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Prognostics and Health Management (PHM) methods are incorporated into 

systems for the purpose of avoiding unanticipated failures that can impact system 

safety, result in additional life cycle cost, and/or adversely affect the availability of a 

system.  Availability is the probability that a system will be able to function when 

called upon to do so. Availability depends on the system’s reliability (how often it 

fails) and its maintainability (how efficiently and frequently it is pro-actively 

maintained, and how quickly it can be repaired and restored to operation when it does 

fail).  Availability is directly impacted by the success of PHM. Increasingly, 

customers of critical systems are entering into “availability contracts” in which the 

customer either buys the availability of the system (rather than actually purchasing 

the system itself) or the amount that the system developer/manufacturer is paid is a 

function of the availability achieved by the customer. Predicting availability based on 

known or predicted system reliability, operational parameters, logistics, etc., is 

relatively straightforward and can be accomplished using several methods and many 



  

existing tools.  Unfortunately in these approaches availability is an output of the 

analysis.  The prediction of system’s parameters (i.e., reliability, operational 

parameters, and/or logistics management) to meet an availability requirement is 

difficult and cannot be generally done using today’s existing methods.  While 

determining the availability that results from a set of events is straightforward, 

determining the events that result in a desired availability is not.   

This dissertation presents a “design for availability” methodology that starts 

with an availability requirement and uses it to predict the required design, logistics 

and operations parameters.  The method is general and can be applied when the inputs 

to the problem are uncertain (even the availability requirement can be represented as 

a probability distribution).  The method has been demonstrated on several examples 

with and without PHM. 
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Chapter 1: Introduction 

Availability is the ability of a service or a system to be functional when it is 

requested for use or operation. The availability of an item is a function of its 

reliability and logistics management (including repairs, replacements and inventory 

management). Availability accounts for both the frequency of failure (reliability) and 

the ability to restore the service or system to operation after a failure 

(maintainability). The dependency on maintenance generally translates into how 

quickly it can be repaired upon failure and are usually driven by the logistics 

management and are directly influenced by Prognostics and Health Management 

(PHM) approaches that may be used. The frequency of the failure is related to the 

reliability of the system, i.e., how long it will be operational (i.e., “up”) before it fails. 

Availability is a significant issue for many real world systems. A failure, i.e., a 

decrease of availability, of an ATM machine causes inconvenience to customers; the 

unavailability of a point-of-sale system to retail outlets can generate a huge financial 

loss; the unavailability a medical device or of hospital equipment can result in loss of 

life; unavailability of servers causes loss of data; poor availability of alternative 

energy generation (e.g., wind farms) can make them non-viable; and the 

unavailability of aircraft cause airlines to cancel or delay flights and military missions 

to be canceled. In these systems, insuring the availability of the system is important 

and the owners of the systems are often willing to pay a premium for higher 

availability. For many safety, mission, and infrastructure critical systems, availability 

is a more important design criteria than acquisition cost. 
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Several different types of availability can be measured (e.g., inherent, 

achieved, operational, etc.) [1]. This dissertation is focused on the operational 

availability since it implicitly incorporates other forms of availability and it is the 

most commonly used form of availability in availability contracts; however, the 

methodology could be easily adjusted to incorporate other types of availability. 

Operational availability is the probability that a system or piece of equipment 

operates ordinarily, i.e. functional and available for operation when requested, over a 

specific period of time under stated conditions [2, 3]. Operational availability (A0) 

accounts for all types of maintenance and logistics downtimes. It is computed as the 

ratio of the accumulated uptime and the sum of the accumulated uptime and 

downtime: 

downtimeuptime

uptime
AO

+
=  (1.1) 

where uptime is the total accumulated operational time during which the system is up 

and running and able to perform the tasks that are expected from it; while downtime 

is generated when the system is down and not operating when requested due to repair, 

replacement, waiting for spares or any other logistics delay time. The summation of 

the accumulated uptimes and downtimes represents the total operation time for the 

system. 

Customers of avionics, large scale production lines, servers, and infrastructure 

service providers with high availability requirements are increasingly interested in 

buying the availability of a system, instead of actually buying the system itself; 

therefore, the concept of “availability-based contracting” has been introduced. 

Availability based contracts are a subset of outcome based contracts [4]; where the 



 3 
 

customer pays for the delivered outcome, instead of paying for specific logistics 

activities, system reliability management or other tasks. Basically, in this type of 

contract, the customer pays the service or system provider to ensure a specific 

availability requirement.  For example the Availability Transformation: Tornado 

Aircraft Contract–ATTAC [5], is an availability contract, where BAE Systems has 

agreed to support the Tornado GR4 aircraft fleet at a specified availability level 

throughout the fleet service life for the UK Ministry of Defense. The agreement aims 

to implement a new cost-effective approach to improve the availability of the fleet 

while minimizing the life cycle cost [5]. Another form of outcome-based contracting 

that is used by the U.S. Department of Defense is called performance-based 

contracting (or PBL – Performance Based Logistics).  In PBL contracts the contractor 

is paid based on the results achieved, not on the methods used to perform the tasks [6, 

7]. Availability contracts, and most outcome-based contacting, include cost penalties 

that could be assessed for failing to fulfill a specified availability requirement within 

a defined time frame (or a contract payment schedule that is based on the achieved 

availability). 

The evaluation of an availability requirement is a challenging task for both 

suppliers and customers. From a suppliers’ perspective, it is not trivial to estimate the 

cost of delivering a specific availability.  Entering into an availability contract is a 

non-traditional way of doing business for the suppliers of many types of safety- and 

mission-critical systems. For example, the traditional avionics supply chain business 

model is to sell the system; and then separately provide the sustainment of the system. 

As a result, the avionics suppliers sell the system for whatever they have to in order to 



 4 
 

obtain the business, knowing that they will make their money on the long-term 

sustainment of the system. From a customers’ perspective, the amount of money that 

should be spent on a specific availability contract is also a mysterious quantity – if a 

choice has to be made between two offers of availability contracts where the value of 

the promised availabilities are close (e.g., one contract offers an availability of 95% at 

any defined time, and the other one offers 97%), how much money should the 

customer be willing to spend for a specific availability improvement?  

 

1.1. Background 

Types of Availability  

Many different types of availability measures exist [1]; the most commonly 

used are: instantaneous, mean, steady-state, inherent, achieved, and operational 

availability. The main differences between these forms of availability are the types of 

activities that are excluded or included in the accumulated downtime and uptime 

values. 

The instantaneous availability is the probability that a system will be 

operational at any time during its entire operational support life. Note, this probability 

could change after every repair event, since the reliability of the system either 

decreases or increases, due to the repair renewal function. The mean availability is 

related to the instantaneous availability; it is the mean value of the instantaneous 

availability over a defined period of time. The steady-state availability is defined as 

the limit of the instantaneous availability as time approaches infinity, i.e., after a 

significant number of repair events. Inherent availability is purely determined by the 
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design of the system and the unscheduled maintenance actions. It assumes that the 

logistics management does not generate any delay time; i.e., the system is used under 

ideal logistics management. Similar to the inherent availability, the achieved 

availability assumes an ideal logistics management. However, it incorporates both 

scheduled and unscheduled maintenance into the accumulated downtimes. Basically, 

it is the probability that a system will operate satisfactorily in an ideal support 

environment. Finally, the operational availability, which is the most common type of 

availability appearing in availability contracts, is a measure of the availability that the 

customer actually experiences. Operational availability includes all sources of 

downtime (when the system is down while requested for operation), e.g., repair, 

replacement, waiting for spares replenishment, administrative downtime, or any other 

logistics downtime.  

Readiness is closely related to availability and is a widely used metric for 

military applications.  For availability, “downtime” is only operational downtime, 

while for readiness, “downtime” includes operational downtime, free time and storage 

time, [8].  Generally, the concept of readiness is broader than availability as it 

includes the operational availability of the system, the availability of the people who 

are needed to operate the system, and the availability of the infrastructure and other 

resources needed to support the operation of the system. 

 

PHM (Prognostics and Health Management)  

Most systems are repaired or replaced upon failure. However, for safety-

critical systems, a failure could be very costly, even catastrophic. PHM [9] provides 
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advanced warning of failures as well as appropriate decision making processes for 

maintenance planning. Prognostics is defined as the process of predicting the future 

life of a system or a product. Whereas, health management is the capability to make 

appropriate decisions about maintenance actions and/or other logistics parameters, 

based on prognostics information. PHM provides an opportunity for lowering 

sustainment costs, improving maintenance decision-making, maximizing availability, 

and providing product usage feedback into the product design and validation process. 

PHM implementation represents a potential transition from the unscheduled 

maintenance policy, where the system or component is repaired or replaced upon 

failure, to a scheduled maintenance policy, where a sustainment approach 

methodology is adopted to repair or replace the system or component before failure. 

A subset of PHM that is only focused on reducing maintenance costs is 

referred to as Condition Based Maintenance (CBM) [10].  CBM is a set of 

maintenance processes and capabilities derived from real-time assessment of a 

system’s condition.  The goal of CBM is to perform maintenance only upon evidence 

of need. 

 

Applicability to Electronic Systems  

 This dissertation’s primary target application is electronic systems.  While 

PHM and CBM have been performed on non-electronic systems for many years 

(sometimes known as structural health monitoring), it is far less prevalent for 

electronics.  This is due to several factors including difficulties in identifying 

precursors to failure in electronics and the larger number of different failure 
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mechanisms (and potential failure locations).  Performing PHM for electronics is also 

difficult because of the high rate of electronics evolution compared to non-electronic 

systems (e.g., by the time one learns the warning signs of failure, the technology 

changes). Electronic systems maintenance culture is also historically based on 

“unscheduled maintenance” where systems are run to failure and then replaced or 

repaired.  While the majority of the work in this dissertation is generally applicable to 

non-electronic systems, the case study examples considered will be electronic 

systems. 

 

Logistics Management  

Logistics is the management of the flow of the existing resources of a process 

or a service to perform a specific operational task or to meet a customers’ requirement 

[11]. Logistics management provides a means to evaluate and control information 

flow. In an operational system environment, logistics management usually includes 

inventory, man power, administrative processing, transportation, etc. Each one of 

these activities could induce a delay time resulting in an operational downtime of the 

system. However, this dissertation will focus on the logistics delays related to 

maintenance and inventory management. The maintenance actions could generate 

operational downtimes based on the adopted maintenance policy, repair time, and 

replacement time. The inventory management could produce a delay when the system 

is down (while it is requested for operation) waiting for spares replenishment [12]. 
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Availability Modeling 

Logistics, maintenance, and availability can be evaluated using several 

different methods; one common method is discrete event simulation.  A discrete-

event simulation represents a set of chronological events where each event occurs at 

an instant in time and marks a change of state in the system. Time-based and event-

based simulations are considered the two primary discrete-simulation modeling 

techniques. Time-based models follow the progress of the process as it occurs at 

discrete points in simulation time. At each time step the state of the process is 

observed precisely; however, its progress between any two consecutive time steps is 

assumed to be negligible and undetermined by any external observer. Thus, time-

based modeling techniques assume that important changes only occur at the discrete 

time steps and the choice of the time step is based on the succession of the events as 

they occur in the simulation time. In event-based models, the occurrence of the events 

drives the progress of the modeled process, i.e., the process is event-dependent not 

time-dependent. In event-based modeling, the simulation is tracking the occurrence of 

the events as they happen. At every event the progress step, i.e., time step, is 

determined based on the occurrence of the next event, where the event refers to any 

significant incident associated with the state of the modeled process [13, 14]. 

Discrete-event simulation is commonly used to predict the availability and life cycle 

cost for systems design and support, e.g., [15].  
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Availability predictions used during the design and support of real systems are 

also performed using Markov models [16, 17].1 However, while discrete event 

simulators track the current state of the system, and based on the present events, 

predict the occurrence of future events; Markov models do not explicitly embrace the 

concept of future events, rather they track the model state at each time step and 

sample how long the model will be in the current state before it switches to the next 

state [18]. Basically, each event in a discrete event simulator depends on the time 

spent in that event and the path that led to it, while Markov models depend only on 

the current state of the model regardless of the duration spent in the current state and 

the path that led to it [19]. Discrete-event simulators accumulate the outcomes 

resulting from the type and duration of previous events; and then use only the set of 

data inputs that are necessary at a specific point on the timeline to predict future 

events. Markov models incorporate all provided data to generate an analytical 

solution and use it to determine the current model state and to move to the next state.  

Discrete-event simulators are generally more efficient than Markov models 

for modeling complex systems with large numbers of variables, specifically in data 

capturing without aggregation [19, 20]. In general, discrete-event simulators order the 

failure and maintenance events for a system temporally, and the durations associated 

with the failure and maintenance events can be readily accumulated to estimate 

availability. Thus, it is straightforward for a discrete-event simulation to compute the 

                                                 
1 Other methods that are not discrete-event simulator based or Markov models for determining 
availability exist as well (e.g., [21], [22], [23], and many others), but most of these are confined to the 
evaluation of extremely simple systems that while preserving the essence of real problems, often have 
a too limited scope or are too oversimplified to be of practical value to problems where every input is 
uncertain and there are potentially 1000s of components within a single system to manage and 
maintain concurrently. 
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availability based on a particular sequence of failures, logistics and maintenance 

events. This dissertation will focus on discrete-event simulation based availability 

calculations. 

  Discrete-event simulation is often a preferred approach to modeling the 

maintenance of real systems when many different failure mechanisms (and/or 

different parts), all characterized by different failure distributions must be 

concurrently included within the model.  This complexity is compounded by the 

necessity to consider a large population of systems in order to generate viable 

summary statistics. 

Two common mechanisms that may include elements of availability 

contracting are Product Service Systems (PSS) and leasing models.  PSS provide both 

the product and its service/support based on the customer’s requirements [24], which 

could include an availability requirement. Lease contracts [25] are use-oriented PSS, 

where the ownership of the product is usually retained by the service provider. A 

lease contract may indicate not only the basic product and service provided but also 

other use and operation constraints such as the failure rate threshold.  In leasing 

agreements the customer has an implicit expectation of a minimum availability, but 

the availability is generally not quantified contractually. 
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1.2. Research Scope and Objectives 

The objective of this dissertation was to develop a “Design for Availability” 

methodology that enables the prediction of the system reliability, operational 

parameters, and/or logistics management parameters to meet a general availability 

requirement. The methodology must applicable to problems where the availability 

requirement is expressed as a probability distribution and uncertainties may be 

present in all the design and logistics properties of the system.  In addition, the design 

for availability methodology must allow the determination of prognostics and health 

management (PHM) parameters so as to enable the assessment of cost/availability 

tradeoffs associated with the inclusion of PHM within systems, where cost includes 

the assessment of return on investment (ROI).  

In order to achieve the objectives, described above, the following tasks have 

been completed: 

Task 1: Construction of a maintenance model that has the ability to 

incorporate reliability information, implementation cost, and accommodate different 

maintenance policies. This model is a discrete-event simulator that allows the 

calculation of life cycle cost and ROI for different PHM approaches.  This task was 

completed by another student prior to the start of this dissertation, see [26].  

Task 2:  Extend the maintenance model (Task 1) to include logistics 

management elements, i.e., specifically detailed spares management.  This includes 

initial spares, spare replenishment criteria, lead time for spare replenishment, spares 

carrying cost, etc.  Inclusion of a spares management model allows the calculation of 
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availability concurrent with life cycle cost and ROI.  Note this task creates the ability 

to calculate availability as an output (not an input). 

Task 3: Formulate a general Design for Availability model that uses an 

availability input to generate the required system parameters to meet an availability 

requirement.  This task is focused on the prediction of parameters affecting either 

uptime or downtime (not both). The following additional activities have been 

performed in this task: 

a) Implemented the methodology in software so it can be tested. 

b) Example application of the methodology to determine the inventory 

parameters (e.g., inventory lead time, threshold for spares 

replenishment, etc.) for a specific availability requirement. 

c) Performed formal verification of the method by using the generated 

inventory parameters as inputs into the maintenance model to compute 

availability, and compare the resultant availability (output) to the 

availability that was the original requirement (input).  

Task 4: Formulate a Design for Availability method to determine parameters 

that affect both uptime and downtime, for example, determining the reliability of the 

system for a specific availability requirement. This task will focus on determining a 

single consolidated reliability distribution describing a composite of the reliability 

associated with all relevant failure mechanisms for a system or subsystem. 

Task 5: Application of the Design for Availability method to the performance 

of tradeoffs between different maintenance approaches, primarily, unscheduled 

maintenance and a data-driven PHM approach. 
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Task 6: Compute the life cycle cost and perform an ROI analysis concurrent 

with the application of the Design for Availability methodology. This included the 

following two subtasks: 

a) Automated the ROI calculation and development of a stochastic ROI 

analysis, using the Task 2 maintenance model.  

b) Performed life cycle cost and ROI analysis using the Design for 

Availability model. 
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Chapter 2: Maintenance ROI Model 

This chapter2 describes a maintenance model that can be used to assess life 

cycle cost tradeoffs, including the Return on Investment (ROI), associated with 

various maintenance approaches.  This model was specifically formulated to allow 

PHM approaches to be evaluated and traded off.  This model forms a necessary basis 

for verifying the design for availability methodology and performing cost assessment 

concurrent with the determination of parameters satisfying availability requirements.  

This chapter represents Tasks 1 and 2 described in Section 1.2.3  

The modeling described in this chapter targets finding the optimum balance 

between avoiding failures and throwing away remaining useful life (RUL).  Two 

systems, fielded and used under similar conditions, will not generally fail at exactly 

the same time due to differences in their manufacturing and materials, and due to 

differences in the environmental stress history they experience.  Therefore, system 

reliability is generally represented as a probability distribution over time or in relation 

to a specific environmental stress driver.  Likewise, the ability of a PHM approach to 

accurately predict RUL is not perfect due to sensor uncertainties, sensor gaps, sensor 

locations, and/or uncertainties in algorithms and models used.  Practically speaking, 

these uncertainties make 100% failure avoidance impossible to obtain; optimal 

maintenance planning for systems effectively becomes a trade-off between the 

potentially high costs of failure and the costs of throwing away remaining system life 

in order to avoid failures. 

                                                 
2 Portions of this chapter describe work performed prior to this dissertation, see [13, 27]. 
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Although many applicable models for single- and multiunit maintenance 

planning have appeared [28, 29], the majority of the models assume that monitoring 

information is perfect (without uncertainty) and complete (all units are monitored 

identically), that is, maintenance planning can be performed with perfect knowledge 

as to the state of each unit. For many types of systems, and especially electronic 

systems, these are not good assumptions and maintenance planning, if possible at all, 

becomes an exercise in decision making under uncertainty with sparse data. The 

perfect monitoring assumption is especially problematic when the PHM approach is 

model-based because model-based approaches do not depend on precursors. A 

detailed discussion of model-based (LRU-independent) PHM methods is provided in 

Section 2.4. In model-based (LRU-independent) PHM methods, the PHM structure 

(or sensor) is independent of the LRUs, that is, the PHM structures are not coupled to 

a particular LRU’s manufacturing or material variations. Thus, for electronics, model-

based processes do not deliver any measures that correspond exactly to the state of a 

specific instance of a system. Previous work that treats imperfect monitoring includes 

[30, 31]. Perfect but partial monitoring has been previously treated [32]. 

This chapter describes a stochastic decision model that enables the optimal 

interpretation of model-based damage accumulation or data-driven precursor data and 

applies to failure events that appear to be random or appear to be clearly caused by 

defects. 
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2.1. Discrete Event Simulation Maintenance Planning Model 

The maintenance planning model discussed here accommodates variable time 

to failure (TTF) of LRUs and variable RUL estimates associated with PHM 

approaches implemented within LRUs.4  The model considers both single and 

multiple sockets5  within a larger system. Discrete event simulation is used to follow 

the life of individual socket instances from the start of their field lives to the end of 

their operation and support.6  Discrete event simulation allows for the modeling of a 

system as it evolves over time by capturing the system’s changes as separate events 

(as opposed to continuous simulation where the system evolves as a continuous 

function). The evolutionary unit need not be time; it could be thermal cycles, or some 

other unit relevant to the particular failure mechanisms addressed by the PHM 

approach. Discrete event simulation has the advantage of defining the problem in 

terms of an intuitive basis, that is, a sequence of events, thus avoiding the need for 

formal specification. Discrete event simulation is widely used in maintenance and 

operations modeling [e.g., 33, 34 and 15] and has also previously been used to model 

PHM activities [35, 36 and 37].  

 

                                                 
4 LRU refers to Line Replaceable Unit that represents the lowest-level item that is replaceable or 
repairable in the system. 
5 A socket is a unique instance of an installation location for an LRU.  One instance of a socket 
occupied by an engine controller is its location on a particular engine. The socket may be occupied by 
a single LRU during its lifetime (if the LRU never fails), or multiple LRU if one or more LRU fail, and 
needs to be replaced. 
6 Alternatively, one could follow the lifetime of LRUs through their use, repair, reuse in other sockets, 
and disposal.  CBM models generally following LRUs.  The advantage of following sockets is that it 
enables the calculation of ROI, life-cycle cost and availability for sockets, however, the disadvantage 
for following sockets is that it implicitly assumes a stable population of LRUs and assumes that all 
LRUs returned to sockets after repair are approximately equivalent.  For system integrators and 
sustainers, following sockets is generally preferable to following LRUs, however, for subsystem 
manufacturers and sustainers, following LRUs may be preferable. 
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The model discussed in this chapter treats all inputs to the discrete event 

simulation as probability distributions, that is, a stochastic analysis is used, 

implemented as a Monte Carlo simulation. Various maintenance interval and PHM 

approaches are distinguished by how sampled TTF values are used to model PHM 

RUL forecasting distributions. To assess PHM, relevant failure mechanisms are 

segregated into two types.  Failure mechanisms that are random from the viewpoint of 

the PHM methodology are failure mechanisms that the PHM methodology is not 

collecting any information about (non-detection events). These failure mechanisms 

may be predictable but are outside the scope of the PHM methods applied. The 

second type refers to failure mechanisms that are predictable from the viewpoint of 

the PHM methodology—probability distributions can be assigned for these failure 

mechanisms.  

For the purposes of cost model formulation, PHM approaches are categorized 

as (a) a fixed-schedule maintenance interval; (b) a variable maintenance interval 

schedule for LRU instances that is based on inputs from a data-driven (precursor to 

failure) methodology; and (c) a variable maintenance interval schedule for LRU 

instances that is based on a model-based methodology. Note, for simplicity, the 

model formulation is presented based on “time” to failure measured in operational 

hours; however, the relevant quantity could be a non-time measure. 
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2.2. Fixed-Schedule Maintenance Interval 

A fixed-schedule maintenance interval is selected that is kept constant for all 

instances of the LRU that occupy a socket throughout the system life cycle. In this 

case the LRU is replaced on a fixed interval (measured in operational hours), that is, 

time-based prognostics. This is analogous to mileage-based oil changes in 

automobiles. 

 

2.3. Data-Driven (Precursor to Failure Monitoring) Methods 

Data-driven (precursor to failure monitoring) approaches are defined as a fuse 

or other monitored structure that is manufactured with or within the LRUs, or as a 

monitored precursor variable that represents a nonreversible physical process [38].7 

Health monitoring and LRU-dependent fuses are examples of data-driven methods. 

                                                 
7 In either case, the structure or parameter is coupled or correlated in some way to the manufacturing or 
material variations of a particular LRU. 
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Figure 2.1. Data-driven (precursor to failure monitoring) modeling approach. Symmetric triangular 
distributions are chosen for illustration. Note, the LRU TTF PDF (left) and the data-driven TTF 

PDF (right) are not the same (they could have different shapes and sizes). 
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The parameter to be determined (optimized) is prognostic distance. The prognostic 

distance is a measure of how long before system failure the prognostic structures or 

prognostic cell is expected to indicate failure (e.g., in operational hours). The data-

driven methodologies forecast a unique TTF distribution for each instance of an LRU 

based on the instance’s TTF.8 For illustration purposes, the data-driven forecast is 

represented as a symmetric triangular distribution with a most likely value (mode) set 

to the TTF of the LRU instance minus the prognostic distance, Figure 2.1.  

The data-driven distribution has a fixed width measured in the relevant 

environmental stress units (e.g., operational hours) representing the probability of the 

prognostic structure indicating the precursor to a failure. As a simple example, if the 

prognostic structure was a LRU-dependent fuse that was designed to fail at some 

prognostic distance earlier than the system it protects, then the distribution on the 

right side of Figure 2.1 represents the distribution of fuse failures (the TTF 

distribution of the fuse). The parameter to be optimized in this case is the prognostic 

distance assumed for the precursor to failure monitoring forecasted TTF.  

The model proceeds in the following way: for each LRU TTF distribution 

sample (t1) taken from the left side of Figure 2.1, a precursor to failure monitoring 

TTF distribution is created that is centered on the LRU TTF minus the prognostic 

distance (t1–d). The precursor to failure monitoring TTF distribution is then sampled, 

and if the precursor to failure monitoring TTF sample is less than the actual TTF of 

the LRU instance, the precursor to failure monitoring is deemed successful. If the 

precursor to failure monitoring distribution TTF sample is greater than the actual TTF 

                                                 
8 In this model, all failing LRUs are assumed to be maintained via replacement or good-as-new repair; 
therefore, the time between failure and the time to failure are the same. 
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of the LRU instance, then precursor to failure monitoring was unsuccessful. If 

successful, a scheduled maintenance activity is performed and the timeline for the 

socket is incremented by the precursor to failure monitoring sampled TTF. If 

unsuccessful, an unscheduled maintenance activity is performed and the timeline for 

the socket is incremented by the actual TTF of the LRU instance. At each 

maintenance activity, the relevant costs are accumulated. 

 

2.4. Model-Based (LRU-Independent) Methods 

In model-based (LRU-independent) PHM methods, the PHM structure (or 

sensor) is independent of the LRUs, that is, the PHM structures are not coupled to a 

particular LRU’s manufacturing or material variations. An example of a model-based 

method is life consumption monitoring (LCM) [39]. LCM is the process by which a 

history of environmental stresses (e.g., thermal, vibration) is used in conjunction with 

PoF models to compute damage accumulated and thereby forecast RUL. The model-

based methodology forecasts a unique TTF distribution for each instance of an LRU 

based on its unique environmental stress history. For illustration purposes, the model-

based TTF forecast is represented as a symmetric triangular distribution with a most 

likely value (mode) set relative to the TTF of the nominal LRU and a fixed width 

measured in operational hours, Figure 2.2. Other distributions may be chosen and 

Vichare et al. [40] have shown how this distribution may also be derived from 

recorded environment history. The shape and width of the model-based method 

distribution depend on the uncertainties associated with the sensing technologies and 

uncertainties in the prediction of the damage accumulated (data and model 
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uncertainty). The variable to be optimized in this case is the safety margin assumed 

on the LRU-independent method forecasted TTF, that is, the length of time (e.g., in 

operation hours) before the LRU-independent method forecasted TTF the unit should 

be replaced. 

The model-based method proceeds in the following way: for each LRU TTF 

distribution sample (left side of Figure 2.2), an LRU-independent method TTF 

distribution is created that is centered on the TTF of the nominal LRU minus the 

safety margin—right side of Figure 2.2 (note, the model-based methods only know 

about the nominal LRU, not about how a specific instance of an LRU varies from the 

nominal). The LRU-independent method TTF distribution is then sampled, and if the 

LRU-independent method TTF sample is less than the actual TTF of the LRU 

instance, then the LRU-independent method was successful (failure avoided). If the 

LRU-independent method TTF distribution sample is greater than the actual TTF of 

the LRU instance, then the LRU-independent method was unsuccessful. If successful, 

a scheduled maintenance activity is performed and the timeline for the socket is 

incremented by the LRU-independent method sampled TTF. If unsuccessful, an 

unscheduled maintenance activity is performed and the timeline for the socket is 

incremented by the actual TTF of the LRU instance.9  

                                                 
9 LRU-independent fuses and canary devices may require replacement for each alert that they provide 
whether that alert is a false positive or not. After the PHM devices are removed for maintenance, to 
download data, or for other activities, reinstallation follows.   
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In the maintenance models discussed, a random failure component may also 

be superimposed as discussed in [27]. The fixed-schedule maintenance, data-driven 

and model-based method models are implemented as stochastic simulations, in which 

a statistically relevant number of sockets are considered in order to construct 

histograms of costs, availability, and failures avoided. Again, at each maintenance 

activity, the relevant costs are accumulated. 

The fundamental difference between the data-driven and model-based 

methods is that in the data-driven method the TTF distribution associated with the 

PHM structure (or sensor) is unique to each LRU instance, whereas in the model-

based method the TTF distribution associated with the PHM structure (or sensor) is 

tied to the nominal LRU and is independent of any manufacturing or material 

variations between LRU instances. 
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Figure 2.2. Model-based (LRU-independent) modeling approach. 
 Symmetric triangular distributions are chosen for illustration. Note, the LRU TTF PDF (left) and the 
model-based method TTF PDF (right) are not the same (they could have different shapes and sizes).  
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2.5. Discrete Event Simulation Implementation Details 

The model follows the history of a single socket or a group of sockets from 

time zero to the end of support life for the system. To generate meaningful results, a 

statistically relevant number of sockets (or systems of sockets) are modeled and the 

resulting cost and other metrics are presented in the form of histograms. The 

scheduled and unscheduled costs computed for the sockets at each maintenance event 

are given by 

Vf)TV+(+fTf)C+(=fCC irepairireplace iLRU repairiLRUisocket −− 11  (2.1) 

 

where Csocket i is the life-cycle cost of socket i; CLRU i is the cost of procuring a new 

LRU; CLRU repair i  is the cost of repairing an LRU in socket i; f is the fraction of 

maintenance events on socket i that require replacement of the LRU in socket i with a 

new LRU; Treplace i is the time to replace the LRU in socket i; Trepair i is the time to 

repair the LRU in socket i; and V is the value of time out of service. 

Note, the values of f and V generally differ depending on whether the 

maintenance activity is scheduled or unscheduled. 

Time

• Base LRU recurring cost

• PHM LRU recurring cost

• LRU/socket associated 

nonrecurring cost

• System recurring cost

Infrastructure cost (charged periodically)

Maintenance event 

requiring a 

replacement LRU

• Base LRU recurring cost

• PHM LRU recurring cost

 
 

Figure 2.3. Temporal ordering of implementation cost inclusion in the discrete event simulation. 
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As the discrete event simulation tracks the actions that affect a particular 

socket during its life cycle, the implementation costs are inserted at the appropriate 

locations, Figure 2.3. At the beginning of the life cycle, the non-recurring cost is 

applied. The recurring costs at the LRU level and at the system level are first applied 

here and subsequently applied at each maintenance event that requires replacement of 

an LRU (CLRU i, as in equation (2.1)). The recurring LRU-level costs include the base 

cost of the LRU regardless of the maintenance approach. Discrete event simulations 

that compare alternative maintenance approaches to determine the ROI of PHM must 

include the base cost of the LRU itself without any PHM-specific hardware. If 

discrete event simulation is used to calculate the life-cycle cost for a socket under an 

unscheduled maintenance policy, then the recurring LRU-level cost is reduced to the 

cost of replacing or repairing an LRU upon failure. Under a policy involving PHM, 

the failure of an LRU results in additional costs for the hardware, assembly, and 

installation of the components used to perform PHM. The infrastructure costs are 

distributed over the course of the socket’s life cycle and are charged periodically. 

The model assumes that the TTF distribution represents manufacturing and 

material variations from LRU to LRU. The range of possible environmental stress 

histories that sockets may see are modeled using an environmental stress history 

distribution. Note, the environmental stress history distribution need not be used if the 

TTF distribution for the LRUs includes environmental stress variations. The 

environmental stress history distribution is not used with the data-driven or model-

based methods. Random TTFs are characterized by a uniform distribution with a 
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height equal to the average random failure rate per year and a width equal to the 

inverse of the average random failure rate. 

Uncertainty, which must be propagated throughout the life-cycle simulations 

of systems, is present at multiple levels in the calculation of RUL. The data collected 

by the prognostic devices, the material inputs reliability modeling depends on, and the 

underlying assumptions of electronic failure behavior that are applied to produce 

reliability estimates may not always be accurate.  

Uncertainties can be handled using different approaches; however, the most 

general method of handling uncertainties is to use a Monte Carlo analysis approach in 

which each input parameter is optionally represented as a probability distribution.  

The implementation of the maintenance modeling discussed in this chapter is 

implemented as a Monte Carlo analysis that follows a statistically relevant number of 

sockets over their support lives. 
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2.6. Spares Management 

The maintenance planning simulation can be performed assuming that spares 

can be purchased as needed, or that spares reside in an inventory.  Figure 2.4 shows a 

graphical representation of the sparing process in this model.  The spares inventory 

model includes the purchase of an initial quantity of spares (the purchase is assumed 

to happen at the start of the simulation).  As the LRUs in sockets fail and require 

spares, they are drawn from the inventory.  An inventory carrying cost is assessed per 

year based on the number of spares that reside in the inventory at the beginning of the 

year.  When the number of spares in the inventory drops below a defined threshold, 

additional spares are automatically purchased (this is called a spare replenishment).  

The replenishment spares become available in the inventory for use after a lead-time.  

Cost of money is assessed on all spares purchases, inventory, and replenishment 

activities.   

Time

Initial spares purchase

Inventory

Initial spares purchase

Inventory

LRUs drawn from inventoryLRUs drawn from inventory

LRUs neededLRUs needed

Inventory level 
drops below 
threshold

Inventory level 
drops below 
threshold

Additional 
spares ordered
Additional 
spares ordered

System down 

waiting for spare

System down 

waiting for spare

Delivery 

leadtime

Spare 
replenishment

Delivery 

leadtime

Spare 
replenishment

No spare 
available
No spare 
available

 
 

Figure 2.4. Spares management for a single socket. 
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Only a fraction of the LRU failures require permanent spares because they 

cannot be repaired.  Repairable LRU failures only require spares for the time during 

their repair. 

Each socket is assumed to have its own independent inventory. In other 

words, I am assuming that these individual inventories could be equivalent to one or 

multiple large inventories that are used by the whole population of sockets. This 

means that each socket in the population is subject to the same spares management. 

This assumption is most appropriate for large populations of sockets where LRUs 

have the same TTF distributions, since on average each socket will use the same 

number of spares throughout its support life. This assumption doesn’t hold for a 

population of LRUs with different TTF distributions that draw from the same 

inventories; since each socket could use on average a different number of spares 

throughout its support life, thus the spares management will be different for each 

socket. 

Logistics management models that include detailed treatments of inventories 

and spares in the context of PHM appear in [36, 37, 41].   

 

2.7. Operational Profile 

The operational profile of systems equipped with PHM dictates how the 

information provided by PHM may be used to affect the maintenance and usage 

schedules. The effective costs associated with maintenance actions depend on when 

(and where) actions are indicated relative to some operational cadence. Cadences may 

be proscribed by business constraints, regulations, or mission requirements and may 



 28 
 

be subject to change as user requirements shift. The cadence may be best described 

according to a probabilistic model rather than a timeline, that is, a defined probability 

of a maintenance request being issued before, during, or after a mission or particular 

type of use. The implications of the safety margins or prognostics distances will vary 

with the difference in cadence to affect the timing of maintenance actions.  

The operational profile is reflected in the maintenance modeling by varying 

the value of the parameter V in equation (2.1).  The value of an hour out of service, V, 

is set to a specific value if the maintenance is scheduled, but if the maintenance is 

unscheduled, the value of V is given by the data in Table 2.1. 

 
Table 2.1. Data Defining Unscheduled Maintenance Operational Profile 

Maintenance Event Probability V 

Maintenance event before mission (during preparation) Pb Vb 

Maintenance event during mission Pd Vd 

Maintenance event after mission (during downtime) Pa Va 

 

 

“Before mission” represents maintenance requirements that occur while 

preparing to place the system into service, that is, while loading passengers onto the 

aircraft for a scheduled commercial flight.  “During mission” means that the 

maintenance requirement occurs while the system is performing a service and may 

result in interruption of that service, for example, making an emergency landing or 

abandoning a HMMWV by the side of the road during a convoy.  “After mission” 

represents time that the system is not needed, that is, the period of time from midnight 

to 6:00 am when the commercial aircraft could sit idle at a gate. 

When an unscheduled maintenance event occurs, a random number generator 

is used to determine the portion of the operational profile the event is in and the 
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corresponding value (V) used in the analysis.  This type of valuation in the discrete 

event simulation is only useful if a stochastic analysis that follows the life of a 

statistically relevant number of sockets is used. 

 

2.8. Implementation Costs 

Implementation costs are the costs associated with the realization of PHM in a 

system, the technologies and support necessary to integrate and incorporate PHM into 

new or existing systems. The costs of implementing PHM can be categorized as 

recurring, non-recurring, or infrastructural depending on the frequency, and role of 

the corresponding activities.  The implementation cost is the cost of enabling the 

determination of Remaining Useful Life (RUL) for the system.  

Non-recurring costs are associated with one-time only activities that typically 

occur at the beginning of the timeline of a PHM program, although disposal or 

recycling non-recurring costs would occur at the end. Non-recurring costs can be 

calculated on a per-LRU, per-socket, or per a group of LRU or sockets basis.  The 

specific non-recurring cost is calculated as 

qualdoctrainingdev_softdev_hardNRE CCCCCCC +++++= int  (2.2) 

Recurring costs are associated with activities that occur continuously or 

regularly during the PHM program. As with non-recurring costs, some of these costs 

can be viewed as an additional charge for each instance of a LRU, or for each socket 

(or for a group of LRU or sockets).  The recurring cost is calculated as 

installtestassemblyhard_addREC CCCC C +++=               (2.3) 
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Unlike recurring and non-recurring costs, infrastructure costs are associated 

with the support features and structures necessary to sustain PHM over a given 

activity period, and are characterized in terms of the ratio of money to a period of 

activity (i.e., dollars per operational hour, dollars per mission, dollars per year). The 

infrastructure costs are calculated as 

CINF = Cprognostic maintenance + Cdecision + Cretraining + Cdata  (2.4) 

See [42] for a detailed discussion of the various implementation cost 

contributions. 

 

2.9. Return on Investment (ROI) Calculation 

In general, ROI is the ratio of gain to investment. Equation (2.5) is a way of 

defining ROI over a system’s life cycle. 

Investment

InvestmentReturn
 ROI

−
= 1

 
−=

Investment

CostAvoided
 (2.5) 

The central ratio in equation (2.5) is the classical ROI definition, and the ratio 

on the right is the form of ROI that is applicable to PHM assessment.  In the case of 

PHM, the investment includes all the costs necessary to develop, install, and support a 

PHM approach in a system; while the avoided cost is a quantification of the benefit 

realized through the use of a PHM approach.  Note that not all researchers that quote 

ROI numbers for the application of PHM to systems define ROI in the same way; 

therefore, published ROI may not be directly comparable in all cases.  Equation (2.5) 

is the standard definition used by the financial world for ROI. 

Viable business cases for PHM do not necessarily require that the ROI be 

greater than zero. ROI > 0, implies that there is a cost benefit.  In some cases, the 
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value of PHM is not directly quantifiable in monetary terms, but is necessary in order 

to meet a system requirement that could not otherwise be attained, e.g., an availability 

requirement.  However, the evaluation of ROI (whether greater than or less than zero) 

is still a necessary part of any business case developed for PHM [42].  

For PHM, ROI must be measured relative to whatever methodology is 

currently used to manage the system.  For electronic systems, a common management 

approach is unscheduled maintenance. Following an unscheduled maintenance policy, 

systems are operated until failure, and are then repaired or replaced.  Applying 

equation (2.5) to measure ROI relative to unscheduled maintenance gives 

( ) ( )

( )
1−

−

−−−
=

usPHM

PHMPHMusus

II

ICIC
 ROI   (2.6) 

In my case, I define Ius = 0, i.e., the investment cost in unscheduled 

maintenance is indexed to zero by definition.  This does not imply that the cost of 

performing maintenance in the unscheduled case is zero (the cost of performing 

maintenance is part of Cus), but reflects that a maintenance approach relying purely on 

unscheduled maintenance makes no investment in PHM.  Setting Ius = 0, then 

equation (2.6) becomes 

( )
1−

−−
=

PHM

PHMPHMus

I

ICC
 ROI  (2.7) 

Equation (2.7) measures ROI of a PHM approach relative to unscheduled 

maintenance; if CPHM  is equal to Cus, then ROI equals 0, the breakeven point.10  

                                                 
10 Equation (2.7) is only valid for comparison of ROI to unscheduled maintenance, which is a 
convenient well defined solution to measure ROI.  Using equation (2.7), one can compare the relative 
ROI of multiple PHM approaches measured from unscheduled maintenance; however, the ROI of one 
PHM approach relative to another is not given by the difference between their ROI relative to 
unscheduled maintenance.  To evaluate ROI relative to a baseline other than unscheduled maintenance, 
appropriate values of Avoided Cost and Investment must be substituted into equation (2.5). 
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The investment cost is the effective cost per socket of implementing PHM, 

and then using the knowledge it creates to guide maintenance actions, and planning. 

The PHM investment cost is calculated as 

INFRECNREPHM CCCI ++=  (2.8) 

The costs of false alarm resolution, procurement of a different quantity of 

LRU than the number required by an unscheduled maintenance approach, and 

maintenance costs that differ from unscheduled maintenance are not included in the 

investment cost because they are the result of the investment, and are reflected in 

CPHM.  CPHM must also include the cost of money differences associated with 

purchasing LRU at maintenance events between unscheduled maintenance, and a 

PHM approach; i.e., even if both approaches end up purchasing the same number of 

replacement LRU for a socket, they may purchase them at different points in time 

resulting in different effective costs if the discount rate is non-zero.  If replacement 

LRU are drawn from an inventory of spares (as opposed to purchased as needed), 

then there may be no cost of money impact on ROI associated with the procurement 

of spares. 

The ROI in equation (2.7) can be calculated statically using values of Cus, 

CPHM, and IPHM that are averaged over an entire population of sockets.  However, in 

reality, a population of sockets will result in a distribution of ROI (every socket 

potentially having a different ROI).  To calculate the distribution of ROI, each 

member of the population has to be independently tracked through its lifetime 

assuming first an unscheduled maintenance policy, and then assuming a PHM 

maintenance approach (using identical samples from the distributions that represent 
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the member’s characteristics and maintenance costs in a Monte Carlo analysis). In 

this manner, a separate ROI is calculated for each member of the population.  When 

the process is repeated on an entire population of sockets, a histogram of ROI is 

generated from which business case parameters can be extracted.  

 

2.10. Summary 

This chapter provided an overview of the base maintenance model used in this 

dissertation.  Additional details on the formulation of the model can be found in [27] 

and [42].  Applications of this model appear in [27, 42, and 43].  This model has also 

been released as a software tool that is supported by CALCE for members of the 

CALCE PHM Consortium [44]. 

This model represents a forward discrete event simulator that can determine 

life cycle cost, ROI, and availability (as an output not an input).  In this dissertation, 

this simulation will be used: (a) to order events for the design for availability solution; 

(b) to generate availability outputs for verification of the design for availability; and 

(c) to concurrently calculate life cycle cost and ROI with the design for availability 

activities.   
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Chapter 3: Design for Availability  

This chapter describes the formulation of a general design for availability 

approach that uses an availability requirement (input) to generate system parameters.  

Parameters that depend on either uptime or downtime (but not both) and parameters 

that depend on both uptime and downtime are addressed. A detailed description of 

each step of the formulation and the application of the methodology is provided (for 

both types of system parameters). 

 

3.1. Domain of Applicability – An Example Design for Availability Problem 

Statement 

While availability is critical to the many different types of systems mentioned 

in Chapter 1, in this section I will briefly describe one particular design example so as 

to better define design for availability’s domain of applicability and to address how it 

could be incorporated into a design problem statement.  

Consider a multifunctional display (MFD) that is used in the cockpits of 

Boeing 737 aircraft. If the MFD is non-operational, the aircraft cannot takeoff, 

resulting in flight delays and/or cancelations, both of which cost an airline money. An 

airline decides that they wish to impose a 97% mean availability requirement on the 

MFD units across their entire fleet of 737s over some prescribed period of time 

subject to some range of operational conditions and operational schedule. Presumably 

this availability requirement is arrived at based on a flow down of other business 

requirements and targets. The airline’s availability requirement (and other operational 
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assumptions) represents a design problem that may be imposed on: the manufacturer 

of the MFD, the airline’s own procurement and support organizations, or both.  

First, consider the manufacturer of the MFD. One design attribute that the 

manufacturer can affect is the reliability of the MFD, which is actually represented by 

a composite of failure distributions corresponding to relevant failure mechanisms. 

Using a “design for availability” methodology, the manufacturer could use the 97% 

mean availability requirement coupled with the range of environment stress 

conditions that they expect the MFDs to encounter during operation to determine the 

required reliability distributions corresponding to one or more of the relevant failure 

mechanisms. The manufacturer could then modify the material selection, component 

selection, and/or design rules in order to meet the required reliability. 

Alternatively, the airline could use the mean availability requirement to enable 

selection between competing suppliers of the MFD unit. Obviously, the availability 

requirement could be used to determine the necessary composite reliability of a MFD 

unit and this could be used as a selection criteria. However, design of availability-

centric systems is not all about designing the object, it’s just as much about designing 

how you will support the object. To this end, consider the Inventory Lead Time (ILT).  

The ILT is the amount of time it takes to receive spares after they are ordered. The 

airline could impose their mean availability requirement along with the spares 

inventory (threshold for replenishment, inventory holding costs, maximum number of 

spares held, etc.) to determine a maximum allowable ILT for the MFD unit and then 

select the supplier of the MFD based on the supplier’s capability to provide spares 

that satisfy the required ILT. 
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3.2. Introduction to Design for Availability 

Most availability and life cycle cost predictions used during the design and 

support of real systems are performed using discrete event simulators, e.g., Chapter 2 

and [15].  In general, discrete event simulators order the failure and maintenance 

events for a system temporally, and the times associated with the failure and 

maintenance events can be readily accumulated to estimate availability. Thus, it is 

straightforward for the simulation to compute the availability based on a particular 

sequence of failures, logistics and maintenance events. 

The requirements for PHM are based on a set of reliability, operational 

profile, and logistics parameters, which in turn are dependent on availability 

objectives. Thus, for the same availability requirement different sets of system 

parameters could be determined based on the selected PHM sustainment approach; 

i.e., the prediction of system parameters (to meet availability requirements) is 

dependent on the applied PHM sustainment approach. However, in general this 

prediction is a stochastic reverse simulation problem.  

Availability requirements can be satisfied by running discrete event simulators 

in the forward direction (forward in time) for many permutations of the system 

parameters and then selecting the inputs that generate the required availability output, 

e.g., [45, 46].  These “brute force” search-based approaches are computationally 

impractical for real problems (particularly for real-time problems), are unable to deal 

with general uncertainties, and can’t accommodate an availability requirement that is 

represented as a probability distribution.  There have also been attempts to perform 

reverse simulation (run discrete event simulators backwards in time) [47, 48], but this 
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has only been demonstrated on extremely simple problems with no applicability to 

the real world systems. While determining the availability that results from a 

sequence of events is straightforward, determining the events that result in a desired 

availability is not, and has not in general been done. Alternatively stated, availability 

is straightforward to predict based on the system’s reliability, operation, sparing, etc., 

however, the general prediction of the system parameters to meet a required 

availability (“design for availability”) has never been done and it is the goal of this 

dissertation   

To meet an availability requirement one can change the reliability, logistics or 

operation of a system or a process. For example, I may keep the same reliability and 

operational profile of the system, and change its logistics management (e.g., reduce 

the maintenance downtime by stocking spare parts in more locations). Similarly, 

reliability or operational characteristics (or some combination of them) could be 

modified to meet an availability requirement.  Deriving the appropriate system 

parameters for a specific availability requirement, will ease logistics management, 

avoid availability cost penalties, and predict the required reliability of the system. 

The goal of this work is to reverse the problem setup; this means, instead of 

solving for availability for a specific set of system parameters, I will solve for system 

parameters for a specific availability. The design for availability model could be used 

to generate system reliability, operation, sparing, etc., for a specific availability, i.e., 

for a specific uptime (time that the system is up and running as requested) and 

downtime (time that the system is down undergoing a repair or waiting for spares). 

The approach presented here is not based on running backwards discrete event 
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simulation, i.e., the model runs a forward discrete event simulation, but, instead of 

using system parameters to compute uptimes or downtimes, the new model uses the 

specified availability requirement (input) to impose the appropriate uptimes and 

downtimes, and solve for the selected unknown system parameters (output).  

 

3.3. Design for Availability Approach 

Figure 3.1 shows the steps to formulate and execute the design for availability 

solution. Details for each step of the process of determining the selected unknown 

system parameters concurrently (for a specific availability requirement) are discussed 

in the following sections.   

Determine where/when the availability requirement is imposed on the system

System availability requirement expressed (most generally) as a probability distribution

Select design and/or support parameter(s) to solve for

Could be 

specified by 

an availability 

contract

Parameters affecting both 

downtime and uptime 

Parameters affecting either 

downtime or uptime 

Start with a guess of the selected system 

parameter, to initiate the simulation

Determine the relationship between the known 

system parameters, required availability and 

the selected unknown system parameter(s)

Solve for the selected system parameter(s)

Impose the selected system parameter(s) 

requirement on the downtime and uptime

Impose a downtime or uptime requirement on 

each selected design and/or support parameter 

Determine the relationship between downtime 

or uptime and the selected system parameter(s)

Solve for the selected system parameter(s)

Update the imposed downtime or uptime

 
Figure 3.1.  Design for Availability Methodology. 
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Interpreting the Availability Requirement 

The design for availability methodology is applicable to any type of input of 

the availability requirement (e.g., single value, probability distribution, range of 

values, etc.). A realistic availability requirement is generally expressed as a 

probability distribution. Since, even when a contract specifies the availability 

requirement as a single value, the interpretation of this single value either leads to 

considering the average availability of a population of systems, i.e., the average of a 

distribution; or the single value is the minimum availability of all system instances 

within the population. These interpretations are consistent with the fact that the 

reliability of the product or system is represented as a probability distribution (or, 

more accurately a set of probability distributions each corresponding to a different 

relevant failure mechanism); thus using a logistics management plan that is common 

across the population, each system instance will have a different availability value 

depending on the failure dates of the subsystem instances that occupy it and the 

operational profile variations. 

 

Determine Where/When the Availability Requirement is Imposed 

To generalize the design for availability model, I adopt a conservative 

approach by fulfilling an availability requirement at all times during the entire support 

life. In other words, the model satisfies any availability contract requirement, 

regardless of the availability evaluation time intervals specified by the contract terms. 

However, if needed, the model could be adjusted to evaluate the availability 

requirement only at the contract’s defined times (which would be less conservative). 
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For the remainder of this discussion I will assume that the availability requirement 

implies that the operational availability (Ao) should not drop below the availability 

requirement value at any time during the entire support life.  

By analyzing the Ao variations based on equation (1.1), the Ao keeps 

decreasing during downtimes and increasing during uptimes. In other words, Ao 

reaches its local minimum values at the end of every downtime (e.g., points 1 and 2 in 

Figure 3.2). Thus, if the availability requirement is satisfied at the end of every 

downtime (minimum Ao values satisfy the requirement), it will be satisfied at all times 

during the support life of the system. Therefore my approach is to impose the 

availability requirement at the end of every downtime. 

 

Select the Design and/or Support Parameter to Solve for 

Different values of a system parameter could generate different downtimes 

and/or uptimes, resulting in different availability values. For example, to meet a 

specific availability requirement, the reliability of the system could be improved, 

and/or the logistics management could be modified. This means, once the availability 

requirement is defined, a decision has to be made upfront regarding which system 

 
Figure 3.2.  Availability variations as a function of time. 
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parameter the system manufacturer, provider or user is willing to change to meet the 

availability requirement. Once the system parameter that will be modified to meet the 

availability requirement is selected, the availability requirement will be used to solve 

for it, i.e., the availability requirement is used as an input to the model, and the 

selected unknown system parameter is one of the resulting outputs of the model. 

 

Determine the Type of System Parameter 

In the context of design for availability, there exist two distinct types of 

system parameters: parameters affecting either uptime or downtime (not both) and 

parameters concurrently affecting both uptime and downtime. As shown in Figure 3.1 

the steps to formulate and execute the design for availability solution are different for 

each type of system parameter.  

In the case of parameters affecting either uptime or downtime (not both), one 

of the two quantities (uptime or downtime) is known and can be determined from the 

known system parameters, while the other quantity is unknown. In other words, a 

change in the value of the selected unknown system parameter produces a change in 

only one of the two quantities (either uptime or downtime), while the other quantity is 

exclusively dependent on the other known system parameters. For example, if uptime 

is the known quantity (determined from the known system parameters), while the 

downtime is the unknown quantity that is imposed based on the required availability 

and the system generated uptimes. Then, the selected unknown system parameter 

solely depends on the downtime and is computed based on the imposed downtime.  
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However, in the case of parameters concurrently affecting both uptime and 

downtime, a change in the value of this type of parameter could produce a change in 

both uptime and downtime. Both quantities (uptime and downtime) are dependent on 

this type of parameters (reliability is a prime example). When one of these system 

parameters is unknown, then both uptime and downtime are unknown. Therefore, I 

cannot impose exclusively a downtime or uptime requirement as described in the 

previous paragraph. This means, a relationship between the known system 

parameters, required availability and the selected unknown system parameter needs to 

be defined, to solve for this type of system parameter. 

 

Parameters Affecting either Uptime or Downtime (not both) 

Impose an Uptime or Downtime requirement on the selected system parameter 

 The Ao is a function of accumulated uptimes and downtimes. Therefore, 

imposing an availability requirement means either imposing an uptime requirement 

while the downtime is automatically generated by the system parameters; or imposing 

a downtime requirement while the uptime is automatically generated by the system 

parameters. Note, for this type of system parameters (i.e., parameters affecting either 

uptime or downtime) either an uptime or a downtime requirement is imposed, not 

both.  In both cases, the imposed downtimes or uptimes are computed at defined 

times or events as a function of the required Ao. 

 Assuming that to satisfy an availability requirement I need to impose 

downtimes. In this case, I can ignore all uptimes and only focus on the required 

downtimes to fulfill the availability requirement; and then determine a relationship 
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that allows us to derive the system parameters that produce these downtimes. In this 

case, by generating the appropriate downtimes, only the system parameters that are 

responsible for generating the downtimes could be computed as outputs; other system 

parameters that are not involved in generating downtimes should be fixed, i.e., used 

only as inputs. Equations (3.1) and (3.2), which are derived from equation (1.1), 

express the relationships that are used to impose the first downtime (DT1) and a kth 

downtime (DTk), respectively.  

 

( )( )
itylAvailabi

tyAvailabili-1TU
DT

1
1 =           (3.1) 

( )

∑

∑

-

=

=
-

-

=

1k

1j

j

k

1j

j

k TD
tyAvailabili

tyAvailabili1TU

TD           (3.2) 

where Availability represents the specified availability requirement, and UTj 

corresponds to the jth uptime.   

 Basically, the criteria of imposing either an uptime or downtime requirement 

is based on the unknown system parameter that I desire to determine to fulfill a 

specific availability requirement. For example, if the uptime remains constant while 

varying a selected unknown system parameter, meaning that the uptime is 

independent of this unknown parameter; while, the downtime values are changing. 

Then I must impose the downtime to meet the availability requirement; and vice 

versa.   
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Determine the Relationship between Uptime or Downtime and the Selected System 

Parameter 

 Assume that the set of system parameter that I am interested in computing to 

meet the availability requirement is explicitly related to the downtimes (based on the 

criteria mentioned in the previous section), instead of the uptimes. Thus, I want to 

impose the downtime requirement. Then, I need to establish a relationship between 

the unknown set of system parameter and the imposed downtimes. Based on this 

relationship, the missing system parameters could be computed and updated as soon 

as the downtimes are determined. 

 In this case, a relationship between the selected unknown system parameters 

and the required availability needs to be determined in order to solve for the unknown 

system parameter. Basically, I have two unknown quantities: the unknown system 

parameter, and the downtime. Therefore, I need to establish two relationships to be 

able to solve for the two unknown quantities. Since availability is by definition a 

function of uptime and downtime; therefore I can solve for downtime as a function of 

the required availability and uptime, where uptime is a known quantity generated 

through the known systems parameters. This generates the first relationship; which is 

used to solve for the downtime. Also, since these types of system parameters 

explicitly affect the downtime, then the selected unknown system parameter could be 

expressed as a function of downtime; hence the second relationship; which is used to 

solve for the unknown system parameter. To summarize, the downtime is imposed 

through the availability requirement, then the imposed downtime quantity is used to 

solve for the selected unknown system parameter.  
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 Defining a relationship between the selected system parameter and the 

downtime, allows the inclusion of the availability requirement into the computation of 

the selected system parameter. Notice, that in this section, for the purpose of 

illustration, I have assumed that the selected unknown system parameter affects the 

downtime; a similar approach could be adopted if the selected system parameter 

affects the uptime (instead of downtime). 

 

Update the Imposed Uptime or Downtime 

 In this section, for demonstration purposes, I will assume that the selected 

unknown system parameter is explicitly dependent on the required downtime to 

satisfy the availability requirement, while the rest of the system parameters are given 

and responsible for fully generating the uptime. However, before the end of this 

section I will provide an analogy for fulfilling the availability requirement by 

imposing the required uptime (instead of downtime), where the selected unknown 

system parameter is explicitly dependent on the uptime. 

 The model uses an availability requirement (input) to solve for a specific 

system parameter (output). My goal is to derive a unique system parameter value for 

a given availability requirement. Therefore, the model imposes the appropriate 

downtimes that satisfy the availability requirement; then, the system parameter is 

derived based on each imposed downtime. The procedure of defining the relationship 

between system parameter and required downtimes is discussed in Section 3.5.2. 

However, the challenge here is the fact that availability is not determined by a single 

downtime value, but rather a sequence of downtime values that are not necessarily 
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identical; each resulting in different computed values for the system parameter. As a 

result, by the end of the simulation I could generate multiple values for the same 

system parameter with no way to determine which value to use to fulfill the 

availability requirement. 

 In the simplest case, if all downtimes were identical, the same value for the 

system parameter would have been generated at the conclusion of every downtime. 

To achieve this, I wish to select a single downtime value that is the maximum 

allowable downtime to meet a specific availability requirement, and then use this 

quantity as a constant downtime value that will fulfill the availability requirement at 

every point throughout the entire support life. To derive the maximum allowable 

downtime value, I have explored two scenarios. 

 The first scenario is illustrated in Figure 3.3a, where the first imposed 

downtime (DT1) duration is shorter than the second imposed downtime (DT2), where 

both downtimes have been imposed based on the same availability requirement. In 

this case, averaging the two downtimes would generate an average downtime 

(DTAverage) that is larger than DT1, thus the availability requirement will not be 
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Figure 3.3.  Scenarios of downtimes requirement. 
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fulfilled at the end of DT1, equation (3.3); i.e., in this situation the maximum 

allowable downtime duration that the system can accommodate without failing to 

satisfy the availability requirement is constrained by the value of DT1. Therefore, DT2 

value should be substituted for DT1. 
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 The second scenario is illustrated in Figure 3.3b, where DT1 is larger than 

DT2. In this case, averaging the two downtimes would generate a DTAverage smaller 

than DT1, thus the availability requirement will be fulfilled at the end of DT1, 

equation (3.4). Also, notice that the availability requirement at any specific time 

includes all accumulated previous downtimes. Thus, when using the average value at 

the end of DT2, the availability requirement will still be satisfied, equation (3.5), since 

the accumulated averages are just the accumulated downtimes, i.e., summation of DT1 

and DT2.  Therefore, in this situation the maximum allowable downtime duration that 

the system can accommodate without negating the availability requirement is the 

average downtime. 
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 Figure 3.4 summarizes both cases in one general case. The model imposes the 

required downtime to meet the availability requirement, and then it evaluates the 

current downtime with respect to the previous one. If the currently imposed downtime 

is larger than the previous one, then the model substitutes the current downtime value 

for the previous one. But if the currently imposed downtime is shorter than the 

previous one, then the model averages the current downtime value with all previous 

ones. The goal of this procedure is to generate one unique value of the maximum 

allowable downtime that meets the availability requirement. Note, during this 

procedure, the unknown system parameter that is determined based on the downtime 

requirement, gets updated as soon as the downtime values are updated.  
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Figure 3.4. General case of updating downtime requirement. 
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Figure 3.5. General case of updating uptime requirement. blank 
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 Note, if the unknown system parameters are explicitly generating the uptime, 

instead of the downtime, then, by analogy, I can use a similar procedure to impose 

and update the uptimes (Figure 3.5) to derive one unique value of the system 

parameters. In this case, I will derive the minimum allowable uptime that meets the 

availability requirement; then use the derived quantity to compute the corresponding 

system parameters. 

  

Solve for the Selected System Parameter 

 Once the final value of the downtime (or uptime) is imposed and updated, the 

selected unknown system parameter is solved for, using the relationship defined in 

section 3.5.2. Basically, this system parameter value was derived based on the 

specified availability requirement. 

 Finally, the design for availability model uses this final value of the selected 

system parameter that is necessary to meet the Ao requirement, to compute other 

quantities of interest (e.g., life cycle cost, investment cost, avoided failures, etc.). 

 

Parameters Affecting both Uptime and Downtime 

Determine the relationship between the known system parameters,  required 

availability and the selected unknown system parameter 

 When the selected unknown system parameter concurrently affects downtime 

and uptime, a relationship between the known system parameters, required 

availability and the selected unknown system parameter needs to be determined in 

order to solve for the unknown system parameter. 



 50 
 

 In this case, I have three unknown quantities: 1) the unknown system 

parameter, 2) the downtime and 3) the uptime. Therefore, I need to establish three 

relationships to be able to solve for the three unknown quantities. Since this type of 

system parameters explicitly affects the uptime, therefore, the uptime could be 

expressed as a function of the unknown system parameter; this generates the first 

relationship. Similarly, the unknown system parameter explicitly affects the 

downtime, thus, downtime could be expressed as a function of the unknown system 

parameter; generating the second relationship. Also, availability is by definition a 

function of uptime and downtime; hence the third relationship. At this point, I have 

defined three relationships, with three unknowns (the unknown system parameter, the 

downtime and the uptime), thus I can solve for the unknown system parameter, 

uptime and downtime. 

 

Start with a guess of the selected system parameter, to initiate the simulation 

 In general, a closed-form analytical solution cannot be determined when 

solving for the unknown system parameter as a function of known quantities 

(availability requirement and other known system parameters), since the sequences of 

the accumulated event outcomes are only generated in real simulation time. Also, 

when modeling real complex systems, probabilistic models are usually used where 

quantities include uncertainties (probability distributions).  

 The event outcomes associated with the sampled values can only be 

accumulated by sampling the known quantities in real simulation time. Basically, an 

event outcome generated by the same known system parameter is not generally 
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repeated (i.e., it does not generally reoccur in an identical form at a regular interval). 

Each sample of the same quantity, i.e., system parameter, could result in a different 

event outcome, producing a different sequence of events and results for every system 

instance.  

 As a result of the situation described above, a conservative guess of the initial 

value of the selected unknown system parameter is required in order to launch the 

simulation, i.e., launch the sampling of the known quantities and accumulate the 

events outcomes. However, this guess is only used to initiate the simulation; it does 

not affect the final results of the analysis. 

 

Solve for the selected system parameter 

 The model uses the initial guessed value of the selected unknown system 

parameter to generate the first uptime and downtime values. Then, the unknown 

system parameter value is computed and updated, at the end of the first downtime, 

while accounting for the accumulated events type and duration. The same process is 

repeated at the end of every downtime. Basically, the selected unknown system 

parameter is solved for or imposed using the known system parameters and the 

availability requirement. 

 

Impose the selected system parameter requirement on the uptime and downtime 

 The computed system parameter value is used to compute and update the 

uptime and downtime values. Notice that the availability requirement was imposed 

through the selected system parameter, then the requirement has been transferred 
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through the selected system parameter to impose the uptime and downtime values that 

are necessary to meet the availability requirement. Once all quantities are computed 

and updated, the process continues forward in time to the next event. The same 

computational process is performed at the end of every downtime, until the timeline 

reaches the end of the system’s support life. 

 It is important to note that the described process is not iterative. Updating the 

unknown system parameter once at the end of every downtime is not the same as 

using multiple values of the unknown system parameter and continually iterating the 

entire process until the availability requirement is met. Because it is not iterative, it 

has the following advantages: computationally simple and straightforward, an exact 

solution could be determined, and a real-time assessment could be performed. 

 Finally, the model uses the updated selected system parameter, uptimes, and 

downtimes to compute other quantities of interest (e.g., life cycle cost, avoided 

failures, etc.). 
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Chapter 4: Application of the Methodology 

The design for availability methodology described in Chapter 3 has been 

implemented within the maintenance ROI model described in Chapter 2, for 

demonstration and testing (i.e., verification). This chapter presents the application of 

the methodology to a case study example, to determine the necessary system 

parameters to meet a specific availability requirement. First, a derivation of the 

maximum allowable inventory lead time is presented as an example of determining 

system parameters affecting either uptime or downtime. Then a derivation of the 

minimum allowable system reliability is presented as an example of determining 

system parameters affecting both uptime and downtime. For both examples, a cost 

analysis of the system management using an unscheduled maintenance policy and a 

data-driven PHM approach is provided, this includes return on investment (ROI) and 

life cycle cost analysis. 

The maintenance ROI model, i.e., PHM ROI model, described in Chapter 2 is 

a discrete-event simulation that follows a population of sockets (a socket is an 

instance of an installation location for an LRU) through their lifetime from first line 

replaceable unit (LRU) installation in the socket to retirement of the socket. This is 

implemented as a Monte Carlo simulation. The simulation is a stochastic simulation 

of a timeline where specific events are added to the timeline and the resulting event 

order and timing can be used to analyze throughput, cost, availability (as an output), 

etc. 

The prediction of the remaining useful life (RUL) is determined by the 

sampling of both the time-to-failure (TTF) values and the distributions that are used 
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to model the effectiveness of a particular PHM approach. The sampling of the TTF 

values is defined differently for each PHM sustainment approach (e.g., data-driven, 

model-based, fixed interval scheduled maintenance and unscheduled maintenance) – 

see Chapter 2. The PHM ROI model includes the modeling of other quantities as well 

(e.g., operational profile, false positives, cost of money, inventory management, etc.). 

 

4.1. Case Study Data Inputs 

This section provides model inputs and assumptions that are used for the case 

study examples presented in this chapter.  The LRU used in this example is an 

avionics multifunction display (MFD). The implementation costs are summarized in 

Table 4.1. The discount rate on money used is 0.07.  

 
Table 4.1. Implementation Costs  

Frequency Type Value 

Recurring Costs 
Base cost of an LRU 

(without PHM) 
$25,000 per LRU 

Recurring Costs Recurring PHM cost 
$155 per LRU 
$90 per socket 

(CREC) 

Recurring Costs Annual Infrastructure 
$450 per socket 

(CINF) 

Non-Recurring Engineering PHM cost $700 per LRU (CNRE) 

  

 

The cost per hour out of service is $500 for scheduled maintenance and $5092 

for unscheduled maintenance assuming during mission failures. However, I assume 

that if the multifunction display (MFD) is not functional and the inventory is out of 

spares, thus the aircraft is grounded for more than 24 hours waiting for spares 

replenishment; then the value of an hour out of service drops to 10% of the cost of the 
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original aircraft being out of service. The operational profile is summarized in Table 

4.2 [42, 49], and a 20 years support life was chosen based on [50]. 

 
Table 4.2. Operational Profile 

Factor Multiplier Total 

Support life: 20 years 2,429 flights per year  
48,580 flights over 

support life 

7 flights per day 125 minutes per flight 
875 minutes in flight per 

day 

45 minutes turnaround 
between flights [51] 

6  preparation periods per day 
(between flights) 

270 minutes between 
flights per day 

 

 

4.2. Use of Design for Availability to Determine System Parameters Affecting 

either Uptime or Downtime 

Demonstration and Verification of the Methodology: Logistics (Inventory) 

Parameters 

In this section the design for availability methodology will be demonstrated 

for the derivation of the first type of system parameters, i.e., system parameters 

affecting either uptime or downtime (not both). An example for a logistics parameter 

derivation is presented. The objective in this case study example is to determine the 

appropriate spares replenishment lead time, i.e., inventory lead time (ILT), to fulfill a 

specific availability requirement.  In order to use this demonstration as a qualitative 

verification of the methodology, I will perform the following steps:  

• Using the availability distribution requirement as an input to the design for 

availability model, determine the required ILT distribution (output).  

• Use the generated ILT distribution as an input to the existing PHM ROI 

simulation (described in the introduction to this section) to predict an 

availability distribution as an output. 
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•  Compare the availability distribution input requirement to the availability 

distribution determined as an output.  

Notice that the first step is sufficient to achieve the design for availability task, 

since the ILT will be determined for a specific contract availability requirement. The 

second and third steps are for verification of the methodology. 

A detailed description of all of the case study inputs is provided in Section 

4.1, including LRU description, implementation and maintenance costs, and 

operational profile.  

The reliability information and inventory management parameters are 

provided in Figure 4.1 and Table 4.3, respectively. Table 4.3 summarizes the spares 

inventory (per socket) assumptions that are used for this specific example. Also, note 

that the spares carrying costs are incorporated into the LRU recurring costs. Figure 

4.1 shows the assumed reliability for this case example, i.e., time-to-failure (TTF), of 

the LRU based on [43] and [52]. 

Table 4.3. Spares Inventory 

Factor Quantity 

Initial spares purchased for each 
socket 

5 

Threshold for spare replenishment ≤ 1 spares in the inventory per socket 

Number of spares to purchase per 
socket at replenishment 

4 

Spare replenishment lead time Solved for in this section case study 

Spares carrying cost 
10% of the beginning of year 

inventory value per year 

Billing due date when ordering 
additional spares 

2 years from purchase date 

 

To determine the appropriate ILT to ensure meeting a specific availability 

requirement I need to define a relationship between the downtime requirement and 

ILT. In this example, the ILT is the unknown system parameter, where ILT is the 
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amount of time it takes to receive replenishment spares (RS) when additional spares 

are ordered at the inventory spares threshold (ST) value (i.e., minimum quantity of 

held spares); this example case assumes that the inventory downtime (when the 

inventory runs out of spares, and the system is down waiting for replenishment 

spares) is larger than any concurrent maintenance downtime. Also, once the spares 

are received, the part can be immediately installed in the system. The ILT requires 

imposing a downtime requirement since varying the ILT only affects the downtime 

values, i.e., how long the system will be down waiting for spares to be replenished. 

In this case (Figure 4.2), the decision to impose the inventory downtime (IDT) 

to meet the availability requirement, instead of imposing uptime, is based on the fact 

that the unknown system parameter, i.e., ILT, is only dependent on the downtimes; 

and it is independent of the uptimes. Varying the ILT generates different IDT values; 

however the uptime values remain constant since they are only a function of the 

inventory spares threshold (ST) and maintenance downtimes (MDT). Where the 

 
 

Figure 4.1.  Weibull distribution of TTFs (β=1.1, η=200 and γ=9000). 
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inventory held spares is a function of the quantity of initial spares (IS) and quantity of 

RS. The ILT only defines the start of the next uptime, but it does not define the 

uptime duration. 

Because, the IDT is purely a function of ILT and spares threshold time (STT), 

where STT is the corresponding period of time to use all remaining spares; the IDT 

only depends on how low the inventory level is allowed to drop before ordering 

additional spares and how long it will take to receive those spares,  

1IDTSTTILT +=  (4.1) 

For this example I assume that the MDT are given and cannot be modified, 

i.e., the maintenance lead time, replacement time and repair time are already specified 

as inputs.  To fulfill the availability requirement at the end of the first IDT; IDT1 

should satisfy the Ao requirement (as defined in equation (1.1); where IS-MDT1 

corresponds to the accumulated uptime and IS+IDT1 corresponds to the sum of the 

accumulated uptime and downtime), thus satisfy the following equation: 

IS
A

MDT-IS
IDT

o

1
1 -=        (4.2) 

Once IDT1 is determined, the ILT can be computed by satisfying equation 

(4.1). 

IS RS

Time

IDT1

ST
ILT

IDT2

MDT1 MDT2 MDT3

 
 

Figure 4.2.  Implication of the inventory model parameters on the timeline. 
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Finally, the ILT is updated as the downtime requirement gets updated 

throughout the entire support life. Similar process is generally used to apply the 

approach to any system parameter that is explicitly related to either downtime or 

uptime, to fulfill a specific availability requirement. 

The availability distribution considered for this example case is shown in 

Figure 4.3.a. This distribution could represent the requirement of an availability 

contract. Note, availability contracts may specify the availability requirement as a 

single value, but, to accommodate more general problems, for all example cases I will 

use availability requirements that are represented as a probability distribution.  

Considering an availability requirement that is expressed as a probability 

distribution makes the process of determining the necessary system parameters to 

meet the availability requirement challenging, since every system instance could have 

a different availability requirement based on the sampled value from the probability 

distribution. Figure 4.4 shows the process used to generate a distribution of system 

parameter values using a discrete-event simulator (the PHM ROI model described 

earlier). The Monte Carlo implementation of the model samples the required 

availability distribution and other quantities that may be described as probability 

distributions, and then uses the quantities to solve for a value of the system parameter 

using the design for availability methodology. This process is repeated for each 

socket (a socket is an instance of an installation location for an LRU) in the 

population, resulting in histograms of system parameter values (e.g., ILTs). Figure 

4.3.b shows the ILT required to meet the availability requirement determined using 

the design for availability methodology. 
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In order to qualitatively verify the methodology, the maximum allowable ILT 

distribution (Figure 4.3.b) was used as an input to the PHM ROI model.  The PHM 

ROI model used the maximum allowable ILT distribution along with the other inputs 

(see Section 4.1) and generated a resulting availability distribution.  Figure 4.3.a 

shows the original availability input (mean = 97.19% and standard deviation = 

(a) (b) (c)

 

Figure 4.3. (a) Required availability distribution (input to the model). (b) Computed maximum 
allowable Inventory Lead Time (ILT) in operational hours, for an unscheduled maintenance policy. 

(c) Availability probability distribution generated using the computed ILT (Figure 4.3.b). 
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Figure 4.4. Solution process. 
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0.51%), while Figure 4.3.c shows the availability prediction that resulted from the 

PHM ROI model (mean = 97.34% and standard deviation = 0.83%). The two results 

are not expected to be absolutely identical (since this is a stochastic solution), but the 

means and standard deviations are very similar. This simple example case validates 

the methodology and demonstrates qualitatively that the design for availability 

approach is truly satisfying the input availability requirement. 

 

Unscheduled Maintenance vs. Data-driven PHM 

 In this Section I compare the maximum allowable ILT for a specific 

availability requirement for unscheduled maintenance and a data-driven PHM 

approach.  

 Determining the maximum allowable ILT for a specific availability 

requirement could be used to improve logistics management and potentially reduce 

life cycle cost. If the availability drops below a specified threshold value, a cost 

penalty could be assessed; determining upfront the appropriate ILT could avoid these 

potential cost penalties. Also, knowing the maximum allowable ILT information, 

customers could require their suppliers to deliver within a specific lead time.  

 For the assumed set of system parameters and assumptions (see Section 4.1) I 

want to determine the appropriate spares replenishment lead time, i.e., inventory lead 

time (ILT), to fulfill the availability requirement specified in Figure 4.3a for an 

unscheduled maintenance approach and a data-driven PHM approach applied to the 

same system (a detailed explanation of how the data-driven PHM approach is 

modeled is provided in Section 2.3). 
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 Reducing the delivery time, i.e., ILT (considered as the only variable input in 

this example) would increase the availability. However, I also want to maximize the 

ILT to reduce the cost. Basically, I want to generate an optimal solution that produces 

the maximum allowable ILT (to minimize cost) that keeps the availability value at or 

above the availability requirement. 

 By running the simulation with the imposed availability (input) requirement 

shown in Figure 4.3.a, the ILT (output) satisfying this requirement was determined for 

the unscheduled maintenance policy, and the generated maximum allowable ILT 

probability distribution is shown in Figure 4.5, the light gray histogram bars (this 

distribution is the same as Figure 4.3.b).  

Maximum Allowable Inventory Lead Time – ILT (operational hours)

 
Figure 4.5. Computed maximum allowable inventory lead time (ILT) for unscheduled 

maintenance policy, and for a data-driven PHM approach. 
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 I now need to apply the methodology to the data-driven PHM approach.  

Figure 4.6 shows the results of the analysis to determine the optimal (lowest life cycle 

cost) prognostic distance for the data-driven PHM approach used; where the 

prognostic distance is defined as the measure (e.g., operational hours) of how long the 

prognostic structures or prognostic cell is expected to indicate failure, before the 

system actually fails (see Section 2.3). 

Small prognostic distances may miss failures while large prognostic distances 

may throw away significant remaining useful life. Each prognostic distance generates 

a corresponding ILT and life cycle cost. Note, the ILT values shown in Figure 4.6 are 

the mean values of the generated maximum allowable ILT distributions. Large 

prognostic distances may provide additional time to order spares ahead of failures; 

however, they could also produce solutions that require more spares, which will 

increase the accumulated IDT (inventory downtime, i.e., time that the system is down 
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Figure 4.6. Variation of life cycle cost and inventory lead time with data-driven PHM 

prognostic distance. 
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waiting for spares) since every delayed spares replenishment event generates an 

additional IDT. Therefore, to accommodate these downtimes, while fulfilling the 

availability requirement, the ILT has to be reduced (i.e., reduce the IDT, thus faster 

delivery). This is illustrated in Figure 4.6; where large prognostic distances generate 

shorter ILT. 

Using the input data (provided in Section 4.1) with the data-driven PHM 

approach, an optimal prognostic distance of 600 operational hours results in the 

minimum life cycle cost over the entire support life. Also, a symmetric triangular 

distribution with a width of 500 hours was assumed to represent the effectiveness of 

the data-driven PHM approach. 

After running the simulation with the imposed availability requirement shown 

in Figure 4.3.a, the maximum allowable ILT satisfying the contract requirement was 

determined, and the generated ILT probability distribution is shown in Figure 4.5 

(black histogram bars).  

In this example, the data-driven PHM approach allows for a larger ILT (mean 

= 13,936 operational hours), compared to the unscheduled maintenance case (mean = 

12,961 operational hours)11. In other words, using a data-driven PHM approach 

allows a given availability requirement to be met if ILTs are longer, or alternatively 

stated, the use of PHM would allow a supply chain with longer ILTs to be used. The 

use of a data-driven PHM approach has shifted the maximum allowable ILT 

distribution by approximately 1000 hours to the right. This result is due the fact that 

                                                 
11 The overlap area of ILT distributions in Figure 4.5 is negligible compared to the main distributions 
areas. This justifies the considerable difference (≈ 1,000 operational hours) in distributions’ mean 
values. Also, Figure 4.7 supports these results, since it shows that for the same ILT value an 
availability requirement could be met with higher confidence level, when using a data-driven PHM 
approach. 
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data-driven PHM has provided early warning of failures; therefore creating the 

opportunity to switch maintenance actions from unscheduled to scheduled events 

reducing the accumulated operational downtime. For a fixed ILT, this would result in 

an improved operational availability of the system. However, since in this problem 

the same availability requirement was imposed for both cases (unscheduled 

maintenance and data-driven PHM), thus the accumulated operational downtime was 

used as a fixed quantity (imposed by the contract availability requirement); then the 

avoided unscheduled maintenance downtime was added to the IDT, resulting in a 

larger allowed ILT. 

To summarize, the design for availability methodology was applied to the case 

study example described in Section 4.1, for two different maintenance approaches, to 

satisfy a specific contract availability requirement. For both approaches, unscheduled 

maintenance and data-driven PHM, I was able to determine the unknown system 

parameter (the maximum allowable ILT in this case) satisfying the availability 

requirement. Then a comparison of the results showed that data-driven PHM allows 

larger ILTs compared to the unscheduled maintenance policy case. 

Figure 4.7 shows how the maximum allowable ILT results could be practically 

interpreted. For example, if the ILT of each spares replenishment order is equal or 

greater than 12,700 operational hours, then the system manager would be 95% 

confident to meet the availability requirement under a data-driven PHM approach, 

and only 78% confident to meet the same availability requirement under an 

unscheduled maintenance approach. 
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Notice that, the application of the design for availability methodology doesn’t 

only determine the unknown system parameter (e.g., ILT) but also illustrates the 

effect of each adopted sustainment approach on the selected system parameter. In 

other words, for a specific PHM approach or any other maintenance policy, one could 

expect the variation of the selected system parameter, and react accordingly to 

maintain the availability requirement.    

 

Cost Analysis 

In the analysis described in this section, the PHM data-driven case produced 

lower life cycle cost (mean = $848,089) compared to the unscheduled maintenance 

case (mean = $1,241,238). This is due to the cost of purchasing additional spares 

replenishment in the unscheduled maintenance case. Unscheduled maintenance 
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Figure 4.7. Computed TTF cumulative distribution function for unscheduled maintenance and data-

driven PHM. 
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approaches generally require the minimum number of spares because the unscheduled 

maintenance events are performed upon the actual failure of the LRUs, thus 

maximizing the useful life of the LRUs. However, in this case, I have assumed that 

early warning of failures, in the data-driven PHM case, provides an opportunity to 

schedule and perform on-site maintenance events that resulted in repairing most 

LRUs, i.e., PHM provides the capability to intervene before a complete deterioration 

of the LRUs, resulting in replacing fewer LRUs (and thus ordering fewer spares). 

While in the unscheduled maintenance case, I assumed that all failures were resolved 

by replacing LRUs rather than repairing them. Since the PHM data-driven case 

required fewer spares, it required only one spare replenishment event (the large step 

in Figure 4.8.b); while the unscheduled maintenance case required more spares and 

three replenishment events (the three large steps in Figure 4.8.a). Also, for the PHM 

data-driven sustainment approach the billing due date for the spares replenishment 

events happened on a later date (~12th year in Figure 4.8.b) than the unscheduled 

maintenance case (~7th, 12th and 18th year in Figure 4.8.a), making the PHM data-

driven approach less costly because of the non-zero discount rate. 
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Note, the cost per hour out of service was the main cost driver for both cases, 

data-driven PHM and unscheduled maintenance; since the contract availability 

requirement value was relatively low (relatively large downtimes were allowed). The 

life cycle cost for both cases (data-driven PHM and unscheduled maintenance) would 

have been dramatically reduced for a higher availability requirement (e.g., 99.99%). 

 

Return on Investment (ROI) 

In this subsection, the return on investment (ROI) of a data-driven PHM 

approach relative to unscheduled maintenance is analyzed. The total life cycle cost 

per socket, for a data-driven PHM approach, was $848,089 (mean), with an effective 

investment cost per socket of $6,891 (mean), representing the cost of developing, 

supporting, and installing PHM. This cost was compared to the unscheduled 

maintenance approach, where the total life cycle cost per socket was $1,241,238 

(mean). Note that the investment cost for the unscheduled maintenance policy is by 

definition zero; since the ROI is computed to support an economic justification in 
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Figure 4.8.  Life cycle cost per socket for a 1000 socket population. (a) Life cycle cost per socket for 
an unscheduled maintenance. (b) Life cycle cost per socket for a data-driven PHM approach. 
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investing in PHM, as opposite to the unscheduled maintenance case where there is no 

investment (i.e., zero investment) in PHM. A detailed description of the methodology 

of determining ROI for PHM systems is provided in Section 2.9. 

Figure 4.9 shows the histogram of the computed ROI for 1000-socket 

population, using the inputs data provided in Section 4.1. In this example case, the 

computed mean ROI of investing in a data-driven PHM approach for the population 

of sockets was 57.0. This is a relatively large value of ROI, which is the result of the 

small PHM investment cost. Notice that some ROI values in Figure 4.9 become 

negative.  This means that there is a risk that implementing a data-driven PHM 

approach that meets the specified availability requirement for the system specified in 

Section 4.1, could result in an economic loss, i.e., I could end up being worse off than 

unscheduled maintenance.  Based on Figure 4.9, this example predicts that a data-

driven PHM approach would result in a positive ROI (cost benefit) with a 93.9% 
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Figure 4.9. Histogram of ROI for a 1000-socket population, for a data-driven PHM relative to 
unscheduled maintenance that meets the availability requirement. 
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confidence. Notice that in this case the ROI was computed for a data-driven PHM 

relative to an unscheduled maintenance, with two different ILT distributions. An ILT 

distribution that was generated by a data-driven PHM to meet the availability 

requirement, and an ILT distribution that was generated by an unscheduled 

maintenance to meet the same availability requirement. 

Figure 4.10 shows the histogram of the computed ROI for 1000-socket 

population, for a data-driven PHM relative to an unscheduled maintenance policy 

using the same ILT distribution, which was generated to meet the availability 

requirement with a data-driven approach. In this case, the unscheduled maintenance 

approach does not meet the availability requirement.  The computed mean ROI of 

investing in a data-driven PHM approach for the population of sockets was 167.64. 

This larger ROI value is explained by the fact that the unscheduled maintenance case 

used larger values of ILT (which were generated by the data-driven PHM approach to 

meet the availability requirement).  
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Figure 4.10. Histogram of ROI for a 1000-socket population, for a data-driven PHM relative to 
unscheduled maintenance that uses an ILT distribution generated by the data-driven PHM. 
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4.3. Use of Design for Availability to Determine System Parameters Affecting 

both Uptime and Downtime 

Demonstration and Verification of the Methodology: Reliability (TTF) 

In this section, the objective of the application of the design for availability 

methodology is to determine the minimum12 allowable reliability, i.e., time-to-failure 

(TTF), of the LRUs that is necessary to meet the availability requirement. In this 

example case, the reliability of each LRU is represented by its TTF, where each TTF 

corresponds to the period of time until the occurrence of the next actual failure. 

TTF is used as an example to demonstrate the application of the methodology 

to system parameters concurrently affecting both uptime and downtime. For example, 

consider the following scenario (which illustrates how TTF could concurrently affect 

both uptime and downtime): the replenishment spares will be delivered one year from 

now for a specific inventory, while this inventory is currently out of spares. The 

system (the socket), that is drawing spares from this specific inventory as needed, will 

be up and running as long as the currently used spare by the system doesn’t require 

replacement, thus the system uptime is dependent on the TTF of this spare. Also, the 

system downtime could be minimized if the spare being used does not require 

replacement until the replenishment spares are delivered (e.g., one year from now). 

However, as soon as the spare requires replacement, the system will be down until 

additional spares are received. Thus, the system downtime is dependent on the TTF of 

                                                 
12 The required availability distribution and other quantities (inputs) that may be described as 
probability distributions, are sampled and used to solve for a single value of TTF. This value represents 
the minimum TTF value (minimum allowable reliability) that is necessary to meet the sampled 
required availability in the environment defined by the sampled values of all the other input quantities. 
This process is repeated for each socket in the population, resulting in a histogram of minimum 
allowable TTFs.  Each individual in the histogram represents one socket in the population of sockets 
under one possible set of life cycle conditions. This solution process was illustrated in Figure 4.4. 
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this spare. This simple scenario demonstrates how the TTF of the LRUs could affect 

both the uptime and downtime. Notice that a detailed discussion and assumptions of 

the spares management model is provided in Section 2.6.  

To demonstrate and verify the derivation of the TTF for a specific availability 

requirement, the design for availability methodology has been implemented within 

the PHM ROI model.  

In order to use the application of the methodology on TTF as a qualitative 

verification of the methodology, I will perform the same verification process steps as 

used with system parameters affecting either uptime or downtime. This means, first, 

using the availability distribution requirement as an input, determine the distribution 

of the minimum allowable TTF. Then, for verification purposes, use the generated 

TTF distribution as an input to the existing PHM ROI simulation to predict an 

availability distribution as an output. Finally, compare the availability distribution 

input requirement to the availability distribution determined as an output – they 

should be equivalent.  

A detailed description of all of the case study inputs is provided in Section 

4.1, including LRU description, implementation and maintenance costs, and 

operational profile.  

The reliability information is not provided, since in this example case the 

reliability (TTF) is the selected unknown system parameter being solved for. The 

inventory management parameters are provided in Table 4.4, which summarizes the 

spares inventory (per socket) assumptions that are used for this specific example. 
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Also, note that the spares carrying costs are incorporated into the LRU recurring 

costs.  

Table 4.4. Spares Inventory 

Factor Quantity 

Initial spares purchased for each 
socket 

3 

Threshold for spare replenishment ≤ 1 spares in the inventory per socket 

Number of spares to purchase per 
socket at replenishment 

2 

Spare replenishment lead time 18 calendar months 

Spares carrying cost 
10% of the beginning of year 

inventory value per year 

Billing due date when ordering 
additional spares 

2 years from purchase date 

 

Both, the TTF values and the distributions modeling the effectiveness of a 

particular PHM approach are used to predict the remaining useful life (RUL) of the 

LRUs (see Chapter 2). For each PHM sustainment approach (e.g., data-driven, model-

based – also known as physics of failure, fixed-interval scheduled maintenance and 

unscheduled maintenance), the sampling of the TTF values is defined differently. The 

sampled TTF values are used to predict the maintenance events and to determine 

whether the selected PHM approach detected (or failed to detect) a failure. 

In the unscheduled maintenance case, the sampling of the TTF values predict 

the date of the next maintenance event associated with a failure of a system instance. 

Spares are drawn from the inventory as needed to support maintenance. Once the 

inventory reaches a threshold value, additional spares are ordered, and the 

replenishment spares are delivered after a delivery lead time. Figure 4.11 illustrates 

this scenario, where MDT is maintenance downtime, ILT is the inventory lead time, 

ST is the spares threshold (once the inventory level drops below this value, additional 



 74 
 

spares are ordered), and IDT is inventory downtime (when the inventory runs out of 

spares, and the system is down waiting for spares). 

Notice that the accumulated uptime (UT) accounts for all system’s uptimes. 

This includes the system’s uptime while using the inventory initial spares (IS) and the 

system’s uptime while using inventory replenishment spares (RS). The RS could be 

ordered multiple times as needed, 

( )( ) ( )( )
∑∑ += TTFRSTTFISUT  (4.3) 

The accumulated downtime (DT) includes the maintenance downtime (MDT) 

and the inventory downtime (IDT),  

( )( )( )
∑ ∑∑∑ ∑ +=+= MDTTTFST-ILTMDTIDTDT   (4.4) 

Notice that the summations in equations (4.3) and (4.4) do not necessarily 

refer to the analytical summations, but to the accumulation of events. Since these 

relationships are based on the accumulation of the event outcomes and sequences, 

that are only determined in real simulation time. Also, the model is probabilistic, this 

means each sample of the same quantity, i.e., system parameter, could result in a 

different event outcome. A detailed explanation is provided in Section 3.6. 

The operational availability is, by definition, the accumulated uptime over the 

total operational time (i.e., sum of the total accumulated uptime and downtime), 

Time
TTF1 TTF2 TTF3

IDT1

ILT1

MDT1MDT1 MDT2
MDT4

TTF4
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MDT3

 
Figure 4.11.  TTF implication on the operational timeline. 
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∑ ∑

∑

+
=

DTUT

UT
Ao   (4.5) 

 

where UT is the accumulated uptime and DT is the accumulated downtime. 

For example, the k
th

 TTF value could be derived by combining equations 

(4.3), (4.4) and (4.5). The k
th

 TTF corresponds to the k
th downtime, where the k

th 

downtime could be a maintenance downtime, inventory downtime, or any other 

logistics downtime. Once again, the summations in equation (4.6) do not refer to 

analytical summations, but to the accumulation of events outcomes and sequences. 

Therefore, the right side of equation (4.6) does not explicitly include the “k” 

subscript, 

( )
∑∑

∑∑

ST+RSIS+
A

-A1

MDT+ILT
=TTF

o

o
k     (4.6) 

Notice that equations (4.3)-(4.6) could be slightly different for each problem 

set up or model. The modeling of the operational timeline illustrated in this section is 

by no means unique. However, different models could provide different equations, 

but, the steps of the procedure remain the same. Thus, the application of the design 

for availability methodology is general and could be apply to any problem, 

independently of the setup of these equations.   

After every downtime, the TTF is computed using the procedure described 

above. However, the methodology derives the minimum allowable TTF that is 

necessary to meet the availability requirement. Figure 4.12 illustrates the process of 

updating the computed TTFs. Basically, after every downtime, the computed TTF is 

compared to the previous value, if the current value is greater than the previous one, 
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then the current value is substituted for the previous value. But if the current value is 

less than the previous one, then the current one is used. Once, the current TTF value 

is updated, this new TTF requirement is imposed on the uptime and downtime values 

through equations (4.3) and (4.4). Finally, the model uses the updated TTFs, UTs, and 

DTs to compute other quantities of interest. 

While considering an availability requirement that is expressed as a 

probability distribution is more realistic, it makes the process of determining the 

necessary system parameters to meet the availability requirement challenging, since 

every system instance could have a different availability requirement based on the 

sampled value from the probability distribution. Figure 4.4 shows the process used to 

generate a distribution of system parameter values using a discrete event simulator 

(the PHM ROI model described earlier).  

Time
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updated
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Update UT and DTUpdate UT and DT Update UT and DTUpdate UT and DT
 

 
Figure 4.12.  Updating the TTFs, UTs and DTs. 
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The availability requirement considered in this example case, for an 

unscheduled maintenance policy, is shown in Figure 4.13.a. This availability 

requirement has been used as an input to the design for availability model. Figure 

4.13.b show the resulting TTF distribution. The TTF distribution was generated 

through the process illustrated in Figure 4.4 and using the input data provided in 

Section 4.1.  

In order to qualitatively verify the methodology, the TTF distribution (Figure 

4.13.b) was used as an input to the PHM ROI model, while using an unscheduled 

maintenance approach. The PHM ROI model used the TTF distribution along with 

the other data inputs and generated a resulting availability distribution. Figure 4.13.c 

shows the availability prediction that resulted from the PHM ROI model. The two 

availability distributions (Figures 4.13.a and 4.13.c) are not expected to be absolutely 

identical (since this is a stochastic solution), but the means and standard deviations 

are very similar. This qualitatively validates the design for availability model. 

(a) (b) (c)  
 

Figure 4.13. (a) Required availability distribution (input to the model). (b) Computed minimum 
allowable reliability (TTF) in operational hours, for an unscheduled maintenance policy. (c) 

Availability probability distribution generated using the computed TTF (Figure 4.13.b). 
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Unscheduled Maintenance vs. Data-Driven PHM Approach 

A detailed description of the inputs data used for this example is provided in 

Section 4.1. For this example case study the optimal data-driven PHM prognostic 

distance was determined by selecting the prognostic distance resulting in a minimum 

life cycle cost. Where the prognostic distance is defined as the measure of how long 

the prognostic structure or prognostic cell is expected to indicate failure before the 

system actually fails (see Section 2.3). This analysis has resulted an optimal 

prognostic distance of 600 operational hours (see Figure 4.14). 

For each prognostic distance there is a corresponding minimum allowable 

TTF distribution and life cycle cost distribution (see Figure 4.14). However, the TTF 

and life cycle cost values shown on Figure 4.14 are the means of the generated TTF 

and life cycle cost distributions respectively. 
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Figure 4.14. Variations of life cycle cost and minimum allowable reliability (TTF) with data-

driven PHM prognostic distance. 
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Small prognostic distances maximize the LRUs useful life, but result more 

unanticipated failures (more unscheduled maintenance events, i.e., expensive and 

larger maintenance time), thus, potentially increasing the maintenance downtime. 

Consequently, they require larger TTFs to produce larger uptime durations, since the 

pre-imposed uptime-downtime relationship has to be maintained in order to satisfy 

the availability requirement. In this case, the life cycle cost is increased because of the 

cost of the unscheduled maintenance, i.e., unanticipated failures.  

On the other hand, large prognostic distances throw away considerable 

remaining useful life of the LRUs. Thus, increase the number of spares drawn from 

inventory and spares sent to the repair process, and potentially increase the inventory 

downtime. However, more failures are avoided (more scheduled maintenance, i.e., 

less expensive and shorter maintenance time). Similarly, to maintain the uptime-

downtime relationship defined by the availability requirement, larger TTFs are 

required. In this case, the life cycle cost is increased by the cost of the repair process 

and inventory downtime. 
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The availability requirement considered in this subsection is shown on Figure 

4.13.a. This availability requirement has been used as an input to the design for 

availability model. Figure 4.15 show the resulting TTF distributions using 

unscheduled maintenance and data-driven PHM, in light grey and black colors 

respectively. The TTF distributions were generated through the process illustrated in 

Figure 4.4 and using the input data provided in Section 4.1. 

By comparing the resulting TTF distributions for unscheduled maintenance 

and data-driven PHM approaches (Figure 4.15), data-driven PHM has allowed a 

lower TTF requirement. This means, in this example case, using a data-driven PHM 

approach relaxes (relative to unscheduled maintenance) the required TTF to meet the 

TTF

 

Figure 4.15. Computed minimum allowable reliability (TTF) distribution for 

unscheduled maintenance and data-driven PHM. 
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imposed availability requirement. This is a powerful result from the design for 

availability methodology, since the methodology doesn’t only derive the necessary 

system parameters for a specific availability requirement, but it also reflects the 

impact of a PHM approach on the selected system parameters, thus, providing a better 

understanding of the relationship of a PHM implementation and the system 

parameters. Also, the methodology emphasizes the fact that a PHM implementation 

selection should incorporate all design, support and logistics parameters. In other 

words, based on the design, support, or logistics management, one PHM approach 

could be more feasible than the other.  

Predicting the TTF distribution could be used to avoid the contract availability 

penalties, since a cost penalty could be assessed for not fulfilling the availability 

requirement specified in the contract. Also, the minimum allowable TTF information 

could be used to define requirements and provide feedback to the design process, 

since it is more expensive to design LRUs with larger TTFs. Finally, explicitly 

expressing the TTF distribution could be used to predict and understand the system’s 

behavior.  

Figure 4.16 shows how the TTF results could be practically interpreted. For 

example, if the reliability (TTF) of each LRU is equal or greater than 9,000 

operational hours, then the system manager would be 87% confident to meet the 

availability requirement under if a data-driven PHM approach is used, and only 8% 

confident to meet the same availability requirement under an unscheduled 

maintenance approach. 
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Cost Analysis 

Figure 4.17 represents the accumulation of the life cycle cost per socket for 

both the data-drive PHM and unscheduled maintenance case. The data-driven PHM 

case resulted in an overall lower life cycle cost (mean = $1,973,625) compared to the 

unscheduled maintenance case (mean = $2,469,334). In this example, the data-driven 

PHM approach case required fewer spares throughout the support life of the system, 

compared to the unscheduled maintenance policy case. This result is due to the ability 

to repair versus replace. 

 
Figure 4.16. Computed TTF cumulative distribution function for unscheduled maintenance and 

data-driven PHM. 
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In the data-driven PHM sustainment approach case the billing due date for the 

initial and most spare replenishment events occurred on a later date than the 

unscheduled maintenance case, therefore the cost of purchasing additional spares was 

smaller because due to the discount rate on money. The annual steps seen in Figure 

4.17, are relatively larger for the data-driven PHM approach, because: more spares 

are held in the inventory (higher annual spares carrying cost), expensive spares (PHM 

recurring costs are added to LRU purchase price) and PHM infrastructure costs are 

annually accumulated. Finally, notice that the total accumulated downtime is constant 

for both cases (imposed by the availability requirement); this explains the small steps 

in Figure 4.17 for unscheduled maintenance case during the replenishment events at 

approximately years 4, 7, 9, etc. (frequent short, i.e., less expensive, inventory 

downtimes), compared to the data-driven PHM case large steps at approximately 

years 7, 12 and 17 (less frequent longer, i.e. expensive, inventory downtimes). On the 

other hand, the maintenance downtimes generated by the unscheduled maintenance 

case have been larger (unanticipated and unscheduled events) compared to the 
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Figure 4.17. (a) Life cycle cost per socket for an unscheduled maintenance policy. (b) Life cycle cost 
per socket for a data-driven PHM approach. 
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maintenance downtimes generated by the data-driven PHM case (anticipated and 

scheduled events). 

This cost analysis could have been even more favorable to the data-driven 

PHM case, since in this example case I did not include the modeling of the cost 

associated with improving an LRU’s reliability, i.e., TTF. Figure 4.15 shows that, in 

this example, the unscheduled maintenance case required larger TTFs compared to 

the data-driven PHM case to meet the same availability requirement (Figure 4.13.a). 

Thus, if the cost of improving TTFs was included, then the larger TTFs requirement 

in the unscheduled maintenance case would have cost more, resulting in a larger life 

cycle cost for the unscheduled maintenance approach. 

 

Return on Investment (ROI) 

In this subsection, the return on investment (ROI) of a data-driven PHM 

approach relative to unscheduled maintenance is analyzed. The total life cycle cost 

per socket, for a data-driven PHM approach, was $1,973,625 (mean), with an 

effective investment cost per socket of $6,749 (mean), representing the cost of 

developing, supporting, and installing PHM. This cost was compared to the 

unscheduled maintenance approach, where the total life cycle cost per socket was 

$2,469,334 (mean). Note that the investment cost for the unscheduled maintenance 

policy is by definition zero; since the ROI is computed to support an economic 

justification in investing in PHM, as opposite to the unscheduled maintenance case 

where there is no investment (i.e., zero investment) in PHM. A detailed description of 

the methodology of determining ROI for PHM systems is provided in Section 2.9. 
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Figure 4.18 shows the histogram of the computed ROI for 1000-socket 

population, using the inputs data provided in Section 4.1. In this example case, the 

computed mean ROI of investing in a data-driven PHM approach for the population 

of sockets was 71.23. This is relatively a large value of ROI, which is justified by the 

small PHM investment cost. Notice that some ROI values in Figure 4.18 become 

negative.  This means that there is a risk that implementing a data-driven PHM 

approach that meets the specified availability requirement for the system specified in 

Section 4.1, could result in an economic loss, i.e., I could end up being worse off than 

unscheduled maintenance.  Based on Figure 4.18, this example predicts that a data-

driven PHM approach would result in a positive ROI (cost benefit) with an 87.3% 

confidence. 

Notice that in this case the ROI was computed for a data-driven PHM relative 

to an unscheduled maintenance where each of the maintenance approaches has a 
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Figure 4.18. Histogram of ROI for a 1000-socket population, for a data-driven PHM relative 

to unscheduled maintenance that meets the availability requirement. 
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different TTF distribution - TTF distribution that was generated by a data-driven 

PHM to meet the availability requirement, and a TTF distribution that was generated 

by an unscheduled maintenance to meet the same availability requirement. 

Figure 4.19 shows the histogram of the computed ROI for 1000-socket 

population, for a data-driven PHM relative to an unscheduled maintenance policy 

using the same TTF distribution, which was generated to meet the availability 

requirement with a data-driven approach. The computed mean ROI of investing in a 

data-driven PHM approach for the population of sockets was 203.24. This larger ROI 

value is explained by the fact that the unscheduled maintenance case used shorter 

TTFs (which were generated by the data-driven PHM approach to meet the 

availability requirement). 
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Figure 4.19. Histogram of ROI for a 1000-socket population, for a data-driven PHM relative to 

unscheduled maintenance that uses a TTF distribution generated by a data-driven PHM. 
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Chapter 5: Summary and Contributions 

5.1. Summary 

In this dissertation a new methodology for determining unknown system 

parameters to fulfill a specific availability requirement has been presented. The 

design for availability methodology is not a “search-based” approach and is capable 

of calculating unknown system parameters directly from the availability requirement 

even when the inputs (e.g., design and support parameters) are uncertain and the 

availability requirement is represented as a probability distribution.   

Case study examples were presented to demonstrate the methodology, as well 

as providing a means for verification and qualitative validation purposes. Case study 

results for an example system managed using both unscheduled maintenance and a 

data-driven PHM approach were also included.  The model predicted a larger 

allowable ILT for the data-driven PHM case for the same availability requirement. 

The conclusions in this dissertation about the ILT associated with PHM and 

unscheduled maintenance approaches are specific to the example data assumed and 

should not be interpreted as a general conclusion.  However, the example 

demonstrates that the use of PHM, in cases where availability requirements are 

imposed, can provide value beyond the commonly articulated failure avoidance and 

minimization of lost remaining useful life. 

The determination of ILT for a specific availability requirement was provided 

as a demonstration of the design for availability methodology operation; where the 

ILT was used as an example of system parameters affecting either uptime or 



 88 
 

downtime. The methodology can be applied to determine any system parameters that 

can be explicitly related to the timeline downtimes or uptimes, for a contract 

availability requirement. 

A demonstration of the derivation of the reliability (TTF), as a parameter 

affecting both uptime and downtime, is provided. The demonstration shows how the 

minimum reliability of a system or subsystem could be determined, to meet a specific 

availability requirement. This reliability information could be crucial to availability 

contracts and to any system with high availability requirement. 

The reliability analysis, for a data-driven PHM approach versus an 

unscheduled maintenance approach, shows that the computed minimum reliability to 

meet a specific availability requirement is explicitly dependent on the PHM approach 

used to maintain the system. The analysis also shows that each PHM approach 

produces a different life cycle cost. Basically, for the same availability requirement a 

system would require different reliability management based on the adopted 

maintenance policy. The design for availability application results demonstrate not 

only deriving the system parameters that are necessary to meet a specific availability 

requirement, but also provide a critical tool to understand the impact of a PHM 

implementation on each system parameter. In the case study examples, the PHM data-

driven case has produced a lower life cycle cost compared to the unscheduled 

maintenance case. This is caused by: 1) the ability to repair versus replace, 2) the 

number of spares required to support the system, and 3) the discount rate on money. 

The cost analysis reflects the complexity of a true understanding of a PHM 

implementation and its impact on the life cycle management of the system. Only by 
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adopting a complete approach that takes into consideration all system design, support 

and logistics parameters, that a realistic assessment of a PHM implementation could 

be performed. 

 

5.2. Contributions 

The research work presented in this dissertation makes the following 

contributions: 

1) Creation of the first general “design for availability” methodology that is 

not a “search-based” method and is capable of calculating unknown 

system parameters directly from an availability requirement when the 

inputs are uncertain and the availability requirement is represented as a 

probability distribution. 

a. The new methodology was demonstrated on system parameters 

affecting either downtime or uptime, e.g., logistics parameters. 

b. The new methodology was demonstrated on system parameters 

affecting both uptime and downtime, e.g., reliability. 

2) Integration of the design for availability method into the process of 

designing PHM into systems.  This integration provides a key means to 

quantify application-specific PHM implementation impacts on specific 

system parameters – a capability that has not been previously available 

3) Creation of a methodology for performing life cycle cost (and ROI) 

versus availability tradeoffs for systems that incorporate PHM.  This 
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dissertation is the first reported work to quantitatively produce life cycle 

cost (and ROI) versus availability for systems that incorporate PHM. 

5.3. Potential Broader Impacts of this Work 

The design for availability methodology, applied to PHM systems, provides 

the possibility for significant new capability to: a) perform (in conjunction with 

prognostics and health management) real-time pro-active availability analysis; b) 

determine requirements flow down for the development of prognostics and system 

health management and flow down to the supply chain; and c) perform pro-active 

reliability versus logistics tradeoffs, and assess the cost and resources required to 

deliver and support systems subject to availability contracts (e.g., Performance-Based 

Logistics contracts). 

This method will enable the use of advances in the detection of performance 

anomalies and degradation of systems (including prognostics), to assess (and 

mitigate) logistics risks that result in system downtime.  Providing health assessment 

and advanced warning of impending failure coupled with real-time design for 

availability control enables decision support actions that when communicated to 

maintenance and logistics operations will insure timely forecasting of maintenance 

and logistics actions that meet required availability levels, while providing valuable 

feedback to the design process. 

The methodology is part of a disciplined supportability analysis strategy that 

could be applied early in the system development process, thus exerting influence on 

the system (and system supportability) design by suggesting where appropriate PHM 

monitors and data collection mechanisms should be included in the design.   
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5.4. Future Work 

Future work could extend the design for availability methodology to address 

the concurrent determination of multiple system parameters that are dependent, i.e., if 

a relationship between the unknown system parameters is known. However, when the 

unknown system parameters are independent, the inclusion of an optimization 

approach may be required; since the relationship between the imposed downtime (or 

uptime) and the unknown system parameters could accept more than one unique 

solution. But, even in this case (i.e., multiple independent system parameters), the 

methodology is still efficient in terms of reducing the large and complex optimization 

problem, i.e., determining the unknown system parameters for multiple non-identical 

downtime (or uptime) values that generate different availability quantities, which may 

or may not satisfy the availability requirement; to determining the unknown system 

parameters for a single downtime (or uptime) value that has been imposed to satisfy 

the availability requirement.  

The work presented in this dissertation could be extended by the inclusion of a 

redundancy analysis. In other words, analyze cases where a unit’s failure does not 

necessarily generate an operational downtime of the system, since other redundant 

units could substitute the failed unit and maintain the ordinary operation of the 

system, while the failed unit is being repaired or replaced. This will directly affect the 

availability of the system (i.e., improve the availability), since the downtime duration 

will be reduced because of the immediate accessibility to the redundant units. 

Therefore, the design for availability derivation process, to determine the unknown 

system parameters, will be different for systems with redundant units. 
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This dissertation is focused on availability contracts that consist of meeting an 

operational availability requirement; this is indeed the general case (i.e., operational 

availability). Since the operational availability is the actual system availability that 

the customer sees, it implicitly incorporates other forms of availability and it is the 

most commonly used form of availability in this type of contracts. However, future 

work could extend the design for availability methodology to incorporate other types 

of availability (e.g., instantaneous, mean, steady-state, inherent and achieved). The 

main difference between these forms of availability is the type of activities that are 

excluded or included in the accumulated downtime and uptime values. This means 

when applying the design for availability methodology, using the same system design 

and support parameters to meet a specific availability requirement, the imposed 

downtimes and uptimes requirement is going to be different based on the considered 

type of availability. 

A conservative approach has been adopted, since the availability requirement 

was satisfied at any time during the entire system’s life. Future work could consider 

satisfying the availability requirement at specific time periods. Since different 

contracts could define an availability requirement over different periods of time. In 

this case, the application of the methodology would be similar to the conservative 

case (i.e., satisfying the availability requirement at all times), with the difference of 

imposing the uptime and downtime requirements at a contract-specified periods of 

time, instead of imposing the uptime and downtime requirement after every 

downtime. 
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Appendix 

This Appendix presents additional example cases for the demonstration and 

verification of the design for availability methodology. 

The design for availability methodology will be demonstrated for the 

derivation of two different logistics parameters: 1) spares threshold (ST) and 2) 

replenishment spares (RS). Where ST is the minimum quantity of held spares, and RS 

is the number of replenishment spares ordered at the at ST value. Similar to Chapter 

4, in order to use this demonstration as a qualitative verification of the methodology, I 

will perform the following steps:  

• Using the availability distribution requirement as an input to the design for 

availability model, determine the required ST distribution (output).  

• Use the generated ST distribution as an input to the existing PHM ROI 

simulation (described in the introduction to this section) to predict an 

availability distribution as an output. 

•  Compare the availability distribution input requirement to the availability 

distribution determined as an output.  

Notice that the first step is sufficient to achieve the design for availability task, 

since the ST will be determined for a specific contract availability requirement. The 

second and third steps are for verification of the methodology. The same three-step 

process is adopted for the demonstration and verification of the methodology applied 

to the RS. A detailed description of how ST and RS affect the operational timeline is 

provided in Section 4.2. 
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Spares Threshold 

All case study inputs are provided in Section 4.1, including LRU description, 

implementation and maintenance costs, and operational profile.  

The reliability information and inventory management parameters are 

provided in Figure A.1 and Table A.1, respectively. Table A.1 summarizes the spares 

inventory (per socket) assumptions that are used for this specific example. Also, note 

that the spares carrying costs are incorporated into the LRU recurring costs. Figure 

A.1 shows the assumed reliability for this case example, i.e., time-to-failure (TTF), of 

the LRU based on [43] and [52]. 

 

 

 
 

Figure A.1.  Weibull distribution of TTFs (β=1.1, η=200 and γ=9000). 
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Table A.1. Spares Inventory 

Factor Quantity 

Initial spares purchased for each 
socket 

4 

Threshold for spare replenishment Solved for in this section case study 

Number of spares to purchase per 
socket at replenishment 

3 

Spare replenishment lead time 27 calendar months 

Spares carrying cost 
10% of the beginning of year 

inventory value per year 

Billing due date when ordering 
additional spares 

2 years from purchase date 

 

The availability distribution considered for this example case is shown in 

Figure A.2.a. This distribution could represent the requirement of an availability 

contract. Note, availability contracts may specify the availability requirement as a 

single value, but, to accommodate more general problems, for all example cases I will 

use availability requirements that are represented as a probability distribution.  

Figure A.2.b shows the ST required to meet the availability requirement 

determined using the design for availability methodology. 

(a) (b) (c)  
 

Figure A.2. (a) Required availability distribution (input to the model). (b) Computed spares threshold 
(ST), for a data-driven PHM approach. (c) Availability probability distribution generated using the 

computed ST (Figure A.2.b). 
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In order to qualitatively verify the methodology, the spares threshold ST 

distribution (Figure A.2.b) was used as an input to the PHM ROI model.  The PHM 

ROI model used the spares threshold ST distribution along with the other inputs (see 

Section 4.1) and generated a resulting availability distribution.  Figure A.2.a shows 

the original availability input (mean = 89.47% and standard deviation = 0.74%), 

while Figure A.2.c shows the availability prediction that resulted from the PHM ROI 

model (mean = 89.51 and standard deviation = 0.77). The two results are not expected 

to be absolutely identical (since this is a stochastic solution), but the means and 

standard deviations are very similar. This simple example case validates the 

methodology and demonstrates qualitatively that the design for availability approach 

is truly satisfying the input availability requirement. 

 

Replenishment Spares 

All case study inputs are provided in Section 4.1, including LRU description, 

implementation and maintenance costs, and operational profile.  

The reliability information and inventory management parameters are 

provided in Figure A.1 and Table A.2, respectively. Table A.2 summarizes the spares 

inventory (per socket) assumptions that are used for this specific example. Also, note 

that the spares carrying costs are incorporated into the LRU recurring costs. Figure 

A.1 shows the assumed reliability for this case example, i.e., time-to-failure (TTF). 
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Table A.2. Spares Inventory 

Factor Quantity 

Initial spares purchased for each 
socket 

3 

Threshold for spare replenishment ≤ 1 spares in the inventory per socket 

Number of spares to purchase per 
socket at replenishment 

Solved for in this section case study 

Spare replenishment lead time 36 calendar months 

Spares carrying cost 
10% of the beginning of year 

inventory value per year 

Billing due date when ordering 
additional spares 

2 years from purchase date 

 

The availability distribution considered for this example case is shown in 

Figure A.3.a. This distribution could represent the requirement of an availability 

contract. Note, availability contracts may specify the availability requirement as a 

single value, but, to accommodate more general problems, for all example cases I will 

use availability requirements that are represented as a probability distribution.  

Figure A.3.b shows the ST required to meet the availability requirement 

determined using the design for availability methodology. 

(a) (b) (c)

Replenishment Spares

 
 

Figure A.3. (a) Required availability distribution (input to the model). (b) Computed replenishment 
spares (RS), for an unscheduled maintenance policy. (c) Availability probability distribution 

generated using the computed RS (Figure A.3.b). 
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In order to qualitatively verify the methodology, the replenishment spares RS 

distribution (Figure A.3.b) was used as an input to the PHM ROI model.  The PHM 

ROI model used the replenishment spares RS distribution along with the other inputs 

(see Section 4.1) and generated a resulting availability distribution.  Figure A.3.a 

shows the original availability input (mean = 63.88% and standard deviation = 

0.83%), while Figure A.3.c shows the availability prediction that resulted from the 

PHM ROI model (mean = 63.85 and standard deviation = 0.76). The two results are 

not expected to be absolutely identical (since this is a stochastic solution), but the 

means and standard deviations are very similar. This simple example case validates 

the methodology and demonstrates qualitatively that the design for availability 

approach is truly satisfying the input availability requirement. 
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