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Abstract

We consider the problem of modeling dynamical effetes of impact of an
elastic body on a flexible beam. We derive a nonlinear integral equation by
using the Hertz law of impact in conjunction with the beam equation. This
equation does not admit a closed form solution. We demonstrate the existence
of solutions, derive a reliable numerical method for computing solutions, and
compare the numerical results with those obtained by others.

1 Introduction

High precision control of robotic manipulators has been becoming increasingly in-
portant in a variety of applications, e.g. laser beam technology, semiconductor safer
manufacturing etc. This requires paying extra attention to the usual dynamical
effects as well as taking into consideration otherwise ignored features such as dy-
namical effects due to impact. This paper focuses on the latter aspect.

For the sake of simplicity, we only consider an elastic beam subject to iinpact
forces occuring fromn contact with an elastic body. Here we restrict attention to the
problem of modeling, existence of solutions to the model, and the computational
aspects. Issues such as how to control the manipulators to minimize the spurious
effetcs due to impact will be addressed in the future.

Numerous attempts have heen made to accurately model dynamical effects of
impact in robotics oriented applications in the recent years{1,2,3]. Consideration of
displacement and use of Hertz’s law of impact at the region of contact seems to he
the most successful approach{4]. When the contact involves a flexible beam, Hertz’s
law of impact leads to a nonlinear integral equation called the Hertz equation, which
incorporates the effects of local elastic deformation at the region of contact[5]. This
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model has been widely applied to various impact situations, and the experimental
results obtained in [2][6] well support the validation of this equation. Unforuntely,
this nonlinear equation does not admit a closed form solution. Timoshenko[4] used
small-increment method to give numerical solutions, and it became the basis for
evaluting other approximation methods. Some other approximation methods also
give very satisfactory results. One of them is the application of the energy method
devised by Zener and Feshbach[8], and applied by Lee[5] to central impact of a
sphere on a simply supported beam. These approximation methods were proposed
without establishing the convergence or even existence of a unique solution.

In the section 2 of this paper the impact problem is properly formulated and the
Hertz equation is derived through Hertz law of impact. In section 3 we will discuss
some basic properties of the Green’s function associated with the Euler Bernoulli
beam equation. This equation is used to model the motion of the beam. In section
4, we will establish the existence and uniquness of solutions of the Hertz equation
by applying the contraction mapping principle. In section 5, a numerical technique
based on the contraction mapping principle is presented. Various examples are
discussed, and the results obtained by different approaches are compared.

2 Formulation of the Problem

For our purpose, the impact problem can be formulated as follows; a beain is struck
transversely by a mass m having a spherical surface at the point of contact with
initial moving velocity vg. We further assume that the Hertz law of impact is valid
, i.e,

a = K[f@]°, (2.1)

where « is the relative approach of the striking body, f(t) is the contact force and K
is the Hertz constant[7], which is determined by the local geometry (i.e. the radius
of curvature) and material properties of impacting objects. Relative approach is the
difference between the displacement of the beam and the contacting body, measured
from instant of initial contact. Hence,

a = s(t) — w(a™,1), (2.2)

where w(a*,t) is deflection of the beam at the point of contact x*, s(t) is the
displacement of the ball under of the contact force f(t), and is given by,

t
s(t) = vot — %/@ f(r)(t = 7)dr. (2.3)

From the equations (2.3) , (2.1) and (2.2), we obtain the nonlinear integral equation,

K[f(O)*? = vot — L/t F(OYt — 7)dr —w(z*,t). (2.4)
m Jjo



w(x*,t s(t)

Figure 1: Sketch of the Displacement

Due to the nonlinear term K[f(#)]?/3, it is impossible to obtain a closed form solution
for (2.4). Before we can carry out further analysis, it is necessary to represent the
deflection of the bean at the point of contact.

3 Deflection of the Beam and Green’s Function

If we only restrict to transverse vibrations and assume that the beam is long and
slender, the transverse shear and torsional effects may be neglected, and the dynam-
ics of the beam can be described by Euler Bernoulli beam equation. The deflection
of the bean is in turn obtained by solving the following partial differential equation,

o* =
P ‘)1‘2" VEIAw= f(z,l) O<a<l, (3.1)
Jt
in which A = ;):4, [ is the length of the beam, p is the mass density and ET is the

bending stiffness (Lere p and ET are assumed constants), f(x,?) is the distributed
load. The deflection of the heam is uniquely determined when equation(3.1) is solved
under the appropriate initial and boundary conditions. If we assume that the beam
is at rest just before impact, the initial conditions are,

w(x,0) = w(z,0) = 0. (3.2)
Various boundary conditions of interest can be described as
Biw(x,t) = 0, i = 1,2, x = 0,1 (3.3)

where B; is a linear homogeneous differential operator of imaximum order 3.



The concentrated load f(t) is obtained as a limiting process of a uniformly
distributed load f(z,t) over a small range 26 of the beam. Thus, by letting f(z, 1) —
oo while 6 — 0, the contact force f(t) is obtained by,

z*

0= tm [ fetds (3.4)

§—=0,f—o00 Jr*—§

One of the most popular methods for analyzing partial differential equations is
the Green’s function method[9]. With the aid of a Green’s function, the solution of
a certain class of PDE can be expressed as an integral .

Definition 3.1 A function G(z,(;t) € L?[0,1] is called a Green’s function of (3.1)-
(3.3), if it satisfies the following conditions:

i) As a function of the argument z, it satisfies the homogenous differential equa-
tion , i.e. f = 0, everywhere except at x = ( where it may have a singularity.

i) As a function of the arqument t, it satisfies the homogenous differential equa-
tion everywhere except att = 0 where it may have a singularity.

i) As a function of the arqgument » , G(x,(;t) satisfies the boundary condition

(3.9).

w) For the initial condition , it satisfies

.0t
G(x,¢0M) = 0, and ?—q—(—%—f—’—g——) = 8(«,Q)/p. (3.5)
Note that (i) and (ii) above leads to,
0? .
{E1A + pgﬁ}(?(;r,(;t) = é(x,C)o(1). (3.6)

Since the PDE (3.1)-(3.3)is self-adjoint, G(z,(;t) is syminetric with respect to
x and ¢, and can be expressed in terms of eigenfunction expansition. Therefore, it
can be shown that the Green’s function for the PDE(3.1)-(3.3) can be expressed in
the form (we refer the reader to [10] for details),

G(:r,,(;t) = ZWk($)Wk(C)81n1l7kt

k=1

H(1), (3.7)

W

where H(t) is the unit step function, {Wy(«x)}72, is an orthnormal basis of eigen-
functions and {w;}{2, are the corresponding eigenvalues. It is easy to show that a
representation of the solution to the PDE (3.1)-(3.3) in terms of the Green’s function

G(x,(3t)is

t pl
w(x,t) = /0/0G(:I:,C;t—T)f(C,T)dCdT. (3.8)



For the impact problem, since the contact can be treated as point contact, con-
tact force has the special form (3.4). Hence equation (3.8)can be further simplified
as

w(z,t) = /Ot G(z,z*t — 1) f(1)dT. (3.9)

For simplicity, we write G(2*;t) instead of G(z*,2*;t) in the rest of the paper.
From the equations (2.4) and (3.9), the Hertz equation will be

K[f(t)]z/3 = vot — ;11-/(: f()(t — 7)dr — /Ot G(z*;t — 1) f(r)dT. (3.10)

4  Analysis of the Hertz Equation

Though the Hertz equation (3.10) hasn’t been analyzed in any great detail in the
existing literature, some approximation methods for solving it have been presented
in some detail. Our viewpoint is that theoretical analysis is necessary for both
proving the validation of this equation and developing efficient numerical methods.
Contraction mapping technique is employed here to show that a unique solution
exists for the Hertz equation. Before invoking the contraction mapping theorem,
some simplifications are necessary. Let,

L(t) = t + mG(a™;t). Yt >0 (4.1)
Equation (3.10) can be rewritten as,

1 3

FOH? = ot — — [ f(r)L(t - r)dr, (4.2)
m' Jjo
where v, = vy/K; m' = mK;
1 gt
f(t) = [v{)t———l—,/ f(7')L(t—7')d7']3/2 (4.3)
m' Jo

1t 1t 9
= [vjt - py ./0 f(r)(t—1)dr — I /0 f()GG™t—r)ydrPh (4.4)

Note that v, is assumed to be positive always. Both equations (4.3)and (4.4)will be
used in the following analysis.

Theorem 4.1 (Contraction Mapping Theorem) Let X be a Banach space, and B be
a closed subset of X. Let P: B — B be an operator satisfying the following condition:
3 p <1 such that

1Pa = Pyll < plle — yll, Va,y € B.



Then
a) P has ezactly one fired point in B (denoted by z*).
b) For any zo € B, the sequence {2,}5° defined by

Tpg1 = Pxna nZO

converges to x*. Moreover,

n
len =il < P20 — ol

A proof of this well known theorem can be founded in[11]. We will use this theorem
as the main tool to show that equation (4.3) has a unique solution by constructing
a contraction operator P on an appropriate closed subset B of a Banach space.

Theorem 4.2 Suppose that the Green’s function G(a*;t) is uniformly bounded over
(0,1]. Then there exists a small enough § > 0 such that (4.8) has @ unique continu-
ous solution for t € [0, 8].

Proof : Let M > 0 be such that,
|G(a*t)| < M Vi>20 and  Vz* €0,
Let N > 0 be a sufficiently large constant. Let § > 0 be small enough such that,

. 8 1 .
(i) 6 < [W]m,

(ir) 6 < Wp{%ﬁz—m;
(iii) 2(6%/m! + M&/I()\/(v(’)-|— MN/K)s < 1.

Our Banach space here is C|0, 8], the space of continous real valued Sfuctions from
[0, 6], endowed with the sup norm, i.e. Nflloo = supsero s | f(D|. Let us define the
mapping P : C'[0, 6] — C[0, 8] by,
1t 3/2
Pi(t) = [t ~ = / J(L(t - 7)dr] Vi (0,6 (4.5)
v Jo

n

The domain of P is defined by,
Bl0,6]= " {f() € C[0,8}; N > () > 0;
t
vyt — iz?/ f(T)L(t — 7)dr >0 Vte(0,6]}. (4.6)
m’Jo

Obviously, B[0, 6] is a closed subset of the Banach space of continuous functions on

[0,4].



The rest of the proof is divided into two parts: first, we show that P maps B|0, §]
into itself. Then we show that P is a contraction mapping on B[0,§].

a) Pf >0
B[0, 4] by,

Yf € B[0, 8] by definition. Let us define mapping F : B[0,68] —

Ff@) = Dbt [ )=

f € B0,§] = #f(; f(r)(t — T)dr > 0. Hence,

|Ff(1)]

<

<

t 13
it - = [ s = nar = £ [ 5066 - D)

' 1
v+ i/ LGt = 7)ldr
K 0 ’
(v + MN/K)t.

Ff(t) > 0 by definition. Therefore,

Ff(t) < (vh) + MN/K)t = Pf(t) < [(vh + MN/EW? < t, Vtelo,d).

FPf(t) =

v

v

2

: t t
vyt — L/ Pf(r)(t—T)dr — —1—/ Pf(r)G(a™;t — T)dr
m’ Jo K Jo
, J 1/t
ot = — [ (t=ryrdr — = / Md
o8 - 0( T)rdr T TMdr
, 1 ¢? ’M
vyt — m—— =
m' 2 2K
0 vt € [0,6]

Thus, we have shown that PB|0,68] C B0, §].

b) V.flvf'ze B[Ovb]a

Pfi(t) — Pfa(t)
Let a(t)

y(1)

S”/I(.( flvf? € B[0,6]7

Pfi(t) — Pfy(1)
I[P f1(t) — P fa(1)]

<

[vot — % /Ot F(T)L(t = 7)dr]P/? [t - % ./(;t folT)L(t — T)dr]?
¢
[wpt — %/0 A(T)L(t - 7')(l7']1/“2
[0t — —17 /t fo(T)G(t - T)dT]1/2
m Jo

= a(t) > 0,y(t) > 0 Vtel0,§]

23 () — 3 (1) Vit € [0, 4]
le*(1) = g ()| (1) + y(0)]

7



22 (t) - yit) = oht-— % /Ot f(T)L(t — 7)dr — (vjt — % /Ot fo(m)L(t — 7)dr)
- mi /0 a(r) = Fu(r)E(t = 7V

— [(ar) = AL = ryar]

m Jo

1t 1t
= [180) - £l - nir + 1 [[15:0) - AOIGES - Dl

(t*/m' + Mt/K)||f2 - filloo
(6%/m’ + M8/ K)||f2 — filloo

|22(t) — y2(1)|

IN I

IAN A

(1) + (1) o (D] + |y(1)] < 24/wt + MNL/K < 20/(v}+ MN/K)
IPAM =PRI < [22(0) = 20lla(t) + y(2)]
287 /m’ + M6/K)\[(vh+ MNJE)SI|f2() = ()]
pllfe—fille  VLE[D,4]

AN

INIA

where p = 2(52/m'+JV[5/K)\/(v6 + M N/K)é, and by the property(iii) of b, p < 1.
Therefore,

|Pfi—Phllw = sup |Pfi(t) — Pfa(t)|
tef0,6]
< pllf2 = Alleo

so that P is a contraction mapping on B[0, 6].

Finally, using the theorem 4.1, it follows that the mapping P has a unique fized
point in B[0,8]. It is clear that f is a solution of the equation(4.3) over [0, 8] iff
Pf=Ff, ie fisa fived point of P over B[0,8]. This completes our proof.

The above theoremn shows that a unique solution exists over ¢t € [0, ¢] for some
small 6. Our iuterest is to find the impact force variation during the entire contact
period. The following theorem will establish this global result.

Theorem 4.3 Suppose that the equation (4.3) has a local unique solution over [0, 8]
for some sufficiently small 8. If f(6) > 0, then Je > 0, such that the equation(].3)
has a unique solution on [0,6 + €.

Proof : The argument is similar to the proof of the local version. We will only
carry out dctails of a crucial step here.



Let g : [0,8] — R be the unique solution of (4.3) established in the proof of the
theorem 4.2. Let N be a positive number larger than ||g||co. Let € > 0 be a small
positive constant. Let

D[0,6+¢] = {feC[0,6+¢;f |
¢
vt — —1—,/ f(HL(t—7)dr >0 Vte[0,6+¢€]}. (4.7)
m Jo
Clearly D is a closed subset of (C[0,6 4+ €],]| - ||oo)-
Let F: D[0,6+ €] — C[0,6 + €] be
¢
Ff(t) = it — i,/ f(r)L(t — 7)dr,
m Jo
and, let P = F3/2,

We will show that for small enough ¢, P(D) C D, and, P is a contraction
mapping, thus establishing the theorem. Note that it follows easily as in the proof of
theorem 4.2 that

[Pf(t)) < N  Vtel0,6+¢€.
The crucial step is to show that FPf(t) >0 Vte[0,6+¢, Vf€eD. Now,

FPf(t) = f(t) Vt< 6 since f g satisfies (4.3). For0 <t <e,

FPf(t+34)

g8 1 L
o — 7—m—/o PHTt+6 - T)dr = — /0 PGt + 6 — 1)dr
) t
+ugt - i// Pf(r+&)L(t = 7)dr
m’ Jo

y & ; -8
= b — ;l?/o Pf(T)(6 — 1)dr — %/0 Pf(r)G(«™;6 — 1)dT

{

m’

¢
gyt — i, / Pf(r+ 6)L(t - 7)dr
m' Jo

¥ 1 § |
| soyir = = [t 6 - 1) - Glatso - n)yar

5 5 — -
= [f2/3(6) — —‘ni’ /0 f(r)dr — G(z*;t) + G(a™;0)
1 t
ot = — /0 Pf(r+ 6)L(t — 7)dr]

where, G(x*;t) = 71— j(f f(r)G(a*;t + 6§ — T)dT. By the continuity of the Green’s
Sfunction, for small enough e,

|G(a*,t) — (:'(17*70)[ < %fZ/B(b'); Yt € [0, ¢]

9



For such e,
FPf(t+é6) > 0 vt € [0, €.

Hence, we have shown that PDI[0,6 + €] C D[0,é + €.
1t is easy to show that P is a contraction mapping. Fristence of a unique solution
on [0,6 + €] follows at once now.

Remark 4.1 The global version has the following physical interpretation. The con-
dition f(t) > 0 means that the contact is in progress at t > 0; finally, f(T) = 0
means that the objects are just about to cease to be in contact, i. e. T is the impact
duration.

5 Numerical Methods

Some approximation methods to solve the equation (4.3) have been proposed in the
literature. One of themn is the energy method[5]. It is simple and fast, although
less accurate than the small-increment method. Hence, the results obtained by
the energy method can be used as a good initial condition for the more accurate
methods. The gerenal solution by the energy method has a sinusoidal form:

fo(t) = Kosin(nt/Ty) Vit € [0, To),

where, T is the impact duration calculated from the energy method, and Ky is a
constant. Inspired by the contraction mapping theorem, we develop a numerical
method using the successive Picard approximations; fo, P fo, PP fo,----- , where the
initial condition fy is obtained from the energy method, and P is the contraction
operator defined by,

; 3/2
Pit = [t — = [ fE - nr Vi € [0,Ty).

m/

Closed forin solution of the first iteration is,

1 t 3/2
A = [t - W/o fo(PL(E — Tydr] Vi € [0, ).

Numerical results are given below for two examples.

In example 1, impact occurs at the center of a simply supported heam. Fig. 1
shows the solution obtained from the energy method, and gives the force magtitude
and duration very close to that obtained by using small-increment method, although
the force shape differed in some ways. In order to apply the Picard approximation
method to this case, we need first to show that the Green’s function associated with

10
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Figure 2: Central impact on a simply supported beam
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this case is uniformly bounded. Details are given in Appendix A. The result obtained
by 3-step picard approximation is very good, and the computational complexity is
just 1/3 of the small-increment method.

In example 2, impact is at the tip of a cantilevered beam. We see that fairly large
errors occured by using the energy method. On the other hand, the new numerical
method gives excellent results even after just one iteration, which has a closed form
solution. Fig.3 also shows the fast convergence of this algothrim. Again, the Green’s
function for this case is uniformly bounded as proven in Appendix B.

6 Conclusion

We have established the existence and uniquness of solutions of the Hertz equation.
A new numerical method is devised based upon the contraction mapping theorem,
and various examples have illustrated the usefulness of this method. For simplicility,
this paper has dealt solely with the case of a beam. No difficulities are encountered
in generalizing the method for multi-dimensional cases such as plates.

Appendix A

For the free vibration, the deflection of a beam is goverened by the PDE,

0w 4 w
P or duxd

and boundary conditions for the simply supported case are

= 0 0 < e < I, (A1)

w(0,t) = w'(0,t) = 0, (A.2)
w(l,t) = w"({,t) = 0.

The corresponding eigenvalue problem can be written as

w _ Wy

W”” = ﬂIV(llf ) 5 W =

0 < x < I, (A.3)

where 3 is an eigenvalue and the W(z) € L?[0,1]is the corresponding eigenfunction.
The boundary conditions are

1"

w() = W'(0) = o, (A.4)
wig = w (l) = 0.

The general solution can be expressed as

W(x) = cysinfa + cocosfa + cagsinhfBa + cycoshfzx, (A.5)

12



where the ¢; to ¢4 are constants to be determined by boundary conditions (A.4).
After simplifications, the beam characteristic equation will be

sinfl = 0 (A.6)
The solution of equation(A.6) is Gkl = km,k=1,2,------ 00
The normal eigenfunctions are
Wi(z) = V2sinfiz k=1,2,------ 00 (A7)

Lemma A .1 Vz,( € [0,!] and Vt > 0, the Green’s function is uniformly bounded.
Proof: It is easily checked that (A.3), (A.4) is self -adjoint. Hence, its Green’s

function can be expressed as

szn'wkf

G(z,(51) = ZWk YWi(() H(t). (A.8)
k=1
Since,
Wi(x) = V2sinfa Vo € [0,1]
(We()Wi(O)] = 2|sinfrasinfi(] < 2
Gl il = 13 WO )
k=1
t
< Y MW L pr
k=1
= |smwk1|
< D2
k=1
=1
< 2l (b= tolen
converges, IM > 0, such that G(z,(;t) < M Ve, € [0,1].

Appendix B

The PDE is same as in equation (A.1), and the boundary conditions for the can-
tilevered beain are

w(0,t) = w(0,t) = 0, (B.1)

'w(l,t)” = w (I,t) =

13



The approach to solve the eigenvalue problem is the same. Again, we write the
general solution and plug in the boundary conditions (B.1) into this equation. After
simplification, we get the beam characteristic equation,

cosflcoshfl = —1. (B.2)

The orthnormal eigenfunctions are determined by the following equations,

Wi(z) = Aikvi/(z) (B.3)

h Wi(z) = coshfBrx — cosfyx  sinhfrz — sinfe
where wz) = coshfil + cosfil stnhfil + sinfil

’ 1 cos®fBl
and A} = /0 WE(z)dx = S Bl

Lemma B .1 The orthnormal eigenfuntions {Wy(x)}32, are uniformly bounded.
Proof: There are infinitely many solutions to the characteristic equation (B.2),
0O< Bl Pl <enenn < 00, where 1l = 4.73.

Note that coshBil > 0, coshfBrx > 0, sinhfil > 0, sinhfix > 0. Vo € [0,1], VE.

coshfrx — cosfrr  sinhfi.x — sinfyx

Wilx) coshpBil + cospil sinhfl + sinfil
B Ci(z) — Dy()
(coshBil + cosfrl)(sinhfil + sinfil)
where Ci(z) = (coshfrx — cosPrx)(sinhfpl + sinfyil);
Dy(x) = (sinhfrx — sinfya)(coshfil + cospil).

Now, we carry out the simplifications:

Ci(a) = Di(x) = coshBrrsinhpl — sinhfracoshfil — cosBraesinhfBrl + coshppesinfyl
+ sinfracoshfBil — sinhBrxcosfil + sinfracosfil — cosfBresinfyl
= sinhfp(l — x) + sinfi(x — 1) — cosprasinhfyl
+ coshfpzsinfil + sinfrreoshfil — sinhprrecosfyl

|Ce(2) = Di(a)] < sinhfi(l — x) + |sinfi(x — )] + |cosfBrx|sinhfyl
+ coshpra|sinBil| + |sinBrz|coshfil + sinhfyx|cosfil|
< stnhfr(l—2) 4+ 1+ sinhfBil + coshBrx + coshBil + sinhfx
< 17260 Ly 4 PRl PR =y (2) > 0

Since Bl > 4 Vk, it follows that sinhfBil > 2, and coshfl > 2,Vk. Henee,

|Cr(x) — Di()]

WL < ,
Wil < [coshinl + cosgrt]|sinfibrl + stnfin|

14



hi(z)

<
T (coshfil — 1)(sinhfil — 1)
2hy(z) .
<
S CoshBrl(sinhfil — 1) sinee
4hy(z) . .
< hfBil > 2;
S coshBulsinhBil since  sinhfil > 2;
. , 1
stnce cosPBrlcoshBil = -1 = cos’fBil = ———— and
cosh?fl
2
g cos*Byl g
A = S i sin”Brlcoshfl
1 -
W)l = W)
k
. 4hy(a)
sin” Prlcoshf klcoshﬂklé:inhﬂ;\,l
< 4'hk(;r,)
—  sinhfl
B 8(€ﬁk(1—-'5)/2 + PRl 4 ePr 4 1)
- eﬁkl —_ e"ﬁkl
B 8(e—ﬁk$/2 4 ePrle=) 4 e=Pil 4 1)
B 1 — e~ 2Pl
8(e P17 2 4 M1 (3=h 4 =Pl 4 )
< .
- 1 — e—261!

Hence, AM, > 0 such that

|[Wi(a)| < My

Ve e [0,ik=1,2,------ ,

coshfil > 2;

coshfil > 0;

=

For the cantilevered beam, the differential operator is also self-adjoint. Thus, the
proof that the Green’s function is uniformly bounded is similar to lemma A.1.
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