ranging from 10 cm to 50 cm are also carried out.  For these simulations, the 

criteria of 10 cm grid cells in the ceiling jet flow region are not met as it would result 

in large transformation of the grid cells, which is not recommended.  However, the 

criterion of 10 cm grid cells in the fire plume is satisfied in order to ensure that the 

upstream flow of the ceiling jet is properly characterized.  The no-slip boundary 

condition is applied to all simulations to maintain consistency, although for larger 
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grid cell sizes, a partial slip condition is more appropriate.  Details of the simulations 

are shown in Table 3-1. 

Table 3-1: Details of simulations for boundary layer flow 

 Retard Layer Ceiling Jet Region 

Simulation No. of cells Average grid cell size (cm) Average grid cell size (cm) 

Reference 10 1.6 5 

S2 7 2.3 5 

S3 5 3.2 5 

S4 2 6.5 6 

S5 1 10 11 

S6 1 15 15 

S7 - 20* 20 

S8 - 25* 24 

S9 - 30* 29 

S10 - 40* 39 

S11 - 50* 48 

*Size of the first grid cell at the ceiling 

 

Figure 3.8 and Figure 3.9 show the temperature profile at radial distance of 4m or r/H 

= 0.5.  From the temperature plot, predictions from simulations S2 to S9 are within 5 

% of the reference.  Prediction of the location of maximum temperature for the 

reference is at 9 cm from the ceiling.  Simulations S2 to S5 predicted it to be within a 

range of 7-13 cm from the ceiling.  Simulations with larger grid sizes predicted that 

the maximum temperature is at the ceiling.  In general for all the simulations, at 

distances further from the ceiling, there is better agreement with the reference. 
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Figure 3.8: Temperature profile for simulations reference and S2 to S5 at r/H=0.5 

 

Figure 3.9 Temperature profile for simulations S6 to S11 at r/H = 0.5  
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the maximum velocity to be further away from the ceiling. Similar to the temperature 

predictions, at distances further from the ceiling, there is better agreement with the 

reference. 

 

Figure 3.10: Velocity profile for simulations reference and S2 to S5 at r/H=0.5 

 

Figure 3.11: Velocity profile for simulations S6 to S11 at r/H = 0.5 

The temperature and velocity plots for the radial positions of r/H = 0.75, 1.0, 1.25, 1.5 

are also analyzed.  Details of these plots are shown in Appendix B.  From these 

temperature plots, the predictions from simulations S2 to S9 remained within 5 % of 
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the reference.  The location of the maximum temperature shifts further away from the 

ceiling as the radial distance increases.  At the furthest radial position, the prediction 

of the location of the maximum temperature from the reference simulation is a 

distance of 14 cm from the ceiling.  At further radial positions, simulations S6 to S9 

predicted that the location of maximum temperature is away from the ceiling.  In 

general, the predictions from the simulations with larger grid sizes have better 

agreement with the reference at further distances from the ceiling.  It is also observed 

that when the size of the grid cell is smaller than the distance between the location of 

the maximum temperature and the ceiling, the prediction of the magnitude of the 

maximum temperature improves, but the prediction of the location is largely 

determined by the grid cell size.   

From the velocity plots, predictions from all the simulations fall within 10% of the 

reference as the radial distance increase.  Similar to the temperature predictions, the 

location of the maximum velocity shifts further away from the ceiling as the radial 

distance increases.    At the furthest radial position, the prediction of the location of 

the maximum velocity from the reference simulation is a distance of 25 cm from the 

ceiling.  At distances further from the ceiling, the predictions from the simulations 

with larger grid cells show better agreement with the reference.  At further radial 

positions, the prediction of the magnitude of the maximum velocity for simulations 

S2 to S9 is in very good agreement with the reference, while the location of the 

maximum velocity is very much determined by the grid cell size.  From the various 

plots, we observe that a grid size of up to 25 cm, equivalent to 3.1% of ceiling height, 

is able to give good predictions of both temperature and velocity.  At larger radial 
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distances, r/H > 0.5, grid cell size of up to 30 cm, equivalent to 3.8% of ceiling 

height, gives reasonably good predictions for both temperature and velocity compared 

to the reference simulation.  If proper resolution of the retard layer, i.e. the flow layer 

between the ceiling and the location of the maximum, is required, much smaller grid 

sizes are required.  

Due to the variation in the temperature and velocity predictions at and near the ceiling 

surface, it would be interesting to see how convective heat transfer to the surface of 

the ceiling varies due to the difference in grid sizes.  Convective heat flux is 

calculated using the gas temperature and velocity values at the center of the cell 

adjacent to the solid surface using the following expression, 

 �̇�𝑞𝑄𝑄
" = ℎ�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙� (3-17) 

The heat transfer coefficient is determined by the greater of the two values in the 

brackets of equations (3-9) 

 ℎ𝑄𝑄 = �𝐶𝐶�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙 �
1
3 , 𝑘𝑘

𝐿𝐿
0.037 𝑅𝑅𝑒𝑒

4
5  𝑃𝑃𝑟𝑟

1
3� (3-18) 

where C is the coefficient of natural convection with a value of 1.52 for a horizontal 

surface and 1.31 for a vertical surface.   

From Figure 3.12, for simulations up to S3, the convective heat fluxes are virtually 

equal.  As the grid cell sizes increase, the predicted convective heat fluxes increase.  

This is mainly due to the significantly larger values of velocity predicted when using 

a larger grid size.  From Figure 3.12, we can draw a conclusion that there should be at 
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least 5 grid cells within the retard layer, which has a thickness of approximately 0.02 

h, to give a good prediction of the convective heat flux to the ceiling.  This translates 

to approximately grid cell sizes of 0.004 h.  However, using such a small grid size is 

impractical due to the long computational time and excessive computational resources 

required. 

 

Figure 3.12: Plot of Convective heat flux with radial distance 

 In practical applications, FDS can be used to determine the response time of 

detectors or sprinklers.  The response of detectors and sprinklers depends on the 

convective heat transfer to the detector element.  Heskestad et al. (73)  proposed the 

use of a time constant, 𝜏𝜏 to describe this heat transfer, 

 𝜏𝜏 = 𝐶𝐶𝑄𝑄𝑚𝑚
ℎ𝑄𝑄𝐴𝐴

 (3-19) 

The characteristics of a given detector can be expressed using the response time 

index(73), 

 𝑅𝑅𝑇𝑇𝑅𝑅 = 𝜏𝜏𝑢𝑢1/2 (3-20) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.40 0.60 0.80 1.00 1.20 1.40

Co
nv

ec
ti

ve
 H

ea
t 

Fl
ux

 (k
W

/m
2)

r/H(dimensionless)

Reference

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11



 

   72 
 

The response time of a detector is given by 

 𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑇𝑇𝑅𝑅
𝑢𝑢1/2 𝑙𝑙𝑙𝑙 �

𝑇𝑇−𝑇𝑇∞
𝑇𝑇−𝑇𝑇𝑟𝑟

� (3-21) 

From the temperature and velocity profiles, the response time can be calculated for 

typical detectors and sprinkler.  Table 3-2 shows the calculated response time, for the 

different simulations, of a typical heat detector with RTI of 50 and rated operating 

temperature of 57°C located 10cm below the ceiling and a typical sprinkler with RTI 

of 80 and operating temperature of 68 °C located 20 cm below the ceiling, at radial 

distance of 4 m (r/H = 0.5).   

Table 3-2: Variation in response time for typical heat detector 

Simulation 
Heat detector Sprinkler 

Response time 
tr 

Variation from S1 Response 
time tr 

Variation from S1 
Absolute Percentage Absolute Percentage 

Reference 15.76 -  - 37.48  - - 
S2 16.46 0.69 4% 38.22 0.74 2% 
S3 15.81 0.05 0% 37.93 0.45 1% 
S4 17.96 2.20 14% 40.65 3.17 8% 
S5 16.88 1.11 7% 38.43 0.95 3% 
S6 17.28 1.52 10% 39.89 2.41 6% 
S7 19.65 3.89 25% 40.76 3.28 9% 
S8 20.82 5.06 32% 43.98 6.50 17% 
S9 23.35 7.58 48% 50.16 12.68 34% 

S10 27.11 11.35 72% 60.46 22.98 61% 
S11 29.41 13.65 87% 67.32 29.83 80% 

 

From Table 3-2, the calculated response time increases with an increase in grid cell 

size, with the exception of S3 and S5, which has a lower response time than S2 and 

S4, respectively.  The increase in response time is explained by the lower temperature 
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and velocity predicted by the simulations with larger grid cells at those specific 

locations.  In general, the simulations with larger grid cells predict lower temperature 

and velocity at locations in the ceiling jet region beyond the retard layer.  Simulation 

S2 to S6 has calculated response times that deviate less than 15 % from that of the 

reference.  Although the percentage deviation of the simulations with larger grid cells 

is high, the maximum deviation in the actual response time is less than 30s.  

Furthermore, a longer calculated response time leads to a more conservative design. 

In conclusion, a very small grid cell of about 0.4 % of the ceiling height is required in 

order to have grid convergence for the prediction of the convective heat flux at the 

ceiling.  Simulations with grid cell size of about 10cm, which corresponds to about 

1.25 % of the ceiling height, give predictions of the location of maximum temperature 

and velocity that agrees well with that of the reference simulation.  Simulations 

carried out with grid cell sizes of up to 25 cm, corresponding to about 3 % of the 

ceiling height, gives predictions of temperature and velocity within 10 % to that 

predicted by the reference simulation, for radial distance of half the ceiling height.  At 

further radial distances, the grid cell size can be increased to 3 cm or about 4 % of the 

ceiling height with similar accuracy.  This conclusion is drawn from this simulation 

with an infinite line fire source and should only be used as a rough guide in 

determination of the most effective grid cell size to use for other simulation.  A grid 

convergence study is recommended prior to the start of actual simulation. 
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3.3.3 Simplified case of boundary layer flow 

In the previous study of the ceiling jet, there is a need to ensure that the fire source is 

properly resolved so that the conditions at the ceiling jet are consistent for the 

different simulations.  Due to the use of polynomial mesh stretching, it was not 

possible to ensure that the grid sizes in the plume are identical, though efforts are 

made to ensure that the fire source is properly resolved by having at least 10 grids 

across the fire source.  Therefore, a simplified scenario of a vent supplying hot air just 

beneath the ceiling was used to simulate the flow of a ceiling jet. 

A single mesh is used to define the 1.6 m long, 0.3 m tall and 0.1 m deep domain.  

The upper boundary of the domain is the isothermal ceiling and one of the vertical 

boundaries was defined as a wall with a vent to discharge hot air, such that the hot air 

jet can develop for a distance of 1.6m beneath the ceiling.  Similar to the previous 

study, the ceiling was given a no-slip boundary condition.  The size of the vent is 0.1 

m deep and 0.1 m tall and discharges hot air at 100 °C with a velocity of 2 m/s.  

These properties are selected such that the ceiling jet resembles that from a 1/10th 

scale model with 1m tall ceiling and a 10 kW fire.  Hence, the maximum temperature 

and velocity are expected to be located within 1 – 2 cm from the ceiling.  

A series of simulations, shown in Table 3-3 are carried out as a grid sensitivity study.  

In order to resolve the boundary layer which is expected to be located within 1 – 2 cm 

from the ceiling, 10 grid cells were specified within the first 1 cm from the ceiling for 

the reference simulation.  Polynomial transformation for the z-coordinate direction is 

employed to ensure that the sizes of the grid cells are transformed gradually.  The 



 

   75 
 

other two dimensions of the grid cells are kept constant at 4 mm.   For simulations 

with larger grid cells, transformation was not applied as the total number of grid cells 

in the domain was possible to allow running the simulation on a single processor.   

Table 3-3: Details of simulations for simplified boundary layer flow 

 First 10mm from ceiling 
Simulation No. of cells Average grid cell size (mm) 
Reference 10 1 

SA2 7 1.44 
SA3 5 2 
SA4 3 3.4 
SA5 2 5 
SA6 1 10 
SA7 - 20 
SA8 - 30 
SA9 - 50 

 

Figure 3.13 shows the temperature profile at a distance of 0.8 m from the vent.  The 

reference simulation and simulations SA2 to SA4 predict the location of maximum 

temperature to be within the range of 7 – 9 mm from the ceiling.  The predicted 

location of the maximum depends on the size of the grid cell.  For simulations SA6 to 

SA9, the predicted maximum temperature is at the ceiling.  With the exception of the 

first grid cell adjacent to the ceiling, predictions from SA2 to SA8 are generally 

within 15 % of the reference simulation.   In general, the predictions from simulation 

with larger grid cell sizes improve as the distance from the ceiling increases.  

However, when the grid cell size is too large, e.g. simulation SA9, poor agreement 

with the reference simulation is observed.  If the thickness of the flow layer is defined 

in a similar manner as that for a ceiling jet, then using the data from the reference 
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simulation, the thickness is about 36 mm.  Hence, when the grid size is larger than the 

thickness of the flow layer, we should expect poor prediction of temperature. 

 

Figure 3.13: Temperature profile for simulations reference and SA2 to SA4 at 0.8 m 

 

Figure 3.14: Temperature profile for simulations SA5 to SA9 at 0.8 m 

From the plot of the velocity profile in Figure 3.15, the reference simulation and 

simulations SA2 to SA6 predict the location of maximum temperature to be within 

the range of 8 – 10 mm from the ceiling.  For SA7, the maximum is located at the 

second grid cell from the ceiling while SA8 and SA9 predicted the maximum velocity 
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at the ceiling.  Again the predicted location of the maximum largely depends on the 

size of the grid cell.  The magnitude of the maximum velocity predicted by SA3 to 

SA6, which ranges from 0.79 – 0.85 m/s, is about 20 % lower than that of the 

reference.  For coarser grid cells, the magnitude of the maximum velocity is less than 

half of the reference.  In this case, both the magnitude and location of the maximum is 

very dependent on the grid cell size.  For distances further from the ceiling, the 

agreement with the reference improves.  Similar to that observed in the temperature 

plot, SA9 shows poor agreement with the reference.  

 

Figure 3.15: Velocity profile for simulations reference and SA2 to SA5 at 0.8 m 

 

Figure 3.16: Velocity profile for simulations SA5 to SA9 at 0.8 m 
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Similar analyses were also performed for distances of 0.4 m, 1.2 m and 1.6 m.  

Details of the plots are shown in Appendix C.  The flow layer thickness, temperature 

and velocity are reduced as the distance increases.  Due to the reduced thickness of 

the flow layer at further distances, the prediction from simulations with larger grid 

cells show poorer agreement with the reference.  This is in contrast with ceiling jet 

simulations which show better agreement at further radial distance due to the 

increasing thickness of the ceiling jet. 

In this study, grid convergence was not observed.  The predictions from simulations 

with larger grid sizes were also in poorer agreement as compared to the ceiling jet 

study.  This can be attributed to the thinner flow layer with respect to the grid cell 

sizes.  The thinner flow layer causes larger temperature and velocity gradients in the 

vertical orientation.  We can also conclude that another important factor in the 

selection of grid cell size is the thickness of the flow layer.  In order to achieve 

reasonable prediction of temperature or velocity, the grid cell has to be smaller than 

the thickness of the flow layer or the ceiling jet.  To err on the safe side, it is 

suggested to have 2 – 3 grid cells within the thickness of the calculated flow layer.  

Since ceiling jets have thickness of about 10 – 12 % of the ceiling height (17), the 

previously recommended grid cell size of 4 % of the ceiling height would ensure that 

there are at least 2 – 3 grid cells within the ceiling jet.   

3.3.4 Werner and Wenger Wall Model 

The inclusion of the Werner and Wenger wall model in FDS version 5.4 improves the 

prediction of near wall velocity.  As the simulations in this research have been carried 
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out using FDS version 5.2, an analysis is performed to compare the differences in the 

predictions.  Figure 3.17 shows the predicted velocity profiles at r = 0.8 m, from FDS 

version 5.4 plotted with those from FDS version 5.2 with no slip boundary condition 

and default partial slip boundary condition.  The predictions with no slip and default 

boundary conditions are about 5 % and 20 % lower than those from FDS version 5.4, 

respectively.  The predicted location of the maxima is the same. 

 

Figure 3.17: Velocity profiles for reference simulation with WW wall model 

Figure 3.18 shows that the deviation in temperature profile is much greater than the 

velocity profile.  The predictions from with no slip and default boundary conditions 

are about 29 % and 37 % lower than those from FDS version 5.4, respectively.  The 

predicted location of the maxima is also different, 3 mm from the ceiling for FDS 

version 5.4 compared to 8 mm from the ceiling for that from version 5.2. 
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Figure 3.18: Temperature profiles for reference simulation with WW wall model 

Using the values of temperature and velocity of the first grid cell away from the wall, 

the value of 𝑧𝑧+ is calculated using Equation 3-2, which yields 3.57, 3.63 and 4.23 for 

FDS version 5.2 with no slip boundary condition, FDS version 5.4 and FDS version 

5.2 with default boundary condition.  Since these values are within the viscous sub-

layer, it gives confidence that the boundary layer is well-resolved in all cases and the 

no slip boundary condition should be applicable.   

The large deviation in the predicted temperatures at near wall locations raises the 

question of the applicability of the heat transfer model.  In this case, the model for 

convective heat transfer to the wall is the same for both FDS versions.  While the heat 

transfer model may be suitable for LES calculations in previous FDS versions, it may 

not be suitable for the current version with the WW wall model, especially for this 

case where the grid cell sizes are small.   
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4. CFD Modeling of Small-Scale Balcony Spill Plume 

FDS was used to model the small-scale experiments carried out by Harrison (50).  

The purpose of modeling the small-scale experiments is to validate the FDS 

predictions with the experimental data, as well as performing a grid sensitivity 

analysis that could be adopted for modeling a typical compartment fire on a full scale.  

The optimum grid cell size for modeling ceiling jets was determined in Section 3 to 

be about 3.8% of the ceiling height.  It is expected that the optimum grid cell size for 

modeling compartment fires to be about the same. 

4.1 CFD modeling description 

4.1.1 Geometry of fire compartment 

The modeled fire compartment has a floor area of 1 m x 1 m and height of 0.5 m.  

The width of the compartment opening is 0.6 m and a balcony of 0.3 m breadth 

projects horizontally from the compartment opening.  Channeling screens of 0.2 m 

depth are used to prevent the lateral spread of smoke under the balcony.   

The walls of the fire compartment are described as fiber insulation boards with 

thickness of 25 mm.  The balcony and channeling screens are described as fiber 

insulation boards of 10 mm thickness.  The boards were given the following 

properties from Drysdale (75): 

 𝑘𝑘 = 0.041𝑊𝑊/𝐶𝐶.𝐾𝐾 
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 𝜌𝜌 = 229𝑘𝑘𝑔𝑔/𝐶𝐶3 

 𝑄𝑄𝑚𝑚 = 2.09𝑘𝑘𝑘𝑘/𝑘𝑘𝑔𝑔.𝐾𝐾 

A schematic diagram of the modeled fire compartment is shown in Figure 4.1. 

 

Figure 4.1 Schematic diagram of modeled fire compartment 

4.1.2 Initial Computational domain 

The initial computational domain is defined as 1.8 m in length, 1.2 m in depth and 0.6 

m in height, extending 0.1 m beyond the three walls of the fire compartment and 0.5 

m beyond the spill edge.  This computational domain will be varied at a later stage to 

study the sensitivity of domain sizes on predictions. With a uniform grid cell size of 

25 mm, the initial computational domain is divided into 82.944 uniform grid cells.  

With the exception of the lower boundary, all the exterior boundaries of the domain 
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were set as “OPEN”, which is defined as a passive opening to the outside at ambient 

conditions, where the ambient temperature is 20 °C.   

4.1.3 Fire source 

The fire source is defined as an obstruction with floor area of 0.14 m and 0.025 m in 

height, located 0.035 m from the rear wall.  The heat release rate per unit area is 

specified as 527 kW/m2, giving a total heat release rate of 10.3 kW.  This equates to a 

full-scale heat release rate of 3257 kW.  Since the experiment was performed by 

burning ethanol, the radiative fraction of 0.25 was used (76).  It is noted that the fire 

tray in the experiment was positioned such that the corner of the tray was pointed 

towards the rear wall, as shown by the dashed lines in Figure 4.1.  As compared to the 

modeled fire source in FDS, there is increased entrainment into the plume as the sides 

of the fire tray are further from the rear walls.  Furthermore, there are only 1 – 2 grid 

cells between the wall and the modeled fire source in FDS, which could result in the 

entrainment effects being poorly resolved.  Hence, an additional set of simulations, 

with the fire source located in the center of the fire compartment, was carried out to 

ensure that the entrainment from all four sides of the fire source is not constrained.   

4.1.4 Instrumentations 

In the small-scale experiments, gas temperatures and velocities are measured at the 

spill edge in the vertical and lateral orientation to determine the vertical profile and 

uniformity across the spill edge, respectively.  Similar to the experiments, gas 

temperatures and velocities are measured at these locations.  To determine the vertical 
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temperature and velocity profile, predictions are made at intervals of 10mm at the 

center of the spill edge for the first 0.2 m below the spill edge.  The interval is 

increased to 20 mm between 0.2 m and 0.3 m below the spill edge and 50 mm for the 

remaining distance.  For the lateral variation in temperatures and velocities, 

predictions are made at regular intervals of 50 mm at 10 mm below the spill edge. In 

addition to the temperature and velocity measurements, mass flow rates are predicted 

at the compartment opening and spill edge by specifying a vertical plane over the 

flow area at the respective locations. All predictions are logged at 0.5 s intervals.  A 

simulation time of 900 s was specified to allow the conditions to achieve steady state. 

4.1.5 Series of FDS simulations for grid sensitivity analysis 

A series of simulations is carried out using various grid cell sizes to determine the 

optimum grid cell size for subsequent simulations to be carried out in the full-scale.  

The series of simulations includes grid cell sizes from 10 mm to 25 mm, equivalent to 

2 % to 5 % for the ceiling height.  Larger grid cell sizes were not examined as it was 

concluded that they do not give predictions that were satisfactory (50).   The 

simulations are listed in Table 4-1. 

Table 4-1: List of simulations for small-scale modeling 

Simulation Location of 
fire source 

Grid Size Total grid 
cells (mm) (% of H) 

SC61 Experiment 25 5 82,944 
SC61C Center 25 5 82,944 
SC62 Experiment 20 4 162,000 
SC62C Center 20 4 162,000 
SC63 Experiment 15 3 384,000 
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Simulation Location of 
fire source 

Grid Size Total grid 
cells (mm) (% of H) 

SC63C Center 15 3 384,000 
SC64 Experiment 10 2 576,000 
SC64C Center 10 2 576,000 

4.1.6 Error Analysis  

The FDS predictions are time averaged over the sampling period once steady state 

conditions are achieved.  The results are determined in terms of time-averaged mean 

values with associated standard errors.  The standard error is determined by dividing 

the standard deviation of the sample by the square root of the sample population.  The 

standard deviation is determined using the relevant function in Microsoft Excel. 

4.2 Results of FDS simulations 

The fire source was prescribed as a steady state source and the maximum heat release 

rate was achieved in less than 3 s.  However, the flow properties may not achieve 

steady state until a much later time.  In this study, the mass flow rate is the flow 

property of interest and the time variation of mass flow rate is plotted to determine 

the time required for steady state conditions. 

4.2.1 Mass flow rate at spill edge 

Figure 4.2 and Figure 4.3 show the variation of mass flow rate of hot gases at the spill 

edge for the simulations performed for the grid sensitivity analysis.  A 50-point 

moving average was applied to the predicted mass flow rate to smooth the 
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fluctuations.  Steady state is observed for all simulations after approximately 700 s, 

thus all relevant data are time-averaged from 700 – 900 s. 

 

Figure 4.2: Mass flow rate at spill edge for fire source at rear of compartment 

 

Figure 4.3: Mass flow rate at spill edge for fire source at center of compartment 

From Figure 4.2, the predicted mass flow rates are significantly lower than the mass 

flow rate calculated from the experimental data. The predicted mass flow rate 

decreases as the grid cell size is reduced and those for simulations SC63 and SC64 

are very similar. 
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The predicted mass flow rates in Figure 4.3 are significantly larger than those in 

Figure 4.2, but still 5 – 17 % lower than the experimental mass flow rate.  A greater 

amount of fluctuation is observed as compared to Figure 4.2.  Similar to that observed 

in Figure 4.2, predicted mass flow rates decreases as the grid cell sizes are reduced 

and the predicted mass flow rates for simulations SC63C and SC64C are very similar. 

4.2.2 Velocity vectors at the fire source 

To investigate the different mass flow rates for simulations with fire source at 

different locations, velocity vectors for the two scenarios are analyzed.  From Figure 

4.4, the distance between the rear wall and the fire source is equivalent to 1 grid cell.  

The velocity in that space between the rear wall and fire source is predominantly in 

the vertical direction.  Therefore, it can be considered that there is no entrainment 

from the rear of the fire source.  The door jet effect can be observed from the 

horizontal vectors on the front end of the fire source, but the plume axis remains 

fairly straight due to the proximity of the rear wall. 

 

Figure 4.4: Velocity vectors for fire source at rear of compartment 
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Figure 4.5 shows that the door jet has a more significant effect as compared to the 

former scenario, causing the plume axis to tilt towards the rear of the compartment.  

Entrainment from both front and rear end of the plume can be observed from the 

horizontal vectors close to the vertical vectors of the plume.  Therefore the combined 

effects of increased entrainment due to the door jet causing the tilt of the plume and 

entrainment from all sides of the plume results in a higher mass flow rate for 

simulations with fire source in the center of the compartment. 

 

Figure 4.5: Velocity vectors for fire source at center of compartment 

4.2.3 Excess temperature profile below spill edge 

Figure 4.6 and Figure 4.7 show the predicted excess temperature profile at the center 

of the spill edge.  In Figure 4.6, the predicted temperatures closer to the ceiling are 

significantly higher than the experimental data.  At further distances, the predicted 

temperatures are lower and the predicted depth of the flow layer is smaller.  The 

higher temperature and the smaller depth of the flow layer is due to the lower 

predicted mass flow rate for fire sources in the rear of the compartment. 
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Figure 4.6: Excess temperature at spill edge for fire source at rear of compartment 

 

Figure 4.7: Excess temperature at spill edge for fire source at center of compartment 

Figure 4.7 shows that the predicted temperature profiles for simulations with the fire 

source in the center of the compartment are in good agreement with the experimental 

data.  Most of the predictions are within 10 % of the experimental data and the 

predicted depth of the flow layer is within 2 cm of the experimental data.   
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4.2.4 Velocity profile below spill edge 

Figure 4.8 and Figure 4.9 show the predicted velocity profile at the center of the spill 

edge.  In Figure 4.8, the predicted velocities are lower and the depths of the flow 

layer are smaller than the experimental data.  Combined with the higher temperature 

observed in Figure 4.6, it is consistent with lower mass flow rates. 

 

Figure 4.8: Velocity at spill edge for fire source at rear of compartment 

Similar to the case of temperature profile, simulations with the fire source in the 

center of the compartment show good agreement with the experimental data.  Most of 

the predictions are approximately 10 % lower, hence the lower mass flow rates 

observed in Figure 4.3.  Although the position of the fire source is different from the 

experimental setup, the entrainment effects and mass flow rates are more accurately 

replicated. 
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Figure 4.9: Velocity at spill edge for fire source at center of compartment 

4.2.5 Lateral temperature and velocity profile across spill edge 

Next, we analyze the lateral temperature and velocity profiles across the spill edge to 

determine the variation of flow properties across the spill edge.  Mass flow rates from 

experiments are calculated based on the assumption of uniform temperature and 

velocity across the flow plane using Equation 4-1 below. 

 �̇�𝐶𝑧𝑧 = 𝑊𝑊𝑧𝑧 ∫ 𝜌𝜌𝑢𝑢(𝑧𝑧)𝑑𝑑𝑧𝑧𝑑𝑑𝑧𝑧
0  (4-1) 

Where the density of the hot gases is obtained from its temperature as follows: 

 𝜌𝜌 = 𝜌𝜌∞
𝑇𝑇∞
𝑇𝑇

 (4-2) 

The depth of the smoke layer is obtained visually or from the velocity profile. 

Figure 4.10 shows the variation in temperature across the spill edge.  While the 

temperature variation for the simulations with the fire source in the center of the 
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compartment remains fairly constant across the spill edge, those for simulations with 

the fire source at the rear of the compartment vary by approximately 7 %. 

 

Figure 4.10: Temperature profile across spill edge 

Figure 4.11 shows the temperature contours across the spill edge for simulation SC64 

at 800 s, which is typical for flows during the steady state period.  It can be seen that 

the temperature is not entirely uniform across the spill edge.  Lower temperatures are 

observed at the interface with the wall surfaces and the contours have rounded 

corners (shown by the black arrows) leading to lower temperatures near the wall as 

compared to the flow away from the wall.   The wavy contours at the bottom surface 

of the flow layer suggest that the flow depth varies across the spill edge.  However, 

this phenomenon is transient and the use of time-averaged data filters out the 

variations. 
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Figure 4.11: Temperature contours across spill edge for simulation SC64 at 800s 

Figure 4.12 shows the variation in velocity across the spill edge.  With the exception 

of simulations SC61 and SC61C, all simulations show an approximate 5 % reduction 

in velocity at the sides as compared to that in the middle.  Thus, with a grid cell size 

of 25 mm, the effect of the wall on the velocity is not evident at a distance of 50 mm 

from the wall. 

 

Figure 4.12: Velocity profile across the spill edge 
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Figure 4.13 shows the velocity contours for simulation SC64 at 800 s.  The velocity 

contours are very similar to the temperature contours but the wall effects are more 

pronounced.  The red band, showing areas where the velocity is in excess of 1 m/s, is 

much thicker in the center than at the sides.  At 30 mm from the ceiling, the velocity 

at 45 mm away from the wall (shown by the black arrows) may be about 0.8 m/s or 

80 % of the velocity in the center region.   

 

Figure 4.13: Velocity contours across spill edge for simulation SC64 at 800 s 

Therefore, the assumption of uniformity of flow properties across the spill edge and 

calculation of the mass flow rate using Equation 4-1 would generally result in an 

overestimation.  A comparison of mass flow rate calculated using Equation 4-1 and 

using the FDS function of “MASS FLOW +” is shown in Table 4-2. 

Table 4-2: Comparison of Mass Flow Rates  

Simulation 
Mass Flow Rate, �̇�𝐶𝑧𝑧  (kg/s) % 

difference 

% difference from 
experiment after 

correction FDS Equation 4-1 

SC61 0.040 0.039 -2.5 -32.8 
SC61C 0.054 0.056 3.7 -3.4 
SC62 0.039 0.039 0 -32.8 
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Simulation 
Mass Flow Rate, �̇�𝐶𝑧𝑧  (kg/s) % 

difference 

% difference from 
experiment after 

correction FDS Equation 4-1 

SC62C 0.052 0.055 5.8 -5.1 
SC63 0.039 0.040 8.1 -31.0 
SC63C 0.048 0.049 2.1 -15.5 
SC64 0.040 0.041 10.8 -29.3 
SC64C 0.049 0.051 4.1 -12.1 

 

With the exception of simulations SC61 and SC62, the mass flow rate calculated 

using Equation 4-1 is higher than that calculated directly by FDS.  For the majority of 

these cases, the calculated mass flow rate is at least 5 % higher.  When “corrected” 

using Equation 4-1 as shown in the last column of table, the mass flow rates for 

simulations SC61C and SC62C are within 5.1 % of the experimental value of 0.058 

kg/s.   

4.2.6 Grid sensitivity Analysis 

The mass flow rates at the compartment opening and spill edge for all the 

simulations, averaged over the time period of 700 – 900 s are presented in Table 4-3.  

The percentage difference between each simulation with simulation SC64 or SC64C 

are also computed to show the sensitivity of mass flow rates to the grid cell sizes. 

Table 4-3: Mass flow rate at compartment opening and spill edge 

Simulation 
Approximate 
CPU Runtime 

(h) 

Mass Flow Rate (kg/s) Difference (%) 

�̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 �̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 

SC61 13 0.040 ± 0.0001 0.043 ± 0.0001 8.1 7.5 
SC62 39 0.039 ± 0.0001 0.041 ± 0.0001 5.4 2.5 
SC63 94 0.037 ± 0.0001 0.039 ± 0.0001 0 -2.5 
SC64 200 0.037 ± 0.0001 0.040 ± 0.0001 - - 
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Simulation 
Approximate 
CPU Runtime 

(h) 

Mass Flow Rate (kg/s) Difference (%) 

�̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 �̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 

SC61C 13 0.049 ± 0.0001 0.054 ± 0.0001 4.3 10.2 
SC62C 39 0.049 ± 0.0001 0.052 ± 0.0001 4.3 6.1 
SC63C 94 0.045 ± 0.0001 0.048 ± 0.0001 -4.2 2.0 
SC64C 200 0.047 ± 0.0001 0.049 ± 0.0001 - - 

 

Predictions from simulations SC63 and SC63C show very good agreement with SC64 

and SC64C (less than 5 % deviation).  Predictions from simulations SC62 and SC62C 

have a maximum deviation of about 6 % from SC64 and SC64C, respectively.  

Hence, the use of grid cell sizes of 10 mm, 15 mm and 20 mm do not yield significant 

difference in the mass flow rate of the hot gases at the compartment opening and spill 

edge.  Comparing the CPU runtime, using 20 mm grid cell sizes (4 % of ceiling 

height) would be the prudent choice, which corroborates the recommendation in 

Section 3.3.2.  Furthermore, it was shown in Section 4.2.5 that the mass flow rate for 

the simulation with 20 mm grid cell size is within 5.1 % of the experimental data 

when derived using Equation 4-1. 

From the analysis, positioning the fire source in the center of the compartment yields 

a higher entrainment rate and presents a more conservative design approach.  

Therefore, the fire source in subsequent simulations is prescribed such that they are 

located in the center of the compartment.   

4.3 Domain size sensitivity analysis 

A series of simulations were carried out to determine the optimal domain size for 

modeling the balcony spill plume.  The geometry of the fire compartment, fire source 
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and instrumentation is similar to that described in Section 4.1.  An additional 

prediction for mass flow rate was made for the rotated flow by using the “MASS 

FLOW+” function over a horizontal plane that projects 0.2 m in the lateral direction 

on each side of the channeling screens and from the spill edge to the end of the 

computational domain in the longitudinal direction.  Table 4-4 shows the list of 

simulations for this study. 

Table 4-4: List of simulations for domain size sensitivity analysis 

Simulation 
Domain size Distance 

beyond spill 
edge (m) 

Total number 
of grid cells Length (m) Depth (m) Height (m) 

SC62B 2 1.6 0.8 0.7 320,000 
SC62B1 2.2 1.6 0.8 0.9 352,000 
SC62B2 2.5 1.6 0.8 1.2 400,000 
SC62B3 2.2 1.6 1.0 0.9 440,000 
SC62B4 2.5 1.6 1.0 1.2 500,000 

 

Table 4-5 shows that the maximum deviation in the predicted mass flow rates for all 

areas is less than 3 %.  Hence, the optimum domain size is the smallest domain size, 

which is simulation SC62B. 

Table 4-5: Mass flow rates for domain size sensitivity analysis 

Simulation 
Mass Flow Rate (kg/s) 

�̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0 

SC62B 0.049 ± 0.0001 0.052 ± 0.0001 0.076 ± 0.0001 
SC62B1 0.049 ± 0.0001 0.052 ± 0.0001 0.075 ± 0.0001 
SC62B2 0.049 ± 0.0001 0.052 ± 0.0001 0.076 ± 0.0001 
SC62B3 0.049 ± 0.0001 0.053 ± 0.0001 0.077 ± 0.0001 
SC62B4 0.049 ± 0.0001 0.053 ± 0.0001 0.076 ± 0.0001 
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4.4 Full-scale simulations 

The analysis carried out in the previous section gives confidence to the use of FDS in 

the simulation of small-scale balcony spill plume experiments.  Due to a lack of 

suitable data for full-scale experiments, a useful comparison cannot be made.  As 

such, the results from small-scale simulations are scaled up and compared with results 

from equivalent full-scale simulations.  

Five simulations were performed using the equivalent full-scale dimensions of the 

fire compartment described in Section 4.1.1.  The Froude number scaling laws as 

described by Klote and Milke (3) and Quintiere (76) are as follows: 

 �̇�𝑄𝑄𝑄 ∝ 𝐿𝐿5/2  ⇒  �̇�𝑄𝑄𝑄,𝑓𝑓 = �̇�𝑄𝑄𝑄,𝐶𝐶 �𝐿𝐿𝑓𝑓
𝐿𝐿𝐶𝐶
�

5/2
 (4-3) 

 �̇�𝐶 ∝ 𝐿𝐿5/2 ⇒  �̇�𝐶𝑓𝑓 = �̇�𝐶𝐶𝐶 �𝐿𝐿𝑓𝑓
𝐿𝐿𝐶𝐶
�

5/2
   (4-4) 

 𝑢𝑢 ∝ 𝐿𝐿5/2 ⇒  𝑢𝑢𝑓𝑓 = 𝑢𝑢𝐶𝐶 �𝐿𝐿𝑓𝑓
𝐿𝐿𝐶𝐶
�

5/2
   (4-5) 

The dimensions of the compartment for small-scale simulation are multiplied by a 

factor of 10 to yield the full-scale dimensions.  The equivalent full-scale fire size is 

obtained by multiplying the small-scale fire size by a factor of 105/2 which yields 

3,257 kW.  The size of the grid cells and computational domain are increased by a 

factor of 10, hence the total number of grid cells remains the same. 
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The predicted mass flow rates of these five simulations and comparison with the 

equivalent full-scale mass flow rate from small-scale simulations are shown in Table 

4-6. 

Table 4-6: Comparison of predicted mass flow rate from full-scale simulations with 

equivalent small-scale simulations 

Simulation 

Mass Flow Rate from full-
scale simulations (kg/s) 

Equivalent full-scale mass 
flow rate from small-scale 

simulations (kg/s) 
% Difference 

�̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 �̇�𝐶𝑚𝑚 ,𝑧𝑧=0 �̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 �̇�𝐶𝑚𝑚 ,𝑧𝑧=0 �̇�𝐶𝑤𝑤  �̇�𝐶𝑧𝑧 �̇�𝐶𝑚𝑚 ,𝑧𝑧=0 

FC61C 15.627 17.014 27.921 15.58 17.04 27.63 -0.31 0.16% -1.05 
FC62C 15.176 16.286 24.710 15.39 16.53 24.67 1.43 1.52% -0.17 
FC63C 13.510 14.396 20.246 14.18 15.06 20.91 4.93 4.62% 3.28 
FC64C 13.497 14.304 18.033 14.77 15.60 19.46 9.42 9.05% 7.93 

 

Table 4-6 shows that predictions from simulations FC61C and FC62C are in excellent 

agreement with the respective small-scale simulations of SC61C and SC62C.  The 

predicted full-scale mass flow rates are within 2 % of the equivalent mass flow rate 

from small-scale simulations.  As compared to the equivalent full-scale experimental 

mass flow rate of 18.34 kg/s, these predictions are 7 – 10 % lower.  By applying the 

correction as described in Section 4.2.5, the deviations are expected to be reduced. 

4.5 Conclusion 

It is discovered in this study that prescribing a fire source close to a wall resulted in a 

reduction in the mass flow rate of gases from the compartment opening.  This is 

caused by a reduced entrainment into the plume due to close proximity to the wall 

and insufficient grid cells between the wall and the fire source or plume to resolve the 
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flow field within that space.  Hence, the predicted mass flow rates are at least 30% 

lower than the experiment and temperature and velocity profiles were not consistent 

with the experiment.  By prescribing the fire in the middle of the compartment, the 

predicted mass flow rates are within 15 % of the experimental data. 

From analysis of the velocity and temperature contours at the spill edge, it is 

concluded that the flow is not uniform across the spill edge.  The experimental 

approach of using the temperature and velocity measurements at the center of the spill 

edge to calculate the mass flow rate generally result in an over prediction.  However, 

this was acceptable as it produces a conservative estimate and the error is deemed to 

be small.  By adopting the experimental approach of calculating the mass flow rate, 

the predictions from simulations with the fire source located in the middle of the 

compartment are within 3.4 to 15.5 % of the experimental data. 

The grid sensitivity analysis carried out in this section shows that a uniform grid cell 

size of 20 mm, equivalent to 4 % of the ceiling height of the compartment, gives 

reasonably good predictions of mass flow rates at the spill edge.  The domain size 

sensitivity analysis shows that an extension of 0.7 m in the longitudinal direction 

from the spill edge and 0.2 m in the lateral direction on each side of the channeling 

screens is sufficient to contain the entire flow field of the plume as it rotates around 

the spill edge. 

Predictions from full-scale simulations are 7 – 10 % lower than the equivalent full-

scale data for experiments.  By using the calculation approach for experiments, the 

deviation is expected to be reduced. 
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5. CFD Modeling of Full-Scale Balcony Spill Plume 

FDS was used to model full-scale balcony spill plume scenarios to analyze the 

entrainment processes of the hot gases as they flow from the fire compartment to the 

spill edge.   

5.1 CFD modeling description 

5.1.1 Geometry of fire compartment 

The dimensions of the fire compartment are 10 m long by 14 m wide and 5 m tall.  

Three compartment opening widths of 2.4 m, 4.8 m and 10 m are studied with three 

configurations of flat ceiling, and downstand depth of 1 m and 2 m.   Three balcony 

breadths of 3 m, 5 m and 8 m projecting horizontally from the compartment opening 

are also analyzed.  Two configurations of channeling screens are modeled.  In the first 

configuration, the channeling screens are placed such that the flow is fully channeled 

by the screens to prevent the spread of smoke under the balcony.  This requires the 

separation between the channeling screens to be the same as the width of 

compartment opening.  This configuration is termed “fully-channeled flows”.  In 

another configuration, there are no channeling screens, such that the smoke from the 

compartment opening is able to spread laterally unhindered beneath the balcony.  For 

these unchanneled flows, the width of the balcony is extended to 32 m to allow the 

lateral propagation of smoke.  For the last configuration, the channeling screens are 

placed wide apart, equal to the width of the compartment.  The smoke is only 
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partially constrained under the balcony as it is able to spread laterally to the extent of 

the screens.  This configuration, termed “partially-channeled flows” is closer to 

practical application commonly observed in shopping malls where the beams under 

the balcony are spaced at intervals equal to the compartment width.  The walls of the 

fire compartment are prescribed with the same properties as that in Section 4.1.1. A 

schematic drawing of the modeled fire compartment is shown in Figure 5.1. 

 

Figure 5.1: Schematic diagram of modeled fire compartment 

5.1.2 Computational domain 

The computational domain is defined as 20 m in length, 16 m in depth and 8 m in 

height for simulations with balcony breadth of 3 m.  For larger balcony breadths, the 

domain length is increased by the same change as the balcony breadth.  A uniform 
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grid cell size of 20 cm is adopted for all the simulations.  With the exception of the 

lower boundary, all the exterior boundaries of the domain were set as “OPEN”, which 

is defined as a passive opening to the outside at ambient conditions, where the 

ambient temperature is 20 °C.   

5.1.3 Fire source 

The heat release rates for the series of simulations are 1 MW, 2.5 MW and 5 MW.  

The fire source is modeled as an obstruction with a square footprint and 0.2 m height, 

with heat release rate per unit area of 625 kW/m2.  The floor area of the obstruction is 

varied to achieve the required heat release rates.  Similar to the simulations in Section 

4, the radiative fraction is prescribed as 0.25.   

5.1.4 Instrumentations 

Generally, the instrumentations for the full-scale simulations are similar to that of the 

small-scale simulations, with the exception that gas temperatures and velocities at the 

compartment opening are predicted as well.  All the predictions are logged at 

intervals of 0.5 s.  Predictions for the vertical temperature and velocity profiles are 

made at intervals of 0.2 m from 0.1 m below the compartment opening and spill edge 

to 0.5 m above the floor.  For the lateral profiles, predictions are made at intervals of 

0.5 m across the compartment opening and spill edge.  Additional predictions are also 

made at widths of 2.4 m and 4.8 m coinciding with the compartment opening widths.  

Mass flow rates are predicted at the compartment opening and spill edge.  To obtain 

the mass flow rate of the gas after the rotation region at the spill edge, a horizontal 
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plane is specified such that it projects from the spill edge to the domain boundary in 

the longitudinal direction and 2 m beyond each side of the channeling screen.  A 

simulation time of 600 s was specified to allow the conditions to achieve steady state. 

5.1.5 Series of FDS simulations 

The series of 69 simulations for fully-channeled flows is listed in Table 5-1. 

Table 5-1: List of simulations for fully-channeled flows 

Simulation Fire Size 
(kW) 

Compartment 
Opening width (m) 

Compartment 
Opening height (m) 

Downstand 
depth (m) 

Balcony 
breadth (m) 

F1 5000 10 5 0 3 
F2 5000 4.8 5 0 3 
F3 5000 2.4 5 0 3 
F4 5000 10 4 1 3 
F5 5000 4.8 4 1 3 
F6 5000 2.4 4 1 3 
F7 5000 10 3 2 3 
F8 5000 4.8 3 2 3 
F9 5000 2.4 3 2 3 

F10 5000 10 5 0 5 
F11 5000 4.8 5 0 5 
F12 5000 2.4 5 0 5 
F13 5000 10 4 1 5 
F14 5000 4.8 4 1 5 
F15 5000 2.4 4 1 5 
F16 5000 10 3 2 5 
F17 5000 4.8 3 2 5 
F18 5000 2.4 3 2 5 
F19 5000 10 5 0 8 
F20 5000 4.8 5 0 8 
F21 5000 2.4 5 0 8 
F22 5000 10 4 1 8 
F23 5000 4.8 4 1 8 
F24 5000 2.4 4 1 8 
F25 5000 10 3 2 8 
F26 5000 4.8 3 2 8 
F27 5000 2.4 3 2 8 
F1R 2500 10 5 0 3 
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Simulation Fire Size 
(kW) 

Compartment 
Opening width (m) 

Compartment 
Opening height (m) 

Downstand 
depth (m) 

Balcony 
breadth (m) 

F2R 2500 4.8 5 0 3 
F3R 2500 2.4 5 0 3 
F4R 2500 10 4 1 3 
F5R 2500 4.8 4 1 3 
F6R 2500 2.4 4 1 3 
F7R 2500 10 3 2 3 
F8R 2500 4.8 3 2 3 
F9R 2500 2.4 3 2 3 

F10R 2500 10 5 0 5 
F11R 2500 4.8 5 0 5 
F12R 2500 2.4 5 0 5 
F13R 2500 10 4 1 5 
F14R 2500 4.8 4 1 5 
F15R 2500 2.4 4 1 5 
F16R 2500 10 3 2 5 
F17R 2500 4.8 3 2 5 
F18R 2500 2.4 3 2 5 
F19R 2500 10 5 0 8 
F20R 2500 4.8 5 0 8 
F21R 2500 2.4 5 0 8 
F22R 2500 10 4 1 8 
F23R 2500 4.8 4 1 8 
F24R 2500 2.4 4 1 8 
F25R 2500 10 3 2 8 
F26R 2500 4.8 3 2 8 
F27R 2500 2.4 3 2 8 
F1RR 1000 10 5 0 3 
F4RR 1000 10 4 1 3 
F6RR 1000 2.4 4 1 3 
F7RR 1000 10 3 2 3 
F9RR 1000 2.4 3 2 3 
F10RR 1000 10 5 0 5 
F13RR 1000 10 4 1 5 
F15RR 1000 2.4 4 1 5 
F16RR 1000 10 3 2 5 
F18RR 1000 2.4 3 2 5 
F19RR 1000 10 5 0 8 
F22RR 1000 10 4 1 8 
F24RR 1000 2.4 4 1 8 
F25RR 1000 10 3 2 8 
F27RR 1000 2.4 3 2 8 
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A series of 9 simulations for partially-channeled flows is listed in Table 5-2. 

Table 5-2: List of simulations for partially-channeled flows 

Simulation Fire Size 
(kW) 

Compartment 
Opening width (m) 

Compartment 
Opening height (m) 

Downstand 
depth (m) 

Balcony 
breadth (m) 

F1F 5000 10 5 0 3 
F2F 5000 4.8 5 0 3 
F3F 5000 2.4 5 0 3 
F4F 5000 10 4 1 3 
F5F 5000 4.8 4 1 3 
F6F 5000 2.4 4 1 3 
F7F 5000 10 3 2 3 
F8F 5000 4.8 3 2 3 
F9F 5000 2.4 3 2 3 

 
 

Three simulations are performed for unchanneled flows as listed in Table 5-3 below. 

Table 5-3: List of simulations for unchanneled flows 

Simulation Fire Size 
(kW) 

Compartment 
Opening width (m) 

Compartment 
Opening height (m) 

Downstand 
depth (m) 

Balcony 
breadth (m) 

F1F 5000 10 5 0 3 
F2F 5000 4.8 5 0 3 
F3F 5000 2.4 5 0 3 
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6. Results 

Results of the series of FDS simulations described in Section 5.1.5 are presented in 

this section. 

6.1 Onset of steady state conditions 

The mass flow rates at the compartment opening, spill edge and of the rotated flow 

are used to determine the onset of steady state.  Figure 6.1 shows the mass flow rates 

for a wide compartment opening (10 m) without downstand and balcony breadth of 3 

m.  The mass flow rates at the compartment opening and spill edge reached steady 

conditions after approximately 180 s.  The mass flow rate of the rotated flow shows 

greater fluctuation.  Reasonably steady conditions are achieved after 300 s.  To ensure 

that steady state conditions are achieved for all other simulated scenarios, data of 

interest are time-averaged from 400 – 600 s.   

 

Figure 6.1: Mass flow rate for narrow compartment opening with 2 m downstand 
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6.2 Uniformity of flow across compartment opening and spill edge 

The uniformity of the flow across the compartment opening and spill edge is analyzed 

in the same manner as in Section 4.2.5.  Figure 6.2 shows that the temperature is 

reasonably uniform across the compartment opening and spill edge for simulations 

without downstand (simulations F10 and F12).  For simulations with downstand of 2 

m, the temperature across the compartment opening and spill edge is reasonably 

uniform for a narrow compartment opening.  For wide compartment openings, there 

is a reduction of approximately 10 % at the sides of the compartment opening and a 

reduction of approximately 15 % at the sides of the spill edge.  Hence, uniformity of 

temperature across the compartment opening and spill edge is not observed for all 

simulations and the variation of temperature at the spill edge is greater than at the 

compartment opening.   

 

Figure 6.2: Lateral temperature profile across compartment opening and spill edge 
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(simulation F1).  For a narrow compartment opening without downstand, the 

variation in the velocity is approximately 10% at the compartment opening and 9% at 

the spill edge.  For simulations with downstand of 0.2 m, the variation in velocity is 

more significant, with approximately 50 % variation for velocities at the compartment 

opening and approximately 20 % at the spill edge. 

 

Figure 6.3: Lateral velocity profile across compartment opening and spill edge 

From the analysis of the lateral temperature and velocity profiles, it can be concluded 

that uniformity of flow is not observed for all cases of simulations.  Therefore, the 

mass flow rate predictions would generally be lower than those calculated using 
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6.3 Temperature and Velocity Profiles 

Figure 6.4 and Figure 6.5 show the temperature and velocity profiles, respectively at 

the compartment opening and spill edge for simulations F10 (10 m wide compartment 

opening without downstand), F12 (2.4 m wide compartment opening without 

downstand), F13 (10 m wide compartment opening with 1 m downstand) and F16 (10 

m wide compartment opening with 2 m downstand), all with a balcony breadth of 5 

m.  These profiles represent the typical flow characteristics of all the simulations 

carried out.  Plots of the temperature and velocity profiles for the simulations carried 

out in this study are shown in Appendix E. 

 

Figure 6.4: Temperature profile at compartment opening and spill edge 
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Figure 6.5: Velocity profile at compartment opening and spill edge 

6.4 Summary of results 

The key results for the series of simulations for fully-channeled flows, partially-

channeled flows and unchanneled flows are listed in Table 6-1, Table 6-2 and Table 

6-3, respectively. 

Table 6-1: Summary of results for series of simulations for fully-channeled flows 

Simulation �̇�𝑄𝑄𝑄  (kW) �̇�𝐶𝑤𝑤  (kg/s) �̇�𝐶𝑧𝑧(kg/s) �̇�𝐶𝑚𝑚 ,𝑧𝑧=0(kg/s) 

F1 3882 ± 6.67 26.99 ± 0.028 29.20 ± 0.033 41.78 ± 0.047 
F2 3773 ± 5.05 18.40 ± 0.014 20.24 ± 0.022 31.22 ± 0.065 
F3 3359 ± 4.97 11.36 ± 0.006 12.69 ± 0.016 22.76 ± 0.059 
F4 3764 ± 6.04 21.42 ± 0.023 26.09 ± 0.033 39.79 ± 0.058 
F5 3589 ± 6.84 14.74 ± 0.010 17.87 ± 0.025 29.04 ± 0.050 
F6 3119 ± 7.40 9.45 ± 0.008 11.45 ± 0.017 21.38 ± 0.045 
F7 3486 ± 7.14 15.40 ± 0.019 23.62 ± 0.021 40.02 ± 0.057 
F8 3176 ± 6.16 10.74 ± 0.008 14.79 ± 0.013 27.70 ± 0.049 
F9 2578 ± 5.88 6.63 ± 0.006 9.38 ± 0.012 19.34 ± 0.044 
F10 3854 ± 5.95 26.71 ± 0.027 29.36 ± 0.027 41.97 ± 0.042 
F11 3740 ± 4.27 18.11 ± 0.013 20.32 ± 0.015 30.18 ± 0.053 
F12 3314 ± 3.31 11.14 ± 0.005 12.68 ± 0.009 21.78 ± 0.039 
F13 3737 ± 6.00 21.31 ± 0.026 26.39 ± 0.032 40.55 ± 0.068 
F14 3554 ± 6.56 14.56 ± 0.010 18.13 ± 0.022 30.82 ± 0.080 
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Simulation �̇�𝑄𝑄𝑄  (kW) �̇�𝐶𝑤𝑤  (kg/s) �̇�𝐶𝑧𝑧(kg/s) �̇�𝐶𝑚𝑚 ,𝑧𝑧=0(kg/s) 

F15 3064 ± 8.85 9.29 ± 0.007 11.88 ± 0.025 23.58 ± 0.067 
F16 3455 ± 5.03 15.34 ± 0.015 24.36 ± 0.024 39.88 ± 0.049 
F17 3142 ± 3.63 10.63 ± 0.007 15.15 ± 0.012 28.46 ± 0.051 
F18 2529 ± 4.79 6.57 ± 0.005 9.75 ± 0.014 21.31 ± 0.041 
F19 3844 ± 5.18 27.16 ± 0.028 30.36 ± 0.028 43.16 ± 0.045 
F20 3711 ± 3.43 18.01 ± 0.013 20.58 ± 0.014 29.50 ± 0.028 
F21 3280 ± 2.44 11.11 ± 0.005 12.93 ± 0.007 20.85 ± 0.029 
F22 3701 ± 5.59 21.12 ± 0.023 26.73 ± 0.030 39.29 ± 0.047 
F23 3518 ± 4.71 14.46 ± 0.010 18.22 ± 0.015 28.39 ± 0.033 
F24 3040 ± 6.08 9.26 ± 0.005 12.13 ± 0.020 22.05 ± 0.052 
F25 3406 ± 4.50 15.21 ± 0.015 24.89 ± 0.023 38.65 ± 0.045 
F26 3140 ± 3.76 10.73 ± 0.006 15.88 ± 0.012 27.91 ± 0.038 
F27 2516 ± 4.72 6.61 ± 0.004 10.17 ± 0.015 20.03 ± 0.045 
F1R 1928 ± 3.30 19.89 ± 0.024 21.53 ± 0.027 31.11 ± 0.036 
F2R 1901 ± 2.78 14.94 ± 0.015 16.27 ± 0.019 24.04 ± 0.036 
F3R 1760 ± 2.18  9.66 ± 0.005 10.59 ± 0.012 17.04 ± 0.032 
F4R 1825 ± 2.37 14.44 ± 0.014 17.81 ± 0.019 28.29 ± 0.038 
F5R 1815 ± 2.92 11.79 ± 0.009 14.14 ± 0.017 22.02 ± 0.033 
F6R 1662 ± 4.27 8.08 ± 0.007 9.66 ± 0.017 16.98 ± 0.042 
F7R 1709 ± 2.74 11.63 ± 0.014 19.22 ± 0.022 29.15 ± 0.034 
F8R 1608 ± 2.72 8.34 ± 0.008 11.71 ± 0.010 21.42 ± 0.040 
F9R 1412 ± 2.89 5.65 ± 0.004 7.74 ± 0.007 15.52 ± 0.027 
F10R 1911 ± 2.79 19.44 ± 0.028 21.50 ± 0.028 31.28 ± 0.040 
F11R 1885 ± 2.26 14.74 ± 0.012 16.28 ± 0.014 23.67 ± 0.029 
F12R 1740 ± 1.40 9.50 ± 0.004 10.67 ± 0.006 16.43 ± 0.020 
F13R 1817 ± 2.40 14.45 ± 0.016 18.47 ± 0.017 28.68 ± 0.037 
F14R 1787 ± 1.60 11.43 ± 0.010 13.89 ± 0.016 22.04 ± 0.041 
F15R 1642 ± 3.93 7.96 ± 0.005 9.85 ± 0.015 18.02 ± 0.044 
F16R 1725 ± 2.53 11.74 ± 0.010 20.11 ± 0.016 29.58 ± 0.034 
F17R 1589 ± 2.48 8.28 ± 0.006 12.07 ± 0.011 21.04 ± 0.037 
F18R 1401 ± 2.43 5.66 ± 0.003 8.16 ± 0.010 16.91 ± 0.025 
F19R 1908 ± 2.56 20.32 ± 0.024 22.83 ± 0.025 32.47 ± 0.032 
F20R 1871 ± 2.06 14.78 ± 0.013 16.65 ± 0.013 23.43 ± 0.019 
F21R 1730 ± 1.02 9.50 ± 0.004 10.86 ± 0.005 16.02 ± 0.012 
F22R 1780 ± 2.11 13.94 ± 0.012 18.47 ± 0.014 28.59 ± 0.026 
F23R 1841 ± 2.41 11.73 ± 0.011 14.83 ± 0.015 22.65 ± 0.025 
F24R 1633 ± 2.51 7.98 ± 0.005 10.09 ± 0.011 16.90 ± 0.030 
F25R 1664 ± 2.35 11.37 ± 0.009 19.91 ± 0.014 29.29 ± 0.034 
F26R 1594 ± 2.24 8.52 ± 0.008 12.78 ± .010 12.78 ± 0.022 
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Simulation �̇�𝑄𝑄𝑄  (kW) �̇�𝐶𝑤𝑤  (kg/s) �̇�𝐶𝑧𝑧(kg/s) �̇�𝐶𝑚𝑚 ,𝑧𝑧=0(kg/s) 

F27R 1392 ± 2.12 5.70 ± 0.004 8.42 ± 0.009 8.42 ±  0.019 
F1RR 750 ± 1.32 12.46 ± 0.015 13.68 ± 0.016 13.68 ± 0.024 
F4RR 712 ± 1.28 9.45 ± 0.009 12.33 ± 0.012 20.11 ± 0.022 
F6RR 684 ± 0.84 6.48 ± 0.004 7.64 ± 0.007 12.86 ± 0.020 
F7RR 660 ± 0.75 8.41 ± 0.008 13.63 ± 0.013 21.27 ± 0.023 
F9RR 603 ± 0.72 4.65 ± 0.004 6.21 ± 0.006 11.90 ± 0.019 
F10RR 743 ± 1.38 12.50 ± 0.014 13.93 ± 0.016 21.3 ± 0.021 
F13RR 698 ± 0.92 9.17 ± 0.009 12.36 ± 0.011 20.14 ± 0.022 
F15RR 674 ± 0.83 6.37 ± 0.004 7.70 ± 0.007 13.22 ± 0.026 
F16RR 652 ± 1.23 8.19 ± 0.008 13.98 ± 0.013 21.09 ± 0.023 
F18RR 595 ± 1.12 4.63 ± 0.003 6.50 ± 0.006 12.16 ± 0.020 
F19RR 734 ± 1.35 12.43 ± 0.012 14.23 ± 0.015 21.71 ± 0.022 
F22RR 689 ± 0.85 9.27 ± 0.007 12.58 ± 0.010 20.33 ± 0.020 
F24RR 670 ± 0.81 6.45 ± 0.003 7.98 ± 0.008 12.45 ± 0.021 
F25RR 635 ± 1.46 7.98 ± 0.008 14.20 ± 0.015 21.25 ± 0.022 
F27RR 587 ± 1.30 4.65 ± 0.003 6.66 ± 0.007 11.89 ± 0.013 

 

Table 6-2: Summary of results for series of simulations for partially-channeled flows 

Simulation �̇�𝑄𝑄𝑄  (kW) �̇�𝐶𝑤𝑤  (kg/s) �̇�𝐶𝑧𝑧(kg/s) �̇�𝐶𝑚𝑚 ,𝑧𝑧=0(kg/s) 

F1F 3880 ± 6.52 27.18 ± 0.032 30.67 ± 0.035 46.98 ± 0.054 
F2F 3776 ± 6.27 19.01 ± 0.012 25.01 ± 0.029 46.89 ± 0.086 
F3F 3434 ± 7.57 12.57 ± 0.007 19.50 ± 0.026 44.76 ± 0.089 
F4F 3733 ± 5.23 21.07 ± 0.022 27.18 ± 0.029 45.49 ± 0.062 
F5F 3563 ± 5.66 14.90 ± 0.009 22.33 ± 0.021 43.37 ± 0.062 
F6F 3134 ± 5.57 9.77 ± 0.004 18.44 ± 0.017 40.23 ± 0.061 
F7F 3466 ± 7.09 15.35 ± 0.014 25.86 ± 0.048 47.01 ± 0.060 
F8F 3136 ± 6.60 10.52 ± 0.006 20.36 ± 0.036 42.95 ± 0.053 
F9F 2560 ± 4.70 6.59 ± 0.004 17.49 ± 0.036 37.79 ± 0.054 

 

Table 6-3: Summary of results for series of simulations for unchanneled flows 

Simulation �̇�𝑄𝑄𝑄  (kW) �̇�𝐶𝑤𝑤  (kg/s) �̇�𝐶𝑧𝑧(kg/s) �̇�𝐶𝑚𝑚 ,𝑧𝑧=0(kg/s) 

F1U 3778 ± 8.92 27.21 ± 0.037 36.21 ± 0.048 57.39 ± 0.066 
F2U 3664 ± 8.49 19.04 ± 0.019 30.60 ± 0.036 57.39 ± 0.099 
F3U 3260 ± 10.57 12.59 ± 0.009 27.54 ± 0.036 57.05 ± 0.104 
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7. Discussion 

7.1 Flow characteristics for fully-channeled flows 

7.1.1 Wide compartment opening without downstand 

Figure 7.1 shows the typical predicted flow characteristics as the hot gas flows out of 

a wide compartment without a downstand, using a temperature isosurface file set at 

30 °C.  The hot gas flows out of the compartment, beneath the balcony, before 

projecting from the spill edge.  It is observed that the entire flow falls within the 

computational domain as it rotates around the spill edge.  It is also observed that the 

flow is fully contained by the channeling screens and there seems to be minimal 

lateral spread as the flow projects from the spill edge.   

 

Figure 7.1: Typical flow characteristics for wide compartment opening without 

downstand (Simulation F1)  

Figure 7.2 shows the temperature contours for the hot gas flow.  The thickness of the 

flow layer reduces as it flows from the compartment opening to the spill edge.  At the 
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spill edge, as the flow rotates and discharges as a spill plume, the gas temperature 

reduces due to the entrainment of ambient air.  Figure 7.2 also shows that the entire 

flow is contained within the computational domain. 

 

Figure 7.2: Temperature contours for wide compartment opening without downstand 

(Simulation F1) 

Figure 7.3 shows the velocity vectors of the hot gas flow under the balcony and the 

spill edge.  The flow beneath the balcony is predominantly in the horizontal direction 

and the flow is accelerated as it approaches the spill edge.  At the spill edge, the flow 

rotates and discharges as a spill plume.  In this region, there is entrainment at both 

upper and lower region of the flow layer, indicated by the arrows in Figure 7.3.  

Away from the spill plume, the air is quiescent, indicated by the zero velocity vectors.  

This gives further evidence that the entire flow field is within the computational 

domain.  
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Figure 7.3: Velocity vectors for wide compartment opening without downstand 

(Simulation F1) 

7.1.2 Wide compartment opening with downstand 

Figure 7.4(a) and (b) show that the flow characteristics for wide compartment 

openings with downstand of 1 m and 2 m, respectively.  Similar to the previous case, 

there seems to be minimal lateral spread as the hot gases project from the spill edge.  

The presence of a downstand creates a smoke reservoir in the fire compartment and 

this causes the depth of the smoke layer in the compartment to increase. 

  
 (a) (b) 

Figure 7.4: Typical flow characteristics for wide compartment opening with (a) 1 m 

downstand (Simulation F4) (b) 2 m downstand (Simulation F7)   
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Figure 7.5 (a) and (b) show that the temperature of the flow layer at the compartment 

opening increases as the depth of the downstand increase.  The presence of a 

downstand reduces the area of the compartment opening and hence the flow rate of 

out flow of hot gases, thereby increasing its temperature for a constant fire size.     

(a)  

(b)  

Figure 7.5: Temperature contour for wide compartment opening with (a) 1 m 

downstand (Simulation F4) (b) 2 m downstand (Simulation F7) 

Figure 7.6 (a) and (b) show that the hot gas discharges from beneath the downstand as 

a jet, impinges on the balcony and moves as a horizontal flow layer.  Recirculation is 

observed at the rear end of the jet, indicated by black arrows, after it impinges the 

ceiling.  For the 1 m downstand, the jet impinges close to the edge of the balcony.  
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For the deeper downstand, the jet rises at a steeper angle from beneath the downstand.  

This phenomenon is primarily due to increased buoyancy associated with the higher 

temperature of the gases. 

(a)  

(b)  

Figure 7.6: Velocity vectors for wide compartment opening with (a) 1 m downstand 

(Simulation F4) (b) 2 m downstand (Simulation F7) 

7.1.3 Narrow compartment opening without downstand 

Figure 7.7 shows that for the case of a compartment opening of 2.4 m, the smoke 

layer in the compartment is almost at the floor level and the flow layer under the 

balcony is almost as deep as the channeling screens.  Similar to the flow from a wide 
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compartment opening, there is minimal lateral spread as the flow rotates around the 

spill edge. 

 

Figure 7.7: Typical flow characteristics for narrow compartment opening without 

downstand (Simulation F3) 

Figure 7.8 shows that the temperature of the hot gas flow from the compartment 

opening is significantly higher than those from wide compartment openings.  The 

temperature contours show the inflow air causing the plume to tilt towards the rear of 

the compartment. 

 

Figure 7.8: Temperature contour for narrow compartment opening without 

downstand (Simulation F3) 
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Figure 7.9 shows that the flow layer is thicker and discharges at a higher velocity as 

compared to those from wide compartment openings.  The flow is accelerated 

considerably as it flows under the balcony, resulting in a reduction of the flow layer 

depth.  Entrainment is also observed at the upper and lower regions of the spill plume 

as it projects from the spill edge. 

 

Figure 7.9: Velocity vectors for narrow compartment opening without downstand 

(Simulation F3) 

7.1.4 Narrow compartment opening with downstand 

Figure 7.10 shows that the flow characteristics for a narrow compartment with a 1 m 

downstand.  Similar to the case without a downstand, there is minimal lateral spread 

as the flow rotates around the spill edge.  The smoke layer in the compartment is even 

closer to the floor level and the flow under the balcony is contained by the channeling 

screen. 
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Figure 7.10: Typical flow characteristics for narrow compartment opening with 1 m 

downstand (Simulation F6) 

Figure 7.11 shows that the temperature in the fire compartment and the temperature 

of the flow out of the compartment are significantly higher than the scenario without 

a downstand.  It is also observed that there is a region of lower gas temperature on the 

downstream side of the downstand, shown by the arrow in Figure 7.11. 

 

Figure 7.11: Temperature contour for narrow compartment opening with 1 m 

downstand (Simulation F6) 
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Figure 7.12 shows that the hot gases project from beneath the downstand directly into 

the atrium.  This phenomenon is also observed for the case with narrow compartment 

opening and 2 m downstand.  For compartment opening widths of 4.8 m with a 

downstand, only part of the jet impinges on the balcony.  Figure 7.13 illustrates the 

partial impingement for compartment opening width of 4.8 m with a 1 m downstand.  

For both of these cases, there is recirculation of gases in the space between the 

downstand, balcony and the jet, shown by the black arrows.  It is this recirculation 

that causes the entrapment of a pocket of lower temperature gas in the space bounded 

by the downstand, underside of the balcony and the jet. 

 

Figure 7.12: Velocity vectors for narrow compartment opening with 1 m downstand 

(Simulation F6) 



 

   123 
 

 

Figure 7.13: Velocity vectors for 4.8 m wide compartment opening with 1 m 

downstand (Simulation F5) 

As these configurations result in flow characteristics that are different from the rest of 

the simulations, their results are omitted in subsequent sections. 

7.1.5 Reduced fire size 

Figure 7.14 shows the temperature contours for a wide compartment opening without 

downstand for a 2.5 MW fire.  The temperature in the fire compartment is 

significantly lower than those with fire size of 5 MW.  The temperature of the flow 

out of the compartment is approximately 25 % lower.   
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Figure 7.14: Temperature contours for 2.5 MW fire wide compartment opening 

without downstand (Simulation F1R) 

Figure 7.15 shows that the velocity of the flow under the balcony and at the spill edge 

is about 25 % lower as compared to Figure 7.3.  There is also a reduction in the depth 

of the flow layer under the balcony by about 10 %. 

 

Figure 7.15: Velocity vectors for 2.5 MW fire wide compartment opening without 

downstand (Simulation F1R) 
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Figure 7.16 shows the temperature contours for the case of a wide compartment 

opening with 2 m downstand.  The temperature of the flow layer in the balcony is 

about 40 % lower.   

 

Figure 7.16: Temperature contours for 2.5 MW fire wide compartment opening with 

2 m downstand (Simulation F7R) 

Figure 7.17 shows that the hot gases rise vertically from beneath the downstand. The 

velocity at the compartment opening and under the balcony is about 25 % lower 

compared to the case with a 5 MW fire.  The thickness of the flow layer is also 

reduced by the same margin.  Due to the lower flow velocity at the compartment 

opening, the dominant buoyancy forces cause the gas to rise vertically. 
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Figure 7.17: Velocity vectors for 2.5 MW fire wide compartment opening with 2 m 

downstand (Simulation F7R) 

7.1.6 Balcony breadth 

In general, an increase in the balcony breadth does not cause significant changes to 

the flow characteristics.  The extended balcony allows the jet projecting from beneath 

the downstand to impinge the balcony and travel horizontally before discharging from 

the spill edge.  Figure 7.18 shows that the temperatures in the compartment and under 

the balcony are similar to the case with a 3 m balcony.  However, the temperature of 

the flow at the spill edge is approximately 10 % lower. 
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Figure 7.18: Temperature contours for 5 MW fire narrow compartment opening with 

1 m downstand (Simulation F24) 

Figure 7.19 shows entrainment of air into the flow layer as it moves beneath the 

balcony, shown by the arrows.  The entrainment of air into the flow layer causes the 

temperature to decrease at the spill edge.   

 

Figure 7.19: Velocity vectors for 5 MW fire narrow compartment opening with 1 m 

downstand (Simulation F24) 
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7.2 Temperature and velocity profiles 

Figure 7.20 shows the temperature profiles at compartment opening and spill edge for 

simulations F1 (wide compartment opening without downstand), F3 (narrow 

compartment opening without downstand), F7 (wide compartment opening with 2 m 

downstand) and F19 (wide compartment opening with 8 m balcony, without 

downstand).  The longer balcony breadth in simulation F19 impedes the flow of the 

gases out of the compartment, resulting in marginally higher temperatures as 

compared to simulation F1.  At the spill edge, the predicted temperatures for 

simulation F19 are lower than simulation F1.  This is caused by heat losses and 

entrainment of air as the gases flow under the extended balcony.   

The narrow compartment opening for simulation F3 results in an increase of the 

smoke layer depth at the compartment opening and spill edge.  The smaller 

compartment opening also causes a reduction in the flow rate of gases from the 

compartment, thus resulting in significantly higher temperatures.  At the spill edge, 

the temperature is marginally lower, but the depth of the smoke layer is reduced 

significantly.   

The presence of a 2 m downstand in simulation F7 causes a reduction in the flow rate 

of gases out of the compartment opening, hence an increase in gas temperature 

compared to simulation F1.  The depth of the smoke layer at the compartment 

opening and spill edge is also reduced due to lower flow rate of gases.  There is a 

greater temperature difference (about 50 °C) between the flow layer at the 
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compartment opening and the spill edge.  This is due to the entrainment of air into the 

smoke layer as it flows from the underside of the downstand to the balcony. 

 

Figure 7.20: Temperature profile at compartment opening and spill edge 

Figure 7.21 shows the velocity profiles at the compartment opening and spill edge for 

the same simulations as in Figure 7.20.  Predicted velocities for simulation F19 are 

marginally lower than F1 due to the impedance caused by the extended balcony.  

Increased smoke layer depth and velocities are observed for simulation F3 due to the 

narrow compartment opening.  The maximum velocity at the spill edge is almost two 

times the maximum velocity at the compartment opening, thus the smoke layer depth 

at the spill edge is significantly reduced.  Similar to the observations made from 

temperature profiles of simulation F7, the depth of the smoke layer is reduced due to 

lower flow rates of gases.  In general, the depth of the smoke layer at the 

compartment opening obtained from the temperature profiles is marginally lower than 

that from temperature profile, this is possibly due to mixing of cool incoming air with 

the hotter out flowing gases. 
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Figure 7.21: Velocity profile at compartment opening and spill edge 

7.3 Comparison of FDS predictions with experiment 

The temperature and velocity profiles of the FDS predictions are compared with 

experimental data from NRCC full-scale tests, described in Section 2.2.4.  As the 

geometry of the compartment in the full-scale test is not identical to the modeled 

geometry in this research, only 2 suitable comparisons are possible for the 

temperature at compartment opening and temperature and velocity at the spill edge.  

For both of these cases, the fire size is 5 MW. 

Figure 7.22 shows the comparison of the FDS predicted temperature profile at the 

compartment opening for simulations F10 and F11 with experimental data for Test 42 

and 62.  The compartment opening widths for Test 42 and 62 are 5 m and 10 m, 

respectively.  The compartment opening widths of the corresponding FDS 

simulations, F11 and F10 are 4.8 m and 10 m respectively.  Both of these tests are 

conducted with a balcony breadth of 4.2 m and without a downstand at the 

compartment opening.  Simulations F10 and F11 also do not have a downstand, but 
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the balcony is broader at 5 m.  Another difference, the length of compartment in the 

tests is 5 m, half the value of those in the modeled compartment in this research. 

Due to the broader balcony in the simulations, the temperature at the compartment 

opening should be marginally higher than the experimental data.  However, in this 

case, the predicted temperatures are about 20 % lower than the maximum temperature 

recorded in the experiments.  This could be due to the combined effects of error in the 

experimental measurements and the shorter length of the compartment, resulting in 

higher gas temperatures at the compartment opening.  At slightly further distances 

from the ceiling, data from Test 62 and simulation F10 shows very good agreement 

with about 10 % variation.  For Test 42 and simulation F11, there is greater variation 

in the prediction. 

 

Figure 7.22: Comparison with experimental data at compartment opening 

Figure 7.23 and Figure 7.24 show the comparison of temperature and velocity data at 

the spill edge for simulations F11 and F17 with Test 2 and Test 7.  The compartment 
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opening widths for both tests are 5 m.  Test 7 has a downstand of 1.6 m at the 

compartment opening, while Test 2 does not have a downstand present.   

The temperature profiles in Figure 7.23 shows that there is much better agreement 

between the FDS predictions and experimental data at the spill edge.  The variation in 

the experimental data and FDS predictions are about 10%.  A larger variation of 

about 15 % is noted for Test 2 and simulation F11 for the data point closest to the 

ceiling.  

 

Figure 7.23: Comparison with experimental data at spill edge 

Figure 7.24 shows excellent agreement in the velocity data for measurements close to 

the ceiling, where the variation between experimental data and FDS predictions is 

about 5 %.  The experimental data shows a velocity of 0.5 m/s at a distance of 3 m 

below the ceiling, indicating that the depth of the smoke layer is greater than 3 m at 

the spill edge.  This is not possible as the temperature data shows that the smoke layer 

is not more than 2.5 m.  Hence it is suspected that the velocity data is for the inflow 
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of air towards the compartment opening and should be corrected to -0.5 m/s.  In this 

case, it agrees very well with the predicted value of -0.3 m/s. 

 

Figure 7.24: Comparison with experimental data at spill edge 

7.4 Effect of balcony breadth on entrainment 

Figure 7.25 shows the variation in the entrainment between the compartment opening 

and the spill edge (�̇�𝐶𝑧𝑧/�̇�𝐶𝑤𝑤 ) for fire size of 2.5 MW.  The entrainment increases as the 

balcony breadth is increased, corroborating the observations made in Section 7.2.  

The entrainment is weakly dependent on balcony breadth and seems to obey a weak 

power law.   
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Figure 7.25: Effect of balcony breadth on rate of entrainment between compartment 

opening and spill edge  

7.5 Empirical Correlation for entrainment rate at spill edge 

FDS predictions from simulations carried out in this research are compared with the 

existing correlations.  Simulations F5, F6, F8 and F9 are omitted from the comparison 

as the flow characteristics are different from the rest of the simulations. 

Figure 7.26 shows the comparison of FDS predictions with the correlation by Ko (31) 

given by Equation 2-14.  The correlation given by Ko does not address the variation 

in width of the compartment opening and balcony breadth.  It is clear from Figure 

7.26 that the correlation is inadequate in addressing the effects from the various 

compartment opening widths and balcony breadths from the simulations in this 

research. 
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Figure 7.26: Comparison FDS predictions with correlation by Ko 

Figure 7.27 shows the comparison of FDS predictions with the correlation by 

Harrison (29) given by Equation 2-11.  The correlation developed by Harrison does 

not account for the effects of balcony breadth and most of the data used in the 

development of the correlation is based on a balcony breadth of 0.3 m, i.e. a full-scale 

equivalent of 3 m.  Since the correlation addresses the effects of variation in the 

compartment opening width on the entrainment, it gives a better agreement with the 

FDS predictions.  However, at smaller compartment opening height to compartment 

opening width ratios, i.e. �𝒉𝒉𝒐𝒐
𝒘𝒘𝒐𝒐
�, the correlation gives a value of entrainment which is 

about 30% lower than the FDS predictions.  This is possibly due to the combined 

effects of the broader balcony in the FDS predictions in this research and reduced 

entrainment into the fire plume in the FDS simulations carried out by Harrison (29), 

(46) as discussed in Section 4.2. 

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

FDS Predictions

𝒎𝒎 𝒔𝒔
𝒎𝒎 𝒘𝒘⁄

 

�
�̇�𝒎𝒔𝒔

�̇�𝒎𝒘𝒘
� = 𝟏𝟏.𝟐𝟐�

𝒉𝒉𝒃𝒃
𝒉𝒉𝒐𝒐
�
𝟎𝟎.𝟓𝟓

 

𝒉𝒉𝒃𝒃/𝒉𝒉𝒐𝒐 



 

   136 
 

 

Figure 7.27: Comparison FDS predictions with correlation by Harrison 

Due to the relatively large variation between the FDS predictions and the correlation 

given by Harrison at small compartment opening height to compartment opening 

width ratios, a new correlation that addresses the effect of balcony is sought.  The 

new correlation would also address the concerns of under prediction of entrainment 

into the fire plume within the compartment opening. 

Since the correlation given by Harrison shows good agreement, a similar approach is 

taken.  With the knowledge that the balcony breadth and entrainment are related by a 

weak positive power law,  ��̇�𝐶𝑧𝑧
�̇�𝐶𝑤𝑤
� �𝑏𝑏𝑊𝑊𝑟𝑟

ℎ𝑏𝑏
� is plotted with respect to � ℎ𝑟𝑟

𝑏𝑏𝑊𝑊𝑟𝑟
�.  Figure 7.28 

shows that the data falls into a power law relationship.  The best fit curve is given by 

Equation 7-1, which is non-dimensional, as follows,  

 ��̇�𝐶𝑧𝑧
�̇�𝐶𝑤𝑤
� = 0.86(𝑏𝑏𝑊𝑊𝑟𝑟)0.05 ℎ𝑏𝑏

ℎ𝑟𝑟 1.05 (7-1) 
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Figure 7.28: Correlated FDS prediction 

7.6 Validation of Empirical Correlation 

In order to assess the validity of the proposed empirical correlation, comparisons are 

made with experimental and FDS simulation data from Harrison (29) and Ko (31).  

Figure 7.29 shows experimental data and FDS predictions from previous work by 

Harrison (29) plotted in the same manner as Figure 7.28.  Both sets of data show very 

good agreement to the proposed empirical correlation. 

 

Figure 7.29: Comparison of proposed empirical correlation with data by Harrison 

(29) 
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Figure 7.30 shows FDS predictions from previous work by Ko (31) plotted in the 

same manner as Figure 7.28.  The FDS predictions show very good agreement to the 

proposed empirical correlation. 

 

Figure 7.30: Comparison of proposed empirical correlation with data by Ko (31) 
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downstand at the compartment opening and which is channeled as it flows beneath 

the ceiling such that the width of the flow at the compartment opening and spill edge 

are equal. 

Given that Equation 7-1 and 7-2 are empirical in nature, the criteria on their use are 

dependent on the range of conditions from which the correlation was derived.  The 

criterion for the aspect ratio of the compartment opening for which the proposed 

empirical correlation applies is given by Equation 7-3, a non-dimensional criterion. 

 0.3 ≤ ℎ𝑟𝑟
𝑊𝑊𝑟𝑟

≤ 2.08 (7-3) 

Another criterion to be met is that the flow from the compartment opening has to 

impinge the underside of the balcony and travel horizontally before discharging at the 

spill edge.  In this study, only balcony breadth of 5 m or more provides the necessary 

conditions to allow this criterion to be met for all fire sizes.  Hence the criterion is 

given by the following, 

 �ℎ𝑏𝑏
ℎ𝑟𝑟
� � 𝑏𝑏

ℎ𝑏𝑏−ℎ𝑟𝑟
� ≥ 6.25 (7-4) 

7.8 Empirical correlation for entrainment at rotated flow 

In the analysis of entrainment at the rotation region, an approach consistent with that 

used by Thomas et al. (45) and Harrison (46) was used.  Firstly, data from simulations 

of balcony spill plumes from compartments without downstand are analyzed.  Figure 

7.31 shows �̇�𝐶𝑚𝑚
′ �̇�𝑄𝑄𝑄′⁄   at z = 0, the elevation of the balcony, plotted against �̇�𝐶𝑧𝑧

′ �̇�𝑄𝑄𝑄′⁄ .    
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Figure 7.31: Correlation between  �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0
′ �̇�𝑄𝑄𝑄′⁄  and �̇�𝐶𝑧𝑧

′ �̇�𝑄𝑄𝑄′⁄  for compartments without 

downstand 

The data can be described by a linear relationship given by Equation 7-5. 
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′
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′  (7-5) 
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Thomas et al. and Harrison, respectively.  From the discussion in Section 4.2.5, the 
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and the deviation from FDS predictions is unknown.  Thus, the data are not corrected.  
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rate at the spill edge corrected  which exhibits better agreement with Equation 7-5, 

albeit marginally lower than the FDS predictions. 

 

Figure 7.32: Correlation between  �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0
′ �̇�𝑄𝑄𝑄′⁄  and �̇�𝐶𝑧𝑧

′ �̇�𝑄𝑄𝑄′⁄  for compartments without 

downstand for FDS predictions and experimental data by Harrison (29), (45) 

Data from simulations of balcony spill plumes from compartments with a downstand 

at the compartment opening are also analyzed an approach consistent with that used 

by Thomas et al. (45).  Figure 7.33 shows �̇�𝐶𝑚𝑚
′ �̇�𝑄𝑄𝑄′⁄   plotted against �̇�𝐶𝑧𝑧

′ �̇�𝑄𝑄𝑄′⁄  at z = 0. 

 

Figure 7.33: Correlation between  �̇�𝐶𝑚𝑚 ,𝑧𝑧𝑧𝑧=0
′ �̇�𝑄𝑄𝑄′⁄  and �̇�𝐶𝑧𝑧

′ �̇�𝑄𝑄𝑄′⁄  for compartments with 

downstand 
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The data can be described by a linear relationship given by Equation 7-6. 

 �̇�𝐶𝑚𝑚,𝑧𝑧=0
′

�̇�𝑄𝑄𝑄
′ = 1.61 �̇�𝐶𝑧𝑧

′

�̇�𝑄𝑄𝑄
′  (7-6) 

Equation 7-6 suggests that the entrainment in the rotation region is 61 % of the total 

mass flow rate at the spill edge, which is 11 % more than that for flows from 

compartments without a downstand at the compartment opening.  For both cases, with 

and without downstand, although the gases flow horizontally under the balcony 

before discharging at the spill edge, the entrainment in the rotation region is different.  

This may be due to flows from compartments with downstand being more turbulent 

in nature and hence there is an increase in entrainment.  However, due to the lack of 

available experimental data for comparison, further analysis and conclusion cannot be 

made. 

In conclusion, the proposed empirical relationship to describe the entrainment 

in the rotation region for flows from compartments without downstand is as 

follows, 

 ṁp,zs =0
′ = 1.5�̇�𝐶𝑧𝑧 (7-7) 

The entrainment in the rotation region appears to be higher for flows from 

compartments with a downstand.  The proposed empirical relationship to describe the 

entrainment in the rotation region for flows from compartments with a downstand of 

1 – 2 m at the compartment opening is given by,  

 ṁp,zs =0
′ = 1.61�̇�𝐶𝑧𝑧 (7-8) 
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These correlations appear to apply generally for balcony spill plumes that are fully-

channeled under the balcony. 

7.9 Flow characteristics for partially-channeled flows 

7.9.1 Wide compartment opening without downstand 

Figure 7.34 shows the flow characteristics for partially-channeled flows with a wide 

compartment opening and no downstand.  The characteristics seem to be similar to 

the case of fully-channeled flows.  The smoke spreads laterally under the balcony 

towards the channeling screens before discharging at the spill edge.  As the smoke 

rotates around the spill edge, there seems to be minimal lateral spread. 

 

Figure 7.34: Typical flow characteristics for partially-channeled flows with wide 

compartment opening and no downstand (Simulation F1F) 

Figure 7.35 shows a comparison of temperature contours of the smoke flow as it 

flows from the compartment opening to the spill edge, for both fully-channeled and 
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partially-channeled flows.  There appears to be insignificant differences in 

temperatures for both cases.   

   
 (a) (b)  

Figure 7.35: Temperature contours for wide compartment opening without 

downstand (a) partially-channeled flows (simulation F1F) (b) fully-channeled flows 

(simulation F1) 

Figure 7.36 shows a comparison of the velocity vectors of the smoke flow under 

balcony and spill edge.  There are insignificant differences in the flow velocity. 

   
 (a) (b) 

Figure 7.36: Velocity vectors for wide compartment opening without downstand (a) 

partially-channeled flows (simulation F1F) (b) fully-channeled flows (simulation F1) 
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Figure 7.37 shows that the temperature across the spill edge is not uniform.  The 

central section of the spill edge shows the highest temperature and thickest flow layer.  

The thickness of the flow layer in this region is relatively uniform.  The outermost 

section of the flow layer has a relatively uniform thickness which is about half the 

thickness of the layer in the central section.  The highest temperature in this section is 

about 30% lower.  Between these two sections, the flow layer reduces in thickness 

and temperature as it moves towards the channeling screens. 

 

Figure 7.37: Temperature contours across the spill edge for partially-channeled 

flows with wide compartment opening and no downstand (Simulation F1F) 

Figure 7.38 show that the longitudinal velocity across the spill edge exhibits a similar 

contour profile as the temperature.  The flow layer at the central section is thicker and 

has higher velocity.  An interesting phenomenon is observed at the outmost section of 

the flow where it meets the channeling screen, which is not observed previously in 

the fully-channeled flows.  The flow layer seems to thicken significantly and this is 

attributed to a rather thick layer of gas with low longitudinal velocity and 

temperature.  This is possibly due to the lateral spread of the gases as it exits the 

compartment opening, impinges on the channeling screens and rotates downwards.  
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As it rotates downwards, it mixes with the cool ambient air and causes a reduction in 

temperature and velocity. 

 

Figure 7.38: Velocity contours across the spill edge for partially-channeled flows 

with wide compartment opening and no downstand (Simulation F1F) 

Figure 7.39 shows the spread of the flow under the balcony as it exits the 

compartment opening.  The outermost section of the flow impinges on the channeling 

screen before it flows past the spill edge.  It is this impingement that causes a thicker 

flow layer as observed in Figure 7.38.  The gas at the region of the interface between 

the screens and the walls remain relatively stagnant. 

 

Figure 7.39: Velocity vectors under the balcony for partially-channeled flows from 

wide compartment opening without downstand (simulation F1F) 
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7.9.2 Narrow compartment opening without downstand 

Figure 7.40 shows the flow characteristics for partially-channeled flow from a narrow 

compartment opening without a downstand.  The smoke spreads laterally under the 

balcony towards the channeling screens, forming a relatively thin layer before 

discharging at the spill edge.  As the smoke rotates around the spill edge, there 

appears to be minimal lateral spread.   

 

Figure 7.40: Typical flow characteristics for partially-channeled flows from narrow 

compartment opening without downstand (Simulation F3F) 

Figure 7.41 shows a comparison of temperature contours of the smoke flow as it 

flows from the compartment opening to the spill edge, for partially-channeled flows 

and fully-channeled flows.  For the case of partially-channeled flows, the temperature 

in the compartment and at the spill edge is significantly lower compared to the case of 

the fully-channeled flow.  At the spill edge, there is a reduction of approximately 30% 

in the temperature.  Beyond the spill edge, the flow appears to have less vertical 

velocity which is a result of reduced buoyancy due to lower temperature. 
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 (a)  (b) 

Figure 7.41: Temperature contours for narrow compartment opening without 

downstand (a) partially-channeled flows (simulation F3F) (b) fully-channeled flows 

(simulation F3) 

Figure 7.42 shows that the thickness of the flow layer at the spill edge is reduced by 

about 50 % as the widely-spaced channeling screens allow the lateral spread of 

smoke.  The longitudinal velocity of the flow layer at the spill edge does not show 

any significant in magnitude.  Beyond the spill edge, the velocity reduces rapidly and 

the effect of a jet-like projection as observed for the fully-channeled flow is absent for 

the case of partially-channeled flows. 

   
 (a)  (b) 

Figure 7.42: Velocity vectors for narrow compartment opening without downstand 

(a) partially-channeled flows (simulation F3F) (b) fully-channeled flows (simulation 

F3)  
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Figure 7.43 shows that there is less variation in the flow layer thickness across the 

spill edge as compared to flows from a wide compartment opening.  However, the 

temperatures of the flow layer near the channeling screens are about 50 % lower than 

the central section.  This is possibly due to heat loss and entrainment as the gas 

travels a longer distance.  Near the channeling screens, the layer is marginally thicker 

due to the downward movement of the gas after it impinges the screens. 

 

Figure 7.43: Temperature contours across the spill edge for partially-channeled 

flows from narrow compartment opening without downstand (simulation F3F) 

Figure 7.44 shows that the longitudinal velocity across the spill edge exhibits a 

similar contour profile as the temperature.  The variation in velocity across the spill 

edge is more significant than the case of wide compartment opening, with the velocity 

in the central section about 2 times the velocity at the outermost section.  Again, this 

is due to the wide lateral spread as the flow exits from the compartment opening.  

Near the channeling screens, the flow layer is only marginally thicker as compared to 

that observed in Figure 7.38.    This is possibly due to reduced gas impingement onto 

the screens due to the longer lateral distance that the gas needs to travel. 
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Figure 7.44: Velocity contours across the spill edge for partially-channeled flows 

from narrow compartment opening without downstand (simulation F3F) 

Figure 7.45 shows that the flow spreads at a larger angle as compared to that from a 

wide compartment opening.  The flow impinges the screens very close to the spill 

edge thus explaining the marginally thicker flow layer in that region.  The relatively 

stagnant region at the interface of the channeling screens and the compartment wall is 

larger for this case. 

 

Figure 7.45: Velocity vectors under the balcony for partially-channeled flows from 

narrow compartment opening without downstand (simulation F3F) 
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7.10 Flow characteristics for unchanneled flows 

7.10.1 Unchanneled flows from wide compartment opening 

Figure 7.46 shows that for an unchanneled flow from a wide compartment opening, 

as the smoke exits the compartment opening, it spreads laterally beneath the balcony 

until it reaches the extreme ends of the modeled balcony.  Although the lateral spread 

is significant, most of the smoke seems to discharge from the spill edge directly in 

front of the compartment opening. 

 

Figure 7.46: Typical flow characteristics for unchanneled flows from wide 

compartment opening (Simulation F1U) 

Figure 7.47 and Figure 7.48 show the temperature and velocity contours at the spill 

edge.  It can be seen that most of the flow seems to be discharging from the spill edge 

in the section directly in front of the compartment opening.   The thickness of the 

flow layer is largest in the middle of the spill edge and decreases rapidly in the lateral 

directions.  The section of uniform thickness observed in Figure 7.37 is not observed 
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here.  The temperature and velocity of the flow at the outer sections are very low due 

to heat loss and entrainment of air as it flows under the balcony. 

 

Figure 7.47: Temperature contours across the spill edge for unchanneled flows with 

wide compartment opening (Simulation F1U) 

 

Figure 7.48: Velocity contours across the spill edge for unchanneled flows with wide 

compartment opening (Simulation F1U) 

Figure 7.49 shows that most of the smoke discharges directly in front of the 

compartment opening with an angle of spread of about 30 °, similar to that observed 

in Figure 7.39 for partially-channeled flows.  Figure 7.50 shows that the lateral spread 
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of the smoke reaches the extreme ends of the modeled balcony at a much reduced 

flow velocity. 

 

Figure 7.49: Velocity vectors under the balcony for unchanneled flows from wide 

compartment opening (simulation F1U) 

 

Figure 7.50: Velocity vectors showing lateral spread of smoke under the balcony for 

wide compartment opening (simulation F1U) 
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7.10.2 Unchanneled flows from narrow compartment openings 

Figure 7.51 shows that the lateral spread of smoke beneath the balcony seems to be 

more substantial for an unchanneled flow from a narrow compartment opening.  

Although the lateral spread is increased, a large portion of the smoke appears to 

discharge from the spill edge directly in front of the compartment opening. 

 

Figure 7.51: Typical flow characteristics for unchanneled flows from narrow 

compartment opening (Simulation F3U) 

Figure 7.52 and Figure 7.53 shows that the majority of the smoke seems to discharge 

from the spill edge in front of the compartment opening.  The layer thickness at the 

outer sections of the spill edge appears to be thicker than that observed for the case of 

wide compartment opening.  A possible explanation for this observation is that the 

temperature and velocity of the smoke at the compartment opening is higher due to 

the narrow compartment opening as discussed for fully-channeled flows in Section 

7.2.   
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Figure 7.52: Temperature contours across the spill edge for unchanneled flows with 

narrow compartment opening (Simulation F3U) 

 

Figure 7.53: Velocity contours across the spill edge for unchanneled flows with 

narrow compartment opening (Simulation F3U) 

Figure 7.54 shows that the angle of spread as the smoke exits the compartment 

opening is similar to that observed for partially-channeled flows in Figure 7.45.  Most 

of the smoke is discharged at the spill edge in front of the compartment opening.  

Comparing the longitudinal velocity with the case of wide compartment opening, 

there is an increase of about 25 %.  Figure 7.55 shows that the lateral velocity under 

the balcony is also higher, thus increasing the lateral spread, resulting in a thicker 
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flow layer in the outer sections of the spill edge, observed in Figure 7.52 and Figure 

7.53. 

 

Figure 7.54: Velocity vectors under the balcony for unchanneled flows from narrow 

compartment opening (simulation F3U) 

 

Figure 7.55: Velocity vectors showing lateral spread of smoke under the balcony for 

narrow compartment opening (simulation F3U) 
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7.11 Predicted entrainment rates for partially-channeled flows and unchanneled 

flows 

Table 7-1 shows the predicted entrainment rates as the smoke flows from the 

compartment opening to the spill edge and as the smoke rotates around the spill edge.  

For unchanneled flows, smoke is observed flowing out from the extreme ends of the 

balcony in Figure 7.46 and Figure 7.51.  The quantity of smoke flowing from these 

regions is less than 9 % of the total smoke flowing from the front of the spill edge.  

The entrainment as they rotate around the ends of the balcony is treated in a similar 

manner as that from the spill edge.  It is expected that the loss of accuracy due to this 

is not significant. 

Table 7-1: Predicted entrainment rates for partially-channeled flows and 

unchanneled flows 

Simulation Configuration Downstand Height 
(m) �̇�𝐶𝑆𝑆/�̇�𝐶𝑤𝑤  �̇�𝐶𝑃𝑃,𝑧𝑧𝑧𝑧=0/�̇�𝐶𝑧𝑧 

F1F Partially-channeled 0 1.13 1.53 
F2F Partially-channeled 0 1.32 1.88 
F3F Partially-channeled 0 1.55 2.30 
F4F Partially-channeled 1 1.29 1.67 
F5F Partially-channeled 1 1.50 1.94 
F6F Partially-channeled 1 1.89 2.18 
F7F Partially-channeled 2 1.69 1.82 
F8F Partially-channeled 2 1.94 2.11 
F9F Partially-channeled 2 2.65 2.16 
F1U Unchanneled  0 1.33 1.58 
F2U Unchanneled  0 1.61 1.88 
F3U Unchanneled  0 2.19 2.07 
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Figure 7.56 shows the FDS predictions plotted with Equation (7-2).   

 

Figure 7.56: Comparison of FDS predictions with Equation (7-2)  

Comparing the data in Table 7-1 and Figure 7.56, it can be seen that the entrainment 

as the smoke flows from the compartment opening to the spill edge, for partially-

channeled flows and unchanneled flows is significantly higher than that of fully-

channeled flows having the same compartment configurations.  The entrainment rate 

increases as the height of downstand increases and as the compartment opening 

reduces.  For narrow compartment openings, the entrainment under the balcony is 

predicted to be 165 % and 119% for partially-channeled flows and unchanneled flows 

respectively.  This is greater than the recommendation of 100 % given by BRE in 

Section 2.2.2.  For the cases without downstand at the compartment opening, the 

entrainment under the balcony is predicted to be as high as 55 %. 

For entrainment at the rotation region, a similar trend of increased entrainment is 

observed from data in Table 7-1.  The increase in predicted entrainment compared to 

fully-channeled flows is the least for wide compartment openings.  For wide 
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compartment openings without downstand, the increase in entrainment is marginal, 

about 2 % and 5 % for partially-channeled flows and unchanneled flows respectively.  

When a downstand is present, the increase in predicted entrainment is 4 – 13 % for 

wide compartment openings.  When the compartment opening width is reduced, the 

increase in predicted entrainment is as high as 53 %. 

From these simulations of partially-channeled flows and unchanneled flows, it 

appears that there is a significant increase in entrainment as compared to fully-

channeled flows.  It is deduced from the simulations performed in this work that the 

increase in entrainment is due to the lateral spread of smoke as it travels beneath the 

balcony.  From Figure 7.56, it seems that predictions for partially-channeled flows 

obey a similar form of power law given by Equation (7-2).  Predictions for 

unchanneled flows seem to exhibit the same trend as well.  However, due to the 

limited number of simulation performed for these configurations, a more definite 

conclusion cannot be drawn for these cases. 
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8. Conclusions 

This work has characterized the balcony spill plume entrainment in the under balcony 

and rotation region from FDS simulations, supported by comparisons with 

experimental data from previous work.  The findings of each aspect of this work are 

summarized in this section. 

A rigorous approach is adopted in the determination of the optimum grid cell size for 

modeling balcony spill plumes in the region of interest.  FDS simulations using very 

small grid cell size of 1 cm are performed to resolve the near wall flow regime of 

ceiling jets.  Using these predictions as reference predictions, they are compared with 

predictions from larger grid cell sizes to determine the loss of accuracy.  The 

optimum grid cell size is determined to be about 4 % of the ceiling height, which 

gives predictions that have a deviation of about 10 % from the reference predictions.   

Grid sensitivity analysis is then carried out for simulations of balcony spill plumes 

using the established optimum grid cell size.  Analysis of the flow characteristics 

reveals that experimental data for mass flow rates are generally higher than FDS 

predictions.  This is due to the assumption of uniformity of flow characteristics across 

the lateral extent of the flow path.  Using the same method of calculation and 

assumptions, FDS predictions for mass flow rates are within 7 % of the experimental 

data.  Scaling laws are applied to these small-scale predictions and experimental data 

to obtain the full-scale equivalent data.  These calculated full-scale data are then 

compared with FDS predictions made on equivalent full scale models.  The 
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comparison shows that there was excellent agreement of less than 2 % deviation, in 

the small-scale and full-scale FDS predictions.  When compared to the experimental 

data, there was a deviation of about 7 – 10 %.  This deviation is expected to be 

reduced if the experimental method of calculation and assumptions are adopted.  

These findings give confidence to the use of FDS for such studies and also verified 

that the predictions performed with grid cell size of 4 % of the ceiling height gives 

sufficiently good agreement with experimental data. 

A series of 69 simulations are performed to characterize balcony spill plume 

entrainment in the under balcony and rotation region.  These flows are fully 

channeled such that lateral spread under the balcony is prevented.  The fire size, 

width of compartment opening, downstand height and balcony breadth is varied to 

produce different flow characteristics.  An empirical correlation is proposed to predict 

the entrainment as the smoke flows from a compartment opening with a downstand to 

the spill edge, hence the subsequent mass flow rate at the spill edge.  This correlation 

which applies to channeled flows where the smoke does not spread laterally under the 

balcony is given by, 

�̇�𝐶𝑧𝑧 = 0.86(𝑏𝑏𝑊𝑊𝑟𝑟)0.05 ℎ𝑏𝑏
ℎ𝑟𝑟

1.05 �̇�𝐶𝑤𝑤  

subject to 0.3 ≤ ℎ𝑟𝑟
𝑊𝑊𝑟𝑟

≤ 2.08   and   �ℎ𝑏𝑏
ℎ𝑟𝑟
� � 𝑏𝑏

ℎ𝑏𝑏−ℎ𝑟𝑟
� ≥ 6.25 

For entrainment at the rotation region, the following empirical correlation is proposed 

for flow from compartments without downstand, 
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ṁp,zs =0
′ = 1.5�̇�𝐶𝑧𝑧 

For compartments with a downstand at the compartment opening, the following 

correlation is proposed, 

ṁp,zs =0
′ = 1.61�̇�𝐶𝑧𝑧 

These correlations appear to apply generally for balcony spill plumes that are fully 

channeled under the balcony. 

A series of 3 simulations are carried out for unchanneled flows and 9 simulations for 

flows where the channeling screens are set at the width of the compartment.  The 

latter case is a closer representation of practical applications where the beam spacing 

is equal to the compartment width.  From the analysis of these predictions, the 

following are observed, 

• Entrainment under the balcony is significantly increased compared to 

fully-channeled flows. 

• Entrainment increases as the height of the downstand increases and as 

the compartment opening width decreases. 

• Entrainment is predicted to be as high as 165 % for partially-channeled 

flows and 119 % for unchanneled flows.  

• Entrainment in the rotation region is significantly increased for flows 

from narrow compartment openings compared to fully-channeled 

flows. 
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• For wide compartment openings, the increase in entrainment in 

marginal. 

Further studies are required to draw a more definite conclusion for these flow 

scenarios.  
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9. Further Work 

In this work, the entrainment processes under the balcony and in the rotation region 

has been further characterized for flows that are fully channeled under the balcony.  

Comparisons of FDS predictions are validated with experimental data to give 

confidence in the use of FDS for modeling such flow scenarios.  In the analysis of 

small-scale balcony spill plumes, it is discovered that the experimental measurements 

of mass flow rate using the velocity and temperature profiles with the assumption of 

uniformity of flow across the lateral extent of the flow path generally result in an 

overestimation.  Further experimental work is suggested to characterize the “errors” 

associated with such measurements. 

For entrainment in the rotation region, there is sufficient experimental data for 

configurations where there is no downstand at the compartment opening to validate 

the FDS predictions.  However, for configuration with a downstand at the 

compartment opening, experimental data is not available for validation.  Hence, 

experimental work is suggested to be carried out for such configurations to validate 

the FDS predictions and draw a more definite conclusion.   

The work carried out in this research for partially-channeled flows and unchanneled 

flows indicate that the entrainment for these flows is significantly higher than fully 

channeled flows.  Further experimental work is suggested for these flow scenarios to 

characterize the entrainment and develop a correlation that can be used design 

purposes.   
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10. Appendices 

APPENDIX A: Temperature and velocity profiles for ceiling jet  

 
Figure A1: Temperature Profile at r/H = 0.5 

 
Figure A2: Velocity Profile at r/H = 0.5 
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Figure A3: Temperature Profile at r/H = 0.8 

 
Figure A4: Velocity Profile at r/H = 0.8 

 
Figure A5: Temperature Profile at r/H = 1 
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Figure A6: Velocity Profile at r/H = 1.0 

 
Figure A7: Temperature Profile at r/H = 1.2 

 
Figure A8: Velocity Profile at r/H = 1.2 
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APPENDIX B: Temperature and velocity profiles for characterization of boundary 

layer flow  

 
Figure B1: Temperature profile for simulations reference and S2 to S5 at r/H=0.5 

 
Figure B2: Temperature profile for simulations S6 to S11 at r/H=0.5 
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Figure B3: Velocity profile for simulations reference and S2 to S5 at r/H=0.5 

 
Figure B4: Velocity profile for simulations S6 to S11 at r/H=0.5 

 
Figure B5: Temperature profile for simulations reference and S2 to S5 at r/H=0.75 
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Figure B6: Temperature profile for simulations S6 to S11 at r/H=0.75 

 
Figure B7: Velocity profile for simulations reference and S2 to S5 at r/H=0.75 

 
Figure B8: Velocity profile for simulations S6 to S11 at r/H=0.75 
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Figure B9: Temperature profile for simulations reference and S2 to S5 at r/H = 1.0 

 
Figure B10: Temperature profile for simulations S6 to S11 at r/H = 1.0 

 
Figure B11: Velocity profile for simulations reference and S2 to S5 at r/H = 1.0 
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Figure B12: Velocity profile for simulations S6 to S11 at r/H = 1.0 

 
Figure B13: Temperature profile for simulations reference and S2 to S5 at r/H = 1.25 

 
Figure B14: Temperature profile for simulations S6 to S11 at r/H = 1.25 
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Figure B15: Velocity profile for simulations reference and S2 to S5 at r/H = 1.25 

 
Figure B16: Velocity profile for simulations S6 to S11 at r/H = 1.25 

 
Figure B17: Temperature profile for simulations reference and S2 to S5 at r/H = 1.5 
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Figure B18: Temperature profile for simulations S6 to S11 at r/H = 1.5 

 
Figure B19: Velocity profile for simulations reference and S2 to S5 at r/H = 1.5 

 
Figure B20: Velocity profile for simulations S6 to S11 at r/H = 1.5 
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APPENDIX C: Temperature and velocity profiles for simplified case of boundary 

layer flow  

 
Figure C1: Temperature plot at 0.4m 

 
Figure C2: Velocity plot at 0.4m 
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Figure C3: Temperature plot at 0.8m 

 
Figure C4: Velocity plot at 0.8m 

 
Figure C5: Temperature plot at 1.2m 
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Figure C4: Velocity plot at 1.2m 

 
Figure C7: Temperature plot at 1.6m 

 
Figure C8: Velocity plot at 1.6m 
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APPENDIX D: Sample FDS input file for small-scale balcony spill plume  

FDS INPUT FILE FOR SIMULATION SC6C 
 

&HEAD CHID='SC6C',TITLE='25MM GRID, Q=10.3KW, h=0.5, DS=0, W=0.6' / 
&MESH IJK=72,48,24, XB=-1.1,0.7,-0.6,0.6,0,0.6 / 
 
&TIME TWFIN=900.0, SYNCHRONIZE=.TRUE. / 
&MISC SUPPRESSION=.FALSE. / 
&DUMP DT_PL3D=20., DT_DEVC=0.5, DT_HRR=0.5, 
WRITE_XYZ=.TRUE., 
PLOT3D_QUANTITY(1)='U-VELOCITY', 
PLOT3D_QUANTITY(2)='V-VELOCITY', 
PLOT3D_QUANTITY(3)='W-VELOCITY', 
PLOT3D_QUANTITY(4)='TEMPERATURE', 
PLOT3D_QUANTITY(5)='MIXTURE_FRACTION' / 
 
****************************** 
CHARACTERISTICS OF BURNER FIRE 
****************************** 
&RADI RADIATIVE_FRACTION=0.25 / 
&SURF ID  ='FIRE', 
HRRPUA  =527. 
COLOR  ='ORANGE'/ 
&OBST XB=-0.57,-0.43,-0.07,0.07,0,0.025, SURF_IDS='FIRE','INERT','INERT' / 
 
********************************* 
CHARACTERISIICS OF THE BOUNDARIES 
********************************* 
&VENT MB='XMIN' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='XMAX' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='YMIN' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='YMAX' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='ZMAX' , SURF_ID='OPEN' /Open domain boundary 
 
******************************* 
MATERIAL AND SURFACE PROPERTIES 
******************************* 
&MATL ID   =FIBER BOARD' 
SPECIFIC_HEAT  = 2.090 
DENSITY   = 229 
CONDUCTIVITY   = 0.041/ 
 
&SURF ID    ='COMP WALL', 
MATL_ID   =’FIBER BOARD', 
COLOR   ='GRAY', 
THICKNESS   = 0.025 /FIRE COMPARTMENT WALLS 
 
&SURF ID    ='BALC WALL', 
MATL_ID   =’FIBER BOARD', 
COLOR   ='SLATE GRAY', 
THICKNESS  = 0.010 /COLLECTING HOOD WALLS 
 
******************** 
COMPARTMENT GEOMETRY 
******************** 
&OBST XB=-1.0,0.0,-0.525,-0.5,0.0,0.525,SURF_ID='COMP WALL',COLOR ='INVISIBLE' /FIRE 
COMP SIDE WALL (FRT) 
&OBST XB=-1.0,0.0,0.5,0.525,0.0,0.525,SURF_ID='COMP WALL' /FIRE COMP SIDE WALL (BACK) 
&OBST XB=-1.0,-0.975,-0.525,0.525,0.0,0.525,SURF_ID='COMP WALL' /FIRE COMP BACK WALL 
&OBST XB=-0.025,0.0,-0.5,-0.3,0.0,0.5,SURF_ID='COMP WALL' /FIRE COMP FRONT 1 (0.6 M 
OPENING) 
&OBST XB=-0.025,0.0,0.3,0.5,0.0,0.5,SURF_ID='COMP WALL' /FIRE COMP FRONT 2 (0.6 M 
OPENING) 
&OBST XB=-1.0,0.0,-0.525,0.525,0.5,0.525,SURF_ID='COMP WALL' /FIRE COMP CEILING 
 



 

   179 
 

&OBST XB=0.0,0.3,-0.5,0.5,0.5,0.510,SURF_ID='BALC WALL' /0.3 M BALCONY 
&OBST XB=0.0,0.3,-0.31,-0.3,0.3,0.5,SURF_ID=’BALC WALL',COLOR ='INVISIBLE' 
/CHANNELLING SCREEN 1(0.6 M OPENING) 
&OBST XB=0.0,0.3,0.3,0.31,0.3,0.5,SURF_ID='BALC WALL' /CHANNELLING SCREEN 2(0.6 M 
OPENING) 
 
******************************** 
INSTRUMENTATION AND MEASUREMENTS 
******************************** 
### MASS FLOW RATE THROUGH OPENING ### 
&DEVC XB=0.0,0.0,-0.3,0.3,0.0,0.5, QUANTITY='MASS FLOW +', ID='MFR COMP+'/ 
&DEVC XB=0.0,0.0,-0.3,0.3,0.0,0.5, QUANTITY='MASS FLOW -', ID='MFR COMP-'/ 
&DEVC XB=0.3,0.3,-0.3,0.3,0.0,0.5, QUANTITY='MASS FLOW +', ID='MFR SPILL+'/ 
&DEVC XB=0.3,0.7,-0.5,0.5,0.5,0.5, QUANTITY='MASS FLOW +', ID='MFR ROTATED2+'/ 
 
### HEAT FLOW RATE THROUGH OPENING ### 
&DEVC XB=0.0,0.0,-0.3,0.3,0.0,0.5, QUANTITY='HEAT FLOW +', ID='MFR COMP+'/ 
&DEVC XB=0.3,0.3,-0.3,0.3,0.0,0.5, QUANTITY='HEAT FLOW +', ID='MFR SPILL+'/ 
&DEVC XB=0.3,0.7,-0.5,0.5,0.5,0.5, QUANTITY='HEAT FLOW +', ID='MFR ROTATED2+'/ 
 
### TEMPERATURE ACROSS COMPARTMENT OPENING ### 
&DEVC XYZ=0.0,-0.30,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=-0.30) m' /TEMP 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.25,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=-0.25) m' /TEMP 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.20,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=-0.20) m' /TEMP 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.15,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=-0.15) m' /TEMP 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.10,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=-0.10) m' /TEMP 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.05,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=-0.05) m' /TEMP 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.05,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=0.05) m' /TEMP at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.10,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=0.10) m' /TEMP at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.15,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=0.15) m' /TEMP at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.20,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=0.20) m' /TEMP at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.25,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=0.25) m' /TEMP at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.30,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49(X=0.30) m' /TEMP at 
Compartment Opening, 0.39 m from floor 
 
### U-VELOCITY ACROSS COMPARTMENT OPENING ### 
&DEVC XYZ=0.0,-0.30,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=-0.30) m' /U-VEL 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.25,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=-0.25) m' /U-VEL 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.20,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=-0.20) m' /U-VEL 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.15,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=-0.15) m' /U-VEL 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.10,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=-0.10) m' /U-VEL 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,-0.05,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=-0.05) m' /U-VEL 
at Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.05,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=0.05) m' /U-VEL at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.10,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=0.10) m' /U-VEL at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.15,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=0.15) m' /U-VEL at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.20,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=0.20) m' /U-VEL at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.25,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=0.25) m' /U-VEL at 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.30,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49(X=0.30) m' /U-VEL at 
Compartment Opening, 0.39 m from floor 
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### TEMPERATURE ACROSS SPILL EDGE ### 
&DEVC XYZ=0.3,-0.30,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=-0.30) m' /TEMP 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.25,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=-0.25) m' /TEMP 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.20,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=-0.20) m' /TEMP 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.15,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=-0.15) m' /TEMP 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.10,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=-0.10) m' /TEMP 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.05,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=-0.05) m' /TEMP 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.05,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=0.05) m' /TEMP at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.10,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=0.10) m' /TEMP at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.15,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=0.15) m' /TEMP at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.20,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=0.20) m' /TEMP at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.25,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=0.25) m' /TEMP at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.30,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49(X=0.30) m' /TEMP at 
Spill Edge, 0.49 m from floor 
 
### U-VELOCITY ACROSS SPILL EDGE ### 
&DEVC XYZ=0.3,-0.30,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=-0.30) m' /U-VEL 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.25,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=-0.25) m' /U-VEL 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.20,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=-0.20) m' /U-VEL 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.15,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=-0.15) m' /U-VEL 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.10,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=-0.10) m' /U-VEL 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,-0.05,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=-0.05) m' /U-VEL 
at Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.05,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=0.05) m' /U-VEL at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.10,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=0.10) m' /U-VEL at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.15,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=0.15) m' /U-VEL at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.20,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=0.20) m' /U-VEL at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.25,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=0.25) m' /U-VEL at 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.30,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49(X=0.30) m' /U-VEL at 
Spill Edge, 0.49 m from floor 
 
#### TEMPERATURE AT CENTER OF COMPARTMENT OPENING #### 
&DEVC XYZ=0.0,0.0,0.49,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.49 m' /TEMP at Center of 
Compartment Opening, 0.49 m from floor 
&DEVC XYZ=0.0,0.0,0.48,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.48 m' /TEMP at Center of 
Compartment Opening, 0.48 m from floor 
&DEVC XYZ=0.0,0.0,0.47,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.47 m' /TEMP at Center of 
Compartment Opening, 0.47 m from floor 
&DEVC XYZ=0.0,0.0,0.46,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.46 m' /TEMP at Center of 
Compartment Opening, 0.46 m from floor 
&DEVC XYZ=0.0,0.0,0.45,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.45 m' /TEMP at Center of 
Compartment Opening, 0.45 m from floor 
&DEVC XYZ=0.0,0.0,0.44,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.44 m' /TEMP at Center of 
Compartment Opening, 0.44 m from floor 
&DEVC XYZ=0.0,0.0,0.43,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.43 m' /TEMP at Center of 
Compartment Opening, 0.43 m from floor 
&DEVC XYZ=0.0,0.0,0.42,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.42 m' /TEMP at Center of 
Compartment Opening, 0.42 m from floor 
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&DEVC XYZ=0.0,0.0,0.41,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.41 m' /TEMP at Center of 
Compartment Opening, 0.41 m from floor 
&DEVC XYZ=0.0,0.0,0.40,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.40 m' /TEMP at Center of 
Compartment Opening, 0.40 m from floor 
&DEVC XYZ=0.0,0.0,0.39,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.39 m' /TEMP at Center of 
Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.0,0.38,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.38 m' /TEMP at Center of 
Compartment Opening, 0.38 m from floor 
&DEVC XYZ=0.0,0.0,0.37,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.37 m' /TEMP at Center of 
Compartment Opening, 0.37 m from floor 
&DEVC XYZ=0.0,0.0,0.36,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.36 m' /TEMP at Center of 
Compartment Opening, 0.36 m from floor 
&DEVC XYZ=0.0,0.0,0.35,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.35 m' /TEMP at Center of 
Compartment Opening, 0.35 m from floor 
&DEVC XYZ=0.0,0.0,0.34,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.34 m' /TEMP at Center of 
Compartment Opening, 0.34 m from floor 
&DEVC XYZ=0.0,0.0,0.33,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.33 m' /TEMP at Center of 
Compartment Opening, 0.33 m from floor 
&DEVC XYZ=0.0,0.0,0.32,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.32 m' /TEMP at Center of 
Compartment Opening, 0.32 m from floor 
&DEVC XYZ=0.0,0.0,0.31,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.31 m' /TEMP at Center of 
Compartment Opening, 0.31 m from floor 
&DEVC XYZ=0.0,0.0,0.30,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.30 m' /TEMP at Center of 
Compartment Opening, 0.30 m from floor 
&DEVC XYZ=0.0,0.0,0.29,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.29 m' /TEMP at Center of 
Compartment Opening, 0.29 m from floor 
&DEVC XYZ=0.0,0.0,0.28,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.28 m' /TEMP at Center of 
Compartment Opening, 0.28 m from floor 
&DEVC XYZ=0.0,0.0,0.27,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.27 m' /TEMP at Center of 
Compartment Opening, 0.27 m from floor 
&DEVC XYZ=0.0,0.0,0.26,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.26 m' /TEMP at Center of 
Compartment Opening, 0.26 m from floor 
&DEVC XYZ=0.0,0.0,0.25,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.25 m' /TEMP at Center of 
Compartment Opening, 0.25 m from floor 
&DEVC XYZ=0.0,0.0,0.24,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.24 m' /TEMP at Center of 
Compartment Opening, 0.24 m from floor 
&DEVC XYZ=0.0,0.0,0.23,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.23 m' /TEMP at Center of 
Compartment Opening, 0.23 m from floor 
&DEVC XYZ=0.0,0.0,0.22,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.22 m' /TEMP at Center of 
Compartment Opening, 0.22 m from floor 
&DEVC XYZ=0.0,0.0,0.21,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.21 m' /TEMP at Center of 
Compartment Opening, 0.21 m from floor 
&DEVC XYZ=0.0,0.0,0.20,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.20 m' /TEMP at Center of 
Compartment Opening, 0.20 m from floor 
&DEVC XYZ=0.0,0.0,0.11,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.15 m' /TEMP at Center of 
Compartment Opening, 0.15 m from floor 
&DEVC XYZ=0.0,0.0,0.10,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.10 m' /TEMP at Center of 
Compartment Opening, 0.10 m from floor 
&DEVC XYZ=0.0,0.0,0.05,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.05 m' /TEMP at Center of 
Compartment Opening, 0.05 m from floor 
 
#### U-VELOCITY AT CENTER OF COMPARTMENT OPENING #### 
&DEVC XYZ=0.0,0.0,0.49,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.49 m' /U-VEL at Center 
of Compartment Opening, 0.49 m from floor 
&DEVC XYZ=0.0,0.0,0.48,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.48 m' /U-VEL at Center 
of Compartment Opening, 0.48 m from floor 
&DEVC XYZ=0.0,0.0,0.47,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.47 m' /U-VEL at Center 
of Compartment Opening, 0.47 m from floor 
&DEVC XYZ=0.0,0.0,0.46,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.46 m' /U-VEL at Center 
of Compartment Opening, 0.46 m from floor 
&DEVC XYZ=0.0,0.0,0.45,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.45 m' /U-VEL at Center 
of Compartment Opening, 0.45 m from floor 
&DEVC XYZ=0.0,0.0,0.44,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.44 m' /U-VEL at Center 
of Compartment Opening, 0.44 m from floor 
&DEVC XYZ=0.0,0.0,0.43,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.43 m' /U-VEL at Center 
of Compartment Opening, 0.43 m from floor 
&DEVC XYZ=0.0,0.0,0.42,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.32 m' /U-VEL at Center 
of Compartment Opening, 0.42 m from floor 
&DEVC XYZ=0.0,0.0,0.41,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.41 m' /U-VEL at Center 
of Compartment Opening, 0.41 m from floor 
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&DEVC XYZ=0.0,0.0,0.40,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.40 m' /U-VEL at Center 
of Compartment Opening, 0.40 m from floor 
&DEVC XYZ=0.0,0.0,0.39,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.39 m' /U-VEL at Center 
of Compartment Opening, 0.39 m from floor 
&DEVC XYZ=0.0,0.0,0.38,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.38 m' /U-VEL at Center 
of Compartment Opening, 0.38 m from floor 
&DEVC XYZ=0.0,0.0,0.37,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.37 m' /U-VEL at Center 
of Compartment Opening, 0.37 m from floor 
&DEVC XYZ=0.0,0.0,0.36,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.36 m' /U-VEL at Center 
of Compartment Opening, 0.36 m from floor 
&DEVC XYZ=0.0,0.0,0.35,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.35 m' /U-VEL at Center 
of Compartment Opening, 0.35 m from floor 
&DEVC XYZ=0.0,0.0,0.34,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.34 m' /U-VEL at Center 
of Compartment Opening, 0.34 m from floor 
&DEVC XYZ=0.0,0.0,0.33,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.33 m' /U-VEL at Center 
of Compartment Opening, 0.33 m from floor 
&DEVC XYZ=0.0,0.0,0.32,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.32 m' /U-VEL at Center 
of Compartment Opening, 0.32 m from floor 
&DEVC XYZ=0.0,0.0,0.31,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.31 m' /U-VEL at Center 
of Compartment Opening, 0.31 m from floor 
&DEVC XYZ=0.0,0.0,0.30,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.30 m' /U-VEL at Center 
of Compartment Opening, 0.30 m from floor 
&DEVC XYZ=0.0,0.0,0.29,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.29 m' /U-VEL at Center 
of Compartment Opening, 0.29 m from floor 
&DEVC XYZ=0.0,0.0,0.28,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.28 m' /U-VEL at Center 
of Compartment Opening, 0.28 m from floor 
&DEVC XYZ=0.0,0.0,0.27,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.27 m' /U-VEL at Center 
of Compartment Opening, 0.27 m from floor 
&DEVC XYZ=0.0,0.0,0.26,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.26 m' /U-VEL at Center 
of Compartment Opening, 0.26 m from floor 
&DEVC XYZ=0.0,0.0,0.25,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.25 m' /U-VEL at Center 
of Compartment Opening, 0.25 m from floor 
&DEVC XYZ=0.0,0.0,0.24,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.24 m' /U-VEL at Center 
of Compartment Opening, 0.24 m from floor 
&DEVC XYZ=0.0,0.0,0.23,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.23 m' /U-VEL at Center 
of Compartment Opening, 0.23 m from floor 
&DEVC XYZ=0.0,0.0,0.22,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.22 m' /U-VEL at Center 
of Compartment Opening, 0.22 m from floor 
&DEVC XYZ=0.0,0.0,0.21,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.21 m' /U-VEL at Center 
of Compartment Opening, 0.21 m from floor 
&DEVC XYZ=0.0,0.0,0.20,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.20 m' /U-VEL at Center 
of Compartment Opening, 0.20 m from floor 
&DEVC XYZ=0.0,0.0,0.11,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.15 m' /U-VEL at Center 
of Compartment Opening, 0.15 m from floor 
&DEVC XYZ=0.0,0.0,0.10,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.10 m' /U-VEL at Center 
of Compartment Opening, 0.10 m from floor 
&DEVC XYZ=0.0,0.0,0.05,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.05 m' /U-VEL at Center 
of Compartment Opening, 0.05 m from floor 
 
#### TEMPERATURE AT CENTER OF SPILL EDGE #### 
&DEVC XYZ=0.3,0.0,0.49,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.49 m' /TEMP at Center of 
Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.0,0.48,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.48 m' /TEMP at Center of 
Spill Edge, 0.48 m from floor 
&DEVC XYZ=0.3,0.0,0.47,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.47 m' /TEMP at Center of 
Spill Edge, 0.47 m from floor 
&DEVC XYZ=0.3,0.0,0.46,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.46 m' /TEMP at Center of 
Spill Edge, 0.46 m from floor 
&DEVC XYZ=0.3,0.0,0.45,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.45 m' /TEMP at Center of 
Spill Edge, 0.45 m from floor 
&DEVC XYZ=0.3,0.0,0.44,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.44 m' /TEMP at Center of 
Spill Edge, 0.44 m from floor 
&DEVC XYZ=0.3,0.0,0.43,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.43 m' /TEMP at Center of 
Spill Edge, 0.43 m from floor 
&DEVC XYZ=0.3,0.0,0.42,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.42 m' /TEMP at Center of 
Spill Edge, 0.42 m from floor 
&DEVC XYZ=0.3,0.0,0.41,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.41 m' /TEMP at Center of 
Spill Edge, 0.41 m from floor 
&DEVC XYZ=0.3,0.0,0.40,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.40 m' /TEMP at Center of 
Spill Edge, 0.40 m from floor 
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&DEVC XYZ=0.3,0.0,0.39,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.39 m' /TEMP at Center of 
Spill Edge, 0.39 m from floor 
&DEVC XYZ=0.3,0.0,0.38,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.38 m' /TEMP at Center of 
Spill Edge, 0.38 m from floor 
&DEVC XYZ=0.3,0.0,0.37,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.37 m' /TEMP at Center of 
Spill Edge, 0.37 m from floor 
&DEVC XYZ=0.3,0.0,0.36,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.36 m' /TEMP at Center of 
Spill Edge, 0.36 m from floor 
&DEVC XYZ=0.3,0.0,0.35,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.35 m' /TEMP at Center of 
Spill Edge, 0.35 m from floor 
&DEVC XYZ=0.3,0.0,0.34,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.34 m' /TEMP at Center of 
Spill Edge, 0.34 m from floor 
&DEVC XYZ=0.3,0.0,0.33,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.33 m' /TEMP at Center of 
Spill Edge, 0.33 m from floor 
&DEVC XYZ=0.3,0.0,0.32,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.32 m' /TEMP at Center of 
Spill Edge, 0.32 m from floor 
&DEVC XYZ=0.3,0.0,0.31,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.31 m' /TEMP at Center of 
Spill Edge, 0.31 m from floor 
&DEVC XYZ=0.3,0.0,0.30,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.30 m' /TEMP at Center of 
Spill Edge, 0.30 m from floor 
&DEVC XYZ=0.3,0.0,0.28,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.28 m' /TEMP at Center of 
Spill Edge, 0.28 m from floor 
&DEVC XYZ=0.3,0.0,0.26,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.26 m' /TEMP at Center of 
Spill Edge, 0.26 m from floor 
&DEVC XYZ=0.3,0.0,0.24,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.24 m' /TEMP at Center of 
Spill Edge, 0.24 m from floor 
&DEVC XYZ=0.3,0.0,0.22,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.22 m' /TEMP at Center of 
Spill Edge, 0.22 m from floor 
&DEVC XYZ=0.3,0.0,0.20,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.20 m' /TEMP at Center of 
Spill Edge, 0.20 m from floor 
&DEVC XYZ=0.3,0.0,0.11,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.15 m' /TEMP at Center of 
Spill Edge, 0.15 m from floor 
&DEVC XYZ=0.3,0.0,0.10,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.10 m' /TEMP at Center of 
Spill Edge, 0.10 m from floor 
&DEVC XYZ=0.3,0.0,0.05,QUANTITY='TEMPERATURE',ID='BALC TEMP 0.05 m' /TEMP at Center of 
Spill Edge, 0.05 m from floor 
 
#### U-VELOCITY AT CENTER OF SPILL EDGE #### 
&DEVC XYZ=0.3,0.0,0.49,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.49 m' /U-VEL at Center 
of Spill Edge, 0.49 m from floor 
&DEVC XYZ=0.3,0.0,0.48,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.48 m' /U-VEL at Center 
of Spill Edge, 0.48 m from floor 
&DEVC XYZ=0.3,0.0,0.47,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.47 m' /U-VEL at Center 
of Spill Edge, 0.47 m from floor 
&DEVC XYZ=0.3,0.0,0.46,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.46 m' /U-VEL at Center 
of Spill Edge, 0.46 m from floor 
&DEVC XYZ=0.3,0.0,0.45,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.45 m' /U-VEL at Center 
of Spill Edge, 0.45 m from floor 
&DEVC XYZ=0.3,0.0,0.44,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.44 m' /U-VEL at Center 
of Spill Edge, 0.44 m from floor 
&DEVC XYZ=0.3,0.0,0.43,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.43 m' /U-VEL at Center 
of Spill Edge, 0.43 m from floor 
&DEVC XYZ=0.3,0.0,0.42,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.42 m' /U-VEL at Center 
of Spill Edge, 0.42 m from floor 
&DEVC XYZ=0.3,0.0,0.41,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.41 m' /U-VEL at Center 
of Spill Edge, 0.41 m from floor 
&DEVC XYZ=0.3,0.0,0.40,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.40 m' /U-VEL at Center 
of Spill Edge, 0.40 m from floor 
&DEVC XYZ=0.3,0.0,0.39,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.39 m' /U-VEL at Center 
of Spill Edge, 0.39 m from floor 
&DEVC XYZ=0.3,0.0,0.38,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.38 m' /U-VEL at Center 
of Spill Edge, 0.38 m from floor 
&DEVC XYZ=0.3,0.0,0.37,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.37 m' /U-VEL at Center 
of Spill Edge, 0.37 m from floor 
&DEVC XYZ=0.3,0.0,0.36,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.36 m' /U-VEL at Center 
of Spill Edge, 0.36 m from floor 
&DEVC XYZ=0.3,0.0,0.35,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.35 m' /U-VEL at Center 
of Spill Edge, 0.35 m from floor 
&DEVC XYZ=0.3,0.0,0.34,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.34 m' /U-VEL at Center 
of Spill Edge, 0.34 m from floor 
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&DEVC XYZ=0.3,0.0,0.33,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.33 m' /U-VEL at Center 
of Spill Edge, 0.33 m from floor 
&DEVC XYZ=0.3,0.0,0.32,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.32 m' /U-VEL at Center 
of Spill Edge, 0.32 m from floor 
&DEVC XYZ=0.3,0.0,0.31,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.31 m' /U-VEL at Center 
of Spill Edge, 0.31 m from floor 
&DEVC XYZ=0.3,0.0,0.30,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.30 m' /U-VEL at Center 
of Spill Edge, 0.30 m from floor 
&DEVC XYZ=0.3,0.0,0.28,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.28 m' /U-VEL at Center 
of Spill Edge, 0.28 m from floor 
&DEVC XYZ=0.3,0.0,0.26,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.26 m' /U-VEL at Center 
of Spill Edge, 0.26 m from floor 
&DEVC XYZ=0.3,0.0,0.24,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.24 m' /U-VEL at Center 
of Spill Edge, 0.24 m from floor 
&DEVC XYZ=0.3,0.0,0.22,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.22 m' /U-VEL at Center 
of Spill Edge, 0.22 m from floor 
&DEVC XYZ=0.3,0.0,0.20,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.20 m' /U-VEL at Center 
of Spill Edge, 0.20 m from floor 
&DEVC XYZ=0.3,0.0,0.11,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.15 m' /U-VEL at Center 
of Spill Edge, 0.15 m from floor 
&DEVC XYZ=0.3,0.0,0.10,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.10 m' /U-VEL at Center 
of Spill Edge, 0.10 m from floor 
&DEVC XYZ=0.3,0.0,0.05,QUANTITY='U-VELOCITY',ID='BALC U-VEL 0.05 m' /U-VEL at Center 
of Spill Edge, 0.05 m from floor 
 
&SLCF PBY= 0.0, QUANTITY='TEMPERATURE', / 
&SLCF PBY= 0.0, QUANTITY='U-VELOCITY', VECTOR=.TRUE. / 
&SLCF PBX= 0.0, QUANTITY='TEMPERATURE', / TEMPERATURE at Compartment Opening 
&SLCF PBX= 0.0, QUANTITY='U-VELOCITY', VECTOR=.TRUE. / U-VEL at Compartment Opening 
&SLCF PBX= 0.3, QUANTITY='TEMPERATURE', / TEMPERATURE at Spill Edge 
&SLCF PBX= 0.3, QUANTITY='U-VELOCITY', VECTOR=.TRUE. / U-VEL at Spill Edge 
&SLCF PBZ= 0.5, QUANTITY='TEMPERATURE', / TEMPERATURE at Spill Edge 
&SLCF PBZ= 0.5, QUANTITY='U-VELOCITY', VECTOR=.TRUE. / U-VEL at Spill Edge 
 
&TAIL 
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APPENDIX E: Sample FDS input file for full-scale balcony spill plume 

FDS INPUT FILE FOR SIMULATION F4 

 
&HEAD CHID='F4',TITLE='20CM GRID, HRR=5000KW, h=5, W=10, DS=1, b=3' / 
&MESH IJK=100,80,40, XB=-10.0,10.0,-8.0,8.0,0,8.0 / 
 
&TIME T_END=600.0, SYNCHRONIZE=.TRUE. / 
&MISC SUPPRESSION=.FALSE. / 
&DUMP DT_PL3D=25., DT_DEVC=0.5, DT_HRR=0.5, DT_ISOF=0.5 
WRITE_XYZ=.TRUE., 
PLOT3D_QUANTITY(1)='U-VELOCITY', 
PLOT3D_QUANTITY(2)='V-VELOCITY', 
PLOT3D_QUANTITY(3)='W-VELOCITY', 
PLOT3D_QUANTITY(4)='TEMPERATURE', 
PLOT3D_QUANTITY(5)='HRRPUV' / 
 
****************************** 
CHARACTERISTICS OF BURNER FIRE 
****************************** 
&RADI RADIATIVE_FRACTION=0.25 / 
&SURF ID  ='FIRE', 
HRRPUA  =625 
COLOR  ='ORANGE'/ 
&OBST XB=-6.415,-3.585,-1.415,1.415,0,0.20, SURF_IDS='FIRE','INERT','INERT' / 
 
********************************* 
CHARACTERISIICS OF THE BOUNDARIES 
********************************* 
&VENT MB='XMIN' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='XMAX' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='YMIN' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='YMAX' , SURF_ID='OPEN' /Open domain boundary 
&VENT MB='ZMAX' , SURF_ID='OPEN' /Open domain boundary 
 
******************************* 
MATERIAL AND SURFACE PROPERTIES 
******************************* 
&MATL ID  ='FIBER BOARD' 
SPECIFIC_HEAT  = 2.090 
DENSITY   = 229 
CONDUCTIVITY   = 0.041/ 
 
&SURF ID   ='COMP WALL', 
MATL_ID   ='FIBER BOARD', 
COLOR   ='GRAY', 
TRANSPARENCY  = 0.5, 
THICKNESS   = 0.25 /FIRE COMPARTMENT WALLS 
 
&SURF ID   ='BALC WALL', 
MATL_ID   =’FIBER BOARD', 
COLOR   ='SLATE GRAY', 
TRANSPARENCY  = 0.5, 
THICKNESS  = 0.20 /COLLECTING HOOD WALLS 
 
******************** 
COMPARTMENT GEOMETRY 
******************** 
&OBST XB=-10.00, 0.00, -7.25,-7.00, 0.00,5.25,SURF_ID='COMP WALL' /FIRE COMP SIDE WALL 
(FRT) 
&OBST XB=-10.00, 0.00,  7.00, 7.25, 0.00,5.25,SURF_ID='COMP WALL' /FIRE COMP SIDE WALL 
(BACK) 
&OBST XB=-10.00,-9.75, -7.25, 7.25, 0.00,5.25,SURF_ID='COMP WALL' /FIRE COMP BACK WALL 
&OBST XB=-10.00, 0.00, -8.00, 8.00, 5.00,5.25,SURF_ID='COMP WALL' /FIRE COMP CEILING 
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&OBST XB= -0.25, 0.00, -8.00,-5.00, 0.00,5.00,SURF_ID='COMP WALL' /FIRE COMP FRONT 1 
(10M OPENING) 
&OBST XB= -0.25, 0.00,  5.00, 8.00, 0.00,5.00,SURF_ID='COMP WALL' /FIRE COMP FRONT 2 
(10M OPENING) 
&OBST XB= 0.00, 3.00, -8.00, 8.00, 5.00,5.20,SURF_ID='BALC WALL' /BALCONY (3.0M) 
&OBST XB= 0.00, 3.00, -5.20,-5.00, 1.40,5.00,SURF_ID='BALC WALL' /CHANNELLING SCREEN 
1(10M OPENING) 
&OBST XB= 0.00, 3.00,  5.00, 5.20, 1.40,5.00,SURF_ID='BALC WALL' /CHANNELLING SCREEN 
2(10M OPENING) 
&OBST XB=-0.25, 0.00, -5.00, 5.00, 4.00,5.00,SURF_ID='BALC WALL' /DOWNSTAND (1.0M) 
 
******************************** 
INSTRUMENTATION AND MEASUREMENTS 
******************************** 
### MASS FLOW RATE THROUGH OPENING ### 
&DEVC XB=0.0, 0.0,-5.00,5.00,0.0,4.0, QUANTITY='MASS FLOW +', ID='MFR COMP+'/ 
&DEVC XB=0.0, 0.0,-5.00,5.00,0.0,4.0, QUANTITY='MASS FLOW -', ID='MFR COMP-'/ 
&DEVC XB=3.0, 3.0,-5.00,5.00,0.0,5.0, QUANTITY='MASS FLOW +', ID='MFR SPILL+'/ 
&DEVC XB=3.0,10.0,-6.00,6.00,5.0,5.0, QUANTITY='MASS FLOW +', ID='MFR ROTATED2+'/ 
 
### HEAT FLOW RATE THROUGH OPENING ### 
&DEVC XB=0.0, 0.0,-5.00,5.00,0.0,4.0, QUANTITY='HEAT FLOW +', ID='MFR COMP+'/ 
&DEVC XB=3.0, 3.0,-5.00,5.00,0.0,5.0, QUANTITY='HEAT FLOW +', ID='MFR SPILL+'/ 
&DEVC XB=3.0,10.0,-6.00,6.00,5.0,5.0, QUANTITY='HEAT FLOW +', ID='MFR ROTATED2+'/ 
 
### TEMPERATURE ACROSS COMPARTMENT OPENING ### 
&DEVC XYZ=0.0,-4.9,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-4.9)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-4.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-4.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-4.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-4.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-3.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-3.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-3.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-3.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-2.4,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-2.4)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-2.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-2.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-1.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-1.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-1.2,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-1.2)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-1.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-1.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-0.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=-0.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 0.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=0.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 0.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=0.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 1.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=1.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 1.2,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=1.2)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 1.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=1.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 2.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=2.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 2.4,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=2.4)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 3.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=3.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 3.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=3.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 4.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=4.0)m' /TEMP at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 4.5,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=4.5)m' /TEMP at 
Compartment Opening, 0.1m from top 
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&DEVC XYZ=0.0, 4.9,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9(X=4.9)m' /TEMP at 
Compartment Opening, 0.1m from top 
 
### U-VELOCITY ACROSS COMPARTMENT OPENING ### 
&DEVC XYZ=0.0,-4.9,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-4.9)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-4.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-4.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-4.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-4.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-3.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-3.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-3.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-3.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-2.4,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-2.4)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-2.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-2.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-1.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-1.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-1.2,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-1.2)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-1.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-1.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0,-0.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=-0.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 0.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=0.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 0.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=0.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 1.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=1.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 1.2,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=1.2)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 1.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=1.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 2.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=2.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 2.4,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=2.4)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 3.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=3.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 3.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=3.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 4.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=4.0)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 4.5,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=4.5)m' /U-VEL at 
Compartment Opening, 0.1m from top 
&DEVC XYZ=0.0, 4.9,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9(X=4.9)m' /U-VEL at 
Compartment Opening, 0.1m from top 
 
### TEMPERATURE ACROSS SPILL EDGE ### 
&DEVC XYZ=3.0,-4.9,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-5.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-4.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-4.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-4.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-4.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-3.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-3.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-3.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-3.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-2.4,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-2.4) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-2.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-2.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-1.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-1.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-1.2,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-1.2) m' /TEMP at 
Spill Edge, 4.9 m from floor 
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&DEVC XYZ=3.0,-1.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-1.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-0.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=-0.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 0.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=0.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 0.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=0.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 1.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=1.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 1.2,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=1.2) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 1.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=1.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 2.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=2.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 2.4,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=2.4) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 3.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=3.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 3.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=3.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 4.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=4.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 4.5,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=4.5) m' /TEMP at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 4.9,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9(X=5.0) m' /TEMP at 
Spill Edge, 4.9 m from floor 
 
### U-VELOCITY ACROSS SPILL EDGE ### 
&DEVC XYZ=3.0,-4.9,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-5.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-4.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-4.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-4.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-4.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-3.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-3.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-3.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-3.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-2.4,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-2.4) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-2.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-2.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-1.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-1.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-1.2,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-1.2) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-1.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-1.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,-0.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=-0.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 0.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=0.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 0.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=0.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 1.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=1.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 1.2,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=1.2) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 1.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=1.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 2.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=2.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 2.4,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=2.4) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 3.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=3.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 3.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=3.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
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&DEVC XYZ=3.0, 4.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=4.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 4.5,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=4.5) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0, 4.9,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9(X=5.0) m' /U-VEL at 
Spill Edge, 4.9 m from floor 
 
#### TEMPERATURE AT CENTER AT COMPARTMENT OPENING #### 
&DEVC XYZ=0.0,0.0,4.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 4.9 m' /TEMP at Center of 
Compartment Opening, 4.9 m from floor 
&DEVC XYZ=0.0,0.0,4.7,QUANTITY='TEMPERATURE',ID='COMP TEMP 4.7 m' /TEMP at Center of 
Compartment Opening, 4.7 m from floor 
&DEVC XYZ=0.0,0.0,4.5,QUANTITY='TEMPERATURE',ID='COMP TEMP 4.5 m' /TEMP at Center of 
Compartment Opening, 4.5 m from floor 
&DEVC XYZ=0.0,0.0,4.3,QUANTITY='TEMPERATURE',ID='COMP TEMP 4.3 m' /TEMP at Center of 
Compartment Opening, 4.3 m from floor 
&DEVC XYZ=0.0,0.0,4.1,QUANTITY='TEMPERATURE',ID='COMP TEMP 4.1 m' /TEMP at Center of 
Compartment Opening, 4.1 m from floor 
&DEVC XYZ=0.0,0.0,3.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.9 m' /TEMP at Center of 
Compartment Opening, 3.9 m from floor 
&DEVC XYZ=0.0,0.0,3.7,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.7 m' /TEMP at Center of 
Compartment Opening, 3.7 m from floor 
&DEVC XYZ=0.0,0.0,3.5,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.5 m' /TEMP at Center of 
Compartment Opening, 3.5 m from floor 
&DEVC XYZ=0.0,0.0,3.3,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.3 m' /TEMP at Center of 
Compartment Opening, 3.3 m from floor 
&DEVC XYZ=0.0,0.0,3.1,QUANTITY='TEMPERATURE',ID='COMP TEMP 3.1 m' /TEMP at Center of 
Compartment Opening, 3.1 m from floor 
&DEVC XYZ=0.0,0.0,2.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 2.9 m' /TEMP at Center of 
Compartment Opening, 2.9 m from floor 
&DEVC XYZ=0.0,0.0,2.7,QUANTITY='TEMPERATURE',ID='COMP TEMP 2.7 m' /TEMP at Center of 
Compartment Opening, 2.7 m from floor 
&DEVC XYZ=0.0,0.0,2.5,QUANTITY='TEMPERATURE',ID='COMP TEMP 2.5 m' /TEMP at Center of 
Compartment Opening, 2.5 m from floor 
&DEVC XYZ=0.0,0.0,2.3,QUANTITY='TEMPERATURE',ID='COMP TEMP 2.3 m' /TEMP at Center of 
Compartment Opening, 2.3 m from floor 
&DEVC XYZ=0.0,0.0,2.1,QUANTITY='TEMPERATURE',ID='COMP TEMP 2.1 m' /TEMP at Center of 
Compartment Opening, 2.1 m from floor 
&DEVC XYZ=0.0,0.0,1.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 1.9 m' /TEMP at Center of 
Compartment Opening, 1.9 m from floor 
&DEVC XYZ=0.0,0.0,1.7,QUANTITY='TEMPERATURE',ID='COMP TEMP 1.7 m' /TEMP at Center of 
Compartment Opening, 1.7 m from floor 
&DEVC XYZ=0.0,0.0,1.5,QUANTITY='TEMPERATURE',ID='COMP TEMP 1.5 m' /TEMP at Center of 
Compartment Opening, 1.5 m from floor 
&DEVC XYZ=0.0,0.0,1.3,QUANTITY='TEMPERATURE',ID='COMP TEMP 1.3 m' /TEMP at Center of 
Compartment Opening, 1.3 m from floor 
&DEVC XYZ=0.0,0.0,1.1,QUANTITY='TEMPERATURE',ID='COMP TEMP 1.1 m' /TEMP at Center of 
Compartment Opening, 1.1 m from floor 
&DEVC XYZ=0.0,0.0,0.9,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.9 m' /TEMP at Center of 
Compartment Opening, 0.9 m from floor 
&DEVC XYZ=0.0,0.0,0.7,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.7 m' /TEMP at Center of 
Compartment Opening, 0.7 m from floor 
&DEVC XYZ=0.0,0.0,0.5,QUANTITY='TEMPERATURE',ID='COMP TEMP 0.5 m' /TEMP at Center of 
Compartment Opening, 0.5 m from floor 
 
#### U-VELOCITY AT CENTER OF COMPARTMENT OPENING #### 
&DEVC XYZ=0.0,0.0,4.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 4.9 m' /U-VEL at Center of 
Compartment Opening, 4.9 m from floor 
&DEVC XYZ=0.0,0.0,4.7,QUANTITY='U-VELOCITY',ID='COMP U-VEL 4.7 m' /U-VEL at Center of 
Compartment Opening, 4.7 m from floor 
&DEVC XYZ=0.0,0.0,4.5,QUANTITY='U-VELOCITY',ID='COMP U-VEL 4.5 m' /U-VEL at Center of 
Compartment Opening, 4.5 m from floor 
&DEVC XYZ=0.0,0.0,4.3,QUANTITY='U-VELOCITY',ID='COMP U-VEL 4.3 m' /U-VEL at Center of 
Compartment Opening, 4.3 m from floor 
&DEVC XYZ=0.0,0.0,4.1,QUANTITY='U-VELOCITY',ID='COMP U-VEL 4.1 m' /U-VEL at Center of 
Compartment Opening, 4.1 m from floor 
&DEVC XYZ=0.0,0.0,3.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.9 m' /U-VEL at Center of 
Compartment Opening, 3.9 m from floor 
&DEVC XYZ=0.0,0.0,3.7,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.7 m' /U-VEL at Center of 
Compartment Opening, 3.7 m from floor 
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&DEVC XYZ=0.0,0.0,3.5,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.5 m' /U-VEL at Center of 
Compartment Opening, 3.5 m from floor 
&DEVC XYZ=0.0,0.0,3.3,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.3 m' /U-VEL at Center of 
Compartment Opening, 3.3 m from floor 
&DEVC XYZ=0.0,0.0,3.1,QUANTITY='U-VELOCITY',ID='COMP U-VEL 3.1 m' /U-VEL at Center of 
Compartment Opening, 3.1 m from floor 
&DEVC XYZ=0.0,0.0,2.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 2.9 m' /U-VEL at Center of 
Compartment Opening, 2.9 m from floor 
&DEVC XYZ=0.0,0.0,2.7,QUANTITY='U-VELOCITY',ID='COMP U-VEL 2.7 m' /U-VEL at Center of 
Compartment Opening, 2.7 m from floor 
&DEVC XYZ=0.0,0.0,2.5,QUANTITY='U-VELOCITY',ID='COMP U-VEL 2.5 m' /U-VEL at Center of 
Compartment Opening, 2.5 m from floor 
&DEVC XYZ=0.0,0.0,2.3,QUANTITY='U-VELOCITY',ID='COMP U-VEL 2.3 m' /U-VEL at Center of 
Compartment Opening, 2.3 m from floor 
&DEVC XYZ=0.0,0.0,2.1,QUANTITY='U-VELOCITY',ID='COMP U-VEL 2.1 m' /U-VEL at Center of 
Compartment Opening, 2.1 m from floor 
&DEVC XYZ=0.0,0.0,1.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 1.9 m' /U-VEL at Center of 
Compartment Opening, 1.9 m from floor 
&DEVC XYZ=0.0,0.0,1.7,QUANTITY='U-VELOCITY',ID='COMP U-VEL 1.7 m' /U-VEL at Center of 
Compartment Opening, 1.7 m from floor 
&DEVC XYZ=0.0,0.0,1.5,QUANTITY='U-VELOCITY',ID='COMP U-VEL 1.5 m' /U-VEL at Center of 
Compartment Opening, 1.5 m from floor 
&DEVC XYZ=0.0,0.0,1.3,QUANTITY='U-VELOCITY',ID='COMP U-VEL 1.3 m' /U-VEL at Center of 
Compartment Opening, 1.3 m from floor 
&DEVC XYZ=0.0,0.0,1.1,QUANTITY='U-VELOCITY',ID='COMP U-VEL 1.1 m' /U-VEL at Center of 
Compartment Opening, 1.1 m from floor 
&DEVC XYZ=0.0,0.0,0.9,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.9 m' /U-VEL at Center of 
Compartment Opening, 0.9 m from floor 
&DEVC XYZ=0.0,0.0,0.7,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.7 m' /U-VEL at Center of 
Compartment Opening, 0.7 m from floor 
&DEVC XYZ=0.0,0.0,0.5,QUANTITY='U-VELOCITY',ID='COMP U-VEL 0.5 m' /U-VEL at Center of 
Compartment Opening, 0.5 m from floor 
 
#### TEMPERATURE AT CENTER OF SPILL EDGE #### 
&DEVC XYZ=3.0,0.0,4.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.9 m' /TEMP at Center of 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,0.0,4.7,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.7 m' /TEMP at Center of 
Spill Edge, 4.7 m from floor 
&DEVC XYZ=3.0,0.0,4.5,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.5 m' /TEMP at Center of 
Spill Edge, 4.5 m from floor 
&DEVC XYZ=3.0,0.0,4.3,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.3 m' /TEMP at Center of 
Spill Edge, 4.3 m from floor 
&DEVC XYZ=3.0,0.0,4.1,QUANTITY='TEMPERATURE',ID='SPILL TEMP 4.1 m' /TEMP at Center of 
Spill Edge, 4.1 m from floor 
&DEVC XYZ=3.0,0.0,3.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 3.9 m' /TEMP at Center of 
Spill Edge, 3.9 m from floor 
&DEVC XYZ=3.0,0.0,3.7,QUANTITY='TEMPERATURE',ID='SPILL TEMP 3.7 m' /TEMP at Center of 
Spill Edge, 3.7 m from floor 
&DEVC XYZ=3.0,0.0,3.5,QUANTITY='TEMPERATURE',ID='SPILL TEMP 3.5 m' /TEMP at Center of 
Spill Edge, 3.5 m from floor 
&DEVC XYZ=3.0,0.0,3.3,QUANTITY='TEMPERATURE',ID='SPILL TEMP 3.3 m' /TEMP at Center of 
Spill Edge, 3.3 m from floor 
&DEVC XYZ=3.0,0.0,3.1,QUANTITY='TEMPERATURE',ID='SPILL TEMP 3.1 m' /TEMP at Center of 
Spill Edge, 3.1 m from floor 
&DEVC XYZ=3.0,0.0,2.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 2.9 m' /TEMP at Center of 
Spill Edge, 2.9 m from floor 
&DEVC XYZ=3.0,0.0,2.7,QUANTITY='TEMPERATURE',ID='SPILL TEMP 2.7 m' /TEMP at Center of 
Spill Edge, 2.7 m from floor 
&DEVC XYZ=3.0,0.0,2.5,QUANTITY='TEMPERATURE',ID='SPILL TEMP 2.5 m' /TEMP at Center of 
Spill Edge, 2.5 m from floor 
&DEVC XYZ=3.0,0.0,2.3,QUANTITY='TEMPERATURE',ID='SPILL TEMP 2.3 m' /TEMP at Center of 
Spill Edge, 2.3 m from floor 
&DEVC XYZ=3.0,0.0,2.1,QUANTITY='TEMPERATURE',ID='SPILL TEMP 2.1 m' /TEMP at Center of 
Spill Edge, 2.1 m from floor 
&DEVC XYZ=3.0,0.0,1.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 1.9 m' /TEMP at Center of 
Spill Edge, 1.9 m from floor 
&DEVC XYZ=3.0,0.0,1.7,QUANTITY='TEMPERATURE',ID='SPILL TEMP 1.7 m' /TEMP at Center of 
Spill Edge, 1.7 m from floor 
&DEVC XYZ=3.0,0.0,1.5,QUANTITY='TEMPERATURE',ID='SPILL TEMP 1.5 m' /TEMP at Center of 
Spill Edge, 1.5 m from floor 
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&DEVC XYZ=3.0,0.0,1.3,QUANTITY='TEMPERATURE',ID='SPILL TEMP 1.3 m' /TEMP at Center of 
Spill Edge, 1.3 m from floor 
&DEVC XYZ=3.0,0.0,1.1,QUANTITY='TEMPERATURE',ID='SPILL TEMP 1.1 m' /TEMP at Center of 
Spill Edge, 1.1 m from floor 
&DEVC XYZ=3.0,0.0,0.9,QUANTITY='TEMPERATURE',ID='SPILL TEMP 0.9 m' /TEMP at Center of 
Spill Edge, 0.9 m from floor 
&DEVC XYZ=3.0,0.0,0.7,QUANTITY='TEMPERATURE',ID='SPILL TEMP 0.7 m' /TEMP at Center of 
Spill Edge, 0.7 m from floor 
&DEVC XYZ=3.0,0.0,0.5,QUANTITY='TEMPERATURE',ID='SPILL TEMP 0.5 m' /TEMP at Center of 
Spill Edge, 0.5 m from floor 
 
#### U-VELOCITY AT CENTER OF SPILL EDGE #### 
&DEVC XYZ=3.0,0.0,4.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.9 m' /U-VEL at Center of 
Spill Edge, 4.9 m from floor 
&DEVC XYZ=3.0,0.0,4.7,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.7 m' /U-VEL at Center of 
Spill Edge, 4.7 m from floor 
&DEVC XYZ=3.0,0.0,4.5,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.5 m' /U-VEL at Center of 
Spill Edge, 4.5 m from floor 
&DEVC XYZ=3.0,0.0,4.3,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.3 m' /U-VEL at Center of 
Spill Edge, 4.3 m from floor 
&DEVC XYZ=3.0,0.0,4.1,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 4.1 m' /U-VEL at Center of 
Spill Edge, 4.1 m from floor 
&DEVC XYZ=3.0,0.0,3.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 3.9 m' /U-VEL at Center of 
Spill Edge, 3.9 m from floor 
&DEVC XYZ=3.0,0.0,3.7,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 3.7 m' /U-VEL at Center of 
Spill Edge, 3.7 m from floor 
&DEVC XYZ=3.0,0.0,3.5,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 3.5 m' /U-VEL at Center of 
Spill Edge, 3.5 m from floor 
&DEVC XYZ=3.0,0.0,3.3,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 3.3 m' /U-VEL at Center of 
Spill Edge, 3.3 m from floor 
&DEVC XYZ=3.0,0.0,3.1,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 3.1 m' /U-VEL at Center of 
Spill Edge, 3.1 m from floor 
&DEVC XYZ=3.0,0.0,2.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 2.9 m' /U-VEL at Center of 
Spill Edge, 2.9 m from floor 
&DEVC XYZ=3.0,0.0,2.7,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 2.7 m' /U-VEL at Center of 
Spill Edge, 2.7 m from floor 
&DEVC XYZ=3.0,0.0,2.5,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 2.5 m' /U-VEL at Center of 
Spill Edge, 2.5 m from floor 
&DEVC XYZ=3.0,0.0,2.3,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 2.3 m' /U-VEL at Center of 
Spill Edge, 2.3 m from floor 
&DEVC XYZ=3.0,0.0,2.1,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 2.1 m' /U-VEL at Center of 
Spill Edge, 2.1 m from floor 
&DEVC XYZ=3.0,0.0,1.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 1.9 m' /U-VEL at Center of 
Spill Edge, 1.9 m from floor 
&DEVC XYZ=3.0,0.0,1.7,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 1.7 m' /U-VEL at Center of 
Spill Edge, 1.7 m from floor 
&DEVC XYZ=3.0,0.0,1.5,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 1.5 m' /U-VEL at Center of 
Spill Edge, 1.5 m from floor 
&DEVC XYZ=3.0,0.0,1.3,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 1.3 m' /U-VEL at Center of 
Spill Edge, 1.3 m from floor 
&DEVC XYZ=3.0,0.0,1.1,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 1.1 m' /U-VEL at Center of 
Spill Edge, 1.1 m from floor 
&DEVC XYZ=3.0,0.0,0.9,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 0.9 m' /U-VEL at Center of 
Spill Edge, 0.9 m from floor 
&DEVC XYZ=3.0,0.0,0.7,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 0.7 m' /U-VEL at Center of 
Spill Edge, 0.7 m from floor 
&DEVC XYZ=3.0,0.0,0.5,QUANTITY='U-VELOCITY',ID='SPILL U-VEL 0.5 m' /U-VEL at Center of 
Spill Edge, 0.5 m from floor 
 
**** SLICE FILES **** 
&SLCF PBY= 0.0, QUANTITY='TEMPERATURE', / 
&SLCF PBY= 0.0, QUANTITY='U-VELOCITY', VECTOR=.TRUE. / 
&SLCF PBZ= 5.0, QUANTITY='TEMPERATURE', / TEMPERATURE AT SPILL EDGE 
&SLCF PBZ= 5.0, QUANTITY='U-VELOCITY', VECTOR=.TRUE. / VELOCITY AT SPILL EDGE 
&ISOF QUANTITY='TEMPERATURE', VALUE(1)=30., VALUE(2)=800./ 
 

&TAIL 
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APPENDIX F: Lateral temperature and velocity profiles for full-scale balcony spill 

plume simulations 

 
Figure F1: Lateral temperature and velocity profiles for simulation F1 

 
Figure F2: Lateral temperature and velocity profiles for simulation F2 
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Figure F3: Lateral temperature and velocity profiles for simulation F3 

 
Figure F4: Lateral temperature and velocity profiles for simulation F4 

 
Figure F5: Lateral temperature and velocity profiles for simulation F5  
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Figure F6: Lateral temperature and velocity profiles for simulation F6 

 
Figure F7: Lateral temperature and velocity profiles for simulation F7 

 
Figure F8: Lateral temperature and velocity profiles for simulation F8 
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Figure F9: Lateral temperature and velocity profiles for simulation F9 

 
Figure F10: Lateral temperature and velocity profiles for simulation F10 

 
Figure F11: Lateral temperature and velocity profiles for simulation F11 
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Figure F12: Lateral temperature and velocity profiles for simulation F12 

 
Figure F13: Lateral temperature and velocity profiles for simulation F13 

 
Figure F14: Lateral temperature and velocity profiles for simulation F14 
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Figure F15: Lateral temperature and velocity profiles for simulation F15 

 
Figure F16: Lateral temperature and velocity profiles for simulation F16 

 
Figure F17: Lateral temperature and velocity profiles for simulation F17 
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Figure F18: Lateral temperature and velocity profiles for simulation F18 

 
Figure F19: Lateral temperature and velocity profiles for simulation F19 

 
Figure F20: Lateral temperature and velocity profiles for simulation F20 

0

50

100

150

200

250

300

350

400

450

500

-5.0 -3.0 -1.0 1.0 3.0 5.0

Ex
ce

ss
 T

em
pe

ra
tu

re
 (K

)

Distance from Center (m)

COMP TEMP SPILL TEMP

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

-5.0 -3.0 -1.0 1.0 3.0 5.0

V
el

oc
it

y 
(m

/s
)

Distance from Center (m)

COMP U-VEL SPILL U-VEL

0

50

100

150

200

250

-5.0 -3.0 -1.0 1.0 3.0 5.0

Ex
ce

ss
 T

em
pe

ra
tu

re
 (K

)

Distance from Center (m)

COMP TEMP SPILL TEMP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-5.0 -3.0 -1.0 1.0 3.0 5.0

V
el

oc
it

y 
(m

/s
)

Distance from Center (m)

COMP U-VEL SPILL U-VEL

0

50

100

150

200

250

300

-5.0 -3.0 -1.0 1.0 3.0 5.0

Ex
ce

ss
 T

em
pe

ra
tu

re
 (K

)

Distance from Center (m)

COMP TEMP SPILL TEMP

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

-5.0 -3.0 -1.0 1.0 3.0 5.0

V
el

oc
it

y 
(m

/s
)

Distance from Center (m)

COMP U-VEL SPILL U-VEL



 

   199 
 

 
Figure F21: Lateral temperature and velocity profiles for simulation F21 

 
Figure F22: Lateral temperature and velocity profiles for simulation F22 

 
Figure F23: Lateral temperature and velocity profiles for simulation F23 
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Figure F24: Lateral temperature and velocity profiles for simulation F24 

 
Figure F25: Lateral temperature and velocity profiles for simulation F25 

 
Figure F26: Lateral temperature and velocity profiles for simulation F26 
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Figure F27: Lateral temperature and velocity profiles for simulation F27 

 
Figure F28: Lateral temperature and velocity profiles for simulation F1R 

 
Figure F29: Lateral temperature and velocity profiles for simulation F2R  
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Figure F30: Lateral temperature and velocity profiles for simulation F3R 

 
Figure F31: Lateral temperature and velocity profiles for simulation F4R 

 
Figure F32: Lateral temperature and velocity profiles for simulation F5R 
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Figure F33: Lateral temperature and velocity profiles for simulation F6R 

 
Figure F34: Lateral temperature and velocity profiles for simulation F7R 

 
Figure F35: Lateral temperature and velocity profiles for simulation F8R 
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Figure F36: Lateral temperature and velocity profiles for simulation F9R 

 
Figure F37: Lateral temperature and velocity profiles for simulation F10R 

 
Figure F38: Lateral temperature and velocity profiles for simulation F11R 
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Figure F39: Lateral temperature and velocity profiles for simulation F12R 

 
Figure F40: Lateral temperature and velocity profiles for simulation F13R 

 
Figure F41: Lateral temperature and velocity profiles for simulation F14R 
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Figure F42: Lateral temperature and velocity profiles for simulation F15R 

 
Figure F43: Lateral temperature and velocity profiles for simulation F16R 

 
Figure F44: Lateral temperature and velocity profiles for simulation F17R   
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Figure F45: Lateral temperature and velocity profiles for simulation F18R 

 
Figure F46: Lateral temperature and velocity profiles for simulation F19R 

 
Figure F47: Lateral temperature and velocity profiles for simulation F20R   
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Figure F48: Lateral temperature and velocity profiles for simulation F21R 

 
Figure F49: Lateral temperature and velocity profiles for simulation F22R 

 
Figure F50: Lateral temperature and velocity profiles for simulation F23R 
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Figure F51: Lateral temperature and velocity profiles for simulation F24R 

 
Figure F52: Lateral temperature and velocity profiles for simulation F25R 

 
Figure F53: Lateral temperature and velocity profiles for simulation F26R 
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Figure F54: Lateral temperature and velocity profiles for simulation F27R 

 
Figure F55: Lateral temperature and velocity profiles for simulation F1RR 

 
Figure F56: Lateral temperature and velocity profiles for simulation F4RR 
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Figure F57: Lateral temperature and velocity profiles for simulation F6RR 

 
Figure F58: Lateral temperature and velocity profiles for simulation F7RR 

 
Figure F59: Lateral temperature and velocity profiles for simulation F9RR 
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Figure F60: Lateral temperature and velocity profiles for simulation F10RR 

 
Figure F61: Lateral temperature and velocity profiles for simulation F13RR 

 
Figure F62: Lateral temperature and velocity profiles for simulation F15RR 
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Figure F63: Lateral temperature and velocity profiles for simulation F16RR 

 
Figure F64: Lateral temperature and velocity profiles for simulation F18RR 

 
Figure F65: Lateral temperature and velocity profiles for simulation F19RR 
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Figure F66: Lateral temperature and velocity profiles for simulation F22RR 

 
Figure F67: Lateral temperature and velocity profiles for simulation F24RR 

 
Figure F68: Lateral temperature and velocity profiles for simulation F25RR 

0

20

40

60

80

100

120

140

-5.0 0.0 5.0

Ex
ce

ss
 T

em
pe

ra
tu

re
 (K

)

Distance from Center (m)

COMP TEMP SPILL TEMP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-5.0 -3.0 -1.0 1.0 3.0 5.0

V
el

oc
it

y 
(m

/s
)

Distance from Center (m)

COMP U-VEL SPILL U-VEL

0

20

40

60

80

100

120

140

-5.0 0.0 5.0

Ex
ce

ss
 T

em
pe

ra
tu

re
 (K

)

Distance from Center (m)

COMP TEMP SPILL TEMP

-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

-5.0 -3.0 -1.0 1.0 3.0 5.0

V
el

oc
it

y 
(m

/s
)

Distance from Center (m)

COMP U-VEL SPILL U-VEL

0

20

40

60

80

100

120

140

160

-5.0 -3.0 -1.0 1.0 3.0 5.0

Ex
ce

ss
 T

em
pe

ra
tu

re
 (K

)

Distance from Center (m)

COMP TEMP SPILL TEMP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

-5.0 -3.0 -1.0 1.0 3.0 5.0

V
el

oc
it

y 
(m

/s
)

Distance from Center (m)

COMP U-VEL SPILL U-VEL



 

   215 
 

 
Figure F69: Lateral temperature and velocity profiles for simulation F27RR 
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APPENDIX G: Vertical temperature and velocity profiles for full-scale balcony spill 

plume simulations 

 
Figure G1: Vertical temperature and velocity profiles for simulation F1 

 
Figure G2: Vertical temperature and velocity profiles for simulation F2 
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Figure G3: Vertical temperature and velocity profiles for simulation F3 

 
Figure G4: Vertical temperature and velocity profiles for simulation F4 

 
Figure G5: Vertical temperature and velocity profiles for simulation F5 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300 400

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 3 8 13

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150 200 250

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 0 2 4 6

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 0 2 4 6 8

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL



 

   218 
 

 
Figure G6: Vertical temperature and velocity profiles for simulation F6 

 
Figure G7: Vertical temperature and velocity profiles for simulation F7 

 
Figure G8: Vertical temperature and velocity profiles for simulation F8 
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Figure G9: Vertical temperature and velocity profiles for simulation F9 

 
Figure G10: Vertical temperature and velocity profiles for simulation F10 

 
Figure G11: Vertical temperature and velocity profiles for simulation F11 
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Figure G12: Vertical temperature and velocity profiles for simulation F12 

 
Figure G13: Vertical temperature and velocity profiles for simulation F13 

 
Figure G14: Vertical temperature and velocity profiles for simulation F14 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300 400

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 0 2 4 6 8

El
ev

at
io

n 
(m

)

Velocity (m/s)

SPILL COMP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150 200 250

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 0 2 4 6

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 0 2 4 6 8

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL



 

   221 
 

 
Figure G15: Vertical temperature and velocity profiles for simulation F15 

 
Figure G16: Vertical temperature and velocity profiles for simulation F16 

 
Figure G17: Vertical temperature and velocity profiles for simulation F17 
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Figure G18: Vertical temperature and velocity profiles for simulation F18 

 
Figure G19: Vertical temperature and velocity profiles for simulation F19 

 
Figure G20: Vertical temperature and velocity profiles for simulation F20 
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Figure G21: Vertical temperature and velocity profiles for simulation F21 

 
Figure G22: Vertical temperature and velocity profiles for simulation F22 

 
Figure G23: Vertical temperature and velocity profiles for simulation F23 
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Figure G24: Vertical temperature and velocity profiles for simulation F24 

 
Figure G25: Vertical temperature and velocity profiles for simulation F25 

 
Figure G26: Vertical temperature and velocity profiles for simulation F26 
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Figure G27: Vertical temperature and velocity profiles for simulation F27 

 
Figure G28: Vertical temperature and velocity profiles for simulation F1R 

 
Figure G29: Vertical temperature and velocity profiles for simulation F2R 
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Figure G30: Vertical temperature and velocity profiles for simulation F3R 

 
Figure G31: Vertical temperature and velocity profiles for simulation F4R 

 
Figure G32: Vertical temperature and velocity profiles for simulation F5R 
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Figure G33: Vertical temperature and velocity profiles for simulation F6R 

 
Figure G34: Vertical temperature and velocity profiles for simulation F7R 

 
Figure G35: Vertical temperature and velocity profiles for simulation F8R 
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Figure G36: Vertical temperature and velocity profiles for simulation F9R 

 
Figure G37: Vertical temperature and velocity profiles for simulation F10R 

 
Figure G38: Vertical temperature and velocity profiles for simulation F11R 
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Figure G39: Vertical temperature and velocity profiles for simulation F12R 

 
Figure G40: Vertical temperature and velocity profiles for simulation F13R 

 
Figure G41: Vertical temperature and velocity profiles for simulation F14R 
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Figure G42: Vertical temperature and velocity profiles for simulation F15R 

 
Figure G43: Vertical temperature and velocity profiles for simulation F16R 

 
Figure G44: Vertical temperature and velocity profiles for simulation F17R 
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Figure G45: Vertical temperature and velocity profiles for simulation F18R 

 
Figure G46: Vertical temperature and velocity profiles for simulation F19R 

 
Figure G47: Vertical temperature and velocity profiles for simulation F20R 
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Figure G48: Vertical temperature and velocity profiles for simulation F21R 

 
Figure G49: Vertical temperature and velocity profiles for simulation F22R 

 
Figure G50: Vertical temperature and velocity profiles for simulation F23R 
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Figure G51: Vertical temperature and velocity profiles for simulation F24R 

 
Figure G52: Vertical temperature and velocity profiles for simulation F25R 

 
Figure G53: Vertical temperature and velocity profiles for simulation F26R 
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Figure G54: Vertical temperature and velocity profiles for simulation F27R 

 
Figure G55: Vertical temperature and velocity profiles for simulation F1RR 

 
Figure G56: Vertical temperature and velocity profiles for simulation F4RR 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 100 200 300

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-2 0 2 4 6 8

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 20 40 60 80

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-1 0 1 2 3

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150

El
ev

at
io

n 
(m

)

Excess Temperature (K)

COMP SPILL

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-1 0 1 2 3

El
ev

at
io

n 
(m

)

Velocity (m/s)

COMP SPILL



 

   235 
 

 
Figure G57: Vertical temperature and velocity profiles for simulation F6RR 

 
Figure G58: Vertical temperature and velocity profiles for simulation F7RR 

 
Figure G59: Vertical temperature and velocity profiles for simulation F9RR 
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Figure G60: Vertical temperature and velocity profiles for simulation F10RR 

 
Figure G61: Vertical temperature and velocity profiles for simulation F13RR 

 
Figure G62: Vertical temperature and velocity profiles for simulation F15RR 
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Figure G63: Vertical temperature and velocity profiles for simulation F16RR 

 
Figure G64: Vertical temperature and velocity profiles for simulation F18RR 

 
Figure G65: Vertical temperature and velocity profiles for simulation F19RR 
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Figure G66: Vertical temperature and velocity profiles for simulation F22RR 

 
Figure G67: Vertical temperature and velocity profiles for simulation F24RR 

 
Figure G68: Vertical temperature and velocity profiles for simulation F25RR 
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Figure G69: Vertical temperature and velocity profiles for simulation F27RR 
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