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ABSTRACT

The two-dimensional discrete cosine transform (2-D DCT) has been widely recognized as
the most effective technique in image data compression. In this paper, we propose a new
algorithm to compute the 2-D DCT from a frame-recursive point of view. Based on this
approach, two real-time parallel lattice structures for successive frame and block 2-D DCT
are developed. The systems is fully-pipelined with throughput rate NV clock cycles for N x N
successive input data frame. This is the fastest pipelined structure for the 2-D DCT known
so far. Moreover, the 2-D DCT architecture is module, regular, and locally-connected and
requires only two 1-D DCT blocks which can be extended directly from the 1-D DCT
structure without transposition. Therefore, it is very suitable for VLSI implementation
for the high speed HDTV systems. We also propose a parallel 2-D DCT architecture and
a new scanning pattern for the HDTV system to achieve higher performance. The VLSI
implementation of the 2-D DCT using distributed arithmetics to increase computational
efficiency and reduce round off error is also discussed.

This work is partially supported by the NSF grant ECD-8803012.






1 Introduction

In recent years, much research has been involved in image data compression which plays a
significant role in image signal processing and transmission, especially for next generation
TV, the “HDTV”. Image data compression can be classified into three catalogues, the
predictive coding, transform coding, and hybrid coding [8]. In high speed image processing,
transform coding is extensively used to reduce the bit rate because of its high compressional
capability. The Karhunen-Loeve transform (KLT), which minimizes the mean square error
of the system, is the optimal transform among various transform codings but is rarely
employed due to its computational complexity. The suboptimal transform, the discrete
cosine transform (DCT) , which possesses superior energy compaction properties and near
optimal performance but much simpler computations, is the most popular transform coding
in image processing.

It is well known that block coding based on the two dimensional (2-D) DCT produces
a highly compact 2-D transformed coefficients on the spatial domain [3]. By applying
appropriate bit allocations and entropy coding schemes, i.e., variable length coding and run
length coding [34, 28], the bit rate of the HDTV systems can be greatly reduced [23, 28].
In practical applications, only small transform block size (typically 8 by 8 or 16 by 16)
is utilized due to the hardware limitations. Many 2-D DCT algorithms are proposed to
decrease the computational complexity and increase operational speed. They can be briefly
divided into two groups, the row-column decomposition method and the direct 2-D method.
The row-column method decomposes the 2-D DCT into two one-dimensional (1-D) DCT.
That is, the 2-D DCT can be obtained by applying the 1-D DCT on the rows (or columns) of
the input data frame, putting the transformed results in an intermediate matrix, transposing
the matrix, and doing the 1-D DCT again on the columns (or rows) of the transposed matrix.

Since there are lots of 1-D DCT algorithms, so are the row-column decomposition methods.



The performance of different row-column decomposition methods depends on that of the
1-D DCT algorithms. A classification of the 1-D DCT algorithms and their comparisons are
given in [6]. Up to now, most of the 2-D DCT systolic array methods, such as proposed by
Lee-Yasuda, and Ma, et al [5, 7], generate the 2-D DCT systolic array from the 1-D DCT
systolic array using the row-column method. The direct 2-D method, in contrast to the
row-column decomposition method, is a complete 2-D approach. Duhamel and Guillemot
in [15] list two recent developed direct 2-D methods, the indirect and direct polynomial
transform (PT) for the 2-D DCT. It is shown in [14] that these kinds of direct 2-D methods
are more efficient than the row-column methods. The indirect PT for 2-D DCT in [14] maps
the N by N DCT into a real N by N DFT followed by a number of rotations, and the real
N by N DFT can be realized using PT. The direct PT for the 2-D DCT is shown to be more
effective than the indirect approach [9], but the procedure for the general implementation is
complicated. Up to now, most of the 2-D DCT chips are implemented by using row-column
decomposition method, so are the DCT-based HDTV systems. It is due to its simplicity in
hardware realizations. For HDTV systems, parallel DCT coding schemes are employed to
satisfy the very high speed sampling rate requirements [36, 23].

The above mentioned approaches do have the same fundamental assumption : all the
data in the processing 2-D block are available. This may not be true for the real-time data
transmission systems such as HDTV systems. To eliminate the waiting time for the data
to arrive, time-recursive processing concept can be exploited, i.e., the result is adaptively
updated when a new data arrives. Once all the data arrive, the result is completely available.
The most important question here is that are we able to design a real-time VLSI system that
is compatible to the data transmission speed? One of the major contribution of this paper
is to answer such question for the 2-D DCT. In [6], Liu and Chiu proposed new unified
parallel lattice structures for time-recursive 1-D orthogonal sinusoidal transforms. This

algorithm decouples the transformed data components into IV independent lattice modules,



hence, there is no global communication in the structure. Besides, every lattice module
has the same architecture and is regular and modular. The number of multipliers of the
lattice structure for the best case in [6] is a function of 4N. Therefore, it is very suitable for
VLSI implementation. In this paper, we proposed a new architecture for the 2-D DCT by
employing the frame recursive concept on the successive input frame. Since this technique
derives the transform from the 2-D input signal, it is a direct 2-D method. Therefore, the
transposition in the row-column method is unnecessary. Moreover, the hardware complexity
of this system equals that of the row-column method for series rows (or columns) input,
that is , only two 1-D lattice DCT module arrays. For a N by N 2-D DCT, the total
number of multipliers requires is 8 N. The resulting architecture contains only independent
lattice modules and shift registers. All the architecture of the lattice modules are the same
and there are no global communications. Besides, there is no limitations on the transform
size N and the structure can be easily extended into different number of N, even the
prime number. Therefore, either from speed or hardware point of view, this is a rather
promising architectures. Since the system is modular, regular, and fully-pipelined, it is
very suitable for high speed video signal transmission. We will show that by employing
distributed arithmetic technique in hardware implementation, the system performance can
be further improved. For the HDTV applications, very high operating speed can be achieved
by appropriate scanning arrangement and parallel processing.

We organize the rest of the paper as follows. In Section 2, the algorithm to achieve the
2-D DCT from the time-recursive manner is proposed. It will be shown that we can dually
generate a 2-D discrete sine cosine transform (DSCT) simultaneously. The architectures
for calculating moving frames 2-D DCT and block 2-D DCT are discussed in Section 3. A
comparison between different 2-D DCT algorithms are given in Section 4. In Section 5,
the VLSI implementation of the block 2-D DCT by employing the distributed arithmetic is

discussed. In Section 6, the structure for applying our 2-D DCT block architecture to the



high speed HDTYV system is considered. Finally, the conclusion is given in Section 7.

2 Dual Generation of 2-D DCT and DSCT

In this section, we will describe a new algorithm for 2-D DCT that requires only two 1-D
DCT arrays and the system is fully pipelined. Focusing directly on the 2-D transformed
signal and applying the frame recursive approach, we can not only derive the frame recursive

relation of two successive frames of the 2-D DCT, but also the dual generation properties
between the 2-D DCT and 2-D discrete sine-cosine transform (DSCT). Here the DSCT
serves as the auxiliary transform which supports the time-recursive computations of the

2-D DCT.

2.1 Frame-Recursive 2-D Discrete Cosine Transform

The N x N 2-D DCT {X.(k,!): k,l = 0,1,...,N— 1.} of a N x N 2-D data sequence

{g(m,n):m=tt+1,.,t+ N-1;n=0,1,...,N — 1.} is defined as

4 N4t-1N-—-1
Xo(k,1,8) = 55CRCQ) 3 3 a(m,m) cos[

m=t n=0

T[2(m ;]é) + 1]k} cos [7r(2g];r}~ 1)1] )

where

k) = % if k=0,
1 otherwise.

Here the time index ¢ in X.(k,{,t) denotes that the transform starting from the #’th row of

the 2-D data sequence {z(m,n): m =t,t+1,..,t+ N-1;n=0,1,..., N — 1.} as shown in

Fig. 1. In the following, we call X.(k,{,t) the 2-D DCT of the t’th frame of the 2-D data

sequence z(m,n). To derive the time-recursive relations between the successive data frame,

let us start by considering the 2-D DCT of the 0’th frame data sequence,

N-1N-1 !
Xo(k,1,0) = —A%-C'(k)C’(l) Z_ Z z(m, n) cos [W(Qn;];_ Dk} cos [W(2Z;[ 1)1] . (2)



Instead of focusing on X.(k,/,0) and utilizing various techniques to reduce the computa-

tional complexity. We will consider the 2-D DCT sequence of the first frame, which is

N N-1
Xo(k,1,1) = C(k)C(z)Z > a(m, n)cos[ [2(”"‘;]\})“]’“] cos [”%‘ s 1)’]. (3)

By using trigonometric function expansions on cos [Mﬂb{ﬁlﬂk], (3) can be rewritten as

N N-1

Xo(k,1,1) = C’(k)C(l) S 3 alm,n)cos [W] cos (%’E) cos F—(—g—’%—l—ﬂ]
C(k)C( l)wg:l:rz; z(m,n)sin [M—;—M] sin <7;\];> cos [%ﬂ]
= X,.cos (%) + X, sin <%§> , (4)
where
X, C(L)C(z)nil?;w(m n) cos [EQ”;T“)E] cos [%l] , 5)
and
Xoe = N2C(k () g: %—: z(m,n)sin [ m(2m + 1)k] cos F—@%l)q : (6)
m=1 n=0

. . m(2m+1)k m(2n+1)!
We can view tlle term sin [ IN } COSs [ IN ]

in (6) as a transform kernel, and define
the N x N 2-D discrete sine-cosine transform (DSCT) sequence {X,.(k,l): k,l = 0,1, ..., N—

1.} of a 2-D data sequence {z(m,n):m=t,t+1,... N+t—1;n=0,1,..,N—1.} as

N4+t—-1N
Kol 1s1) = = C(RC(D) 33 a(m n)sm[ Bim -+ 15 ]cos [E@f—#ﬂ] (7)

m=t n=0
Here X,.(k,l,t) denotes the 2-D DSCT sequence of the ’th frame of the 2-D data sequence

z(m,n). The 2-D DSCT of the 0’th plane data sequence is

NNt 2m : 7(2n
Xse(k,1,0) = -———C(A)C’(l) Z Z z(m,n)sin [71'(2 2; Ulb] cos [ (22; 1)1] . (8)

Similarly, we are interested in the 2-D DSCT of the first frame. According to the definition,

it is

N N-1
Xalk 1) = ACICWD S 3 o(m,ysin [P D] o 104 1]

m=1 n=0



FECC(0) 3 3 om i [F ] o [0 ] o (36)
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1

N
)

C(L)C(l) i\f: ]\;\; z(m,n) cos [W] cos [WQZ;—Q-Z-] sin (%)
)

- wk = . [Tk
= X COS (W — X,.sin (W) . (9)

Both (4) and (9) suggest that the 2-D DCT X,(k,/,1) and 2-D DSCT X,.(k,l,1) can be

dually generated from the intermediate values X, and X, in a lattice form as shown in Fig.
2. A similar relation also exists in the dual generation of the 1-D DCT and 1-D DST [6].
The intermediate data X, and X, differ from the original signal Xc(k,1,0) and X,.(k,1,0)
only in the 0’th row and the N’th row of the input data frames. Therefore, the intermediate
data X, and X, can be obtained from X.(k,!,0) and X,.(k,!,0) by downdating the 0’th

row transformed data and updating the Nth row transformed data. That is,

X, = Xo(k,1,0)— —C(k)C(l)Zw(O n)cos [’“2—;’;9—[] COS(%)

A omen S Z 2(N, n) cos [”(2;\*; Dl ] cos [”(21‘2’ 3 1)’“] . (0
n=0
and
N-1
Koo = Xoolk,1,0)— %C(k)(](l) 3 #(0,m)cos [ﬁ?gNi—l—)l] sin (f]’; )
N—-1
t5z C(k)C’(l) > z(N,n) cos[ (22; 1)1] sin [W(QZ; l)k] . (11)
n=0
These two equations can be further simplified as
X = Xk, 1,0) 4 6.(k, ) O () cos(;’\";> (12)
and
R = Xoo(k,1,0) + bu(k, )2 2 C(k)sin (;’\j) (13)
where
bl 1) = = C(1) Z [(=1)*a(2, m) = 2(0,m)] co [ﬂ?—%i)—’] (14)

n=0



Substituting X, and X, in (12) and (13) into the updated transformed signal X (k,/,1)
and X,.(k,[,1)in (4) and (9), the relation between the updated transformed signal and
previous transformed signal can be represented in a lattice form as shown in Fig. 2. This
lattice structure is similar to the lattice module obtained in the dual generation of the
1-D DCT and DST [6]. That is, the updated transformed signal can be generated from
8.(k,1) in a form which is similar to the 1-D DCT lattice module. What is worth noticing
is that 8.(k,!) in (14) is the 1-D DCT of the data vector which is the difference between
the parity of the N’th row and 0’th row of the 2-D input sequence. Therefore, similar to
[6], another 1-D DCT lattice module as shown in Fig. 3 is required to generate é.(k,!),
which is obtained from X,(/,1). We call this as lattice array I (LAT) and that in Fig. 2 as
lattice array II (LAII). The difference between these two structures is that lattice array
I feedbacks the outputs to add with the inputs by a delay stage. After obtaining the 4.,
the updated transformed signal can be obtained recursively by feeding §. into the lattice
array II. Here we can see that the 2-D DCT can be obtained by using two 1-D DCT
lattice arrays. It will be shown in the next section that the 2-D DCT obtained by this time-
recursive approach is fully-pipelined and ﬁo transposition is needed. This is because that by
using the frame-recursive approach, we start from the transformed 2-D DCT directly and
avoid calculating the 2-D DCT indirectly from the 1-D DCT. Those 2-D transforms, which
apply the row-column decomposition methods, have to transpose the intermediate matrix
before applying the second 1-D transform. By the frame-recursive approach, we can apply
two 1-D transform structure to attain the 2-D transformed signal, while the transposed
procedure can be omitted. In this way, the operational speed can be greatly increased since
it is unnecessary to wait until finishing the first 1-D transform. In addition, this method
can obtain the 2-D DCT and 2-D DSCT simultaneously. In addition to processing the input
2-D data sequence by rows, the frame-recursive approach can also be updated by columns.

In this case, 2-D DCT and 2-D discrete cosine-sine transform (DCST) are dually generated,



and all other results are similar and can be easily derived.

3 Architecture of Frame Recursive Lattice 2D-DCT and 2-

D DSCT

Most of the 2-D DCT architectures are implemented by the row-column decomposition
method [19, 18, 20]. It is due to the fact that the architectures of most fast direct 2-
D algorithms are usually irregular and globally connected, therefore it is not practical for
circuit realizations. Another reason is that it is better to generate the 2-D DCT system from
existing 1-D DCT circuit rather than to build a new multiplier-saved 2-D DCT architectures
which is not compatible with the 1-D DCT system. So the designing time can be greatly
reduced. As shown in [6], the lattice structure of the 1-D DCT, which is obtained from the
time-recursive approach, is regular, modular, and without global connection. By using the
frame-recursive method, the 2-D DCT can be implemented by 1-D DCT lattice arrays, which
are regular, simple and suitable for VLS implementation. We will discuss two architectures,
the moving frame 2-D DCT architecture and the block 2-D DCT architecture. The moving
frame 2-D DCT architecture is used for calculating the 2-D DCT of sequential frames. For
example, the 2-D DCT of the 0’th frame, first frame, second frame and so on. The block
2-D DCT architecture computes the 2-D DCT of a N x N input data matrix for every N

frame, i.e., the 0’th frame, the N’th frame, the 2N ’th frame and so on.

3.1 The Moving Frame 2-D DCT Architecture

The 2-D DCT recursive lattice structure can be constructed according to (4), (9), and (14).
The intermediate values 6, in (14) are functions of both transformed domain components
k and I. It is noted that the & components only affect the sign of the input data sequence.

Using this property, we will show two approaches, the pre-matrix method and post-matrix



method, to obtain the moving frame 2-D DCT architectures. The pre-matrix method will

be discussed first.

3.1.1 The Pre-Matrix Method

In this method, the intermediate values of é. are realized directly from (14). As we can
see, the only difference between input frames at time ¢t=0 and at ¢=1 are the 0’th row
and the N’th row. Besides, the & components only affect the sign of the new input data
sequence. Thus there are only two possible input sequence combinations, z(N,n) — 2(0,n)
and —z(N,n) — 2(0,n). The resulting architecture is shown in Fig. 4 which consists of
lattice arrays and registers only. We will describe the functions of every blocks first, then
demonstrate how the system works.

The circular shift matrix I (CSM1I)is a (N +1) X N shift registers connected as shown
in the upper part of Fig. 5. When a new input data x(m,n) arrives every clock cycle, all
the data are shifted in the way as indicated in Fig. 5. The first element in the 0’th row
and N’th row are sent out for summation and subtraction as shown in Fig. 4. The upper
and lower LAIs execute the 1-D DCT on the rows of the 2-D input data for the even and
odd transformed components k respectively. Because the length of the input vector is N
and only the discrete cosine transformed data are needed, the LAIs send out the 1-D DCT
transformed data é., (obtained from X.(I,1)), every N clock cycles [6]. Due to the time
recursive approach used, the initial values X (/,0) and X,(,0) in the LAIs (see Fig. 3) are
reset to zeros every N clock cycles. The circular shift array in the middle of the system is
a N x 1 shift registers as shown in Fig. 6. This special shift register accepts a data vector
from the LAI every N clock cycles, and, after loading the data vector, it will shift the data
circularly and send the data to the LAIT every clock cycle. In LAIT, the é. comes from the
circular shift array, and X.(k,!) and X(k,[) from the shift register arrays located behind

the LAII. We divide the LAII into two groups, the LAII. e, and LAIIl,3q. The LAIIL ey,



contains only those lattice modules for even transformed components k, while LAII, 44
contain only the odd lattice modules. It should be noticed that this system contains two
lattice array I and only one lattice array I1. The shift register array is a 2N X N registers.
Their operations are shown in Fig. 7.

Following is to illustrate how this parallel lattice structure works to obtain the 2-D
DCT and DSCT of the 2-D input successive frames. All the initial values of the circular
shift matrix I (CSMI), circular shift array, and shift register array are set to zeros. The
input data sequence z(m,n) sequentially shifts row by row into the (N + 1) x N CSM]I.
First we calculate the difference between the 0’th row and the N’th row data vector of
the CSMI. The two resulting combinations of the input sequence, z(N,n) — z(0,n) and
—z(N,n)—2(0,n)forn =0,1,2,..,N—1, are used as the input sequence for the lattice array
Is, which consists of 2N lattice modules to calculate the 1-D DCT for {z(N,n) — z(0,n)}
and {—z(N,n)—2z(0,n)}. The upper lattice array I is for the even transformed components
k and the lower one for odd k. Suppose the data of the input vectors arrive serially per clock
cycle, it takes N clock cycles to obtain the 6.(k,1) for both of the input sequence. At the
N’th cycle, the N transformed data d.(k,!) are loaded into the circular shift arrays, C5A4,
which will shift circularly and send the data out of the register into the lattice array II
for different k components every clock cycle, where X.(k,l,1) and X,.(k,[,1) are evaluated
according to (9) and (14). Since both of the lattice array IT has only N/2 modules, every &,
is floating for N/2 clock cycles. It is noted that a specific 2-D transform data X.(k,[,t) and
Xse(k,1,t) are updated recursively every N clock cycles from X (k,,t—1)and X,.(k,[,t—1).
Therefore the outputs of the lattice array IT are sent into the shift register array (SRA)
where data are delayed by N clock cycles. Each SRA contains N/2 shift registers each
with length N. The data in the rightest registers are sent back as the X.(k,[,{ — 1) and
Xse(k,1,t — 1) of lattice array I1. At the N? clock cycle, the 2-D DCT and DSCT of the

0’th frame are available. After this, the 2-D transformed data of successive frame can be

10



obtained every N clock cycles.

We observe two interesting results in the pre-matrix method. First, the lattice array can
be viewed as a filter bank. It is because every lattice module itself is an independent digital
filter with different frequency components [ = 0,1, ..., N — 1. Besides all the lattice modules
in this architecture have the same structure. Second, the system requires 3 1-D DCT array
and is fully pipelined with throughput rate N clock cycles. From the above discussion,
transposition for the row-column decomposition method is unnecessary in this realization.
According to the 1-D DCT architecture proposed in [6] (Liu-Chiu2 architecture), the total
multipliers required in the 2-D DCT is 12N and total number of adders is 15N. Due to the
goal to pipe out the results every N clock cycles, it requires three 1-D DCT structures in
the system. We will show how to use only two 1-D DCT structures to attain the results at

the same throughput rate in the post-matrix method.

3.1.2 The Post-Matrix Method

The intermediate value 6. in (14) can be rewritten as

N-1
5a(k,1) = (_1)'“%0(1) > (0¥, m) cos [ﬁ;’;—l)l]
2 R w(2n + 1)l
———J—V—C(l) 72 z(0,n) cos [T]
= X.(N,1) - X.(0,0). (15)

That is, we can calculate the 1-D DCT of the 0’th row and N’th row of the input frame
individually, then do the summation later on. Qur approach is to send the input sequence
z(m,n) row by row directly into the lattice array I. It takes N clock cycles for the lattice
array I to complete the 1-D DCT of one row input vector, then the array sends the 1-D
DCT data parallelly to the CSMII as shown in Fig. 8 and the lower part of Fig. 5. At the
output of the CSMII, the 1-D transformed data of the N’th row and 0’th row are added

together according to (15) depending on the sign of the k£ components (see Fig.8). Then

11



the results are sent to CSA, lattice array II, and SRA, whose operations remain intact
as in the pre-matrix method. The whole structure is demonstrated in Fig. 8. Therefore,
by transforming the input data first, we can implement the 2-D DCT by using only two
1-D DCTs and remain the same pipeline rate. The total numbers of multipliers and adders

needed for the post-matrix method are 8 NV and 10N respectively.

3.2 The Block 2-D DCT Architecture

In most image processing applications, the 2-D DCT are executed block by block instead
of successive frames [27, 29]. Corresponding to our frame recursive algorithm, we obtain
another block of input data every N? clock cycles. Note that this is also the total time
required for all the N2 data to arrive in a transmission system. Recall that in the moving
frame 2-D DCT architecture, the calculation of the 0’th frame 2-D DCT is equal to the
block 2-D DCT of the 0’th frame. In that case, we assume that all the initial values of
CSMI and CSMII are zeros. Corresponding to (15), the second terms X,(0,1) are zeros.

The intermediate value of §.(k,!) becomes

T(2n + l)l] . (16)

N-1
6.(k,1) = (-1)’%(:(1) 3 #(¥,m)cos [ o
Here (16) suggests that the CSMIT in Fig. 8 is redundant. The architecture for the block
2-D DCT is shown in Fig. 9. Following is an example to calculate block 2-D DCT for the
0’th frame. When the row data vector arrive, the lattice array I performs the 1-D DCT on
them. Every N clock cycles, after the last datum of each row 2(m, N — 1) is available, the
lattice array I complete the 1-D DCT for every row and send the N 1-D DCT transformed
data to the two length-N C'SAs. The upper C'5 A translates the intermediate value 6.(k,1)
to the lattice array Il yen, so do the lower ('S A except the signs of the output of the CSA

are changed before sending to the lattice array Il,44. The operations of the lattice array

IT and the SRA are the same as those in the previous methods. What is marvelous for our

12



frame-recursive approach is that by putting the SRAs in the final part of the system, the
transposed operations are totally not necessary. Therefore the system can be operated in a

fully pipelined manner and requires only two 1-D DCT lattice structures.

4 Comparisons

Since most of the 2-D DCT algorithms proposed are based on manipulating N X N block
signals. The 2-D block method we discussed in section 3.2 falls into this category. We
will make a comparison with other algorithms based on block signals. The block 2-D DCT
architecture is a fully-pipelined serial input parallel output (SIPO) system with throughput
rate every N clock cycles and in terms of hardware complexity, it requires only two 1-D
DCT architectures without the need of transposition operations. So it is attractive not
only for its efficiency in term of system throughput but also for hardware simplicity and
regularity.

In the following, the comparisons between our 2-D DCT block structure and those of
others are based on the number of multipliers, adders and speed. For the sake for clearness,
we divide the algorithms into two groups, one is parallel input parallel output (PIPO), the
other is serial input parallel output (SITPO). The fast algorithms presented by Vetterli and
Nussbaumer in [13, 14], Duhamel and Guillemot in [15], and Cho and Lee in [10] belong to
the former class. Vetterli’s algorithm in [14] mapped the 2-D DCT into a 2-D cosine DFT
and sine DFT through a number of rotations and the 2-D DFT are computed by Polynomial
Transform (PT) methods [14]. This method can reduce the number of multipliers more than
50% in comparison to the row-column method based on Chen’s algorithms [2] and have a
comparable amount of additions . Duhamel et al presented a PT-based algorithm which uses
direct DCT approach in [15]. This direct PT 2-D DCT method provides a 10% improvement

in both number of additions and multiplications compared to Vetterli’s result in [14] but

13



it requires complex computations. Cho and Lees’ algorithm is a direct 2-D method by
employing the properties of trigonometric functions. The number of multipliers are the
same as that of Duhamel, but the structure is more regular, and only real arithmetic is
involved. Up to now, the best results for the first PI PO system in terms of the number of
multipliers are (N2)+2N +2, which are obtained by Duhamel and Guillemot, as well as Cho
and Lee. But assuming that all the N? input data arrive at the same time is not practical
in the communication systems. The data waiting time is N2 which is always neglected in
these approaches.

The systolic array approaches proposed by Lee and Yasuda in [5], Ma in [7], and ours
are in the latter class. Lee-Yasuda presented a 2-D systolic DCT/DST array algorithm
based on an IDFT version of the Goertzel algorithm via Horner’s rule in [5]. The latest
systolic array algorithm for 2-D DCT was proposed by Ma in [7], where he showed two
systolic architectures of 1-D DCT arrays based on indirect approach proposed by Vetterli-
Nussbaumer [14], then exploited the 2-D DCT systolic array by using the features of the
two 1-D DCT systolic arrays. This method requires N4+1 1-D DCT structures and the total
number of time steps is (N2 + 2N + 2) [7]. We call the block 2-D DCT structure shown in
Fig. 9 based on the Liu-Chiu2 module in [6] as Liu-Chiu2D which needs only two 1-D DCT
and the total time steps is N2. The comparisons regarding their inherent characteristics are
given in Table 1. Besides, the quantities comparisons in terms of the number of multipliers
and adders are given in Table 2 and Table 3. As we know, the STPO method is more
workable in hardware implementations. Our structure requires much fewer multipliers than
Ma’s structure and is highly regular, systematic, and with only local communications. In
addition, this lattice 2-D DCT architecture can be generated from the 1-D DCT lattice

array without modifications.
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5 VLSI Implementation Using High-Speed Distributed Arith-

metics

In this section, we will discuss the the circuit realization of our block 2-D DCT structure
shown in Fig. 9. Since this structure contains only shift registers and 2N lattice modules,
which are exactly the same except the multipliers’ coefficients, we can foresee the VLSI
implementation of this system is rather labor saving. Every lattice module is a modified
normal form digital filter [21], which has least roundoff noise and more insensitive to the
coefficient inaccuracy. Due to the fact that the block operation will reset all the outputs of
lattice array I and lattice array IT every N and N? clock cycles respectively, the roundoff
errors will be further minimized.

In the following we will focus our discussion on the 8 x 8 block DCT with 12 bit 2’s
complement implementation. Suppose the lattice module is based on the Liu-chiu2 module
with 4 multipliers [6], then for the 2-D DCT the total number of multipliers needed is 64,
which require enormous area under 2 or 1.2 um CMOS technology. Besides, the system
throughput is also limited by the operational speed of multipliers.

In [19, 22], Sun et. al. proposed the first working 16 x 16 DCT Chip which incorporates
distributed arithmetics method . Based on this memory-oriented structure, high speed, high
accuracy, and efficient hardware implementation of the 2-D DCT can be achieved. Here we
adopt the distributed arithmetic in our implementations. By employing this scheme, the
system will have higher accuracy because given the same number of word length the result
will undergo less roundoff operations than direct implementation in terms of multipliers.
The lattice module in Fig. 2 and Fig. 3 can be redrawn as shown in Fig. 10. The dashed
box in Fig. 10 can be implemented by a single ROM with three inputs and four outputs.
Under this realization, the roundoff errors due to the multiplication are minimized since the

distributed arithmetic convert the explicit multiplication into the implicit multiplication.
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Therefore, the errors of the systems are all due to the quantization errors under finite preci-
sion implementations and adder operations. Under the 12 bits 2’s complement realization,
the RMS error values are about 60dB [19], which is satisfactory for most applications. As-
sume that every input of the ROM is 2-bit long, then the lattice module can be implemented
by six ROMs and 22 adders as shown in Fig. 10. The ROM size for each lattice arrays is
18432 bits. By reducing the number of bits of every input of the ROM to one, the ROM size
becomes 4608 bits, which is one-fourth of the previous case, but the the number of adder is
doubled.

The other way to implement the lattice module by ROM is shown in Fig. 11. Every
dashed box is realized by a ROM with one input and two outputs. If the number of bit
of the input signal is 4 bits, then the realization of each ROM is given in Fig. 11. Using
this method, the ROM size of each lattice array is 3456 bits and the number of adders
needed is 16. When the number of bit of the input signal is reduced, the ROM size is
shrunk but the number of adders is increased. We will implement the system based on the
schematic diagram for each lattice module as shown in Fig. 11. The adder is a 12-bits
carry-look-ahead full adder/subtracter which is combined from three 4-bit carry-look-ahead
adders. Since the area of ROM is much less than that of multipliers and the speed is higher,
circuit implementations under this approach can be fabricated for very high speed video
signal processing. The VLSI circuit design of the 2-D DCT system is in progress and will

be reported in the future.

6 Application to the HDTYV systems

In recent years, focus of video signal processing research has been done on the high-definition
television (HDTV) which will become future standard for the next generation television [32].

According to the CCIR Recommendation 601, the bit rate for transmitting an uncompressed
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digital HDTV is about 1Gbps. This bit rate is too high even for broadband ISDN (BISDN)
[32]. Besides, video signals contain a great deal of redundancy when psychological and vi-
sual effects are considered. To make DTV systems practical, bit rate reduction and data
compression are indispensable. In the past, lots of studies have been involved in differential
pulse code modulation (DPCM), subband coding, and transform coding (especially DCT)
to achieve bit rate reduction [35, 30, 36]. The DCT has obtained most attention due to
its diverse attractive features. As it is known, the DCT approaches the statistical opti-
mal transform, Karhunen-Loeve Transform (KLT), which minimize the mean square errors,
for highly correlated signals [1]. Besides, it has superior energy compaction properties for
transform coding. Many HDTV systems based on the DCT coding schemes show satisfac-
tory speed and promising performance [23, 27, 28, 33, 34, 35, 26]. A common used encoder
configuration of the DCT based source coding is shown in Fig. 12 [34, 26]. The DCT is
performed on the 2-D video signals with block size 8 X 8, which is widely used due to its
acceptable SNR and implementation complexity [34].

Although there is no uniform standard for HDTV, the interlaced mode with 1080 active
line per frames, 30Hz frame frequency, and 2:1 interlaced ratio is presently under widely
investigations due to its reasonable data rate [24]. With an assumption of coding each pel
(luminance and chrominance ) with 2 bits, the bit rate required for transmission of the
video signal under interlaced modes are 119.232 Mbits/s which satisfied the requirement
of 140Mbits/s H4 hierarchy level [23], and allow sufficient margin for error protection, and
auxiliary data. The 4:2:2 YUV signal is obtained from RGB signal by A/D converter and
coordinate rearrangement. The intrafield 2-D DCT are used for data compression. The
transformed signal are processed by entropy encoder, which is usually combined by the
run-length coder and variable length encoder. Run length coder can reduce the bit-rate by
coding every sequence of zeros with a single codeword. The variable length coder encodes the

DCT coefficients with a variable length code adapted to their probabilitic density function
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(pdf) distribution.

Most of the 2-D DCT implementations are based on the row-column decompositions
methods. Although fast algorithms exist for the 1-D DCT, the second 1-D DCT cannot
start until all the first 1-D DCTs are completed. To speed up the operations, one method
is to parallelly execute the first 1-D DCT. For the 8 x 8 case, there are 8 1-D DCT blocks
to perform the first transform simultaneously. Suppose each signal is 10 bits long to have
satisfied precision, then the total number of bits required in the input is 640 bits, which
is not practical in the circuit realizations. From this point of view, our serial input 2-D
DCT system is more practical in hardware implementations. Moreover, if the speed of the
circuit components, such as ROM and adder, is high enough, our 2-D DCT system can be
executed as fast as the sample clocking rate.

Although our 2-D DCT implementations are effective, transforming a Video frame of
1080 x 1920 still requires intensive computations. This motivates us to design a 2-D DCT
architecture suitable for the HDTV system to achieve higher performance. The block dia-
gram of the 2-D DCT encoder is shown in Fig. 13, where five 2-D DCT chips are included.
It is because that the ratio of pixel numbers per line for luminance signal Y and color differ-
ence signals U, and V is 4:2:2. As the sampling frequency of HDTV is very high, the pixels
of Y are divided into four groups, in order to carry out DCT in parallel. Besides, the color
difference signal Y and U are switched alternatively to another DCT coder. The scanning
processor in Fig. 13 is used to divide the signal into four luminance components and one
color difference components. The output of the 2-D DCT transformed data are sent to the
entropy encoder in parallel or through multiplexers. Since the transform block size is 8 X 8,
we divide the frame to 135 x 240 blocks and 240 channels as shown in Fig. 14. The 2-D
DCT are executed on each channel whose scanning pattern is shown in Fig. 14. Tt is all
due to our system is based on row by row scanning order and is fully pipelined. Thus, such

a scanning method would maximize the system throughput.
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7 Conclusions

In this paper, we propose a new 2-D DCT algorithm using frame-recursive approach since
in data transmission systems the data arrive serially. Based on this method, the 2-D DCT
can be obtained by using only two 1-D DCT arrays, while the transposive procedure can
be omitted. Therefore, it does not have the drawback of the row-column decomposition
method in which the second 1-D DCT can not start until all the first 1-D DCTs are com-
pleted. In addition, this method can obtain the 2-D DCT and 2-D DSCT simultaneously.
There are two methods, the pre-matrix and post-matrix method, for the moving frame
2-D DCT architecture. From the post-matrix method, the block 2-D DCT architecture
can be developed. The systems are fully-pipelined and contain only two 1-D DCT lattice
array. The lattice array contains N lattice modules which are modified normal form dig-
ital filter with different multiplying coefficients. The total number of multipliers required
in the system is 8V and system pipelined throughput rate is N clock cycles for N x N
input signal. The structure is very regular and efficient such that it is very suitable for
VLSI implementation for the high speed HDTV systems. Many HDTV systems baed on
the DCT coding shows satisfactory speed and promising performance since the DCT has
superior energy compaction property. Most of the 2-D DCT portion of the HDTV systems
are implemented by row-column decompositions methods which needs two 1-D DCTs. To
speed up the throughput, the first DCT operation has to be performed in parallel, while it
is not practical in the circuit realizations due to the hardware complexity. From this point
of view, our serial input 2-D DCT system is more workable in hardware implementations.
The parallel 2-D DCT architecture and the scanning pattern proposed in Section 6 can pro-
cess the video data in real time and eliminate the waiting time in the DCT coding so that
the system throughput can be maximized. Therefore, such fully-pipelined system is very

attractive for high speed transmission system where every arrived data can be processed
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immediately.
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Table 1 Comparisions of different 2-D DCT algorithms.
Table 2 Comparisions of the number of multipliers.

Table 3 Comparisions of the number of adders.

Fig.1 The 2-D successive data frame.

Fig.2 The lattice module of lattice array II.

Fig.3 The lattice module of lattice array I.

Fig.4 The pre-matrix moving frame 2-D DCT architecture.
Fig.5 The circular shift matrix (CSM) I and II.

Fig.6 The circular shift array (CSA).

Fig.7 The Shift Register Array .

Fig.8 The post-matrix moving frame 2-D DCT architecture.
Fig.9 The block 2-D DCT architecture.

Fig.10 The realization of the lattice module under distributed arithmetic using one

ROM.

Fig.11 The realization of the lattice module under distributed arithmetic using three

ROM.
Fig.12 System diagram of the DCT based HDTV coder.
Fig.13 The block diagram of the DCT encoder.

Fig.14 Block construction of a Video frame and proposed scanning pattern.



row-column method | Duhamel[15] | Cho-Lee | Ma [7] Liu-Chiu2D
bsed on Chen in[2] | et. al. [10]
No. of 2NZ%In(N) N? N? AN(N +1) | 8N
multipliers —6N?/2 4+ 8N +2N +2 +2N +2
Throughput N+ 2N N 2N +1 N
transposition
Limitation on power power power no no
transform size N | of 2 of 2 of 2
Communication | global global global local local
I/O operation PIPO PIPO PIPO SIPO SIPO
Approach of indirect direct direct indirect direct
of algorithm
Table 1: Comparisions of different 2-D DCT algorithms.
NO | row-column method | Duhamel[15] | Cho-Lee | Ma [7] | Liu-Chiu2D
bsed on Chen in[2] | et. al [10]
8 256 96 96 288 64
16 | 1408 512 512 1088 128
32 | 7424 2560 2560 4224 | 256
64 | 37376 12288 12288 16640 | 512
Table 2: Comparisions of the number of multipliers.
No | row-column method | Duhamel[15] | Cho-Lee | Ma [7] | Liu-Chiu2D
bsed on Chen in[2] | et. al. [10]
8 | 416 484 466 432 78
16 | 2368 2531 2530 1632 158
32 | 12416 12578 12738 6336 | 318
64 | 61696 60578 42461 24960 | 638

Table 3: Comparisions of the number of adders.
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Figure 1: The 2-D successive data frame.

24

1

<

seconf frame



X (K,1,0)

X .(0,1,0)
X.(0,1,1)
0 (k1)=& >
(2M2ZN)

XSC(N,H)

I> -
O .(k,1) - 1

-(2/2N)

XsEN,1,0)

Figure 2: The lattice module of lattice array II.

25



X, 0)

(1,
, 77 |- ‘
.
c XC(I,I)
+ >> >
(2/N)1“c(1>

Input ———»
(2/N)T (1) - I2)
XS(U)
I.(n)=cos(nm k/2N) & >{> —
IL(n)=sin(n T k/2N) @
Z‘l<__—__
X4(1,0)
1=1,2,...,N-1.
XC(O,O)
) Z“] -
| Xc(o,1)
input=® >
(2/d2N)
XN T
—input—={ |
| (2/42N)
77—
X5 (N,0)
1=0.

Figure 3: The lattice module of lattice array I.
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Figure 10: The realization of the lattice module under distributed arithmetic using one

ROM.
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Figure 12: System diagram of the DCT based HDTV coder.
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Figure 13: The block diagram of the DCT encoder.
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Figure 14: Block construction of a Video frame and proposed scanning pattern.
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