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ABSTRACT

An H® based control system design procedure is developed. The basic idea is to
produce a controller in which the closed-loop system is designed, via H* methods similar
to those of Kwakernaak, to be robust with respect to both disturbance rejection and
insensitivity to parameter variations. This design algorithm is then applied to design a
pitch axis controller for a digitized model of the F' — 14 aircraft. In this two-degree-of-
freedom structure, the controller is designed via our H* method. The pre-compensator is
used to shape the output response so as to cause the entire system to achieve the desired
performance. The robustness of the angle-of-attack step response under large parameter

variations is also examined.
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1. Introduction

In this paper, a particular H* design approach is coupled with multi-criterion op-
timization to design a pitch axis controller for the F — 14. The design problem is an

augmented version one of two CSS benchmark problems [15].

First, we design a discrete time controller even though the benchmark is in continuous
time. We believe the digitized controller is more realistic given current technology as well
as being a more interesting challenge because of the effects of sampling. Second, the
benchmark, while specifying gain and phase margins, does not specify the expected ranges
for the parameters of the plant. We have obtained estimates of the reasonable ranges of

parameter variations and check our design against these values.

It must be said that, given the rapid advances in H* techniques, there are now several
other ways to go about solving our design problem. There are certainly better methods
for computing H > optimal controls. Some of them may well lead to better designs. There
is still a significant advantage, at least in designing airplane controllers, to our approach.
There is an explicit separation between the robustness and performance aspects of the
design, since the designer is expected to adjust the design, in nearly real time, to the
criticisms of a test pilot “flying” a simulator, it is important to not conflate the different

aspects of the design.

It will be apparent, on reading the paper, that we have not yet arrived at a satisfactory
design. However, we believe these intermediate results are of value in demonstrating the
difficulty of the problem and the thought processes involved in trying to use H* methods

to solve a realistic design problem.

2. The F — 14 Program
2.1 Statement of the original problem

A block diagram for the pitch axis control of the F' — 14 is given in Figure 1. The
model is based on a linearization of the system about an operating point of Mach=0.71,
altitude=35,000 ft and total air speed 690.4 ft/sec. All the parameter values are taken
from [1].



In the original design, shown in Fig. 1, the controller structure was fixed in advance
and the six parameters denoted by 7, Ty, ka, kg, kF, k1 were optimized by a method similar
to that proposed by Levine and Athans [13]. The choice of controller structures was based
on many years of experience in designing aircraft control systems. Most similar aircraft

have similarly structured pitch axis controls.

The controller was designed to meet several specifications. The closed loop response
to a commanded 1° change in pitch should approximate the response of a second order
system (i.e., the implicit model) with specified bandwidth and damping. More specifically,
the angle-of-attack (a) response to such a step input is to match that of a given critically
damped, second order system with damping 0.707 and bandwidth 2.49 rad/sec. The
control system is also to minimize the response to wind gusts and to a-sensor (pitch
sensor) noise. Models for both noise sources are shown in Fig. 1. Finally, the minimum

allowable gain and phase margins are specified.

In order to understand some of the design choices described subsequently, it is im-
portant to know that candidate controllers are normally tested in a flight simulator. The
designer i1s expected to be able to modify the design, in nearly real time, in response to

comments from the pilot.
2.2 Reformulation of the F' — 14 Problem

The original controller is removed and will be replaced by a discrete time controller,
as shown in Fig. 2. The controller design is divided into two separate parts. The feedback
controller, F(z), will be designed by an H* technique so as to maximize the robustness
of the closed loop system. Robustness, in this context, corresponds to achieving all of the
control specifications other than matching the desired second order response. The pre-
compensator, C(z), will be chosen so that the whole system matches the desired second
order response in one case. In a second case, the pre-compensator will be chosen to give a

very good servo response.

In order to determine whether the resulting controller designs are robust enough for

use in a real airplane, estimates of the likely variation in this parameters of the model

were obtained. These are: Z5 £ 50%, M,, £ 25%, M, + 50%, M; + 25%, 7o £ 10% and
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Zy + 20%. It is reasonable to require that the controlled system behave very well for all

possible combinations of parameters in this range.
3. The Solution Method

The block diagram of the linear time invariant multivariable sampled-data system
which we consider is given in Figure 2, G(s) € R(s)"*™ is the n X m strictly proper
continuous plant to be controlled, F(z) € R(z)™*" is the m x n digital feedback controller
to be designed, ZOH is a zero order hold device, and C(z) is a pre-compensator that is also
to be designed. We assume that the system is well-posed and has no hidden oscillations.
For realistic control design, minimizing only the sensitivity or only the complementary
sensitivity suffers serious drawbacks. However, it is impossible to make both small at

every frequency and a tradeoff is inevitable in the design process.

For the system given in Figure 2 and following Kwakernaak [2,3], we take a linear

combination of quadratic terms of weighted S(z) and T'(2), i.e.,

(W18)*(W,S) = S*W; W, S = S*W, S,
(W2 T)* (W, T) = T*W; W, T = T*W,T

where S(z), T(z) are the system sensitivity matrix and the complementary sensitivity ma-
trix respectively, and are defined as : S(z) = [I, + P(2)F(z)]™}, T(z) = I, — S(2).
The matrices Wi (z), Wa(z), defined by Wi(z) = W (2)Wi(z); Wa(z) = Wi (2)Wa(2),
are frequency dependent weighting matrices. We want to design a digital controller

F(z) € R(z)™*" to stabilize the given plant G(s) and, at the same time, to minimize

(P) 1}1(151 N(S*W1S + T*WoT) (" )||oo

The following two assumptions are made throughout this paper.

(1) G(s) is of least order r with poles {p;,i = 1,2,....,r} such that if Re(p;) = Re(p;)
then Im(p; — p;) # 2kn /T, (k =1,2,....).

(2) Wi(2),Wa(z) € R(z)"*" are causal, nonsingular, stable and have no poles on the unit

circle.



The choice of weights is problem specific. In general, these user-defined weights are
chosen to be stable, diagonal with the diagonal elements to be minimum phase, real and
rational. With diagonal weights, each one of the input and the output signals can be
weighted individually. Thus, the designer can easily trade-off the relative importance of

the signals over the same or different frequency bands.

From the given wind gust model, we can estimate the possible frequency range of the
wind gust disturbances (wgy,qg) of the system. Since the effect of wind gusts and plant
parameter variations are related to the system sensitivity matrix S, we choose the weight

on S to be
Wi(s) = 2.0(s + 2.0) 71 L.

Similarly, we estimate the main frequency range of the a-sensor noise. The effect of sensor
noise is related to the system complementary sensitivity matrix T. Therefore, we choose

the weight on T to be
Wa(s) = (s + 2.0)(s + 10.0)"' L,.

By Tustin’s transformation, the digitized forms for these two weights are
Wi(z) = 0.1(z + 1.0)(2.1z — 1.9) "' I; and W,(z) = (1.05z — 0.05)(1.25z — 0.75)* L.

Let Q(P) denote the set of all real rational controllers F’ that stabilize P (where P is
a cascade connection of the plant G(s) and the ZOH), then it is well-known that [4,5]

Q(P) = {(Y — RN,) (X + RD,) | R € M(RH®), det(Y — RN,) # 0}
= {(X + D,Q)Y - N;@)™" | Q € M(RH™), det(¥ — N,Q) # 0}

where (N, D,), (Dy, N,) are any right and left coprime fractional factorization of P with

the corresponding quadruple (X Y, X ,f’)

We use this kind of stabilizing controller as our controller structure so that system
stability is guaranteed. To exploit H, it is more convenient to use a (-transform where

¢ = z71. Therefore, all the matrices involved hereafter are transformed into real rational
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matrices in the variable . Using the parametrization, the performance criterion can be

expressed as

S$*W1 S 4+ T*W,T
= [MN,RD, + MN, X — M™*W1)*[MN,RD, + MN, X — M~*W,]+
Wi (Wy + W)W,

where M is a spectral factor of W) + W,. Note that the right hand side of this equation
is a quadratic equation except that the “coeflicients” are rational functions of (.

In [6], Helton mentioned the problem of mingep sup,, O(w, f(jw)) (where © is a given
positive valued function, D is a feasible set) and he claimed that many problems tak-
ing this form have the property that an optimum f,,, will make the objective function
O(w, fopt(jw)) constant in w almost everywhere; that is, frequency independent. This is
the so called “self flattening” property. Since our goal is design rather than optimality,
we will confine the feasible set of F(z) to be a subset of Q(P), expressed as Q'(P), which
makes the objective function be self flattening. That is, we look for an equalizing solution.

Therefore, our optimization problem is

minFeg:(p) ||S"W1$' + T*WZT”oo = azp,

The procedure of finding a non-equalizing solution is quite similar to that of the equalizing
solution with some modifications 7).

In [8], Helton presented a method to solve broad-band circuit design problems, par-
ticularly gain equalization problems. We will use Helton’s idea to solve for a?,pt. We first
state Helton’s result.

Let C(e#%), P(e7%), R(e’®) € (RL*®)"*" and P?, R? be strictly positive definite. Define
a disk Ag’R in the matrix function space (RL)"*" to be the set of all H(e’®) € (RL™)"*"
which satisfy (H — C)P?(H — C)* < R?,i.e,,

AL = {H € (RL®)""|(H(e) - C(e) P () (H(e?) - C(e))" < R()
Ve € [0,27]}.



Then the question is : For such a given AC , does this set contain a function in (RH%)»*"?

The question is answered by the following theorem.
Theorem 1

For a given AP’R defined as above, there is a function H € (RH®)™*" in this set if

and only if the maximum eigenvalue \2,,, of
(Hc[Tp-z]'_lHa)m = A2TRzm

is less than or equal to one. (Here Hg and T are the Hankel and Toeplitz matrices
generated by G with G € (RL>®)"*"),

Suppose that F' is the optimal stabilizing controller with corresponding (S ,T). The

corresponding cost function has the form

S*w, 8+ T*W, T =a?, I, with o?

opttn > a

opt —

2

where a? is an easily computed lower bound on a2, (see [9] for an algorithm for computing

a?). Consider the following problem
S*Wy§ + T*W,T = (o® + €)I, where &>0. (1)
Equation (1) can be written as
(MN,RD, + MN,X — M™*W;)*(MN,RD, + MN,X — M~*W,)
= (a? + &), — Wi (W) + W,) "W

Define
C =M~*W; € (RL>®)"*™,
Q. =(a? + €)1, — Wi(Wy + Wo) "W, € (RL™®)"*",
H =MN,RD, + MN,X € (RH®)"*", (2)

Then Equation (1) becomes

(H(e®) - C(°))" (H(e) — C(17)) = Qe(e”’), 6 €10,2n). 3)
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Note that here C is determined by weighting matrices Wy, W; only. Therefore, it is known
in advance. The para-Hermitian matrix Q.(¢) is a function of ¢ and Qc(e’®) > 0 for

e> 0,6 € [0,27].

Letting Equation (3) define a “disk” A, = AQQ‘ (see above) then finding o2, is
equivalent to solving the following problem (P1) :

Find the smallest £ such that ¢ > 0,A. N (RH®)"*" £ 0

Therefore, solving the controller design problem is equivalent to performing the following

three steps :

(1) Solve (P1).

(2) If ¢, solves (P1) (i.e., a2,; = a2 +€,) then find the H € (RH>)"*" which satisfies
(H-C)'(H-C)= Q.-

(3) Based on this H, find the corresponding R.

To solve (P1), we consider the following
Theorem 2

Consider problem (P1) and its corresponding generalized eigenvalue problem
(H&Hc)x = Mg,z (P2)

where C, Q. are defined in (2). Then, A, N (RH®)"*" # @ if and only if A\n..(€) < 1,
where Amaz(€) is the largest eigenvalue of (P2).

Amoz(€) is a smooth function of ¢, making it fairly easy to computec,

We already know that the optimal stabilizing controller F(z), parametrized in terms

of the controller parameter matrix R, satisfies
[MN,RD, + MN,X ~ M~*W|*[MN,RD, + MN, X — M™*Wi] = Qopr  (4)

with
Qopt(¢) = agptIn — Wy(Wy + W) 7' W2 € (RL=)™"
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From now on, we omit the independent variable (. The rational matrix W1 (W), + W)~ 1w,
is para-Hermitian. By factorization of Q,,¢ into £*¥ and by separating the stable and

unstable parts, Equation (4) can be written as (see [9] for details)
N,R = [MT'ED; "4 + (Wi + Wo)'Wi D[ ')y — [N, X D;)4,

[N, XD = (W1 + W) "'W, D; Y- + [M~'ED; ). (5)

Define V = [.M"1>31~);1]+ + (W) + Wg)“W;f);l].,, - [Npr)p‘l]+. Then, solving this
parameter matrix R(¢) reduces to solving a rational matrix equation problem, i.e.,

Given N,y({) € (RH™)"*™, V({) € (RH*)"*" and both are strictly causal.

Solve Ny(¢) - R(¢) = V() so that R(¢) € (RH=)m*™,

This rational matrix equation can be regarded as a stable exact model matching problem

(SEMMP) which can be solved by existing methods such as [10,11].
Based on the results so far, the steps required to find the controller F‘(z) to minimize
the given H*-cost can be summarized as follows.
Controller Design:
Given W(z), Wa(z) = Procedure (I) =3 o2,
Given nominal plant P,(z) => Procedure (II) = R(z) == F(z)
Procedures (I) and (II) are given below.
Procedure (I)
Data : W;, W, given, set €, = 0.
(1) Calculate Wy = WiW,, We = Wi W, and (Wi + Wy) "' Wa.
(2) Find o2 ([9]).
(3) Perform spectral factorization of W) + W, so that Wy + W, = M*M.
(4) Perform (-transform for all matrices involved.
(5) Set C = (M*)"1W,.
(6) Set k =0.
(7) Let Q(ex) = (a2 + ex)In — Wi(W) + W) "' W,
(8) Perform spectral factorization of Q(ex) so that Q(ex) = LiLx.
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(9) Form [CL; )+
(10) Find the maximum Hankel singular value 7% of [CL7 4
(11) I 3% <1, set afpy = o? + €, go to Procedure (II).
(12) Calculate ex41 = €k + (3% — 1)/7k.
(13) Set k = k + 1, go to (7).

Procedure (II)

Data: w,, P,(2) given.

(1) Perform inverse (-transform for all matrices involved.

(2) Do right, left coprime factorization of Po(2).

(3) Find X,Y from known Dp’Np, D,, N,.

(4) Let Q = a2, Jn — Wi(W1 + W2) ™' Wy

(5) Calculate [Z]- = —[C]-.

(6) Find [Z]4 from steps (4) and (5).

(7) Set T = [Z]4 + [Z]-.

(8) Form the matrix V = [M—ZD; 4 + (W1 + W) 'W1 D4 — [Ny X D, %4
(9) Solve NyR ="V so that R € R(z)™*™ stable, causal.
(10) Form F = (Y — RN,)"Y(X + RD,).

Stop.
The problem (P2) can be changed to

(HCL-x)‘(HCL-l)I = 5«:1:

where L(¢) is a spectral factor of Q. The stable part of CL~! determines the Hankel
matrix Heop-1. The matrix [CL™Y}4 is real rational, from Kronecker’s Theorem, the

induced Hankel matrix Hop-1 is of finite rank and its dimension equals the McMillan
degree of [CL™?]4. That is,

rank (Hcp-1) = McMillan degree ([cL4).

Therefore, finding the maximum eigenvalue of (P2) is equivalent to finding the maximum

singular value of Hcp-1, i.e.,
Amaz(€) = Amaz(€) = 8*(HeL-1)-
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From [12], this infinite dimensional Hankel matrix can be changed to a finite dimensional
matrix with its dimension the McMillan degree of [CL™!],.. Therefore, by performing the
Singular Value Decomposition (SVD) of this finite matrix, we can then get the “exact”
Mmaz(€), thus, Amaz(e)-

4. Design Results

4.1 Results of Procedure (I,II)

The maximum value of a? for which the constant term of the numerator polynomial
of the determinant of the matrix [a?l, — W1 (W) + W3)"1W,]({) (denoted as det [a*I; —
Wy (Wy + Wo)1W,](¢)) is zero equals zero. For a? > 0.09, there are four roots with two
inside the unit circle, two outside the unit circle and at a? = 0.09, there are four roots lying
on the unit circle. Therefore, the maximum value of a? for which det [a?], — Wy (W, +
W,)=1W,)|,2eie = 0 is 0.09. Thus, a2 = 0.09.

Following the Design Procedure (I), we find that €,;: = 0.01561. Therefore, a2, =
0.09 4+ 0.01561 = 0.10561, i.e.,

minpegf(p) ”S‘W]S + T‘WgT”oo = 0.10561

In an earlier design [14] where W;, W, are both low-pass with W5(s) = 10.0(s +10.0)"* I,
w, = 62.8 rad/sec and the truncation of Hankel and Toeplitz matrices (a less accurate

computation) was used in Procedure (I), the optimal cost we found is 0.5 [9].

The calculation of procedure (II) is straightforward. In this F — 14 design example, we
cannot directly solve step (9) due to the unstability of (Ng' N,,)"IN,T , therefore, we used

the algorithm given in [11] to find the controller parameter matrix R(z). The stabilizing

controller we found is a one by two real-rational, causal transfer matrix with order 14.
4.2 Analysis of Results

The prefilter C(2) is a (2x 1) transfer matrix and is used to shape the output response.

For simplicity, we assume that it has the following form

_ ki (z4aa)(z+B)!
Cz) = ky (24 az)(z + B2)7!
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with |81] < 1, |B2]| < 1. The prefilter structure used by Grumman is a first order s-domain
transfer function. In this digitized design problem, we take the simplest possible structure
for the corresponding z-domain transfer function. Based on this structure, we try to find
the six design parameters so that C(z) is stable and causes the overall system to achieve
the desired performance. The parameters we found are: k; = 0.16, a; = 0.10, 8, =

~0.85, k; = —0.38, a; = —0.73 and $; = —0.95.

The angle-of-attack step response a(t) is shown in Figure 3 together with the response
with £ = 0.707, w, = 2.49 rad/sec. From this figure, we see that the performance of a(t)
of our designed system is much better than that of the original desired a(t). It has a faster

response, no overshoot and reaches its steady state after t = 1.15 sec.

It should be apparent that we are just showing off. We could meet the design specifi-
cation quite easily by appropriate choice of C(2). The real problem is robustness and this

is primarily governed by the closed loop portion of the system.

The robustness of the designed system is examined by changing the nominal parameter
values by a prespecified amount. Figures 4, and 5 show the change in the a response from
varying the parameters Zs, and M,, by £50%,and £25% respectively. From these figures,
we see that the designed system is very robust against these parameter variations. The

change in the « response due to variations in M, of £50% and Z,, by +20% are similar.

Figure 6 shows the change in the o response from changing the actuator time constant
7o from +10% ~ —6%. Again, it is very insensitive. However, we found that reducing |r,|
by more than 6% will cause oscillations. To further reduce |r,| will even cause instability

as shown in Figure 7 while increasing |7,| has no such phenomenon.

The a response under the variations as My ranging from —25% to +15% is still quite
robust. But increasing |M;| beyond +15% will deteriorate the o response and increasing

further will cause instability, see Figure 8.

J.S. Yang’s thesis [9] and [14] contain an earlier attempt at a controller design using
a lower sampling frequency and with W, a low pass filter (see Section 4.1). This design
was generally much more sensitive to parameter variations than the design shown here.

However, the earlier design did not go unstable until 7, and M; has been perturbed by
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more than -10% and 4+ 25% respectively. Furthermore, the original design from Grumman
is very robust and does not become unstable for the given range of parameter variations.

Of course, it is a continuous time controller.

5. Conclusions

We believe there is good news and bad news in the results we have presented. The
controller we have designed performs extremely well for the nominal parameters and the
degradation in performance for substantial variations in the parameters is virtually too

small to measure. This is certainly good news.

The bad news is that the controller is very high order and that the system is unstable
for parameter values in the expected range of variation. The high order controller is a
minor problem. A method is given in J.S. Yang’s thesis [9] and in [14] for approximating
the high order controller by a lower order controller. This technique, when applied to
the earlier design, reduced a 12'* order controller to 6!* order with very little change in

performance or robustness. We expect similar results for the present controller.

The instability raises important questions. How can we produce a design that does
not exhibit this instability? One obvious possibility is to increase the nominal value of 7,
and decrease the nominal M;. Other possibilities involve changing the weights. We are

trying both.
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Rngle-of -Attack Step Response

nominal case
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