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1 Introduction

This thesis considers estimation of panel data models when the dependent variable

is allowed to be correlated in both dimensions. Using a natural terminology, I

investigate models in which there is correlation both across time and between

the cross-sectional units. Although there might be many ways to write down such

model, I choose to concentrate on concrete specification that arises as an extension

of the existing literature on dynamic panel data models and on spatial modelling.

In doing so, I hope to offer a useful synthesis of the two strands of the literature.

My model is applicable to situations where the number of time periods over which

the data are observed is limited.1

In the next chapter, I review the existing literature related to this topic. I first

focus on theoretical contributions to dynamic panels estimation methods, then

briefly outline the specifications used in spatial econometrics, and close with a

review of papers that have used specifications in which time and space are inter-

acting in a nontrivial way.

Chapter 3 will then spell out the specification I chose to concentrate on. It will

also provide the general assumptions maintained throughout the thesis and discuss

some implication of the model.

In Chapter 4, I provide an outline of several estimation methods and provide

a formal statements of their asymptotic properties. I start with an initial instru-
1Of course, if the time dimension of the panel is sufficiently large, one can consider, for ex-

ample, a seemingly unrelated regression model that allows for a fairly general specification of the
correlation pattern in the cross-sectional dimension.
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mental variable (IV) technique suggested by Anderson and Hsiao (1981) to esti-

mate the slope coefficients of the model. Although this method ignores possible

cross-sectional correlation in the data, I show that it is still consistent and asymp-

totically normal under the specification considered in this thesis. Next, I outline

a spatial generalized moments estimation technique that estimates the degree of

cross-sectional dependence in the disturbances. The method was suggested by

Kapoor et al. (2005) for a static model and is based on Kelejian and Prucha

(1999). I extend the proofs in Kapoor et al. (2005) for the dynamic case. The last

step of the proposed estimation method consists of a generalized method of mo-

ments (GMM) estimation of the slope coefficients. I discuss the optimal choice

weighting matrix for a given set of moment conditions. I provide formal large

sample results for a generic GMM estimator based on linear moment conditions

with stochastic instruments. I also provide formal large sample properties of a

feasible GMM estimator and its small sample covariance matrix approximation.

In Chapter 5, I investigate small sample properties of the different estimation

method via a Monte Carlo study. I also provide some simulation evidence that

supports the formal large sample claims made in the thesis.
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2 Review of Literature

The purpose of this review is not to provide a comprehensive treatment of the

econometric work that has been done on panel data methods. For such there are

excellent book-length works, such as Hsiao (2003) or Baltagi (2002). Instead, I

will provide a more in depth review of the theoretical work that has been done

on dynamic panel data models on the one hand and then review the literature

relaxing the assumption of independently and identically distributed (iid) errors

both in panel and purely cross-sectional setting.

It proves to be useful to introduce the following notational conventions: I use

bold letters for matrices and vectors, and regular font letters to denote scalars.

Furthermore, I use lower case letters for vectors and upper case letters for matri-

ces. In general I will denote the cross-sectional dimension of the panel as N and

the time dimension as T .

2.1 Dynamic Panel Data Models

Models with individual effects and limited time dimension face the problem of in-

cidental parameters. Hence these are estimated after a suitable transformation that

removes the individual effects. In most cases this would be after first differencing.

If the model also includes a lagged endogenous variable, the first difference of the

error term will then be correlated with the explanatory variables. It has been long

recognized in the literature that in this situation, the ordinary least squares (OLS)

estimator will be biased, see, e.g., Trognon (1978) for an analytical treatment,

3



or Nerlove (1967 and 1971) who explores the properties of the bias of the OLS

estimation by Monte Carlo work. Trognon (1978), Nickell (1981) and Sevestre

and Trognon (1985) derive analytical expressions for the asymptotic biases of the

OLS estimator of an autoregressive panel data models with fixed time dimension.

Small sample bias correction has also been suggested by Kiviet (1995).

The bias of the OLS estimation also resulted in attention to other estimation

methods. Hence Anderson and Hsiao (1981, 1982) discuss maximum likelihood

(ML) estimation of various model specifications and provide a comprehensive

classification of the different conceptual possibilities of dynamic panel data mod-

els. They also suggest a simple instrumental variables (IV) estimator that is con-

sistent. Bhargava and Sargan (1983) provide a framework for maximum likeli-

hood estimation for a panel with lagged dependent variable and individual effects.

As an alternative, Chamberlain (1982) proposed a minimum distance (MD) type

of estimator for distributed lag models with heterogenous coefficients.

The subsequent developments have shifted attention to generalized method of

moments (GMM) estimators that utilize linear moment conditions. The literature

has focused on exploiting as many possible moment conditions while keeping

the resulting GMM estimator linear. Most of the large sample results are usually

backed by a reference to ’standard central limit theorems’ or assumed to follow

from the general results on the asymptotic properties of GMM estimators in, for

example, Hansen (1982). The (non)optimality of utilizing redundant moment con-

ditions has also not been explored in detail. Papers in this line of research include

Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995)
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and Blundell and Bond (1998). The use of all lags as available instruments was

suggested by Holtz-Eakin, Newey and Rosen (1988). Keane and Runkle (1992)

provide an alternative method of exploiting the moment conditions.2 Large sam-

ple results for the GMM estimators are in Alvarez and Arellano (2003), while

Harris and Tzavalis (1999) obtain the limiting distributions of pooled OLS, the

within-group (WG) and WG with individual trends estimators, under the null of a

unit root and normally distributed errors. Observe that, as noted by Kiviet (1995)

and Judson and Owen (1999), the number of possible instruments used by the

GMM estimators increases with T 2, the GMM estimators may perform poorly in

samples with moderate and large T .

More recently several authors have proposed maximum likelihood and quasi-

maximum likelihood (ML and QML) procedures arguing that these are compu-

tationally feasible and providing some Monte Carlo evidence of improved small

sample performance even for non-normal errors. See the papers by Hsiao, Pe-

saran and Tahmicsioglu (2002) and Binder, Hsiao and Pesaran (2000) discussed

below. Some further Monte Carlo evidence is provided by Binder, Hsiao, Mutl

and Pesaran (2002).

Below I will review papers on the GMM, bias corrected OLS, MD and ML

estimation mentioned above and compare the various model specifications, as-

sumptions on the disturbance process involved and estimation methods. When

required, I modify the original notation to make the comparison feasible.
2They propose to transform the model by a Cholesky decomposition of an initial estimate of

the variance covariance matrix and use the untransformed instruments in the second step of the
estimation. See below for a more detailed review.
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2.1.1 GMM Estimation

I will now review the papers proposing GMM type of estimators in more detail.

The model under consideration can be written as

yit = φyi,t−1 + xitβ + uit, t = 1, .., T, i = 1, ..., N, (2.1.1)

where yit and xit denote the (scalar) dependent variable and the 1 × p vector of

exogenous variables corresponding to cross sectional unit i in period t, φ and β

represent corresponding 1 × 1 and p × 1 parameters, and uit = µi + εit denotes

the overall disturbance term consisting of individual effects µi and an innovation

εit. Under different assumptions on the disturbance process we obtain different

possible moment restrictions that are exploited by the estimator. The proposed

estimator also differs under different exogeneity assumptions on the p× 1 vector

of explanatory variables.

Arellano and Bond (1991) assume that the error terms are distributed as

µi ∼ IID
¡
0, σ2µ

¢
, (2.1.2)

and

εit ∼ IID
¡
0, σ2ε

¢
, (2.1.3)
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independent of each other.3 Because the disturbances as well as the endogenous

variable contain individual effects, they will be correlated when interacted in lev-

els. Therefore, the moment conditions considered involve first differences of the

disturbances and in particular they are

E [(uit − ui,t−1) yi,t−k] = 0, t = 2, .., T, k = 2, .., t− 1 i = 1, ..., N,

(2.1.4)

and with strictly exogenous variables also

E [x0is (uit − ui,t−1)] = 0p×1, t = 2, .., T, s = 1, .., T i = 1, ..., N,

(2.1.5)

while with the variables being only predetermined these conditions hold only for

s = 1, .., t− 1.
Stacking the model by grouping the observation first by time and then by in-

dividuals4 we can write the first differenced model (after dropping the initial ob-

servation) as

∆y
(T−1)N×1

= ∆Z·
(T−1)N×2

δ
2×1
+ ∆ε
(T−1)N×1

, (2.1.6)

3These assumptions are not formally stated in the paper. However, the asymptotic claims are
based on the iid assumptions.

4This stacking is commonly used in the literature on dynamic panel. Observe, however, that
we will use a different order of stacking in our model presented in later chapters.
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where ∆Z = [∆y−1,X] with

∆y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y12 − y11
...

y1T − y1,T−1
...

yN2 − yN1
...

yNT − yN,T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∆y−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 − y10
...

y1,T−1 − y1,T−2
...

yN1 − yN0
...

yN,T−1 − yN,T−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∆X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x12 − x11
...

x1T − x1,T−1
...

xN2 − xN1
...

xNT − xN,T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∆ε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε12 − ε11
...

ε1T − ε1,T−1
...

εN2 − εN1
...

εNT − εN,T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.1.7)

We can define the matrix of instruments asH = (H0
1, ...,H

0
N)

0 where for the case
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of strictly exogenous variables we have

H0
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yi0

xi1
...

xi,T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi0

yi2

xi1
...

xi,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. . . ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi0
...

yi,T−2

xi1
...

xi,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1.8)

The proposed estimator is of the form

bδ = ¡∆Z0HA−1H0∆Z
¢−1

∆Z0HA−1H0∆y, (2.1.9)

whereA is some weights matrix for the moments. More specifically, the first step

9



of the estimation uses a simple weighting matrix

A =
NX
i=1

H0
iDD

0Hi (2.1.10)

= H0 (IN ⊗DD0)H,

whereD is a T − 1× T first difference operator matrix:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0

0 · · · 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
T−1×T

. (2.1.11)

In the second step the moment conditions are weighted by their estimated variance

covariance matrix and the authors propose to use

A =
NX
i=1

H0
i∆bui∆bu0iH (2.1.12)

= H0
"
IN ⊗D

Ã
NX
i=1

buibu0i
!
D0
#
H,

where ∆bui = (∆bui2, ...,∆buiT )0 and bui = (bui1, ..., buiT )0 are the fitted residuals

from the first step estimator.

Arellano and Bover (1995) consider a general nonsingular transformation of

the model that removes the individual effects. Consider again the model in (2.1.1)

10



and let K be any (T − 1) × T transformation matrix of rank (T − 1) such that

KeT = 0T−1, where eT is a T × 1 vector of ones. That is, the transformation by

K is nonsingular and removes the individual effects. Hence K can, for example,

be the matrix D considered above, or be equal to the ’Within Group’ operator,

with

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

£
1− 1

T

¤ − 1
T

· · · − 1
T

− 1
T

− 1
T

£
1− 1

T

¤ · · · − 1
T

− 1
T

... . . . ...
...

− 1
T

− 1
T

· · · £
1− 1

T

¤ − 1
T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1.13)

Arellano and Bover (1995) also suggest the orthogonal deviations operator defined

as:

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
(T−1) − 1

(T−1) · · · − 1
(T−1) − 1

(T−1) − 1
(T−1)

0 1 − 1
(T−2) · · · − 1

(T−2) − 1
(T−2) − 1

(T−2)
...

...
...

...
...

...

0 0 0 · · · 1 −1
2

−1
2

0 0 0 · · · 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1.14)

This transformation subtracts the mean of future observations available in the sam-

ple from the first T − 1 observations.

The transformed model is then

(IN ⊗K)y = (IN ⊗K)Zδ + (IN ⊗K) ε, (2.1.15)

11



If the transformation matrix is upper triangular and the disturbances εit are not

serially correlated, then the same moment conditions as consider by Arellano and

Bond (1991) remain valid for the transformed model. Arellano and Bover (1995)

then show that the resulting GMM estimator is in fact invariant to the choice of

the transformation matrix.

If the exogenous variables are uncorrelated with the individual effects, Arel-

lano and Bover (1995) also suggest the use of additional moment conditions in the

form of

E

"Ã
1

T

TX
t=1

uit

!
xis

#
= 0p×1. (2.1.16)

In this case the transformation matrix is appended with a row consisting of eT/T

and can be denoted as:

C =

⎛⎜⎝ K

eT/T

⎞⎟⎠ . (2.1.17)
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The instrument matrixHi becomes

H0
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yí0

xi1
...

xi,T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi0

yi2

xi1
...

xi,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. . . ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi0
...

yi,T−2

xi1
...

xi,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎝
xi1
...

xi,T

⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1.18)
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The GMM estimator of Arellano and Bover (1995) can then be expressed as

bδ = £Z0 (IN ⊗C0)HA−1H0 (IN ⊗C)Z
¤−1

Z0 (IN ⊗C0)HA−1H0 (IN ⊗C)y.
(2.1.19)

The preliminary estimates are obtained withA = H0 (IN ⊗CC0)H and the sec-

ond stage estimator uses consistently with (2.1.12):

A = H0
"
IN ⊗C

Ã
NX
i=1

buibu0i
!
C0
#
H, (2.1.20)

where bui are the fitted residuals from the preliminary estimation. Given that the

estimator is invariant to the choice of the transformation matrix, the filtering is in

fact irrelevant and the estimator can be obtained by performing three stage least

squares (3SLS).

Ahn and Schmidt (1995) show that there are additional moment conditions that

can be exploited. Ahn and Schmidt also make weaker assumptions that lead to the

set of moment restriction utilized by the Arellano and Bond (1991) and Arellano

and Bover (1995) estimators. In particular, Ahn and Schmidt assume that the

disturbances satisfy:

Cov (εit, yi0) = 0, t = 1, .., T (2.1.21)

Cov (εit, µi) = 0, t = 1, .., T

Cov (εit, εis) = 0, t, s = 1, .., T ; t 6= s
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The additional moment conditions pointed out by Ahn and Schmidt are

E [uiT (εit − εi,t−1)] = 0, t = 2, .., T − 1. (2.1.22)

These restrictions, together with the moment conditions utilized by the Arellano

and Bond (1991) estimator, represent all the moment conditions implied by the

assumption that the innovations εit are mutually uncorrelated among themselves

and with µi and yi0.

Ahn and Schmidt also point out that further restrictions can be derived from

homogeneity and stationarity assumptions. The assumption that the innovations

εit have a variance that does not change over time implies the following additional

moment restrictions:

E [yi,t−2∆εi,t−1 − yi,t−1∆εit] = 0, t = 4, .., T. (2.1.23)

In a model without exogenous variables the homogeneity restrictions can be im-

plemented by utilizing the extended instrument set defined as

H+
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hi

yi2 −yi3
yi3 −yi4

. . . . . .

yi,T−2 −yi,T−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.1.24)
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whereHi is the Arellano and Bond instrument matrix for the case without exoge-

nous variables, i.e.

Hi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yi0

yi0 yi1

. . .

yi0 · · · yi,T−2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1.25)

Ahn and Schmidt show that the GMM estimator based on the full set of mo-

ment restrictions is asymptotically equivalent to Chamberlain’s (1982, 1984) opti-

mal minimum distance estimator and that it reaches the semiparametric efficiency

bound.

Blundell and Bond (1998) document a potential gain in efficiency arising from

exploiting restrictions on the initial observations when the time dimension of the

panel is small and the degree of autocorrelation is high. The estimation approaches

discussed so far usually drop the first observation. With N going to infinity and T

fixed this amounts to ignoring information from a fixed proportion of the sample

and thus can lead to sizeable inefficiency.

In their simulation study Blundell and Bond consider two types of additional

restrictions. The first type of restriction justifies the use of an extended linear

GMM estimator that uses lagged differences of yit as instruments for equations

in levels (in addition to lagged levels of yit as instruments for equations in first

differences). The second type of restriction validates the use of the error compo-
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nents GLS estimator on an extended model that conditions on the observed initial

values. This provides a consistent estimator under homoscedasticity which, under

normality, is asymptotically equivalent to conditional maximum likelihood (see

also Blundell and Smith, 1991).

In a model without exogenous variables, Blundell and Bond show that after re-

moving redundant restrictions the extended GMM estimator they consider utilizes

the following instrument matrix:

H++
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

H+
i

∆yi2

. . .

∆yi,T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (2.1.26)

where H+
i is the instrument matrix employed by the Anh and Schmidt estimator

and is defined in (2.1.24) above.

Their Monte Carlo simulations and asymptotic variance calculations show that

this extended GMM estimator offers considerable efficiency gains in situations

where the basic GMM estimator performs poorly. The GLS estimator that con-

ditions on the initial values is also found to have good finite sample properties.

However, the conditional GLS estimator requires homoscedasticity, and only ex-

tends to a model with regressors if the regressors are strictly exogenous which is

not the case for the GMM estimators.

The efficiency gain from incorporating the information in the initial observa-

tion is also documented by a simulation study of Hahn (1999).
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Alvarez and Arellano (2002) consider the same model (2.1.1) with |φ| < 1 and

E (εit|µi, yi0, ..., yit−1) = 0. They assume yi0 is also observed. To derive asymp-

totic results they assume that εit for t = 1, ..., T and i = 1, ..., N are independent

and identically distributed across time and individuals and independent of µi and

yi0, with E (εit) = 0, V ar (εit) = σ2 and finite fourth moments. Additionally

they assume that the initial observation are generated as

yi0 =
µi
1− φ

+
∞X
j=0

φjεi,−j. (2.1.27)

The article than establishes asymptotic properties of the ’Within Group’ es-

timator, the GMM estimator, and the Limited Information Maximum Likelihood

(LIML) estimator when both T and N tend to infinity. The WG estimator can be

obtained by OLS estimation on the model transformed by the forward orthogonal

means transformation (see above Arellano and Bover, 1995). The GMM estima-

tor in their terminology is what I describe above as the first stage GMM estimator

on a model transformed by the orthogonal deviations transformation, using the

moment conditions of Arellano and Bond (1991). The second stage GMM esti-

mation with an estimated weighting matrix is not considered. Note that my results

contain this extension as a special case. See Chapter 4.

The LIML estimator is what has been suggested by Alonso-Borrego and Arel-

lano (1999) as a symmetrically normalized GMM estimator. It can also be re-

garded as a ’continuously updated GMM estimator’ in terminology of Hansen,
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Heaton and Yaron (1997).5 The estimator is only an analogue LIML estimator

in the sense of the minimax instrumental variable interpretation given by Sargan

(1958) to the original LIML estimator. It is defined as

bδ = argmin
δ

(y− Zδ)0 (IN ⊗C0)H (H0H)−1H0 (IN ⊗C) (y− Zδ)
(y− Zδ)0 (IN ⊗C0) (IN ⊗C) (y− Zδ)

, (2.1.28)

whereH is an instrument matrix.

Alvarez and Arellano show that the asymptotic bias of the WG estimator only

disappears when N/T → 0. When N/T tends to a positive constant, all three

estimators are asymptotically biased with negative asymptotic biases of order 1/T

, 1/N , and 1/ (2N − T ), respectively. When N/T tends to infinity, the fixed

T results assumed by the GMM literature remain valid. They also consider a

random effects maximum likelihood estimator that leaves the mean and variance

of the initial conditions unrestricted and show that this estimator is asymptotically

unbiased for all cases.

Keane and Runkle (1992) suggest an alternative estimation procedure that takes

into account the variance covariance structure of the disturbances. First the model

is estimated by an initial procedure, such as the instrumental variables (IV) with

instruments that could, for example, be the instruments suggested by Arellano and

Bond (1991). Then an estimate of the inverse of the variance covariance matrix

and its Cholesky decomposition is calculated. The model is then transformed and
5Instead of keeping σ2 fixed in the weighting matrix of the GMM criterion, it is continuously

updated by making it a function of the argument in the estimating criterion.
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estimated with original (untransformed) instruments, i.e.

bδ =
h
Z0
³
IN ⊗ bP0´HA−1H0

³
IN ⊗ bP´Zi−1 (2.1.29)

·Z0
³
IN ⊗ bP0´HA−1H0

³
IN ⊗ bP´y,

where bP is Cholesky decomposition of the estimated inverse of the variance co-

variance matrix and A is moment weighting matrix that is chosen analogously to

the standard GMM estimators.

2.1.2 Bias Correction

Small sample bias correction procedure of the inconsistent OLS estimation has

been proposed by Kiviet (1995). Consider a dynamic panel data model as in

(2.1.1). The model in levels can be stacked as in (2.1.6)

y = Zδ + (IN ⊗ eT )µ+ ε, (2.1.30)

where Z = [y−1,X] with

y = (y11, ..., y1T , ..., yN1, ..., yNT )
0 , (2.1.31)

y−1 = (y10, ..., y1,T−1, ..., yN0, ..., yN,T−1)
0 ,

X = (x11, ...,x1T , ...,xN1, ...,xNT )
0 ,

ε = (ε11, ..., ε1T , ..., εN1, ..., εNT )
0 ,

µ = (µ1, ..., µN)
0 .
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The within group estimator is defined as

bδ = (Z0AZ)−1Z0Ay, (2.1.32)

where the NT ×NT within group transformation matrixA is defined as

A = IN ⊗
µ
IT − eTe

0
T

T

¶
. (2.1.33)

Kiviet (1995) calls this estimator Least-Squares Dummy Variables (LSDV)

while Anderson and Hsiao (1981) refer to is as Covariance (CV) estimator. This

estimator is inconsistent for fixed T due to presence of individual effects in both

the disturbances ε and the regressors y−1. Although consistent estimates can be

obtained by IV or GMM procedures, the inconsistent LSDV estimator has a rel-

atively low variance and hence can lead to an estimator with lower root mean

square error after the bias is removed. The asymptotic formulae for the bias given

in Nickell (1981) for a model with no exogenous regressors has been found to be

accurate in small samples, except for large values φ. Similar results have been

reported by Sevestre and Trognon (1985). Kiviet (1995) provides approximating

formulae for the small sample bias that have robust performance over the entire

range of parameters.

2.1.3 MD and ML Estimation

Chamberlain’s (1982, 1984) proposed to treat each time period as an equation

in a multivariate equation framework. Such approach is robust to certain kinds
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of heteroscedasticity as well as autocorrelation in the errors without imposing a

priori restrictions on the variance covariance matrix.

To demonstrate the method assume for simplicity that the model is:

yit = x
0
itβ + µi + εit t = 1, .., T ; i = 1, ..., N, (2.1.34)

and

E (εit|xi1, ...,xiT , µi) = 0, (2.1.35)

where the p × 1 vector of explanatory variables is assumed to be stochastic and

hence the model also covers the lagged dependent variable case. The variables

can be stacked by grouping observations for each individual into a vector yi =

(yi1, ..., yiT )
0 and xi = (xi1, ...,xiT )

0. Assume that (yi,xi) is an independent

draw from a common unknown multivariate distribution with finite fourth-order

moments and with E (xix
0
i) positive definite. The individual effects are possibly

correlated with the explanatory variables. Chamberlain (1984) assumes that the

minimum-mean-squared-error linear projection of µi onto xi is given by6

E∗ (µi|xi) = µ+
TX
t=1

a0txit. (2.1.36)

6If the conditional expectation of µi are linear, we have E∗ (µi|xi) = E (µi|xi).
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The model can be rewritten as

E∗ (yi|xi) = E∗ {E∗ (µi|xi, µi)|xi} (2.1.37)

= E∗ {µieT + (IT ⊗ β0)xi|xi}

= µieT +Πxi,

and

yi = µieT + (IT ⊗ xi)π + νi, (2.1.38)

where

Π = IT ⊗ β0 + eT (a01, ..., a0T ) , (2.1.39)

and νi = yi −E∗ (yi|xi), and π = vec (Π).

The proposed estimation procedure is then as follows. Treating the coef-

ficients in the above equation as unrestricted, one first obtains initial (usually

least-squares) estimate bπ of π. In the second step, the restrictions on Π in

(2.1.39) are incorporated by letting π be a function of the parameters of the model

θ = (β0, a01, .., a
0
T ). The restrictions are imposed by using a minimum-distance

estimator, specifically

bθ = argmin
θ
[bπ − π (θ)]0 bΩ [bπ − π (θ)] , (2.1.40)

where bΩ is the estimated variance covariance matrix of the asymptotic variance
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of bπ:

bΩ =
1

N

NX
i=1

nh
(yi − y)− bΠ (xi − x)i (2.1.41)

h
(yi − y)− bΠ (xi − x)i0 ⊗ S−1XX (xi − x) (xi − x)0 S−1XX

¾
,

where

S−1XX =
1

N

NX
i=1

(xi − x) (xi − x)0 . (2.1.42)

Anderson and Hsiao (1981) consider the model (2.1.1) with |φ| < 1. They

distinguish four different cases based on different assumptions on the initial values

of the process (yi0):

• Case I. Fixed initial observations: yi0 are fixed observed constants

• Case II. Random initial observations, common mean:

yi0 = c+ ξi (2.1.43)

where ξ has a mean zero and a finite variance and is independent of µi and

εit. Here they also suggest that one could assume

yi0 = c+ µi (2.1.44)

so that the initial endowment affects the level.
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• Case III. Random initial observations, different means (in this case there the

incidental parameter problem arrises and for fixed T the MLE is inconsis-

tent): the model is

yit = wit + γi t = 0, 1, .., T, (2.1.45)

wit = φwi,t−1 + εit t = 1, .., T, (2.1.46)

where wit and γi are unobservable. In this case wi0 are unknown constants.

• Case IV. Random initial observations with stationary distribution: same as

above but wi0 are (a) draws from stationary distribution with mean zero and

variance var(εit)

1−φ2 or (b) same but the variance is arbitrary. In the subcase (a),

the yit come from the stationary distribution of the process.

To derive the likelihood function they assume normality of the error terms

εit, µi and when applicable also yi0. Implicit assumption is that E (εit) = 0 and

V ar (εit) = σ2 (uniform over individuals).

Anderson and Hsiao (1982) have

yit = φyi,t−1 + xitβ + ziγ + µi + εit t = 1, .., T ; i = 1, ..., N, (2.1.47)
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where |φ| < 1 and

E (µi) = E (εit) = E (µizi) = E (µixit) = E (µiεit) = 0 (2.1.48)

t = 1, .., T ; i = 1, ..., N,

and E
¡
µiµj

¢
= σ2µ for i = j and = 0 for i 6= j,

E (εitεjs) = σ2ε i = j, t = s, (2.1.49)

= 0 otherwise

They also assume normality of µi and εit and first consider the model with only

time-invariant exogenous regressors. Again several cases are distinguished:

• (I) yi0 is fixed

• (II) yi0 is random with

– (IIa) yi0 independent of µi, or

– (IIb) yi0 correlated with µi; in their wording ”If we wish the initial

endowment [yi0] affects the equilibrium level [ µi
1−φ] we may let”:

yi0 = ziγ + µi. (2.1.50)

• (III) (yi0 − µi) is fixed

• (IV) (yi0 − µi) is random with
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– (IVa) variance σ2ε
1−φ2

– (IVb) unrestricted (but uniform over i) variance

Next Anderson and Hsiao consider the model with only time-varying regres-

sors and they offer two interpretations of the model:

(1) Serial correlation model:

yit = φyi,t−1 + xitβ − φxitβ + µi + εit. (2.1.51)

Here they again assume either that (yi0 − xi0β − µi) is fixed, or random with zero

mean and variance σ2ε
1−φ2 .

(2) State dependence model:

yit = φyi,t−1 + xitβ + µi + εit. (2.1.52)

As before, there is a variety of assumptions concerning yi0 considered - the as-

sumption correspond exactly to cases I.-IV above, except that in case of IV they

distinguish whether (yi0 − µi) is random with

• – (IVa) common mean and variance σ2ε
1−φ2

– (IVb) common mean and unrestricted variance

– (IVc) heterogeneous mean and variance σ2ε
1−φ2

– (IVd) heterogeneous mean and unrestricted variance

Table 1 below summarizes the consistency findings of Anderson and Hsiao:
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Table 1. Consistency of ML Estimation

Case Estimated Parameters N fixed, T →∞ T fixed, N →∞

I. φ, β, σ2ε Consistent Consistent

γ, σ2µ Inconsistent Consistent

II.a φ, β, σ2ε Consistent Consistent

γ, σ2µ, σ
2
y0
, E (yi0) Inconsistent Consistent

II.b φ, β, σ2ε Consistent Consistent

γ, σ2µ, σ
2
y0 Inconsistent Consistent

E (yi0) , Cov(εit, µi)

III. φ, β, σ2ε Consistent Inconsistent

γ, σ2µ, (yi0 − µi) Inconsistent Inconsistent

IV.a φ, β, σ2ε Consistent Consistent

γ, σ2µ, E (yi0 − µi) Inconsistent Consistent

IV.b φ, β, σ2ε Consistent Consistent

γ, σ2µ, E (yi0 − µi) Inconsistent Consistent

V ar (yi0 − µi)

IV.c φ, β, σ2ε Consistent Inconsistent

γ, σ2µ, Ei (yi0 − µi) Inconsistent Inconsistent

V ar (yi0 − µi)

IV.d φ, β, σ2ε Consistent Inconsistent

γ, σ2µ, Ei (yi0 − µi) Inconsistent Inconsistent

V ar (yi0 − µi)
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Bhargava and Sargan (1983) consider the dynamic panel data model with ex-

ogenous variable of essentially the same form as (2.1.1). They derive the maxi-

mum likelihood function under the assumption that the innovations and the indi-

vidual effects are normally and independently distributed with constant variances,

i.e. εit ∼ N (0, σ2ε) and µi ∼ N
¡
0, σ2µ

¢
. The likelihood is derived first treating

the initial values yi0 as exogenous and then as endogenous by assuming that the

initial values are generated from the stationary distribution of the process. In par-

ticular, they assume that yi0 is generated by a series of equations (2.1.1) and can

be written as

yi0 =
∞X
k=0

φk (xi,t−kβ + µi + εi,t−k) (2.1.53)

= yi0 +
µi
1− φ

+
∞X
k=0

φkεi,t−k,

where yi0 is exogenous part of the initial values and is in fact assumed to be

stochastic with yi0 ∼ N
¡
y∗i0, σ

2
y0

¢
, independent of εit and µi.

Hsiao, Pesaran and Tahmiscioglu (2002) consider the model (2.1.1) without

exogenous variables,7 i.e.

yit = φyi,t−1 + µi + εit t = 1, .., T ; i = 1, ..., N, (2.1.54)
7In the second part, the authors extend the model for both strictly and weakly exogenous vari-

ables.
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with yi0 observable. Under the assumption that the process has started at time−m
one can express the first difference of the initial observation as

∆yi1 = φm∆yi,−m+1 + ξi, (2.1.55)

where ξi =
Pm−1

j=0 φj∆εi,1−j . Hsiao, Pesaran and Tahmiscioglu then distinguish

two assumptions for the initial values of the process:

• Case (3.i) |φ| < 1 and the process has been going on for a long time

(m → ∞) and E (∆yi1) = 0, V ar (∆yi1) = 2V ar(εit)
1+φ

, Cov (ξi,∆εi2) =

−V ar (εit) and Cov (ξi,∆εit) = 0 for t = 3, 4, ..., T .

• Case (3.ii) m is finite and E (∆yi1) = b, V ar (∆yi1) = c · var (εit),
where c > 0, Cov (ξi,∆εi2) = −V ar (εit) and Cov (ξi,∆εit) = 0 for

t = 3, 4, ..., T .

In both cases, the maximum likelihood function is then derived for the model

in first differences under the assumption that the error terms are normally distrib-

uted with εit ∼ N (0, σ2ε). They also show that the ML function is invariant to

the choice of transformation that is used to remove the individual effects from the

model.

Hsiao, Pesaran and Tahmiscioglu also define a minimum distance estimator

and show that if it ignores the initial conditions, it will be inconsistent when T

is fixed. They also study the relationship of the ML estimator the the GMM esti-

mators suggested by Arellano and Bond (1991), Arellano and Bover (1995), and
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Ahn and Schmidt (1995). Conditional on σ2ε and the variance of the initial obser-

vations, Hsiao, Pesaran and Tahmiscioglu show that the difference between the

asymptotic variance covariance matrix of the GMM and the ML (or MD) estima-

tors will be positive definite. They conjecture that the same holds even when σ2ε

and the variance of the initial observations is unknown and document this by a

Monte Carlo study.

Binder, Hsiao and Pesaran (2000) consider a multivariate extension of the dy-

namic panel data model. Their specification is

wit = µi + γt+Φ [wi,t−1 − µi − γ (t− 1)] + εit, (2.1.56)

where yit, µi, γ and εit are m×1 vectors and Φ is an m×m matrix. They define

yit = wit − µi − γt and hence the model becomes

yit = Φyit + εit (2.1.57)

They assume that the model started as time t = −M , M ≥ 0 and the initial

deviations are given by

yi,−M =
∞X
j=0

¡
Φj −C¢ εi,−M−j +Cξi, (2.1.58)
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where εit, i = 1, 2, ..., N ; t ≤ T , are i.i.d. across i and over t, and ξi are i.i.d.

across i with

E

⎛⎜⎝ εit

ξi

⎞⎟⎠ = 0 and V ar

⎛⎜⎝ εit

ξi

⎞⎟⎠ =

⎛⎜⎝ Ω Λ

Λ0 z

⎞⎟⎠ . (2.1.59)

The matrix C is defined recursively as C =
P∞

j=0Cj where C0 = Im, C1 =

Φ− Im, Cj = Cj−1Φ, j ≥ 2. Notice that for m = 1, the C can only be zero or

one.

Binder, Hsiao and Pesaran then derive the quasi maximum likelihood function

for the model under the assumption the disturbances are {εit} and {ξi} are mu-

tually independent and identically distributed. The authors also extend the GMM

and MD estimators to the multivariate context and provide simulation evidence

that the QML estimator dominates the GMM and MD procedures even when the

underlying disturbances are not normal.8 Binder, Hsiao, Mutl and Pesaran (2002)

discuss the same model but with higher order autocorrelation structure and pro-

vide further Monte Carlo evidence.

2.2 Modelling Cross-Sectional Dependence

When T is large and N small, one does not have to parametrically specify the

cross sectional interdependencies and can allow for arbitrary covariance structure

of the disturbances. The model can then be consistently estimated by a general-
8The authors consider a case where the underlying disturbances are drawn from a zero mean

chi-square distribution.
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ized least squares method. This is what Zellner (1962) refers to as the seemingly

unrelated regressions (SUR) specification. On the other hand, observe that the

dimensions of the variance covariance matrix of the dependent variable (or dis-

turbances) grows with sample size (number of cross-sections). Therefore, when

the time dimension of the data is limited or fixed, it becomes impossible to in-

fer the cross-sectional covariance structure of the model without imposing some

parametric restrictions.

Typically the interaction among the cross-sectional units is modelled as pro-

portional to some observable distance. The most widely used parameterization

are variants of the one considered by Cliff and Ord (1973 and 1981) which I re-

view below. Recent applications include Audretsch and Feldmann (1996), Bernat

(1996), Besley and Case (1995), Bollinger and Ihlanfeldt (1997), Buettner (1999),

Case (1991), Case, Hines, and Rosen (1993), Dowd and LeSage (1997), Holtz-

Eakin (1994), LeSage (1999), Kelejian and Robinson (2000, 1997), Pinkse and

Slade (1998), Pinkse, Slade, and Brett (2002), Shroder (1995), and Vigil (1998).

See also a host of other papers presented for example at the Spatial Economet-

rics Workshop in Kiel, 2005 (http://www.uni-kiel.de/ifw/konfer/spatial/spatial-

econometrics.htm).

In this thesis, I follow the spatial econometrics literature and study a first order

spatial autocorrelation model with a known spatial weighting matrix. The panel

spatial autocorrelation model is a generalization of the single cross-section mod-

els that include Cliff and Ord (1973, 1981), Whittle (1954), Anselin (1988) or

Kelejian and Prucha (1998, 1999 and 2004). See also Lee (2004) who provides
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asymptotic properties of ML procedure for spatial models. Other recent theo-

retical developments include Baltagi and Li (2001a,b), Baltagi, Song and Koh

(2003), Conley (1999), Das, Kelejian and Prucha (2005), Kelejian and Prucha

(2001, 1997), Lee (2003, 2002, 2001a,b), LeSage (2000, 1997), Pace and Barry

(1997), Pinkse and Slade (1998), Pinkse, Slade, and Brett (2002), and Rey and

Boarnet (2004). An excellent review of the different specifications in spatial

econometrics can be found in Anselin (1988). See also Haining (1990) and refer-

ences therein.

2.2.1 Model Specifications

I will now present the basic specification of spatial dependence suggested in the

literature. The Cliff-Ord type model of spatial dependence can be written in the

following form. Suppose that we have a panel of observations in space, indexed

by i = 1, ..., N , and time, indexed by t = 1, ..., T . The disturbances9 uit,N can

then be specified to follow a spatial autoregressive process in the form of:

uit,N = ρ
NX
j=1

wij,Nujt,N + εit,N . (2.2.1)

The disturbance uit,N for a cross-section i at a time t consists of a weighted av-

erage of contemporaneous disturbances in other cross-sections and a mutually in-

dependent innovation term εit,N . The weights wij,N are assumed to be observable

quantities and, therefore, the extent of correlation in the model is a function of a
9Of course spatial lags can also be applied to the endogenous or explanatory variables in the

same manner.
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single parameter ρ.

This model for spatial correlation was introduced by Cliff and Ord (1973,

1981). Anselin (1988) refers to this model as a first order spatial autoregres-

sive model or SAR(1). The weights wij,N are referred to as spatial weights and

are assumed to be known, ρ is called the spatial autoregressive parameter andPN
j=1wij,Nujt,N is referred to as a spatial lag. The spatial weights wij,N are typ-

ically specified to be nonzero if cross sectional unit i relates to unit j in a mean-

ingful way. In such cases, units i and j are said to be neighbors. In practice, the

spatial weights are often viewed as normalized in the sense that the summation

term in (2.2.1) is an average of neighboring observations. e.g. one postulates thatPN
j=1wij,N = 1.

A more general model can include spatial lags in the disturbances as well as

in the endogenous variable, denoted by yit,N , e.g.

yit,N = xit,Nβ + λ
NX
j=1

mij,Nyjt,N + uit,N , (2.2.2)

where xit,N is a vector of exogenous variables, β is a vector of parameters, λ is

a scalar parameter, mij,N are spatial weights, and the disturbance uit,N are as in

(2.2.1). The term
PN

j=1mij,Nyjt,N is then referred to as a spatial lag of the de-

pendent variable. The weights in the spatial lag of the dependent variable (mij,N )

can, but do not necessarily have to, correspond to those in the spatial lag in the

disturbances (wij,N ).

Observe that all variables are indexed by the sample size N , e.g. they form
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triangular arrays. This also applies to situations where the spatial weight are spec-

ified as fixed constants. Observe that in many cases, it is assumed that each cross-

sectional location i has a fixed number of neighbors, say q, for which wij,N 6= 0.
Hence each wij,N is equal either to zero or a fixed number such as 1/q. Ob-

serve that even in such cases, the number of cross-sectional units determines the

number of units that enter into the solution of equation (2.2.1). As a result, the

disturbances uit,N that are solution to (2.2.1) have to be indexed by the sample

size. The fact that the disturbances uit,N are indexed by the sample size leads to

certain technical complications and, for example, one has to be careful in applying

central limit theorems and make sure that these also hold for triangular arrays.

Contiguity Weights The specifications where each units is, only affected by

its neighbors are sometimes referred to as contiguity weights. These could be

specified aswij,N = 1, when the two units are neighbors, andwij,N = 0 otherwise.

DenotingWN theN×N matrix of the weightswij,N , the row-normalized weights

are then given by

W∗
N =WN ./ (e

0
N ⊗WNeN) , (2.2.3)

where eN is an N × 1 vector of ones and ./ denotes element-by-element division.

In practical applications, the definition of a neighbor often follows a nat-

ural geographical interpretation. Thus if the space in question is a geographical

space and the units of analysis are regions, two regions are classified as neighbors

when they share a common border. Other popular specifications of the contigu-
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ity weights are rook, queen and related configurations. Suppose that the space

is divided in equally sized rectangular units. Below, I depict the rook and queen

configuration using one to indicate the units that are neighbors to the unit x and

zero to indicate other units that are not direct neighbors (these then correspond to

entries on the x− th row of the spatial weighting matrixWN ):

rook :

0 0 0 0 0

0 0 1 0 0

0 1 x 1 0

0 0 1 0 0

0 0 0 0 0

queen :

0 0 0 0 0

0 1 1 1 0

0 1 x 1 0

0 1 1 1 0

0 0 0 0 0

(2.2.4)

An alternative is to assume that the spatial process has higher order components

and use so-called double-rook or double-queen specification, which could be:

double− rook :

0 0 1
2
0 0

0 1
2
1 1

2
0

1
2
1 x 1 1

2

0 1
2
1 1

2
0

0 0 1
2
0 0

double− queen :

1
2

1
2

1
2

1
2

1
2

1
2
1 1 1 1

2

1
2
1 x 1 1

2

1
2
1 1 1 1

2

1
2

1
2

1
2

1
2

1
2

(2.2.5)

Of course the choice of entries 1 and 1
2

is arbitrary and these can be replaced by
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some other constants.

Another possibility is to assume that the cross-sectional units can be ordered

linearly in space (as an analogy to the linear ordering of observations in time).

The specification that is often referred to as q−ahead, r−behind (in terminology

of Kelejian and Prucha, 1999) uses the weights matrix W(q,r)
N consisting of zeros

except for entries of ones on the first q subdiagonals below the main diagonal and

entries of ones on the first r subdiagonals above the main diagonal. For example,

the 2−ahead, 2−behind matrix is:

W
(2,2)
N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 · · · 0

1 0 1
. . . . . . ...

1 1
. . . . . . . . . 0

0
. . . . . . . . . 1 1

... . . . . . . 1 0 1

0 · · · 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.2.6)

An alternative is to assume a circular ordering of the observation in space. In

this case, the q−ahead, r−behind weights matrices are as above but with added

nonzero entries in positions (i,N − j) where i, j = 0, .., q − 1 and (N − k, l)

where k, l = 0, .., r − 1. For the 2−ahead, 2−behind matrix, circularity implies

that the first unit is also a neighbor of units N and N−1, hence the added entry of

one in positions (N, 1), (N − 1, 1), (1, N), and (2, N). Additionally the second

and last unit (N) as well as the first and (N − 1) − th units are neighbors, and

hence the entries of one in positions (N, 2) and (1, N − 1).
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Distance Based Weights When one views the cross-sectional observations as

being located in a space, the extent of direct correlation between the disturbances

at two locations can be interpreted as related to their distance in the space under

consideration. Hence the weights can be interpreted as being (inversely) related

to some measure of distance among the observations. In practical applications

the space does not necessarily have to be a geographical space. The observations

can be located in an abstract space in which their proximity is a known function

of some of their observable characteristics. For example, two industries can be

considered to be ’close’ to each other if they use a similar set of inputs, or two

countries can be ’close’ if they have received financial flows from the same inter-

national lenders.

Under the interpretation of the weights wij,N being inversely related to a dis-

tance measure, one is making an implicit assumption that the weights are sym-

metric in the sense that wij,N = wji,N . This is an artefact of the symmetry of

distance measures, i.e. the distance from i to j has to be equal to the distance

from j to i.10 Observe, however, that the model considered here is more general.

In particular, I do not require the weights to be symmetric and wij,N does not have

to be equal to wji,N . This can be advantageous in situations where the spillover of

shocks is not necessarily symmetric. An example is the international transmission

of shocks, where a shock originating in a very small country cannot be plausibly

assumed to affect a large country in a same way as a shock originating in a large
10Observe that the distance based weights can be adjusted (premultiplied) by a factor that ac-

counts for the differences in the direction of the influence. In this case the weights can become
asymmetric. Note that the specification in this thesis allows for such asymmetries.
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country affects a small country (e.g. US shocks affect say Ecuador much more

than Ecuador’s shocks can affect the US).

The problem of symmetry of the spatial weights that are based on a distance

measure is related to a more general issue of aggregation. Suppose that the data

was generated for a larger (disaggregated) sample but is only observed for ag-

gregated spatial units. Mutl (2006) considers such data generating designs in a

Monte Carlo study and concludes that only specifications that adjust the spatial

weights for the relative size of the units deliver estimates that do not change with

the increases in the number of units observed in the sample. The appropriate mea-

sure of the size depends on the units of measurement of the endogenous variable.

For example, when the dependent variable is expressed as GDP per population,

then the spatial weights wij,N should be a postmultiplied by the population of the

region i relative to the entire population of all regions in the sample. Construct-

ing the distance based spatial weights in this fashion takes automatically account

of the asymmetrical effects considered above. See also Giacomini and Granger

(2004) for related issue of forecasting an aggregate of spatially interrelated obser-

vations, and LeSage and Pace (2004) for dealing with missing values in models

with spatial dependence.

2.2.2 Estimation

The estimation method for models with spatial autocorrelation suggested by Anselin

(1988) or Anselin and Hudak (1992) was maximum likelihood (ML). The asymp-

totic properties of the ML estimator of a model such as (2.2.1) have been derived
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only recently by Lee (2004) for one specific Cliff-Ord model. Furthermore, the

maximum likelihood function contains a Jacobian term that is a determinant of a

matrix that increases with the sample size N . Hence for moderate and large sam-

ple sizes, the ML estimation might become infeasible. As an alternative, Kelejian

and Prucha (1998) introduced spatial generalized moments (spatial GM) estima-

tor and proved its consistency. The asymptotic distribution of the spatial GM

estimator is derived in Kelejian and Prucha (2005). The spatial GM estimator is

computationally much simpler and, as a result, is feasible also for large sample

sizes.

The OLS estimation of a model with SAR disturbances is inefficient but re-

mains consistent. However, when spatial lags of the dependent variable are in-

cluded, as in (2.2.2), OLS estimation becomes biased since the stochastic regres-

sor
PN

j=1wij,Nyjt,N on the left hand side is correlated with the error term (endo-

geneity bias). However, an instrumental variable estimation with spatial lags of

the explanatory variable as instruments, will be consistent (Kelejian and Prucha,

1998). Alternative instrument sets are considered in Lee (2003) and Kelejian,

Prucha and Yuzefovich (2004).

The stacked version of the model given in (2.2.1) and (2.2.2) is

yN = XNβ + λMNyN + uN , (2.2.7)

uN = ρWNuN + εN ,

where yN is the N × 1 vector of the dependent variable,XN is the N × p matrix
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of exogenous variables,MN andWN are N ×N spatial weighting matrices, uN

and εN are the N × 1 vectors of disturbances and innovations. Under appropriate

regularity conditions, the model can be solved as (see, for example, Das, Kelejian

and Prucha, 2003, page 4):

yN = (IN − λMN)
−1XNβ + (IN − λMN)

−1 (IN − ρWN)
−1 εN . (2.2.8)

Under the assumption that the vector εN is normally distributed with

εN ∼ N (0N×1, σ2IN), the likelihood function is:

ln (L) = −N
2
ln (2π)− 1

2
ln |ΩN | (2.2.9)

−1
2

£
yN − (IN − λMN)

−1XNβ
¤0
Ω−1N

£
yN − (IN − λMN)

−1XNβ
¤
,

where ΩN is the variance covariance matrix of the disturbances uN given by

ΩN = σ2 (IN − λMN)
−1 (IN − ρWN)

−1 (IN − λM0
N)
−1
(IN − ρW0

N)
−1

.

(2.2.10)

The least squares procedure applied directly to equation (2.2.7) is inconsistent

due to correlation of yit,N and uit,N . However, there are instrumental variables

(IV) procedures that are consistent. Observe that for the current model (see Das,

Kelejian and Prucha, 2003, page 7):

E (yN) = (IN − λMN)
−1XNβ =

∞X
k=0

λkWk
NXNβ, (2.2.11)
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and hence ideal instruments are combinations of matricesXNβ,WNXNβ,W2
NXNβ,

etc. Kelejian and Prucha (1998) show that an IV estimator that uses at least the lin-

early independent columns ofXN ,WNXN ,W2
NXN as instruments is consistent

and asymptotically normal.

The spatial autocorrelation parameter ρ can then be estimated with the spatial

generalized moments (spatial GM) procedure, suggested by Kelejian and Prucha

(1999). Denote buN the estimated disturbances based on an initial consistent esti-

mator. Let

v1,N
¡
ρ, σ2

¢
= N−1 ¡IN − ρWNbuN¢0 ¡IN − ρWNbuN¢− σ2, (2.2.12)

v2,N
¡
ρ, σ2

¢
= N−1 ¡IN − ρW2

NbuN¢0 ¡IN − ρW2
NbuN¢− σ2N−1tr (W0

NWN) ,

v3,N
¡
ρ, σ2

¢
= N−1 ¡IN − ρW2

NbuN¢0 ¡IN − ρWNbuN¢ .
The spatial GM estimator is then defined as

¡bρ, bσ2¢ = argmin( 3X
k=1

v0k,N
¡
ρ, σ2

¢
vk,N

¡
ρ, σ2

¢
:
¡
ρ, σ2

¢ ∈ [−a, a]× £0, s2¤) ,

(2.2.13)

where a ≥ 1 and s2 is the upper limit considered for σ2. Kelejian and Prucha

(1999) show that the spatial GM estimator is consistent. Kelejian and Prucha

(1998) also provide a proof that the spatial autoregressive parameter ρ is a ’nui-

sance’ parameter in the sense that the feasible generalized spatial two stage least

squares (FGS2SLS) estimator has the same asymptotic distribution when it is

based on a consistent estimator of ρ as when it is based on the true value. Ini-

43



tially, the asymptotic distribution of the spatial GM estimator was not determined.

As a result, tests for spatial autocorrelation had to be based on statistics such as

the Moran I. Kelejian and Prucha (2001) and Pinske and Slade (1998) provide as-

ymptotic distribution of the Moran I test statistics. The asymptotic distribution of

the spatial GM estimator was then derived for a more general model that includes

heteroscedastic disturbances in Kelejian and Prucha (2005).

2.3 Space-Time Models

Time and space is a key feature of almost all human activities. Their interaction

has been studied in many disciplines and has received some attention in economics

as well. Studies outside economics include many applications in geostatistics (see

e.g. Kyriakidis and Journel, 1999 for a review), geography but also in epidemi-

ology, medicine, crime prevention and others. Short overviews can be found in

Cressie (1991: 449-452) and Robinson (1998: 319-328).

In economics and econometrics, some interesting cases complementary to the

specification in the present thesis are, for example, generalized least squares test

to test for unit roots in panel data (although without deriving any asymptotic prop-

erties of the estimator) in O’Connell (1998), a two-step sieve least squares proce-

dure to estimate a panel vector autoregression (VAR) model with a nondiagonal

cross-sectional covariance matrix that is proportional to an observed economic

distance measure in Chen and Conley (2001) who look at asymptotics in the less

complicated case when the cross-sectional dimension is fixed, and, finally, Chang

(2002) who derives asymptotic properties of a univariate panel model with a gen-
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eral unrestricted form of cross-sectional heterogeneity when the cross-sectional

dimension of the panel is also fixed.

In this thesis, I will analyze dynamic model that includes a spatial lag in the

disturbance process. This is a special case of the class of stochastic models known

as space-time autoregressive (space-time AR) models introduced by Cliff et al.

(1975) and generalized by Pfeifer and Deutsch (1980). More recent discussions

and applications of the space-time AR model in econometrics are Elhorst (2001),

while a generalization of the model to continuous space is proposed by Brown et

al. (2000).

Below I review papers that deal with this class of models in more detail. Note

that if contemporaneous correlation is present, the observable data become a non-

trivial transformation of the underlying random field, resulting in some technical

difficulties. Hence I first focus on specifications that do not allow for contempora-

neous correlation in the data but instead assume that spatial interactions act with

a time lag. In the second subsection I therefore present models that allow for such

complications.
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2.3.1 Space-Time Autoregressive Moving Average

(STARMA) Models

Pfeifer and Deutsch (1980) were the first to propose a STARMA model. Their

general STARMA(p, q;λ1, ..., λp,m1, ...,mq) model is:

yit =

pX
k=1

λkX
l=0

φkl

NX
j=1

wij,lyj,t−k (2.3.1)

−
qX

k=1

mkX
l=0

θkl

NX
j=1

wij,lεj,t−k + εit,

where p is the autoregressive order, q is the moving average order, λk is the spatial

order of the k−th autoregressive term, mk is the spatial order of the k−thmoving

average term, φkl and θkl are parameters and the errors are normally distributed

with E (εit) = 0, E (εitεj,s) = σ2 for i = j and t = s, and E (εitεjs) = 0

otherwise.

The spatial weights have the usual interpretation (see the previous subsection)

and are assumed to be observable and the authors do not impose any restrictions

on their structure. Observe that in contrast to Cliff-Ord type model considered in

this thesis, their STARMA model does not allow for contemporaneous correlation

between spatial units, i.e. for example εit depends on εj,t−1 but not on εjt. As a

result, the likelihood function does not involve a Jacobian term in a form of a de-

terminant of an N×N and, as a result, ML estimation is considerably simpler and

it is the estimation method suggested by Pfeifer and Deutsch. The authors derive

the likelihood function conditional on initial values of the process and note that
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it is only appropriate for moderate or large T . However, the restrictions implied

by the model on the initial observations are not explicitly derived. The paper also

does not provide formal consistency or asymptotic normality results. Abraham

(1983) derives the likelihood function for the STARMA model.

Stoffer (1986) outlines different estimation procedure for a spatial STAR model

with missing values (spatial ARX in his terminology). The model combines the

time series parametrization of an autoregressive moving average process for miss-

ing and noisy data with a Cliff and Ord type spatial structure. The data generating

process is assumed to be a q-th order autoregressive process where the current

observation is influenced by q time lags of its spatial neighbors:

yit =

qX
k=1

NX
j=1

wij,kφkjyj,t−k + x
0
itβ + εit, (2.3.2)

where the autoregressive parameters φkj are allowed to vary with spatial location.

The spatial weights wij,k have the usual interpretation (e.g. they are inversely

related to a distance) and are allowed to be different at different time lags. The

p explanatory variables in xit are modelled as a stochastic process independent

of the innovations εit and the data sample is observed for i = 1, ..., N and t =

1, ..., T .

The estimates are solutions to approximated Yule-Walker equations. For ex-

ample, with no data problems, q = 1 and without explanatory variables, the model
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can be written as

yt =WΦyt−1 + εt, (2.3.3)

where yt = (y1t, ..., yNt)
0, εt = (ε1t, ..., εNt)

0,W is a N ×N matrix of the spatial

weights wij and Φ = diag (φ1, ..., φN). The proposed estimator of Φ is then:

bΦ = diag
³
W−1bΓ−1bΓ−10 ´ , (2.3.4)

where the estimated moments of the data are

bΓ0 = TX
t=2

yty
0
t, (2.3.5)

and bΓ−1 = TX
t=1

yty
0
t−1. (2.3.6)

There are no formal asymptotic claims made for the procedure. The method is

illustrated with an application to fish catch data at five locations for 240 time peri-

ods suggesting that the implicit asymptotic consistency and normality claims are

for fixed spatial dimension N and increasing time dimension of the observations.

Pace et al. (1998) model spatial and temporal dependence in housing price data

in Fairfax County Virginia between 1961 and 1991. Unlike in standard STAR

models, it is not assumed that the autocorrelation in the dependent variable is

linearly separable in space and time. Instead an interaction of the space and time
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lags is considered. In particular, the model is:

yit =
TX
s=1

NX
j=1

wij,tsyjs + x
0
itβ +

TX
s=1

NX
j=1

wij,tsx
0
jsβ + εit, (2.3.7)

where the observable weights wij,ts relate observation across time and space si-

multaneously. It is assumed that wij,ts = 0 for s ≤ t, meaning that the current and

future values of yjs and xjs do not influence the process for yit.

Stacking wij,ts into a NT ×NT matrixW, Pace et al. assume that

W = ρsS− ρTT+ ρSTST+ ρTSTS, (2.3.8)

where the S andTmatrices are interpreted as filters in space and time respectively.

Their entries are related to the distance of the of the observation in space and time

respectively.

The main limitation of their approach is that it is assumed that there are no

concurrent observations and that only past observations have an effect. If the

matrix W is stacked so that the observations are sorted according to time, this

assumption implies that both T and S are strictly lower (or upper) diagonal. As

a result the model can be estimated by OLS. The paper does not provide formal

results and does not spell out assumptions on the disturbance process.

Giacomini and Granger (2004) show that the STARMA class of models can

be derived as a transformation of vector autoregressive moving average (VARMA)

model, where the transformation is a restriction involving spatial weighting ma-
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trices. When the number of locations is small, the model can be estimated by an

overparametrized VARMA specification. With increasing number of location, the

overparameterized VARMA model has a large number of insignificant parameters.

Therefore, estimation can be improved in a Bayesian framework by incorporating

these as priors. Hence LeSage and Krivelyova (1999) propose a class of prior

distributions for a Bayesian VAR model that will approximately constrain the in-

significant parameters to zero.

2.3.2 Models with Contemporaneous Spatial Correlation

The papers cited in the above subsection did not allow for contemporaneous de-

pendence of the observations. When such interactions are included, the observa-

tion become a nonlinear transformation of the innovations and, as a result, maxi-

mum likelihood estimation is more difficult. We next review papers that allow for

such complications.

Congdon (1994) considers the spatiotemporal model of the following form:

yit = x
0
itβ + µi + uit, (2.3.9)

where t = 1, ..., T and i = 1, ..., N and the error term is both spatially and tem-

porally autocorrelated:

uit = φui,t−1 + ρ
NX
j=1

wijujt + εit. (2.3.10)
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It is assumed that yi0 and xi0 are known exogenous constants. The first step of the

proposed estimation procedure eliminates the individual effects µi by subtracting

individual means yi and xi and estimating the slope coefficients β by OLS on

(yit − yi) = (xit − xi)0 β + (vit − vi) . (2.3.11)

In the second step, φ and ρ are estimated by minimizing

g (φ, ρ) =
NX
i=1

TX
t=1

³
y∗it − x∗0itbβOLS

´2
, (2.3.12)

where

y∗it = (yit − yi)− φ (yi,t−1 − yi)− ρ
NX
j=1

wij

¡
yjt − yj

¢
, (2.3.13)

x∗it = (xit − xi)− φ (xi,t−1 − xi)− ρ
NX
j=1

wij (xjt − xj) .

Based on Hordijk (1979), the transformation for the first time period is

y∗1 =
£
(I− ρW)0 (I− ρW)− φ2IN

¤1/2
(y1 − y) , (2.3.14)

X∗1 =
£
(I− ρW)0 (I− ρW)− φ2IN

¤1/2 ¡
X1 −X

¢
,

where y1 = (y11, ..., y1N)0, y = (y1, ..., yN)
0,X1 = (x

0
11, ...,x

0
1N)

0,X = (x01, ...,x0N)
0

and W is an N ×N matrix with elements wij . The slope coefficients β are esti-
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mated by OLS from

y∗it
³bφ,bρ´ = x∗it ³bφ,bρ´0 β + εit. (2.3.15)

In the third step, the variance components σ2ε = V ar (εit) and σ2µ = V ar (µi)

are estimated, e.g. bσ2ε = 1

NT

NX
i=1

TX
t=1

³
y∗it − x∗0itbβ´2 , (2.3.16)

where bβ is from step 2. 11 The final step is a generalized least squares (GLS)

procedure to re-estimate β.

The paper contains outline and an application of the estimation procedure to

mortality rates in London but offers no formal proofs that would support the con-

sistency claims. The estimated GLS procedure is based on suggestion in Anselin

(1988), p.111.

Driscoll and Kraay (1995, 1998) Provide a proof of consistency and asymp-

totic normality of a GMM procedure based on a panel Newey and West (1987)

nonparametric heteroscedasticity and autocorrelation consistent (HAC) covari-

ance matrix estimator.12 The limit is taken with respect to the time dimension

11The expression for cσ2µ in the paper is

cσ2µ = 1

N

NX
i=1

n³
yi − bφyi,−1 − bρWy

´
− bβ ³xi − bφxi,−1 − bρWx

´o2
−
cσ2ε
T
.

This does not seem to have the correct dimensions.
12The cross-sectional dimension of the data is collapsed by taking cross-sectional averages.

Hence this is not a complete generalization of the HAC estimation to a panel setting.
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of the data. Their specification requires that the data is an α-mixing random field

of the same size as the number of moment restrictions and hence places only weak

restrictions on the form of spatial and temporal correlations.

They consider r orthogonality conditions E [hit (zit,θ)] = 0, where zit, i =

1, ..., N , t = 1, ..., T is data and θ is a vector of parameters. The restrictions are

assumed to identify the parameters. Their GMM estimator is

bθT = argmin
θ

("
1

T

TX
t=1

ht (θ, zt)

#0 bS−1T
"
1

T

TX
t=1

ht (θ, zt)

#)
, (2.3.17)

where zt = (z1t, ..., zNt)
0, ht (θ, zt) = N−1PN

i=1 hit (zit,θ), and bST is the stan-

dard HAC estimator applied to the sequence of cross-sectional averages of hit (zit,θ).

Bronnenberg and Mahajan (2001) Estimate a model of retailers behavior where

the market shares are related to marketing variables. Their model is

yit = α0 + x
0
itβ + µi + uit, (2.3.18)

where the disturbances are composed of innovations autocorrelated in time and

individual effects autocorrelated in space:

µi = ρ
NX
j=1

wijµj + εi, (2.3.19)

uit = φ1ui,t−1 + vit.
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The explanatory variables are also modelled as a stochastic process based on the

same individual effects µi, with the j − th explanatory variable xj,it specified as

xj,it = αjt + γjµi + δj,it, (2.3.20)

where

δj,it = φ2jδj,i,t−1 + θjτ t + ξj,it. (2.3.21)

The model is estimated by Maximum Likelihood under the assumption that

the innovations µi, εi, vit, ξj,it are all jointly normally distributed.

Elhorst (2001) derives a likelihood function for a STAR(1,1) model where he

also allows for contemporaneous spatial lags. His general model is

yit = φyi,t−1 + ρ0

NX
j=1

wijyjt + ρ1

NX
j=1

wijyjt,t−1 (2.3.22)

+β1xit + β2xi,t−1 + β3

NX
j=1

wijxit + β4

NX
j=1

wijxi,t−1 + uit.

The likelihood is derived under the assumption that the disturbances uit are nor-

mally distributed with E (uit) = 0, E (u2it) = σ2 and E (uitusj) = 0 if t 6= s or

i 6= j. The paper assumes that the matrix of the spatial weights W = (wij) has

zeros on the diagonal and that the spatial autoregressive parameter ρ is bounded

by the inverse of the largest and smallest eigenvalue of W. It is also implicitly

assumed that the matrixW is symmetric and that the model is dynamically stable
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(this places a nontrivial condition on the parameters φ and ρ0).13 The likelihood

is not conditionalized on the initial values but instead it is assumed that the initial

observations are draws from the stationary distribution of the process.

Kapoor et al. (2005) extend the GM estimator of Kelejian and Prucha to a

panel data. The contribution of thesis relative to Kapoor et al. (2005) is to allow

for autocorrelation in the time dimension as well. Their specification is

yit,N = x
0
it,Nβ + uit,N , (2.3.23)

where the disturbances are an SAR(1) process with individual effects:

uit = ρ
NX
j=1

wijuij,t + µi + εit. (2.3.24)

The paper provides formal consistency proof of the spatial GM estimator (with

alternative weighting schemes) of ρ, as well as asymptotic normality of a gener-

alized least squares (GLS) estimator of β.

Baltagi et al. (2003) derive formulae for various Lagrange multiplier tests in

a model that includes spatially correlated disturbances. The paper also provides

experimental evidence of their performance in small samples. They consider the

following model:

yit = x
0
itβ + µi + uit, (2.3.25)

13Such condition could be, for example |φ| + |ρ0| · λmax (W) < 1, where λmax is the largest
(in abolute value) eigenvalue of the matrixW that consists of the spatial weights wij .
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with the disturbances being an SAR(1) process:

uit = ρ
NX
j=1

wijujt + εit. (2.3.26)

Observe that when the spatial lag does not operate on the individual effects,

this specification implies that the covariance between yit and yjs is zero for i 6= j

and t 6= s. This is in contrast to the specification in Kapoor et al. (2005), where the

individual effects are spatially correlated and, as a result, the covariance among

yit and yjs is nonzero for all values of i, j, t and s.

Korniotis (2005) Building on work of Hahn and Kurstiener (2002), Korniotis

(2005) considers a bias corrected OLS estimator in a dynamic panel data model

that also includes spatial lag of the dependent variable. The specification is

yit = φyi,t−1 + ρ1

NX
j=1

wijyjt + ρ2

NX
j=1

wijyj,t−1 + x0itβ + µi + εit. (2.3.27)

where the disturbances are independent in the time dimension but are allowed to

have arbitrary covariance matrix (constant over time) in the cross-sectional dimen-

sion. The paper gives the asymptotic formulas for the biases of the OLS estimators

when both N and T simultaneously approach infinity.
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Yang (2005) extends the proofs of asymptotic normality in Lee (2004) to a static

panel data model with random individual and fixed time effects. His model is

yit = xitβ + ηt + µi + uit, (2.3.28)

where the disturbances uit are an SAR(1) process, i.e.:

uit = ρ
NX
j=1

wijuij,t + εit. (2.3.29)

The QML function is derived under the assumption that {εit} and {µi} are mu-

tually independent and identically distributed random variables with finite 4 + δ

moments for some δ > 0.
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3 Model

In this chapter I specify the model and provide a discussion of the maintained

assumptions. It proves to be useful to restate the following notational conventions

and definitions: I use bold letters for matrices and vectors, and regular font letters

to denote scalars. Furthermore, I use lower case letters for vectors and upper case

letters for matrices. Let (AN)N�N be some sequence of Np×Np matrices where

p ≥ 1 is some fixed positive integer. I denote the (i, j)-th element as aij,N . I

say that the row and column sums of the sequence of matricesAN are uniformly

bounded in absolute value if there exists a positive finite constant c independent

of N such that

max
1≤i≤Np

NpX
j=1

|aij,N | ≤ c and max
1≤i≤Np

NpX
i=1

|aij,N | ≤ c. (3.0.1)

For future reference, I note that any finite sum and/or product of matrices with

row and column sums uniformly bounded in absolute value will also have row

and column sums uniformly bounded in absolute value; see Kelejian and Prucha

(2004). As a consequence, ifB is a matrix of constants with fixed dimensions and

AN is a sequence of matrices with row and column sums uniformly bounded in

absolute value, then the sequence of matrices (B⊗AN) will also have row and

column sums uniformly bounded in absolute value.
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3.1 Model Specification

Consider the following dynamic panel data model (1 ≤ i ≤ N , 1 ≤ t ≤ T ):

yit,N = φyi,t−1,N + xit,Nβ + uit,N , (3.1.1)

where yit,N and xit,N denote the (scalar) dependent variable and the 1× p vector

of exogenous variables corresponding to cross sectional unit i in period t, φ and β

represent corresponding 1× 1 and p× 1 parameters, and uit,N denotes the overall

disturbance term.

In contrast to the existing dynamic panel data literature I do not assume that

the disturbances uit,N are cross-sectionally uncorrelated and I consider potentially

heteroscedastic errors. Given the fact that I will derive asymptotic properties of the

model when the cross-sectional dimension tends to infinity, the cross-sectional co-

variance structure will be parametrized with a finite number of parameters. In par-

ticular, I assume that the disturbances uit,N follow a spatial autoregressive process

in the form of:

uit,N = ρ
NX
j=1

wij,Nujt,N + υit,N , (3.1.2)

where the overall disturbance uit,N consists of a spatial lag of contemporaneous

disturbances in other cross-sections and an innovation υit,N .

Anselin (1988) refers to this model as a first order spatial autoregressive model

or SAR(1). See the previous chapter for more detailed discussion of such spec-

ification. The process for the disturbances contains one parameter ρ and N2 ob-
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servable spatial weights wij,N . The υit,N are the innovations that enter the spatial

process. They are allowed to be correlated over time and I assume that they have

the following error component structure:

υit,N = µi,N + εit,N , (3.1.3)

where µi,N are unit specific error components, and εit,N are the error components

that vary both over cross-sectional units and time periods.

The spatial weights, as well as the endogenous, exogenous and disturbance

processes are all allowed to depend on the sample size, i.e., to depend on N .

Observe that even if the innovations υit,N did not depend on the sample size, the

disturbances uit,N would still have to be indexed by the sample size due to the

presence of the spatial lag ρ
PN

j=1wij,Nujt,N in (3.1.2).14

Stacking across units the model becomes (1 ≤ t ≤ T )

yt,N
N×1

= φyt−1,N
N×1

+Xt,N
N×p

β
p×1
+ ut,N

N×1
, (3.1.4)

ut,N
N×1

= ρWN
N×N

ut,N
N×1

+ υt,N
N×1

,

where

υt,N
N×1

= µN
N×1

+ εt,N
N×1

, (3.1.5)

14TheN×1 vector of disturbances ut,N is given by ut,N = (IN − ρWN )
−1
υt,N (see equation

3.2.1). Note that the elements of (IN − ρWN )
−1 must depend on the sample size N . This would

be true even if the elements wij,N did not depend on the sample size.
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and

yt,N =

⎛⎜⎜⎜⎜⎝
y1t,N

...

yNt,N

⎞⎟⎟⎟⎟⎠
N×1

, Xt,N =

⎛⎜⎜⎜⎜⎝
x1t,N

...

xNt,N

⎞⎟⎟⎟⎟⎠
N×p

, (3.1.6)

ut,N =

⎛⎜⎜⎜⎜⎝
u1t,N

...

uNt,N

⎞⎟⎟⎟⎟⎠
N×1

, µN =

⎛⎜⎜⎜⎜⎝
µ1,N

...

µN,N

⎞⎟⎟⎟⎟⎠
N×1

,

εt,N =

⎛⎜⎜⎜⎜⎝
ε1t,N

...

εNt,N

⎞⎟⎟⎟⎟⎠
N×1

, WN =

⎛⎜⎜⎜⎜⎝
w11,N · · · w1N,N

... . . . ...

wN1,N · · · wNN,N

⎞⎟⎟⎟⎟⎠
N×N

.

In all of the ensuing discussion T is fixed and N →∞. I maintain the follow-

ing assumptions:

Assumption 1 For each N > 1 the innovations {εit,N : 1 ≤ i ≤ N, t ≤ T} are

independently distributed, with zero mean, constant variance σ2ε,N with 0 < σ2ε,N <

bε < ∞. Furthermore, the innovations have finite absolute moments of order

4 + δε for some δε > 0 and those moments are uniformly bounded by some finite

constant.

Assumption 2 For each N > 1 the individual effects
©
µi,N : 1 ≤ i ≤ N

ª
are

independently distributed, with zero mean, and are independent of the innova-

tions {εit,N : 1 ≤ i ≤ N, t ≤ T}. Furthermore, the individual effects have con-

stant variance σ2µ,N with 0 < σ2µ,N < bµ < ∞ and finite absolute moments of
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order 4 + δµ for some δµ > 0 and those moments are uniformly bounded by some

finite constant.

Assumption 3 The nonstochastic matrixWN has the following properties:

(a) All diagonal elements ofWN are zero.

(b) The true parameter ρ satisfies |ρ| < 1; the matrix IN−rWN is nonsingular

for all |r| < 1.

(c) The row and column sums ofWN andPN(ρ) = (IN − ρWN)
−1 are bounded

uniformly in absolute value by, respectively, kW < ∞ and kP < ∞ where

kP may depend on ρ.

It will be shown in the next section that the following assumption will guaran-

tee that the variances of the disturbances uit,N are bounded away from zero:

Assumption 4

λmin (PNP
0
N) ≥ cP > 0

for some cP where cP may depend on ρ.

The analysis is conditionalized on the realized values of the exogenous vari-

ables and I henceforth view them as constants. I make the following assumptions

on the exogenous variables:

Assumption 5 (a) The matrix of exogenous (nonstochastic) regressors Xt,N ,

t ≤ T , has a full column rank (for N sufficiently large).
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(b) The elements ofXt,N are uniformly bounded in absolute value.

I complete the model by specifying a process that generates the initial obser-

vation of the dependent variable:

Assumption 6 The model defined in (3.1.4) is dynamically stable, i.e., |φ| < 1,

and has been in operation for an infinite period of time.15

The error specification adopted in this thesis corresponds to that of a classi-

cal one-way error component model, see e.g. Baltagi (1995, pp. 9). It is also a

generalization of the literature on dynamic panel data models with independent

innovations. Notice that with ρ = 0, my specification becomes, for example,

that of Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover

(1995), Blundell and Bond (1998),16 or Anderson and Hsiao (1981 and 1981),

case IVb.17 Finally, note that the same error component specification of the dis-

turbance process was adopted in Kapoor et al. (2005), who consider random effect

specification in the context of a static panel data model.

3.2 Model Implications

I examine the asymptotic properties of the proposed estimation procedure when

the time dimension of the panel is fixed. I assume slope homogeneity of the

autoregressive parameters (φ does not have an i subscript)18 and I also assume
15Note that Assumptions 1 and 2 have been consistently specified to hold for −∞ < t ≤ T .
16In these papers the exogenous variables are allowed to be stochastic and either strictly exoge-

nous or predetermined while in this thesis I treat the exogenous variables as nonstochastic.
17Anderson and Hsiao do not include exogenous variables in their specification.
18Note that heterogenous slope coefficients cannot be consistently estimated with a fixed num-

ber of observations in the time dimension of the panel.
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that the spatial weighting matrices are constant over time.19 In the rest of this

section I explore some implications of the maintained assumptions. Proofs of the

claims made in this section are in the Appendix B.

Assumption 1 is a standard restriction for asymptotic results. I do not assume

that the innovations are identically distributed and hence a stronger requirements

on the existence of moments is necessary. Assumption 2 is a random effects as-

sumption that will be used to prove existence of asymptotic distribution of moment

conditions that involve levels of lagged endogenous variables. I conjecture that the

estimation procedure suggested in this thesis remains valid also when the individ-

ual effects are fixed (σ2µ = 0). However, the proofs would have to be modified20

and hence I choose to concentrate on the random effects case.

Assumption 3(a) is a normalization of the model that also implies that no

cross-section is viewed as its own neighbor. Assumption 3(b) implies that the

system in (3.1.4) is complete in that it defines endogenous variables in terms of

exogenous variables and innovations. In particular, from Assumption 3(b) it fol-

lows that

ut,N
N×1

= PN
N×N

υt,N
N×1

. (3.2.1)

Furthermore, we can eliminate lagged dependent variables by backward substitu-

tion and express the model as a function of lagged disturbance terms and lagged
19If the spatial weighting matrices were not constant over time, then first differencing would not

remove the individual effects.
20I apply central limits theorems to a vector of random variables that includes the individual

effects. Hence it is required that σ2µ > 0. In the fixed effects case, the central limit theorems
would be applied to a vector of random variables that excludes µN . Observe that the sequence of
vectors µN would in this case be required to satisfy some regularity condition such as Assumption
A2 in Appendix A.
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explanatory variables. From (3.1.4), we have that for 1 ≤ t ≤ T

yt,N = φyt−1,N +Xt,Nβ + ut,N (3.2.2)

= φ [φyt−2,N +Xt−1,Nβ + ut−1,N ] +Xt,Nβ + ut,N

...

=
t−1X
j=0

φj [Xt−j,Nβ + ut−j,N ] + φty0,N

=
t−1X
j=0

φj [Xt−j,Nβ +PNυt−j,N ] + φty0,N ,

and hence yt,N is a well defined transformation of the innovations υt,N , the initial

values of the process y0,N , and the exogenous variablesXt,N .

Assumption 3(c) restricts the degree of permissible cross-sectional correlation

in the sample. Note that some restriction on the correlation is necessary for any

large sample results to hold. In practice in the spatial literature, with T fixed and

N →∞, it is often assumed that each cross-sectional unit has a finite number of

neighbors, or that the rows of the weight matrices are normalized to sum to unity.

It is also often the case that although the matrices may not be sparse, the weights

are proportional to an inverse of some distance measure. Therefore, under reason-

able conditions, the weight matrices will have row and column sums uniformly

bounded in absolute value.

Assumption 4 rules out degenerate weighting matrices that would imply zero

variance of the disturbances ut,N . Observe that from Assumption 3, we have

ut,N = PN (µN + εt,N) and hence the variance covariance matrix of the distur-
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bances ut,N is

V C (ut,N) =
¡
σ2µ,N + σ2ε,N

¢
PNP

0
N . (3.2.3)

In particular, notice that each diagonal element of V C (ut,N) is bounded from

below by the smallest eigenvalue21 and hence the assumption implies that each

uit,N has variance bounded away from zero. In a model without spatial correlation,

PN = IN and this Assumption is trivially satisfied.

Assumption 5 is an exogeneity assumption of explanatory variables. Finally,

under Assumption 6, together with the assumptions on the exogenous variables

and the spatial weighting matrix, we have by backward substitution:

y0,N =
∞X
j=0

φj
¡
X−j,Nβ + u−j,N

¢
(3.2.4)

=
∞X
j=0

φj
£
X−j,Nβ +PNε−j,N

¤
+(1− φ)−1PNµN .

Hence y0,N is a random variable that in general depends on N with mean that

is not necessarily equal to zero. Notice that {uit,N : 1 ≤ i ≤ N,−∞ < t ≤ 0} is

a transformation of {εit,N : 1 ≤ i ≤ N,−∞ < t ≤ 0} and
©
µi,N : 1 ≤ i ≤ N

ª
.

Therefore, by Assumptions 1 and 2, the array {yi0,N : 1 ≤ i ≤ N} is independent

of {εit,N : 1 ≤ i ≤ N, 1 ≤ t ≤ T}. Furthermore, given Assumptions 5 and 6 it

also has finite absolute moments of order 4 + δyo for some δyo > 0 and those

moments are uniformly bounded by some finite constant (see the appendix for a
21See e.g. Lemma 2 in Kelejian and Prucha (2003).
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proof).22 For future reference, I note that the variance of y0,N is

V C (y0,N) =

µ
σ2ε,N

1− φ2
+

σ2µ,N

(1− φ)2

¶
PNP

0
N . (3.2.5)

22Similarly, it can be shown that the stochastic process yit,N has finite absolute moments of
order 4 + δy for some δy > 0 and that those moments are uniformly bounded by some finite
constant. The proof of this claim is also in the appendix.
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4 Estimation and Inference

This chapter will present the key results of the thesis. I present a procedure to es-

timate the parameters of the model outlined in Chapter 3 and derive its asymptotic

properties. The proposed estimation method consists of three steps. In the first

step, I propose to use an instrumental variables (IV) estimator of the slope coef-

ficients φ and β without efficiently accounting for the spatial correlation of the

disturbances.23 In the second step of the estimation, the estimated disturbances

from the first stage are utilized in a spatial generalized moments (GM) estimator

to estimate the degree of spatial autocorrelation in the disturbances (ρ). In the last

step of the procedure, I propose a GMM estimator of φ and β with an optimal

weighting of the moments that is based on the initial estimators.

For expositional purposes, I choose to present for the first stage an IV estima-

tor that uses a simple set of instruments due to Anderson and Hsiao (1981). Ob-

serve, however, that the results on the third stage generalized method of moments

(GMM) estimators presented subsequently are sufficiently general to guarantee

consistency of IV estimators that use an extended set of instruments, such as the

one in Arellano and Bond (1991).

4.1 Initial IV Estimation

In this section I propose a simple estimation procedure to estimate the parameters

θ = [φ,β0]0 of the model (3.1.1) and demonstrate that the method is consistent and
23I do not account for the spatial correlation in formulating the initial IV estimator. However, it

is taken into account in the analysis of its properties.
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asymptotically normal. Since the model contains individual effects, these cannot

be consistently estimated with fixed T . Hence the model is considered after a

transformation that removes the individual effects from the dependent variable. I

follow the literature on dynamic panels and use first differences. Note that it would

also be possible to use other transformations such as central differences. I use

moment conditions based on the fact that the first difference of the disturbances is

uncorrelated with the level of the endogenous variable lagged twice (or more).24 In

particular, the estimator corresponds to the one suggested by Anderson and Hsiao

(1982). Inspection of the proofs reveals that the random effects Assumption 2 is

not strictly necessary for the initial estimator to work.25

I write the model in first differences as (t = 2, ..., T ):

∆yt,N
N×1

= φ
1×1

∆yt−1,N
N×1

+∆Xt,N
N×p

β
p×1
+∆ut,N

N×1
, (4.1.1)

where ∆ is the first difference operator and, in particular, ∆yt,N = yt,N −yt−1,N ,

∆Xt,N = Xt,N −Xt−1,N and ∆ut,N = ut,N − ut−1,N .

Stacking the observations over time yields

∆yN
(T−1)N×1

= ∆ZN
(T−1)N×(1+p)

θ
(1+p)×1

+ ∆uN
(T−1)N×1

, (4.1.2)

24This claim is formally proved in Lemma 2.
25Note that it is not the case that no assumption has to be made on the individual effects, as is

often claimed in the literature. Since the lagged endogenous variable is used as an instrument, one
still need to maintain that the individual effects are uncorrelated with the idiosyncratic disturbances
and satisfy certain moment restrictions as well. This of would of course be satisfied if we view the
individual effects as constants.
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where

∆ZN
(T−1)N×p+1

=

"
∆y−1,N
(T−1)N×1

, ∆XN
(T−1)N×p

#
(4.1.3)

and26

∆yN =

⎛⎜⎜⎜⎜⎝
∆y2,N

...

∆yT,N

⎞⎟⎟⎟⎟⎠
(T−1)N×1

, ∆y−1,N=

⎛⎜⎜⎜⎜⎝
∆y1,N

...

∆yT−1,N

⎞⎟⎟⎟⎟⎠
(T−1)N×1

,(4.1.4)

∆XN =

⎛⎜⎜⎜⎜⎝
∆X2,N

...

∆XT,N

⎞⎟⎟⎟⎟⎠
(T−1)N×p

, ∆uN=

⎛⎜⎜⎜⎜⎝
∆u2,N

...

∆uT,N

⎞⎟⎟⎟⎟⎠
(T−1)N×1

.

Since ∆yt−1,N is correlated with ∆ut,N the ordinary least squares estimator

for θ from the above model will generally be inconsistent. However, the level

of the dependent variable lagged twice (or more) will not be correlated with the

disturbances ∆ut,N . Motivated by this, I define an instrument matrix

Ht,N
N×(1+p)

= [yt−2,N
N×1

,∆Xt,N
N×p

]. (4.1.5)

Given the model assumptions we have, as demonstrated in Lemma 2 below:

E

Ã
H0

t,N
(1+p)×N

∆ut,N
N×1

!
= 0(1+p)×1, t = 2, . . . , T. (4.1.6)

26Note that most of the dynamic panel data literature stacks the data by first collecting the T
observations of each unit in a vector and then stacks those N vectors. The grouping used in this
paper is more convenient for modelling spatial correlation via (3.1.2).
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The initial IV estimator of θ utilizes Ht,N as instruments27 for ∆yt−1,N and is

defined as

bθN
(1+p)×1

=
h
∆bZ0N∆ZN

i−1
(1+p)×(1+p)

∆bZ0N
(1+p)×(T−1)N

∆yN
(T−1)N×1

, (4.1.7)

where

∆bZN
(T−1)N×(1+p)

= HN(H
0
NHN)

−1H0
N

(T−1)N×(T−1)N
· ∆ZN
(T−1)N×(1+p)

, (4.1.8)

and

HN
(T−1)N×(1+p)

=

⎛⎜⎜⎜⎜⎝
H2,N

...

HT,N

⎞⎟⎟⎟⎟⎠ . (4.1.9)

is a (T − 1)N × (p+ 1) matrix of instruments.28

The initial Anderson and Hsiao IV estimator is a special case of a more general

GMM estimator discussed in Section 4.3. However, for expositional purposes

I derive its asymptotic properties here. Substituting in the definition of the IV
27We note that it is possible to use additional lags and/or levels of the dependent variable as

instruments and obtain a consistent initial estimator as well. For example, we could use the instru-
ments suggested in Section 4.3, i.e. Ht = [yt−2,N , . . . ,y0,N ,Xt,N , . . . ,X1,N ].

28Writing the instruments in this fashion leads to an estimator that is based on moment con-
ditions that are averaged both over N and T . It is also possible to define the HN matrix as
HN = diag (H2, ..,HT ), and the moment conditions are then only averaged over N . In this case
the expressions in Lemmas 1 and 2 have to be modified. Note that these two specifications of the
instrument matrix lead to different estimators. The projection matrixHN (H

0
NHN )

−1
H0

N in the

first case has elements in the form Ht,N

³PT
s=2H

0
s,NHs,N

´−1
H0

t,N while in the second case

they are Ht,N

¡
H0

t,NHt,N

¢−1
H0

t,N . The case of estimators based on moments averaged only
over T will be considered in Section 4.2 below.
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estimator in equation (4.1.7) yields

bθN = θ +
h
∆bZ0N∆ZN

i−1
∆bZ0N∆uN (4.1.10)

= θ +
h
∆Z0NHN (H

0
NHN)

−1
H0

N∆ZN

i−1
∆Z0NHN (H

0
NHN)

−1
H0

N∆uN .

For the instruments to be valid, I make the following assumption.

Assumption IV1 The matrix

MH∆Z
(1+p)×(1+p)

= p lim
1

(T − 1)N H0
N

(1+p)×(T−1)N
∆ZN

(T−1)N×(1+p)
,

exist and is finite with full column rank. The matrix

MHH
(1+p)×(1+p)

= p lim
1

(T − 1)N H0
N

(1+p)×(T−1)N
HN

(T−1)N×(1+p)
,

exists and is nonsingular.

We can also define

M∆Z
(1+p)×(1+p)

= p lim
1

(T − 1)N ∆bZN
(1+p)×(T−1)N

∆ZN
(T−1)N×(1+p)

, (4.1.11)

Observe that ∆bZ0N∆ZN=∆Z
0
NHN (H

0
NHN)

−1HN∆ZN and hence M∆Z =

MH∆ZM
−1
HHMH∆Z . Assumption IV1 thus implies that M∆Z exists and is fi-

nite. Also note that the assumption that the M matrices are finite can be de-
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rived from earlier restrictions29. However, the existence and invertability ofM∆Z

and MHH is not guaranteed by Assumptions 1-6.30 Observe that one could de-

rive Assumption IV1 from existence and nonsingularity of the limits such as

lim (TN)−1
PT

t=j+1X
0
t−j,NXt,N .

To derive the asymptotic distribution of bθN , I note that given Assumption IV1,

it remains be to shown that the term H0
N∆uN converges in distribution (when

appropriately normalized). It will prove convenient to introduce the following

additional notation for lagged exogenous variables

X−2,N
(T−1)N×p

=
¡
0p×N ,X0

1,N , ..,X
0
T−2,N

¢0
, (4.1.12)

the vector collecting all of the model orthogonal innovations

ηN
(T+2)N×1

=
¡
µ0N , ξ

0
N , ε

0
1,N , ..., ε

0
T,N

¢0
, (4.1.13)

with ξN =
P∞

j=0 φ
jε−j,N , and a (T − 1)×T difference operatorD and a (T − 1)×

29For example, the elements of MHH consist of first and second moments of the stochastic
process yit interacted with the exogenous variables. These are bounded by Assumptions 1-6.

30For example, Arrelano (1989) examines a univariate AR(1) model with first-order autoregres-
sive exogenous variables, and finds that when the first differences of endogenous variables lagged
twice are used as instruments, there exists a significant range of parameters for which there is
a singularity point in the estimator. The paper also suggests that the estimator that uses second
lags of the levels of the endogenous variables does not have the singularity problem for a reason-
able range of parameters. However, this conclusion does not readily generalize for all possible
exogenous variables.
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(T − 1) matrix Φ

D
(T−1)×T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0

0 · · · 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Φ
(T−1)×(T−1)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 φ · · · φT−2

0 1
...

... . . . φ

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.1.14)

Observe that given Assumptions 1, 2, and 6, the variance covariance matrix of

ηN is

E (ηNη
0
N)(T+2)N×(T+2)N =

Ã
Ση,N

(T+2)×(T+2)
⊗ IN

!
, (4.1.15)

where the (T + 2)× (T + 2) diagonal matrix Ση,N is

Ση,N
(T+2)×(T+2)

= diag

µ
σ2µ,N ,

σ2ε,N
1− φ

, σ2ε,N , ..., σ
2
ε,N

¶
. (4.1.16)

I first express the elements ofH0
N∆uN (which are y0−2,N∆uN and∆X0

N∆uN )

in terms of lagged model disturbances and dependent variables:

Lemma 1 Under the specification (3.1.4) with Assumptions 1-6 and IV1 we have

that

y0−2,N∆uN= f
0
N (IT+2 ⊗PN)ηN+η

0
N (F⊗P0NPN)ηN ,
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where the (T + 2)N × 1 vector fN is given by

fN =

⎡⎢⎣
⎛⎜⎝ 02×(T−1)

D0
T×(T−1)

⎞⎟⎠⊗ IN
⎤⎥⎦ (Φ0 ⊗ IN)
(T−1)N×(T−1)N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ X−2,N
(T−1)N×p

β
p×1
+

⎡⎢⎣ E (y0,N)
N×1

0(T−2)N×1

⎤⎥⎦
(T−1)N×1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and the T + 2× T + 2 matrix F is

F
(T+2)×(T+2)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1−φ 11×(T−2)

11×1 01×(T−2)

0(T−2)×1 IT−2

02×1 02×(T−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(T+2)×(T−1)

Φ
(T−1)×(T−1)

¡
0(T−1)×2,D

¢
(T−1)×(T+2)

.

Furthermore ∆X0
N∆uN can also be expressed as a linear function of ηN :

∆X0
N∆uN = ∆X0

N

£¡
0(T−1)×2,D

¢⊗PN

¤
ηN .

Proof. See the Appendix C.1.

Notice that as indicated by the subscript, the size of the fN vector depends on

the sample size. Since T is fixed, I do not use subscripts for matrices F and D

whose size and elements only depend on T and not on N .

To determine the asymptotic variance of the estimator, I will make use of

the following Lemma that gives an expression for expected value and variance

covariance matrix of the moment conditions:
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Lemma 2 Suppose Assumptions 1-6 hold. The expected value of the vector of

quadratic formsH0
N∆uN is zero. Its variance covariance matrix is given by

VN
(1+p)×(1+p)

= E (H0
N∆uN∆u

0
NHN)

= S0N
(1+p)×(T+2)N

(Ση,N ⊗PNP
0
N)

(T+2)N×(T+2)N
SN

(T+2)N×(1+p)
+

⎛⎜⎝ νN 01×p

0p×1 0p×p

⎞⎟⎠ ,

where

SN =

⎛⎝ fN
(T+2)N×1

,

"¡
0(T−1)×2,D

¢0
(T−1)×(T+2)

⊗ IN
#
(T−1)N×(T+2)N

∆XN
(T−1)N×p

⎞⎠
(T+2)N×(1+p)

,

and

νN = 2tr
¡
FSΣη,NF

SΣη,N

¢ · tr (PNP
0
NPNP

0
N) ,

with FS = 1
2
(F+ F0).

Proof. See the Appendix C.1.

To rule out cases where the moment conditions have zero asymptotic variance,

I make the following assumption:

Assumption IV2 The smallest eigenvalue of [(T − 1)N ]−1 S0NSN is uniformly

bounded away from zero for T ≥ 2.

Although SN depends on the sample size, the dimensions of S0NSN do not

change withN . Furthermore, notice that the assumption also implies thatE (H0
NHN)
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has eigenvalues uniformly bounded away from zero and, therefore, also implies

the invertability of MHH in Assumption IV1.31 The above Assumption together

with Assumption 4 allows us to prove the following Lemma:

Lemma 3 Suppose Assumptions 1-4 and IV2 hold. The smallest eigenvalue of

[(T − 1)N ]−1VN is uniformly bounded away from zero for T ≥ 2.

Proof. See the Appendix C.1.

The representation of y0−2,N∆uN and ∆X0
N∆uN as linear-quadratic forms in

ηN , lets us apply a central limit theorem for quadratic forms of triangular arrays

and derive the asymptotic distribution of the IV estimator. The central limit theo-

rem (CLT) I use is given in Appendix A. It is based on a result from Kelejian and

Prucha (2005) and is an extension of a CLT in Kelejian and Prucha (2001).

Proposition 1 Under Assumptions 1-6, IV1 and IV2, we have that

V
−1/2
N ·H0

N∆uN
d→ N (0, Ip+1) ,

where ³
V
1/2
N

´³
V
1/2
N

´0
= VN .

Proof. See the Appendix C.1.
31However, it does not guarantee the existence of the limit in Assumption IV1.
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To be able to write down explicit asymptotic distribution of the estimator, I

make the following assumption.

Assumption IV3 limN→∞ 1
(T−1)NVN = V,whereV is finite.

We then have the following Theorem:

Theorem 1 Under Assumptions 1-6, and IV1-IV3, we have that

p
(T − 1)N ·

³bθN − θ´ d→ N (0,Ψ) ,

with

Ψ
(1+p)×(1+p)

= M−1
∆Z

(1+p)×(1+p)
M0

H∆Z
(1+p)×(1+p)

M−1
HH

(1+p)×(1+p)
∗

V
(1+p)×(1+p)

M−1
HH

(1+p)×(1+p)
MH∆Z

(1+p)×(1+p)
M−1

∆Z
(1+p)×(1+p)

Proof. See the Appendix C.1.

I do not provide an estimate of Ψ since it would depend on an estimate of

the PN = (IN − ρWN)
−1 matrix which includes an unknown parameter ρ. I

will provide small sample guidance for the second stage estimator in Section 4.3.

Note that by Theorem 17 in Pötcher and Prucha (2001), the result in the above

Theorem implies that
p
(T − 1)N bθN is Op (1) and the initial estimator IV satis-

fies the conditions required in the following section and hence can be used in the

subsequent estimation steps.
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4.2 Estimation of the Degree of Spatial Autocorrelation

The specification in this thesis reduces to that of Kapoor et al. (2005) in the static

case (φ = 0) which is in turn a generalization of the single cross-section case in

Kelejian and Prucha (1999). In this section, I will show that the procedure adopted

in Kapoor et al. (2005) provides a consistent estimate of the spatial autoregres-

sive parameter in a dynamic panel data model as well. To do that, I define the

generalized moments (GM) estimator following Kapoor et al. (2005) and then

extend their proofs for the dynamic case. For simplicity, I only consider one of

the weighting schemes for the moment condition in Kapoor et al. (2005).

Observe that the spatial GM estimator in this section is essentially the same as

the estimator in Kapoor et al. (2005). However, the presence of stochastic regres-

sors (lagged dependent variable) renders the proofs in that paper inapplicable to

the specification considered in this thesis. Nevertheless, the proofs in this section,

with small exceptions (most notably Lemmas C4 and C6 in the Appendix C.2),

are a direct analogy of those in Kapoor et al. (2005).

I take an initial consistent estimate of the spatially correlated errors and use it

to estimate the spatial autocorrelation parameter based on a set of moment condi-

tions. The initial consistent estimate of the errors can be, for example based on

the IV estimator in the previous section. The moment conditions are chosen so

that the estimator will have an Analysis of Variance interpretation.

Consider an estimator bθN
p+1×1

of the parameter vector θ
p+1×1

such that
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p
(T − 1)N bθN = Op (1) and denote the predictors of ut by but:

but,N
N×1

= yt,N
N×1
− (yt−1,N ,Xt,N)N×p+1 · bθN

p+1×1
, 1 ≤ t ≤ T. (4.2.1)

The model implies that (see equation 3.1.2 in Chapter 3)

ut,N
N×1

= ρWN
N×N

ut,N
N×1

+ υt,N
N×1

, 1 ≤ t ≤ T, (4.2.2)

where υt,N = εt,N + µN . In a stacked notation this becomes

uN
NT×1

=ρ (IT ⊗WN)NT×NT uN
NT×1

+ υN
NT×1

, (4.2.3)

where uN=
£
u01,N , ...,u

0
T,N

¤0 and υN= εN+(eT ⊗ µN), with

εN=
£
ε01,N , ..., ε

0
T,N

¤0, eT being a T ×1 vector of unit elements, andµN the N×1
vector of individual effects. It will prove convenient to introduce the following

notation:

uN = (IT ⊗WN)uN , (4.2.4)

uN = (IT ⊗WN)uN ,

υN = (IT ⊗WN)υN .

I will also use the following transformation matrices that are utilized in the error
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component literature:

Q0,N
NT×NT

=

µ
IT − JT

T

¶
⊗ IN , (4.2.5)

Q1,N
NT×NT

=
JT
T
⊗ IN ,

where JT = eTe
0
T is a T × T matrix of unit elements.32 Note that using the

transformation matrices, we can express the variance-covariance matrix of the

innovations as

E (υNυ
0
N)NT×NT = σ2ε,NINT + σ2µ,N (JT ⊗ IN) (4.2.6)

= σ2ε,NQ0,N + σ21,NQ1,N ,

where σ21,N = σ2ε,N + T · σ2µ,N .

The spatial GM estimator is based on the following moment conditions:

E (υ0NQ0,NυN) = N (T − 1)σ2ε,N , (4.2.7)

E (υ0NQ0,NυN) = (T − 1)σ2ε,N · tr (W0
NWN) ,

E (υ0NQ0,NυN) = 0,

E (υ0NQ1,NυN) = Nσ21,N ,

E (υ0NQ1,NυN) = σ21,N · tr (W0
NWN) ,

E (υ0NQ1,NυN) = 0.

32The Q1 transformation calculates unit specific sample means while the Q0 transformation
substracts them from the original variable.
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For derivation of the moment conditions see Kapoor et al. (2005). Notice that

based on (4.2.3), the moment conditions can be rewritten in terms of the trans-

formed (byQj,N ) disturbance vectors uN , uN and uN :

γN = ΓNα, (4.2.8)

where α =
¡
ρ, ρ2, σ2ε,N , σ

2
1,N

¢0
, and

ΓN
6×4

= E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ011,N γ012,N γ013,N 0

γ021,N γ022,N γ023,N 0

γ031,N γ032,N γ033,N 0

γ111,N γ112,N 0 γ113,N

γ121,N γ122,N 0 γ123,N

γ131,N γ132,N 0 γ133,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γN

6×1
= E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ01,N

γ02,N

γ03,N

γ11,N

γ12,N

γ13,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.2.9)
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with (j = 0, 1)

γj11,N =
2

N (T − 1)1−ju
0
NQj,NuN , γj12 =

−1
N (T − 1)1−ju

0
NQj,NuN ,

γj21,N =
2

N (T − 1)1−ju
0
NQj,NuN , γj22 =

−1
N (T − 1)1−ju

0
NQj,NuN ,

γj31,N =
1

N (T − 1)1−j
¡
u0NQj,NuN + u

0
NQj,NuN

¢
,

γj32,N =
−1

N (T − 1)1−ju
0
NQj,NuN , (4.2.10)

γj13,N = 1, γj1 =
1

N (T − 1)1−ju
0
NQj,NuN ,

γj23,N =
1

N
tr (W0

NWN) , γj2 =
1

N (T − 1)1−ju
0
NQj,NuN ,

γj33,N = 0, γj3 =
1

N (T − 1)1−ju
0
NQj,NuN .

The sample counterparts of the six equations in (4.2.9) replace uN with

buN= ¡bu01,N , ..., bu0T,N¢0 based on (4.2.1) with the implied notationbuN=(IT ⊗WN) buN and buN=(IT ⊗WN) buN :

gN
6×1

= GN
6×4

α
4×1
+ϑN
6×1

, (4.2.11)
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where ϑN can be viewed as a vector of regression residuals and

GN
6×4

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g011,N g012,N g013,N 0

g021,N g022,N g023,N 0

g031,N g032,N g033,N 0

g111,N g112,N 0 g113,N

g121,N g122,N 0 g123,N

g131,N g132,N 0 g133,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, gN

6×1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g01,N

g02,N

g03,N

g11,N

g12,N

g13,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.2.12)

with (j = 0, 1)

gj11,N =
2

N (T − 1)1−j bu0NQj,N
buN , gj12 =

−1
N (T − 1)1−j

bu0NQj,N
buN ,

gj21,N =
2

N (T − 1)1−j
bu0NQj,N

buN , gj22 =
−1

N (T − 1)1−j
bu0NQj,N

buN ,
gj31,N =

1

N (T − 1)1−j
³bu0NQj,N

buN + bu0NQj,N
buN´ ,

gj32,N =
−1

N (T − 1)1−j
bu0NQj,N

buN , (4.2.13)

gj13,N = 1, gj1 =
1

N (T − 1)1−j bu0NQj,NbuN ,
gj23,N =

1

N
tr (W0

NWN) , gj2 =
1

N (T − 1)1−j
bu0NQj,N

buN ,
gj33,N = 0, gj3 =

1

N (T − 1)1−j bu0NQj,N
buN .

The generalized moments (GM) estimator of δ =
¡
ρ, σ2ε,N , σ

2
1,N

¢0 say bδN can
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be written as

bδN
3×1

= argmin
δ∈Θ

½µ
gN
6×1
−GN
6×4

α
4×1

¶0
AN
6×6

µ
gN
6×1
−GN
6×4

α
4×1

¶¾
, (4.2.14)

where Θ is the admissible optimization space; in particular it is assumed that Θ =©
ρ, σ2ε,N , σ

2
1,N

¯̄
ρ ∈ [0, b1] , σ2ε,N ∈ [0, b2] , σ21,N ∈ [0, b3]

ª
with b1, b2 and b3 being

predetermined constants. The moments are weighted by a sequence of weighting

matricesAN . Following Kapoor et al. (2005), two choices forAN are considered.

An initial unweighted spatial GM estimators uses AN = I6. The second choice

is to use an approximation to variance covariance matrix of the moments. In

particular, Kapoor et al. (2005) show that under normality the variance covariance

matrix of the six moment conditions in (4.2.7) is given by

ΞN
6×6

=

⎡⎢⎣ 1
T−1σ

2
εN 0

0 σ21N

⎤⎥⎦⊗TW,N
2×2

, (4.2.15)

where

TW,N
2×2

=

⎡⎢⎢⎢⎢⎢⎣
2 2tr

³
W0

NWN

N

´
0

2tr
³
W0

NWN

N

´
2tr
³
W0

NWNW
0
NWN

N

´
tr

µ
W0

NWN(WN+W
0
N)

N

¶
0 tr

µ
W0

NWN(WN+W
0
N)

N

¶
tr
³
WNWN+W

0
NWN

N

´
⎤⎥⎥⎥⎥⎥⎦ .

(4.2.16)

The weighted spatial GM estimator then replaces σ2εN and σ21N by their initial
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estimators and utilizes the weighting matricesAN = bΞ−1N ³ bσ2εN , bσ21N´ where

bΞN

³ bσ2εN , bσ21N´
6×6

=

⎡⎢⎣ 1
T−1

bσ2εN 0

0 bσ21N
⎤⎥⎦⊗TW,N

2×2
, (4.2.17)

and the estimators bσ2εN , bσ21N are based on the initial unweighted spatial GM esti-

mator.

The following additional assumption is required in order to establish consis-

tency of bδGM,N (the assumption is used to demonstrate that the estimator is iden-

tifiably unique):

Assumption GM1 The smallest eigenvalue of Γ0NΓN is uniformly bounded away

from zero. Furthermore, 0 < λ ≤ λmin
¡
Ξ−1N

¢ ≤ λmax
¡
Ξ−1N

¢ ≤ λ <∞.

The following theorem establishes the consistency of the GM estimator.

Theorem 2 Suppose Assumptions 1-6 and GM1 hold.

If bθN is a consistent estimator of θ with
p
(T − 1)N bθN = Op (1), then

bδN P→ δ as N →∞.

Proof. See the Appendix C.2.
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4.3 Second Stage GMM Estimation

In this section I define a second stage generalized method of moments (GMM)

estimator of the slope coefficients θ =(φ,β0)0 and derive its asymptotic distrib-

ution. I base the estimator on a set of weighted moment conditions. In the first

part of this section, I consider a general case of stochastic instruments of a cer-

tain form and show that the normalized GMM estimator based on these moment

conditions converges (under the assumptions maintained in this thesis and under

additional assumptions spelled out in this section) in distribution. Next, I consider

the choice of an optimal weighting matrix for a given set of instruments. I close

the section with an application of these results to a feasible GMM estimator based

on moment conditions utilized in the literature (see Chapter 2 for a review).

Consider again the model (4.1.2)

∆yN
(T−1)N×1

= ∆ZN
(T−1)N×(1+p)

θ
(1+p)×1

+ ∆uN
(T−1)N×1

, (4.3.1)

where the explanatory variable ∆ZN = (∆y−1,N ,∆XN) contains lagged endoge-

nous variables. Let HN be a (T − 1)N × k set of instruments (to be determined

later) such that

E

Ã
H0

N
k×(T−1)N

∆uN
(T−1)N×1

!
= 0k×1. (4.3.2)

Also, let AN be a sequence of nonsingular symmetric k × k matrices with non-

singular limit

p lim
N→∞

AN
k×k

= A
k×k

. (4.3.3)
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Consider the GMM estimator eθN based on instruments HN and weights AN

defined as a minimizer of

(∆yN −∆ZNθ)
0
1×(T−1)N HN

(T−1)N×k
A−1N
k×k

H0
N

k×(T−1)N
(∆yN −∆ZNθ)(T−1)N ,

(4.3.4)

i.e.,

eθN
(1+p)×1

=

"
∆Z0N

(1+p)×(T−1)N
HN

(T−1)N×k
A−1N
k×k

H0
N

k×(T−1)N
∆ZN

(T−1)N×(1+p)

#−1
∗

∆Z0N
(1+p)×(T−1)N

HN
(T−1)N×k

A−1N
k×k

H0
N

k×(T−1)N
∆yN

(T−1)N×1
. (4.3.5)

Note that it is possible to define an initial IV estimator is of this form, withAN =

[(T − 1)N ]−1H0
NHN . The initial IV estimator in Section 4.1 utilized lagged

levels of the endogenous variable as instruments and the instrument matrix HN

was given in (4.1.5) and (4.1.9).

In the literature (e.g. Arellano and Bond, 1991; see Chapter 2 for a review) the

instrument set at time t is expanded to include all available lags of the endogenous

(and possibly also the exogenous) variable. As a result the number of the moment

condition is different at different time periods and the instrument matrix HN can

be, for example, as in (4.3.20) below. Observe that under the specification con-

sidered in this thesis, the endogenous variable can be expressed as linear forms of

the (mutually independent) innovations of the model:
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Lemma 4 Under Assumptions 1-6 we can express the dependent variable as

yt,N
N×1

= at,N
N×1

+

Ã
bt

1×(T+2)
⊗ PN

N×N

!
ηN

(T+2)N×1
,

where the sequence of nonstochastic N × 1 vectors at,N and the sequence of non-

stochastic 1 × (T + 2) vectors bt have elements uniformly bounded in absolute

value.

Proof. See the Appendix C.3.

Motivated by the expression in the above Lemma, I consider a set of kt sto-

chastic instruments in each time period Ht,N
N×kt

= (h1,t,N , ...,hkt,t,N) and assume

that each instrument can be expressed as a linear combination of the model dis-

turbances,

hr,t,N
N×1

= art,N
N×1

+

Ã
brt

1×(T+2)
⊗ PN

N×N

!
ηN

(T+2)N×1
, r = 1, ..., kt, (4.3.6)

where the sequence of nonstochastic N × 1 vectors at,N and the sequence of non-

stochastic 1 × (T + 2) vectors bt have elements uniformly bounded in absolute

value. The total number of instruments is k = k2 + ... + kT and the instruments
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can be collected in a (T − 1)N × k block-diagonal matrix33

HN
(T−1)N×k

=

⎛⎜⎜⎜⎜⎜⎜⎝
H2,N
N×k2

0

. . .

0 HT,N
N×kT

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.3.7)

Observe that the disturbances ∆uN can also be expressed as a linear form of

the innovations ηN ,

∆uN
(T−1)N×1

=

"µ
0(T−1)×2, D

(T−1)×T

¶
(T−1)×(T+2)

⊗ PN
N×N

#
ηN

(T+2)N×1
, (4.3.8)

where D is the first difference operator matrix defined in e.g. (4.1.14). Further-

more, the t-th period disturbances can be expressed as

∆ut,N
N×1

=

Ã
dt

1×(T+2)
⊗ PN

N×N

!
ηN

(T+2)N×1
, (4.3.9)

with dt consisting of (t− 1)-th row of
¡
0(T−1)×2,D

¢
.

As a result, the moment conditions collected inH0
N∆uN are quadratic forms

33This definition of the instrument matrix is based on moment condititons that are only averaged
over N and not over T . An alternative is to average over bothN and T as in the initial IV estimator
in Section 4.1.
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in ηN :

h0rt,N
1×N

∆ut,N
N×1

= a0rt,N
1×N

Ã
dt

1×(T+2)
⊗ PN

N×N

!
ηN

(T+2)N×1
(4.3.10)

+ η
0
N

1×(T+2)N

Ã
b0rt

(T+2)×1
dt

1×(T+2)
⊗P0NPN

N×N

!
ηN

(T+2)N×1
.

Below, I will apply the central limit theorem for triangular arrays of quadratic

forms stated in Theorem A1 in Appendix A.34 From Assumptions 1 and 2, it

follows that the random variables ηN satisfy Assumptions A1 and A3. Observe

that when the instruments are chosen to be lagged levels of the endogenous vari-

able (i.e. hr,t,N = yt−s,N , s > 1), Lemma 4 and Assumption 3 guarantee that

(d0t ⊗P0N)art,N and (b0rtdt ⊗P0NPN) satisfy Assumption A2.

The condition

E

Ã
H0

N
k×(T−1)N

∆uN
(T−1)N×1

!
= 0k×1, (4.3.11)

then implies that the matrix (b0rtdt ⊗P0NPN) has zeros on the main diagonal and,

therefore, the quadratic forms satisfy conditions of Lemma A1. In particular, their

variances and covariances can be derived using the expressions in that Lemma.

The following Lemma shows that under regularity conditions the quadratic forms

h0rt,N∆ut,N converge in distribution when normalized by their standard errors.

Lemma 5 Consider a set of k instrumentsHN given in (4.3.7), with the diagonal

blocks Ht,N = (h1t,N , ...,hktt,N) being N × kt matrices (k = k2 + .. + kT ) with
34Observe that (d0t ⊗P0N )art,N then corresponds to the sequence of vectors bt, while

(b0rtdt ⊗P0NPN ) corresponds to the sequence of matrices An, and ηN corresponds to the se-
quence of vectors of random variables ςn in Theorem A1 in Appendix A.
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columns hrt,N = art,N + (brt ⊗PN)ηN ,where the sequence of nonstochastic

N×1 vectors art,N and the sequence of nonstochastic 1×(T + 2) vectors brt have

elements uniformly bounded in absolute value. Under Assumptions 1-6, and given

that the instruments are such that E (H0
N∆uN) = 0k×1, E (H0

N∆uN∆u
0
NHN) =

VN and

[(T − 1)N ]−1 λmin (VN) ≥ c > 0, we have that

V
−1/2
N H0

N∆uN
d→ N (0, Ik) ,

whereVN = E (H0
N∆uN∆u

0
NHN) = V

1/2
N V

1/2
N .

Proof. See the Appendix C.3.

Given that the moment conditions converge in distribution, the GMM estima-

tor defined in (4.3.5) will under appropriate regularity conditions also converge in

distribution:

Lemma 6 Consider a set of stochastic instrumentsHN such that

V
−1/2
N H0

N∆uN
d→ N (0, Ik) ,

whereVN = E (H0
N∆uN∆u

0
NHN) = V

1/2
N V

1/2
N , with

p lim
N→∞

[(T − 1)N ]−1VN = V,

where V is finite. Furthermore, consider a sequence of weighting (possibly sto-
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chastic) matricesAN with nonsingular (probability) limit

p lim
N→∞

AN = A.

Under Assumptions 1-6 and given that

MH∆Z = p lim
N→∞

[(T − 1)N ]−1H0
N∆Z,

exists and has full column rank, we have that the GMM estimator defined in (4.3.5)

converges in distribution and

p
(T − 1)N

³eθN − θ´ d→ N (0,Ψ) ,

where

Ψ =
¡
M∆ZHA

−1M0
∆ZH

¢−1
M∆ZHA

−1VA−1M∆ZH

¡
M∆ZHA

−1M0
∆ZH

¢−1
.

Proof. See the Appendix C.3.

I give a small sample approximation for Ψ for the specific GMM estima-

tor considered below. Note that given Lemmas 4 and 5, the asymptotic result

in the above Lemma 6 applies to a general class of GMM estimators which in-

cludes the initial IV estimator discussed in Section 4.1,35 as well as the different
35The lemma is directly applicable when the moment conditions in the initial IV estimator are

averaged only over the cross-sectional units. Note that in Section 4.1, the moment conditions are
averaged over both cross-sectional units and time. I have provided the asymptotic results for this
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variants of the GMM estimators in Arellano and Bond (1991) and, in particular,

the feasible GMM estimator discussed below. Note that in applying the above

Lemma to these estimators it remains to be checked whether in the particular

application the instruments satisfy the stipulated regularity conditions, e.g. that

p limN→∞ [(T − 1)N ]−1H0
N∆ZN exists and has full column rank and that the

variance covariance matrix of the moment conditions has the smallest eigenvalue

uniformly bounded away from zero.

I now consider the issue of an optimal choice of the sequence of the weighting

matrices, given a set of instruments. I close this section with proving consistency,

asymptotic normality and providing a small sample guidance for a feasible second

stage GMM estimator based on moment conditions considered in the literature.

4.3.1 Optimal Weighting Matrix

Consider now the optimal choice of the sequence of the weighting matricesAN . It

can be shown36 that given a set of instruments, the asymptotic variance covariance

matrix of an estimator defined as a minimizer of (4.3.4) is minimized37 when

p lim
N→∞

[(T − 1)N ]−1AN = V. (4.3.12)

initial IV estimator in Theorem 1 above.
36See e.g. Hansen (1982), Bates and White (1993), Newey and McFadden (1994), or

Wooldridge (2002), Ch. 8 and 14.
37In the sense that the difference with respect to any other VC matrix of an estimator that is a

minimizer of (4.3.4) is positive semi-definite.
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Given that p limN→∞ [(T − 1)N ]−1VN = V, the small sample weighting matri-

ces AN can be chosen to be estimators of the small sample variance covariance

matrix VN = E (H0
N∆uN∆u

0
NHN). Observe that the matrix VN can be parti-

tioned as

VN =

⎛⎜⎜⎜⎜⎝
V22,N V2T,N

. . .

VT2,N VTT,N

⎞⎟⎟⎟⎟⎠ , (4.3.13)

where Vts,N = E
¡
H0

t,N∆ut,N∆u
0
s,NHs,N

¢
. I denote the ij-th element of Vts,N

as vij,ts,N = E
¡
h0it,N∆ut,N∆u

0
s,Nhjs,N

¢
. Given the structure of the instruments

assumed in this section, the moment conditions are quadratic forms in ηN and

satisfy conditions of Lemma A1 in Appendix A - see the discussion preceding

Lemma 5. In particular, we have as in (4.3.10) above:

h0it,N∆ut,N = a
0
it,N (dt ⊗PN)ηN + η

0
N (b

0
itdt ⊗P0NPN)ηN , (4.3.14)

and hence from Lemma A1 in Appendix A, the covariance of h0it,N∆ut,N and

h0js,N∆us,N denoted as vij,ts,N is given by:

vij,ts,N = a0it,N (dtΣη,Nd
0
s ⊗PNP

0
N)ajs,N (4.3.15)

+2tr (b0itdtΣη,Nd
0
sbjsΣη,N ⊗P0NPNP

0
NPN) ,

where Ση,N is defined in (4.1.16).

Observe that for |s− t| > 1, we have dtΣη,Nd
0
s = 0 and hence the above
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covariance is zero. An expectations based estimator, say bVE
N , of VN would then

replace the true values of the parameters in the above expression by their initial

consistent estimates. Note that in addition to Ση,N and PN , the terms ait,N and

bit also potentially depend on the parameters of the model (compare e.g. the

expressions for at,N and bt in the proof of Lemma 4 in Appendix C.3). The exact

form depends on the choice of the instruments. In Section 4.3.3 below, I consider

a set of instruments utilized in the literature (e.g. Arellano and Bond, 1991) and I

also provide an expression for such expectation based variance covariance matrix

estimator given such choice of instruments. Note that the instruments considered

in Section 4.1 are also of the form assumed here; see the proof of Lemma 1. The

expression forVN is then given by Lemma 2.

As an alternative to bVE
N , the small sample weighting matrices can be con-

structed based on approximations to H0
NE (∆uN∆u

0
N)HN . For stochastic in-

struments, such estimator will not in general be consistent estimator of

E (H0
N∆uN∆u

0
NHN). Nevertheless, based on Lemma 6, the resultant second

stage GMM estimator is consistent. It is also computationally simpler and has

reasonable small sample properties (see Chapter 5).

This estimator denoted by bVmix
N ignores the fact that the instruments collected

in HN are stochastic and replaces the disturbances ∆uN∆u0N by an estimate of

their expected value:

bVmix
N = [(T − 1)N ]−1H0

N
bΩ∆u,NHN , (4.3.16)
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where bΩ∆u,N is an estimator of the variance covariance matrix of the disturbances.

In our case this could be:

bΩ∆u,N = bσ2εN ³D⊗ bPN

´
Q0,N

³
D0 ⊗ bP0N´ , (4.3.17)

where bρN and bσ2εN are initial estimates and

bPN = (IN − bρNWN)
−1 . (4.3.18)

4.3.2 Feasible GMM Estimator

Consider now a GMM estimator based on the moment conditions of the form

E
h eH0

N∆uN
i
= 0, (4.3.19)

where

eHN =

⎛⎜⎜⎜⎜⎝
eH2,N 0

. . .

0 eHT,N

⎞⎟⎟⎟⎟⎠
N(T−1)×k

, (4.3.20)

with eHt,N = (yt−2,N , ...,y0,N ,Xt,N , ...,X1,N) being a N × kt matrix of instru-

ments at time t. Note that kt = (t− 1) + t · p and k = k2 + ..+ kT . Let

eVN = E
³eH0

N∆uN∆u
0
N
eHN

´
, (4.3.21)
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then the estimator is given by

eθN = h∆Z0N eHN
eV−1N eH0

N∆ZN

i−1
∆Z0N eHN

eV−1N eH0
N∆yN . (4.3.22)

The instrument matrix in (4.3.20) utilizes moment conditions of the form

E [(ut,i − ut−1,i) yt−1−s,i] = 0 s = 1, .., t− 1, (4.3.23)

E [(ut,i − ut−1,i)Xt−s,i] = 01×p,

E [(ut,i − ut−1,i)Xt,i] = 01×p.

Observe that the instruments consist of yt−1−s,N , Xt,N andXt−s,N , s = 1, ..., t−
1 and hence by Lemma 4 they are linear forms in the innovations of the form

considered above, e.g. they satisfy the conditions in Lemma 5. To complete

the verification of the conditions stipulated in Lemma 5, I consider the smallest

eigenvalues of the sequence of matrices eVN = E
³eH0

N∆uN∆u
0
N
eHN

´
.

Note that from Lemma 4 it follows that yt,N = at,N + (bt ⊗PN)ηN . Let us

denote eSt,N = [at−2,N , ..., a0,N ,Xt,N , ...,X1,N ]N×kt , (4.3.24)

and

Υt,N =

"Ã
(bt−2, ...,b0)
1×(t−1)(T+2)

⊗ PN
N×N

!Ã
It−1

(t−1)×(t−1)
⊗ ηN

N(T+2)×1

!
,0N×tp

#
. (4.3.25)
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The instruments can then be expressed as

eHt,N
N×kt

= eSt,N
N×kt

+Υt,N
N×kt

, (4.3.26)

As a result the full matrix of instruments is

eHN = eSN +ΥN , (4.3.27)

where the matrix eSN contains the nonstochastic elements of the instruments and

is defined as

eSN =
⎛⎜⎜⎜⎜⎝
eS2,N 0

. . .

0 eST,N

⎞⎟⎟⎟⎟⎠
N(T−1)×k

, (4.3.28)

while the stochastic components of the instrument matrix are

ΥN =

⎛⎜⎜⎜⎜⎝
Υ2,N 0

. . .

0 ΥT,N

⎞⎟⎟⎟⎟⎠
N(T−1)×k

. (4.3.29)

To guarantee that the smallest eigenvalue of [(T − 1)N ]−1 eVN is uniformly

bounded away from zero, I make the following assumption:

Assumption GMM1 The smallest eigenvalue of [(T − 1)N ]−1 eS0NeSN is uniformly

bounded away from zero.
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Given the above Assumption, we have by Lemma 5 that the normalized mo-

ment conditions converge in distribution. I next show that the estimator eθN , where

the weighting matrix for the moment conditions is based on the true value of the

parameters is consistent and asymptotically normal. Corresponding to Assump-

tions IV1 and IV3 for the first stage estimator, I introduce the following assump-

tions. Let fMH∆Z
(1+p)×(1+p)

= p lim
1

(T − 1)N
eH0
N∆ZN . (4.3.30)

Assumption GMM2 The matrix fMH∆Z exist and is finite with full column rank.

Assumption GMM3 The matrix eV = p limN→∞ [(T − 1)N ]−1 eVN exists and is

finite and invertible.

As a consequence of Lemma 6, we now have the following Theorem.

Theorem 3 Under Assumptions 1-6, and GMM1-GMM3, we have that

p
(T − 1)N

³eθN − θ´ d→ N [0,Ψ] ,

where

Ψ =
hfM0

H∆Z
eV−1fMH∆Z

i−1
.
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Proof. See the appendix.

The above estimator is based on the true value of the parameters which are

unknown and have to be estimated. I now provide an expression for the expec-

tation based estimator of the variance covariance matrix of the moment condi-

tions eVN , denoted by bVN

³bδN´ where bδN is an initial consistent estimator of

δ =
¡
ρN , σ

2
εN , σ

2
µ, φ
¢
. I then show that when the feasible GMM estimator useshbVN

³bδN´i−1 as the moment weighting matrix, the parameters collected in the

vector δ are nuisance parameters.

The variance covariance matrix of the moment conditions collected in eH0
N∆uN

with eH defined in (4.3.20), can be written analogically to (4.3.13) as

eVN =

⎛⎜⎜⎜⎜⎝
eV22,N

eV2T,N

. . .eVT2,N
eVTT,N

⎞⎟⎟⎟⎟⎠ , (4.3.31)

where eVts,N = E
³eH0

t,N∆ut,N∆u
0
s,N
eHs,N

´
. Since eHt,N consists of stochastic

part (yt−2,N , ..,y0,N) and nonstochastic part (Xt,N , ...,X1,N), the matrix eVts,N is

partitioned accordingly:38

eVts,N =

⎛⎜⎝ eVy
ts,N 0(t−1)×tp

0sp×(s−1) eVX
ts,N

⎞⎟⎠
kt×ks

, (4.3.32)

38I show that the off-diagonal blocks of eVts,N are matrices of zeros as a part of the proof of the
Lemma 7 below.
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where the upper block is

eVy
ts,N =

¡evyqr,ts,N¢q=1,..,t−1r=1,..,s−1 , (4.3.33)

with evyqr,ts,N = E
¡
y0t−1−q∆ut,N∆u

0
s,Nys−1−r

¢
. Given expressions for yt−1−q and

ys−1−r in Lemma 4 and the expressions for ∆ut,N and ∆us,N in (4.3.9), the mo-

ment conditions y0t−1−q∆ut,N and y0s−1−r∆us,N are quadratic forms in ηN and

their covariance is (using Lemma A1 in Appendix A) given by

evyqr,ts,N = E
¡
yt−1−q∆ut,N∆u0s,Nys−1−r

¢
(4.3.34)

= a0t−1−q,N (dtΣη,Nd
0
s ⊗PNP

0
N)as−1−r,N

+2tr
¡
b0t−1−q,NdtΣη,Nd

0
sbs−1−r,NΣη,N ⊗P0NPNP

0
NPN

¢
.

Note that by (4.3.9), the disturbances ∆ut,N are linear forms in the innovations

ηN . From Lemma A1 in Appendix it then follows that the variance covariance

matrix of ∆ut,N and ∆us,N is (dtΣη,Nd
0
s ⊗PNP

0
N). Hence the second block ofbVts,N is:

eVX
ts,N = (Xt,N , ...,X1,N)

0E
¡
∆ut,N∆u

0
s,N

¢
(Xs,N , ...,X1,N) (4.3.35)

= (Xt,N , ...,X1,N)
0 (dtΣη,Nd

0
s ⊗PNP

0
N) (Xs,N , ...,X1,N) .

The estimator bVN

³bδN´ replaces the true values in the expressions (4.3.31)-

(4.3.35) by their initial estimates collected in the vector bδN = ³bρN , bσ2εN ,cσ2µ, bφ´0.
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In particular, it replaces Ση,N , PN , at,N , and bt,N with

bΣη,N = diag

Ãbσ2µ,N , bσ2ε,N
1− bφ, bσ2ε,N , ..., bσ2ε,N

!
, (4.3.36)

bPN = (IN − bρNWN)
−1 ,

bat,N =
t−1X
j=0

bφjNXt−j,N bβN ,

bbt,N =

Ã
1

1− bφN , 1, bφt−1N , .., bφ0N ,01×(T−t)
!
.

Note that in order to for the estimator of the variance covariance matrix of

the moment conditions to be feasible, this implicitly assumes that the past values

of the exogenous variables are so that
P∞

j=0 φ
jX−j,Nβ = 0, i.e. there are no

individual effects other than those contained in µi.39 The following Lemma shows

that the estimator bVN is consistent.

Lemma 7 Under Assumptions 1-6, and GMM1-GMM3, and given that bδN p→ δ

as N →∞, the row and column sums of the matrix rWN are uniformly bounded

in absolute value for some r with |ρ| < r < 1, and that
P∞

j=0 φ
jX−j,Nβ = 0, we

have that 1
(T−1)N

bVN

³bδN´ p→ eV.

Proof. See the Appendix C.3.

Consider now the feasible GMM estimator that uses
hbVN

³bδN´i−1 as the

39This will not be satisfied when the model contains a deterministic constant terms. In this case,
it is necessary to assume that the past values of the exogenous variables are observable and replace
the expression for bat,N with bat,N =P∞j=0 bφjNXt−j,N bβN .
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moment weighting matrix and is defined as

∨
θN
³bδN´ =

∙
∆Z0N eHN

³bVN

³bδN´´−1 eH0
N∆ZN

¸−1
∗

∆Z0N eHN

³bVN

³bδN´´−1 eH0
N∆yN . (4.3.37)

The following Theorem establishes that the parameters collected in the vector δ

are nuisance parameters.

Theorem 4 Under Assumptions 1-6, and GMM1-GMM3, and given that bδN p→ δ

as N →∞, the row and column sums of the matrix rWN are uniformly bounded

in absolute value for some r with |ρ| < r < 1, and that
P∞

j=0 φ
jX−j,Nβ = 0, we

have that p
N (T − 1)

∙∨
θN
³bδN´− eθN¸ p→ 0,

and hence p
N (T − 1)

∙∨
θN
³bδN´− θ¸ d→ N (0,Ψ) .

Proof. See the Appendix C.3.

The small sample approximation to the variance covariance matrix Ψ can be

based on the following Lemma.

Lemma 8 Under Assumptions 1-6, and GMM1-GMM3, and given that bδN p→ δ

as N →∞, the row and column sums of the matrix rWN are uniformly bounded

for some r with |ρ| < r < 1, and that
P∞

j=0 φ
jX−j,Nβ = 0, we have that

bΨN

³bδN´ p→ Ψ,
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as N →∞, where

bΨN

³bδN´ = 1

(T − 1)N
h
∆Z0N eHN

bV−1N eH0
N∆ZN

i−1
.

Proof. See the Appendix C.3.
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5 Monte Carlo Study

I consider the same dynamic panel data model as specified in Chapter 3. Here

I will first define the estimators that I examine in the Monte Carlo study. I then

describe how I generated the artificial data samples, briefly describe the range of

the parameters I considered and finally present the results of the experiments.

5.1 Estimators Considered

I consider the following estimators in my simulations. The first group of esti-

mators, labeled ’Initial Estimators’, ignores the spatial autocorrelation of the dis-

turbances and estimates only the slope coefficients of the model (i.e. β and φ).

The second group of estimators uses some initial estimator of the slope coeffi-

cients (and the projected disturbances it implies) and provides an estimate of the

spatial autocorrelation parameter (ρ) and the variances of the innovations and the

individual effects (σ2ε and σ2µ). Finally, the third group, labeled as ’Second Stage

GMM Estimators’, are estimators that use different weighting schemes to weight

the same moment conditions as the initial estimators. The weights are based on

initial estimators of ρ, σ2ε and σ2µ. For comparison, I also include results a for two

stage GMM estimator that ignores spatial correlation. The rest of this section will

introduce the different estimators. For clarity of the exposition, I will drop the

sample size subscript in this section.
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5.1.1 Initial Estimators

I consider the instrumental variable (IV) estimators suggested by Anderson and

Hsiao (1981) as well as IV estimators that use a larger instrument set, correspond-

ing to the initial estimators suggested by Arellano and Bond (1991) and others.

All these estimators can be written as IV estimators but with a different instru-

ment matrix. In particular, they are of the form

bθIV = ³bφIV , bβ0IV ´0 = h∆Z0H (HH0)−1H0∆Z
i−1

∆Z0H (HH0)−1H
0
∆y,

(5.1.1)

where the right-hand side variables of the first differenced model (3.1.1 or 4.1.1)

are stacked in a matrix ∆Z as in, e.g. (4.1.3), the dependent variable is ∆y as in

(4.1.2) and the matrix H collects the instruments used. The instrument matrix is

block diagonal with each block containing the set of instruments for the relevant

time period:

H =

⎛⎜⎜⎜⎜⎝
H2 0

. . .

0 HT

⎞⎟⎟⎟⎟⎠ .

Different choices of H will lead to different initial estimators. In particular,

the following estimators are considered in the experiments: the IV estimators

suggested by Anderson and Hsiao (1981), the initial IV estimators suggested by

Arellano and Bond (1991), as well as the IV estimator with the instrument set

discussed in this thesis in Chapter 4, Section 4.3.2.

The two Anderson and Hsiao (AH) estimators use respectively lagged first
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difference of the endogenous variable (yt−2 − yt−3) and level of the endogenous

variable lagged twice (yt−2) as instruments for the lagged difference of the en-

dogenous variable (yt−1− yt−2). The instrument matrices hence have the follow-

ing form:

HAH1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(X2 −X1)

(y1 − y0,X3 −X2)

(yT−2 − yT−3,XT −XT−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.1.2)

and

HAH2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(y0,X2 −X1)

(y1,X3 −X2)

(yT−2,XT −XT−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.1.3)

In addition to the moment condition (i = 1, ..., N )

E [(uit − ui,t−1) (xit − xi,t−1)] = 0p×1 t = 1, ..., T, (5.1.4)

the AH estimators each utilize at each time period one additional moment condi-

tion:

E [(uit − ui,t−1) (yi,t−2 − yi,t−3)] = 0 t = 2, ..., T (5.1.5)

108



and

E [(uit − ui,t−1) yi,t−1] = 0 t = 1, ..., T (5.1.6)

respectively. However, as pointed out by Arellano and Bond (1991), there are

additional moment conditions, not utilized by the AH estimators. In particular,

for the observation at a time t, we have the following additional moments:

E [(uit − ui,t−1) yi,t−1−k] = 0 k = 1, ..t− 1.

Similarly, there are additional moment conditions involving lags of the exoge-

nous variables in addition to the condition utilized by the AH estimators. There-

fore, based on Arellano and Bond (AB), I consider an instrument matrix discussed

in Section 4.3:

HAB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(y0,X1,X2)

(y0,y1,X1,X2,X3)

. . .

(y0, ..,yT−2,X1, ..,XT )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.1.7)

The table below summarizes the initial estimators, their instrument matrices

and the moment conditions that the instruments are based on.
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Table 2. Estimators Considered

Estimator

(Instrument Matrix)

Moment Conditions

i = 1, .., N and t = 1, .., T

AH difference (HAH1)

E [(uit − ui,t−1) (yi,t−2 − yi,t−3)] = 0,

t = 1 not considered

E [(uit − ui,t−1) (xit − xi,t−1)] = 0p×1

AH level (HAH2)
E [(uit − ui,t−1) yi,t−2] = 0

E [(uit − ui,t−1) (xit − xi,t−1)] = 0p×1

AB (HAB)

E [(uit − ui,t−1) yi,t−2−k] = 0,

k = 0, ..., t− 1
E [(uit − ui,t−1)xis] = 0p×1,

s = 1, .., t

5.1.2 Spatial Parameter Estimators

I consider the spatial generalized moments (GM) estimators of the spatial autore-

gressive parameter ρ suggested by Kapoor et al. (2005) and discussed in Chapter

4. The spatial GM estimator was defined in (4.2.14).

The estimators differ along two dimensions. First, they differ with respect

to how the estimated disturbances were calculated. I consider the three initial

estimators from the previous section as well as the true value of the disturbances.

Secondly, the estimators differ with respect to how the moments are weighted. The

first estimator is referred to as ’Unweighted Spatial GM Estimator’ and weights

the moment conditions equally, e.g. by setting AN = I6 in (4.2.14). The second
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estimator I consider is based on the full set of weighted moments and utilizes the

weighting matrix AN = bΞN defined in (4.2.17). I refer to this estimator as the

’Weighted Spatial GM Estimator’.

Altogether, there are four different possibilities to calculate the estimated dis-

turbances (three initial estimators and the true values) and two types of GM esti-

mator (unweighted and weighted moment conditions), i.e. altogether eight possi-

ble combinations.

5.1.3 Second Stage GMM Estimators

The second stage GMM estimators utilize the same moment conditions as the

initial AB estimator but with a weighting matrix. The estimators are of the form:

bθGMM =
³bφGMM , bβ0GMM

´0
=
£
∆Z0HA−1k H

0∆Z
¤−1

∆Z0HA−1k H
0∆y,

(5.1.8)

where the weighting matrix Ak, k = 1, 2, 3 is calculated in three different ways.

The first case is a weighting matrix that ignores the spatial autocorrelation of the

disturbances but uses an estimators for σ2ε and σ21 that are consistent even for

nonzero values of ρ. In particular, the first weighting scheme uses:

A1 = H
0 eΩH, (5.1.9)
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with eΩ = (D⊗ IN)³ eσ2εQ0 + eσ21Q1

´
(D0 ⊗ IN) , (5.1.10)

where the estimators eσ2ε, and eσ21 are the spatial GM estimators (with weighted

moment conditions) described above and, based on an initial IV estimator with

HAB as the instrument matrix.

The second weighting scheme uses bVmix as an estimate of the variance co-

variance matrix of the moment conditions (see Section 4.3), i.e. it employsA2 =bVmix, where bVmix = H0 bΩH, (5.1.11)

with bΩ = ³D⊗ eP´³ eσ2εQ0 + eσ21Q1

´³
D0 ⊗ eP0´ , (5.1.12)

where eP = (IN − eρW)−1 , (5.1.13)

D is the (T − 1)× (T − 1) first difference transformation matrix: D:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0

0 · · · 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.1.14)

and estimators eσ2ε, eσ21 and eρ are the spatial GM estimators (with weighted moment

conditions) based on the initial IV estimator withHAB as the instrument matrix.
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Finally, the last weighting scheme uses a consistent estimate of the variance

covariance matrix of the moment conditions bVE, i.e. it employsA3 = bVE, wherebVE is defined in Section 4.3.2 (equations 4.3.31 - 4.3.35) and is based on the same

initial estimators eσ2ε, eσ21 and eρ, as well as on the initial IV estimators bφ and bβ.

5.2 Data Generation

I first generate the exogenous variables so that these are common across the dif-

ferent replications. The exogenous variables consist of a nonstochastic intercept

(equal to unity) and a second stochastic exogenous variable. I generate the sec-

ond exogenous variable as independent (of all the other random variables in the

model) jointly normally distributed random variables, i.e.

£
(vecX1)

0 , ..., (vecXT )
0¤0 ∼ N (0, INT ) . (5.2.1)

The exogenous variables are generated once and are used in all replications of the

model.

In each replication, I then draw (T + 2)N independent jointly normally dis-

tributed random numbers that are used to construct draws of the vector η. The

first N draws are scaled by σµ =
p
ηµσ

2
ε and are used for creating the N × 1

vector of individual effects µ = (µ1, ..., µN)
0.40 The next N draws are scaled by

40We find that altering the ratio of the variance of the individual effects and model disturbances
does not qualitativelly affect our results and hence we only consider ηµ = 1.
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q
σ2ε

(1−φ)2 and are used for creating the N × 1 vector of the initial disturbances

ξ =
∞X
j=0

φjε−j. (5.2.2)

Finally, the last TN draws are scaled by σε and are used for creating the NT × 1
vector of disturbances (ε01, ..., ε0T )

0

I construct the N × 1 vector of initial observations as41

y0 = (IN − ρW)−1
£
ξ + (1− φ)−1µ

¤
. (5.2.3)

The subsequent observations for t = 1, .., T are then generated according to the

our model as

yt = φyt−1 +Xtβ + (IN − ρW)−1 (εt + µ) . (5.2.4)

5.3 Designs Considered

In all experiments I set N = 100 and T = 5. I consider three specifications for

the spatial weighting matrix, as in Kelejian and Prucha (1999) and Kapoor et al.

(2005). The matrices differ in the degree of their sparseness. The first matrix has

in its i-th row, 1 < i < N , nonzero elements in positions i − 1 and i + 1, so

that the i-th unit is directly related to its immediate neighbors. I define this matrix

in a circular world so that the nonzero elements in the first and last rows are at
41This specification implicitly assumes that the contribution of initial values of the exogenous

variables is zero. i.e. that
P∞

j=0X−jβ = 0.
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positions (1, 2), (1, N), (N, 1) and (N,N − 1). This matrix is row normalized

and hence all the nonzero elements are equal to 1/2. As in Kelejian and Prucha

(1999), I refer to this matrix as ”1 ahead and 1 behind”. The next weighting

matrices are defined in a corresponding way as ”3 ahead and 3 behind” and ”5

ahead and 5 behind” with nonzero entries 1/6 and 1/10 respectively. In the tables

of results below I reference the matrices by W = 1, 2, 3.

The exogenous variables were generated once prior to the Monte Carlo ex-

periments and the process is described above in the Data Generation section. For

simplicity I always set β = (1, 1)0. The rest of the coefficients of the model take

on the following values:

φ ∈ {−0.9,−0.75,−0.25, 0, 0.25, 0.75, 0.9} , (5.3.1)

and

ρ ∈ {−0.9,−0.5,−0.25, 0, 0.25, 0.5, 0.9} . (5.3.2)

I find that the results do not qualitatively change with the ratio of the variances

of the independent innovations and the individual effects and hence I always set

ηµ =
σ2µ
σ2ε
= 1. The variance of the independent innovations is always set to one.

As a result the different specifications will have different overall average R2 of

the data. The variance of the dependent variable conditional on the explanatory

variables (equal to variance of the disturbances) is given by

V C (yt|Xt,yt−1) =
¡
σ2ε + σ2µ

¢ ·PP0, (5.3.3)
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where as before I define P = (IN − ρW)−1. Furthermore, the unconditional

variance of the dependent variable is42

V C (yt) =

µ
σ2ε

1− φ2
+

σ2µ

(1− φ)2

¶
·PP0. (5.3.4)

The expected R2 of the data is then equal to the ratio of the conditional and un-

conditional variance of the dependent variable and hence is a function of the true

values of the parameters φ,W and ρ (as well as σ2ε and σ2µ).

In particular, consider the vector of observation of the dependent variable as

y = (y00, ...,y
0
T )
0 and its mean vector denoted as

y = E
£
(y01, ...,y

0
T )
0¤
=

"
β0X0

1, ...,
TX
t=1

φT−tβ0X0
t

#0
, (5.3.5)

The sample correlation coefficient between y and y is then defined as

r =
(y− eTN · y0y)0 (y− eTN · y0y)p

(y− eTN · y0y)0 (y− eTN · y0y) (y− eTN · y0y)0 (y− eTN · y0y)
,

(5.3.6)

where eTN is a TN × 1 vector of unit elements. The designs considered in the

Monte Carlo experiments are such that average (over the replications of a partic-

ular design) r is between 0.54 and 0.78.

To summarize, we have 7 values for φ, 7 values for ρ and 3 different weighting

matricesW, that is 147 different parameter designs.
42Note that the expression is derived analogously to the variance-covariance matrix of the initial

observations, given in equation (3.2.5)
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5.4 Tables of Results

The tables of results D1-D4 contain bias and a measure of the root mean square

errors of the different estimators for the 147 designs considered. For each con-

stellation of parameters, the random numbers were generated 1000 times and the

estimators calculated and their values saved. For each estimator, I report the me-

dian and root mean square error calculated as in Kapoor (2005); that is using the

interquantile based measure:

RMSE =

"
bias2 +

µ
IQ

1.35

¶2#1/2
, (5.4.1)

where bias is the true value of the parameter minus the median of the estimators,

and IQ is the difference between .75 and .25 quantiles.

Observe that the comparison of the different estimation procedures in Tables

D1-D4 is only based on comparing the .25, .50 and .75 quantiles of their distrib-

utions. Note that hypothesis tests are often based on the .05 and the .95 quantiles

and hence it might be of interest to consider quantiles other than those used in

constructing the bias and RMSE measure.

To make such comparison feasible, I present in Figures 1 through 6 the quantile-

to-quantile plots that compare the small sample distribution of the estimated slope

coefficient φ with the Gaussian normal distribution. The plots depict the sam-

ple cumulative distribution of the estimator (over the 1,000 replications of each

design). The left hand side axis of the plots has a nonlinear scale so that if the

data was exactly normally distributed, the plot would be linear. Therefore, any
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nonlinearity in the plot represents deviations from normality at the appropriate

quantiles.

I superimpose the 147 design on top of each other43 in each Figure, so that

the deviations from the straight line represent the worst-case scenarios over the

entire parameter space. For illustration purposes, Figure 7 shows the quantile-to-

quantile plot of 1,000 replications of N (0, 1) distribution, and Figure 8 show the

same plot where the sample was drawn from a student-t distribution with 5 degrees

of freedom. Observe that the quantile-to-quantile plot allows an easy detection of

even such small deviations from normality.

5.5 Conclusions and Comparison with Other Studies

The results of the experiments confirm the finding in the literature that for some

parameter values the performance of the Anderson-Hsiao estimator AH1 is not

very satisfactory (see Table D1). However, the second initial estimator AH2 (us-

ing the twice lagged level of the endogenous variable as an instrument) performs

quite well and in fact for most parameter values it is better (in terms of lower

bias and/or lower RMSE) than the estimator AB that uses a larger instrument set.

Note that if the model did not contain individual effects, the instruments used by

the estimator AH2 would be the conditional expectations of the right-hand side

variables. This might explain its relativelly good performance. Note that the AH1

and AH2 estimators are exactly identified and hence their performance cannot be
43To maintain compatibility over different designs, the small sample distributions were normal-

ized by their medians and the difference between the .25 and .75 quantiles.
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improved by weighting the moment conditions.

In contrast, once the moment conditions are weighted, the performance of the

AB estimator improves (see Table D2) and becomes better than that of the AH2 es-

timator. Observe that ignoring spatial autocorrelation in constructing the weights

involves a moderate loss of efficiency relative to the other weighting schemes es-

pecially when the spatial autocorrelation is high and positive. On the other hand

for low or negative values of ρ, this weighting scheme performs as well as the

more computationally involved alternatives and hence is a viable option in case

where the calculation of the inverse in (IN − ρWN)
−1 is computationally pro-

hibitive.

The second weighting scheme (labeled mix) uses an inconsistent estimate of

the variance covariance matrix of the moment conditions. However, this does not

negatively affects the small sample performance of the GMM estimator and the

performance is for most parameter values in fact better than that of the other two

alternatives.

The last weighting scheme has for many parameter values clearly the smallest

bias but its RMSE is about the same as that of the alternatives. Overall there seems

to be no clear best choice of the weighting scheme and all of the weights lead to

a second stage GMM estimator that performs satisfactory over the entire range of

parameter (which is not true for any of the initial estimators).

Examining other quantiles of the small sample distributions of the estimators

in Figures 1-6 shows that the distributions of the initial IV estimators are not are

not well approximated by the normal distribution. The Anderson Hsiao estimators
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(AH1 and AH2) exhibit large deviations after the .20 quantiles and although the

extended instrument set employed by the AB estimator alleviates this, there are

still deviations from normality at the .10 quantile.

On the other hand, the second stage GMM estimators show no dramatic devi-

ations from normality up to their .10 quantile. The weighting scheme that ignores

the spatial correlation shows some deviations from normality at the .05 quantile

and hence the resultant estimator might not perform well in the usual hypothesis

tests. The weights based on bVmix and bVE perform better at the .05 quantile, with

the estimator based on bVE being marginally better than the one based on bVmix.

Nevertheless, for both weighting schemes there is still some size distortion of tests

based on the .05 and .95 quantiles. This is in line with finding of other studies that

looked at the performance of GMM estimators and found that often the use of

asymptotic distributions of the GMM estimators as a small sample guidance was

not satisfactory, suggesting the use of ML estimation (e.g. Binder et al. 2000).

Turning to the estimator of the spatial autocorrelation parameter ρ in Tables

D3 and D4, it is remarkable that the spatial GM procedure works well even when

based on inefficient initial estimators. The loss of efficiency in terms of RMSE is

for many parameter values negligible. Observe that with φ = 0, the simulations in

this study are comparable to those in Kapoor et al. (2005). To check whether this

is indeed the case, Figures 9-11 present the comparison of the values of RMSE for

the unweighted spatial GM estimator based on the true values of the disturbances

obtained in this simulation study with the comparable RMSE values reported in an

earlier draft of the Kapoor et al. paper. The value for W in the labels corresponds
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to the type of the weighting matrix used and is the same as in the Tabled D1-D4.
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6 Directions for Future Research

In this thesis I have concentrated on studying a specific model and deriving formal

results on the properties of the suggested estimation procedure under a particular

set of maintained assumptions. In the future this approach can obviously be ex-

tended along several dimensions.

Firstly, the model under consideration can be extended to include other ele-

ments. In particular it would be of interest to consider a spatial lag in the depen-

dent variable in addition to the spatial lag in the disturbance process.

Secondly, the estimation procedure under consideration can be altered. In this

respect it could be interesting to consider potentially more efficient estimation

procedures such as GMM estimators based on an extended set of moment con-

ditions as suggested by, for example Ahn and Schmidt (1995), or some form of

continuously updating GMM estimator.

Finally, the set of maintained assumptions can be made more general. Here

the first extension that can be tackled is to allow for the exogenous variables to be

stochastic.
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A Appendix: Central Limit Theorem for Vectors of

Linear Quadratic Forms

For the convenience of the reader I first give explicit formulae for the mean and

covariances of linear quadratic forms. I focus on the case where the diagonal

elements of the quadratic forms are zero and the innovations have zero mean.44

The following lemma is a special case of a Lemma A.1 in Kelejian and Prucha

(2005).

Lemma A1 Let ςN = (ς1, . . . , ςn)0 ∼ (0,Σn) whereΣn is diagonal and positive

definite, and letAn = (aij,n) and Bn = (bij,n) be n× n nonstochastic symmetric

matrices where aii,n = bii,n = 0. Let an and bn be n × 1 nonstochastic vec-

tors. Consider the decomposition Σn = PnP
0
n, and let ζn = (ζ1,n, . . . , ζn,n)0 =

P−1n ςn. Then assuming that the elements of ζn are independently distributed with

zero mean, variance one fourth moments E(ζ4i,n) = µ
(4)
ζi

we have

E (a0nςn + ς
0
nAnςn) = 0,

V C(a0nςn + ς
0
nAnςn) = 2tr(AnΣnAnΣn) + a

0
nΣnan,

Cov(a0nςn + ς
0
nAnςn,b

0
nςn + ς

0
nBnςn) = 2tr(AnΣnBnΣn) + a

0
nΣnbn.

44In general the variance and covariance of quadratic forms will depend on the second, third and
fourth moments of the innovations. However, since we specialize to the case where the diagonal
elements of the quadratic forms are zero, the variance and covariance of the quadratic forms will
only depend on the second moments of the innovations.
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For proof see Kelejian and Prucha (2005). The expressions also correspond to

those given in Kelejian and Prucha (2001). Obviously, in caseAn and Bn are not

symmetric the above formulae apply with An and Bn replaced by (An +A
0
n)/2

and (Bn +B
0
n)/2.

For convenience of the reader, I next state a Central Limit Theorem (CLT) for

vectors of quadratic forms of triangular arrays based on Theorem A.1 in Kelejian

and Prucha (2005).

Let ςn = (ς1,n, . . . , ςn,n)0 be an n× 1 random vector, let

Ar,n = (aij,r,n)i,j=1,...,n, (A.1)

be nonstochastic matrices, and let br,n = (b1,r,n, . . . bn,r,n)0 be nonstochastic vec-

tors (r = 1, . . . ,m). Consider the following assumptions:

Assumption A1 The real valued random variables of the array {ς i,n : 1 ≤ i ≤ n,

n ≥ 1} satisfy Eς i,n = 0. Furthermore, for each n ≥ 1 the random variables

ς1,n, . . . , ςn,n are totally independent.

Assumption A2 For r = 1, . . . ,m the elements of the array of real numbers

{aij,r,n : 1 ≤ i, j ≤ n, n ≥ 1} satisfy aij,r,n = aji,r,n and45

sup
1≤j≤n,n≥1

nX
i=1

|aij,r,n| <∞.

45The assumption of symmetry of the elements of An is maintained w.l.o.g. since ε0nAnεn =
ε0n [(An +A0n)/2] εn.
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The elements of the array of real numbers {bi,r,n : 1 ≤ i ≤ n, n ≥ 1} satisfy

sup
n≥1

n−1
nX
i=1

|bi,r,n|2+δ1 <∞

for some δ1 > 0.

Note that a sufficient condition for Assumption A2 is that the row and column

sums ofAn and the elements of bn are uniformly bounded in absolute value.

Assumption A3 For r = 1, . . . ,m we assume that one of the following two con-

ditions holds.

(a) sup1≤i≤n,n≥1E |ς i,n|2+δ2 <∞ for some δ2 > 0 and aii,r,n = 0.

(b) sup1≤i≤n,n≥1E |ς i,n|4+δ2 <∞ for some δ2 > 0 (but possibly aii,r,n 6= 0).

Consider the quadratic forms

qr,n = ς 0nAr,nςn + b
0
r,nςn (A.2)

and define the vector of linear quadratic forms

qn =

⎡⎢⎢⎢⎢⎣
q1,n

...

qm,n

⎤⎥⎥⎥⎥⎦ , (A.3)
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and let

µqn = Eqn, (A.4)

Σqn = E(qn −Eqn)(qn −Eqn)
0

denote the mean vector and the variance covariance matrix of qn. Then

µqn =

⎡⎢⎢⎢⎢⎣
µq1,n

...

µqm,n

⎤⎥⎥⎥⎥⎦ , Σqn =

⎡⎢⎢⎢⎢⎣
σq11,n · · · σq1m,n

... . . . ...

σqm1,n · · · σqmm,n

⎤⎥⎥⎥⎥⎦ . (A.5)

where µqr,n and σqrs,n denote the mean of qr,n and the covariance between qr,n and

qs,n, respectively, for r, s = 1, . . . ,m. We now have the following CLT.

Theorem A1 Suppose Assumptions A1-A3 hold and n−1λmin(Σqn) ≥ c for some

c > 0. Let Σqn =
³
Σ
1/2
qn

´³
Σ
1/2
qn

´0
, then

Σ−1/2qn

¡
qn − µqn

¢ d→ N (0, Im) .

Of course, the theorem remains valid, if all assumptions are assumed to hold

for n > n0 where n0 is finite. The above theorem can also be applied to situations

where n = TN with T finite and N →∞; see footnote 13 in Kelejian and Prucha

(2001).

I now illustrate this in more detail. Suppose, we have sample sizes

T, 2T, 3T, ..., NT, ...,∞ as N → ∞ and the random variables are triangular ar-
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rays is

ε1 = (ς11,1, . . . , ςT1,1)
0 (A.6)

ε2 = (ς11,2, ς12,2, . . . , ςT1,2, ςT2,2)
0

...

εN = (ς11,N , . . . , ς1N,N , ς21,N , . . . , ς2N,N , . . . , ςT1,N , . . . , ςTN,N)
0 ,

Consider the sequence of vectors of linear quadratic forms and the vectors of

linear quadratic forms

vN = (v1,N , ..., vm,N)
0 , (A.7)

with

vr,N = ε0NAr,TNεN + b
0
r,TNεN . (A.8)

As above, we denote by µvN and ΣvN the mean vector and variance covariance

matrix of the vector vN .

Suppose that the random variables collected in εN satisfy Assumptions A1 and

A3, and the sequences of matrices Ar,TN and vectors br,TN satisfy Assumption

A2.
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We can define additional triangular arrays of sizes between tN and (t+ 1)N

to obtain a sequence

ς1 = (ς11,1) (A.9)

ς2 = (ς11,1, ς21,1)
0

...

ςT = (ς11,1, . . . , ςT1,1)
0

ςT+1 = (ς11,2, . . . , ςT1,2, ς12,2)
0 (A.10)

ςT+2 = (ς11,2, . . . , ςT1,2, ς12,2, ς12,2, ς22,2)
0

...

ς2T = (ς11,2, . . . , ςT1,2, ς12,2, . . . , ςT2,2)
0

...

ςNT = (ς11,N , . . . , ς1N,N , ς21,N , . . . , ς2N,N , . . . , ςT1,N , . . . , ςTN,N)
0 .

Observe that the new sequence ςn satisfies Assumptions A1 and A3 and that for

n = NT we have ςn = εN .

Similarly, we can extend the sequence of vectors of linear quadratic forms to

qn = (q1,n, ..., qm,n)
0 , (A.11)

where

qr,n = ς 0nAr,nςn + b
0
r,nςn, (A.12)
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with

Ar,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ar,[ nT ]T
0[ nT ]T×1 · · · 0[ nT ]T×1

01×[ nT ]T a11,r,[ nT ]T+1
· · · ak1,r,[ nT ]T+1

...
... . . . ...

01×[ nT ]T a1k,r,[ nT ]T+1
· · · akk,r,[ nT ]T+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A.13)

br,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

br,[ nT ]T

b1,r,[ nT ]T+1
...

bk,r,[ nT ]T+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and k = n− £ n
T

¤
T , where I use

£
r
s

¤
to denote the whole part of a rational number

r
s
.

Observe that by definition for n = NT , we have qn = vN . Furthermore, since

Ar,n and br,n satisfy Assumption A2 for n = NT , it follows from the construc-

tion of Ar,NT and br,NT that they satisfy Assumption A2 for all n. As a result,

quadratic forms qn fulfill conditions of Theorem A1 and Σ
−1/2
qn

¡
qn − µqn

¢ d→
N (0, Im) as n → ∞, where as before µqn and Σqn denote the mean vector

and variance covariance matrix of the vector qn. Hence the sequence of distribu-

tion functions of Σ−1/2qn

¡
qn − µqn

¢
converges weakly to the distribution function

of N (0, Im). We now select a subsequence from the distribution functions of

Σ
−1/2
qn

¡
qn − µqn

¢
for n = NT (we treat T as a fixed constant) and observe that

these are equivalent to the sequence of distribution functions ofΣ−1/2vN

¡
vN − µvN

¢
.
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This subsequence must have the same limit and, as a consequence, we have that

Σ−1/2vN

¡
vN − µvN

¢ d→ N (0, Im) , (A.14)

as N →∞.
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B Appendix: Proof of Claims in Chapter 3

Lemma B1 : Let ςj , j ∈ N, be a sequence of totally independent real valued

random variables with E |ςj|p ≤ kς < ∞ for some 2 ≤ p < ∞. Let aj be

a sequence of real numbers such that
P∞

j=0 |aj| ≤ ka < ∞. (a) Consider the

random variables χm =
Pm

j=0 ajςj , then there exists a random variable χ, which

we denote as
P∞

j=0 ajςj , such that χm
r→ χ for 0 < r ≤ p. (b) Furthermore,

E |χ|r ≤ krak
r/p
ς <∞, for 0 < r ≤ p.

Proof: To prove part (a) I first show that each χm has finite p-th absolute moments

and hence belongs to the Lp space of random variables with finite absolute p-th

moments. I then demonstrate that the sequence χm is a Cauchy sequence. By

invoking the completeness property of the Lp space we will then have that the

limiting random variable χ also belongs to Lp. I now turn to each of these steps

in detail.

Let p ≥ 2 and 1/q + 1/p = 1. Then, using the triangle and Hölder’s inequali-

ties

¯̄̄̄
¯
mX
i=1

aiς i

¯̄̄̄
¯ ≤

mX
i=1

|ai| |ς i| =
mX
i=1

|ai|1/q |ai|1/p |ς i| (B.1)

≤
"

mX
i=1

|ai|
#1/q " mX

i=1

|ai| |ς i|p
#1/p

≤ k1/qa

"
mX
i=1

|ai| |ς i|p
#1/p

,
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and further

E |χm|p = E

¯̄̄̄
¯
mX
i=1

aiς i

¯̄̄̄
¯
p

≤ kp/qa

mX
i=1

|ai|E |ς i|p (B.2)

≤ kp/qa kς

mX
i=1

|ai| kp/q+1a kς = kpakς <∞,

and hence each χm belongs to Lp.

I now demonstrate that the sequence χm is Cauchy inLp, or in the terminology

of Shiryayev (1984, p.251) that it is fundamental in Lp. Since
P∞

i=1 |ai| < ∞ it

follows from the Cauchy Test (Neylor and Sell, 1982, p.225) that for every ε > 0

there exist and index Nε such that

m+kX
i=m+1

|ai| < ε, (B.3)

for all m ≥ Nε and k ≥ 0. Now choose some ε∗ > 0 and ε = ε∗/(kpakς), then by

argumentation analogous to above

E
¯̄
χm+k − χm

¯̄p
= E

¯̄̄̄
¯
m+kX
i=1

aiς i −
mX
i=1

aiς i

¯̄̄̄
¯
p

(B.4)

≤ kp/qa kς

m+kX
i=m+1

|ai| ≤ kpakςε = ε∗,

for all m ≥ Nε and k ≥ 0. Thus under the maintained assumptions the sequence

χm is Cauchy in Lp. By Theorem 7 in Shiryayev (1984, p.258) we then have

that the sequence χm converges in p-th mean to a random variable in Lp, which
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implies that χ exists as a limit in p-th mean. Of course, since for r ≤ p

kχm − χkr ≤ kχm − χkp , (B.5)

by Lyapunov’s inequality it follows that χm converges to χ also in r-th mean for

0 < r ≤ p.

To prove part (b) observe that from the above E |χ|r ≤ c for some c < ∞.

Hence E |χ|r ≤ (E |χ|p) rp ≤ c
r
p <∞.

Lemma B2 : LetAn be a sequence of nonstochastic matrices of dimensions n×n
where n ∈ N such that max1≤i≤n

Pn
j=1 |aij| ≤ kA <∞. Consider a sequence of

n×1 random vectors ςn, with elements ς i,n that are real valued random variables

with E |ς i,n|p ≤ kς < ∞ for some 2 ≤ p < ∞. Then the elements of the random

vector ςn = Anςn have finite r-th moments with E |ς i,n|r ≤ krAk
r/p
ς < ∞, for

0 < r ≤ p.

Proof: Let p ≥ 2 and 1/q+1/p = 1. Using the triangle and Hölder’s inequalities,

we have

|ς i,n| =
¯̄̄̄
¯

nX
j=1

aij,nςj,n

¯̄̄̄
¯ ≤

"
nX

j=1

|aij,n| |ςj,n|
#
=

"
nX

j=1

|aij,n|
1
q |aij,n|

1
p |ςj,n|

#

≤
"

nX
j=1

|aij,n|
# 1
q
"

nX
j=1

|aij,n| |ςj,n|p
# 1
p

. (B.6)
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and further

E |ς i,n|p ≤
"

nX
j=1

|aij,n|
# p

q
"

nX
j=1

|aij,n|E |ςj,n|p
#

(B.7)

≤ k
p/q
A

nX
j=1

|aij,n| kς ≤ kpAkς .

Observe that by Lyapunov’s inequality for 0 < r ≤ p,

kς i,nkr ≤ kς i,nkp = [E |ς i,n|p]1/p ≤ kAk
1/p
ς , (B.8)

and hence E |ς i,n|r = kς i,nkrr ≤ krAk
r/p
ς .

Lemma B3 : Suppose Assumptions 1, 2, 3 and 5 hold.

(a) Let ωt,N = Xt,Nβ + ut,N , and let ωit,N denote the i-th element of ωt,N ,

then

E |ωit,N |4+δ ≤ kω <∞,

where kω does not depend i, t, N .

(b) The random vector

yt,N =
∞X
j=0

φjωt−j,N ,

is well defined as the limit of the finite sums in quadratic means and there is δ > 0

such that E |yit,N |r ≤ ky <∞ for all r ≤ 4+ δ, where ky does not depend i, t,N .
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Proof: In the following let p = 4 + δ with δ = min{δε,δµ}. I first prove part

(a). Denoting xikt,N the k-th element of xit,N , we have from Assumption 5(b) that

|xikt,N | ≤ kX <∞ and thus

¯̄
x0it,Nβ

¯̄p ≤ kpX(β
0β)p/2 <∞. (B.9)

Next, from Assumptions 1 and 2, we have

E |υit,N |p ≤ 2p−1
¡
E |εit,N |p +E

¯̄
µi,N

¯̄p¢ ≤ 2p−1 (kε + kµ) <∞, (B.10)

by inequality (1.4.3) in Bierens (1994). Now observe that ut,N = PNυt,N . By

Assumption 3(c) we have

max
i

NX
j=1

pij,N ≤ kP <∞, (B.11)

and hence by Lemma B2 we have E |uit,N |p ≤ kpP2
p−1 (kε + kµ). Hence

E |ωit,N |p ≤ 2p−1
©£
E
¯̄
x0it,Nβ

¯̄p
+E |uit,N |p

¤ª
(B.12)

≤ 2p−1
n
kpX(β

0β)p/2 + kpP2
p−1 (kε + kµ)

o
<∞,

i.e., the p-th absolute moment of ωit,N is uniformly bounded by a finite constant

that does not depend i, t, N .

To prove part (b) observe that
P∞

i=0 |φ|i = 1/(1 − |φ|) < ∞. Given part (a)

of the Lemma, part (b) now follows immediately from Lemma B1.
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Equation (3.2.4): The vector of endogenous variables is defined by a stochas-

tic difference equation:

yt,N = φyt−1,N +ωt,N . (B.13)

From Lemma B3 above it immediately follows that the random variables

ypit =
∞X
j=0

φjωi,t−j, (B.14)

ypi,t−1 =
∞X
j=0

φjωi,t−1−j,

are well defined as limits of the finite sums in quadratic means.

I now show that they are a particular solution. Substituting into the RHS of the

difference equation defining yt,N , we have (using Theorems 2.6 and 2.7 in Prucha,

2004):

φypi,t−1,N + ωit,N = φ
∞X
j=0

φjωi,t−1−j + ωit,N (B.15)

=
∞X
j=1

φjωi,t−j + ωit,N

=
∞X
j=0

φjωi,t−j = ypit,N ,

and hence ypt,N is a particular solution. The homogeneous part of the difference

equation is

yht,N − φyht−1,N = 0. (B.16)
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and its solution is of the form yht,N = γφt+m, where γ is a N × 1 vector of

(finite) constants and −m is the starting point of the process. Since I assume

that the process has started in an infinite past (m = +∞), we have that yht,N =

limm→∞ γφt+m = 0 and, as a result, the unique solution is

yt,N = y
p
t,N + y

h
t,N =

∞X
j=0

φjωt−j,N .

Substituting for the definition of ωt−j,N and utilizing Theorem 2.6 in Prucha

(2004) yields

yt,N =
∞X
j=0

φjωt−j,N (B.17)

=
∞X
j=0

φj (Xt−j,Nβ +PNεt−j,N +PNµN)

=
∞X
j=0

φj (Xt−j,Nβ +PNεt−j,N) +
∞X
j=0

φjPNµN

=
∞X
j=0

φj (Xt−j,Nβ +PNεt−j,N) + (1− φ)−1PNµN .

The claim in Chapter 3 then follows from specializing the above expression for

t = 0.

Equation (3.2.5): By Lemma B3 we have that

y0,N =
∞X
j=0

φjωt−j, (B.18)
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with E
¡
ω2it,N

¢ ≤ kω < ∞ and |φ| < 1. Using Theorems 2.6 and 2.7 in Prucha

(2004) we can write

y0,N =
∞X
j=0

φjωt−j (B.19)

=
∞X
j=0

φj (X−j,Nβ + ut,N)

=

Ã ∞X
j=0

φjX−j,Nβ

!
+

Ã ∞X
j=0

φjut,N

!

=

Ã ∞X
j=0

φjX−j,Nβ

!
+

Ã ∞X
j=0

φjPNε−j,N

!
+

Ã ∞X
j=0

φjPNµN

!
= cN +PNξN + (1− φ)−1PNµN ,

where cN is nonstochastic and the vectors of random variables are ξN =
P∞

j=0 φ
jε−j,N

and µN . Notice that by Lemma B1 the random variable ξN is well defined. From

Assumption 1 and Theorem 2.2 in Prucha (2004) we have that

E (ξN) =
∞X
j=0

φjE (ε−j,N) = 0N×1 (B.20)

and

V C (ξN) = E (ξNξ
0
N) =

∞X
j=0

¡
φ2
¢j
σ2εIN (B.21)

= σ2ε
¡
1− φ2

¢−1
IN .
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Furthermore,

V C (PNξN) = E (PNξNξ
0
NP

0
N) = PNE (ξNξ

0
N)P

0
N

= σ2ε
¡
1− φ2

¢−1
PNP

0
N . (B.22)

Observe that by Assumption 2, the random variables PNξN and µN are inde-

pendent. Thus we have

V C (y0,N) = V C (PNξN) + V C
£
(1− φ)−1PNµN

¤
(B.23)

= σ2ε
¡
1− φ2

¢−1
PNP

0
N + (1− φ)−2PNV C (µN)P

0
N

=

µ
σ2ε

1− φ2
+

σ2µ

(1− φ)2

¶
PNP

0
N .
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C Appendix: Proofs for Chapter 4

I will make repeated use of the following facts:

Lemma C1 Let C = A + B be square real valued symmetric matrices of same

dimensions. Then

λmin (C) ≥ λmin (A) + λmin (B) .

For proof see, e.g., Rao and Rao (1998), Proposition 10.1.1.

Lemma C2 LetA and B be n×m and n× n matrices. If B is symmetric then

λmin (A
0BA) ≥ λmin (A

0A) · λmin (B) .

Proof: By Rayleigh-Ritz Theorem (see, e.g. Proposition 4.2.2 in Horn and John-

son 1985) we have that the smallest eigenvalue of a symmetric matrix can be

obtained as:

λmin (C) = inf
α 6=0

h
(α0α)−1 (α0Cα)

i
= inf

α;α0α=1
(α0Cα) . (C.0.1)

SinceB is symmetric, we can decompose it asB = U0ΛUwhereU is orthog-

onal and Λ = diag (λ1, .., λn) is diagonal with eigenvalues of B on the diagonal
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(cp. Proposition 52 in Dhrymes 1984). Hence we have

λmin (A
0BA) = λmin (A

0U0ΛUA) (C.0.2)

= inf
α;α0α=1

[α0A0U0ΛUAα]

≥ inf
j
λj inf

α;α0α=1
[α0A0U0UAα]

= λmin (B) · inf
α;α0α=1

[α0A0Aα]

= λmin (B) · λmin (A0A) .

Lemma C3 Let an, and bnbe sequences of n× 1 vectors and Cn be a sequence

of n×n matrices. Suppose that the elements of an and bn are uniformly bounded

in absolute value, and that the matrixCn has uniformly bounded absolute row (or

column) sums. Then n−1a0nCnbn is uniformly bounded in absolute value.

Proof: Denote the uniform bounds of the elements of the vectors an and bn as ka

and kb and the uniform bound of the absolute row sums of the matrices Cn as kc.

We have by the triangle inequality

n−1 |a0nCnbn| = n−1
¯̄̄̄
¯

nX
i=1

nX
i=1

ai,ncij,nbj,n

¯̄̄̄
¯ ≤ n−1

nX
i=1

nX
i=1

|ai,n| |cij,n| |bj,n|

≤ n−1
nX
i=1

nX
i=1

ka |cij,n| kb = kakbn
−1

nX
i=1

nX
i=1

|cij,n| (C.0.3)

≤ kakbn
−1

nX
i=1

kc = kakbkc <∞.
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C.1 Proofs for Section 4.1

Proof of Lemma 1: By backward substitution we can eliminate lagged dependent

variables and express y−2 as a function of lagged disturbance terms and lagged

explanatory variables. From (3.2.2), we have that y−2,N is

y−2,N =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y0,N

y1,N
...

yT−2,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y0,N

X1,Nβ + u1,N + φy0,N
...PT−3

j=0 φ
j [XT−2−j,Nβ + uT−2−j,N ] + φT−2y0,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= (Φ0 ⊗ IN)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0N×p

X1,N

...

XT−2,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
β+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y0,N

u1,N
...

uT−2,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (C.1.4)

where

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 φ · · · φT−2

0 1
...

... . . . φ

0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (C.1.5)
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Next I express
¡
y00,N ,u

0
1,N , ...,u

0
T−2,N

¢0 as a linear form of

ηN =
¡
µN , ξN , ε

0
1,N , ..., ε

0
T,N

¢0
. (C.1.6)

Observe thatut,N = PN (εt,N + µN) and from equation (3.2.4), y0,N = E (y0,N)+

PN

h
ξN+

µN
1−φ
i
, with ξN=

P∞
j=0 φ

jε−j,N well defined by Lemma B1. Therefore,

¡
y00,N ,u

0
1,N , ...,u

0
T−2,N

¢0 (C.1.7)

=

⎡⎢⎣
⎛⎜⎝ [1− φ]−1 1 01×T−2 01×2

1T−2×1 0T−2×1 IT−2 0T−2×2

⎞⎟⎠
T−1×T+2

⊗PN

⎤⎥⎦ηN
+
£
E
¡
y00,N

¢
,01×(T−2)N

¤0
.

Hence with the notationX−2,N =
¡
00N×p,X

0
1,N , ...,X

0
T−2,N

¢0 we have

y−2,N = (Φ0 ⊗ IN)
n
X−2,Nβ +

£
E
¡
y00,N

¢
,0T−2×1

¤0o (C.1.8)

+

⎡⎢⎣Φ0

⎛⎜⎝ [1− φ]−1 1 01×T−2 01×2

1T−2×1 0T−2×1 IT−2 0T−2

⎞⎟⎠⊗PN

⎤⎥⎦ηN .
Therefore, given that

∆uN =
£¡
0(T−1)×2,D

¢⊗PN

¤
ηN , (C.1.9)

we can express y0−2,N∆uN as a function of the model disturbances and explana-
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tory variables:

y0−2,N∆uN (C.1.10)

=
¡
β0X0

−2,N +
£
E
¡
y00,N

¢
,0T−2×1

¤¢
(Φ⊗ IN)

£¡
0(T−1)×2,D

¢⊗PN

¤
ηN

+η0N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1−φ 11×T−2

11×1 01×T−2

0T−2×1 IT−2

02×1 02×T−2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Φ
¡
0(T−1)×2,D

¢⊗P0NPN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ηN

= f 0N (IT+2 ⊗PN)ηN+η
0
N (F⊗P0NPN)ηN ,

where

f 0N =
¡
β0X0

−2,N +
£
E
¡
y00,N

¢
,0T−2×1

¤¢
(Φ⊗ IN)

£¡
0(T−1)×2,D

¢⊗ IN¤
(C.1.11)

and

FT+2×T+2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1−φ 11×T−2

11×1 01×T−2

0T−2×1 IT−2

02×1 02×T−2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Φ
¡
0(T−1)×2,D

¢
(C.1.12)

The expression for ∆X0
N∆uN follows from a trivial substitution of ∆uN =£¡

0(T−1)×2,D
¢⊗PN

¤
ηN .

Proof of Lemma 2: To obtain the expected value and variance of the two quadratic
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forms, I use the expression from Lemma 1:

y0−2,N∆uN= f
0
N [IT+2 ⊗PN ]ηN + η

0
N (F⊗P0NPN)ηN , (C.1.13)

and

∆X0
N∆uN=∆X

0
N

£¡
0(T−1)×2,D

¢⊗PN

¤
ηN , (C.1.14)

where ηN =
£
µ0N , ξ

0
N , ε

0
1,N , ..., ε

0
T,N

¤0 is a vector of independent zero mean ran-

dom variables with uniformly bounded fourth moments. Next I verify that as-

sumptions of Lemma A1 in Appendix A are satisfied. Given Assumption 1 and 2,

it remains to be verified that diagonal elements of (F⊗P0NPN) are zero. Observe

that from Lemma 1 we have F = AΦB, where

A
(T+2)×(T−1)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1−φ 11×(T−2)

11×1 01×(T−2)

0(T−2)×1 IT−2

02×1 02×(T−2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, B

(T−1)×(T+2)
=
¡
0(T−1)×2,D

¢
.

(C.1.15)

The diagonal elements of F are then

Fii = {AΦB}ii =
T−1X
j=1

Aij {ΦB}ji (C.1.16)

=
T−1X
j=1

Aij

T−1X
k=1

ΦjkBki,
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whereAij andBij denote the ij − th elements of matricesA andB respectively.

Note thatBki = 0 for k < i+2 and Φjk = 0 for k < j, and, therefore, {ΦB}ji =PT−1
k=1 ΦjkBki = 0 for i < j + 2.46 Furthermore, the elements Aij are zero for

i > j + 1 and hence Fii =
PT−1

j=1 Aij {ΦB}ji = 0.
Hence I can use Lemma A1 to derive the mean and variances and covariances

of y0−2,N∆uN and ∆X0
N∆uN . In particular, we have that

E
¡
y0−2,N∆uN

¢
= E (∆X0

N∆uN) = 0, (C.1.17)

and

V C
¡
y0−2,N∆uN

¢
= f 0N (Ση,N ⊗PNP

0
N) fN (C.1.18)

+2tr
¡
FSΣη,NF

SΣη,N ⊗P0NPNP
0
NPN

¢
= f 0N (Ση,N ⊗PNP

0
N) fN + νN ,

V C (∆X0
N∆uN) = ∆X0

N

£¡
0(T−1)×2,D

¢⊗ IN¤ (Ση,N ⊗PNP
0
N) ∗h¡

0(T−1)×2,D
¢0 ⊗ INi∆XN . (C.1.19)

46Note that the both matricesΦ andD are upper diagonal (in the sense that their ij−th elements
are zero for i < j) and hence theirΦD product also has the same property. As a result, the matrix
ΦB =

¡
0(T−1)×2,ΦD

¢
will have its ij − th elements equal to zero for i < j + 2.
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and finally

Cov
¡
y0−2,N∆uN ,∆X

0
N∆uN

¢
= f 0N

h
Ση,N

¡
0(T−1)×2,D

¢0 ⊗P0Ni∆XN ,

(C.1.20)

where I defined

νN = 2tr
¡
FSΣη,NF

SΣη,N ⊗P0NPNP
0
NPN

¢
(C.1.21)

= 2tr
¡
FSΣη,NF

SΣη,N

¢ · tr (P0NPNP
0
NPN) .

Together we have that

VN =

⎛⎜⎝ V C
¡
y0−2,N∆uN

¢
Cov

¡
y0−2,N∆uN ,∆X

0
N∆uN

¢
Cov

¡
y0−2,N∆uN ,∆X

0
N∆uN

¢0
V C (∆X0

N∆uN)

⎞⎟⎠
= S0N (Ση,N ⊗PNP

0
N)SN +

⎛⎜⎝ νN 01×p

0p×1 0p×p

⎞⎟⎠ , (C.1.22)

where SN =
³
fN ,
h¡
0(T−1)×2,D

¢0 ⊗ INi∆XN

´
.

Proof of Lemma 3: From Lemma C1, we have that

λmin (VN) ≥ λmin [S
0
N (Ση,N ⊗PNP

0
N)SN ] + min (νN , 0) . (C.1.23)

Note that sinceΣη is symmetric, by Proposition 52 in Dhrymes (1984) we can
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express it as Ση = Λ0Λ. Hence

tr
¡
FSΣηF

SΣη

¢
= tr

¡
FSΛ0ΛFSΛ0Λ

¢
= tr

¡
ΛFSΛ0ΛFSΛ0¢

= tr (A0A) ≥ 0

withA = ΛFSΛ0, since FS is also symmetric. Therefore,

tr
¡
FSΣη,NF

SΣη,N

¢ ≥ 0. (C.1.24)

Furthermore,

tr (P0NPNP
0
NPN) = tr [(P0NPN) (P

0
NPN)] ≥ 0, (C.1.25)

and, therefore, νN ≥ 0.
By Lemma C2 the smallest eigenvalue ofVN is then

λmin (VN) ≥ λmin [SN (Ση,N ⊗PNP
0
N)S

0
N ] (C.1.26)

≥ λmin (S
0
NSN) · λmin (Ση,N ⊗PNP

0
N) .

From Theorem 4.2.12 in Horn and Johnson (1991) we have

λmin (Ση,N ⊗PNP
0
N) = λmin (Ση,N) · λmin (PNP

0
N) , (C.1.27)
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and hence

[(T − 1)N ]−1 λmin (VN) ≥ [(T − 1)N ]−1 λmin (S0NSN) · (C.1.28)

·λmin (Ση,N) · λmin (PNP
0
N)

= λmin
¡
[(T − 1)N ]−1 S0NSN

¢ ·
·λmin (Ση,N) · λmin (PNP

0
N) .

By Assumptions 4 we have that λmin (PNP
0
N) ≥ cP > 0, by Assumption IV2

we have that λmin
¡
[(T − 1)N ]−1 S0NSN

¢ ≥ cS > 0. Since Ση,N is diagonal, we

have λmin (Ση,N) = min
£
σ2µ, var

¡
ξi,N

¢
, σ2ε
¤
= min

h
σ2µ,

σ2ε
1−φ2 , σ

2
ε

i
≥ cΣ > 0

and hence [(T − 1)N ]−1 λmin (VN) ≥ cScΣcP > 0.

Proof of Proposition 1: The result in the Proposition is a special case of the

general result in Lemma 5 in Section 4.3,47 which is in turn based on the CLT in

Theorem A1 in Appendix A. Here I verify directly that the conditions of Theorem

A1 hold.
47The conditions of that Lemma are satisfied since by Lemma 1 (and also Lemma 4 in Section

4.3), the instruments y−2,N and ∆XN are linear forms in the innovations of the form assumed
in Lemma 5. Furthermore, by Lemma 3, the smallest eigenvalue VN is uniformly bounded away
from zero. Finally, the moment conditions are valid since by Lemma 2, we have E (H0

N∆uN ) =

0. Therefore, conditions of Lemma 5 are satisfied and we have thatV−1/2N H0
N∆uN

d→ N (0, I) .
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The moment conditions are

H0
N∆uN =

⎛⎜⎜⎜⎜⎝
H2,N

...

HT,N

⎞⎟⎟⎟⎟⎠
0

∆uN =

⎡⎢⎢⎢⎢⎣
(y0,N ,∆X2,N)

...

(yT−2,N ,∆XT,N)

⎤⎥⎥⎥⎥⎦
0

∆uN (C.1.29)

=

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

y0,N
...

yT−2,N

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
∆X2,N

...

∆XT,N

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
0

∆uN =

⎛⎜⎝ y0−2,N∆uN

∆X0
N∆uN

⎞⎟⎠

Observe that by Lemma 1, the instruments y−2,N and ∆XN are linear forms

in the innovations and, as a result, the moment conditions collected in H0
N∆uN

are linear quadratic form in the innovations

ηN =
¡
µ0N , ξ

0
N , ε

0
1,N , ..., ε

0
T,N

¢
, (C.1.30)

where ξN =
P∞

j=0 φ
jε−j,N . By Assumptions 1 and 6 it follows from Lemma B1

in Appendix B that the random variable ξN satisfies condition A3 in Appendix A.

Therefore, by Assumptions 1 and 2, the elements of the innovations ηN satisfy

conditions A1 and A3 in Appendix A.

By Lemma 2, the variance covariance matrix of the moment conditions col-

lected inH0
N∆uN isVN and by Lemma 3, the smallest eigenvalue of [(T − 1)N ]−1VN

is uniformly bounded away from zero. Hence it remains to be shown that the lin-

ear quadratic forms collected inH0
N∆uN satisfy condition A2 in Appendix A.
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Note that from Lemma 1 we have that the elements ofH0
N∆uN are

y0−2,N∆uN= f
0
N (IT+2 ⊗PN)ηN + η

0
N (F⊗P0NPN)ηN , (C.1.31)

and

∆X0
N∆uN=∆X

0
N

£¡
0(T−1)×2,D

¢⊗PN

¤
ηN . (C.1.32)

Observe that any finite sum, product or Kronecker product of matrices with row

and column sums uniformly bounded in absolute value will also have row and col-

umn sums uniformly bounded in absolute value; see Kelejian and Prucha (2001d)

for details.

From Lemma 1, we have that

f 0N =
©
β0X0

−2,N +
£
E
¡
y00,N

¢
,01×(T−2)N

¤ª £
Φ
¡
0(T−1)×2,D

¢⊗ IN¤ . (C.1.33)

Elements and dimensions of Φ
¡
0(T−1)×2,D

¢
do not depend on N and hence triv-

ially
£
Φ
¡
0(T−1)×2,D

¢⊗ IN¤ has row and column sums uniformly bounded in ab-

solute value. Elements of the vector β0X0
−2,N are uniformly bounded in absolute

value by Assumption 5 and elements of
£
E
¡
y00,N

¢
,01×(T−2)N

¤
are uniformly

bounded in absolute value since, as demonstrated by Lemma B3 in Appendix

B, yit has uniformly bounded 4 + δ moments for some δ > 0. Together we then

have that fN has elements uniformly bounded in absolute value. The sequence

of matrices PN has row and column sums uniformly bounded in absolute value

(Assumption 3) and hence elements of f 0N (IT+2 ⊗PN) are uniformly bounded in
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absolute value. Similarly, by Assumptions 5 and 3, ∆X0
N

£¡
0(T−1)×2,D

¢⊗PN

¤
has row and column sums uniformly bounded in absolute value. Finally, since

dimensions of F do not change with N and its elements are also independent

of N , the matrix (F⊗P0NPN) has row and column sums uniformly bounded in

absolute value.

This completes the verification of conditions of Theorem A1 and, therefore,

we have thatV−1/2N H0
N∆uN

d→ N (0, I).

Proof of Theorem 1: From equation (4.1.10) we have

p
(T − 1)N

³bθN − θ´ (C.1.34)

=
p
(T − 1)N

h
∆Z0NHN (H

0
NHN)

−1
H0

N∆ZN

i−1
∗

∆Z0NHN (H
0
NHN)

−1
H0

N∆uN

=
p
(T − 1)N

"
∆Z0NHN

(T − 1)N
µ
H0

NHN

(T − 1)N
¶−1

H0
N∆ZN

(T − 1)N

#−1
∗

∆Z0NHN

(T − 1)N
µ
H0

NHN

(T − 1)N
¶−1

H0
N∆uN

(T − 1)N

=

"
∆Z0NHN

(T − 1)N
µ
H0

NHN

(T − 1)N
¶−1

H0
N∆ZN

(T − 1)N

#−1
∗

∆Z0NHN

(T − 1)N
µ
H0

NHN

(T − 1)N
¶−1

H0
N∆uNp
(T − 1)N .

Given Assumptions IV1 and IV3, our result follows from Proposition 1 in this

thesis and Corollary 5 in Pötcher and Prucha (2001).
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C.2 Proofs for Section 4.2

I now give a sequence of Lemmas that will be used to prove Theorem 2. I use the

notation k.k to denote the matrix norm kMk := [tr (M0M)]1/2.

Lemma C4 Let buN be based on a N1/2 consistent estimate of θ. Then under

Assumptions 1-6 we can write

uN − buN = DN∆N .

where the random matrix DN has elements dij,N that have uniformly bounded

absolute 4+ δ moments for some δ > 0, i.e. E |dij,N |4+δ ≤ cd <∞ where cd does

not depend on N , and the random vector ∆ is such that N1/2 k∆Nk = Op (1).

Proof: Note that from (4.2.1) we can write ut,N − but,N as

ut,N − but,N = (yt−1,N ,Xt,N)
³
θ − bθN´ , (C.2.1)

I defineDt,N = (yt−1,N ,Xt,N) and ∆N =
³
θ − bθN´. Hence we have

uN − buN = DN∆N , (C.2.2)

whereDN =
¡
D0
1,N , ...,D

0
T,N

¢0.
Since bθN is

√
N consistent, it follows that N1/2 k∆Nk = Op (1). By Lemma

B3, elements of yt−1,N have finite 4 + δ absolute moments for some δ > 0.
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The nonstochastic elements of DN are uniformly bounded in absolute value by

Assumption 5 and hence also their 4 + δ power is uniformly bounded in absolute

value. ThusDN has uniformly bounded absolute 4+δ moments for some δ > 0.

Note that the claim in the above lemma also holds for 2+ δ moments since by

Lyapunov’s inequality,

E |yi,t−1,N |2+δ ≤
h
E |yi,t−1,N |(4+δ)

i(2+δ)/(4+δ)
≤ k(2+δ)/(4+δ)y <∞. (C.2.3)

Lemma C5 Given Assumptions 1-6, the moment conditions converge to their ex-

pectations in probability, i.e.

γjkl,N −E
¡
γjkl,N

¢ p→ 0 and γjk,N − E
¡
γjk,N

¢ p→ 0

as N →∞ for j = 0, 1, k, l = 1, 2, 3.

Proof: The moment conditions correspond to those considered in Kapoor et al.

(2005) and, in particular, Assumptions 1,2 and 4 of their paper are satisfied,48 and

hence the lemma is their Lemma A2.

Lemma C6 The sample counterparts of the moment conditions converge in prob-

ability to the true moments, i.e.

gjkl,N −E
¡
γjkl,N

¢ p→ 0 and gjk,N −E
¡
γjk,N

¢ p→ 0

48Assumption 1 is directly implied by our Assumptions 1 and 2. Assumptions 2 and 4 are
contained in our Assumption 3.
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as N →∞ for j = 0, 1, k, l = 1, 2, 3.

Proof: In light of Lemma C5, it suffices to show that gjkl,N − γjkl,N
p→ 0 and

gjk,N − γjk,N
p→ 0. These can be expressed as quadratic forms:

gjkl,N − γjkl,N =
1

N

£bu0NCj
kl,NbuN − u0NCj

kl,NuN
¤
, (C.2.4)

gjk,N − γjk,N =
1

N

£bu0NCj
k,NbuN − u0NCj

k,NuN
¤
,

where the the NT × NT matrices Cj
kl,N and Cj

k,N are defined for j = 0, 1, k =

1, 2, 3 and l = 1, 2. Explicit expressions are given below. Note that for l = 3 we

have (see 4.2.10 and 4.2.13):

gj13,N = γj13,N = 1, (C.2.5)

gj23,N = γj23,N = N−1tr (W0
NWN) ,

gj33,N = γj33,N = 0,

and hence trivially gjk3,N − γjk3,N
p→ 0 for j = 0, 1 and k = 1, 2, 3.

For j = 0, 1, k = 1, 2, 3 and l = 1, 2, theCj
kl,N andCj

k,N matrices are products

of (some of) the matrices (IT ⊗W0
N),Qj,N , and (IT ⊗WN). In particular, from
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(4.2.10) and (4.2.13), j = 0, 1:

Cj
11,N = 2 (T − 1)j−1Qj,N (IT ⊗WN) , (C.2.6)

Cj
12,N = − (T − 1)j−1 (IT ⊗W0

N)Qj,N (IT ⊗WN) ,

Cj
21,N = 2 (T − 1)j−1 (IT ⊗W0

N) (IT ⊗W0
N)Qj,N (IT ⊗WN) ,

Cj
22,N = − (T − 1)j−1 (IT ⊗W0

N) (IT ⊗W0
N)Qj,N (IT ⊗WN) (IT ⊗WN) ,

Cj
31,N = (T − 1)j−1Qj,N (IT ⊗WN) (IT ⊗WN)

+ (T − 1)j−1 (IT ⊗W0
N)Qj,N (IT ⊗WN) ,

Cj
32,N = − (T − 1)j−1 (IT ⊗W0

N)Qj,N (IT ⊗WN) (IT ⊗WN) ,

Cj
1,N = (T − 1)j−1Qj,N ,

Cj
2,N = (T − 1)j−1 (IT ⊗W0

N)Qj,N (IT ⊗WN) ,

Cj
3,N = (T − 1)j−1Qj,N (IT ⊗WN) .

By their definition (see equation 4.2.5), the row and column sums of theQj,N

matrices (j = 0, 1) are less than two in absolute value.49 The row and column

sums of (IT ⊗WN) and (IT ⊗W0
N) are uniformly bounded in absolute value by

Assumption 3. Therefore, for j = 0, 1, k = 1, 2, 3 and l = 1, 2, each Cj
kl,N and

Cj
k,N matrix has row and column sums uniformly bounded in absolute value.

49The row and column sums of |Q0,N | are equal to 2T−1T , while the row and column sums of
|Q1,N | are equal to one.
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By Lemma C4 we have uN − buN = DN∆N . Utilizing this expression I can

write for j = 0, 1, k = 1, 2, 3 and l = 1, 2:

gjkl,N − γjkl,N = ψj
kl,N + ϕj

kl,N , (C.2.7)

gjk,N − γjk,N = ψj
k,N + ϕj

k,N ,

with

ϕj
kl,N =

1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

¡
Cj

kl,N +C
j0
kl,N

¢
NT×NT

uN
NT×1

, (C.2.8)

ϕj
k,N =

1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

¡
Cj

k,N +C
j0
k,N

¢
NT×NT

uN
NT×1

,

ψj
kl,N =

1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

Cj
kl,N

NT×NT

DN
NT×(p+1)

∆N
(p+1)×1

,

ψj
k,N =

1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

Cj
k,N

NT×NT

DN
NT×(p+1)

∆N
(p+1)×1

.

To prove the claim, I show that all the terms ϕj
kl,N , ϕj

k,N , ψj
kl,N and ψj

k,N are

all op (1). To simplify notation, I consider a sequence of NT ×NT matrices CN

that have row and column sums uniformly bounded in absolute value. I define

ϕN =
1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

¡
Cj

N +C
0
N

¢
NT×NT

uN
NT×1

(C.2.9)

=
1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

¡
Cj

N +C
0
N

¢
NT×NT

(IT ⊗PN)
NT×NT

vN
NT×1

,

ψN =
1

N
∆0

N
1×(p+1)

D0
N

(p+1)×NT

CN
NT×NT

DN
NT×(p+1)

∆N
(p+1)×1

,
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and show that both ϕN , and ψN are op (1). By substituting CN = Cj
kl,N for

j = 0, 1, k = 1, 2, 3 and l = 1, 2, andCN = C
j
k,N for k = 1, 2, 3 and j = 0, 1, we

then obtain that ϕj
kl,N , ϕj

k,N , ψj
kl,N and ψj

k,N are all op (1).

Observe that ϕN and ψN correspond to φN and ψN in the proof of Lemma

C.1 in Kelejian and Prucha (2005), with Cn = CN , An = CN (IT ⊗PN) and

εn = vN . Inspection of their proof of φN = op (1) and ψN = op (1) reveals that

it only utilizes Assumption 4 of that paper, the fact that the matrices Cn and An

have uniformly bounded absolute row and column sums and that n−1
Pn

i=1 εi,n =

Op (1).

I assume that the row and column sums of CN are uniformly bounded in ab-

solute value. Given Lemma C4, Assumption 4 in that paper holds and hence ψN

is by their proof op (1). Note that by Assumption 3,CN (IT ⊗PN) has uniformly

bounded absolute row and column sums. Instead of εi,n, I consider the random

variables vit,N = εit,N + µi,N . By the triangle inequality

(NT )−1
NX
i=1

TX
t=1

|vij,N | ≤ (NT )−1
NX
i=1

TX
t=1

|εit,N |+ (NT )−1
NX
i=1

TX
t=1

¯̄
µi,N

¯̄
= (NT )−1

NX
i=1

TX
t=1

|εit,N |+N−1
NX
i=1

¯̄
µi,N

¯̄
. (C.2.10)

Since by Assumption 1, the random variables εit,N are independent with uniformly

bounded second moments, it follows that (NT )−1
PN

i=1

PT
t=1 |εit,N | = Op (1).

Similarly, by Assumption 2, the random variables µi,N are independent with uni-

formly bounded second moments, and hence it follows that N−1PN
i=1

¯̄
µi,N

¯̄
=
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Op (1). As a result (NT )−1
PN

i=1

PT
t=1 |vij,N | = Op (1). Hence the proof that

φN = op (1) in Kelejian and Prucha (2005) also applies for the structure consid-

ered in this thesis and ϕN = op (1).

Proof of Theorem 2: Given Lemma C6, the proof is identical to the proof of

Theorem 2 in Kapoor et al. (2001).

C.3 Proofs for Section 4.3

Proof of Lemma 4: The dependent variable can be expressed as in equation

(3.2.4):

yt,N =
∞X
j=0

φj [Xt−j,Nβ + ut−j,N ] (C.3.1)

=
∞X
j=0

φjXt−j,Nβ +
t−1X
j=0

φjut−j,N +
∞X
j=0

φt+ju−j,N

=

Ã ∞X
j=0

φjXt−j,Nβ

!
+PN

Ã
t−1X
j=0

φjεt−j,N +
∞X
j=0

φt+jε−j,N

!
+
PNµ

1− φ

=

Ã ∞X
j=0

φjXt−j,Nβ

!
+

∙µ
1

1− φ
, 1, φt−1, .., φ0,01×(T−t)

¶
⊗PN

¸
ηN .

Hence we can define

at,N =
∞X
j=0

φjXt−j,Nβ, (C.3.2)

and

bt =

µ
1

1− φ
, 1, φt−1, .., φ0,01×(T−t)

¶
. (C.3.3)
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Given Assumptions 5 and 6, we have that
P∞

j=0 φ
jXt−j,Nβ is uniformly bounded

in absolute value and hence the sequence of vectors at,N has elements uniformly

bounded in absolute value. Note that the elements (as well as dimensions) of bt

do not depend on N , and hence they are trivially uniformly bounded in absolute

value.

Proof of Lemma 5: The claim is a consequence of Theorem A1 in Appendix A.

I now verify that its conditions are met. As in equation (4.3.10), we have that the

elements ofH0
N∆uN are quadratic forms in the innovations:

h0rt,N∆ut,N = a
0
rt,N (dt ⊗PN)ηN + η

0
N (b

0
rtdt ⊗P0NPN)ηN , (C.3.4)

where ηN =
¡
µ0N , ξ

0
N , ε

0
1,N , ..., ε

0
T,N

¢
, with ξN =

P∞
j=0 φ

jε−j,N . By Assump-

tions 1 and 6 it follows from Lemma B1 in Appendix B that the random variable

ξN satisfies condition A3 in Appendix A. Therefore, by Assumptions 1 and 2, the

innovations ηN satisfy conditions A1 and A3 in Appendix A. The Lemma stip-

ulates that the vectors art,N have elements uniformly bounded in absolute value.

Observe that by Assumption 3, the matrix (dt ⊗PN) has row sums uniformly

bounded in absolute value and hence the vector a0rt,N (dt ⊗PN) has elements uni-

formly bounded in absolute value and thus satisfies condition A2 in Appendix A.

Furthermore, given that the dimensions and elements of b0rtdt do not change with

N , we have that Assumption 3 implies that the matrix (b0rtdt ⊗P0NPN) fulfills

condition A2 as well. Finally, [(T − 1)N ]−1 λmin (VN) ≥ c > 0 is a condition

stipulated in the Lemma.
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Proof of Lemma 6: Substituting the model (equation 4.3.1) into the definition of

the GMM estimator in (4.3.5) leads to:

p
(T − 1)N

³eθN − θ´ (C.3.5)

=
p
(T − 1)N £∆Z0NHNA

−1
N H

0
N∆ZN

¤−1 ∗
∆Z0NHNA

−1
N H

0
N∆uN

=

"
∆Z0NHN

(T − 1)N
µ

AN

(T − 1)N
¶−1

H0
N∆ZN

(T − 1)N

#−1
∗

∆Z0NHN

(T − 1)N
µ

AN

(T − 1)N
¶−1

H0
N∆uNp
(T − 1)N .

By assumption in the lemma we have that V−1/2N H0
N∆uN

d→ N (0, Ik) with

[(T − 1)N ]−1VN
p→ V finite. Hence by Corollary 5 in Pötcher and Prucha

(2001), we have

µ
VN

(T − 1)N
¶1/2

V
−1/2
N H0

N∆uN =
H0

N∆uNp
(T − 1)N

d→ N (0,V) . (C.3.6)

Furthermore, the lemma assumes that

∆Z0NHN

(T − 1)N
p→M∆ZH , (C.3.7)

AN

(T − 1)N
p→ A,

whereM∆ZH is finite with full column rank andA is finite and invertible. Hence,

by Corollary 5 in Pötcher and Prucha (2001), we have the desired result.
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Proof of Theorem 3: Observe that the instruments collected in eHN consist of

yt,N and columns ofXt,N and hence by Lemma 4 are linear forms of the innova-

tions of the form assumed in Lemma 5 and satisfy its conditions. Below I verify

that [(T − 1)N ]−1 eVN has the smallest eigenvalue uniformly bounded away from

zero. This will complete verification of conditions of Lemma 5 and hence we will

have that eV−1/2N
eH0
N∆uN

d→ N
³
0, eV´.

Observe that using the expression eHN = eSN +ΥN , where eSN is the nonsto-

chastic part of the instruments (see Section 4.3.3), we have

[(T − 1)N ]−1 eVN = [(T − 1)N ]−1E
³eH0

N∆uN∆u
0
N
eHN

´
(C.3.8)

= [(T − 1)N ]−1E
h³eS0N +Υ0

N

´
∆uN∆u

0
N

³eSN +ΥN

´i
= [(T − 1)N ]−1

³eV1,N + eV2,N + eV3,N + eV4,N

´
,

where

eV1,N = eS0NE (∆uN∆u0N) eSN (C.3.9)

eV2,N = eS0NE (∆uN∆u0NΥN)eV3,N = E (Υ0
N∆uN∆u

0
N) eSNeV4,N = E (Υ0

N∆uN∆u
0
NΥN) .

In the following I show that the smallest eigenvalue of [(T − 1)N ]−1 eV1,N is

uniformly bounded away from zero. I also show that eV2,N = 0, and eV3,N = 0.

Since the eigenvalues of eV4,N are nonnegative it then follows from Lemma C1 that
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the smallest eigenvalue of [(T − 1)N ]−1 eVN is uniformly bounded away from

zero.

Using

∆uN =
£¡
0(T−1)×2,D

¢⊗PN

¤
ηN , (C.3.10)

where as in (4.1.15) E (ηNη0N) = (Ση,N ⊗ IN), it follows that

eV1,N = eS0N h¡0(T−1)×2,D¢Ση,N

¡
0(T−1)×2,D

¢0 ⊗PNP
0
N

i eSN . (C.3.11)

By Lemma C2 the smallest eigenvalue of eV1,N is then

λmin
³eV1,N

´
≥ λmin

³eS0NeSN´ ∗ (C.3.12)

λmin
h¡
0(T−1)×2,D

¢
Ση,N

¡
0(T−1)×2,D

¢0 ⊗ (PNP
0
N)
i

= λmin
³eS0NeSN´ · λmin [(DΣη,ND

0)⊗ (PNP
0
N)]

= λmin
³eS0NeSN´ · λmin (DΣη,ND

0) · λmin (PNP
0
N)

= λmin
³eS0NeSN´ · λmin (DD0) · λmin (Ση,N) · λmin (PNP

0
N) , ,

where I also used Theorem 4.2.12 in Horn and Johnson (1991). Observe that from

the definition of the first difference operator matrixD (see 4.1.14), it follows that

DD0 = 2IT−1 and hence λmin (DD
0) = 2. Since Ση,N is diagonal, we have

λmin (Ση,N) = min
£
σ2µ, var

¡
ξi,N

¢
, σ2ε
¤
= min

h
σ2µ,

σ2ε
1−φ2 , σ

2
ε

i
≥ cΣ > 0. By

Assumption 4 we have that λmin (PNP
0
N) ≥ cP > 0 and, therefore

λmin
³eV1,N

´
≥ 2cΣcPλmin

³eS0NeSN´ . (C.3.13)
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From Assumption GMM1 we have that λmin
³
[(T − 1)N ]−1 eS0t,NeSt,N´ ≥ cS > 0

and hence

[(T − 1)N ]−1 λmin
³eV1,N

´
≥ 2cΣcP cS > 0. (C.3.14)

Next, I show that eV2,N and eV3,N are matrices of zeros. Recall that ΥN con-

sists of blocksΥt,N on the main diagonal and zeros elsewhere. ThusΥ0
N∆uN∆u

0
N

consists of blocks Υ0
t,N∆ut,N∆u

0
t,N on the main diagonal and zeros elsewhere.

Observe that

Υt,N = [((bt−2, ...,b0)⊗PN) (It−1 ⊗ ηN) ,0N×tp] , (C.3.15)

and thus

Υ0
t,N∆ut,N∆u

0
t,N =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

η0N (b
0
0 ⊗P0N)
...

η0N
¡
b0t−2 ⊗P0N

¢
0tp×N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∆ut,N∆u

0
t,N . (C.3.16)

Observe that ∆ut,N = (dt ⊗PN)ηN (as in 4.3.9) and thus

η0N
¡
b0t−s ⊗P0N

¢
∆ut,N = η0N

¡
b0t−sdt ⊗P0NPN

¢
ηN , (C.3.17)

where dt is a (t+ 1) − th row of
¡
0(T−1)×2,D

¢
, with the (T − 1) × T matrix

D is defined in (4.1.14). Hence the 1 × (T + 2) vector dt is a row vector with

zeros in the first t positions. Furthermore, the 1× (T + 2) vector bt−s (defined in
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the proof of Lemma 4 above) has zero entries starting from position (t− 2 + s).

As a result, for s > 1, the product b0t−sdt is a (T + 2) × (T + 2) matrix with

zeros on the main diagonal. Hence η0N
¡
b0t−s ⊗P0N

¢
∆ut,N is a quadratic form in

the innovations ηN with zeros on the main diagonal (and no linear component).

Each element of ∆ut,N is a linear form in innovations ηN and hence can also be

treated as a linear-quadratic form in ηN where the matrix defining the quadratic

component consists of zeros. As a result, we can apply Lemma A1 in Appendix A

to obtain that the covariance of η0N
¡
b0t−s ⊗P0N

¢
∆ut,N and ∆uit,N is zero. Thus

it follows that

E
£
η0N
¡
b0t−s ⊗P0N

¢
∆ut,N∆u

0
t,N

¤
= 0, (C.3.18)

where s > 1, implying that E (Υ0
N∆uN∆u

0
N) is a matrix of zeros. As a conse-

quence eV2,N = E (Υ0
N∆uN∆u

0
N) eSN = 0k×k. (C.3.19)

The same argument implies that eV3,N is a matrix of zeros. Finally, observe that

the matrix eV4,N is itself a variance covariance matrix (i.e. symmetric positive

semidefinite) and thus it has non-negative eigenvalues.

This completes the verification of the conditions of Lemma 5 and hence we

have that eV−1/2N
eH0
N∆uN

d→ N
³
0, eV´. We can now write the estimator as

eθN = θ +
h
∆Z0N eHN

eV−1N eH0
N∆ZN

i−1
∆Z0N eHN

eV−1N eH0
N∆uN , (C.3.20)
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where by Assumptions GMM2 and GMM3,

p lim
N→∞

1

(T − 1)N∆Z0N eHN = fMH∆Z , (C.3.21)

and

p lim
N→∞

1

(T − 1)N
eVN = eV. (C.3.22)

Therefore by Lemma 6, the estimator converges in distribution with

p
(T − 1)N

³eθN − θ´ d→ N (0,Ψ) , (C.3.23)

where

Ψ =
³fM∆ZH

eV−1fM0
∆ZH

´−1fM∆ZH
eV−1 eVeV−1fM∆ZH ∗³fM∆ZH

eV−1fM0
∆ZH

´−1
(C.3.24)

=
³fM∆ZH

eV−1fM0
∆ZH

´−1
= Ψ,

which is the claim in the Theorem.

To prove Lemma 7, I will use Lemma C.6 in Kelejian and Prucha (2005). For

convenience of the reader, I restate a simplified version of that lemma:

Lemma C7 Let an and bn be sequences of n × 1 vectors and let Wn be a se-

quence of n × n matrices. Assume that the vectors an and bn have elements

uniformly bounded in absolute value and that the matrices (rWn) have row and
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column sums uniformly bounded in absolute value for r < 1 by one and some finite

constant respectively. Consider a sequence of random variables eρn converging in

probability to ρ as n → ∞, where |ρ| < r. Denote Pn (r) = (In − rWn)
−1.

Then

n−1a0nPn (ρ)
0Pn (ρ)bn − n−1a0nPn (eρn)0Pn (eρn)bn = op (1) , (C.3.25)

and

n−1tr
£
Pn (ρ)

0Pn (ρ)Pn (ρ)
0Pn (ρ)

¤
−n−1tr £Pn (eρn)0Pn (eρn)Pn (eρn)0Pn (eρn)¤ = op (1) .

(C.3.26)

Proof: The proof of the first claim follows from Lemma C.6 in Kelejian and

Prucha (2005) by choosing (in their notation) Σn = eΣn = In andHn = (an,bn).

The second claim is not a direct consequence of the Lemma C.6, however, its

proof follows the same structure. Denote

vn = n−1tr
£
Pn (ρ)

0Pn (ρ)Pn (ρ)
0Pn (ρ)

¤
(C.3.27)

−n−1tr £Pn (eρn)0Pn (eρn)Pn (eρn)0Pn (eρn)¤ .
Using the same argument as on p.39 in Kelejian and Prucha (2005), it follows that

for every subsequence (nm) there exists a subsequence (n0m) such that for ω ∈ A,

P (A) = 1, there is critical index Nω such that for all n0m ≥ Nω :
¯̄eρn0m (ω)¯̄ ≤ r∗,

where r∗ = (r + |ρ|) /2. Furthermore, it also follows from the argument on the
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same page that for n0m ≥ Nω the row sums of eρn0m (ω)Wn are less than unity in

absolute value and that
£
In0m − eρn0m (ω)Wn

¤
and

£
In0m − ρn0mWn

¤
are invertible

with

£
In0m − eρn0m (ω)Wn

¤−1
=

∞X
l=1

£eρn0m (ω)¤lWl
n, (C.3.28)

£
In0m − ρn0mWn

¤−1
=

∞X
l=1

£
ρn0m

¤l
Wl

n.

Hence we have that

vn0m (ω) =
∞X
k=1

∞X
l=1

∞X
p=1

∞X
q=1

¡
ρn0m

¢k+l+p+q
(W0

n)
k
(Wn)

l (W0
n)

p
(Wn)

q(C.3.29)

−
∞X
k=1

∞X
l=1

∞X
p=1

∞X
q=1

£eρn0m (ω)¤k+l+p+q (W0
n)

k
(Wn)

l (W0
n)

p
(Wn)

q

=
∞X
k=1

∞X
l=1

∞X
p=1

∞X
q=1

χ
(k,l,p,q)
n0m

(ω) ,

where

χ
(k,l,p,q)
n0m

(ω) =

"
ρk+l+p+q − eρk+l+p+qn0m

(ω)

rk+l+p+q

#
κ(k,l,p,q)n0m

,

with

κ(k,l,p,q)n0m
= (n0m)

−1
tr
h
rk+l+p+q

¡
W0

n0m

¢k ¡
Wn0m

¢l ¡
W0

n0m

¢p ¡
Wn0m

¢qi
. (C.3.30)

Given that the row and column sums of the matrix rWn are uniformly bounded

in absolute value by one and some finite constant respectively, it follows that
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κ(k,l,p,q)n0m
= O (1). Furthermore, observe that

¯̄̄
ρk+l+p+q − eρk+l+p+qn0m

¯̄̄
rk+l+p+q

≤ 2
³r∗
r

´k+l+p+q
, (C.3.31)

(see Kelejian and Prucha, 2005, p. 40) and hence
¯̄̄
χ
(k,l,p,q)
n0m

(ω)
¯̄̄
≤ B(k,l,p,q) =

2c (r∗/r)
k+l+p+q where c is the uniform bound for

¯̄̄
κ(k,l,p,q)n0m

¯̄̄
. Since r∗/r < 1

by construction, clearly
P∞

k=1

P∞
l=1

P∞
p=1

P∞
q=1B

(k,l,p,q) < ∞. By dominated

convergence it follows that vn0m (ω)→ 0 as n0m →∞, and as a result vn →∞ by

the subsequence argument (Kelejian and Prucha, 2005, p. 39; Gänsler and Slute,

1977, pp. 61-62).

Proof of Lemma 7: Recall that based on the expression for the covariance of

the quadratic forms in eVN and bVN , the elements of the first diagonal block ofeVts,N − bVts,N are (see 4.3.34):

evyqr,ts,N − bvyqr,ts,N = a0t−1−q,N (dtΣη,Nd
0
s ⊗PNP

0
N)as−1−r,N (C.3.32)

−ba0t−1−q,N ³dt bΣη,Nd
0
s ⊗ bPN

bP0N´bas−1−r,N
+2tr

¡
b0t−1−qdtΣη,Nd

0
sbs−1−rΣη,N ⊗P0NPNP

0
NPN

¢
−2tr

³bb0t−1−q,Ndt bΣη,Nd
0
s
bbs−1−r,N bΣη,N ⊗ bP0N bPN

bP0N bPN

´
.

Note that from (C.3.2) and since the lemma assumes
P−∞

k=0 φ
kX−k,Nβ = 0, it
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follows that

¡
a0t−1−q,N − ba0t−1−q,N¢ =

t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N , (C.3.33)

(as−1−r,N − bas−1−r,N) =
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´
.

Since dtΣη,Nd
0
s is a scalar and we can then rearrange the above expression as50

evyqr,ts,N − bvyqr,ts,N = 18X
m=1

vym,N , (C.3.34)

50I use the following, rather tedious algebraic rule: let a, b, c, d and ba,bb,bc, bd be matrices (and/or
scalars or vectors) of conformable dimensions. It is then easy to verify that:

abcd− babbbcbd = (a− ba) bcd+ a
³
b−bb´ cd+ ab (c− bc) d+ abc

³
d− bd´

− (a− ba)³b−bb´ cd− (a− ba) b (c− bc) d− (a− ba) bc³d− bd´
−a
³
b−bb´ (c− bc) d− a

³
b−bb´ c³d− bd´− ab (c− bc)³d− bd´

+(a− ba)³b−bb´ (c− bc) d+ (a− ba)³b−bb´ c³d− bd´
+(a− ba) b (c− bc)³d− bd´+ a

³
b−bb´ (c− bc)³d− bd´

− (a− ba)³b−bb´ (c− bc)³d− bd´ ,
and

ab− babb = (a− ba) b+ a
³
b−bb´− (a− ba)³b−bb´ .
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where

vy1,N = dt
³
Ση,N − bΣη,N

´
d0s
¡
a0t−1−q,NPNP

0
Nas−1−r,N

¢
, (C.3.35)

vy2,N = dtΣη,Nd
0
s

¡
a0t−1−q,N − ba0t−1−q,N¢PNP

0
Nas−1−r,N

= dtΣη,Nd
0
s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#
PNP

0
Nas−1−r,N ,

vy3,N = dtΣη,Nd
0
sa
0
t−1−q,N

³
PNP

0
N − bPN

bP0N´ as−1−r,N ,
vy4,N = dtΣη,Nd

0
sa
0
t−1−q,NPNP

0
N (as−1−r,N − bas−1−r,N)

= dtΣη,Nd
0
sa
0
t−1−q,NPNP

0
N

"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,

vy5,N = −dt
³
Ση,N − bΣη,N

´
d0s
¡
a0t−1−q,N − ba0t−1−q,N¢PNP

0
Nas−1−r,N

= −dt
³
Ση,N − bΣη,N

´
d0s

"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
∗

PNP
0
Nas−1−r,N ,

vy6,N = −dt
³
Ση,N − bΣη,N

´
d0sa

0
t−1−q,N

³
PNP

0
N − bPN

bP0N´as−1−r,N ,
vy7,N = −dt

³
Ση,N − bΣη,N

´
d0sa

0
t−1−q,NPNP

0
N (as−1−r,N − bas−1−r,N)

= −dt
³
Ση,N − bΣη,N

´
d0sa

0
t−1−q,N ∗

PNP
0
N

"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,
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vy8,N = −dtΣη,Nd
0
s

¡
a0t−1−q,N − ba0t−1−q,N¢ ³PNP

0
N − bPN

bP0N´ as−1−r,N
= −dtΣη,Nd

0
s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#
∗³

PNP
0
N − bPN

bP0N´as−1−r,N ,

vy9,N = −dtΣη,Nd
0
s

¡
a0t−1−q,N − ba0t−1−q,N¢PNP

0
N (as−1−r,N − bas−1−r,N)

= −dtΣη,Nd
0
s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#
∗

PNP
0
N

"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,

vy10,N = −dtΣη,Nd
0
sa
0
t−1−q,N

³
PNP

0
N − bPN

bP0N´ (as−1−r,N − bas−1−r,N)
= −dtΣη,Nd

0
sa
0
t−1−q,N ∗³

PNP
0
N − bPN

bP0N´
"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,

vy11,N = −dt
³
Ση,N − bΣη,N

´
d0s
¡
a0t−1−q,N − ba0t−1−q,N¢ ∗³

PNP
0
N − bPN

bP0N´as−1−r,N
= −dt

³
Ση,N − bΣη,N

´
d0s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#
∗³

PNP
0
N − bPN

bP0N´as−1−r,N ,
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vy12,N = −dt
³
Ση,N − bΣη,N

´
d0s
¡
a0t−1−q,N − ba0t−1−q,N¢

·PNP
0
N (as−1−r,N − bas−1−r,N)

= −dt
³
Ση,N − bΣη,N

´
d0s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#
·PNP

0
N (as−1−r,N − bas−1−r,N) ,

vy13,N = −dt
³
Ση,N − bΣη,N

´
d0sa

0
t−1−q,N ∗³

PNP
0
N − bPN

bP0N´ (as−1−r,N − bas−1−r,N)
= −dt

³
Ση,N − bΣη,N

´
d0sa

0
t−1−q,N ∗³

PNP
0
N − bPN

bP0N´
"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,

vy14,N = −dtΣη,Nd
0
s

¡
a0t−1−q,N − ba0t−1−q,N¢

·
³
PNP

0
N − bPN

bP0N´ (as−1−r,N − bas−1−r,N)
= −dtΣη,Nd

0
s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#

·
³
PNP

0
N − bPN

bP0N´
"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,
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vy15,N = −dt
³
Ση,N − bΣη,N

´
d0s
¡
a0t−1−q,N − ba0t−1−q,N¢

·
³
PNP

0
N − bPN

bP0N´ (as−1−r,N − bas−1−r,N)
= −dt

³
Ση,N − bΣη,N

´
d0s

"
t−2−qX
k=0

³
φkβ0 − bφkbβ0N´X0

t−1−q−k,N

#

·
³
PNP

0
N − bPN

bP0N´
"
s−2−rX
k=0

Xs−1−r−k,N
³
φkβ − bφkbβN

´#
,

vy16,N = 2
£
tr
¡
b0t−1−qdtΣη,Nd

0
sbs−1−rΣη,N

¢
−tr

³bb0t−1−q,Ndt bΣη,Nd
0
s
bbs−1−r,N bΣη,N

´i
· tr (P0NPNP

0
NPN) ,

vy17,N = 2tr
¡
b0t−1−qdtΣη,Nd

0
sbs−1−rΣη,N

¢ ∗
tr
³
P0NPNP

0
NPN − bP0N bPN

bP0N bPN

´
,

vy18,N = −2 £tr ¡b0t−1−qdtΣη,Nd
0
sbs−1−rΣη,N

¢
−tr

³bb0t−1−q,Ndt bΣη,Nd
0
s
bbs−1−r,N bΣη,N

´i
∗

tr
³
P0NPNP

0
NPN − bP0N bPN

bP0N bPN

´
.

Observe that for notational convenience I drop the dependence of the scalars vym,N

on the values of the indexes q, r, s, t.

I now examine the nonstochastic elements of the scalars vym,N . Note that the

elements and dimensions of dt and d0s do not depend on N and hence they are

trivially uniformly bounded in absolute value. The dimensions of Ση,N (defined

in 4.1.16) do not depend on N and its elements are uniformly bounded in absolute

value by Assumptions 1, 2 and 6. I now show that the other nonstochastic com-
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ponents are uniformly bounded in absolute value when scaled by N−1. Note that

since |φ| < 1, it follows from Assumption 5 that at−1−q,N as well as as−1−r,N

have elements uniformly bounded in absolute value. By Assumption 3, the ma-

trix PN has row and column sums uniformly bounded in absolute value. As a

result, it follows from Lemma C3 that N−1a0t−1−q,NPNP
0
Nas−1−r,N is uniformly

bounded in absolute value. Similarly, given Assumptions 3 and 5, it follows from

Lemma C3 that N−1X0
t−1−q−k,NPNP

0
Nas−1−r,N (where k = 0, ..t − 1 − q) and

N−1a0t−1−q,NPNP
0
NXs−1−r−k,N (where k = 0, .., s − 1 − r) have elements that

are uniformly bounded in absolute value.

Next I show that the stochastic components of vym,N with dimensions that do

not depend on N are op (1). Recall that

Ση,N = diag

µ
σ2µ,N ,

σ2ε,N
1− φ

, σ2ε,N , ..., σ
2
ε,N

¶
, (C.3.36)

is a (T + 2)× (T + 2) diagonal matrix and that

bt−1−q =
µ

1

1− φ
, 1, φt−2−q, .., φ0,01×(T−t−1−q)

¶
, (C.3.37)

is a 1× (T + 2) vector. Since bδN p→ δ and |φ| < 1, we then have by Theorem 14
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in Pötscher and Prucha (2001) that

³
Ση − bΣη,N

´
= op (1) , (C.3.38)³

φkβ − bφkbβN

´
= op (1) , k ≥ 0³

bt−1−q − bbt−1−q,N´ = op (1) ,³
bs−1−r − bbs−1−r,N´ = op (1) ,

and
tr
¡
b0t−1−qdtΣηd

0
sbs−1−rΣη

¢
−tr

³bb0t−1−q,Ndt bΣη,Nd
0
s
bbs−1−r,N bΣη,N

´
= op (1) .

(C.3.39)

Thus it follows that for m = 1, 2, 4, 5, 7, 9, 11, 12, 13, and 14, all elements of

N−1vym,N are either op (1) or uniformly bounded in absolute value. Hence,N−1vym,N =

op (1) for m = 1, 2, 4, 5, 7, 9, 11, 12, 13, 14 and 16.

Finally, I examine the remaining scalars vym,N that contain stochastic elements

with dimensions that depend on N . Observe that by assumption in the lemma,

the parameter ρ and the matrix PN (ρ) = (IN − ρWN)
−1 satisfy the condition in

Lemma C7. Thus

a0t−1−q,N
³
PNP

0
N − bPN

bP0N´as−1−r,N = op (1) , (C.3.40)

X0
t−1−q−k,N

³
PNP

0
N − bPN

bP0N´as−1−r,N = op (1) ,

X0
t−1−q−k,N

³
PNP

0
N − bPN

bP0N´Xs−1−r−k,N = op (1) ,

tr
³
P0NPNP

0
NPN − bP0N bPN

bP0N bPN

´
= op (1) .
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Hence N−1vym,N = op (1) for m = 3, 6, 8, 10, 15, 17, and 18. As a result, we have

that

[N (T − 1)]−1 ¡evyqr,ts,N − bvyqr,ts,N¢ = op (1) . (C.3.41)

Next I consider the lower-diagonal block of bVts,N . As above, I express the

difference between the typical element of eVX
ts,N and bVX

ts,N as

eVX
qr,ts,N − bVX

qr,ts,N = X0
t−q,N (dtΣη,Nd

0
s ⊗PNP

0
N)Xs−r,N (C.3.42)

−X0
t−q,N

³
dtbΣη,Nd

0
s ⊗ bPN

bP0N´Xs−r,N

= A1,N +A2,N +A3,N ,

where51

A1,N = dt
³
Ση,N − bΣη,N

´
d0sX

0
t−q,NPNP

0
NXs−r,N , (C.3.43)

A2,N = dtΣη,Nd
0
sX

0
t−q,N

³
PNP

0
N − bPN

bP0N´Xs−r,N ,

A3,N = −dt
³
Ση,N − bΣη,N

´
d0sX

0
t−q,N

³
PNP

0
N − bPN

bP0N´Xs−r,N .

I again do not explicitly denote the dependence of the p× p matricesA1,N ,A2,N

andA3,N on the value of the indexes q, r, s, t.

As above we have that
³
Ση,N − bΣη,N

´
= op (1). Since by Assumption

51Similarly to the decomposition above this uses the the following algebraic rule: let a,b and ba,bb
be matrices of conformable dimensions. Then

ab− babb = (a− ba) b+ a
³
b−bb´− (a− ba)³b−bb´ .
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5, the elements of and Xt−q,N and Xs−r,N are uniformly bounded in absolute

value and from Assumption 3, the matrix PNP
0
N has row and column sums

uniformly bounded in absolute value, it follows from Lemma C3 that the el-

ements of N−1X0
t−q,NPNP

0
NXs−r,N are uniformly bounded in absolute value

and, therefore, N−1A1,N = op (1). Similarly, from Lemma C7 it follows that

N−1X0
t−q,N

³
PNP

0
N − bPN

bP0N´Xs−r,N = op (1), and henceN−1A2,N andN−1A3,N

are op (1). As a result,

[N (T − 1)]−1
³eVX

ts,N − bVX
ts,N

´
= op (1) . (C.3.44)

Finally, I show that the off-diagonal blocks in eVts,N are matrices of zeros. Ob-

serve that from Lemma 4 it follows that the moments ∆u0s,Nys−1−r,N are linear-

quadratic forms in the innovations ηN . Since E
¡
∆u0s,Nys−1−r,N

¢
= 0 (as r > 0),

it follows that the diagonal elements of the quadratic forms are zeros. Because

elements ofX0
t−q,N∆ut,N are linear forms in ηN , it follows from Lemma A1 that

E
¡
X0

t−q,N∆ut,N∆u
0
s,Nys−1−r,N

¢
= 0p×1,

and hence the off-diagonal blocks in both eVts,N and bVts,N are matrices of zeros.

Thus we have together that

[N (T − 1)]−1
³eVts,N − bVts,N

´
p→ 0kt×ks, (C.3.45)
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or by repeating the above arguments for other values of t and s that

[N (T − 1)]−1
³eVN − bVN

´
p→ 0k×k. (C.3.46)

From [(T − 1)N ]−1 eVN
p→ eVN (Assumption GMM3) it now follows that

[(T − 1)N ]−1 bVN
p→ eV.

Proof of Theorem 4: The feasible second stage GMM estimator is

∨
θN
³bδN´ = h∆Z0N eHN

bV−1N ³bδN´ eH0
N∆ZN

i−1
∆Z0N eHN

bV−1N ³bδN´ eH0
N∆yN .

(C.3.47)

To prove the claim it suffices to show that, see e.g. Schmidt (1976), p. 71:

∆1,N = [N (T − 1)]−1∆Z0N eHN
bV−1N ³bδN´ eH0

N∆ZN

− [N (T − 1)]−1∆Z0N eHN
eV−1N eH0

N∆ZN
p→ 0,

(C.3.48)

and

∆2,N = [N (T − 1)]−1/2∆Z0N eHN
bV−1N ³bδN´∆eH0

N∆uN

− [N (T − 1)]−1/2∆Z0N eHN
eV−1N eH0

N∆uN
p→ 0.

(C.3.49)

Note that

∆1,N = [N (T − 1)]−1∆Z0N eHN ∗ (C.3.50)

∗
∙³
[N (T − 1)]−1 bVN

³bδN´´−1 − ³[N (T − 1)]−1 eVN

´−1¸
∗ [N (T − 1)]−1 eH0

N∆ZN .
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From Lemma 7 and Assumption GMM3, it folows that the matrices

[(T − 1)N ]−1 bVN

³bδN´ and [N (T − 1)]−1 eVN both converge to eV in probabil-

ity. Since by Assumption GMM3 the matrix eV is finite and nonsingular, it follows

from Theorem 14 in Pötscher and Prucha (2001) that

∙³
[N (T − 1)]−1 bVN

³bδN´´−1 − ³[N (T − 1)]−1 eVN

´−1¸
= op (1) . (C.3.51)

Given Assumption GMM2, it then follows that ∆1,N
p→ 0.

Similarly we have for ∆2,N :

∆2,N = [N (T − 1)]−1∆Z0N eHN ∗ (C.3.52)

∗
∙³
[N (T − 1)]−1 bVN

³bδN´´−1 − ³[N (T − 1)]−1 eVN

´−1¸
∗ [N (T − 1)]−1/2 eH0

N∆uN ,

where as above

[N (T − 1)]−1∆Z0N eHN
p→fM0

H∆Z , (C.3.53)

and

∙³
[N (T − 1)]−1 bVN

³bδN´´−1 − ³[N (T − 1)]−1 eVN

´−1¸ p→ 0k×k. (C.3.54)

Note that from Lemma 5, it follows that eV−1/2N
eH0
N∆u

d→ N (0, Ik). Given As-
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sumption GMM3, it follows from Theorem 15 in Pötscher and Prucha (2001) that

eH0
N∆uN

[N (T − 1)]1/2
=

Ã eVN

N (T − 1)

!1/2
· eV−1/2N

eH0
N∆uN

d→ N
³
0, eV´ (C.3.55)

Hence by Corollary 5, part (a), in Pötscher and Prucha (2001), we have that

∆2,N
p→ 0.

Proof of Lemma 8: Given Assumption GMM3, the claim follows directly from

C.3.48.
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D Appendix: Tables of Monte Carlo Results
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 -0.90 1 0.0977 0.0057 0.0948 0.0088 0.0883 -0.0169
-0.75 -0.90 1 0.1213 0.0079 0.1094 0.0087 0.1030 -0.0252
-0.25 -0.90 1 0.2367 0.0139 0.1601 0.0110 0.1634 -0.0858
0.00 -0.90 1 0.3246 0.0151 0.1885 0.0110 0.2089 -0.1369
0.25 -0.90 1 0.5168 0.0140 0.2223 0.0100 0.2758 -0.2090
0.75 -0.90 1 0.9098 -0.1899 0.2126 0.0099 0.3447 -0.2852
0.90 -0.90 1 0.3725 -0.0178 0.1594 0.0050 0.2694 -0.2165
-0.90 -0.50 1 0.0452 0.0014 0.0428 0.0016 0.0411 -0.0066
-0.75 -0.50 1 0.0554 0.0021 0.0502 0.0020 0.0477 -0.0097
-0.25 -0.50 1 0.1004 0.0044 0.0784 0.0013 0.0731 -0.0284
0.00 -0.50 1 0.1386 0.0047 0.0927 0.0041 0.0862 -0.0427
0.25 -0.50 1 0.2112 0.0070 0.1098 0.0059 0.1030 -0.0638
0.75 -0.50 1 1.0751 -0.2148 0.1156 0.0055 0.1167 -0.0864
0.90 -0.50 1 0.2612 -0.0031 0.0877 0.0043 0.0988 -0.0734
-0.90 -0.25 1 0.0372 0.0011 0.0362 0.0025 0.0343 -0.0046
-0.75 -0.25 1 0.0458 0.0008 0.0421 0.0021 0.0410 -0.0068
-0.25 -0.25 1 0.0866 0.0026 0.0655 0.0014 0.0606 -0.0199
0.00 -0.25 1 0.1187 0.0022 0.0781 0.0024 0.0701 -0.0296
0.25 -0.25 1 0.1711 0.0030 0.0902 0.0037 0.0816 -0.0441
0.75 -0.25 1 1.2234 -0.3342 0.0948 0.0052 0.0914 -0.0606
0.90 -0.25 1 0.2557 -0.0095 0.0733 0.0019 0.0783 -0.0533
-0.90 0.00 1 0.0364 0.0018 0.0362 0.0011 0.0346 -0.0048
-0.75 0.00 1 0.0446 0.0015 0.0413 0.0010 0.0396 -0.0064
-0.25 0.00 1 0.0845 0.0016 0.0644 0.0020 0.0591 -0.0181
0.00 0.00 1 0.1135 0.0022 0.0736 0.0014 0.0651 -0.0257
0.25 0.00 1 0.1660 0.0028 0.0856 0.0008 0.0766 -0.0391
0.75 0.00 1 1.3519 -0.3439 0.0884 0.0058 0.0849 -0.0538
0.90 0.00 1 0.2572 -0.0050 0.0713 0.0050 0.0725 -0.0487
-0.90 0.25 1 0.0385 0.0000 0.0365 0.0018 0.0357 -0.0055
-0.75 0.25 1 0.0477 0.0012 0.0430 0.0022 0.0427 -0.0084
-0.25 0.25 1 0.0884 0.0012 0.0669 0.0030 0.0629 -0.0196
0.00 0.25 1 0.1229 0.0022 0.0804 0.0032 0.0714 -0.0295
0.25 0.25 1 0.1824 0.0022 0.0927 0.0019 0.0825 -0.0423
0.75 0.25 1 1.2421 -0.3463 0.0979 0.0032 0.0912 -0.0622
0.90 0.25 1 0.2583 -0.0029 0.0768 0.0046 0.0792 -0.0544

Table D1
Initial IV Estimators of Φ

Estimator AH1 AH2 AB
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 0.50 1 0.0473 0.0002 0.0443 0.0013 0.0426 -0.0071
-0.75 0.50 1 0.0574 0.0010 0.0528 0.0016 0.0497 -0.0107
-0.25 0.50 1 0.1058 0.0028 0.0807 0.0047 0.0732 -0.0264
0.00 0.50 1 0.1449 0.0019 0.0992 0.0040 0.0885 -0.0428
0.25 0.50 1 0.2197 0.0029 0.1153 0.0064 0.1037 -0.0616
0.75 0.50 1 1.0355 -0.2428 0.1204 0.0041 0.1190 -0.0896
0.90 0.50 1 0.2672 -0.0110 0.0948 0.0042 0.1001 -0.0751
-0.90 0.90 1 0.0950 -0.0029 0.0960 0.0013 0.0916 -0.0229
-0.75 0.90 1 0.1178 -0.0037 0.1145 0.0013 0.1100 -0.0321
-0.25 0.90 1 0.2298 -0.0047 0.1761 0.0073 0.1691 -0.0896
0.00 0.90 1 0.3335 -0.0058 0.2008 0.0084 0.2131 -0.1363
0.25 0.90 1 0.5477 -0.0176 0.2251 0.0143 0.2764 -0.2062
0.75 0.90 1 0.9974 -0.1566 0.2144 0.0061 0.3543 -0.2889
0.90 0.90 1 0.3929 -0.0086 0.1662 -0.0005 0.2672 -0.2119
-0.90 -0.90 2 0.0408 0.0006 0.0379 0.0002 0.0372 -0.0067
-0.75 -0.90 2 0.0498 -0.0002 0.0448 0.0004 0.0434 -0.0091
-0.25 -0.90 2 0.0937 0.0001 0.0676 0.0001 0.0655 -0.0235
0.00 -0.90 2 0.1300 -0.0027 0.0821 -0.0015 0.0788 -0.0353
0.25 -0.90 2 0.1905 0.0008 0.0923 0.0003 0.0881 -0.0509
0.75 -0.90 2 1.0960 -0.2450 0.0989 0.0011 0.0985 -0.0708
0.90 -0.90 2 0.2442 -0.0024 0.0770 0.0018 0.0853 -0.0604
-0.90 -0.50 2 0.0367 0.0015 0.0356 0.0009 0.0349 -0.0052
-0.75 -0.50 2 0.0451 0.0003 0.0413 0.0010 0.0412 -0.0074
-0.25 -0.50 2 0.0864 -0.0011 0.0638 0.0004 0.0603 -0.0202
0.00 -0.50 2 0.1170 0.0020 0.0770 -0.0002 0.0696 -0.0283
0.25 -0.50 2 0.1750 0.0060 0.0859 -0.0002 0.0806 -0.0423
0.75 -0.50 2 1.1873 -0.3030 0.0921 0.0035 0.0897 -0.0599
0.90 -0.50 2 0.2555 -0.0040 0.0723 0.0025 0.0762 -0.0521
-0.90 -0.25 2 0.0364 0.0015 0.0349 0.0011 0.0347 -0.0043
-0.75 -0.25 2 0.0441 0.0010 0.0403 0.0009 0.0400 -0.0064
-0.25 -0.25 2 0.0849 -0.0002 0.0640 0.0017 0.0583 -0.0180
0.00 -0.25 2 0.1141 0.0037 0.0747 0.0000 0.0677 -0.0270
0.25 -0.25 2 0.1697 0.0049 0.0844 0.0015 0.0782 -0.0406
0.75 -0.25 2 1.3170 -0.3437 0.0901 0.0032 0.0863 -0.0561
0.90 -0.25 2 0.2563 -0.0088 0.0703 0.0040 0.0732 -0.0489

Table D1 cont.
Initial IV Estimators of Φ

Estimator AH1 AH2 AB
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 0.00 2 0.0364 0.0018 0.0362 0.0011 0.0346 -0.0048
-0.75 0.00 2 0.0446 0.0015 0.0413 0.0010 0.0396 -0.0064
-0.25 0.00 2 0.0845 0.0016 0.0644 0.0020 0.0591 -0.0181
0.00 0.00 2 0.1135 0.0022 0.0736 0.0014 0.0651 -0.0257
0.25 0.00 2 0.1660 0.0028 0.0856 0.0008 0.0766 -0.0391
0.75 0.00 2 1.3519 -0.3439 0.0884 0.0058 0.0849 -0.0538
0.90 0.00 2 0.2572 -0.0050 0.0713 0.0050 0.0725 -0.0487
-0.90 0.25 2 0.0370 0.0011 0.0360 0.0015 0.0345 -0.0047
-0.75 0.25 2 0.0465 0.0011 0.0427 0.0017 0.0399 -0.0069
-0.25 0.25 2 0.0855 0.0013 0.0656 0.0034 0.0604 -0.0202
0.00 0.25 2 0.1192 0.0034 0.0783 0.0033 0.0693 -0.0289
0.25 0.25 2 0.1760 0.0026 0.0886 0.0029 0.0794 -0.0413
0.75 0.25 2 1.2863 -0.3508 0.0909 0.0043 0.0880 -0.0584
0.90 0.25 2 0.2585 0.0024 0.0755 0.0047 0.0759 -0.0516
-0.90 0.50 2 0.0416 0.0011 0.0409 0.0024 0.0391 -0.0063
-0.75 0.50 2 0.0507 0.0012 0.0479 0.0030 0.0460 -0.0090
-0.25 0.50 2 0.0958 0.0016 0.0721 0.0041 0.0679 -0.0250
0.00 0.50 2 0.1344 0.0075 0.0894 0.0060 0.0797 -0.0354
0.25 0.50 2 0.1997 0.0094 0.1063 0.0060 0.0935 -0.0526
0.75 0.50 2 1.2256 -0.2925 0.1091 0.0093 0.1046 -0.0755
0.90 0.50 2 0.2678 -0.0126 0.0885 0.0055 0.0907 -0.0659
-0.90 0.90 2 0.1252 -0.0041 0.1163 0.0077 0.1105 -0.0267
-0.75 0.90 2 0.1538 -0.0030 0.1380 0.0121 0.1285 -0.0365
-0.25 0.90 2 0.2908 -0.0019 0.2099 0.0137 0.2005 -0.1060
0.00 0.90 2 0.4118 -0.0013 0.2549 0.0156 0.2457 -0.1611
0.25 0.90 2 0.6497 -0.0186 0.2939 0.0166 0.3227 -0.2403
0.75 0.90 2 1.2519 -0.3148 0.2742 0.0071 0.4062 -0.3263
0.90 0.90 2 0.5361 -0.0507 0.2255 0.0068 0.3408 -0.2655
-0.90 -0.90 3 0.0392 0.0016 0.0370 0.0020 0.0364 -0.0052
-0.75 -0.90 3 0.0474 0.0021 0.0431 0.0023 0.0419 -0.0075
-0.25 -0.90 3 0.0900 0.0035 0.0664 0.0026 0.0635 -0.0184
0.00 -0.90 3 0.1228 0.0058 0.0790 0.0015 0.0728 -0.0291
0.25 -0.90 3 0.1857 0.0068 0.0916 0.0021 0.0834 -0.0442
0.75 -0.90 3 1.1327 -0.3200 0.0931 0.0023 0.0901 -0.0631
0.90 -0.90 3 0.2562 -0.0151 0.0741 0.0041 0.0777 -0.0534

Estimator AH1 AH2 AB

Table D1 cont.
Initial IV Estimators of Φ
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 -0.50 3 0.0372 0.0014 0.0359 0.0012 0.0344 -0.0042
-0.75 -0.50 3 0.0455 0.0021 0.0417 0.0007 0.0411 -0.0067
-0.25 -0.50 3 0.0886 0.0012 0.0642 0.0015 0.0605 -0.0181
0.00 -0.50 3 0.1181 0.0045 0.0764 0.0016 0.0685 -0.0278
0.25 -0.50 3 0.1757 0.0043 0.0863 0.0009 0.0791 -0.0404
0.75 -0.50 3 1.2685 -0.3750 0.0893 0.0046 0.0855 -0.0572
0.90 -0.50 3 0.2589 -0.0104 0.0714 0.0056 0.0736 -0.0499
-0.90 -0.25 3 0.0363 0.0019 0.0358 0.0005 0.0348 -0.0038
-0.75 -0.25 3 0.0454 0.0014 0.0413 0.0008 0.0397 -0.0062
-0.25 -0.25 3 0.0858 0.0008 0.0641 0.0015 0.0596 -0.0183
0.00 -0.25 3 0.1163 0.0041 0.0744 0.0018 0.0668 -0.0270
0.25 -0.25 3 0.1672 0.0051 0.0857 0.0020 0.0764 -0.0384
0.75 -0.25 3 1.3017 -0.3856 0.0886 0.0052 0.0843 -0.0555
0.90 -0.25 3 0.2542 -0.0107 0.0702 0.0051 0.0720 -0.0484
-0.90 0.00 3 0.0364 0.0018 0.0362 0.0011 0.0346 -0.0048
-0.75 0.00 3 0.0446 0.0015 0.0413 0.0010 0.0396 -0.0064
-0.25 0.00 3 0.0845 0.0016 0.0644 0.0020 0.0591 -0.0181
0.00 0.00 3 0.1135 0.0022 0.0736 0.0014 0.0651 -0.0257
0.25 0.00 3 0.1660 0.0028 0.0856 0.0008 0.0766 -0.0391
0.75 0.00 3 1.3519 -0.3439 0.0884 0.0058 0.0849 -0.0538
0.90 0.00 3 0.2572 -0.0050 0.0713 0.0050 0.0725 -0.0487
-0.90 0.25 3 0.0374 0.0009 0.0364 0.0015 0.0344 -0.0045
-0.75 0.25 3 0.0456 0.0013 0.0417 0.0016 0.0395 -0.0054
-0.25 0.25 3 0.0869 0.0003 0.0651 0.0021 0.0597 -0.0193
0.00 0.25 3 0.1154 0.0028 0.0772 0.0018 0.0693 -0.0276
0.25 0.25 3 0.1709 0.0037 0.0889 0.0025 0.0795 -0.0396
0.75 0.25 3 1.3535 -0.3464 0.0878 0.0023 0.0864 -0.0568
0.90 0.25 3 0.2564 0.0049 0.0739 0.0034 0.0743 -0.0494
-0.90 0.50 3 0.0405 0.0006 0.0397 0.0020 0.0379 -0.0052
-0.75 0.50 3 0.0493 0.0014 0.0472 0.0022 0.0447 -0.0081
-0.25 0.50 3 0.0940 0.0036 0.0720 0.0021 0.0674 -0.0227
0.00 0.50 3 0.1316 0.0046 0.0855 0.0039 0.0774 -0.0328
0.25 0.50 3 0.1919 0.0072 0.1013 0.0039 0.0889 -0.0471
0.75 0.50 3 1.2627 -0.3083 0.1014 0.0098 0.0954 -0.0670
0.90 0.50 3 0.2714 -0.0080 0.0802 0.0042 0.0847 -0.0588

Estimator AH1 AH2 AB

Table D1 cont.
Initial IV Estimators of Φ
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 0.90 3 0.1371 -0.0009 0.1252 0.0076 0.1180 -0.0288
-0.75 0.90 3 0.1699 -0.0027 0.1503 0.0126 0.1369 -0.0393
-0.25 0.90 3 0.3219 0.0020 0.2256 0.0187 0.2058 -0.1003
0.00 0.90 3 0.4354 0.0032 0.2673 0.0204 0.2551 -0.1572
0.25 0.90 3 0.6794 0.0100 0.3249 0.0148 0.3273 -0.2381
0.75 0.90 3 1.3234 -0.3345 0.3122 0.0082 0.4046 -0.3253
0.90 0.90 3 0.5756 -0.0721 0.2463 0.0068 0.3432 -0.2676

Table D1 cont.
Initial IV Estimators of Φ

Estimator AH1 AH2 AB
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 -0.90 1 0.0853 -0.0065 0.0713 -0.0082 0.0850 -0.0016
-0.75 -0.90 1 0.0987 -0.0093 0.0845 -0.0147 0.0987 -0.0070
-0.25 -0.90 1 0.1419 -0.0425 0.1333 -0.0536 0.1468 -0.0411
0.00 -0.90 1 0.1676 -0.0678 0.1616 -0.0822 0.1736 -0.0735
0.25 -0.90 1 0.1989 -0.0998 0.1934 -0.1158 0.2113 -0.1165
0.75 -0.90 1 0.1773 -0.0866 0.1757 -0.1082 0.2431 -0.1575
0.90 -0.90 1 0.1279 -0.0562 0.1291 -0.0787 0.1783 -0.0911
-0.90 -0.50 1 0.0417 -0.0030 0.0404 -0.0027 0.0426 0.0003
-0.75 -0.50 1 0.0490 -0.0039 0.0462 -0.0040 0.0499 -0.0022
-0.25 -0.50 1 0.0703 -0.0140 0.0681 -0.0138 0.0693 -0.0113
0.00 -0.50 1 0.0845 -0.0224 0.0783 -0.0186 0.0773 -0.0162
0.25 -0.50 1 0.0983 -0.0317 0.0927 -0.0306 0.0883 -0.0236
0.75 -0.50 1 0.0901 -0.0319 0.0868 -0.0378 0.0928 -0.0410
0.90 -0.50 1 0.0668 -0.0221 0.0688 -0.0274 0.0777 -0.0279
-0.90 -0.25 1 0.0347 -0.0017 0.0349 -0.0017 0.0367 0.0005
-0.75 -0.25 1 0.0408 -0.0027 0.0406 -0.0025 0.0424 -0.0008
-0.25 -0.25 1 0.0585 -0.0094 0.0589 -0.0085 0.0589 -0.0078
0.00 -0.25 1 0.0688 -0.0147 0.0667 -0.0146 0.0658 -0.0118
0.25 -0.25 1 0.0796 -0.0232 0.0765 -0.0210 0.0737 -0.0150
0.75 -0.25 1 0.0744 -0.0260 0.0771 -0.0281 0.0784 -0.0309
0.90 -0.25 1 0.0584 -0.0180 0.0594 -0.0188 0.0683 -0.0202
-0.90 0.00 1 0.0338 -0.0012 0.0338 -0.0013 0.0349 0.0012
-0.75 0.00 1 0.0386 -0.0021 0.0388 -0.0024 0.0403 -0.0003
-0.25 0.00 1 0.0572 -0.0091 0.0568 -0.0090 0.0556 -0.0058
0.00 0.00 1 0.0649 -0.0127 0.0646 -0.0126 0.0634 -0.0086
0.25 0.00 1 0.0738 -0.0189 0.0734 -0.0191 0.0707 -0.0133
0.75 0.00 1 0.0744 -0.0252 0.0742 -0.0252 0.0764 -0.0284
0.90 0.00 1 0.0572 -0.0167 0.0573 -0.0168 0.0657 -0.0205
-0.90 0.25 1 0.0345 -0.0024 0.0344 -0.0024 0.0378 -0.0005
-0.75 0.25 1 0.0410 -0.0029 0.0403 -0.0035 0.0422 -0.0008
-0.25 0.25 1 0.0594 -0.0099 0.0585 -0.0099 0.0572 -0.0072
0.00 0.25 1 0.0696 -0.0143 0.0688 -0.0149 0.0641 -0.0086
0.25 0.25 1 0.0770 -0.0228 0.0776 -0.0213 0.0739 -0.0118
0.75 0.25 1 0.0765 -0.0271 0.0787 -0.0291 0.0790 -0.0319
0.90 0.25 1 0.0619 -0.0197 0.0611 -0.0206 0.0696 -0.0236

Table D2
Second Stage GMM Estimators of Φ

Estimator ignoring mix exp
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 0.50 1 0.0400 -0.0016 0.0390 -0.0034 0.0432 -0.0021
-0.75 0.50 1 0.0465 -0.0032 0.0471 -0.0047 0.0502 -0.0021
-0.25 0.50 1 0.0699 -0.0115 0.0678 -0.0131 0.0642 -0.0105
0.00 0.50 1 0.0792 -0.0191 0.0779 -0.0191 0.0736 -0.0131
0.25 0.50 1 0.0928 -0.0306 0.0890 -0.0314 0.0821 -0.0203
0.75 0.50 1 0.0938 -0.0340 0.0962 -0.0396 0.0923 -0.0426
0.90 0.50 1 0.0710 -0.0237 0.0723 -0.0284 0.0788 -0.0329
-0.90 0.90 1 0.0899 -0.0101 0.0765 -0.0138 0.0863 -0.0055
-0.75 0.90 1 0.1042 -0.0139 0.0882 -0.0171 0.1009 -0.0072
-0.25 0.90 1 0.1466 -0.0369 0.1290 -0.0453 0.1445 -0.0418
0.00 0.90 1 0.1733 -0.0592 0.1529 -0.0719 0.1709 -0.0700
0.25 0.90 1 0.1917 -0.0890 0.1819 -0.1069 0.2045 -0.1085
0.75 0.90 1 0.1767 -0.0865 0.1862 -0.1129 0.2410 -0.1530
0.90 0.90 1 0.1372 -0.0623 0.1417 -0.0823 0.1722 -0.0912
-0.90 -0.90 2 0.0367 -0.0028 0.0372 -0.0028 0.0399 -0.0005
-0.75 -0.90 2 0.0421 -0.0038 0.0439 -0.0040 0.0456 -0.0018
-0.25 -0.90 2 0.0611 -0.0108 0.0604 -0.0112 0.0595 -0.0069
0.00 -0.90 2 0.0713 -0.0175 0.0696 -0.0163 0.0681 -0.0126
0.25 -0.90 2 0.0834 -0.0265 0.0828 -0.0262 0.0780 -0.0185
0.75 -0.90 2 0.0812 -0.0278 0.0828 -0.0304 0.0871 -0.0365
0.90 -0.90 2 0.0615 -0.0175 0.0631 -0.0196 0.0703 -0.0230
-0.90 -0.50 2 0.0342 -0.0024 0.0345 -0.0021 0.0373 0.0007
-0.75 -0.50 2 0.0400 -0.0031 0.0407 -0.0033 0.0432 -0.0014
-0.25 -0.50 2 0.0579 -0.0093 0.0579 -0.0085 0.0561 -0.0060
0.00 -0.50 2 0.0655 -0.0131 0.0658 -0.0137 0.0628 -0.0088
0.25 -0.50 2 0.0763 -0.0211 0.0767 -0.0211 0.0731 -0.0148
0.75 -0.50 2 0.0752 -0.0246 0.0766 -0.0261 0.0802 -0.0308
0.90 -0.50 2 0.0586 -0.0171 0.0596 -0.0181 0.0666 -0.0208
-0.90 -0.25 2 0.0339 -0.0016 0.0340 -0.0013 0.0347 0.0011
-0.75 -0.25 2 0.0399 -0.0027 0.0400 -0.0025 0.0408 -0.0008
-0.25 -0.25 2 0.0563 -0.0086 0.0574 -0.0093 0.0560 -0.0057
0.00 -0.25 2 0.0645 -0.0123 0.0649 -0.0130 0.0615 -0.0093
0.25 -0.25 2 0.0762 -0.0188 0.0763 -0.0185 0.0693 -0.0140
0.75 -0.25 2 0.0756 -0.0255 0.0753 -0.0256 0.0779 -0.0303
0.90 -0.25 2 0.0577 -0.0168 0.0585 -0.0171 0.0651 -0.0206

Table D2 cont.
Second Stage GMM Estimators of Φ

Estimator ignoring mix exp
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 0.00 2 0.0338 -0.0012 0.0337 -0.0016 0.0349 0.0013
-0.75 0.00 2 0.0386 -0.0021 0.0387 -0.0021 0.0401 -0.0005
-0.25 0.00 2 0.0572 -0.0091 0.0565 -0.0090 0.0549 -0.0060
0.00 0.00 2 0.0649 -0.0127 0.0650 -0.0127 0.0621 -0.0084
0.25 0.00 2 0.0738 -0.0189 0.0734 -0.0192 0.0704 -0.0133
0.75 0.00 2 0.0744 -0.0252 0.0745 -0.0253 0.0766 -0.0284
0.90 0.00 2 0.0572 -0.0167 0.0570 -0.0166 0.0655 -0.0203
-0.90 0.25 2 0.0341 -0.0007 0.0346 -0.0013 0.0362 0.0001
-0.75 0.25 2 0.0401 -0.0028 0.0397 -0.0026 0.0411 -0.0009
-0.25 0.25 2 0.0581 -0.0084 0.0573 -0.0085 0.0571 -0.0059
0.00 0.25 2 0.0674 -0.0137 0.0680 -0.0137 0.0635 -0.0089
0.25 0.25 2 0.0754 -0.0203 0.0766 -0.0208 0.0723 -0.0138
0.75 0.25 2 0.0748 -0.0275 0.0741 -0.0277 0.0773 -0.0299
0.90 0.25 2 0.0589 -0.0191 0.0584 -0.0191 0.0673 -0.0213
-0.90 0.50 2 0.0384 -0.0023 0.0379 -0.0029 0.0383 -0.0016
-0.75 0.50 2 0.0453 -0.0030 0.0447 -0.0030 0.0449 -0.0023
-0.25 0.50 2 0.0661 -0.0106 0.0614 -0.0109 0.0611 -0.0080
0.00 0.50 2 0.0736 -0.0155 0.0708 -0.0173 0.0673 -0.0121
0.25 0.50 2 0.0850 -0.0258 0.0814 -0.0235 0.0752 -0.0156
0.75 0.50 2 0.0859 -0.0305 0.0858 -0.0350 0.0830 -0.0357
0.90 0.50 2 0.0676 -0.0223 0.0684 -0.0258 0.0724 -0.0271
-0.90 0.90 2 0.1070 -0.0068 0.0657 -0.0109 0.0730 -0.0073
-0.75 0.90 2 0.1243 -0.0118 0.0759 -0.0150 0.0837 -0.0103
-0.25 0.90 2 0.1726 -0.0500 0.1142 -0.0420 0.1173 -0.0326
0.00 0.90 2 0.2035 -0.0835 0.1381 -0.0656 0.1349 -0.0479
0.25 0.90 2 0.2406 -0.1138 0.1691 -0.0929 0.1492 -0.0674
0.75 0.90 2 0.2403 -0.1234 0.2314 -0.1464 0.1812 -0.1127
0.90 0.90 2 0.1807 -0.0827 0.1811 -0.1088 0.1585 -0.0905
-0.90 -0.90 3 0.0356 -0.0014 0.0359 -0.0015 0.0390 0.0004
-0.75 -0.90 3 0.0413 -0.0038 0.0417 -0.0028 0.0443 -0.0011
-0.25 -0.90 3 0.0589 -0.0095 0.0603 -0.0088 0.0595 -0.0063
0.00 -0.90 3 0.0688 -0.0148 0.0691 -0.0138 0.0679 -0.0116
0.25 -0.90 3 0.0821 -0.0215 0.0819 -0.0206 0.0762 -0.0152
0.75 -0.90 3 0.0779 -0.0252 0.0791 -0.0270 0.0840 -0.0339
0.90 -0.90 3 0.0610 -0.0172 0.0613 -0.0177 0.0712 -0.0232

Table D2 cont.
Second Stage GMM Estimators of Φ

Estimator ignoring mix exp
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 -0.50 3 0.0344 -0.0019 0.0342 -0.0018 0.0370 0.0011
-0.75 -0.50 3 0.0395 -0.0034 0.0397 -0.0027 0.0418 0.0000
-0.25 -0.50 3 0.0574 -0.0088 0.0569 -0.0078 0.0574 -0.0066
0.00 -0.50 3 0.0658 -0.0128 0.0664 -0.0121 0.0643 -0.0098
0.25 -0.50 3 0.0783 -0.0189 0.0783 -0.0187 0.0711 -0.0138
0.75 -0.50 3 0.0742 -0.0249 0.0747 -0.0249 0.0781 -0.0307
0.90 -0.50 3 0.0587 -0.0170 0.0603 -0.0174 0.0670 -0.0217
-0.90 -0.25 3 0.0338 -0.0016 0.0339 -0.0015 0.0357 0.0015
-0.75 -0.25 3 0.0391 -0.0023 0.0396 -0.0021 0.0407 -0.0004
-0.25 -0.25 3 0.0564 -0.0085 0.0569 -0.0083 0.0562 -0.0064
0.00 -0.25 3 0.0659 -0.0130 0.0665 -0.0135 0.0626 -0.0094
0.25 -0.25 3 0.0756 -0.0179 0.0745 -0.0182 0.0700 -0.0140
0.75 -0.25 3 0.0744 -0.0247 0.0746 -0.0244 0.0752 -0.0292
0.90 -0.25 3 0.0582 -0.0172 0.0588 -0.0173 0.0662 -0.0208
-0.90 0.00 3 0.0338 -0.0012 0.0336 -0.0012 0.0349 0.0013
-0.75 0.00 3 0.0386 -0.0021 0.0387 -0.0022 0.0401 -0.0006
-0.25 0.00 3 0.0572 -0.0091 0.0569 -0.0089 0.0554 -0.0059
0.00 0.00 3 0.0649 -0.0127 0.0651 -0.0129 0.0621 -0.0091
0.25 0.00 3 0.0738 -0.0189 0.0738 -0.0190 0.0706 -0.0136
0.75 0.00 3 0.0744 -0.0252 0.0741 -0.0253 0.0763 -0.0286
0.90 0.00 3 0.0572 -0.0167 0.0573 -0.0167 0.0658 -0.0204
-0.90 0.25 3 0.0347 -0.0009 0.0349 -0.0012 0.0354 0.0000
-0.75 0.25 3 0.0395 -0.0023 0.0398 -0.0023 0.0405 -0.0008
-0.25 0.25 3 0.0574 -0.0094 0.0582 -0.0090 0.0551 -0.0058
0.00 0.25 3 0.0658 -0.0137 0.0665 -0.0137 0.0614 -0.0091
0.25 0.25 3 0.0758 -0.0201 0.0777 -0.0208 0.0713 -0.0136
0.75 0.25 3 0.0741 -0.0270 0.0741 -0.0274 0.0776 -0.0284
0.90 0.25 3 0.0588 -0.0186 0.0591 -0.0186 0.0666 -0.0203
-0.90 0.50 3 0.0381 -0.0015 0.0364 -0.0029 0.0378 -0.0015
-0.75 0.50 3 0.0449 -0.0027 0.0439 -0.0039 0.0429 -0.0021
-0.25 0.50 3 0.0633 -0.0097 0.0604 -0.0100 0.0580 -0.0079
0.00 0.50 3 0.0720 -0.0162 0.0688 -0.0156 0.0646 -0.0117
0.25 0.50 3 0.0809 -0.0219 0.0805 -0.0232 0.0729 -0.0157
0.75 0.50 3 0.0816 -0.0309 0.0850 -0.0340 0.0808 -0.0325
0.90 0.50 3 0.0650 -0.0225 0.0677 -0.0253 0.0698 -0.0244

Table D2 cont.
Second Stage GMM Estimators of Φ

Estimator ignoring mix exp
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True Values
Φ ρ W RMSE Bias RMSE Bias RMSE Bias

-0.90 0.90 3 0.1131 -0.0056 0.0570 -0.0086 0.0666 -0.0091
-0.75 0.90 3 0.1307 -0.0109 0.0674 -0.0131 0.0740 -0.0130
-0.25 0.90 3 0.1833 -0.0499 0.0986 -0.0335 0.1008 -0.0252
0.00 0.90 3 0.2080 -0.0836 0.1128 -0.0459 0.1135 -0.0371
0.25 0.90 3 0.2467 -0.1224 0.1455 -0.0736 0.1227 -0.0489
0.75 0.90 3 0.2560 -0.1356 0.2234 -0.1442 0.1462 -0.0799
0.90 0.90 3 0.1988 -0.0946 0.1803 -0.1092 0.1385 -0.0702

Table D2 cont.
Second Stage GMM Estimators of Φ

Estimator ignoring mix exp
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True Values

Φ ρ W R
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-0.90 -0.90 1 0.028 0.013 0.028 0.013 0.033 0.016 0.018 -0.001
-0.75 -0.90 1 0.028 0.014 0.028 0.013 0.033 0.016 0.018 -0.001
-0.25 -0.90 1 0.033 0.019 0.030 0.014 0.036 0.019 0.018 -0.001
0.00 -0.90 1 0.039 0.024 0.030 0.016 0.040 0.024 0.018 -0.001
0.25 -0.90 1 0.052 0.032 0.030 0.017 0.048 0.030 0.018 -0.001
0.75 -0.90 1 0.069 0.046 0.029 0.017 0.055 0.037 0.018 -0.001
0.90 -0.90 1 0.039 0.024 0.029 0.015 0.045 0.030 0.018 -0.001
-0.90 -0.50 1 0.047 0.003 0.047 0.003 0.047 0.005 0.048 -0.001
-0.75 -0.50 1 0.047 0.004 0.047 0.004 0.048 0.005 0.048 -0.001
-0.25 -0.50 1 0.048 0.006 0.047 0.004 0.047 0.007 0.048 -0.001
0.00 -0.50 1 0.047 0.008 0.048 0.005 0.048 0.007 0.048 -0.001
0.25 -0.50 1 0.052 0.014 0.047 0.005 0.050 0.011 0.048 -0.001
0.75 -0.50 1 0.115 0.067 0.047 0.006 0.055 0.018 0.048 -0.001
0.90 -0.50 1 0.057 0.020 0.047 0.005 0.052 0.014 0.048 -0.001
-0.90 -0.25 1 0.057 0.001 0.056 0.000 0.057 0.001 0.057 -0.001
-0.75 -0.25 1 0.056 0.001 0.056 0.000 0.057 0.001 0.057 -0.001
-0.25 -0.25 1 0.058 0.001 0.057 0.001 0.056 0.002 0.057 -0.001
0.00 -0.25 1 0.057 0.002 0.057 0.001 0.058 0.003 0.057 -0.001
0.25 -0.25 1 0.057 0.005 0.057 0.001 0.057 0.004 0.057 -0.001
0.75 -0.25 1 0.088 0.041 0.056 0.002 0.057 0.007 0.057 -0.001
0.90 -0.25 1 0.061 0.011 0.057 0.001 0.058 0.006 0.057 -0.001
-0.90 0.00 1 0.061 -0.001 0.061 -0.001 0.060 -0.001 0.061 -0.001
-0.75 0.00 1 0.061 -0.001 0.061 -0.001 0.060 -0.001 0.061 -0.001
-0.25 0.00 1 0.061 -0.001 0.060 -0.002 0.061 -0.001 0.061 -0.001
0.00 0.00 1 0.062 -0.001 0.060 -0.002 0.061 -0.001 0.061 -0.001
0.25 0.00 1 0.061 -0.001 0.060 -0.002 0.061 -0.001 0.061 -0.001
0.75 0.00 1 0.075 -0.001 0.062 -0.001 0.060 -0.001 0.061 -0.001
0.90 0.00 1 0.063 0.001 0.061 -0.001 0.060 0.000 0.061 -0.001
-0.90 0.25 1 0.059 -0.003 0.060 -0.003 0.058 -0.003 0.058 -0.001
-0.75 0.25 1 0.059 -0.003 0.059 -0.003 0.057 -0.003 0.058 -0.001
-0.25 0.25 1 0.059 -0.004 0.059 -0.004 0.057 -0.004 0.058 -0.001
0.00 0.25 1 0.058 -0.005 0.058 -0.005 0.058 -0.005 0.058 -0.001
0.25 0.25 1 0.061 -0.007 0.059 -0.005 0.060 -0.006 0.058 -0.001
0.75 0.25 1 0.100 -0.049 0.060 -0.005 0.061 -0.008 0.058 -0.001
0.90 0.25 1 0.064 -0.011 0.060 -0.005 0.061 -0.006 0.058 -0.001

Table D3
Unweighted Spatial GM Estimators of ρ

True Initial Estimator AH1 AH2 AB
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True Values
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-0.90 0.50 1 0.051 -0.006 0.051 -0.006 0.051 -0.006 0.049 -0.001
-0.75 0.50 1 0.051 -0.006 0.050 -0.005 0.051 -0.007 0.049 -0.001
-0.25 0.50 1 0.050 -0.007 0.051 -0.007 0.051 -0.008 0.049 -0.001
0.00 0.50 1 0.052 -0.009 0.050 -0.007 0.052 -0.010 0.049 -0.001
0.25 0.50 1 0.055 -0.013 0.051 -0.008 0.054 -0.013 0.049 -0.001
0.75 0.50 1 0.120 -0.075 0.051 -0.009 0.058 -0.020 0.049 -0.001
0.90 0.50 1 0.059 -0.018 0.051 -0.008 0.054 -0.014 0.049 -0.001
-0.90 0.90 1 0.028 -0.013 0.027 -0.013 0.031 -0.015 0.019 0.000
-0.75 0.90 1 0.028 -0.014 0.028 -0.013 0.031 -0.016 0.019 0.000
-0.25 0.90 1 0.034 -0.019 0.029 -0.016 0.035 -0.019 0.019 0.000
0.00 0.90 1 0.039 -0.023 0.031 -0.017 0.038 -0.023 0.019 0.000
0.25 0.90 1 0.051 -0.032 0.031 -0.018 0.049 -0.030 0.019 0.000
0.75 0.90 1 0.070 -0.048 0.031 -0.017 0.059 -0.040 0.019 0.000
0.90 0.90 1 0.040 -0.025 0.028 -0.015 0.045 -0.029 0.019 0.000
-0.90 -0.90 2 0.132 0.005 0.132 0.006 0.131 0.007 0.132 -0.002
-0.75 -0.90 2 0.132 0.005 0.132 0.006 0.130 0.007 0.132 -0.002
-0.25 -0.90 2 0.131 0.011 0.133 0.007 0.134 0.012 0.132 -0.002
0.00 -0.90 2 0.136 0.016 0.133 0.008 0.134 0.015 0.132 -0.002
0.25 -0.90 2 0.143 0.032 0.136 0.009 0.140 0.025 0.132 -0.002
0.75 -0.90 2 0.325 0.223 0.132 0.012 0.149 0.044 0.132 -0.002
0.90 -0.90 2 0.154 0.046 0.133 0.009 0.135 0.028 0.132 -0.002
-0.90 -0.50 2 0.128 -0.001 0.127 0.000 0.127 0.001 0.126 -0.003
-0.75 -0.50 2 0.127 -0.001 0.126 0.001 0.126 0.001 0.126 -0.003
-0.25 -0.50 2 0.124 0.002 0.126 0.000 0.123 0.002 0.126 -0.003
0.00 -0.50 2 0.125 0.005 0.125 0.001 0.124 0.003 0.126 -0.003
0.25 -0.50 2 0.126 0.012 0.125 0.002 0.127 0.007 0.126 -0.003
0.75 -0.50 2 0.209 0.118 0.128 0.001 0.131 0.016 0.126 -0.003
0.90 -0.50 2 0.136 0.020 0.127 0.000 0.127 0.008 0.126 -0.003
-0.90 -0.25 2 0.120 -0.004 0.119 -0.003 0.119 -0.002 0.116 -0.003
-0.75 -0.25 2 0.120 -0.003 0.118 -0.002 0.118 -0.002 0.116 -0.003
-0.25 -0.25 2 0.117 -0.001 0.117 -0.002 0.115 -0.002 0.116 -0.003
0.00 -0.25 2 0.118 -0.001 0.116 -0.003 0.118 -0.001 0.116 -0.003
0.25 -0.25 2 0.115 0.004 0.117 -0.002 0.118 0.000 0.116 -0.003
0.75 -0.25 2 0.161 0.055 0.119 -0.003 0.123 0.003 0.116 -0.003
0.90 -0.25 2 0.129 0.005 0.118 -0.004 0.120 0.001 0.116 -0.003

True Initial Estimator AH1 AH2 AB
Unweighted Spatial GM Estimators of ρ

Table D3 cont.
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 0.00 2 0.106 -0.005 0.107 -0.004 0.106 -0.004 0.103 -0.003
-0.75 0.00 2 0.107 -0.004 0.106 -0.005 0.104 -0.003 0.103 -0.003
-0.25 0.00 2 0.107 -0.003 0.107 -0.006 0.104 -0.004 0.103 -0.003
0.00 0.00 2 0.106 -0.004 0.105 -0.005 0.104 -0.004 0.103 -0.003
0.25 0.00 2 0.105 -0.005 0.105 -0.005 0.107 -0.004 0.103 -0.003
0.75 0.00 2 0.139 0.004 0.107 -0.005 0.108 -0.005 0.103 -0.003
0.90 0.00 2 0.116 -0.006 0.106 -0.006 0.108 -0.005 0.103 -0.003
-0.90 0.25 2 0.089 -0.006 0.090 -0.006 0.090 -0.005 0.087 -0.002
-0.75 0.25 2 0.088 -0.006 0.090 -0.005 0.089 -0.005 0.087 -0.002
-0.25 0.25 2 0.089 -0.006 0.090 -0.007 0.088 -0.006 0.087 -0.002
0.00 0.25 2 0.089 -0.006 0.088 -0.006 0.087 -0.006 0.087 -0.002
0.25 0.25 2 0.090 -0.008 0.088 -0.007 0.089 -0.008 0.087 -0.002
0.75 0.25 2 0.130 -0.037 0.090 -0.007 0.095 -0.010 0.087 -0.002
0.90 0.25 2 0.099 -0.013 0.089 -0.006 0.093 -0.009 0.087 -0.002
-0.90 0.50 2 0.068 -0.007 0.068 -0.006 0.069 -0.006 0.068 -0.002
-0.75 0.50 2 0.068 -0.006 0.068 -0.007 0.068 -0.006 0.068 -0.002
-0.25 0.50 2 0.069 -0.007 0.069 -0.007 0.069 -0.007 0.068 -0.002
0.00 0.50 2 0.069 -0.008 0.068 -0.007 0.070 -0.009 0.068 -0.002
0.25 0.50 2 0.067 -0.009 0.069 -0.007 0.071 -0.010 0.068 -0.002
0.75 0.50 2 0.124 -0.058 0.070 -0.009 0.077 -0.016 0.068 -0.002
0.90 0.50 2 0.080 -0.020 0.070 -0.009 0.073 -0.013 0.068 -0.002
-0.90 0.90 2 0.028 -0.007 0.027 -0.007 0.027 -0.008 0.025 0.000
-0.75 0.90 2 0.028 -0.008 0.027 -0.007 0.027 -0.008 0.025 0.000
-0.25 0.90 2 0.031 -0.012 0.028 -0.009 0.030 -0.011 0.025 0.000
0.00 0.90 2 0.033 -0.016 0.029 -0.010 0.033 -0.014 0.025 0.000
0.25 0.90 2 0.040 -0.022 0.030 -0.012 0.039 -0.020 0.025 0.000
0.75 0.90 2 0.056 -0.031 0.030 -0.011 0.050 -0.027 0.025 0.000
0.90 0.90 2 0.041 -0.018 0.029 -0.010 0.044 -0.022 0.025 0.000
-0.90 -0.90 3 0.194 0.003 0.193 0.001 0.189 0.001 0.187 -0.011
-0.75 -0.90 3 0.193 0.003 0.193 0.000 0.187 0.002 0.187 -0.011
-0.25 -0.90 3 0.189 0.006 0.189 0.000 0.185 0.005 0.187 -0.011
0.00 -0.90 3 0.187 0.015 0.187 0.000 0.183 0.007 0.187 -0.011
0.25 -0.90 3 0.191 0.034 0.185 0.001 0.179 0.013 0.187 -0.011
0.75 -0.90 3 0.395 0.255 0.183 0.004 0.189 0.039 0.187 -0.011
0.90 -0.90 3 0.204 0.047 0.188 0.002 0.187 0.023 0.187 -0.011

Table D3 cont.
Unweighted Spatial GM Estimators of ρ

Initial Estimator AH1 AH2 AB True 
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 -0.50 3 0.170 -0.005 0.171 -0.005 0.170 -0.004 0.168 -0.010
-0.75 -0.50 3 0.171 -0.004 0.171 -0.005 0.168 -0.002 0.168 -0.010
-0.25 -0.50 3 0.169 -0.002 0.170 -0.006 0.166 -0.003 0.168 -0.010
0.00 -0.50 3 0.167 0.002 0.170 -0.006 0.165 -0.003 0.168 -0.010
0.25 -0.50 3 0.167 0.009 0.167 -0.007 0.164 -0.002 0.168 -0.010
0.75 -0.50 3 0.261 0.127 0.167 -0.003 0.170 0.011 0.168 -0.010
0.90 -0.50 3 0.172 0.020 0.171 -0.006 0.167 0.006 0.168 -0.010
-0.90 -0.25 3 0.154 -0.006 0.155 -0.007 0.154 -0.006 0.152 -0.009
-0.75 -0.25 3 0.155 -0.006 0.155 -0.006 0.152 -0.006 0.152 -0.009
-0.25 -0.25 3 0.154 -0.005 0.155 -0.007 0.150 -0.007 0.152 -0.009
0.00 -0.25 3 0.152 -0.005 0.154 -0.008 0.149 -0.007 0.152 -0.009
0.25 -0.25 3 0.150 -0.001 0.152 -0.009 0.150 -0.006 0.152 -0.009
0.75 -0.25 3 0.199 0.054 0.150 -0.007 0.151 0.001 0.152 -0.009
0.90 -0.25 3 0.152 0.001 0.153 -0.007 0.151 0.001 0.152 -0.009
-0.90 0.00 3 0.136 -0.007 0.135 -0.008 0.133 -0.009 0.132 -0.009
-0.75 0.00 3 0.136 -0.007 0.136 -0.007 0.133 -0.007 0.132 -0.009
-0.25 0.00 3 0.135 -0.007 0.134 -0.009 0.131 -0.008 0.132 -0.009
0.00 0.00 3 0.132 -0.008 0.134 -0.009 0.131 -0.009 0.132 -0.009
0.25 0.00 3 0.134 -0.007 0.133 -0.010 0.132 -0.008 0.132 -0.009
0.75 0.00 3 0.166 0.001 0.134 -0.009 0.132 -0.005 0.132 -0.009
0.90 0.00 3 0.136 -0.009 0.132 -0.010 0.132 -0.005 0.132 -0.009
-0.90 0.25 3 0.111 -0.007 0.112 -0.008 0.109 -0.008 0.109 -0.007
-0.75 0.25 3 0.111 -0.008 0.113 -0.008 0.109 -0.008 0.109 -0.007
-0.25 0.25 3 0.112 -0.009 0.111 -0.009 0.109 -0.010 0.109 -0.007
0.00 0.25 3 0.111 -0.008 0.111 -0.009 0.110 -0.011 0.109 -0.007
0.25 0.25 3 0.111 -0.011 0.110 -0.009 0.111 -0.011 0.109 -0.007
0.75 0.25 3 0.148 -0.040 0.111 -0.011 0.111 -0.013 0.109 -0.007
0.90 0.25 3 0.115 -0.019 0.112 -0.012 0.109 -0.011 0.109 -0.007
-0.90 0.50 3 0.083 -0.007 0.084 -0.007 0.083 -0.007 0.082 -0.006
-0.75 0.50 3 0.083 -0.007 0.085 -0.007 0.083 -0.008 0.082 -0.006
-0.25 0.50 3 0.085 -0.009 0.084 -0.009 0.084 -0.010 0.082 -0.006
0.00 0.50 3 0.085 -0.010 0.085 -0.009 0.085 -0.011 0.082 -0.006
0.25 0.50 3 0.084 -0.013 0.084 -0.009 0.085 -0.011 0.082 -0.006
0.75 0.50 3 0.139 -0.059 0.087 -0.012 0.088 -0.017 0.082 -0.006
0.90 0.50 3 0.094 -0.022 0.087 -0.012 0.086 -0.016 0.082 -0.006

Initial Estimator AH1 AH2 AB True 

Table D3 cont.
Unweighted Spatial GM Estimators of ρ
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 0.90 3 0.033 -0.007 0.033 -0.006 0.032 -0.006 0.031 0.001
-0.75 0.90 3 0.034 -0.007 0.033 -0.007 0.032 -0.007 0.031 0.001
-0.25 0.90 3 0.035 -0.012 0.033 -0.009 0.035 -0.010 0.031 0.001
0.00 0.90 3 0.038 -0.016 0.035 -0.011 0.037 -0.015 0.031 0.001
0.25 0.90 3 0.044 -0.022 0.036 -0.012 0.044 -0.020 0.031 0.001
0.75 0.90 3 0.066 -0.035 0.037 -0.012 0.054 -0.029 0.031 0.001
0.90 0.90 3 0.052 -0.020 0.037 -0.010 0.053 -0.023 0.031 0.001

True 
Unweighted Spatial GM Estimators of ρ

Initial Estimator AH1 AH2 AB

Table D3 cont.
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 -0.90 1 0.036 0.017 0.036 0.017 0.041 0.021 0.023 0.000
-0.75 -0.90 1 0.037 0.018 0.036 0.017 0.041 0.022 0.023 0.000
-0.25 -0.90 1 0.044 0.026 0.039 0.020 0.047 0.027 0.023 0.000
0.00 -0.90 1 0.051 0.032 0.039 0.022 0.053 0.032 0.023 0.000
0.25 -0.90 1 0.069 0.044 0.041 0.024 0.063 0.041 0.023 0.000
0.75 -0.90 1 0.087 0.060 0.039 0.021 0.073 0.051 0.023 0.000
0.90 -0.90 1 0.052 0.032 0.037 0.019 0.059 0.039 0.023 0.000
-0.90 -0.50 1 0.048 0.002 0.049 0.003 0.048 0.004 0.047 -0.001
-0.75 -0.50 1 0.048 0.003 0.049 0.003 0.049 0.004 0.047 -0.001
-0.25 -0.50 1 0.049 0.006 0.049 0.004 0.049 0.006 0.047 -0.001
0.00 -0.50 1 0.049 0.009 0.048 0.004 0.048 0.007 0.047 -0.001
0.25 -0.50 1 0.052 0.015 0.048 0.006 0.050 0.010 0.047 -0.001
0.75 -0.50 1 0.117 0.070 0.049 0.006 0.054 0.018 0.047 -0.001
0.90 -0.50 1 0.058 0.020 0.048 0.004 0.051 0.013 0.047 -0.001
-0.90 -0.25 1 0.054 0.000 0.054 0.000 0.054 0.000 0.054 -0.002
-0.75 -0.25 1 0.054 0.000 0.055 0.000 0.053 0.000 0.054 -0.002
-0.25 -0.25 1 0.054 0.001 0.054 0.000 0.053 0.000 0.054 -0.002
0.00 -0.25 1 0.053 0.002 0.053 0.001 0.053 0.001 0.054 -0.002
0.25 -0.25 1 0.054 0.006 0.053 0.001 0.053 0.002 0.054 -0.002
0.75 -0.25 1 0.089 0.042 0.054 0.002 0.055 0.007 0.054 -0.002
0.90 -0.25 1 0.058 0.012 0.055 0.000 0.052 0.004 0.054 -0.002
-0.90 0.00 1 0.057 -0.002 0.057 -0.002 0.057 -0.002 0.056 -0.003
-0.75 0.00 1 0.057 -0.001 0.057 -0.002 0.056 -0.002 0.056 -0.003
-0.25 0.00 1 0.057 -0.002 0.057 -0.002 0.056 -0.003 0.056 -0.003
0.00 0.00 1 0.055 -0.003 0.056 -0.003 0.056 -0.003 0.056 -0.003
0.25 0.00 1 0.056 -0.002 0.055 -0.002 0.055 -0.003 0.056 -0.003
0.75 0.00 1 0.074 -0.001 0.057 -0.002 0.057 -0.002 0.056 -0.003
0.90 0.00 1 0.062 -0.001 0.057 -0.001 0.056 -0.001 0.056 -0.003
-0.90 0.25 1 0.056 -0.003 0.056 -0.003 0.055 -0.003 0.054 -0.002
-0.75 0.25 1 0.056 -0.003 0.056 -0.004 0.056 -0.004 0.054 -0.002
-0.25 0.25 1 0.056 -0.004 0.055 -0.004 0.055 -0.005 0.054 -0.002
0.00 0.25 1 0.055 -0.006 0.056 -0.005 0.055 -0.006 0.054 -0.002
0.25 0.25 1 0.057 -0.008 0.055 -0.005 0.056 -0.007 0.054 -0.002
0.75 0.25 1 0.095 -0.050 0.056 -0.006 0.057 -0.010 0.054 -0.002
0.90 0.25 1 0.061 -0.011 0.056 -0.004 0.057 -0.007 0.054 -0.002

Table D4

Initial Estimator AH1 AH2 AB True 
Weighted Spatial GM Estimators of ρ
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 0.50 1 0.049 -0.006 0.049 -0.006 0.050 -0.007 0.047 -0.002
-0.75 0.50 1 0.050 -0.006 0.049 -0.006 0.050 -0.007 0.047 -0.002
-0.25 0.50 1 0.050 -0.008 0.050 -0.007 0.050 -0.009 0.047 -0.002
0.00 0.50 1 0.053 -0.011 0.051 -0.008 0.051 -0.010 0.047 -0.002
0.25 0.50 1 0.056 -0.015 0.051 -0.008 0.053 -0.013 0.047 -0.002
0.75 0.50 1 0.120 -0.076 0.050 -0.010 0.057 -0.021 0.047 -0.002
0.90 0.50 1 0.059 -0.018 0.050 -0.007 0.053 -0.015 0.047 -0.002
-0.90 0.90 1 0.037 -0.018 0.037 -0.017 0.041 -0.020 0.022 -0.001
-0.75 0.90 1 0.038 -0.019 0.038 -0.018 0.042 -0.021 0.022 -0.001
-0.25 0.90 1 0.044 -0.025 0.039 -0.021 0.047 -0.026 0.022 -0.001
0.00 0.90 1 0.053 -0.032 0.041 -0.023 0.052 -0.031 0.022 -0.001
0.25 0.90 1 0.071 -0.047 0.041 -0.024 0.065 -0.041 0.022 -0.001
0.75 0.90 1 0.094 -0.066 0.040 -0.022 0.078 -0.054 0.022 -0.001
0.90 0.90 1 0.055 -0.035 0.037 -0.020 0.061 -0.041 0.022 -0.001
-0.90 -0.90 2 0.115 0.005 0.115 0.005 0.118 0.007 0.118 -0.001
-0.75 -0.90 2 0.117 0.007 0.114 0.006 0.116 0.009 0.118 -0.001
-0.25 -0.90 2 0.116 0.011 0.115 0.009 0.118 0.014 0.118 -0.001
0.00 -0.90 2 0.120 0.019 0.116 0.009 0.121 0.018 0.118 -0.001
0.25 -0.90 2 0.126 0.034 0.117 0.012 0.128 0.025 0.118 -0.001
0.75 -0.90 2 0.307 0.210 0.119 0.016 0.134 0.041 0.118 -0.001
0.90 -0.90 2 0.140 0.046 0.117 0.011 0.125 0.026 0.118 -0.001
-0.90 -0.50 2 0.111 0.002 0.110 0.001 0.110 0.002 0.110 -0.001
-0.75 -0.50 2 0.110 0.002 0.110 0.001 0.110 0.002 0.110 -0.001
-0.25 -0.50 2 0.109 0.003 0.108 0.003 0.109 0.004 0.110 -0.001
0.00 -0.50 2 0.110 0.006 0.110 0.003 0.110 0.006 0.110 -0.001
0.25 -0.50 2 0.111 0.014 0.110 0.006 0.114 0.008 0.110 -0.001
0.75 -0.50 2 0.191 0.108 0.112 0.005 0.115 0.013 0.110 -0.001
0.90 -0.50 2 0.123 0.021 0.110 0.005 0.113 0.010 0.110 -0.001
-0.90 -0.25 2 0.102 -0.001 0.103 -0.001 0.103 0.001 0.102 -0.002
-0.75 -0.25 2 0.102 -0.001 0.102 -0.001 0.102 0.001 0.102 -0.002
-0.25 -0.25 2 0.101 0.000 0.102 -0.001 0.101 0.000 0.102 -0.002
0.00 -0.25 2 0.100 0.001 0.102 0.001 0.102 0.000 0.102 -0.002
0.25 -0.25 2 0.101 0.005 0.104 0.002 0.103 0.002 0.102 -0.002
0.75 -0.25 2 0.145 0.051 0.103 0.001 0.105 0.006 0.102 -0.002
0.90 -0.25 2 0.111 0.006 0.103 0.001 0.105 0.003 0.102 -0.002

Initial Estimator AH1 AH2 AB True 

Table D4 cont.
Weighted Spatial GM Estimators of ρ
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 0.00 2 0.092 -0.002 0.092 -0.002 0.093 -0.002 0.091 -0.002
-0.75 0.00 2 0.091 -0.002 0.092 -0.002 0.093 -0.002 0.091 -0.002
-0.25 0.00 2 0.091 -0.002 0.092 -0.001 0.094 -0.002 0.091 -0.002
0.00 0.00 2 0.091 -0.002 0.092 -0.001 0.094 -0.001 0.091 -0.002
0.25 0.00 2 0.090 0.000 0.092 -0.001 0.093 -0.001 0.091 -0.002
0.75 0.00 2 0.129 0.005 0.091 -0.003 0.094 -0.003 0.091 -0.002
0.90 0.00 2 0.104 -0.003 0.093 -0.003 0.096 -0.003 0.091 -0.002
-0.90 0.25 2 0.080 -0.003 0.080 -0.003 0.082 -0.003 0.079 -0.002
-0.75 0.25 2 0.080 -0.003 0.080 -0.002 0.081 -0.004 0.079 -0.002
-0.25 0.25 2 0.078 -0.005 0.080 -0.003 0.080 -0.004 0.079 -0.002
0.00 0.25 2 0.078 -0.004 0.080 -0.003 0.081 -0.004 0.079 -0.002
0.25 0.25 2 0.079 -0.004 0.080 -0.004 0.080 -0.005 0.079 -0.002
0.75 0.25 2 0.122 -0.033 0.079 -0.005 0.083 -0.009 0.079 -0.002
0.90 0.25 2 0.086 -0.010 0.081 -0.005 0.084 -0.006 0.079 -0.002
-0.90 0.50 2 0.065 -0.005 0.064 -0.005 0.066 -0.004 0.065 -0.001
-0.75 0.50 2 0.065 -0.005 0.064 -0.004 0.065 -0.004 0.065 -0.001
-0.25 0.50 2 0.064 -0.005 0.066 -0.005 0.066 -0.007 0.065 -0.001
0.00 0.50 2 0.064 -0.006 0.065 -0.005 0.067 -0.008 0.065 -0.001
0.25 0.50 2 0.064 -0.009 0.065 -0.007 0.067 -0.009 0.065 -0.001
0.75 0.50 2 0.123 -0.060 0.065 -0.008 0.071 -0.014 0.065 -0.001
0.90 0.50 2 0.072 -0.016 0.067 -0.007 0.069 -0.010 0.065 -0.001
-0.90 0.90 2 0.033 -0.009 0.032 -0.009 0.033 -0.010 0.029 0.000
-0.75 0.90 2 0.034 -0.011 0.033 -0.010 0.033 -0.010 0.029 0.000
-0.25 0.90 2 0.037 -0.016 0.034 -0.012 0.037 -0.014 0.029 0.000
0.00 0.90 2 0.040 -0.020 0.035 -0.013 0.040 -0.017 0.029 0.000
0.25 0.90 2 0.049 -0.028 0.037 -0.015 0.048 -0.025 0.029 0.000
0.75 0.90 2 0.068 -0.040 0.039 -0.014 0.059 -0.035 0.029 0.000
0.90 0.90 2 0.048 -0.023 0.036 -0.013 0.053 -0.028 0.029 0.000
-0.90 -0.90 3 0.166 0.013 0.165 0.014 0.167 0.016 0.165 0.003
-0.75 -0.90 3 0.167 0.013 0.164 0.014 0.167 0.015 0.165 0.003
-0.25 -0.90 3 0.164 0.018 0.160 0.012 0.163 0.016 0.165 0.003
0.00 -0.90 3 0.165 0.021 0.162 0.014 0.161 0.019 0.165 0.003
0.25 -0.90 3 0.173 0.033 0.162 0.016 0.167 0.027 0.165 0.003
0.75 -0.90 3 0.366 0.239 0.167 0.018 0.177 0.043 0.165 0.003
0.90 -0.90 3 0.182 0.049 0.167 0.010 0.164 0.027 0.165 0.003

Initial Estimator AH1 AH2 AB

Table D4 cont.

True 
Weighted Spatial GM Estimators of ρ
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 -0.50 3 0.148 0.005 0.148 0.007 0.146 0.007 0.147 0.002
-0.75 -0.50 3 0.147 0.006 0.145 0.006 0.146 0.006 0.147 0.002
-0.25 -0.50 3 0.148 0.009 0.144 0.006 0.146 0.007 0.147 0.002
0.00 -0.50 3 0.146 0.012 0.142 0.007 0.145 0.007 0.147 0.002
0.25 -0.50 3 0.144 0.017 0.143 0.008 0.144 0.013 0.147 0.002
0.75 -0.50 3 0.240 0.122 0.147 0.006 0.144 0.018 0.147 0.002
0.90 -0.50 3 0.157 0.022 0.145 0.002 0.144 0.012 0.147 0.002
-0.90 -0.25 3 0.135 0.004 0.133 0.004 0.133 0.004 0.134 0.002
-0.75 -0.25 3 0.135 0.003 0.134 0.004 0.132 0.003 0.134 0.002
-0.25 -0.25 3 0.133 0.004 0.130 0.003 0.131 0.003 0.134 0.002
0.00 -0.25 3 0.132 0.005 0.129 0.004 0.128 0.004 0.134 0.002
0.25 -0.25 3 0.131 0.011 0.128 0.003 0.130 0.007 0.134 0.002
0.75 -0.25 3 0.177 0.058 0.132 0.002 0.131 0.005 0.134 0.002
0.90 -0.25 3 0.140 0.011 0.133 -0.001 0.132 0.005 0.134 0.002
-0.90 0.00 3 0.118 0.002 0.117 0.002 0.117 0.001 0.117 0.000
-0.75 0.00 3 0.118 0.001 0.117 0.001 0.116 0.001 0.117 0.000
-0.25 0.00 3 0.116 0.001 0.114 0.002 0.114 0.001 0.117 0.000
0.00 0.00 3 0.115 0.001 0.115 0.001 0.114 0.001 0.117 0.000
0.25 0.00 3 0.113 0.002 0.113 0.000 0.114 0.001 0.117 0.000
0.75 0.00 3 0.145 0.006 0.115 -0.002 0.117 -0.001 0.117 0.000
0.90 0.00 3 0.123 -0.003 0.119 -0.004 0.119 -0.002 0.117 0.000
-0.90 0.25 3 0.099 -0.001 0.098 -0.002 0.098 -0.003 0.098 -0.001
-0.75 0.25 3 0.098 -0.001 0.098 -0.001 0.098 -0.003 0.098 -0.001
-0.25 0.25 3 0.095 -0.002 0.096 -0.002 0.097 -0.003 0.098 -0.001
0.00 0.25 3 0.097 -0.002 0.096 -0.002 0.096 -0.004 0.098 -0.001
0.25 0.25 3 0.097 -0.005 0.097 -0.003 0.097 -0.003 0.098 -0.001
0.75 0.25 3 0.133 -0.038 0.097 -0.006 0.099 -0.006 0.098 -0.001
0.90 0.25 3 0.105 -0.011 0.103 -0.006 0.100 -0.008 0.098 -0.001
-0.90 0.50 3 0.076 -0.004 0.075 -0.004 0.075 -0.004 0.076 -0.002
-0.75 0.50 3 0.075 -0.004 0.075 -0.004 0.076 -0.005 0.076 -0.002
-0.25 0.50 3 0.075 -0.005 0.075 -0.004 0.076 -0.006 0.076 -0.002
0.00 0.50 3 0.075 -0.006 0.076 -0.004 0.077 -0.007 0.076 -0.002
0.25 0.50 3 0.078 -0.009 0.076 -0.005 0.078 -0.008 0.076 -0.002
0.75 0.50 3 0.137 -0.064 0.078 -0.008 0.081 -0.012 0.076 -0.002
0.90 0.50 3 0.088 -0.016 0.078 -0.008 0.079 -0.010 0.076 -0.002

Table D4 cont.

AH1 AH2 AB True 
Weighted Spatial GM Estimators of ρ

Initial Estimator
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True Values

Φ ρ W R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

R
M

SE

B
ia

s

-0.90 0.90 3 0.038 -0.011 0.038 -0.010 0.037 -0.011 0.035 -0.001
-0.75 0.90 3 0.038 -0.011 0.039 -0.010 0.037 -0.011 0.035 -0.001
-0.25 0.90 3 0.042 -0.015 0.039 -0.012 0.040 -0.014 0.035 -0.001
0.00 0.90 3 0.046 -0.021 0.040 -0.014 0.044 -0.019 0.035 -0.001
0.25 0.90 3 0.055 -0.029 0.042 -0.016 0.053 -0.027 0.035 -0.001
0.75 0.90 3 0.077 -0.045 0.041 -0.016 0.066 -0.036 0.035 -0.001
0.90 0.90 3 0.057 -0.027 0.041 -0.014 0.059 -0.030 0.035 -0.001

True Initial Estimator AH1 AH2 AB

Table D4 cont.
Weighted Spatial GM Estimators of ρ
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Figure1: QQ Plot of IV Estimator AH1

Figure 2: QQ Plot of IV Estimator AH2
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Figure 3: QQ Plot of IV Estimator AB

Figure 4: QQ Plot of GMM Estimator AB Ignoring Spatial Correlation
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Figure 5: QQ Plot of GMM Estimator AB based on bVmix

Figure 6: QQ Plot of GMM Estimator AB based on bVE
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Figure 7: Normal Probability QQ Plot

Figure 8: Student t Probability QQ Plot
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E Appendix: Symbols and Notation Used

In this Appendix, I provide a brief explanation of the different (standard) symbols

used throughout the thesis.

N cross-sectional dimension of the data under consideration

T time dimension of the data under consideration

IN N ×N identity matrix

eT T × 1 vector of ones

JT T × T matrix of ones

Q0 transformation matrix that subtracts location specific sample means

Q1 transformation matrix that calculates location specific sample means

∆ first difference operator (in time dimension)

D first difference transformation matrix

∀ for all (logical predicate)

∃ exists (logical predicate)

∈ relation operator ’belongs to a set’

∞ infinity

R set of real numbers

N set of natural numbers
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σ (x) neighborhood of a real number x

sup supremum

inf infimum

min minimum

argminδ∈Θ {} argument that maximizes a maximization problem in brackets

with parameters δ restricted to a set Θ

limn→∞an limes superior of the sequence an

⊗ Kronecker product operator

kMk matrix norm [tr (M0M)]1/2

λmin (Ω) smallest eigenvalue of a matrix Ω

diag (d1, ..., dN) diagonal matrix with d1, ..., dN on the main diagonal

E (y) expected value of a vector/scalar y

V C (y) variance covariance matrix of a vector y

Cov (z1, z2) covariance of a two scalar random variables

d→ convergence in distribution
p→ convergence in probability
r→ convergence in r-th mean
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N (x,Ω) multivariate normal distribution with mean x and variance covari-

ance matrix Ω

Lp space of random variables with finite p-th absolute moments

|x| absolute value of a number/random variable

kχkr [E (χr)]1/r

Op (k) sequence random variables is of order in probability of at most Nk

O (k) deterministic sequence is of order of at most Nk

2SLS two stage least squares

3SLS three stage least squares

CV covariance (estimator)

GLS generalized least squares

GM generalized moments

GMM generalized method of moments

HAC heteroscedasticity and autocorrelation consistent

IV instrumental variable

LIML limited information maximum likelihood

LSDV least-squares dummy variable (estimator)

MD minimum distance

ML maximum likelihood

OLS ordinary least squares

SAR spatial autoregressive

STAR space-time autoregressive
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STARMA space-time autoregressive moving average

SUR seemingly unrelated regressions

VAR vector autoregressive

VARMA vector autoregressive moving average

WG within group
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F Appendix: Inequalities

In this Appendix, I provide a list of inequalities used throughout the thesis. The

following is based on, e.g. Bierens (1994), Section 1.4.

F.1 Deterministic Inequalities

(Bernoulli) Let x ∈ R, x > 1 and n ∈ N. Then

(1 + x)n ≥ 1 + nx, (C.1.1)

with the inequality being sharp for x 6= 0 and n > 1.

(Triangle) Let x, y ∈ C. Then

|x|− |y| ≤ |x± y| ≤ |x|+ |y| . (C.1.2)

F.2 Stochastic Inequalities

(Chebyshev) Let X be a non-negative random variable with a finite mean µX and

finite variance σ2X . Then for any ε ∈ R, ε > 0

P

Ã
|X − µX | >

r
σ2X
ε

!
≤ ε. (C.2.3)

(Holder) Let X and Y be random variables and let p, q ∈ R, p > 1, 1
p
+ 1

q
= 1.
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Then

E (|XY |) ≤ [E (|X|p)] 1p [E (|Y |q)] 1q . (C.2.4)

(Cauchy-Schwartz) For p = q = 2, we have

E (|XY |) ≤
q
E
¡|X|2¢qE

¡|Y |2¢. (C.2.5)

(Lyapunov) For Y = 1 we have for p > 1

E (|X|) ≤ [E (|X|p)] 1p . (C.2.6)

(Minkowski) If for some p ≥ 1, E (|X|p) <∞ and E (|Y |p) <∞, then

E (|X + Y |) ≤ [E (|X|p)] 1p [E (|Y |p)] 1p . (C.2.7)

(Jensen) Let X be a random variable and f : D ⊆ R → R be a convex real

function. Then

f [E (X)] ≤ E [f (X)] . (C.2.8)

Observe that by selecting the random variables to be constants, the above in-

equalities can be applied in the deterministic case as well.

Since the mean of a finite number of non-random variables in R may be con-

sidered as mathematical expectations, it follows from Hölder’s inequality that for
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real numbers xi, yi, p > 1, 1p +
1
q
= 1:

¯̄̄̄
¯
mX
i=1

xiyi

¯̄̄̄
¯ ≤

Ã
mX
i=1

|xi|p
! 1

p
Ã

mX
i=1

|yi|q
!1

q

. (C.2.9)

Similarly from Lyapunov’s inequality (or by selecting yi = 1 in the above):

¯̄̄̄
¯
mX
i=1

xi

¯̄̄̄
¯
p

≤ mp−1
mX
i=1

|xi|p , p ≥ 1. (C.2.10)

Finally, by Minkowski’s inequality

¯̄̄̄
¯
mX
i=1

xi + yi

¯̄̄̄
¯
1
p

≤
Ã

mX
i=1

|xi|p
! 1

p

+

Ã
mX
i=1

|yi|q
! 1

q

. (C.2.11)

Note if xi and yi are random variables, then the last three inequalities hold for

all their realizations. As a result, we can apply these inequalities also in cases

where xi and yi are stochastic. The same holds for the triangle inequality.
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