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Chapter 1

Introduction

1.1 Classical Schubert Calculus

Schubert Calculus was invented in the late nineteenth century by Hermann

Schubert in order to solve various counting problems in projective geometry.

We let the Grassmannian G(k, n) be the set of k-dimensional subspaces of

some fixed n-dimensional complex vector space V . The goal of Schubert Calculus

in this setting is to describe the intersection theory, or equivalently, the cohomology

ring of the Grassmannian as a projective complex manifold.

We fix a complete flag F• = 0 ⊂ F1 ⊂ · · · ⊂ Fn = V where dimC(Fj) = j. For

the Grassmannian G(k, n) it is well known that the Schubert cells/varieties/classes

are indexed by partitions λ whose Young diagrams are contained in a k by n − k

rectangle. The Schubert cell, X◦
λ corresponding to a partition λ is given by the

following formula:

X◦
λ = {Σ ∈ G(k, n)| dim(Σ ∩ Fn−k+i−λi

) = i for i ≤ k}.

These cells are affine spaces of dimension k(n − k) − |λ|, where |λ| = ∑
i λi. The

Schubert variety corresponding to the partition λ is the closure of this Schubert cell,

and the class of this variety in the cohomology ring, denoted σλ, is independent of

the choice of flag F•.
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The Grassmannian described above is the standard Lie type A Grassmannian.

We can similarly define symplectic/orthogonal Grassmannians for the other Lie

types as follows. Let V be a complex vector space of dimension 2n for types C and

D, or of dimension 2n + 1 for type B. Let 〈 , 〉 be an non-degenerate bilinear form

on V, where for type C it is skew symmetric, and for types B and D it is symmetric.

Then we define the symplectic/orthogonal Grassmannians as follows. For type C we

have isotropic Grassmannians, IG(n−k, 2n) = {Σn−k ⊂ V |∀v, w ∈ Σn−k〈v, w〉 = 0},

where 0 ≤ k ≤ n. Where if k = 0 then we obtain the Lagrangian Grassmannian

LG(n, 2n). For type B (resp. type D) we have orthogonal Grassmannians, denoted

OG(n− k, 2n+ 1) (resp. OG(n− k, 2n)), which are defined in the same way.

We can similarly define Schubert cells/varieties/classes in these types by fixing

a complete flag and providing incidence conditions for an isotropic subspace with

respect to this flag. The indexing set for Schubert varieties will be discussed in

further detail later in the thesis.

Two main problems arise in the Schubert calculus of the Grassmannian. The

first problem is the Giambelli problem. In the Grassmannian the Schubert classes

corresponding to partitions with one part are called special classes, and are the Chern

classes of the tautological quotient vector bundle over G(k, n). It is known that these

special classes are generators for the cohomology ring over Z. The Giambelli problem

is to find a formula which gives any Schubert class in terms of these special classes.

The answer, due to Giambelli, is well known for G(k, n) and is usually given as the

determinant below

σλ = det[σλi+j−i]1≤i,j≤k.
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The other main problem in classical Schubert calculus is determining what happens

when we multiply an arbitrary Schubert class σλ by a special class σp. This is called

the Pieri rule. We note that the Pieri rule equivalently tells one how the Schubert

variety Xλ intersects the variety Xp. In all of the classical settings if one solves the

Giambelli problem then the Pieri rule follows formally, and visa versa.

1.2 Equivariant Cohomology

In equivariant cohomology, we are considering both the intersection theory of

some homogeneous space and the action of a torus. The general setup is as follows.

Let G be a classical Lie group, fix a Borel subgroup B, let P ⊇ B be a parabolic

subgroup, and let T ⊂ B be a maximal torus. There is an action of T on the

homogeneous space G/P . We find a contractible space ET on which T acts freely

and then form

ET ×T G/P := (ET ×G/P )/[(e · t, x) ∼ (e, t · x)].

This is otherwise known as the quotient stack [T\G/P ]. The equivariant cohomology

H∗
T (G/P ) = H∗(ET ×T G/P ). Since ET ×G/P is homotopy equivalent to G/P we

are in effect taking the cohomology of G/P modulo the action of T .

For the Grassmannians G/P , where P is usually a maximal parabolic sub-

group, the equivariant cohomology ring is similarly generated by special classes

corresponding to partitions of length one. The difference is now they generate the

equivariant cohomology ring of the Grassmannian over Z[t1, . . . tn], where n is the

rank of G and the ti’s are Chern classes corresponding to characters of the torus.
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1.3 Equivariant Schubert Calculus

Similarly to the classical situation, equivariant Schubert calculus studies the

intersection theory of the equivariant Schubert varieties. A main problem of equiv-

ariant Schubert calculus is to represent the equivariant Schubert classes by poly-

nomials whose multiplicative structure coincides with the intersection theory of the

Schubert varieties.

Equivariant Giambelli formulas for the usual type A Grassmannian have been

obtained by various authors (cf. [MS], [F2], [FP], etc.). Most of these authors

express a Schubert class as a Schur determinant and note that the classes can be

represented by factorial Schur S-functions where the variables are Chern classes.

There are also nice polynomial representatives for the equivariant Schubert classes

of Grassmannians of maximal isotropic subspaces in types B,C, and D. In these

cases the equivariant Schubert class is usually represented as a Pfaffian and can

be recognized as factorial Schur Q- orP - functions. One reference which includes

both formulas is chapter 3 and chapter 7 of [FP]. We will describe these polynomi-

als in chapters 3 and 4 of the thesis. In all cases the polynomials representing the

equivariant Schubert classes will coincide with the double Schubert polynomials of

Lascoux and Schützenberger for type A, and the double Schubert polynomials of

Ikeda, Mihalcea, and Naruse for types B, C, and D. To recognize these polynomi-

als as representatives of the equivariant Schubert classes for the Grassmannian we

consider the projection of the complete flag variety into the Grassmannian, and use

the induced injection of the cohomology rings. It is well known that the factorial
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Schur S functions coincide with the double Schubert polynomials of Lascoux and

Schützenberger. Also Ikeda, Mihalcea, and Naruse show that their double Schubert

polynomials for types B, C, and D coincide with the factorial Schur P functions for

types B and D and factorial Schur Q functions for type C whenever the indexing

permutation of their double Schubert polynomial corresponds to a strict partition.

In the equivariant setting the Pieri rule is significantly more complicated. Thus

one first tries to describe the product of a general equivariant Schubert class σλ

with the equivariant class of a Schubert divisor σ1. This is known as the equivariant

Chevalley Formula.

1.4 Raising Operators as a Tool for Schubert Calculus

Recently Buch, Kresch, and Tamvakis [BKT] used Young’s raising operators

to solve the Giambelli problem for all Grassmannians in classical Lie types. As

mentioned in the first section, the solution to the Giambelli problem for the standard

Lie type A Grassmannian is a determinant. In the case of the maximal isotropic

Grassmannian in Lie type C, otherwise known as the Lagrangian Grassmannian,

the Giambelli problem was solved using a Pfaffian by Pragacz [FP]. The raising

operators give a beautiful way to interpolate between the two solutions and in the

process give a solution for general isotropic Grassmannians which was not known

before.

5



1.5 Outline of Thesis

In my thesis I aim to use Young’s raising operators to give a polynomial rep-

resentation for an equivariant Schubert class in the equivariant cohomology ring of

a Grassmannian of any classical Lie type. In chapter 3, this is done for the type A

Grassmannian G(k, n), where I give a raising operator expression which coincides

with the factorial Schur S functions. I show that my expression does indeed coincide

with the corresponding Schur S function, and then prove the Chevalley formula for

my expression independent of previous results. In chapter 4, I give expressions which

coincide with the Schur Q functions for the Lagrangian Grassmannian, along with

the Schur P functions for the maximal orthogonal Grassmannians. Again I prove

the Chevalley formula independently. Finally, in chapter 5, I give a conjecture for a

Giambelli type formula for a Schubert class in a general symplectic isotropic Grass-

mannian, prove the corresponding Chevalley formula, and prove that it represents

a Schubert class in cases where the indexing partition is sufficiently small.
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Chapter 2

Preliminaries

2.1 Schubert Cells, Varieties, and Classes

Let G be a complex reductive algebraic group. Fix a Borel subgroup B, and

a maximal torus T ⊂ B. Then if we consider a flag variety G/P for a parabolic

subgroup P ⊃ B, we can index the Schubert varieties of this flag variety by a

particular subset of the Weyl group W = NG(T )/T . The Schubert cells of this flag

variety are the B-orbits of G/P , and so are indexed by W/WP , where WP is the

subgroup of W which fixes P . Let w0 be the element of longest length in W . Each

coset vWP has a unique element of shortest length in W . Let W P be the set of

minimal length coset representatives, and let w0 be the element of longest length in

W . Then the Schubert varieties are indexed by the set {w0v ∈ W : v ∈ W P}. We

denote the Schubert cell as X◦
w = Bw0wP/P , and its closure, the Schubert variety,

as Xw. The class [Xw] is the Schubert class in the classical cohomology of G/P .

Each Schubert cell contains exactly one torus fixed point which we will denote as

ew ∈ X◦
w.

In the equivariant setting we need to also consider the action of a maximal

torus. Back in section 1.2 we described the quotient stack [T\G/P ]. We can similarly

define ET ×T Xw this will be the equivariant Schubert variety, and its class in the

cohomology ring will be its equivariant Schubert class, which is usually denoted as

7



σT
w. Since the rest of the thesis will be about equivariant Schubert classes, we will

shorten the notation to σw for an equivariant Schubert class corresponding to a Weyl

group element w.

For Weyl group elements u, v, w let cwuv be such that σu · σv =
∑

w cwuvσw. Also

the restriction of σw to the torus fixed point ev will be denoted σw

∣∣
v
. For a given

classical Lie type, these restrictions will be stable as the rank of G increases. In other

words, let n and m be the ranks of classical Lie groups Gn and Gm of a fixed Lie

type with Weyl groups Wn and Wm respectively. Then if n < m we have Wn ⊂ Wm

and for any v, w ∈ Wn, we have that σw

∣∣
v
∈ H∗

Tm
(ev) is constant as m varies, where

Tm is the corresponding maximal torus for Gm. These descriptions of the Schubert

classes are referred to in [IMN, §1.1] as stable Schubert classes. As in [IMN] we will

let H∞ be the span of the stable Schubert classes. We will describe the restriction

map in greater detail for the Grassmannians in the later chapters of the thesis.

2.2 Equivariant Cohomology Rings for Complete Flags in Types A

and C

We note that in every case we can consider the projection G/B → G/P of a

complete flag variety G/B onto a Grassmannian G/P . This projection induces an

inclusion of the cohomology ring of the Grassmannian into the cohomology ring of

the complete flag. In my thesis all of the results, including the conjecture made in

chapter 5, match the descriptions of double Schubert polynomials which describe

the equivariant Schubert classes for a complete flag; the reader can refer to chapter

8



one of [FP] for the type A double Schubert polynomials, and to chapter eight of

[IMN] for the double Schubert polynomials in other types. I will be using the same

conventions as these sources.

2.2.1 The Presentations in Terms of Chern Classes

Let F• = 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V be a flag representing a point in

G/B for a given classical Lie group G of rank n and a Borel subgroup B. We

note that if G is type A then r = n, if G is type B then r = 2n + 1 and if G is

types C or D then r = 2n. Also if G is types B,C, or D, then Fi is isotropic for

i ≤ n and Fi = F⊥
r−i+1. Given a Lie type we can describe the tautological sub- and

quotient bundles {Si}ri=1 and {Qi}ri=1 of the corresponding flag variety. The fiber

above the point F• for Si is Fi and the fiber for Qi is V/Fi. We can make all of these

bundles equivariant by instead considering the point ET ×T F• inside of [T\G/B].

Let e1, . . . , er be the standard set of basis vectors for V , then we will also fix a flag

E• = 0 ⊂ 〈er〉 ⊂ 〈er, er−1〉 ⊂ · · · ⊂ 〈er, . . . , e1〉 = V . Then we can define a new set

of vector bundles {Ti}ri=1 where the fiber above every point of G/B for Ti is Ei.

For all Lie types, let ti = c1(Ti); we note that these will correspond to charac-

ters of the torus. In the following we let ΛT = Z[t1, . . . , tn].

For type A, the variable xi = c1(ker(Qi → Qi−1)). Then for the equivariant

cohomology ring we consider the projection

p : G/B → G(k, n).

This map induces an injection of the equivariant cohomology rings so that we can
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realize H∗
T (G(k, n);Z) as a subring of

H∗
T (G/B;Z) ∼= ΛT [x1, . . . , xn]/〈ei(x)− ei(t)〉,

using the Borel presentation of the equivariant cohomology of the complete flag

variety as described in [F2] and [LS]. In fact, for the Grassmannian G(k, n), we will

only need the variables x1, . . . , xn−k and we will denote this (n−k)-tuple as simply x,

as in case of the ordinary cohomology when the Schubert classes are realized as Schur

polynomials in [F3, 10.6]. In the equivariant case it has been shown [cf. F] that the

double Schubert polynomial Swλ
(x, t) of [LS] which corresponds to an equivariant

Schubert class in the Grassmannian is the factorial Schur function sλ(x|t), which we

define in chapter 3.

For types B, C, and D, x will denote a countably infinite set of formal variables

x1, x2, .... Also in types B, C, and D we will need an additional set of variables

zi = c1(Sn−i+1/Sn−i) where 1 ≤ i ≤ n. Let T = ⊕n
i=1T ∗

i where T ∗
i is the dual

bundle to Ti and recall that for vector bundles A and B the total Chern class of the

formal difference A− B is defined by

c(A− B) = c(A)/c(B) = 1 + c1(A) + c2(A) + . . .

1 + c1(B) + c2(B) + . . .

so that
∞∑
i=0

ci(A− B)ui =

∑∞
i=0 ci(A)ui

∑∞
i=0 ci(B)ui

.

As in [IMN, §10] we define βi = ci(S
∗
n − T ) where S∗

n is the dual bundle to the

tautological subbundle Sn. We note that T and S∗
n have Chern roots −t1, . . . ,−tn

10



and −z1, . . . ,−zn respectively so that

∞∑
i=0

βiu
i =

∏n
i=1 1− ziu∏n
i=1 1− tiu

.

As noted in [IMN, §1.1] we are considering a limit as n → ∞, so for the

stable Schubert classes of the complete flag we will have infinitely many z vari-

ables to apply the restriction map to. Recall from §2.1 that H∞ is the span of

the stable Schubert classes. In [IMN, §5.2, 6.1] the authors show that H∞ in-

jects into lim←−H∗
Tn
(Gn/Bn;Z) and, in type C, produce an isomorphism from H∞ to

ΛT [z1, z2, . . . ]⊗Z Z[Q1(x), Q2(x), . . . ] where Qi(x) is the i
th Schur Q-function which

is defined in chapter 4. In [IMN, §10] the authors produce a ring homomorphism

πn : ΛT [z1, z2, . . . ]⊗Z Z[Q1(x), Q2(x), . . . ] → H∗
Tn
(Gn/Bn;Z)

such that πn(Qi(x)) = βi where πn(ti) = ti, and πn(zi) = zi for i ≤ n while

πn(zi) = 0 for i > n. For any Schubert class σw ∈ H∗
Tn
(Gn/Bn;Z), the authors of

[IMN] define the type C double Schubert polynomial Cw(x, z, t) ∈ ΛT [z1, z2, . . . ]⊗Z

Z[Q1(x), Q2(x), . . . ] and the type B and type D double Schubert polynomials

Bw(x, z, t),Dw(x, z, t) ∈ ΛT [z1, z2, . . . ] ⊗Z Z[P1(x), P2(x), . . . ] where Pi(x) is the

Schur P -function which is defined in chapter 4. These double Schubert polynomials

have the property that πn(Sw(x, z, t)) = σw where Sw(x, z, t) = Bw(x, z, t) if Gn =

SO2n+1(C), Sw(x, z, t) = Cw(x, z, t) if Gn = Sp2n(C), and Sw(x, z, t) = Dw(x, z, t)

if Gn = SO2n(C).

Then for the equivariant cohomology ring of the isotropic Grassmannian we

consider the projection p : Gn/Bn → IG(n− k, 2n). Again this induces an injection

of the equivariant cohomology rings, so that we can realize H∗
Tn
(IG(n − k, 2n);Z)

11



as a subring of H∗
Tn
(Gn/Bn;Z). The Borel presentation of the complete flag in type

C [cf. FP] is given by

H∗
Tn
(Gn/Bn;Z) = ΛTn [z1, z2, . . . , zn]/〈ei(z21 , z22 , . . . , z2n)− ei(t

2
1, t

2
2, . . . , t

2
n)〉.

Then for a Schubert class σλ ∈ H∗
Tn
(IG(n− k, 2n);Z) we have that

p∗(σλ) = σwλ
= πn(Cwλ

(x, z, t)).

Our goal is to define a raising operator expression which will coincide with these

double Schubert polynomials.

2.3 The Vanishing Theorem and Ramifications

A major ingredient in proving that a polynomial expression represents a Schu-

bert class is a vanishing theorem for the restriction of a Schubert class to the fixed

points of the torus (cf. [MS] for type A, and [IMN] for other Lie types).

Theorem 1 (Vanishing). σw

∣∣
v
= 0 unless w ≤ v.

One notes that we expect this since we should only expect σw

∣∣
v
6= 0 if ev ∈ Xw,

which only happens if σv ⊆ σw which implies w ≤ v in the Bruhat order.

If the vanishing theorem holds then we immediately get several nice equations.

cwww = σw

∣∣
w

(2.1)

This equation holds since if look at σw · σw =
∑

cvwwσv and restrict both sides

to the fixed point corresponding to w we get that the only non-zero term on the

12



right will be when v = w, thus canceling σw

∣∣
w
from each side we get the desired

equation.

Similarly we obtain

cvwv = σw

∣∣
v
. (2.2)

From this we can use that our expressions given in chapters 3, 4 and 5 are

homogeneous polynomials in each separate set of variables to show that we have

Schubert classes.

It is well known that the equivariant Schubert classes form a basis for the

equivariant cohomology ring for Grassmannians of all types, where in each type the

indexing set for the Schubert classes in the Grassmannian can be recognized as a set

of partitions. In my thesis I give a raising operator expression in each Lie type for

a general equivariant Schubert class. In each type, my raising operator expression

specializes to a known solution to the classical Giambelli formula when each ti is set

to 0 (cf. [F3] for type A, [BKT] for other classical Lie types). Therefore using that

my expressions are homogeneous polynomials, which are indexed by the same set as

the Schubert classes, one can show that in each case my set of expressions will form

a basis for the given cohomology ring.

To show that the raising operator expression represents an equivariant Schu-

bert class we just need to show that it is the same basis as the Schubert basis for

the equivariant cohomology ring over ΛT . Let my basis be denoted as {Tλ} and let

the Schubert basis be denoted {σλ} which we can realize as a set of polynomials

13



by considering the projection of the complete flag onto the Grassmannian in each

case, and using the induced map on the equivariant cohomology rings to express

each Schubert class as a double Schubert polynomial. Then we expand my basis in

terms of the Schubert basis as follows:

Tλ =
∑
µ

aλµσµ.

If we assume the vanishing theorem for both bases, then we note that if aλµ 6= 0

then λ ⊆ µ since otherwise we could restrict to µ and get 0 on the left hand side

and a non-zero value on the right hand side. Since both bases are homogenous

polynomials, we know that |µ| ≤ |λ|. Therefore aλµ = 0 unless λ = µ. Hence both

bases are the same.

2.4 The Chevalley Formula

For the Grassmannian the Chevalley Formula is a special case of the Pieri rule.

In general the Chevalley formula on the flag variety G/B tells us how to multiply any

Schubert class by the class of a divisor, denoted by σsi , where si is a simple reflection

which is a Weyl group element of length one. Each simple reflection corresponds to

a simple root. The set of all positive roots will be the set of all linear combinations

of simple roots where the coefficients on the simple roots are all non-negative.

For any positive root α set cα,si = (wi, α
∨) where ( , ) is the standard inner

product for V , wi is the ith fundamental weight corresponding to si and α∨ is the

coroot of α.
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Let R+ be the a set of positive roots. The general equivariant Chevalley

Formula (cf. [IMN, Lemma 6.8]) is

σw · σsi = σsi

∣∣
w
σw +

∑

α∈R+,`(wsα)=1+`(w)

cα,siσwsα .

In order to prove the Chevalley formula, one simply notes that we are only

multiplying the general class by a polynomial of degree one. One knows that the

classical terms will still appear (i.e. the σwsα) since when all ti are set to zero we

have the classical expression. Hence we only need to find the coefficient of σw, and

this was shown to be σsi

∣∣
w
already using the vanishing theorem.

In each of the following chapters of the thesis we will prove using a raising

operator approach that the given raising operator expression satisfies the Chevalley

formula, and note that this gives strong evidence that the given expression is a solu-

tion to the Giambelli problem. The author hopes that in the future this information

can be used to prove the conjecture stated in chapter 5.
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Chapter 3

The Type A Equivariant Giambelli Rule

3.1 Preliminaries for Type A Grassmannians

Consider the Grassmannian G(k, n) of k-planes in n-dimensional complex

space Cn (i.e. G(k, n) ∼= GLn(C)/P , where P is the parabolic subgroup of GLn(C)

which consists of block matrices where there are zeros in the bottom left k by n− k

entries and the rest of the entries can be arbitrary so long as the resulting matrix is

invertible).

3.1.1 The Classical Schubert Classes and Schur S functions

In section 9.4 of [F3], Fulton describes how the Schubert classes of G(k, n) are

indexed by partitions λ whose Young diagram fit in a k by (n − k) rectangle. As

discussed in the introduction, once we fix a complete flag in type A F• = 0 ⊂ F1 ⊂

· · · ⊂ Fn = V where the dimC(Fj) = j, then the Schubert cell corresponding to λ is

X◦
λ = X◦

λ(F•) = {Σ ∈ G(k, n)| dim(Σ ∩ Fn−k+i−λi
) = i for i ≤ k}.

Also the Schubert variety corresponding to λ is the closure of the cell, so it is

Xλ = Xλ(F•) = {Σ ∈ G(k, n)| dim(Σ ∩ Fn−k+i−λi
) ≥ i for i ≤ k}.

Also in 9.4 of [F3], Fulton describes how one can obtain a cohomology class σλ from

the above variety using Poincaré duality. The Schubert class, σλ, does not depend
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on the choice of flag F•.

Fulton also describes in [F3] how one can represent the Schubert class σλ as

the Schur S polynomial sλ(x). In Chapter 6 of [F3], Fulton gives the Jacobi-Trudy

identity for the Schur S functions below.

sλ(x) = det[eλi+j−i(x)]1≤i,j≤k = det[hλ′
i+j−i(x)]1≤i,j≤n−k

where er(x) and hr(x) are the elementary and complete symmetric polynomials and

x = (x1, . . . xn−k) are the variables described in §2.2.1. For an infinite list of variables

a = (a1, a2, . . . ) the generating functions for these polynomials are

E(a, u) =
∞∏
i=1

(1 + aiu) =
∞∑
i=0

ei(a)u
i H(a, u) =

∞∏
i=1

(1− ait)
−1 =

∞∑
i=0

hi(a)u
i

We note that if x is a finite set of k variables then ei(x) = 0 for i > k. The

elementary and complete symmetric polynomials also have the following very nice

property which we will use later.

Let a = (a1, a2, . . . ) and define a(j) to be (a1, . . . , aj−1, aj+1, . . . ) so that aj is

removed. Then

ei(a) = ei(a
(j)) + ajei−1(a

(j)) and hi(a) = hi(a
(j)) + ajhi−1(a). (3.1)

3.1.2 Torus Fixed Points and the Equivariant Cohomology

Let

E• = 0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉

17



be the complete flag given by the standard basis vectors. Let T be the usual maximal

torus of diagonal matrices. Then we note that a subspace Σ of dimension k will be

fixed by the action of T only when exactly k standard basis vectors give a basis for

the subspace. In other words we have Σ = 〈ei1 , . . . , eik〉 where 1 ≤ i1 < i2 < · · · <

ik ≤ n. One notices that each Schubert cell in G(k, n) will contain exactly one torus

fixed point. For a partition λ whose Young diagram is contained in the k by n− k

rectangle, the torus fixed point is

eλ = 〈en−k−λ1+1, en−k−λ2+2, . . . , en−λk
〉 ∈ X◦

λ(E•).

Let H∗
T (G(k, n);Z) be the equivariant cohomology of this Grassmannian with

respect to the maximal torus T ∼= (C∗)n of diagonal matrices in GLn(C). It is

well known that the equivariant Schubert classes form a basis of this ring over

ΛT = Z[t1, . . . , tn] where the ti’s are first equivariant Chern classes of line bundles

over the Grassmannian (namely ti is the first Chern class of the line bundle whose

fiber is the complex line generated by the ith standard basis vector as described

in §2.2.1). To get a presentation of the ring in terms of the variables described

we consider the projection p : Gln(C)/B → G(k, n). As described in §2.2.1, this

map induces an injection of the equivariant cohomology rings so that we can realize

H∗
T (G(k, n);Z) as a subring of

H∗
T (Gln(C)/B;Z) ∼= ΛT [x1, . . . , xn]/〈ei(x)− ei(t)〉1≤i≤n (3.2)

using the Borel presentation of the equivariant cohomology of the complete flag

variety. The goal of this section is to use raising operators to express the equivariant

Schubert classes as a polynomial in the presentation (3.2).
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There is a known representation of Schubert classes as polynomials in these

variables given by factorial Schur S-polynomials. The factorial Schur S-polynomial

sλ(x|t) is defined as one of 2 expressions in Equations (3.3) and (3.4) below:

sλ(x|t) = det[(xj|t)n−k−i+λ′
i ]1≤i,j≤n−k∏

i<j(xi − xj)
(3.3)

where (xj|t)m =
∏m

r=1(xj − tr) and λ′ is the conjugate partition to λ (i.e. λ′ has λ’s

rows as it’s columns and λ’s columns as it’s rows); or

sλ(x|t) = det[en−k+i−λi
λi+j−i ]1≤i,j≤k (3.4)

where

eqp = ep(x1, . . . , xn−k|t1, . . . , tq) =
p∑

i=0

(−1)iep−i(x)hi(t).

We note that the usual definition of sλ(x|t) has the conjugate (or transpose)

of the partitions indicated in these equations. We use the transpose so that we can

apply these results directly for the classes indexed by “small” partitions in Chapter

5. We note that the two definitions above where shown to be equivalent in [M, I.3];

see also [MS] and [FP,F].

3.1.3 The Type A Grassmann Permutation for a Partition λ

Let λ be a partition whose Young diagram fits in a k by l box where l = n−k.

We recall that all such partitions will index the Schubert classes in the Grassmannian

G(k, n). As in section 7 of [F] we denote the set of jumping numbers for λ to be

I(λ) = l + 1− λ1, l + 2− λ2, . . . , l + k − λk. Also we similarly set J(λ) to be the
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complement of I(λ) in the set {1, . . . , n}.

The Weyl group element corresponding to λ is wλ where wλ(i) = λ′
l−i+1+ i for

i ≤ l where λ′ is the conjugate partition for λ and is a strictly increasing sequence

for the remaining l + 1 ≤ i ≤ n.

Notice that wλ has the property that wλ(i) < wλ(i+ 1) for all i 6= l.

Proposition 1. We have {wλ(1), . . . , wλ(l)} = J(λ).

Proof. Assume for a contradiction that wλ(l − i + 1) ∈ I(λ) for some i ≤ l. Then

there exists a j ≤ k such that l + j − λj = λ′
i + l − i+ 1. If this were true then we

would have

0 = λj − j + λ′
i − i+ 1. (3.5)

Consider cases.

1. If there is a box in the ijth place of the Young diagram of λ then we know that

λj ≥ i and λ′
i ≥ j. Therefore the right hand side of Equation (3.5) is positive

and we have a contradiction.

2. If there is not a box in the ijth place of the Young diagram of λ then we know

that λj < i and λ′
i < j. Therefore the right hand side of Equation (3.5) is

negative and we have a contradiction.

Hence {wλ(1), . . . , wλ(l)} = J(λ) as desired.
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3.1.4 Restriction to Torus Fixed Points in Type A

We have shown that the fixed points of the torus action on G(k, n) will corre-

spond to partitions, and we call the permutation wλ corresponding to the partition

λ a Grassmann permutation. In order to get the restriction map we look at the

inclusion ι : pt ↪→ G(k, n), where pt denotes a torus fixed point. This induces a ring

homomorphism on the equivariant cohomology rings ι∗ : H∗
T (G(k, n)) → H∗

T (pt) =

Z[t1, . . . , tn]. This homomorphism takes the equivariant Chern class xi to the equiv-

ariant Chern class twλ(i) if the point we are restricting to corresponds to λ.

So when restricting to a fixed point eλ we have the following:

xi → twλ(i)

and as l-tuples, where tJ(λ) = {tj}j∈J(λ), we have

x → tJ(λ).

When we restrict a Schubert class σλ to the fixed point eµ we will denote the

image as σλ

∣∣
µ
. In particular the above gives us that

σ1

∣∣
λ
=

∑

j∈J(λ)
tj −

l∑
i=1

ti (3.6)

since in G(k, n), σ1 is represented by the polynomial
∑l

i=1(xi − ti). We will use

Equation (3.6) in §3.4.
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3.2 The Raising Operator Expression

The raising operator, Rij for i < j, as defined by A. Young, acts on a tuple

of integers by raising the ith entry by 1, and lowering the jth entry by 1. So for

example R2,4(5, 4, 3, 2, 1) = (5, 5, 3, 1, 1). For integer sequences λ and γ, we define

the monomial mλ;γ =
∏`

i=1 e
γi
λi

where ` is the length of the sequence λ (i.e. ` =

max{i : λi 6= 0}). In this monomial we agree that if any number in either λ or γ

is negative then mλ;γ = 0. We define Rijmλ;γ = mRij(λ);γ. From here on out all of

our integer sequences will have finite length, however we may still regard the integer

sequence as an infinite sequence with only a finite number of nonzero entries.

Let

Tλ;γ =
∏

1≤i<j≤`

(1−Rij)mλ;γ (3.7)

For a partition λ we define γ(λ) to be the integer sequence such that γ(λ)i =

n− k + i− λi and define Tλ = Tλ;γ(λ).

Theorem 2. The equivariant Schubert class σλ is represented by Tλ.

We will prove the above theorem by showing that the raising operator expres-

sion (3.7) satisfies the vanishing theorem.

3.3 The Vanishing Theorem

We show below that our raising expression is equivalent to the expression given

in (3.4).

Let w ∈ Sn be a permutation. Let Iw = {(i, j) : i < j, w(i) > w(j)} be the set
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of inversions of w. Define

Rw :=
∏

(i,j)∈Iw
Rij.

Then we claim that the following raising operators are equivalent.

∏
1≤i<j≤n

(1−Rij) =
∑
w∈Sn

(−1)`(w)Rw. (3.8)

Note that we can think of Rij as acting on a polynomial in the variables

x1, . . . , xn by raising the power of the xi by one and lowering the power of xj by

one. In this setting the raising operator Rij is simply multiplication by xi/xj. Let

A =




1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

...
...

...
...

1 xn x2
n . . . xn−1

n




.

Then

det(A) =
∑
w∈Sn

(−1)`(w)x
w(1)−1
1 · · · xw(n)−1

n =

(
n∏

j=1

xi−1
i

) ∑
w∈Sn

(−1)`(w)x
w(1)−1
1 · · · xw(n)−n

n

and from Vandermonde we also have

det(A) =
∏

1≤i<j

(xj − xi) =

(
n∏

j=1

xi−1
i

) ∏
1≤i<j

(1− xi

xj

).

Then we simply note that
∏n

i=1 x
w(i)−i
i =

∏
(i,j)∈Iw

xi

xj
which can be proven by in-

duction on `(w). So Equation (3.8) amounts to two different calculations of the

Vandermonde determinant.

Theorem 3. Tλ = sλ(x|t)
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Proof.

Tλ =
∏

1≤i<j≤`

(1−Rij)mλ;γ(λ)

=
∑
w∈S`

(−1)l(w)Rw

∏̀
i=1

en−k+i−λi
λi

=
∑
w∈S`

(−1)l(w)
∏̀
i=1

en−k+i−λi

λi+(w(i)−i)

= det[en−k+i−λi

λi+(j−i) ]i,j≤`

= sλ(x|t) by Equation (3.4)

Below we include a proof of the vanishing theorem similar to the one for

Theorem 2.1 of [MS] for completeness.

Theorem 4. [MS] sλ(tµ|t) = 0 unless λ ⊆ µ, where tµ is the image of the x variables

under the localization map ι∗µ : H∗
T (G(k, n)) → H∗

T (eµ) where ι∗µ(xi) = twµ(i).

Proof. In this setting we will use Equation (3.3), so recall

sλ(x|t) = det[(xj|t)n−k−i+λ′
i ]1≤i,j≤n−k∏

i<j(xi − xj)
.

Then the numerator of the expression when restricted to µ will be

det[(twµ(j)|t)n−k+i−λi ]1≤i,j≤n−k. If λ is not contained in µ this means that there

exists an index r ≤ k such that λr > µr. Similarly there is a part in their conjugate

partitions s ≤ n − k such that λ′
s > µ′

s. Then xn−k−s+1 is mapped to tµ′
s+n−k−s+1.

Then since λ′
s > µ′

s we have that λ
′
s + n− k− s ≥ µ′

s + n− k− s+ 1. For i ≤ s ≤ j
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we have the following inequality:

1 ≤ µ′
j + n− k − j + 1 ≤ µ′

s + n− k − s+ 1 ≤ λ′
s + n− k − s ≤ λ′

i + n− k − i.

Note that the matrix given by A = [(twµ(j)|t)n−k+i−λi ]1≤i,j≤n−k = [aij] will have the

property that

aij = (tµ′
j+n−k−j+1 − t1) · · · (tµ′

j+n−k−j+1 − tλ′
i+n−k−i)

so aij = 0 for all i ≤ s ≤ j. This gives us a block of zeros which implies that

det(A) = 0, and thus proves the theorem.

Combining Theorems 3 and 4 we have the following Corollary.

Corollary 1. Tλ satisfies the vanishing theorem so that if Tλ

∣∣
µ
6= 0 then λ ⊂ µ.

Proof. This is a consequence of the above theorems and Macdonald’s proof of the

equivalence of Equations (3.4) and (3.3).

3.4 The Chevalley Formula

We will show that our raising operator expression when multiplied by σ1 has

the same outcome as when we multiply the corresponding equivariant Schubert

class by σ1. We note that this is true as a consequence of §3.3, but we will give an

independent raising operator proof.

Recall that the equivariant Chevalley Formula for G(k, n) is

σλ · σ1 = σ1

∣∣
λ
σλ +

∑

λ+

σλ+
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where σ1

∣∣
λ
is the restriction of the divisor class to a fixed point of the torus, and

where λ+ is a partition containing λ such that |λ+| = |λ|+ 1.

To prove the analogue of this statement for our Tλ expressions we will use a

series of lemmas. The first lemma gives a relation between two different T expres-

sions.

Lemma 1. For any integer sequences λ, µ, and γ, and integers r and s we have:

T(λ1,...,λj−1,r,s,µ);γ = −T(λ1,...,λj−1,s−1,r+1,µ);sjγ.

where sj is the transposition which switches the jth and (j + 1)th entries.

Proof. We prove this statement via an induction argument similar to that of Buch,

Kresch and Tamvakis in [BKT, Lemma 1.1] for isotropic Grassmannians.

Note that

T(λ1,...,λj−1,r);γ =
∑

α∈{0,1}j−1

(−1)|α|Tλ+α;γTr−|α|;γj (3.9)

where Tr−|α|;γj = e
γj
r−|α|

Using equation 3.9 once we prove the statement is true for µ = ∅ we will have

our result by induction on `(µ). For the base case we assume that the µ in our

lemma is empty and prove the statement T(λ1,...,λj−1,r,s);γ = −T(λ1,...,λj−1,s−1,r+1);sjγ.

Here we apply the above recursion twice to get

T(λ1,...,λj−1,r,s);γ =
∑

α,β∈Z{0,1}j−1

(−1)|α|+|β|Tλ+α+β;γ(e
γj
r−|α|e

γj+1

s−|β| − e
γj
r+1−|α|e

γj+1

s−1−|β|).

Similarly we get

T(λ1,...,λj−1,s−1,r+1);sjγ =
∑

α,β∈Z{0,1}j−1

(−1)|α|+|β|Tλ+α+β;γ(e
γj+1

s−1−|β|e
γj
r+1−|α| − e

γj+1

s−|β|e
γj
r−|α|).
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Hence T(λ1,...,λj−1,r,s);γ = −T(λ1,...,λj−1,s−1,r+1);sjγ and so the base case is proven. Then

we use Equation (3.9) to perform the inductive step and we have proven the lemma.

Corollary 2. Let λ be a partition such that λ = (µ, r, r, ν). Also let γ be such that

γi =





γ(λ)i if i 6= l(µ) + 1

γ(λ)i + 1 if i = l(µ) + 1

Then T(µ,r+1,r,ν);γ = 0.

Proof. Note that γ(λ)l(µ)+1 = n − k − r + l(µ) + 1 and γ(λ)l(µ)+2 = n − k − r +

l(µ) + 2. Hence γ = sl(µ)+1γ and by Lemma 1 we get the expression T(µ,r+1,r,ν);γ =

−T(µ,r+1,r,ν);γ so T(µ,r+1,r,ν);γ = 0.

The next lemma is a general relation between factorial elementary symmetric

polynomials which is necessary later in showing that the Tλ’s produce the correct

structure constants.

Lemma 2. er+1
p+1 = erp+1 − tr+1 · er+1

p

Proof.

er+1
p+1 =

p∑
i=0

(−1)iep+1−i(x)hi(t1, . . . , tr+1)

=

p∑
i=0

(−1)iep+1−i(x)(hi(t1, . . . , tr) + tr+1hi−1(t1, . . . , tr+1))

= erp+1 − er+1
p (tr+1)

via a shifting of indices.
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The next lemma gives us the Chevalley formula for multiplying a Tλ by T1.

We note that

(e1(x)− h1(t))
∣∣
λ
=

∑

j∈J(λ)
tj −

n−k∑
i=1

ti = σ1

∣∣
λ

so that the expression below does indeed coincide with the Chevalley formula dis-

cussed in §3.1.4 Equation (3.6).

We recall that the J-set, J(λ), for a partition λ is the set of numbers less than

or equal to n which are not jumping numbers for the partition (i.e. not equal to

n− k + i− λi for some i).

Lemma 3.

Tλ · T1 =
∑

λ+

Tλ+ +


 ∑

j∈J(λ)
tj −

n−k∑
i=1

ti


Tλ.

where λ+ is such that |λ+| = λ+ 1 and λ ⊂ λ+.

Proof. Note that T1 = en−k
1 = en−k+r

1 +
∑r

i=1 tn−k+i, and λ+ must be a partition of

length at most one more than the length of λ. We enable raising operator expressions

of length ` + 1 by multiplying the expression by
∏`

i=1
1−Ri,`+1
1−Ri,`+1

. We note that since

there is only one box added to the diagram of λ, so (1 − Ri,`+1)
−1 = 1 + Ri,`+1 +

R2
i,`+1+R3

i,`+1 . . . will act the same as simply (1+Ri,`+1) since R
r
i,`+1 will act on the
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monomial and result in an expression which is zero. Therefore

Tλ · T1

=
∏

1≤i<j≤`

(1−Rij)mλ;γ(λ) · en−k
1

=
∏

1≤i<j≤`

(1−Rij)

(
1 +

∑̀
r=1

Rr,`+1

)(∏̀
i=1

e
γ(λ)i
λi

)
· en−k+1+`−1

1 +

(∑̀
i=1

tn−k+i

)
Tλ;γ(λ)

=
∏

1≤i<j≤`+1

(1−Rij)

(
mλ,1;γ(λ,1) +

∑̀
r=1

(
r−1∏
i=1

en−k−λi+i
λi

· en−k−λr+r
λr+1 ·

∏̀
i=r+1

en−k−λi+i
λi

))

+

(∑̀
i=1

tn−k+i

)
Tλ;γ(λ)

by the previous lemma en−k−λr+r
λr+1 = en−k−λr−1+r

λr+1 + en−k−λr+r
λr

(−tn−k+r−λr) so the above

=
∏

1≤i<j≤`+1

(1−Rij)

(
mλ,1;ρ +

∑̀
r=1

(
r−1∏
i=1

e
γ(λ)i
λi

· eγ(λ)−1
λr+1 ·

∏̀
i=r+1

e
γ(λ)i
λi

))

+

(∑̀
i=1

(−tn−k+i−λi
+ tn−k+i)

)
Tλ;γ(λ)

=
∑
ν

Tν;γ(ν) +

(∑̀
i=1

(tn−k+i − tn−k+i−λi
)

)
Tλ

where ν is obtained by adding one box to any row of λ

=
∑

λ+

Tλ+ +


 ∑

j∈J(λ)
tj −

n−k∑
i=1

ti


Tλ

since Lemma 1 implies that Tν = 0 for any ν which is not a partition and since

{n− k + 1, . . . , n}r I(λ) = I(λ)c r {1, . . . , n− k} = J(λ)r {1, . . . , n− k}.

Hence we have shown the given raising operator expression satisfies the Cheval-

ley formula independent of the previous results for factorial Schur S functions. In
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the following chapters we will look at the other Lie types.
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Chapter 4

The Giambelli Formula for the Maximal Isotropic Grassmannians

4.1 Preliminaries for the Lagrangian Grassmannian

Let V be a 2n-dimensional complex vector space and 〈 , 〉 be a skew-symmetric

bilinear form on V . Consider the Lagrangian Grassmannian

LG(n, 2n) = {Σ ⊂ V | dim(Σ) = n, ∀v, w ∈ Σ 〈v, w〉 = 0}.

We call a subspace W of V isotropic if ∀v, w ∈ W, 〈v, w〉 = 0.

Notice that LG(n, 2n) is the set of maximal isotropic subspaces of V .

Let F• = 0 ⊂ F1 ⊂ · · · ⊂ F2n = V be a type C complete flag so that for

i ≤ n, Fi is an isotropic subspace of V , and F2n−i = F⊥
i . Then Schubert cells and

varieties are defined similarly to the type A case. The Schubert varieties for LG

are indexed by strict partitions λ with λ1 ≤ n, where a partition is called strict

if λi > λi+1 for all i such that λi > 0. For such a strict partition λ the Schubert

variety corresponding to λ is given by

Xλ = Xλ(F•) = {Σ ∈ LG(n, 2n)| dim(Σ ∩ Fn+1−λj
) ≥ j for j ≤ l(λ)}.

The corresponding Schubert cell is

X◦
λ = {Σ ∈ LG(n, 2n)| dim(Σ ∩ Fn+1−λj

) = j for j ≤ l(λ)}.

Like the type A case, from any Schubert variety we can obtain a class in the coho-

mology ring which does not depend on the choice of flag.
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For LG(n, 2n) we similarly have that the torus fixed points are n dimensional

subspaces generated by exactly n basis vectors. We recall that for a vector space V 2n

the standard basis vectors are e1, . . . , e2n with the standard antidiagonal symplectic

form 〈 , 〉 where 〈ei, e2n−i+1〉 = 1 and 〈ei, ej〉 = 0 for all j 6= 2n − i + 1. Let T be

the maximal torus with respect to this basis. Let E• = 0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂

〈e1, . . . , e2n〉. Similarly, any Schubert cell will contain exactly one torus fixed point.

For any strict partition λ of length ` ≤ n, the torus fixed point is

eλ = 〈en+1−λ1 , . . . , en+1−λ`
, en+i1 , . . . en+in−`

〉 ∈ X◦
λ(E•)

where i1 < i2 < · · · < in−` is such that λj 6= ir for any j, r.

It is well known that the classical Schubert classes on LG(n, 2n) can be rep-

resented by Schur Q functions. Let x = (x1, x2, . . . ). Then the functions qi(x) are

defined by the generating function:

∞∏
i=1

1− xiu

1 + xiu
=

∞∑
i=0

qi(x)u
i.

For a pair of positive integers r, s, we set

Qr,s(x) = qr(x)qs(x) + 2
∑
i≥1

(−1)iqr+i(x)qs−i(x) =:
1−R1,2

1 +R1,2

qr(x)qs(x).

For any strict partition λ of we can regard it has having even length ` by setting

the last part of λ be zero if the actual length of λ is odd, and leaving it unchanged

otherwise. Let

Qλ(x) = Pf [Qλi,λj
]i<j≤`.

It is well known that

Qλ(x) =
∏

1≤i<j≤n

1−Rij

1 +Rij

mλ
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wheremλ =
∏

i qλi
(x). In the above the operator

∏
1≤i<j≤n

1−Rij

1+Rij
acts on a monomial

mλ just as in Chapter 3 where we expand each factor
1−Rij

1+Rij
:= 1 − 2Rij + 2R2

ij −

2R3
ij + . . . as a formal sum.

4.2 The Raising Operator Expression

We define the factorial Schur Q-functions in terms of the usual Schur Q func-

tions and elementary symmetric polynomials as follows in a similar manner as in

section 4 of [IMN]. For a positive integer k, the one part factorial Schur Q function

is

Qr
k(x|t) :=

k−1∑
i=0

(−1)iQk−i(x1, x2, . . . )ei(t1, . . . , tr).

Then the 2 part factorial Schur Q function is

Qk,l(x|t) := Qk−1
k (x|t)Ql−1

l (x|t) + 2
∞∑
i=1

(−1)iQk−1
k+i (x|t)Ql−1

l−i (x|t).

Finally the factorial Schur Q function for a strict partition λ of even length ` is

defined as

Qλ(x|t) = Pf(Qλi,λj
(x|t))i<j≤`. (4.1)

Proposition 2. [IMN, Prop. 4.2] For a strict partition λ, Qλ(x|t) satisfies the

vanishing theorem.

We set the following notation:

Qr
k[j] :=

k−1∑
i=0

(−1)iQk+j−i(x1, x2 . . . )ei(t1, . . . , tr)

= 2
∞∑
i=1

xk−r+j
i (xi − t1) · · · (xi − tr).
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For integer sequences λ, γ, ρ where the length of λ is ` we let mλ,γ,ρ =
∏`

i=1Q
γi
λi
[ρi].

Then a raising operator R acts on mλ,γ,ρ by acting on only ρ. We notice

Qk,l(x|t) = 1−R1,2

1 +R1,2

Qk−1
k [0]Ql−1

l [0]. (4.2)

We define

Tλ;γ;ρ :=
∏

1≤i<j≤`

1−Rij

1 +Rij

mλ,γ,ρ.

In LG(n, 2n) we define γ(λ) such that γ(λ)i = λi−1. For the remainder of the

thesis when we call an integer sequence 0 we mean the infinite sequence of zeros.

Define Tλ = Tλ;γ(λ);0. We wish to show that Tλ is the same as the factorial

Schur-Q polynomials described in section 4 of [IMN]. We note that since γ(λ)i =

λi − 1 we have that Q
γ(λ)i
λi

[j] = Qλi−1
λi+j [0] since for j < 0 this is true for any γ and for

j > 0 we will have that er(t1, . . . , tλi−1) = 0 for r > λi − 1 so that

Qλi−1
λi

[j] =

λi−1∑
i=1

(−1)iQλi+j−i+1(x1, x2 . . . )ei(t1, . . . , tλi−1)

=

λi+j−1∑
i=1

(−1)iQλi+j−i+1(x1, x2 . . . )ei(t1, . . . , tλi−1)

= Qλi−1
λi+j [0].

Hence for any shift in the index ρ is equivalent to the same shift in the index λ.

From this we can assume that our raising operator is acting on the sequence λ rather

than the sequence ρ in the special case of Tλ.

Note that

∏

1≤i<j≤`

(
1−Rij

1 +Rij

)
= Pf

(
1−Rij

1 +Rij

)

i<j≤`

due to an identity of Schur.
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We have

Tλ =
∏

1≤i<j≤`

(
1−Rij

1 +Rij

)∏̀

k=1

Qλk−1
λk

= Pf

(
1−Rij

1 +Rij

)∏̀

k=1

Qλk−1
λk

=
1

2`/2(`/2)!

∑
σ∈S`

(−1)l(σ)
`/2∏
i=1

(
1−Rσ(2i−1),σ(2i)

1 +Rσ(2i−1),σ(2i)

)∏̀

k=1

Qλk−1
λk

=
1

2`/2(`/2)!

∑
σ∈S`

(−1)l(σ)
`/2∏
i=1

Qλσ(2i−1),λσ(2i)

= Pf(Qλi,λj
)i<j≤`

= Qλ

From this and Proposition 2 we have that Tλ will satisfy the same vanishing

theorem as in [IMN] and §2.3, and thus represents the equivariant Schubert class

σλ.

4.3 The Chevalley Formula

The equivariant Chevalley formula for LG(n, 2n) states

σλ · σ1 = σλ,1 + 2
∑

λ+

σλ+ + 2
∑̀
i=1

tλi
σλ

where again λ+ is a strict partition obtained from adding a box to λ and σ1

∣∣
λ
=

∑
i 2tλi

as in [I, §4.5]. We show that the Tλ satisfy the equivariant Chevalley formula

for LG(n, 2n) independently. First we will prove a lemma similar to Lemma 1.

35



Lemma 4. For any integer sequences λ, µ, and γ, where the length of λ is j−1 and

any integers r and s we have that T(λ1,...,λj−1,r,s,µ);γ;0 = −T(λ1,...,λj−1,s,r,µ);sjγ;0.

Proof. We will prove this using the following recursion: For any partition λ of length

`

Tλ,r;γ =
∑

α∈Z`
≥0

(−1)|α|2#{i:αi>0}Tλ;γ;αQ
γ`+1
r [−|α|].

Then similarly to the proof of Lemma 1 we proceed by induction on the length

of µ and using the recursion above we need only prove the base case where µ is empty.

So applying the above recursion twice we get

T(λ1,...,λj−1,r,s);γ;0 =
∑

α,β∈Zj
≥0

(−1)|α|+|β|Tλ;γ;α+β×


Qγj

r [−|α|]Qγj+1
s [−|β|] + 2

∑

i∈Z≥0

(−1)iQγj
r [i− |α|]Qγj+1

s [−i− |β|]

 .

We similarly get

T(λ1,...,λj−1,s,r);sjγ,0 =
∑

α,β∈Zj
≥0

(−1)|α|+|β|Tλ;γ;α+β×


Qγj+1

s [−|β|]Qγj
r [−|α|] + 2

∑

i∈Z≥0

(−1)iQγj
s [i− |β|]Qγj+1

r [−i− |α|]

 .

The fact that Qr,s(x) = −Qs,r(x) is a well known relation of Q functions. We
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notice in the above that


Qγj

r [−|α|]Qγj+1
s [−|β|] + 2

∑

i∈Z≥0

(−1)iQγj
r [i− |α|]Qγj+1

s [−i− |β|]



=

(
r−1∑

k=0

(−1)kQr−|α|−k(x)ek(t1, . . . , tγj)

)(
s−1∑

k=0

(−1)kQs−|β|−k(x)ek(t1, . . . , tγj+1
)

)

+ 2
∑

i∈Z≥0

(−1)i

(
r−1∑

k=0

(−1)kQr−|α|−k+i(x)ek(t1, . . . , tγj)

)
·

(
s−1∑

k=0

(−1)kQs−|β|−k−i(x)ek(t1, . . . , tγj+1
)

)

=
∑

p<r;q<s

(−1)p+qep(t1, . . . , tγj)eq(t1, . . . , tγj+1
)·


Qr−|α|−p(x)Qs−|β|−q(x) + 2

∑

i∈Z≥0

(−1)iQr−|α|−p+i(x)Qs−|β|−q−i(x)




=
∑

p<r;q<s

(−1)p+qep(t1, . . . , tγj)eq(t1, . . . , tγj+1
)Qa,b(x)

where a+ p = r − |α| and b+ q = s− |β|. Similarly


Qγj+1

s (−|β|)Qγj
r (−|α|)− 2

∑

i∈Z≥0

Qγj
s (i− |β|)Qγj+1

r (−i− |α|)



=
∑

p<r;q<s

(−1)p+qep(t1, . . . , tγj)eq(t1, . . . , tγj+1
)Qb,a(x)

where a+p = r−|α| and b+q = s−|β|. Hence using the relation Qr,s(x) = −Qs,r(x)

we get that Tλ1,...,λj−1,r,s;γ = −Tλ1,...,λj−1,s,r;sjγ and the lemma follows.

Corollary 3. If λ = (µ, r, r, ν) then Tλ = 0.

Proof. This is immediate from the last lemma since γ(λ)j = γ(λ)j+1 if the r is the

jth and (j + 1)th row of λ.
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Now we will give a relation amongst the factorial Schur Q polynomials which

will be useful in proving the Chevalley formula.

Lemma 5. For integers p and r, Qr
p+1[0] = Qr+1

p+1[0]− tr+1Q
r
p[0].

Proof.

Qr+1
p+1[0] =

p∑
i=0

(−1)iQp+1−i(x)ei(t1, . . . , tr+1)

=

p∑
i=0

(−1)iQp+1−i(x)(ei(t1, . . . , tr) + tr+1ei−1(t1, . . . , tr))

= Qr
p+1[0]− tr+1Q

r
p[0] once we shift indices.

Theorem 5. For a strict partition λ of length `, we have that Tλ satisfies the

Chevalley formula for LG(n, 2n).
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Proof. Note that T1 = Q0
1[0] so we have the following:

Tλ · T1

=
∏

1≤i<j≤`

(
1−Rij

1 +Rij

)∏̀
i=1

Qλi−1
λi

[0] ·Q0
1[0]

=
∏

1≤i<j≤`+1=l

(
1−Rij

1 +Rij

)
(1 + 2

∑̀
r=1

Ri,l)
∏̀
i=1

Qλi−1
λi

[0] ·Q0
1[0]

= Tλ,1;γ(λ,1);0 + 2
∑̀
r=1

∏

1≤i<j≤`

(
1−Rij

1 +Rij

) r−1∏
i=1

Qλi−1
λi

[0] ·Qλr−1
λr

[1] ·
∏̀

i=r+1

Qλi−1
λi

[0]

= Tλ,1;γ(λ,1);0 + 2
∑̀
r=1

∏

1≤i<j≤`

(
1−Rij

1 +Rij

) r−1∏
i=1

Qλi−1
λi

[0] ·Qλr−1
λr+1[0] ·

∏̀
i=r+1

Qλi−1
λi

[0]

= Tλ,1 + 2
∑̀
r=1

∏

1≤i<j≤`

(
1−Rij

1 +Rij

) r−1∏
i=1

Qλi−1
λi

[0] · (Qλr
λr+1[0] + tλrQ

λr−1
λr

)[0] ·
∏̀

i=r+1

Qλi−1
λi

[0]

= Tλ,1 + 2
∑
ν

Tν;γ(ν) + 2
∑̀
r=1

tλrTλ.

Where ν is obtained from λ by adding one box. By Lemma 4 the only ν where Tν;γ(ν)

is non-zero will be strict partitions. Hence we have proven the Chevalley formula

for LG(n, 2n).

4.4 Giambelli Revisited for Maximal Orthogonal Grassmannians

We will now consider the maximal orthogonal Grassmannians OG(n, 2n) and

OG(n, 2n + 1). These are isomorphic as varieties, but the Lie groups which act

on them are different. The Lagrangian Grassmanian and the maximal orthogonal

Grassmannians are defined similarly; the difference is that the Lagrangian Grass-
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mannian is a set of subspaces which are isotropic with respect to a skew-symmetric

form, while the orthogonal Grassmannians are sets of subspaces which are isotropic

with respect to a symmetric form. Given the similarity between the two spaces it is

not surprising that the Schubert classes will have similar representatives.

Here we define factorial Schur P functions as section 4 of in [IMN].

P r
k (j) = Pk+j(x|t1, . . . , tr)

=
k−1∑
i=0

(−1)iPk+j−i(x1, x2 . . . )ei(t1, . . . , tr)

=
∞∑
i=1

xk−r+j
i (xi − t1) · · · (xi − tr).

As in the case of the Lagrangian Grassmannian, the 2-part factorial Schur P func-

tions are defined as:

Pk,l(x|t) = Pk(x|t)Pl(x|t)+2
∑
i≥1

(−1)iPk+i(x|t)Pl−i(x|t) =
(
1−R1,2

1 +R1,2

)
P k−1
k [0]P l−1

l [0]

as in [IMN]. In fact the reader will notice that the only difference between the P

functions and the Q functions is a factor of two. Also similar to the Lagrangian case,

for any strict partition λ of even length `, where again we set every strict partition

to have even length by making the last part 0 if the strict partition is actually of

odd length, we have

Pλ(x|t) = Pf [Pλi,λj
]1≤i,j≤`.

Thus we can take our Giambelli Formula for the Lagrangian Grassmannian, multiply

it by the appropriate factor of 1
2
, and appropriately shift the t variables as in [IMN,

Theorem 6.6] for whether we are in the even or odd orthogonal case to obtain an

equivariant Giambelli formula for the orthogonal Grassmannians.
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Theorem 6. Set

Tλ = 2−`
∏

1≤i<j≤`

(
1−Rij

1 +Rij

)∏̀
i=1

Qλi
λi
.

Then Tλ represents the Schubert class corresponding to λ in a maximal orthog-

onal Grassmannian, where we fix t1 = 0 in the odd orthogonal case.

We can show that these formulas coincide with the formulas in [IMN, Theorem

6.6] similarly to the case of LG(n, 2n) where we note that we are using the factorial

Q functions with the appropriate factor of 2 removed instead of using the factorial

P functions for the theorem. This is to ensure that the equivariant correction term

T1

∣∣
λ
in the Chevalley formula will not have the factor of 2 which is inherited from

the expansion of the raising operator to include Ri,`+1.
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Chapter 5

The Giambelli Formula for General Isotropic Grassmannians

5.1 Preliminaries for IG(n− k, 2n)

We now consider the non-maximal symplectic Grassmannian IG(n − k, 2n)

where k ≤ n. IG(n − k, 2n) = {Σn−k ⊂ V |∀v, w ∈ Σn−k 〈v, w〉 = 0}, where 〈 , 〉 is

a symplectic form on V ' C2n.

In [BKT2], the authors describe how any Schubert variety in the symplectic

Grassmannian, IG(n−k, 2n), is indexed by a k-strict partition whose Young diagram

fits inside a (n − k) by (n + k) rectangle. A partition λ is called k-strict if for

all i such that λi > k we have that λi > λi+1. Fix a complete flag in type C,

F• = 0 ⊂ F1 ⊂ · · · ⊂ F2n = V so that for i ≤ n, Fi is an isotropic subspace of V ,

and F2n−i = F⊥
i . Then Schubert cells and varieties are defined similarly to the type

A case. For any k-strict partition λ, the Schubert variety is described below as it is

in section 1 of [BKT2]

Xλ = Xλ(F•) = {Σ ∈ IG(n− k, 2n)| dim(Σ ∩ Fpj(λ)) ≥ j for 1 ≤ j ≤ `(λ)}

where for any k-strict partition λ,

pj(λ) = n+ k + 1− λj +#{i < j : λi + λj ≤ 2k + j − i}. (5.1)

The corresponding Schubert cell is

X◦
λ = {Σ ∈ IG(n− k, 2n)| dim(Σ ∩ Fpj(λ)) = j for 1 ≤ j ≤ `(λ)}.
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Again from any Schubert variety we can obtain a class in the cohomology ring of

IG(n − k, 2n) which does not depend on the choice of flag F•. When k = 0, we

denote IG(n, 2n) by LG(n, 2n), as it is the Lagrangian Grassmannian of maximal

isotropic subspaces described in Chapter 4.

For IG(n − k, 2n) we similarly have that all torus fixed points for the stan-

dard maximal torus are n − k dimensional subspaces generated by exactly n − k

standard basis vectors. We recall that for a vector space V 2n with an antidiago-

nal skew symmetric non-degenerate bilinear form 〈 , 〉, the standard basis vectors

are e1, . . . , e2n where 〈ei, e2n−i+1〉 = 1 and 〈ei, ej〉 = 0 for all j 6= 2n − i + 1. Let

E• = 0 ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , e2n〉. Similarly, we have that any Schubert

cell, X◦
λ(E•), will contain exactly one torus fixed point. For any k-strict partition

λ, the torus fixed point is given by:

eλ = 〈ep1(λ), . . . , epn−k(λ)〉 ∈ X◦
λ(E•)

where pj(λ) is as defined in Equation (5.1).

5.2 The Theta Polynomials of [BKT] and the Classical Chevalley

Formula

We begin by recalling a few definitions from [BKT].

Definition 1. [BKT2] Let λ be a Young diagram. Then the box [r, c] and the box

[r′, c′]are called k-related if c + c′ = 2k + 2 + r − r′ where c ≤ k < c′. For example

in Figure 5.1 below the two marked boxes are k-related.
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Figure 5.1: k-related: In this example the box [r, c] is k-related to [r′, c′].

For an integer sequence λ, we define C(λ) = {(i, j)|i < j ≤ `(λ), λi + λj >

2k + j − i} as in [BKT], and we let ∆◦ = {(i, j) ∈ N × N|1 ≤ i < j}. We define a

partial order on this set by (i, j) ≤ (i′, j′) if i ≤ i′ and j ≤ j′. We call a finite subset

of ∆◦ valid if it is an order ideal. We recall from [BKT] that a subset is valid iff it

is equal to C(λ) for some k-strict partition λ.

Definition 2. For any valid set of pairs D the raising operator RD is defined as

RD =
∏
i<j

(1−Rij)
∏

(i,j)∈D
(1 +Rij)

−1.

We set RC(λ) = Rλ, and notice that

Rλ =
∏

1≤i<j≤`

(1−Rij)
∏

(i,j)∈C(λ)
(1 +Rij)

−1

where ` is the length of the partition λ.

Definition 3. [BKT, §5.1] Let x = (x1, x2, . . . ) and z = (z1, . . . , zk) be the variables

defined for type C in section §2.2.1. For a positive integer r, the standard Theta

polynomial θr(x, z) :=
∑r

i=0 qr−i(x)e(z) where qi(x) is the usual Schur q function of

degree i. For an integer sequence α, set θα =
∏`

i=1 θαi
.
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Then for a k-strict partition λ, the theta polynomial Θλ is defined by

Θλ = Rλθλ.

In [BKT], the authors prove that the above theta polynomials satisfy the Pieri

rule for IG(n− k, 2n), where n is sufficiently large. Below we specialize their proof

to the Chevalley formula.

For any two k-strict partitions λ and µ, we write λ → µ if µ may be obtained

by adding a box to λ, or removing r boxes from a single column of the first k columns

of λ and adding r+1 boxes in a single row of the result, so that the removed boxes

and the bottom box of µ in that column are each k-related to one of the added

boxes. If λ → µ, let eλµ = 2 if µ ⊃ λ and the added box in µ is not k-related to

a bottom box in one of the first k columns of λ, and otherwise set eλµ = 1. The

Chevalley rule for IG states that

σ1 · σλ =
∑

λ→µ

eλµ σµ. (5.2)

For any valid set D and any integer sequence α we define T (D,α) = RDθα so

that Θλ = T (C(λ), λ).

Theorem 7.

θ1 · T (C(λ), λ) =
∑

λ→µ

eλµ T (C(µ), µ).

In [BKT] this is proven via a series of Lemmas and a substitution rule. The

following Lemmas are taken from [BKT].

Lemma 6. [BKT, Lemma 1.2] Let λ = (λ1, . . . , λj−1) and µ = (µj+2, . . . , µ`) be

integer vectors. Assume that (j, j + 1) /∈ D and that for each h < j, (h, j) /∈ D iff
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(h, j + 1) /∈ D. Then for any integers r and s, where D = C(λ, r, s, µ) we have

T (D, (λ, r, s, µ)) = −T (D, (λ, s− 1, r + 1, µ)) .

In particular, T (D, (λ, r, r + 1, µ)) = 0.

Lemma 7. [BKT, Lemma 1.3] Let λ = (λ1, . . . , λj−1) and µ = (µj+2, . . . , µ`) be

integer vectors, assume (j, j + 1) ∈ D, and that for each h > j + 1, (j, h) ∈ D iff

(j +1, h) ∈ D. If r, s ∈ Z are such that r+ s > 2k, where D = C(λ, r, s, µ), then we

have

T (D, (λ, r, s, µ)) = −T (D, (λ, s, r, µ)) .

In particular, T (D,λ, r, r, µ) = 0 for any r > k.

Below we give a simplified version of the substitution rule of [BKT] which

suffices in proving the Chevalley formula above holds.

5.2.1 The Substitution Rule

We fix the k-strict partition λ of length `, let C = C(λ), and choose n suffi-

ciently large so that all Pieri terms that can possibly appear in the Chevalley formula

do not vanish. For any d ≥ 1 define the raising operator Rλ
d by

Rλ
d =

∏

1≤i<j≤d

(1−Rij)
∏

i<j : (i,j)∈C
(1 +Rij)

−1.

We compute that

σ1 ·Θλ = σ1 ·Rλ
` θλ = Rλ

`+1 ·
∏̀
i=1

(1−Ri,`+1)
−1 θλ,1 = Rλ

`+1 ·
∏̀
i=1

(1 +Ri,`+1) θλ,1
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and therefore

σ1 · T (C, λ) =
`+1∑
j=1

T (C, λ(j)), (5.3)

where λ(j) is the integer sequence obtained from λ such that λ
(j)
i = λi for all i 6= j

and λ
(j)
j = λj + 1. We aim to show that the right hand side of Equation (5.3) is

equal to the right hand side of the Chevalley rule.

Let m ≥ 1 be minimal such that λm ≤ k; we call m the middle row of λ.

Definition 4. A valid triple is a triple ψ = (D,µ, S), such that D is a valid set of

pairs containing C, all pairs (i, j) in D satisfy i ≤ m and j ≤ ` + 1, µ is an integer

sequence of length at most ` + 1, and S is a subset of D r C. The evaluation of ψ

is defined by ev(ψ) = T (D,µ) ∈ H∗(IG,Z).

All valid triples encountered here will also satisfy that D ⊂ C ∪ ∂C, but for

technical reasons we do not require this in the definition. We will represent the set

∆◦ as the positions above the main diagonal of a matrix, and the various sets of

pairs in D as sets of entries in this matrix, as in [BKT].

For 1 ≤ h ≤ m, we let bh = min{j ≥ m | (h, j) 6∈ C} and gh = bh−1 (by

convention we set g1 = `+ 1); the next result follows from [BKT, Lemma 3.5].

Lemma 8. If 2 ≤ h ≤ m then we have λh−1 − λh ≥ gh − bh + 1.

Let (i, j) ∈ ∆◦ be arbitrary. We define a weight condition W(i, j) on an integer

sequence µ as follows.

W(i, j) : µi + µj > 2k + j − i .
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Figure 5.2: The set C near the pair x = (h, gh) ∈ ∂C

Also we will call (i, j) an outer corner of a valid set D if D ∪ (i, j) is also a

valid set. We note that if there is no outer corner in column j then this means that

(i, j − 1) /∈ D iff (i, j) /∈ D, and similarly if there is no outer corner in row i then

this means that (i − 1, j) ∈ D iff (i, j) ∈ D. This gives us a new way to view the

hypotheses of Lemmas 6 and 7.

The following substitution rule will be applied iteratively to rewrite the right

hand side of (5.3). It may be applied to any valid triple and will result in either a

REPLACE statement, indicating that the triple should be replaced by one or two

new triples, or a STOP statement, indicating that the triple should not be replaced.

Substitution Rule

Let (D,µ, S) be a valid triple. Let h ≤ ` + 1 be largest such that one of the

following four conditions is true (if none hold for any h, then STOP).

(i) (h − 1, h) /∈ D and there is an outer corner (i, h) of D with i ≤ m such

that W(i, h) holds;

(ii) (h− 1, h) /∈ D, D has no outer corner in column h, and µh = µh−1 + 1;
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(iii) (h − 1, h) ∈ D and there is an outer corner (h, j) of D with j ≤ ` + 1

such that W(h, j) holds;

(iv) (h− 1, h) ∈ D and µh = µh−1.

If condition (i) holds, then REPLACE (D,µ, S) with (D ∪ (i, h), µ, S) and (D ∪

(i, h), Rihµ, S∪(i, h)). If (iii) holds, then REPLACE (D,µ, S) with (D∪(h, j), Rhjµ, S∪

(h, j)) if µj > µj−1, or REPLACE (D,µ, S) with (D ∪ (h, j), Rhjµ, S ∪ (h, j)) and

(D ∪ (h, j), µ, S) if µh ≤ µh−1. If (ii) or (iv) holds, then STOP.

Definition 5. [BKT, Definition 3.9] Let (x) be one of the conditions (i)–(iv) of

the Substitution Rule. We say that a valid triple ψ meets condition (x) if ψ reaches

condition (x) in the Substitution Rule, and condition (x) is satisfied. The corre-

sponding integer h ≥ 1 is called the level of (D,µ, S). Whenever the Substitution

Rule REPLACES ψ by one or two triples ψi, we refer to ψ as the parent term and

the ψi are its children.

Initially we let Ψ = {(C, λ(j), ∅) : 1 ≤ j ≤ ` + 1} so that
∑

ψ∈Ψ ev(ψ) agrees

with the right hand side of Equation (5.3). We then apply the above substitution

rule which will change this set by replacing some triples with one or two new valid

triples. Whenever the substitution rule results in a REPLACE statement, then

the set is changed accordingly; otherwise the substitution rule results in a STOP

statement, in which case the triple (D,µ, S) is left unchanged. These substitutions

are iterated until no further elements can be REPLACED, i.e., until the substitution

rule results in a STOP statement when applied to any remaining triple. Since the set

of pairs D is not allowed to grow beyond column `+1, this algorithm will terminate
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after a finite number of steps.

Suppose that the triple ψ = (D,µ, S) occurs in the algorithm. If ψ is RE-

PLACED by two triples ψ1 and ψ2, we deduce from the identity

1−Rij =
1−Rij

1 +Rij

+
1−Rij

1 +Rij

Rij

that ev(ψ) = ev(ψ1) + ev(ψ2). Moreover, if ψ meets (iii) and is REPLACED by

ψ′ = (D∪ (h, j), Rhjµ, S ∪ (h, j)), one can show using Lemma 6 that ev(ψ) = ev(ψ′)

since we must have that µj−1 = µj − 1 and that D ∪ (h, j) has no outer corner in

column j, so ev(D ∪ (h, j), µ) = 0.

When the algorithm terminates, let Ψ0 denote the collection of all triples

(D,µ, S) in the final set such that (i)-(iv) fail for all h, and Ψ1 the remaining

triples (i.e. the ones which satisfy conditions (ii) or (iv)). We say that a triple ψ

survives the algorithm if at least one of its successors lies in Ψ0 as in [BKT]. The

above analysis implies that

`+1∑
j=1

T (C, λ(j)) =
∑

ψ∈Ψ0

ev(ψ) +
∑

ψ∈Ψ1

ev(ψ).

We remark that the triples ψ ∈ Ψ0 with µ`+1 < 0 evaluate to zero trivially.

Claim 1. For any ψ ∈ Ψ1 we have ev(ψ) = 0.

Proof. If (h − 1, h) /∈ D, then ψ meets (ii) and µh−1 = µh − 1. Since there is no

outer corner in column h by Lemma 6 we have that ev(ψ) = 0. If ψ meets (iv),

where (h − 1, h) ∈ D and µh−1 = µh, then Lemma 8 implies that D has no outer

corner in row h since in this case we must have that gh = bh. Hence, Lemma 7

shows that ev(ψ) = 0. The next assertion will therefore prove that the Chevalley

rule holds.
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Claim 2. For each triple ψ = (D,µ, S) in Ψ0 with µ`+1 ≥ 0, µ is a k-strict partition

with λ → µ and ev(ψ) = T (C(µ), µ). Furthermore, for each such partition µ, there

are exactly eλµ such triples ψ, in agreement with the Chevalley rule.

In the appendix we provide an example of the equivariant substitution rule.

One can also view the example as an example of the classical substitution rule by

making the adjustments described in Remark 2.

Recall the fixed choices of λ, `, C, and m. Let ψ = (D,µ, S) denote a triple

which occurs at some step in the algorithm. The symbols D, µ, and S will refer to

components of the triple ψ. Throughout the algorithm, observe that µ is obtained

from the initial composition ν by removing boxes from rows weakly below the middle

row m of λ and adding them to rows weakly above the middle row. The set D is

initially equal to C and grows when REPLACE statements are encountered. All

pairs added to D come from the outer rim ∂C:

Lemma 9. If (j − 1, j) 6∈ D and ψ does not meet (i) or (ii) at any level h ≥ j,

then µj ≤ λj−1.

Proof. Assume that µj > λj−1. Since ψ does not meet (ii), at level j, it follows

that D has an outer corner (i, j) in column j. Since (i, j − 1) ∈ C we obtain

µj + µi > λj−1 + λi > 2k + (j − 1) − i. Hence ψ satisfies W(i, j) and meets (i) at

level j, which is a contradiction.

Proposition 3. Let ψ = (D,µ, S) be a valid triple and suppose that (i, j), (i′, j′) ∈

D r C. Then either i = i′ or j = j′.
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The above proposition is special to the Chevalley formula, as it tells us that

not only is D ⊂ C ∪ ∂C, but that the set difference D r C will only be a row or a

column.

Proof. Let ψ be as in the statement of the proposition. Recall that initially Ψ =

{(C, λ(j), ∅) : 1 ≤ j ≤ `}. Let r be such that ψ is a descendent of (C, λ(r), ∅) := ψ0.

This proof will trace through the family tree of ψ0 to ψ. We first note that if ψ = ψ0

then D r C is empty. So we consider cases for the children of ψ0. Let h be the

level of ψ0. Since λ(r) is obtained by only adding a box to the rth row of λ we must

have that any change in the pairs which satisfy the weight condition must contain

r. We also notice that all pairs in Ψ which have non-trivial descendants will satisfy

condition (i), since if (i, j) /∈ C but W (i, j) is satisfied for i < j, then we must have

(j − 1, j) /∈ C.

1. If (r − 1, r) ∈ C, then h > r since ψ0 satisfies condition (i), and we have

W (r, h) holds. Hence ψ0 has children ψ1 = (C ∪ (r, h), λ(r), ∅) and ψ2 =

(C ∪ (r, h), Rrhλ
(r), {(r, h)}).

We note ψ1 cannot have any children since condition (i) cannot be satisfied

since h is the largest such that λr + 1 + λh > 2k + h − r, and (r, h) is in D

for ψ1. Also condition (iii) cannot be satisfied for ψ1 since r would have to be

the level and again h is the largest such that λr + 1 + λh > 2k + h − r, and

(r, h) is in D for ψ1. If ψ = ψ1 then D r C is only a singleton.

We notice that ψ2 may have children. The sequence µ for ψ2 has the

property that µi = λi for i 6= h, r, where µr = λr + 2 and µh = λh − 1.
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Thus any change in the pairs which satisfy the weight condition must again

contain r, since the rth position is the only position which was increased. We

note ψ2 cannot satisfy condition (i) since (r, h) ∈ D and so the level of ψ2 is

less than h, as we have progressed past h in the algorithm. If ψ = ψ2 then

Dr C is again only a singleton. If ψ2 satisfies condition (iii) then W (r, h+1)

is satisfied. We note this happens when λh = λh+1. Then ψ2 has children

ψ3 = (C ∪ (r, h) ∪ (r, h + 1), Rrhλ
(r), {(r, h)}) and ψ4 = (C ∪ (r, h) ∪ (r, h +

1), Rr,hRr,h+1λ
(r), {(r, h), (r, h + 1)}). Similarly to ψ1, ψ3 cannot have any

children, and similarly ψ4 can have children as ψ2 did if ψ4 satisfies condition

(iii). We note that if ψ4, or its descendants have children then their D sets

will only increase along row r since in each case r is the only position where

µ is increased, and hence the only position which can take part in a change in

pairs which satisfy the weight condition.

Thus in the case where (r − 1, r) ∈ C we have that ψ, as a descendent of ψ0,

will have the property that if (i, j), (i′, j′) ∈ D r C, then i = i′ = r.

2. If (r−1, r) /∈ C, then h = r, and there exists an i ≤ m such that (i, r) is an outer

corner of C and W (i, r) holds. Hence ψ0 has children ψ1 = (C ∪ (i, r), λ(r), ∅)

and ψ2 = (C ∪ (i, r), λ(i), {(i, r)}).

We note that in this case ψ2 cannot have any children since condition (i)

cannot be satisfied since r is the largest such that λr+1+λi > 2k+ r− i, and

(i, r) is in D for ψ2. Also condition (iii) cannot be satisfied for ψ2 since i would

have to be the level and again r is the largest such that λr+1+λi > 2k+r− i,
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and (i, r) is in D for ψ2. If ψ = ψ2 then D r C is only a singleton.

We notice that ψ1 could possibly have children since if λi = λi+1 + 1 then

ψ1 satisfies condition (i) again with level r. If this were the case then ψ1 would

have children ψ3 = (C ∪ (i, r) ∪ (i + 1, r), λ(r), ∅) and ψ4 = (C ∪ (i, r) ∪ (i +

1, r), λ(i+1), {(i, r), (i+1, r)}). Similarly we have that ψ4 cannot have children,

while ψ3 can have descendants if λi = λi+2 + 2.

Thus in the case where (r − 1, r) /∈ C we have that ψ, as a descendent of ψ0,

will have the property that if (i, j), (i′, j′) ∈ D r C, then j = j′ = r.

From the above 2 cases the proposition is proved.

Proposition 4. Any (i, j) which is an outer corner of D such that W (i, j) holds

for µ, has the property that µi + µj = 2k + j − i+ 1.

Proof. If µ = λ(i) for some i then this is clear, since C ⊆ D and each row of µ only

differs from λ by one box. Otherwise, assume not. Then µi + µj > 2k + j − i + 1,

while λi + λj ≤ 2k+ j − i. This can only happen if S is non-empty and contains at

least one pair (i, r) where r < j. In this case we must have that DrC is a row. Let r

be minimal such that (i, r) ∈ Dr C. Then we must have that λr = λr+1 = · · · = λj

since from the proof of the previous proposition this is the only way to make Dr C

be a row. The ancestor of such a progression will be (C, ν, ∅) where ν = λ(i). This ν

has the property that νr+νi > 2k+r−i while we know λr+λi ≤ 2k+r−i. Therefore

νr + νi = 2k + r − i+ 1. The triple (C, ν, ∅) satisfies condition (i) for h = r and so

it has children. As we continue along row i we note that we are increasing part i of
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each descendent by looking at the child, which will be a product of condition (iii),

that adds (i, h) to S whenever (i, h) is an outer corner at that point in the algorithm.

Thus at most µi = νi+j−r. We also note that µj will remain unchanged during this

process, so that µj = λj = λr = νr. Therefore 2k+j−i+1 < µi+µj ≤ νi+νr+j−r.

This would imply that νi+νr > 2k+ r− i+1 which is a contradiction. So any (i, j)

which is an outer corner of D such that W (i, j) holds for µ, has the property that

µi + µj = 2k + j − i+ 1.

We next study the triples ψ = (D,µ, S) ∈ Ψ0 with µ`+1 ≥ 0.

Proposition 5. Suppose that ψ = (D,µ, S) ∈ Ψ0 and µ`+1 ≥ 0. Then µ is a k-

strict partition with |µ| = |λ|+1, satisfying λj − 1 ≤ µj ≤ λj−1 for every j ≥ 1, and

λj ≤ µj when λj > k. Furthermore, we have D = C(µ) and λ → µ.

Proof. First note that ψ = (D,µ, S) ∈ Ψ0 means that ψ does not meet conditions

(ii) or (iv). Also if ψ0 is part of the initial set of triples Ψ then we know ψ0 =

(C, λ(j), ∅) for some j where |λ(j)| = |λ| + 1, and so since every REPLACE step of

the substitution rule does not change the weight of the integer sequence we have

that every ψ = (D,µ, S) ∈ Ψ0 has the property that |µ| = |λ|+1. Also since Dr C

is either a row or a column we only have a couple possibilities for a descendent

ψ ∈ Ψ0 of ψ0 ∈ Ψ. Let ψ = (D,µ, S) be a descendent of ψ0 = (C, λ(j), ∅). Consider

cases:

1. If D r C = ∅ then ψ0 does not meet conditions (i) - (iv). So ψ = ψ0 and we

claim that λ(j) is a k-strict partition since λ is. Indeed, the only way λ(j) will

not be a k-strict partition is if either k ≥ λj−1 = λj in which case since ψ0

55



does not satisfy condition (i) it would satisfy condition (ii) which would be

a contradiction, or if k < λj−1 = λj + 1 in which case since does not satisfy

condition (iii) it would satisfy condition (iv) which would be a contradiction.

Also since ψ0 does not meet conditions (i) - (iv), there are no outer corners

of C such that the weight condition holds so C = C(λ(j)) in this case. It is clear

that in this case if we set µ = λ(j) then λj − 1 ≤ µj ≤ λj−1 for every j ≥ 1,

λj ≤ µj when λj > k, and λ → µ.

2. If D r C is in the hth column, then we have either j = h or j 6= h.

If j = h then we must have j > m. In this case ψ0 must meet condition

(i). Since D r C is the jth column we must have that in the family tree of

ψ0, ψ is always a descendent of the terms whose integer sequence λ(j) remains

unchanged. Let (r, j) be the last new addition to D, so that ψ’s parent is

(Dr(r, j), λ(j), ∅). Then ψ = (D,µ, S) is either (D,λ(j), ∅) or (D,λ(r), {(r, j)}).

In both case µ is k-strict partition with |µ| = |λ| + 1, satisfying λj ≤ µj and

λ → µ. To see that D = C(µ) note that D is a valid set such that the weight

condition is only met for pairs in D, and that every pair of D meets the weight

condition for µ since λ ⊂ µ and the only pairs which were added to C to form

D satisfied the weight condition for µ.

If j 6= h then we must have that ψ0 meets condition (i) at position h since we

have only changed λ in the jth row and so the fact that only the hth column is

changed means that (j, h) must be an outer corner of C. In this case ψ0 must be

the parent of ψ since DrC is a column. So ψ = (D,µ, S) = (C ∪ (j, h), λ(j), ∅)
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or ψ = (D,µ, S) = (C ∪ (j, h), Rjhλ
(j), ({(j, h)}). Since ψ does not meet

conditions (iii) or (iv) we must have that µ is a k-strict partition satisfying

the desired properties. We note that in the case µ = Rjhλ
(j) we have λ → µ

since we would have removed a box from the λth
h column and added two boxes

to the jth row.

3. If D r C is in the hth row, then again we have either j = h or j 6= h.

If j = h then we must have j ≤ m. Let c be the smallest such that (j, c) ∈

DrC. Then ψ0 satisfies condition (i) at position c. If |DrC| > 1 then we must

have that ψ is a descendent of (C ∪ (j, c), Rjcλ
(j), {(j, c)}). We remark that it

is necessary for a triple to satisfy condition (iii) in order to add to row j of

C ∪ (j, c) for descendants of ψ0 and the triple (C ∪ (j, c), λ(j), ∅) will not satisfy

condition (iii) since λ
(j)
c+1 = λc+1 ≤ λc = λ

(j)
c . Then if d is the greatest such

that (j, c+d) ∈ DrC we have that ψ = (C∪d
i=0(j, c+i),

∏d
i=0(Rj,c+i)λ

(j), {(j, c+

i)}di=0). We note that if ψ = (C ∪d
i=0 (j, c+ i),

∏d−1
i=0 (Rj,c+i)λ

(j), {(j, c+ i)}d−1
i=0 )

then this would have to vanish by Lemma 6. The fact that condition (iv) is

not satisfied guarantees that µ is k-strict. We have that λ → µ since in order

to meet condition (iii) at each branch in the family tree of ψ0 we must have

had that λc = λc+1 = · · · = λc+d so that µ is obtained from λ by removing

d+1 boxes from column λc of λ and adding d+2 boxes to row j. We similarly

argue that C(µ) = D in this case.

If j 6= h then we must have (h, j) is an outer corner of C and that ψ0 satisfies

condition (i) at position j. We note that λ is a k-strict partition so it is not
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possible that λ
(j)
j = λ

(j)
j+1 hence |D r C| = 1 and we have that µ is either λ(j)

or λ(h) and since none of the conditions hold for ψ this will guarantee that µ

and D have the desired properties.

Proposition 5 tells us that if ψ = (D,µ, S) is any triple in Ψ0 with µ`+1 ≥ 0,

then µ is a k-strict partition with λ → µ, D = C(µ) is uniquely determined by µ,

and ev(ψ) = T (C(µ), µ) is a term appearing in the Chevalley rule.

To account for the multiplicities, fix an arbitrary k-strict partition µ such that

λ → µ, and suppose that eλµ = 2. Then the unique box B = [i, c] of µ r λ is

not k-related to a bottom box in one of the first k columns of λ. We associate a

pair (i, j) to B as follows: i is equal to the row number of B and j such that B is

k-related to the box [j − 1, d− 1] in the first k columns of λ and [j, d] /∈ λ; if there

is no such box then let j = ` + 1. We then have that the two triples in Ψ0 which

contribute to T (C(µ), µ) are (C(µ), µ, ∅) and ((C(µ), µ, {(i, j)}).

This concludes the summary of the argument that the Theta polynomials sat-

isfy the classical Chevalley formula. In §5.5 we define factorial Theta polynomials

and attempt to show that they satisfy the equivariant Chevalley formula. In or-

der to understand the equivariant Chevalley formula, we first need to understand

Grassmann permutations and the restriction map to a torus fixed point.
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5.3 The k-Grassmannian Signed Permutation of a Partition λ

We let λ be a k-strict partition which fits inside the n− k by n+ k rectangle.

We let λ′ be the partition whose rows are the columns of λ. Note λ′ is not going to

be k-strict.

The length of a k-related diagonal for λ is given by the length of a diagonal,

where first we draw a line from the each of bottom boxes of the first k columns of

λ to the k-line and then find the length of the diagonal going up from the vertical

k-line to the first place where it intersects λ. The lengths of these diagonals are

given by

nj(λ) = # of {(i, j′)|j′ > max(j, λj);λi < j′; (λ′
j, j) is k-related to (i, j′)}

for 1 ≤ j ≤ k.

Then we define the signed Grassmann permutation corresponding to λ as in

[BKT2]. Let m be the middle row of λ as defined in §5.2.1. The signed permutation

corresponding to λ is wλ where wλ has the property that wλ(i) < wλ(i + 1) for all

i 6= k, wλ(i) > 0 for all i ≥ k +m, and

wλ(i) =





nk−i+1(λ) if 1 ≤ i ≤ k

k − λi−k if k + 1 ≤ i < k +m

This is perhaps easier to see in a picture, taken from [BKT2]. Let n = 7, k =

3 and let λ be the partition (8,5,2,1). Below the diagram for λ drawn with the

appropriate k-related diagonals filled with dots.

We note that the wλ(i) will be the length of a k-related diagonal. So in Figure
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Figure 5.3: The diagram of λ with marked k-related diagonals.

5.3 we have that the first k-related diagonal is given by nk(λ) where in this case

since k = 3 we have λ′
3 = 2 and we notice that the boxes 3-related to the (2, 3)

box are (3, 4), (2, 5), and (1, 6), but since λ1 ≥ 6 and λ2 ≥ 5 we see that n3(λ) = 1

and we see in the figure that the smallest k-related diagonal has length 1. Similarly

the other k-related diagonals have length 4 and 7 respectively. Also we note that

k− λ1 = −5 and k− λ2 = −2 but k − λi ≥ 0 for i > 2 so in the above example, for

n = 7, k = 3 and λ = (8, 5, 2, 1) we have wλ = (1, 4, 7,−5,−2, 3, 6).

5.4 Restriction to Torus Fixed Points in Type C

We have an inclusion ι : pt ↪→ IG(n − k, 2n). This induces a ring homomor-

phism on the equivariant cohomology rings ι∗ : H∗
T (IG(n − k, 2n)) → H∗

T (pt) =

Z[t1, . . . , tn]. When the point we are restricting to corresponds to λ, this homo-

morphism takes the equivariant Chern class zi defined in §2.2.1 to the equivariant

Chern class twλ(i) and takes xi to tλi−k or 0 if λi − k ≤ 0, where we cite [IMN] for

the geometric details for the localization map.

Remark 1. We note that as a tuple the z variables are mapped to the tuple of
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t variables indexed by the lengths of the related k-diagonals, and that for the x

variables xi is mapped to the t variable indexed by the absolute value of wλ(k+ i) if

wλ(k + i) < 0 and is mapped to zero otherwise. We also note that if wλ ∈ Sn then

all x variables are mapped to zero!

5.5 Factorial Theta Polynomials

We will first define the factorial Theta polynomials indexed by partitions of

length one, use these to define Θλ for an arbitrary k-strict partition λ, and then we

will give a conjectural Giambelli formula for the general Schubert classes. Note that

it is necessary that when we consider the non-equivariant cohomology for IG(n −

k, 2n) it should coincide with the known results of Buch, Kresch, and Tamvakis.

Thus we have the following preliminary definition:

Definition 6. For p > k

θp(x, z|t) =
p∑

i=k+1

(−1)p−iθi(x1, x2, . . . |z1, . . . , zk)ep−i(t1, . . . , tp−k−1)

and for p ≤ k

θp(x, z|t) =
p∑

i=1

(−1)iθp−i(x1, x2, . . . |z1, . . . , zk)hi(t1, . . . , tk−p+1)

It should be noted that the above factorial theta polynomials coincide with

the double Schubert functions described in [IMN]. We prove this in a proposition

below.

Proposition 6. The θp(x, z|t) defined above represent the special Schubert classes

for the partition p.
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Proof. Let Cw(x, z|t) for a Weyl group element w denote the type C double Schubert

polynomial described in [IMN], let Cv(x, z) represent the type C Billey-Haiman

Schubert polynomial for a Weyl group element v, which are known to represent the

Schubert class corresponding to v in a presentation of the classical cohomology of

the complete flag variety in type C, and let Su(t) be the classical type A Schubert

polynomial for a permutation u which is known to represent the Schubert class

corresponding to u in the classical cohomology of the complete flag variety in type

A. Then by [IMN, Cor. 8.10] we have

Cw(x, z|t) =
∑
u,v

Su−1(−t)Cv(x, z)

where l(w) = l(u) + l(v), uv = w, and v, w ∈ W , u a permutation.

Then we note in type C, if the rank of the group is n, W is generated by

simple reflections {si}ni=0, where si = (i, i + 1) for i ≥ 1, and s0(i) = −i for all i.

Then we can write the Weyl group elements corresponding to the special classes as

sk−p+1 . . . sk for σp when p ≤ k, and sp−k−1 . . . s0s1 . . . sk for σp when n+ k ≥ p > k.

In general we call such a listing of simple reflections whose product is a given

Weyl group element a word. Observe that u is a permutation only when we can write

it as a combination of simple reflections which do not contain s0. We notice that

for p ∈ {1 . . . k}, any u which is a subword of wp, will be a permutation. However

for p ∈ {k + 1, . . . , n + k}, we notice that only a small subset of subwords do not

contain the reflection s0. To get our result we only need to look at cases.

Consider the case when p ≤ k. Then we get all possibilities of u, v such that

uv = w since s0 is not part of the word for wp. Then we note that in each case
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u−1 is the permutation corresponding to the partition 1r in type A, where r is the

length of the subword. Therefore the Schubert polynomial in type A for u−1 will be

hr(t1, . . . , tk−p+1). We also notice that for each u the remaining v will be the Weyl

group element for q ≤ p. Then we get the desired term by summing all possibilities,

and noting that the Billey-Haiman type C Schubert polynomials coincide with the

theta polynomials in this case.

Now consider the case when p > k. Then we notice that the only possible

subwords u are those that don’t contain s0. Therefore we are left with u−1 which

correspond to a one part partition of length r < p − k − 1 in type A, for which

the Schubert polynomial will be er(t1, . . . , tp−k−1). Again the remaining v will be

the Weyl group element for k + 1 ≤ q ≤ p. And again we get the desired term by

summing all possibilities.

Definition 7. For any integers p, r, j we define

θrp[j] =





∑p−k−1
i=0 (−1)iθp+j−i(x1, x2, . . . |z1, . . . , zk)ei(t1, . . . , tr) if k < p

∑p+j
i=0 (−1)iθp+j−i(x1, x2, . . . |z1, . . . , zk)hi(t1, . . . , tr) if k ≥ p

where if either p + j or r are negative we take the corresponding factorial theta

polynomial to be zero and if r = 0 then we recover the standard theta polynomial

θp+j(x, z) of Definition 3. We also note that if p > k, r = p − k − 1, and j > 0

then θrp[j] = θrp+j[0] and similarly if p ≤ k and p + j ≤ k for an integer j then

θrp[j] = θrp+j[0].

Definition 8. For a valid set D define the following two functions:

1. aj(D) = #{i|i < j; (i, j) /∈ D}
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2. cj(D) = #{i|i < j; (i, j) ∈ D} = j − 1− aj(D)

For simplicity we define aj(λ) := aj(C(λ)) and cj(λ) := cj(C(λ)).

Definition 9. For integer sequences λ, γ, ρ let θλ;γ;ρ =
∏`

i=1 θ
γi
λi
[ρi].

For any k-strict partition λ, set γ(λ) to be the `-tuple such that γ(λ)i =

|k − λi + 1 + ai(λ)|.

Definition 10. Let ν, ρ, and γ be any integer sequences, and let D be any valid

set. Define

ΘD
ν;γ;ρ = RDθν;γ;ρ

where for any i < j, Rijθν;γ;ρ := θν;γ;Rij(ρ).

Proposition 7. If p, q > k then

(
1−R1,2

1 +R1,2

)
θrp[0]θ

s
q[0] = −

(
1−R1,2

1 +R1,2

)
θsq[0]θ

r
p[0]

for any non-negative integers r, s.

Proof. Let t(r) = (t1, . . . , tr) and similarly let t(s) = (t1, . . . , ts). Then

(
1−R1,2

1 +R1,2

)
θrp[0]θ

s
q[0]

= θrpθ
s
q + 2

∞∑
j=1

(−1)jθrp[j]θ
s
q[−j]

=

(
p−k−1∑
i=0

(−1)iθp−i(x, z)ei(t(r))

)(
q−k−1∑
i=0

(−1)iθq−i(x, z)ei(t(s))

)

+ 2
∞∑
j=1

(−1)j

(
p−k−1∑
i=0

(−1)iθp+j−i(x, z)ei(t(r))

)(
q−k−1∑
i=0

(−1)iθq−j−i(x, z)ei(t(s))

)

=

p∑

a=k+1

q∑

b=k+1

(−1)p+q−a−bep−a(t(r))eq−b(t(s))Θa,b
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Then by Lemma 7 Θa,b(x, z) = −Θb,a(x, z) since a+ b > 2k. Note that by a similar

argument

(
1−R1,2

1 +R1,2

)
θsq[0]θ

r
p[0] =

p∑

a=k+1

q∑

b=k+1

(−1)p+q−a−bep−a(t(r))eq−b(t(s))Θb,a.

Therefore
(
1−R1,2

1 +R1,2

)
θrp[0]θ

s
q[0] = −

(
1−R1,2

1 +R1,2

)
θsq[0]θ

r
p[0].

Definition 11. For a k-strict partition λ, define the factorial Theta polynomial

corresponding to λ as

Θλ = Θ
C(λ)
λ;γ(λ);0 = Rλθλ;γ(λ);0.

Conjecture 1. Let λ be a k-strict partition. Then the Schubert class corresponding

to λ in the equivariant cohomology of IG(n− k, 2n) is represented by Θλ.

We’ll now prove a series of lemmas similar to Lemmas 6 and 7 which the

factorial Theta polynomials satisfy.

Lemma 10. Let λ = (λ1, . . . , λj−2) and µ = (µj+1, . . . , µ`) be integer vectors. As-

sume that (j−1, j) /∈ D and that for each h < j, (h, j−1) /∈ D iff (h, j) /∈ D. Then

for any integers r and s, and any integer sequences ρ and ρ̂ such that ρj−1 + 1 = ρ̂j

and ρ̂j−1 + 1 = ρj we have

ΘD
(λ,r,s,µ);γ;ρ = −ΘD

(λ,s,r,µ);sj(γ);ρ̂
.

To prove this we will use a similar recursion and induction as in the type A

case. As in [BKT; 1.2] we set for a sequence of nonnegative integers α and a positive
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integer ` we set m(D,α, `) = #{i ≤ c`(D) : αi > 0} and call α (D, `)-compatible if

αi ∈ {0, 1} for i > c`(D). Note that for any integer sequences λ, ρ of length ` − 1

we have

ΘD
(λ,r);γ;(ρ,s)

=
∑
α

(−1)|α|2m(D,α,`)ΘD
λ;γ;α+ρθ

γ`+1
r [s− |α|]

where α is (D, `)-compatible.

Proof. From the above recursion we can assume that µ is empty. Then applying the

recursion twice to ΘD
(λ,r,s);γ;ρ we have:

∑

α,β

(−1)|α|+|β|2m(D,α,j)+m(D,β,j−1)(ΘD
λ;γ;α+β+ρ′)×

(θγj−1
r [ρj−1 − |α|]θγjs [ρj − |β|]− θγj−1

r [ρj−1 + 1− |α|]θγjs [ρj − 1− |β|])

where ρ′ = ρ1, . . . , ρj−2, α is (D, j)-compatible, and β is (D, j − 1)-compatible.

Similarly applying the recursion twice to Θ(λ,s,r);sj(γ);ρ̂ we have:

∑

α,β

(−1)|α|+|β|2m(D,α,j−1)+m(D,β,j)(ΘD
λ;γ;α+β+ρ̂′)×

(θγjs [ρ̂j−1 − |β|]θγj−1
r [ρ̂j − |α|]− θγjs [ρ̂j−1 + 1− |α|]θγj−1

r [ρ̂j − 1− |β|])

where ρ̂′ = ρ̂1, . . . , ρ̂j−2, α is (D, j − 1)-compatible, and β is (D, j)-compatible. We

note that since for each h < j, (h, j − 1) /∈ D iff (h, j) /∈ D the set of sequences

which are (D, j − 1)-compatible is the same as those which are (D, j)-compatible,

so that Θ(λ,s,r);sj(γ);ρ̂ is the negative of the expression for ΘD,(λ,r,s);γ;ρ since we have

ρj−1 + 1 = ρ̂j and ρ̂j−1 + 1 = ρj so the lemma is proven.
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Corollary 4. Suppose that we have the same situation as in the previous lemma

where λj−1 = λj ≤ k and for each h < j, (h, j − 1) /∈ C(λ) iff (h, j) /∈ C(λ). Then

we have the following

RλRj,`+1θ(λ,1);γ(λ);0 = −tk−λj+1+aj(λ)Θλ.

Proof. Let λ(j) be the result of adding one box to the jth row of λ (note that this

might no longer be a partition), and let γ = γ(λ) for this proof. Note that since for

each h < j, (h, j) /∈ C(λ) iff (h, j + 1) /∈ C(λ) we have that C(λ) = C(λ(j)).

RλRj,`+1θ(λ,1);γ;0

= Rλ

j−1∏
i=1

θ
|k+1−λi+ai(λ)|
λi

[0]θ
k+1−λj+aj(λ)
λj

[1]
∏̀

i=j+1

θ
k+1−λi+ai(λ)
λi

[0]

= Rλ

j−1∏
i=1

θ
|k+1−λi+ai(λ)|
λi

[0]θ
k−λj+aj(λ)
λj

[1]
∏̀

i=j+1

θ
k+1−λi+ai(λ)
λi

[0]

+Rλ

j−1∏
i=1

θ
|k+1−λi+ai(λ)|
λi

[0](−tk−λj+1+aj(λ))θ
k+1−λj+aj(λ)
λj

[0]
∏̀

i=j+1

θ
k+1−λi+ai(λ)
λi

[0]

by equation (3.1) for complete symmetric polynomials

= Θ
C(λ)
λ;γ(j−);εj

− tk−λj+1+aj(λ)Θλ;γ

= −tk−λj+1+aj(λ)Θλ

Where here we set γ(j−) = γ everywhere except the jth spot where it is one less.

So since aj−1(λ) + 1 = aj(λ) since for each h < j, (h, j) /∈ C(λ) iff (h, j + 1) /∈ C(λ),

we have sj(γ
(j−)) = γ(j−). Hence by the previous lemma Θ

C(λ)
λ;γ(j−);εj

= −Θ
C(λ)
λ;γ(j−);εj

where εj is the sequence which is zero everywhere except the jth position where it

is 1. This means it must be zero, and we are left with the desired result.
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Lemma 11. Let λ = (λ1, . . . , λj−1) and µ = (µj+2, . . . , µ`) be integer vectors, as-

sume (j, j + 1) ∈ D, and that for each h > j + 1, (j, h) ∈ D iff (j + 1, h) ∈ D. If

r, s ∈ Z are such that r, s > k and D = C(λ, r, s, µ), then we have

ΘD
(λ,r,s,µ);γ;0 = −ΘD

(λ,s,r,µ);sj(γ);0
.

Proof. We will again proceed by using our recursion formula to assume that µ is

empty. Following the proof of Lemma 7 in [BKT] we set ` = j + 1, and note that

(h, h′) ∈ D for all h < h′ ≤ `. If m > 0 is the least integer such that 2m ≥ `, we

claim that ΘD
α;γ;0 = ΘD

(λ,r,s);γ;0 satisfies the relation

ΘD
α;γ;0 =

2m∑
i=2

(−1)iΘD
(α1,αi);(γ1,γi);0

ΘD
(α2,...,α̂i,...,α2m);(γ2,...,γ̂i,...,γ2m);0. (5.4)

Equation (5.4) follows from the formal identity of raising operators

∏

1≤h<h′≤2m

1−Rhh′

1 +Rhh′
=

2m∑
i=2

(−1)i
1−R1i

1 +R1i

∏

2≤h<h′≤2m
h6=i6=h′

1−Rhh′

1 +Rhh′
,

which is equivalent to the classical formula

∏

1≤h<h′≤2m

xh − xh′

xh + xh′
= Pfaffian

(
xh − xh′

xh + xh′

)

1≤h,h′≤2m

due to Schur. The proof is completed using induction, starting from the base case

of j = 1, which was obtained in Proposition 7.

Corollary 5. If λ is a k-strict partition, λj−1 > λj > k and λj + 1 = λj−1 then if

for each h > j + 1, (j, h) ∈ C(λ) iff (j + 1, h) ∈ C(λ) we have

RλRj,`+1θ(λ,1);γ(λ);0 = tλj−kΘλ;γ(λ);0
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Proof. For this proof we let γ(j+) = γ(λ) everywhere except the jth place where it

is one more. Then since λj + 1 = λj−1 > k + 1 we have sj(γ
(j+)) = γ(j+). We also

note that since λj > k we have that θ
λj−k−1
λj

[1] = θ
λj−k−1
λj+1 [0]. Hence we have:

RλRj,`+1θ(λ,1);γ;0

= Rλ

j−1∏
i=1

θ
(λi−k−1)
λi

[0]θ
(λj−k−1)
λj

[1]
∏̀

i=j+1

θ
|k+1−λi+ai(λ)|
λi

[0]

= Rλ

j−1∏
i=1

θ
(λi−k−1)
λi

[0]θ
(λj−k)
λj+1 [0]

∏̀
i=j+1

θ
|k+1−λi+ai(λ)|
λi

[0]

+Rλ

j−1∏
i=1

θ
(λi−k−1)
λi

[0](tλj−k)θ
(λj−k−1)
λj

[0]
∏̀

i=j+1

θ
|k+1−λi+ai(λ)|
λi

[0]

by equation (3.1) for elementary symmetric polynomials

= Θ
C(λ)
λ(j);γ(j+);0

+ tλj−kΘλ

= tλj−kΘλ.

Since C(λ) = C(λ(j)) since for each h > j+1, (j, h) ∈ C(λ) iff (j+1, h) ∈ C(λ)

and since Θ
C(λ)
λ(j);γ(j+);0

= 0 by the above lemma.

5.6 The Equivariant Chevalley Formula

We will recall the equivariant Chevalley formula for IG(n − k, 2n) will be

indexed by the same partitions as the classical Chevalley formula, and will have

an additional equivariant correction given by σ1

∣∣
λ
σλ. Therefore the equivariant
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Chevalley formula is given by

σ1 · σλ = σ1

∣∣
λ
σλ +

∑

λ→µ

eλµ σµ (5.5)

where eλµ is as it is defined in the classical case. Also we note that when we consider

the special Schubert class σ1 as a Theta polynomial we have the following coefficient

on our equivariant correction term:

σ1

∣∣
λ
= θk1

∣∣
λ
= 2

∑̀
i=1

tλi−k +
k∑

j=1

twλ(j) −
k∑

l=1

tl

where we set ti = 0 whenever i ≤ 0.

The way we prove the equivariant Chevalley formula will be very similar to

how the classical Chevalley formula is proven. The difference here will be that in

our substitution algorithm we need to also keep track of any equivariant corrections.

5.7 The Equivariant Substitution Rule

We fix a k-strict partition λ of length `, setm to be the middle row of λ defined

in §5.2.1, let C = C(λ), and choose n sufficiently large so that all Pieri terms that

can possibly appear in the Chevalley formula do not vanish just as we did in the

classical case. For the equivariant substitution rule we will need to keep track of the

changes necessary to transform γ(λ) into γ(µ) as well as the usual transforming of

C into C(µ) and ρ to 0. To account for this we will need to make our triple into a

4-tuple.

Definition 12. For any integer sequence ρ the 4-tuple (D,µ, S, ρ) will be called valid

if the triple (D,µ + ρ, S) was valid in the classical case. A 4-tuple will correspond
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to a Schubert class if it is of the form (C(µ), µ, S,0) for some k-strict partition µ.

For any valid 4-tuple ψ = (D,µ, S, ρ) we let

ev(ψ) = RDθµ;γ(D,µ,ρ);ρ

where γ(D,µ, ρ)i = |k + 1− ρi − µi + ai(D)|. We note that if D = C(µ) and ρ = 0

then ev(ψ) = Θµ since γ(C(µ), µ,0) = γ(µ).

For a 4-tuple ψ = (D,µ, S, ρ) we define a new weight condition. We say the

4-tuple ψ satisfies the weight conditionW (i, j) for j > i if µi+ρi+µj+ρj > 2k+j−i.

Let γ = γ(λ, 1) which is the same as γ(λ) in the first ` components, let λ(j)

be such that λ
(j)
i = λi for all i 6= j and λ

(j)
j = λj + 1, and let γ(j+) = γ + εj and

γ(j−) = γ − εj, where we recall that εj is the sequence which has a 1 in the jth

position and zeros elsewhere.

We compute that

Θλ ·Θ1 = Rλθ(λ,1);γ;0 +

a`+1(λ,1)∑
i=1

tk+iΘλ

since Θ1 = Θ∅
1;k;0 and since γ(λ, 1)`+1 = k + a`+1(λ, 1). Then the above can be

expanded as in the classical case to

Rλ
`+1 ·

∏̀
i=1

(1 +Ri,`+1) θ(λ,1);γ;0 +

a`+1(λ,1)∑
i=1

tk+iΘλ.

At this point we notice this is the same as

Θλ ·Θ1 =
`+1∑
j=1

ΘC
(λ;γ(λ);εj)

+

a`+1(λ,1)∑
i=1

tk+iΘλ, (5.6)

where we note θr0[1] = θr1[0].
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We aim to show that the right hand side of Equation (5.6) is equal to the right

hand side of the equivariant Chevalley rule. We will do this using the an equivariant

version of the substitution rule from the classical case.

Thus in the above the 4-tuples corresponding to terms on the right hand side

of Equation (5.6) will be {(C, λ, ∅, εj) : 1 ≤ j ≤ `+ 1} := Ψ.

The following substitution rule will be applied iteratively to rewrite the right

hand side of (5.6). It may be applied to any valid 4-tuple and will result in either

a REPLACE statement, indicating that the 4-tuple should be replaced by one or

two new 4-tuples, or a STOP statement, indicating that the 4-tuple should not be

replaced.

Equivariant Substitution Rule

Let (D,µ, S, ρ) be a valid 4-tuple. Let h ≤ ` + 1 be largest such that one of

the following five conditions is true (if none hold for any h, then STOP).

(i) (h − 1, h) /∈ D and there is an outer corner (i, h) of D with i ≤ m such

that W (i, h) holds;

(ii) (h−1, h) /∈ D, D has no outer corner in column h, and µh+ρh = λh−1+1;

(iii) (h − 1, h) ∈ D and there is an outer corner (h, j) of D with j ≤ ` + 1

such that W (h, j) holds;
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(iv) (h− 1, h) ∈ D and µh + ρh = µh−1 + ρh−1.

(v) ρ 6= 0.

If condition (i) holds, then REPLACE (D,µ, S, ρ) with (D ∪ (i, h), µ, S, ρ)

and (D ∪ (i, h), µ, S ∪ (i, h), Rihρ). If (iii) holds, then REPLACE (D,µ, S, ρ) with

(D ∪ (h, j), µ, S ∪ (h, j), Rhjρ) if µh > µh−1, or REPLACE (D,µ, S, ρ) with (D ∪

(h, j), µ, S ∪ (h, j), Rhjρ) and (D ∪ (h, j), µ, S, ρ). If (v) holds then REPLACE

(D,µ, S, ρ) with (D,µ+ ρ, S,0) If (ii) or (iv) holds, then STOP.

We begin by performing the Substitution rule on terms at level h = `+1. First

note that (`, `+1) /∈ C and of the first 4 conditions, only condition (i) has any chance

of holding. If condition (i) holds then we note that it must hold for i = 1, and in fact

will hold for i = 1, 2, . . . , c`+1(λ, 1). Thus we will have c`+1(λ, 1) additional terms,

corresponding to the valid 4-tuples (C, λ, {(j, ` + 1)}, εj) for j = 1, 2, . . . , c`+1(λ, 1),

and this will correspond to the following in our expansion in the Chevalley formula
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for the factorial Theta polynomials.

Θλ ·Θ1

= Rλ,1

c`+1(λ,1)∏
i=1

(1 + 2Ri,`+1)θ(λ,1);γ
∏̀

i=c`+1(λ,1)+1

(1 +Ri,`+1)θλ,1;γ +

a`+1(λ,1)∑
i=1

tk+iΘλ;γ

= Θλ,1 + 2
∑

j≤c`+1(λ,1)

Rλθλ;γ;εj +
∑

j>c`+1(λ,1)

Rλθλ;γ;εj +

a`+1(λ,1)∑
i=1

tk+iΘλ;γ;0

= Θλ,1 + 2
∑

j≤c`+1(λ,1)

Rλθλ;γ(j+);εj +
∑

j>c`+1(λ,1),j<m

Rλθλ;γ(j+);εj

+
∑

m≥j>c`+1(λ,1)

Rλθλ;γ(j−);εj

+


 ∑

j≤cl`+1(λ,1)

2tλj−k +
∑

j>c`+1(λ,1)

(tλj−k − tk−λj+1+aj(λ)) +

al+1(λ,1)∑
i=1

tk+i


Θλ

where we note that if the index on t is negative, then we take it to be zero. The

equivariant correction terms on the last line are gathered using the same relations

amongst elementary and complete symmetric functions as in the proofs of Corollaries

4 and 5. Thus our new goals are to show that the coefficient on Θλ is Θ1

∣∣
λ
, and

that the descendants of the 4-tuples:

1. (C, λ, {(j, `+ 1)}, εj) for j ≤ c`+1(λ, 1)

2. (C, λ, ∅, εj) for j < m

3. (C, λ, ∅, εj) for j ≥ m

which evaluate to the right hand side of the above equation correspond to Schubert

classes appearing the right hand side of Equation (5.5).
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To do this we will apply the equivariant substitution rule, and show the algo-

rithm will give us the correct results.

First note that in input for the algorithm, our 4-tuples correspond to the triples

in the classical case in that our equivariant algorithm acts on (D,µ, S, ρ) the same

way as the classical algorithm acts on (D,µ+ρ, S), where we use Lemma 10 in place

of Lemma 6 and Lemma 11 in place of Lemma 7. Hence we need only show that

after the algorithm has terminated, the remaining (C(µ), µ, S, ρ) have the property

that that ρ = 0. We also must show that our replace steps match up algebraically

with correct manipulations of the factorial theta polynomials.

We work through this algorithm with the example λ = (7, 4, 3, 2, 1, 1) for

IG(9− 2, 18) in the appendix.

Recall from the classical setting that the REPLACE step for conditions (i)

and (iii) corresponds to equality of the raising operators below

1−Rij =
1−Rij

1 +Rij

+
1−Rij

1 +Rij

Rij. (5.7)

We have ev(D,µ, S, ρ) = RDθµ;γ(D,µ,ρ);ρ. For simplicity let γ = γ(D,µ, ρ).

Then when we apply Equation (5.7) we would a priori have

ev(D,µ, S, ρ) = R{D∪(i,j)}θµ;γ;ρ +R{D∪(i,j)}θµ;γ;Rijρ.

Then we note that in the algorithm if we perform this REPLACE step then we were

in one of two possible cases, where both cases will have the property that W (i, j)

holds for µ+ρ but (i, j) is an outer corner of D. This means that γi = µi+ρi−k−1

while γj = k + 1− µj − ρj +#{r : r < j, (r, j) /∈ D}. So (γ(i+))i = µi + ρi − k and
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(γ(j−))j = k − µj − ρj +#{r : r < j, (r, j) /∈ D}. Since (i, j) is an outer corner, we

have that

#{r : r < j, (r, j) /∈ D} = j − i.

W (i, j) being satisfied by µ+ρ means that µi+ρi+µj +ρj > 2k+ j− i. Combining

these relations we must have that

(γ(i+))i − γj = µiρi + µj + ρj − 2k − j + i− 1.

Then by Proposition 4 we know µj+ρj+µi+ρi = 2k+j−i+1 so we have (γ(i+))i = γj.

We notice that γ(i+) = γ(D ∪ (i, j), µ, Rijρ) and γ(j−) = γ(D ∪ (i, j), µ, Rijρ).

Hence our REPLACE step corresponds to the usual application of Equation

5.7 along with the relations

θµ;γ;ρ = θµ;γ(j−);ρ − tγjθµ;γ;ρ−εj

from Equation (3.1) for the complete symmetric functions, and

θµ;γ;Rijρ = θµ;γ(i+);Rijρ + t(γ(i+))iθRijµ;γ;ρ−ei

from Equation (3.1) for the elementary symmetric functions. Note that ρ − εj =

Rijρ − ei so these correction terms will cancel by the above argument. Hence we

have

ev(D,µ, S, ρ) = ev(D ∪ (i, j), µ, S, ρ) + ev(D ∪ (i, j), µ, S ∪ (i, j), Rijρ)

and our REPLACE step for conditions (i) and (iii) correspond to correct manipu-

lation of the Theta polynomials.
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For condition (v) we note that for a 4-tuple ψ = (D,µ, S, ρ) if Rij is applied

to ρ in a REPLACE step then i ≤ m and j > m, then as long as ρi ≥ 0 for i ≤ m

and ρi ≤ 0 for i > m we have that ev(ψ) = ev(ψ′) where ψ′ = (D,µ+ ρ, S,0). Thus

we need only check what happens for our initial 4-tuples ψ = (C, λ, S, εj) for j > m.

Then we note that if λj < k then λj +1 ≤ k so again we have ev(ψ) = ev(ψ′) where

ψ′ = (C, λ(j), S,0). So at this point we know that as long as λj 6= k then we have

that the REPLACE from condition (v) corresponds to correct manipulations of the

indices.

Assume λj = k and consider the 4-tuple ψ = (C, λ, S, εj). We consider the

following cases:

1. If λj−1 > k + 1, then aj(C) = 0 so that γ(C, λ, εj)j = 0. So we note that

θ0k[1] = θk+1(x, z) = θ0k+1[0] and so applying the REPLACE step for condition

(v) is an algebraically correct operation.

2. If λj−1 = k + 1, then (C, λ, S, εj) satisfies condition (i) so it has children

ψ1 = (C ∪ (j − 1, j), λ, S ∪ {(j − 1, j)}, ej−1) and ψ2 = (C ∪ (j − 1, j), λ, S ∪

{(j − 1, j)}, ej). Then ψ1 has the property that ρi = 0 except for when

i = j−1 and there we have that λj−1 > k so that ev(ψ1) = ev(ψ′
1) where ψ

′
1 =

(C∪(j−1, j), λ+ej−1, S,0) which amounts to applying the REPLACE step for

condition (v). We then consider ψ2. If γ(λ)j = 2 then γ(C∪(j−1, j), λ, εj)j = 0

and we note that since θ0k[1] = θk+1(x, z) = θ0k+1[0] and γ(λ)j−1 = 0 so that

ev(ψ2) is zero by Lemma 11. If γ(C ∪ (j − 1, j), λ, εj)j 6= 0 then we must have

that λj−r = k + r for some r > 1, in which case ψ2 satisfies condition (i) and
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has children ψ21 = (C ∪ {(j − 1, j), (j − 2, j)}, λ, S ∪ {(j − 2, j)}, ej−2) and

ψ22 = (C ∪ {(j − 1, j), (j − 2, j)}, λ, S ∪ {(j − 1, j)}, ej) where here ψ21 can be

evaluated similarly to ψ1 by applying the REPLACE step for condition (v)

and ψ22 is either zero by Lemma 11 or satisfies condition (i). Continuing in

this fashion we are able to make all terms vanish except those where ρ = 0.

3. If λj−1 = k, then we notice that ψ will either satisfy condition (i) or condition

(ii). If it satisfies condition (ii) then it will vanish by Lemma 10. If it satisfies

condition (i) then it will have a descendant which will satisfy condition (ii)

and all other descendants will have the property that ρi > 0 only when i ≤ m.

In such a case we know that condition (v) will be satisfied and the REPLACE

step is a correct manipulation of indices.

Then the fact that all of the surviving 4-tuples are terms in the right hand

side of the equivariant Chevalley formula follows from the classical case.

Hence to prove the Chevalley formula it remains to show that our initial cor-

rection of

 ∑

j≤c`+1(λ,1)

2tλj−k +
∑

`≥j>c`+1(λ,1)

(tλj−k − tk−λj+1+aj(λ)) +

a`+1(λ,1)∑
i=1

tk+i




is the correct coefficient for σλ. We know the correct coefficient of σλ is

σ1|λ = 2
∑̀
j=1

tλj−k +
k∑

i=1

(twλ(i) − ti)

where wλ is the signed permutation corresponding to λ.

We notice that these are equivalent coefficients only if

k+a`+1(λ,1)∑
i=1

ti =
∑

j>c`+1(λ,1)

(tλj−k + tk−λj+1+aj(λ)) +
k∑

i=1

twλ(i).
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Observe first that if the indices on the right hand side are distinct then there

are precisely a`+1(λ, 1) of them. This is because the set {` ≥ j > c`+1(λ, 1)} has

cardinality `− c`+1(λ, 1) = al+1(λ, 1), and only one of λj − k or k − λj + 1 + aj(λ)

will be positive. Then we also note that so long as j ≤ ` we have that

k − λj + 1 + aj(λ) ≤ k + aj(λ) < k + a`+1(λ, 1).

Similarly so long as j > c`+1(λ, 1) we know that λj ≤ 2k + `− j so

λj − k ≤ k + `− j < k + a`+1(λ, 1).

It is known that wλ will have a unique jump after i = k and is increasing before then,

so we calculate wλ(k). This will be equal to `+ k− c`+1(λ, 1) = k+ a`+1(λ, 1). This

is because if we look at the length of the k related diagonal coming from the first

column of λ it will be `+ k−#{j|λj > 2k+ `− j}, since we note that the k related

diagonal will “hit” the jth row only if λj > k+`−j. Therefore wλ(k) = k+a`+1(λ, 1),

and all other terms on the right hand side are less than it.

Thus to show we have the correct coefficient we need only show that the terms

∑

j>cl+1(λ,1)

(tλj−k + tk−λj+1+aj(λ)) +
k∑

i=1

twλ(i)

are distinct. To do this we simply notice that the indices are all the absolute value

of wλ(i) for some 1 ≤ i ≤ n. This is obvious for the twλ(i). Then we also know that

for all j such that λj − k > 0, wλ(k+ j) = −(λj − k) so |wλ(k+ j)| = λj − k. Lastly

we know that if we have λj − k ≤ 0, then wλ(k + j) corresponds to the length of

a non-related diagonal, which is k − λj + 1 + aj(λ) as explained in §5.3. So these

indices all correspond to wλ and are thus distinct.
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Hence we have the correct coefficient for σλ and have proven the Chevalley

Formula for our raising operator expression.

5.8 The Vanishing Theorem

Now in order to prove the Conjecture 1 we still need to show that the raising

operator expressions satisfies the vanishing theorem described in §2.3.

Currently I have only proven this in the case that the Schubert class is indexed

by a k-strict partition λ, for which λi ≤ k for all i. From here until the end of the

chapter we will use the word “small” to describe any such partition λ

Theorem 8. Let λ, µ be small partitions such that λ * µ. Then Θλ

∣∣
µ
= 0.

Proof. We will use the localization map for restricting to the torus fixed point eµ

described in §5.4. We note that in this map the variable xi will go to tµi−k which

in the case of µ being small will always be 0. Also the localization map sends zi to

twµ(i). Thus we have the following:

Θλ

∣∣
µ
= Rλθλ;γ(λ);0

∣∣
µ

=
∏

1≤i<j≤`

(1−Rij)
∏̀
i=1

θ
k−λi+1+ai(λ)
λi

(0)
∣∣
µ

since λ is small. We also note that in general wµ(i) for i ≤ k will be the k related

diagonals as described in §5.3. Let µ′ be the partition given by the columns of

µ. Then the k related diagonals are exactly µ′
k−i+1 + i. We note that in this case
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wµ in Lie type C is the same as wµ in Lie type A when we are considering the

Grassmannian G(n− k, n). Thus we note that twµ(i) is the image of both xi when

considering G(n−k, n) and zi when considering IG(n−k, 2n). Also since λ is small

we have that ai(λ) = i− 1 for all i. Then note that

θ
(k−λi+i)
λi

(0)
∣∣
µ
=

∑
r,s

r+s≤λi

(−1)sqλi−r−s(x)er(z)hs(t)
∣∣
µ

=

λi∑
j=1

(−1)jeλi−j(tµ)hj(t).

Hence

Θλ

∣∣
µ
= sλ(tµ|t).

Thus the Vanishing theorem in this case follows from the type A result.

5.9 Generalizations and Further Work

There are several directions I can go from here. The most obvious of which

is to prove my conjecture. Once I am able to prove this conjecture one could also

generalize these results to the Quantum Equivariant Cohomology ring of a Grass-

mannian. I may also try to generalize to the Quantum Equivariant Cohomology

ring in order to prove my conjecture, since a recent result of Mihalcea in [Mi] shows

that satisfying the equivariant quantum Chevalley formula is enough to prove the

Giambelli formula in this setting.
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Chapter A

Example of the Substitution Rule

A.1 Setup

Let us consider the 2-strict partition λ = (7, 4, 3, 2, 1, 1) indexing a Schubert

cell in IG(9− 2, 18). The Chevalley formula corresponding to this partition is

σλ · σ1 =

2σ(8,4,3,2,1,1) + σ(10,4,3,2) + 2σ(7,5,3,2,1,1) + σ(7,6,3,1,1,1) + σ(7,4,3,2,2,1) + σ(7,4,3,2,1,1,1)

+(2t5 + t2 + t1 + t4 + t8)σλ.

In this example C = C(λ) = {(1, 2), (1, 3), (1, 4), (2, 3)}. Our initial set of 4-tuples is

Ψ0 = {(C, λ, ∅, ε1), (C, λ, ∅, ε2), (C, λ, ∅, ε3), (C, λ, ∅, ε4), (C, λ, ∅, ε5), (C, λ, ∅, ε6),

(C, λ, ∅, ε7)}. We note that for this example γ(λ) = (4, 1, 0, 3, 6, 7). Below we will

follow the substitution algorithm for each 4-tuple (D,µ, S, ρ), including the changes

in the integer sequences ρ and µ in the Young diagram and the set D in the figure

of circles just underneath each diagram. In the pictures below the gray boxes will

represent the positive parts of the integer sequence ρ and the dashed boxes are the

negative parts of the integer sequence ρ. The survivors of the algorithm will match

up with the Chevalley formula given above.

Remark 2. We note that the solid outline of the resulting diagram is µ + ρ and

thus will match up with the steps of the classical substitution rule.
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        λ =

Figure A.1: The Young diagram of λ.

In the figures below the REPLACE steps for conditions (i) and (iii) will result

in a new generation of 2 children (indicated by a double arrow in the figure) while we

will resolve the REPLACE step for condition (v) (indicated by a single downward

arrow) within the description for the parent generation.

We also include the equivariant corrections in the figure. A ±ti in the last box

of the jth row of the diagram indicates that for the corresponding 4-tuple (D,µ, S, ρ),

ρ makes it necessary to include or remove ti from the jth part of the monomial

θµ,γ(D,µ,ρ),ρ while it was or wasn’t included in the previous generation’s monomial.

We perform this correction using equation (3.1) as described in §5.5.

83



A.2 Algorithm With Corrections

Figure A.2: The Substitution Rule applied to (C, λ, ∅, ε1)
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(1)λ  =

+t 5

7

 6

7

+t

−t

 6+t

−t

First generation:

•(C, λ, ∅, ε1) satisfies condition (i) at level h = 5 since 7+1+1 > 4+5−1. We

note that γ(C, λ, ε1) = (5, 1, 0, 3, 6, 7) = γ+ε1 so we must add t5 ·ev(C, λ, ∅, ε1−ε1) =

t5Θλ in order for ev(C, λ, ∅, ε1) to be correct.

84



Second generation:

•(C∪(1, 5), λ, ∅, ε1) meets condition (v) and is replaced with (C∪(1, 5), λ(1), ∅,0)

which does not meet any conditions and survives the algorithm. We note that

γ(C ∪ (1, 5), λ, ε1) = (5, 1, 0, 3, 5, 7) = γ(C, λ, ε1)− ε5 so we must subtract t6 · ev(C ∪

(1, 5), λ, ∅, ε1 − ε5).

•(C ∪ (1, 5), λ, {(1, 5)}, 2ε1 − ε5) satisfies condition (iii) at level h = 1 since

7 + 2 + 1 > 4 + 6 − 1. We note that γ(C ∪ (1, 5), λ, 2ε1 − ε5) = (6, 1, 0, 3, 6, 7) =

γ(C, λ, ε1)+ε1 so we must add t6 ·ev(C∪(1, 5), λ, {(1, 5)}, 2ε1−ε5−ε1). We note that

this term will cancel with the correction term from this 4-tuple’s second generation

brother.

Third generation:

•(C ∪ (1, 5) ∪ (1, 6), λ, {(1, 5)}, 2ε1 − ε5) satisfies condition (ii) at level h = 6

and its evaluation vanishes by Lemma 10. We note that γ(C ∪ (1, 5)∪ (1, 6), λ, 2ε1−

ε5) = (6, 1, 0, 3, 6, 6) = γ(C, λ, 2ε1 − ε5) − ε6 so we must subtract t7 · ev(C ∪ (1, 5) ∪

(1, 6), λ, {(1, 5)}, 2ε1 − ε5 − ε6).

•(C ∪ (1, 5) ∪ (1, 6), λ, {(1, 5), (1, 6)}, 3ε1 − ε5 − ε6) meets condition (v) and

is replaced with (C ∪ (1, 5), (10, 4, 3, 2), ∅,0) which does not meet any conditions

and survives the algorithm. We note that γ(C ∪ (1, 5) ∪ (1, 6), λ, 3ε1 − ε5 − ε6) =

(7, 1, 0, 3, 6, 7) = γ(C, λ, 2ε1−ε5)+ε1 so we must add t7·ev(C∪(1, 5)∪(1, 6), λ, {(1, 5), (1, 6)}, 3ε1−

ε5 − ε6 − ε1). We note that this term will cancel with the correction term from this

4-tuple’s third generation brother.

We notice that in the end the descendants (D,µ, S) of (C, λ(1), ∅) have the

property that D r C is a row.
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Figure A.3: The Substitution Rule applied to (C, λ, ∅, ε2)
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λ  =
(2)

+t

+t

 3
 −t

 3

 2

First generation:

•(C, λ, ∅, ε2) satisfies condition (i) at level h = 4 since 4+1+2 > 4+4−2. We

note that γ(C, λ, ε2) = (4, 2, 0, 3, 6, 7) = γ(λ)+ ε2) so we must add t2 · ev(C, λ, ∅, ε2−

ε2) = t2Θλ.

Second generation:

•(C∪(2, 4), λ, ∅, ε2) meets condition (v) and is replaced with (C∪(2, 4), λ(2), ∅,0)

which does not meet any conditions and survives the algorithm. We note that

γ(C ∪ (2, 4), λ, ε2) = (4, 2, 0, 2, 6, 7) = γ(C, λ, ε2)− ε4) so we must subtract t3 · ev(C ∪
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(2, 4), λ, ∅, ε2 − ε4).

•(C ∪ (2, 4), λ, {(2, 4)}, 2ε2 − ε4) meets condition (v) and is replaced with (C ∪

(2, 4), (7, 6, 3, 1, 1, 1), {(2, 4)},0) which does not meet any conditions and survives

the algorithm. We note that γ(C ∪ (2, 4), λ, 2ε2− ε4) = (4, 3, 0, 3, 6, 7) = γ(C, λ, ε2)+

ε2) so we must add t3 · ev(C ∪ (2, 4), λ, {(2, 4)}, 2ε2− ε4− ε2). We note that this term

will cancel with the correction term from this 4-tuple’s second generation brother.

Figure A.4: The Substitution Rule applied to (C, λ, ∅, ε3)

(3)

λ  =
+t 1

First generation:

•(C, λ, ∅, ε3) satisfies condition (iv) at level h = 3 and its evaluation vanishes

by Lemma 11. We note that γ(C, λ, ε3) = (4, 1, 1, 3, 6, 7) = γ(λ) + ε3) so we must

add t1 · ev(C, λ, ∅, ε3 − ε3) = t1Θλ.
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Figure A.5: The Substitution Rule applied to (C, λ, ∅, ε4)
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    1

First generation:

•(C, λ, ∅, ε4) satisfies condition (i) at level h = 4 since 4 + 2 + 1 > 4 + 4 − 2.

We note that γ(C, λ, ε4) = (4, 1, 0, 2, 6, 7) = γ(λ) − ε4) so we must subtract t3 ·

ev(C, λ, ∅, ε4 − ε4) = −t3Θλ.

Second generation:

•(C∪(2, 4), λ, ∅, ε4) satisfies condition (i) at level h = 4 since 3+2+1 > 4+4−3.

We note that γ(C ∪ (2, 4), λ, ε4) = (4, 2, 0, 1, 6, 7) = γ(C, λ, ε4) − ε4) so we must

subtract t2 · ev(C ∪ (2, 4), λ, ∅, ε4 − ε4).
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•(C ∪ (2, 4), λ, {(2, 4)}, ε2) satisfies condition (v) and is replaced with (C ∪

(2, 4), λ(2), {(2, 4)},0) which does not meet any conditions and survives the algo-

rithm. We note that γ(C ∪ (2, 4), λ, ε2) = (4, 3, 0, 2, 6, 7) = γ(C, λ, ε4) + ε2) so we

must add t2 · ev(C ∪ (2, 4), λ, ∅, ε2 − ε2). We note that this term will cancel with the

correction term from this 4-tuple’s second generation brother.

Third generation:

•(C ∪ (2, 4) ∪ (3, 4), λ, ∅, ε4) satisfies condition (iv) at level h = 4 and its

evaluation vanishes by Lemma 11. We note that γ(C ∪ (2, 4) ∪ (3, 4), λ, ε4) =

(4, 2, 0, 0, 6, 7) = γ(C ∪ (2, 4), λ, ε4) − ε4) so we must subtract t1 · ev(C ∪ (2, 4) ∪

(3, 4), λ, ∅, ε4 − ε4).

•(C ∪ (2, 4) ∪ (3, 4), λ, {(3, 4)}, ε3) satisfies condition (iv) at level h = 3 and

its evaluation vanishes by Lemma 11. We note that γ(C ∪ (2, 4) ∪ (3, 4), λ, ε3) =

(4, 2, 1, 1, 6, 7) = γ(C∪(2, 4), λ, ε4)+ε3) so we must add t1·ev(C∪(2, 4)∪(3, 4), λ, ∅, ε3−

ε3). We note that this term will cancel with the correction term from this 4-tuple’s

third generation brother.

We notice that in the end the descendants (D,µ, S) of (C, λ(4), ∅) have the

property that D r C is a column.
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Figure A.6: The Substitution Rule applied to (C, λ, ∅, ε5)
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λ   =
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 6

 5

 5

First generation:

•(C, λ, ∅, ε5) satisfies condition (i) at level h = 5 since 7 + 1 + 1 > 4 + 5 − 1.

We note that γ(C, λ, ε5) = (4, 1, 0, 3, 5, 7) = γ(λ) − ε5) so we must subtract t6 ·

ev(C, λ, ∅, ε5 − ε5) = −t6Θλ.

Second generation:

•(C∪(1, 5), λ, ∅, ε5) meets condition (v) and is replaced with (C∪(1, 5), λ(5), ∅,0)

which does not meet any conditions and survives the algorithm. We note that

γ(C ∪ (1, 5), λ, ε5) = (4, 1, 0, 3, 4, 7) = γ(C, λ, ε5)− ε5) so we must subtract t5 · ev(C ∪
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(1, 5), λ, ∅, ε5 − ε5).

•(C∪(1, 5), λ, ∅, ε1) meets condition (v) and is replaced with (C∪(1, 5), λ(1), ∅,0)

which does not meet any conditions and survives the algorithm. We note that

γ(C ∪ (1, 5), λ, ε1) = (5, 1, 0, 3, 5, 7) = γ(C, λ, ε5) − ε5) so we must add t5 · ev(C ∪

(1, 5), λ, ∅, ε1− ε1). We note that this term will cancel with the correction term from

this 4-tuple’s second generation brother.

Figure A.7: The Substitution Rule applied to (C, λ, ∅, ε6)

  7 −t

λ  =
(6)

First generation:

•(C, λ, ∅, ε6) satisfies condition (ii) at level h = 6 and its evaluation vanishes

by Lemma 10. We note that γ(C, λ, ε6) = (4, 1, 0, 3, 6, 6) = γ(λ) − ε6) so we must

subtract t7 · ev(C, λ, ∅, ε6 − ε6) = −t7Θλ.
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Figure A.8: The Substitution Rule applied to (C, λ, ∅, ε7)

(7)

λ  =

First generation:

•(C, λ, ∅, ε7) meets condition (v) and is replaced with (C, λ(7), ∅,0) which does

not meet any conditions and survives the algorithm. We note that γ(C, λ, ε7) =

(4, 1, 0, 3, 6, 7, 8) and that in the Chevalley product, Θ1 = Θ1(x, z) − t1 − t2 so we

must add (
∑8

i=3 ti)Θλ which is not included as a correction on our figure.

Remark 3. In the end when we apply the evaluation map we notice the survivors

match with the terms in the equivariant Chevalley formula for λ given at the begin-

ning of the appendix.
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