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The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but 

has significant limitations in battery cycle life and safety. During initial charging, 

decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to 

the formation of a passivating layer on the anode known as the solid electrolyte 

interphase (SEI). The formation of an SEI has great impact on the cycle life and 

safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In 

this dissertation, two surface science model systems have been created under ultra-

high vacuum (UHV) to probe the very initial stage of SEI formation at the model 

carbon anode surfaces of LIB. 



  

      The first model system, Model System I, is an lithium-carbonate 

electrolyte/graphite C(0001) system. I have developed a temperature programmed 

desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument 

as part of my dissertation to study Model System I in quantitative detail. The binding 

strengths and film growth mechanisms of key electrolyte molecules on model carbon 

anode surfaces with varying extents of lithiation were measured by TPD. TPRS was 

further used to track the gases evolved from different reduction products in the early-

stage SEI formation. The branching ratio of multiple reaction pathways was 

quantified for the first time and determined to be 70.% organolithium products vs. 

30% inorganic lithium product. The obtained branching ratio provides important 

information on the distribution of lithium salts that form at the very onset of SEI 

formation. 

      One of the key reduction products formed from EC in early-stage SEI formation 

is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC 

structure in either the bulk or thin-film (SEI) form is unknown. To enable structural 

study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction 

measurements (bulk material) and STM measurements (deposited films). To enable 

studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate 

(LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution 

microaerosol deposition technique. Produced films were then imaged by ultra-high 

vacuum scanning tunneling microscopy (UHV-STM). As a control, the 

dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D 

phase behavior was mapped out as a function of coverage. The evolution of three 



  

distinct monolayer phases of DMF was observed with increasing surface pressure — 

a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. 

The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF 

islands at lower surface pressures (DMF coverages), and was interpreted through 

nucleation theory. A structural model of the nucleation seed was proposed, and the 

implication of ionic SEI products, such as LEDC, in early-stage SEI formation was 

discussed. 
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Chapter 1  Introduction 

1.1 Energy Issues and Society 

      Energy is the heart of modern civilization, and the demand for energy is 

constantly expanding as civilization advances. According to the International Energy 

Agency (IEA) Key World Energy Statistics 2015 Report1, the global total final 

energy consumption in 2013 is 9301 Mtoe (1 Mtoe = 11.63 TWh or terawatt-hour).  

This consumption approximately doubles the total energy consumption of 1973 (4667 

Mtoe), showing the dramatic increase in energy consumption over the last 40 years. It 

is estimated that by the year 2040 the world energy consumption will reach 10748-

12487 Mtoe. The ever increasing energy consumption poses serious challenges to the 

development of modern civilization. These challenges include: (i) a limited total 

energy supply. Currently the major source of energy is from the combustion of fossil 

fuels (e.g. oil, natural gas, coal). Formed in pre-historic eras, the total supply of these 

fossil fuels is fundamentally limited; (ii) environment problems caused by the 

combustion of fossil fuels. Burning coals and gasolines leads to serious air pollution 

problems in developing countries like China and India. More importantly, the 

greenhouse gas CO2 is the major cause of the global warming effect, which impacts 

both developing and developed countries alike. The disruptive effects of global 

warming have already begun to appear in the form of rising sea levels2,3, more intense 

hurricanes4 and heat waves5. There are several approaches to tackle these issues: (i) 

improve energy use efficiency, (ii) develop and adopt renewable energies (solar, 

wind, geothermal etc.). The majority of renewable energies are the direct or indirect 
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form of solar energy, originating from the nuclear fusion in the sun. Intense research 

and development efforts have been exerted to harvest the renewable energy, and an 

increasing number of renewable energy facilities have been put into use. These 

efforts, however, have been greatly impeded by one major obstacle—the intermittent 

nature of these renewable energies. To overcome this obstacle and achieve the green 

energy dream for humankind, science and technology breakthroughs in one key field, 

energy storage, especially large scale energy storage, are imperative.  

1.2 Electrical Energy Storage (EES) Technology 

      Among all energy storage technologies, electrical energy storage (EES) has 

several advantages: (i) consumption of electrical energy does not have associated 

emission and electrical energy is therefore a clean energy, (ii) electric energy 

provides higher energy use efficiency compared to internal combustion engines due 

to minimal thermal energy waste, (iii) electrical energy systems can be directly 

integrated with electronic systems for advanced functionality (e.g. smart power 

management system). Therefore the electrical energy storage system becomes the 

natural choice for energy storage applications. Types of EES include the following6: 

(i) mechanical (e.g. compressed air), (ii) chemical (e.g. hydrogen and batteries), (iii) 

electrical (e.g. capacitors and supercapacitors), (iv) thermal (e.g. molten salt). 

Batteries are the most widely used EES systems. A battery consists of one or multiple 

electrochemical cells. A single electrochemical cell is composed of a negative 

electrode (cathode), a positive electrode (anode) and electrolyte solution of ionic 

salts. During a discharge, the electrons flow from the anode to the cathode through 

the external circuit. The electrochemistry of the discharge is not reversible for 
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primary batteries, and reversible for secondary (i.e. rechargeable) batteries. The 

reusable property of the secondary batteries makes for economical use and wide 

applications in various areas, such as lead-acid batteries in vehicles and Li-ion 

batteries in portable electronic devices. 

 

Figure 1.1. Energy density of different rechargeable batteries.7 

 

      There are several major dimensions to measure the performance of the 

rechargeable batteries: the capacity, the cell potential, the energy density, the power 

density, and the cycle life. The capacity is total amount of electrical charge in the cell 

(unit: Ah), the cell potential (unit: V) is determined by the internal electrochemistry 

of the cell, the energy density is the amount of electrical energy per unit of weight or 

volume (unit: Wh kg-1 or Wh I-1), the power density is the amount of electrical power 

output per unit of weight or volume (unit: W kg-1 or W I-1), the cycle life (unit: No. of 

cycles) is the number of charge/discharge cycles that the battery operates to retain 

80% of its original capacity. The Li-ion battery (LIB) stands out among various 
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rechargeable batteries in terms of energy/power density (Figure 1.1) and has reached 

cycle life as high as ~1000 cycles commercially8. These optimal properties make it 

widely used as the power source for portable electronic device and a promising 

solution for larger scale energy storage. 

1.3 Lithium-ion Battery (LIB): Past and Present 

 

Scheme 1.1. Half-cell electrochemical reaction of Li. 

      The central concept of the LIB is based on the half-cell electrochemical reaction 

of Li (Scheme 1.1). Lithium is the third element in the periodic table and 25th most 

abundant element in the earth’s crust.9 It is one of the most electropositive electrode 

materials (E0 = -3.04 V vs. standard hydrogen electrode (SHE)) and the lowest-

density metallic element (molecular weight: 6.94 g∙mol-1, density ρ = 0.53 g∙cm3). 

These properties give the LIB a relatively high energy density and low cost. Lithium 

metal was first used as an electrode material in the 1970s in rechargeable battery 

systems10,11, but the Li dendrite formation at the metallic lithium-liquid electrolyte 

interface during charge-discharge cycles causes serious safety concerns7. Lithium 

metal electrode was later replaced by lithium intercalated carbonaceous material-

graphite to solve the safety problem. This progress, together with the discovery of a 

series of Li+ host materials (LixMO2, M = Co, Ni or Mn) by Goodenough in 198012, 

and of organic carbonate liquid electrolyte , making the first commercial Li-ion 

battery available in 1986 by Sony Corporation.7 

      The cathode material of the Li-ion battery is a transition metal oxide (e.g. cobalt 

oxide) and the anode material is typically graphite, both acting as hosts of the charge 
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carrier-Li+ (Figure 1.2). The metallic current collectors deliver electrons from/to the 

electrodes. The charge separator is a Li+ permeable but electron insulating membrane 

used to physically separate the cathode and the anode. The liquid electrolyte is 

comprised of a mixture of aprotic polar organic compounds in which lithium ionic 

compounds such as LiPF6 are soluble. Importantly, lithium ions can be transported in 

the electrolyte phase, but electron transport is blocked and forced to traverse an 

external circuit. In the discharging mode of the LIB, Li+ are transported from the 

anode to the cathode and electrons concurrently flow into the cathode through outside 

circuit. In the charging mode of the LIB, electrons are pumped into the anode, driving 

Li+ from the cathode to the anode through the electrolyte phase. 

 

Figure 1.2. A schematic of the Li-ion battery (LIB).13 

1.4 Lithium-ion Battery (LIB): Challenges and Opportunities 

      Despite the widespread applications of LIBs as energy storage devices, challenges 

exist to hinder its extension to larger-scale applications (e.g. electric vehicles and 
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power grid storages). These challenges include limited energy density, limited power 

density, limited cycle life and safety.14 These challenges also pose great opportunities 

to improve the performance of LIB in different aspects.  

      The limited energy density is attributed to the electrode materials. New electrode 

materials-silicon (Si)15, tin (Sn)16, composite materials17, etc., have been tested. A 

typical example is Si, and it has been suggested to replace graphite due to much 

higher energy density (4,200 mAh g−1), more than 10 times that of graphite (372 mAh 

g−1).18 The problem with Si is that the volume expansion of bulk Si causes 

pulverization of this electrode during Li-ion insertion. To overcome this problem, 

new material architectures, such as silicon nanostructures19 and C-Si composites 

materials20, have been developed and tested to accommodate the volume expansion of 

Si. Already, start-up companies are working on lowering the manufacturing cost of 

those research prototypes in order to push them to the market in the near future. 

      The cycle life is mainly due to electrolyte-electrode interactions. The 

conventional electrolyte is the aprotic polar organic carbonate liquid electrolyte. One 

key factor that determines the cycle life and safety of the LIB is the occurrence of 

side chemical reactions at the electrode-electrolyte interface. These side reactions 

involve the decomposition of the organic electrolyte at the electrode surface and lead 

to a buildup of a solid layer on the electrode surface known as the solid electrolyte 

interphase (SEI). The formation of a thick SEI layer (30-50 nm) acts as an electron 

insulator, preventing further reductive decomposition of the electrolyte. The SEI layer 

is Li-ion conducting, which allows LIBs with SEI films to remain functional during 

charge/discharge cycles. Despite the ability of the SEI to passivate the electrode, its 
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continual dissolution into the electrolyte and formation at the electrode consumes the 

available Li+ and leads to the capacity fade of LIBs. The SEI-related side reactions 

also affect the safety and stability of LIBs. Under some circumstances, the chemical 

reactions can cause a thermal runaway, leading to explosion of LIBs. Numerous such 

accidents related to LIBs have been reported by the media.  

      Multitude efforts have been exerted to improve the performance of the electrolyte: 

(i) liquid electrolyte additives have been tested and proven useful to improve the 

cycling performance, e.g. vinylene carbonate (VC)21, fluoroethylene carbonate 

(FEC)22, both being derivatives of ethylene carbonate (EC).  (ii) other classes of 

electrolytes other than the liquid class is another major area of intensive research, 

which include polymers and polymer gels, solid ceramics, molten salts and others. 

Those classes of electrolytes typically have higher electrolyte-electrode interface 

stability than that of the liquid electrolyte. An example of the polymer electrolyte is 

poly-ethylene oxide (PEO) based electrolyte.23 Notable solid ceramics electrolyte 

materials include: LiPON, Li garnet and LGPS. LiPON (LixPOyNz where x = 

2y+3z−5) is an amorphous material with a Li-ion conductivity of ~1 × 10-6 S/cm at 

25°C. Li garnet is a crystal structure family (example composition: Li7La3Zr2O12) 

with a higher Li-ion conductivity (~1 × 10-3 S/cm) than LiPON. LGPS (Li10GeP2S12) 

is a crystalline material that represents a breakthrough in Li-ion conductivity (~1 × 

10-2 S/cm at 25 °C), surpassing that of the typical liquid electrolyte in LIB.24 Despite 

the great progress in the field, the overall performance of the polymer and solid 

electrolyte could still not match that of the liquid electrolyte, which is still under use 

and therefore will be the focus of my dissertation. 
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      The composition of the SEI formed at the liquid electrolyte-electrode interface is 

a very complex mixture of inorganic and organic lithium salts as well as organic 

materials. (Figure 1.3)  To understand this complex mixture, it is wise to divide the 

development of the SEI into different stages. The very initial stage of SEI formation 

creates monolayers in direct contact with the graphite anode surface, providing 

mechanical attachment and optimal Li-ion tunneling properties. It is natural to select 

this stage as the main target of study. As a side note, the SEI could also be formed at 

the cathode surface.25 However the greater thickness (~50 nm)26 at the graphite anode 

surface makes it a greater issue for capacity fading that demands research.  

 

Figure 1.3. The composition of SEI at the carbon anode surfaces in LIB.27 

1.5 Thesis Overview 

      This dissertation explores the reductive decomposition of select molecular 

carbonates at model carbon anode surfaces. By utilizing the techniques of UHV 

surface science, we are able to provide new insights on the earliest (sub-monolayer to 
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monolayer) stage of SEI formation, quantify the branching of decomposition 

pathways. We performed related structural investigations of select organolithium 

compounds which are key components in early-stage SEI formation. During this 

research, we discovered that the highly polar organic solvents needed for structural 

investigations of neat lithium ethylene dicarbonate films, react spontaneously with 

silver electrodes to form monolayer films of silver-solvent coordination compounds. 

An added focus of this dissertation is the detailed characterization of solvent-induced 

monolayer phases of Ag(111) electrode surfaces.  

      The overview of my PhD thesis is as follows: 

      In Chapter 2, the experimental methods and related instrumentations are 

articulated. The model systems under ultra-high vacuum (UHV) to simulate the very 

initial stage of SEI formation are introduced. The enabling methods to create the 

model systems: physical vapor deposition (PVD) and liquid microaerosol deposition 

methods are presented. The two major surface science techniques to characterize the 

model systems-temperature programmed desorption / temperature programmed 

reaction spectroscopy (TPD/TPRS) and scanning tunneling microscopy (STM) are 

described. The construction of a custom TPD/TPRS system will be specifically 

described in greater detail since it is an important contribution from my dissertation 

work. 

      Chapter 3 provides the first quantitative study of the electrolyte decomposition 

processes that occur at the initial stage of SEI formation. Ultra-thin (monolayer) 

model SEI layers are formed by controlled deposition of lithium and organic 

carbonate electrolytes on the single crystal graphite C(0001) surface. I investigated 
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the detailed interactions between the electrolytes and model anode surfaces with 

varying extent of lithiation: (i) clean C(0001), (ii) Li+/C(0001), (iii) Li(s)/C(0001). 

New information (adsorption energies, reaction branching ratios, structure of the 

solvent at the interface) were obtained through quantitative analysis of collected 

TPD/TPRS data.    

      Chapter 4 and Chapter 5 are based on a key component-lithium ethylene 

dicarbonate (LEDC) in the ultra-thin model SEI layers created in Chapter 3. The 

model SEI layer is a complex mixture that precludes atomic-level structural insights. I 

thus select a single organolithium salt component for more detailed characterization 

of its properties and role in the initial stage SEI formation. The pure LEDC is 

moisture sensitive organolithium salt, obtained in pure form through organic 

synthesis. In order to control film formation, LEDC was dissolved in 

dimethylformamide (DMF) for aerosol deposition on Ag(111). Chapter 4 examines 

the interaction between the solvent DMF and Ag(111) in the absence of 

organolithium solutes, while Chapter 5 presents STM structural studies of monolayer 

film generated from LEDC-DMF deposition. We reveal that LEDC seeds the 

nucleation of DMF film structures, and present structural models. 

      Chapter 6 will give a summary and an outlook for future work.   
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Chapter 2  Experimental Methods 

2.1 Model Systems 

      The solid electrolyte interphase (SEI) formation at the anode of the Li-ion battery 

(LIB) is a complex process and it is difficult to monitor the surface physical/chemical 

changes in-situ. To understand this complex process, model systems were created 

under an UHV environment to simulate the interphase onset in the LIB. It is worth 

noting that the model system created under UHV is different from the real solid-

liquid interface, since the existence of liquid would make UHV impossible. Despite 

the difference, the UHV model system allows us to simplify the complicated liquid 

electrolyte-electrode phenomenon and study key aspects of the interphase in a well-

defined manner. 

      In my dissertation, two model systems were created. Model system I is composed 

of three key components: the solid electrode surface—graphite C(0001), the 

carbonate electrolytes and lithium. Graphite is the anode material of the commercial 

available LIB and C(0001) is its basal plane. Here a highly oriented pyrolytic graphite 

(HOPG) (Micromash, Grade A) was used as the substrate. The carbonate electrolytes 

used in commercially available LIB’s are usually a mixture of ethylene carbonate 

(EC) and members of the linear carbonate family (Figure 2.1). In Model System I, 

dimethylcarbonate (DMC) was used as a representative of the linear carbonate family.   
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Figure 2.1. Molecular formula of ring carbonates and linear carbonates used in the 

Li-ion battery (LIB). 

 

      The Li-carbonate electrolyte/C(0001) model system (Model System I) provided 

the opportunity to study the interface with advanced surface spectroscopy methods, 

revealing the detailed interactions between the electrode and the electrolyte 

molecules. The results show that chemical reactions between lithiated graphite and 

carbonate electrolyte have multiple reaction pathways, yielding different carbonate 

electrolyte reduction products. Among the carbon electrolyte reduction products, one 

reduction product of ethylene carbonate (EC), lithium ethylene dicarbonate (LEDC), 

draws special attention.28 (Figure 2.2) 

 

Figure 2.2. Molecule formula and structure of lithium ethylene dicarbonate (LEDC). 

 

      LEDC is the initial product of EC reduction and appears to play a key role in 

stabilizing the solid electrolyte interphase (SEI). Experiment and theory efforts have 
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been exerted to study this molecule, yet its atomically detailed structure in bulk and 

SEI form have yet to be determined. 

      In my dissertation, the deposition of LEDC on model electrode surface has been 

explored under well-defined conditions. Ag(111) was used as the substrate in the 

deposition studies. Ag(111) was used as the substrate due to its stability, weak 

interaction with LEDC, making it highly amenable to structural studies by UHV-STM 

imaging. The polar solvent dimethylformamide (DMF) was used to dissolve LEDC 

for material delivery in an aerosol deposition to Ag(111). This extended model 

system: LEDC-DMF/Ag(111) is referred to as Model System II. 

2.2 Enabling Methods for Model Systems 

      In Model System I (Li-carbonate electrolyte/C(0001)), electrolyte molecules were 

deposited on the graphite C(0001) substrate using physical vapor deposition (PVD). 

The vapor pressure of EC (0.02 mmHg, 36.4 °C) and DMC (18 mmHg, 21.1 °C) 

permit the PVD method on a clean HOPG substrate through an UHV leak valve. The 

deposition coverage could be controlled by both the deposition gas pressure and the 

deposition time. The typical deposition gas pressure ranged from 1 × 10-9 Torr to 1 × 

10-6 Torr, as measured by an ionization gauge. The reported deposition exposure is in 

units of Langmuirs (1 L = 1 × 10−6 Torr·s, where 1 L ≈ 1 monolayer for an assumed 

stick coefficient of 1). Near unity sticking coefficients are expected for substrate with 

reduced temperature of ~100 K, as per the present study. 

      In Model System II (LEDC-DMF/Ag(111) ), LEDC is a solid organolithium salt 

at room temperature and its physical properties render it unsuitable for PVD. The 

thermal decomposition temperature of LEDC occurs at 120°C, before the temperature 
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of its solid to liquid phase transition.29 To enable LEDC deposition, a different 

deposition method-the microaerosol liquid deposition technique was utilized. 

      A microaerosol liquid deposition system was previously constructed (Figure 2.3) 

and used for this work.30 To perform the deposition, LEDC was first dissolved in the 

aprotic polar organic solvent dimethylformamide (DMF) to form a LEDC/DMF 

solution (concentration ~0.4 M). The solution was then used as the deposition 

material and placed into a glass syringe (Hamilton 10 ml) controlled by a syringe 

pump (Harvard Apparatus 11 Plus). The ejected solution was subsequently mixed 

with dry nitrogen gas (typical gas pressure 10-20 psi) in a glass nebulizer to form a 

microaerosol mist. The microaerosol mist was next size-separated in a cloud chamber 

(Glass Expansion) and introduced into the differentially pumped chamber through a 

computer-controlled solenoid molecular beam valve (1mm orifice). The resultant 

molecular beam passed through successive differentially pumped chambers and was 

further defined by two skimmers before the beam reached the substrate surface.   

 

Figure 2.3. Schematic illustration of pulsed microaeroso deposition system, 

composed of syringe pump, nebulizer (1), cloud chamber (2), pulsed valve (3) and 

differential pumped chamber with skimmers.30 
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2.3 Characterization of Model Systems 

2.3.1 Introduction 

      A variety of surface science techniques were applied to characterize the 

aforementioned model systems. These techniques include: Auger electron 

spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), low energy electron 

diffraction (LEED), temperature programmed desorption/temperature programmed 

reaction spectroscopy (TPD/TPRS), atomic force microscopy (AFM) and scanning 

tunneling microscopy (STM). The TPD/TPRS is the major characterization tool for 

Model System I (Li-carbonate electrolyte/C(0001)) and I constructed the TPD/TPRS 

instrumentation as part of my dissertation. Therefore the TPD/TPRS and its 

construction process will be discussed in detail in the following section. The STM is 

the major characterization tool for Model System II (LEDC-DMF/Ag(111)) and a 

section will be devoted to introducing the STM.        

2.3.2 Temperature programmed desorption/temperature programmed reaction 

spectroscopy (TPD/TPRS) 

      (TPD/TPRS) is a powerful characterization tool for Model System I. The 

physical/chemical interactions between the electrolyte and Li-Graphite in the few 

monolayers of electrolyte regime requires detection and identification of different 

chemical species with high sensitivity as a function of temperature. The mass 

spectrometer (typically a quadruple mass analyzer, QMA) used in TPD/TPRS 

provides accurate mass-to-charge (m/z) ratio filtering and reaches sensitivity as high 

as ~10-6 monolayers/cm2 31. The QMA consists of an ionizer, four poles and an 

electron multiplier for signal enhancement (Figure 2.4). When gas phase 
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molecules/atoms enter the mass spectrometer, they are ionized in the ionizer, and then 

the ionized atoms or molecules are transmitted to the quadrupole, where a 

combination of electric/magnetic fields filter particles of a specific mass to charge 

ratio (m/z). The ionized atoms/molecules then reach the electron multiplier, 

generating 106 electrons/ion for the collector. The high-resolution and high sensitivity 

render the QMA one of most widely applied tools in surface science research. In my 

dissertation, the mass spectrometer used is the Pfeiffer Vacuum QME 200, which has 

an m/z range of 0-200 amu/charge. 

 

Figure 2.4. Schematic illustration of a quadrupole mass analyzer (QMA). 

 

      The TPD technique is also referred to as thermal desorption spectroscopy (TDS). 

Atoms/molecules desorb from the surface and enter into the gas phase by thermal 

excitation, hence the name. To enable quantitative analysis, the sample is heated 

linearly at a fixed rate, with typical heating rates ranging from 0.1 K/s – 20 K/s. In my 

system, the constant heating rate is achieved by a proportional-integral-derivative 

(PID) controlled feedback heating system. The heating system is composed of a 

tungsten grid pancake-style sample heater (Thermionics) in the ultra-high vacuum 

(UHV) chamber, a programmable power supply, a type-K thermocouple spot-welded 
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to the sample holder, and a computer system that monitors the temperature and sends 

the calculated real-time feedback signals to the power supply. As the temperature of 

the sample is ramped, atoms/molecules or adsorbates on the surface overcome the 

barrier to desorption, and enter into the gas phase. A conical shield was designed to 

guarantee that only adsorbates from the sample surface enter into the ionizer region, 

increasing the measurement sensitivity. The TPD system diagram is shown in Figure 

2.5. The apparatus used for TPD/TPRS experiment featured a vacuum loadlock to 

enable sample exchange. Consequently the thermocouple was attached to the 

stationary sample holder. The sample (1cm × 1cm) was mounted on a stainless steel 

sample plate (Thermionics). The distance from the sample plate to the thermocouple 

was ~2 mm. Since the thermocouple was not attached directly to the sample, a 

temperature calibration was needed to relate the thermocouple read-out temperature 

to the actual sample temperature. Linear alkanes (mass range: 72-142 amu) desorb 

from graphite surfaces with sharp desorption features that span the 100-350 K 

temperature range of interest. For our calibration, TPD spectra were collected for 

CnH2n+2, where n = 5-10. The TPD spectra for pentane is shown in Figure 2.6. 

Calibration curves were obtained to relate actual surface temperature to the measured 

thermocouple temperature value. Calibration details are summarized in Appendix A. 
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Figure 2.5. Control setup of temperature programmed desorption/temperature 

programmed reaction spectroscopy (TPD/TPRS). 

      The temperature programmed reaction spectroscopy (TPRS) is an interesting twist 

to TPD. In cases where reactive species are present on the surface, thermal excitation 

from the temperature ramp leads to chemical reactions on the surface. Gaseous 

products from the chemical reactions will get detected by the QMA. Multiple species 

could be monitored simultaneously by TPRS. In my TPRS instrument setup, up to 10 

different m/z species could be monitored concurrently. 

      The TPD/TPRS spectra provide both qualitative and quantitative information, as 

illustrated with the TPD of pentane desorption from graphite C(0001).(Figure 2.6) 

The TPD spectrum plots the molecular desorption rate as a function of temperature. 

Two peaks are in the TPD spectrum: one peaked at 118 K, and one peaked at 143 K. 

This temperature difference indicates different activation energy for desorption, i.e. 

different desorption energy (or adsorption energy based on the principle of 
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microscopic reversibility). The binding strength of the lower temperature peak is 

obviously weaker than that of the high temperature peak. The 118 K peak is assigned 

to the desorption of pentane from the multilayer, and the 143 K peak is the desorption 

of pentane monolayer from the graphite C(0001) surface.32 In a TPRS spectrum, the 

desorption temperature profile of the evolved gas specie peaks reflects activation 

energy of the surface reactions. 

 

Figure 2.6. TPD of Pentane from C (0001), monitored at m/z = 43 and a ramp rate of 

1 K/s. 

 

      The quantitative analysis of TPD spectra proposed by P.A. Redhead33 follows 

classical chemical kinetic theory. The measured ion signal is proportional to the 

desorption rate of the adsorbates:                                                                           
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where I is the mass ion signal, θ is the coverage, k is the desorption rate constant, and 

n is the order of the desorption process. In TPD/TPRS measurements, the temperature 

is a linear ramp, therefore: 

                                       

                                    

where β is the linear heating rate, T is temperature, and To is the initial temperature. 

Substituting Eq. (2.3) into Eq. (2.1) yields: 

 

The rate constant k is represented by the Arrhenius equation,  

 

where ν is the pre-exponential factor, Ead is the adsorption energy ,and R is the 

universal gas constant. In this thesis, the TPD/TPRS experimental data are simulated 

by Eq. (2.5) to extract the pre-exponential factor ν, the adsorption energy Ead, and 

desorption order n. The MATLAB code for the TPD/TPRS kinetics simulation, 

utilizing the Runge-Kutta numerical integration method, is provided in Appendix B. 

2.3.3 Scanning Tunneling Microscopy (STM) 

      Lithium ethylene dicarbonate (LEDC) is a key component in the early-stage solid 

electrolyte interphase (SEI) formation. The unique properties of LEDC—electron 

insulating, Li-ion conducting, and the capacity to stabilize SEI formation—make it 

the subject of extensive experimental and theoretical studies.29 Yet basic structural 

information of LEDC (both in bulk and in the thin-film form) is not well-established. 

The purpose of creating Model System II (LEDC-DMF/Ag(111) model system) is to 
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study the structure of the LEDC film and gain insight on its structure-property 

relations. Dimethylformamide (DMF) is a polar solvent for LEDC, and was used to 

deposit LEDC using the aerosol liquid deposition method. The inclusion of DMF in 

the model system also allows the opportunity to investigate the interaction between 

LEDC and the polar solvent. STM is the surface structure imaging tool chosen to 

characterize Model System II, for its molecular/atomic resolution capability. Invented 

by Binnig and Rohrer in 1982 at the IBM Research Center in Zürich34, STM utilizes 

the quantum tunneling effect to image molecules and atoms. A STM system is 

composed of a sharp and conductive metal tip, a conductive sample and a computer-

controlled feedback system to control the distance between the sample and the 

tip.(Figure 2.7) When operating, a bias voltage is applied between the sample and the 

tip, and the feedback control system brings the tip to within angstroms of the sample 

surface where the tunneling current begins to flow. 

 

Figure 2.7. Schematic illustration of scanning tunneling microscope, showing the 

raster scanning of the STM tip (upper left) and tunneling junction (lower right). 
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      Different models have been proposed to describe the tunneling process in STM. 

The simplest and most widely used model is an electron tunneling through a 

rectangular potential barrier. The tunneling current has an exponential relations with 

the potential barrier width35: 

 
 

where V is the bias voltage, A is a coefficient close to unity(1.02 Å/(eV)1/2), d is the 

potential barrier width, and ϕ is the potential barrier height. Based on this model, if 

the tunneling current is held constant (the “constant current” mode of STM imaging), 

the vertical position recorded by STM will be the topography of the surface under 

scanning.  

      The real situation is much more complicated and the 1D potential barrier model 

does not suffice to interpret STM images for all material surfaces. More refined 

models have been proposed to handle materials with different electrolyte properties. 

One of the most important models is the s-wave tip model developed by J. Tersoff 

and D.R. Hamann.36 This model presumes that the geometry of the tip apex is a 

symmetric metal sphere and only the s states of the metal tip participate the tunneling 

process. In this case, the tunneling current at the center of the sphere with radius r0 is 

proportional to the local density of states (LDOS) under low bias voltage, expressed 

as: 

 

where I is the tunneling current, e is the charge of an electron, V is the bias voltage, 

ρs(EF) is the LDOS of the sample at the Fermi level, ρt(EF, r0) is the LDOS of the 



 

 23 

 

center of the sphere tip apex at the Fermi level, d is the tip-sample separation 

distance,  is the reduced Planck constant, m is the electron mass, and ϕs and ϕt are 

the workfunctions of the sample and the tip, respectively. 

      The STM used in these studies is an Omicron STM-1 room temperature system. 

The measurement procedure is as follows: after the microaerosol liquid deposition 

was performed in the loadlock, the sample was immediately transferred into the STM 

analysis compartment of the main chamber. All UHV-STM images were taken at 

room temperature with constant current mode (current setpoint: 0.15-0.20 nA) and 

electropolished tungsten tips. The gap voltage was set as 1.000 V, with tip grounded 

and sample biased. 
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Chapter 3 Adsorption and Reaction Branching of Molecular 

Carbonates on Lithiated C(0001) Substrates 

      This chapter has been published as Song, W.; Bharath, S.; Reutt-Robey, J. The 

Journal of Physical Chemistry C 2014, 118, 19017. I performed all TPD measurement 

and data analysis. Satyaveda Bharath assisted in the initial preparation and Auger 

electron spectroscopy measurement of the Li-C(0001) substrates. The MATLAB code 

for TPD simulation was provided by Dr. Andrew Gellman and subsequently modified 

by me for this specific system. 

3.1 Introduction 

      The Li-ion rechargeable battery (LIB) is the energy storage device that powers a 

variety of modern inventions, ranging from smart phones to electrical vehicles. 

Despite these successes, further applications are hindered by the limited energy 

density, capacity decay after charge-discharge cycles and safety.7,14 One key 

contributing factor to capacity decay and safety is the electrochemically-driven 

reactions that occur at the graphite anode-electrolyte interface.37 During initial 

charging, the decomposition of the ethylene carbonate (EC) based electrolytes leads 

to the formation of a passivating layer on the anode known as the solid-electrolyte 

interphase (SEI).38,39,40 The formation and dissolution of SEI consumes Li+ and 

causes capacity loss to LIB. Extensive research has been devoted to the study of the 

SEI formation and its major composition is established.28,41 Already, refinements in 

electrolyte formulation have led to interphases with improved stability and cycling 
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performance.21,42 Mechanistic aspects of SEI formation, however, are not fully 

understood and further investigation is needed to guide improvements in electrolyte 

formulation.  

      The components of the SEI have been identified as a complex mixture of lithium 

salts43,29,44 and oligomers45,46,47 to polymers48,49 with composition depending on SEI 

thickness and battery cycling. Lithium carbonate (Li2CO3) is an important inorganic 

product that can be formed by direct two-electron reduction (Scheme 3.1).  

 

Scheme 3.1. 2e- EC reduction pathway to Li2CO3. 

      Another important early-stage SEI component is lithium ethylene dicarbonate 

((LiOCOCH2)2 or LEDC).29 Different pathways are proposed to account for the 

formation of LEDC. One widely cited reaction pathway to form LEDC is the single 

electron reduction of EC (Scheme 3.2)28.  

 

                            Scheme 3.2. 1e- electron reduction of EC to form LEDC. 

      Anionic polymerization has been proposed as an alternative pathway to form 

LEDC during SEI growth.45 In this mechanism, the LEDC is contained within poly-

ethylene oxide (PEO)-based oligomers. At the initial stage of SEI formation, 
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however, ab initio molecular dynamics (AIMD) simulations predict that close contact 

between the EC molecules and the electron-rich anode generates LEDC via a lithium 

ethylene glycolate (LEG) intermediate (Schemes 3.3).19   

 

                            Scheme 3.3. 2e- EC reduction pathway to form LEG. 

At the electrode surface, LEG evolves to LEDC in the presence of CO2 (Scheme 3.4). 

 

                                  Scheme 3.4. LEG pathway to form LEDC 

      In the present work, we focus on the very initial stage of SEI formation, revealing 

interactions between molecular carbonate electrolytes and lithium-modified graphite 

(C(0001)) prepared in situ. Temperature programmed desorption is used to quantify 

molecular electrolyte adsorption energies (nonreactive) on the graphite substrates. 

Temperature programmed reaction spectroscopy (TPRS) is then used to track EC 

reduction products, through the gases released upon thermal decomposition. We show 

that metallic lithium drives complete EC decomposition and perform a detailed mass 

balance analysis to quantify product branching. This provides important information 

on the distribution of lithium salts that form at the very onset of SEI formation. 
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3.2. Experimental Section 

      All experiments were conducted in an ultrahigh vacuum (UHV) apparatus with a 

base pressure of 3 × 10-10 torr, rapid-entry sample loadlock, facilities for in-situ 

sample processing and Auger electron spectroscopy (AES), temperature programmed 

desorption (TPD) and temperature programmed reaction spectroscopy (TPRS). 

Highly oriented pyrolytical graphite (HOPG) (Grade A, Micromash) was freshly 

cleaved, fixed on a stainless steel sample plate and transferred to the UHV sample 

manipulator. The sample was first annealed at 1000 K for 5h to create a clean 

C(0001) substrate.20 A well-degassed SAES getter was used as the Li source. Three 

different model anode substrates were created: (i) clean C(0001), (ii) C(0001) with a 

submonolayer of ionic lithium, prepared by deposition of  > 1 monolayers of Li, held 

at 300 K to facilitate intercalation, (iii) a 5-monolayer film of  Li(s) on C(0001), 

prepared by deposition on a 110 K substrate. Lithium exposure was calibrated by 

peak-to-peak amplitude in AES measurements. 

      Mixtures of EC and linear carbonates are used in LIB’s to maintain liquid 

electrolytes over operational temperatures. In this research, dimethyl carbonate 

(DMC) is selected as a representative in linear carbonates group.   Electrolytes 

ethylene carbonate (EC) (Sigma-Aldrich, anhydrous, 99%) and dimethyl carbonate 

(DMC) (Sigma-Aldrich, anhydrous, ≥99%) were transferred into separate glass vials 

and degassed with multiple freeze-pump-thaw cycles prior to introduction to the 

sample through a UHV leak valve. Ethylene (Matheson, 99.9%) and ethylene oxide 

(Praxair, 99.9%) gases are used as mass spectrometry calibration standards to 

determine their sensitivity factors for product quantitation. Clean and lithiated C 
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(0001) surfaces were cooled to 100 K and dosed line-of-site with either DMC or EC. 

The dosing pressure is on the order of 1 × 10-8 torr), as measured by an ionization 

gauge calibrated for nitrogen and the exposures are given in units of Langmuirs (1 L 

= 1 × 10-6 torr·s, where 1 L ≈ 1 monolayer).  

      A newly constructed temperature programmed desorption (TPD)/ reaction 

spectroscopy (TPRS) system was utilized for precise measurements of the surface 

binding energies/reactivities of molecular electrolytes. For these measurements, the 

sample faced the entrance of a quadruple mass analyzer (Pfeiffer Vacuum QME 200) 

mounted in a shroud. The 1 mm aperture at the conical entrance to the shroud was 

reproducibly positioned 3 mm from the sample. A type-K thermocouple was used to 

monitor the temperature (100 K – 1200 K range). A LabVIEW program was used for 

PID-temperature controlling, to achieve a linear temperature ramp rate (here 0.5 K/s – 

2 K/s) while simultaneously collecting ion signals. The system supports temperature 

programmed reaction spectroscopy (TPRS) since up to 12 masses could be monitored 

simultaneously. Absolute sample temperatures were determined by obtaining TPD 

data for alkane calibrants (C5-C10) on HOPG and comparing to literature desorption 

data. All temperatures are reported with an error of ± 1 K.   

      For the present study, TPRS provides for direct quantitation of those EC reduction 

products that release gases upon thermal decomposition. Product identification is 

based upon reported pathways for EC reactions. The inorganic reduction product, 

lithium carbonate is not measured directly by TPRS, but is readily quantified through 

application of detailed mass balance of calibrated exposures of ethylene carbonate. 
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3.3 Results and discussions 

3.3.1. Clean Graphite 

      We first determine the binding energies of molecular carbonates on C(0001). 

Coverage-dependent TPD spectra of EC and DMC from C(0001)  (heating rate of 1 

K/s) are presented in Figure 3.1 and 3.2. Both electrolyte molecules desorb without 

decomposition. Desorbing EC and DMC were monitored respectively through the 

m/q = 43 and m/q = 45 ion signal, the major cracking products of the parent ions with 

minimal overlap with residual chamber gases. 

      The coverage of TPD spectra of EC from pristine graphite were varied from 0.20 

L to 3.0 L (Figure 3.1). Only one peak is observed and that peak does not saturate 

with increasing coverage.  Such TPD spectra are indicative of zero-order desorption 

kinetics, where the desorption rate is independent of coverage, θ, and depends only on 

the rate constant k. Zero-order kinetics indicates the formation of three dimensional 

islands of EC, revealing that EC dewets C(0001). This indicates EC-EC interactions 

are stronger than EC-C(0001) interaction. Evidently, dipole-dipole interactions 

between EC molecules (molecular dipole moment of 4.9D) dominate the weaker EC-

C(0001) interactions. By plotting the leading edge of the TPD spectra in Arrhenius 

representation (shown in the inset of Figure 3.1), the EC desorption energy, Ed,  is 

determined to be 0.60 ± 0.06 eV, within experimental error of the EC vaporization 

enthalpy (0.65 eV) measured by the transpiration method at 298.15 K.21    
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Figure 3.1. TPD spectra of EC desorption from C(0001). Inset shows the Arrhenius 

representation of the leading edge of the spectra, whose slope yields an adsorption 

energy of Ed =0.60 ± 0.06 eV. Spectra were collected by monitoring m/q = 43 at the 

heating rate of 1 K/s. For clarity, high frequency noise is removed by a low pass filter. 

      As a contrast to EC, the TPD spectra of DMC have three distinct peaks. (Figure 

3.2) At low coverage (0.20 L), one peak appears at T = 180 K. As the coverage 

increases to 0.50 L, a 2nd peak begins to appear at T = 160 K and both peaks grow 

with increasing coverage. At even higher coverages (3.0 L and 4.0 L), a third peak is 

observed and the first two peaks gradually reach saturation. The third peak continues 

to grow with further increasing coverage. These three features represent monolayer, 

bilayer and multilayer of DMC desorption from C(0001). Distinct layer-dependent 

desorption features indicate that DMC wets the graphite surface and adopts a Volmer-

Weber film growth mechanism. This indicates the DMC-surface interaction 

dominates the DMC-DMC interaction, and is consistent with the much weaker dipole 

moment of DMC (just 0.91 D for DMC vs. 4.9 D for EC). The monolayer desorption 

rate r is described by first-order desorption kinetics, expressed as 
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where ν is the desorption frequency factor, α is a parameter to describe the 

intermolecular interactions, R is the universal gas constant and T is temperature. The 

observed monolayer TPD feature were simulated with Eq. (3.1) (shown in the Figure 

3.2 inset). The desorption frequency factor ν is estimated by the Campbell-Sellers 

relation22 to be 1017.6 s-1 from the gas phase entropy of a structurally similar 

molecule23 and Ed and α were treated as adjustable parameters. The simulation 

yielded α = -0.015 monolayer-1 (consistent with weakly attractive interactions) and Ed 

= 0.64 ± 0.05 eV. The value of Ed is significantly higher than the DMC vaporization 

enthalpy of 0.39 eV, consistent with the wetting of molecules on C(0001).  

 

Figure 3.2. TPD spectra of DMC desorption from C(0001). Inset shows the 

simulation of DMC monolayer desorption via first-order desorption kinetics with an 

adsorption energy value adjusted of 0.64 ± 0.05 eV.  Spectra were collected by 

monitoring m/q = 45 at the heating rate of 1 K/s. 
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3.3.2. Lithiated Graphite 

      We next investigated molecular carbonate interaction with lithiated C(0001) in a 

regime where lithium atoms ionize and the majority intercalate into the interlayer 

positions of graphite, leaving  a sub-monolayer of surface lithium ions. Lithium 

ionization is confirmed by the appearance of a 42 eV Auger feature, also found in 

ionic lithium compounds such as LiF.24 (The actual charge on the surface Li ions has 

been calculated as +0.8.25 )  EC and DMC were then separately deposited on the 

Li+/C(0001) surface  at 100 K. The TPD spectra of EC and DMC on the lithiated 

surface are plotted in Figure 3.3 and 3.4.  

 

Figure 3.3. TPD spectra of EC on lithiated C(0001) 0.10 L – 0.30 L (left panel) and 

0.60 L – 1.4 L (right panel), collected by monitoring m/q = 43 at the heating rate of 1 

K/s. 
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Figure 3.4. TPD spectra of DMC on lithiated C(0001) 0.12 L – 0.40 L, collected by 

monitoring m/q = 45 at the heating rate of 1 K/s. 

      The EC desorption products from the lithiated surface are identical to those from 

clean C(0001), indicating that EC does not dissociate on lithiated graphite. At low EC 

coverages (0.10 L and 0.15 L), a very broad peak (peak β) is centered at T = 285 K. 

As the coverage increases to 0.20 L, a second peak (α) appears at T = 210 K. In the 

higher coverage range (0.60 L – 1.4 L), peak α outgrows peak β and finally 

overshadows it. The β feature is a new desorption state due to surface lithium ions. 

The substantial (more than 200K) width of this feature indicates a range of EC 

adsorption energies. The increased desorption temperature and substantial width of 

the β feature are attributed to EC interactions with surface Li+. Dipolar EC molecules 

will surround Li+ and form solvation structures of the form Li+(EC)n
-. As EC 

coverage increases, the Li+ charge eventually becomes fully shielded and EC resumes 

zero-order desorption kinetics, resulting in the appearance of the α peak. The 

desorption energy of EC from the Li+ is thus not a constant value, but changes with 
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coverage (the closer EC to Li+ and lower n, the stronger the interaction energy). The 

desorption energy for the solvating EC (β feature) is found to range from 80 kJ/mol 

(0.83 eV) – 150 kJ/mol (1.55 eV) by assuming first order desorption kinetics (Figure 

3.5). Bhatt et al. have performed gas phase DFT calculations on the average bonding 

energy between Li+ and EC in Li+(EC)n complexes.26 When the EC coordination 

number goes from n = 3 to n = 1, their calculations determine an average bonding 

energy increase from 0.935 eV to 2.23 eV, comparable to the measured range of EC 

desorption energies on the lithiated substrate. The results reveal that EC interacts with 

Li+ at the C(0001) surface to form “half-solvation” shell-like structures. The range of 

experimental values is slightly lower than the range of calculated values, due to the 

partial charge (0.8e) of Li+ on the C(0001). The TPD spectra of DMC on lithiated 

graphite have a similarly broad β peak, but the intensity is reduced by DMC’s 

propensity for Volmer-Weber growth, consistent with the lower solvation shell 

forming ability of DMC vs. cyclic car bonates.27 

 

Figure 3.5. TPD spectrum of EC on Li+/C(0001) (black), and simulations of the 1st 

order desorption energy profiles at the lower (blue) and  upper (red) bounds of the 

experimental spectrum. 
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3.3.3 Impact of Metallic Lithium 

The low workfunction of metallic lithium (2.49 ± 0.02 eV)28 supports spontaneous 

electron transfer to molecular carbonates, driving carbonate decomposition. To study 

reactions that represent the very initial stage of SEI formation, metallic lithium films 

were deposited on C(0001) substrates held at 100 K. Low temperature suppressed the 

intercalation of lithium and an AES signature at 50 eV confirmed the formation of 

metallic lithium on the C(0001) surface.24 The amount of the deposited lithium was 

determined to be ~5 monolayers. EC (0.20 L and 0.40 L) was subsequently deposited 

on Li(metal)/C(0001) and the mass range m/z = 1 to 100 was first swept with TPRS to 

identify released gases. Complete EC decomposition in this submonolayer regime 

was verified by the absence of the parent molecular ion (m/z = 88). 

      Four distinct gases were released during TPRS of the deposited EC: C2H4, C2H4O 

and CO2 as shown in Figure 3.6, and much smaller amounts of organic ethylene 

glycols (Appendix C, Figure C1 and C2). The broad C2H4 and CO2 TPRS peaks with 

the 450 K onset and 570 K maxima, result from the thermal decomposition of LEDC. 

This assignment is based upon the reported release of C2H4 and CO2 at comparable 

temperature onset in the  decomposition of bulk LEDC.44 The C2H4 and C2H4O peaks 

with 600 K maxima, are assigned to the thermal decomposition of LEG. This agrees 

with the higher decomposition temperature reported for LEG.13 The present TPRS 

results indicate that LEG decomposes preferentially to C2H4 (75.%) over C2H4O 

(25.%). This is consistent with theoretical predictions, which show a large energy 

barrier for C2H4O formation at the lithium metal interface.29  
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Figure 3.6. Temperature programmed reaction spectra (TPRS) of EC reduction 

products. Upper trace is C2H4 (daughter ion m/z = 26); middle trace is C2H4O 

(daughter ion m/z = 42); lower trace (m/z = 44) shows desorption peaks from both 

CO2 (570 K maximum) and C2H4 (600 K maximum) and a corresponding fit to 

asymmetric logistical functional forms to quantify the CO2 (green curve) and C2H4O 

(blue curve) products. 

      In this monolayer regime, where EC interacts directly with metallic lithium, 

LEDC and LEG are the dominant organolithium reduction products observed. 

(Organic ethylene glycols account for 1.1% of the total EC reduction, Appendix C) 

We next determine the chemical amount of each of the LEDC and LEG products that 

result from the reductive decomposition of EC doses of 0.40 L. For this quantitative 

analysis, the nitrogen equivalent coverage unit is converted to absolute coverage unit 

by relative ionization gauge gas correction factors, e.g. 0.40 L EC in nitrogen 

equivalent unit is 1.5 L in absolute coverage unit. (Appendix C, Figure C5) As 
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described more fully in the Appendix C, LEDC coverage can be directly determined 

from the area of the C2H4 TPRS peak centered at 570 K via Eq (3.2). 

                                        θabs = r · g · s · A,                                                       Eq. (3.2) 

where θabs is the absolute coverage, r is the relative ionization gauge gas correction 

factor, g the geometric scaling factor, s the gas sensitivity factor and A the area of the 

TPRS peak. The LEG coverage is similarly determined from the areas of the C2H4 

and C2H4O TPRS peaks centered at 600 K.        

      Based on this analysis, reduction of 1.5 L of ethylene carbonate results in the 

formation of 0.64 ± 0.12 L of LEDC and 0.40 ± 0.05 L of LEG, due to the absence of 

desorbing EC. The sum of the LEDC and LEG products-1.04 ± 0.17 L accounts for 

70.% of the EC dose. We know that EC undergoes complete decomposition due to the 

absence of the parent ion (m/z = 88) in the TPRS sweeps. The remainder 30% of the 

EC decomposition products are thus determined, by the principle of mass balance, to 

result in the formation of the nondecomposing inorganic product Li2CO3 (Scheme 

3.1). Following the TPRS measurement, the surface thus contains the Li2CO3 salt 

(Table 3.1), as well as the lithium oxide formed upon LEG decomposition. This 

mixture of inorganic lithium salts was further sensed by Auger electron spectroscopy 

through the growth of oxygen KLL (503 eV) signal. 
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Table 3.1. EC Decomposition Products on Li(metal)/C(0001) and Their Branching 

Ratios Based upon 1.5 L EC (in Absolute Coverage Units) 

EC decomposition 

final product 
LEDC LEG Li2CO3 

absolute coverage 

(ML*) 
0.64 ± 0.12 0.40 ± 0.05 0.5 ± 0.2 

reaction percentage 43.% 27.% 30% 

           *This assumes 1 L  1 monolayer. 

      In the monolayer regime, we have shown the significant branching of 

organolithium salts in the reduction of EC. According to this detailed mass analysis, 

70.% of the EC converts to two organolithium salts, LEDC and LEG. A much smaller 

amount (1.1%) of EC converts to non-specified organic ethylene glycols, 

characterized by lower desorption temperature. The remaining EC (30%) forms 

Li2CO3. This quantitative information on product distribution at well-defined 

interfaces, provides a necessary benchmark to model EC reduction. Knowledge of 

initial product distribution will assist efforts to create stable SEI films with desirable 

properties.  

3.4 Summary 

      Molecular carbonates interact weakly with graphite C(0001) surfaces. EC exhibits 

zero-order desorption, indicating dewetting and clustering on the clean graphite 

surface and the adsorption energy is measured to be 0.60 ± 0.06 eV. DMC, with its 

weaker intermolecular interactions, adopts a Volmer-Weber film growth mechanism 

and the monolayer adsorption energy is determined to be 0.64 ± 0.05 eV. When the 

C(0001) system is lithiated to a submetallic extent, both EC and DMC remain intact, 

but exhibit a new desorption feature. The position and width of this new feature 
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indicates a substantially increased EC desorption energy that varies from 0.83 eV – 

1.55 eV. This range of values is consistent with the formation of a  "half" solvation 

shell (Li+(EC)n
- and Li+(DMC)n

-). EC undergoes complete decomposition on Li metal 

films on C(0001), and the lithium ethylene glycol and lithium ethylene dicarbonate 

products are quantified through the corresponding ethylene and ethylene oxide TPRS 

desorption products. A 1.5 L EC film (absolute coverage units) decomposes into 0.64 

± 0.12 L of LEDC (43.%), 0.40 ± 0.05 L of LEG (27.%) and (by mass balance) 0.5 ± 

0.2 L of Li2CO3 (30%). The present study models the initial-stage electrolyte–anode 

interactions in electrochemical cells, revealing the binding strengths of molecular 

electrolytes with graphite and lithiated graphite, as well as the reaction branching in 

EC reduction. In an electrochemical environment, branching ratios should depend 

additionally on the driving potential and the length scale for charge transfer (film 

thickness). 
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Chapter 4  Complexation and Phase Evolution at 

Dimethylformamide-Ag(111) Interfaces 

      Chapter 4 research is a collaboration between myself, Qian Shao, Kevin Leung 

and Karen Gaskell. This work will be submitted for journal publication. 

      All depositions and scanning tunneling microscopy (STM) measurements were 

performed by me and Qian Shao. Kevin Leung performed density functional theory 

(DFT) calculations and Karen Gaskell performed X-ray photoelectron spectroscopy 

(XPS) measurement. I analyzed the experiment results, wrote the manuscript and 

prepared all figures. 

4.1 Introduction 

      Molecular organization in thin films on metal surfaces has attracted great 

attention due to prospective applications in gas sensors, organic electronics and anti-

corrosion coatings.50,51 Among the various molecular building blocks to produce 

ordered films, surface coordination complexes arise as a distinctive class. In reported 

systems52-55, chemical adsorption has led directly to coordination complex formation, 

with metal adatoms released from the surface acting as coordination centers and 

adsorbed molecules as coordinating ligands. In such cases, the coordination bond 

energy is stronger than the typical van der Waals interactions between molecular 

adsorbates and metallic substrates51. The formation and equilibrium of surface 

coordination compounds is expressed as (Scheme 4.1): 

 

Scheme 4.1. The reaction scheme of surface coordination complex formation, 
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where M is the metal surface adatom, L is the adsorbed ligand and MLn is the 

adsorbed coordination compound.  As in their 3D (bulk) metal-organic framework 

(MOF) counterparts, multi-dentate ligands have been used to construct 2-D metal-

organic networks.  Metal-organic 2-D network films demonstrate tunable pore 

size56,57 and adopt a variety of shapes58. Even with emerging application as 

electrocatalysts59, surface coordination complexes remain poorly understood due to 

complicating interactions with the substrate. Further research on complex formation 

and structure-property relations is needed to predict functional properties. 

      Solution-phase coordination complexes have been extensively studied, providing 

useful concepts for 2-D systems.60 Surface coordination complexes have distinct 

properties from their solution counterparts51 such as: (i) The formal oxidation state of 

the adsorbed metal coordination center differs from that in the solution phase because  

the coordination metal atom charge is mediated by the “Fermi sea” of  the metallic 

substrate electrons; (ii) The geometry of the supported coordination compound is 

distinct, reflecting both the charge state of the coordination metal atom and its 

anisotropic interaction with the substrate. Additionally, ligand molecules in the 

coordination compound can interact with the metal surface, impacting the 2-D 

ordering of surface coordination compounds.   

      Polar solvent molecules present a particularly important class of ligands to 

explore. The nitrogen, oxygen, and sulfur atoms found in polar solvents can 

coordinate to transition metal centers via their lone-pair electrons. The dual role of 

such heterosolvents as solvent and ligand gives them unique properties. For example, 

N,N-Dimethylformamide (DMF, (CH3)2NCHO) has demonstrated the capacity to act 
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as both solvent and ligand in Fe(II)-catalyzed atom transfer polymerization 

reactions61 and in the solvation of the iconic MOF material—MOF-562. In electrical 

energy storage systems, DMF is often used as the electrolyte63 and demonstrated 

good charge-discharge characteristics with sulfolane in initial cycling of the graphite-

lithium titanate oxide (Li4Ti5O12) system64. Restructuring of the electrode surface, 

through possible DMF complexation with substrate atoms, would impact 

electrochemical processes.  

      In the present work, we investigate interface formation between the polar 

solvent molecule DMF and the model electrode surface, Ag(111), mapping this active 

interface with molecular level detail. Controlled deposition of DMF is performed with 

a pulsed microaerosol molecular deposition source, and the resulting films are 

monitored by UHV-STM and XPS. Two distinct chemical species, adsorbed DMF 

and the Ag(DMF)2 coordination complex, shown below in Scheme 4.2, give rise to 

three distinct 2-D structural phases. We track interface evolution in the binary films 

as a function of coverage, combining density functional theory (DFT) (with van der 

Waals correction) calculations with STM measurements to obtain structural models 

for all observed phases. We follow with a surface pressure-composition phase 

diagram to provide physical insight on structure evolution and identify strategies to 

control surface ordering of coordination complexes. These results expand our 

knowledge and understanding of Ag coordination chemistry and electrode structure. 

 

Scheme 4.2. The formation of Ag(DMF)2 on Ag(111). 
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4.2 Experimental Section 

4.2.1 Sample Preparation   

      A single crystal Ag(111) substrate was prepared by repeated Ar+ sputtering (1000 

eV, 10 mA, 30 min) and annealing (763 K, 5 min) cycles. The Ag(111) was then used 

for microaerosol molecular beam deposition. DMF deposition was performed in the 

loadlock compartment (base pressure 1.2×10-9 torr) of an ultra-high vacuum chamber, 

integrated with a pulsed microaerosol molecular beam deposition system as 

previously described30. Briefly, DMF (Sigma Aldrich, 99%, anhydrous) was pumped 

into the pneumatic nebulizer (Glass Expansion) by a syringe pump and mixed with 

dry nitrogen carrier gas (22 psi) to generate an aerosol mist. The droplet size of the 

aerosol mist was reduced to 1-10 μm diameter via a cyclonic spray chamber (Glass 

Expansion) and then fed into a solenoid-actuated molecular beam valve with a 1 mm 

orifice (Parker Series 9). Following expansion, the molecular beam passed through 

two stages of differential pumping before reaching the Ag(111). For long pulse trains 

(ca. 1000 pulses), pressure in the load-lock compartment reached 1×10−6 torr, rapidly 

decreasing to <5×10−8 torr following the last valve closure. Film growth was 

performed by successive exposure to 2000 molecular beam pulses. This deposition 

process is illustrated in Figure 4.1. 
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Figure 4.1. Experimental schematic of pulsed microaerosol molecular beam 

deposition of DMF on Ag(111). The molecular structure of DMF is shown in the 

upper right inset. 

4.2.2 STM Measurements 

      Following each 2000-pulse deposition of DMF, the sample was immediately 

transferred from the load-lock compartment into the analysis compartment (base 

pressure 5×10-10 torr) for UHV-STM imaging. All UHV-STM measurements were 

performed at room temperature with electrochemically etched tungsten tips. Typical 

constant-current imaging parameters used were -1.00 V gap voltage (negative sample 

bias) and tunnel currents of 0.15 - 0.20 nA. All image analysis was performed using 

the software Gwyddion65. As shown below, a total of 12000 pulses produced a 

saturating monolayer, in which species were molecularly resolved by STM and a 

maximum coverage of Γ = 2.58 ± 0.02 DMF (all forms)/nm2 was determined. Under 

the simplified assumption that coverage depends linearly upon DMF exposure, each 
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2000-pulse deposition increased the surface coverage by Γ = 0.43 ± 0.01 DMF (all 

forms)/nm2. This is consistent with STM images acquired at submonolayer coverages. 

4.2.3 XPS Measurements 

      X-ray photoelectron spectroscopy (XPS) was performed with a Kratos Axis 165 

spectrometer with a monochromatized AlKα source (240 W) operating in hybrid 

mode. High resolution spectra were taken at pass energy of 20 eV. Following DMF 

deposition and STM analysis, the sample was extracted from the ultra-high vacuum 

chamber and rapidly transported under air to the XPS system for characterization 

(total ambient time < 5 min). XPS measurements were performed at an electron take-

off angle of 20° with respect to sample surface to increase surface sensitivity. Data 

analysis was performed using the CASA XPS software, and the adventitious carbon 

1s binding energy peak, set as 284.8 eV, was used for energy scale calibration. 

 4.2.4 Computational Details 

      DFT calculation was performed using the Vienna ab initio Simulation Package 

(VASP)66-68. The Perdew−Burke−Ernzerhof (PBE) functional69 was used for 

exchange and correlation. The projector augmented wave (PAW) basis set was 

utilized with 400 eV cutoff. Van der Waals correction was added using the vdW-DF 

functional of Langreth and Lundqvist.70-72  

4.3 Results 

4.3.1 Low Coverages: Formation of 2-D gas (Phase I) 

      The initial deposition of DMF on the Ag(111) surface (2000 valve pulses, 

surface coverage ΓDMF(all forms) = 0.43 ± 0.01 molecules/nm2), induces pronounced 
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changes in the surface morphology. Figure 4.2 shows STM images before and after 

DMF deposition. Prior to deposition, the Ag(111) terraces are atomically flat and the 

step edges are smooth. Post deposition, vacancy pits emerge on the terrace, and the 

step edges are significant roughened. These morphological changes indicate DMF 

etching of the Ag(111) surface, suggesting possible complex formation with DMF. 

Under room-temperature imaging conditions, adsorbates are not imaged directly, but 

are sensed indirectly as increased tunneling noise. To characterize the DMF-Ag(111) 

interface and confirm that complexation is the source of Ag(111) etching, XPS 

measurements were next performed. 

 

Figure 4.2. UHV-STM images (400 nm × 400 nm) of Ag(111) before (Figure 4.2a) 

and after (Figure 4.2b) deposition of 0.43 ± 0.01 DMF (all forms)/nm2, delivered by 

2000 pulses of DMF microaerosol entrained in N2. 

      After STM characterization, the sample was rapidly transferred to another 

vacuum system for XPS measurements. A surface element survey confirmed that 

DMF remains on the surface and intract following deposition. The N 1s spectrum 
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(Figure 4.3a) shows a single peak overlapping with the Ag background feature, 

indicating a single chemical environment (oxidation state) for the nitrogen atom. The 

C 1s core (Figure 4.3b) revealed amide carbon (O=CH-N) and amine carbon 

((CH3)2N), as expected for DMF. The atomic concentration ratio of non-adventitious 

C : N : O is 20.1% : 6.9% : 8.8% ( 2.9 : 1.0 : 1.3), in good agreement with the 

stoichiometry of the deposited DMF (C3H7NO). 

      More insight into the chemical form of DMF is obtained from the O 1s core 

level spectrum.  Figure 4.3c shows three distinct O 1s features: 530.85 eV (50.4%) 

indicating Ag-O bonding, 531.82 eV (38.2%) indicating carbonyl oxygen, and 533.71 

eV (11.4%) indicating adventitious oxygen. The O 1s binding energies for ionic Ag-O 

have been extensively studied for both AgO and Ag2O, for which the O 1s peak 

appears in the 528.40 eV-529.80 eV window73,74. In the present sample, the 530.85 

eV peak from Ag-O bond formation is shifted 1.05-2.45 eV above that reported for 

ionic Ag-O bonds, indicating a largely covalent Ag-O interaction. We thus assign the 

530.85 eV feature to an Ag-DMF coordination complex, in which DMF coordinates 

to Ag adatoms through its carbonyl O atom. The peak at 531.85 eV (nonbonding 

carbonyl oxygen) is attributed to the presence of additional DMF adsorbed on 

Ag(111). The relative areas of the O 1s core components indicate that the total DMF 

ligands coordinated to Ag adatoms are 32% more abundant than adsorbed DMF at 

this coverage. Annealing the Ag(111) surface at 343 K for 5 min did not significantly 

change the XPS peaks except for a decrease in adventitious carbon, indicating the 

relative stability of DMF on Ag(111). 
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Figure 4.3. Core level XPS spectra of (a) N 1s, (b) C 1s, and (c) O 1s, fitted with 

peaks having a 70% Gaussian and 30% Lorentzian peak shape. 

4.3.2 Medium Coverages:  Island Formation and Growth (Phase II) 

      Further increases in DMF deposition lead to striking changes in morphology. At a 

coverage of Γ DMF (all forms) = 0.86 ± 0.01 molecules/nm2, needle-like islands (labelled 

as Phase II) appear (Figure 4.4a-b). These dark islands grow from the upper step 

edges and on large terraces with long axes (fast-growth direction) aligned with the 

substrate   close-packed direction. The apparent height of the islands is just 0.06 

± 0.02 nm relative to underlying Ag(111), and isalnds appear dark relative to the 
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coexisting adlayer phase (Phase I), which has an apparent height of 0.27 ± 0.02 nm 

relative to the Ag(111) substrate. (Apparent height was determined by height 

histogram analysis, not shown.)  Upon further doubling the coverage to Γ DMF (all forms) 

= 1.72 ± 0.02 molecules/nm2, the dark islands coarsen predominantly by increasing in 

width. (Figure 4.4c-d) 

 

Figure 4.4. UHV-STM images (200 nm × 200 nm) following sequential DMF 

deposition:  (a-b) 4000 pulses to a DMF coverage of Γ DMF (all forms) = 0.86 ± 0.01 

molecules/nm2 reveals nucleation of elongated islands at upper step edges (a) and on 

large terraces (b); (c-d) 8000 pulses to a DMF coverage of Γ DMF (all forms) = 1.72 ± 0.02 

molecules/nm2 reveals continued growth and change in island aspect ratio. 

      Higher resolution STM images of these dark islands (Phase II) reveal 

molecularly-resolved features (Figure 4.5a). A fast Fourier transform (FFT) of the 

molecularly-resolved Phase II images gives near-square lattice parameters of 5.86 ± 
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0.02 Å × 5.80 ± 0.04 Å. The lattice constant for the elongated (fast growth) direction 

is commensurate with the substrate (twice the neighbor substrate atom spacing of 

2.89 Å), consistent with the faster island growth along the substrate  close-

packed direction. We attribute Phase II to a near-square arrangement of adsorbed 

DMF molecules, as the repeat distance is simply too small to accommodate a silver 

coordination complex. A proposed structural model of the DMF arrangement in Phase 

II is shown in Figure 4.5b. This model was additionally supported through DFT 

calculations with van der Waal corrections, and the structure of Figure 4.5b is the 

relaxed geometry from these calculations. A DMF adsorption energy of 0.43 

eV/molecule is estimated from these calculations. Previous experimental75 and 

computational76 studies of molecular DMF have shown that DMF has a nearly planar 

structure due to π electron delocalization in the N-C=O group. The arc-like 

protrusions observed in STM images (Figure 4.5a) are thus attributed to the N-C=O 

group, and is consistent with the relaxed structural model (Figure 4.5b) 

 

Figure 4.5. (a) Molecularly resolved UHV-STM image (3 nm × 3 nm) of Phase II 

and (b) the DFT + vdW computational relaxed model of DMF/Ag(111). Within this 
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structural model the N-C=O group corresponds to the arc-shaped protrusion in the 

STM image. 

4.3.3 Near-Saturation Monolayer: Condensation of Ag(DMF)2 islands (Phase III) 

      Upon increasing the deposition amount to Γ DMF (all forms) = 2.15 ± 0.02 molecules/nm2, a 

proliferation of bright islands (Phase III) nucleates within the disordered 2-D gas phase 

(Phase I) (Figure 4.6a). Higher resolution magnified STM images of the emergent bright 

islands reveal straight chains of protrusions, appearing predominantly as double rows (Figure 

4.6b). The long axes of these chain structures are oriented in a wide range of angles, 

indicating a lack of registration to the Ag(111) substrate. In the following, we show that the 

double-row chain-like protrusions arise from the condensation of Ag(DMF)2 coordination 

complexes within the disordered 2-D gas phase. 

 

Figure 4.6. Onset condensation of Ag(DMF)2 complexes (Phase II)  at Γ DMF (all forms) 

= 2.15 ± 0.02 molecules/nm2: (a) 200 nm × 200 nm image and (b) 20 × 20 nm image 

reveal coexistence of 2-D gas (Phase I), DMF island phase (Phase II) and Ag(DMF)2 

islands (Phase III). 



 

 52 

 

4.3.4 Saturated Monolayer: DMF (Phase II) – Ag(DMF)2 (Phase III) Coexistence 

      Increased DMF deposition to 12000 DMF pulses at room temperature reaches a 

saturation coverage of Γ DMF (all forms) = 2.58 ± 0.02 molecules/nm2, as shown in Figure 

4.7a-c. At this coverage the 2-D gas phase (Phase I) has largely disappeared, and 

STM images reveal the coexistence of two phases – dark DMF islands (Phase II) and 

bright condensates of Ag(DMF)2 complexes (Phase III) (Figure 4.7a,b). Higher 

resolution magnified images of Phase III reveal double-row chain-like structures, 

identified as linear chains of Ag(DMF)2 complexes. The DMF ligands are imaged as 

bright protrusions, giving the double-row appearance. Evidently the Ag(DMF)2 

coordination complexes, which form upon etching Ag(111) (Figure 4.1b) and were 

identified by XPS spectroscopy in Phase I, require nearly saturation surface coverages 

in order to condense into linear aggregates. A structural model for these linear 

aggregates, consistent with STM images, is given in Figure 4.7d. 
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Figure 4.7. STM images of DMF-Ag(111) interface at saturation coverage: (a) Large 

scale image shows coexistence of Phase II and Phase III; (b) Higher resolution image 

shows re of double-row structures (Phase III) along the substrate  direction; (c) 

Higher resolution magnified image of double-row structures; (d) Top-view and side-

view of Ag(DMF)2 double-row structural models. 

      The bright islands consist of condensed chains of Ag(DMF)2 with an intra-chain 

nearest-neighbor Ag(DMF)2 separation of 0.705 ± 0.003 nm and an inter-chain next-

nearest neighbor Ag(DMF)2 separation of 1.490 ± 0.010 nm. Interestingly, at 

saturation coverage, the azimuthal alignment of the Ag(DMF)2 chains rotates from 

their initial alignment at lower coverage (Figure 4.6) to  (Figure 4.7d). The 

surface pressure exerted by the surrounding DMF phase (Phase II) accounts for the 
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initial condensation of Ag(DMF)2 and the subsequent chain rotation at higher 

coverages. 

       We note that the present images of Ag(DMF)2 surface coordination complexes 

are consistent with previous STM studies of coordination complexes of Cu77 and 

Au53,78 on metallic surfaces, in that the coordinating metal atoms appear dark in the 

STM images. Feng and co-workers53,79 have shown through DFT calculation that Au 

charge depletion occurred in Au-dimethysulfoxide (DMSO) complexes on Au(111) , 

reducing available states of the coordinated Au adatoms for electron tunneling. In the 

present case, Ag – O coordination bond formation in the Ag(DMF)2 structure 

evidently causes similar Ag charge depletion. 

4.4 Discussion 

4.4.1 Composition and Phase Diagram 

      We have shown that the increasing deposition of DMF on Ag(111) leads to the 

evolution of three distinct structural phases. The properties of these phases are 

summarized in Table 4.1. In the low coverage regime, a single 2-D phase (gas phase, 

Phase I) is formed. The composition of Phase I at this coverage regime was 

determined by XPS to be a mixture of DMF and Ag(DMF)2. With increasing 

coverage, Phase II (near-square DMF lattice islands) appear in co-existence with 

Phase I (2-D gas). Increasing DMF deposition increases DMF island sizes. As the 

saturation coverage approaches, Ag(DMF)2 coordination complexes begin to 

condense (as Phase III) within the 2-D gas phase (Phase I). At the final saturation 

coverage, the 2-D gas phase (Phase I) is lost, and the surface consists of two 
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coexisting phases: Phase II (near-square DMF lattice islands) and Phase III 

(condensed islands of Ag(DMF)2 chains). 

Table 4.1. Composition and Structure of Different Phases 

Phase Composition Structure Density (adsorbates/nm2) 

I 
DMF, 

Ag(DMF)2 
2-D gas 0 – 0.7 ± 0.1* 

II DMF 
2-D near-square lattice, 

a = 5.86 ± 0.02 Å, b = 5.80 ± 0.04 Å 
2.94 ± 0.02 

III Ag(DMF)2 

2-D chain-like structure 

Intra-chain: 0.705 ± 0.003 nm 

Inter-chain: 1.490 ± 0.010 nm 

0.86 ± 0.04 

*Maximum density is estimated from adsorbate density for Phase III. 

       In order to understand surface phase evolution, it is instructive to correlate 

observed phase transformations to surface pressure. Surface pressure (usu. 

represented as ∏) is the 2-D analogue of pressure in 3D. Adsorbed species can 

undergo phase transformations in response to surface pressure changes.58 Several 

formulae have been developed and utilized to calculate the surface pressure in the 

monolayer regime.80 The generalized Frumkin equation of state is the state-of-the art 

equation for multi-component systems, and  was used here to estimate the surface 

pressure for the 2-D gas consisting of DMF and Ag(DMF)2.
81 The generalized 

Frumkin equation is: 
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where ∏ is the surface pressure, kB the Boltzman constant, T temperature, ai∞ the 

minimal possible area per molecule for component i, a∞ the average minimal possible 

area per molecule in a multicomponent mixture, Γi(k) is the number of molecules per 

unit monolayer area for component i(k) in the mixture, α the interaction factor 

between different components. For simplicity, we neglect the interaction term αik , an 

omission that is more justifiable in the low-medium pressure regime. We estimate ai∞ 

from component packing densities measured in Phase II (near-square DMF lattice 

island) and Phase III (condensed islands of Ag(DMF)2 chains),  increasing each 2-D 

component volume by 10% to account for density increase upon condensation. 

Coverage values, Γi(k) , were determined directly from the statistical analysis of UHV-

STM images. 

 

Figure 4.8. Surface Pressure – Composition phase diagram of the binary DMF-

Ag(DMF)2 phases on Ag(111) at room temperature. xDMF = ΓDMF / ( ΓDMF + ΓAg(DMF)2 ). 

Actual measured points shown as squares. Surface pressure is estimated from Eq. 

(4.1). 
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      The surface pressure and composition information extracted from measurements 

allows us to construct a semi-quantitative composition vs. surface pressure phase 

diagram (Figure 4.8). The composition of the DMF-Ag(DMF)2 binary phases is 

shown along the horizontal axis, and the calculated surface pressure is shown along 

the vertical axis. The three observed phases—Phase I (2-D gas), Phase II (near-square 

DMF lattice island) and Phase III (condensed islands of Ag(DMF)2 chains) are 

represented by three different solid colors. Two phase co-existence regions-region 

I+II and region II+III are represented as hatched colors of the coexisting phases. The 

square data points represent the actual sequential DMF deposition experiments. In 

general, surface pressure increases with surface coverage. The singular Phase I (2D 

gas) is observed only at lower surface pressures. Increasing coverage (2-D pressure) 

drives the film, in turn, through the co-existing I+II region and then the co-existing 

II+III regions. 

4.4.2 Phase Evolution and Surface Energetics 

      We next relate the phase evolution to the distinct surface chemical properties of 

the two components, DMF and Ag(DMF)2. According to our DFT computation, DMF 

has a binding energy of just 0.43 eV/molecule on Ag(111), indicating a relatively 

weak surface interaction. However, DMF also has a substantial dipole moment of 

3.86 D, and head-to-tail DMF-DMF dipolar interactions help drive island formation, 

and formation of needle-like islands. Alignment of the DMF islands (fast growth 

direction) with the underlying Ag lattice along , indicates DMF island growth is 

also favored by electronic interaction with the Ag substrate. This is consistent with 

the fact that the formation of DMF islands occurs at a relatively low surface pressure. 
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In contrast, nucleation of Ag(DMF)2 islands requires ~×3 higher surface pressure than 

the onset of DMF islands. Moreover, Ag(DMF)2 islands are not in atomic registration 

with the substrate at lower surface pressures.  Only after surface pressure exceeds ∏ 

= ~8 mJ/nm2) do Ag(DMF)2 chains align with the underlying Ag lattice along . 

Linear Ag(DMF)2 chains are stabilized by weakly attractive O∙∙H intra-chain 

hydrogen-bonding interactions. However inter-chain interactions involve H to H 

“contacts” that are largely repulsive. This accounts for the higher 2-D pressures 

needed to condense Ag(DMF)2 islands and the 0.22 ± 0.02 nm gap and offset-

registration in neighboring Ag(DMF)2 chains. The alignment of Ag(DMF)2 islands to 

the substrate  direction as saturation coverage is approached is attributed to 

anisotropic surface stress that results from coexisting  registered DMF islands.  

      We now consider the energetics of Ag(DMF)2 formation, which involves the 

complexation of DMF with Ag adatoms, as described in Scheme 4.3. We estimate the 

energetics of surface Ag(DMF)2 formation from two microscopic steps: Step (i) is the 

detachment of Ag adatoms from the Ag(111) monatomic step edge,  with a reported 

energy cost of 0.515 eV/atom based upon Effective Medium Theory (EMT) 

calculations 82.  Step (ii) is the complexation of the Ag adatom with two adsorbed 

DMF molecules,  with an associated energy gain of 0.577 eV/molecule based on our 

present DFT computations. The overall reaction to form Ag(DMF)2 has an energy 

change of 0.062 eV/molecule, consistent with its spontaneous formation. This small 

energetic preference for Ag(DMF)2 formation is also consistent with the observed 

coexistence of adsorbed DMF and Ag(DMF)2. The equilibrium constant Keq for 

complex formation at room temperature is roughly e-ΔE/kT = 0.08, which is consistent  
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with the experimentally observed equilibrium constant at saturation coverage, Keq, exp 

= θAg(DMF)2 / θDMF
2 ≈ 0.06. Additional support that the system is in equilibrium is 

provided by the stability of the surface phases. For a given surface coverage (phase 

composition), negligible change in surface phase composition was observed in STM 

measurements acquired over a 48-hour period at room temperature or following mild 

thermal annealing (to 343 K). 

 

Scheme 4.3. The formation of Ag(DMF)2 and two underlying reaction steps. 

4.4.3 Coordination Chemistry of Ag: Surface vs. Solution and Solid State 

      Finally, we compare the Ag(DMF)2 surface adatom coordination complex with 

the Ag+(DMF)n coordination complex found in both liquid and solid phases. AgLn
+ 

complexes exhibit different geometries with coordination numbers depending on the 

environment.83 In pure ligand solvents, Ag typically forms AgL4
+ complexes with a 

tetrahedral geometry. Indeed, an extended X-ray absorption fine structure 

spectroscopy (EXAFS) study showed that Ag(DMF)4
+ forms a tetrahedron through 

Ag-O bonding in neat DMF.84 However, Ag+ is known to favor the linearly 

coordinated AgL2
+ in other liquid and solid phases.83 The coordination number of the 

Ag(DMF)2 surface coordination complex  matches that of the linearly coordinated 

AgL2
+, presumably reflecting a partial positive charge-state of the Ag coordination 

atom, and its interaction with the Ag(111) substrate. 
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      We have shown that the interaction between the polar heterosolvent DMF and 

Ag(111), an important electrode and catalyst , leads to the spontaneous formation of 

Ag(DMF)2 surface coordination complexes  in co-existence with surface DMF. This 

has important implications for surface chemistry and electrochemistry under such 

polar solvents. Coexisting DMF and Ag(DMF)2 phases have distinct structures  and 

surface potentials. Such surface heterogeneity will translate to local variations in 

surface chemical and electrochemical processes. For example, rates for solute 

deposition or reaction under weak driving potential will  differ substantially over 

different phases. Complexation effects should be taken into account for accurate 

descriptions of polar solvent – electrode metal surface systems.   

4.5 Summary 

      We have presented experimental and theoretical investigations of the surface 

chemistry between the highly polar heterosolvent, DMF, and a model metal electrode 

surface, Ag(111). Liquid microaerosol depositions on Ag(111) leads to the 

spontaneous formation of the Ag(DMF)2 coordination complex and coexistence of 

DMF(ads) and Ag(DMF)2. The Ag(DMF)2 coordination complexes form by 

coordination of DMF carbonyl oxygen atoms to Ag adatoms. With increasing  DMF 

deposition, the attendant increase in surface pressure drives a series of phase 

transformations from Phase I (2-D gas mixture of DMF(ads) and Ag(DMF)2) to 

coexisting Phase I and Phase II (near-square DMF lattice islands) to coexisting Phase 

II and Phase III (condensed islands of Ag(DMF)2 chains). The near-square DMF 

lattice phase (Phase II)  has a unit cell of 5.86 ± 0.02 Å × 5.80 ± 0.04 Å, and consists 

of head-to-tail arrangements of DMF dipolar molecules. STM images resolve the 
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delocalized N-C-O π bond as an arc-like protrusion. The chain-like Ag(DMF)2 islands 

(Phase III) consist of Ag(DMF)2 chains arranged with intra-chain distance of 0.705 ± 

0.003 nm and inter-chain distance of 1.490 ± 0.010 nm. Chain-Chain interactions at 

this distance are slightly repulsive, and thus this phase is observed only at near 

saturation coverage, where surface pressure overcomes chain-chain repulsion. 

      A semi-quantitative pressure-composition phase diagram was developed to assist 

in the interpretation of 2-D phase equilibria, and to allow for future phase prediction 

under other experimental conditions. The discovery of Ag(DMF)2 coordination 

complex formation on Ag(111) reveals the complexity of DMF interaction with silver 

and expands our understanding of silver coordination chemistry on the surface. The 

ordering of Ag(DMF)2 under surface pressure (here induced by co-adsorbates)  

presents a useful  strategy to control the surface morphology at interfaces and expand 

the available  molecular architecture on metal surfaces. 
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Chapter 5 Lithium Ethylene Dicarbonate (LEDC) – 

Dimethylformamide (DMF) Monolayer Films on Ag(111) 

      Chapter 4 revealed DMF-Ag(111) interactions and interface evolution as a 

function of DMF coverage. This highly polar solvent is also able to dissolve LEDC, a 

key component of the early-stage solid electrolyte interphase (SEI) formation. In 

Chapter 5 we undertook STM structural investigations of this key SEI component. In 

particular, we examined the structure of monolayer films generated on Ag(111) by 

the pulsed aerosol deposition of LEDC in DMF solution. This is a collaborative work 

between myself, Kang Xu and Peter Zavalij. I prepared all thin film samples and did 

all STM measurement. Kang Xu synthesized the LEDC. Peter Zavalij performed 

XRD measurement at the University of Maryland College Park and analyzed the data 

with some assistance from me. I prepared the sample for synchrotron XRD 

measurement, performed at Argonne National Laboratory (ANL) by ANL staff. 

5.1 Introduction 

      The liquid electrolyte in commercial Li-ion batteries (LIB) is a mixture of ring 

molecular carbonates and linear molecular carbonates (Figure 5.1, ring carbonates 

and linear carbonates). The ring carbonates used are generally ethylene carbonate 

(EC), fluoroethylene carbonate (FEC) and vinylene carbonate (VC), while the linear 

carbonates include dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) or 

diethyl carbonate (DEC). During the charging cycle, the reductive decomposition of 

ring carbonates and linear carbonates leads to the formation of the solid electrolyte 

interphase (SEI)28. As described in Chapter 3, the reductive decomposition products 
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of linear carbonates are lithium alkyl monocarbonates (LiOOCOR, R is the alkyl 

group), with exact chemical formula depending on the linear carbonate in use. The 

reductive decomposition product of ethylene carbonate (EC) is lithium ethylene 

dicarbonate ((CH2OCOOLi)2, LEDC) (Figure 5.1, one key SEI early-stage product). 

Due to the almost universal presence of ethylene carbonate (EC) in the liquid 

electrolyte formula in LIB, LEDC has been intensively studied both experimentally 

and theoretically.29,44,85-87 

 

Figure 5.1. Molecular structures of ring carbonates and linear carbonates as well as 

SEI early-stage product—lithium ethylene dicarbonate (LEDC). 

      Lithium ethylene dicarbonate (LEDC) is an organolithium salt. It is a moisture 

sensitive material and undergoes thermal decomposition at an onset temperature of 

120 °C.44 The synthesis of pure LEDC has been achieved by different routes.26,44 The 

ion conductivity of LEDC was measured to be 1 × 10-9 S/cm by electrochemical 

impedance spectroscopy (EIS),86 and there is much interest in relating this ion 

conductivity to the LEDC crystal structure. Previous conventional powder X-ray 
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diffraction studies on bulk LEDC have determined that LEDC has an orthorhombic 

unit cell with a lattice constant of a = 14.100 Å, b = 12.66 Å, and c = 5.20 Å.87 

However, the detailed coordinates of the LEDC structure could not be determined 

from these lower resolution measurements. In this thesis, the structure of LEDC was 

revisited with synchrotron X-ray diffraction at the Argonne National Laboratory 

(ANL) to obtain high-resolution data for crystal structure determination. To 

complement these reciprocal space investigations, we additionally prepared ultrathin 

LEDC films on Ag(111) using a microaerosol liquid deposition method. The resulting 

LEDC films were imaged by UHV-STM to determine molecular-level details of the 

2D film structure and interaction with its polar solvent dimethylformamide (DMF). 

The combined efforts to resolve the structures of both bulk and thin-film LEDC 

provide further insight on the role of LEDC in the solid electrolyte interphase (SEI) 

formation. 

5.2 Experimental Methods 

      Pure LEDC has been synthesized by two different methods in this work.26,87 

LEDC synthesized by the Duma-Peligot method (Scheme 5.1) was used in both the 

synchrotron and conventional X-ray measurements and the STM measurements, due 

to its higher purity as indicated by nuclear magnetic resonance (NMR) 

spectroscopy.26,87 The LEDC synthesis was performed at the US Army Research Lab 

by collaborator Dr. Kang Xu, and subsequently transferred and preserved under 

nitrogen until use. For the conventional XRD measurement, a Bruker D8 Advance 

system with a CuKα radiation source was used and the moisture sensitive material 

was hermetically sealed in a plastic sample container in the nitrogen glovebox. The 



 

 65 

 

laboratory XRD data collection time was 8 hours. For the synchrotron measurements, 

LEDC powder was directly loaded into the Kapton capillary tube inside the nitrogen 

glovebox. Under nitrogen atmosphere, the Kapton capillary tube ends were sealed by 

epoxy (Devcon), cured for 5 mins, and assembled with the tube mounting base and 

magnetic cap. This procedure provided sufficient atmosphere insulation based on 

previous moisture-sensitive material studies by other workers, as confirmed by the 

present measurements. Synchrotron measurements were performed at the 11-BM 

beamline synchrotron facility at the Argonnne National Laboratory (ANL). Data was 

collected at 295.0 K with a X-ray wavelength of 0.41384 Å (30 keV) and standard 

scan time of ~1 hr. The resulting diffraction data are shown in the results section.  

 

Scheme 5.1. Synthesis of LEDC using the Duma-Peligot based method. 

       For the microaerosol liquid deposition method, the LEDC-saturated DMF 

solution was prepared in the following manner: 25 ml of dimethylformamide (DMF) 

(Sigma-Aldrich, anhydrous, 99%) solvent was first transferred into a sealed 25 ml 

glass container (Corning) inside the nitrogen glovebox. The LEDC powders were 

gradually added into the DMF solvent until LEDC solubility diminished and LEDC 

precipitated out of solution. The sealed container was then extracted from the 

glovebox and sonicated for 30 mins to assist the dissolution of LEDC in DMF. The 

concentration of the LEDC-saturated DMF solution was estimated to be ~0.4 M 

based on the solubility of lithium propylene dicarbonate (LPDC) in DMF (LPDC has 

a high structure similarity to LEDC)44. The sonicated solution was then moved back 
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into the glovebox and filtered through a PTFE filter (pore size: 0.22 μm) to remove 

undissolved LEDC. The resulted homogenous LEDC/DMF solution (~0.4 M) was 

transferred into an air-tight glass syringe (Hamilton 2.5 mL) for liquid microaerosol 

deposition. The deposition procedure was as previously described in Chapter 4. 

5.3 Results 

5.3.1 X-ray diffraction studies of bulk LEDC 

 

Figure 5.2. X-ray diffraction data for bulk LEDC: synchrotron data (blue trace) and 

conventional data (green trace).  

      Synchrotron and conventional XRD measurement data are shown in Figure 5.2. 

To determine the crystal structure, the X-ray diffraction pattern was compared to that 

of simulated structure using the TOPAS software package.88 For these simulations, 

the number of LEDC per unit cell was assumed to be 4-6, corresponding to LEDC 

densities in the range 1.16 g/cm3-1.74 g/cm3 that is typical of organic materials. A 

thorough testing of the relevant point groups—from more symmetric Pnca to less 
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symmetric P21/c, P21/n, and Pcn2 did not produce a satisfactory fit. The effort to 

resolve the structure is still in progress. 

5.3.2 STM imaging of microaerosol-deposited LEDC/DMF films 

      In Chapter 4, we showed that the deposition of pure DMF solvent on Ag(111) 

produced a phase progression from a 2D disordered phase to ordered DMF islands 

and ordered Ag(DMF)2 complexes with increasing coverage. We now show that the 

presence of the LEDC solute in the DMF solvent shifts this phase evolution. In 

particular, for films deposited from the LEDC saturated solution (~0.4 M), ordered 

DMF islands nucleate at a factor of four lower DMF coverages (ΓDMF = 0.22 ± 0.01 

molecules/nm2) than found in the pure DMF films (ΓDMF = 0.86 ± 0.01 

molecules/nm2). (Figure 5.3) 

 

Figure 5.3.(a) Aerosol deposited films from LEDC-saturated DMF solution: STM 

image (200 nm × 200 nm) at a DMF coverage of 0.22 ± 0.01 molecules/nm2 revealed 

two coexisting phases—2D gas (Phase I) and ordered DMF islands (Phase II), (b) 

coverage of ordered DMF islands (Phase II) plotted as a function of DMF coverage. 
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5.4 Discussion 

      The phenomenon of the early nucleation is summarized qualitatively in a DMF 

coverage vs. temperature phase diagram (Figure 5.4). The 2D gas-ordered DMF 

phase boundary has been shifted to the low coverage direction in the LEDC-saturated 

DMF solution deposition vs. pure DMF.  

 

Figure 5.4. DMF coverage-temperature phase diagram in the submonolayer 0 – 1.00 

± 0.05 DMF/nm2 regime. The 2D gas-ordered DMF phase boundary shift is indicated 

by the red arrow. 

      The impact of the LEDC solute on the nucleation of DMF islands is understood 

through nucleation theory. The nucleation phenomenon has been extensively 

studied89, including studies of homogeneous nucleation and heterogeneous 

nucleation. The classical nucleation theory90,91 states that the nucleation energy E is 

the sum of the interfacial energy γ per unit area between the phases and the difference 

in free energy per unit volume between the phases ΔF, expressed as 
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                                              E = - ΔF + γ                                                          (Eq. 5.1) 

The energy barrier for nucleation is the nucleation energy maximum, which 

determines the nucleation rate. The classical nucleation theory fails in the regime 

where the critical nucleus is very small (often 20-50 molecules) or the molecules are 

polar. In the present DMF/Ag(111) and LEDC-DMF/Ag(111) systems, DMF is a 

polar molecule (dipole moment: 3.86 D) and the critical nucleus size is < 50 

molecules, as indicated by the STM measurement of the width of ordered DMF 

islands (phase II) at low ( 0.22 ± 0.01 molecules/nm2 ) DMF coverage. In this size 

regime, the classical nucleation approach has generally been superseded by the more 

predictive density functional approach.89 In this density functional approach, the 

nucleation energy barrier is determined by the critical density profile ρ*(r) rather than 

just the critical radius r. The critical density profile ρ*(r) is the saddle point in the 

formation of the new phase: before the saddle point the cluster tends to shrink while 

after the saddle point the cluster tends to grow. Once the cluster of the critical density 

profile ρ*(r) has formed, further nucleation becomes energetically favorable. In the 

DMF/Ag(111) case (discussed in Chapter 4), ordered DMF condensed from the 

disordered DMF 2D gas from line defects (step edge) on a large terrace on Ag(111). 

Evidently, upper step edges interact more favorably with the adsorbed DMF 

molecules and possibly increase the 2D local density of DMFs beyond the critical 

density ρ*(r) based on the density functional approach, leading to the nucleation of 

ordered DMF islands. Similarly, in the LEDC-DMF case, LEDC is an organolithium 

ionic salt, consequently solvation of 2D LEDC-DMF also increases the local density 

of DMF on Ag(111) surface and drives the early nucleation of ordered DMF islands. 
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In the LEDC-DMF case, the local density of DMF is higher than that in the pure 

DMF case at the same total surface DMF coverage. This suggests that the ion (Li+)-

dipole (DMF) interaction is stronger than the weaker Ag step edge – DMF 

interaction. This effect shifts the 2D gas-DMF island phase boundary towards lower 

DMF coverage (Figure 5.4). 

      In order to obtain a further insight of how LEDC seeds nucleation, we must 

consider the LEDC surface coverage. Based on the concentration of LEDC in DMF at 

room temperature of ~0.4 M and the assumption that the relative LEDC:DMF 

concentration is preserved on transfer to Ag(111), the ratio between LEDC molecules 

and DMF molecules is  1.0 LEDC : 32.5 DMF.(The greater volatility of DMF makes 

this an upper bound for DMF). Accordingly, ~8 LEDC molecules are expected in a 

phase II region of 100 nm2. The molecularly resolved image of the LEDC-seeded 

DMF islands with this area is shown in Figure 5.5. In addition to the DMF molecules, 

arranged in a near-square lattice shown with red unit-cell guidelines, larger 

protrusions are also present. The larger protrusions, labelled in green, are less 

regularly ordered. As such structures are not observed in pure DMF islands, we 

attribute them to LEDC. Based upon this assignment, we can explore structural 

models for the LEDC seeds embedded in the DMF islands. Fig. 5.6 provides a 

perspective view of a model of a single LEDC “seed” and the surrounding DMF 

layer. In this structural model, the longer axis of the LEDC molecule has a dimension 

of ~10 Å (measured from Li+ center to Li+ center), approximately twice that of the 

DMF-DMF distance in the ordered DMF islands. In this model, the DMF molecules 

are flipped at the end of the LEDC due to preferred electrostatic interaction between 
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Li+ and the carbonyl oxygen in DMF. In the actual film, the two “flipped” DMF 

molecules are likely to be disordered and may not be imaged directly. This appears to 

be the case in the actual STM image: in Figure 5.5, the bright protrusion (LEDC) has 

depressions on either side, which may reflect the presence of the flipped DMF. The 

DMF-LEDC-DMF complex, circled in Figure 5.6, has a width of 2.4 nm, roughly half 

of the width of the DMF islands at lowest DMF coverage case (ΓDMF = 0.22 ± 0.01 

molecules/nm2, Figure 5.3(a)). It is also worth noting that the LEDC bright 

protrusions are formed in the central region of the DMF islands and aligned along the 

long DMF island axis (or fast growth direction). This may reflect attractive LEDC-

LEDC interactions or LEDC-Ag(111) interactions.  

 

Figure 5.5. UHV-STM image (10 nm × 10 nm) of LEDC-seeded DMF islands with 

0.43 ± 0.01 DMF/nm2 on Ag(111). White grid shows the DMF unit cell repeat. 

Protrusions encircled in green are attributed to solvated LEDC. 

      A proposed structural model of LEDC/DMF on Ag(111) is given in Figure 5.6. 
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Figure 5.6. Structural model of DMF-solvated LEDC on Ag(111). The white grid 

shows the DMF unit cell repeat and the green ellipse shows solvated LEDC. 

5.5 Summary 

      I have found that LEDC solutes seed early nucleation of ordered DMF islands in 

monolayer films on Ag(111). I attribute this early nucleation to the formation of a 

solvated LEDC structure. The formation of DMF solvated LEDC structures within 

the 2D DMF gas on Ag(111) increases the local density of DMF about LEDC.  This 

increase in local density accounts for the early nucleation of the ordered DMF islands. 

High resolution STM images of the DMF islands seeded by LEDC show irregular 

protrusions in addition to the regularly ordered DMF features. These irregular 

protrusions are tentatively assigned to the LEDC solute seeds. A structural model of 

the solvated solute seeds, embedded in the DMF film network, is presented. The 

width of the solvated solute seed (~2.5 nm) is comparable to the width of the smallest 

LEDC-seeded nucleation islands (~5 nm). This may mean the actual “seed” contains 

at least 2 additional DMF molecules, or that the observed islands have coarsened 

(grow larger than the seed) before captured by the STM. 
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      The impact of the LEDC solute on the solvent structure may also play an 

important role in the early-stage SEI formation. In actual Li-ion battery systems, 

electrolyte molecules such as ethylene carbonate and dimethyl carbonates also have 

significant molecular dipole moments and dielectric constants, comparable or even 

larger in magnitude to DMF. Such polar solvents can likewise be expect to solvate 

LEDC, as well as other organolithium and inorganic lithium components of the early 

state SEI.  This solvation will increase the specific adsorption of polar solvent 

molecules at the electrode surface, leading to further reductive decomposition of the 

electrolyte molecules upon battery cycling. This mechanism is a key step in the 

passivation layer formation on the electrode surface.   

      High-resolution synchrotron X-ray diffraction data of bulk LEDC confirmed that 

this organolithium salt to be pure and highly ordered.  Computer simulation of the 

diffraction features should, in principle, allow us to determine the exact position of all 

atomic coordinates in the LEDC crystal structure. However, the relatively weak X-ray 

scattering of lithium make it difficult to locate the lithium positions in computer 

simulation by X-ray measurements alone. To assist the structural determination from 

X-ray, complementary information on the structural position of the lithium ions is 

needed, possibly through neutron diffraction measurements. 
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Chapter 6  Summary and Outlook 

      In this dissertation, two surface science models have been created under ultra-high 

vacuum (UHV) to understand the very initial stage of solid electrolyte interphase 

(SEI) formation at carbon anode surfaces in the LIB. The first model system, Model 

System I, is an electrolyte-Li/graphite C(0001) system. The detailed interactions 

between the molecular electrolyte and the model carbon anode surfaces with varied 

extent of lithiation has been revealed. These detailed interactions range from simple 

physical adsorption to more complex reductive chemical reactions. The resultant 

reductive reaction products were identified and further quantified by tracking their 

thermal decomposition products. One of the key products formed, lithium ethylene 

dicarbonate (LEDC), is the reductive decomposition product of the universal 

electrolyte, ethylene carbonate (EC). LEDC was singled out for further structural 

studies. Two different approaches have been adopted to study the structure of LEDC. 

The first involved synchrotron X-ray diffraction on synthesized pure LEDC to 

determine the exact atomic coordinates in its bulk crystals. The second applied the 

liquid microaerosol deposition technique to fabricate lithium ethylene dicarbonate 

(LEDC) – dimethylformamide (DMF) thin films on Ag(111). Further imaging of the 

monolayer thin film structure was done by ultra-high vacuum - scanning tunneling 

microscopy (UHV-STM). The obtained LEDC-DMF thin film structure provided new 

insight on how LEDC can increase the specific adsorption of polar solvent molecules 

at the electrode surface, leading to further reductive decomposition of the electrolyte 

molecules upon battery cycling. This mechanism is a key step in the passivation layer 

formation on the electrode surface. 
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      Another component of this PhD research was the development of a temperature 

programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) 

system to study the interactions in Model System I (electrolyte-Li/graphite C(0001) 

system). The temperature programmed desorption (TPD) technique measures the 

desorption energy of adsorbed molecules on the substrate surface, revealing the 

binding strength and film growth mechanisms of the adsorbed molecules. The 

temperature programmed reaction spectroscopy (TPRS) method simultaneously 

monitors different desorption products from the reactive surface. In this work, TPRS 

provided the first quantitative branching ratios of the surface chemical reactions 

under study. 

      The findings from the two model systems are summarized in the following 

paragraphs: 

      In Chapter 3, molecular carbonates have been studied and varying strengths of 

interactions were found between the molecular electrolytes and lithium-graphite 

substrate. Weak physisorptive interaction was found for EC and DMC on clean 

graphite (C(0001)). Chemisorptive interaction was found for EC and DMC on 

lithiated graphite (Li+/C(0001)). Reductive decomposition was observed for EC on 

metallic lithium (Li(s)/C(0001)). In the weakly interacting case, TPD measurement 

revealed that EC de-wets the clean graphite surface and forms 3D islands. The 

measured desorption energy matches vaporization enthalpy of EC, indicating EC 

desorbs from the 3D islands. Interestingly, DMC was found to wet the clean graphite 

C(0001) surface and the desorption energy was measured as 0.64 ± 0.05 eV. On the 

lithiated C(0001) surface, EC and DMC were found to bind more strongly and to 
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form 2D solvation shell-like structures on lithiated graphite (Li+-C(0001)). On 

metallic lithium supported on graphite, TPRS revealed that metallic Li ensues the 

decomposition of EC. The different reaction pathways were related to desorption 

products, and branching ratio was determined to be 70.%(organolithium products) : 

30%( inorganic lithium product). The obtained branching ratio provides important 

information on the distribution of lithium salts that form at the very onset of SEI 

formation. 

      In Chapter 4, the focus was on a key component in the SEI, LEDC. In the 

investigation of LEDC-DMF/Ag(111) model system, the LEDC was solvated in the 

aprotic polar solvent DMF and the LEDC-saturated DMF solution was delivered to 

the Ag(111) by the microaerosol liquid deposition method. The interactions between 

the dimethylformamide (DMF) and Ag(111) were additionally investigated in control 

studies. In the DMF/Ag(111) studies, two different species were identified and 

characterized on Ag(111): the adsorbed DMF, and Ag(adatom)DMF2 coordination 

complexes. As DMF coverage increases from low coverage to a full monolayer, the 

state of the surface evolves. The two species present on Ag(111), adsorbed DMF and 

Ag(adatom)DMF2, undergo phase separation and transformations at different DMF 

coverage. At lower coverages, adsorbed DMF and Ag(adatom)DMF2 form a 2D gas 

mixture. At intermediate coverages, the adsorbed DMF undergoes partial phase 

separation and condensation into ordered DMF islands from the 2D gas mixed binary 

phase. Approaching saturation coverage, the Ag(adatom)DMF2 complex condenses 

from the disordered 2D gas phase, into ordered chain-like structure. A semi-
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quantitative composition-surface pressure phase diagram was developed to 

summarize the phase evolution. 

      Chapter 5 is a continuation of the effort to obtain structural information on the 

early-stage SEI formation. The LEDC-saturated DMF solution was deposited on 

Ag(111) and the formed LEDC-DMF monolayer film was compared to that deposited 

from DMF alone. Pure LEDC was synthesized and characterized by synchrotron X-

ray diffraction, to confirm phase purity. The LEDC-saturated DMF solution was 

deposited on Ag(111) using microaerosol liquid deposition and the surface 

morphology was measured by UHV-STM. The ordered DMF islands appear 4 lower 

DMF deposition coverage in LEDC-saturated DMF than that in pure DMF 

deposition. This early nucleation of ordered DMF islands was attributed to the 

seeding effect of LEDC-DMF solvation structure on Ag(111). The ionic (Li+)-dipole 

(DMF) interaction between LEDC and DMF increases the local DMF density, 

shifting the boundary between 2D gas-ordered DMF phase transformations towards 

lower DMF deposition coverage direction. The seeded nucleation of ordered DMF 

islands has implication on the mechanism of early-stage SEI formation. At an LIB’s 

interface, the formed LEDC would attract the polar electrolyte solvent to the 

electrode surface, and accelerate the SEI formation. 

      For this thesis, I have expanded knowledge through model interfaces related to 

the Li-ion battery energy storage system, especially on the initial formation of the 

SEI. The knowledge obtained could help design new electrolyte formula that could 

improve the electrode-electrolyte interface property or design new electrode surfaces, 

thereby leading to the Li-ion battery that is safer and has longer cycle life. 
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      Based on the results from this dissertation, I proposed the following experiments 

to further understand the early-stage SEI formation: 

      The X-ray synchrotron diffraction studies of pure lithium ethylene dicarbonate 

(LEDC, (LiOCOOCH2)2) gave high-resolution diffraction peaks, yet the structure 

could not be determined by XRD alone. Despite the increased intensity of the 

synchrotron X-rays, the weak X-ray scattering ability of low-Z elements like lithium 

poses challenges to determine their accurate positions in the crystal structure. Neutron 

diffraction is another diffraction technique that could resolve this challenge. Unlike 

X-rays, neutrons do not interact with electrons but with nucleus (nucleus spin to be 

more specific), and the scattering ability of atomic nucleus does not increase with 

atomic mass.92 In fact, low-Z elements (hydrogen, lithium, etc.) contribute 

significantly to the neutron diffraction pattern. This information will complement the 

diffraction information obtained from the synchrotron X-ray measurement and help 

resolve the accurate atomic coordinates in LEDC crystal.  

      The lithium ethylene dicarbonate (LEDC) – dimethylformamide (DMF) film here 

primarily characterized by UHV-STM as the structure of the DMF solvent, with 

LEDC solute embedded at low densities. The greater adsorption of DMF prevented 

the observation of LEDC network structures. A polar solvent that could dissolve 

LEDC but weakly interact with Ag(111) is needed. An alternative choice for liquid 

microaerosol deposition is using acetonitrile (ACN, CH3CN). ACN has lower vapor 

pressure compared to dimethylformamide (DMF) and the coordination ability 

between N-Ag is weaker (vs. O-Ag coordination). A new model system lithium 
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ethylene dicarbonate (LEDC) – acetonitrile (ACN) / Ag(111) leads to the possibility 

of directly imaging lithium ethylene dicarbonate (LEDC) on Ag(111).  

      In a broader sense, this dissertation revealed how the polar organic solvent 

molecules-ionic solute interactions can drive film structures at electrode surfaces. 

Such phenomena are ever present in a battery interface and must be understood to be 

harnessed for improved battery performance. 
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Appendix A. Temperature Calibration of the Constructed TPD/TPRS 

System      

      In the constructed TPD/TPRS system, the temperature sensor is not attached 

directly to the graphite surface so that samples can be easily exchanged without 

breaking vacuum. The temperature in the TPD/TPRS system is measured at the 

copper support for the sample plate, and must thus be calibrated to obtain absolute 

values for the graphite surface temperature. The following procedure was used for 

graphite surface temperature calibration of the constructed TPD/TPRS system, 

described in Sec. 2.3.2 and utilized in Chapter 3 studies of molecular cabonates on 

lithiated graphite substrates: 

(1) Temperature calibration standards for graphite surfaces were provided from the 

literature report of alkane temperature programmed desorption spectra from graphite 

surfaces at a ramp of 2 K/s [Paserba, K. R.; Gellman, A. J. J. Chem. Phys. 2001, 115, 

6737.]. In this literature study, a thermocouple was directly attached to a ~0.25 mm 

thick tantalum foil used to mount the graphite surface, providing accurate surface 

temperature values for desorption. The temperature values for the maximum 

monolayer desorption rates for C5 (pentane) – C10 (decane), provide convenient 

calibration standards in the temperature range from 164 K – 248 K, as summarized in 

Table A1; 

(2) Using the Redhead analysis method, the maximum desorption rate for a 

monolayer of alkane (TPD spectrum peak) can be obtained for other linear ramp 

rates. Here 1 K/s is used as an example; 
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(3) The converted literature values (1 K/s here) were compared with the experimental 

values on the constructed system at the same ramp rate (1 K/s here) and a temperature 

calibration curve is generated.  

Table A1. Literature Values* of Multilayer and Monolayer Alkane (C5-C10) 

Desorption Temperature from Graphite 

Alkanes Multilayer Peak Location (K) Monolayer Peak Location@2 K/s 

(K) 

Pentane (C5H12) 133 164 

Heptane (C7H16) 154 211 

Octane (C8H18) 171 220 

Decane (C10H22) 193 248 

*Paserba, K. R.; Gellman, A. J. J. Chem. Phys. 2001, 115, 6737. 

      In my TPD/TPRS studies of Chapter 3, the temperature ramp rate used is 1 K/s. 

The literature values are thus converted to values at 1 K/s based on the Redhead 

analysis method described in [Redhead, P.A. Vacuum 1962, 12, 203]. 

      For first-order desorption, the ion signal I is proportional to the desorption rate –

dθ/dT, and the desorption rate is described by the following equation: 

 

At the peak in the desorption spectrum, T=Tp, the change in desorption rate becomes 

zero: 

 

Eq. (A1.2) thus becomes 

 

Substituting Eq. (A1.1) into dθ/dT in Eq. (A1.3) gives,  
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The term in the first square bracket in Eq. (A1.4) has a non-zero value, and the term 

in the second square bracket must  therefore be zero. Thus 

 

For the same desorption process, R, Ead and ν are constant, and the difference in ramp 

rate β results in different peak temperature Tp. Assuming two different ramp rate β1 

and β2, there will be two different peak temperature Tp1 and Tp2. Substituting β1, β2, 

Tp1 and Tp2 into Eq.(A1.5) gives: 

 

and 

 

Dividing Eq. (A1.6) by Eq. (A1.7) gives: 

 

 Eq. (A1.8) allows us to calculate the peak temperature Tp2 if Tp1, β2 and β1 are 

known. 

Applying Eq. (A1.8) to calculate the peak temperature Tp2 at β2 = 1 K/s for alkanes 

C5-C10 yields the calculated values summarized in Table A2. 
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Table A2. Literature-Values and Raw Experimental Values for Monolayer Alkane 

(C5-C10) Peak Desorption Temperature (K) from Graphite at 1K/s Ramp Rate 

Alkanes 

Monolayer Peak 

Desorption 

Maximum from 

Redhead-computed 

Literature Values 

Measured Values 

for the Monolayer 

Peak Desorption 

Maximum  in the 

TPD/TPRS System 

prior to Calibration 

Calibrated values of 

TPD/TPRS System 

from  Eq. (4.1.9) 

Pentane 

(C5H12) 
162 144 162 

Heptane 

(C7H16) 
208 179 206 

Octane 

(C8H18) 
217 189 218 

Decane 

(C10H22) 
244 211 245 

 

      Based on the literature desorption values of C5 (pentane)-C10 (decane), obtained 

by Redhead conversion to a ramp rate of 1K/s, and our own directly measured values 

of C5(pentane)-C10 (decane) acquired at the same 1 K/S ramp rate., the following 

temperature calibration curve was generated: 

T = 1.2312T0 – 14.843 (R2 = 0.9973),                          Eq. (A1.9) 

where T is the calibrated temperature and T0 is the original experimental value prior 

to calibration. Based upon this approach, the maximum error in graphite surface 

temperature in the TPD/TPRS system at a ramp rate of 1K/s is 2 K. This method 

could also be used to generate temperature calibration curve at other linear 

temperature ramp rates.  
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Appendix B. The MATLAB Code for the TPD/TPRS Kinetics 

Simulation Utilizing the Runge–Kutta Numerical Integration Method 

File name: ratelaw.m 
 

function [ rate ] = ratelaw ( theta, T, A, Ed ) 

%rate law gives the reaction rate for certain surface 

coverage 

 

R = 8.314; 

rate = -A * theta * exp(-Ed/(R*T)); 

%first-order desorption kinetics for monolayer desorption 

  

end 

 
 

File name: ramp.m 
 

function [ Tp, fwhm ] = ramp( theta0, beta, A, Ed ) 

%ramp solves the surface differential equation using RK4 

%a constant heating rate is assumed over Tlow < T <Thigh 

%the peak desorption temperature and fwhm are solved 

using peakprop 

%----------------------- 

  

%temperature step of RK4 in Kelvin 

tempstep = 0.01; 

  

  

%time step of RK4 in seconds 

h = tempstep/beta; 

  

%low and high temperature bounds in K 

Tlow = 100; 

Thigh = 300; 

  

%lower bound for rate values to prevent number system 

looping at ~ 10^-308 

lub = 10^-60; 

  

N = round((Thigh-Tlow)/tempstep)+1; 

  

T = zeros(N,1); 

rate = zeros(N,1); 
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%temperature profile 

for i = 1:N 

    T(i) = Tlow + (i-1)*tempstep; 

end 

  

rate(1) = -1*ratelaw(theta0, T(1), A, Ed); 

thetaprev = theta0; 

  

for j = 2:N 

    k1 = ratelaw(thetaprev, T(j-1), A, Ed); 

     

    thetak1 = thetaprev + 0.5*h*k1; 

    Thalf = T(j-1) + 0.5*(T(j)-T(j-1)); 

     

    if (thetak1 >= 0) 

        k2 = ratelaw(thetak1, Thalf, A, Ed); 

    else 

        k2 =0; 

    end 

     

    thetak2 = thetaprev + 0.5*h*k2; 

     

    if (thetak2 >= 0) 

        k3 = ratelaw(thetak2, Thalf, A, Ed); 

    else 

        k3 = 0; 

    end 

     

    thetak3 = thetaprev + h*k3; 

     

    if (thetak3 >= 0) 

        k4 = ratelaw(thetak3, T(j), A, Ed); 

    else  

        k4 = 0; 

    end 

     

    thetatest = thetaprev + 1/6 * h * (k1 + 2*k2 + 2*k3 + 

k4) ; 

     

    if( (thetaprev ~= 0) || (thetatest >= 0) || (k2 <= 0) 

|| (k3 <= 0) || (k4 <= 0)) 

        thetacurr = thetatest; 

    else 

        thetacurr = 0; 

    end 

     

    if (rate(j-1)>=lub) 
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        rate(j) = -1*ratelaw(thetacurr, T(j), A, Ed); 

    else 

        rate(j) = 0; 

    end 

     

    thetaprev = thetacurr; 

end 

  

[Tp, fwhm] = peakprop(T,rate); 

  

End 

 

 

Filename: peakprop.m 

 
function [ xpeak, fwhm ] = peakprop( x,y ) 

%peakprop finds the peak location and full width at half 

maximum 

%------------------------ 

  

N = length(x); 

  

ymax = max(y); 

  

for i = 1:N 

    if ( y(i)== ymax) 

        ipeak = i; 

        xpeak = x(i); 

    end 

end 

  

left = 0; 

right = 0; 

  

%finds indices of vector one step right of half max on 

each peak side 

for j = 1:N 

    if( (left == 0) && (j < ipeak) && (y(j) >0.5*ymax) ) 

        left = j; 

    end 

     

    if( (right == 0) && (j > ipeak) && (y(j) < 0.5*ymax) 

) 

        right = j; 

    end 

end 
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%prevents a divide by 0 error near right endpoint 

%also results in fwhm = 0 as trigger flag 

if ( right == N ) 

     left=round(N/2); 

     right=round(N/2); 

end 

  

%prevents later referencing index 0 

if ( left <= 1) 

     left = 2; 

end 

  

if ( right <= 1) 

     right = 2; 

end 

  

%interpolates values above and below 0.5*ymax on each 

side of peak 

xleft = x(left-1)+(0.5*ymax-y(left-1))*(x(left)-x(left-

1))/(y(left)-y(left-1)); 

xright = x(right-1)+(0.5*ymax-y(right-1))*(x(right)-

x(right-1))/(y(right)-y(right-1)); 

  

fwhm = xright - xleft 

  

end 

 

Filename: peakfit.m 

 
function [ error ] = peakfit( x ) 

%peakfit calculates model values and compares to 

experimental TPD data sets 

%----------------- 

  

%scale factors for parameters 

scaleA = 1; 

scaleEd = 10000; 

  

A = scaleA*10^(x(1)); 

Ed = scaleEd*x(2); 

  

%coverage varying results 

covg1 = xxx.xx; 

%xxx.xx is the coverage value to be entered 

  

Tp1covgdata = xxx.xx; 

%xxx.xx is the peak temperature to be entered 
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w1covgdata = xxx.xx; 

%xxx.xx is the peak width to be entered 

  

%calculate covg varying model values 

[Tp1covgmodel, w1covgmodel] = ramp(covg1, 1, A, Ed); 

  

%coverage Tp errors 

error(1) = (Tp1covgdata - Tp1covgmodel)/Tp1covgdata; 

  

%coverage width errors 

error(2) = log(w1covgdata/w1covgmodel)/log(w1covgdata); 

  

end 

 

 

Filename: optimizefit.m 

 
%optimizes TPD data fits 

  

%initial guess 

%x0(1) = log(A)/scaleA 

%x0(2) = Ed/scaleEd 

%scaleA = 1, scaleEd = 10000 

z0 = [44 6.7925]; 

lb = [43.75 1]; 

ub = [48.35 10]; 

  

%nonlinear least squares 

[z, resnorm] = 

lsqnonlin(@peakfit,z0,lb,ub,optimset('DiffMinChange',1e-

4,'DiffMaxChange',1e-1,'Display','iter','MaxIter',100)); 
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Appendix C 

Representative Cracking Products of Gases Released from the Decomposition of 

EC Reduction Products during TPRS 

 

Figure C1. The cracking products of m/z = 24-26 and m/z = 41-44 shown in the high 

temperature range (400 K – 700 K) confirm the identity of the released gaseous 

products ethylene, ethylene oxide and CO2. 
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Desorption of Minor Products Organic Ethylene Glycols 

 

 

Figure C2. The cracking products from m/z = 24-26 and m/z = 60 shown in the low 

temperature range (200 K – 400 K) due to very small amounts of organic ethylene 

glycols. Peak areas indicate glycols account for 1.1% of EC decomposition as 

determined by the calibration process described below. The same scaling for 

desorption rate is used in Figure C1. 
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Desorption of Minor Products Organic Ethylene Glycols Detailed Mass Balance 

Analysis of EC Decomposition Products Measured by Temperature Programmed 

Reaction Spectroscopy (TPRS) 

      Absolute coverages of the reduction products LEDC and LEC are determined 

from the integrated TPRS peak areas of gases released by decomposition via the 

relation: 

   θabs = r · g · s · A, 

 

where θabs is the absolute coverage, r the relative ionization gauge gas correction 

factor, g the geometric scaling factor, s the gas sensitivity factor and A the area of the 

TPRS peak. The integrated peak area of each TPRS peak is determined following a 

linear background subtraction. The ethylene oxide TPRS spectrum has a single peak 

so the integral is a simple sum. The ethylene TPRS spectrum has two overlapping 

peaks, which were fit with asymmetric logistic peaks, as shown below (Figure C3), 

for integration by simple summation.   

 

Figure C3. Ethylene TPRS spectrum contains two peaks, fit with two asymmetric 

logistic functions. Integrated areas of the functions (TPRS peaks) are provided in 

Table C1. 
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Table C1. TPRS Peak Areas for EC Coverage of 1.5 L  

 

ethylene peak 

1 

ethylene peak 

2 

ethylene oxide 

peak 

mass to charge ratio (m/z) 26 26 43 

peak maximum 

temperature (K) 

570 600 600 

peak area 

6.7×10-9 ± 

1.2×10-9 

3.3×10-9 ± 

0.5×10-9 

5.3×10-11 ± 

0.3×10-11 

  

      We next relate the integrated areas of the TPRS features to coverage by 

determining the ion gauge sensitivity factor, s. This is done by establishing an 

empirical relationship between the partial pressure of the gas of interest (measured by 

the nude Bayer-Albert ion gauge) and the ion mass signal (measured by the mass 

spectrometer) to give the mass sensitivity factor(s) for each gas. This was done at 

mass 26 for Ethylene and mass 43 for both Ethylene Oxide and Ethylene Carbonate. 

These empirical relationships are shown below. (Figure C4) 
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Figure C4. The sensitivity factors s for ethylene, ethylene oxide and ethylene 

carbonate are obtained through calibration curve of ion signal I vs. pressure p 

measured by the ionization gauge calibrated for nitrogen.   

      Based upon the above empirical relationship between mass spectrometry ion 

signal and partial pressure, we can express the integrated area of each desorption peak 

in exposure units of torr·s. (Table C2, Row 2). This step is simply: 

Raw Coverage = s · A  

       Furthermore, in an actual TPD measurement, we collect only a fraction of the 

desorbing ions due to the sampling geometry. We can determine this geometric 

sampling factor g directly by measuring the TPD of EC for precisely determined 

exposures. An exposure of 1.5 L EC, gives rise to a measured TPD area of 1.9×10-10 
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torr·s. The geometric scaling factor g (which is attenuating) is thus determined to be 

12 (Table C2).   

Table C2. The Determination of Geometric Sampling Factor g 

deposition 

Amount 

TPD 

peak 

area  

 raw 

coverage  

(torr·s) 

deposition 

exposure 

(torr·s) 

scaling 

factor 

EC 1.5 L 1.9×10-10 3.4×10-8 4.0×10-7 12 

 

      Finally, in order to obtain absolute coverages, we account for the different relative 

ionization gauge correction factor r for each gas. These values have been previously 

determined as 2.3 for C2H4 and 2.5 for (CH2)2O.93 For ethylene carbonate, this value 

was approximated to be 3.8 from the parametric dependence of the relative ionization 

gauge factor on molecular polarizability93-96, as shown in Figure C5. 

 

Figure C5. Determination of ethylene carbonate relative ionization gauge gas 

correction factor by the polarizability α vs. relative ionization gauge gas correction 

factors r relation graph. The r = 3.8 for ethylene carbonate is interpolated from the α 

vs. r relation. 
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With g, s and r determined, we obtain the absolute coverage of EO and Et, as reported 

in Table C3.  

Table C3. Determination of Absolute Coverages for Different Species from Measured 

TPRS Peak Areas (Based upon 1.5 L of EC Decomposition on Li(s)/C(0001))* 

desorption species 
ethylene@570 

K 

ethylene@600 

K 

ethylene oxide 

@600 K 

No 

desorption 

source product LEDC LEG LEG Li2CO3 

reaction pathway 2e- 2e-  2e-  2e- 

peak area 
6.7×10-9 ± 

1.2×10-9 

3.3×10-9 ± 

0.5×10-9 

5.3×10-11 ± 

0.3×10-11 

not 

applicable 

raw coverage conversion 

(torr·s) 

2.3×10-8 ± 

0.4×10-8 

1.1×10-8 ± 

0.2×10-8 

3.3×10-9 ± 

0.2×10-9 

geometric scaling factor 12 

geometric factor scaled 

coverage (torr·s) 

2.8×10-7 ± 

0.5×10-7 

1.3×10-7 ± 

0.2×10-7 

4.0×10-8± 

0.3×10-8 

relative ionization gauge 

gas correction factor 
2.3 2.3 2.5 

absolute coverage  

(10-6 torr·s or L) 
0.64 ± 0.12 0.30 ± 0.05 0.10 ± 0.01 0.5 ± 0.2 

* The minority product organic ethylene glycols (1.1%, 0.016 L assuming the same 

parameters as ethylene) is not included in the table. 

       The absolute surface coverage of ethylene carbonate (1.5 L) undergoes complete 

decomposition. The calibrated desorption products ethylene and ethylene oxide, 

provide quantitation of the EC reduction products LEDC and LEG, as summarized in 

Table C3. The inorganic reduction product Li2CO3 is thermally stable up to ~1000°C 

and does not release desorption products over the monitored thermal window (110 K 
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– 900 K). The amount of the Li2CO3 is thus determined by detailed mass balancing as 

the difference between the amount of deposited EC and the amount of evolved 

ethylene and ethylene oxide following the deposition. The amount of ethylene glycols 

observed in these monolayer studies (Figure C2) correspond to only 1.1% of the 

exposed EC, and thus is neglected in this detailed mass analysis. 
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