
ABSTRACT

Title of dissertation: ENHANCING PRODUCTIVITY AND
PERFORMANCE PORTABILITY OF
GENERAL-PURPOSE
PARALLEL PROGRAMMING

Alexandros Tzannes,
Doctor of Philosophy, 2012

Dissertation directed by: Professor Rajeev Barua &
Professor Uzi Vishkin
Department of Computer Science

This work focuses on compiler and run-time techniques for improving the pro-

ductivity and the performance portability of general-purpose parallel programming.

More specifically, we focus on shared-memory task-parallel languages, where the pro-

grammer explicitly exposes parallelism in the form of short tasks that may outnum-

ber the cores by orders of magnitude. The compiler, the run-time, and the platform

(henceforth the system) are responsible for harnessing this unpredictable amount of

parallelism, which can vary from none to excessive, towards efficient execution. The

challenge arises from the aspiration to support fine-grained irregular computations

and nested parallelism. This work is even more ambitious by also aspiring to lay the

foundations to efficiently support declarative code, where the programmer exposes

all available parallelism, using high-level language constructs such as parallel loops,

reducers or futures. The appeal of declarative code is twofold for general-purpose

programming: it is often easier for the programmer who does not have to worry

about the granularity of the exposed parallelism, and it achieves better performance

portability by avoiding overfitting to a small range of platforms and inputs for which

the programmer is coarsening. Furthermore, PRAM algorithms, an important class

of parallel algorithms, naturally lend themselves to declarative programming, so

supporting it is a necessary condition for capitalizing on the wealth of the PRAM

theory. Unfortunately, declarative codes often expose such an overwhelming number

of fine-grained tasks that existing systems fail to deliver performance.

Our contributions can be partitioned into three components. First, we tackle

the issue of coarsening, which declarative code leaves to the system. We identify

two goals of coarsening and advocate tackling them separately, using static compiler

transformations for one and dynamic run-time approaches for the other. Addition-

ally, we present evidence that the current practice of burdening the programmer

with coarsening either leads to codes with poor performance-portability, or to a

significantly increased programming effort. This is a “show-stopper” for general-

purpose programming. To compare the performance portability among approaches,

we define an experimental framework and two metrics, and we demonstrate that our

approaches are preferable. We close the chapter on coarsening by presenting com-

piler transformations that automatically coarsen some types of very fine-grained

codes.

Second, we propose Lazy Scheduling, an innovative run-time scheduling

technique that infers the platform load at run-time, using information already main-

tained. Based on the inferred load, Lazy Scheduling adapts the amount of available

parallelism it exposes for parallel execution and, thus, saves parallelism overheads

that existing approaches pay. We implement Lazy Scheduling and present experi-

mental results on four different platforms. The results show that Lazy Scheduling

is vastly superior for declarative codes and competitive, if not better, for coars-

ened codes. Moreover, Lazy Scheduling is also superior in terms of performance-

portability, supporting our thesis that it is possible to achieve reasonable efficiency

and performance portability with declarative codes.

Finally, we also implement Lazy Scheduling on XMT, an experimental many-

core platform developed at the University of Maryland, which was designed to sup-

port codes derived from PRAM algorithms. On XMT, we manage to harness the

existing hardware support for scheduling flat parallelism to compose it with Lazy

Scheduling, which supports nested parallelism. In the resulting hybrid scheduler,

the hardware and software work in synergy to overcome each other’s weaknesses.

We show the performance composability of the hardware and software schedulers,

both in an abstract cost model and experimentally, as the hybrid always performs

better than the software scheduler alone. Furthermore, the cost model is validated

by using it to predict if it is preferable to execute a code sequentially, with outer par-

allelism, or with nested parallelism, depending on the input, the available hardware

parallelism and the calling context of the parallel code.

Enhancing Productivity and Performance Portability of
General-Purpose Parallel Programming.

by

Alexandros Tzannes

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Rajeev Barua, Chair/Advisor
Professor Uzi Vishkin, Co-Advisor
Professor Jeff Foster
Professor Alan Sussman
Professor William Dorland

c© Copyright by
Alexandros Tzannes

2012

Preface

I started my PhD in the fall of 2004. I had come to the University of Maryland

at College Park to do theory, and my main interest was structural complexity. I

also had an affinity to programming languages and compilers as an undergrad, and I

especially enjoyed the equivalence of different automata to formal languages. In my

first semester, I took approximation algorithms and randomized algorithms. Ran-

domized algorithms, it turns out, were not my thing. I really liked approximation

algorithms, but as I looked closer to the research being done in the field, I was turned

off by the need to motivate theoretical research as being immediately applicable in

order to apply for funding. I felt this requirement clouded the purity of theory and

drove researchers away from fundamental questions which, if answered, would not

necessarily provide useful fruits immediately. So, I had to reconsider what I wanted

to do for my PhD.

In my second semester, I took Parallel Algorithms with Prof. Uzi Vishkin.

He taught PRAM algorithms in the classroom, and we had to implement some

parallel algorithms in XMTC, a small extension of C, and run the assignments on

a simulator of the XMT on-chip parallel platform. In my last year of undergrad,

I had taken a course on high-performance computing where we had to write code

in MPI and OpenMP for a relatively simple 3D stencil computation. That was

not fun. On the contrary, programming XMT was straightforward, intuitive, and

fun. But the XMTC compiler was a disaster: the compiler was almost as likely

to produce buggy binaries as for a programmer to write buggy code. During that

time, the influential popular article by Herb Sutter [80] “The free lunch is over: A

Fundamental Turn Toward Concurrency in Software” was calling attention to the

fact that clock speeds of processors had stopped getting faster and were unlikely to

pick up again. Therefore, the main path for increasing performance of code from

one hardware-generation to the next would presumably be through parallelism.

That was it! I was sold on the idea of working in a “hot” field, with the

ii

XMT architecture which I thought (and still do) was unique and very promising,

combining compilers and theory, with Prof. Vishkin who I admired from undergrad

for his deterministic coin tossing [28]. At that time, I did not yet know exactly what

I wanted to do research on, but I offered Prof. Vishkin to write a decent compiler

for XMTC (I had written a compiler for a large subset of C almost from scratch

as an undergrad and had enjoyed it a lot, so I thought I had what it took), and

Prof. Vishkin accepted the challenge of giving such a demanding project to a first

year PhD student (me). He also brought on board Prof. Rajeev Barua, a compiler

expert, to help with my daunting task, a very wise move. So, by the end of my first

year in grad school, I had not one but two advisors Rajeev Barua and Uzi Vishkin.

During my years as a PhD student, I witnessed some parallel platforms at-

tract significant attention but quickly loose steam, such as the IBM Cell BE, others

slowly moving from domain-specific towards general-purpose, such as GPUs, some

encountering difficulties to launch such as the Intel Larrabee, and others, more do-

main specific, trying to find a niche, such as Tilera and the Intel Single Chip Cloud.

Even the now ubiquitous multicores seem to be a transitional solution, while we

figure out how to adapt the hardware-software stack for parallelism.

Since I started my PhD and to this day, everyone is talking about how hard it is

to write correct and efficient parallel code and how important it is to come up with

practical parallel programming models, something that is still an open question

[79, 75]. But instead of starting with the programming model and the algorith-

mic thinking and then engineering the programming languages and the platforms

around them, many researchers start with a commercial product (e.g., multicores,

GPUs, Cell, etc), and try to invent easy and efficient programming models for

them. Undoubtedly, if someone were to succeed, the impact would be great because

the hardware would already exist and the solution would be less disruptive. This

approach, however, precludes quick feedback from programming models research

into the development cycle of the platforms for effective codesigning the software-

iii

hardware stack. For that reason, interest quickly migrates from one trend to the

next, generating many publications but with unclear long-term contributions. For

example, in the first few years of my PhD, IBM’s Cell became very popular, but it

has now lost most of its steam. It got replaced by the CUDA GPUs, which have

had a good run, possibly because they keep evolving towards more programmable

and more general-purpose parallelism. Recently, a new buzz word, cloud computing,

is attracting a lot of interest. And the cycle starts again.

I consider myself lucky to have had advisors who stayed out of such passing

fashions. It allowed me to stay focused on the bigger question of how to enable

efficient and performance portable general-purpose programming. Certainly, this

dissertation does not give a definitive answer to that question, but I believe it offers

several steps towards that direction, including a run-time scheduler, some static

compiler transformations, and a methodology for preserving performance portability

of code while tuning the amount of parallelism to optimize performance. I had a

great time doing research at Maryland, and I am very thankful to have the amazing

opportunity to continue research in this exciting field of parallel computing at the

University of Illinois at Urbana Champaign.

As a stylistic note, although dissertations are presented as the work of a single

author, I am using the first-person plural as an acknowledgement of the priceless

help of my advisors, research collaborators, committee members, and friends with

whom I discussed my research all these years.

iv

To my grandmother Ιω.

There’s nothing I can write that can begin to express my gratitude and love.

“May you always do for others
and let others do for you.”

“May your heart always be joyful,
and may your song always be sung.

May you stay forever young.”

Bob Dylan

v

Acknowledgments

I would like to extend my gratitude to all the people who made this thesis

possible and due to whom my graduate experience has been one that I will cherish

forever.

First and foremost, I would like to thank my advisor, Professor Rajeev Barua,

who showed me his trust and patience and taught me how to do high quality research

and the importance of presenting my work in a way that is accessible to a large

audience. I have always had a hard time explaining my ideas, especially soon after

their inception, when they are still fuzzy and not fully formed. Rajeev was always

patient and helped me both with crystallizing the ideas and with presenting them

in a comprehensible way.

Equally, I would like to extend my appreciation to Uzi Vishkin, my co-advisor,

who taught me to wander off the beaten path and away from hypes, while staying

relevant and with significant impact.

I also want to thank my dissertation committee, Prof. Jeff Foster, Prof. Alan

Sussman, and Prof. William Dorland, for their time, effort, and comments, which

improved this dissertation. I especially want to thank Jeff and Alan for our discus-

sions, both on academic and other issues.

This work would have not been possible without the other members of the

XMT research group who helped maintain all the software and hardware infrastruc-

ture needed for my experiments. In particular, I want to thank my close friends

George C. Caragea and Fuat Keceli for sharing in the good and bad moments, as

well as for their advice, support, help, and good spirits! Also the rest of the XMT

team during my studies here: Xinghzhi Wen, Aydin Balkan, Beliz Saybasili, James

Edwards, Darya Fillipova, Nghi Nguen Ba, Mike Detwiler, Yoni Ashar, Michael

Horak, Mary Kiemb, and Tom Dubois.

vi

I want to thank my wonderful family for their unquestioned faith in me, which

was instrumental at times.

Special appreciation goes out to my close friend Manolis Georgakakis for our

long discussions on all topics imaginable, for playing music together, for reluctantly

sitting next to the “new guy” in high-school (that was me), and for being an inspi-

ration.

Petros Tsamatropoulos, Nikos Prasianakis, and Dimitris Sklivagos have also

blessed me with their friendship since high-school and significantly contributed to

the person I am now.

I also want to thank my good friends in Maryland, Konstantinos Koutrolikos

(θυρωρός), Kostas Spiliopoulos (πρόεδρος), Christos Papadopoulos (ψηλός), Nikos

Frangiadakis (ntg), Konstantinos Bitsakos (kbits), Alex Enurah (Lex), Mike Hughes,

Tiffany Dean, Vlassis Vassileiou, Thodoris Rekatsinas, Vassilis Zikas, Jimmy Hart,

and Thanos Chryssis.

I am also deeply thankful to Michelle (Darth) Hugue for the privilege of having

been her teaching assistant, and my professors from undergrad, Stathis Zachos and

Nikos Papaspyrou, who inspired me to follow Computer Science.

I am truly indebted to Yolanda Mahnke for her support, patience, love, and

understanding, especially during the months leading to the defense. I am looking

forward to what comes next.

It is impossible to remember all, and I apologize to those I’ve inadvertently

left out.

Finally, I would like to thank people who have inspired me through their

timeless music, especially Ludwig Van Beethoven and Bob Dylan.

vii

“You’ve been with the professors,
and they’ve all liked your looks.

With great lawyers you have
discussed lepers and crooks.
You’ve been through all of
F. Scott Fitzgerald’s books.

You’re very well read,
it’s well known.

But something is happening here,
and you don’t know what it is. . .

do you, Mister Jones?”

Bob Dylan

viii

Contents

List of Tables xii

List of Figures xiii

List of Abbreviations xvi

1 Introduction 1
1.1 Contributions . 5

2 Background 9
2.1 XMT Background . 9

2.1.1 Overview of the XMT Platform 10
2.1.2 From C to XMTC: Simple Extensions 12
2.1.3 Performance Advantages of XMT 14
2.1.4 Ease of Programming and Teaching 15
2.1.5 My personal experience with the XMT Architecture 16

2.2 Work Stealing Scheduling . 18
2.2.1 Motivation for Dynamic Scheduling 19
2.2.2 Work Stealing Background . 21

2.2.2.1 Serializing Work Stealing (SWS): Work-First 24
2.2.2.2 Help-First Work Stealing 25
2.2.2.3 Eager Binary Splitting (SP & AP) 25

2.2.3 Theoretical Bounds . 29

3 Coarsening 31
3.1 Characterizing Coarsening . 35
3.2 Stages of Parallelism . 39
3.3 Sensitivity of Performance to Coarsening 41

3.3.1 Sensitivity of TBB’s proposed manual coarsening 42
3.3.1.1 Benchmarks . 43
3.3.1.2 Results . 46

3.3.2 Sensitivity to picking the right cut-off for QUEENS 49
3.4 Evaluating the Quality of General Purpose Parallel Code: Proposed

Framework . 52
3.4.1 Discussion . 56
3.4.2 Using the Framework: An Example 57

3.5 Coarsening in the XMTC Compiler 60
3.5.1 Cost Estimation . 60
3.5.2 Picking a Grain-Size . 61
3.5.3 Serializing Spawn Statements (Parallel Loops) 62

3.6 Conclusion and Future Directions . 62

ix

4 Lazy Scheduling 64
4.1 The two Insights of Lazy Scheduling 64
4.2 Lazy Binary Splitting (Depth-First Lazy Work Stealing) 66
4.3 Analytical Comparison of Lazy Work Stealing with existing Work

Stealing schedulers: A First approach 68
4.3.1 Deque Checks . 73
4.3.2 Role of the Profitable Parallelism Threshold (ppt) 73

4.4 Experimental Evaluation of Depth-First Lazy Work Stealing (LBS)
on XMT . 74
4.4.1 Scalability and Speedups . 82

4.5 Scalability Issues of Depth-First Lazy Work Stealing 83
4.6 Lazy Scheduling for Declarative Code 89

4.6.1 Breadth-First Lazy Scheduling (BF-LS) 89
4.6.2 DF-LS with a threshold of 2 (DF2-LS) 93

4.7 Experimental Evaluation of Lazy Work Stealing on Multicores 95
4.7.1 Scaling of Lazy Scheduling on Multicores 95
4.7.2 Counting Thefts . 97
4.7.3 Evaluation on a set of benchmarks 98
4.7.4 Software Optimality of Declarative Code 107
4.7.5 Software Optimality of Code with Amortizing Coarsening . . . 109
4.7.6 Worst-Case Software Optimality of Lazy Scheduling 111

4.8 Experimental Evaluation of Scalable Lazy Work Stealing on XMT . . 113
4.8.1 Scaling of Lazy Scheduling on XMT 114
4.8.2 Counting Thefts . 116
4.8.3 Evaluation on a set of Benchmarks 116

4.9 Related Work . 117
4.9.1 Schedulers without Parallel Loop Support 118
4.9.2 Schedulers with Parallel Loop Support 120
4.9.3 Parallelism Throttling . 123

4.10 Analytical Comparison with other Work Stealers: A Second Approach 124
4.10.1 Space Bounds . 124
4.10.2 Time Bounds . 125
4.10.3 Adversarial Scenarios for AP and Lazy Scheduling 126

4.11 The Inception of Lazy Scheduling: an Interesting Anecdote 128

5 The XMTC Compiler 130
5.1 Overview . 130
5.2 The XMTC Memory Model . 134
5.3 Compiling XMTC Parallel Code with a Serial Compiler 137

5.3.1 Outlining . 138
5.3.2 Register Broadcasting . 138
5.3.3 Assembly Code Layout Correction 140
5.3.4 Why illegal dataflow is not an issue for thread libraries 141

5.4 XMT-Specific Optimizations . 142
5.4.1 Latency tolerating mechanisms. 142

x

5.4.1.1 Burst Prefetching . 143
5.5 Compiling a flat XMTC spawn statement 149
5.6 Nested Parallelism Support . 152

5.6.1 Function Cloning . 152
5.6.2 Function Call Support in Parallel Code: Stack Allocation . . . 153
5.6.3 Function Insertion . 162
5.6.4 Dead Function Elimination . 162
5.6.5 Outlining Optimizations . 163
5.6.6 Compiling a nested spawn statement 164
5.6.7 Outer Spawn Compilation for Nesting 169

6 Model of Scheduling Costs and Architectural Support 173
6.1 Background . 176

6.1.1 Algorithmic Models . 176
6.1.2 Background for Modeled Schedulers 179

6.2 A Work-Depth Model for XMT’s Hardware and Work Stealing Soft-
ware Schedulers . 181

6.3 Evaluation of the Scheduling Models 183
6.3.1 Measuring Q, a, b . 184
6.3.2 Methodology for measuring Q, a, b 185
6.3.3 Orthogonality of Hardware and Software Scheduling on XMT 188
6.3.4 Using the model to predict the preferable scheduling option . 192

6.4 Related Work . 193
6.5 Conclusions and Future Directions 194

7 Conclusion and Future Directions 196
7.1 Future Work . 197

Bibliography 199

xi

List of Tables

3.1 Summary of XMTC Benchmarks . 45
3.2 Benchmarks, Datasets, and Grain-Sizes. 46
3.3 Worst-Case Software Optimality with constant cut-offs. 58
3.4 Worst-Case Software Optimality with cut-off functions. 59
3.5 Example of Functional Unit Costs used for Task Cost Estimation. . . 61

4.1 Transaction and Synchronization Costs 70
4.2 Summary of XMTC Benchmarks . 75
4.3 Benchmarks, Datasets, and Grain-Sizes. 75
4.4 Standard Deviation(%) for Recursively Nested Benchmarks. 76
4.5 Summary of Compared Configurations 76
4.6 Speedups of LBS+ vs. Parallel Program on 1 TCU 82
4.7 Speedups of LBS+ vs. Serial Program on MTCU 83
4.8 Platform Descriptions . 86
4.9 Standard Deviation(%) for i7 (Figures 4.7 and 4.12.) 87
4.10 Standard Deviation(%) for Xeon (Figures 4.8 and 4.11.) 87
4.11 Standard Deviation(%) for T2 (Figures 4.9 and 4.10.) 87
4.12 Comparison of schedulers. 94
4.13 Number of thefts (Average over 10 runs) 98
4.14 Benchmark Summary . 99
4.15 Standard Deviation(%) for i7 (Figure 4.13.) 102
4.16 Standard Deviation(%) for Xeon with 6 workers (Figure 4.14.) 103
4.17 Standard Deviation(%) for T2 with 8 workers (Figure 4.15.) 103
4.18 Standard Deviation(%) for Xeon with 24 workers (Figure 4.16.) . . . 105
4.19 Standard Deviation(%) for T2 with 64 workers (Figure 4.17.) 105
4.20 Standard Deviation(%) for T2 (Figure 4.18.) 107
4.21 Software Optimality (%) of Declarative Code on i7 108
4.22 Software Optimality (%) of Declarative Code on Xeon 108
4.23 Software Optimality (%) of Declarative Code on T2 108
4.24 Amortizing Cut-Off Depths for QUEENS and TSP 110
4.25 Software Optimality (%) of Amortized Code on i7 111
4.26 Software Optimality (%) of Amortized Code on Xeon 111
4.27 Software Optimality (%) of Amortized Code on T2 111
4.28 Worst-Case Software Optimality for BF-LS. 112
4.29 Standard Deviation(%) for XMT with 64 workers (Figure 4.20.) . . . 118
4.30 Standard Deviation(%) for XMT- with 64 workers (Figure 4.21.) . . . 118
4.31 Space and Time Bounds for Generic Parallel Loop 125

6.1 WD equations for a parallel-loop with N tasks 182
6.2 Work and depth equations for hardware, software, and hybrid sched-

uling. 184
6.3 Values in cycles for different values of N (with N = M = L). 185
6.4 Values are in cycles for different values of N (with N = M = L). . . . 186

xii

List of Figures

2.1 Overview of the XMT architecture. 10
2.2 (a) XMT Execution Modes. (b) XMTC Code Example. 12
2.3 A Case for Dynamic Scheduling: Load Imbalance 19
2.4 Quicksort in XMTC: Example of Recursively Nested Parallelism. . . . 20
2.5 Processing a Task Descriptor with Simple-Partitioner. 26

3.1 Amortizing Overheads vs. Pruning Parallelism 37
3.2 Performance Sensitivity of TBB’s Manual Tuning 47
3.3 Sensitivity of Performance when varying the number of workers . . . 49
3.4 Sensitivity of Performance when varying the size of the input 51

4.1 Processing a Task Descriptor with Lazy Binary Splitting (LBS) . . . 66
4.2 Comparing LBS to APxmt and APdefault 77
4.3 Comparing LBS to SPtr/ex . 78
4.4 Comparing LBS to SPex/ex . 79
4.5 Comparing LBS and LBS1 to SP1 and SWS 80
4.6 Comparing LBS+ to SI . 82
4.7 Scaling of schedulers on i7 (Queens) 86
4.8 Scaling of schedulers on Xeon (Queens) 88
4.9 Scaling of schedulers on T2 (Queens) 88
4.10 Scaling of schedulers on T2 (Queens) 96
4.11 Scaling of schedulers on Xeon (Queens) 96
4.12 Scaling of schedulers on i7 (Queens) 97
4.13 Benchmarks on the i7 using all 8 Workers 101
4.14 Benchmarks on the Xeon using only 6 Workers 101
4.15 Benchmarks on the T2 using only 8 Workers 102
4.16 Benchmarks on the Xeon using all 24 Workers 104
4.17 Benchmarks on the T2 using all 64 Workers 104
4.18 Scaling of schedulers on T2 (Fib(36)) 106
4.19 Scalability of LBS & BF-LS on XMT, XMT- and XMT--. 114
4.20 Benchmarks on XMT using all 64 TCUs. 116
4.21 Benchmarks on XMT- using all 64 TCUs. 117

5.1 Compiler Passes. 131
5.2 Two tasks with no order-enforcing operations or guarantees. 134
5.3 Enforcing partial order in the XMT memory model. 136
5.4 Simple example of outlining. 139
5.5 Example of assembly basic-block layout issue. 140
5.6 Simple Burst Prefetching Example. 144
5.7 Complete Burst Prefetching Example. 145
5.8 Compiling a flat spawn statement . 149
5.9 Identifying Outer and Nested Spawns 152
5.10 Function Cloning . 153
5.11 Spawn Scope Example . 154

xiii

5.12 Stacklet . 155
5.13 Compiling a flat spawn with cactus stack support 161
5.14 Hoisting Low & High Expressions . 164
5.15 Common Preamble of all frame structures. 167
5.16 The task descriptor structure . 167
5.17 Outer Spawn Conversion . 169
5.18 Compiling an outer spawn to support nesting 170

6.1 A common case for low-degree parallelism: BFS 175
6.2 Increasingly abstract algorithmic models 177
6.3 Parallel Matrix Multiplication . 184
6.4 Hybrid vs. hardware: insufficient outer parallelism. 188
6.5 Hybrid outperforms hardware: load imbalance. 189
6.6 Break-even point with sequential code. 190
6.7 Hardware and hybrid scheduling are complementary. 191

xiv

List of Algorithms
3.1 Fully Parallel Matrix Multiplication 32
3.2 Matrix Multiplication: Parametrically Coarsened 33
3.3 Queens pseudocode. depth ∈ [1, N] 36
4.1 Queens declarative pseudocode. depth ∈ [1, N] 85
4.2 BF-LS Scheduling of a TD representing a parallel loop 91
4.3 Generic Parallel Loop . 124
5.1 Burst Prefetching Algorithm . 146
5.2 Burst Prefetching Pseudocode . 148
5.3 Function Prologue Expansion for supporting Stacklets 157
5.4 Stacklet Deallocation . 158
5.5 Function Prologue Expansion for Outer-Spawn function 160
5.6 Outlining Inner Spawn: original code 165
5.7 Outlining Inner Spawn: resulting code 166
5.8 Scheduling loop for work stealing . 171

xv

List of Abbreviations

AfP Affinity-Partitioner
AP Auto-Partitioner
BF-LS Breadth-First Lazy Scheduling
BFS Breadth-First Search
CONV Convolution
DAG Directed Acyclic Graph
DF-LS Depth-First Lazy Scheduling (a.k.a. LBS)
DF2-LS Depth-First Lazy Scheduling with a deque threshold of 2
FIFO First-In First-Out
FW Floyd-Warshall all-pairs shortest path algorithm
IOS Independence of Order Semantics
IWD Informal Work Depth
LBS Lazy Binary Splitting
MM Matrix Multiplication of dense matrices
OPT (scheduling) Overhead Per Task
OS Operating System
ppt profitable parallelism threshold
PRAM Parallel Random Access Machine
QSort Quicksort algorithm
RAM Random Access Memory
SP Simple-Partitioner
SpMV Sparse Matrix by Vector multiplication
sst stop-splitting threshold
SWS Serializing Work Stealing
TBB Threading Building Blocks
TD Task Descriptor
TSP Traveling Salesman Problem
WD Work Depth
XMT eXplicit Multi-Threading architecture
XMTC A parallel extension of C for programming XMT

xvi

Chapter 1

Introduction

Technological reasons have led processor manufacturers to abandon scaling the

clock frequency and to turn to parallelism to improve performance. This disruptive

change has and will have a fundamental impact on how programmers write code that

takes advantage of the available parallel hardware to build complex applications.

The central goal of this dissertation is to provide some guidelines and some solutions

towards bringing parallel programming to the mainstream and making it successful.

This work focuses on compiler and run-time techniques for explicitly parallel

codes because, after decades of research in automatic parallelization, it seems un-

likely that compilers will be able to shoulder in the near future the responsibility

of parallelizing all types of sequential code efficiently. While compilers can deliver

good results on regular affine codes, irregular applications pose a great challenge,

especially because programmers often use data-structures (e.g., FIFO queues) in

their serial code that hide the inherent code parallelism from the compiler.

Explicit parallel programming, where the programmer has to identify what

can be executed in parallel, seems like a necessary alternative to automatic paral-

lelization. Nevertheless, there are many different types and flavors of parallel pro-

gramming, depending on the application domain (e.g., data and task parallelism,

dataflow, streaming), the scale or hardware architecture targeted (e.g., shared ver-

sus distributed memory), and many other parameters. Literally hundreds of par-

allel programming languages have been proposed in an attempt to make parallel

programming easier, but few have been successful in deployment.

Different factors complicate parallel programming in different paradigms (e.g.,

deadlocks, races, partitioning the data, orchestrating communication/synchroniza-

tion, etc.), but this dissertation focuses on shared-memory task-parallel languages,

1

where the programmer exposes parallelism in the form of short tasks that may out-

number the cores by orders of magnitude. It is the responsibility of the run-time

scheduler to efficiently distribute and execute this abundance of tasks onto the avail-

able hardware (or threads). Cilk [38] was probably the language that popularized

this approach, and industry is currently in the process of adopting it. Intel has de-

veloped Threading Building Blocks (TBB) [76], a library that enables programmers

to write in this style, as well as CilkPlus, Intel’s most recent effort to commercialize

Cilk++ after acquiring Cilk Arts. Microsoft’s Task Parallel Library (TPL) [61] is

a library with similar goals as TBB. Finally, the Java Fork-Join model [59] also

implements task parallelism.

One benefit of task-parallel languages is to provide programmers with high-

level parallel constructs, such as parallel do-all loops, sum-like reductions, and par-

allel function calls or futures, which have implicit synchronization semantics and

greatly simplify coding; furthermore, these parallel constructs can be freely nested,

allowing to create parallel tasks from within parallel tasks. This support of nested

parallelism is important for three reasons: (1) it enables modularity in parallel

programming by allowing to call a function that creates parallelism from sequential

and parallel contexts alike; (2)&(3) when more parallelism becomes available as

the computation progresses and the first set of parallel tasks to become available

does not contain enough parallelism or is composed of load imbalanced tasks, nested

parallelism dissects these outer parallel tasks and increases the available par-

allelism and improves load balance. Both result in performance improvements.

One of the issues programmers face is task granularity, a double edged

sword: if they expose tasks that are too fine-grained, the scheduler will not be

able to execute them efficiently, but if they do not expose enough parallelism, per-

formance will be elusive once again because of insufficient parallelism or because

of load imbalance, when some tasks finish earlier than others and leave processors

idling. So, it falls on the programmer’s shoulders to adequately coarsen task paral-

2

lelism to achieve good performance.

Unfortunately, performance is sensitive to coarsening choices, as we will show

in Chapter 3. Coarsening should take into account (1) the amount of available task

parallelism, which often depends on the size or shape of the input data D, (2) the

number of available processors and other platform characteristics P , and (3) the

context C in which a parallel code is invoked; if invoked from a sequential context

(i.e., one execution thread), performance will benefit from more parallelism (less

coarsening) than if invoked from a parallel context. Because the performance is

sensitive to parameters (D, P , C) that are not necessarily known at compile-time,

the programmer must either coarsen in a parametric way, taking into account the

run-time values of these parameters, or coarsen for a relatively restricted subdomain

of D, P , and C. Although such subdomain coarsening is perfectly legitimate for

high-performance parallel computing where expert programmers focus and optimize

applications of interest for a specific target platform, for general-purpose parallel

programming it is not viable.

General-purpose parallel programming, like its sequential counterpart, treats

ease of programming and performance portability (also called performance robust-

ness) as first-order considerations, and it strives to achieve the best possible perfor-

mance within these constraints. Ease of programming is hard to define rigorously,

but one definition could be to require minimal detail inclusion in the abstract ma-

chine model the programmer uses while programming. For example, the RAM

(Random Access Machine) model used for sequential programming assumes unit

time access to a memory of unbounded size. Performance portability requires a

single unmodified code to perform well on a large set of different platforms. Man-

ual coarsening relates to these issues because parametric coarsening (in D, P , C)

sacrifices ease of programming, whereas subdomain coarsening harms performance

portability.

As a solution, it has been proposed to allow the programmer to express all

3

available parallelism, no matter how fine-grained, and expect the compiler, run-

time system, and hardware to execute this abundance of parallelism efficiently. We

will refer to code that exposes all parallelism using high-level parallel constructs as

declarative. It is true that using such constructs often imposes somewhat conserva-

tive synchronization patterns and does not truly expose all possible parallelism, but

exposing all parallelism in an unstructured way would be harder for the program-

mer, and the unstructured synchronization patterns would probably complicate the

scheduling code and increase its overheads, like in the case of full-fledged threads

(e.g., Pthreads synchronization costs are much higher than the often implicit syn-

chronization of tasks). For those reasons, parallelism needs to be expressed through

high-level parallel language constructs. In fact, we believe there is a parallel be-

tween the argument for structured parallelism and that for structured sequential

code made in favor of dropping the use of goto statements [32].

The thesis of this dissertation is the following:

It is possible to efficiently support declarative code in the context

of general-purpose parallel programming.

The results of this dissertation will help to restore the rightfully shaken belief

[74] that support of declarative code can be made efficient. Efficiently supporting

declarative code enhances productivity by not requiring tedious manual coarsening

of parallelism and improves performance-portability by enlisting advanced compiler

and run-time techniques to maintain the flexibility of declarative code.

More specifically, this dissertation advocates to partition the challenge of coars-

ening presented by declarative code into two disjoint components and attack each

separately. We propose Lazy Scheduling, a technique that effectively coarsens par-

allelism at run-time based on load conditions, in order to achieve one of the two

4

components of coarsening. We convert the industry-standard work stealing sched-

uling algorithm to make it lazy, and we show the significant advantages of Lazy

Work Stealing on declarative code on a number of platforms and benchmarks. Fur-

thermore, we provide compiler transformations that partially resolve the other com-

ponent of coarsening, and we show that, in the hypothetical but realistic situation

where compilers and other technologies can completely automate that step, declar-

ative code scheduled with Lazy Scheduling can achieve very high efficiencies.

1.1 Contributions

This section lists the technical contributions this dissertation provides towards

improving the efficiency of declarative task-parallel codes.

Lazy Scheduling. The main technical contribution of this dissertation is Lazy

Scheduling, a novel scheduling algorithm that effectively adapts the granularity of

parallelism to run-time load conditions. The first insight of Lazy Scheduling is

that it avoids exposing parallelism on the shared work-pool when workers are busy.

This greatly reduces scheduling overheads and enables efficient support of much

finer granularity of parallelism than previously possible. The second insight of Lazy

Scheduling is a lightweight and scalable heuristic for inferring the system-load. We

originally implemented Lazy Scheduling in the XMTC language for the XMT archi-

tecture, and later, we also implemented it in Intel’s TBB library. We compare Lazy

Scheduling to the state of the art schedulers using a set of benchmarks on different

platforms, and demonstrate important performance improvements on fine-grained

(e.g., declarative) codes, without harming performance portability. This work is

presented in Chapter 4.

Characterizing Coarsening. We start by characterizing coarsening of parallelism

based on its two goals: amortizing the scheduling overhead per task (OPT) and

pruning parallelism. We proceed to argue why these two goals are separate in

the presence of nested parallelism and why they should be tackled by different

5

methods. Roughly speaking, the amount of pruning needed depends on the input

D, the platform P , and the context C, which are often unknown statically1, so

pruning should be done dynamically when this information becomes available to

avoid hurting performance portability. On the other hand, amortizing the OPT

by definition has to happen before tasks reach the scheduler. To that effect, static

coarsening, automatic or manual, and just-in-time compilation can provide solutions.

We have found that the OPT has only small variations across the platforms we

have explored, which makes static coarsening a good solution that does not hurt

performance portability.

While these goals are probably clear or at least implicit in the minds of the

experts of the field, we have not found written documentation characterizing the

difference between amortizing the scheduling overhead per task and pruning paral-

lelism, let alone seen arguments that the two goals should be achieved independently.

On the contrary, existing approaches try to achieve both goals by manual coarsening,

which often results in code that is not performance portable. Chapter 3 discusses

these issues, as well as the following contributions of this work relating to coarsening.

Coarsening Sensitivity & Performance Portability Metrics. To illustrate

the pitfalls of manual coarsening and to motivate the importance of declarative

code, we show that subdomain coarsening (i.e., non parametric coarsening) harms

performance portability. On the other hand, we show that parametric coarsening

is trickier and harms ease of programming. We show that even applications that

seem simple to coarsen manually are sensitive to coarsening. To that end, we define

the worst-case software optimality and the average-case software optimality of a

code, and we use these metrics to evaluate the performance portability achieved by

different manual coarsenings (Chapter 3).

Automatic Static Coarsening. Lazy Scheduling is married to some compiler

optimizations that attempt to detect extremely fine-grained tasks and coarsen them

1Note that modular programming hides the context in which a code is executed.

6

either statically or at run-time, when more information is available (Chapter 3).

For example, the number of tasks of a parallel loop may not be known statically,

but it is known right before starting to execute the loop. These compiler-coarsening

optimizations are parametric and, therefore, do not harm performance portability.

However, they do not detect all types of fine-grained codes, most notably recur-

sively nested parallelism found in algorithms such as Quicksort or solving the trav-

eling salesman problem (TSP). Nevertheless, Lazy Scheduling manages to achieve

reasonable efficiency even on those algorithms without static coarsening. When we

applied manual coarsening to those algorithms to amortize the OPT, we found that

Lazy Scheduling was able to prune the remaining excess parallelism and to achieve

very high efficiency without compromising the performance portability of the code

(Chapter 4).

The XMTC compiler. Chapter 5 presents the XMTC compiler, which uses GCC

and CIL as building blocks. The contributions are the following: (1) we present

the lessons learned on how to modify a compiler for a sequential language to target

a parallel language, without completely overhauling the compiler internals; (2) we

present some novel compiler transformations and optimizations that are specific

to XMT; (3) we brought the stability of the XMTC compiler to a high enough

level, enabling the teaching of parallel algorithms to all levels of education, from

high-school to doctoral, and enabling the publication of several research papers

[33, 77, 19, 20, 82, 73, 54, 24, 51, 53].

Modeling the Runtime. Finally, as we aspire to completely automate coarsening

in the future, we propose a parametric model for costs of the runtime in Chapter 6.

This model estimates when to execute a set of tasks sequentially rather than in

parallel and how much to coarsen them in the latter case. Auto-tuning can be used

to determine the constant parameters of the model on a given platform at the time

of the compiler installation. The compiler can then use the model and the computed

values of its parameters to make more accurate coarsening decisions. This part of

7

the dissertation represents exploratory work, as further validation and refinements

to the model are necessary. Furthermore, we use the model to show an orthogonal

relationship between the hardware scheduling offered by the XMT platform and the

software schedulers discussed in this work. This means that the added hardware

does not have harmful effects on performance under any circumstance and that on

XMT the combination of hardware plus software scheduling is always preferable to

software scheduling alone. We present experimental evidence supporting this and

show instances where the hardware improves performance.

8

Chapter 2

Background

This chapter is divided into two sections: the first gives the necessary back-

ground on the the eXplicit Multi-Threading (XMT) on-chip general-purpose com-

puter architecture and its programming language, XMTC; the second section in-

troduces the popular and widely used work stealing scheduling algorithm and its

variations, since it inspired lazy scheduling, presented in Chapter 4. The advantages

of lazy scheduling over work stealing are explored both on XMT and on commodity

multicores.

2.1 XMT Background

As mentioned in the introduction, the central goal of this dissertation is to

improve compiler and run-time support for declarative parallel code. While this

work constitutes a step forward in that direction, it is important to recognize that

hardware support is also a necessary component for efficiently supporting all types

of declarative code. The XMT architecture developed at the University of Mary-

land provides an excellent platform for supporting declarative parallel code, as it

was designed to efficiently support the fine-grained and irregular parallelism that

comes from PRAM algorithms. Moreover, XMT allows to achieve speedups with

significantly less program parallelism than commodity platforms, and by combining

XMT with the contributions of this dissertation that focus on executing efficiently

excessive amounts of parallelism, we propose a solution that is optimal for both

extremes of too much and too little program parallelism. In this section, we present

some background on XMT and its programming language, XMTC, which is a simple

parallel extension of C.

9

DRAM Port

Spawn-join Unit

Cluster

ALUALU

SFTSFT

BRBR

MUL/DIVMDU

FPUFPU

Prefetch

TCU

Read-only

Cache

LS Unit

Master Cluster

ALU

SFTSFT

BR

MUL/DIVMDU

FPU

MTCU

Master

Cache

LS Unit

Global PS Unit

ICN Send

ICN Return

Shared Cache Module

Master ICN Send

Master ICN Return

Reg. File

Fetch/Dec/Commit Fetch/Dec/Commit

Reg. File

DRAM Port

Global

Register

File

In
te

rc
o
n
n
e
c
ti

o
n

N
e
tw

o
rk

 L
a
y
e
r

Figure 2.1: Overview of the XMT architecture.

2.1.1 Overview of the XMT Platform

The primary goal of the XMT architecture [88, 68, 69] has been to improve

single-task performance through parallelism. XMT was designed from the ground up

to capitalize on the huge on-chip resources becoming available in order to support the

algorithmic body of knowledge known as Parallel Random Access Model (PRAM)

algorithmics [50, 55] and the latent, though not widespread, familiarity with it. A

64-core FPGA prototype was reported and evaluated by Wen et al. [91, 92].

The XMT architecture, depicted in Figure 2.1, includes a multitude of light-

weight cores, called Thread Control Units (TCUs), and a sequential core with its

own cache, the Master TCU. TCUs are grouped into clusters, which are connected

by a high-throughput interconnection network to the first level of cache (L1), us-

ing, for example, a mesh-of-trees topology [10, 12]. The L1 cache is shared among

10

TCUs and partitioned into mutually-exclusive cache modules, sharing several off-

chip DRAM memory channels. The load-store (LS) unit applies hashing on each

memory address to avoid hotspots. Cache modules handle concurrent requests,

which are buffered and reordered to achieve better DRAM bandwidth utilization.

Within a cluster, a read-only cache is used to store shared variables with constant

values. Each TCU includes a lightweight arithmetic logic unit (ALU), a shift unit

(SFT), and a branch (BR) unit, but the more expensive multiply/divide (MDU) and

floating-point units (FPU) are shared among TCUs in a cluster. Each TCU also

features prefetch buffers, which are utilized by compiler optimizations to overlap

memory operations and hide latencies.

XMT allows concurrent instantiation of as many tasks as there are TCUs.

Tasks are efficiently started and distributed thanks to a dedicated data and instruc-

tion data broadcast bus as well as with the help of a custom hardware prefix-sum

operation for fast dynamic allocation of tasks to TCUs. XMT also provides hardware

support to perform a barrier-type operation over all tasks running in parallel for effi-

ciently switching back to sequential execution. The high-bandwidth interconnection

network (ICN) and the low-overhead creation of many tasks facilitate the efficient

support of fine-grained, irregular, and low-degree parallelism. XMT also efficiently

supports applications with regular, coarse-grained, and abundant parallelism, but

without necessarily providing such a clear advantage over other architectures.

XMT operates in one of two execution modes: sequential or parallel. Programs

start in sequential mode and alternate between parallel and sequential modes. Se-

quential portions of the code are executed in sequential mode by the powerful Master

TCU, whereas parallel portions of the code are executed in parallel mode by the

plethora of lightweight TCUs. Figure 2.2(a) illustrates the transitions between ex-

ecution modes induced by spawn statements, which introduce parallelism in the

XMTC programming language.

11

spawn

join

spawn

join$

int A[N] ,B[N] , base=0;

spawn (0 ,N−1) {

int i n c =1;

i f (A[$] !=0) {

ps (inc , base) ;

B[inc]=A[$] ;

}

} // imp l i c i t j o i n

(a) (b)

Figure 2.2: (a) XMT Execution Modes. (b) XMTC Code Example.

2.1.2 From C to XMTC: Simple Extensions

XMTC, the programming language of XMT, is a modest extension of C with

three new keywords that relate to parallel execution (spawn, ps, psm). The ex-

ample in Figure 2.2(b) illustrates the use of the first two keywords with a simple

but interesting example. Like Cilk or OpenMP programs but unlike UPC or MPI

programs, XMTC programs start in sequential mode using the MasterTCU. When

parallelism is encountered, the execution switches to parallel mode. The execution

may switch between execution modes multiple times and finally return to sequential

mode to terminate. This model of execution is considered by some to follow the

SPMD model (Single Program Multiple Data). Others consider UPC or MPI codes

to be SPMD, where all available cores simultaneously start executing and there is

no sequential execution mode. Sequential sections can be emulated by having one

core execute the sequential portion, while the others wait (e.g., by spin-waiting at

a barrier).

The spawn statement introduces parallelism in XMTC. It is a type of parallel

loop, whose iterations can be executed in parallel. It takes two arguments low, and

high, and a block of code, the spawn block. Conceptually, the block is concurrently

12

executed by (high−low+1) tasks. The unique identifier of each task can be accessed

using the dollar sign ($) and takes integer values within the range low ≤ $ ≤ high.

Variables declared in the spawn block are private to each task, whereas variables

declared in the enclosing scope are shared by the spawn tasks. All tasks must

complete before the execution proceeds beyond the spawn statement. In other

words, a spawn statement introduces an implicit synchronization point at the end

of its spawn block. The number of tasks created by a spawn statement is independent

from the number of TCUs in the XMT system and often significantly exceeds that

number.

XMTC also provides access to XMT’s powerful hardware prefix-sum (ps) prim-

itive, similar in function to the NYU Ultracomputer atomic Fetch-and-Add [42]. It

enables constant time, low-overhead coordination between tasks, a key requirement

for implementing efficient fine-grained parallelism. The prefix sum takes two argu-

ments, a base and an increment, and performs the following two actions atomically:

(1) it adds the increment to the base, and (2) it returns the original value of the

base. Although the ps operation is efficient, it can only be performed over a limited

number of hardware global registers and only with increment values of 0 (read) and

1 (increment by 1). For that reason, XMTC also provides a prefix-sum to memory

variant (psm), that does not have these limitations: the base can be any memory

location, and the value of the increment can be any signed (32 bit) integer. The

psm operations are more expensive than ps, however, as they require a round trip to

memory, and multiple psm operations that arrive simultaneously at the same cache

module will be queued. By contrast, the prefix-sum hardware will combine multiple

concurrent ps operations and service all of them in constant time.

The XMTC example code in Figure 2.2(b) performs array compaction: the

non-zero elements of array A are copied into array B; the order is not necessarily

preserved. The dollar sign ($) refers to the unique task identifier. After the execution

of the prefix-sum statement ps(inc,base), the base variable is increased by inc

13

and the inc variable gets the original value of base, as an atomic operation. Thus,

the ps operation is used here to acquire the next available index in the target array

B, where the non-zero elements of array A are then stored.

An XMTC program derived from a PRAM algorithm following the XMT work-

flow [87] permits each task to progress at its own speed, without ever having to

busy-wait for other tasks. This property is called independence of order semantics

(IOS). In the array compaction example above, this is achieved by having each task

acquire the next available index in B using the prefix-sum operation. Since ps takes

constant time and does not incur queuing overheads, tasks can proceed at their own

speed without waiting for other tasks.

More details on XMTC can be found in the XMT Toolchain Manual [23]. Note

that the single-spawn sspawn statement described therein is a remnant of the time

before we added convenient and efficient support for nested parallelism in XMTC. Its

use is strongly discouraged because it is error-prone and, in most cases, not efficient.

Moreover, combined use of single-spawn and nested spawn statements in a parallel

section is illegal. For these reasons, we will not further discuss the single-spawn in

this dissertation.

2.1.3 Performance Advantages of XMT

A cycle-accurate 64-core FPGA hardware prototype [91, 92] was shown to out-

perform an Intel Core 2 Duo processor [22], despite the fact that the Intel processor

uses more silicon resources. The XMT simulator was used to compare a 1024-TCU

XMT chip to a silicon-area equivalent GPU, namely the nVidia GTX280. Simu-

lations revealed that, in addition to being easier to program than the GPU, XMT

has the potential of coming ahead in performance [19] within the same thermal

constraints as the GPU [53]. Another comparison with GPUs can be found in [33].

A comparison of FFT (the Fast Fourier Transform) on XMT and on multi-cores

showed that XMT can both get better speedups and achieve them with less appli-

14

cation parallelism [77]. The XMTC compiler was an essential component in these

experiments and in more publications on XMT.

2.1.4 Ease of Programming and Teaching

Ease of programing and productivity are central objectives for XMT and

XMTC. Given that ease of teaching is a necessary condition for ease of program-

ming, demonstrating the teachability of XMTC has been a focal point of the XMT

group efforts. Since 2007, more than 100 students in high-schools have been taught

to program XMT, including two magnet programs: Montgomery Blair High School,

Silver Spring, MD, and Thomas Jefferson High School for Science and Technology,

Alexandria, VA. In fact, at Thomas Jefferson, Torbert[82] has incorporated XMT

into their curriculum and advocates using it broadly in Computer Science educa-

tion. More specifically, Torbert reports that, when compared to MPI, with XMT

“it was no longer the case that everyone in the lab was chasing the same canonical

solution, but, instead, students were actually inventing different methods for solving

these problems.”

In a semester-long study supported through the DARPA HPCS program, the

development time of XMTC was shown to be about half that of MPI, under cir-

cumstances favoring MPI [48]. Some circumstantial evidence in [19] and [82] also

suggests that XMTC is easier than CUDA.

In a joint teaching experiment between the University of Illinois and the Uni-

versity of Maryland comparing programming in OpenMP and in XMTC [73], none

of the 42 students achieved speedups greater than one using OpenMP programming

for the simple irregular problem of breadth-first search (BFS) using an 8-processor

SMP (Symmetric Multi-Processor), but they reached speedups of 7x to 25x on the

64-TCU XMT FPGA. Moreover, the PRAM/XMT part of the joint course was able

to convey algorithms for more advanced problems than the other parts.

That is the other advantage of XMT in terms of ease-of-programming, namely

15

that it is designed to support PRAM algorithms and that it provides a program-

mer’s workflow for deriving efficient programs from PRAM algorithms, and rea-

soning about their execution time [87] and correctness. This workflow guides pro-

grammers in converting a PRAM algorithm to an XMTC program, which makes it

easier to avoid the pitfalls of parallel programming. Moreover, this workflow allows

changing the program incrementally to optimize performance, without having to

redesign the basic algorithm. This is in direct contrast with the Culler-Singh [31]

4-step programming-for-locality recipe: decomposition, assignment, orchestration,

and mapping, which is often difficult and may require a complete redesign of the

program if, say, the decomposition step is conceptually altered.

2.1.5 My personal experience with the XMT Architecture

Because “compilers and run-time systems for parallel programming” is a man-

made field that is constantly changing, the choice of assumptions (or model) is

paramount: they can be enablers or disablers for the significance and robustness of

the work. Since a compiler translates input code into output code, compiler research

must chose two sets of assumptions, or models: the parallel languages (the input)

and the parallel platforms (the output). Even during the relatively short duration

of this work, we have seen industry endorsed platforms such as the Intel Itanium

and Larrabee, the IBM Cell, and various GPU architectures that either changed

dramatically, lost steam, or disappeared altogether. The biggest constraints on

writing a dissertation in this field is that the choice of models needs to take place

relatively early. For this reason, I thought that it might be appropriate to review my

own original skepticism regarding the XMT architecture, and how it dissipated as I

dug deeper and gained experience and insight through study and experimentation.

There were three design choices of XMT that raised concerns for me in my

early stages of contributions to the XMT project, but which I now understand as

being sound. First, the sharing of resources within clusters of TCUs, such as the

16

multiply-divide unit, raised questions as to whether XMT could perform on par with

existing architectures that are efficient for parallel numerical computations, such as

matrix multiplication. The shared functional units are pipelined, which means they

can complete one operation per cycle and the overhead of sharing them is a queuing

delay equal to the number of TCUs sharing it, in the worse case. As long as the

number of TCUs sharing a functional unit is not larger than the average latency of

the unit, the impact on performance will be negligible because, by the time a TCU

gets its value back from the functional unit, all other queued requests will have

entered the functional unit and its queue will be empty. That means that TCUs

sharing the same functional unit will get slightly out-of-synch with each other and

will then not even need to pay queuing penalties for sharing the resource.

The second design choice that surprised me was the mesh-of-trees intercon-

nection network [10] because it scales with the square of its ports, raising questions

about the scalability of the design. Besides the classic modeling known as VLSI

complexity that takes area into account (as reviewed in [10]), there are two solutions

to mitigate the resource-hungry interconnect when scaling XMT to larger numbers

of TCUs: one is to use a different interconnect, for example, a hybrid mesh-of-trees

and butterfly interconnect [9]; the other solution is to increase the number of TCUs

per cluster, thus reducing the ratio of interconnect ports to TCUs. For example,

consider an XMT configuration with N = 64 TCUs in 8 clusters of 8 TCUs. The

size of the interconnect will be proportional to the square of its ports, which is the

number of clusters (i.e., Interconnect ∼ 82 = 64 = N). Now consider an XMT

configuration with four times more TCUs (N = 256) and twice as many TCUs per

cluster, i.e., 16. The number of clusters and interconnect ports will be 16, and the

size of the interconnect will be Inteconnect ∼ 162 = 256 = N . So the design of

larger XMT can be rebalanced to control the scaling of the interconnection network.

Of course, this trick will only work as long as increasing the number of TCUs per

cluster remains beneficial. Furthermore, note that the arbitration in mesh-of-trees

17

is relatively simple, resulting in area requirements that are not as excessive as the

combinatorial complexity of the design would suggest [10]. More details about the

interconnection network of the XMT architecture can be found in the dissertation

of Aydin Balkan [11].

The final design choice was the lack of local coherent caches at the cluster or

TCU level. This means that practically each memory access has to travel through

the interconnection network, which has a non negligible latency. However, mech-

anisms such as prefetching of memory load instructions, broadcasting of read-only

values, and the planned inclusion of compiler managed scratch-pads, manage to

hide latency and to reduce or even eliminate memory hot-spots. In combination

with the absence of cache coherence overheads, these latency reducing mechanisms

allow XMT very competitive performance, while simultaneously relieving program-

mers from many locality headaches they would have on other architectures. In his

dissertation [90], Xingzhi Wen presents a comparative study of the two alternatives:

having coherent private caches or only using latency tolerating mechanisms. The

results show that not having private caches on XMT is preferable in terms of per-

formance, especially for fine-grained codes, assuming that the compiler is able to

efficiently use prefetching and broadcasting to hide the latency to the shared cache.

For that reason, a significant portion of George C. Caragea’s dissertation [21] focused

on prefetching for XMT.

2.2 Work Stealing Scheduling

Work Stealing is a distributed dynamic scheduling algorithm that has recently

gained popularity for scheduling task parallel codes because of its low overhead,

which supports fine-grained tasks, and because it is provably efficient in terms of

time, space, and communication [16]. The central idea is that worker threads that

become idle try to steal work from workers that are busy, as opposed to work sharing,

where the worker that encounters additional parallelism attempts to push it on

18

other workers that may soon run out of work. At a high level, one of the intuitions

behind work stealing is that it is beneficial to reduce the total work performed by a

parallel computation at the expense of the length of the critical path. The working

assumption is that the amount of parallelism is much greater than the number of

workers, and, therefore, the dominant term is the total amount of work.

2.2.1 Motivation for Dynamic Scheduling

Static scheduling of parallel loops is easy: the number of tasks can be divided

by the number of processors at run-time, to yield the number of tasks that each

processor should execute. While this works well when the iterations of the parallel

loop perform approximately the same amount of work, such as for several regular

affine (dense-matrix) scientific codes, such a naive partitioning of tasks results in load

imbalance and poor performance, when the iterations of the parallel loop perform

unpredictable and differing amounts of work. For example, Figure 2.3 shows a

parallel loop where each iteration calls a function foo; depending on the input,

foo may perform vastly different amounts of computation in different tasks. Here,

a dynamic scheduler is likely to achieve better load-balancing and perform better

because it will allocate tasks to processors at run-time, as they become free.

spawn (low , high) {

A[$] = foo ($) ;

}

Figure 2.3: A Case for Dynamic Scheduling: Load Imbalance

Any dynamic scheduling method must handle both non-nested parallel loops

(e.g., Figure 2.3), and nested parallel loops. Nested parallel loops arise not only

in simple syntactic nesting (not shown), but in recursive parallelism as well. For

example, Figure 2.4 shows the parallel code for quicksort. The quicksort routine

sorts the array in the range start to end. First, the partition procedure chooses a

19

pivot value from the subarray [start, end], places all the smaller elements than the

pivot before it and all the larger elements after it, and returns the position of the

pivot. Next, quicksort calls itself recursively in parallel on the two subarrays defined

by the pivot. Deeply nested parallelism arises in quicksort because each recursive

invocation introduces a new parallel loop level.

void qu i ck so r t (int A[] , int s t a r t , int end) {

int pivot = pa r t i t i o n (A, s ta r t , end) ;

spawn (0 , 1) {

i f ($==0) qu i ck so r t (A, s ta r t , p ivot) ;

else qu i ck so r t (A, p ivot+1, end) ;

}

}

Figure 2.4: Quicksort in XMTC: Example of Recursively Nested Parallelism.

Note that the most natural way to parallelize quicksort is not by using a

parallel loop as shown, but using a parallel function call for one of the two recursive

calls. Currently, XMTC only supports the parallel loop construct however, which

can be used as shown to achieve the same result.

To support natural programming idioms and ease of programming, dynamic

scheduling can be used to deliver good performance on any code the programmer

happens to write. Indeed, the most natural and succinct way of writing quicksort is

using recursively nested parallelism, which work stealing schedulers support. Many

divide-and-conquer (and other) algorithms are also written most naturally with

recursively nested parallelism, and should be supported. Of course, one can argue

that sorting (or other divide-and-conquer algorithms) can be rewritten iteratively,

or that scheduling in such codes can be handled by the programmer. Unfortunately,

both options tend to greatly increase the burden on the programmer, which we are

trying to alleviate.

Supporting nested parallelism (and not just outer parallelism) is essential for

20

performance for the following reasons. First, the outer parallelism – parallelism

created by the original (sequential) thread – might not create enough tasks. In

quicksort the outer parallelism only creates one additional task, which in most cases

is not enough to feed all processors. Second, the outer tasks might contain vastly

different amounts of computation, jeopardizing load-balance. In quicksort, depend-

ing on the pivot found by the partition procedure, the two outer tasks might sort

arrays of vastly different sizes; so, if inner parallelism is serialized the potential for

load-imbalance and the resulting performance degradation are lurking. Conversely,

supporting nested parallelism enables the creation of more tasks by dissecting the

outer tasks, and with dynamic scheduling, it leads to better load balance and, ulti-

mately, to better performance. Third, a successful programming language should be

modular, allowing the programmer to write a function once and call it from sequen-

tial or parallel contexts alike; thus, supporting nested parallelism (through function

calls) is needed for modularity. These reasons make a compelling case for supporting

nested-parallelism and dynamic scheduling.

2.2.2 Work Stealing Background

The idea of work stealing is at least as old as Burton et al. [18] and Halstead’s

[44] work on functional programming, but it started gaining popularity with Cilk

[38] and is now incorporated in many commercial products [59, 76, 61, 62]. In

work stealing, each worker (typically an OS thread mapped to a hardware thread

or processor) that encounters parallel work starts executing some of that work and

places the continuation (the remaining parallel work and the rest of the parent) on

a shared work-pool. When a worker runs out of work, it searches for available work

on that shared work-pool. The design of the work-pool is what makes work stealing

unique: it consists of P double-ended queues, called deques, one for each of the P

workers. They are called double-ended because data is accessed from both ends:

each worker treats its own deque as a stack, accessing the deque at one end, and it

21

treats the other deques as queues, accessing them at the other end, when its own

deque is empty.

A worker pushes parallel tasks it encounters onto its deque and pops tasks

when it runs out of work, treating its own deque as a stack. When a worker runs

out of work and its deque is empty, it becomes a thief: it picks at random another

worker, the victim, and tries to steal a task from its deque. Popping the newest task

from the local deque results in depth-first execution, and stealing the oldest task

from a victim deque results in breadth-first thefts.

Four major benefits of work stealing are the following: (1) depth-first execution

promotes locality by first working on one’s own deque and (2) keeps the memory

footprint under control; (3) breadth-first thefts tend to result in stealing larger

chunks of work, thereby resulting in good load-balancing; (4) the deques can be

implemented efficiently with low synchronization overheads. A disadvantage of work

stealing is its stealing phase, when idle workers randomly probe deques for work,

causing potentially unnecessary interprocessor communication.

Unlike parallel function calls, which create one new parallel task at a time,

parallel loops can create multiple tasks simultaneously, allowing crucial optimiza-

tions: all the tasks originating from a parallel loop invocation can be packed into a

single task descriptor (TD) by specifying their range, and they can be distributed

to workers as needed by splitting the TD. Thereafter, the scheduler can decide at

run-time when to stop splitting TDs, to avoid unnecessary and expensive deque op-

erations, which typically require expensive memory-fences. The compiler can also

estimate the cost of very short iterations and decide to combine them into fewer,

longer iterations, to amortize scheduling costs. Using parallel function calls hides

the logically simultaneous creation of parallelism from the compiler and the runtime

system, thus disabling the above optimizations and leaving the programmer respon-

sible for keeping parallelism somewhat more coarse-grained in order to reduce the

scheduling overheads.

22

TDs, also known as work descriptors, are used to describe ranges of tasks

coming from parallel loops, reducers, or other multi-argument operations. The

specific structure of TDs is implementation specific, but one possible implementation

is the following: the ID of the first task and the number of tasks (or the ID of the last

task) can be used to represent the range; a single pointer to the code to be executed

is necessary since all tasks execute the same code using the task ID (iteration ID)

as a parameter; a pointer to the stack frame of the parent task is also needed to

allow access to its variables and keeping track of the number of pending child tasks.

Optionally, TDs may contain additional fields such as a grain-size, the number of

chunks into which to split the TD, or a cost estimate of the tasks it contains.

Another reason parallel loops deserve direct support is that recreating them

with parallel function calls is inconvenient and inefficient. To do so, the program-

mer must either write a sequential loop with a parallel function call in its body,

or implement the creation of parallelism recursively, using a divide-and-conquer ap-

proach. The first approach leads to serialized creation or parallelism and a memory

footprint that is linear in the number of tasks. Moreover, the performance will be

very poor for fine-grained tasks because the overheads of creating and scheduling

them will outweigh the benefit of parallelism. The second approach leads to paral-

lel (fast) creation of parallelism in a binary tree, but it is tedious and potentially

error-prone for the programmer. A work stealer for parallel loops should automate

the second solution (divide-and-conquer) and not hide from the compiler the simul-

taneous creation of parallel tasks. The same argument applies to supporting other

multi-argument parallel constructs, such as sum-like reducers and scan operations.

When it comes to scheduling TDs, there are several different ways to treat

them. The two main categories include recursively splitting the TD range and

iteratively breaking off constant-sized chunks. We cover those alternatives in the

next subsections.

23

2.2.2.1 Serializing Work Stealing (SWS): Work-First

The work-first approach, which we call serializing work stealing (SWS), keeps

the first grain iterations of a TD and pushes the rest onto the local deque. The

drawback of this approach is that a TD created by a parallel loop is never split, so

accesses to it by workers contending for work will be serialized.

We illustrate with a simple example how serializing work stealing works with

TDs, and discuss its shortcomings next. Assume worker A encounters a parallel

loop with 16 iterations; A will create a TD with iterations 2 through 16, place it

on its deque, and start executing the first iteration. For simplicity, assume those

iterations do not create nested parallelism. In the mean-time, worker B steals the

TD from A’s deque, takes iteration 2, places the remaining TD (iterations 3-16) on

its deque, and starts executing iteration 2. A eventually finishes executing iteration

1, looks for work on its deque, which it finds empty, so it tries to steal work from B;

it is successful, takes iteration 3, places the remaining TD on its deque, and starts

executing iteration 3.

This example illustrates four shortcomings:

1. If two or more workers end up executing tasks from a TD, they will keep

stealing the TD from each-other, effectively serializing accesses to it.

2. On modern multicores, thefts are expensive because they induce coherence

traffic by modifying remote deques, which presumably reside in the private

cache of the victim worker.

3. Unless a grain-size is provided, each time a worker needs more work, it removes

a single iteration from a TD; this means that TDs (and thus deques) will be

accessed as many times as the tasks they have, which, for fine-grain iterations,

introduces significant overheads.

4. Because of the implicit barrier at the end of parallel loops, tasks need to syn-

24

chronize upon termination, usually by atomically decreasing a variable repre-

senting the number of pending tasks. Unless a grain-size is provided, iterations

are executed one-at-a-time, and synchronization will also happen individually

for each task, possibly inducing significant overheads.

2.2.2.2 Help-First Work Stealing

The help-first work stealing approach treats a parallel loop as a sequential

loop whose iterations each spawn one parallel task. This approach also serializes

the creation of the tasks, but it creates a TD per task, allowing parallel access to

them, unlike the work-first approach described earlier. However, by creating a TD

per iteration, or per k iterations when a grain-size of k is provided, help-first work

stealing ends up having a potentially unbounded memory footprint relative to the

sequential footprint for the same code.

Guo et al. [43] have implemented a scheduler that adaptively switches be-

tween the help-first and work-first work stealing to get the benefits of help-first task

creation, while keeping the memory footprint bounded. However, the depth (critical

path) of scheduling a parallel loop of N tasks is linear in N for both help-first and

work-first approaches. This depth is added to the critical path of the application

and, in some cases can overwhelm it. The eager binary splitting approaches below

reduce this depth from linear to logarithmic. Furthermore, the work by Hendler et

al. [47] seems to suggest that recursive splitting benefits performance by spreading

tasks around in larger chunks, rather than stealing a single task at a time.

2.2.2.3 Eager Binary Splitting (SP & AP)

Intel’s Threading Building Blocks[1], Cilk++ [62] and CilkPlus implement a

Eager Binary-Splitting (EBS) work stealing schedulers: upon creating, stealing, or

popping a TD, a worker splits it into two TDs of approximately equal numbers of

iterations and pushes one on its deque; then, it continues splitting the remaining TD

25

until some threshold. EBS is eager because splitting proceeds regardless of run-time

conditions such as load.

An important performance consideration for eager binary splitting is when

to stop splitting. While splitting TDs to create enough parallelism and to load-

balance is crucial, excessive splitting induces unnecessary overheads, which can hurt

performance. It can be preferable to coarsen parallelism by stopping the splitting of

TDs before they are reduced to a single iteration and execute all the iterations in the

coarser TDs sequentially. Finding this stop-splitting threshold (sst) is hard because

it depends on several factors, such as the number of available hardware threads

(processors), the number of tasks of each parallel loop (which can be a function of

the size of the input), and the calling context.

TBB offers two options for controlling that threshold: simple-partitioner (SP)

and auto-partitioner (AP). Cilk++ and CilkPlus only implement simple-partitioner.

Cilk++ has a mechanism inherited from Cilk[38] for reducing parallelism overheads

by creating two versions of functions and choosing at run-time which one to execute:

the one for fast local and serialized execution with simplified synchronizations, or

the one for true parallel execution. This mechanism is orthogonal to our proposed

lazy-scheduling and combining the two approaches would be beneficial.

Figure 2.5: Processing a Task Descriptor with Simple-Partitioner.

26

Simple-Partitioner. Figure 2.5 shows how simple-partitioner splits a TD while

the number of iterations in its sub-range is above a stop-splitting-threshold, referred

to as grain-size in TBB’s manual [1]. This eagerness to split may result in an

excessive number of TDs being created, which is why the programmer is expected

to define an appropriate sst to stop the splitting earlier. The TBB manual [1]

suggests the following approach to determine the appropriate sst:

1. Set the stop-splitting-threshold parameter of the parallel loop to 10,000. This

value is high enough to amortize scheduler overhead sufficiently for practically

all loop bodies, but may unnecessarily limit parallelism.

2. Run your algorithm on one processor.

3. Start halving the threshold parameter and see how much the algorithm slows

down as the value decreases.

⇒ A slowdown of about 5-10% is a good setting for most purposes.

There are two problems with this approach. First, it is extremely tedious.

Not only does the programmer have to provide a threshold, they have to run their

program several times to find the appropriate threshold. Moreover, if the code has

multiple parallel loops, a different threshold has to be determined for each loop,

which means more runs. Ideally we would want the 5 to 10% slowdown to be only

compared to the code of the parallel loop, not of the whole application, so the

programmer will have to isolate the parallel loops during this tuning process and

time them separately. Finally, because the code will run on a single processor, this

tuning process will also be very slow. Second, another equally serious problem is

that the resulting fixed threshold limits the performance portability of the code

to different platforms, inputs and contexts, as mentioned in the introduction. We

provide more evidence that manual coarsening is tedious and harms performance

portability in Chapter 3.

27

In conclusion, eager binary splitting with simple-partitioner is an improvement

over work-first serializing work stealing because splitting TDs solves the problem of

serialized access to the tasks of a parallel loop, but determining the grain-size (sst)

manually is very tedious, and, if it is a fixed constant as suggested by TBB’s tuning

procedure, it harms performance portability. Work-first and help-first work stealing

also have the same issue with the grain-size.

Auto-Partitioner. TBB’s other option for controlling splitting, auto-partitioner

(AP), splits the tasks of a parallel loop into K · P TDs, assuming the number of

iterations in the original parallel loop is at least K · P , where P is the number of

workers and K is a small implementation-specific constant. Auto-partitioner was

recently chosen as TBB’s default scheduler because it relieves the programmer from

manually picking the sst and delivers good performance. Auto-partitioner has two

fixed parameters, K and V , as well as an additional chunks field per TD (called n

in [76]). When executing a parallel loop and creating its TD, chunks is initialized

to K · P . Every time the TD is split, chunks is also halved, and whenever a TD

is stolen, chunks is set to be at least V , which gives auto-partitioner some limited

run-time granularity adaptivity. A TD is not split further if chunks ≤ 1 or if it is

not divisible (e.g., contains a single task). K and V are set to four in [76].

Instead of coarsening parallelism by combining iterations using the sst, auto-

partitioner uses chunks to determine into how many pieces to split a TD. This is

preferable because it does not require programmer tuning, allows for some platform

and dataset portability (but still not context portability), and performs better than

simple-partitioner in most cases. The sst is still available to the programmer, in

case more aggressive coarsening is required. For example, if the iterations of a

parallel loop are few and fine-grained, auto-partitioner might still perform excessive

splitting.

The lack of context portability in auto-partitioner is a serious problem. While

28

splitting iterations into K · P TDs for a parallel loop executed from the original

sequential thread is usually a good heuristic, if that same loop is executed in a

nested context, the outer parallelism will likely suffice and fewer chunks would be

preferable. For example, for d levels of nested parallel loops of N iterations each,

auto-partitioner will create over the course of the execution Nd−1 · (K · P) TDs

for the most deeply nested loop, which may be excessive. These TDs will not be

simultaneously available in memory, but the overheads of creating them over the

course of the execution is still substantial. The maximum number of TDs concur-

rently present in the system will be O
(
P · log (K · P) · (d − 1)

)
. Reducing K to

reduce the number of chunks may result in insufficient splitting (and parallelism)

for non-nested loops, so it is not a viable solution, and the lack of context portability

seems to be inherent to auto-partitioner. Our Lazy Scheduling approach overcomes

the portability pitfalls of SP and AP and the serialization of parallelism creation of

work-first and help-first work stealing, without requiring programmer tuning.

Another potential danger with auto-partitioner, even without nested paral-

lelism, is that once it starts executing one of the original K · P “fat” chunks, it will

execute it to completion, without the possibility of revisiting the coarsening decision

of not further splitting the TD. If the tasks of a loop are severely imbalanced, one

of the “fat” chunks may contain most of the work and the performance will suffer

of poor load balancing. For the same reason, the time bound (presented below) for

a work stealing schedule does not apply to auto-partitioner.

2.2.3 Theoretical Bounds

Blumofe et. al [16] helped the adoption of work stealing by proving the good

performance of randomized work stealing for fully-strict computations using only

parallel function calls. The expected time to execute a fully strict computation on

P workers using randomized work stealing is T1/P+O
(
T∞

)
where T1 is the minimum

sequential execution time, i.e., the total work, and T∞ the minimum execution time

29

with an infinite number of workers, i.e., the depth of the parallel computation (the

length of the critical path). The space required is at most PS1, where S1 is the

minimum space requirement for the sequential execution.

More recent results relax the restriction of fully-strict computations but, to the

best of our knowledge, still omit to include language constructs that introduce mul-

tiple tasks simultaneously, such as parallel loops. An exception is [29] (Chapter 27),

which talks about the added logN term on the critical path for simple-partitioner.

In the presence of loops, the above bounds need to be amended as we will discuss

in Section 4.10.

30

Chapter 3

Coarsening

In this chapter, we tackle the problem of coarsening the abundant parallelism

coming from declarative code. We argue that manual coarsening either leads to

performance portability issues or requires substantial expertise from a programmer,

and we show the sensitivity of performance to coarsening. We identify two goals of

coarsening and propose achieving each of the two goals using separate techniques

in order to preserve performance portability and to maximize performance, whilst

relieving the programmer from manual coarsening, at least partially.

Current implementations of languages that support nested task-parallelism

(OpenMP, Cilk, TBB, TPL, ...) warn programmers not to overexpose parallelism

to avoid excessive scheduling overheads (e.g., [60]). An earlier version of the TBB

Manual [1] suggested that, for each parallel loop of the program, the programmer

should pick an appropriate grain-size describing when a range of tasks should no

longer be split for parallel execution. This grain-size parameter coarsens parallelism

by effectively combining grain tasks of a parallel construct into a single task. As

elaborated in Section 2.2.2.3, the suggested procedure for determining the grain-size

was to repeatedly run the parallel construct on a single thread using decreasing

values for the grain-size, until the overhead reached about 10% of the sequential

execution of that construct. Such a procedure is not only tedious, but leads to code

that is not performance portable as we will show in Section 3.3, later in this chapter.

The current version of the TBB Manual omits this section on picking a grain-

size because TBB has since switched to auto-partitioner as its default scheduler,

which performs adequate coarsening for most codes that do not have nested paral-

lelism. However, as we argued in Section 2.2.2.3, auto-partitioner is not adequate

for declarative codes with deep nesting, such as recursively nested codes used in

31

graph traversals and state-space exploration, because it fails to perform sufficient

coarsening, due to its inability to adapt to different calling contexts.

For someone working in high performance computing it may be counter-

intuitive why coarsening should be a serious problem for general purpose code since,

in that domain, it is not. The first reason why coarsening is not a serious problem

in high performance computing is that it has focused on codes with flat or rela-

tively flat parallelism, as exemplified by the codes in the NAS benchmark suite [8].

For such codes, coarsening is indeed not very challenging. Another scenario where

coarsening is not a serious problem is when the programmer has good command of

the code of the entire application and knows the characteristics of its inputs and of

the target platform. In that case, the programmer generally knows when enough

parallelism has been exposed for the target platform and can coarsen the rest.

Algorithm 3.1 Fully Parallel Matrix Multiplication
1: INPUT AN×K , BK×M

2: OUTPUT RN×M

3: for all i ∈ {1, . . . , N} do
4: for all j ∈ {1, . . . ,M} do
5: R[i][j]← 0
6: for all k ∈ {1, . . . , K} do reduction (+ : R[i][j])
7: R[i][j]+ = A[i][k] ·B[k][j]
8: end for
9: end for
10: end for

On the contrary, for general purpose parallel programming we treat the input

and the number of processors as unknowns. Now, it is no longer clear how much

parallelism to expose in a code as simple as matrix multiplication. Algorithm 3.1

shows that each multiplication can be done in parallel by using a parallel reduction

for the innermost (sequential) loop (Line 6). In this case, the reduction operation1

is a parallel summation for each R[i][j] =
∑K

k=1 A[i][k] · B[k][j]. If N and M are

1The notation reduction (+ : var) is taken from OpenMP, and it informs the compiler that

the aggregation (+) of values into the memory location var must happen safely (e.g., atomically)

in parallel.

32

too small to provide enough parallelism, as in the extreme example of multiplying

two vectors (N = M = 1), then parallelizing the innermost loop may be profitable.

On the other hand, the overheads of parallelizing it will penalize the performance of

most invocations where N and M create enough parallelism. But, to make things

harder, we also treat the number of processors as an unknown, which means we

cannot really answer whether enough parallelism has been created. Even if we

restrict ourselves to the range of 4 to 1000 threads (Intel’s i3, to nVidia’s Fermi

GPU), and expose enough parallelism for 1000 threads, chances are we will pay a

noticeable performance penalty on the smaller machines.

Algorithm 3.2 Matrix Multiplication: Parametrically Coarsened

1: graini ← max
(
1, C

K·M , N
4·P

)
2: for all i ∈ {1, . . . , N} with grain = graini do
3: grainj ← max

(
1, C

K
, M ·N

4·P

)
4: for all j ∈ {1, . . . ,M} with grain = grainj do
5: R[i][j]← 0
6: graink ← max

(
C, K·M ·N

4·P

)
7: for all k ∈ {1, . . . , K} with grain = graink do reduction (+ : R[i][j])
8: R[i][j]+ = A[i][k] ·B[k][j]
9: end for
10: end for
11: end for

An other option would be for the programmer to write code that dynamically

makes coarsening decisions at runtime, based on the input and the number of workers

of the target platform. An example is shown in Algorithm 3.2 where we want to

create four times as many tasks as the number of workers (4 · P) to get good load

balancing, and each task should perform at least C multiplications to amortize

scheduling overheads. Despite the simplicity of these two requirements (maximum

number of tasks and minimum number of multiplications per task) and despite

the code being regular, which greatly simplifies enforcing them, the parametrically

coarsened code is not as simple anymore.

While such parametric coarsening can improve performance, it can still create

33

an excessive number of tasks and severely hurt performance in two scenarios. The

most common is when code is called from a parallel context. If, for example, each

worker calls Algorithm 3.2 in parallel, the total number of tasks created will be 4·P 2.

In general, the number of tasks can grow exponentially with the recursive depth. An

other scenario is when the operating system reclaims some of the processors that it

had previously granted a parallel application, in which case the application should

react by creating fewer tasks. For example, Pan et. al [74] present a framework for

the operating system to increase or decrease the number of worker threads of a task

parallel application. They also address the problem of composing code from different

parallel libraries that assume they can each create P worker threads (such as the

TBB library) and that would oversubscribe the machine resources by initiating too

many workers. This is an important part of supporting general-purpose parallelism,

but does not address the need for coarsening excessive parallelism on the application

side.

The rest of this chapter is structured as follows: we refine what types of coars-

ening we will consider automating and why; for example automatically changing the

underlying algorithm is beyond the scope of this work. Within these constraints,

we present the two goals that coarsening has to achieve: creating enough tasks for

good load balancing while keeping tasks coarse enough to avoid excessive schedul-

ing overheads. This concept was also present in the parametric coarsening example

of Algorithm 3.2. Since we propose that the programmer should not coarsen par-

allelism, we proceed to discuss the different stages through which available task

parallelism goes, from code to execution and present some guidelines as to where

each goal of coarsening can be achieved as well as a high level view of the coarsen-

ing performed by the various schedulers we compare in this dissertation. Then, we

present evidence that performance is sensitive to coarsening, when it is not done in

a parametric way. As far as parametric coarsening goes, we believe that it is some-

thing general-purpose programmers should not have to do, especially since it is not

34

context sensitive and it is challenging for irregular applications (e.g., [49]). We then

define two metrics for evaluating the sensitivity of a code to varying environments

(inputs, platforms, and contexts), and we propose to use these metrics to quantify

performance portability. We show that static coarsening fails to be performance

portable, and even parametric coarsening is not as efficient as one might expect. Fi-

nally, we present two compiler optimizations implemented in XMTC that perform

static and dynamic coarsening for extremely fine-grained tasks.

3.1 Characterizing Coarsening

We focus on three types of coarsening within the realm of task-parallel pro-

gramming languages: (1) picking a grain-size G for a parallel construct (e.g., loop

or reducer) indicating that parallel tasks should contain at least G iterations during

execution; (2) not parallelizing a computation, for example coding a parallel loop

as a sequential loop; (3) explicitly serializing part of the computation (e.g., paral-

lelism cut-off discussed below in Algorithm 3.3). Coarsening that involves changing

the algorithm is beyond our scope. Within this narrower definition for coarsening

task-parallelism we identify two goals that coarsening has to achieve.

The two goals of manual coarsening of task-parallel code are (1) to amortize

scheduling overheads by increasing the granularity of extremely fine-grained tasks,

and (2) to prune the exposed parallelism to minimize the wasted overheads of

deploying too much parallelism, without underexposing parallelism which could hurt

performance. In this section, we argue that static coarsening (manual or automatic)

is adequate for amortizing overheads, but inadequate for pruning parallelism.

Understandably, the two goals of coarsening are not decoupled. Amortizing

scheduling overheads prunes parallelism, but may still leave an excessive amount of

parallelism exposed. Symmetrically, pruning parallelism also increases granularity,

but, if there is not much parallelism, it may fail to amortize scheduling overheads.

To make things harder, sometimes the same technique can be used to achieve either

35

Algorithm 3.3 Queens pseudocode. depth ∈ [1, N]

1: procedure queens(N , partial sol, depth)
2: for all i ∈ [1, N] do
3: if OK TO ADD(i, partial sol, depth) then
4: append i to partial sol
5: if depth < N then . Recursion
6: if depth > CUTOFF-DEPTH then
7: QUEENS-sequential(N, partial sol, depth+ 1)
8: else
9: QUEENS(N, partial sol, depth+ 1)
10: end if
11: else . Found a Solution
12: atomic(global sol count+ = 1)
13: end if
14: end if
15: end for
16: end procedure

of the goals. For example, Algorithm 3.3 shows the pseudocode for counting the

ways to place N queens on an N by N chessboard, without them attacking each

other. The function has recursively nested parallelism, as it has a parallel for-loop

and it calls itself recursively from within that loop. The first argument is the size

of the board N , the second is the partial solution computed so far (originally the

empty set), and the third argument is the depth of the recursion, starting at 1. Each

recursive invocation of the procedure tries to place a queen on each column of the

depthth row in parallel. If doing so does not conflict with the partial solution so far

(Line 3), the queen is added to it (Line 4), and the procedure is called recursively

for the next row (depth + 1) (Line 7 or 9), unless all rows have queens, in which

case a solution was found and the global solution counter is atomically incremented

(Line 12).

We can limit the parallelism of the QUEENS computation by choosing between

a parallel invocation of QUEENS and a sequential one (lines 6-10), based on the

recursive depth. This technique is known as parallelism cut-off. If our intention is

to amortize fine-grained tasks, we should cut-off the last α recursive levels (for some

value of α), when depth > N − α, whereas if our intention is to prune the amount

36

of exposed parallelism, we should cut-off after the first R recursive levels (for some

value of R), when depth > R.

Figure 3.1 distinguishes visually the two goals of coarsening. If you visualize

the computation as an N-ary tree where the distance of a node from the root is its

recursive depth, to amortize the overhead per task, you group nodes starting from

the leaves, but to to prune parallelism, you only allow the first few levels of the tree

to unfold.

D
e
p
th Prune

Amortize

Figure 3.1: Amortizing Overheads vs. Pruning Parallelism

Before delving into the specifics of which techniques to use for achieving each

of the two goals, one fair question is why should pruning parallelism be necessary if

we properly amortize overheads by coarsening very fine-grained tasks. In QUEENS,

grouping subtrees near the leaves amortizes the overheads per task, but to reach

those coarsened tasks, the computation has to traverse the whole tree, paying the

scheduling overhead multiple times, once for each edge traversal. In effect we have

not amortized the scheduling costs in the middle of the tree, which creates the need

for pruning parallelism.

The reason for not coarsening in the middle of the tree is that it changes its

shape and therefore the algorithm. The challenge is to make all of the outgoing edges

(i.e., subtasks) of a coarsened subtree available to the scheduler before proceeding

with the execution of one of them. Failing to achieve that may result in significant

parts of the tree being unavailable for execution causing scaling issues similar to

the ones we will present in Section 4.5. Effectively, while the execution order of

37

the overall tree is depth-first, internally the execution of the coarsened mid-tree

nodes should happen in breadth-first order. Moreover, the aggregate scheduling

overheads of all the outgoing edges should be reduced, because just saving the

overheads of the internal edges of a coarsened sub-tree will only lead to small savings.

Besides the fact that changing the traversal order to breadth-first mid-tree requires

changing the algorithm, which is not trivial, and that we do not currently have a

good way to aggregate task creation and synchronization coming from multiple call-

sites, breadth-first execution also substantially increases the memory requirements

of applications. For these reasons, we will not consider mid-tree coarsening as a

general coarsening technique, although it may be useful in certain circumstances.

Deciding how much to coarsen extremely fine-grained tasks to amortize sched-

uling costs is relatively easy, because the overhead per-task (OPT) of modern sched-

ulers is very low, which makes coarsening necessary only for extremely fine-grained

tasks, and because such tasks are generally short and simple. Moreover, the amount

of coarsening only depends on the overhead per task, which can be approximated

by a constant upper-bound (e.g. 100 cycles), and on the work per fine-grained task,

which can be typically estimated at compile-time.

Amortizing the overhead per task must happen before the runtime tries to

schedule the tasks because its goal is to reduce the frequency of calls to the scheduler.

Eventually, a mature compiler may be able to completely relieve the programmer

from this coarsening task. This is desirable because the overhead per task can de-

pend on the platform, affecting the amount of coarsening needed. However, we

expect the cross-platform variation of the OPT to be small enough to allow manual

coarsening without harming performance-portability. Thus, it is reasonable for pro-

grammers to perform this simpler type of coarsening, while compilers make progress

towards automating it. Section 3.5 presents the static coarsening passes available

in the XMTC compiler.

Using static coarsening to decide how much to prune the exposed parallelism is

38

unnatural, however, because the amount of parallelism is often unknown at compile-

time (or at programming-time). The amount of parallelism exposed by a module

(e.g., a function) may depend on the size or shape of the input D. The module

may be called from an execution point where a lot of parallelism can be exploited,

such as a sequential section, or from a point where the system is saturated, so the

amount of parallelism needed depends on the context C. Moreover the number of

cores available for parallel execution is, at best, a parameter for general purpose

code aiming to target multiple parallel platforms, and, more likely, a dynamically

changing value on modern multiprogrammed systems, where the operating system

may shift computing resources from one process to another. Static coarsening cannot

adapt to the dynamic nature of these parameters (D, C, and M) and typically

results in overfitting to a small range of these parameters. Outside that range,

the performance of the code can be far from optimal and, hence, not performance

portable. For some domains, such as HPC, where the goal is to get the best possible

performance on a specific machine with inputs of a given size, overfitting is not a

drawback and getting the best possible performance is preferred, but for general-

purpose programming, this is undesirable.

Instead of the inadequate static coarsening currently used, we propose that the

run-time system, which has access to some dynamic load information during execu-

tion, should assume the responsibility of adaptively deploying the exposed parallelism

as needed. Our proposed lazy scheduling approach significantly reduces the wasted

overheads of deploying declarative parallelism compared to existing state of the art

work-stealing schedulers, and it offers a scalable alternative to manual coarsening,

while preserving performance-portability.

3.2 Stages of Parallelism

In this section, we define four stages of parallelism to help structure the un-

derstanding of the compilation and execution of task-parallel code. We call the first

39

stage Code Parallelism (CP). It is the parallelism exposed by the programmer in

their parallel code. The code parallelism is what the compiler takes as its input.

Through static analysis and transformations, the compiler can coarsen the code

parallelism, for example by combining iterations of a parallel loop, and it may also

parallelize code that was originally sequential in the program. Generally speaking,

the executable produced by the compiler exposes a different collection of parallel

tasks to the run-time than the code parallelism. We call this second stage Ex-

ecutable Parallelism (EP). During execution, the run-time (e.g., the scheduler or

just-in-time compiler) has access to all of the Executable Parallelism, but it may

choose to coarsen some of it or to only deploy part of it on its shared work-pool

to reduce overheads. We call the tasks that are placed in the work-pool Deployed

Parallelism (DP), even if they eventually execute locally, and the tasks that bypass

the work-pool and are executed locally instead Pruned Parallelism (PP). By defi-

nition, the following relations always hold, where \ is the standard notation for set

subtraction:

DP ∪ PP = EP, DP ∩ PP = ∅, PP = EP \DP

Traditional work stealing (e.g., Cilk[38], simple-partitioner in TBB, and TPL)

deploys all of the executable parallelism for parallel execution by placing it onto the

deques. Furthermore, the compiler does not transform parallelism, and therefore,

the code parallelism coincides with the executable parallelism (CP = EP = DP ,

PP = ∅). Note that for a parallel loop of N iterations, traditional work-stealing will

only expose N − 1 of them on the deque, but we still consider PP to be empty, and

for simplicity, CP = EP = DP = N (instead of N − 1). Also, if the programmer-

defined grain-size of that loop is g, then CP = EP = DP = N/g.

TBB’s auto-partitioner initially coarsens the tasks of a parallel construct (e.g.,

loop, reducer) into K · P chunks, where K is a small constant (K = 4 in TBB’s

implementation) and P is the number of worker threads, but it may later undo

40

some of the coarsening to improve load balancing. Therefore, DP = EP = CP ,

and PP = ∅ since all the work is exposed on the work-pool, modulo the chunking

which acts almost as a grain-size.

Conversely, our lazy scheduling [83] follows our proposed separation of coars-

ening duties: the compiler and the programmer are responsible for increasing task

granularity to amortize overheads, and the run-time is entirely responsible for prun-

ing the deployed parallelism by only exposing a limited amount of parallelism on

the work-pool based on load conditions.

DP ⊆ EP ⊆ CP , and PP = EP \DP

The goal of lazy scheduling is to minimize DP (maximize PP) without ad-

versely affecting performance. In other words, the goal is not to deploy too much

or too little parallelism on the work-pool, but just the right amount (also known as

the Goldilocks problem [13]).

The separation of coarsening responsibilities gives lazy scheduling a productiv-

ity advantage over traditional work-stealing and auto-partitioner, by lifting from the

programmer the burden of coarsening to prune parallelism and part of the burden

of amortizing scheduling overheads, while at the same time preserving performance-

portability. In the next section, we will show the sensitivity of performance to

manual coarsening, which testifies to our claim that manual coarsening can hurt

performance portability.

3.3 Sensitivity of Performance to Coarsening

In this section, we present two experiments that demonstrate how manual

coarsening can lead to sub-optimal code that is not performance portable. In the

first experiment, we follow the manual tuning procedure proposed in TBB’s manual

[1] and show that, when we run the manually coarsened code on a different input,

41

the performance is sub-optimal. We repeat this experiment over our benchmark

suite and run the codes on XMT which gives the codes the benefit of its hardware

scheduler for outer parallelism. Even with the added hardware, the performance

takes a noticeable hit from the inadequate manual coarsening. In the second ex-

periment, we take the familiar computation of QUEENS (Algorithm 3.3), and we

show that the optimal coarsening depth significantly varies with the size of the in-

put (N) and the number of available workers on the target platform. We picked

QUEENS because it appears to be trivial to coarsen at first, but it actually proves

to be somewhat tricky.

3.3.1 Sensitivity of TBB’s proposed manual coarsening

Below we list once again the procedure proposed by TBB [1] to select the

a grain-sizes when using the simple-partitioner (i.e., recursively splitting work-

stealing):

1. Set the grain-size parameter of the parallel loop to 10,000. This value is

high enough to amortize scheduler overhead sufficiently for practically all loop

bodies, but may unnecessarily limit parallelism.

2. Run your algorithm on one processor.

3. Start halving the threshold parameter and see how much the algorithm slows

down as the value decreases.

⇒ A slowdown of about 5-10% is a good setting for most purposes.

There are several problems with this approach, which is probably why it has

been removed from the latest TBB manual. However, coarsening remains an issue

the programmer needs to worry about even with TBB’s new default scheduler, auto-

partitioner. Below we repeat the issues with TBB’s coarsening approach.

42

The first and most obvious issue with the above procedure for finding grain-

sizes is that it requires multiple executions to converge to a good value for the

grain-size. This is obviously tedious, but also needs to be performed separately

for each parallel construct that creates multiple tasks simultaneously (e.g., loops,

reducers, scans). Bergstrom et al. [13] show that the parallel efficiency, defined as

the speedup over the number of workers, is sensitive to the choice of grain-size and

that, not surprisingly, picking any single grain-size for all parallel constructs in their

benchmark suite did not yield good overall efficiency (Figure 3 in [13]). Therefore,

the programmer should pick a grain-size for each parallel construct independently

by repeating the above iterative procedure.

Secondly, if the programmer is trying to solve a large problem faster by paral-

lelizing it, it is unreasonable for them to run it multiple times on a single processor.

What they may do is to use a much smaller instance of the problem to tune the

code and pick the grain-sizes, and then run the code on the large input with the

grain-sizes they selected for the small input. This is the premise of our experiment.

We will use a training-dataset and the procedure suggested by TBB to compute

the grain-size for each parallel loop in our benchmarks. Then we will use those

grain-sizes to execute an execution-dataset using TBB’s simple-partitioner. Those

results represent the performance achieved by the typical tuning procedure. For

comparison, we follow TBB’s suggested procedure to compute a different set of

grain-sizes, this time using the execution-dataset. We also execute our benchmarks

using this second set of grain-sizes and the difference in performance between the

two represents a loss of performance-portability due to overfitting to the training

dataset.

3.3.1.1 Benchmarks

Our benchmarks are summarized in Table 3.1. We ran our comparisons on a set

of 8 benchmarks chosen to have various computation and communication patterns

43

as recommended by Asanovic et al. [7]. All benchmarks are coded in the most

natural way, which is in line with our goal to provide good performance for natural

programming idioms.

MM is a straight-forward dense matrix by matrix multiplication with N3

work, N2 parallelism (each element of the resulting array is computed in parallel),

and O
(
N
)
work per task. CONV is an N ×N image by M ×M filter convolution

with N2 parallelism and M2 work per task. FW is the Floyd-Warshall all-pairs

shortest path algorithm; the graph is represented by weighted N × N adjacency

matrix. There is N2 parallelism and constant work per task. QSort is quick-

sort. Sub-arrays of size 100 or less are sorted using sequential quicksort. BFS is

a breadth first traversal of a graph G(V,E) given in incidence lists and with the

degree of each vertex being given; given a start vertex, a level is assigned to all ver-

tices. A pseudocode for BFS is given much later in Figure 6.1. Each task contains

constant work. SpMV is a sparse matrix by dense vector multiplication. There

is as much parallelism as the number of non-zero elements of the sparse array, and

each task performs constant work QUEENS finds all possible solutions to placing

N queens on an N × N chess-board so that no two queens can attack each-other.

Algorithm 3.3 presented earlier shows the pseudocode. TSP, the Traveling Sales-

person Problem, is the well known NP-Complete problem of finding the shortest

cyclic path that visits each vertex exactly once. Just like QUEENS, TSP is also

recursively nested. To perform more meaningful comparisons, we implemented TSP

using exhaustive search rather than taking branch-and-bound shortcuts which can

benefit unpredictably from an unrelated task scheduler decision.

For this experiment, we did not limit ourselves to declarative codes because

we wanted to show the performance sensitivity to coarsening with codes typically

used with TBB and other existing work-stealing schedulers. For example, TSP,

QUEENS, and QSort have recursively nested parallelism, which is amenable to

parallelism cut-off [34] (i.e., deciding to call a serial version of the recursive function

44

Name Description DOP Work/Task

MM Dense Matrix Multiplication N2 N

CONV N2 image by M2 filter convolution N2 M2

FW Floyd-Warshall all-pairs shortest path N2 1

QSort Quicksort N/100 QSort(100)

BFS Breadth First Search O
(|E|
Diameter

)
O
(
1
)

SpMV Sparse Matrix by Vector Multiplication N = #non-zero 1

TSP Travelling Salesperson Problem O
(

N !
(N/2)!

)
O
(
N
2 !
)

QUEENS placing N queens on an NxN board O
(

N !
(N/2)!

)
O
(
N
2 !
)

Table 3.1: Summary of XMTC Benchmarks

from recursive depths greater than a threshold T). For TSP and QUEENS we set the

cut-off threshold to T = N/2. For QSort, instead of using the depth of the recursion,

we use the size of the sub-array to be sorted or partitioned to determine the cut-off

threshold: we call a serial quicksort when the subarray has less than 100 elements.

We always perform the partition sub-routine of QSort sequentially, because we did

not get a performance advantage from parallelizing it when using simple-partitioner.

With Lazy Scheduling (Chapter 4), we used a parallel implementation of partition

and call the sequential partition when the subarray has less than T = 3 N
#Procs

elements. This threshold is more complicated because the parallel partition code

performs almost three times more work than the serial version; so we want to call

the parallel version only when several processors are likely to be idle, such as at the

onset of execution.

The only benchmarks that are declarative are FW, BFS, and SpMV. For

FW, the parallelism is regular: each of the N2 elements of the adjacency matrix can

be updated concurrently; thus it made sense to expose all parallelism. With BFS,

the outer parallelism may not be sufficient to provide enough parallelism or good

load balance, so the inner parallelism is also exposed (see Figure 6.1 much later).

Similarly, with SpMV the outer parallelism may be imbalanced or insufficient,

45

which justifies exposing the inner parallelism as well.

Training Set Execution Set

Name Size grain Size grain

MM 64x64 4 512x512 1

CONV 642 image, 162 filter 1 1K2 image, 162 filter 1

FW 64 nodes 32 512 nodes 64

QSort 10K 16 1M 256

BFS G(10K,200K) 16 G(10K,8M) 64

SpMV 30Kx100, 60K non-zero 4 80Kx5K, 40M non-zero 64

TSP 9 nodes 1 11 nodes 1

QUEENS N=9 4 N=11 1

Table 3.2: Benchmarks, Datasets, and Grain-Sizes.

Table 3.2 describes the training and execution datasets used for our experiment

as well as the grain-sizes computed for each dataset. The smaller dataset is chosen as

the training set since typically programmers will use a smaller dataset for training,

given the time consuming and tedious nature of this training.

Our execution platform is the 64-TCU XMT FPGA prototype, which mean

that the outer parallelism of the benchmarks benefited from XMT’s hardware sched-

uling. Since TBB’s simple-partitioner does not adapt to context, the hardware

scheduler helps it by offering efficient fine-grained scheduling of outer parallelism.

Simple-partitioner’s excessive splitting overheads are only payed for nested paral-

lelism. Nevertheless, even with the hardware assistance, TBB’s procedure for picking

the grain-size (sst) results in overfitting to the training input.

3.3.1.2 Results

First, we use TBB’s procedure for determining the grain-size using the training

set for each benchmark, then repeat the procedure using the execution set. Note

46

that the grain-sizes we get for the two sets (see Table 3.2) are different. More

interestingly, there is not a monotonic relation. For example, for BFS and FW the

grain-size for the training set is smaller than for the execution set because the work

per task remains constant as the input size increases, but the parallelism increases;

the larger grain-size serves the purpose of pruning more parallelism. Conversely,

for MM the grain-size for the larger input-set is smaller than the grain-size of the

training-set because the work per task increases linearly with N , and, consequently,

less coarsening is needed to amortize scheduling overheads.

 0

 20

 40

 60

 80

 100

 120

M
M

CONV

FW BFS
SpM

V

TSP
QUEENS

QSort

AVG(geom
)

R
un

-t
im

e
no

rm
al

iz
ed

 v
s.

 S
P

tr
/e

x
(%

)

SPtr/ex
SPex/ex

Figure 3.2: Performance Sensitivity of TBB’s Manual Tuning

Figure 3.2 shows the normalized execution times on the large dataset of our

implementation of TBB’s simple-partitioner with the two grain-sizes, the one ob-

tained using the training set (SPtr/ex) and the one using the execution set (SPex/ex).

The values used are the averages of a number of executions described hereafter. For

MM, CONV, FW, BFS, SpMV, and TSP we ran each configuration only five times

because the standard deviation was at most 0.06%. For QUEENS, we ran each con-

figuration 20 times and the standard deviation was 1.8% for SPtr/ex and 0.27% for

SPex/ex. The higher variability for SPtr/ex is explained by the fact that we picked

a grain size for a recursively nested computation, trying to coarsen mid-tree (see

47

earlier discussion in Section 3.1) but failing to do so: some of the parallelism in

the shallow recursive levels is effectively hidden from the scheduler (because of the

depth-first execution order) resulting in more thefts of smaller tasks and in a larger

variability of the execution. For QSort, we also noticed a high variability so we also

executed each configuration 20 times and found the standard deviation to be 4.02%

for SPtr/ex and 3.15% for SPex/ex.

The grain-size computed using the training set results in over 16% slower

execution times than with the grain-size computed using the execution set. Of

course it is unrealistic in general to perform the tuning on the execution datasets,

as we argued. The benchmark that was affected the most was SpMV which took

almost three times longer with the training grain-size. We see this performance

degradation despite taking advantage of XMT’s hardware scheduler. We believe

that on traditional multicores the performance loss may be more severe, and we

consider this result as a lower-bound on the harmful effects of manual coarsening of

this nature.

One last thing to remember is that the execution context of a function plays

a significant role in the grain-size needed. Generally, however, a function can be

called from sequential and parallel contexts alike. In such cases, the unique grain-

size computed using TBB’s tuning method will miss the opportunity to adapt the

coarsening to different contexts.

The main flaw of TBB’s proposed tuning approach is that it tries to use static

coarsening to tackle both goals of coarsening, amortizing the scheduling overheads

per-task and pruning parallelism, inspite of the fact that pruning parallelism suc-

cessfully depends on the input, the platform, and the calling context, which can

wildly vary at run-time.

48

3.3.2 Sensitivity to picking the right cut-off for QUEENS

In this second experiment, we show that, even for a very straight-forward code

such as QUEENS, coarsening can be challenging if the input size and the target

platform are considered to be unknown variables.

We ran our experiments on an UltraSPARC-T2 running at 1.2GHz with 8

cores and 64 hardware threads, 4MB of L3 cache, and 32GB of DDR2. We used

Intel’s TBB library to parallelize QUEENS and used both the simple-partitioner

and the auto-partitioner, TBB’s default partitioner. Since the results for auto-

partitioner were equal or slightly better than those for simple-partitioner, we only

present results for the former.

 0

 20

 40

 60

 80

 100

1 4 8 16 24 32 40 48 56 64

S
of

tw
ar

e
O

pt
im

al
ity

 (
%

)

Number of Workers (T2)

Queens, 8x8 board

Cut-1
Cut-2
Cut-3
Cut-4
Cut-6
Cut-8

Figure 3.3: Sensitivity of Performance when varying the number of workers

We ran QUEENS on different input sizes N ∈ D = {4, 6, 8, 10, 12, 13}, with

different numbers of workers w ∈ W = {1, 4, 8, 16, 24, 32, 40, 48, 56, 64} and different

cut-off depths c ∈ C = {1, 2, 3, 4, 5, 6, 8, 10, 12, 13}. For each point in that three

dimensional space, we first found how many iterations of the computation we need

to run so that the total run-time be above one second. We did that because we have

found empirically that, for much shorter running times, events beyond our control

49

introduced substantial noise to our results, greatly increasing the variance of the

measurements. Such events include context-switches, network requests, etc. For

each point, we picked the average of ten executions, and we plot some of the results

in Figures 3.3 and 3.4. We discuss the standard deviations for the measurements in

these two figures after describing them.

Figure 3.3 shows the software optimality (shorthand for software performance

optimality ratio) of each cut-off depth as a function of the number of workers used,

on an 8 by 8 board. In section 3.4, we will define software optimality rigorously

and compare it to the existing metric of efficiency. For our current example, soft-

ware optimality is the ratio of the performance of an execution relative to the best

performance achieved by any cutting depth:

SoftwareOptimality(N, c, w) =
min
c∈C

Time(N, c, w)

Time(N, c, w)

The figure shows that, even for a fixed problem size, picking a cut-off depth

without taking into account the number of workers may lead to sub-optimal perfor-

mance. In our example, the cut-off depth of 1 is the best if we have few workers (1

to 4), the cut-off of 2 is best in the range of 8 to 32 workers, then the cut-off of 3

becomes optimal for the remaining range. Even if we only look at the cut-offs of 2

and 3, which are the best candidates, each gives sub-optimal performance by over

20% for some range of the number of workers.

As mentioned before, this is a hard problem to solve because it is not enough

to know the number of workers that a machine has, but also how many of them

are available at a particular point during execution. In other words, the number of

available workers depends, at the very least, on the context in which a function was

called. In multi-programmed environments, it also depends on the other processes

currently contending for processing resources on the system. In short, it is not

enough to model the number of workers as a constant parameter, but we should

treat it as a dynamically fluctuating variable.

50

For the two best cut-offs (2 and 3), the standard deviation was below 0.42%.

For the rest of the curves, it was below 1.3% except for the cut-off of 1 when using 32

workers which had an unexpectedly high standard deviation of 6.4%, possibly caused

by an interference from an other process. That point is so far from competing with

the cut-offs of 2 and 3, that it was not necessary to find the source of the variation.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 8 10 12 13

S
of

tw
ar

e
O

pt
im

al
ity

 (
%

)

Cut-Off Depth

Queens, 16 workers on T2

N=4
N=6
N=8

N=10
N=12
N=13

Figure 3.4: Sensitivity of Performance when varying the size of the input

Figure 3.4 shows the effect that varying the cut-off depth has on software

optimality, for different input sizes, when executed on a constant number of workers;

16 in this case. Note that, for any input size k, a cut-off depth of c > k has the

same effect as no cut-off and is therefore omitted from the figure. Also, the curve

for input size N = 4 reaches 100% software optimality for a cut-off depth of zero,

i.e., sequential execution, which is not shown on the plot. The standard deviation

for input sizes N < 12 is at most 0.48%; for N = 12 it is at most 1.8% and for

N = 13 it is at most 2.53%. Increased variability is expected with larger inputs for

an unbalanced computation such as QUEENS.

The thing to notice in Figure 3.4 is that the peak of each curve is at a different

cut-off depth. Therefore, for each input size, a different cut-off depth gives the best

performance. Moreover, for any depth one might pick, there are input sizes for

51

which the choice will be far from optimal.

This last observation raises the question of what methodology to use for com-

paring the quality of general-purpose parallel codes. The codes can be declarative

or not, but should target an vast range of inputs, platforms, and calling contexts.

A possible starting point is the type of experiment we just presented on QUEENS,

but the result of that experiment is a large amount of multi-dimensional data which

is hard to compare. The following section proposes an approach and two metrics

for comparing the quality of such general-purpose parallel codes.

3.4 Evaluating the Quality of General Purpose Parallel Code: Pro-

posed Framework

We propose two metrics, the worst-case software optimality and the average

software optimality. The first one captures the minimum possible software optimal-

ity achievable, given a set of variables over which the programmer does not have

control, such as the input and the target platform. The second metric captures the

average software optimality in the same setup.

To formally define those metrics, as well as software optimality, we start by

defining two groups of variables: the variables the programmer controls and the

variables the environment controls. The variables under programmer control and

their corresponding sets are the following:

B: the set of implementations (including different algorithms) that we care to

evaluate for the given problem.

C: let Cb be the set of all possible (or reasonable) coarsenings for a given imple-

mentation b ∈ B, then C =
⋃
b∈B

Cb.

S: the set of all possible system configurations. This includes different user-level

schedulers, dynamic memory allocators, garbage collectors, and generally all

52

the user-level “system code”.

This last set is important for this dissertation since we will show that lazy scheduling

achieves better worst-case software optimality compared to auto-partitioner.

The variables the environment controls and their corresponding sets are listed

below:

I: the set of all inputs we care to evaluate. This variable is intended to capture

performance portability across datasets (D).

P: the set of all platforms we care to evaluate. This variable is intended to capture

performance portability across different machines (M).

W: let Wp be the set of all possible subsets of the computational resources of a

platform p ∈ P that may be allocated for the execution of the code, then

W =
⋃
p∈P

Wp. This variable is intended to capture the performance portabil-

ity across calling contexts (C) and with multiprogramming by limiting the

computational resources that are available for the execution of the code being

evaluated.

One can add (or subtract variables) from the above framework to adapt it to their

needs. The important thing is to distinguish the variables the programmer controls

from the ones they do not.

Software Performance Optimality Ratio. Given the above state space, we

define as software performance optimality ratio2 of a code b ∈ B using a coarsening

c ∈ Cb, with system code s ∈ S, an input i ∈ I, on a platform p ∈ P, using a subset

w ∈ Wp of that platform as follows:

SoftwareOptimality(b, c, s; i, p, w) =
min

b∈B c∈Cb s∈S
Time(b, c, s; i, p, w)

Time(b, c, s; i, p, w)
(3.1)

2We will use the term software optimality as a shorthand.

53

In the numerator, we take the minimum execution time over all combinations

of implementations b (including sequential ones), coarsenings c, and system code

configurations s, because the programmer has control over those parameters. For

clarity in the notation, we separate the variables the programmer controls from the

ones they do not control using a semicolon. The variables controlled by the environ-

ment (the input i, the platform p, and the subset w) are unknown to the programmer

and affect the best achievable performance, so they are left out of the minimizing

clause of the numerator.

The term software in the name of this metric underlines that the minimizing

clause ranges over the parameters which the programmer controls, which are the

software; this is also why the environment (i, p, w) is fixed on both sides of the

equation. This is in contrast to the standard definition of efficiency (Equation 3.2

[36]), which intends to also capture hardware bottlenecks in a parallel execution,

such as insufficient communication or memory bandwidth. The term performance

underlines that we are interested in measuring performance (defined as the inverse

of the running time), as opposed to efficiency, which normalizes performance by

the number of workers and can be useful for comparing performance per watt. The

term optimality ratio underlines that we are comparing the performance of a software

configuration (b, c, s) to the optimal performance achievable by any software in our

search-space, for a fixed environment configuration (i, p, w).Note that the definition

of efficiency (Equation 3.2) also implies a fixed environment (i, p, w) but also a fixed

“baseline”, chosen to be a sequential code .

Efficiency =
Speedup

Number of Workers
(3.2)

We find two issues with the definition of efficiency. First, it assumes that se-

quential code has 100% efficiency, which can result in efficiency values of more than

100% in the case of super-linear speedups, and second, it captures both software

and hardware inefficiencies but without being able to point to the culprit. By con-

54

trast, our proposed software optimality metric only focuses on software performance,

decoupling it from hardware bottlenecks. Thus, having both metrics, software op-

timality and efficiency, gives added value to the information conveyed by efficiency

alone. Finally, note that, unlike efficiency, software optimality can never be greater

than 1 (or 100%).

Worst-Case Software Optimality. We define worst-case software optimality for

an implementation b, with coarsening c, using a system configuration s, to be the

minimum software optimality over the sub-space covered by the variables that are

not under the control of the programmer, i.e., in our particular set-up, the input i,

the platform p, and its subset w. In other words, the worst-case software optimality

is the global minimum of the software optimality function for fixed values of the

programmer controlled variables b, c, s.

SwOptWC(b, c, s) = min
i∈I p∈P w∈Wp

SwOpt(b, c, s; i, p, w) (3.3)

Average-Case Software Optimality. The average-case software optimality is

defined similarly by replacing the minimum function by the geometric mean:

SwOptMean(b, c, s) = γ

√ ∏
i∈I p∈P w∈Wp

SwOpt(b, c, s; i, p, w) , γ = |I| ·
∑
p∈P

|Wp| (3.4)

We used the geometric mean instead of the arithmetic mean because software

optimality is a ratio and not an absolute value.

Now, given these two metrics the programmer can try to find a triplet (b, c, s)

that maximizes one or possibly both of them. E.g.,

(b, c, s)WC = argmax
b∈B c∈Cb s∈S

SoftwareOptimalityWC(b, c, s)

or

55

(b, c, s)Mean = argmax
b∈B c∈Cb s∈S

SoftwareOptimalityMean(b, c, s)

One thing to note with this definition of the average software optimality is that

all possible inputs, platforms and contexts (platform subsets) are weighed equally.

For platform subsets, this can skew the results by giving much greater weight to

subsets using approximately half of the resources
(

n
n/2

)
than, say, to using the whole

machine
(
n
n

)
= 1. This may be desirable if such platform subsets are considered more

probable. Otherwise, appropriate weights can be introduced to remove the skew,

or platform subsets can be divided in equivalence classes (e.g., class of all subsets

containing half the workers) each counted once. Conversely, the worst-case software

optimality does not hide such caveats since the minimum is taken and weights are

not involved.

3.4.1 Discussion

Ideally, we would want to cover all possible inputs i, which are usually infinite,

all possible implementations b, which can also be infinite, all possible coarsenings c,

also potentially infinite, etc. Of course, explicitly covering such an infinite search

space is impossible, so we must use good judgment in choosing which subset of this

infinite search space to cover. How to do that is beyond the scope of this dissertation.

For the worst-case software optimality, we could use standard techniques for finding

minima in large state spaces, such as simulated annealing or hill climbing.

Given these realistic limitations in covering a substantial part of the state

space, the measured worst-case software optimality has an advantage over the mea-

sured average software optimality; it represents an upper-bound of the actual worst-

case software optimality. Of course, a lower-bound would have been preferable, but

an upper-bound is still useful; it can unequivocally point out existing inefficient

configurations, which represent corner cases the programmer did not consider while

coding or coarsening. On the other hand, the measured average software optimality

56

could be smaller or greater than the “real” average software optimality, depending

on the subspace covered and the weights used. For the measurement to hold useful

information, one must carefully pick the subset of inputs, platforms and their con-

figurations to explore and possibly pick appropriate weights for each of them. The

quality of such choices are, of course, always up to interpretation, but reasonable

compromises can probably be reached.

3.4.2 Using the Framework: An Example

In this section, we compute the worst-case software optimality for the QUEENS

benchmark (B = {QUEENS}) on the T2 platform (P = {T2}) using TBB’s auto-

partitioner (S = {AP}). We use inputs I = {4, 6, 8, 10, 12, 13} and platform subsets

WT2 = {1, 4, 8, 16, 24, 32, 40, 48, 56, 64} (the number indicates the number of worker

threads, but not their assignment to hardware threads).

This example shows how the framework works, but it is not intended for pro-

grammers to use in the way demonstrated in this section. On the contrary, we hope

to demonstrate how hard it would be for programmers to manually coarsen code

while preserving performance portability, even with the assistance of this framework.

In our view, the framework is a tool for compiler and runtime developers who want

to test the performance portability of their contributions, as well as for testing the

performance portability of proposed programming methodologies. For example, we

will use the framework to argue that our proposed separation of coarsening goals is

beneficial for performance portability.

The programmer’s goal is to pick a coarsening that maximizes the worst-case

software optimality. A programmer may start with cut-off depths C = {1, 2, 3,

4, 5, 6, 8, 10, 12,13}. The rightmost column in Table 3.3 shows the worst-case

software optimality for each coarsening (cut-off depth), and the other columns show,

for each input set, the “partial” minimum over all platform subsets w ∈ WT2. The

programmer may choose pick the coarsening that maximizes the worst-case software

57

SwOptWC(WT2)
(QUEENS, c, AP ; i)

Size of N (Side of the Board)

Depth 4 6 8 10 12 13 SwOptWC(c)

1 17.38 96.87 33.78 N/A N/A N/A 17.38

2 8.48 64.63 71.55 75.28 83.70 80.03 8.48

3 4.81 29.60 70.26 98.03 92.19 98.05 4.81

4 3.51 14.84 37.97 84.80 98.91 98.20 3.51

5 3.51 N/A N/A 55.52 93.02 98.14 3.51

6 3.51 6.58 9.57 28.38 74.46 90.32 3.51

8 3.51 6.58 5.47 8.91 24.29 42.05 3.51

10 3.51 6.58 5.47 5.92 9.03 13.43 3.51

12 3.51 6.58 5.47 5.92 6.63 7.57 3.51

13 3.51 6.58 5.47 5.92 6.63 7.01 3.51

max
c∈C

SwOptWC(QUEENS, c, AP) = 17.38%, with c = 1.

Table 3.3: Worst-Case Software Optimality with constant cut-offs.

optimality, which is at a depth of 1. Note that some cells in the table are missing,

but filling them can only reduce the measured worst-case software optimality. Since

17.38% is already disappointing, getting a more accurate upper bound is not very

interesting.

An experienced programmer will realize that the cause of bad software op-

timality is the small input size (N = 4) that is not worth parallelizing. In re-

sponse to that, they may change their coarsening approach and consider func-

tions of the input size, such as serializing the last k recursive levels of the com-

putation (cut-off-depth(N) = N − k) or coarsening after a few recursive levels

(cut-off-depth(N) = N/k).

In this following experiment, we consider the following set of coarsening depths:

C = {N-4, N-5, N-6, N/2, N/3} and repeat the computation of Table 3.3. Table 3.4

58

shows the results. For coarsenings of the formN−k the software optimality decreases

after some value of N , whereas for the N/k coarsenings, it increases. The best

coarsening (of the ones explored) is at depth N − 6 but only gets (at most) 50.17%

worst-case software optimality. Also note that by looking at the N − k rows we can

deduce that it is probably not worth parallelizing QUEENS on T2 for N < 6.

SwOptWC(WT2)
(QUEENS, c, AP ; i)

Size of N (Side of the Board)

Depth 4 6 8 10 12 13 SwOptWC(c)

N-4 100.00 64.63 37.97 28.38 24.29 N/A 24.29

N-5 100.00 96.87 70.26 55.51 45.9 42.05 42.05

N-6 100.00 50.17 71.55 84.80 74.46 N/A 50.17

N/2 8.48 29.60 37.97 55.52 74.46 90.31 8.48

N/3 17.38 64.63 71.55 92.19 98.91 98.20 17.38

min(N/3,N-5) 100.00 96.87 71.55 92.19 98.91 98.20 71.55

max
c∈C

SwOptWC(QUEENS, c, AP) = 71.55%, with c = min(N/3, N − 5).

Table 3.4: Worst-Case Software Optimality with cut-off functions.

An even more savvy programmer will try to combine amortizing scheduler

overheads by using a N − k function and pruning parallelism by using an N/k

function. By looking at Table 3.4, one would pick depth(N) = min(N/3, N − 5) to

get the best of both amortizing and pruning and get a decent 71.55% worst-case

software optimality.

This result already gives a small indication that tackling the two goals of

coarsening separately helps preserve performance portability, but such a manual

coarsening process is very tedious and all it achieved was a decent worst-case software

optimality for a toy code, QUEENS. It is probably not something a general purpose

programmer would want to do over a large code-base. One of the contributions

of this dissertation is achieving such reasonable worst-case software optimality with

59

little or no involvement from the programmer. We do this by attacking the two goals

of coarsening separately: by applying static coarsening to amortize overheads, and

by using lazy scheduling to prune parallelism at run-time, when more information

about the input and load is available. In the next section, we describe the static

coarsening passes in the XMTC compiler tasked with amortizing the scheduling

overheads.

3.5 Coarsening in the XMTC Compiler

In this section, we describe two compiler passes that try to determine how much

parallelism is potentially profitable to expose to the scheduler. In other words, their

goal is to coarsen very fine-grained tasks to amortize scheduling overheads. The

first pass picks a grain-size for each spawn statement, and the second decides if a

spawn statement should be converted into a sequential loop. Both passes use a cost

estimation routine at their core to make these decisions, presented below.

3.5.1 Cost Estimation

The cost estimation is performed in the front-end of the compiler. Since we are

only interested in detecting and coarsening very fine-grained tasks, we exclude tasks

with loops and tasks that call functions. Furthermore, since we are only coarsening

tasks at the leaves of the spawn-tree (see discussion in Section 3.1), we also exclude

tasks that have nested parallelism. This makes cost estimation very easy, and as we

will show, that is sufficient to achieve the goal in most cases. Extending this pass

to include function calls (but not recursion), loops, and additional parallelism, is

straight-forward with full program analysis.

The cost estimation pass is implemented in the front-end of the compiler be-

cause it is used by other front-end passes. It traverses the parse tree and aggregates

costs using values for elemental operations from a table like Table 3.5. The unknown

60

Functional Unit Cost (cycles)

Branch 3

ALU Operation 1

Integer Multiply 10

Integer Divide 20

Unknown Cost 1

Table 3.5: Example of Functional Unit Costs used for Task Cost Estimation.

cost is used for inlined assembly instructions. Generally the costs are optimistic,

as we have found empirically that it is better to perform slightly more coarsening

than necessary, rather than too little. For if-then-else statements, we assign the

average of the estimated costs of the true and of the false branches. This assumes

that the true branch will be taken 50% of the time. Better heuristics or profile data

can help improve the accuracy of the cost estimator.

For a more accurate cost estimation, the pass should be done in the back-end of

the compiler, after register allocation, so that the pass will know, for example, which

values are read from registers and which from the cache, which may have significant

latency on XMT. The costs should then feed back into the front-end passes, perhaps

by compiling the code twice and keeping the cost estimation information between

compilations.

3.5.2 Picking a Grain-Size

For each spawn statement, the XMTC compiler computes a grain-size param-

eter, unless one has been provided by the programmer. The cost estimation pass of

Section 3.5.1 is called on the task code (the spawn block code). Unless the task code

contains a loop, a function call, or a nested spawn statement, the grain-size is picked

as the ratio of the minimum desired number of cycles for a task over the estimated

cost of each task
mincycles

cost
. The minimum desired number of cycles is picked so that

61

scheduling overheads are amortized. We picked a value of one thousand cycles to

keep parallelism fine-grained but profitable. The value can be overridden using a

compiler flag.

3.5.3 Serializing Spawn Statements (Parallel Loops)

Besides the scheduling overhead per task, there is the overhead of paralleliz-

ing what would otherwise be a sequential loop. This overhead includes outlining

the body of the loop into a separate function that the scheduler can call (see Sec-

tion 5.6.6). If the entire computation of such a parallel loop is short, it is preferable

to execute it sequentially. If the number of tasks created by the parallel loop is

known at compile time, the compiler will serialize or leave the spawn statement

intact. Otherwise, it will create a sequential clone of the parallel loop and pick

between the two at run-time, when the number of tasks is known.

This pass uses the cost estimation pass as a subroutine, and it will not serialize

a spawn statement that contains nested parallelism, loops, or function calls. We used

a threshold of ten thousand cycles below which a nested spawn is converted to a

sequential loop. With careful tuning a better threshold may be found. Note that

this threshold only applies for nested spawn statements because the parallelization

costs for outer spawns are lower thanks to the XMT hardware support. There, a

much smaller threshold would be needed but we have not looked into it.

The benefits of these optimizations are evaluated in the next chapter alongside

our proposed lazy scheduler.

3.6 Conclusion and Future Directions

In this chapter, we characterized coarsening and identified the two goals it

needs to achieve: amortizing scheduling overheads and pruning excessive paral-

lelism. We presented experimental evidence that performing manual coarsening to

62

achieve both goals is hard and usually leads to loss of performance portability. To

quantify that claim, we proposed a framework for evaluating what we defined as

the software performance optimality ratio of general-purpose parallel code, and we

defined two metrics, worst-case software optimality and average software optimality,

to quantify the performance portability of said code. We argued that the goal of

amortizing overheads needs to be met before tasks reach the scheduler and that

static methods offer good solutions (experimental results are presented in the next

chapter). Dynamic compilation can also provide solutions. On the other hand, the

goal of pruning parallelism is harder because it depends on the input, the context in

which the code is called, and the target platform. We consider dynamic methods,

such as lazy scheduling presented in the next chapter, to be a better fit for this task.

Finally, we presented two static coarsening optimizations that we implemented in

the XMTC compiler to amortize the overheads of fine-grained tasks and to serialize

parallel loops without enough work.

Our two static coarsening optimizations, while simple, yield good results in

conjunction with lazy scheduling. They miss, however, one important class of par-

allel codes: the recursively parallel ones. These represent at least two important

families of algorithms: divide-and-conquer and branch-and-bound. Automating the

coarsening of such codes is an interesting topic for recent [34, 3] and future research.

If the compiler can estimate the cost of a recursive function as a function of its

inputs (e.g., depth), it will be able to coarsen such codes automatically by applying

a depth based cut-off and by creating a sequential clone of the recursively parallel

code.

63

Chapter 4

Lazy Scheduling

The lack of performance portability in the best existing schedulers (Eager

Binary Splitting with simple-partitioner or auto-partitioner) is a serious issue for

general-purpose parallel programming because, not only do we want code to run

efficiently for different input sets and contexts, but we also want it to run faster on

a variety of different existing and future parallel platforms with different numbers of

cores. Ease-of-programming is also a crucial consideration: freeing the programmer

from manually determining a fixed threshold for each do-all loop will shorten their

development cycle and make them more productive. While AP does not require

manual tuning, we will show that in cases with nested fine-grain parallelism its

performance degrades and manually pruning parallelism is necessary for competitive

performance.

In this chapter, we present the concept of Lazy Scheduling and three concrete

variations of lazy scheduling based on work stealing. The concept of lazy schedul-

ing is broader than work stealing, however, and it can be applied to other types of

scheduling, but this is beyond the scope of this dissertation. Lazy Scheduling over-

comes the drawbacks related to performance portability in simple-partitioner and

auto-partitioner by not using any statically determined threshold to decide when to

stop splitting a task descriptor and adding its fragments to the work-pool. Instead,

it uses run-time conditions alone in making those decisions.

4.1 The two Insights of Lazy Scheduling

The first insight of lazy scheduling is that splitting a task descriptor and

pushing it onto the shared work-pool (the local deque in work stealing) is likely

64

to be a wasted overhead if other workers are busy with other work. In such a

situation, it is better for the worker to first execute some tasks from its current task

descriptor without pushing work onto the work-pool, and then check the system

load again to decide whether to split the remaining task descriptor. In this way,

unnecessary splitting and work-pool transactions are avoided, but tasks are pushed

on the work-pool when other workers are looking for work.

Directly implementing lazy scheduling to follow the above insight is not ob-

vious because checking if other workers are hungry for work can be expensive. For

example, maintaining global state such as a count of hungry workers does not scale

without hardware support, and on the other hand, querying workers to see if they

are hungry requires expensive remote accesses. Furthermore, the mechanism for

checking if other workers are hungry must be light-weight, otherwise workers may

stay hungry for a while before more tasks are pushed on the shared work-pool.

The second insight of lazy scheduling provides a light-weight heuristic for in-

ferring the load of the system during run-time. It involves simply looking at the size

of the shared work-pool, or parts thereof. In work stealing, for example, a worker

looks at the size of its local deque, and if it is below a threshold, the worker pushes

a task descriptor onto its deque. That is a good heuristic approximation for the

system load because if the deque size is below a threshold (empty in our implemen-

tation), that is a strong indication that other workers were hungry and stole work

from it. On the other hand, if the local deque is above the threshold, pushing tasks

onto it is postponed, and the worker executes locally one or more tasks from the

task descriptor. This results in dynamic load-based coarsening.

Unlike other work-pool transactions that have to be atomic, reading its size

can be done in a racy way, as long as the error in the result is reasonable. For

example, if the worker queries the size of its deque while a theft is performed, it is

acceptable for the check to return any of the two values for the size. This is because

a slightly stale value does not perturb the efficiency of the heuristic in practice.

65

Lazy scheduling creates a new logical state in which tasks may be, the post-

poned state. Postponed tasks are those that have become available for parallel

execution, but the lazy scheduler has detected that the system is under load and

has not yet placed them onto the shared work-pool; instead those tasks reside in the

memory that is logically private to the worker that created them (e.g., its stack).

A worker starts by working on its postponed tasks; then, in the case of lazy work

stealing, it works on the tasks in its deque before trying to steal work.

4.2 Lazy Binary Splitting (Depth-First Lazy Work Stealing)

In this section, we describe the first implementation of lazy work stealing on

XMT. We call it depth-first because it does not follow the breadth-first thefts order

of work stealing, and while we were aware of the issue at the time, we did not see

performance degradation on XMT. Depth-First Lazy Work Stealing was presented

in [83] under the name of Lazy Binary Splitting (LBS).

Lazy Binary Splitting checks if the local deque is empty and only then splits

the current task descriptor. Figure 4.1 shows how LBS works, including the deque-

is-empty check for the reasons described above. Unlike deque transactions that

often require expensive memory-fences, a deque-check does not and is therefore a

very cheap operation.

Figure 4.1: Processing a Task Descriptor with Lazy Binary Splitting (LBS)

66

Figure 4.1 shows an additional improvement in LBS – that it also stops split-

ting when the number of tasks in the task descriptor is equal to or below a statically-

determined profitable-parallelism-threshold (ppt). This is present because creating

very small amounts of parallel work is never profitable regardless of number of cores,

datasets, or context, since the overheads of parallelism creation and synchronization

will negate any gain from parallelism itself. The static coarsening compiler pass

that picks the ppt was described in Section 3.5, and it was designed to amortize

scheduling costs but not to prune parallelism. Because the ppt is independent of

number of cores, datasets, or context, and because it only depends on the work

per task and the implementation specific costs of creating parallelism, most times

it can be easily determined by the compiler for each parallel loop without sacrific-

ing performance portability. The performance portability of LBS comes from the

deque-is-empty check, which ensures that enough but not too much parallelism is

created for good load-balancing by adapting to run-time conditions. As explained in

Section 3.5, when the parallel loop contains long-running tasks, such as nested par-

allelism, loops, or recursive calls, then LBS sets the profitable-parallelism-threshold

to 1.

We now revisit the example we used to illustrate the shortcomings of serializing

work stealing (Section 2.2.2.1) in order to show how LBS overcomes them. When

lazy binary splitting is run, assuming processor A encounters a parallel loop with 16

tasks and a threshold (ppt) of 1, it creates a task descriptor with those 16 tasks and

starts processing it (Figure 4.1): since the task descriptor has more than one tasks,

it proceeds to check if the deque is empty; assuming it is, it splits the task descriptor

and places half (tasks 9 to 16) on its deque. Then A starts working on iteration

1. Note that SP and AP would have continued splitting the task descriptor and

pushing TDs with 4, 2, and 1 task before doing some actual work. In the meantime,

processor B steals the task descriptor in A’s deque and processes it: since B was a

thief, its deque is empty, so B splits the TD and places half on its deque (iterations

67

13-16), and starts working on iteration 9. Then A finishes executing iteration 1,

and processes its remaining TD (tasks 2-8): since A’s deque is empty because of B’s

theft, A splits its TD, places half (5-8) on its deque and starts working on iteration

2. B finishes iteration 9, its deque is not empty so it continues with the remaining

iterations in its TD (10-12) checking between each iteration execution if the deque

is empty. Similarly A continues with its TD (3-4). When their TDs run out of

iterations, A and B pop the TDs off their deques, split them, push half back on their

deque, and work on their half. Actually, this sequence of pop-split-push operations

is implemented as a single pop-half operation where half of the task descriptor is

popped if it has more than ppt iterations. This is done to further reduce the number

of deque transactions. For serializing work stealing the pop-take-an-iteration-push

sequence is implemented similarly.

The example shows how LBS overcomes the serializing of task descriptor ac-

cesses by splitting them (like Eager Binary Splitting whether it be SP or AP), and

also keeps the number of splits to a minimum by frequently checking the deque, mak-

ing LBS more performance portable than Eager Binary Splitting. The next section

provides a detailed comparison of the number of deque transactions and synchro-

nizations for lazy binary splitting, eager binary splitting with simple-partitioner

and auto-partitioner, and serializing work stealing (work-first). The comparison

illustrates the benefits of LBS’s run-time adaptivity to load conditions.

4.3 Analytical Comparison of LazyWork Stealing with existingWork

Stealing schedulers: A First approach

Unlike existing work stealing schedulers (e.g. SP, AP, SWS (i.e, work-first),

and help-first work stealing), LBS is able to effectively combine iterations at run-

time by postponing to push work while the local deque is not empty. This saves

useless and expensive deque transactions which require memory-fences. It is easy

68

to appreciate the difference between SP, AP and LBS by analyzing the number of

deque transactions and parent-child synchronizations (the main sources of overhead

for work stealing) needed to schedule an N task parallel loop in the three scenarios

described below. We call these three scenarios worst, intermediate and best because

they require a decreasing number of deque transactions and synchronizations from

all compared schedulers and especially LBS. Loosely speaking, an execution can be

approximated as a combination of these three scenarios, which is why it is important

to understand how the compared schedulers operate in these cases.

The results are summarized in Table 4.1. In the analysis below, we treat the

sst and ppt thresholds (in SP and LBS respectively) as parameter grain and without

loss of generality we assume that N is divisible by grain and both are powers of 2

to avoid cluttering the notation with floor and ceiling functions. We also assume

that the grain parameter of the parallel loop is honored by SWS, and help-first.

As we see, both transactions and synchronizations are linear in N for SWS, SP and

help-first, but the situation for LBS is much different: the metrics go from linear in

the worst case, to logarithmic in the intermediate case, to constant in the best case.

AP’s metrics go from linear in N in the worst case, to linear in P in the other two

cases.

Worst Case: When a worker encounters a do-all loop creating N iterations, and

there are enough idle workers to immediately steal all TDs, effectively keeping all

deques empty. This happens, for example, when parallelism is first created by

the original sequential thread, and it is barely enough to make all workers active

(N/grain ≤ P). In this case, SP and LBS behave identically: LBS always finds

an empty deque because of the thefts, and keeps splitting and pushing TDs. Sim-

ilarly the stolen TDs are split and stolen so eventually N/grain TDs are created.

That means that N/grain parent-child synchronizations occur, one for each TD.

Also 2(N/grain − 1) deque transactions happen: the factor of 2 accounts for the

69

Deque Transactions

Worst Intermediate Best

LBS(grain) 2
(

N
grain

− 1
)

log N
grain

+ 1 0

SP(grain) 2
(

N
grain

− 1
)

3N
2grain

− 1 3N
2grain

− 1

AP(K,V) 2(N − 1) 3K·P
2
− 1 3K·P

2
− 1

SWS(grain) 2(N
grain

− 1) N
grain

N
grain

Help-First(grain) 2(N
grain

− 1) 2(N
grain

− 1) 2(N
grain

− 1)

Synchronization Points

Worst Intermediate Best

LBS(grain) N
grain

log N
grain

+ 1 1

SP(grain) N
grain

N
grain

N
grain

AP(K,V) N K · P K · P

SWS(grain) N
grain

N
grain

N
grain

Help-First(grain) N
grain

N
grain

N
grain

Table 4.1: Transaction and Synchronization Costs

push and steal transaction for every task descriptor, and the −1 accounts for the

fact that one of the N/grain task descriptors is never pushed on a deque, but is

locally executed by the worker that created it. Similarly, for SWS and help-first,

we have N/grain synchronizations and 2(N/grain − 1) deque transactions. For

AP, assuming that K · P ≤ N , the task descriptor will be split into K · P chunks

and incur K · P synchronizations and 2(K · P − 1) deque transactions, ignoring the

possibility of further splitting induced by the thefts. Since thefts are generally rare

(c.f., 4.7.2) , we are not giving AP a significant undeserved advantage by ignoring

the theft-induced transactions and synchronization, so we chose to ignore them to

simplify the analysis.

70

Intermediate Case: When a worker encounters a parallel loop creating N iter-

ations, the local deque is empty, but no thefts occur during its execution. This can

happen when a worker encounters a nested parallel loop while the outer parallelism

was enough to feed all worker but not enough to fill the deques. This is very com-

mon in the XMT implementation as the outer parallelism is scheduled in hardware,

and nested parallelism, which is scheduled using software, always finds the local

deque to be empty. In the intermediate case, all N iterations will be executed on

the worker creating them. For SP, and SWS, the difference of this intermediate case

compared to the worst case is that some deque transactions can be combined, bring-

ing their total number down. For SP N/grain task descriptors will be created over

the course of this execution, as in the worst case. One will never be pushed on the

deque, but the rest will, resulting in (N/grain− 1) pushes and (N/grain− 1) pops.

This number can be reduced if we use a pop-half transaction, which combines a pop

and a subsequent push of half of the popped task descriptor. It is straight forward

to show that the number of such pop-half transactions is equal to the number of

nodes in a perfect binary tree1 with N/grain leaves, excluding the leaves, which

represent the execution of an indivisible amount of work (grain tasks) and their

parent nodes, which represent an indivisible task descriptor at the top of the deque

which cannot benefit from the pop-half transaction. The number of the remaining

nodes is N
2grain

− 1, and the number of transactions becomes 3N
2grain

− 1. The number

of synchronizations remains N/grain, as before. For AP, K · P task descriptors

will be created, and following the same logic, the number of transactions will be

3K·P
2
− 1, and the number of synchronizations will be K · P . For SWS, the number

of transactions is N/grain: one push of N − grain iterations initially, followed by

N − 2 pop-grain operations removing grain tasks each, and finally a pop of the

remaining tasks. The number of synchronizations is also N/grain; one after every

1A binary tree that has all leaf nodes at the same depth and all internal nodes have exactly

two children.

71

grain tasks. Help-first cannot benefit from the pop-grain transaction since it begins

by creating N/grain task descriptors that cannot be split further. For that reason,

the number of transactions and synchronizations is the same in this case as in the

worst case.

For LBS, the situation here is much different. Initially half the tasks (N/2)

are pushed on the deque and the other half are executed, checking the size of the

deque after every grain iterations but finding it full. Then, a pop-half operation

reclaims half of the pushed tasks (i.e., N/4) which will be executed. Then, a pop-

half will reclaim N/8 iterations, and so on, until the last N
2k

= grain iterations are

popped and executed. This amounts to log N
grain

+ 1 transactions. The number of

synchronizations is also log N
grain

+ 1 because they happen before every pop-half,

before the last pop, and at the very end.

Best Case: When a worker encounters a parallel loop creating N tasks, no thefts

occur and the deque is not empty. This happens when nested parallelism is encoun-

tered, and the outer parallelism was sufficient to fuel all workers and deques, and it

is particularly common for recursively nested parallelism.

For SP, AP, SWS, and help-first, nothing changes from the previous case, as

these schedulers do not change their behavior based on the status of the deque.

For LBS, things are very simple: no transactions occur and synchronization occurs

only once, after all iterations have executed. We call this the best case because LBS

incurs almost zero overhead in terms of deque transactions and synchronizations.

In fact, even that single synchronization can be optimized away by detecting that

none of the tasks were ever placed on the deque, but we have not implemented this

optimization.

72

4.3.1 Deque Checks

So far we have focused on the overhead of deque transactions and synchro-

nizations, but there is one more source of overheads in LBS: the checks to the local

deque to decide whether to postpone pushing work or not. These checks are very

light-weight and fast, but they are linear (N/grain − 1) in the number of tasks

in all three cases presented above. Thus, for very fine-grained tasks they can be-

come a significant source of overhead. Note that SP, AP, SWS, and help-first also

perform deque checks to determine if pushing a task-descriptor will overflow the

deque. In all three cases described above (best, intermediate, and worst), LBS, SP,

SWS, and help-first perform O
(
N/grain

)
deque checks, while AP performs O

(
K ·P

)
checks. When iterations are very fine-grained, the linear overhead of these checks

can become more important than the logarithmic or constant overhead of deque

transactions and synchronizations of LBS. This motivates the need for having a

profitable-parallelism-threshold for LBS, as will be described in the next section.

4.3.2 Role of the Profitable Parallelism Threshold (ppt)

As outlined earlier, the function of the profitable parallelism threshold (ppt) of

LBS is to amortize scheduling costs by reducing the frequency of deque-checks, while

the stop-splitting threshold (sst) of simple-partitioner focuses mainly on pruning

parallelism to control the number of deque transactions and synchronizations by

stopping the splitting. LBS achieves that goal by postponing pushing work onto

the work-pool based on the deque size, the heuristic for gauging the system load.

There is also a second source of overheads associated with the deque checks: the

scheduler executes a task by calling its closure, and, to check the size of the deque,

the execution must return to the scheduler code. So, for each deque-check, LBS

also pays the overhead of a function call. Since these overheads are linear in the

number of iterations, it is important to combine fine-grain iterations by means of

73

the profitable parallelism threshold (ppt). Remember that the ppt, also referred-

to as grain-size, is picked by the compiler for each parallel loop, as described in

Section 3.5.

Another thing to note from the analysis in Section 4.3 is that the ppt thresh-

old (grain) in the intermediate and best cases plays a minimal role in controlling

the number of transactions in LBS. The worst case, which is triggered by thefts, is

rare enough, as backed up by our results in the rest of this chapter showing better

performance for LBS, that it is fair to say that ppt is not the primary factor control-

ling the number of transactions and synchronizations in LBS. Conversely, sst is the

only way these overheads are controlled in SP, SWS, and help-first. In AP, the only

way to control the number of transactions and synchronizations is to also explicitly

provide a grain, which supersedes AP’s automatic coarsening. However, the grain

parameter was not included in the analysis because AP is typically used without a

grain-size – after all, this is its only advantage over SP.

4.4 Experimental Evaluation of Depth-First Lazy Work Stealing

(LBS) on XMT

We ran our experiments on our 75MHz XMT FPGA prototype that is very

similar to the one in [92]. The FPGA has 64 TCUs organized in 8 clusters, eight

shared 32K L1 memory modules, and an 8x8 butterfly interconnection network con-

necting clusters to the L1 cache. There is one multiply/divide unit per cluster,

each TCU has 4 prefetch buffers, and 32 integer registers. Floating point opera-

tions are not supported on that platform, so our benchmarks only perform integer

computations.

We used the same benchmarks and datasets as the ones described in Tables 3.1

and 3.2 in Section 3.3.1.1, but we repeat these tables below for convenience (Ta-

bles 4.2 and 4.3. Table 4.3 also shows the automatically computed values for ppt (the

74

profitable parallelism threshold) that were automatically computed by our XMTC

compiler.

Name Description DOP Work/Task

MM Dense Matrix Multiplication N2 N

CONV N2 image by M2 filter convolution N2 M2

FW Floyd-Warshall all-pairs shortest path N2 1

QSort Quicksort N/100 QSort(100)

BFS Breadth First Search O
(|E|
Diameter

)
O
(
1
)

SpMV Sparse Matrix by Vector Multiplication N = #non-zero 1

TSP Travelling Salesperson Problem O
(

N !
(N/2)!

)
O
(
N
2 !
)

QUEENS placing N queens on an NxN board O
(

N !
(N/2)!

)
O
(
N
2 !
)

Table 4.2: Summary of XMTC Benchmarks

Training Set Execution Set AC

Name Size grain Size grain ppt

MM 64x64 4 512x512 1 1

CONV 642 image, 162 filter 1 1K2 image, 162 filter 1 1

FW 64 nodes 32 512 nodes 64 91

QSort 10K 16 1M 256 108

BFS G(10K,200K) 16 G(10K,8M) 64 53

SpMV 30Kx100, 60K non-zero 4 80Kx5K, 40M non-zero 64 77

TSP 9 nodes 1 11 nodes 1 1

QUEENS N=9 4 N=11 1 1

Table 4.3: Benchmarks, Datasets, and Grain-Sizes.

We timed five runs for each data point and used its average. Table 4.4 shows

the standard deviation for the benchmakrs that did not have a trivial variability.

Note that for these experiments we did not focus on declarative benchmarks,

since we wanted to compare lazy binary splitting to existing approaches on codes

that they are supposed to support well. Later, we will show that on declarative

codes the performance advantages of lazy scheduling are even greater.

We compared our LBS scheduler against several other schedulers shown in

75

Name SWS SP1 APxmt APdefault SPtr/ex SPex/ex LBS1 LBS

TSP 0.02 0.02 0.01 0.01 0.02 0.02 0.53 0.50

QUEENS 0.37 0.27 0.30 0.33 1.80 1.22 1.16 1.16

QSort 1.77 1.85 3.12 2.62 2.32 3.11 5.02 3.88

Table 4.4: Standard Deviation(%) for Recursively Nested Benchmarks.

Table 4.5. All the compared approaches use the efficient hardware scheduler for

outer parallelism provided by XMT and are only used to schedule the nested paral-

lelism. We elaborate on the schedulers we have not described when we present the

experimental results.

Name Description
LBS LBS (with ppt automatically determined by compiler)
LBS1 LBS with ppt=1 // Not Recommended; For comparison only.

APdefault AP with K=V=4 as in [76]
APxmt AP with K=1, V=4, the best configuration for XMT
SPtr/ex SP with sst manually determined on training dataset and run on

the execution dataset // Realistic
SPex/ex SP with sst manually determined on execution dataset; then run

on execution dataset. // Unrealistic; For comparison only
SP1 SP with the default TBB threshold sst = 1 // Not Recom-

mended; For comparison only.
SWS Serializing Work Stealing (work-first) with grain = 1
SI Serializing Inner parallelism

Table 4.5: Summary of Compared Configurations

LBS vs. AP: First, we compared LBS to APdefault, the configuration used in

[76](i.e., K=V=4), and to APxmt(K=1, V=4), the optimal configuration for our

benchmarks on XMT. We derived the values of K=1 and V=4 for APxmt by trying

all nine configurations with K,V ∈ {1, 2, 4} and picking the one that gave the best

average performance on our benchmarks. We noticed that varying V for a given

choice of K affected performance negligibly, so we picked V=4 for best adaptivity.

While K=1 is low, it is acceptable on XMT because it will only be applied to nested

parallel loops, as the outer parallel loop iterations are scheduled individually by

76

the hardware. Figure 4.2 shows that LBS is 16.2% faster than APxmt tuned for

XMT, and 38.9% better than the default auto-partitioner configuration APdefault.

AP falls behind on the benchmarks with very fine-grain parallelism (FW, BFS and

SpMV). For those benchmarks, a manually determined sst would be required to

further reduce splitting in AP. Since the values compared are normalized run-times

(i.e., percentages) we use the geometric mean to calculate the average performance

of each scheduler, not only in this comparison, but in the following ones as well.

The standard deviations for MM, CONV, FW, BFS, and SpMV are below 0.12%.

 0

 50

 100

 150

 200

 250

 300

M
M

CONV

FW BFS
SpM

V

TSP
QUEENS

QSort

AVG(geom
)

R
un

-t
im

e
no

rm
al

iz
ed

 v
s.

 A
P

xm
t (

%
)

APdefault
APxmt

LBS

Figure 4.2: Comparing LBS to APxmt and APdefault

LBS vs. SPtr/ex Next, we compared LBS and SP in their recommended configu-

rations. For LBS, this is when ppt is determined by the compiler, while for SP, it is

when sst is manually determined by the programmer using a training data set, and

thereafter applied to run the execution dataset (SPtr/ex). Figure 4.3 shows that on

average LBS is 19.5% better and only falls behind on TSP (by 2.2%). For the other

benchmarks, LBS is up to 65.7% better. This shows that LBS is not only easier to

use since it needs no tuning, it also allows for more performance-portable code to

any dataset (in this case ex) it encounters for the first time because, as we will see

in our next comparison, the performance gap between LBS and SP diminishes when

77

SP is tuned on the execution dataset. The standard deviations of SPtr/ex on MM,

CONV, FW, BFS, and SpMV are at most 0.07%.

 0

 20

 40

 60

 80

 100

 120

M
M

CONV

FW BFS
SpM

V

TSP
QUEENS

QSort

AVG(geom
)

R
un

-t
im

e
no

rm
al

iz
ed

 v
s.

 S
P

tr
/e

x
(%

)

SPtr/ex
LBS

Figure 4.3: Comparing LBS to SPtr/ex

LBS vs. SPex/ex Next, we compared LBS to the hypothetical best case for

SP (Figure 4.4): when SP is both tuned and run on the same execution dataset

(SPex/ex). This SPex/ex case is not realistic in general, since it makes no sense for

the user of the program to tune SP for each new dataset, since typically datasets

are different in each run in deployment. After all, multiple tuning runs are a waste,

since after the first run of a dataset the program produces the required answer, and

no further runs are needed.

This result is nevertheless presented to show that even in the ideal case for

SP with idealized manual tuning on every new dataset, LBS (without tuning) still

runs faster than SPex/ex by 3.8%, and falls behind only on tsp (by 2.2%). This

means that even in rare cases when the datasets for an application have nearly

identical characteristics, LBS is still a better choice – it is slightly faster, and a lot

easier to use since no tuning is required. The greater gap between LBS and SPtr/ex

compared to SPex/ex reveals the superior portability of LBS to new datasets and

run-time conditions. The standard deviations of SPex/ex on MM, CONV, FW, BFS,

78

and SpMV are at most 0.07%.

 0

 20

 40

 60

 80

 100

 120

M
M

CONV

FW BFS
SpM

V

TSP
QUEENS

QSort

AVG(geom
)

R
un

-t
im

e
no

rm
al

iz
ed

 v
s.

 S
P

ex
/e

x
(%

)

SPex/ex
LBS

Figure 4.4: Comparing LBS to SPex/ex

LBS and LBS1 vs. SP1 and SWS Figure 4.5 first compares LBS, SP, and SWS

in their best configurations that do not require any tuning, which are LBS, SP1 and

SWS, respectively. The goal was to compare performance at a constant user effort-

level. SP is the only one of the three that needs tuning, and its best suggested

configuration without tuning is SP1, when the sst threshold is set to 1 (this is the

default value in Intel’s TBB when the user chooses not to do any tuning). SWS

is the serialized work stealing scheme. Among these three (LBS, SP1, and SWS),

it is no surprise that LBS vastly outperforms the other two, by 56.7% and 54.7%,

respectively, showing that, without tuning, LBS is the best choice.

We also present results for LBS1 in Figure 4.5 to present an interesting (but

not necessarily very meaningful) comparison between LBS1 and SP1. Neither has

any compile-time restriction on splitting, and the comparison isolates the gain from

the run-time adaptivity in LBS alone, which the figure shows is a sizable 47.2%.

However, since both LBS and SP are run in sub-optimal configurations, we should

not read too much into this result.

What is also interesting is that SP1 is never better than SWS which confirms

79

our analysis in Table 4.1: when sst = 1 SP performs approximately 3/2 more trans-

actions than SWS in the intermediate and best cases because the pop-one deque

transaction benefits SWS more than the pop-half benefits SP. It is important to rec-

ognize, however, that XMT’s hardware scheduling of outer parallel loops practically

eliminates SWS’s problem of serialized accesses to the task descriptor. Had we used

SWS to schedule the outer parallelism as well, the performance might have been

worse than that of SP1.

The standard deviations for SP1, SWS, and LBS1 on MM, CONV, FW, BFS,

and SpMV are below 0.12%.

 0

 20

 40

 60

 80

 100

 120

 140

M
M

CONV

FW BFS
SpM

V

TSP
QUEENS

QSort

AVG(geom
)

R
un

-t
im

e
no

rm
al

iz
ed

 v
s.

 S
P

1
(%

)

SP1
SWS
LBS1
LBS

Figure 4.5: Comparing LBS and LBS1 to SP1 and SWS

LBS+ vs. SI Serializing Inner Parallelism (SI) simply serializes all inner paral-

lelism. For example, nested parallel loops are converted to sequential ones. Since it

is an easy way to provide some support for nested parallelism, it has been adopted

by some OpenMP implementations, especially before version 3.0 when supporting

nested parallelism became an explicit goal of OpenMP. We found that although over-

all LBS substantially outperforms SI, for three benchmarks (FW, BFS and SpMV)

LBS falls behind. The worst was FW where LBS was performing much worse than SI

because the inner parallelism was extremely fine-grained and regular and the over-

80

head of even creating task-descriptors and running the software scheduler (LBS) was

excessive. But, because the bounds of the parallel loop were known at compile time,

the compiler decided that it is not profitable to parallelize it and chose to serialize

it, as described in Section 3.5. LBS+ includes this additional optimization.

For BFS and SpMV, the situation is more complex because the bounds of the

inner parallel loops are only known at run-time just before they are executed. Our

compiler injects a check in the code just before the inner parallel loop to decide

whether to run a serialized clone or the original parallel loop. This decision is based

on the number of iterations of the parallel loop and on a statically determined

estimate of the amount of computation (in cycles) each iteration will perform. We

run the parallel version when the total estimated computation of the parallel loop

exceeds ten thousand cycles. We call this configuration LBS+ to distinguish it from

the LBS configuration we used so far, where the optimization of static and dynamic

serialization of inner parallelism was turned off to make the comparison to the other

approaches fairer. Note that LBS+ and LBS are different only for FW, BFS and

SpMV.

Figure 4.6 shows that on average LBS+ outperforms SI by 54.2%, doing much

better than SI on code without enough outer parallelism (TSP, QUEENS, QSort)

and doing as well as SI on code with longer iterations (MM, CONV), which shows

that the additional overhead of scheduling inner parallelism is negligible in those

codes. LBS+ still falls behind on BFS and SpMV because the injected check to

decide whether to run the parallel or serialized version of the parallel loop can take

several tens of cycles (because it needs to access memory locations), which might

be a significant enough percentage of the computation of the inner do-all. Overall,

however, having the checks to pick between a serialized or the original parallel clone

of a parallel loop is very beneficial.

The standard deviation for LBS+ for the three benchmarks it affected (FW,

BFS, and SpMV) was below 0.08%. For SI, the standard deviation for all bench-

81

marks was at most 0.06%: since nested parallelism and software scheduling was not

involved, the amount of randomness and variability was greatly reduced.

 0

 20

 40

 60

 80

 100

 120

 140

M
M

CONV

FW BFS
SpM

V

TSP
QUEENS

QSort

AVG(geom
)

R
un

-t
im

e
no

rm
al

iz
ed

 v
s.

 S
I (

%
)

SI
LBS+

Figure 4.6: Comparing LBS+ to SI

4.4.1 Scalability and Speedups

Table 4.6 shows speedups with LBS+ on all 64 TCUs (parallel cores) com-

pared to running the same parallel program with LBS+ on one TCU of the XMT

prototype. The average speedup of 62.3x shows that LBS+ scales well to a signifi-

cant number of cores. Some of the speedups are super-linear, which is explained by

complex cache behavior causing more cache misses when only one TCU is active.

MM CONV FW BFS SpMV TSP QUEENS QSort

70.5 67.2 54.7 63.2 60.7 67.5 62.5 52.1

Average Speedup (arithmetic): 62.3

Table 4.6: Speedups of LBS+ vs. Parallel Program on 1 TCU

We also present speedups of our programs compared to an optimized sequen-

tial version that runs on the powerful MTCU of XMT in Table 4.7. While the

82

previous numbers reveal that LBS scales well to many cores on the XMT architec-

ture, these numbers show the attainable performance on XMT. It is fairer to judge

performance using these numbers for two reasons: TCUs are much simpler and light-

weight compared to the MTCU, which is a powerful sequential core that should be

our baseline, but, also, a sequential program is usually simpler and requires less

computation than its parallel counterpart. For example, in TSP the parallel version

uses dynamic memory allocation to build possible solutions in parallel, whereas the

serial version can use a single, statically declared array, which is why TSP has a

smaller speedup than other benchmarks.

MM CONV FW BFS SpMV TSP QUEENS QSort

63.9 28.2 37.6 12.8 26.0 11.1 20.1 6.9

Average Speedup (arithmetic): 25.8

Table 4.7: Speedups of LBS+ vs. Serial Program on MTCU

Overall, the average speedup of 25.8x is impressive given that the serial code

is more efficient, the MTCU is much more powerful than the TCUs, and that sev-

eral of our benchmarks are irregular and hard to parallelize. Unlike on XMT, for

many other platforms and compilers, irregular benchmarks yield little or no parallel

speedup.

4.5 Scalability Issues of Depth-First Lazy Work Stealing

The good theoretical bounds of work stealing rely on the scheduling order:

execution proceeds in a depth-first order by treating the local deque as a stack,

and thefts follow a breadth-first order by stealing the oldest task descriptor on a

deque. Lazy Binary Splitting violates the breadth-first thefts order because, when

it finds the local deque to be empty, it pushes work from the task descriptor being

processed, instead of the oldest (i.e., outermost) postponed task descriptor owned

83

by that worker. Often, deeply nested tasks contain less work in their computation

sub-tree than shallower tasks, and LBS ends up making smaller chunks of work

available to hungry workers by pushing the innermost postponed tasks instead of

the oldest postponed task. This, in turn, leads to more frequent thefts of smaller

amounts of work, and thus more overheads.

On multicores, thefts are more expensive than on XMT because their memory

hierarchy includes private caches. First, stealing a task descriptor involves acquiring

exclusive write permission to a cache-line that is typically owned by the victim

worker. Furthermore, the activation frame for that task typically also resides in the

private cache of the victim worker. The theft can be thought of as a light-weight

context-switch where parts of the private cache of the victim worker are transferred

to the thief. On XMT, because it does not have private caches, a theft only involves

stealing a task descriptor, an operation that is almost as cheap as popping a task

descriptor locally.

The evaluation of LBS on XMT did not reveal scalability problems, but, as

mentioned, thefts on XMT are not as expensive as on multicores, and the selected

benchmarks were not well suited to trigger a bad behavior from LBS. For the most

part, the benchmarks had two nested parallel loops, of which one was scheduled by

the hardware, and the other by LBS, in which case the breadth-first theft order was

honored. The three recursively nested benchmarks (TSP, QUEENS, QSort) were

not declarative, but included a parallelism cut-off after a certain depth. Therefore,

LBS would only push shallow tasks on the deque, as deeper ones were serialized,

thus preventing the number of thefts from increasing significantly and, with it, the

scheduling overhead.

Bergstrom et al.[13] implemented Lazy Tree Splitting (LTS), a variant of LBS

for functional programming languages that use tree representations for arrays. They

also note the potential for scaling issues of LBS and their derived LTS scheduler,

but do not find indications of that experimentally. We attribute the lack of negative

84

results to the fact that they only had a 16 core machine and that their implementa-

tion of arrays induced some parallelism coarsening, not allowing parallelism to fully

expand. In our experiments, we also found that LBS scaled well on non-declarative

codes.

To show that LBS has scaling issues on traditional multicores, we implemented

it in Intel’s Threading Building Blocks library (TBB v3.0). TBB implements work

stealing and provides the programmer with an API that implements parallel loops,

sum-like reducers, and other operations. We chose TBB because parallel TBB code

achieved good speedups versus serial implementations, indicating that TBB is im-

plemented efficiently, and because TBB supports various target platforms, which

allowed us to run experiments on a variety of machines. Cilk does not support

parallel loops, so it was not a candidate.

Algorithm 4.1 Queens declarative pseudocode. depth ∈ [1, N]

1: procedure queens(N , partial sol, depth)
2: for all i ∈ [1, N] do
3: if OK TO ADD(i, partial sol, depth) then
4: append i to partial sol
5: if depth < N then . Recursion
6: QUEENS(N, partial sol, depth+ 1)
7: else . Found a Solution
8: atomic(global sol count+ = 1)
9: end if
10: end if
11: end for
12: end procedure

To demonstrate the lack of scalability of LBS we use QUEENS (with N=14)

for its recursive nested parallelism, but without parallelism cut-off (same as Algo-

rithm 3.3 but without lines 6,7 ,8, and 10), to intensify the repercussions of choosing

the innermost task, as shown in Algorithm 4.1 . Since our goal is to set the foun-

dations of efficient support for declarative parallel programming, it is important to

ensure good scalability in the absence of manual coarsening.

We used three commercial multicores for our evaluation, summarized in Ta-

85

Name i7 Xeon T2

CPU i7 CPU 920 4 Intel Xeon E7450 UltraSPARC-T2

Clock 2.67GHz 2.4GHz 1.2GHz

Cores 4 24 8

Threads 8 24 64

L3 cache 8MB 4×12MB 4MB

RAM 6GB DDR3 48GB DDR2 32GB DDR2

kernel linux 2.6.35 linux 2.2.26 Solaris 5.10

g++ 4.4.5 4.1.2 3.4.3

libc 2.12 2.5 N/A

Table 4.8: Platform Descriptions

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 6 8

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers (i7)

Queens, 14x14 Chessboard, Declarative

LBS
AP

Figure 4.7: Scaling of schedulers on i7 (Queens)

ble 4.8. The three machines are very different and include a multicore desktop

(i7), an SMP multicore (Xeon), and a Niagara2 multithreaded multicore (T2). Fig-

ures 4.7, 4.8, and 4.9 show the performance scaling of LBS on QUEENS on these

three machines. Each data point is computed as the average of 10 executions. The

standard deviations are presented in Tables 4.9, 4.10, and 4.11. The performance of

auto-partitioner (AP), TBB’s default scheduler, is also shown for reference. TBB’s

simple-partitioner is not shown because auto-partitioner outperformed it.

86

Workers BF-LS DF2-LS LBS AP

1 0.99 0.98 1.92 0.31
2 0.37 0.44 1.64 1.27
4 2.48 1.58 1.26 1.82
6 0.37 0.45 0.89 0.65
8 0.49 1.19 2.44 0.67

Table 4.9: Standard Deviation(%) for i7 (Figures 4.7 and 4.12.)

Workers BF-LS DF2-LS LBS AP

1 1.40 0.75 0.71 0.97
2 0.73 0.65 0.47 1.57
4 0.28 0.33 0.27 0.67
6 0.26 0.15 0.70 0.95
8 0.15 0.48 1.58 0.43
12 1.41 0.21 4.01 0.86
16 1.04 5.07 2.99 0.84
18 0.26 1.11 1.62 0.25
22 0.53 0.60 1.82 0.35
24 1.48 0.43 3.39 0.62

Table 4.10: Standard Deviation(%) for Xeon (Figures 4.8 and 4.11.)

Workers BF-LS DF2-LS LBS AP

1 0.36 0.28 0.36 1.14
2 0.22 0.12 0.25 0.35
4 0.08 0.10 0.12 0.33
6 0.08 0.07 0.38 0.21
8 0.07 0.13 2.28 0.20
12 0.18 0.10 7.69 0.10
16 0.12 0.12 12.90 0.15
18 0.14 0.08 9.63 0.36
22 0.29 0.22 7.56 0.36
24 0.82 0.35 2.28 0.65
32 1.64 0.92 8.19 1.59
40 0.80 0.63 3.66 0.41
48 0.87 0.99 4.26 0.58
56 1.00 2.71 5.96 0.42
64 0.27 2.00 6.82 1.17

Table 4.11: Standard Deviation(%) for T2 (Figures 4.9 and 4.10.)

87

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 6 8 12 16 18 22 24

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers (Xeon)

Queens, 14x14 Chessboard, Declarative

LBS
AP

Figure 4.8: Scaling of schedulers on Xeon (Queens)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 4 8 12 16 24 32 40 48 56 64

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers (T2)

Queens, 14x14 Chessboard, Declarative

LBS
AP

Figure 4.9: Scaling of schedulers on T2 (Queens)

On the small i7 machine (Figure 4.7), LBS scales well and greatly outperforms

AP. The sub-linear performance scaling of LBS is attributed to the fact that when

we initiate workers (threads) than the number of cores (4), hyper-threading kicks in

and the workers compete for shared core resources.

On the two larger machines, Xeon (Figure 4.8) and T2 (Fig 4.9), LBS fails to

scale. It scales well up to 8 workers, which shows the promise of lazy scheduling,

but then flattens out and even decreases in performance as more workers are used.

88

On T2 in particular, the performance falls below the performance of AP when using

many workers. LBS’s performance degrades because workers push their innermost

postponed tasks at the moment when they discover their deque to be below the

threshold, which can contain an exponentially smaller amount of work than their

outermost postponed tasks. This greatly increases the number of thefts, the most

expensive scheduling operation, and prevents LBS from scaling to larger numbers

of workers. In Section 4.7.1, we will show that we can fix the scaling problem of

LBS and allow it to scale to larger machines. We will also count the thefts for the

compared approaches and show that LBS incurs by far the most thefts. In the next

section we present two ways to make lazy scheduling scale on multicores by reducing

the frequency of thefts it incurs.

4.6 Lazy Scheduling for Declarative Code

We describe two approaches for solving the scalability issues of LBS with

declarative code. The first, more robust but a bit harder to implement, involves

pushing the outermost postponed tasks instead of the innermost ones. The second,

less robust but trivial to implement, actually achieves comparable performance to

the first one on our set of benchmarks and may be a reasonable alternative for mid-

size machines (between 10 and 60 workers). It involves increasing the deque size

threshold of LBS from 1 to 2. This simple change has deeper effects on the scheduling

algorithm than is immediately apparent; these are described in Section 4.6.2.

4.6.1 Breadth-First Lazy Scheduling (BF-LS)

In Eager Scheduling, a worker always pushes tasks on its deque as soon as it

encounters them. Conversely, in Lazy Scheduling, if the system has enough paral-

lelism, a worker postpones pushing tasks on its deque. Later during the execution,

the worker can discover that other workers are hungry and decide to push work onto

89

the shared work-pool (e.g., its deque). At that point, the worker may have many

pending task descriptors to choose from if the code has nested parallelism.

From an implementation standpoint, the simplest solution is to push the in-

nermost postponed task – the task descriptor being processed at the time of the

decision to push work onto the work-pool. We call this approach Depth-First Lazy

Scheduling (DF-LS), and it is the approach of LBS [83] and LTS [13]. While, in our

experience, LBS works well on XMT for the benchmarks we tried (see Sections 4.4

and 4.8), using it on commercial multicores is a bad idea because (1) it pushes

deeply nested tasks which are likely to contain less work than shallower tasks, lead-

ing to more thefts and deque transactions (pushes & pops), which we are trying to

reduce by lazy scheduling in the first place, and (2) the theoretical bounds on work

stealing rely on the principle of breadth-first thefts, which DF-LS violates. In fact, in

the previous section we have shown experimentally that LBS (i.e., DF-LS) fails to

scale to large numbers of workers on multicores for a recursively nested declarative

parallel code. On the other hand, the depth-first approach may reduce the memory

footprint in practice, although it is unlikely that a better theoretical bound can be

proven.

The dual approach to DF-LS is to push on the deque the oldest postponed task,

which also has the shallowest nesting depth. This approach honors the principle

of breadth-first thefts, so we call it Breadth-First Lazy Scheduling (BF-LS). This

approach is a bit trickier to implement because we must keep track of the postponed

tasks and be able to push them on the deque, for which we use an additional list

data structure. Because of this added bookkeeping, BF-LS has a slightly higher

scheduling overhead per-task.

A third approach could push postponed tasks that are somewhere between

the outermost and the innermost ones. From an implementation standpoint, that

would incur the same (or more) bookkeeping overhead as BF-LS. The only apparent

advantage of this approach is that it could reduce the memory footprint without

90

dramatically increasing the number of thefts, however, it would still violate the

principle of breadth-first thefts.

Algorithm 4.2 BF-LS Scheduling of a TD representing a parallel loop

1: procedure processTaskDescriptor(td)
2: totalExec← 0 . Number of tasks executed
3: savedTail← worker.tail . local var used to restore tail
4: Enqueue td at worker.tail . tail of list of postponed tasks
5: while td.nrt > td.grain do . number of tasks > grain
6: if worker.dequeSize < THRESHOLD then
7: tdToPush← worker.head
8: split or push tdToPush onto worker.deque
9: else . Execute sequentially td.grain tasks
10: id← td.id; td.id← td.id+ td.grain
11: td.nrt← td.nrt− td.grain
12: td.func(id, td.grain, td.args) . Execute grain tasks
13: totalExec← totalExec+ td.grain
14: end if
15: end while
16: if worker.head 6= worker.tail then . restore tail
17: restore worker.tail using savedTail
18: else . savedTail was consumed
19: worker.head← worker.tail← NULL
20: end if
21: if td.nrt > 0 then . execute any remaining tasks
22: td.func(td.id, td.nrt, td.args)
23: totalExec← totalExec+ td.nrt
24: end if
25: return totalExec . Used to decr. continuation’s pending tasks
26: end procedure

Algorithm 4.2 presents the implementation of BF-LS. For simplicity we as-

sumed that task descriptors represent 1D iteration ranges. We increment each post-

poned TD with a pointer to the next postponed task descriptor and create a linked

list of postponed TDs per worker, with the oldest (outermost) TD at the head of

the list and the newest (innermost) at the tail. Alternatively, the task descriptor

can be kept unmodified but encapsulated in a wrapper structure that contains the

pointer to the next postponed task descriptor. In this case, each worker maintains

pointers to the head and tail of its list, in addition to maintaining its deque. The

head will be used to push (part of) the oldest TD on the deque, and the tail will be

91

used to easily add TDs to the end of the list. TDs also need to be removed from the

end of the list as they are consumed (by the depth-first execution). This is done on

lines 3 and 16-20 of Algorithm 4.2.

The access pattern of this list of postponed task descriptors is very similar to

that of a deque. New postponed task-descriptors are added at one end and consumed

from the same end; when work is needed on the deque, work is removed from the

other end of the list. Keeping this list has the following advantages compared to

just pushing all the work on the deque: (1) the list is private to the worker and

does not need any synchronization, unlike the deque which is shared; (2) a task

descriptor is not recursively split to be added to the postponed list, but it is added

as-is and modified in-place when it is being consumed or split to feed the deque;

(3) the list elements are allocated on the stack, so there is no need for additional

expensive dynamic memory allocation.

One subtle point of this algorithm is that, on lines 10 and 11, the worker must

remove the tasks from the td before executing them. This is because an executed

task may create additional tasks td′, at which point the worker may push the rest

of td on its deque. If the tasks were removed after they were executed, td could be

added to the deque including the tasks being executed, leading to a double execution

of those tasks, which is generally not correct if the task has side-effects. Relaxing the

requirement of unique execution can lead to less strict synchronization requirements

and improve performance, even though some work is duplicated [61, 66]. In our

case, however, duplicate execution violates correctness.

Another thing to notice is that on lines 16-20 of Algorithm 4.2, we must check

if the list of postponed tasks has been consumed (by line 8) in order to correctly

remove the tail of the list, which we are about to consume (lines 21-24).

92

4.6.2 DF-LS with a threshold of 2 (DF2-LS)

Simply increasing the deque size threshold of LBS from 1 to 2 can drastically

improve its performance scaling. We call this algorithm DF2-LS to distinguish it

from DF-LS (i.e., LBS) which has a threshold of 1. The fundamental difference

between the two is most noticeable when the machine is starving for parallel work,

i.e., when many workers are trying to steal and most deques are empty, as occurs

when switching from sequential to parallel execution for example. During that

initial period, a few workers have tasks to push onto their empty deques. If the

deque threshold is 1, the worker will push some tasks onto its deque, immediately

check its size, and find it equal to the threshold, because thieves have not had time

to steal the work. Consequently, the worker will falsely conclude that other workers

are not hungry, and will start executing a task. If nested parallelism is encountered,

the worker will discover that its deque is empty and push some of the inner tasks

onto its deque, instead of the outer ones. Conversely, with a threshold of 2, the

worker pushes some tasks onto its empty deque, then pushes some more of its tasks.

This second round of pushing tasks gives thieves enough time to steal the tasks the

worker pushed during the first round. The worker will subsequently keep pushing

outer tasks until thefts become less frequent and the system is no longer starving for

work. Therefore, having a threshold of 2 effectively creates a delay between pushing

work onto the deque and checking to see if thefts have occurred, making the heuristic

of checking the size of the deque a more accurate indicator of the system load.

We also experimented with adding an artificial delay between pushing work

on a deque and the subsequent size check of that deque, instead of increasing the

threshold to 2. We called usleep with arguments ranging from 1 to 25, but always

noticed a performance degradation compared to LBS. We did not try to implement

the artificial delay as a shorter busy wait (a loop of, say, 100 iterations that do

nothing), however, because we do not believe that wasting power to simply wait

is a good strategy, especially since power is already one of the factors that limit

93

performance.

Despite the good scalability results that we will present in Section 4.7.1, DF2-

LS remains a depth-first approach, with the same problem of pushing the innermost

tasks and incurring an increased number of thefts. Moreover, in the absence of nested

parallelism, the higher deque threshold of DF2-LS causes more deque transactions

(pushes and pops), without any additional benefit since all tasks are outer tasks. In

those scenarios DF2-LS is a bit slower than LBS, but its superior scalability justifies

its use over LBS.

BF-LS DF2-LS LBS AP SP

BF-Thefts Yes No No Yes Yes

Lazy Yes Yes Yes No No

Cost/Push Low+ε Low Low Low Low

#Thefts Low Medium Very High Low Low

#Pops Low Medium low High Very High

Table 4.12: Comparison of schedulers.

Table 4.12 presents a high-level comparison of the four schedulers we will

compare in the next section, including TBB’s simple-partitioner, which is also used

by Cilk++. We used a bold font to highlight the good qualities of each scheduler.

The number of thefts and the number of pops (reclaiming work from one’s own

deque), are a measure of wasted overheads and should be minimized.

The table shows that BF-LS is the best approach, but it incurs slightly more

overhead per push by accessing the task at the head of the list of postponed tasks,

instead of pushing the current task like all the other compared schedulers do. Nev-

ertheless, BF-LS is the only scheduler that minimizes both the number of thefts and

the number of pop operations, so it is likely to be the best choice for performance

and performance-portability. The experimental results in the next section support

this hypothesis.

94

4.7 Experimental Evaluation of Lazy Work Stealing on Multicores

In this section, we start by showing that our proposed solutions, BF-LS and

DF2-LS, we amend the scalability issues of LBS on the QUEENS benchmark pre-

sented in Section 4.5, and we count the number of thefts incurred by the different

schedulers to show that our hypothesis that the depth-first lazy schedulers do in-

deed cause significantly more thefts was correct. Then, we evaluate BF-LS and

DF2-LS on a set of benchmarks on three significantly different multicore platforms

and show their performance improvement over LBS and TBB’s default scheduler,

auto-partitioner. Furthermore, we compare the software optimality of the compared

schedulers on declarative code and on code that has been statically coarsened (man-

ually or otherwise) to amortize scheduling overheads. Finally, we repeat the exper-

iment of Section 3.4.2 and compute the worst-case software optimality of QUEENS

using BF-LS. We show that BF-LS achieves better worst-case software optimality

than AP with less manual coarsening.

4.7.1 Scaling of Lazy Scheduling on Multicores

First, we increment the results of Section 4.5 that illustrated the scaling prob-

lems of LBS, with the results for BF-LS and DF2-LS. To do that, we implemented

those two alternative schedulers within TBB. Given LBS, the additional effort to

implement DF2-LS, was trivial, and the effort for BF-LS was relatively modest.

As before, we present the average of ten executions for each data-point. Speedups

were computed relative to the execution time of an optimized sequential version of

the program, as opposed to the execution of the parallel code on one worker. The

standard deviations were shown in Tables 4.9, 4.10, and 4.11.

The improvement on T2 was very significant (Figure 4.10): BF-LS and DF2-

LS achieved speedups of 10.8 and 10.5 compared to the speedups of 2.1 for LBS

and 3.0 for AP. Another interesting trend was that DF2-LS performed better than

95

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 24 32 40 48 56 64

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers (T2)

Queens, 14x14 Chessboard, Declarative

BF-LS
DF2-LS

LBS
AP

Figure 4.10: Scaling of schedulers on T2 (Queens)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 6 8 12 16 18 22 24

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers (Xeon)

Queens, 14x14 Chessboard, Declarative

BF-LS
DF2-LS

LBS
AP

Figure 4.11: Scaling of schedulers on Xeon (Queens)

BF-LS on up to 56 workers, while BF-LS came ahead when using more workers.

This illustrates two things: (1) BF-LS has a higher scheduling overhead per-task

because it keeps track of postponed task descriptors, which causes it to fall slightly

behind for smaller worker counts, and (2) for a large number of workers, DF2-LS

starts suffering from the same scaling issues as LBS because it pushes the innermost

postponed work. The same trends are observed on the Xeon (Figure4.11). BF-LS

and DF2-LW achieve speedups of 12.5 and 12.4, whereas LBS and AP only reach

96

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 6 8

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers (i7)

Queens, 14x14 Chessboard, Declarative

BF-LS
DF2-LS

LBS
AP

Figure 4.12: Scaling of schedulers on i7 (Queens)

3.0.

On the small platform, the i7 (Figure4.12), BF-LS and DF2-LS achieve a

small performance boost relative to LBS only for the maximum number of threads

(8), which supports the claim that, for small machines, LBS strategy of pushing

the innermost tasks does not cause an excessive number of thefts, to the point of

hurting performance.

On all three platforms, all three of TBB’s available eager binary splitting

schedulers (i.e., simple-partitioner, auto-partitioner, and affinity-paritioner), fall sig-

nificantly behind BF-LS on the declarative version of QUEENS. Of the three TBB

schedulers, only auto-partitioner is shown in the above figures as it consistently

achieved better performance than simple-partitioner and affinity partitioner.

4.7.2 Counting Thefts

As we argued earlier, the limited scalability of LBS is caused by the choice

of pushing the innermost postponed tasks, resulting in a larger number of thefts.

We measured the number of thefts incurred by the four competing approaches on

our three platforms. Table 4.13 displays the cumulative number of thefts performed

97

by all workers, averaged over 10 runs. The number of thefts with LBS is orders

of magnitude larger than with all other approaches, and the number with DF2-LS

si much larger than with BF-LS or AP. Finally, the number for BF-LS roughly

matches that of AP. We believe that AP incurs slightly more thefts than BF-LS in

this example because it runs much longer, as it wastes time pushing and popping

tasks from the local deque. In an effort to load-balance over this longer execution

time, some additional thefts occur.

Platform LBS DF2-LS BF-LS AP

T2(64) 55,593,973.2 1,045,072.0 3,130.5 3,303.2

Xeon(24) 4,161,559.1 10,562.9 791.9 906.6

i7(8) 316,337.6 973.8 228.1 274.1

Table 4.13: Number of thefts (Average over 10 runs)

4.7.3 Evaluation on a set of benchmarks

Queens was an enlightening toy example to experimentally demonstrate how

LBS fails to scale up to a large number of workers, but it gives little confidence that

using BF-LS as the default scheduler instead of AP or SP is a good idea. To address

this, we compared the different approaches over the set of benchmarks summarized

in Table 4.14. We selected these benchmarks because they exhibit a variety of

computation and communication patterns [7]. This is important since we want

to support general-purpose parallel code. Moreover, we needed benchmarks with

nested parallelism to ensure scaling under composition and to expose the limitations

of AP and SP.

98

D
e
c
la
ra

ti
v
e

D
a
ta

se
t
(T

B
B
)

D
a
ta

se
t
(X

M
T
)

G
ra

in
N
e
st
in
g

D
O
P

W
o
rk

/
T
a
sk

D
e
sc
ri
p
ti
o
n

Q
U
E
E
N
S
(d
ec
l)

N
=

14
N
o
d
es

N
=

11
N
o
d
es

1
N

O
(N

!)
O
(1
)

fi
n
e/
ir
re
gu

la
r

T
S
P
(d
ec
l)

N
=

12
N
o
d
es

N
=

11
N
o
d
es

1
N

O
(N

!)
O
(1
)

fi
n
e/
ir
re
gu

la
r

S
p
M
V
(d
ec
l)

8
0K

x
5K

,
40

M
n
o
n
-z
er
o

sa
m
e

77
2

40
M

O
(1
)

fi
n
e/
ir
re
gu

la
r

B
F
S

1
0K

N
o
d
es
,
8
M

E
d
ge
s

sa
m
e

53
2

O
(|

E
|

D
ia

m
e
te
r

)
O
(1
)

fi
n
e/
ir
re
gu

la
r

F
W

N
=

51
2
N
o
d
es

sa
m
e

91
1
(2
D
)

N
2

O
(1
)

fi
n
e/
re
gu

la
r

C
o
a
rs
e
(n

e
d
)

D
a
ta

se
t(
T
B
B
)

D
a
ta

se
t(
X
M

T
)

G
ra

in
N
e
st
in
g

D
O
P

W
o
rk

/
T
a
sk

D
e
sc
ri
p
ti
o
n

Q
U
E
E
N
S
(c
u
t)

N
=

14
N
o
d
es

N
=

11
N
o
d
es

1
N
/ 2

=
7

O
(N

!
(N

/
2
)!

)
O
(N 2

!)
co
ar
se
/i
rr
eg
u
la
r

T
S
P
(c
u
t)

N
=

12
N
o
d
es

N
=

11
N
o
d
es

1
N
/ 2

=
6

O
(N

!
(N

/
2
)!

)
O
(N 2

!)
co
ar
se
/i
rr
eg
u
la
r

S
p
M
V
(c
oa

rs
e)

8
0K

x
5K

,
40

M
n
o
n
-z
er
o

sa
m
e

1
1

80
K

4
0M

/8
0K

=
5
00

m
ed
iu
m
/i
rr
eg
u
la
r

M
M

1
02

4x
10

24
(N

2
)

51
2x

51
2

1
1
(2
D
)

N
2

O
(N

)
co
ar
se
/r
eg
u
la
r

C
O
N
V

4
K
x
4
K

(N
2
)
im

ag
e,

1
6x

16
(M

2
)
fi
lt
er

1K
x
1K

,
16

x
16

1
1
(2
D
)

N
2

O
(M

2
)

co
ar
se
/r
eg
u
la
r

T
ab

le
4.
14
:
B
en
ch
m
ar
k
S
u
m
m
ar
y

99

To quickly refresh the reader’s memory, TSP is the traveling salesman problem

on a dense graph, QUEENS finds all possible solutions to placing N queens on an

N by N chessboard, BFS is breadth first search over a sparse graph, SpMV is sparse

matrix by (dense) vector multiplication, FW is the Floyd-Warshall all-pairs shortest

path on a dense graph, MM is the naive (N3) dense matrix multiplication, and

CONV is an image by filter convolution.

TSP(cut) and QUEENS(cut) are coarsened versions with manual parallelism

cut-off after depth N/2. SpMV(coarse) computes each row of the sparse array se-

quentially, whereas SpMV(decl) uses TBB’s parallel-reduce construct to expose all

the parallelism (one task per non-zero element of the sparse array) and to efficiently

aggregate the results. For that to be possible, we extended TBB’s reduction opera-

tion to make it lazy and support the LBS, DF2-LS, and BF-LS schedulers.

The benchmarks are divided into declarative, where all the parallelism has

been exposed, and coarsened, where either some of the parallelism was manually

hidden (e.g., cut-off for TSP and QUEENS), or not all parallelism was exposed.

All the coarsened benchmarks can be re-written as declarative ones with O
(
1
)

work per task. For example, MM and CONV can be further parallelized using a

parallel reduce operation, but due to their more regular nature, it is unlikely that the

additional parallelism would reduce the run-time. Since this parallelization could

be viewed as unnatural and unnecessary, we opted against it. However, in extreme

cases where, for example, the multiplied arrays are vectors and the result is a single

value, using the parallel reduce operation may be the only way to achieve a speedup.

For some benchmarks, we had to use a smaller dataset for the experiments

on XMT (Section 4.4), because it has less memory than the multicores. The grain

column shows the profitable parallelism threshold (ppt) taken from the XMTC com-

piler, the nesting column is the nesting depth of parallelism, and DOP is the degree

of parallelism, i.e., the maximum number of tasks that can be executed in parallel,

or, in other words, the maximum width of the computation DAG (directed acyclic

100

graph). For BFS it is on average in the order of the number of edges divided by the

graph diameter. For our dataset, the diameter is 4. The next column represents the

work per task, which happens to be constant for our declarative benchmarks and

non-constant for our coarsened benchmarks.

TBB also provides range objects that describe 2D and 3D iteration spaces and

which can be used to effectively flatten nested parallelism for dense, affine matrix

computations. This allows exposing a multi-dimensional range of parallelism, whilst

avoiding the use of nested parallelism, for which AP and SP are not very good. 2D

and 3D range objects are not available in the XMT implementation (Section 4.8),

so nested parallel loops are used on XMT.

 0

 50

 100

 150

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

442.6436.5491.2

266.0

Figure 4.13: Benchmarks on the i7 using all 8 Workers

 0

 50

 100

 150

 200

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

454.5
331.7

159.5 201.2

Figure 4.14: Benchmarks on the Xeon using only 6 Workers

101

 0

 50

 100

 150

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

356.2386.3

222.3 206.5

Figure 4.15: Benchmarks on the T2 using only 8 Workers

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 0.49 1.19 2.44 0.67
TSP(decl) 0.91 1.02 1.19 0.27
SpMV(decl) 0.52 0.68 0.58 1.18
BFS(decl) 0.36 0.23 0.16 0.53
FW(decl) 0.17 0.13 0.37 0.08

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 0.51 0.34 0.65 0.63
TSP(cut) 0.95 0.37 1.09 0.93

SpMV(coarse) 0.10 0.12 0.16 0.23
MM 0.07 0.04 0.08 1.38

CONV 0.33 0.64 0.62 1.71

Table 4.15: Standard Deviation(%) for i7 (Figure 4.13.)

Comparisons: Figures 4.13, 4.14, 4.15, 4.16, and 4.17 show the results on our

three machines, grouped into declarative and coarsened benchmarks. We used the

average of ten runs for the plots and the standard deviations are shown in Ta-

bles 4.15, 4.16, 4.17, 4.18, and 4.19. We used the geometric mean to compute the

averages since we are averaging percentages (scaled values for the execution time).

Our main goal was to demonstrate the superior performance of BF-LS and DF2-LS

compared to LBS, but since LBS and AP have neither been compared on declara-

tive code nor on multicores, the performance of AP was included in our performance

figures for reference. Compared to AP (TBB’s default scheduler), all three lazy ap-

proaches are faster on declarative code, and competitive on coarsened code. We also

measured the performance of TBB’s simple-partitioner and affinity-partitioner, but

102

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 0.26 0.15 0.70 0.95
TSP(decl) 0.40 0.14 0.37 0.51
SpMV(decl) 14.48 10.94 6.36 11.78
BFS(decl) 7.82 10.04 11.28 6.46
FW(decl) 1.98 1.33 2.00 0.90

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 0.14 0.14 0.14 0.09
TSP(cut) 0.13 0.08 0.13 0.12

SpMV(coarse) 7.05 11.02 12.91 15.15
MM 23.64 19.22 15.52 12.30

CONV 0.91 0.97 0.84 1.46

Table 4.16: Standard Deviation(%) for Xeon with 6 workers (Figure 4.14.)

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 0.07 0.13 2.28 0.20
TSP(decl) 0.09 0.05 0.52 0.05
SpMV(decl) 0.11 0.15 0.15 0.37
BFS(decl) 0.18 0.17 0.16 0.15
FW(decl) 0.06 0.07 0.07 0.08

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 0.20 0.15 0.29 0.20
TSP(cut) 0.05 0.04 0.09 0.04

SpMV(coarse) 0.12 0.15 0.16 0.69
MM 0.69 1.24 1.41 2.62

CONV 0.06 0.08 0.10 4.35

Table 4.17: Standard Deviation(%) for T2 with 8 workers (Figure 4.15.)

because auto-partitioner was consistently the best choice, we only compare against

it.

On small size machines, such as the 4-core/8-thread i7 (Figure 4.13), the ad-

ditional overheads of BF-LS and DF2-LS outweigh the benefits of incurring fewer

thefts and LBS is only marginally faster. We also performed the same comparison

on the Xeon machine using 6 workers (Figure 4.14) and on the 8-core T2 using

8 workers (Figure 4.15). These represent small multicore platforms. The conclu-

sion is the same for all three small platforms: the three lazy approaches perform

equally well, therefore LBS is preferable because it is the simplest to implement.

The standard deviations for the 6-worker Xeon and the 8-worker T2 configurations

103

are shown in Tables 4.16 and 4.17. Notice that the 6-worker Xeon configuration has

very high variation. We believe the reason for this high variability is that workers

are not pinned to cores and the operating system (OS) naively migrates them across

chips, causing them to lose their cached values. Whatever the reason, the results in

Figure 4.14 are unreliable, but the ones in Figures 4.13 and 4.15 have low variability

and are reliable.

 0

 50

 100

 150

 200

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

Figure 4.16: Benchmarks on the Xeon using all 24 Workers

 0

 50

 100

 130

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

1938.3

176.5

Figure 4.17: Benchmarks on the T2 using all 64 Workers

On the larger machines the situation is much different. On the 24-core Xeon

(Figure 4.16), LBS fails to scale on the recursively nested declarative benchmarks

TSP(decl) and QUEENS(decl) and falls behind on BFS and QUEENS(cut). DF2-LS

is the best scheduler, outperforming on average the other three approaches both on

declarative (by 47.1% vs. LBS) and on coarsened benchmarks (by 5.7% vs. LBS).

BF-LS is a close second and outperforms LBS by 44.6% on declarative benchmarks

104

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 1.48 0.43 3.39 0.62
TSP(decl) 1.05 0.65 3.17 0.50
SpMV(decl) 0.76 1.04 0.37 2.80
BFS(decl) 0.66 0.62 0.62 0.39
FW(decl) 1.98 2.17 1.94 1.47

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 1.16 0.74 0.78 0.54
TSP(cut) 1.15 1.04 1.09 0.98

SpMV(coarse) 0.37 0.27 0.30 0.33
MM 6.10 0.62 4.17 2.14

CONV 1.01 0.81 0.81 2.02

Table 4.18: Standard Deviation(%) for Xeon with 24 workers (Figure 4.16.)

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 0.27 2.00 6.82 1.17
TSP(decl) 0.30 0.47 2.88 0.10
SpMV(decl) 0.09 0.20 0.12 0.12
BFS(decl) 0.21 0.49 0.26 0.29
FW(decl) 0.12 0.13 0.16 0.11

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 0.08 0.48 1.05 0.05
TSP(cut) 0.46 0.25 0.98 0.70

SpMV(coarse) 0.23 0.24 0.10 0.87
MM 2.56 2.06 3.93 1.43

CONV 0.06 0.08 0.08 2.17

Table 4.19: Standard Deviation(%) for T2 with 64 workers (Figure 4.17.)

and by 5.8% on the coarsened ones. On the 64-thread T2 (Figure 4.17), DF2-LS and

BF-LS are comparable, with DF2-LS being a lightly better on declarative codes, but

slightly worse on coarsened codes. BF-LS is 51.7% faster than LBS on declarative

code, and 1.9% on coarsened.

BF-LS falls behind DF2-LS on BFS on both lager-sized platforms. We believe

this to be due to the higher scheduling overhead per-task of BF-LS compared to

DF2-LS or LBS, thereby requiring a higher ppt coarsening threshold. However, we

did not grant BF-LS a higher ppt to keep comparisons simpler.

105

Scaling up: We expect that on larger platforms the performance of DF2-LS will

suffer just like LBS, because it also violates the breadth-first theft principle of work

stealing. Figure 4.18 shows the performance scaling of the three lazy schedulers on

the declarative version of computing the 36th Fibonnaci number. This computation

is notorious for its high communication to computation ratio, which stresses the

capabilities of schedulers. Once again, we used the average of the runs, and the

standard deviations are shown in Table 4.20.

As expected, LBS does not scale well. Similarly, DF2-LS gradually stops

scaling for larger numbers of workers. With more than 32 workers, BF-LS becomes

the best approach because it scales better, but for fewer workers, its higher per-task

overhead makes it fall behind.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 4 8 12 16 24 32 40 48 56 64

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers

Fib(36), Declarative

BF-LS
DF2-LS

LBS

Figure 4.18: Scaling of schedulers on T2 (Fib(36))

The low speedup numbers in Figure 4.18 are not surprising since we did not

implement any manual cut-off and because TBB’s overheads for creating a task

descriptor are relatively high. This high overhead is mainly due to TBB being

implemented as a library and having to create several objects to call the scheduler.

However, the goal here is to show how the performance of the different schedulers

106

Workers BF-LS DF2-LS LBS

1 0.26 0.12 0.10
2 0.26 0.17 0.19
4 0.13 0.07 0.27
6 0.07 0.15 0.76
8 0.18 0.51 1.10
12 0.13 0.88 1.77
16 0.21 0.89 1.20
18 0.16 0.82 1.59
22 0.29 1.66 2.26
24 0.70 1.67 2.12
32 1.54 1.39 2.23
40 0.30 2.37 3.43
48 1.19 1.12 3.09
56 1.04 0.88 3.29
64 1.01 3.03 2.62

Table 4.20: Standard Deviation(%) for T2 (Figure 4.18.)

scales under extreme stress, to try and emulate the stress of running on a larger

machine. To that effect, we think that these results provide some insight.

Given the above numbers, our recommendation would be to always use BF-LS

because its performance is more robust than the depth-first lazy approaches (DF2-LS

and LBS) and because it does not fall significantly behind the best approach in the

few cases when it is not itself the best scheduler. This gives us greater confidence

that, if used on other benchmarks and applications than the ones presented here,

BF-LS will not surprise with lower than expected performance. Moreover, if one

wants to create a binary of their parallel application to be executed on platforms of

varying sizes, BF-LS is the best choice.

4.7.4 Software Optimality of Declarative Code

One of the claims we have made is that our work on lazy scheduling brings us

one step closer to efficient execution of declarative code. We substantiate this claim

by comparing the performance of declarative code to that of its coarsened counter-

part. We use the definition of software optimality from Section 3.4 (Equation 3.1)

and compare the software optimality of the different schedulers on declarative code.

107

Ideally, we should take the minimum over all possible coarsenings to prop-

erly define 100% software optimality, but given that the coarsenings we used were

carefully selected to maximize performance, and that values of software optimality

we present are all below 100%, the effort of trying all possible coarsenings to get a

slightly more accurate lower-bound on execution-time was not justified.

i7 BF-LS DF2-LS LBS AP

QUEENS 43.3 45.4 43.1 9.7

TSP 38.0 40.6 39.2 9.0

SpMV 95.2 96.0 96.0 19.6

AVG 53.9 56.1 54.6 12.0

Table 4.21: Software Optimality (%) of Declarative Code on i7

Xeon BF-LS DF2-LS LBS AP

QUEENS 56.5 57.2 13.5 12.7

TSP 45.5 46.9 18.0 15.3

SpMV 99.4 99.2 99.6 67.4

AVG 63.5 64.3 28.9 23.6

Table 4.22: Software Optimality (%) of Declarative Code on Xeon

T2 BF-LS DF2-LS LBS AP

QUEENS 38.5 37.5 7.5 10.8

TSP 25.2 26.0 6.6 6.5

SpMV 86.2 82.2 84.0 4.3

AVG 43.7 43.1 16.1 6.7

Table 4.23: Software Optimality (%) of Declarative Code on T2

In Tables 4.21, 4.22, and 4.23, we present, for each of our three platforms, the

software optimalities of the four compared schedulers for the three benchmarks for

which we had both a declarative and a coarsened version. We used the geometric

108

mean to compute the average. The results show that LBS greatly improves the

software optimality compared to AP on small platforms (i7), but fails to deliver for

the deeply nested benchmarks on larger platforms (TSP and QUEENS. On the other

hand, BF-LS and DF2-LS dramatically improve the software optimality compared

to AP for all benchmarks on all platforms, achieving over 50% software optimality

on average on i7 and Xeon, and over 6 times the software optimality of AP on T2.

When the compiler is able to perform coarsening to amortize the overheads per

task, such as for SpMV, the software optimality of our proposed solutions becomes

competitive with that of manually coarsened code, but without compromising the

performance portability. This is an indication that, with BF-LS, the programmer

will no longer need to prune the exposed parallelism, which is complicated and hurts

performance portability.

On the other hand, when the compiler is unable to perform coarsening to

amortize the overheads per task, such as for TSP and QUEENS, the software opti-

mality is low. Even so, novice programmers will not be discouraged, as their first

parallel implementations will achieve significant speedups.

4.7.5 Software Optimality of Code with Amortizing Coarsening

In this section, we ask how much software optimality can be achieved using

the lazy schedulers, assuming that the compiler or the programmer have performed

coarsening to amortize scheduling overheads. To do so, we repeat the previous

experiment, but this time, we add a cut-off depth for QUEENS and TSP and use

the profitable-parallelism threshold that was automatically computed for the lazy

schedulers with AP as well. The cut-off depth is such that, if the sub-problem would

not benefit from parallelization, it is solved sequentially. In other words, we find the

profitable parallelism threshold as a cut-off depth.

To find the cut-off depth for QUEENS, we run increasing input sizes n ∈

{1, 2, 3, . . .} and measure the sequential execution and the parallel execution on two

109

workers with the cut-off depth equal to 1. Let k be the the minimum n for which

ParT ime(n) < SerT ime(n); the cut-off function will be N− (k−1), in other words

k − 1 recursive levels from the bottom of the recursion. We repeat this process on

each target platform and get a different value of k for each of them. We repeat

the same procedure for TSP and find the amortizing cut-off depths for each of our

multicore platforms.

Table 4.24 shows the values of k−1 for each of the platforms and benchmarks.

There is little variation of the profitable parallelism cut-off depth between platforms,

as only the cut-off for TSP on the i7 is lower. This is because, due to its smaller

scale, the i7 can profit from smaller granularity of parallelism.

T2 Xeon i7

QUEENS 5 5 5

TSP 5 5 4

Table 4.24: Amortizing Cut-Off Depths for QUEENS and TSP

Tables 4.25, 4.26, and 4.27 show the software optimality results of the different

schedulers with amortized code. BF-LS is the clear winner in this comparison, with

average software optimality results between 90.4% and 95.6%. Auto-partitioner is

the worst with average software optimality results between 60.8% and 74.9%. LBS

also falls significantly behind BF-LS on the two larger platforms, Xeon and T2.

These results show two things. First, our proposed separation of coarsening

responsibilities of amortizing scheduling overheads and pruning parallelism is not

artificial, since AP was not able to keep up with the lazy schedulers when parallelism

was statically coarsened to amortize scheduling costs. In other words, pruning paral-

lelism is beneficial even when coarsening to amortize scheduling overheads has been

performed. Second, lazy scheduling constitutes a significant step towards support-

ing declarative code because it achieves very high software optimality on irregular

codes that have been coarsened just enough to amortize scheduling overheads.

110

i7 BF-LS DF2-LS LBS AP

QUEENS 88.6 90.3 86.4 46.7

TSP 93.4 94.6 93.1 89.2

SpMV 95.2 96.0 96.0 53.9

AVG 92.3 93.6 91.8 60.8

Table 4.25: Software Optimality (%) of Amortized Code on i7

Xeon BF-LS DF2-LS LBS AP

QUEENS 88.1 83.7 34.1 52.5

TSP 99.8 98.4 97.4 98.9

SpMV 99.4 99.2 99.6 81.1

AVG 95.6 93.5 69.1 74.9

Table 4.26: Software Optimality (%) of Amortized Code on Xeon

T2 BF-LS DF2-LS LBS AP

QUEENS 85.6 84.6 47.6 53.3

TSP 100.0 96.0 97.1 93.3

SpMV 86.2 82.2 84.0 54.9

AVG 90.4 87.4 72.9 64.9

Table 4.27: Software Optimality (%) of Amortized Code on T2

4.7.6 Worst-Case Software Optimality of Lazy Scheduling

In this section, we revisit the experiment of Section 3.4.2, but this time, we

wanted to measure the worst-case software optimality of breadth-first lazy work

stealing (BF-LS) on QUEENS. We evaluate three cut-off functions: N − 5, N − 6,

and no cut-off. The results are shown in Table 4.28.

With a cut-off depth of N−5, we achieved better worst-case software optimal-

ity with BF-LS than AP achieved with the more complex and aggressive coarsening

function of min(N/3, N−5). The combination of the two functions, N/3 and N−5,

111

SwOptWC(WT2)
(QUEENS, c, BFLS; i)

Size of N (Side of the Board)

Depth 4 6 8 10 12 13 SwOptWC(c)

N − 5 100.00 86.82 83.60 84.68 78.95 77.53 77.53

N − 6 100.00 57.51 47.45 97.06 92.66 91.27 47.45

NoCut 19.70 12.03 17.42 20.66 24.52 26.93 12.03

max
c∈C

SwOptWC(QUEENS, c, LBS) = 77.53%, with c = N − 5.

Table 4.28: Worst-Case Software Optimality for BF-LS.

attempted to cover both goals of coarsening – amortizing scheduling overheads and

pruning parallelism. Since BF-LS takes care of pruning parallelism, it only needs a

cut-off function of N − 5, which was selected because only for sizes of N larger than

5 does executing the computation in parallel become beneficial on the T2 platform

(see Table 4.24).

Moreover, the worst-case software optimality of BF-LS without any manual

coarsening is significantly better than that of AP (12% vs. 3.5%, cf. last line of

Table 3.3). All these results suggest that, for constant programmer coarsening effort,

BF-LS delivers better performance than AP and SP, the state-of-the-art schedulers

used today to schedule task-parallel codes.

These results suggest that, with BF-LS, the programmer needs to spend less

time fine-tuning the granularity of tasks in their code, bringing us one step closer

to efficient support of declarative code. Furthermore, using BF-LS gives the code

superior performance portability than AP (and SP), as shown by the superior worst-

case software optimality over a set of inputs and platform subsets.

Of course, these results are not conclusive, since only one benchmark was

evaluated on one platform. To obtain more results, a tool for automating the ex-

ecution of these experiments and collecting the results is would be valuable, since

they involve so many different combinations of coarsenings, inputs, platforms, and

112

platform subsets. To run these experiments for small inputs, we manually deter-

mined how many times the computation needs to be repeated in a loop, in order

to keep the execution times short, while ensuring that the aggregate running time

remained significant enough to get precise timings, by drowning the noise from ex-

ternal events (e.g., OS context switches). We also took into account the subset of

the platform used: when using a single worker we needed fewer repeats than when

using numerous workers. This tuning phase of the experiment would have to be

automated by the envisioned tool to make it practical to get results with multiple

inputs and platforms. However, building such a tool was beyond the scope of this

dissertation.

4.8 Experimental Evaluation of Scalable LazyWorkStealing on XMT

In this section, we repeat the comparison of the four schedulers (BF-LS, DF2-

LS, LBS, and AP) on the XMT manycore architecture prototype developed at the

University of Maryland. We do that (1) because one of our goals is to be able

to compile and execute declarative code efficiently on various general-purpose plat-

forms, (2) because XMT seems to allow LBS to scale well, and (3) because XMT

supports efficient execution of fine-grained irregular parallelism, which is needed for

declarative codes.

Earlier (and in [83]), we evaluated LBS on XMT, but focused on speedups

rather than on efficiently supporting declarative code. So for QUEENS and TSP, the

parallelism was manually cut-off after half of the recursive depth. This optimization

suffices to hide the scaling issues of LBS, even on traditional multicores, as shown

in Figures 4.16 and 4.17, so we ran the declarative version of QUEENS on XMT

and were surprised to find that LBS scaled well (Figure 4.19).

113

4.8.1 Scaling of Lazy Scheduling on XMT

Two hardware peculiarities of XMT are likely to help LBS scale well on XMT.

First, hardware-assisted scheduling efficiently distributes in parallel tasks coming

from the outermost collection of parallel tasks (e.g., parallel loop) to workers re-

questing work. LBS and the other software schedulers are only used to schedule

nested parallelism. The effect of combining the hardware and software scheduling

is that the hardware makes all of the outer parallelism available, and LBS deploys

a large portion of the tasks of the first nested level before getting deeper in the

recursion. This increased availability of shallow parallelism on the deques mitigates

the harmful effect of pushing deeply nested tasks later on, much like DF2-LS. Sec-

ond, XMT does not have private caches to avoid coherence issues. Consequently,

thefts do not generate coherence traffic, like they do on multicores where a cache-line

holding part of the victim deque has to be modified by the thief. Hence, thefts cost

approximately as little as popping from the local deque, decreasing the sensitivity

of performance to their number.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

8 16 24 32 40 48 56 64

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers

LBS(XMT)
LBS(XMT-)

LBS(XMT--)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

8 16 24 32 40 48 56 64

S
pe

ed
up

 v
s.

 S
er

ia
l

Number of Workers

BF-LS(XMT)
BF-LS(XMT-)

BF-LS(XMT--)

Queens, 11x11 Chessboard, Declarative

Figure 4.19: Scalability of LBS & BF-LS on XMT, XMT- and XMT--.

To determine if the hardware scheduler is helping LBS scale to 64 TCUs, we

disabled it by adding to the code an artificial outer parallel loop of a single iteration

that does nothing more than run the actual parallel code. This forces the hardware

114

to schedule the dummy iteration, and lets LBS (and other software methods) sched-

ule the entire parallel computation. We call this configuration without the hardware

scheduler XMT-. In Figure 4.19, it is evident that LBS does not scale as well on

XMT- as it does on XMT, confirming our hypothesis that the hardware scheduler

helps LBS. Nevertheless, we do not see the same drastic loss of performance on

XMT as on multicores (Figure 4.10), suggesting that XMT’s hardware scheduler is

not the only mechanism helping LBS to scale.

To test whether the lack of coherence on XMT helps LBS scale, we simulated

coherence traffic induced by thefts by adding an artificial delay for thefts between

discovering a non-empty victim deque and attempting to steal from it. The artificial

delay is a sequential busy loop of 1,000 iterations, which is intended to also simulate

the data and code transfer for the stolen task. We call this configuration with

the simulated coherence and the disabled hardware scheduler XMT--. Figure 4.19

demonstrates that LBS is sensitive to the cost of thefts whereas BF-LS is not,

which aligns with our expectation that LBS incurs more thefts. Nevertheless, we

have yet to observe the drastic loss of performance displayed by LBS on multicores.

It is an interesting question for future work to determine the precise reasons for this

apparent superior scaling of LBS on XMT and XMT--, as the answer could guide

the design of future multicores.

He et al. [45] assume that a theft costs 15,000 instructions, which is much

higher than our artificial delay of 1,000 iterations that translate to about 2,000

instructions with register operands. It would be interesting to increase the artificial

delay to 15,000 instructions in order to evaluate the scalability of LBS on XMT with

that higher delay. Note, however, that this cost of 15,000 instructions for thefts was

chosen as a conservative upper-bound by He et al., and not as an accurate estimate

of the actual cost of thefts.

115

4.8.2 Counting Thefts

We also tried to measure the number of thefts on XMT, but were unable to

add code to count the thefts without greatly affecting the execution time, and thus

the number of thefts. At the same time, using the XMT simulator [54] to count the

number of thefts for computations of this scale was not possible, due to the long

simulation time. For that reason, we do not know the number of thefts incurred by

the different schedulers on XMT.

4.8.3 Evaluation on a set of Benchmarks

We also evaluated the four schedulers on our set of benchmarks on XMT and

XMT- (Figures 4.20 and 4.21). We used the average of ten runs and the standard

deviations are shown in Tables 4.29 and 4.30. Here again, we see that the hardware

scheduler helps LBS, and that our proposed approach, BF-LS, scales robustly and

is more platform-independent.

 0

 50

 100

 150

 200

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

Figure 4.20: Benchmarks on XMT using all 64 TCUs.

On XMT (Figure 4.20), LBS is the best scheduler for the declarative bench-

marks, closely followed by BF-LS and DF2-LS, while AP falls behind by 53.9%. On

coarsened benchmarks, all approaches are equivalent on average.

On XMT- (Figure 4.21), on declarative benchmarks, DF2-LS is 8.2% faster

116

 0

 50

 100

 150

 200

QUEENS(decl)

TSP(decl)

SpM
V(decl)

BFS(decl)

FW
(decl)

AVG(decl)

 QUEENS(cut)

TSP(cut)

SpM
V(coarse)

M
M

CONV

AVG(coarse)

R
un

-t
im

e
vs

. L
B

S
(%

) BF-LS
DF2-LS

LBS
AP

Figure 4.21: Benchmarks on XMT- using all 64 TCUs.

than LBS, and BF-LS is 4.9% faster than LBS. AP is 42.1% slower than LBS. On the

coarsened benchmarks, BF-LS is 4.2% faster than LBS. DF2-LS and AP are slower

than LBS by 6% and 10.8%. Note that the standard deviation of the measurements

for SpMV(coarse) is high with AP because on XMT we are using a value of K=1

for AP, splitting the parallelism evenly into P tasks and then potentially doing

more splitting. This results in load-imbalanced chunks and in high variability for

SpMV(coarse) with AP, but on average, APxmt was preferable to APdefault even on

XMT- (i.e., with the hardware scheduler disabled). Therefore, we presented the

results for APxmt where K = 1 and V = 4.

Here too, we see that, overall, BF-LS seems to be the best choice because it

consistently performs well. We also observe that the hardware assisted scheduling

benefits LBS by exposing more of the outer tasks for parallel execution. However,

it is quite probable that, for larger instances of XMT, LBS will suffer from the same

scaling issues we witnessed on multicores, despite the assistance from the hardware

scheduler.

4.9 Related Work

In this section, we present previous work on two types of schedulers: (1)

those that support parallel function calls or futures but not parallel loops, and (2)

117

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 0.93 1.76 2.52 0.57
TSP(decl) 0.21 0.74 0.46 0.43
SpMV(decl) 0.01 0.01 0.01 0.01
BFS(decl) 0.11 0.05 0.05 0.11
FW(decl) 0.01 0.01 0.01 0.01

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 0.57 0.67 1.71 0.30
TSP(cut) 0.35 0.20 0.34 0.03

SpMV(coarse) 0.01 0.01 0.01 0.01
MM 0.01 0.01 0.01 0.01

CONV 0.01 0.00 0.00 0.02

Table 4.29: Standard Deviation(%) for XMT with 64 workers (Figure 4.20.)

Declarative BF-LS DF2-LS LBS AP

QUEENS(decl) 1.50 1.55 1.92 0.80
TSP(decl) 0.42 0.52 0.48 0.26
SpMV(decl) 2.39 1.34 1.99 2.97
BFS(decl) 0.39 0.27 0.93 0.55
FW(decl) 0.56 0.39 0.11 0.56

Coarse BF-LS DF2-LS LBS AP

QUEENS(cut) 0.85 0.53 1.83 0.30
TSP(cut) 0.43 0.21 0.82 0.05

SpMV(coarse) 0.10 0.14 0.17 11.33
MM 3.52 3.22 1.91 5.73

CONV 0.47 0.28 0.22 0.24

Table 4.30: Standard Deviation(%) for XMT- with 64 workers (Figure 4.21.)

those that explicitly support parallel loops. Then, we present work on throttling

parallelism: serializing parallelism at run-time to minimize overheads.

4.9.1 Schedulers without Parallel Loop Support

These approaches do not explicitly support parallel loops; instead they intro-

duce parallelism through function calls or futures, one task at a time. Handling of

parallel loops explicitly opens optimization opportunities not available to parallel

function calls, since loops create many tasks simultaneously, instead of one at a

time. Multiple tasks can be packaged into a single task descriptor, greatly reducing

the number of deque transactions and leading to much better performance. Work

118

stealers that do not explicitly support parallel loops miss these optimization oppor-

tunities and deliver inferior performance. Eager Binary Splitting (AP and SP) is

thus our primary competitor because it explicitly supports parallel loops. Neverthe-

less, methods for parallel function calls are outlined below, because they were the

first results on work stealing and made it popular.

Work stealing has become popular in part because of its efficient implementa-

tion in the Cilk programming language [38]. The Cilk compiler creates two clones

of functions, a fast and a slow clone. The fast one simply skips the synchroniza-

tion of tasks with their continuation if they executed on the same worker (i.e., the

continuation is not stolen). The slow clone is executed when the task is stolen and

may have, therefore, executed concurrently with one of its siblings or children. This

optimization is orthogonal to our proposed lazy scheduling, and the two should be

combined for optimal performance. Cilk [38] was designed for parallel function calls

(i.e. relatively coarse-grained parallelism), however, and it is not optimized for par-

allel loops. We have adopted a Cilk-like implementation that follows its work-first

principle and called this implementation serializing work stealing (SWS). Our re-

sults showed that it performs much worse than Lazy Scheduling for parallel loops.

This result is not surprising since Cilk was not meant for parallel loops. Other ap-

proaches that focus on coarser parallelism, such as parallel function calls and futures

[56, 67, 41, 81], have the same limitations.

Arora et al.[6] propose a non-blocking implementation of work stealing which

is well suited for multiprogrammed systems. Their approach suffers from deque

overflows that can cause the program to crash. Two other approaches [26, 46]

propose complicated solutions to the overflow problem. Lazy Scheduling sidesteps

the problem of overflowing the deques since it will stop pushing task-descriptors

on a deque that exceeds a threshold size. Therefore, deques are implemented as

constant-size circular arrays and overflow is not an issue.

Acar et al. [2] describe a method to improve the locality of work stealing.

119

This approach is implemented in TBB [76] and called affinity-partitioner(AfP). We

also compared our solutions to AfP and found it to be slower than auto-partitioner

on average, which is why we excluded it from the presentation. In fact, we also

implemented a lazy version of auto-partitioner, but it was also generally slower than

our proposed solutions. We believe lazy auto-partitioner was slower because Lazy

Scheduling relies on checking the deque frequently to push work for hungry workers,

but auto-partitioner coarsens tasks into large chunks which prevents frequent checks.

Hendler et al. [47] propose to steal half the task descriptors off a deque in-

stead of just one, so as to better spread the work across the system and prove good

theoretical bounds for load-balance. Their approach is not applicable to Lazy Sched-

uling, however, because unless a higher threshold is selected for the deque size, each

deque will have at most one (or two in the case of DF2-LS) task-descriptors at all

times. In our experience, picking a higher threshold is detrimental to performance.

However, in the case of parallel loops where binary splitting (lazy or eager) starts

by pushing a task descriptor with half the tasks onto the deque, one could say that

Hendler’s advice to steal half of the remaining tasks is heeded. The lazy aspect of

scheduling is an added benefit in addition to the binary splitting.

Goldstein et al. [41] propose a lightweight task creation mechanism for nested

parallelism (they use the term thread for tasks). Their proposed approach has the

same serializing problem as help-first work stealing because it relies on the parent

task activating nascent threads upon request by a remote processor to make them

available for execution on the remote processor.

4.9.2 Schedulers with Parallel Loop Support

When we began this work, the only work stealing schedulers that explicitly

supported parallel loops were TBB’s SP and AP [76], which is why they were the

focus of our comparisons. As discussed, the programmer is expected to determine

a good value for the stop-splitting-threshold of each parallel loop when using SP,

120

by trying out various values. Moreover, this fixed threshold limits the performance

portability of the code to a different number of cores, datasets and contexts. Lazy

Scheduling frees the programmer from choosing a threshold manually and adapts

to run-time conditions to avoid excessive splitting without falling behind on per-

formance. AP does not require programmer tuning, but it still falls behind Lazy

Scheduling because it lacks context portability, as it does not perform run-time

adaptive coarsening. Instead, it adaptively reverses some of the coarsening it does

by default, which can already be insufficient in cases of nested parallelism.

Cilk++ [62] implements eager binary splitting using the simple-partitioner

approach with a default stop-splitting threshold (i.e., grain-size) of 1 (SP1), in the

absence of a programmer supplied one. SP1 falls significantly behind Lazy Sched-

uling on code with fine-grained parallelism. CilkPlus is the latest reincarnation of

the Cilk language and follows the same approach as Cilk++ for parallel loops.

Guo et al. [43] present a scheduler that adaptively chooses between two work

stealing approaches: work-first (which we call SWS) and help-first. In work-first,

the worker picks the child task and places its continuation on the deque, whereas in

help-first, it places the child task on the deque and executes the continuation. In the

absence of parallel loops, choosing between the two approaches is orthogonal to Lazy

Scheduling. If parallel loops are introduced, both approaches serialize parallelism

creation and fork-off grain tasks at a time. In contrast, binary splitting approaches

(eager or lazy) overcome this serialization and create task descriptors with more

tasks, improving the load-balancing effect of thefts, as shown by Hendler [47].

Bergstrom et al. [13] combined Lazy Scheduling with zippers, an approach for

splitting trees, which is how arrays are represented in their functional programming

language. They call their approach Lazy Tree Splitting and show improved perfor-

mance robustness across their benchmark suite compared to eager binary splitting

with simple-partitioner.

The remaining schedulers in this sub-section support parallel loops but not

121

work stealing. OpenMP [72] recognizes the need for nested parallelism by providing

primitives, but whether nesting is truly supported or not is implementation specific.

Frequently, OpenMP implementations serialize inner parallelism, which our results

show has serious performance limitations.

The nano-threads library supports nested parallelism [65] and can be used for

OpenMP but uses a ready queue, or a hierarchical ready queue [71] for scheduling,

both of which can have an arbitrarily higher memory footprint than work stealing.

Additionally, access to the head or tail of a queue must be synchronized among

all threads, and a hierarchical ready queue (a tree of queues) has a single enqueue

point, the root, and requires multiple operations to get work to the leaves, where

it is dequeued. This makes them unsuitable for our goal of supporting declarative

fine-grained parallelism.

Duran et al.[35] propose a system that assigns processors to tasks by instru-

menting the code and getting run-time statistics to refine the distribution. They

assume, however, that the programmer has coarsened the outer parallelism into

ngroups (similar to setting the sst), and has also defined the grain-size (sst) of the

inner parallelism. Lazy Scheduling does not need to collect run-time statistics, and

does not place the burden of coarsening on the programmer.

NESL[15] employs complex compiler transformations to support nested paral-

lelism by flattening[14]. NESL is an interpreted functional language without side-

effects, which limits its scope. Moreover, it is unclear if good performance can be

achieved since only three benchmarks were evaluated (only one with nested paral-

lelism) on three architectures, and in most cases, their approach falls behind native

code for these machines. The claim is that performance would be significantly im-

proved if the language were compiled instead of interpreted, but we are unaware of

a study quantifying this claim. The approach of flattening nested parallelism seems

less fit for multithreaded platforms, such as the ones work stealing targets, because

it effectively tries to make some of the run-time scheduling choices at compile-time

122

with the limited information it has available, so as to partition the computation

as evenly as possible to the processing units. Flattened code is, however, particu-

larly important for the vector machines that were the basis of most supercomuters

through the 80’s and into the 90’s when this work was published.

4.9.3 Parallelism Throttling

Kranz et al. [56] and Certner et al. [25] have also used run-time conditions to

decide between creating more parallelism or executing work serially, but they rely on

maintaining extra state (e.g., a global counter), which creates a hot-spot and does

not scale well. Moreover, these approaches make irrevocable serialization decisions

that may hurt load-balancing. Lazy Scheduling only postpones exposing parallelism

to other workers and runs one or a few tasks before checking the system-load again.

Duran et al.[34] propose an interesting way to limit the creation of excessive

parallelism, which is not related to scheduling. In fact, they experiment with sev-

eral schedulers, demonstrating that their method works well with all of them. They

inject code that collects statistics about the amount of work of different procedures

as a function of the depth (of the call-stack) at which they are called. When enough

statistics have been collected, they turn off this profiling, and use the information

to decide which procedures to serialize and at what depth. Given a recursive par-

allel procedure such as quicksort, their approach will decide at which depth of the

recursion to start calling a serial version of quicksort. This approach is orthogonal

to Lazy Scheduling because it does not solve the need to schedule the work, and

it can be applied on top of it. In fact, our coarsened recursively nested bench-

marks (TSP, QUEENS, QSort) have manual parallelism cut-offs that achieve the

same performance benefits as Duran’s scheme. As our results show, even for these

benchmarks, Lazy Scheduling was able to schedule the remaining parallelism more

efficiently than some of the competing schedulers, without falling behind (on av-

erage) compared to the others. It is important to note, however, that parallelism

123

cut-off is only applicable to certain programs.

4.10 Analytical Comparison with other Work Stealers: A Second

Approach

In this section, we revisit the question of time and space bounds for the differ-

ent work stealing schedulers that we discussed. As mentioned, the nice theoretical

bounds that were shown in [16] apply to computations with parallel function calls

but not parallel loops or other constructs that introduce multiple tasks at once.

The bounds rely on the fact that tasks are created one at a time and need to be

amended for parallel loops. We start with the space bounds for different variants of

work stealing, then discuss the time bounds. We conclude this chapter by manufac-

turing the worst possible scenario for lazy scheduling and discussing why it might

not be an issue in practice.

4.10.1 Space Bounds

Remember that the space bound for vanilla work stealing (work stealing with-

out parallel loops) is P · S1, where P is the number of workers and S1 the space

needed by the sequential (depth-first) execution. It is important to note that the

bound is a function of the sequential space as we proceed to generalize the result in

the presence of parallel loops.

Algorithm 4.3 Generic Parallel Loop

1: for all i ∈ {1, . . . , N} do

2: CODE(i)

3: end for

Let us assume a generic parallel loop with N iterations (tasks), such as the one

shown in Algorithm 4.3. Work-first work stealing creates a single task-descriptor

per loop and therefore the P · S1 bound still holds, ignoring O
(
1
)
terms. Help-first

124

Scheduler Space Time

Work-First P · S1 T1/P + T∞ +O
(
N
)

Help-First P · S1 +O
(
N
)

T1/P + T∞ +O
(
N
)

Simple-Partitioner P · S1 +O
(
logN

)
T1/P + T∞ +O

(
logN

)
Auto-Partitioner P · S1 +O

(
logK · P

)
T1/P + T∞ +O

(
logK · P

) ∗

Lazy Scheduling (BF-LS) P · S1 T1/P + T∞ +O
(
logP

) ∗

Lazy Scheduling + XMT P · S1 T1/P + T∞
∗

Table 4.31: Space and Time Bounds for Generic Parallel Loop

work stealing starts by creating N task descriptors, one for each iteration. Thus, the

space needed is P · S1 + O
(
N
)
. Eager binary splitting with simple-partitioner will

recursively split the iteration range creating logN task descriptors, so the space will

be P ·S1+O
(
logN

)
. Auto-partitioner will only create K ·P chunks initially, so the

space requirement is P ·S1+O
(
logK ·P

)
. Finally, all the lazy scheduling approaches

have a constant bound on the number of task-descriptors in the work-pool (e.g., one

task descriptor per deque), therefore the original bound of P · S1 holds. Table 4.31

summarizes these results.

4.10.2 Time Bounds

The time bound for vanilla work stealing is T1/P + O
(
T∞

)
, where T1 is the

work, i.e, the time taken by sequential execution of the parallel code, and T∞ is the

depth, i.e., length of the critical path. For the generic loop of Algorithm 4.3, for

example, T∞ is the length of the longest of its N tasks.

Table 4.31 shows the time bounds as well. Work-first work stealing removes

the N tasks from the single task descriptor sequentially, so the time bound has an

additional O
(
N
)
term. Help-first work stealing starts by creating N task descrip-

tors before even executing the first task, so it also incurs an added O
(
N
)
on the

critical path. Simple-partitioner has a logarithmic overhead for the same reason.

125

Auto-partitioner also has a logarithmic overhead but in K · P instead of N . Lazy

Scheduling stops creating task descriptors as soon as thefts stop and the deque size

grows above the threshold, in other words, after O
(
logP

)
time, to account for the

parallel distribution of task descriptors to all P workers in logP rounds. On XMT,

because the hardware scheduler reduces these logP steps to a constant overhead

(assuming the outer parallelism is at least P), this logarithmic overhead on the crit-

ical path is removed from the time-bound of Lazy Scheduling. This occurs because,

in the intermediate and best cases (see Section 4.3), Lazy Scheduling drastically re-

duces the splitting that enters the critical path for other schedulers. Conversely,

other schedulers, even with the XMT hardware scheduling of outer parallelism, do

not shed their linear and logarithmic overheads from their time bounds because they

do not reduce their overheads in the absence of thefts.

Overall, lazy scheduling has the best bounds, both for space and time, and

the eager binary splitting approaches (SP and AP), are the next best.

Note that the time bounds for auto-partitioner and Lazy Scheduling hold only

if the work of all tasks in the parallel loop is of the same order of magnitude. In the

worst case, if an adversary picked the computational cost of each task in the loop,

the time bounds for auto-partitioner and Lazy Scheduler degrade, as discussed in

the next section.

4.10.3 Adversarial Scenarios for AP and Lazy Scheduling

Imagine that for auto-partitioner the first chunk of tasks of a parallel loop

contains O
(
W

)
work per task, whereas all of the other tasks have practically no

work, i.e., O
(
1
)
. The critical path will be T∞ = W , and because the first chunk will

contain N/KP iterations, the total work will be:

T1 = W · N

KP
+

(
N − N

KP

)
= (W +KP − 1) · N

KP

However, since auto-partitioner will execute all N/KP tasks as a single chunk,

126

its critical path will be T∞ = W · N/KP , which is N/KP times longer than the

critical path of the given code.

For Lazy Scheduling, a similar scenario induces a bad behavior. This time,

assume that the first logN tasks have O
(
W

)
work, and the rest have O

(
1
)
. Also,

assume that we stop pushing work on a deque if it is not empty (the size threshold

is one) and that thefts happen slower than checking the deque size after pushing

a task descriptor. Lazy Scheduling will push a task descriptor with half the tasks

onto its deque and will start executing the first of the “thick” O
(
W

)
tasks. In the

meantime, all of the N/2 thin O
(
1
)
tasks are split among the remaining workers

and executed very quickly. After executing its thick task, the worker that initiated

the parallel loop will find its deque empty, push a task descriptor with half of the

remaining tasks and start executing the next thick task. Once again, the N/4 thin

tasks are split and executed by the remaining workers, and so on for logN rounds.

Therefore, the worker that initiated the parallel loop will execute O
(
W

)
logN work,

which is logN times longer than the critical path of the original parallel loop.

Lazy Scheduling is not as bad as auto-partitioner in these scenarios, since its

critical path increases by a logarithmic factor, instead of a linear one.

In most realistic scenarios, it is hard to imagine that forking off half of the tasks

will fail to create enough work while the originating worker executes the first task,

especially under the commonly used slackness assumption that the parallel tasks

greatly outnumber the available workers (T1/T∞ >> P). From our experience, this

is a reasonable assumption to make for task-parallel codes, even for non-declarative

ones, and we have not encountered a situation that exposed the above vulnerability

of Lazy Scheduling.

Nonetheless, we have some thoughts on how to overcome this drawback of

Lazy Scheduling. An observation we have made is that declarative codes tend to

have short tasks. In fact, all of our declarative benchmarks had O
(
1
)
work per task.

Moreover, all the non-declarative ones would also have O
(
1
)
work per task, had we

127

made them declarative. In such codes, the critical path is the same as for vanilla

work stealing, plus the unavoidable logP overhead to distribute the work. Another

idea that could lead to a solution is to randomly choose which of the two halves of a

task-descriptor to push on the deque after splitting it. While this does not improve

the worst case, it may reduce the expected value of the critical path. Moreover,

increasing the deque size threshold to k may reduce the factor by which the critical

path increases to logN
k

, under the conservative assumption that thefts only happen

during the execution of a thick task, and not during recursive splitting, which would

be more convenient. Finally, if we modify the Lazy Scheduling to check the deque

at roughly constant (O
(
1
)
) time intervals rather than only at task boundaries, the

deque can be kept full and the critical path will likely be optimal, as the one shown

in Table 4.31. The checks can possibly be injected by a compiler pass, or they can be

triggered by a recurring hardware interrupt. The second idea might actually remove

the need for coarsening to amortize overheads altogether by controlling how often

deque checks are performed, as long as the interrupt is light weight and does not

require a context switch. If such a mechanism can be implemented, then perhaps it

is also worth considering to replace the recurring interrupt by an interrupt induced

by a thief discovering an empty deque.

4.11 The Inception of Lazy Scheduling: an Interesting Anecdote

To close this section, I would like to present an anecdote as to how the idea

for Lazy Scheduling, a central contribution of this work, came to be, and how XMT

may have played a role in enabling the development of that idea. I had just finished

implementing a basic XMTC compiler without support for nested parallelism, and

I was starting work on nested parallelism. When it came to the implementation

of the scheduler, I started implementing the popular work stealing algorithm. The

size of its work-pool is unbounded, but parallel dynamic memory allocation was not

available on XMT (since I had not implemented it); besides, using expensive dy-

128

namic memory allocation for scheduling fine-grained tasks seemed counter intuitive.

So, I made a slight change to the scheduler to check if it could add a task to the

local deque without overflowing it; if not, it would start executing a task and check

again later instead of exiting. I set capacity of the local deques to something large,

for example the number of worker threads P , so the total number of tasks in all the

deques would be at most P 2.

When I started experimenting with fine-grained parallel benchmarks, my intu-

ition was that pushing and popping tasks off the local deque is a significant waste if

they end up executing locally. So, I started reducing the capacity of the deques and

found that, with a capacity of a single task, the performance was maximized. That

observation led to the realization that the size of the local deque could be used as

a relatively accurate low-overhead approximation of the system load, and that led

to the inception of Lazy Scheduling. However, with a capacity that small, without

keeping track of postponed tasks (tasks that would have been added to the deque

had its capacity been larger) the scheduling order of work stealing was violated,

and the number of thefts (lightweight context switches) could increase dramatically,

thus destroying (temporal) locality and, with it, performance. Luckily, XMT’s de-

sign absolves programmers from most locality considerations, and the issue did not

present itself, allowing me to attack one issue at a time. Later, I implemented the

additional bookkeeping required to restore the desirable scheduling order for Lazy

Scheduling and showed its value not only on XMT, but on commercial multicores as

well. In conclusion, XMT offered a good platform for me to develop my ideas and

bring them to maturity because it allows the programmer to attack a problem in

waves: first, without care for locality, and then, by refining the solution to account

for locality.

129

Chapter 5

The XMTC Compiler

In this chapter, we present information on the XMTC compiler and language.

We start by presenting the XMTC Memory Model and the issues we encountered

when using GCC, the popular GNU compiler for C and other sequential languages, as

the basis for XMTC, a parallel language. These topics, along with some information

on XMT specific optimizations were presented in [54]. Then, we proceed to give some

more details on how outer spawn statements (i.e., parallel loops) are compiled to

take advantage of XMT’s hardware scheduling mechanisms and how we incremented

this basic compiler to support nested parallelism.

5.1 Overview

The XMTC compiler translates XMTC code to an optimized XMT executable.

Roughly speaking, the XMTC compiler consists of three consecutive passes: the pre-

pass performs source-to-source (XMTC-to-XMTC) transformations and is based on

CIL [70]; the core-pass performs the bulk of the compilation and is based on GCC

v4.0; and the post-pass, built using SableCC [39], takes the assembly produced by

the core-pass, verifies that it complies with XMT semantics and performs linking.

The xmtcc bash script links the passes together for convenience and accepts multiple

XMTC files, data files, and libraries as arguments.

One unusual aspect of the compilation of XMTC code is that assembling (con-

verting assembly to binary) happens after linking. This choice was made to allow

targeting both the XMT FPGA hardware [91, 92], which accepts binary executables,

and the XMT cycle-accurate simulator [54], which accepts a big monolithic assembly

file. This choice was made to make it easier to use the simulator as a debugging tool

130

XMTC

Source

Files (.c)

pre-pass

(CIL)

Simulator

File (.sim)
Binary

File (.bin)

core-pass

(GCC)Pre-Processed

Source Files

(.cil.c)

Assembly

Files

(.s)

post-pass

stage A

(SableCC)

XMT Binary

Object Files

(.xbo)

Processed

Assembly

Files

(.p)

post-pass

stage B: linker

(SableCC)

Figure 5.1: Compiler Passes.

and to allow adding new instructions in the simulator for experimentation, without

having to define a binary representation for them (opcodes, instruction formats,

etc).

Figure 5.1 gives an overview of the compilation process of an XMTC file. We

kept the .c file extension to have text editors interpret and highlight the code as

C code, since XMTC is an extension of C. The pre-pass takes one or more XMTC

source files and produces an intermediate .cil.c file for each source file. Then, the

core-pass produces an assembly (.s) file for each of these intermediate files. Finally,

the post-pass first performs some transformations on the assembly producing a .p

file for each .s file, then links all the files, possibly including library code and

binary files (.xbo), and produces two files: a .sim file and a .bin file. The .sim file

contains the instructions of the program in assembly and is used only when running

the program on the simulator. The .bin file has different contents depending on

whether the target platform of the compilation was the FPGA or the simulator. In

the former case, the .bin file contains contains both the code and the initial data in

binary format; in the latter case, it only contains the initial data in binary format,

and the instructions are not included (they are replaced by zeros to maintain correct

131

addressing of data).

The different passes of the compiler host different functionalities of the compi-

lation process. Here, we briefly list the functionality that each of the three compiler

passes implement and we expand on them later in this chapter.

The pre-pass (CIL) is home to source-to-source transformations, including:

(1) function cloning1 to keep stack management in sequential code optimal and to

keep track of which spawn-statements are nested; (2) outlining of outer spawn state-

ments to prevent illegal data-flow across spawn-statement boundaries; (3) spawn-

block and spawn-statement cost prediction and automatic coarsening based on that

cost-prediction, including picking a granularity parameter for spawn-statements and

static or dynamic serialization (see Section 3.5.1); (4) flattening of perfectly nested

spawns to reduce the nesting depth and avoid scheduling overheads; (5) outlining

and conversion of nested spawn-blocks to create closures for tasks that the scheduler

will be called to execute.

CIL had to be modified to allow using it for XMTC. First, the lexer and

parser had to be extended to include the XMTC extensions, but also the concrete

syntax tree produced by the parser to include a new type of statement nodes, spawn-

statements. Another much trickier modification that was required had to do with

CIL’s design to hoist all variable declarations within a function to the top of that

function. While correct for a sequential C program, the XMTC spawn-statement

implies that the scope of a variable declared within the spawn-block are private to it.

In particular, multiple instances of the variable may exist simultaneously, as many

as the tasks created by the spawn-statement. For that reason, hoisting of variable

declarations is illegal in XMTC, and the internal data-structures of CIL had to be

modified to support local variable declarations for each block of code. Finally, the

procedure that builds the concrete parse tree in CIL had to be modified to correctly

1Function Cloning simply creates a parallel clone of each function in the code and updates each

call-site to invoke the appropriate clone.

132

account for local variable declarations.

The core-pass (GCC) converts the intermediate source code to assembly. In

addition to all the conventional GCC optimization passes, the core-pass implements:

(1) live-register broadcasting for transitioning from sequential to parallel mode; (2)

cactus-stack allocation to support a parallel stack for the parallel portions of the

code; (3) global register loading and reading; as well as (4) linear and loop prefetching

implemented by George C. Caragea [20].

GCC’s parser had to be modified to parse XMTC, but its internal data struc-

tures were not. Instead, the new constructs were expressed using GCC’s existing

data structures. This choice was made to allow the use of all of GCC’s optimizations

without having to update them to account for the new types of statements and in

particular explicit parallelism. For example, a spawn-statement is compiled as a

spawn inlined assembly instruction (which GCC does not need to know about) that

is in turn followed by the spawn-block, followed by a join inlined assembly instruc-

tion. This, of course, opens the door for illegal data-flow and code-motion, which

are prevented by compiler passes, such as outlining (see Section 5.3). Furthermore,

GCC’s MIPS machine-description in GCC’s backend was cloned and incremented to

create XMT’s machine-description and to describe the existence of global-register,

as well as rules for managing them. Additionally, XMT specific passes were added

in this backend, such as live-register broadcasting and cactus-stack allocation.

The post-pass starts by performing a battery of simple transformations on the

assembly files produced by the core-pass, mainly straightforward assembly sanity

checks, rewriting, and simplifications. Then, it applies some more involved trans-

formations, namely function insertion, dead function elimination, assembly block

reordering, burst prefetching, global address and label calculation, linking of data-

files, and assembling.

The post-pass was built from scratch using the SableCC parser generator. The

grammar describing the language for parsing the assembly produced by the core-pass

133

is an extended version of the grammar written by Fuat Keceli for his cycle-accurate

XMT simulator [54, 52].

5.2 The XMTC Memory Model

The memory consistency model for a parallel computing environment is a con-

tract between the programmer and the platform, specifying how memory actions

(reads and writes) in a program appear to execute to the programmer, and specifi-

cally which values reading a memory location may return [64].

Consider the example in Figure 5.2. If memory store operations are non-

blocking, meaning they do not wait for a confirmation that the operation completed,

it is possible for Task B to read {x=0 and y=1}. At first this relaxed consistency

is counter-intuitive, but because it allows for much better performance by allowing

multiple pending write operations, it is usually favored over more intuitive but also

more restrictive models [4, 64].

Initially: x=0, y=0

Task A:

x := 1

y := 1

Task B:

Read y

Read x

Possible results read by Task B: (x, y) ∈ {(0, 0), (1, 0), (1, 1), (1, 0)}

Figure 5.2: Two tasks with no order-enforcing operations or guarantees.

The XMT memory model is a relaxed model that allows the same results

for Task B as in the previous example. It relaxes the order of memory operations

and only preserves relative ordering with respect to prefix-sum operations (ps and

psm), and to the beginning and end of spawn statements. This makes prefix-sum

operations important for synchronizing between tasks, as will be shown in Figure 5.3.

134

The XMT memory model gives the programmer two rules about the ordering

of (read and write) memory operations. First, it guarantees sequential execution

within one task, which means that a read to a memory location will return the last

value written to that location by the current task, provided it was not overwritten

by a different task. Intuitively, read or write operations from the same source

(TCU) to the same destination (memory address) will not be reordered, neither

by the hardware, nor by the compiler. This rule allows the programmer to treat

each task as they would treat sequential code, as long as the tasks do not modify

shared data (i.e., there are no data-races). The next rule deals with disambiguating

(synchronizing) access and modification of shared data.

Second, for each pair of tasks, the XMT memory model guarantees a partial

ordering of memory operations relative to prefix-sum operations over the same base.

This rule allows the programmer to reason about “happens before” [58] relations and

to enforce synchronization between concurrent tasks.

This rule is a bit more involved, so we explain it through the example in

Figure 5.3. This example shows how to implement the example of Figure 5.2 if

we want the invariant if y=1 then x=1 to hold at the end of Task B (i.e., disallow

(x, y) = (0, 1)). Both tasks synchronize (in a loose sense) over variable y using a

psm operation; task A writes (increments) y whereas task B reads it. At run-time,

one of the two tasks executes its psm instruction first; the second rule of the XMT

memory model guarantees that all memory operations issued before the psm of the

first task to execute its psm will have completed before any memory operation after

the psm of the second task is issued. In our example, assume that task A completes

its prefix-sum first. That means that the operation x=1 completed before task B

reads X, which enforces the desired invariant if y=1 then x=1 for task B.

The implementation of these two rules by the hardware and the compiler is

straightforward. For the first rule, the static hardware routing of messages from

TCUs to memory guarantees that the order of operations issued from the same

135

Initially: x=0, y=0

Task A:

x = 1 ;

tmpA = 1 ;

psm(tmpA, y) ; //y++

Task B:

tmpB = 0 ;

psm(tmpB, y) ; // Read y

. . = x // Read x

Possible results read by Task B: (x, y) ∈ {(0, 0), (1, 0), (1, 1)}

Figure 5.3: Enforcing partial order in the XMT memory model.

source to the same destination will be preserved. The compiler enforces the second

rule by (a) issuing amemory fence operation before each prefix-sum operation to wait

for all pending writes to complete, and by (b) not moving memory operations across

prefix-sum instructions. The current implementation does not take into account the

base of prefix-sum operations and may be overly conservative in some cases. Using

static analysis to reduce the number of memory fences and to selectively allow motion

of memory operations across prefix-sums could be the topic of future research. It is

unlikely, however, that such an optimization would yield substantial benefits since

prefix-sum operations are typically used to synchronize between tasks. In the future,

if more types of atomic operations are added to XMTC, the memory model may

have to be updated to enforce partial ordering with respect to them as well.

Note that in Figure 5.3 both psm operations are needed. If, for example, Task

B used a simple read operation for y instead of a prefix-sum, prefetching could cause

variable x to be read before y and the invariant if y=1 then x=1 would not hold.

An implication of the XMT memory model is that register allocation for paral-

lel code is performed as if the code were serial. The programmer, however, must still

declare variables that may be modified by other tasks as volatile. These variables

will not be register allocated, as in the case of multi-threaded C code. This is rarely

needed in XMTC user code, but it is useful in low-level library and system code.

136

Finally, the memory-fence operation is available to expert programmers who

want to explicitly enforce ordering of specific memory operations because sometimes

a prefix-sum operation is not ideal. In the example above, task A would simply

set x to 1, invoke the memory-fence, then set y to 1. This would have the same

effect as the code of Figure 5.3 but with the added benefit that y would be written

using a non-blocking store operation, which is more efficient than the blocking psm

operation.

5.3 Compiling XMTC Parallel Code with a Serial Compiler

Although we have extended the core-pass (GCC) to parse the additional

XMTC parallel constructs, it inherently remains a compiler for sequential C. Chang-

ing the internal GCC data structures to express parallelism would have required

great effort, and all the optimization passes would have had to be updated to ac-

count for these new constructs. Such a task was beyond the scope of this work and

fortunately proved unnecessary in practice. Instead, a spawn statement is parsed

as if there was a spawn inlined assembly instruction at the beginning of the spawn

block and a join at the end of it. Figure 5.4(a) shows the code as written by the

programmer, whereas Figure 5.4(b) shows how the compiler interprets it. There-

fore, GCC interprets a spawn statement as a sequential block of. This opens the

door for illegal dataflow because (1) it hides the fact that the spawn block might

be executed multiple times (i.e., its loop semantics), (2) it hides the concurrency of

these multiple executions, and (3) it hides the transfer of control from the Master

TCU to the parallel TCUs where the spawn-block is executed in the case of an outer

spawn statement.

An invalid code transformation caused by illegal dataflow is code-motion across

spawn-block boundaries. For example, the code of Figure 5.4(a) reads all the ele-

ments of array A in parallel and, if an element is non-zero, it sets found to true.

After the parallel section, counter is incremented if a non-zero element was found.

137

The compiler may choose to move the conditional increment statement if(found)

counter+=1 before the join instruction to issue the non-blocking store operation

for counter earlier and overlap it with the join instruction. The counter could then

be incremented multiple times instead of only once, which breaks the semantics of

the original program.

5.3.1 Outlining

To prevent illegal dataflow, we implemented outlining (also known as method

extraction) in the CIL pre-pass, an operation akin to the reverse of function inlining.

Figure 5.4(c) shows the outlined version of the code in Figure 5.4(a). Outlining

places each spawn statement in a new function and replaces it by a call to this new

function. According to XMTC semantics, the spawn statement should have access

to the variables in the scope of the enclosing serial section, so the outlining pass

detects which of these variables are accessed in the parallel code and whether they

might be written to. Then, it passes them as arguments to the outlined function by

value or “by reference” accordingly. In Figure 5.4(c), because the variable found is

updated in the spawn block, a pointer to it is passed to the outlined function, and

the spawn block is updated to access it through the pointer.

Outlining prevents illegal dataflow without requiring all optimizations to be

turned off. This solution works because GCC, like many compilers, does not per-

form inter-procedural optimizations. Compilers that do perform inter-procedural

optimizations often provide a flag that has the effect of preventing inter-procedural

code motion.

5.3.2 Register Broadcasting

We now present another example of illegal dataflow, but this time without

code motion. It happens because GCC is unaware of the transfer of control from

the serial processor (Master TCU) to the parallel TCUs that a spawn statement

138

(a) Original Code (c) After Outlining

int A[N] ;

bool found=fa l se ;

spawn (0 ,N−1) {

i f (A[$] !=0)

found = true ;

}

i f (found) counter+=1;

(b) What the compiler sees

int A[N] ;

bool found=fa l se ;

asm(spawn 0 , N−1);

i f (A[$] !=0)

found = true ;

asm(j o i n) ;

i f (found) counter+=1;

int A[N] ;

bool found=fa l se ;

o u t l s p 1 (A, &found) ;

i f (found) counter+=1;

.

void ou t l s p 1 (int (∗A) ,

bool ∗ found) {

spawn (0 ,N−1) {

i f (A[$] !=0)

(∗ found) = true ;

}

}

Figure 5.4: Simple example of outlining.

entails on XMT. GCC optimizations incorrectly assume that a value can be loaded

to a register before the spawn statement (within the outlined function) and later

accessed within the spawn-block. This is not the case because the value is loaded

to a Master TCU register while the spawn-block code accesses the TCU registers.

There are two ways to fix this problem: (a) move the load instruction back into the

spawn-block, causing each task to load the value from memory, potentially creating

a memory hot-spot, or (b) broadcast all live Master TCU registers (an XMT specific

operation) to the parallel TCUs at the onset of a task. We chose the second approach

because it conserves memory bandwidth.

139

(a) Wrong layout by GCC (b) Corrected layout

out l ined spawn :

spawn

BB1 :

. . .

bneq $r , $0 , BB2

j o i n

j r $31 # return

BB2:

. . .

j BB1

out l ined spawn :

spawn

BB1 :

. . .

bneq $r , $0 , BB2

j BBjoin // GCC t r i e d to

// save t h i s jump

BB2:

. . .

j BB1

BBjoin :

j o i n

j r $31 # return

Figure 5.5: Example of assembly basic-block layout issue.

5.3.3 Assembly Code Layout Correction

Finally, XMT places a restriction on the layout of the assembly code of outer

spawn blocks, because it needs to broadcast the code to the TCUs. The restriction

is that all spawn-block code must be placed between the spawn and join assembly

instructions. Interestingly, in its effort to optimize the assembly, GCC might decide

to place a basic-block (a short sequence of assembly instructions) that logically

belongs to a spawn-block after it. In the example of Figure 5.5(a), basic-block 2

(BB2) is placed after the return statement of the outlined spawn function to save

one jump instruction.

The assembly code produced by GCC has correct semantics, but it will lead

to incorrect execution on XMT because BB2 will not be broadcast by the XMT

hardware, and TCUs do not currently have access to instructions that were not

broadcast. Future versions of XMT will allow TCUs to fetch instructions that are

140

not in their instruction buffer by including instruction caches at the cluster or TCU

level.

One way to avoid this code layout bug would be to disable the offending

optimization passes, but that would prevent the optimizations from happening even

when they are legal. Instead, the post-pass checks for layout violations and fixes

them by relocating misplaced basic-blocks, as shown in Figure 5.5(b).

5.3.4 Why illegal dataflow is not an issue for thread libraries

There are several libraries that are used to introduce parallelism to serial

languages (e.g., Pthreads). Code written using such library calls are compiled us-

ing a serial compiler, so one might wonder why illegal dataflow is not an issue in

that scenario. In Pthreads, the programmer creates an additional thread using

the pthread create call, which takes as an argument a function to execute in the

new thread. In other words, the programmer is forced to do the outlining man-

ually. Moreover, thread libraries do not introduce new control structures in the

base language, such as XMTC’s spawn statement, so the compiler does not need to

be updated. That said, serial compilers can still perform illegal optimizations on

Pthreads code [17], but these are rare enough so that Pthreads can still be used in

practice. The main disadvantages of using a thread library, however, is the lack of

compiler optimizations specifically targeting parallel code and the added complexity

for the programmer: creating parallelism through a library API is arguably harder

and less intuitive than directly creating it using parallel constructs incorporated in

the programming language. The converse argument, that libraries are preferable to

new languages, has also been stated [89], primarily on the basis of backward compat-

ibility with sequential code-bases and of the reluctance of programmers to learn new

languages. We believe that parallel extensions to existing languages are preferable

because they provide backwards compatibility, cleaner and easier parallel coding,

and better performance. We concede, however, that extending a programming lan-

141

guage is a much more substantial effort than writing a library, but we believe it is

worth the effort.

5.4 XMT-Specific Optimizations

Some of the design decisions of XMT create new opportunities for compiler

optimizations that were not possible or not needed for other architectures. Novel

parallel architectures may adopt similar designs, making these optimizations relevant

to them. This section presents some of them.

5.4.1 Latency tolerating mechanisms.

The XMT memory hierarchy is designed to allow for scalability and perfor-

mance. To avoid costly cache coherence mechanisms (in terms of chip resources as

well as performance overheads), the first level of cache is shared by all the TCUs,

with an access latency in the order of 30 clock cycles for a 1024 TCU XMT con-

figuration. Several mechanisms are included in the XMT architecture to overlap

shared memory requests with computation or to avoid them: non-blocking stores,

TCU-level prefetch buffers, and cluster-level read-only caches. Compiler managed

scratch-pad memory per TCU or per cluster is also on XMT’s roadmap.

Currently, the XMT compiler includes support for automatically replacing el-

igible writes with non-blocking stores and for inserting prefetching instructions to

fetch data in the TCU prefetch buffers. Support for automatically taking advan-

tage of the read-only caches is planned for future revisions of the compiler. In the

meantime, programmers can explicitly load data into the read-only caches if needed.

The XMT compiler offers three prefetching options: linear prefetching, loop

prefetching, and burst prefetching. The first two were developed by George C.

Caragea as part of his dissertation [21], whereas burst prefetching was contributed

by myself, as it helps to efficiently support function calls in parallel mode.

142

Linear prefetching issues a prefetch instruction for each memory load and the

modified instruction scheduler pass in GCC tries to hoist the prefetch instruction

up the control-flow graph (CFG) to hide as much latency as possible. The lack

of local caches on XMT makes linear prefetching very profitable as it compensates

for the lack of spatial locality normally provided by caches. Linear prefetching is

not resource-aware, and in some cases, it can degrade performance by thrashing the

prefech buffer with requests that overwrite one another. This happens, for example,

when more prefetches than prefetch buffer locations are issued simultaneously.

The loop prefetching mechanism was designed to match the characteristics

of a lightweight, highly parallel many-core architecture. It has been shown to out-

perform state-of-the-art prefetching algorithms such as the one included in the GCC

compiler, as well as hardware prefetching schemes [20]. The key observation is

that taking into account the size of the prefetch buffer and reducing the prefetch

distance accordingly benefits performance. The prefetching algorithm is potentially

applicable to other many-core platforms with small prefetch buffers.

5.4.1.1 Burst Prefetching

Burst prefetching hides latency when more than one contiguous memory load

instruction is encountered. This is common in RISC architectures such as XMT,

especially when a function returns, and it has to restore the callee saved registers it

modified. Load operations are blocking, so a sequence of N loads requires N round-

trips to memory, but this number can be reduced by means of prefetching. Linear

prefetching misses this opportunity because it is implemented in the front-end of the

compiler, before register allocation and stack management code generation. On the

other hand, burst prefetching is implemented in the post-pass with the specific goal

to act after those compiler passes produce assembly code. Like linear prefetching,

burst prefetching is useful because of the lack of local caches that would provide

spatial locality.

143

(a) Assembly Produced by GCC (b) After Burst Prefetching

lw $31 , 48($sp)

lw $23 , 44($sp)

lw $22 , 40($sp)

lw $21 , 36($sp)

lw $20 , 32($sp)

p r e f 8 , 44($sp) // 1

pr e f 8 , 40($sp) // 1

pr e f 8 , 36($sp) // 1

pr e f 8 , 32($sp) // 1

lw $31 , 48($sp) // RTTM

lw $23 , 44($sp) // 1

lw $22 , 40($sp) // 1

lw $21 , 36($sp) // 1

lw $20 , 32($sp) // 1

5 Round-Trips to Memory(RTTM) 1 RTTM + 8

Figure 5.6: Simple Burst Prefetching Example.

Figure 5.7(a) shows a snippet of the assembly code produced by the core-pass

(GCC) when compiling theQUEENS benchmark. Nine consecutive load instructions

are issued to restore registers before returning from a function, which results in

nine round-trips to memory (RTTM). Figure 5.7(b) shows the same code after the

burst prefetching has inserted prefetching instructions. Burst prefetching is resource

aware, taking the size of the prefetch buffer as an input, but does not try to hoist

the inserted prefetches after they are inserted. The key idea is to use a prefetch-

buffer miss (similar to a cache miss) to hide the latency of multiple prefetches. To

illustrate that concept we use a simpler example.

Figure 5.6(a) shows five consecutive load instructions resulting in five RTTM.

Assuming the prefetch buffer can hold four words (elements), burst prefetching

will issue prefetch instructions for the last four load instructions as shown in Fig-

ure 5.6(b). The first load instruction will incur a round trip to memory since it

was not prefetched (prefetch-buffer miss), but, during that time, the four issued

prefetches will presumably have time to complete. In reality, queuing at various

points in the system may cause them not to complete, but they will have made

144

(a) Assembly Produced by GCC (b) After Burst Prefetching

lw $31 , 48($sp)

lw $23 , 44($sp)

lw $22 , 40($sp)

lw $21 , 36($sp)

lw $20 , 32($sp)

lw $19 , 28($sp)

lw $18 , 24($sp)

lw $17 , 20($sp)

lw $16 , 16($sp)

p r e f 8 , 44($sp) // 1

pr e f 8 , 40($sp) // 1

pr e f 8 , 36($sp) // 1

pr e f 8 , 32($sp) // 1

lw $31 , 48($sp) // RTTM

lw $23 , 44($sp) // 1

pr e f 8 , 28($sp) // 1

lw $22 , 40($sp) // 1

pr e f 8 , 24($sp) // 1

lw $21 , 36($sp) // 1

pr e f 8 , 20($sp) // 1

lw $20 , 32($sp) // 1

pr e f 8 , 16($sp) // 1

lw $19 , 28($sp) // RTTM−6

lw $18 , 24($sp) // 1

lw $17 , 20($sp) // 1

lw $16 , 16($sp) // 1

9 Round-Trips to Memory (RTTM) 2 RTTM + 9

Figure 5.7: Complete Burst Prefetching Example.

substantial progress nonetheless. Overall, the code after burst prefetching takes 1

RTTM + 8 cycles to complete, as opposed to 5 RTTM for the original code. This is

substantial, considering that one RTTM measures around 25 cycles on the 64 TCU

XMT FPGA and can take longer on XMT configurations with more TCUs. Note

that the burst prefetching will issue prefetches for all the load instructions if they

fit in the prefetch buffer: if there were 4 loads in the above example, they would all

be prefetched.

The example in Figure 5.6 illustrates that with a prefetch buffer of K words,

the number of RTTMs can be reduced by a factor of K + 1 and a small number of

cycles will be added for issuing the prefetching instructions. Figure 5.7 shows what

145

Algorithm 5.1 Burst Prefetching Algorithm

1: INPUT: instructions: list of load instructions
2: OUPTUT: output: list of instructions including prefetching
3: while you have not considered all instructions for prefetching do
4: . Go through the instructions list from head to tail
5: if The number of load instructions remaining is larger than the size of

the Prefetch Buffer AND there is no upcoming load instruction that was not
prefetched (that was skipped) then

6: Skip prefetching for the load instruction under consideration, keep track
of the instruction (and consider the next load instruction in the next iteration)

7: else
8: Build a prefetch instruction for the load currently under consideration and

add it to the output. Also increment the number pending prefetch instructions.
9: while The number of pending prefetches is ≥ than the Prefetch Buffer

Size do
10: Move a load instruction from the head of instructions to the tail of

output
11: If that load instruction was prefetched, decrement the number of

pending prefetches, else (it was skipped) mark that there is no longer an up-
coming load instruction that was not prefetched.

12: end while
13: end if
14: end while
15: Enqueue the rest of instructions to output

happens when the number of consecutive load instructions is larger than K (but

smaller than 2K). The first part is identical: four prefetches are issued; then, load

instructions are inserted and as prefetch buffer locations are freed by them, more

prefetches are issued.

Two rules form the core of the burst prefetching algorithm as it traverses

the list of consecutive loads. First, if the number of remaining load instructions is

greater than the size of the prefetch buffer, a load is skipped (no prefetch is issued

for it) and the miss it will cause will allow the pending prefetches to complete.

Second, prefetches are issued as soon as possible taking into account the size of the

prefetch buffer. When pending prefetches fill up the prefetch buffer, load instructions

are pushed to the output instruction list until a prefetch buffer location is freed

(consumed).

146

Algorithm 5.1 gives a verbal description of the algorithm of burst prefetching

and Algorithm 5.2 presents its pseudocode.

Closed Formula for Burst Prefetching. To define the closed form formula

for the number of cycles taken by a sequence of lw instructions given a prefetch

buffer of size S, we first define some values. Let LRTTM be the number of load

instructions that require a round trip to memory. Those are LRTTM = d lw
S+1
e. The

number of remaining load instructions is LR = lw − LRTTM . The number of load

instructions that were not prefetched is N = b lw
S+1
c, and the number of prefetched

instructions is P = lw−N . Let O be the number of overlapped cycles by prefetches

issued before a load but without an intermediate RTTM operation. This number

is convoluted and only reduces the cycle count slightly. Without it (assuming it is

zero), we still get a pretty accurate upper bound on the number of cycles it takes to

execute lw load instructions with burst prefetching, using a prefetch buffer of size

S (see Equation 5.1).

Cycles(lw, S) = RTTM · LRTTM + LR + P −O (5.1)

To define the number of overlapped cycles O we need to define the following

values: let m = lw mod (S + 1); let a be zero if m = 0 and one otherwise (a =

{0 if m = 0, 1 if m 6= 0}); let c be zero if lw ≤ S and one otherwise (c = {0 if lw ≤

S, 1 if lw > S}). The number of overlapped cycles is then:

O = a · ((m− 1) + c · (S − 1)) (5.2)

147

Algorithm 5.2 Burst Prefetching Pseudocode

1: procedure BurstPrefetching(instructions) . List of load instructions
2: hasSkipped← false . true when the next load was not prefetched
3: prefCnt← 0 . Number of pending prefetches
4: read← instructions.head . Pointer to read next load
5: insert← instructions.head . Pointer to insert next load
6: ouput← ∅ . List of instructions with prefetches
7: . Invariant A: insert(.next)prefCount+s = read,
8: . where s = 1 if hasSkipped = true, and s = 0 otherwise.
9: while read 6= instructions.tail do
10: if hasSkipped = false ∧ remaining loads > PrefBuff.size then
11: . Skip load instruction pointed to by read
12: hasSkipped← true
13: skipped← read
14: read← read.next
15: else
16: pref ← build prefetch instruction for read
17: output.enqueue(pref)
18: read← read.next
19: prefCount← prefCount+ 1
20: while prefCnt ≥ PrefBuff.size do
21: output.enqueue(insert)
22: insert← insert.next
23: if hasSkipped = true ∧ skipped = insert then
24: hasSkipped← false
25: else
26: prefCnt← prefCnt− 1
27: end if
28: end while
29: end if
30: end while . invariant: read = tail
31: while insert 6= tail do . Invariant A stops holding
32: output.enque(insert)
33: insert← insert.next
34: end while
35: return output
36: end procedure

148

5.5 Compiling a flat XMTC spawn statement

This section focuses on how a flat spawn statement, i.e., one without nested

parallelism, is compiled down to assembly. The interesting aspect is how the XMT

hardware is harnessed for scheduling such outer spawn statements. For simplicity,

we show how outer spawns were compiled before nested parallelism was supported,

and later in this chapter, we revisit this information to include support for nested

parallelism.

(a) XMTC code (b) after core-pass (c) after post-pass

spawn (low , high)
{

BlockCode ($)
}

spawn $rLow , $rHigh
bcast l i v e r eg s
BlockAssembly ($)

j o i n

1 mvtg $grHigh , $rHigh
2 ge t i d $rTmp , $rLow
3 mvtg $grLow , $rTmp
4 spawn
5 broadcast $rLow , $rLow
6 ge t i d $rId , $rLow
7 spawn start :
8 chkid $rId , $grHigh
9
10 bcast l i v e r eg s
11 BlockAssembly ($)
12
13 move $rId , 1
14 ps $rId , $grLow
15 jump spawn start
16 j o i n

Figure 5.8: Compiling a flat spawn statement

Figure 5.8(a) shows a generic spawn statement. Its arguments, low and high,

are expressions that evaluate to integers. The BlockCode is parametric in the task ID

($). In Figure 5.8(b), the core-pass (GCC) generates high level XMTC assembly:

the spawn instruction has two integer register arguments that hold the values of

the lowest and the highest task IDs to be executed; the join instruction marks

the end of the task code; the BlockAssembly is a straightforward compilation of

the BlockCode, before which the live Master TCU registers are broadcast to the

corresponding TCU registers. The spawn and join instructions are further expanded

by the post-pass to make use of XMT’s capabilities of hardware scheduling and

149

synchronization as shown in Figure 5.8(c).

The XMT specific instructions used in Figure 5.8(c) to expand the spawn and

join statements are explained below. Remember that each TCU and the Master

TCU have their own private set of local registers and that global registers can be

accessed and modified both by the Master TCU and by all parallel TCUs. Local

registers are named $rX and global registers as $grX.

• getid $rX, $rY: When used in serial mode (i.e., by the Master TCU), it

adds the value of register $rY to the number of TCUs in the system and stores

the result in register $rX. When used in parallel mode, it adds the value of

register $rY to the identification number of the TCU executing the instruction

and stores the result in register $rX. TCUs are numbered from zero to P − 1

on a P -TCU XMT.

• mvtg $grX, $rY: Moves the value of register $rY to global register $grX.

This instruction is only valid in sequential mode (it can only be executed by

the Master TCU).

• broadcast $rX, $Y: Copies the value of register $rY of the Master TCU to

register $rX of the TCU executing the instruction. This instruction is only

valid in parallel mode (it can only be executed by TCUs but not the Master

TCU).

• ps $rX, $grY: Performs the hardware prefix-sum operation. It atomically

adds the value of register $rX to global register $grY and sets $rX to the value

of $grY before the operation. This instruction is only valid in parallel mode

(it can only be executed by TCUs but not the Master TCU).

• chkid $rX, $grY: This instruction is only valid in parallel mode (it can

only be executed by TCUs but not the Master TCU). It compares the value

of register $rX to the value of global register $grY. If $rX ≤ $grY execution

150

proceeds to the next instruction; otherwise the TCU blocks until $rX ≤ $grY ,

e.g., some other TCU increments $grY, or until all TCUs are blocked at a

chkid instruction, signaling the end of the parallel section and the return to

sequential execution on the Master TCU. This instruction implements a type

of barrier and allows quick and efficient transition from parallel to sequential

execution.

The expansion of the high level spawn and join instructions are shown in

Lines 1-8 and 13-16 of Figure 5.8(c). Line 1 sets $grHigh to $rHigh, the ID of the

last task to execute. Line 2 sets $rTmp to the sum of the number of TCUs and

$rLow, the ID of the first task to execute ($rTemp = low + |TCUs|). Line 3 sets

the global register $grLow to the value of $rTemp. This is done because $grLow

holds the id of the next available task, since TCUs will each initialize their task ID

to Taskid = low+TCUid (Line 6), as soon as control is transfered to them with the

spawn instruction (Line 4). Each time a TCU completes its task, it will atomically

increment $grLow using a prefix sum operation (Line 14) and check if the task ID

is valid,i.e., ≤ $grHigh (Line 8). Parallel execution is the started by Line 4. Then,

the value of $rLow is broadcast from the MTCU to the TCUs (Line 5) as it will be

needed for the TCUs to compute their initial task IDs. Line 6 sets the task ID to

low + TCUid, as mentioned earlier, and Line 8 only allows TCUs with valid IDs to

proceed while blocking all the others. The expansion of the join is straightforward:

Line 13 sets an increment of 1 for the prefix-sum operation of Line 14, which returns

the next available task-ID (and increments $grLow); then, the execution jumps to

the checkid instruction to validate this newly acquired task-ID.

XMT’s hardware implements a first-in first-out (FIFO) schedule of the tasks,

akin to using a global queue for scheduling. While this is good for flat parallelism,

it results in a potentially unbounded memory footprint in the presence of nested

parallelism. An interesting question is how to best use XMT’s hardware to support

nested parallelism, while keeping the memory footprint bounded. As mentioned

151

previously, we use the hardware to schedule outer spawn statements and use software

scheduling for nested spawn statements. More details on how this is achieved are

provided in Section 5.6.7.

5.6 Nested Parallelism Support

Since we want to use XMT’s hardware to schedule outer spawn statements we

need to have a way to differentiate between the two. For example, although the

spawn on Line 3 is certainly nested in Figure 5.9, we do not know for sure whether

the one on Line 2 is nested or not. It depends on whether the function foo was

called from a sequential or a parallel context (execution mode).

1 void f oo () {

2 spawn (1 , 100) { // Outer?

3 spawn (1 , 50} { // Nested

4 . . .

5 }

6 }

Figure 5.9: Identifying Outer and Nested Spawns

5.6.1 Function Cloning

Outer spawn statements can be identified statically after performing function

cloning. A parallel clone of each function is created and all function call-sites up-

dated to call the appropriate clone. The original function is called from sequential

contexts, and the parallel clone is called from parallel contexts (Figure 5.10).

Function pointers are not currently supported in XMTC. To support them,

the appropriate clone would have to be selected dynamically at run-time, unless the

compiler could statically disambiguate which clone was needed. The mechanism for

picking the right clone at compile time is similar to picking the appropriate version

152

(a) original code (b) after function cloning

void f oo (. . .) {

bar () ; // func t i on c a l l

spawn (low , high) {

bar () ; // func t i on c a l l

}

}

void f oo (. . .) {

bar () ; // func t i on c a l l

spawn (low , high) {

par bar () ; // fn c a l l

}

}

void par f oo (. . .) {

par bar () ; // fn c a l l

spawn (low , high) {

par bar () ; // fn c a l l

}

}

Figure 5.10: Function Cloning

of a virtual function of an object based on its type in object oriented languages.

We do not expect this to be difficult to resolve in the future as the XMT platform

matures.

5.6.2 Function Call Support in Parallel Code: Stack Allocation

To support recursively nested parallelism, the programmer must be allowed to

call a function from parallel code. To make this possible, we implemented parallel

stack allocation. However, parallel stack allocation is trickier than simply maintain-

ing a linear stack for each TCU. The reason is that according to the semantics of a

spawn statement, its spawn block has access to the variables in the enclosing scope.

For example, in Figure 5.11(a) the parameter N should be accessible within the

spawn block, but because it is modified, a single copy of N is maintained. Multiple

copies may be preferable in the case of variables that are only read by tasks. Fig-

ure 5.11(b) shows that tasks should have their own activation frame as they can be

running on different workers, but they should have access to the frame of the parent

153

task, which in the example holds N . Such a tree of activation frames is called a

cactus-stack.

(a) Example Code

void f oo (int N) {

spawn (1 , 100) {

atomic{ N += $ } ;

}

}

(b) Cactus-Stack

N

$=1 $=2 $=100

Figure 5.11: Spawn Scope Example

A cactus-stack can be implemented many different ways. An obvious way is to

dynamically allocate each activation frame and keep a pointer to the parent frame.

But when a task calls a function sequentially, this overhead is unnecessary, and

something more akin to a linear stack could be used.

In the fourth chapter of his PhD thesis [40], Goldstein presents and compares

four implementations of cactus-stacks: linked frames, spaghetti stacks, stacklets,

and multiple stacks. The trade-offs of these implementations include allocation effi-

ciency, internal fragmentation, external fragmentation, and ease of implementation.

Internal fragmentation is caused by leaving unused space within the basic allocation

unit and external fragmentation arises when allocating activation frames in different

regions of the memory space.

Of the four alternatives, stacklets, proposed by Goldstein in his earlier work

[41], achieved the best performance, especially for fine-grained parallelism. I chose

to implement a cactus-stack based on Goldstein’s stacklets on XMT, despite the fact

that implementing them is relatively complex. Having a sequential and a parallel

clone of each function minimizes stack allocation overheads for sequential parts of

the code that do not need the additional complexity of cactus-stacks. This can

also be achieved by compiling functions to have two entry points in assembly, one

154

which includes stacklet allocation and the other skipping it. In any case, stack

is allocated as usual for the sequential clone of a function, and the more complex

stacklet allocation code of the cactus-stack is only generated for the parallel clone.

The main motivation of stacklets is to reduce the stack allocation cost in the

common event of a task calling a function sequentially, as opposed to spawning new

tasks. In that case, the allocation will be almost as efficient as sequential stack

allocation.

A stacklet is a continuous chunk of memory (2KB in the XMTC implementa-

tion) with some necessary information, such as a link to the parent stacklet. Acti-

vation frames are allocated within a stacklet as on a sequential stack, with just one

additional check that the activation frame to be allocated fits in the remaining space

in the stacklet; otherwise a new stacklet is allocated, linked to the current stacklet

and the activation frame is allocated at the base of the new stacklet.

A Frame

Running Frame

Figure 5.12: Stacklet

Figure 5.12 shows a stacklet. It has a stub, some activation frames and free

space at its top. The activation frame at the top of the stacklet is the running frame,

unless the stacklet has an active child. The stub stores some necessary information

155

to keep stacklets linked together and to restore the state of a function returning to

the parent stacklet, such as the return address, the stack pointer and the arguments

pointer (argp).

The arguments pointer is needed because the arguments of a function and its

activation record may not be contiguous. In sequential execution, the running frame

and the parent frame are (usually2) contiguous in memory. The caller pushes the

arguments of the function it calls onto its activation frame (parent frame) and calls

the function, which accesses its arguments through its stack pointer because they lie

right above its activation frame. On the contrary, in the stacklet implementation of

the cactus stack, the parent frame may not be immediately above the running frame,

for example in the case of a stacklet overflow when a new stacklet is allocated. The

arguments pointer gives a solution to this problem by keeping a separate pointer to

the function’s arguments. Just like for the stack pointer, a register is reserved for

the arguments pointer.

A worker thread needs to have access to the stacklet stub when checking if

a new allocation frame will fit in the stacklet. The frame-pointer register ($fp) is

employed for that purpose, since it is not used for a language like C. For a language

with nested functions, however, the frame pointer would be used, and a different

register would have to be reserved to point to the stacklet stub.

Algorithm 5.3 shows how a function prologue is expanded to support stack-

lets, using sequential function prologue expansion as a subroutine. The sequential

expansion involves saving and restoring the callee-saved registers, and updating the

stack pointer. The expansion of Algorithm 5.3 is only applied to the parallel clone of

a function, leaving the sequential clone optimized for sequential execution. Keep in

mind that the stack grows downward, by reducing a global stack pointer (Global SP)

atomically (Line 18). Also, note that in Lines 1-4 the sequential expansion is used

2This may not be true for languages that support nested function declarations, but XMTC does

not support them.

156

Algorithm 5.3 Function Prologue Expansion for supporting Stacklets

1: if # [Frame Size = 0 && callee is a leaf function] then
2: Sequential Function Prologue Expansion
3: return
4: end if
5: Save Arguments pointer $argp in current activation frame
6: $argp ← $sp . Keep a pointer to the arguments before updating $sp
7: if #flag [align cactus stack] then
8: EndOfStacklet = $sp && STACKLET MASK
9: else
10: EndOfStacklet = $fp.end address . $fp points to base of stacklet
11: end if
12: EndOfNewFrame = $sp - frame size . Stack grows downward
13: if EndOfNewFrame < EndOfStacklet then . Frame doesn’t Fit in Stacklet
14: $fp.saved sp ← $sp

15: $fp.saved argp ← $argp

16: if $fp.child stacklet = NULL then . Allocate child stacklet
17: Decrement ← − stacklet size . stacklet size = 2K
18: NewStacklet ← psm(Decrement, Global SP)
19: $fp.child stacklet ← NewStacklet
20: NewStacklet.child stacklet ← NULL
21: if #flag [NOT align cactus stack] then
22: NewStacklet.end address ← NewStacklet-stacklet size
23: end if
24: $fp ← NewStacklet
25: else
26: $fp ← $fp.child stacklet
27: end if
28: $sp = $fp - stub size
29: $fp.return address ← $return register

30: $return register ← deallocate stacklet
31: end if
32: Sequential Function Prologue Expansion + allocate space for saving and restor-

ing $argp

if the function does not need a frame (size=0) and does not call other functions (it

is a leaf function). The rest of this code checks if the new activation frame needed

by the function being called fits in the current stacklet (Line 13), and if not, it allo-

cates a new stacklet off the global stack, using an atomic prefix-sum (fetch-and-add)

operation on Line 18. Then, the return address of the function is saved (Line 29)

157

and set to the stacklet deallocation routine, shown in Algorithm 5.4. The current

implementation of the cactus stack does not support freeing and reallocating stack-

lets within a parallel section, so simply using the prefix-sum is a quick and simple

solution for allocating stacklets.

Algorithm 5.4 Stacklet Deallocation

1: $return register ← $fp.return address
2: $fp ← $fp.parent
3: $sp ← $fp.saved sp
4: $argp ← $fp.saved argp
5: jump to $return register

The deallocation routine restores the TCU state registers (sp, fp, argp) and

returns to the right instruction. In a production implementation, the child stacklet

would possibly be returned to a pool of free stacklets. In this prototype, how-

ever, this complexity was not necessary because we are keeping stacklets linked and

reusing them, as discussed later in this section.

One possible optimization is to align stacklets in memory, and make them

all the same size (we picked a size of 2K). That way, checking if a new frame will

fit in the current stacklet (Line 13) does not require any memory access: since

the size of the frame is a constant, the end of the stacklet can be computed by

applying a mask to the stack pointer ($sp). The alignment of stacklets is realized

by Lines 7-9 and 21-23. Note that these if statements control how the expansion is

performed and do not appear in the generated code. Empirically, this optimization

improves performance modestly (around 2%). One disadvantage of this optimization

is that the size of stacklets has to be the same for all functions, including linked

libraries. Moreover, if an activation frame is bigger than what a stacklet can fit (in

our implementation 2K-stub size), the compilation fails. In XMTC, this is remedied

by recompiling with the optimization that aligns the cactus stack disabled.

In retrospect, we can achieve the same effect of checking if a new activation

frame will fit in the current stacklet without accessing memory by placing the stub at

158

the end of the stacklet instead of the beginning, and having the frame-pointer set at

the start of the stacklet stub. In this scenario, the check can be performed by com-

paring the address of the frame pointer with that of the stack pointer decremented

by the size of the requested activation frame.

Another optimization we added on top of Goldstein’s original stacklet design is

keeping track of the child stacklet owned by the same worker that owns the parent,

to avoid the need to free and reallocate it. It is based on the observation that the

stack grows and recedes multiple times during a parallel section, especially with re-

cursive codes, which would lead to the frequent allocation, freeing, and reallocation

of stacklets. Instead of freeing a child stacklet upon returning, the parent stacklet

keeps a pointer to it and reuses it later if needed, as shown by the decision made on

Line 16 of Algorithm 5.3. If a worker is unable to allocate a stacklet, unused stack-

lets can be garbage-collected (and their parent stacklets updated to point to NULL)

or even stolen. These more advanced stacklet management techniques are not cur-

rently implemented, however. Once a stacklet is allocated in the current XMTC

implementation, it will remain under the ownership of the worker that allocated it

until the end of the parallel section where it was allocated (i.e., stacklets cannot

be returned to a pool of free memory). This has not been a problem in practice

because the space allocated to stacklets is reclaimed upon returning to sequential

execution, which happens efficiently and frequently on XMT, and because keeping

a link to child stacklets allows for good reuse of stacklets.

There are also a type of sequential function clones that need special treatment

to support stacklets: functions that introduce parallelism (by means of a spawn

statement). Luckily, these are easy to identify because of the outlining pass described

in Section 5.3.1, which outlines outer spawn statements and places each one in a

separate function. Algorithm 5.5 shows the expansion of the prologue of those

functions. This expansion does the following: (1) it initializes the arguments pointer;

(2) it allocates an initial stacklet for each TCU; (3) if stacklets are aligned, it saves

159

Algorithm 5.5 Function Prologue Expansion for Outer-Spawn function

1: $argp ← $sp . Set the arguments pointer
2: Tmp ← $sp − (stacklet size · #TCUs) . Reserve one stacklet per TCU
3: if #flag [align cactus stack] then
4: Tmp ← Tmp && STACKLET MASK
5: end if
6: Global SP ← Tmp
7: if #flag [align cactus stack] then
8: $rId ← $sp . Save $sp. Use $rId, unused in sequential mode
9: $sp ← $sp && STACKLET MASK . Necessary because $sp is broadcast
10: end if . Right after the join restore the $sp

and aligns the stack pointer register of the Master TCU, as it will be broadcast to

the parallel TCUs and used as a base for them to access their own initial stacklet;

and (4) it initializes the global stack pointer to right after the space reserved for the

initial TCU stacklets. More specifically, after the arguments pointer is set (Line 1), a

stacklet is reserved for each TCU (Line 2) and the global stack pointer (implemented

as a regular global variable) is initialized (Line 6), after possibly aligning it (Line

4). Moreover, if the stacklets are aligned, the sequential stack pointer is saved

(Line 8) and aligned (Line 9), so that it will be aligned when broadcast to the

TCUs. Otherwise, the TCUs would have to perform the alignment, possibly at the

beginning of each (outer) task. The stack pointer is restored upon the completion

of the spawn statement, as part of the join expansion performed by the post-pass.

Lines 1-6 are performed by the core-pass, whereas lines 7-10 are performed by the

post-pass as part of the spawn-expansion, similarly to Figure 5.8. Note that the

expansion for such outlined functions introducing parallelism should not allocate

space on the serial stack. To this end, we had to override GCC’s stack allocation

and make a special case for such functions.

Finally, some stacklet set-up code needs to be injected at the onset of each

parallel section to initialize the stack pointer ($sp) and the stacklet pointer ($fp)

of each TCU. We revisit Figure 5.8 adding the stacklet code in Figure 5.13. Lines

7-9, inserted by the post-pass, initialize the child pointer in the stacklet stub of each

160

1 mvtg $grHigh , $rHigh
2 ge t i d $rTmp , $rLow
3 mvtg $grLow , $rTmp
4 spawn
5 broadcast $rLow , $rLow
6 ge t i d $rId , $rLow
7 broadcast $sp , $sp
8 $fp = $sp − (s t a c k l e t s i z e ∗ TCU ID)
9 $fp . c h i l d = NULL
10 spawn start :
11 chkid $rId , $grHigh
12
13 bcast l i v e r eg s
14 $fp = $sp − (s t a c k l e t s i z e ∗ TCU ID)
15 $sp = $fp − s t u b s i z e − f r ame s i z e
16 BlockAssembly ($)
17
18 move $rId , 1
19 ps $rId , $grLow
20 jump spawn start
21 j o i n

Figure 5.13: Compiling a flat spawn with cactus stack support

TCU. We could have initialized these pointers before switching to parallel mode, but

then would have had to perform this sequentially. Note that these child pointers

must be initialized before the task code starts on Line 11 because we want to execute

it once per TCU per parallel section. Executing it once per task would defeat the

purpose of keeping these pointers because it would drop the stacklets allocated to

a TCU while it was working on a previous task. Lines 14-15, inserted by the core-

pass, show pseudo-assembly that initializes the stacklet pointer ($fp) and the stack

pointer at the beginning of each task. This could probably be done once per TCU

instead of once per task, but the additional overhead is minimal (3 cycles if the

stacklet size is a power of 2), and the post-pass, which has access to the per-TCU

initialization code (Lines 4-9), does not currently know the size of the activation

frame, needed on Line 15. While the post-pass could recover that information, the

effort did not seem worthwhile.

So far we have discussed the implementation of the cactus stack in the absence

of nested parallelism. Later in this chapter, we will revisit it to include support for

161

nested parallelism.

5.6.3 Function Insertion

As mentioned in Section 5.3.3, in the current prototype of XMT, all the code

that may be executed by the TCUs must be laid out between the spawn and the

join instructions, including the code of functions that may be called. A pass called

function insertion builds a call graph at link-time (in the post-pass), and for each

outer spawn block, inserts before the join instruction the code of the functions that

may be called. This is different to function inlining because the code of the function

is simply placed within the spawn-join that may call it, and not substituted at every

call-site.

This pass is simple enough, but because a function may be called from dif-

ferent spawn statements within a code, the inserted clones of the functions must

be updated to have unique assembly labels. Remember that function pointers are

not supported in XMTC, so complex pointer analysis is not needed to build the

call-graph. However, as we will see, nested spawns get compiled to code that uses

function pointers in a limited way. To accommodate that, we include in the call-

graph functions whose address is taken, without performing any further pointer

analysis.

5.6.4 Dead Function Elimination

So far, we have created two clones for each function. We then inserted func-

tion clones in the assembly between the spawn and join instructions for each outer

spawn statement. This creation of many clones for each function blows up the size

of the code. To remedy that, we eliminate all the function clones that cannot pos-

sibly be called by an application, after the function insertion pass. Among others,

this includes all parallel clones of functions because only the inserted clones (see

Section 5.6.3) are actually called. This helps to reduce significantly the size of the

162

produced binary and .sim files, and to reduce the compilation time, as the post-pass

is the slowest component, even though it performs the simplest analyses.

5.6.5 Outlining Optimizations

The outlining pass isolates outer spawn statements so that the core-pass (GCC)

does not perform illegal optimizations, as discussed in Section 5.3.1. Outlining in-

troduces inefficiencies by creating a function call where there was none. One way

to take advantage of this additional function call is to pass global variables as argu-

ments as well, in a controlled way. At first, this sounds counter intuitive: why pass

as arguments variables that are global and therefore directly accessible by the tasks?

The reason is that, according to the XMT calling convention (inherited from MIPS),

the first four arguments to a function are passed in registers. We can take advan-

tage of this convention by passing as arguments global variables that are read-only

in the task code, as long as we do not exceed four arguments. These global values

will be passed through registers and then broadcast to the tasks, hence avoiding the

creation of a hot spot in memory.

Currently, this optimization is not path-sensitive, as it will not differentiate

between read-only variables accessed by the task code to try and select the ones that

may be accessed more frequently (e.g., ones accessed in loops and ones not accessed

in conditionally executed code). This would be beneficial when the candidate global

variables exceed the four arguments passed through registers. A different optimiza-

tion would be to explicitly load these values in registers in the outlined function, so

that they can be broadcast. Such an optimization is harder to implement, however,

as it needs both high level information about the code and low level register alloca-

tion information available in the back-end of GCC. An easier alternative would be

to load such variables in the read-only cache at the cluster level. The global variable

would then be accessed once by each cluster, which is not as good as just once by

the Master TCU, but does not increase register pressure.

163

Another potential optimization has to do with reducing the number of argu-

ments the outlined function needs, in order to make space for passing and broad-

casting global values, as per the previous optimization. Sometimes, the low and

high expressions determining the number of tasks of a spawn statement can be com-

plex, involving multiple variables, as shown in Figure 5.14(a). In that case, hoisting

those expressions, as shown in Figure 5.14(b), can reduce the number of arguments

significantly. Of course, if performed naively, hoisting can increase the number of

arguments needed by the outlined function by two. A simple solution is to run out-

lining once with hoisting and once without, and to select the option that requires

fewer arguments. This is not currently implemented, and therefore, the hoisting

pass is not enabled by default.

(a) original code (b) after hoisting

spawn (a+b∗c/d , e+f ∗g/h){ // 8 args

ta sk code ($)

}

low = a+b∗c/d ;

high = e+f ∗g/h ;

spawn (low , high){ // 2 args

ta sk code ($)

}

Figure 5.14: Hoisting Low & High Expressions

Other ways of reducing the overhead of outlining include (1) better analysis

for reducing the number of arguments (e.g., finding the smallest number of variables

or subexpressions to describe all the incoming and outgoing values of the outlined

function), and (2) inlining back these functions at link-time. However, inlining at

that late stage, after register allocation has been performed, can be challenging, and

we have not explored that possibility.

5.6.6 Compiling a nested spawn statement

So far, we have described support for calling functions from parallel code

and the necessary cactus stack support. In this section, we will add the necessary

164

components to support nested spawn statements. Algorithm 5.6 shows pseudocode

of a parallel clone of a function with a parallel loop (e.g., spawn statement). To allow

potentially executing some of the tasks of that parallel loop on other workers, we

perform a different type of outlining for nested spawns. This time, we only include

the code of the task, excluding the spawn statement, since the goal is to be able to

run one or more tasks independently. Algorithm 5.7 shows the resulting pseudocode

which includes two functions: the original function FOO that has been modified in

several ways, and the outlined function that executes the task code grain times.

Algorithm 5.6 Outlining Inner Spawn: original code

1: procedure foo(paramsfoo)
2: localsfoo
3: SomeCode
4: for all $ ∈ [low, high] do
5: CODE[paramsfoo, localsfoo, $]
6: end for
7: RestOfCode
8: end procedure

Let us focus first on the outlined function. The dollar sign represents the

(register-allocated) task identifier. The scheduler sets its value before invoking the

outlined function. The grain argument allows executing multiple tasks with one

invocation, a very useful feature for fine-grained codes. The frame argument gives

access to FOO’s local variables and parameters. The task code (Line 20) is updated

to access those variables through the frame pointer. The frame is defined sepa-

rately for each function containing a spawn, as a structure (i.e., a C struct) that

contains all the local variables of FOO, its parameters, and some additional fields

for bookkeeping, which we will cover later.

The code of FOO is also updated to access its variables through the frame

structure (Lines 4 and 15). The overhead of doing so is smaller than what one

would originally assume because FOO will access the fields of the frame structure

directly and not through a pointer. This means that the compiler can access any

165

Algorithm 5.7 Outlining Inner Spawn: resulting code

1: procedure foo(paramsfoo)
2: frame = (state regs, rop, nChildren, tid, paramsfoo, localsfoo)
3: frame← paramsfoo
4: SomeCode[frame]
5: frame.nChildren← high− low + 1 . Start of Inserted Code
6: frame.tid← $
7: frame.state regs← (sp, fp, argp, rop)
8: taskDescriptor ← (low, nChildren, frame, outlinedNestedSpawn, grain)
9: nExec← schedulerExecute(taskDescriptor)
10: atomic{frame.nChildren← frame.nChildren− nExec}
11: if nChildren 6= 0 then
12: Jump to Scheduler Code
13: end if
14: ClobberRegisters . End of Inserted Code
15: RestOfCode[frame]
16: end procedure
17: procedure outlinedNestedSpawn(grain, frame)
18: end← $ + grain . $← td.low by the run-time before calling this function
19: while $ < end do
20: CODE[frame.paramsfoo, frame.localsfoo, $]
21: $← $ + 1
22: end while
23: end procedure

of the fields of frame using its stack pointer, as frame is now a local variable

in FOO. Moreover, the compiler can register-allocate fields of frame like it would

the variables of the original instance of FOO. Hence, the main overhead of this

transformation is copying FOO’s parameters into the frame structure (Line 3).

Copying is necessary because, as we mentioned, the arguments of a function may

not lie directly above its activation frame, due to the cactus stack implementation.

Besides local variables and arguments, the frame structures of all functions

that have a parallel loop also have a common preamble (Figure 5.15). This preamble

is used by the scheduler for synchronization and for allowing the worker executing

the last pending task of the parallel loop to resume the parent task. In that case,

the preamble is needed only if the worker resuming the parent task is not the one

that initiated the spawn statement. The scheduler code can type-cast any frame

166

typedef struct {
void (∗ rop) (void) ; // Rest Of Parent po in t e r
int sp ; // s t a c k po in t e r
int fp ; // frame po in t e r
int argp ; // args po in t e r
int childNR ; // number o f pending t a s k s
int t i d ; // ta s k ID of parent t a s k

} genericFrame ;

Figure 5.15: Common Preamble of all frame structures.

to a genericFrame in order to access the fields of the preamble because all frames

have the same preamble. Note that the first argument is a function pointer that

takes no arguments. It is used to jump to the next instruction after the parallel

loop (i.e., spawn statement), which is Line 14 in Algorithm 5.7. Line 14 clobbers all

but the state registers ($sp, $fp, $argp, $) so that GCC will restore any register-

allocated values from the stack. This seems unnecessary as the address of the frame

is passed to the scheduler on Line 9, and therefore, any register-allocated fields of

frame need to be written out to memory before that call and restored afterwards.

However, GCC may decide to restore these registers soon after returning from the

scheduler code, before Line 14. In that case, a remote worker jumping to that line

will start executing code which incorrectly assumes that some of the fields of frame

reside in registers. Clobbering the registers at that point ensures that GCC will not

try to restore fields of frame into registers too soon.

typedef struct {
int t Id ; // TID of f i r s t thread
int tNr ; // Number o f t a s k s
int gra in ; // Grains i ze
void ∗ frame ; // Pointer to parent frame
/∗∗ The address o f the code to execu te .
∗ The 1 s t argument i s the g r a i n s i z e .
∗ The 2nd argument i s the po in t e r to the frame
∗ o f the parent to acces s i t s v a r i a b l e s . ∗/

int (∗ code addr) (int grain , void∗ frame) ;
} TaskDescr iptor ;

Figure 5.16: The task descriptor structure

Now, let us focus on the code that replaced the nested spawn statement (Lines

167

5-13 of Algorithm 5.7). First, the number of child tasks is initialized in the frame

(Line 5), and the task ID of the current task is saved (Line 6). Then, the rest of the

frame preamble is filled (Line 7). Remember that the rop is the address of Line 14.

A task descriptor structure is then initialized on Line 8. A task descriptor is akin

to a closure: it contains all the information needed to execute some code. Here, the

code is a set of tasks. Figure 5.16 shows the fields of the task descriptor of a parallel

loop. The ID of the first task to execute along with the total number of tasks define

the range of tasks included in a task descriptor. The pointer to the frame allows

the task code to access its parent’s local variables, and a function pointer to the task

code allows to execute tasks. Lastly, the grain, which is computed by the static

coarsening pass or is explicitly provided by the programmer, allows the task code

to execute multiple tasks in a single go.

After this initialization of the parent’s frame preamble and of the task descrip-

tor, the scheduler is called on Line 9 (see Algorithm 4.2) to schedule and execute

the task descriptor. The scheduler returns the number of tasks that were executed

by the present worker (nExec). If some tasks were placed on the deque, nExec will

be smaller than nChildren, the number of tasks originally in the task descriptor.

Since other workers may be working on a subset of those tasks after stealing them,

they will have access to frame.nChildren, which they will also decrement, as they

complete tasks. For that reason, the operation on Line 10 is performed atomically.

In Section 5.6.7, we will present the code that decrements nChildren in the case of

stolen tasks executing remotely, as well as how the thief resumes the parent task if

needed (Algorithm 5.8). Finally, the parent task checks if all its tasks have com-

pleted (Line 11) and resumes if that is the case (Line 14) or jumps to scheduler

code responsible for feeding the worker with more work. In work stealing, the main

family of schedulers implemented in XMTC, that is the code for stealing code from

a victim worker. Note that the worker does not call the scheduler code, it simply

jumps to it, relinquishing its stack to the worker that completes the last of the

168

child-tasks and becomes responsible for resuming the parent task.

5.6.7 Outer Spawn Compilation for Nesting

Now, we want to combine XMT’s hardware scheduling of outer spawn state-

ments with software scheduling for nested parallelism. The first step is to convert

the spawn statement, as done in Figure 5.17. Depending on the task ID ($), the

worker will either execute it, or turn to the software scheduler for work if the task

ID is not a valid outer task ($ > high on Line 2). In the current implementation,

incrementing high within the spawn block is not supported because our goal is to

support structured nested parallelism. Therefore, the legacy single-spawn (sspawn)

is not supported. Moreover, since high cannot be increased, TCUs will keep re-

questing work from the scheduler once outer tasks are consumed, hence the infinite

loop on Line 4.

(a) Original Code (b) Converted Code

spawn (low , high) {
CODE[$]

}

1 spawn (low , high) {
2 i f ($>high) {
3 Al l o ca t e S t a ck l e t
4 while (true) {
5 Get Work from schedu l e r
6 Execute i t
7 I f (l a s t) resume parent
8 }
9 } else {
10 CODE[$]
11 }
12 }

Figure 5.17: Outer Spawn Conversion

Before we elaborate on the stacklet allocation (Line 3) and on the body of

the scheduling loop (Lines 5-7), we address the issue of detecting global termina-

tion of a parallel section in the presence of nested parallelism. We use the same

XMT hardware support as we did for a flat spawn statement in Figure 5.8, but

we use it differently, as shown in Figure 5.18. We use three global registers in-

169

1 mvtg $grConsumed , 1
2 mvtg $grProduced , 0
3 ge t i d $rTmp , $rLow
4 mvtg $grLow , $rTmp
5 spawn
6 broadcast $rLow , $rLow
7 ge t i d $rId , $rLow
8 broadcast $sp , $sp
9 $fp = $sp − (s t a c k l e t s i z e ∗ TCU ID)
10 $fp . c h i l d = NULL
11 spawn start :
12 bcast l i v e r eg s
13 $fp = $sp − (s t a c k l e t s i z e ∗ TCU ID)
14 $sp = $fp − s t u b s i z e − f r ame s i z e
15 i f ($ > high) {
16 } else {
17 BlockAssembly ($)
18 }
19 j o i n l a b e l :
20 c a l l
21 move $rId , 1
22 ps $rId , $grLow
23 jump spawn start
24 j o i n

Figure 5.18: Compiling an outer spawn to support nesting

stead of two. The use of $grLow is the same as before; it stores the next available

task ID for outer tasks. However, we do not use $grHigh in a chkid instruction

to detect the global termination of the parallel section, as nested tasks may be

pending even if the last outer task has completed. Instead, we use two global regis-

ters: $grProduced (Line 2), which is increased each time a task descriptor is added

onto the scheduler’s work-pool, and $grConsumed (Line 1), which is increased each

time a task descriptor is removed from the scheduler’s work-pool. The difference

of $grProduced-$grConsumed gives the number of available task descriptors in the

work-pool. Thanks to XMT’s hardware prefix-sum support, this information can be

maintained at very low cost and in a scalable way. We use chkid $grConsumed,

$grProcuced to block workers when the work-pool is empty. In reality we first

copy the value of $grConsumed into a local register using a prefix-sum with a zero

increment, because chkid takes a local register and a fixed global register as argu-

ments. The reason for using two global registers is that the hardware prefix-sum

170

operation does not accept a decrement at the moment. If it did, we could simply

keep the total number of task descriptors available in the work-pool. Such support

would be needed in a production quality XMT to avoid overflow, but for the current

prototyping stage, it has not been a limitation in practice. Note that $grConsumed

is initialized to 1 instead of 0 because chkid blocks only when its first argument is

strictly greater than its second argument. When they are equal, execution proceeds

with the next instruction.

Using XMT’s chkid instruction allows to block TCUs when there is no work

in the work-pool. In work stealing, where the work-pool is distributed and workers

have to randomly probe the deques of other workers, the chkid mechanism prevents

wasted probing, which can potentially be harmful for performance by issuing useless

memory requests. Moreover, the chkid mechanism effectively notifies idle workers

when a task descriptor is added so that they can resume work stealing. Work

stealing implementations on platforms that do not have such hardware support

employ methods such as exponential back-off after a certain number of unsuccessful

deque probes to avoid adversely affecting the performance of busy workers.

Algorithm 5.8 Scheduling loop for work stealing

1: while true do
2: success← stealWork(&taskDescriptor)
3: if success = false then continue with next iteration
4: end if
5: nExec← schedulerExecute(taskDescriptor)
6: gFrame← (xmt generic frame) taskDescriptor.frame
7: atomic{gFrame.nChildren← gFrame.nChildren− nExec}
8: if gFrame.nChildren = 0 then . Resume Parent Task
9: $sp ← gFrame.sp . Restore Stack Pointer
10: $fp ← gFrame.fp . Restore Frame Pointer
11: $argp ← gFrame.argp . Restore Arguments Pointer
12: $ ← gFrame.tId . Restore Task ID
13: jump to gFrame.rop . Jump to Rest of Parent Task
14: else
15: Keep executing work of own deque
16: end if
17: end while

171

Algorithm 5.8 expands Lines 5-7 of Figure 5.17(b) for work stealing sched-

ulers. These include Cilk’s scheduler, TBB’s simple-partitioner, auto-partitioner

and affinity-partitioner (not implemented in XMTC), and the lazy work stealing

variants described in the present dissertation. First, the worker attempts to steal

a task descriptor until it succeeds (Lines 2-3). Then, the scheduler executes the

descriptor, which involves the possibility of splitting it and pushing part of it on the

local deque (Line 5). Upon return, the worker atomically decrements the number of

children of the parent task through the frame pointer stored in the descriptor (Lines

6-7), and if the worker just completed the last task of the parent task, it resumes it

(Lines 8-13). Otherwise, the worker consumes the local deque (Line 15) that may

have been filled by the call on Line 5 if the task descriptor was split.

172

Chapter 6

Model of Scheduling Costs and Architectural Support

As a quick reminder, this dissertation focuses on approaches that improve

the efficiency of declarative structured parallel code, i.e., code that expresses all

available parallelism using structured constructs that can be nested, such as parallel

loops, sum-like reductions, and parallel function calls or futures. Declarative code

typically exposes much more parallelism (in the form of short tasks) than there

are hardware resources, and it falls upon the compiler and run-time to map this

abundance of parallelism efficiently onto longer executable threads as best fits the

machine at hand. In Chapter 3, we identified two distinct goals of coarsening,

amortizing scheduling costs, and pruning parallelism, the first of which falls mainly

onto the compiler since, by the time parallelism reaches the scheduler, it should be

coarse enough so that scheduling overheads are amortized.

To make it possible for the compiler to amortize scheduling costs, it must be

able to do two things: (1) estimate the cost of each task with relative accuracy,

and (2) know approximately the cost of parallelizing and scheduling a set of tasks.

This chapter focuses on the latter aspect. We present a simple parametric model

for scheduling overheads and propose a methodology for validating this model. The

idea is to have an auto-tuner figure out the parameters of the model by using micro-

benchmarks when the compiler is installed on a platform, but this is beyond the

scope of this dissertation. Instead, we manually run benchmarks to determine the

values of the parameters on the XMT platform. We also give some initial evidence

that the model is expressive and accurate enough to answer questions such as “is it

preferable to execute a parallel loop sequentially, or to keep it parallel?”.

The proposed model covers two schedulers, the popular work stealing soft-

ware scheduler and XMT’s hardware scheduler, as well as their combination. A

173

contribution of this work is to show the orthogonality of the two schedulers: given

a certain amount of parallelism in the code, transitioning from XMT’s hardware

scheduling to software scheduling mid-course still allows software to exploit the full

advantage of the parallelism not capitalized by the hardware. We also show that

XMT’s added hardware scheduling benefits performance, both in the model and ex-

perimentally. Without this performance improvement, observing the orthogonality

of hardware and software scheduling on XMT is without consequence. With it, how-

ever, lightweight hardware support for scheduling becomes beneficial and synergistic

with existing software approaches.

The hardware scheduling support on XMT allows it to simultaneously initial-

ize all its hardware threads and to assign them to pending tasks as they become

available, at very low cost. This enables XMT to even take advantage of small

amounts of parallelism. For example, Breadth First Search (BFS), shown in Fig-

ure 6.1, can be implemented as a series of rounds, each uncovering the next layer

of a graph, starting from an initial vertex. The parallelism in each round depends

on the number of vertices in the layer being processed (thisLevel) and the num-

ber of edges incident on them. Therefore, depending on the graph characteristics,

each round may contain small amounts of parallelism, even for large graphs, which

could preclude the possibility of efficient parallelization. On XMT, however, the

hardware scheduler allows harnessing even such low-degree parallelism to produce

good speedups that appear not to be possible on other platforms (e.g., [19]).

On the other hand, XMT’s hardware scheduler does not directly support

nested parallelism. Instead, a hybrid approach that relays nested parallelism to

a software scheduler is implemented (see Chapter 5). Nevertheless, the software

scheduler takes advantage of some of the features of the hardware scheduler, such

as global termination detection and a mechanism for putting cores (TCUs) to sleep

when there is no work available for them to execute. In other words, the hybrid ap-

proach combines the best of the hardware and software schedulers. In contrast, as a

174

means for avoiding spin-waiting, existing scheduling implementations on multicores

either update some global state, an approach that is not very scalable, or have idle

workers (that try to steal but fail to find any work) yield control to the operating

system.

void b f s (Graph g (v , e) , Vertex root) {

VertexSet t h i sL ev e l={root } , nextLeve l ={};

int l e v e l = 0 ;

while (t h i sL ev e l !={}) {

par f o r (Vertex v in th i sL ev e l) {

par f o r (Vertex u in v . ne ighbors) {

i f (u . l e v e l == NOT SET &&

u . ge tekeeper . t r y a c qu i r e ()==true) {

nextLeve l . atomicAdd (u) ;

u . l e v e l = l e v e l ;

u . gatekeeper . r e l e a s e () ; // op t i ona l

} } }

l e v e l += 1 ;

t h i sL ev e l=nextLeve l ; nextLeve l ={};

} }

Figure 6.1: A common case for low-degree parallelism: BFS

In this chapter, we make a first step towards formalizing a model for task

scheduling. We propose a model for a hardware and a software scheduler, use it to

predict performance for a toy example and validate this prediction experimentally.

Another contribution of this work is that we observe an orthogonality relationship

between the two schedulers on XMT, both in the model and experimentally. Specifi-

cally, given any amount of parallelism in code, a transition from hardware to software

scheduling at any time during the execution still allows the software scheduler to

get the most from the parallelism left unexploited by hardware. This provides a

strategy for combining the strength of the hardware and software schedulers in one

175

hybrid system. This study indicates that adding hardware is important for support-

ing declarative parallel code efficiently. Furthermore, this work (1) sets a direction

for developing a predictive model of scheduling costs, and (2) presents preliminary

evidence that building such a model is feasible.

Bringing this line of work to maturity would involve (1) extending the model

to cover more types of schedulers, (2) validating it on multiple platforms using

several benchmarks, (3) implementing an auto-tuner to automatically discover the

values of the model parameters, and (4) implementing the model internally in a

compiler infrastructure and making it accessible to compiler passes whose role will

be to decide how to execute the asset of available parallelism optimally. In short,

completing this work could very well be an additional dissertation on its own. This

chapter presents work in preparation for a workshop submission [84].

6.1 Background

6.1.1 Algorithmic Models

Since ease-of-programming is our first order concern, we present some back-

ground on the algorithmic model that will be translated into a declarative parallel

program. We start our presentation from the PRAM model and elevate to the more

abstract Work-Depth and Informal Work-Depth models, so as to reach the level of

abstraction we desire declarative parallel programmers to enjoy.

PRAM [50, 55] is the most developed parallel algorithmic model. It assumes

P synchronous processors and constant-time memory access. A PRAM algorithm

is a sequence of time steps, each performing exactly P operations (Figure 6.2(a)).

Hardware synchrony is unrealistic for today’s multi-threaded machines, but research

on parallel programming education suggests that relaxing the PRAM synchrony to

write declarative task-parallel code is straightforward [82]. It reports that teaching

parallel algorithmic thinking based on PRAM algorithms and asking students to

176

write task-parallel code sparked their creativity and allowed them to tackle more

complex problems. The catalyst in this case was the good performance XMT

achieved on declarative parallel code.

(a) PRAM (b) Work-Depth (c) Informal Work-Depth

Figure 6.2: Increasingly abstract algorithmic models

The academic community has expressed concerns that PRAM is too simplistic

to be implemented, especially with regards to the unit time memory access. The

scope of these concerns has to be carefully delimited. Given today’s technology,

these concerns are true for distributed computing, where uniform constant-time

memory access is unrealistic, or for multi-chip parallel computing, where inter-chip

communication bandwidth is limited and the latency is high. For these platforms,

more complex models (e.g., LogP [30], Bulk Synchronous PRAM [85]) are arguably

necessary to achieve significant efficiency but also harder for the algorithm designer

and programmer. On the other hand, the ongoing growth of on-chip silicon real-

estate has recently allowed to build complex multi-cores and many-cores on a single

chip, and while not all memory locations are equidistant even on single-chip parallel

processors, modeling them as such can be a reasonable and useful first approxima-

tion because the difference between the closest and the furthest (on-chip) memory

location is negligible compared to that of distributed machines. Our claim is not

that the assumption of unit time memory access is realistic for existing commercial

multi-cores and many-cores, but merely that a single-chip parallel platform can be

built to cater to that assumption. XMT supports this claim by taking advantage of

177

this abundance of on-chip resources to efficiently support parallel code derived from

PRAM algorithms [82, 73]. Therefore, we hold that adequate architectural support

can make PRAM a realistic abstraction, and not one that is too simplistic.

In fact, we claim that PRAM is not too simple, but too hard! It is undesirable

for the programmer or algorithm designer to take P , the number of processors, into

account. Instead, in the Work-Depth model (WD) [78], a program is a sequence of

time steps, each performing any number of operations. Figure 6.2(b) illustrates the

difference between WD and PRAM: a time step can have fewer or more operations

than the number of processors P . The WD model maps directly to PRAM without

hiding additional complexities, for which it requires the operations of each time step

to be sequentially numbered. This requirement conflicts with our desire that high-

level parallel code should allow nested parallelism. Imagine the scenario where two

tasks T1 and T2 are active in time-step-1, creating n and m additional tasks. In

time-step-2, we will have n+m+ 2 tasks, but the algorithm designer/programmer

has to oversee their sequential numbering. For example, T1 sends n to T2; then T1

numbers its new tasks T3, . . . , Tn+2 and T2 numbers hers Tn+3, . . . , Tn+m+2.

To overcome this limitation, the Informal Work-Depth model (IWD), recently

popularized as the Immediate Concurrent Execution (ICE) abstraction [86], al-

lows the operations of each time-step to be described as (unordered) sets (see Fig-

ure 6.2(c)). Among other things, this allows nesting of parallelism without account-

ing for its scheduling costs. The IWD model provides the level of abstraction and

flexibility we want programmers and algorithm designers to enjoy, but for it to be

realistic, the compiler, run-time and hardware platform must be able to translate

such declarative parallel code to efficient execution. If necessary, the programmer

is certainly allowed to explicitly order the operations within a set like they would

have to do for the WD model (e.g., for parallel I/O).

The IWD model (like WD) characterizes algorithms via two metrics, work and

depth. Depth D (also known as time, span, or length of the critical path) is the total

178

number of time-steps of the algorithm, and the lower-bound on its execution time

given an infinite number of processors. The Depth can also be thought of as the

longest path through the computation DAG (Directed Acyclic Graph). Work W

is the total number of operations performed over the whole computation. In the

work stealing bounds, we used the symbols T∞ for depth and T1 for work. Using

these two metrics, W
D

is a measure of the parallelism expressed by the algorithm. If

W
D

>> P , we say that the algorithm has sufficient parallelism for a system with P

processors. This is the parallel slackness assumption discussed in Section 4.10.

What is still missing is proper theoretical underpinning of the following ques-

tion: assuming that the implementation platform is a variable, what is the realm of

possibilities for implementing IWD parallelism? Specifically for nested parallelism,

what are the costs of software and hardware primitives the run-time system can

employ and how can the compiler transform the code to maximize performance?

In addition to trying to lay out such a theoretical framework, the proposed model

unravels the relationship between the hardware and software-based schedulers on

XMT. The orthogonality relationship we establish between them enables harnessing

both for a better combined solution.

6.1.2 Background for Modeled Schedulers

In this chapter, we focus on two specific schedulers, as it is beyond the scope

of this work to cover a broader spectrum of schedulers. The two schedulers are

XMT’s hardware scheduler and the popular software work stealing scheduler, which

has been implemented for commercial platforms, as well as for XMT. In this section,

we briefly reiterate on some XMT and work stealing background needed for the rest

of the chapter. The expert or sequential reader of this dissertation is invited to skip

the rest of this section.

To understand XMT’s hardware scheduler, recall that XMT is an asymmet-

ric many-core: it has one powerful master core and many lightweight cores. The

179

powerful core is used for sequential code or for the sequential portions of a parallel

code, while the lightweight cores are used for parallel portions. Any execution starts

on the master core (sequential mode), and when a parallel section is encountered,

its execution is delegated to the parallel cores (parallel mode). When the parallel

section is completed, execution resumes on the master core (sequential mode).

To efficiently support quick transitions between sequential and parallel mode,

XMT provides hardware scheduling which includes: (1) broadcasting the instruc-

tions of the parallel section by the master core to the parallel cores; (2) a hardware

primitive called prefix-sum to allow multiple parallel cores to each grab the next

available tasks simultaneously with constant overhead; (3) a hardware mechanism

that detects the termination of a parallel section and initiates the transition to se-

quential mode (akin to a barrier operation, but over tasks instead of parallel cores).

The prefix-sum primitive allows fine-grained scheduling because of its very low cost.

Also, note that the latency of the prefix-sum operation is logarithmic in the number

of parallel cores P , but it is a constant for a given platform because P is constant

for a given platform and because concurrent prefix-sum operations are not queued

but serviced concurrently.

XMT’s hardware scheduler has one limitation: it does not directly support

nested parallelism. If additional nested parallelism is created while in parallel mode,

the hardware scheduler cannot directly schedule it efficiently, as it implements a

global queue abstraction (FIFO), which is known to have a potentially unbounded

memory footprint. Therefore, the hardware only schedules outer parallelism, and

the XMT system provides software task-management for nested parallelism.

The lazy work stealing scheduler [83] described in Chapter 4 is one of the avail-

able schedulers on XMT, but for simplicity we consider the non-adaptive, traditional

work stealing (e.g., Cilk [38]). Work Stealing has gained popularity in academia and

industry for its good performance, ease of implementation and good theoretical

space and time bounds. The basic idea of work stealing is for each worker thread to

180

place tasks, when discovered, in a local deque (a work-pool data structure), greedily

perform that work from its local deque, and stealing work from the deques of remote

processors when the local deque is empty. When a vector of N tasks is discovered

(e.g., through a parallel loop such as in Listing 6.1), the processor iteratively splits

the vector and pushes half on the deque. At the end of this process, the deque

contains logN task vectors. The premise is that, as these vectors get stolen and

the same splitting process is performed on the thief threads, the distribution of

parallelism resembles a binary tree of depth logN with N single-task leaves.

6.2 A Work-Depth Model for XMT’s Hardware and Work Stealing

Software Schedulers

To propose a model for the schedulers described in Section 6.1.2 we start by

considering the simple but powerful parallel-loop construct shown in Listing 6.1.

Without loss of generality, we will assume that low=0, step=1, and high=N. Gen-

erally N is not known at compile-time and is often input-dependent. According to

the IWD model, the depth of the parallel loop in our example is the maximum

among the depths of its N tasks, D = maxiDepth(Code(i)), and the work is the

sum of the works of its N tasks, W =
∑
i

Work(Code(i)). Next, these equations are

incremented with the scheduling costs.

Listing 6.1: Generic Parallel Loop

for a l l (int i=low ; i<high ; i+=step){ Code (i) ; }

For the hardware scheduler there is a cost for switching to parallel mode and

initializing all parallel cores, as well as a synchronization cost for switching back to

serial mode at the end. We model the sum of these costs as a constant (Q). There is

also a cost associated with the fine-grained assignment of cores to tasks. We model

it as a constant cost (a) per-task. The cost Q is incurred once for each parallel

181

loop, and it is on the critical path, so it is added both to the depth and the work in

Table 6.1. The cost a is incurred once per task, so it appears N times in the work,

and only once in the depth, because the hardware scheduler does not incur extra

overhead such as queuing to assign cores to tasks concurrently.

Depth Work

IWD D = max
i

Depth(CODE(i)) W =
∑
i

Work(Code(i))

Hardware DHW = D +Q+ a WHW = W +Q+ aN

Software DSW = D +Q+ b logN WSW = W +Q+ bN

Table 6.1: WD equations for a parallel-loop with N tasks

For work stealing, the same cost Q of switching between modes is incurred

on XMT. For an x86 multi-core, a different cost Q′ is incurred for initializing the

parallel threads and for synchronizing at the end of a parallel section, but measuring

that cost is beyond our scope. There is also a management cost b per task, which

we model as a constant. Like a, it appears N times in the work, but in the depth

it appears with a logN factor, which emanates from the iterative splitting of the

task-vector, described in Section 6.1.2. Note that the model for work stealing is

more or less implicit in may studies discussing the asymptotic behavior of work

stealing schedulers. The contribution of this work is to propose a way to determine

the constant factors involved.

At this point, we have a cost model for parallel loops using XMT’s hardware

scheduler and the more general work stealing scheduler. Note that the quantities

Q, a, and b are platform and implementation dependent. For example, on an x86

multi-core, bmay have different values for TBB [76] and TPL [61], both work stealing

schedulers. Many questions arise, such as how to model other hardware and software

schedulers, or how to model other parallel constructs like futures and reducers. We

defer those to future work and focus on the following question: is this limited model

182

useful? For example, assuming that we know the values of Q, a, and b on our target

platform XMT, and the values for work and depth (W and D) of a parallel loop,

can we use the model to decide whether to use hardware, software, or a hybrid

scheduling approach, or even to run the code sequentially? In the next section, we

address this question using matrix multiplication as an example parallel code.

6.3 Evaluation of the Scheduling Models

To demonstrate the potential of our model, we must be able to measure the

quantities Q, a, and b and they must have reasonably low variability to justify mod-

eling them as constants. We use the familiar computation of matrix multiplication

as a running example for measuring these constants. Figure 6.3 shows a possible

parallel implementation. It takes two matrices AN×L and BL×M as inputs and stores

the result in matrix RN×M . In this example, the two outer loops are parallelized:

for each element of the result matrix R the computation is performed in parallel.

The innermost loop can also be parallelized using a reducer [37], but for simplicity

we do not do this.

According to IWD, the work is proportional to the number of multiplications:

W = wNML, where w is the cost per multiplication. The depth is the amount

of work executed by each parallel task: D = wL. When only the loop over i is

parallelized, the depth is Di = wML.

Table 6.2 presents the work and depth equations for our matrix multiplica-

tion example. Since XMT’s hardware scheduler can only take advantage of outer

parallelism, the depth is Di, which is M times larger than D. To get the best of

both hardware and software schedulers, we consider a hybrid scheduler that uses

hardware for outer parallelism and software scheduling for nested parallelism.

For the work equations, all approaches pay the constant cost Q, then a cost per

task scheduled, a for the hardware and b for the software. The software scheduler

pays a cost of bN for the outer parallel loop and a cost of bNM for the inner one.

183

void matmult (int A[N] [L] , int B[L] [M] , int R[N] [M]) {

for a l l (int i =0; i<N; i++) {

for a l l (int j =0; j<M; j++) {

R[i] [j] = 0 ;

for (int k=0; k<L ; k++) {

R[i] [j] += A[i] [k]∗B[k] [j] ;

} } } }

Figure 6.3: Parallel Matrix Multiplication

Work W = wNML

Hardware WHW = W +Q+ aN

Software WSW = W +Q+ bN + bNM

Hybrid WHyb = W +Q+ aN + bNM

Depth D = wL, Di = wML = MD Parallelism

Hardware DHW = MD +Q+ a N

Software DSW = D +Q+ b logN + b logM NM

Hybrid DHyb = D +Q+ a+ b logM NM

Table 6.2: Work and depth equations for hardware, software, and hybrid scheduling.

The cost Q is also found in all the depth equations, and the logarithmic overheads

for software scheduling stem from the iterative splitting described in Section 6.1.2.

6.3.1 Measuring Q, a, b

Since the parameters Q, a, and b are platform and implementation specific,

the values computed will only be valid on the chosen experimental platform, in this

case the XMT FPGA [92]. Table 6.3 presents the values of Q, a and b computed

experimentally using square matrices (N = M = L) that fit in the shared cache.

184

N 8 16 32 64

Q 251.0 251.0 251.0 251.0

a 23.3 24.7 23.7 25.7

b 1515.5 1256.3 1162.4 1189.8

Table 6.3: Values in cycles for different values of N (with N = M = L).

We find that Q is constant, and that the values of a and b are relatively independent

of N , which justifies modeling them as constants. The methodology followed to get

these measurements as well as a discussion on how to measure the constants a and

b more accurately are presented in the next section.

We envision automatically determining the parameters Q, a and b by using a

series of predetermined benchmarks when the compiler is installed. The values will

then be used by compiler and run-time optimizations that transform the code to

better map the fine-grained tasks to the (long running) worker threads. For example,

our static analysis estimates the number of cycles for fine-grained tasks (i.e., their

depth), and it combines them to make tasks of at least 1000 cycles. According to

our findings that the average cost of software scheduling per task is b̃ = 1281, and

assuming the cycle estimation is accurate, it appears beneficial to perform more

aggressive coarsening.

6.3.2 Methodology for measuring Q, a, b

Table 6.4 presents the computed values for Q, a, b, and w along with the

measured values that were used to compute them.

Measuring Q. To measure Q, we replaced the body of the computation by a

parallel loop with zero iterations and measured its execution. This caused execution

to switch to parallel mode and immediately back to serial. This was repeated with

different input sizes confirming that the initialization of matrices A and B preceding

185

N 8 16 32 64

Q 251 251 251 251

WHW 27767 210855 1659143 13184967

WSer/Par 27604 210484 1658408 13183348

a 23.3 24.7 23.7 25.7

w 53.4 51.3 50.6 50.3

WSW 39705 230560 1695580 13259468

DSW 12271 22945 63361 227425

b 1515.5 1256.3 1162.4 1189.8

bsteal 2867.9 2389.0 2258.7 3531.4

Table 6.4: Values are in cycles for different values of N (with N = M = L).

the main computation does not affect the cost Q. This indicates that the cost Q

does not depend on the state of the machine before the transition.

Measuring a. To compute the parameter a of XMT’s hardware scheduler, we

measured the parallel work WHW and the sequential work W and subtracted the

measured values. However, since XMT is an asymmetric architecture and parallel

cores are different than the sequential one, the factor w might have a different value

on the sequential and parallel cores. Therefore, we ran the sequential code on a

parallel core and measured WSer/Par = Q + a + W . We computed a by solving

WHW −WSer/Par = (N − 1) · a.

To compute the work factor w, we solved WSer/Par − Q − a = wNML for w

and used the values for Q and a previously computed.

Measuring b. To compute the parameter b, we measured the work and depth of

the computation using the software scheduler. To simplify the process, we serialized

the j-loop and only kept the i-loop parallel. The work and depth equations became

WSW = Q+ bN + wNML and DSW = Q+ b logN + wML. To measure the work,

186

we measured the execution time of the parallel code on a single parallel core. To

measure the depth, we measured the execution time using all parallel cores, but

we ensured that the number of tasks did not exceed the number of parallel cores.

We solved WSW for b using the computed values for Q and w and also solve DSW

for b and call it bsteal. We notice an important divergence in the b values computed

stemming from the different behavior of work stealing in these two cases. In the first

case (WSW), only one worker is active, so no thefts occur: the worker pushes and

pops tasks from its own work-queue. In the second case (DSW), multiple workers are

active and tasks are always stolen, which is a more costly operation. Furthermore,

in the case where N = 64, the last worker to steal a task is going to be looking

for a single task among 63 work-queues. This is the worst possible scenario for

work-stealing, as there is typically an abundance of work, so it can be found quickly

(parallel slackness assumption). Both values, b and bsteal, are useful because the first

reveals the common-case cost of scheduling per task, whereas the second gives an

upper bound on the worst case.

There are, however, some caveats to this method. In retrospect, using syn-

thetic benchmarks to measure the values of Q, a, and b (and bsteal) would have been

preferable. This way we would exclude queuing overheads incurred by the multipli-

cation operations, or having many write operations in flight in the interconnection

network delaying the switch back to sequential mode, or the inaccuracy of using

W = wNML instead of the more accurate W = wNML+ sNM to account for the

NM store operations updating the result matrix. In fact, if we assign s = 30 cycles,

which is approximately the cost of a round-trip through the interconnection network

on the FPGA, computing w gives 49.63, 49.44, 49.66, and 49.82, for sizes 8, 16, 32,

and 54, respectively. These values for w have a much lower variation than the ones

we computed earlier. However, picking s = 30 cycles long seems high since store

operations are non-blocking, but this long latency (of 30 cycles) could be explained

by the hardware buffers filling up with non-blocking store requests, resulting in most

187

of the store operations blocking. In conclusion, synthetic benchmarks would have

avoided these issues. Even so, the values of a and b show relatively little variation,

so we decided not to repeat the experiments with synthetic benchmarks.

6.3.3 Orthogonality of Hardware and Software Scheduling on XMT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 8 32 64 96 128

C
yc

le
s

L

Insufficient Outer Parallelism.
Matrix Multiplication N=M=8.

SER
HW

Hybrid
SW

Figure 6.4: Hybrid vs. hardware: insufficient outer parallelism.

The formulas in Table 6.2, supported by experimental data in Figures 6.4, 6.5,

and 6.6, provide the basis for characterizing of the relationship between hardware

and software scheduling on XMT as orthogonal. Given any amount of flat parallelism

(not nested) in code, transitioning from hardware to software scheduling at any

time during the execution still allows the software to fully exploit the parallelism

left unexploited by the hardware. In other words, the combination of hardware

and software scheduling (i.e., hybrid scheduling) should never be slower than the

latter. In fact, Table 6.2 demonstrates this for the more challenging case where

the parallelism delegated to the software scheduler is not flat: given that a < b,

hybrid scheduling is always preferable to software scheduling since WHyb < WSW

and DHyb < DSW . This is also confirmed experimentally by comparing the two

188

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

1.4M

323 643 652x128 652x256

C
yc

le
s

Work (N M L)

Load Imbalance
Matrix Multiplication (N M L).

Hybrid
SW
HW

652x64

652x128

652x256

323
643

Figure 6.5: Hybrid outperforms hardware: load imbalance.

approaches in Figures 6.4, 6.5, and 6.6.

This orthogonality relationship shows the composability of XMT’s hardware

scheduler with work stealing to create a hybrid scheduler that is always faster than

its software component alone. Hereafter, we present quantitative examples where

the hybrid solution outperforms the exclusive use of hardware scheduling, but also

examples where hardware scheduling is faster. The existence of both examples

further advocates the utility of adding architectural support for scheduling and

the need for a theoretical model for predicting the costs of hardware and hybrid

scheduling to assist the compiler or run-time in selecting between the two options.

Hybrid scheduling incurs a larger work overhead than hardware scheduling (by

bNM in our example), which is the additional cost of nested parallelism. The po-

tential advantage of more parallelism is expressed by the smaller depth D = Di/M

for the hybrid scheduler. Thus, hardware scheduling incurs less work-overhead than

hybrid scheduling, but it can have a much larger depth, as it does not exploit nested

parallelism. When the depth is the deciding factor for performance, for example

when there is not enough outer parallelism to feed the available workers (Figure 6.4)

189

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 1 2 3 4 5 6 7 8 9

C
yc

le
s

N

Break-Even Point w. Serial.
Matrix Multiplication N=M=N.

Ser
HW

Hybrid
SW

Figure 6.6: Break-even point with sequential code.

or to ensure good load balance (Figure 6.5), hybrid scheduling is preferable to hard-

ware. On the other hand, when work is the deciding factor (e.g., abundant and

balanced outer parallelism or very short parallel sections, as in Figure 6.6) hard-

ware scheduling comes ahead.

In particular, Figure 6.4 shows an example where hybrid scheduling can out-

perform hardware because outer parallelism (N = 8) is insufficient to employ all 64

threads, but along with inner parallelism (M = 8) it creates 64 tasks, enough to

feed the 64 parallel cores of our experimental platform. By varying L, we find that

hybrid scheduling outperforms hardware scheduling, for values over 25.

Figure 6.5 illustrates another example where hybrid scheduling comes ahead.

We plot the running times of seven (N,M,L) configurations as a function of their

(normalized) work W/w = NML. The seven configurations are (83), (163), (323),

(643), (652, 64), (652, 128), (652, 256). The key point to notice is the step-increase for

hardware scheduling when moving from 64 to 65 outer tasks. This occurs because the

hardware schedules the first 64 tasks in parallel, then, the first worker to complete its

task runs the 65th task, creating an imbalance since the other workers will finish and

190

idle. Consequently, hybrid scheduling, which takes advantage of nested parallelism

and creates more tasks, is a winner for these configurations by achieving better load

balance.

On the other hand, Figure 6.6 shows that the hardware scheduler gets ahead

of the serial execution for N = M = L = 4 (W/w = 43), whereas hybrid scheduling

needs at least N = M = L = 8 (W/w = 83, i.e., eight times more work). This

shows the advantage of having dedicated hardware for exploiting low-degree or fine-

grained parallelism. Such hardware can enable parallelizing certain kinds of irregular

computations, such as breadth first search (BFS), especially on graphs that do not

have the small-world property (i.e., low diameter), such as planar graphs. In the

next section, we use this model to predict which thread management technique will

be preferable in the scenarios of Figures 6.4 and 6.6.

4
8

12
16

20
24

28
32

48121620242832

4

8

12

16

20

24

28

32

N
M

L

Figure 6.7: Hardware and hybrid scheduling are complementary.

Finally, Figure 6.7 shows a 3D scatter plot of configurations for which hybrid

scheduling is faster than hardware scheduling. The axes represent values of N ,

M , and L ∈ {4, 8, 12, 16, 20, 24, 28, 32}. The blue dots represent configurations for

which hybrid scheduling is faster than hardware, and the absence of a dot means that

hardware scheduling outperforms hybrid for that input size. Hybrid scheduling wins

191

when there is not enough outer parallelism (N is small) and the inner parallelism

is worth exploiting, i.e., when the product ML ∼ Di is large enough. On the other

hand, hybrid scheduling is slower than hardware scheduling when there is enough

outer parallelism (N is large enough), or when there is not enough inner parallelism

(M is small and hybrid scheduling can not take advantage of much more parallelism)

and the depth is small (L is small and it is not as profitable to take advantage of the

nested parallelism because the tasks are too short), i.e., when the product ML ∼ Di

is small.

6.3.4 Using the model to predict the preferable scheduling option

We will use the following values: Q = 250, a = 25, b = 3000 (which are slightly

higher than the average values measured, as we prefer to slightly overestimate rather

than underestimate the scheduling overheads), and w = 50.

First, in the case illustrated in Figure 6.4 (N=M=8), the runtime for the

hardware scheduler will be:

THW (L) = DHW (L) = wML+Q+ a = 400L+ 275

For hybrid scheduling, the runtime will be:

THyb(L) = DHyb(L) = wL+Q+ a+ b logM = 50L+ 9275

Solving THW (L) − THyb(L) = 0, gives L = 25.7 so the model predicts that for

L ≥ 26 hybrid scheduling is preferable, which is very close to the cutoff point of 25

determined experimentally.

Second, in the case illustrated in Figure 6.6, we address when hardware and

hybrid scheduling will outperform the sequential execution. We have N = M = L.

For N ≤ 8 (i.e., N ·M ≤ nTCUs), the following equations give the running times

for the three approaches:

Tser(N) = 50N3

192

THW (N) = 50N2 + 275

THyb(N) = 50N + 3000dlogNe+ 275

Tser(N) − THW (N) = 0 gives N = 2.16, so for N ≥ 3 hardware scheduling

outperforms sequential execution, which is accurate. Solving Tser(N)−THyb(N) = 0

gives N = 6.211, which means that for N ≥ 7 hybrid scheduling outperforms serial

execution, which is very close to the actual value of N = 8.

6.4 Related Work

He et al. present the Cilkview scalability analyzer [45], a very useful tool

for developers of parallel code. Cilkview dynamically instruments optimized bina-

ries: when the binary is run normally, no overhead is payed, but when it is run

in “profiling-mode” it is instrumented on-the-fly. Cilkview runs an instrumented

program on one processor and computes the work, the span (i.e., depth) and the

burdened span of the application, which charges the cost of a theft for each possible

task. Using these metrics, Cilkview plots the optimal and the worst-case expected

performance as a function of the number of workers. It also automatically bench-

marks the application and includes the data collected on the aforementioned plot.

The goal is to assist the programmer in determining why a parallel application

might not perform well. Cilkview will find if the application lacks parallelism, or

if the execution times are below Cilkview’s worst-case estimated performance, the

bottleneck is likely somewhere else (e.g., memory bandwidth). Cilkview is the only

tool we are aware of that tries to model the scheduling overheads (burdened span).

However, its goals do not include the accurate modeling of scheduling overheads in

order to allow a compiler to make coarsening decisions. Instead, it is meant to be

an interactive debugging tool. He et al. [45] also review other debugging tools for

multi-threaded codes, including mostly profilers, which do not attempt to model the

scheduler overheads.

193

Li et al. [63] propose to add hardware support for scheduling, but their ap-

proach does not seem to be composable with a software approach. More importantly,

the scheduling algorithm has the potential to deviate from depth-first execution,

which can drastically increase the memory footprint. While they raise some inter-

esting ideas, overall the approach seems questionable.

Kumar et al. [57] propose to add hardware support for work stealing, but they

employ a centralized unit to hold all the deques. This is somewhat counter-intuitive,

because work stealing is a distributed algorithm by design. Furthermore, the authors

admit that their proposed design is not scalable and they do not mention whether

they support nested parallelism or not. Like the hardware scheduler proposed by Li

et al. [63], this one also does not seem to be composable with a software approach.

6.5 Conclusions and Future Directions

In this chapter, we identified the abstraction level at which we want program-

mers to operate, and we made three contributions towards efficiently supporting

it. First, we presented a case for architectural support of scheduling by showing

cases where hardware scheduling is superior to software or even hybrid scheduling.

Second, we showed that the hardware and software schedulers we considered have

orthogonal contributions to performance. Third, we introduced a parametric model

for two scheduling approaches and their combination (hybrid scheduling) and ex-

perimentally evaluated their parameters on XMT using a simple example. This

led to the identification of some typical cases where hybrid scheduling outperforms

hardware and vice versa. The long-term goal is to build a generalized model of

scheduling overheads that will guide the compiler and run-time system in doing

transformations to optimize declarative code for each specific target platform. For

example, the model would allow the compiler to (statically or dynamically) decide

among serializing parallelism, coarsening parallelism (possibly by serializing nested

parallelism), flattening nested parallelism, or interchanging nested parallel-loops to

194

expose more parallelism to the hardware scheduler.

195

Chapter 7

Conclusion and Future Directions

This dissertation focused on techniques for efficiently supporting declarative

code as a means to supporting general-purpose parallel programming. An integral

part of declarative code is the ability to express nested parallelism, which creates

the need for dynamic scheduling. Work stealing is currently the scheduler of choice

for such task-parallel codes, because it allows programmers to expose much more

parallelism than there are cores on the target platform. However, just as with any

other dynamic scheduler, when tasks are too fine-grained, the scheduling overheads

kill the performance. To avoid that situation, programmers are currently required

to manually coarsen the available parallelism and only expose some of it.

We identified two goals that coarsening needs to fulfill: amortizing schedul-

ing overheads by coarsening very fine-grained tasks, and pruning excess parallelism

which is unlikely to help improve performance. We showed that current manual ap-

proaches are tedious and either result in loss of performance portability, or require

expert programmers who will spend a lot of time tuning their coarsening approach

to preserve performance portability. We proposed an experimental framework for

measuring performance portability and used it to demonstrate the pitfalls of manual

coarsening. We also presented some simple but effective compiler transformations

that amortize very fine-grained parallel loops.

To tackle pruning of parallelism, the more complex of the two goals of coars-

ening, we presented lazy scheduling, an adaptive scheduling technique that takes

load conditions into account. We showed that it is competitive with existing work

stealing schedulers on coarse code and greatly outperforms them on declarative and

on amortized codes, where only the very fine-grained tasks were coarsened either

manually or by compiler. We presented results on three commercial multicores as

196

well as the XMT platform, and showed the importance of honoring the breadth-first

thefts order of work stealing, especially on commercial multicores.

We also presented details of the XMTC compiler, which enabled doing research

on the XMT platform and has been used to teach PRAM algorithms and XMT to

students from high-school to graduate school. We also presented a number of lessons

learned while modifying a compiler for a sequential language (GCC) to compile an

explicitly parallel language such as XMTC.

Finally, we proposed a model for scheduling costs for the XMT hardware

scheduler. We also presented a model for work stealing that has been implicit in

some previous works. The main contributions of that portion of our work are: (1) a

validation of the model and a methodology for computing its constant parameters;

(2) the composability of XMT’s hardware scheduler and with work stealing that

makes their hybrid composition better than the sum of its parts.

We hope that the overarching contribution of this dissertation was to restore

the shaken belief that declarative programming can be efficiently supported and

to show how the current approach of manual coarsening, besides being tedious,

can easily destroy the performance portability of parallel code. With these points

in mind, we hope that this work will serve as a basis for future research towards

efficiently supporting declarative programming.

7.1 Future Work

We see a few possible directions towards better support of declarative pro-

gramming. First, our compiler cannot currently amortize all types of codes. In

particular, recursively nested parallelism eludes it. Thus, one of the pieces currently

missing from the puzzle is a set of compiler transformations that will amortize all

types of task parallel code, starting with recursively nested parallelism.

Once this support is in place, the next step would be to extend the work we did

on modeling the scheduling costs to enable the compiler to decide between different

197

ways to exploit the exposed parallelism. In our envisioned solution, an auto-tuner

would determine the parameter values of the model, as well as any parameter values

needed for the cost estimation pass described in Section 3.5.1.

Another area where future work will be needed is in identifying the exact

conditions under which lazy work stealing has the same bounds as work stealing.

This will dispel any doubts about the behavior of lazy work stealing under worst-case

scenarios that may have eluded its experimental evaluation in this dissertation.

Finally, supporting declarative programming is but one of the aspects of solv-

ing general purpose parallel programming. We believe that other aspects will in-

clude: (1) adding hardware support for parallelism, such as scheduling on XMT; (2)

automatically increasing the determinism of parallel code to simplify debugging; (3)

reducing the degree to which the programmer is responsible for programming for

locality, as is the case with XMT and with another recently described architecture

[27]; (4) coordinating between the OS and the application for resource allocation

and re-allocation during execution, as in [5, 74]; (5) improving dynamic memory

allocation and garbage collection for declarative parallel applications. This is not

meant to be a complete list of challenges for general purpose parallelism, but rather,

a short list of significant items demonstrating the magnitude of such an enterprise.

198

Bibliography

[1] Intel Threading Building Blocks Reference Manual, Rev. 1.9, 2008.

[2] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of
work stealing. In Proceedings of the twelfth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’00, pages 1–12, New York, NY, USA, 2000.
ACM.

[3] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle scheduling:
controlling granularity in implicitly parallel languages. In Proceedings of the
2011 ACM international conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages 499–518, New York, NY, USA,
2011. ACM.

[4] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29(12):66–76, 1996.

[5] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive
work-stealing with parallelism feedback. ACM Trans. Comput. Syst., 26:7:1–
7:32, September 2008.

[6] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the tenth annual ACM
symposium on Parallel algorithms and architectures, SPAA ’98, pages 119–129,
New York, NY, USA, 1998. ACM.

[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker,
John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The land-
scape of parallel computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, Berkeley, Dec 2006.

[8] D H Bailey, E Barszcz, J T Barton, R L Carter, T A Lasinski, D S Brown-
ing, L Dagum, R A Fatoohi, P O Frederickson, and R S Schreiber. The nas
parallel benchmarks. International Journal of High Performance Computing
Applications, 5(3):63–73, 1991.

[9] A. O. Balkan, Gang Qu, and U. Vishkin. An area-efficient high-throughput
hybrid interconnection network for single-chip parallel processing. In Proc.
Design Automation Conference, pages 435–440, June 2008.

[10] A. O. Balkan, Gang Qu, and Uzi Vishkin. A mesh-of-trees interconnection
network for single-chip parallel processing. In Proc. IEEE Intl. Conf. on
Application-specific Systems, Architectures and Processors, 2006.

199

[11] Aydin O. Balkan. Mesh-of-trees Interconnection Network for an Explicitly
Multi-threaded Parallel Computer Architecture. PhD thesis, University of Mary-
land, 2008.

[12] Aydin O. Balkan, Michael N. Horak, Gang Qu, and Uzi Vishkin. Layout-
accurate design and implementation of a high-throughput interconnection net-
work for single-chip parallel processing. In Proc. of Hot Interconnects, 2007.

[13] Lars Bergstrom, Mike Rainey, John Reppy, Adam Shaw, and Matthew Fluet.
Lazy tree splitting. In Proc. of the 15th International Conference on Functional
Programming - ICFP ’10, Sept., 2010.

[14] Guy Blelloch and Gary W. Sabot. Compiling collection-oriented languages onto
massively parallel computers. Journal of Parallel and Distributed Computing,
8:119–134, 1990.

[15] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay Sipelstein,
and Marco Zagha. Implementation of a portable nested data-parallel language.
In Proceedings of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPOPP ’93, pages 102–111, New York, NY,
USA, 1993. ACM.

[16] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. J. ACM, 46:720–748, September 1999.

[17] Hans-J. Boehm. Threads cannot be implemented as a library. In Proc. Con-
ference on Programming Language Design and Implementation, 2005.

[18] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a
virtual tree of processors. In Proceedings of the 1981 conference on Functional
programming languages and computer architecture, FPCA ’81, pages 187–194,
New York, NY, USA, 1981. ACM.

[19] George Caragea, Fuat Keceli, Alexandros Tzannes, and Uzi Vishkin. General-
purpose vs. GPU: Comparison of many-cores on irregular workloads. In Proc.
USENIX Workshop on Hot Topics in Parallelsim, 2010.

[20] George Caragea, Alexandre Tzannes, Fuat Keceli, Rajeev Barua, and Uzi
Vishkin. Resource-aware compiler prefetching for many-cores. In Proc. Intl.
Symposium on Parallel and Distributed Computing, 2010.

[21] George C. Caragea. Optimizing for a Many-Core Architecture without Com-
promising Ease-of-Programming. PhD thesis, University of Maryland, College
Park, 2011.

[22] George C. Caragea, Beliz Saybasili, Xingzhi Wen, and Uzi Vishkin. Perfor-
mance potential of an easy-to-program pram-on-chip prototype versus state-of-
the-art processor. In Proc. ACM Symposium on Parallelism in Algorithms and
Architectures, 2009.

200

[23] George C. Caragea, Alexandros Tzannes, Aydin O. Balkan, and Uzi Vishkin.
XMT Toolchain Manual for XMTC Language, XMTC Compiler, XMT Simu-
lator and Paraleap XMT FPGA Computer, 2010.

[24] George Constantin Caragea and Uzi Vishkin. Brief announcement: better
speedups for parallel max-flow. In Proceedings of the 23rd ACM symposium
on Parallelism in algorithms and architectures, SPAA ’11, pages 131–134, New
York, NY, USA, 2011. ACM.

[25] Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam, Frederic Arzel, and
Nathalie Drach. A practical approach for reconciling high and predictable
performance in non-regular parallel programs. In Proceedings of the conference
on Design, automation and test in Europe, DATE ’08, pages 740–745, New
York, NY, USA, 2008. ACM.

[26] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceed-
ings of the seventeenth annual ACM symposium on Parallelism in algorithms
and architectures, SPAA ’05, pages 21–28, New York, NY, USA, 2005. ACM.

[27] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honar-
mand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun
Chou. Denovo: Rethinking the memory hierarchy for disciplined parallelism.
In Lawrence Rauchwerger and Vivek Sarkar, editors, PACT, pages 155–166.
IEEE Computer Society, 2011.

[28] R Cole and U Vishkin. Deterministic coin tossing and accelerating cascades:
micro and macro techniques for designing parallel algorithms. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, STOC ’86,
pages 206–219, New York, NY, USA, 1986. ACM.

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[30] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.
Logp: towards a realistic model of parallel computation. In Proceedings of
the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPOPP ’93, pages 1–12, New York, NY, USA, 1993. ACM.

[31] D.E. Culler, J.P. Singh, and A. Gupta. Parallel computer architecture: a hard-
ware/software approach. The Morgan Kaufmann Series in Computer Architec-
ture and Design. Morgan Kaufmann Publishers, 1999.

[32] Edsger W. Dijkstra. Go-to statement considered harmful. Commun. ACM,
11:147–148, 1968.

[33] T. M. DuBois, B. Lee, Yi Wang, M. Olano, and U. Vishkin. XMT-GPU: A
PRAM architecture for graphics computation. In Proc. International Confer-
ence on Parallel Processing, 2008.

201

[34] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. An adaptive cut-off
for task parallelism. In SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[35] Alejandro Duran, Marc Gonzàlez, and Julita Corbalán. Automatic thread dis-
tribution for nested parallelism in openmp. In Proceedings of the 19th annual
international conference on Supercomputing, ICS ’05, pages 121–130, New York,
NY, USA, 2005. ACM.

[36] D.L. Eager, J. Zahorjan, and E.D. Lazowska. Speedup versus efficiency in
parallel systems. Computers, IEEE Transactions on, 38(3):408–423, mar 1989.

[37] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin.
Reducers and other Cilk++ hyperobjects. In Proc. of the Symposium on Par-
allelism in Algorithms and Architectures, 2009.

[38] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proc. of the conference on Program-
ming Language Design and Implementation (PLDI), 1998.

[39] Etienne M. Gagnon and Laurie J. Hendren. Sablecc, an object-oriented compiler
framework. In Proc. Technology of Object-Oriented Languages, 1998.

[40] Seth Copen Goldstein. Lazy Threads Compiler and Runtime Structures for
Fine-Grained Parallel Programming. PhD thesis, University of California–
Berkeley, Berkeley, CA, 1997.

[41] Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler. Lazy threads:
implementing a fast parallel call. Journal of Parallel and Distributed Comput-
ing, 37(1):5–20, 1996.

[42] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. The nyu ultracomputer–designing a mimd, shared-
memory parallel machine (extended abstract). In Proceedings of the 9th annual
symposium on Computer Architecture, ISCA ’82, pages 27–42, Los Alamitos,
CA, USA, 1982. IEEE Computer Society Press.

[43] Yi Guo, Jisheng Zhao, V. Cave, and V. Sarkar. Slaw: A scalable locality-aware
adaptive work-stealing scheduler. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pages 1 –12, april 2010.

[44] Robert H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor.
In Proceedings of the 1984 ACM Symposium on LISP and functional program-
ming, LFP ’84, pages 9–17, New York, NY, USA, 1984. ACM.

[45] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The cilkview
scalability analyzer. In Proceedings of the 22nd ACM symposium on Parallelism
in algorithms and architectures, SPAA ’10, pages 145–156, New York, NY, USA,
2010. ACM.

202

[46] Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized non-
blocking work stealing deque. Distrib. Comput., 18:189–207, February 2006.

[47] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues. In Pro-
ceedings of the twenty-first annual symposium on Principles of distributed com-
puting, PODC ’02, pages 280–289, New York, NY, USA, 2002. ACM.

[48] Lorin Hochstein, Victor R. Basili, Uzi Vishkin, and John Gilbert. A pilot study
to compare programming effort for two parallel programming models. J. Syst.
Softw., 81:1920–1930, November 2008.

[49] Sunpgack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel graph
exploration for multi-core cpu and gpu. In Proc. of The Twentieth International
Conference on Parallel Architectures and Compilation Techniques (PACT),
2011.

[50] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1992.

[51] F. Keceli, T. Moreshet, and U. Vishkin. Thermal management of a many-
core processor under fine-grained parallelism. In Proc. 5th Workshop on Highly
Parallel processing on Chip(HPPC 2011), Bordeaux, France, August 2011. In
conjunction with Euro-Par.

[52] Fuat Keceli. Power and Performance Studies of the Explicit Multi-Threading
(XMT) Architecture. PhD thesis, University of Maryland, College Park, 2011.

[53] Fuat Keceli, Tali Moreshet, and Uzi Vishkin. Power-performance comparison
of single-task driven many-cores. In 17th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), 2011.

[54] Fuat Keceli, Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi
Vishkin. Toolchain for Programming, Simulating and Studying the XMTMany-
Core Architecture. In 16th International Workshop on High-Level Parallel
Programming Models and Supportive Environments (in conjunction with IEEE
IPDPS), Anchorage, Alaska, USA, May 2011.

[55] Jorg Keller, Christopher Kessler, and Jesper Larsson Traeff. Practical PRAM
Programming. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[56] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: a high-performance
parallel lisp. In Proceedings of the ACM SIGPLAN 1989 Conference on Pro-
gramming language design and implementation, PLDI ’89, pages 81–90, New
York, NY, USA, 1989. ACM.

[57] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: archi-
tectural support for fine-grained parallelism on chip multiprocessors. In Pro-
ceedings of the 34th annual international symposium on Computer architecture,
ISCA ’07, pages 162–173, New York, NY, USA, 2007. ACM.

203

[58] Leslie Lamport. Ti clocks, and the ordering of events in a distributed system.
Commun. ACM, 21:558–565, July 1978.

[59] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 con-
ference on Java Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000.
ACM.

[60] D. Leijen and J. Hall. Optimize Managed Code For Multi-Core Machines.
MSDN Magazine, October 2007.

[61] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a
task parallel library. In Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications, OOPSLA
’09, pages 227–242, New York, NY, USA, 2009. ACM.

[62] Charles E. Leiserson. The cilk++ concurrency platform. In Proceedings of the
46th Annual Design Automation Conference, DAC ’09, pages 522–527, New
York, NY, USA, 2009. ACM.

[63] Zheng Li, Olivier Certner, Jose Duato, and Olivier Temam. Scalable hard-
ware support for conditional parallelization. In Proceedings of the 19th interna-
tional conference on Parallel architectures and compilation techniques, PACT
’10, pages 157–168, New York, NY, USA, 2010. ACM.

[64] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model.
In Proc. ACM Symposium on Principles of Programming Languages, 2005.

[65] Xavier Martorell, Eduard Ayguadé, Nacho Navarro, Julita Corbalán, Marc
González, and Jesús Labarta. Thread fork/join techniques for multi-level par-
allelism exploitation in numa multiprocessors. In Proceedings of the 13th in-
ternational conference on Supercomputing, ICS ’99, pages 294–301, New York,
NY, USA, 1999. ACM.

[66] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work
stealing. In Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’09, pages 45–54, New York, NY,
USA, 2009. ACM.

[67] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation:
a technique for increasing the granularity of parallel programs. In Proceedings
of the 1990 ACM conference on LISP and functional programming, LFP ’90,
pages 185–197, New York, NY, USA, 1990. ACM.

[68] Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng, and Uzi Vishkin. Towards
a first vertical prototyping of an extremely fine-grained parallel programming
approach. In Proceedings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’01, pages 93–102, New York, NY, USA,
2001. ACM.

204

[69] Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng, and Uzi Vishkin. Towards
a first vertical prototyping of an extremely fine-grained parallel programming
approach. Theory of Computing Systems, 36:521–552, 2003. 10.1007/s00224-
003-1086-6.

[70] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
Cil: Intermediate language and tools for analysis and transformation of c pro-
grams. In Proceedings of the 11th International Conference on Compiler Con-
struction, CC ’02, pages 213–228, London, UK, 2002. Springer-Verlag.

[71] Dimitrios S. Nikolopoulos, Eleftherios D. Polychronopoulos, and Theodore S.
Papatheodorou. Efficient runtime thread management for the nano-threads
programming model. In Proc. of the Second IEEE IPPS/SPDP Workshop on
Runtime Systems for Parallel Programming, LNCS, pages 183–194, 1998.

[72] OpenMP Architecture Review Board. OpenMP Application Program Interface,
Ver. 3.0 May 2008. http://www.openmp.org.

[73] D. Padua, U. Vishkin, and J. C. Carver. Joint UIUC/UMD parallel algo-
rithms/programming course. In Proc. NSF/TCPP Workshop on Parallel and
Distributed Computing Education, in conjunction with IPDPS, 2011.

[74] Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing parallel soft-
ware efficiently with lithe. In Proceedings of the 2010 ACM SIGPLAN confer-
ence on Programming language design and implementation, PLDI ’10, pages
376–387, New York, NY, USA, 2010. ACM.

[75] David Patterson. The trouble with multicore: Chipmakers are busy designing
microprocessors that most programmers can’t handle. IEEE Spectrum, July
2010.

[76] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work
stealing in tbb. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1 –8, april 2008.

[77] A. Beliz Saybasili, Alexandros Tzannes, Bernard R. Brooks, and Uzi Vishkin.
Highly parallel multi-dimentional fast fourier transform on fine- and coarse-
grained many-core approaches. In PDCS ’09: The 21st IASTED International
Conference on Parallel and Distributed Computing and Systems, 2009.

[78] Yossi Shiloach and Uzi Vishkin. An O(n2 log n) parallel max-flow algorithm. J.
Algorithms, 3:128–146, February 1982.

[79] Marc Snir. Multi-core and parallel programming: Is the sky falling?, 2008.
http://www.cccblog.org/2008/11/17/multi-core-and-parallel-programming-is-
the-sky-falling/.

[80] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s Journal, 30(3), March 2005.

205

[81] Kenjiro Taura, Kunio Tabata, and Akinori Yonezawa. Stackthreads/mp: inte-
grating futures into calling standards. In Proceedings of the seventh ACM SIG-
PLAN symposium on Principles and practice of parallel programming, PPoPP
’99, pages 60–71, New York, NY, USA, 1999. ACM.

[82] Shane Torbert, Uzi Vishkin, Ron Tzur, and David J. Ellison. Is teaching par-
allel algorithmic thinking to high school students possible?: one teacher’s ex-
perience. In Proceedings of the 41st ACM technical symposium on Computer
science education, SIGCSE ’10, pages 290–294, New York, NY, USA, 2010.
ACM.

[83] Alexandros Tzannes, G.C. Caragea, R. Barua, and U. Vishkin. Lazy binary-
splitting: a run-time adaptive work-stealing scheduler. In PPoPP. ACM, 2010.

[84] Alexandros Tzannes, Uzi Vishkin, and Rajeev Barua. A case for architectural
support for task management. manuscript, April 2011.

[85] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33:103–111, August 1990.

[86] Uzi Vishkin. Using simple abstraction to reinvent computing for parallelism.
Commun. ACM, 54:75–85, January 2011.

[87] Uzi Vishkin, George C. Caragea, and Bryant C. Lee. Handbook of Parallel
Computing: Models, Algorithms and Applications, chapter Models for Advanc-
ing PRAM and Other Algorithms into Parallel Programs for a PRAM-On-Chip
Platform. CRC Press, 2007.

[88] Uzi Vishkin, Shlomit Dascal, Efraim Berkovich, and Joseph Nuzman. Explicit
multi-threading (xmt) bridging models for instruction parallelism (extended
abstract). In Proceedings of the tenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’98, pages 140–151, New York, NY, USA,
1998. ACM.

[89] J. Wagner, A. Jahanpanah, and J.L. Traff. User-land work stealing schedulers:
Towards a standard. In Complex, Intelligent and Software Intensive Systems,
2008. CISIS 2008. International Conference on, pages 811 –816, march 2008.

[90] Xingzhi Wen. Hardware Design, Prototyping and Studies of the Explicit Multi-
Threading (XMT) Paradigm. PhD thesis, University of Maryland, College Park,
2008.

[91] Xingzhi Wen and Uzi Vishkin. PRAM-on-chip: first commitment to silicon. In
Proceedings of the annual ACM Symposium on Parallel Algorithms and Archi-
tectures, 2007.

[92] Xingzhi Wen and Uzi Vishkin. FPGA-based prototype of a PRAM-on-chip
processor. In Proceedings of the 2008 conference on Computing frontiers - CF
’08, page 55, May 2008.

206

