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1 Introduction

Thisthesis considers estimation of panel data modelswhen the dependent variable
is allowed to be correlated in both dimensions. Using a natural terminology, |
investigate models in which there is correlation both across time and between
the cross-sectional units. Although there might be many ways to write down such
model, | choose to concentrate on concrete specification that arises as an extension
of the existing literature on dynamic panel data models and on spatial modelling.
In doing so, | hope to offer a useful synthesis of the two strands of the literature.
My model is applicable to situations where the number of time periods over which
the data are observed is limited.t

In the next chapter, | review the existing literature related to this topic. | first
focus on theoretical contributions to dynamic panels estimation methods, then
briefly outline the specifications used in spatial econometrics, and close with a
review of papers that have used specifications in which time and space are inter-
acting in anontrivia way.

Chapter 3 will then spell out the specification | chose to concentrate on. 1t will
also provide the general assumptions maintai ned throughout the thesis and discuss
some implication of the model.

In Chapter 4, | provide an outline of several estimation methods and provide

aformal statements of their asymptotic properties. | start with an initial instru-

10f course, if the time dimension of the panel is sufficiently large, one can consider, for ex-
ample, aseemingly unrelated regression model that allows for afairly general specification of the
correlation pattern in the cross-sectional dimension.



mental variable (IV) technigue suggested by Anderson and Hsiao (1981) to esti-
mate the slope coefficients of the model. Although this method ignores possible
cross-sectional correlation in the data, | show that it is still consistent and asymp-
totically normal under the specification considered in this thesis. Next, | outline
a spatial generalized moments estimation technique that estimates the degree of
cross-sectional dependence in the disturbances. The method was suggested by
Kapoor et a. (2005) for a static model and is based on Kelgian and Prucha
(1999). | extend the proofs in Kapoor et al. (2005) for the dynamic case. The last
step of the proposed estimation method consists of a generalized method of mo-
ments (GMM) estimation of the slope coefficients. | discuss the optimal choice
weighting matrix for a given set of moment conditions. | provide formal large
sample results for a generic GMM estimator based on linear moment conditions
with stochastic instruments. | aso provide formal large sample properties of a
feasible GMM estimator and its small sample covariance matrix approximation.
In Chapter 5, | investigate small sample properties of the different estimation
method via a Monte Carlo study. | aso provide some simulation evidence that

supports the formal large sample claims made in the thesis.



2 Review of Literature

The purpose of this review is not to provide a comprehensive treastment of the
econometric work that has been done on panel data methods. For such there are
excellent book-length works, such as Hsiao (2003) or Baltagi (2002). Instead, |
will provide a more in depth review of the theoretical work that has been done
on dynamic panel data models on the one hand and then review the literature
relaxing the assumption of independently and identically distributed (iid) errors
both in panel and purely cross-sectional setting.

It proves to be useful to introduce the following notational conventions:. | use
bold letters for matrices and vectors, and regular font letters to denote scalars.
Furthermore, | use lower case letters for vectors and upper case letters for matri-
ces. In general | will denote the cross-sectional dimension of the panel as NV and

thetimedimensionas?.

2.1 Dynamic Panel Data Models

Modelswith individual effects and limited time dimension face the problem of in-
cidental parameters. Hence these are estimated after a suitabl e transformation that
removestheindividual effects. In most casesthiswould be after first differencing.
If the model also includes alagged endogenous variable, the first difference of the
error term will then be correlated with the explanatory variables. It has been long
recognized in the literature that in this situation, the ordinary least squares (OLYS)
estimator will be biased, see, e.g., Trognon (1978) for an anaytical treatment,



or Nerlove (1967 and 1971) who explores the properties of the bias of the OLS
estimation by Monte Carlo work. Trognon (1978), Nickell (1981) and Sevestre
and Trognon (1985) derive analytical expressions for the asymptotic biases of the
OL S estimator of an autoregressive panel data models with fixed time dimension.
Small sample bias correction has aso been suggested by Kiviet (1995).

The bias of the OLS estimation also resulted in attention to other estimation
methods. Hence Anderson and Hsiao (1981, 1982) discuss maximum likelihood
(ML) estimation of various model specifications and provide a comprehensive
classification of the different conceptual possibilities of dynamic panel data mod-
els. They also suggest a simple instrumental variables (1V) estimator that is con-
sistent. Bhargava and Sargan (1983) provide a framework for maximum likeli-
hood estimation for apanel with lagged dependent variable and individual effects.
As an alternative, Chamberlain (1982) proposed a minimum distance (MD) type
of estimator for distributed lag models with heterogenous coefficients.

The subsequent developments have shifted attention to generalized method of
moments (GMM) estimators that utilize linear moment conditions. The literature
has focused on exploiting as many possible moment conditions while keeping
the resulting GMM estimator linear. Most of the large sample results are usually
backed by a reference to 'standard central limit theorems' or assumed to follow
from the general results on the asymptotic properties of GMM estimators in, for
example, Hansen (1982). The (non)optimality of utilizing redundant moment con-
ditions has also not been explored in detail. Papersin thisline of research include

Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995)



and Blundell and Bond (1998). The use of al lags as available instruments was
suggested by Holtz-Eakin, Newey and Rosen (1988). Keane and Runkle (1992)
provide an alternative method of exploiting the moment conditions.? Large sam-
ple results for the GMM estimators are in Alvarez and Arellano (2003), while
Harris and Tzavalis (1999) obtain the limiting distributions of pooled OLS, the
within-group (WG) and WG with individual trends estimators, under the null of a
unit root and normally distributed errors. Observe that, as noted by Kiviet (1995)
and Judson and Owen (1999), the number of possible instruments used by the
GMM estimators increases with 72, the GMM estimators may perform poorly in
samples with moderate and large 7.

More recently several authors have proposed maximum likelihood and quasi-
maximum likelihood (ML and QML) procedures arguing that these are compu-
tationally feasible and providing some Monte Carlo evidence of improved small
sample performance even for non-normal errors. See the papers by Hsiao, Pe-
saran and Tahmicsioglu (2002) and Binder, Hsiao and Pesaran (2000) discussed
below. Some further Monte Carlo evidence is provided by Binder, Hsiao, Mutl

and Pesaran (2002).

Below | will review papers on the GMM, bias corrected OLS, MD and ML
estimation mentioned above and compare the various model specifications, as-
sumptions on the disturbance process involved and estimation methods. When

required, | modify the original notation to make the comparison feasible.

>They propose to transform the model by a Cholesky decomposition of an initia estimate of
the variance covariance matrix and use the untransformed instruments in the second step of the
estimation. See below for amore detailed review.

5



211 GMM Estimation

| will now review the papers proposing GMM type of estimators in more detail.

The model under consideration can be written as
Yit = (byi?t_l—i—x,-tﬁ—l—uit, t = 1,..,T, Z = ]_,...,N, (211)

where y;; and x;; denote the (scalar) dependent variable and the 1 x p vector of
exogenous variables corresponding to cross sectional unit ¢ in period ¢, ¢ and 3
represent corresponding 1 x 1 and p x 1 parameters, and u; = p,; + €;; denotes
the overall disturbance term consisting of individual effects y, and an innovation
gi. Under different assumptions on the disturbance process we obtain different
possible moment restrictions that are exploited by the estimator. The proposed
estimator also differs under different exogeneity assumptions on the p x 1 vector

of explanatory variables.

Arellano and Bond (1991) assume that the error terms are distributed as
p; ~ 11D (0, ai) : (21.2)

and

eiw ~ 11D (0,02), (21.3)



independent of each other.® Because the disturbances as well as the endogenous
variable contain individual effects, they will be correlated when interacted in lev-
els. Therefore, the moment conditions considered involve first differences of the

disturbances and in particular they are

E[(uit—ui,t_l)yiyt_k] :0, t:2,..,T, ]{3:2,..,t—1 Z: 1,...,N,

and with strictly exogenous variables also

E [X), (usg — uis—1)] = Opx1, t=2..T, s=1,.,T i=1,.. N,
(2.1.5)
while with the variables being only predetermined these conditions hold only for
s=1,.,t—1.
Stacking the model by grouping the observation first by time and then by in-
dividuals* we can write the first differenced model (after dropping the initial ob-
servation) as

Ay = AZ § + Ac (2.1.6)

(T-1)Nx1  (T-1)Nx22x1  (T-1)Nx1’

3These assumptions are not formally stated in the paper. However, the asymptotic claims are
based on the iid assumptions.

4This stacking is commonly used in the literature on dynamic panel. Observe, however, that
we will use adifferent order of stacking in our model presented in later chapters.



where AZ = [Ay_;, X] with

Y12 — Yn Y11 — Y10
hir — Y171 Y1,r—1 — Y1,r-2
Ay = ) AY—l - ;
Yn2 — YnN1 YN1 — YNo
YNT-1 — YNT-2

YNT — YNT-1

X12 — X11 €12 — €11

X1t — X1,17-1 &1r —&€1,1-1
AX = : , Ae = (2.1.7)

XN2 — XN1 EN2 —EN1

XNT — XN, T-1 ENT —ENT-1

We can define the matrix of instrumentsas H = (H, ..., H')’ where for the case



of strictly exogenous variables we have

Yio

Xi1

X, T
Yio
Yi2
Xi1

H = . (2.1.8)

X, T

Yio
Yi T2
Xi1
Xi,T
The proposed estimator is of the form
6 = (AZHA'H'AZ) ' AZHA 'H'Ay, (2.1.9)

where A is some weights matrix for the moments. More specifically, the first step



of the estimation uses a smple weighting matrix

N
A = ) H/DDH; (2.1.10)
1=1

- H (Iy® DD')H,

whereD isaT — 1 x T first difference operator matrix:

-1 1 0 0
o -1 1 " :

D= . (2.1.11)
Lo e D
0 0 -1 1

T—1xT

In the second step the moment conditions are weighted by their estimated variance

covariance matrix and the authors propose to use

N
A = ) HAGAGH (2.1.12)

i=1

where Aﬁl = (Aaig, ey A@T)’ and ﬁ, = (aﬂ, R @T)’ are the fitted residuals

from the first step estimator.

Arellano and Bover (1995) consider a general nonsingular transformation of

the model that removesthe individual effects. Consider again the model in (2.1.1)

10



and let K beany (T'— 1) x T transformation matrix of rank (7' — 1) such that
Ker = 0r_1, whereer isaT x 1 vector of ones. That is, the transformation by
K is nonsingular and removes the individual effects. Hence K can, for example,

be the matrix D considered above, or be equa to the "Within Group’ operator,

with
1-4 4
1 11 1 1
K= ro -7 _T T (2.1.13)
+ - D=4 4

Arellano and Bover (1995) also suggest the orthogonal deviations operator defined

as

(T-1) (T-1) (T-1) (T-1) ~— (T-1)
0 1 1 1 1
(T-2) (T-2) (T-2) (T-2)
K=|1: : : : : . (2119
0 0 0 1 —% —%
0 0 0 0 1 —1

Thistransformation subtracts the mean of future observations availablein the sam-
ple from thefirst 7" — 1 observations.

The transformed mode! isthen

IneoK)y=In®K)Zd+ (Iy®K)e, (2.1.15)

11



If the transformation matrix is upper triangular and the disturbances <;; are not
seridly correlated, then the same moment conditions as consider by Arellano and
Bond (1991) remain valid for the transformed model. Arellano and Bover (1995)
then show that the resulting GMM estimator is in fact invariant to the choice of
the transformation matrix.

If the exogenous variables are uncorrelated with the individual effects, Arel-
lano and Bover (1995) also suggest the use of additional moment conditionsin the
form of

E

T
1
(T Zuit> x] Sy (2.1.16)
t=1

In this case the transformation matrix is appended with arow consisting of er /T

and can be denoted as:

K
C= . (2.1.17)

eT/T

12



The instrument matrix H; becomes

Yio

Yio

Yi2

13

Yio

Yi -2

(2.1.18)



The GMM estimator of Arellano and Bover (1995) can then be expressed as

0=[Z (Iy®CYHA'H (Iy® C)Z] ' Z' (Iy® C)HA'H (Iy® C)y.

(2.1.19)
The preliminary estimates are obtained with A = H’' (Iy ® CC’) H and the sec-
ond stage estimator uses consistently with (2.1.12):

A=H H, (2.1.20)

N
M®C<Xﬁ@>c

=1

where u; are the fitted residuals from the preliminary estimation. Given that the
estimator isinvariant to the choice of the transformation matrix, thefilteringisin
fact irrelevant and the estimator can be obtained by performing three stage least
squares (3SLS).

Ahn and Schmidt (1995) show that there are additional moment conditionsthat
can be exploited. Ahn and Schmidt also make weaker assumptions that |ead to the
set of moment restriction utilized by the Arellano and Bond (1991) and Arellano
and Bover (1995) estimators. In particular, Ahn and Schmidt assume that the
disturbances satisfy:

OOU(Sit,yio) = 0, tzl,..,T (2121)
Cov (e, 11;) = 0, t=1,.,T

Cov (ey,ei5) = 0, t,s=1,..,T;t+#s

14



The additional moment conditions pointed out by Ahn and Schmidt are

E [uiT (5z‘t — 5i7t—1>] = O7 t = 2, ey T—1. (2122)

These restrictions, together with the moment conditions utilized by the Arellano
and Bond (1991) estimator, represent all the moment conditions implied by the
assumption that the innovations ¢;; are mutually uncorrelated among themselves
and with p, and y;.

Ahn and Schmidt also point out that further restrictions can be derived from
homogeneity and stationarity assumptions. The assumption that the innovations
£, have avariance that does not change over timeimpliesthe following additional

moment restrictions:

FE [yi’t,QA&“i,t,1 — y@tflAEit] = O, t = 4, ey T, (2123)

In amodel without exogenous variables the homogeneity restrictions can be im-

plemented by utilizing the extended instrument set defined as

H;

Y2 —Yi3
H = Vis  —VYia , (2.1.24)

Yir—-2 —Yi1T-3

15



where H; isthe Arellano and Bond instrument matrix for the case without exoge-

nous variables, i.e.

Yio

H, = v . (2.1.25)

Yio - Yir-2

Ahn and Schmidt show that the GMM estimator based on the full set of mo-
ment restrictionsis asymptotically equivalent to Chamberlain’s (1982, 1984) opti-
mal minimum distance estimator and that it reaches the semiparametric efficiency

bound.

Blundell and Bond (1998) document a potential gain in efficiency arising from
exploiting restrictions on the initial observations when the time dimension of the
panel issmall and the degree of autocorrelation ishigh. The estimation approaches
discussed so far usually drop the first observation. With N going to infinity and 7°
fixed this amounts to ignoring information from a fixed proportion of the sample
and thus can lead to sizeable inefficiency.

In their smulation study Blundell and Bond consider two types of additional
restrictions. The first type of restriction justifies the use of an extended linear
GMM estimator that uses lagged differences of y;; as instruments for equations
in levels (in addition to lagged levels of y;; as instruments for equations in first

differences). The second type of restriction validates the use of the error compo-

16



nents GL S estimator on an extended model that conditions on the observed initial
values. This provides a consistent estimator under homoscedasticity which, under
normality, is asymptotically equivalent to conditional maximum likelihood (see
also Blundell and Smith, 1991).

In amodel without exogenous variables, Blundell and Bond show that after re-
moving redundant restrictions the extended GMM estimator they consider utilizes

the following instrument matrix:

H — ‘ , (2.1.26)

A.%’,T—l

where H is the instrument matrix employed by the Anh and Schmidt estimator
and is defined in (2.1.24) above.

Their Monte Carlo simulations and asymptotic variance cal cul ations show that
this extended GMM estimator offers considerable efficiency gains in situations
where the basic GMM estimator performs poorly. The GLS estimator that con-
ditions on the initial values is also found to have good finite sample properties.
However, the conditional GLS estimator requires homoscedasticity, and only ex-
tends to a model with regressors if the regressors are strictly exogenous which is
not the case for the GMM estimators.

The efficiency gain from incorporating the information in the initial observa-

tion is also documented by a ssimulation study of Hahn (1999).

17



Alvarez and Arellano (2002) consider the same model (2.1.1) with |¢| < 1 and
E (i) i, vio, -, yir—1) = 0. They assume ;o is aso observed. To derive asymp-
totic resultsthey assumethat ¢, fort = 1,..., T andi = 1, ..., N are independent
and identically distributed across time and individuals and independent of 1, and
Yo, With E (e1) = 0, Var (g;) = o2 and finite fourth moments. Additionally

they assume that the initial observation are generated as

ho =g+ 2_% Py (21.27)

The article than establishes asymptotic properties of the "Within Group’ es-
timator, the GMM estimator, and the Limited Information Maximum Likelihood
(LIML) estimator when both 7" and N tend to infinity. The WG estimator can be
obtained by OL S estimation on the model transformed by the forward orthogonal
means transformation (see above Arellano and Bover, 1995). The GMM estima-
tor in their terminology iswhat | describe above as the first stage GMM estimator
on a model transformed by the orthogonal deviations transformation, using the
moment conditions of Arellano and Bond (1991). The second stage GMM esti-
mation with an estimated weighting matrix isnot considered. Note that my results
contain this extension as a special case. See Chapter 4.

The LIML estimator iswhat has been suggested by Alonso-Borrego and Arel-
lano (1999) as a symmetrically normalized GMM estimator. It can also be re-

garded as a ’continuously updated GMM estimator’ in terminology of Hansen,

18



Heaton and Yaron (1997).° The estimator is only an analogue LIML estimator
in the sense of the minimax instrumental variable interpretation given by Sargan

(1958) to the original LIML estimator. It is defined as

5 = arein ¥~ 29) (Iy @ C)H (HH) ' H' (Iy ® C) (y — Z9)
S (y — Z8) (Iy ® C) (Iy ® C) (y — Z4)

, (2.1.28)

where H is an instrument matrix.

Alvarez and Arellano show that the asymptotic bias of the WG estimator only
disappears when N/T° — 0. When N/T tends to a positive constant, al three
estimators are asymptotically biased with negative asymptotic biases of order 1/7°
, 1/N, and 1/ (2N — T), respectively. When N/T tends to infinity, the fixed
T results assumed by the GMM literature remain valid. They also consider a
random effects maximum likelihood estimator that |eaves the mean and variance
of theinitial conditions unrestricted and show that this estimator is asymptotically
unbiased for al cases.

Keaneand Runkle(1992) suggest an alternative estimation procedurethat takes
into account the variance covariance structure of the disturbances. First the model
is estimated by an initial procedure, such as the instrumental variables (V) with
instrumentsthat could, for example, be the instruments suggested by Arellano and
Bond (1991). Then an estimate of the inverse of the variance covariance matrix

and its Cholesky decomposition is calculated. The model is then transformed and

SInstead of keeping o fixed in the weighting matrix of the GMM criterion, it is continuously
updated by making it afunction of the argument in the estimating criterion.

19



estimated with original (untransformed) instruments, i.e.

5 = [z’ (IN ® fﬂ) HA'H (IN ® ﬁ) z} (2.1.29)

7 (IN ® 13') HA'H' <IN ® 13) v,

where P is Cholesky decomposition of the estimated inverse of the variance co-
variance matrix and A is moment weighting matrix that is chosen analogously to

the standard GMM estimators.

2.1.2 BiasCorrection

Small sample bias correction procedure of the inconsistent OL S estimation has
been proposed by Kiviet (1995). Consider a dynamic panel data model as in
(2.1.1). Themodel in levels can be stacked asin (2.1.6)

y=2Z6+(Iy®er)p+e, (2.1.30)
where Z = [y_4, X] with

!
y = (yllv"'alea"'7yN17"'7yNT)7 (2131)
_ !
Y1 = (yl()v---ayl,Tfl;---ayNOa---ny,Tfl)7
!
X = (X117---7X1T7---7XN17vaNT)7
!
g = (5117‘-‘751T7---75N17---75NT)7

po= (s piy)

20



The within group estimator is defined as
5 = (ZAZ) ' Z' Ay, (2.1.32)

wherethe NT x NT within group transformation matrix A is defined as

A=Iy® (IT . eT;T> . (2.1.33)

Kiviet (1995) calls this estimator Least-Squares Dummy Variables (LSDV)
while Anderson and Hsiao (1981) refer to is as Covariance (CV) estimator. This
estimator is inconsistent for fixed 7" due to presence of individual effectsin both
the disturbances € and the regressors y_;. Although consistent estimates can be
obtained by IV or GMM procedures, the inconsistent LSDV estimator has a rel-
atively low variance and hence can lead to an estimator with lower root mean
square error after the biasis removed. The asymptotic formulae for the bias given
in Nickell (1981) for amodel with no exogenous regressors has been found to be
accurate in small samples, except for large values ¢. Similar results have been
reported by Sevestre and Trognon (1985). Kiviet (1995) provides approximating
formulae for the small sample bias that have robust performance over the entire

range of parameters.

2.1.3 MD and ML Estimation

Chamberlain’s (1982, 1984) proposed to treat each time period as an equation

in a multivariate equation framework. Such approach is robust to certain kinds

21



of heteroscedasticity as well as autocorrelation in the errors without imposing a
priori restrictions on the variance covariance matrix.

To demonstrate the method assume for simplicity that the model is:
Vit = X3 + j1; + €it t=1,...7; i=1,...,N, (2.1.34)

and

E (e X1, ., Xir, 1) = 0, (2.1.35)

where the p x 1 vector of explanatory variables is assumed to be stochastic and
hence the model aso covers the lagged dependent variable case. The variables
can be stacked by grouping observations for each individual into a vector y;, =
(Y1, -, yer) and x; = (Xi1,...,%;7). Assume that (y;,x;) is an independent
draw from a common unknown multivariate distribution with finite fourth-order
moments and with £ (x;x;) positive definite. The individual effects are possibly
correlated with the explanatory variables. Chamberlain (1984) assumes that the

minimum-mean-squared-error linear projection of 4, onto x; is given by®

T
E* (] %) =i+ > ajxq. (2.1.36)
t=1

61f the conditional expectation of 1, are linear, we have E* (11| x;) = E ( ;] x;).

22



The model can be rewritten as

E*(yilxi) = E"{E" (il %, )| %} (2.1.37)

= E*{mer+ (Ir®0) x| x;}

= Mer + ]-_-[Xi7
and
yi = mer + (Ir @ x;) m+ v, (2.1.38)
where
N=Ir® 0 +er(al,..,a}), (2.1.39)

andv; =y; — E* (yi| x;), and 7w = vec (II).

The proposed estimation procedure is then as follows. Treating the coef-
ficients in the above equation as unrestricted, one first obtains initial (usually
least-squares) estimate 7w of . In the second step, the restrictions on IT in
(2.1.39) areincorporated by letting 7w be afunction of the parameters of the model
0 = (@,4),..,a%). The restrictions are imposed by using a minimum-distance

estimator, specifically
0 = arg min [7 — 7 ()] Q7 —n(9), (2.1.40)

where Q is the estimated variance covariance matrix of the asymptotic variance
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Il

- ZNj {|&:=9) - x -%)] (2.1.4)

where

S¥h —iEN: -x) (2.1.42)
Sxk = > . 1.

Anderson and Hsiao (1981) consider the model (2.1.1) with |¢| < 1. They
distinguish four different cases based on different assumptionson theinitial values

of the process (y;0):

e Casel. Fixed initial observations:. y;, are fixed observed constants

e Casell. Random initial observations, common mean:
Yio = ¢ +¢; (2.1.43)

where ¢ has a mean zero and afinite variance and is independent of 1, and

e;. Here they also suggest that one could assume

s0 that the initia endowment affectsthe level.
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e Caselll. Randominitial observations, different means (in this case there the
incidental parameter problem arrises and for fixed 7" the MLE is inconsis-

tent): the model is

yu=wy+y;  t=0,1,.,T, (2.1.45)

Wi = ¢wi,t71 + it t=1,.T, (2-1-46)
where w;; and ~, are unobservable. In this case w;, are unknown constants.

e Case IV. Random initial observations with stationary distribution: same as

above but w;, are (a) draws from stationary distribution with mean zero and

variance ”‘f”_(;’;) or (b) same but the variance is arbitrary. In the subcase (a),

the y;; come from the stationary distribution of the process.
To derive the likelihood function they assume normality of the error terms

g4, j1; and when applicable also y;. Implicit assumption isthat £ (s;;) = 0 and

Var (g;) = o2 (uniform over individuals).

Anderson and Hsiao (1982) have

Yit = QYiv 1 + T+ 2y + e t=1,..T; i=1,..,N, (2147)
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where |¢| < 1 and

E(n;) = El(en) = FE(1z) = E(pywa) = E(eqn) =0 (2.1.48)

t = 1,.,T; i=1,.. N,

E(euejs) = o2  i=j, t=s, (2.1.49)

= 0 otherwise

They also assume normality of i, and ¢;; and first consider the model with only

time-invariant exogenous regressors. Again several cases are distinguished:
e (1) y;o isfixed
e (I1) y;0 israndom with

— (118) y;o independent of 1, or

— (Ib) y,o correlated with p,; in their wording ”If we wish the initial

endowment [y;o] affects the equilibrium level [l‘j—igs] we may let”:
Yio = ZiY + ;- (2.1.50)

e (IV) (yio — ;) israndom with
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2

— (IVa) variance 1%&

— (IVb) unrestricted (but uniform over 7) variance

Next Anderson and Hsiao consider the model with only time-varying regres-
sors and they offer two interpretations of the mode!:
(1) Seria correlation model:

Yit = QYir—1 + TS — ¢xaB + p; + €t (2.1.51)

Here they again assume either that (y,0 — 05 — ;) isfixed, or random with zero

2
Je

1—¢2"
(2) State dependence model:

mean and variance

Yit = QY1 + Tt + p; + €. (2.1.52)

As before, there is a variety of assumptions concerning ;o considered - the as-
sumption correspond exactly to cases |.-1V above, except that in case of 1V they
distinguish whether (1,0 — 1) israndom with

2
e

e — (IVa) common mean and variance ;= P2

— (IVb) common mean and unrestricted variance
— (IVc) heterogeneous mean and variance %

— (IVd) heterogeneous mean and unrestricted variance

Table 1 below summarizes the consistency findings of Anderson and Hsiao:
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Table 1. Consistency of ML Estimation

Case || Estimated Parameters N fixed, ' — oo T fixed, N — oo

l. o, 8,02 Consistent Consistent
v,0% | nconsistent Consistent

lla || ¢, 8,02 Consistent Consistent
v,0%, 0% E (yio) | nconsistent Consistent

b || ¢, 8,02 Consistent Consistent
v,0%, 00 | nconsistent Consistent
E (yio) , Cov(eit, ;)

. || ¢, 8,02 Consistent | nconsistent
Y, 0%, (Yio — f1;) I nconsistent Inconsistent

IVa || ¢, 8,02 Consistent Consistent
Y, 0%, E (yio — 14;) Inconsistent Consistent

IV.b || ¢, 8,02 Consistent Consistent
v,0%, E (yio — 11;) Inconsistent Consistent
Var (yio — ;)

IV.c || ¢,0,02 Consistent Inconsistent
Y, 0%, Ei (yio — 1) I nconsistent Inconsistent
Var (yio — ;)

Iv.d || ¢, 8,02 Consistent Inconsi stent
v,0%, E; (yio — 14:) | nconsi stent Inconsistent

Var (yio — ;)
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Bhargava and Sargan (1983) consider the dynamic panel data model with ex-
ogenous variable of essentialy the same form as (2.1.1). They derive the maxi-
mum likelihood function under the assumption that the innovations and the indi-
vidual effects are normally and independently distributed with constant variances,
i.e ey ~ N(0,02) and p; ~ N (0,02). The likelihood is derived first treating
the initial values y;, as exogenous and then as endogenous by assuming that the
initial values are generated from the stationary distribution of the process. In par-
ticular, they assume that y;, IS generated by a series of equations (2.1.1) and can

be written as

Yio = Z O (Xig—kB + pt; + €itt) (2.1.53)
k=0

— My - k
= . 6i—7
y’0+1—¢+k§o¢ ok

where 7, is exogenous part of the initial values and is in fact assumed to be

stochastic with 7,y ~ N (7. 02, ), independent of &, and ;.

Hsiao, Pesaran and Tahmiscioglu (2002) consider the model (2.1.1) without

exogenous variables,” i.e.

Yir = ¢yi,t71 + 125 + Eit t= 17 7T7 L= 17 e N7 (2154)

In the second part, the authors extend the mode! for both strictly and weakly exogenous vari-
ables.
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with y;, observable. Under the assumption that the process has started at time —m

one can express the first difference of the initial observation as
Ayir = ¢" Ayi—my1 + &, (2.1.55)

where ¢, = Z;.’";_Ol ¢’ Ae; ;. Hsao, Pesaran and Tahmiscioglu then distinguish

two assumptions for the initial values of the process:

e Case (3.) |¢| < 1 and the process has been going on for a long time
(m — o0) and E (Ay;1) = 0, Var (Ay;) = 2%(2“), Cov (§;,Agyn) =

—Var (ey) and Cov (§;, Ae;;) =0fort =3,4,...,T.

e Case (3.ii) m is finite and E (Ay;1) = b, Var (Ayn) = c - var (),
where ¢ > 0, Cov (&, Ae;n) = —Var (g4) and Cov (§;, Aey) = 0 for
t=3,4,..T.

In both cases, the maximum likelihood function is then derived for the model
in first differences under the assumption that the error terms are normally distrib-
uted with e;; ~ N (0,02%). They aso show that the ML function is invariant to
the choice of transformation that is used to remove the individual effects from the
model.

Hsiao, Pesaran and Tahmiscioglu also define a minimum distance estimator
and show that if it ignores the initial conditions, it will be inconsistent when T°
isfixed. They also study the relationship of the ML estimator the the GMM esti-
mators suggested by Arellano and Bond (1991), Arellano and Bover (1995), and
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Ahn and Schmidt (1995). Conditional on o and the variance of the initial obser-
vations, Hsiao, Pesaran and Tahmiscioglu show that the difference between the
asymptotic variance covariance matrix of the GMM and the ML (or MD) estima-
tors will be positive definite. They conjecture that the same holds even when o2
and the variance of the initial observations is unknown and document this by a

Monte Carlo study.

Binder, Hsiao and Pesaran (2000) consider a multivariate extension of the dy-

namic panel data model. Their specification is
Wit = p; Tyt + P [wWi — =y (= 1)) +eq, (2.1.56)

wherey;;, u;, v and e;; arem x 1 vectorsand ® isan m x m matrix. They define

yvit = Wi — w; — vt and hence the model becomes
yit = Py, +€u (2.1.57)

They assume that the model started astimet = —M, M > 0 and the initia

deviations are given by

Yien =y (¥ —C)ein; +CE, (2.1.58)

=0
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wheree;, i = 1,2,....N; t < T, arei.i.d. across: and over ¢, and &, arei.i.d.

across ;7 with
€it Eit Q A
E =0 and Var = . (2.1.59)
& & A F

The matrix C is defined recursively as C = Z;‘:}O C, where Cy = 1,,,, C; =
®-1, C;, =C,;®,j > 2. Notice that for m = 1, the C can only be zero or
one.

Binder, Hsiao and Pesaran then derive the quasi maximum likelihood function
for the model under the assumption the disturbances are {e;;} and {¢;} are mu-
tually independent and identically distributed. The authors also extend the GMM
and MD estimators to the multivariate context and provide simulation evidence
that the QML estimator dominates the GMM and MD procedures even when the
underlying disturbances are not normal .2 Binder, Hsiao, Mutl and Pesaran (2002)
discuss the same model but with higher order autocorrelation structure and pro-

vide further Monte Carlo evidence.

2.2 Modelling Cross-Sectional Dependence

When T is large and N small, one does not have to parametrically specify the
cross sectional interdependencies and can allow for arbitrary covariance structure

of the disturbances. The model can then be consistently estimated by a general-

8The authors consider a case where the underlying disturbances are drawn from a zero mean
chi-square distribution.
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ized least squares method. Thisiswhat Zellner (1962) refers to as the seemingly
unrelated regressions (SUR) specification. On the other hand, observe that the
dimensions of the variance covariance matrix of the dependent variable (or dis-
turbances) grows with sample size (number of cross-sections). Therefore, when
the time dimension of the data is limited or fixed, it becomes impossible to in-
fer the cross-sectional covariance structure of the model without imposing some
parametric restrictions.

Typicaly the interaction among the cross-sectional units is modelled as pro-
portional to some observable distance. The most widely used parameterization
are variants of the one considered by Cliff and Ord (1973 and 1981) which | re-
view below. Recent applications include Audretsch and Feldmann (1996), Bernat
(1996), Bedley and Case (1995), Bollinger and Ihlanfeldt (1997), Buettner (1999),
Case (1991), Case, Hines, and Rosen (1993), Dowd and LeSage (1997), Holtz-
Eakin (1994), LeSage (1999), Kelgian and Robinson (2000, 1997), Pinkse and
Slade (1998), Pinkse, Slade, and Brett (2002), Shroder (1995), and Vigil (1998).
See also a host of other papers presented for example at the Spatial Economet-
rics Workshop in Kidl, 2005 (http://www.uni-kiel.de/ifw/konfer/spatial/spatial -
econometrics.htm).

Inthisthesis, | follow the spatial econometrics literature and study afirst order
gpatial autocorrelation model with a known spatial weighting matrix. The panel
gpatial autocorrelation model is a generalization of the single cross-section mod-
els that include Cliff and Ord (1973, 1981), Whittle (1954), Anselin (1988) or
Kelgjian and Prucha (1998, 1999 and 2004). See aso Lee (2004) who provides
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asymptotic properties of ML procedure for spatial models. Other recent theo-
retical developments include Baltagi and Li (2001a,b), Baltagi, Song and Koh
(2003), Conley (1999), Das, Kegjian and Prucha (2005), Kelgiian and Prucha
(2001, 1997), Lee (2003, 2002, 2001a,b), LeSage (2000, 1997), Pace and Barry
(1997), Pinkse and Slade (1998), Pinkse, Slade, and Brett (2002), and Rey and
Boarnet (2004). An excellent review of the different specifications in spatial
econometrics can be found in Anselin (1988). See also Haining (1990) and refer-

encestherein.

221 Modd Specifications

| will now present the basic specification of spatial dependence suggested in the
literature. The Cliff-Ord type model of spatial dependence can be written in the
following form. Suppose that we have a panel of observations in space, indexed
byi=1,..,N, and time, indexed by ¢t = 1,...,T. The disturbances’ u;; y can

then be specified to follow a spatial autoregressive process in the form of

N
Uit, N = P Z Wij,NUjt,N + Eit,N - (2.2.1)

Jj=1

The disturbance u;;  for a cross-section 7 at atime ¢ consists of a weighted av-
erage of contemporaneous disturbancesin other cross-sections and a mutually in-
dependent innovation term ;, . The weights w;; y are assumed to be observable

guantities and, therefore, the extent of correlation in the model is a function of a

90f course spatial lags can aso be applied to the endogenous or explanatory variables in the
same manner.
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single parameter p.

This model for spatial correlation was introduced by Cliff and Ord (1973,
1981). Anselin (1988) refers to this model as a first order spatial autoregres-
sive model or SAR(1). The weights w;; x are referred to as spatial weights and
are assumed to be known, p is called the spatial autoregressive parameter and
Zj.vzl w;j NN 1S referred to as a spatial lag. The spatial weights w;; x are typ-
icaly specified to be nonzero if cross sectional unit i relates to unit j in a mean-
ingful way. In such cases, units i and j are said to be neighbors. In practice, the
gpatial weights are often viewed as normalized in the sense that the summation
termin (2.2.1) is an average of neighboring observations. e.g. one postul ates that
Zj.vzl wijn = 1.

A more general model can include spatia lags in the disturbances as well as
in the endogenous variable, denoted by y;; v, €.0.

N
Yit N = X NB + A Z My NYjt,N + Uit N, (2.2.2)

J=1

where x;; v IS avector of exogenous variables, 3 is a vector of parameters, \ is
ascalar parameter, m;; v are spatial weights, and the disturbance u;, v are asin
(2.2.1). Theterm Z?f: 1 my; vy n 1S then referred to as a spatial lag of the de-
pendent variable. The weightsin the spatial lag of the dependent variable (m;; )
can, but do not necessarily have to, correspond to those in the spatial lag in the
disturbances (w;; v).

Observe that al variables are indexed by the sample size NV, e.g. they form
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triangular arrays. This also appliesto situations where the spatial weight are spec-
ified as fixed constants. Observe that in many cases, it is assumed that each cross-
sectional location ¢ has a fixed number of neighbors, say ¢, for which w;; x # 0.
Hence each w;; v is equal either to zero or a fixed number such as 1/q. Ob-
serve that even in such cases, the number of cross-sectional units determines the
number of units that enter into the solution of equation (2.2.1). As a result, the
disturbances u;; x that are solution to (2.2.1) have to be indexed by the sample
size. The fact that the disturbances u;; y are indexed by the sample size leads to
certain technical complications and, for example, one hasto be careful in applying

central limit theorems and make sure that these al'so hold for triangular arrays.

Contiguity Weights The specifications where each units is, only affected by
its neighbors are sometimes referred to as contiguity weights. These could be
specified asw;; y = 1, whenthetwo unitsare neighbors, and w;; y = 0 otherwise.
Denoting Wy the V x N matrix of the weightsw;; v, the row-normalized weights
are then given by

W}(\/ = WN/ (e’N & WNeN) s (223)

whereey isan N x 1 vector of onesand ./ denotes element-by-element division.

In practical applications, the definition of a neighbor often follows a nat-
ural geographical interpretation. Thus if the space in question is a geographical
gpace and the units of analysis are regions, two regions are classified as neighbors

when they share a common border. Other popular specifications of the contigu-
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ity weights are rook, queen and related configurations. Suppose that the space
isdivided in equally sized rectangular units. Below, | depict the rook and queen
configuration using one to indicate the units that are neighbors to the unit = and
zero to indicate other units that are not direct neighbors (these then correspond to

entries on the x — th row of the spatial weighting matrix W y):

rook : queen :
000O0O 0 00O0O
00100 01110
(2.2.49)
01 2 10 01 2 10
00100 01110
00000 00 00O

An aternative is to assume that the spatial process has higher order components

and use so-called double-rook or double-queen specification, which could be:

double — rook : double — queen :
bo0too0 bbb
03110 ;111 3 (225
%1351% %1x1%
03110 111 4
botoo  1iiii

Of course the choice of entries 1 and % is arbitrary and these can be replaced by
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some other constants.

Another possibility is to assume that the cross-sectional units can be ordered
linearly in space (as an analogy to the linear ordering of observations in time).
The specification that is often referred to as g—ahead, »—behind (in terminology
of Kelgjian and Prucha, 1999) uses the weights matrix WE@”“) consisting of zeros
except for entries of ones on the first ¢ subdiagonals below the main diagonal and
entries of ones on the first » subdiagonals above the main diagonal. For example,

the 2—ahead, 2—behind matrix is;

0 1 1 O 0
1 0 1
wea_ | Lbo 0 (2.2.6)
o . . .1 1
1 0 1
0 0 1 1 0

An aternative is to assume a circular ordering of the observation in space. In
this case, the g—ahead, r—behind weights matrices are as above but with added
nonzero entries in positions (i, N — j) wherei,j = 0,..,¢ — 1 and (N — k, 1)
where k, [ = 0,..,r — 1. For the 2—ahead, 2—behind matrix, circularity implies
that the first unit isalso aneighbor of units V and IV — 1, hence the added entry of
onein positions (N, 1), (N —1,1), (1, N), and (2, N). Additionally the second
and last unit (V) as well as the first and (N — 1) — th units are neighbors, and

hence the entries of one in positions (V,2) and (1, N — 1).
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Distance Based Weights When one views the cross-sectional observations as
being located in a space, the extent of direct correlation between the disturbances
at two locations can be interpreted as related to their distance in the space under
consideration. Hence the weights can be interpreted as being (inversely) related
to some measure of distance among the observations. In practical applications
the space does not necessarily have to be a geographical space. The observations
can be located in an abstract space in which their proximity is a known function
of some of their observable characteristics. For example, two industries can be
considered to be 'close’ to each other if they use a similar set of inputs, or two
countries can be’close’ if they have received financia flows from the same inter-
national lenders.

Under the interpretation of the weights w;; y being inversely related to a dis-
tance measure, one is making an implicit assumption that the weights are sym-
metric in the sense that w;; v = w;; y. Thisis an artefact of the symmetry of
distance measures, i.e. the distance from i to j has to be equal to the distance
from j to i.1° Observe, however, that the model considered here is more general.
In particular, | do not require the weights to be symmetric and w;; x does not have
to be equal to wj; . This can be advantageous in situations where the spillover of
shocksis not necessarily symmetric. An exampleistheinternational transmission
of shocks, where a shock originating in avery small country cannot be plausibly

assumed to affect alarge country in a same way as a shock originating in a large

100bserve that the distance based weights can be adjusted (premultiplied) by afactor that ac-
counts for the differences in the direction of the influence. In this case the weights can become
asymmetric. Note that the specification in this thesis allows for such asymmetries.
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country affects a small country (e.g. US shocks affect say Ecuador much more
than Ecuador’s shocks can affect the US).

The problem of symmetry of the spatial weights that are based on a distance
measure is related to a more general issue of aggregation. Suppose that the data
was generated for a larger (disaggregated) sample but is only observed for ag-
gregated spatial units. Mutl (2006) considers such data generating designsin a
Monte Carlo study and concludes that only specifications that adjust the spatial
weights for the relative size of the units deliver estimates that do not change with
the increasesin the number of units observed in the sample. The appropriate mea-
sure of the size depends on the units of measurement of the endogenous variable.
For example, when the dependent variable is expressed as GDP per population,
then the spatial weights w;; x should be a postmultiplied by the population of the
region ¢ relative to the entire population of all regions in the sample. Construct-
ing the distance based spatial weights in this fashion takes automatically account
of the asymmetrical effects considered above. See also Giacomini and Granger
(2004) for related issue of forecasting an aggregate of spatially interrelated obser-
vations, and LeSage and Pace (2004) for dealing with missing values in models

with spatial dependence.

2.2.2 Estimation

The estimation method for modelswith spatial autocorrel ation suggested by Anselin
(1988) or Anselin and Hudak (1992) was maximum likelihood (ML). The asymp-

totic properties of the ML estimator of amodel such as (2.2.1) have been derived
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only recently by Lee (2004) for one specific Cliff-Ord model. Furthermore, the
maximum likelihood function contains a Jacobian term that is a determinant of a
matrix that increases with the sample size N. Hence for moderate and large sam-
ple sizes, the ML estimation might become infeasible. As an aternative, Kelgjian
and Prucha (1998) introduced spatial generalized moments (spatial GM) estima-
tor and proved its consistency. The asymptotic distribution of the spatial GM
estimator is derived in Kelgiian and Prucha (2005). The spatial GM estimator is
computationally much simpler and, as a result, is feasible also for large sample
Sizes.

The OLS estimation of a model with SAR disturbances is inefficient but re-
mains consistent. However, when spatial lags of the dependent variable are in-
cluded, asin (2.2.2), OLS estimation becomes biased since the stochastic regres-
sor Z;.V: L wij nY;e,n onthe left hand side is correlated with the error term (endo-
geneity bias). However, an instrumental variable estimation with spatia lags of
the explanatory variable as instruments, will be consistent (Kelgjian and Prucha,
1998). Alternative instrument sets are considered in Lee (2003) and Kelgjian,
Prucha and Yuzefovich (2004).

The stacked version of the model givenin (2.2.1) and (2.2.2) is

yn = XyB+ AMyyn + up, (2.2.7)

uy = pWnyuy + ey,
whereyy isthe NV x 1 vector of the dependent variable, X i isthe N x p matrix
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of exogenous variables, My and Wy are N x N spatial weighting matrices, uy
and ey arethe N x 1 vectors of disturbances and innovations. Under appropriate
regularity conditions, the model can be solved as (see, for example, Das, Kelgjian

and Prucha, 2003, page 4):
yn = Iy —AMy) ' XyB + Iy — AMy) ' (Iy — pWy) len.  (2.28)

Under the assumption that the vector €y is normally distributed with

en ~ N (Oyx1,0%Iy), thelikelihood function is:

In(L) — —gln@ﬂ)—%mmm (2.29)

1

~3 [ynv — Iy — AMy) ™ XN/B],Q]_Vl [ynv — Iy — AMy) " Xn0],

where Q isthe variance covariance matrix of the disturbancesu, given by

Qn =0 (Iy — AMy) 7 (Iy — pWa) Iy — AMYy) ~ (Iy — pWh) 7'
(2.2.10)
The least squares procedure applied directly to equation (2.2.7) isinconsistent
due to correlation of y;; v and u;;, y. However, there are instrumental variables
(V) procedures that are consistent. Observe that for the current model (see Das,

Kelgjian and Prucha, 2003, page 7):

E(yn) = (Iy = AMy) ' Xy8 =) NWiXys, (2.2.11)
k=0
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and henceideal instruments are combinations of matrices X v 3, W yX 3, W3 X v 3,
etc. Kelgian and Prucha (1998) show that an IV estimator that usesat least thelin-
early independent columns of X, WXy, W3 Xy asinstruments is consistent
and asymptotically normal.

The spatial autocorrelation parameter p can then be estimated with the spatial
generalized moments (spatial GM) procedure, suggested by Kelgjian and Prucha
(1999). Denote uy the estimated disturbances based on an initial consistent esti-

mator. Let

vy (po?) = N7'(Iy — pWyily) (Iy — pWaiiy) — 0%, (2.2.12)
van (p0®) = N7'(In — BW?VGN), (Iy — pWiity) — o’ N'tr (WyWy),
-

!/

vy (po®) = N7'(Ix = pWity) (Iy — pWaily)

The spatial GM estimator is then defined as

(», 82) = argmin {Zg:vfc’N (p,@®) vk (p.07) = (p.0?) € [—a,a] x [0,5°] 7,

= (2.213)
where ¢ > 1 and s? is the upper limit considered for o2. Kelgiian and Prucha
(1999) show that the spatial GM estimator is consistent. Kelgiian and Prucha
(1998) also provide a proof that the spatial autoregressive parameter p isa’nui-
sance parameter in the sense that the feasible generalized spatial two stage least
squares (FGS2SLS) estimator has the same asymptotic distribution when it is

based on a consistent estimator of p as when it is based on the true value. Ini-
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tially, the asymptotic distribution of the spatial GM estimator was not determined.
As aresult, tests for spatial autocorrelation had to be based on statistics such as
the Moran |. Kelgjian and Prucha (2001) and Pinske and Slade (1998) provide as-
ymptotic distribution of the Moran | test statistics. The asymptotic distribution of
the spatial GM estimator was then derived for amore general model that includes
heteroscedastic disturbances in Kelgian and Prucha (2005).

2.3 Space-TimeModels

Time and space is a key feature of ailmost all human activities. Their interaction
has been studied in many disciplines and has received some attention in economics
aswell. Studies outside economicsinclude many applicationsin geostatistics (see
e.g. Kyriakidis and Journel, 1999 for a review), geography but also in epidemi-
ology, medicine, crime prevention and others. Short overviews can be found in
Cressie (1991: 449-452) and Robinson (1998: 319-328).

In economics and econometrics, some interesting cases complementary to the
specification in the present thesis are, for example, generalized least squares test
to test for unit rootsin panel data (although without deriving any asymptotic prop-
erties of the estimator) in O’ Connell (1998), atwo-step sieve least squares proce-
dure to estimate a panel vector autoregression (VAR) model with a nondiagonal
cross-sectional covariance matrix that is proportional to an observed economic
distance measure in Chen and Conley (2001) who look at asymptotics in the less
complicated case when the cross-sectional dimension isfixed, and, finally, Chang

(2002) who derives asymptotic properties of a univariate panel model with agen-
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eral unrestricted form of cross-sectiona heterogeneity when the cross-sectional
dimension of the panel is also fixed.

In this thesis, | will analyze dynamic model that includes a spatial lag in the
disturbance process. Thisisaspecial case of the class of stochastic models known
as space-time autoregressive (space-time AR) models introduced by Cliff et al.
(1975) and generalized by Pfeifer and Deutsch (1980). More recent discussions
and applications of the space-time AR model in econometrics are Elhorst (2001),
while a generalization of the model to continuous space is proposed by Brown et
al. (2000).

Below | review papersthat deal with this class of modelsin more detail. Note
that if contemporaneous correlation is present, the observable data become a non-
trivial transformation of the underlying random field, resulting in some technical
difficulties. Hence | first focus on specifications that do not allow for contempora-
neous correlation in the data but instead assume that spatial interactions act with
atimelag. In the second subsection | therefore present models that allow for such

complications.



2.3.1 Space-Time Autoregressive Moving Average

(STARMA) Models

Pfeifer and Deutsch (1980) werethefirst to propose a STARMA model. Their
general STARMA(p, ¢; A1, ..., Ap, ma, ..., m,) Model is:

P Ak

N
Yire = Z Z Pry Z Wij,1Yj,t—k (231)

k=1 1=0 j=1

q mEg N
— E E 011 E Wiji€j4—k T Eits

k=1 1=0 j=1

where p isthe autoregressive order, ¢ isthe moving average order, ), isthe spatial
order of the k —th autoregressiveterm, m,, isthe spatial order of the £ —¢h moving
average term, ¢, and 0, are parameters and the errors are normally distributed
with E (gy) = 0, E(eqejs) = o fori = jandt = s, and E (g4¢55) = 0
otherwise.

The spatial weights have the usual interpretation (see the previous subsection)
and are assumed to be observable and the authors do not impose any restrictions
on their structure. Observe that in contrast to Cliff-Ord type model considered in
thisthesis, their STARMA model does not allow for contemporaneous correlation
between spatial units, i.e. for example ¢;; dependsone;;—; but notonej;;. Asa
result, the likelihood function does not involve a Jacobian term in aform of ade-
terminant of an V x IV and, asaresult, ML estimation is considerably smpler and
it is the estimation method suggested by Pfeifer and Deutsch. The authors derive

the likelihood function conditional on initial values of the process and note that
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it is only appropriate for moderate or large 7. However, the restrictions implied
by the model on the initial observations are not explicitly derived. The paper also
does not provide formal consistency or asymptotic normality results. Abraham

(1983) derives the likelihood function for the STARMA model.

Stoffer (1986) outlines different estimation procedure for aspatial STAR model
with missing values (spatial ARX in his terminology). The model combines the
time series parametrization of an autoregressive moving average process for miss-
ing and noisy datawith a Cliff and Ord type spatial structure. The data generating
process is assumed to be a ¢-th order autoregressive process where the current

observation is influenced by ¢ time lags of its spatial neighbors:

q N
yuZE:E:meW%¢%+XM3+am (2.3.2)

k=1 j=1

where the autoregressive parameters ¢, ; are alowed to vary with spatial |ocation.
The spatial weights w;;;, have the usua interpretation (e.g. they are inversely
related to a distance) and are allowed to be different at different time lags. The
p explanatory variables in x;; are modelled as a stochastic process independent
of the innovations ¢;; and the data sample is observed for i = 1,...., N andt =
1,..,T.

The estimates are solutions to approximated Yule-Walker equations. For ex-

ample, with no data problems, ¢ = 1 and without explanatory variables, the model
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can be written as

yi = W®y, ; +e, (23.3)

wherey, = (Y, ..., ynt)» €0 = (€1, ..., ene), WisaN x N matrix of the spatial
weights w;; and ® = diag (¢, ..., ¢»). The proposed estimator of @ is then:

& — diag (W*lf,lfgl) : (2.3.4)

where the estimated moments of the data are

T
Lo =) vy, (235)
t=2
and
N T
L= vy (236)
t=1

There are no formal asymptotic claims made for the procedure. The method is
illustrated with an application to fish catch data at five locations for 240 time peri-
ods suggesting that the implicit asymptotic consistency and normality claims are

for fixed spatial dimension N and increasing time dimension of the observations.

Paceet al. (1998) model spatial and temporal dependence in housing price data
in Fairfax County Virginia between 1961 and 1991. Unlike in standard STAR
models, it is not assumed that the autocorrelation in the dependent variable is

linearly separable in space and time. Instead an interaction of the space and time



lagsis considered. In particular, the model is:

T N T N
Yit = Z Z WijtsYjs + X;t,ﬁ + Z Z wij,tsxg-sﬁ + it (237)

s=1 j=1 s=1 j=1

where the observable weights w;; ., relate observation across time and space si-
multaneously. It is assumed that w;;; = 0 for s < ¢, meaning that the current and
future values of y;; and x;, do not influence the process for y;;.

Stacking w;;+s intoa NT' x NT matrix W, Pace et a. assume that
W =p.S — p;T + pgrST + prTS, (2.3.8)

wherethe S and T matricesareinterpreted asfiltersin space and time respectively.
Their entries are related to the distance of the of the observation in space and time
respectively.

The main limitation of their approach is that it is assumed that there are no
concurrent observations and that only past observations have an effect. If the
matrix W is stacked so that the observations are sorted according to time, this
assumption implies that both T and S are strictly lower (or upper) diagona. As
a result the model can be estimated by OLS. The paper does not provide formal

results and does not spell out assumptions on the disturbance process.

Giacomini and Granger (2004) show that the STARMA class of models can
be derived as atransformation of vector autoregressive moving average (VARMA)

model, where the transformation is a restriction involving spatial weighting ma-
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trices. When the number of locations is small, the model can be estimated by an
overparametrized VARMA specification. With increasing number of location, the
overparameterized VARMA model hasalarge number of insignificant parameters.
Therefore, estimation can be improved in a Bayesian framework by incorporating
these as priors. Hence LeSage and Krivelyova (1999) propose a class of prior
distributions for a Bayesian VAR model that will approximately constrain the in-

significant parameters to zero.

2.3.2 Modeswith Contemporaneous Spatial Correlation

The papers cited in the above subsection did not alow for contemporaneous de-
pendence of the observations. When such interactions are included, the observa-
tion become a nonlinear transformation of the innovations and, as a result, maxi-
mum likelihood estimation is more difficult. We next review papersthat allow for

such complications.

Congdon (1994) considers the spatiotemporal model of the following form:
Yir = X8 + 1 + i, (2.3.9)

wheret = 1,...,Tandi = 1,..., N and the error term is both spatially and tem-
porally autocorrel ated:
N

Wi = QUig_1 +p Y Witk + Eqp. (2.3.10)

J=1
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It is assumed that v;, and x;, are known exogenous constants. Thefirst step of the
proposed estimation procedure eliminates the individual effects p; by subtracting

individual means7; and x; and estimating the slope coefficients 3 by OLS on
(yie — i) = (xa — %) B+ (vie — W) . (2.3.11)

In the second step, ¢ and p are estimated by minimizing

N

T
96.0) =3 (v~ xiBovs) (2312)

i=1 t=1

where
N
Yy = Wit =) — ¢ Wig—1 — W) — PZ Wij (yjt — yj) . (23.13)
j=1
N
X = (X —%) — ¢ (X —Xi) —p > wyy (X — %)
j=1
Based on Hordijk (1979), the transformation for the first time period is

yi = [@=pW) (I-pW) - TN (1 -y), (2314

X: = [(IT—pW) (I-pW) - ¢’Ty]"* (X, - X),

/ ~ /!
’

Whereyl = (ylla ...,le) y = (yb ---agNYaXl = (X/ll, ...,X/1N>,,X = (i/l’ ,ié\;)

and Wisan N x N matrix with elements w;;. The slope coefficients 3 are esti-
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mated by OL S from
vi (6.7) = i @ﬁ)/ﬂ +en (2.3.15)

In the third step, the variance components o? = Var (¢;) and o, = Var (u;)

are estimated, e.g.
~ 1 XM I N2
. * */

=1 t=1
where 3 is from step 2. 1 The final step is a generalized least squares (GLS)
procedure to re-estimate 3.

The paper contains outline and an application of the estimation procedure to
mortality ratesin London but offers no formal proofs that would support the con-
sistency claims. The estimated GL S procedure is based on suggestion in Anselin
(1988), p.111.

Driscoll and Kraay (1995, 1998) Provide a proof of consistency and asymp-
totic normality of a GMM procedure based on a panel Newey and West (1987)
nonparametric heteroscedasticity and autocorrelation consistent (HAC) covari-

ance matrix estimator.’> The limit is taken with respect to the time dimension

1The expression for a/:% in the paper is

N
— 1 . N et~ \y2 o2
op = N Zl{(% — O¥i,—1 — PWY> -B (Xi — ¢Xi—1 — PWX)} - ?E

This does not seem to have the correct dimensions.

12The cross-sectional dimension of the data is collapsed by taking cross-sectional averages.
Hence thisis not a complete generalization of the HAC estimation to a panel setting.
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of the data. Their specification requires that the data is an a-mixing random field
of the same size as the number of moment restrictions and hence places only weak
restrictions on the form of spatial and temporal correlations.

They consider r orthogonality conditions E [h;; (i, 0)] = 0, where z;, i =
1,...N,t=1,..,Tisdataand @ is avector of parameters. The restrictions are

assumed to identify the parameters. Their GMM estimator is

!/
OT —argmm{[ th (0,2, ]

Z (0,2, ] } (2.3.17)

where Z; — (th, cen ZNt)/! ht (0, Zt) = N1 Zfil hit (Zit7 0), and §T is the stan-

dard HAC estimator applied to the sequence of cross-sectional averagesof h;; (2, 6).

Bronnenbergand Mahajan (2001) Estimateamodel of retailers behavior where

the market shares are related to marketing variables. Their model is
Yit = O + X;t/B + i + Uit (2318)

where the disturbances are composed of innovations autocorrelated in time and

individual effects autocorrelated in space:

g o= p Y wik+ e (23.19)

Ui = PrUig—1 + V.
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The explanatory variables are also modelled as a stochastic process based on the

same individual effects 1, with the j — th explanatory variable z; ;; Specified as
Tjit = Ut + Vi + Ojit, (2.3.20)

where

Ojit = Pgj0ji4—1 + 05T + & - (2.3.21)

The modd is estimated by Maximum Likelihood under the assumption that

the innovations y;, €;, vit, §; ;, are al jointly normally distributed.

Elhorst (2001) derives alikelihood function for a STAR(1,1) model where he

also alows for contemporaneous spatial lags. His general model is

N N
Yie = OYiz-1+ P Z wijYjt + Py Z WijYjt,—1 (2.3.22)

j=1 j=1

N N
+B1Ti + Baxip—1 + By Z Wi Tit + By Z Wi %41 + Wit

J=1 J=1

The likelihood is derived under the assumption that the disturbances w;; are nor-
mally distributed with E (u;;) = 0, E (u3) = 0 and E (ujus;) = 0if t # sor
i # j. The paper assumes that the matrix of the spatial weights W = (w;;) has
zeros on the diagonal and that the spatial autoregressive parameter p is bounded
by the inverse of the largest and smallest eigenvalue of W. It is aso implicitly
assumed that the matrix W is symmetric and that the model is dynamically stable



(this places a nontrivial condition on the parameters ¢ and p,).X* The likelihood
is not conditionalized on the initial values but instead it is assumed that the initial

observations are draws from the stationary distribution of the process.

Kapoor et al. (2005) extend the GM estimator of Kelgjian and Prucha to a
panel data. The contribution of thesis relative to Kapoor et a. (2005) isto alow

for autocorrelation in the time dimension as well. Their specificationis

Yit,N = Xip nB + Uit N, (2.3.23)

where the disturbances are an SAR(1) process with individual effects:

N
Wi =p Y wijtije + [ + Eit. (2.3.24)

Jj=1

The paper providesformal consistency proof of the spatial GM estimator (with
aternative weighting schemes) of p, as well as asymptotic normality of a gener-

alized least squares (GLS) estimator of 3.

Baltagi et al. (2003) derive formulae for various Lagrange multiplier tests in
amodel that includes spatially correlated disturbances. The paper also provides
experimental evidence of their performance in small samples. They consider the
following model:

Yir = X3+ 1 + i, (2.3.25)

13Such condition could be, for example |6| + |pg| - Amax (W) < 1, where A, is the largest
(in abolute value) eigenvalue of the matrix W that consists of the spatial weights w;;.
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with the disturbances being an SAR(1) process.

N
Uit — pz Wi Uit + €. (2326)

Jj=1

Observe that when the spatial lag does not operate on the individual effects,
this specification implies that the covariance between y;; and y;, is zero for i # j
andt # s. Thisisin contrast to the specification in Kapoor et a. (2005), wherethe
individual effects are spatially correlated and, as a result, the covariance among

v and y;; isnonzero for al valuesof 4, j, ¢ and s.

Korniotis (2005) Building on work of Hahn and Kurstiener (2002), Korniotis
(2005) considers a hias corrected OLS estimator in a dynamic panel data model

that also includes spatial lag of the dependent variable. The specificationis

N N
Yit = QYir—1+ P Z Wi Yjt + Po Z WijYj -1 +XB + p; +en. (2.3.27)

j=1 j=1

where the disturbances are independent in the time dimension but are allowed to
have arbitrary covariance matrix (constant over time) in the cross-sectional dimen-
sion. The paper givesthe asymptotic formulasfor the biases of the OL S estimators

when both N and 7" simultaneously approach infinity.
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Yang (2005) extendsthe proofs of asymptotic normality in Lee (2004) to astatic

panel data model with random individual and fixed time effects. His model is
Yie = TS+ 0y + 1 + Wi, (2.3.28)

where the disturbances u;; are an SAR(1) process, i.e.:
N
Uit = P Z Wi Uij ¢ + €. (2329)
j=1

The QML function is derived under the assumption that {¢;;} and {y,;} are mu-
tually independent and identically distributed random variables with finite 4 + o

moments for some d > 0.
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3 Mod€

In this chapter | specify the model and provide a discussion of the maintained
assumptions. It provesto be useful to restate the following notational conventions
and definitions: | use bold letters for matrices and vectors, and regular font letters
to denote scalars. Furthermore, | use lower case letters for vectors and upper case
letters for matrices. Let (A ),y b€ Some sequence of Np x Np matrices where
p > 1 is some fixed positive integer. | denote the (4, j)-th element as a;; n. |
say that the row and column sums of the sequence of matrices A are uniformly

bounded in absolute value if there exists a positive finite constant ¢ independent

of NV such that
Np Np
< <
1221)\(@2_: laiin| <c and 122%;;2_: lai;n| <c. (3.0.1)

]_1 1=1

For future reference, | note that any finite sum and/or product of matrices with
row and column sums uniformly bounded in absolute value will also have row
and column sums uniformly bounded in absolute value; see Kelgjian and Prucha
(2004). Asaconsequence, if B isamatrix of constants with fixed dimensions and
Ay 1s a sequence of matrices with row and column sums uniformly bounded in
absolute value, then the sequence of matrices (B ® A y) will also have row and

column sums uniformly bounded in absolute value.
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3.1 Modd Specification

Consider the following dynamic panel datamodel (1 <i < N,1 <t <T):

Yit, N = QYit—1.N + Xt NB + Ui, N (3.11)

where y;; v and x;; v denote the (scalar) dependent variable and the 1 x p vector
of exogenous variables corresponding to cross sectional unit ; in period ¢, ¢ and 3
represent corresponding 1 x 1 and p x 1 parameters, and u;;  denotes the overall
disturbance term.

In contrast to the existing dynamic panel data literature I do not assume that
the disturbances u;;  are cross-sectionally uncorrelated and | consider potentially
heteroscedastic errors. Giventhefact that | will derive asymptotic properties of the
model when the cross-sectional dimension tendsto infinity, the cross-sectional co-
variance structure will be parametrized with afinite number of parameters. In par-
ticular, | assume that the disturbances u;; » follow aspatial autoregressive process

in the form of;
N

Uit, N = P Z Wij,NUjt,N + Vit,N, (31.2)
j=1

where the overall disturbance u;; y consists of a spatial lag of contemporaneous
disturbances in other cross-sections and an innovation v;; .

Anselin (1988) refersto thismodel asafirst order spatial autoregressive model
or SAR(1). See the previous chapter for more detailed discussion of such spec-

ification. The process for the disturbances contains one parameter p and N? ob-
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servable spatial weights w;; v. The v, x are the innovations that enter the spatial
process. They are allowed to be correlated over time and | assume that they have

the following error component structure:
Vit, N = fi,n T Eit,N, (3.1.3)

where y; 5 are unit specific error components, and ¢;; y are the error components
that vary both over cross-sectional units and time periods.

The gpatial weights, as well as the endogenous, exogenous and disturbance
processes are al alowed to depend on the sample size, i.e., to depend on N.
Observe that even if the innovations v;,  did not depend on the sample size, the
disturbances u;; y would still have to be indexed by the sample size due to the
presence of the spatial lag p 3" | wyj vty in (3.1.2).2

Stacking across units the model becomes (1 <t < T)

Vin = Oyian+Xen B +un, (3.1.4)
Nx1 Nx1 NxppX1 Nx1
wy = pWpywn + Uy,
Nx1 NXN Nx1 Nx1
where
U N = Uy + ELN, (3.1.5)

Nx1 Nx1 Nx1

14The N x 1 vector of disturbancesu,,  isgivenby u; vy = (I — pWy) vy N (Seeequation
3.2.1). Note that the elements of (I — pWN)’1 must depend on the sample size N. Thiswould
be true even if the elements w;; » did not depend on the sample size.
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and

Y1t,N
Yin =

YNt,N

U1t N
W N =

UNtL,N

E1¢,N
EiLN =

ENt,N

X1t,N

) Xt,N - y (316)

Nx1 XNt,N Nxp
H1, N

) I'l’N - )

Nx1 'uN’N Nx1
wi1,N WiN,N

) WN -

Nl WN1,N WNN,N NxN

In al of the ensuing discussion 7" isfixed and N — oc. | maintain the follow-

ing assumptions:

Assumption 1 For each N > 1 the innovations {¢;; ny : 1 <i < N,t <T} are

independently distributed, with zero mean, constant variance o2  with0 < o2 5 <

b. < oo. Furthermore, the innovations have finite absolute moments of order

4 + 9, for some 9. > 0 and those moments are uniformly bounded by some finite

constant.

Assumption 2 For each N > 1 the individual effects {4, y : 1 <i < N} are

independently distributed, with zero mean, and are independent of the innova-

tions {e;; v : 1 <i < N,t < T}. Furthermore, the individual effects have con-

stant variance o, y; With 0 < o2 y < b, < oo and finite absolute moments of
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order 4 + 6, for some 9,, > 0 and those moments are uniformly bounded by some

finite constant.
Assumption 3 The nonstochastic matrix W, has the following properties:

(&) All diagonal elements of Wy are zero.

(b) Thetrue parameter p satisfies |p| < 1; thematrix Iy — W y isnonsingular
for all |r| < 1.

(c) Therowand columnsumsof Wy and Py (p) = (Iy — pWy) ' arebounded
uniformly in absolute value by, respectively, ky < oo and kp < oo where

kp may depend on p.

It will be shown in the next section that the following assumption will guaran-

tee that the variances of the disturbances u;, y are bounded away from zero:

Assumption 4

)\min (PNP/N) >cp>0
for some cp where cp may depend on p.

The analysis is conditionalized on the realized values of the exogenous vari-
ables and | henceforth view them as constants. | make the following assumptions

on the exogenous variables:

Assumption 5 (&) The matrix of exogenous (nonstochastic) regressors X v,

t < T, hasafull columnrank (for N sufficiently large).

62



(b) The elements of X  are uniformly bounded in absolute value.

| complete the model by specifying a process that generates the initial obser-

vation of the dependent variable:

Assumption 6 The model defined in (3.1.4) is dynamically stable, i.e., |¢| < 1,

and has been in operation for an infinite period of time.*®

The error specification adopted in this thesis corresponds to that of a classi-
cal one-way error component model, see e.g. Baltagi (1995, pp. 9). Itisdso a
generdlization of the literature on dynamic panel data models with independent
innovations. Notice that with p = 0, my specification becomes, for example,
that of Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover
(1995), Blundell and Bond (1998),%¢ or Anderson and Hsiao (1981 and 1981),
case IVb.Y Finaly, note that the same error component specification of the dis-
turbance process was adopted in Kapoor et al. (2005), who consider random effect

specification in the context of a static panel data model.

3.2 Mode Implications

| examine the asymptotic properties of the proposed estimation procedure when
the time dimension of the panel is fixed. | assume slope homogeneity of the

autoregressive parameters (¢ does not have an i subscript)'® and | also assume

5Note that Assumptions 1 and 2 have been consistently specified to hold for —co < t < T..

161 these papers the exogenous variables are allowed to be stochastic and either strictly exoge-
nous or predetermined while in thisthesis| treat the exogenous variables as nonstochastic.

7 Anderson and Hsiao do not include exogenous variables in their specification.

18Note that heterogenous slope coefficients cannot be consistently estimated with a fixed num-
ber of observationsin the time dimension of the panel.
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that the spatial weighting matrices are constant over time.® In the rest of this
section | explore some implications of the maintained assumptions. Proofs of the
claims made in this section are in the Appendix B.

Assumption 1 is a standard restriction for asymptotic results. | do not assume
that the innovations are identically distributed and hence a stronger requirements
on the existence of moments is necessary. Assumption 2 is a random effects as-
sumption that will be used to prove existence of asymptotic distribution of moment
conditionsthat involve level s of lagged endogenous variables. | conjecturethat the
estimation procedure suggested in thisthesis remains valid also when the individ-
ual effects are fixed (o2, = 0). However, the proofs would have to be modified®
and hence | choose to concentrate on the random effects case.

Assumption 3(a) is a normalization of the model that also implies that no
cross-section is viewed as its own neighbor. Assumption 3(b) implies that the
system in (3.1.4) is complete in that it defines endogenous variables in terms of
exogenous variables and innovations. In particular, from Assumption 3(b) it fol-
lows that

wy = Pyoun. (3.2.1)

Nx1  NxXNNx1
Furthermore, we can eliminate lagged dependent variables by backward substitu-

tion and express the model as a function of lagged disturbance terms and lagged

191 the spatial weighting matrices were not constant over time, then first differencing would not
remove the individual effects.

20| gpply central limits theorems to a vector of random variables that includes the individual
effects. Hence it is required that ai > 0. In the fixed effects case, the central limit theorems
would be applied to a vector of random variables that excludes 5. Observe that the sequence of
vectors p would in this case be required to satisfy some regularity condition such as Assumption
A2 in Appendix A.
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explanatory variables. From (3.1.4), we havethatfor 1 <t < T

Vi = Oyian +XenB +w N (322

= ¢[dyion +XianB+ Wi n] + X NGB+ uy

t—1

= Z ¢ X jnB+ wjn] + d'yon
=0
t—1

= Z ¢ [Xi—jnB + Pyvi_jn] + ¢'yon,

J=0

and hencey, n isawell defined transformation of the innovations v; y, theinitial
values of the processy, , and the exogenous variables X .

Assumption 3(c) restricts the degree of permissible cross-sectional correlation
in the sample. Note that some restriction on the correlation is necessary for any
large sample results to hold. In practice in the spatial literature, with 7" fixed and
N — oo, it is often assumed that each cross-sectional unit has a finite number of
neighbors, or that the rows of the weight matrices are normalized to sum to unity.
It is aso often the case that although the matrices may not be sparse, the weights
are proportional to an inverse of some distance measure. Therefore, under reason-
able conditions, the weight matrices will have row and column sums uniformly
bounded in absolute value.

Assumption 4 rules out degenerate weighting matrices that would imply zero
variance of the disturbances u; ;. Observe that from Assumption 3, we have

u n = Py (py + €:.v) and hence the variance covariance matrix of the distur-

65



bances u, v is

VC () = (0o y+02y) PPy (3.2.3)

In particular, notice that each diagonal element of V(' (u, y) is bounded from
below by the smallest eigenvalue?* and hence the assumption implies that each
u;, v hasvariance bounded away from zero. Inamode! without spatial correlation,
Py = Iy and this Assumption istrivially satisfied.

Assumption 5 is an exogeneity assumption of explanatory variables. Finally,
under Assumption 6, together with the assumptions on the exogenous variables

and the spatial weighting matrix, we have by backward substitution:

o

Yon = Z ¢j (ij,Nﬂ + u—j,N) (324)
7=0

o0

= Y ¢ [XnB+Pre_jn]+(1—¢) " Pypuy.
j=0

Hence y, v is a random variable that in general depends on N with mean that
is not necessarily equal to zero. Noticethat {u; y : 1 <i < N,—oco <t <0} is
a transformation of {e;n :1<i < N,—oco <t <0} and {y, y:1<i< N}
Therefore, by Assumptions 1 and 2, thearray {y;on : 1 < i < N} isindependent
of {exn:1<i<N,1<t<T}. Furthermore, given Assumptions 5 and 6 it
aso has finite absolute moments of order 4 + ¢,,, for some 4,, > 0 and those

moments are uniformly bounded by some finite constant (see the appendix for a

21See e.g. Lemma 2 in Kelgjian and Prucha (2003).
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proof).?? For future reference, | note that the variance of y, v is

2 2
VC (yon) = (10_5’22 + (;j’]; )2) PyPYy. (3.2.5)

2Similarly, it can be shown that the stochastic process yi+,n has finite absolute moments of
order 4 + 6, for some J,, > 0 and that those moments are uniformly bounded by some finite
constant. The proof of this claimisalso in the appendix.
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4 Edtimation and Inference

This chapter will present the key results of the thesis. | present a procedure to es-
timate the parameters of the model outlined in Chapter 3 and derive its asymptotic
properties. The proposed estimation method consists of three steps. In the first
step, | propose to use an instrumental variables (1V) estimator of the slope coef-
ficients ¢ and 3 without efficiently accounting for the spatial correlation of the
disturbances.?® In the second step of the estimation, the estimated disturbances
from the first stage are utilized in a spatial generalized moments (GM) estimator
to estimate the degree of spatial autocorrelation in the disturbances (p). In the last
step of the procedure, | propose a GMM estimator of ¢ and 3 with an optimal
weighting of the momentsthat is based on the initial estimators.

For expositional purposes, | choose to present for the first stage an IV estima-
tor that uses a ssimple set of instruments due to Anderson and Hsiao (1981). Ob-
serve, however, that the results on the third stage generalized method of moments
(GMM) estimators presented subsequently are sufficiently general to guarantee
consistency of 1V estimators that use an extended set of instruments, such as the

onein Arellano and Bond (1991).

4.1 |Initial IV Estimation

In this section | propose a simple estimation procedure to estimate the parameters

6 = [¢, B'] of themodel (3.1.1) and demonstrate that the method is consistent and

23| do not account for the spatial correlation in formulating theinitial IV estimator. However, it
istaken into account in the analysis of its properties.
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asymptotically normal. Since the model contains individua effects, these cannot
be consistently estimated with fixed 7. Hence the model is considered after a
transformation that removes the individual effects from the dependent variable. |
follow theliterature on dynamic panels and usefirst differences. Notethat it would
also be possible to use other transformations such as central differences. | use
moment conditions based on the fact that the first difference of the disturbancesis
uncorrelated with thelevel of the endogenous variablelagged twice (or more).?* In
particular, the estimator corresponds to the one suggested by Anderson and Hsiao
(1982). Inspection of the proofs reveals that the random effects Assumption 2 is
not strictly necessary for theinitial estimator to work.?®

| write the model in first differencesas (t = 2,...,7T):

Ayin = ¢ Ayian +AXyy B + Auyy, (4.1.1)

Nx1 1x1  Nx1 Nxp px1 Nx1

where A isthe first difference operator and, in particular, Ay, v = yin — Yi—1.n»
AXynv =Xenv — XN and Au, y = Uy — UWg—1 N-

Stacking the observations over time yields

AyN = AZN 7] -+ AUN s (412)

(T-1)Nx1  (T—-1)Nx(14p)(1+p)x1  (T-1)Nx1

#Thisclaimisformally proved in Lemma 2.

SNote that it is not the case that no assumption has to be made on the individual effects, asis
often claimed in the literature. Since the lagged endogenous variable is used as an instrument, one
still need to maintain that theindividual effects are uncorrelated with the idiosyncratic disturbances
and satisfy certain moment restrictions aswell. This of would of course be satisfied if we view the
individual effects as constants.

69



where

AZN = Ayfl,N s AXN (413)
(T'—1)Nxp+1 (T-1)Nx1 (T—1)Nxp
and26

A}’2,N A}’1,N

AyN = s Ayfl’N: (4,14)
AYTN (T—-1)Nx1 AYT-1N (T-1)Nx1
AXQ’N AUQ’N

AXN = s ALIN:
AXr N Aur y

(T-1)Nxp (T-1)Nx1

Since Ay,_; n is correlated with Au,  the ordinary least squares estimator
for @ from the above model will generally be inconsistent. However, the level
of the dependent variable lagged twice (or more) will not be correlated with the

disturbances Au, n. Motivated by this, | define an instrument matrix

Ht,N = [Yt72,N> AXt,N]- (4-1-5)
Nx(1+p) Nx1 Nxp

Given the model assumptions we have, as demonstrated in Lemma 2 below:

E ( H:‘/,N Aut,N> = 0(1+p)><17 t = 2, .. ,T. (416)
(

1+p)xN Nx1

2Note that most of the dynamic panel data literature stacks the data by first collecting the T’
observations of each unit in a vector and then stacks those N vectors. The grouping used in this
paper is more convenient for modelling spatial correlation via (3.1.2).
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The initial IV estimator of @ utilizes H, y as instruments®” for Ay, ; vy and is

defined as

-1

Oy = [Ai;VAzN] AZ! Ayy | (4.17)
(1+p)x1 (I+p)x(14+P)  (14p)x(T-1)N (T—1)Nx1
where
AZy =HyHWHy) 'Hy - AZy | (4.1.8)
(T—1)Nx(14p) (T-1)Nx(T—-1)N (T-1)Nx(1+p)
and
H; n
Hy = : . (4.1.9)
(T—1)Nx(1+p)
HT,N

isa(T —1) N x (p+ 1) matrix of instruments.?®
Theinitial Anderson and Hsiao |V estimator isaspecia case of amore general
GMM estimator discussed in Section 4.3. However, for expositional purposes

| derive its asymptotic properties here. Substituting in the definition of the IV

2\We note that it is possible to use additional lags and/or levels of the dependent variable as
instruments and obtain a consistent initial estimator aswell. For example, we could use theinstru-
ments suggested in Section4.3,i.e. H; = [yi—o.n,-- -, Yo,N, Xt.Ns - - -, X1,N]-

B\Writing the instruments in this fashion leads to an estimator that is based on moment con-
ditions that are averaged both over N and T'. It is aso possible to define the Hy matrix as
Hy = diag (Ho, .., Hy), and the moment conditions are then only averaged over N. In this case
the expressions in Lemmas 1 and 2 have to be modified. Note that these two specifications of the
instrument matrix lead to different estimators. The projection matrix Hy (HyH N)_l H/y inthe

first case has elements in the form H; (ZLQ H;,NHS,N> H; \ while in the second case

they are H, v (H} yH;, N)71 H; . The case of estimators based on moments averaged only
over " will be considered in Section 4.2 below.
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estimator in equation (4.1.7) yields

~

~ -1
Oy = 0+[AZ’NAZN] AZ Auy

(4.1.10)

—1
= 0+[AZ§VHN(H;VHN)‘1H;VAZN AZ\Hy (HyHy) ' H) Auy.

For the instruments to be valid, | make the following assumption.

Assumption IV1 The matrix

1
MHAZ :phmi H/ AZN s
(1+p)x(1+p) (T'-1) N(1+p)x(]¥_1)w (T—1)Nx(1+p)

exist and is finite with full column rank. The matrix

1

Mpyy =plim H/ Hy 5
(1+p)x(1+p) (T -1) N(1+p)x(1¥_1)N (T—1)N x (1+p)
exists and is nonsingular.
We can aso define
M li L AZ AZ
AZ =plim - N N y
(1-4p) x (14p) (T = 1) N (t4p)x(T-1)N  (T-1)Nx(1+p)

(4.1.11)

Observe that AZ)\AZy=AZ\Hy (HyHy) ' HyAZy and hence M, =

MuazM 7 Mpaz. Assumption 1V1 thus implies that M, exists and is fi-

nite. Also note that the assumption that the M matrices are finite can be de-
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rived from earlier restrictions®. However, the existence and invertability of M »
and My is not guaranteed by Assumptions 1-6.° Observe that one could de-
rive Assumption V1 from existence and nonsingularity of the limits such as
lim (TN) ™ 30 X v X

To derive the asymptotic distribution of O, | notethat given Assumption 1V1,
it remains be to shown that the term H'y, Auy converges in distribution (when
appropriately normalized). It will prove convenient to introduce the following

additional notation for lagged exogenous variables

X oy = (Opr,X’LN, --,X'T,ZN)/, (4.1.12)

(T—1)Nxp

the vector collecting all of the model orthogonal innovations

P (. Enr €l Ern) (4.1.13)
+ X

withgy =377, ¢’e_jn,anda(T — 1)xT difference operator D anda (7 — 1) x

2For example, the elements of My consist of first and second moments of the stochastic
process y;; interacted with the exogenous variables. These are bounded by Assumptions 1-6.

For example, Arrelano (1989) examines a univariate AR(1) model with first-order autoregres-
sive exogenous variables, and finds that when the first differences of endogenous variables lagged
twice are used as instruments, there exists a significant range of parameters for which there is
a singularity point in the estimator. The paper also suggests that the estimator that uses second
lags of the levels of the endogenous variables does not have the singularity problem for a reason-
able range of parameters. However, this conclusion does not readily generalize for all possible
exogenous variables.
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(T — 1) matrix ®

-1 1 0 0 1 ¢ ot
0 -1 1 0
exr | ey | S
0 0 -1 1 0 0 1
(4.1.14)

Observe that given Assumptions 1, 2, and 6, the variance covariance matrix of
Ny is

E (nNnIN)(T+2)N><(T+2)N:< 3N ®IN>, (4.1.15)
(T+2)x(T+2)

wherethe (T + 2) x (T" + 2) diagonal matrix X,, y is

2

. UE,N

(T+§)n’(];c+2) = dmg <O’i7N, ﬂ, O'iN, cees U?,N) . (4116)
X

| first expresstheelementsof HyAuy (Whicharey’ , yAuy and AX;Auy)

in terms of lagged mode! disturbances and dependent variables:

Lemma 1l Under the specification (3.1.4) with Assumptions 1-6 and V1 we have
that

y o nAuy= fy (Ir12 @ Py) ny+ny (F @ PyPy) ny,
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wherethe (7" + 2) N x 1 vector fy isgiven by

025 (7-1) , E (yon)
fy = , RIy| (P ®1y) X.on B+ Nx1
- — - 1
Tx](%q) (T-1)Nx(T-1)N | (T—1)NxpPX O(r—zyn 1
(T-1)Nx1

andtheT 4+ 2 x T + 2 matrixF is

ﬁ 1ix(r-2

o Lix1 O1><(T72) & (0( : D)
= T—1)x2, .

(T+2)x(T+2) 0121 Iy, (T-1)x(T—1) (T—1)x(T+2)

0251 02><(T—2) (T+2)x(T—1)

Furthermore AX', Auy can also be expressed as a linear function of 7
AX;VAUN = AX/N [(O(T—l)x%D) ® PN} Ny

Proof. Seethe Appendix C.1.

Notice that as indicated by the subscript, the size of the f,; vector depends on
the sample size. Since T is fixed, | do not use subscripts for matrices F and D
whose size and elements only depend on 7" and not on V.

To determine the asymptotic variance of the estimator, | will make use of
the following Lemma that gives an expression for expected value and variance

covariance matrix of the moment conditions:
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Lemma 2 Suppose Assumptions 1-6 hold. The expected value of the vector of

quadratic forms H'y, Auy is zero. Its variance covariance matrix is given by

VN = F (H/NAUNAU/NHN)
(1+p)x(1+p)

vy 0O
~ Sy (S,~®PyPy) Sy  + T,

(A+p)X (TH2)N  (T+2)Nx(T+2)N (T+2)Nx(1+p) 0px1 Opxp

where

AXy ,
(T—1)Nxp

Sy = fv [(O(Tl)x27 D)/ ® Iy
(T-1)Nx(T+2)N (T42)N x (14p)

(T+2)Nx1 (T—1)x(T+2)

and

vy = 2tr (F9S, NF7S, v) - tr (PyPyPNPY),
WithF* = 2 (F + F').
Proof. Seethe Appendix C.1. ®
To rule out cases where the moment conditions have zero asymptotic variance,

| make the following assumption:

Assumption 1V2 The smallest eigenvalue of [(T — 1) N] ™' S Sy is uniformly

bounded away from zero for T' > 2.

Although S depends on the sample size, the dimensions of S’,Sy do not

changewith V. Furthermore, notice that the assumption alsoimpliesthat £ (Hy Hy)
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has eigenvalues uniformly bounded away from zero and, therefore, also implies
the invertability of Mz in Assumption 1V1.3! The above Assumption together

with Assumption 4 allows us to prove the following Lemma

Lemma 3 Suppose Assumptions 1-4 and 1V2 hold. The smallest eigenvalue of

(T — 1) N]~' V isuniformly bounded away from zero for 7' > 2.
Proof. Seethe Appendix C.1. m

The representation of y’ , yAuy and AX'y Auy aslinear-quadratic formsin
Ny, lets us apply a central limit theorem for quadratic forms of triangular arrays
and derive the asymptotic distribution of the IV estimator. The central limit theo-
rem (CLT) | useisgivenin Appendix A. It is based on aresult from Kelgiian and
Prucha (2005) and is an extension of aCLT in Kelgjian and Prucha (2001).

Proposition 1 Under Assumptions 1-6, IV1 and 1V2, we have that
V2 HyAuy 5 N(0,1,,1),

where

(v) () = v

Proof. Seethe Appendix C.1. m

3'However, it does not guarantee the existence of the limit in Assumption IV 1.
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To be able to write down explicit asymptotic distribution of the estimator, |

make the following assumption.

Assumption 1V3 limy_qo ﬁVN = V where V isfinite.

We then have the following Theorem:
Theorem 1 Under Assumptions 1-6, and 1V1-1V3, we have that
(T —1)N- <§N—0) 4 N (0, ),
with

4 = My, My, My o«
(1+p)x (1+p) (1+p) x (14p) (1) x (14p) (1+p) x (1+4p)

\ Mz Mpaz Mzl
(+P)X(HP) (14 p)x (1) (42X (149) (14p)x(L)

Proof. Seethe Appendix C.1. m

| do not provide an estimate of ¥ since it would depend on an estimate of
thePy = (Iy — pWN)*1 matrix which includes an unknown parameter p. |
will provide small sample guidance for the second stage estimator in Section 4.3.
Note that by Theorem 17 in P6tcher and Prucha (2001), the result in the above
Theoremimpliesthat \/(T — 1) N 8y isO, (1) and theinitial estimator IV satis-
fies the conditions required in the following section and hence can be used in the

subsequent estimation steps.
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4.2 Estimation of the Degree of Spatial Autocorrelation

The specification in this thesis reduces to that of Kapoor et al. (2005) in the static
case (¢ = 0) which isin turn a generalization of the single cross-section case in
Kelgjian and Prucha (1999). In thissection, | will show that the procedure adopted
in Kapoor et a. (2005) provides a consistent estimate of the spatial autoregres-
sive parameter in a dynamic panel data model as well. To do that, | define the
generalized moments (GM) estimator following Kapoor et al. (2005) and then
extend their proofs for the dynamic case. For ssimplicity, | only consider one of
the weighting schemes for the moment condition in Kapoor et al. (2005).

Observethat the spatial GM estimator in this section is essentially the same as
the estimator in Kapoor et al. (2005). However, the presence of stochastic regres-
sors (lagged dependent variable) renders the proofs in that paper inapplicable to
the specification considered in thisthesis. Nevertheless, the proofsin this section,
with small exceptions (most notably Lemmas C4 and C6 in the Appendix C.2),
are adirect analogy of those in Kapoor et a. (2005).

| take aninitial consistent estimate of the spatially correlated errors and use it
to estimate the spatial autocorrelation parameter based on a set of moment condi-
tions. The initial consistent estimate of the errors can be, for example based on
the IV estimator in the previous section. The moment conditions are chosen so
that the estimator will have an Analysis of Variance interpretation.

Consider an etimator 0 ny Of the parameter vector 6 such that
p+1x1 p+1x1
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V(T =1)N §N = O, (1) and denote the predictors of u; by u;:

Uy N = YN — (Yt—LN,Xt,N)NXpH - On 1<t<T. (4.2.1)
Nx1 Nx1 p+1x1

The model impliesthat (see equation 3.1.2 in Chapter 3)

wny = pWyuy y + Vg N, 1<t<T, (4.2.2)
Nx1 NXN Nx1 Nx1

wherev, x = €, v + py. In astacked notation this becomes

uy =p(Ir @ Wx)ypunr UN + Un (4.2.3)
NTx1 NTx1 NTx1

where uy= [u] v, ..., W y] and vy= en+ (er ® py), with
en=[El N, €'T,N],1 er beingaT x 1 vector of unit elements, and pt, the V x 1
vector of individual effects. It will prove convenient to introduce the following

notation:

uy = (Ir® Wy)uy, (4.2.4)
uy = (IT®WN)ﬁN,

EN = (IT X WN) UN.

| will also use the following transformation matrices that are utilized in the error
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component literature:

J
Qon = <IT — ?T) ® Iy, (4.2.5)
NTxNT
Jr
Qn = T ® In,
NTxNT

where J; = erel, isaT x T matrix of unit elements.3 Note that using the
transformation matrices, we can express the variance-covariance matrix of the

innovations as

E (UNUiN)NTxNT = JiNINT + Oi,N (Jr @ Ly) (4.2.6)

= 02 xQon + 01 xQu,

2 _ 2 2
Wha’e O_I,N — O—E,N —'I_ T * O-,LL,N'

The spatial GM estimator is based on the following moment conditions:

E(UyQonvy) = N(T'—1)02y, (4.2.7)
E(@yQonTy) = (T —1)02y-tr(WyWy),

E (TyQonvn) = 0,

E(UyQiyvy) = NU%,N?

E@®yQinTN) = oty tr(WyWy),

E(EINQI,NUN) = 0.

%The Q, transformation calculates unit specific sample means while the Q, transformation
substracts them from the original variable.
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For derivation of the moment conditions see Kapoor et al. (2005). Notice that
based on (4.2.3), the moment conditions can be rewritten in terms of the trans-

formed (by Q; ) disturbance vectors uy, uy and ty:

vnv = I'nva, (4.2.8)
where o = (p, 0%, O'E’N, O'iN),, and
7[1)1,N ’7[1)2,N 7(1)3,N 0 7(1),N
731,]\7 732,1\7 733,1\/ 0 Vg,N
0 0 0 0
Y g gl 0 g
Ty=E 31L,N V32N V33N 7 o 3,N . (429)
04 7%17N V%Z,N 0 V%S,N Gt 7%,N
7%1,]\7 ’V%Q,N 0 ’7%3,1\1 7%,N
7%»1,N 7%»2,N 0 W:I),S,N ’Yé,N
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with (j = 0, 1)

Yy = W%@wﬁm Tio = ﬁ
TN = ﬁﬁ;\@mﬁm Vo = ﬁ
7?);1,1\7 = W (Uﬁij,NﬁN +ﬁ§ij,NﬁN) ;

7%2,1\/ = N(T%ll)l_jﬁlNQj,NﬁNy

’7{3,N = 1 ’Y]i = WU’NQJ;NUM

Ty = WAW), = Ty,
7?);3,N = 0, ’Y% = WU’NQJ',N@V-

— —
= uNQj,NuNa

=/ =
juNQj,NuNa

The sample counterparts of the six equationsin (4.2.9) replace uy with

Uy=(t, v, ..., 0, ) based on (4.2.1) with the implied notation
1,N TN

ﬁN: (IT X WN) aN and ﬁN: (IT &® WN) ﬁN:

gy = Gy a +Uy,
6x1 6x4 4X1  gx1
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where 1y can be viewed as a vector of regression residuals and

9[1)1,N 9(1)2,N 9?3,N 0 9(1),N
931,1\[ 932,]\[ 983,N 0 gg,N

0 0 0 0

g 0 g

Gy = 93a1,N 932N 933N 7 - 3,N 7 (4.2.12)
G4 g%l,N 9%27N 0 9%37N O g%,N
9%1,1\[ 9%2,]\[ 0 9%3,]\[ 9%,N
9:'11,N 931,2,N 0 9?1,3,N g?1>,N
with (5 =0,1)

J _ 2 a’ Q ﬁ gj = —_1 ﬁ/ Q ﬁ
91,8 N(T - 1)1,j N2, NUN, 127 (T — 1)173' N, NUN,
; 2 = Q. vii j —1 = Q =

= ———g-u ,NUN, = -4 ,NUN,
j 1 ~ = = =
j -1 = =
IoN = Nr_ i T Uy Q) NTy, (4.2.13)
. . 1 . ~
Jisn = L, 9= WU;VQJ',NU—N7
j 1 / j 1 =/ =
93N = ﬁtr( vWr), g = W“NQJ;NHN,
. . 1 R ~
gé&N = O7 g% = WUIJVQjaNuN

The generalized moments (GM) estimator of § = (p, 0?2 aiN)' say oy can



be written as

!/
dx = arg min { (gN—GN o ) Ay (gN—GN o ) } : (4.2.14)

3x1 LIS{C) 6x1 6x4 4X1 /) 6x6 \6x1 6x4 4x1

where © isthe admissible optimization space; in particular it is assumed that © =
{p.02 .03 5| p€10,b1],02 5 €[0,b3],0% v € [0,b3]} with by, by and bs being
predetermined constants. The moments are weighted by a sequence of weighting
matrices A . Following Kapoor et al. (2005), two choicesfor A y are considered.
An initial unweighted spatial GM estimators uses Ay = Is. The second choice
IS to use an approximation to variance covariance matrix of the moments. In
particular, Kapoor et al. (2005) show that under normality the variance covariance

matrix of the six moment conditionsin (4.2.7) is given by

1 2
T-19eN 0

=N = ® Tww, (4.2.15)
6Xx6 0 O'%N 2% 9
where
[ W/ W 7
2 2tr <—NN N) 0
Tyw = | 2tr (W) o (w) . (w'NwN(]x;va;v))
2x2
Wiy W (Wr+Wiy) WA Wy +WHW
0 tT(N ~ N> tT.(NNNNN)
(4.2.16)

The weighted spatial GM estimator then replaces o2, and o3, by their initial
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estimators and utilizes the weighting matrices Ay = Z N (aAg N &\% N) where

S5 ) 7102y O
N OstalN = . ®TVV,N; (4217)

66 0 o2y 2x2

[

and the estimators aAg N aA% ~ ae based on the initial unweighted spatial GM esti-
mator.

The following additional assumption is required in order to establish consis-
tency of EG wm,n (the assumption is used to demonstrate that the estimator is iden-

tifiably unique):

Assumption GM 1 The smallest eigenvalue of I, I' iy is uniformly bounded away

from zero. Furthermore, 0 < A < Apin (Ex") < Amax (By') <A < .

The following theorem establishes the consistency of the GM estimator.

Theorem 2 Suppose Assumptions 1-6 and GM1 hold.
If @y isa consistent estimator of 6 with V(T —=1)N Oy = O, (1), then

SNid as N — oo.

Proof. Seethe Appendix C.2. B
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4.3 Second Stage GMM Estimation

In this section | define a second stage generalized method of moments (GMM)
estimator of the slope coefficients 8 = (¢, ')’ and derive its asymptotic distrib-
ution. | base the estimator on a set of weighted moment conditions. In the first
part of this section, | consider a general case of stochastic instruments of a cer-
tain form and show that the normalized GMM estimator based on these moment
conditions converges (under the assumptions maintained in this thesis and under
additional assumptions spelled out in this section) in distribution. Next, | consider
the choice of an optimal weighting matrix for a given set of instruments. | close
the section with an application of these resultsto afeasible GMM estimator based
on moment conditions utilized in the literature (see Chapter 2 for areview).

Consider again the model (4.1.2)

AyN = AZN 7] -+ AUN s (431)

(T-1)Nx1  (T—-1)Nx(1+p)(1+p)x1  (T-1)Nx1

wherethe explanatory variable AZy = (Ay_1 v, AX y) containslagged endoge-
nous variables. Let Hy bea (7 — 1) N x k set of instruments (to be determined
later) such that
E ( H, Auy ) = 01 (4.3.2)
Ex(T—1)N (T-1)Nx1
Also, let A be a sequence of nonsingular symmetric k& x k matrices with non-
singular limit

p lim Ay = A (4.3.3)

N—0oo xk kxk
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Consider the GMM estimator 8 ~ based on instruments Hy and weights A

defined as a minimizer of

(AYN - AZNO)le(T—l)N Hy A;Vl I_I/N (AYN - AZNO)(T_UNa
(T-1)Nxk kxk kx(T—1)N

(4.3.4)
i.e,
-1
Oy = AZ), Hy Ay H)y AZy x
(14p)x1 (1+4p)x(T—1)N (T-1)Nxk kxk kx(T—1)N (T—1)Nx(1+p)
AZ', Hy Ay Hy Ayy . (4.3.5)

(1+p)x(T-1)N (T-1)Nxk kxk kx(T—1)N (T—1)Nx1

Notethat it ispossibleto defineaninitial 1V estimator is of thisform, with A y =
(T — 1) N]"'H\yHy. The initial 1V estimator in Section 4.1 utilized lagged
levels of the endogenous variable as instruments and the instrument matrix H
wasgivenin (4.1.5) and (4.1.9).

Intheliterature (e.g. Arellano and Bond, 1991; see Chapter 2 for areview) the
instrument set at time ¢ is expanded to include all available lags of the endogenous
(and possibly aso the exogenous) variable. Asaresult the number of the moment
condition is different at different time periods and the instrument matrix H can
be, for example, asin (4.3.20) below. Observe that under the specification con-
sidered in thisthesis, the endogenous variable can be expressed as linear forms of

the (mutually independent) innovations of the model:
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Lemma4 Under Assumptions 1-6 we can express the dependent variable as

Yt,N:at,N+< b, ®PN> N
1x (

Nx1 Nx1 (T+2) NxN | (T4+2)Nx1

where the sequence of nonstochastic /V x 1 vectors a, y and the sequence of non-
stochastic 1 x (7" + 2) vectors b, have elements uniformly bounded in absolute

value.

Proof. Seethe Appendix C.3. B

Motivated by the expression in the above Lemma, | consider a set of k; sto-

chastic instruments in each time period H; x = (hi s, ..., hy, + ) @d assume
Nth
that each instrument can be expressed as a linear combination of the model dis-

turbances,
hr,t,N = am&,N + ( b?“t (%9 PN) ny N r = 1, ceey kt; (436)
Nx1 Nx1 Ix(T+2) NxXN | (T4+2)Nx1

where the sequence of nonstochastic N x 1 vectors a, x and the sequence of non-
stochastic 1 x (T + 2) vectors b, have elements uniformly bounded in absolute

value. The total number of instrumentsis k = ks + ... + k7 and the instruments
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can becollectedina (7 — 1) N x k block-diagonal matrix>

H; n 0
N x ko
Hy = . (4.37)
(T—1)N xk
0 HT,N
NX]CT

Observe that the disturbances Auy can aso be expressed as a linear form of

the innovations ),

AllN =
(T-1)Nx1

IV (4.3.8)

(T+2)Nx1

(O(T1)><2a D ) ® Py
(T=UXTJ (p_1yx(T4+2) NxN

where D is the first difference operator matrix defined in e.g. (4.1.14). Further-

more, the ¢t-th period disturbances can be expressed as
Nx1 1x(T4+2) NXN | (T+2)Nx1

Aut,N:< d, ®PN) Ny (4.3.9)

with d, consisting of (¢ — 1)-th row of (0(7_1)x2, D).

As aresult, the moment conditions collected in H'y, Auy are quadratic forms

33This definition of theinstrument matrix isbased on moment condititons that are only averaged
over N and not over T'. An alternativeisto average over both N and T" asin theinitial IV estimator
in Section 4.1.
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inmy:

h;t,N Auyy = a;uN ( d ® P]\/) Ny (4.3.10)

IxN Nx1 1xN \1x(T+2) NxN | (T4+2)Nx1

+ my (b;t d, ®P/NPN> Ny
Ix(T4+2)N \ (T+2)x1 1x(T+2) NxN (T+2)Nx1

Below, | will apply the central limit theorem for triangular arrays of quadratic
forms stated in Theorem A1 in Appendix A.3* From Assumptions 1 and 2, it
follows that the random variables n,, satisfy Assumptions A1 and A3. Observe
that when the instruments are chosen to be lagged levels of the endogenous vari-
able(i.e. h,yn = yr—sn, s > 1), Lemma 4 and Assumption 3 guarantee that
(d} ® P’y) a,¢ n and (bl,d; @ PP ) satisfy Assumption A2.

The condition

E( H/N AuN > = 0k><1; (4311)
kx

(T—1)N (T—1)Nx1
then impliesthat the matrix (b, d; @ P’y P ) has zeros on the main diagonal and,
therefore, the quadratic forms satisfy conditions of LemmaA1l. In particular, their
variances and covariances can be derived using the expressions in that Lemma.
The following Lemma shows that under regularity conditions the quadratic forms

h’, yAu, y convergein distribution when normalized by their standard errors.

Lemmab Consider a set of k instruments Hy given in (4.3.7), with the diagonal

blocks H; x = (hi:w, ..., hien) DEING N X k matrices (k = ko + .. + kr) with

30bserve that (d; ® P’y)a,; N then corresponds to the sequence of vectors by, while
(bl,d; @ P’yP ) corresponds to the sequence of matrices A,,, and 7, corresponds to the se-
guence of vectors of random variables,, in Theorem Alin Appendix A.

91



columns h,; y = a,:n + (bt ® Px)ny,Where the sequence of nonstochastic
N x1 vectorsa, y and the sequence of nonstochastic 1 x (7" + 2) vectorsb,; have
elements uniformly bounded in absolute value. Under Assumptions 1-6, and given
that theinstrumentsaresuchthat £ (H'y Auy) = Oyx1, E (HyAuyAu\yHy) =
Vy and

(T — 1) N]' Auin (Viv) > ¢ > 0, we have that

VP H Auy 5 N (0,1,),

where Vy = E (HyAuyAuyHy) = VY2V
Proof. Seethe Appendix C.3. B

Given that the moment conditions converge in distribution, the GMM estima
tor defined in (4.3.5) will under appropriate regularity conditions also convergein

distribution:

Lemma 6 Consider a set of stochastic instruments H such that
VA H Auy S N (0,1),
where Vy = E (Hy AuyAuyHy) = V>V, with
p lim [(T=1)N]"'Vy =V,

where V isfinite. Furthermore, consider a sequence of weighting (possibly sto-

92



chastic) matrices A  with nonsingular (probability) limit
P fim, Av = A
Under Assumptions 1-6 and given that

Muaz = p]\}l_{n (T—1) N]il H\AZ,

o0

existsand has full column rank, we have that the GMM estimator defined in (4.3.5)

converges in distribution and

VT = 1)N(6N—9> 4 N(0,W),
where
v = (MAZHA_lM/AZH)il MazaA™'VA " Mazn (MAZHA_lM,AZH)il :

Proof. Seethe Appendix C.3. B

| give a small sample approximation for ¥ for the specific GMM estima-
tor considered below. Note that given Lemmas 4 and 5, the asymptotic result
in the above Lemma 6 applies to a general class of GMM estimators which in-

cludes the initia IV estimator discussed in Section 4.1,%° as well as the different

5The lemmais directly applicable when the moment conditions in the initial 1V estimator are
averaged only over the cross-sectional units. Note that in Section 4.1, the moment conditions are
averaged over both cross-sectional units and time. | have provided the asymptotic results for this
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variants of the GMM estimators in Arellano and Bond (1991) and, in particular,
the feasible GMM estimator discussed below. Note that in applying the above
Lemma to these estimators it remains to be checked whether in the particular
application the instruments satisfy the stipulated regularity conditions, e.g. that
plimy_o (T — 1) N] "' H)yAZy exists and has full column rank and that the
variance covariance matrix of the moment conditions has the smallest eigenvalue

uniformly bounded away from zero.

| now consider the issue of an optimal choice of the sequence of the weighting
matrices, given a set of instruments. | close this section with proving consistency,
asymptotic normality and providing asmall sample guidance for afeasible second

stage GMM estimator based on moment conditions considered in the literature.

4.3.1 Optimal Weighting Matrix

Consider now the optimal choice of the sequence of theweighting matrices A . It
can be shown® that given aset of instruments, the asymptotic variance covariance

matrix of an estimator defined as a minimizer of (4.3.4) is minimized® when

p lim (T —1) N ""Ay=V. (4.3.12)

initial IV estimator in Theorem 1 above.

%See eg. Hansen (1982), Bates and White (1993), Newey and McFadden (1994), or
Wooldridge (2002), Ch. 8 and 14.

37In the sense that the difference with respect to any other VC matrix of an estimator that is a
minimizer of (4.3.4) is positive semi-definite.



Given that plimy_.o [(T — 1) N]"' Vy = V, the small sample weighting matri-
ces A can be chosen to be estimators of the small sample variance covariance
matrix Vy = E (HyAuyAuyHy). Observe that the matrix V  can be parti-

tioned as
V22,N V2T,N

Vy = . , (4.3.13)
Vo n Vorrn

where Vi, v = E (H} yAu, yAu, yH, ). | denote the ij-th element of Vi,
as vijusny = E (hf, yAuy yAul, yhy, v). Given the structure of the instruments
assumed in this section, the moment conditions are quadratic forms in n,, and
satisfy conditions of Lemma Al in Appendix A - see the discussion preceding

Lemmab. In particular, we have asin (4.3.10) above:
h;t,NAut,N = agt,N (d; ® Py) ny +nly (bd; @ PyPr) ny, (4.3.14)

and hence from Lemma Al in Appendix A, the covariance of hj, yAu, x and

h;&NAus,N denoted aASVjj s N isgiven by

Viges N = Ay y (A3 nd, @ PyPy) ajn (4.3.15)

—|—2t7" (b;tthmNd;bjszn,N & P,NPNPEVPN) s

where 33, v isdefined in (4.1.16).

Observe that for |s —¢| > 1, we have d;X,, yd, = 0 and hence the above
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covariance is zero. An expectations based estimator, say XA/’Z’%, of Vy would then
replace the true values of the parameters in the above expression by their initial
consistent estimates. Note that in addition to X, 5 and P, the terms a;; ; and
b;; also potentially depend on the parameters of the model (compare e.g. the
expressionsfor a; y and b, in the proof of Lemma4 in Appendix C.3). The exact
form depends on the choice of the instruments. In Section 4.3.3 below, | consider
aset of instruments utilized in the literature (e.g. Arellano and Bond, 1991) and |
also provide an expression for such expectation based variance covariance matrix
estimator given such choice of instruments. Note that the instruments considered
in Section 4.1 are aso of the form assumed here; see the proof of Lemma 1. The

expression for V  isthen given by Lemma 2.

As an alternative to \7}5,, the small sample weighting matrices can be con-
structed based on approximations to Hy E (AuyAuy) Hy. For stochastic in-
struments, such estimator will not in general be consistent estimator of
E (HyAuyAu\yHy). Nevertheless, based on Lemma 6, the resultant second
stage GMM estimator is consistent. It is also computationaly ssmpler and has
reasonable small sample properties (see Chapter 5).

This estimator denoted by \A/’]"\}“" ignores the fact that the instruments collected
in Hy are stochastic and replaces the disturbances AuyAu’y by an estimate of

their expected value:

Ve = [(T = 1) N] 7 HyQauvHy, (4.3.16)
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where Aw, N 188N estimator of the variance covariance matrix of the disturbances.

In our case this could be:
Quux =02y (D@ Py) Quy (D' @ Py ). (43.17)
where p, and c?gN areinitia estimates and
Py =(Iy — oy Wn) " (4.3.18)

4.3.2 Feasble GMM Estimator

Consider now aGMM estimator based on the moment conditions of theform

E [I:I;VAUN} —0, (4.3.19)
where
H, v 0
Hy = , (4.3.20)
0 Hy oy
’ N(T-1)xk

with ﬁt,N = (Yt—2.N -, Yo.N;, Xt.N, -, X1,v) DEINg @ N X k; matrix of instru-
mentsat timet. Notethat ki, = (t — 1) +t-pand k = ko + .. + k. Let

Vy=E (ﬁ;VAuNAu;VﬁN) , (4.3.21)
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then the estimator is given by
~ ~ o~ ~ —1 ~ o~ ~
On = [AZ&HNV;VlHQAZN AZVHNV I H Ay y. (4.3.22)

The instrument matrix in (4.3.20) utilizes moment conditions of the form

E [(utﬂ- — ut_17i) yt—l—s7i] = O S = 1, ..,t — 1, (4323)
E [(utz - Utfl,i) ths,i] = 01><p7
E [(utz - utfl,i) Xt,i] = 01><p'

Observe that the instruments consist of y; s v, Xy vy and Xy n, s =1, ..., ¢ —
1 and hence by Lemma 4 they are linear forms in the innovations of the form
considered above, e.g. they satisfy the conditions in Lemma 5. To complete
the verification of the conditions stipulated in Lemma 5, | consider the smallest
eigenvalues of the sequence of matrices \7N =F (ﬁ’NAuNAuQVfIN)

Note that from Lemma4 it followsthat y, v = a; v + (b; ® Py) ny. Let us

denote

gt,N = [at72,N7 A9 N, Xy Ny e Xl,N]Nth ) (4.3.24)

and

Tin = [((bt—2,~--,b0)® PN) ( Li ® ny ) 7ON><tp] - (4.3.29)
1x(t—1)(T+2) NxN (t-1)x(t—1)  N(T+2)x1
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The instruments can then be expressed as

H,y = Sin + Yon, (4.3.26)

N Xk N Xkt N xky

As aresult the full matrix of instrumentsis
Hy =Sy + Yy, (4.3.27)

where the matrix S ~ contains the nonstochastic elements of the instruments and

is defined as
Son 0

Sy = . : (4.3.28)

0 St N
N(T-1)xk

while the stochastic components of the instrument matrix are

Ton 0
Ty = . . (4.3.29)

To guarantee that the smallest eigenvalue of [(T'— 1) N] ™' Vy is uniformly

bounded away from zero, | make the following assumption:

Assumption GMM 1 Thesmallest eigenvalueof [(T' — 1) N] ' S, Sy isuniformly

bounded away from zero.
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Given the above Assumption, we have by Lemma 5 that the normalized mo-
ment conditions convergein distribution. | next show that the estimator 0 ~, where
the weighting matrix for the moment conditions is based on the true value of the
parameters is consistent and asymptotically normal. Corresponding to Assump-
tions V1 and V3 for thefirst stage estimator, | introduce the following assump-
tions. Let

Mpyay = plim H)\ AZy. (4.3.30)

1
(1+p)x (15p) (I'-1)N

Assumption GMM2 The matrix ﬁHAZ exist and isfinite with full column rank.

Assumption GMM3 Thematrix V = plimy_... [(T — 1) N] 7! Vy existsand is

finite and invertible.

As a consequence of Lemma 6, we now have the following Theorem.

Theorem 3 Under Assumptions 1-6, and GMM1-GMM3, we have that

\/m(b]v—e) 4 N0, W],

where
—~ ~ —~ —1
o= [M'HAZV*MHAZ} .
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Proof. Seethe appendix. B

The above estimator is based on the true value of the parameters which are
unknown and have to be estimated. | now provide an expression for the expec-
tation based estimator of the variance covariance matrix of the moment condi-
tions \N/’N, denoted by \A/’N (3]\;) where 51\/ is an initial consistent estimator of
0 = (pn,02y.0%,¢). | then show that when the feasible GMM estimator uses
[\AfN <3N>} - as the moment weighting matrix, the parameters collected in the
vector § are nuisance parameters.

The variance covariance matrix of the moment conditionscollected in ﬁ’N Auy

with H defined in (4.3.20), can be written analogically to (4.3.13) as

Voo n Vorn

Vy = : (4.3.31)

Vron Vorrn

where Vi, v = E (ﬁ;’ vAw yAW, NPNIS,N). Since H,  consists of stochastic
part (y:—2.n, .., Yo,n) @nd nonstochastic part (X; , ..., X1, ), the matrix \thS,N is

partitioned accordingly:®

N \44 0
Vien = N T , (4.3.32)

X
Ospx(s—l) Vts,N
k}th‘S

38| show that the off-diagonal blocks of V., v are matrices of zeros as apart of the proof of the
Lemma 7 below.
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where the upper block is

Vin = (@) (4.3.33)

r=1,..,s—1"’

witho¥y . v = E (yi_,_,Au, yAu, vy, _1_.). Given expressionsfor y; ;_, and
Ys—1—r in Lemma4 and the expressions for Au; y and Au; x in (4.3.9), the mo-
ment conditionsy; ;, ,Au,y andy, ; ,Au,y are quadratic formsin n, and

their covarianceis (using LemmaAlin Appendix A) given by

Uytsy = B (Yim1-gAu nAU, vys1-r) (4.3.34)
!/

= a_ o (deZynd, ® PNPy)a, 1

+2tr (by_;_, ydi iy v b1 v 2y v @ PRPAPLPY) .

Notethat by (4.3.9), the disturbances Au, y arelinear formsin theinnovations
1. From Lemma Al in Appendix it then follows that the variance covariance
matrix of Au, y and Au, v is (d; 3, yd, ® PxP’y). Hence the second block of

Vi is:

Vi = (Xns o Xon) E (AunAul y) (Xon, o Xiy)  (4.3.35)

= (Xin, - Xon) (diZy vd @ PyPy) (Xowv, ooy Xin) -

The estimator V <5N> replaces the true values in the expressions (4.3.31)-

(4.3.35) by their initial estimates collected in the vector 8 — (ﬁN, oy, 53,5)
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In particular, it replaces 3, v, Py, a; v, and b, y with

1-¢
PN = (IN - /p\NWN)il >
t—1
~ ~j -
QN = Z CbNXt—j,NﬂN»

J=0

~ 1 ~t—1 ~0
bt7N = —A717¢N 7"a¢N701><(T—t) .

- YN

~2
~ o
. ~2 N ~2 ~2
27’7]\/’ = dZCLg <O-,U,N7 y 0-571\[7 ceey JE,N) 5 (4.3.36)

Note that in order to for the estimator of the variance covariance matrix of
the moment conditions to be feasible, thisimplicitly assumes that the past values
of the exogenous variables are so that > 77 ¢’X_;nB = 0, i.e. there are no
individual effects other than those contained in 1.,.%° The following Lemma shows

that the estimator V N ISconsistent.

Lemma 7 Under Assumptions 1-6, and GMM1-GMM3, and given that SN L)
as N — oo, the row and column sums of the matrix »W y are uniformly bounded
in absolute value for some 7 with |p| < » < 1, and that Y- ¢’X_; v3 = 0, we

have that ﬁfm (3N> 2y,

Proof. Seethe Appendix C.3. B

~ ~ 1
Consider now the feasible GMM estimator that uses [VN (5]\,)} as the

3 Thiswill not be satisfied when the model contains a deterministic constant terms. In this case,
itis necessary to assume that the past val ues of the exogenous variables are observable and replace

- ~ . ~ -~J -
the expression for a; y witha, y = Zj’;o AnXij NOBn-
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moment weighting matrix and is defined as

Y

b (5) = [o (3 (3) " Ram]

AZ\ Hy (VN (%)) H, Ay, (4.3.37)

The following Theorem establishes that the parameters collected in the vector §

are nuisance parameters.

Theorem 4 Under Assumptions 1-6, and GMM1-GMM3, and given that 8y -2 &
as N — oo, the row and column sums of the matrix »W y are uniformly bounded
in absolute value for some r with |p| <~ < 1, and that >-2 ) /X _; v3 = 0, we
have that

Y

N(T 1) [QN <3N> - EN} 7,9,

and hence

N (T —1) [5N (SN) —91 4 N(0,W).

Proof. Seethe Appendix C.3. B

The small sample approximation to the variance covariance matrix ¥ can be

based on the following Lemma.

Lemma8 Under Assumptions 1-6, and GMM1-GMM3, and given that N
as N — oo, therow and column sums of the matrix W  are uniformly bounded

for some - with |p| < r < 1,and that Y2 ) ¢’X_; x3 = 0, we have that
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as N — oo, where

By (3x) = ﬁ AZ BNV AZY]

Proof. Seethe Appendix C.3. B
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5 Monte Carlo Study

| consider the same dynamic panel data model as specified in Chapter 3. Here
| will first define the estimators that | examine in the Monte Carlo study. | then
describe how | generated the artificial data samples, briefly describe the range of

the parameters | considered and finally present the results of the experiments.

5.1 EstimatorsConsdered

| consider the following estimators in my simulations. The first group of esti-
mators, labeled ' Initial Estimators’, ignores the spatial autocorrelation of the dis-
turbances and estimates only the slope coefficients of the model (i.e. 3 and ¢).
The second group of estimators uses some initial estimator of the slope coeffi-
cients (and the projected disturbances it implies) and provides an estimate of the
spatial autocorrelation parameter (p) and the variances of the innovations and the
individual effects (o2 and ¢2). Finally, the third group, labeled as’ Second Stage
GMM Estimators', are estimators that use different weighting schemes to weight
the same moment conditions as the initial estimators. The weights are based on
initial estimators of p, o2 and o For comparison, | aso include results afor two
stage GMM estimator that ignores spatial correlation. The rest of this section will
introduce the different estimators. For clarity of the exposition, | will drop the

sample size subscript in this section.
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5.1.1 Initial Estimators

| consider the instrumental variable (IV) estimators suggested by Anderson and
Hsiao (1981) aswell as1V estimatorsthat use alarger instrument set, correspond-
ing to the initial estimators suggested by Arellano and Bond (1991) and others.
All these estimators can be written as |V estimators but with a different instru-

ment matrix. In particular, they are of the form

Oy = @IV, ,@'W>' - [AZ’H (HH)™! H’AZ] ' AzZ'H (HE) T H Ay,
(5.1.1)
where the right-hand side variables of the first differenced model (3.1.1 or 4.1.1)
are stacked in amatrix AZ asin, e.g. (4.1.3), the dependent variable is Ay asin
(4.1.2) and the matrix H collects the instruments used. The instrument matrix is
block diagona with each block containing the set of instruments for the relevant

time period:

Different choices of H will lead to different initial estimators. In particular,
the following estimators are considered in the experiments:. the IV estimators
suggested by Anderson and Hsiao (1981), the initial IV estimators suggested by
Arellano and Bond (1991), as well as the IV estimator with the instrument set
discussed in thisthesisin Chapter 4, Section 4.3.2.

The two Anderson and Hsiao (AH) estimators use respectively lagged first
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difference of the endogenous variable (y;_» — y:_3) and level of the endogenous
variable lagged twice (y;_») as instruments for the lagged difference of the en-

dogenous variable (y;_1 — y;_2). Theinstrument matrices hence have the follow-

ing form:
(Xy — Xy)
(Y1 —¥o0, X3 — Xz)
Hym =
i (YT—Q —yr_3, Xp — XT—1) ]
(5.1.2
and
(YO7 X2 - Xl)
(Y1, X3 - X2)
Hame =
i (YT—27 X — XT—1) ]
(5.1.3)
In addition to the moment condition (: = 1, ..., N)
E [(uzt — ’U,,L"tfl) (Xit — Xiﬂg,l)] = 0P><1 t = 1, ey T, (514)

the AH estimators each utilize at each time period one additional moment condi-
tion:

E[(ug — Uz‘,t—l) (Yijt—2 — yi,t—3)] =0 t=2,..,T (5.1.5)
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and

E [(ult — Ui,tfl) yi’tfl] = O t = 1, ceey T (516)

respectively. However, as pointed out by Arellano and Bond (1991), there are
additional moment conditions, not utilized by the AH estimators. In particular,

for the observation at atime ¢, we have the following additiona moments:

FE [(u,t — uu_l) yi,t—l—k] =0 l{ = 1, .t —1.

Similarly, there are additional moment conditions involving lags of the exoge-
nous variables in addition to the condition utilized by the AH estimators. There-
fore, based on Arellano and Bond (AB), | consider an instrument matrix discussed

in Section 4.3:

(Yo, X1, Xz)
(Y(b v, X1, Xz, X3)

(YO,--,YT—27X17--,XT> ]
(5.1.7)

The table below summarizes the initial estimators, their instrument matrices

and the moment conditions that the instruments are based on.
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Table 2. Estimators Considered

Estimator

(Instrument Matrix)

Moment Conditions

i=1,.,Nandt=1,..T

AH difference (H.41)

E(wit — wig—1) Yiz—2 — Yiz—3)] =0,

t = 1 not considered

[ Uit — Ujt—1 (Xit - Xi,tfl)] = 0px1
P

AH level (HAHZ)

Yit—2] =0

[(wit — Uig—1) (it — Xip—1)] = Opx1

AB (H 5)

E( )

E(uit — wig—1)

E( )

E (it — igt—1) Yir—2-k] =0,
k=0,..,t—1

E [(uir — ui—1) Xis] = Opx1,

s=1,..,t

5.1.2 Spatial Parameter Estimators

| consider the spatial generalized moments (GM) estimators of the spatial autore-
gressive parameter p suggested by Kapoor et a. (2005) and discussed in Chapter

4. The spatial GM estimator was defined in (4.2.14).

The estimators differ along two dimensions. First, they differ with respect
to how the estimated disturbances were calculated.
estimators from the previous section as well as the true value of the disturbances.
Secondly, the estimators differ with respect to how the momentsare weighted. The
first estimator is referred to as 'Unweighted Spatial GM Estimator’ and weights

the moment conditions equally, e.g. by setting Ay = I in (4.2.14). The second
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estimator | consider is based on the full set of weighted moments and utilizes the
weighting matrix Ay = Z defined in (4.2.17). | refer to this estimator as the
"Weighted Spatial GM Estimator’.

Altogether, there are four different possibilities to calculate the estimated dis-
turbances (three initial estimators and the true values) and two types of GM esti-
mator (unweighted and weighted moment conditions), i.e. altogether eight possi-

ble combinations.

513 Second Stage GMM Estimators

The second stage GMM estimators utilize the same moment conditions as the

initial AB estimator but with aweighting matrix. The estimators are of the form:

Bcnrns — @GMM,B’GMM)' — [AZ'HA;'H'AZ] ' AZHA;'H Ay,
(5.1.8)
where the weighting matrix A, k = 1,2, 3 is calculated in three different ways.
The first case is a weighting matrix that ignores the spatial autocorrelation of the
disturbances but uses an estimators for o2 and o? that are consistent even for

nonzero values of p. In particular, the first weighting scheme uses:

A, = HOH, (5.1.9)
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with

Q= (D@ 1Ly) (2Qy+73Q)) (D' @ 1y). (5.1.10)

where the estimators a~§ , and (;% are the spatial GM estimators (with weighted
moment conditions) described above and, based on an initial IV estimator with
H 4,5 asthe instrument matrix.

The second weighting scheme uses Vm™iz s an estimate of the variance co-

variance matrix of the moment conditions (see Section 4.3), i.e. it employs A, =

VmiT where
Vmir — H'QH, (5.1.11)
with
Q= (DeP) (72Q+03Qi) (D' P), (5.1.12)
where
P=(Iy—pW) ", (5.1.13)

Disthe (T — 1) x (T — 1) first difference transformation matrix: D:

~1 1 0 0
0 -1 1
D= , (5.1.14)
0
0 0 -1 1

and estimators a~§ , (;% and p are the spatial GM estimators (with weighted moment

conditions) based on theinitial 1V estimator with H 45 as the instrument matrix.
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Finally, the last weighting scheme uses a consistent estimate of the variance
covariance matrix of the moment conditions VZ, i.e. it employs A; = VE, where
V¥ isdefined in Section 4.3.2 (equations 4.3.31 - 4.3.35) and is based on the same

initial estimatorsJNg, a? and p, aswell ason theinitial IV estimators?b and ,@

5.2 Data Generation

| first generate the exogenous variables so that these are common across the dif-
ferent replications. The exogenous variables consist of a nonstochastic intercept
(equal to unity) and a second stochastic exogenous variable. | generate the sec-
ond exogenous variable as independent (of al the other random variables in the

model) jointly normally distributed random variables, i.e.
[(vecXy)', ..., (vecXr)']" ~ N (0,In7). (5.2.1)

The exogenous variables are generated once and are used in al replications of the
model.

In each replication, | then draw (7" + 2)N independent jointly normally dis-
tributed random numbers that are used to construct draws of the vector . The
first N' draws are scaled by o, = /77,02 and are used for creating the N x 1
vector of individual effects i1 = (g, ..., ) *° The next N draws are scaled by

4OWe find that altering the ratio of the variance of the individual effects and model disturbances
does not qualitativelly affect our results and hence we only consider ), = 1.
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( lfi)z and are used for creating the NV x 1 vector of theinitia disturbances

=) de ;. (5.2.2)
j=0

Finally, thelast T'N draws are scaled by o. and are used for creating the NT' x 1
vector of disturbances (¢}, ..., €)'

| construct the N x 1 vector of initial observations as™

Yo=y—pW) ' [+ (1—¢) " p]. (5.2.3)

The subsequent observations for ¢ = 1,..,T are then generated according to the

our model as
Vi = dyi1 + XiB+ Iy — pW) ' (e, + p) . (5.2.4)

5.3 Designs Considered

In al experiments | set N = 100 and 7" = 5. | consider three specifications for
the spatial weighting matrix, as in Kelgjian and Prucha (1999) and Kapoor €t al.
(2005). The matrices differ in the degree of their sparseness. The first matrix has
initsi-throw, 1 < ¢ < N, nonzero elements in positions: — 1 and i + 1, soO
that the i-th unit is directly related to its immediate neighbors. | define this matrix

in a circular world so that the nonzero elements in the first and last rows are at

“1This specification implicitly assumes that the contribution of initial values of the exogenous
variablesis zero. i.e. that 7 X_ ;3 = 0.
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positions (1,2), (1,N), (N,1) and (N, N — 1). This matrix is row normalized
and hence all the nonzero elements are equal to 1/2. Asin Kelgian and Prucha
(1999), | refer to this matrix as "1 ahead and 1 behind”. The next weighting
matrices are defined in a corresponding way as "3 ahead and 3 behind” and "5
ahead and 5 behind” with nonzero entries 1/6 and 1/10 respectively. In the tables
of results below | reference the matricesby W =1, 2, 3.

The exogenous variables were generated once prior to the Monte Carlo ex-
periments and the process is described above in the Data Generation section. For
smplicity | alwaysset 3 = (1,1)". Therest of the coefficients of the model take

on the following values:
¢ €{-0.9,—-0.75,—-0.25,0,0.25,0.75,0.9} , (5.31)

and

p € {-0.9,-0.5,—0.25,0,0.25,0.5,0.9} . (5.3.2)

| find that the results do not qualitatively change with the ratio of the variances
of the independent innovations and the individual effects and hence | aways set
Ny = Z—Z = 1. The variance of the independent innovations is always set to one.
As aresult the different specifications will have different overall average R? of
the data. The variance of the dependent variable conditional on the explanatory

variables (equal to variance of the disturbances) is given by

VC (v X4, yi-1) = (02 +05) - PP, (5.3.3)
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where as before | define P = (Iy — pW) . Furthermore, the unconditional

variance of the dependent variable is*

2 2

VO (y,) = (1 = 7t i“¢)2) PP (5.3.4)

The expected R? of the data is then equal to the ratio of the conditional and un-
conditional variance of the dependent variable and hence is afunction of the true
values of the parameters ¢, W and p (aswell as o2 and o7)).

In particular, consider the vector of observation of the dependent variable as

y = (¥h, ..., ¥r) and its mean vector denoted as
T !
y = E[(y}, ---,Y'T)'} = |B'X], ~--,Z¢T_t5'Xi : (5.3.5)
t=1

The sample correlation coefficient between y and y is then defined as

(y—ern-yy) (¥ —ern VYY)

Vi —ern - yy) (y—ern ¥y (¥ —ern - ¥Y) (¥ —ern y’(?s):; 6)

r =

where ey isaT N x 1 vector of unit elements. The designs considered in the
Monte Carlo experiments are such that average (over the replications of a partic-
ular design) r is between 0.54 and 0.78.

To summarize, we have 7 valuesfor ¢, 7 valuesfor p and 3 different weighting

matrices W, that is 147 different parameter designs.

4Note that the expression is derived analogously to the variance-covariance matrix of theinitial
observations, given in equation (3.2.5)
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5.4 Tablesof Results

The tables of results D1-D4 contain bias and a measure of the root mean square
errors of the different estimators for the 147 designs considered. For each con-
stellation of parameters, the random numbers were generated 1000 times and the
estimators calculated and their values saved. For each estimator, | report the me-
dian and root mean square error calculated as in Kapoor (2005); that is using the

interquantile based measure:

1/2
. Q\?
bias® — 541
ias” + (1.35) ] , ( )

where bias is the true value of the parameter minus the median of the estimators,

RMSE =

and /@ isthe difference between .75 and .25 quantiles.

Observe that the comparison of the different estimation procedures in Tables
D1-D4 isonly based on comparing the .25, .50 and .75 quantiles of their distrib-
utions. Note that hypothesis tests are often based on the .05 and the .95 quantiles
and hence it might be of interest to consider quantiles other than those used in
constructing the bias and RM SE measure.

To make such comparison feasible, | present in Figures 1 through 6 the quantile-
to-quantile plots that compare the small sample distribution of the estimated slope
coefficient ¢ with the Gaussian normal distribution. The plots depict the sam-
ple cumulative distribution of the estimator (over the 1,000 replications of each
design). The left hand side axis of the plots has a nonlinear scale so that if the

data was exactly normally distributed, the plot would be linear. Therefore, any

117



nonlinearity in the plot represents deviations from normality at the appropriate
guantiles.

| superimpose the 147 design on top of each other®® in each Figure, so that
the deviations from the straight line represent the worst-case scenarios over the
entire parameter space. For illustration purposes, Figure 7 shows the quantile-to-
quantile plot of 1,000 replications of N (0, 1) distribution, and Figure 8 show the
same plot where the sample was drawn from a student-t distribution with 5 degrees
of freedom. Observe that the quantile-to-quantile plot allows an easy detection of

even such small deviations from normality.

5.5 Conclusionsand Comparison with Other Studies

The results of the experiments confirm the finding in the literature that for some
parameter values the performance of the Anderson-Hsiao estimator AH1 is not
very satisfactory (see Table D1). However, the second initial estimator AH2 (us-
ing the twice lagged level of the endogenous variable as an instrument) performs
quite well and in fact for most parameter values it is better (in terms of lower
bias and/or lower RM SE) than the estimator AB that uses a larger instrument set.
Note that if the model did not contain individual effects, the instruments used by
the estimator AH2 would be the conditional expectations of the right-hand side
variables. This might explain itsrelativelly good performance. Note that the AH1

and AH2 estimators are exactly identified and hence their performance cannot be

43To maintain compatibility over different designs, the small sample distributions were normal-
ized by their medians and the difference between the .25 and .75 quantiles.
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improved by weighting the moment conditions.

In contrast, once the moment conditions are weighted, the performance of the
AB estimator improves (see Table D2) and becomes better than that of the AH2 es-
timator. Observe that ignoring spatial autocorrelation in constructing the weights
involves a moderate |oss of efficiency relative to the other weighting schemes es-
pecially when the spatial autocorrelation is high and positive. On the other hand
for low or negative values of p, this weighting scheme performs as well as the
more computationally involved aternatives and hence is a viable option in case
where the calculation of the inverse in (Iy — pWN)*l Is computationally pro-
hibitive.

The second weighting scheme (labeled mix) uses an inconsistent estimate of
the variance covariance matrix of the moment conditions. However, this does not
negatively affects the small sample performance of the GMM estimator and the
performance is for most parameter values in fact better than that of the other two
aternatives.

The last weighting scheme has for many parameter values clearly the smallest
bias but its RM SE is about the same asthat of the alternatives. Overall there seems
to be no clear best choice of the weighting scheme and al of the weights lead to
a second stage GMM estimator that performs satisfactory over the entire range of
parameter (which is not true for any of theinitial estimators).

Examining other quantiles of the small sample distributions of the estimators
in Figures 1-6 shows that the distributions of the initial 1V estimators are not are

not well approximated by the normal distribution. The Anderson Hsiao estimators
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(AH1 and AH2) exhibit large deviations after the .20 quantiles and athough the
extended instrument set employed by the AB estimator alleviates this, there are
still deviations from normality at the .10 quantile.

On the other hand, the second stage GMM estimators show no dramatic devi-
ations from normality up to their .10 quantile. The weighting scheme that ignores
the spatial correlation shows some deviations from normality at the .05 quantile
and hence the resultant estimator might not perform well in the usual hypothesis
tests. The weights based on Vmiz gnd VE perform better at the .05 quantile, with
the estimator based on V¥ bei ng marginaly better than the one based on Vmiz,
Nevertheless, for both weighting schemesthereis still some size distortion of tests
based on the .05 and .95 quantiles. Thisisin linewith finding of other studies that
looked at the performance of GMM estimators and found that often the use of
asymptotic distributions of the GMM estimators as a small sample guidance was
not satisfactory, suggesting the use of ML estimation (e.g. Binder et al. 2000).

Turning to the estimator of the spatial autocorrelation parameter p in Tables
D3 and D4, it isremarkabl e that the spatial GM procedure works well even when
based on inefficient initial estimators. The loss of efficiency in terms of RMSE is
for many parameter values negligible. Observe that with ¢ = 0, thesimulationsin
this study are comparable to those in Kapoor et a. (2005). To check whether this
isindeed the case, Figures 9-11 present the comparison of the values of RM SE for
the unweighted spatial GM estimator based on the true values of the disturbances
obtained in this simulation study with the comparable RM SE values reported in an
earlier draft of the Kapoor et a. paper. The value for W in the labels corresponds
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to the type of the weighting matrix used and is the same asin the Tabled D1-D4.
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6 Directionsfor Future Research

Inthisthesis| have concentrated on studying a specific model and deriving formal
results on the properties of the suggested estimation procedure under a particular
set of maintained assumptions. In the future this approach can obviously be ex-
tended along several dimensions.

Firstly, the model under consideration can be extended to include other ele-
ments. In particular it would be of interest to consider a spatial lag in the depen-
dent variable in addition to the spatial lag in the disturbance process.

Secondly, the estimation procedure under consideration can be atered. Inthis
respect it could be interesting to consider potentially more efficient estimation
procedures such as GMM estimators based on an extended set of moment con-
ditions as suggested by, for example Ahn and Schmidt (1995), or some form of
continuously updating GMM estimator.

Finally, the set of maintained assumptions can be made more general. Here
the first extension that can be tackled isto allow for the exogenous variables to be

stochastic.
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A Appendix: Central Limit Theorem for Vectors of
Linear Quadratic Forms

For the convenience of the reader | first give explicit formulae for the mean and
covariances of linear quadratic forms. | focus on the case where the diagonal
elements of the quadratic forms are zero and the innovations have zero mean.*
The following lemma is a special case of a Lemma A.1 in Kelgian and Prucha

(2005).

LemmaAl Letsy = (s1,...,5,) ~ (0,%,) whereX,, isdiagonal and positive
definite, and let A,, = (a;j,,) and B,, = (b;;,,) ben x n nonstochastic symmetric
matrices where a;;, = b;,, = 0. Let a, and b,, be n x 1 nonstochastic vec-
tors. Consider the decomposition 3, = P,,P;, andlet ¢, = ((y,,---,Cpp) =
P, 'c,. Then assuming that the elements of ¢,, areindependently distributed with
zero mean, variance one fourth moments £/(¢ ;{n) = “S) we have
E (s, +s,As,) = 0,
VC(alsn +shAus,) = 2tr(A,X,A,.%,) +a,X,a,,

Cov(al,sn + 6, ApSn, b 6n +6,Brs,) = 2tr(A,%,B,X,) +a,X,b,.

%I n general the variance and covariance of quadratic formswill depend on the second, third and
fourth moments of the innovations. However, since we specialize to the case where the diagonal
elements of the quadratic forms are zero, the variance and covariance of the quadratic forms will
only depend on the second moments of the innovations.
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For proof see Kelgiian and Prucha (2005). The expressions also correspond to
those given in Kelgiian and Prucha (2001). Obvioudly, in case A,, and B,, are not
symmetric the above formulae apply with A,, and B,, replaced by (A,, + A’)/2
and (B,, + B!)/2.

For convenience of the reader, | next state a Central Limit Theorem (CLT) for
vectors of quadratic forms of triangular arrays based on Theorem A.1 in Kelgian
and Prucha (2005).

Let s, = (S1ms---»Snn) DEAN T X 1 random vector, let

AT,n = (aij,r,n)i,jzl ..... n (Al)

be nonstochastic matrices, and let b,.,, = (b1, - - - bnrn)" DE NONStochastic vec-

tors(r = 1,...,m). Consider the following assumptions:

Assumption A1l Thereal valued randomvariablesof thearray {¢;, : 1 < i < n,
n > 1} satisfy Es;,, = 0. Furthermore, for each n > 1 the random variables

Sim,-- -, Sn.n aretotally independent.

Assumption A2 For » = 1,...,m the elements of the array of real numbers
{aij,,m -1 S Z,j S n,n Z ]_} Sat|Sfy Aijrn = Ajirn and45

n

sup Z |@ijrm| < 00.

1<j<nn>143

45The assumption of symmetry of the elements of A,, is maintained w.l.o.g. since ¢, A,.¢,, =
en [(An + A7) /2] e
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The elements of the array of real numbers {b; ., : 1 <i <n,n > 1} satisfy

n
supn* Z |bi,7~,n]2+51 < 00

nzl i=1

for somed; > 0.

Note that a sufficient condition for Assumption A2 isthat the row and column

sums of A,, and the elements of b,, are uniformly bounded in absolute value.

Assumption A3 For » = 1,...,m we assume that one of the following two con-

ditions holds.

2462

(@) sup;<icpn>1 B [Sinl < oo for somed, > 0 and a;; ., = 0.

(0) SUP; i<y no1 E [sia] ™ < oo for somed, > 0 (but possibly a;;.,., # 0).

Consider the quadratic forms
Qrm = g;LAr,nCn + b;mgn (AZ)
and define the vector of linear quadratic forms

q1,n
aqn = : , (A.3)

mn
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and let

By, = Ean, (A.4)

an E(qn - Eqn)(qn - Eqn>/
denote the mean vector and the variance covariance matrix of q,,. Then

’uq1,n 0_q11,n e O-‘Ilm,n

Hq, = : , Yq, = : : : (A.5)

'LL(]m,n O-le,n e UQmm,n

where, ando,,, , denotethe mean of ¢, ,, and the covariance between g, and

s.n, respectively, for r, s =1, ..., m. We now have the following CLT.

Theorem A1 Suppose Assumptions A1-A3 hold and !\ (2, ) > ¢ for some
/!
c>0.Let S, = (23{?) (23{?) , then

Zor (an = Hg,) = N (0.1,).

an

Of course, the theorem remains valid, if al assumptions are assumed to hold
for n > ny where ng isfinite. The above theorem can also be applied to situations
wheren = T'N with T finiteand N — oo; seefootnote 13 in Kelgjian and Prucha
(2001).

| now illustrate thisin more detail. Suppose, we have sample sizes

1,27, 3T,....,NT, ...,.o0c as N — oo and the random variables are triangular ar-
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raysis

/
€1 = (C11,1, s ,§T1,1) (A.6)
o /
€ = (C11,2, 612,25 -+ -5 ST1,2, §T2,2)
/
EN = (§11,Na---aglN,N7§21,N7---a§2N,Na---ang,Nw'-agTN,N)7

Consider the sequence of vectors of linear quadratic forms and the vectors of
linear quadratic forms

VN = (Ul,Nv ceey Um,N), ) (A7)

with

Up N = EINAT,TNEN + b;7TN€N‘ (A8)

As above, we denote by ., and X, the mean vector and variance covariance
matrix of the vector v .

Suppose that the random variables collected in e y satisfy AssumptionsAland
A3, and the sequences of matrices A,y and vectors b, -y satisfy Assumption

A2.
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We can define additional triangular arrays of sizes between ¢tV and (t + 1) N

to obtain a sequence

S1

S2

ST

ST+1

ST+2

Saor

SNT

(§11,1>

(A.9)

(§11,1; §21,1),

(STRTRRY
(S112, .-
(S112, .-

(STRIPPY

(SN, - -

7§T1,1)/
,CT1,2,C12,2)I (A.10)

/
,$T1,2,512,2,512,2, §22,2)

!/
y$T1,2,612,25 - - - ,§T2,2)

/
-3 S1IN,N;S21,Ny -+ +3S2N,Ny- -+ sSTL, N, - - - >§TN,N) .

Observe that the new sequence ¢,, satisfies Assumptions A1 and A3 and that for

n = NT wehaveg, = ey.

Similarly, we can extend the sequence of vectors of linear quadratic formsto

where

A = (s ooy Q) (A.11)

Qron = C;Ar,ngn + bf,‘mgn, (A12)
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with

Aczlr Opajra 0 Oama
A, = Ouxlz]r ®unpfajre1 ° %agp[2]r+ . (A13)
Ouxlz]r ®uerfz]rer " Bkr[2]T41
brg]r
b, = | Dol |
bk,r,[%]TJrl
and k = n— [2] T', where| use [] to denote the whole part of arational number

Observethat by definitionfor n = NT', wehaveq,, = vy. Furthermore, since
A, , and b, ,, satisfy Assumption A2 for n = NT, it follows from the construc-

tion of A, yr and b,y that they satisfy Assumption A2 for all n. As aresult,

quadratic forms q,, fulfill conditions of Theorem Al and £4/* (q, — g, ) =

N (0,1,,) asn — oo, where as before p,, and X, denote the mean vector

and variance covariance matrix of the vector q,,. Hence the sequence of distribu-

~1/2

tion functions of X,"" (q, — 1, ) converges weakly to the distribution function

n

of N(0,1,,). We now select a subsequence from the distribution functions of
Yo/ (an — pg,) forn = NT (wetreat T as afixed constant) and observe that

these are equivalent to the sequence of distribution functions of =, ./ (VN — By )-
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This subsequence must have the same limit and, as a consequence, we have that
St (v = pyy) > N (0,L), (A.14)

VN

SN — 0.
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B Appendix: Proof of Claimsin Chapter 3

LemmaBl : Letg;, j € N, be a sequence of totally independent real valued
random variables with E'|¢;|” < k. < oo for some2 < p < oco. Let a; be
a sequence of real numbers such that 7% |a;| < k, < oo. (a) Consider the
randomvariables x,, = > " a;<;, then there exists a random variable x, which
we denoteaszg";o a;s;, such that ,, — x for 0 < r < p. (b) Furthermore,

Elx|" < k;kg/p < oo, for0<r <np.

Proof: To prove part (a) | first show that each x,,, hasfinite p-th absol ute moments
and hence belongs to the L? space of random variables with finite absolute p-th
moments. | then demonstrate that the sequence x,,, is a Cauchy sequence. By
invoking the completeness property of the LP space we will then have that the
l[imiting random variable y aso belongsto L”. | now turn to each of these steps

in detail.

Letp >2and1/q+ 1/p = 1. Then, using the triangle and Holder’s inequali-

ties
m m m
1 1
Yoas| < Y laillsil =Y lail " fai7 [ (B.1)
=1 =1 =1
m YVarm 1/p
< S| [Swier]
=1 =1
<

m 1/p
k1 [Z!aﬂ \Cz‘|p] ,
=1

131



and further

p m
Elx.’ = E <N Jag Bl (B.2)
=1

m
E a;S;
i=1

< R Jagl K R = KDk < oo,

1=1

and hence each y,,, belongsto L?.
| now demonstrate that the sequence y,,, is Cauchy in L?, or in the terminology
of Shiryayev (1984, p.251) that it is fundamental in L?. Since ) >°, |a;| < oo it
follows from the Cauchy Test (Neylor and Sell, 1982, p.225) that for every ¢ > 0
there exist and index IV, such that
m+k

> ail <, (B.3)

t=m-+1

foralm > N.and k£ > 0. Now choose somee, > 0 and ¢ = ¢, /(kPk.), then by

argumentation analogous to above

p

m-+k m
E ’Xm+k - Xm|p = FE Z ;S — a;Si (B.4)
=1 i=1
m+k
< Rk Y a| < Bke =,
i=m+1

foral m > N, and k > 0. Thus under the maintained assumptions the sequence
Xm 1S Cauchy in LP. By Theorem 7 in Shiryayev (1984, p.258) we then have

that the sequence y,,, converges in p-th mean to a random variable in L?, which
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impliesthat y existsasalimit in p-th mean. Of course, sincefor » < p

by Lyapunov’s inequality it follows that y,, convergesto y aso in r-th mean for
0<r<np.
To prove part (b) observe that from the above ' |x|” < ¢ for some ¢ < oo.

Hence E |x|" < (E |x|")7 < ¢ < . m

LemmaB2 : Let A,, bea sequence of nonstochastic matrices of dimensionsn x n
where n € N such that max;<;<,, 2?21 la;;] < ka < oo. Consider a sequence of
n x 1 randomvectorsg,,, with elements ¢, ,, that are real valued random variables
with E[¢; [P < k. < oo for some 2 < p < oo. Then the elements of the random
vector 5, = A, have finite -th moments with £ [5; ,|" < kf;‘k{f/ P < oo, for

0<r<np.

Proof: Letp > 2and 1/q+1/p = 1. Using thetriangle and Holder’ sinequalities,

we have
n n n ) )
Rinl = |D_ aiinSin S[ \az-j,nucj,n\] - [Z\aij,n|a|aij,n|5|<j,n|
j=1 7=1 j=1
1 1
< [Z|%n|] [Z|aij,n||<j,n|p] : (B.6)
j=1 :

J=1
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and further

ERial" < [Z |az’j,n|] [Z |aijn| E |<j,n|p] (B.7)
j=1 j=1
< KUY Jagnl ks < Kok
j=1
Observe that by Lyapunov’sinequality for 0 < r < p,

Rinll, < [Sinll, = B [€inlP]? < kakl?, (B.8)

andhence £ [<;,|" = [Sinll. < Kkl u

LemmaB3 : Suppose Assumptions 1, 2, 3 and 5 hold.

(@) Let w, vy = Xy B + u, n, and let w;, v denote the i-th element of w; y,

then
Ewi ] "™ < ky < 00,
where k,, does not depend i, ¢, V.
(b) The random vector
Yt.,N = Z ¢jwtfj,N7
j=0

iswell defined asthe limit of the finite sums in quadratic means and thereisé > 0

suchthat E |y, n|" < k, < oo for all » < 4+, where k, doesnot depend i, ¢, N.
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Proof: In the following let p = 4 4+ § with 6 = min{J.,0,}. | first prove part
(8). Denoting z;; n the k-th element of x;, n, we have from Assumption 5(b) that

|Zire.n| < kx < oo and thus
%, vB|" < KR (BB < . (B.9)
Next, from Assumptions 1 and 2, we have
Elvay[" <207 (Eleanl” + E | n|") <277 (ke + k) <00, (B.10)

by inequality (1.4.3) in Bierens (1994). Now observe that u; y = Pyv; . By

Assumption 3(c) we have
N
max ZP@‘,N < kp < o0, (B.11)

Jj=1

and hence by LemmaB2 we have E |u; v|" < k52P~* (k. + k,,). Hence

Elwyn? < 227 [E X, N8| + E luwnl’] } (B.12)

A

2 (BB + 12 (b + )} < o0,

i.e., the p-th absolute moment of w;; » is uniformly bounded by a finite constant
that does not depend 7, ¢, V.
To prove part (b) observe that ">° o' = 1/(1 — |¢|) < oo. Given part (a)

of the Lemma, part (b) now followsimmediately from LemmaB1. [ |
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Equation (3.2.4): The vector of endogenous variablesis defined by a stochas-
tic difference equation:

YN = OYi—1,N + Wi N (B.13)

From Lemma B3 above it immediately follows that the random variables

oo

o= Y dwie, (B.14)
j=0
yf,t_l = Z¢jwi,t—1—ja
j=0

are well defined as limits of the finite sums in quadratic means.
| now show that they are aparticular solution. Substituting into the RHS of the
difference equation defining y; », we have (using Theorems 2.6 and 2.7 in Prucha,

2004):

¢y£t71,N +win = o Z ¢jwi7t—1—j + Wi, N (B.15)

j=0
o0

= E Pwi—j + wie N

Jj=1

o
— E j — P
§=0

and hence y;  is a particular solution. The homogeneous part of the difference
equation is

YZN - ¢Y?71,N =0. (B.16)
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and its solution is of the form y/', = ~¢"™™, where v isa N x 1 vector of
(finite) constants and —m is the starting point of the process. Since | assume
that the process has started in an infinite past (m = +o0), we have that y;' =

t+m

lim,, .., y¢""™™ = 0 and, as aresult, the unique solution is

o0

— P h J
YN = Yin tYiN = § ¢ Wi—j,N-
Jj=0

Substituting for the definition of w,_; x and utilizing Theorem 2.6 in Prucha
(2004) yields

YN = Z ijwt—j,N (B.17)
=0
= Z ¢ (X jnB+Pyerjn +Pypy)
=0
= Z ¢J (Xi—jnB+Pne_jn) + Z ¢jPNp,N
j=0 =0

o0

= D> ¢ (XijnB+Preryn) + (1-0) " Pypy.
=0

The claim in Chapter 3 then follows from speciaizing the above expression for

t=0.

Equation (3.2.5): By Lemma B3 we have that

Yon = Z th,j, (Bl8)
7=0

137



with E (w? y) < k, < oo and |¢| < 1. Using Theorems 2.6 and 2.7 in Prucha

(2004) we can write

o0

Yon = Y dwi (B.19)

J=0

= > ¢ (X nB+uw)
=0
= (Z ¢jX—j,N5) + <Z ¢j11t,N>
=0 =0
= ( ¢ij,N5) + (Z ¢jPN€j,N> + (Z ¢jPNlLN>
i =0

=0
= cn+PnéEy+(1— Cb)il Pypy,

NE

I
=)

where ¢y isnonstochastic and the vectors of random variablesare &, = Z;’;O & E_jN
and p 5. Notice that by LemmaB1 the random variable £, iswell defined. From
Assumption 1 and Theorem 2.2 in Prucha (2004) we have that

E(&y) = ZWE (e-jn) = Onx1 (B.20)
7=0
and
VC(Ey) = EEnen) =) (¢°) oLy (B.21)
j=0

= o? (1 — ¢2)71 Iy.
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Furthermore,

148 (PN£N> = B (PN£N£3VP3V) =PyFE (£N£IN) PIN

= o2 (1-¢*) " PAPY. (B.22)

Observe that by Assumption 2, the random variables P &\, and u; are inde-

pendent. Thus we have

VC(yon) = VC(Pyéy)+VC[(1—¢)  Pyuy] (B.23)

= 02(1-¢%) PPy +(1—¢) *PyVC (1y) Py

o2 o? ,
- (1—¢2+ <1—ﬂ¢>2)PNPN'
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C Appendix: Proofsfor Chapter 4
| will make repeated use of the following facts:

LemmaCl Let C = A + B be square real valued symmetric matrices of same
dimensions. Then

>\min (C) Z >\min (A) + >\min (B) .
For proof see, e.g., Rao and Rao (1998), Proposition 10.1.1.

LemmaC2 Let A and B ben x m andn x n matrices. If B is symmetric then
Amin (A'BA) > A\ (A’A) - Apin (B) .

Proof: By Rayleigh-Ritz Theorem (see, e.g. Proposition 4.2.2 in Horn and John-
son 1985) we have that the smallest eigenvalue of a symmetric matrix can be

obtained as:

Amin (C) = inf |(o/a)”' (&/Ca)| = inf (o/Ca). (C.0.1

a#0 a;a’a=1

Since B issymmetric, we can decomposeitasB = U’AU where U isorthog-

onal and A = diag (A4, .., \,,) isdiagona with eigenvalues of B on the diagonal
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(cp. Proposition 52 in Dhrymes 1984). Hence we have

Amin (A'BA) = Auin (A'U'AUA) (C.0.2)
— inf [«’A’'UAUAq]

> inf); inf [@/A'UUAq]
J

a;a’a=1

= A (B)- inf [a@’A’Aq]

a;a’a=1

= )\min (B) : )\min (A,A) .

LemmaC3 Let a,,, and b,,be sequences of n x 1 vectors and C,, be a sequence
of n x n matrices. uppose that the elements of a,, and b,, are uniformly bounded
in absolute value, and that the matrix C,, has uniformly bounded absolute row (or

column) sums. Then n~ta’,C,,b,, is uniformly bounded in absolute value.

Proof: Denote the uniform bounds of the e ements of the vectorsa,, and b,, as &,
and k; and the uniform bound of the absolute row sums of the matrices C,, as k..

We have by the triangle inequality

n n

n n
TL*I |a;LCnbn| = n*l Z Z a/i,ncij,nbj,n < nil Z Z |ai,n| |Cij,n| |bj,n‘
i=1 i=1 i=1 i=1
no.n n n
< 0N ko legal ke = kakyn Y 0 eyl (CO3)
=1 =1 =1 =1
n
< kakon Y ke = kakyke < oo

=1
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C.1 Proofsfor Section 4.1

Proof of Lemma 1: By backward substitution we can eliminate lagged dependent
variables and express y_, as a function of lagged disturbance terms and lagged

explanatory variables. From (3.2.2), we havethat y_, v is

Yo.n Yo.n
Yi,N XinB +w N+ dyon
Yon = _ =
Yr-2,N Z?;og ¢ Xr_o jnB+ur o N +6 yon
Onxp Yo,N
Xl,N u,N
= (' @Iy) _ B+ _ : (C.1.9)
| XT—Q,N ur—o N ]
where
L ¢ ¢
0 1 :
P = ) (C.15
. - . ¢
0 0 1
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Next | express (v y, Wi v, ..., Wr_, y) asalinear form of

Ny = (MN>£N7 ELN ~-'7€/T,N)I' (C.1.6)

Observethat u; v = Py (e v + p) andfromequation (3.2.4), yon = E (yon)+
Py [£N+ﬁ—%} JWithgy=>"", ¢’e_; v well defined by LemmaB1. Therefore,

(Yo Wi s s W g )’ (C.1.7)

[1—¢]" 1 O1x7—2  O1x2
- QPN Ny

17951 Or—axi Ir—a Op_axo
T—1xT+2
/

+ [E (y&N) 701><(T72)N} .

Hence with the notation X o x = (0'y.,» X} s - Xp_o ) We have

yon = (@) {X onB+ [E(von),0r 2a]'} (C.19)

1—¢]" 1 O1x7—2 Opx2
+ | @ ) “ |l ePy| ny.

17951 Or—2x1 Ipr—2  Op_y

Therefore, given that
Auy = [(0¢r-1)x2, D) @ Py] ny, (C.19)

we can expressy’ , yAuy as afunction of the model disturbances and explana-
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tory variables:

¥y yAuy (C.1.10)

= (B’X/_;N + [E (Y&N) ,OT—2x1D (@ ®1Iy) [(O(Tq)xz, D) ® PN] Ui

1
T 1ixr o

©-

/ 11><1 01><T—2 ’
+nN P (O(T—l)xza D) ® PNPN NN
Or—2x1  Ir—o

O2x1 O2xr—2

= fy (Irp2 @ Py) ny+ny (F @ PYPy) 0y,

where

fy = (BX oy + [E (Vo) - 0r-2x]) (2 ©In) [(07-1)x2, D) @ Ly]
(C.1.11)
and
= P
Lixi Oixr—2

Frioxris = P (O(T—1)><27 D) (C.112)

0T—2><1 IT—2

O2x1 O2x7—2
The expression for AX’,, Auy follows from a trivial substitution of Auy =

[(O(Tfl)x%D) ® PN} UNE u

Proof of Lemma 2: To obtain the expected value and variance of thetwo quadratic
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forms, | use the expression from Lemma 1:

YI_Q,NAUN: fy (Iry2 @ Py]ny + 0y (F @ PyPy) ny, (C113)

and

AX Auy=AX), [(O(T—l)x2> D) ® PN} U (C.114)

whereny = [wly, €y, €1y - €] iSavector of independent zero mean ran-
dom variables with uniformly bounded fourth moments. Next | verify that as-
sumptions of LemmaAlin Appendix A are satisfied. Given Assumption 1 and 2,
it remainsto be verified that diagonal elementsof (F @ P, P ) are zero. Observe

that from Lemmal wehave F = A®B, where

ﬁ 1y (-2

Tix1 01><(T—2)

= , B = (0(r-1)x2, D) .
Orspr Tros (T—1)x(T+2)

0251 02><(T—2)

(C.1.15)
The diagonal elements of F are then
T-1
F; = {A®B}, = ZAU {(I)B}ji (C.1.16)
j=1
T-1 T-1
- Aij ) @B,

1

B
Il

1

<.
Il
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where A;; and B;; denote the ij — th elements of matrices A and B respectively.
Notethat By; = 0for k <i+2and ®;;, = 0for k < j, and, therefore, {®B},;, =
Il ®,By, = 0fori < j+ 2.% Furthermore, the elements A,; are zero for

i>j+landhenceF; =Y | A;; {®B} , =0.

J]=

Hencel can use Lemma A1 to derive the mean and variances and covariances

of y' , yAuy and AX'yAuy. In particular, we have that
FE (y'_szAuN) =F (AX{,VAUJ\O = 0, (Cll?)
and

|48 (yl_z,NAuN) = fy (N ® PyP)y) fx (C.1.18)
+2tr (FOS, NF75, v @ PAPyPPy)

= f],V (27],N X PNP§V) fN + VN,

VC (AXyAuy) = AX)y [(0¢r-1)x2, D) @ In] (Z 8y @ PyPYy) *

[(O(T,l)XQ, D) IN} AXy. (C.1.19)

4N ote that the both matrices ® and D are upper diagonal (in the sensethat their ij —th elements
are zero for i < j) and hencetheir D product aso has the same property. Asaresult, the matrix
®B = (0(7_1)x2, D) will haveitsij — th elements equal to zero for i < j + 2.
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and finally

Cov ("o yAuy, AX Auy) = fy [EW (07—1)x2, D) @ P;V} AX .

(C.1.20)
where | defined
vy = 2r (F°S, vF°S, v @ PyPyPyPy) (C.1.21)
= 2r (F°S, NF %, v) - tr (PyPyPPy).
Together we have that
v vC (y’_ZNAuN) Cov (y’_ZNAuN,AX’NAuN)
N pu—
Cov (' yAuy,AX ) Auy)’ VC (AX/y Auy)
’ ’ Un 01><p
= Sy (X, n@PyPy) Sy + , (C.1.22)
0p><1 Opxp
where Sy = (fN, [(O(T—l)x27 D)/ ® INi| AXN>
[ |
Proof of Lemma 3: From Lemma C1, we have that
>\min (VN) Z >\min [S/N (2717]\[ ® PNPIN) SN] —I— min (VN, 0) . (C123)

Notethat since X2, issymmetric, by Proposition 52 in Dhrymes (1984) we can
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expressit as X, = A’A. Hence

tr (F*S,F°%,) = tr (FA'AF°A'A)

= tr (AF°A’AF°A)

= tr(A’'A)>0

with A = AF A/, since F* is also symmetric. Therefore,

tr (F°S, x\F°X, x) > 0.

Furthermore,

and, therefore, vy > 0.

By Lemma C2 the smallest eigenvalue of V  isthen

>\min (VN)

v

Amin [SN (EmN ® PyPYy) Sy

> Amin (S¥SN) - Amin (B v @ PyPYY).

From Theorem 4.2.12 in Horn and Johnson (1991) we have

)\min (217,N & PNP/N)

)\min (En,N) : )\min (PNP/N) )
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(C.1.25)

(C.1.26)
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and hence

[(T - 1) N]il >‘min (VN) > [(T - 1) N]il >‘min (SINSN) ) (C128)
*Amin (EnvN) * Amin (PNP/N)
Amin ([(T = 1) N]7" SySy) -

')\min (EU,N) : )\min (PNPiN) :

By Assumptions 4 we have that A, (PnP’y) > cp > 0, by Assumption V2
we have that A ([(7 — 1) N| 7' SySy) > ¢s > 0. Since B, v is diagonal, we

2

have Apin (£, 5) = min [ai,var (‘sz) ,ag] = min [ai,lfﬁ,ag} > >0

and hence [(T'— 1) N] ™" Amin (Viv) > csescp > 0.1

Proof of Proposition 1. The result in the Proposition is a special case of the
general result in Lemma5 in Section 4.3, which isin turn based on the CLT in
Theorem Alin Appendix A. Herel verify directly that the conditions of Theorem
Al hold.

4"The conditions of that Lemma are satisfied since by Lemma 1 (and also Lemma 4 in Section
4.3), the instruments y _» y and AX y are linear forms in the innovations of the form assumed
in Lemma5. Furthermore, by Lemma 3, the smallest eigenvalue V  is uniformly bounded away
from zero. Finally, the moment conditions are valid since by Lemma 2, we have E (H\, Auy) =

0. Therefore, conditions of Lemmab are satisfied and we have that V;,l/zHg,AuN 4N (0,1).
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The moment conditions are

!/ /

H2,N (YO,Na AXz,N)
H/NAUN = AUN = AUN (C129)
HT,N (}’T72,N, AXT,N)
— 1/
Yo,n AX27N . A
_ u
= 5 AUN = Y N N
AX/NALIN
Yr—2o N AXT,N

Observe that by Lemma 1, the instruments y_, x and AXy are linear forms
in the innovations and, as a result, the moment conditions collected in Hy Auy

are linear quadratic form in the innovations

Ny = (I’l’i/\h E;\H 6,1,N7 ) EIT7N) ) (0130)

where &, = Z;‘;O ¢’e_; n. By Assumptions 1 and 6 it follows from Lemma B1
in Appendix B that the random variable &, satisfies condition A3 in Appendix A.
Therefore, by Assumptions 1 and 2, the elements of the innovations 7, satisfy
conditions A1 and A3in Appendix A.

By Lemma 2, the variance covariance matrix of the moment conditions col-
lectedin Hy Auy isV y and by Lemma3, thesmallest eigenvalueof (7' — 1) N] ' Vy
isuniformly bounded away from zero. Hence it remains to be shown that the lin-

ear quadratic forms collected in Hy, Auy satisfy condition A2 in Appendix A.
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Note that from Lemma 1 we have that the elements of H'y, Auy are
y o nAuy= fy (Ir12 @ Py) ny + 1y (F @ PyPy) ny, (C.131)

and

AX ) Auy=AXY [(0¢r_1)x2, D) @ Py my. (C.1.32)

Observe that any finite sum, product or Kronecker product of matrices with row
and column sums uniformly bounded in absolute value will also have row and col-
umn sums uniformly bounded in absolute value; see Kelgjian and Prucha (2001d)
for details.

From Lemma 1, we have that

fy = {BX yn+ [E (Yon)O1x@-2)n] } [® (Or-1)x2, D) @ Iv] . (C.1.33)

Elements and dimensions of & (0_1x2, D) do not depend on IV and hence triv-
idly [® (0(r_1)x2, D) ® Iy] hasrow and column sums uniformly boundedin ab-
solute value. Elements of the vector 3'X’ , , are uniformly bounded in absolute
value by Assumption 5 and elements of [E (y{ y),01xr—2)n] ae uniformly
bounded in absolute value since, as demonstrated by Lemma B3 in Appendix
B, v has uniformly bounded 4 + § moments for some § > 0. Together we then
have that f has elements uniformly bounded in absolute value. The sequence
of matrices Py has row and column sums uniformly bounded in absolute value

(Assumption 3) and hence elements of £}, (I,» ® P ) areuniformly bounded in
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absolute value. Similarly, by Assumptions 5 and 3, AX/y [(0(r—1)x2, D) ® Py]
has row and column sums uniformly bounded in absolute value. Finally, since
dimensions of F do not change with N and its elements are also independent
of N, the matrix (F ® P’yPx) has row and column sums uniformly bounded in
absolute value.

This completes the verification of conditions of Theorem Al and, therefore,

we have that V'/*H) Auy -5 N (0,1). m
Proof of Theorem 1: From equation (4.1.10) we have
JIT-1)N (éN - 9) (C.1.34)

- —1
= J(T-1)N |AZ\Hy (H\Hy) ™ H'NAZN} %

AZNHy (H Hy) ' HyAuy

_ JTOW AZ\Hy [ HyHy \ ' HyAZy |
(T-1)N\(T-1)N) (T—-1)N

AZ\Hy [ HyHy \ ' HyAuy
(IT-)N\(T-1)N) (IT'-1)N

| AZyHY ( HyHy \ 7' HRyAZy | .

- |r-1)N\(T-1)N) (T—-1)N
AZ\ Hy ( H/\Hy )1 H/y Auy
T-)N\(T-1)N/) JT-1)N

Given Assumptions IV1 and 1V 3, our result follows from Proposition 1 in this

thesisand Corollary 5 in Pétcher and Prucha (2001). [ |
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C.2 Proofsfor Section 4.2

| now give a sequence of Lemmas that will be used to prove Theorem 2. | use the

notation ||. || to denote the matrix norm ||M|| := [tr (M'M)]"/2.

Lemma C4 Let 1y be based on a N2 consistent estimate of . Then under

Assumptions 1-6 we can write
uy — ﬁN = DNAN-

where the random matrix D has elements d,; y that have uniformly bounded

4+6

absolute 4 + 6 momentsfor somed > 0,i.e. E|d;; x| < cq < 0o Wherec, does

not depend on N, and the random vector A issuchthat N'/2||Ay|| = O, (1).

Proof: Note that from (4.2.1) we can write u; y — U; y @
Wy — Aoy = (Vo1 Xow) (9 - §N) , (C2.1)
| define Dy v = (yi—1,n, Xen) and Ay = <0 — §N>. Hence we have
uy — Gy = DyAn, (C.2.2)

where Dy = (D y, ..., Dj y)".
Since B is /N consistent, it follows that N'/2 | Ay|| = O, (1). By Lemma

B3, elements of y;_; y have finite 4 4+ ¢ absolute moments for some § > 0.
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The nonstochastic elements of D are uniformly bounded in absolute value by
Assumption 5 and hence also their 4 + ¢ power is uniformly bounded in absolute

value. Thus Dy hasuniformly bounded absolute 4+§ momentsfor somed > 0.

Note that the claim in the above lemmaalso holds for 2 4+ § moments since by

Lyapunov’sinequality,

2+6)/(4+96)

(
By n < [E |yi,t71,N|(4+5) < k§2+5)/(4+5) <oo. (C23)

Lemma C5 Given Assumptions 1-6, the moment conditions converge to their ex-

pectations in probability, i.e.

’Yil,N - LK (”Viz,N) = 0 and ’Yi,N — B (’Vi,N) =0

asN —ooforj=0,1,k,1=1,2,3.

Proof: The moment conditions correspond to those considered in Kapoor et al.
(2005) and, in particular, Assumptions 1,2 and 4 of their paper are satisfied,*® and

hencethe lemmaistheir LemmaA?2. [ ]

Lemma C6 The sample counter parts of the moment conditions convergein prob-

ability to the true moments, i.e.

gil,N - F (Viz,N) = 0 and gi,N - F (%,N) =0

A ssumption 1 is directly implied by our Assumptions 1 and 2. Assumptions 2 and 4 are
contained in our Assumption 3.

154



asN —ooforj=0,1,k1=1,2,3.

Proof: In light of Lemma C5, it suffices to show that g, v — 1,y — 0 and

gi,N - Vi, N 2, 0. These can be expressed as quadratic forms:

, , 1 . ,

gil,N - Viz,N - N [uNCil,NuN - UINC{cl,NuN] ) (C.24)

, ‘ 1 ,
giw - ’ﬂc,N - N [u;\/cé,N“N - u?VC?c,NuN} )

where thethe NT' x N'T matrices Cy, ,, and C7, , are defined for j = 0,1, k =

1,2,3and [ = 1,2. Explicit expressions are given below. Note that for [ = 3 we

have (see 4.2.10 and 4.2.13):

Tsn = YVisy =1 (C.25)
9%37N = Vgs,N = N‘ltr( vWx),
9%37N = 7?’)3,N =0,

and hence trivially g/, v — 75 x — 0forj =0,1andk = 1,2,3.

Forj=0,1,k=1,2,3andl = 1,2,theCY, , and C}, , matricesare products

of (some of) the matrices (I ® W), Q; ~, and (Ir ® Wy). In particular, from
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(4.2.10) and (4.2.13), j = 0, 1:

CJﬁ,N
Cjiz,N
Coin
C%ZN

J
C31,N

J
C32,N
J
C1,N
J
Cz,N

J
C3,N

2(T - 1)1 Qjn (Ir @ Wy), (C.2.6)
— (T =17 (Ir ® Wy) Qi (Ir @ W),

2(T - 1) (Ir @ Wiy) (Ir @ W) Qv (Ir @ W),

— (T =1 Ir @ Wy) (Ir @ Wy) Qj v (Ir @ W) (Ir @ W),
(T -1 Qv Ir @ Wy) (Ir @ W)

(T =1 (I @ Wyy) Qv (Ir © W),

—(T =1 (Ir @ Wi) Qjv (Ir @ Wy) (Ir ® W) ,

(T 1) Q.

(T =1 Ir @ Wyy) Qv (Ir © W),

(T -1 Q;n (Ir @ Wy).

By their definition (see equation 4.2.5), the row and column sums of the Q;; v

matrices (j = 0, 1) are less than two in absolute value.*® The row and column

sumsof (Ir ® Wy ) and (Ir ® WY,) are uniformly bounded in absolute value by

Assumption 3. Therefore, for j = 0,1, k = 1,2,3and [ = 1,2, each C{;l,N and

C{;,  matrix has row and column sums uniformly bounded in absolute value.

“9The row and column sums of [Qq, | are equal to 2222, while the row and column sums of
|Q1, | are equal to one,
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By Lemma C4 we have uy — uy = DyA . Utilizing this expression | can

writefor j = 0,1,k =1,2,3and] =1, 2:

with

J
Pri,N

J
wkl,N

J
k,N

gil,N - 7%17N - wiLN + (Pil,Ny (C27)
Gen —Ven = Vin thn
— Ay Dy (CLy+Chy) un, (C.2.8)
N ’ " NTx1

1X(p+1) (p+1)xNT NTXNT

— Ay Dy (CLy+Cly) un,
NlX(p+1) (p+1)XNT NTxNT  NTx1

1 ,
— Ay Dy C,y Dy Ay,
NlX(pH) (p+1)xNT NTxNT NTx(p+1) (p+1)x1
1 .
~ Ay Dy Cl, Dy Ay.

N 1 pi1) () XNT NTocr NTX(p1) (ph1)x1

To prove the claim, | show that all the terms o, v, ¢}, v, ¥, y and ¢,  are

al o, (1). To simplify notation, | consider a sequence of N7T' x NT matrices Cy

that have row and column sums uniformly bounded in absolute value. | define

Yy =

— Ay Dy (Cy+Cy) uy (C.2.9)

N1>< (p+1) (p+1)><NT NTxNT ~ NTx1

— Ay Dy (Cy+Cy)Ir®@Py) vy,

NlX(pH) (p+1)xNT NTXNT NTxNT NTx1

— Ay D'y Cy Dy Ay ,
N 151 (pr1)KNT NTXNT NTx(p1) (p41)x1
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and show that both ¢, and ¢y are o, (1). By substituting Cy = C7,  for
j=0,1,k=123andl=12andCy=Cj fork=1,23andj=0,1,we

then obtain that ¢, v, ¢ v, U1, v and ¢, v aredll o, (1),

Observe that ¢, and ¢, correspond to ¢, and v, in the proof of Lemma
C.1in Kelgian and Prucha (2005), with C,, = Cy, A,, = Cy (Ir ® Py) and
e, = vy. Inspection of their proof of ¢y = 0, (1) and ¢, = 0, (1) reveasthat
it only utilizes Assumption 4 of that paper, the fact that the matrices C,, and A,
have uniformly bounded absolute row and column sumsand that n=! >~ | &, ,, =
O, (1).

| assume that the row and column sums of C are uniformly bounded in ab-
solute value. Given Lemma C4, Assumption 4 in that paper holds and hence 1y
isby their proof o, (1). Note that by Assumption 3, C (I7 ® Py) hasuniformly
bounded absolute row and column sums. Instead of ¢, ,,, | consider the random

variables vy n = € v + ;- By thetriangle inequality

N T

N T N T
NT) Y D ol < (NDT Y Ceanl +(ND) 7YY ]

i=1 t=1 =1 t=1 =1 t=1

N T
= (NT)™ Z|%N|+N—IZ\MLN}.(C.2.10)

i=1 t=1 1=1

Sinceby Assumption 1, therandom variablese;; y areindependent with uniformly
bounded second moments, it follows that (NT)™" o ST |eun| = O, (1).
Similarly, by Assumption 2, the random variables i, », are independent with uni-

formly bounded second moments, and hence it follows that N=' S, in| =
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O, (1). Asaresult (NT)™" 35, 300, |vysn| = O, (1). Hence the proof that
dn = 0, (1) in Kelgjian and Prucha (2005) also applies for the structure consid-

ered inthisthesisand ¢y = o, (1). |

Proof of Theorem 2: Given Lemma C6, the proof is identical to the proof of

Theorem 2 in Kapoor et al. (2001). [

C.3 Proofsfor Section 4.3

Proof of Lemma 4: The dependent variable can be expressed as in equation
(3.2.9):

yev = D¢ KB+ ] (C3.1)
§=0
o -1 0o |
= Z @X_NB+ Z du_iy + Z ¢t+]1l_j,N
J=0 j=0 =0
o) 4 t—1 ‘ o 4 P I
- (Z ¢3Xt],N/6> + PN (Z qﬁ]stfj,N + Z ¢t+j€j7N) + ﬁ
J=0 j=0 =0
00 ' 1 )
- <Z¢Jth,Nﬁ> + Kﬂ> No 17'-7¢0a01><(Tt)) ®PN1 M-

Hence we can define

an = X ;nB, (C.32)
j=0
and
1
bt = (ﬂv ]-7 ¢t_17 ) ¢07 01><(T—t)> . (C33)
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Given Assumptions 5 and 6, we have that Z;‘;O & X;—; n@B isuniformly bounded
in absolute value and hence the sequence of vectors a, x has e ements uniformly
bounded in absolute value. Note that the elements (as well as dimensions) of b,
do not depend on NV, and hence they are trivially uniformly bounded in absolute

value. [ ]

Proof of Lemma 5: The claim is a consequence of Theorem ALl in Appendix A.
| now verify that its conditions are met. Asin equation (4.3.10), we have that the

elements of H', Auy are quadratic forms in the innovations:
h;t,NAutN = a;t,N (d; @ Pn)my + 77,N (b;tdt ® PQVPN) Uh'g (C34)

where ny = (uly, &y, €1y, € y), With €y = 3772 ¢’e ;v By Assump-
tions 1 and 6 it follows from Lemma B1 in Appendix B that the random variable
&y satisfies condition A3in Appendix A. Therefore, by Assumptions 1 and 2, the
innovations n, satisfy conditions A1 and A3 in Appendix A. The Lemma stip-
ulates that the vectors a,, y have elements uniformly bounded in absolute value.
Observe that by Assumption 3, the matrix (d; ® Px) has row sums uniformly
bounded in absol ute value and hence the vector a;, ; (d; ® P ) haselements uni-
formly bounded in absolute value and thus satisfies condition A2 in Appendix A.
Furthermore, given that the dimensions and elements of b/,d; do not change with
N, we have that Assumption 3 implies that the matrix (b/,d; @ P’yPy) fulfills
condition A2 aswell. Finally, [(T — 1) N]* Auim (Viv) > ¢ > 0 isacondition

stipulated in the Lemma [ |
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Proof of Lemma 6: Substituting the model (equation 4.3.1) into the definition of
the GMM estimator in (4.3.5) leads to:

MUDJHV@N—0> (C.35)
= (T —1)N [AZyHyAGHYAZY] ' #
AZEVHNA]_VIH;VAUN
| AzZyHYy Ay \ ' HYAZy | .
- |T-)N\(T-1)N) (I'-1)N
AZ\Hy ( Ay )‘1 H'\, Auy
(T-1)N\(T-1)N (T—-1)N’

By assumption in the lemma we have that V'/?H/ Auy -5 N (0, I,,) with
(T —1)N]"'Vy & V finite. Hence by Corollary 5 in Pétcher and Prucha
(2001), we have

Vy V2 —-1/2 HyAuy 4
—_— Vy/ 'HyAuy = ————= — N (0,V). C.36
Furthermore, the lemma assumes that
AZH
7 _Nl) Jj\(f 2, Ma s, (C.3.7)
Ay P

—— S A
T-1)N

where M 7y isfinite with full column rank and A isfinite and invertible. Hence,

by Corollary 5 in Pétcher and Prucha (2001), we have the desired resullt. [ |

161



Proof of Theorem 3. Observe that the instruments collected in ﬁN consist of
v+ and columns of X, n and hence by Lemma 4 are linear forms of the innova-
tions of the form assumed in Lemma 5 and satisfy its conditions. Below | verify
that [(T — 1) N]~' V hasthe smallest eigenvalue uniformly bounded away from
zero. Thiswill complete verification of conditions of Lemma5 and hence we will

have that V '/ H} Auy -5 N (0, i’/’).

Observe that using the expression Hy = Sy + Y, where Sy is the nonsto-

chastic part of the instruments (see Section 4.3.3), we have

(T-1)N'Vy = [(T-1)N]'E (ﬁ;VAuNAu;VﬁN) (C.3.8)
— (T-1)N'E [(’SIN + ‘I"N> AuyAdy (§N + ‘I‘N>]

= (@ =) N (Vi + Vo + Vo + V).
where

Vin = SyE(AuyAuy)Sy (C.3.9)
V27N = §§\7E (AUNALI?VTN)
Vin = E(YyAuyAuy) Sy

V4’N = E(T/NAUNAUINTN)

In the following | show that the smallest eigenvalue of [(T'— 1) N] ™ \71,N is
uniformly bounded away from zero. | also show that V, v = 0, and Vs = 0.

Sincethe eigenvalues of \7’47 ~ arenonnegativeit then followsfrom LemmaC1 that
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the smallest eigenvalue of [(7'— 1) N]™' V is uniformly bounded away from
zero.
Using
Auy = [(0¢r-1)x2, D) @ Py| ny, (C.3.10)

whereasin (4.1.15) E (nyny) = (£, ~v ® Ly), it follows that
Vi =S [ (012, D) Ty (O 1)x2, D) @ PaPy| Sy, (C31D)

By Lemma C2 the smallest eigenvalue of V_y isthen

v

Muin (Vi) 2 Auin (ShSy) + (C3.12)

0r—1)x2, D) By v (0¢7—1)x2, D), ® (PNPQ\I)}

m1n

(s
I

= Awin (S sN)- min (DS, 8D) @ (PyPY)]
Ania (ShSx ) + Auin (DEy D) - A (P Phy)
i (8

S SN> * Amin DD/) )\min (277,N) : )\min (PNP/N) i

where| also used Theorem 4.2.12 in Horn and Johnson (1991). Observe that from
the definition of the first difference operator matrix D (see 4.1.14), it follows that
DD’ = 2Ir_; and hence A\, (DD’) = 2. Since X, v is diagonal, we have
Amin (25 ) = min [ai,var (&N) ,0%] = min [ai,%,ag} > ¢y > 0. By
Assumption 4 we have that A.i, (PyP’y) > ¢p > 0 and, therefore

Aumin (\Nfl,N) > 2e5:¢p Amin <§;V§N) . (C.3.13)
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From Assumption GMM 1 we have that A,y ([(T —1)N]™ §;,N§t,N> > e >0
and hence

(T = 1) N Ain (\N/‘LN> > 2escpes > 0. (C.3.14)

Next, | show that V, v and V; y are matrices of zeros. Recall that Y con-
sistsof blocks Y';  onthemain diagonal and zeroselsewhere. Thus Yy AuyAu'y

consists of blocks Y yAu; yAu; 5 on the main diagonal and zeros elsewhere.

Observe that
Y.y =[((bi—2,....bo) @ Pn) (L1 @ Mn) s Onxep) (C.3.19)
and thus
Ny (b © Py)
Y yAu v Aug y = E Au; yAuy . (C.3.16)

Ny (b}_y @ PYy)

01Ep><N

Observe that Au; vy = (d: ® Pn) ny (8sin4.3.9) and thus

Ny (bi_s ® Py) Auyy = 1y (bi_,d; @ PyPy) ny, (C3.17)

where d; isa (t + 1) — th row of (0(r_1)x2, D), with the (T'— 1) x T matrix
D isdefined in (4.1.14). Hencethe 1 x (7" + 2) vector d; is arow vector with

zerosin thefirst ¢ positions. Furthermore, the 1 x (7" + 2) vector b, (defined in
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the proof of Lemma 4 above) has zero entries starting from position (¢ — 2 + s).
As aresult, for s > 1, the product b} _.d; isa (T + 2) x (T + 2) matrix with
zeros on the main diagonal. Hence 7y (b}_, ® P’y) Au, v isaquadratic formin
the innovations 7, with zeros on the main diagona (and no linear component).
Each element of Au, y isalinear form in innovations n,, and hence can also be
treated as a linear-quadratic form in n,; where the matrix defining the quadratic
component consists of zeros. Asaresult, we can apply LemmaAlin Appendix A
to obtain that the covariance of n)y (bj_, ® P’y) Au, y and Auy, y iszero. Thus
it follows that

E [y (b;_, ® Py) Au, yAuj ] =0, (C.3.18)

where s > 1, implying that £ (Y, AuyAu/y) isamatrix of zeros. As a conse-
quence

Vo = E(YhAuyAuy) Sy = Oz (C.3.19)

The same argument implies that \N/’g, ~ Isamatrix of zeros. Finally, observe that
the matrix {//'47 ~ isitself a variance covariance matrix (i.e. symmetric positive

semidefinite) and thus it has non-negative eigenval ues.

This completes the verification of the conditions of Lemma 5 and hence we

have that Vy"/*H) Auy 5 N (O, \7). We can now write the estimator as

~ ~ o~ ~ —1 ~ o~ ~
Oy =6+ [AngHNV;QHgVAzN] AZ ANV H Ay,  (C.3.20)
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where by Assumptions GMM2 and GMM3,

and
1 ~ ~
lim ———Vxy=V. C.3.22
pim TN vy ( )

Therefore by Lemma 6, the estimator converges in distribution with

(T—1)N (“e’N - e) % N (0,®), (C.3.23)
where
T =17/ -1~ 1NN T—1nT
v - (MAZHV MAZH> Mayy V- VV 1Mz
— ~ — —1
(MAZHV”M’AZH> (C.3.24)
— ~ — —1
- (MAZHV*M’AZH> —,
which isthe claim in the Theorem. [ |

To prove Lemma 7, | will use Lemma C.6 in Kelgjian and Prucha (2005). For

convenience of the reader, | restate a simplified version of that lemma:

LemmaC7 Let a,, and b,, be sequences of n x 1 vectorsand let W, be a se-
guence of n x n matrices. Assume that the vectors a,, and b,, have elements

uniformly bounded in absolute value and that the matrices (W) have row and
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column sums uniformly bounded in absolute valuefor » < 1 by one and somefinite
constant respectively. Consider a sequence of random variables p,, converging in
probability to p asn — oo, where |p| < r. Denote P, (r) = (I, —rW,,)"".
Then

nta P, (p) P, (p)b, —n'a P, (p,) Pn(p,) by =0, (1), (C.3.25)

and

n1r [P (p) Po (p) Py (p) P (p)]
7 [P (3 P (5,) P (3,) P (7)] = 00 (1).

(C.3.26)

Proof: The proof of the first claim follows from Lemma C.6 in Kelgiian and

Prucha (2005) by choosing (in their notation) ¥, = &, = I,, and H,, = (an, bp).

The second claim is not a direct consequence of the Lemma C.6, however, its

proof follows the same structure. Denote

U = ntr [Pn () Po (p) Pr (p) Py (pﬂ (C.3.27)

Using the same argument as on p.39 in Kelgjian and Prucha (2005), it follows that
for every subsequence (n,,,) there exists a subsequence (n! ) such that for w € A,
P (A) = 1, thereiscritical index N,, suchthat for al nj, > N,, : |9, (w)| <.,

wherer, = (r + |p|) /2. Furthermore, it aso follows from the argument on the
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same page that for n;, > N, the row sumsof p,, (w) W, are less than unity in
absolute value and that [I,, —7,, (w)W,] and [L,, —p, W,] areinvertible
with

Ly, By, @ W] ' = 3 B, (@)] WL, (C.3.28)

Hence we have that

o (@) = 3030303 (o) W) (W) (WL (W)(C.3.29)
T2 23D g, (T (WL (W) (W) (Wa)*
=202 Xfff,f”)( ),

where

k- ~h++p+
(k.L.p,q) (w) = [p T — Pn, ok (W>] (k,L,p,q)

rktptg
with
S Blpa) _ (n' Y tr [Tk+z+p+q (vaﬂm)’C (anm)l (W, )p (Wn,m)q] . (C.3.30)

/
m m Nom

Given that the row and column sums of the matrix »W,, are uniformly bounded

in absolute value by one and some finite constant respectively, it follows that
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5 "9 — O (1), Furthermore, observe that

Mm

ktltptg kAPt
PP —pp, ‘ 5 (o) c3al
< — 0.
T’H—H-IH‘Q - < T ) ! ( )

(see Kelgiian and Prucha, 2005, p. 40) and hence

590 ()] < oo —

kl,p,q)

2¢ (r, /r)" 7T where ¢ is the uniform bound for ‘%7(1 . Sincer,/r < 1

by construction, clearly Y72, >, > 32> B®H»9) < oo. By dominated
convergence it follows that v,; (w) — 0 asn;, — oo, and asaresult v,, — oo by
the subsequence argument (Kelgjian and Prucha, 2005, p. 39; Gandler and Slute,
1977, pp. 61-62). m

Proof of Lemma 7: Recall that based on the expression for the covariance of
the quadratic forms in \NfN and \AfN, the elements of the first diagona block of
Vien — Vi n are (see 4.3.34):

UgrtsN ~ Vs = @1 gn (diZy nd @ PyPly)a, 1y (C.3.32
_é\;flfq,N (dtinyNd; ® 13NIADIN> A_1r N
+2tT (b:‘,flfthzn,Nd/sbsflfrzn,N ® P;VPNP&PN)

—2tr (Bz/gf17q7th§n,Nd/SBs—1—r,Nin,N & f)/Nf)Nf)/Nf)N) .

Note that from (C.3.2) and since the lemma assumes ", gzﬁkX_k,Nﬁ =0, it
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follows that

t—2—q

(8 1ogw —8g) = O (68— 0 By) Xty i (C339)
k=0

S§—4i—T

(as—l—r,N _55—1—7"7N) = Z Xs 1—r—k,N (QS /6 ¢ /BN)

Since d, 3, nd, isascalar and we can then rearrange the above expression as™®

~y
UqT,tS,N qr ts,N — E Um N> (C334)

%0 use the following, rather tedious algebraic rule: let a, b, ¢, d and a,E, c, d be matrices (and/or
scalars or vectors) of conformable dimensions. It isthen easy to verify that:

abed — abed = (a_a)bcd+a(b—E)cd+ab(c—ad+abc(d—c?)
—(a—a)(b—B)cd—(a—a)b(c—ad—(a—a)bc(d—j)
( )cfc ( 5)c(dfd)fab( )(d—cf)

(a—3a) (b b) c—cd+(a—a)(b—6)c(d J)

)

)
(a—a)b(c—c)(d d) (b—B)(c—a)(d—d
(a—a (b )cfc (d d)

ab—agz(a—ﬁ)b—i-a(b—B) — (a—7) (b—§>.

and
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UZl/7N = d <2n7N - i\3777N> d; (a‘z—l—q,NPNPlNas—l—r,N) , (C.3.35
Ung = thmNd/s (a:f—l—q,N - a:f—l—q,N) PNP’Nas—l—r,N
t—2—q
~k~1
= 4B, nd, [ Z (¢k5/ —¢ 51\/) Xi 1 grn | PvPyas 1w,
k=0

y _ 1t / D D
Usn = dtz’mNdsat—l—q,N (PNPN - PNPN> As_1—r N,
! ! !/ -~
VN = thmNdsat_l_q,NPNPN (as—l—nN - as—l—r,N)

322:7" Xo—1—r—k,N ((bkﬁ - akBN>] ;
k=0

_ 1 4/ /
= dtzn,Ndsat—l—q,NPNPN

Ug,N = —dt (En,N - i\]77,N) d; (a;flfq,N - a;fflfq,N) PNPQVasflfr,N
s—2—r
~ ~k ~
= —d (EmN - Enw) d; [ > Xekw <¢kﬂ —¢ /BN)] *
k=0

/
PNPNasflfr,Na
Yy < N / 5 D/
Us,N = —d, (En,N - 2n,N) dsatflfq,N (PNPN - PNPN> As_1—r N,

A~

Y _ 1! / ~
UrN = —d; (EmN - 23n,N) dsat_l_%NPNPN (As—1—rN — As—1-rN)

o < N
= —d (EW,N - EW,N) dsat—l—q,N *

s—2—r

X 1-r—kN <¢k,3 - gﬁN)] ;

171



Y _ / / ~i / D D
UsNn — —d; Xy nd, (atflfq,N - at—l—q,N) (PNPN - PNPN> As—1-rN

t—2—q

~k -~/
= —dthde’S Z <¢kﬂl -9 /BN) X;—l—q—k,N *
k=0
(PNPIN - f)Nf)3\7> As_1—r N,
UgN = _dtzn,Nd; (at—l—q7N - a:f—l—q,N) PNPIN (asflan - asflfr,N)
t—2—q
~k~1
= _dtzn,Nd; <¢kﬁ/ - ¢ /6N> X:ﬁlqk,N] *
k=0
s—2—r e
PNP§V Z Xo1—r—k,N <¢k5 —¢ ﬂN)] )
k=0
U%’O,N = _dtszdga;fflfq,N <PNP/N - 13N13§v> (asflfr,N - 33714,1\7)
= _thn,Nd;a;flfq,N *
s—2—r
~ o~ ke~
(PNP;V — PNP§\7> Z Xsflfrfk,N <¢k/6 - ¢ ﬂN)] )
k=0
U%’I,N = —d; <En,N - iTI,N) d,s (az,t—l—q,N - étgtflfq,N) *

<PNP;\[ - i:\)N:i:\)3\7> As—1—,N
N t—2—q ko
= —d <En,N - 27],N> d; [ Z <¢k5/ -9 /6N> X;lqk,N] *
k=0
<PNPIN - f)Nf)Ev) As_1—r N,
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Yy _ S 1o ~
UigN = —d; <2n,N - 2n,N) d, (atflfq,N - atflfq,N)

PNP/N (asflfr,N — asflfr,N)

t—2—q
~ ~k~1
= —dy By — By ) [ > (#"8' - o By) leqk,N]
k=0
PNPiN (as—l—r,N - as—l—nN) )

y - « 3
UisN = —d; <2n,N - En,N> dsatflfq,N *
/ 5 D/ o
<PNPN - PNPN> (as—l—r,N - as—1—r,N)
o « rt
= —d; <En,N - ZVIJV) dsatflfq,N *

s—2—r
~ o~ ~k~
(PNPIN — PNPTN) g Xsflfrfk,N (¢k/6 - ¢ IBN)] )
k=0

y o 1o P~
Viun = —d; X, nd, (atflfq,N - atflfq,N)

' (PNP/N - i:\)Ni:\)i]\]> (asflfr,N - asflfr,N)
ey k1
> (8 -6 By) X;_l_q_ka]

2
k=0
_92_

k=0

— —dtzn,]\/’d;

S T

: (PNP;V - f)Nf);V)

X, 1 (046 - %kBN)] ,
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)
d at 1—q,N atflfq,N)

/U?IJ5,N = _dt< nN_ )
<PNP/ PNP ) Ag_1— TN_as 1— T‘N)

—q

t—
= _dt( nN_an d [
k=0

S—

(68 -3 By) Xi1o, kN]

: (PNP’ _ PP,

Xer (08 35)|

—r
k=0

Vloy = 2 [tr (b}_1_d: 2y vdibs 1, 2y v)

—tr (Bg,l,qudtin,Nd;BS,l,T,Nin,N)} tr (P PNP\Py),
vy = 2tr (b;flfthEnﬁNd;bs,l,rEmN) *

tr (P§VPNP'NPN - ﬁgvf’Nf’gvf’N) ,
Wy = —2[tr (b, diS, vdiby 1,3, )

—tr <B;717q7thin,ngBS,l,nNin,N>} *

tr (PINPNP;VPN — f)gvf)Nf)/Nf)N> .

Observethat for notational convenience | drop the dependence of the scalars vfi% N

on the values of the indexes ¢, r, s, t.

| now examine the nonstochastic elements of the scalars v;, . Note that the

elements and dimensions of d; and d/, do not depend on N and hence they are
trivially uniformly bounded in absolute value. The dimensions of 33, x (defined
in 4.1.16) do not depend on NV and its elements are uniformly bounded in absolute

value by Assumptions 1, 2 and 6. | now show that the other nonstochastic com-
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ponents are uniformly bounded in absolute value when scaled by N—!. Note that
since |¢| < 1, it follows from Assumption 5 that a,_;_, v aswell asa,_;_, x
have elements uniformly bounded in absolute value. By Assumption 3, the ma-
trix P has row and column sums uniformly bounded in absolute value. As a
result, it follows from Lemma C3 that N—lagflfq,NPNngas,l,r,N isuniformly
bounded in absolute value. Similarly, given Assumptions 3 and 5, it follows from
Lemma C3that N'X} , , ; yPnPya,_i_.n (Wherek = 0,..t — 1 —¢) and
N—lagflfquPNngXs,l,T,k,N (wherek = 0,..,s — 1 — r) have elements that
are uniformly bounded in absolute value.

Next | show that the stochastic components of v, - with dimensions that do
not depend on NV are o, (1). Recall that

o2
¥~ = diag (aiw, %, aiN, ey 0§7N) , (C.3.36)

isa (7 + 2) x (T + 2) diagonal matrix and that

1
btflfq = (ﬂ; 17 ¢t727q’ <0y ¢07 OlX(Tth)) ) (0337)

isal x (T + 2) vector. Since dy - d and |¢| < 1, we then have by Theorem 14
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in Potscher and Prucha (2001) that

(zn—fzn,N) = o,(1), (C.3.39)
(cb’“ﬁ—?bkf%v) = 0,(1), k>0
(b1 =biign) = o,(1).
(betr =) = 0,(1),
and
tr (b, dS,d'b, 1 ,3,) 239)

—tr <B;717q,]\/'dtin,Nd;Bsflfr,Ng'r],N) =0,(1).
Thus it follows that for m = 1,2,4,5,7,9,11,12,13, and 14, al elements of
N~1o¥  areeither o, (1) or uniformly boundedin absolute value. Hence, N0, =
o, (1) form =1,2,4,5,7,9,11,12,13, 14 and 16.
Finally, | examine the remaining scalars v, - that contain stochastic elements
with dimensions that depend on N. Observe that by assumption in the lemma,
the parameter p and the matrix Py (p) = (Iy — pW )" satisfy the condition in

LemmaC7. Thus

ag_l_qu <PNPIN — ]/':\)N]/':\)QV) As_1—r, N = Op (1) N (0340)
X g N (PNPIN - f’Nf’Qv) as_1-,n = 0p(1),
X 1g-kN (PNPIN - IA’Nf"zv> Xootr—kn = 0p(1),

tr (PINPNPINPN — f)gvf)Nf)INf)N> = Op (1) .
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Hence N~'v!, v = o, (1) form = 3,6,8,10,15,17, and 18. As aresult, we have
that
{N (T - 1)]71 (’ﬁgr,ts,N - 6g,r,ts,N) = Op (1) : (0341)

Next | consider the lower-diagonal block of \Afts, ~- As above, | express the

difference between the typical element of {75; ~ and \A/‘t’; N &S

{/_;f‘,ts,N - {\[;%ts,N = X:ﬁ—q,N (dtszd; X PNPE\f) Xs—r,N (C342)
—Xi N (dtin,Nd; ® l?’Nf”N> X rn

= Ainv+Asn+ Az,

Ay = d (z:,,,N _ i,,,N) A X PNPYX, .y, (C.3.43)
Mgy = dS,nd Xy (PNP’N - f)Nf);V) X, s

Az = —d; <2n,N — iq,N) d.X; , v (PNP'N - f’NIA”N> X rN-

| again do not explicitly denote the dependence of the p x p matrices A; n, Aa n
and A3 y on the value of the indexes ¢, 7, s, t.

As above we have that (ZU,N — meN> = 0, (1). Since by Assumption

S1Similarly to the decomposition above this uses the the following algebraic rule: let a,b and ab
be matrices of conformable dimensions. Then

abfa%:(afa)bm(bfz) —(a—7) (be).
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5, the elements of and X,;_, v and X,_, 5 are uniformly bounded in absolute
value and from Assumption 3, the matrix PP’ has row and column sums
uniformly bounded in absolute value, it follows from Lemma C3 that the el-
ements of N~'X}  \PyPy\X, .y are uniformly bounded in absolute value
and, therefore, N"'A; v = 0,(1). Similarly, from Lemma C7 it follows that
NTIX] (PNPgV - 13Nf>;v) X,_rn =0, (1), andhence N~ A, y and N1 A v

areo, (1). Asaresult,

N (T =] (VEx = Vi) =0 (1), (C:3.44)

Finally, I show that the off-diagonal blocksin {fts, N arematrices of zeros. Ob-
serve that from Lemma 4 it follows that the moments Au;, vy 1.~ arelinear-
quadratic formsin theinnovationsn ;. Since E (Au), yy,_1-,n) = 0 (&1 > 0),
it follows that the diagonal elements of the quadratic forms are zeros. Because

elements of X | yAu, y arelinear formsinny, it follows from LemmaA1 that
E (X;_Q,NAut,NAu;,NYS—l—r,N) = Op><1>

and hence the off-diagonal blocks in both \th& N and \Aft& N are matrices of zeros.

Thus we have together that

IN (T — 1) (\Mfts,N _ \Afts,N) L (C.3.45)
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or by repeating the above arguments for other values of ¢ and s that

[N(T = 1) (i}N - VN) L, O (C.3.46)

From [(T' — 1) N] ' Viy & V (Assumption GMM3) it now follows that
—1

(T—1)N|'Vy 2V, -

Proof of Theorem 4. The feasible second stage GMM estimator is

A S ' 1 Ar—-1(8 ry/ -t ' 11 =1 (38 7/
Oy (5N) - [AZNHNVN (5N> HNAZN] AZ H V7 <5N> H) Ay .
(C.3.47)

To prove the claim it suffices to show that, see e.g. Schmidt (1976), p. 71:

Ay = [N(T=1)]" AZGHN VS (3y) HyAZy

S (C.3.48)

—[N(T - 1) " AZVHNy VR HGAZY 2 0,

and
_ . -1/2 ' 11 -1 /(s T/

Aoy = [N(T-1)] AZNHNNVNN (55) AH) Auy 249

— [N(T = 1) AZ Hy V' HyAuy 2 0.

Note that

Ay = [N(T—-1)]"AZHy * (C.3.50)

(- va (3) - (-0t |
«[N (T —1)] " HyAZy.
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From Lemma 7 and Assumption GMM3, it folows that the matrices
(T—1)N]'Vy <3N> and [N (T — 1)] ! Vy both converge to V in probabil-
ity. Since by Assumption GMM3 the matrix V isfinite and nonsingular, it follows

from Theorem 14 in Pétscher and Prucha (2001) that

1

{([N T -0V (8y))  — (INT =1 V) 1} —0,(1). (C351)

Given Assumption GMM2, it then follows that A; y 2 0.

Similarly we have for A, y:

Aoy = [N(T—1)]"AZHy * (C.352)

. l([N (T — 1) Vy (&v)) — ([N (T—-1)" {/N> —1}
#[N (T —1)]7* Hy Auy,

where as above

[N (T = 1)] " AZNHy £ Mya . (C.353)

and
{([N (T 1) Vy (SN))_l . ([N (T - 1) \7N>_1] 2 04rp. (C.354)

Note that from Lemma 5, it follows that Vy"/*H),Au -5 N (0,1,,). Given As-
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sumption GMM3; it follows from Theorem 15 in Potscher and Prucha (2001) that

~ ~ 1/2

H)y Auy Vy S—1/277 d Y
VSRV (X )V HpAuy SN 3
T <N(T_1)) V) PHyAuy 5 N (0,V)  (C355)

Hence by Corollary 5, part (a), in Potscher and Prucha (2001), we have that

Ay n 20, [

Proof of Lemma 8. Given Assumption GMM3, the claim follows directly from

C.3.48. -
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TableD1
Initial IV Estimators of @

Estimator AHI1 AH2 AB

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 -0.90 1 0.0977 0.0057 0.0948 0.0088 0.0883 -0.0169
-0.75 -0.90 1 0.1213 0.0079 0.1094 0.0087 0.1030 -0.0252
-0.25 -0.90 1 0.2367 0.0139 0.1601 0.0110 0.1634 -0.0858
0.00 -0.90 1 0.3246 0.0151 0.1885 0.0110 0.2089 -0.1369
0.25 -0.90 1 0.5168 0.0140 0.2223 0.0100 0.2758 -0.2090
0.75 -0.90 1 0.9098 -0.1899 0.2126 0.0099 0.3447 -0.2852
0.90 -0.90 1 0.3725 -0.0178 0.1594 0.0050 0.2694 -0.2165
-0.90 -0.50 1 0.0452 0.0014 0.0428 0.0016 0.0411 -0.0066
-0.75 -0.50 1 0.0554 0.0021 0.0502 0.0020 0.0477 -0.0097
-0.25 -0.50 1 0.1004 0.0044 0.0784 0.0013 0.0731 -0.0284
0.00 -0.50 1 0.1386 0.0047 0.0927 0.0041 0.0862 -0.0427
0.25 -0.50 1 0.2112 0.0070 0.1098 0.0059 0.1030 -0.0638
0.75 -0.50 1 1.0751 -0.2148 0.1156 0.0055 0.1167 -0.0864
0.90 -0.50 1 0.2612 -0.0031 0.0877 0.0043 0.0988 -0.0734
-0.90 -0.25 1 0.0372 0.0011 0.0362 0.0025 0.0343 -0.0046
-0.75 -0.25 1 0.0458 0.0008 0.0421 0.0021 0.0410 -0.0068
-0.25 -0.25 1 0.0866 0.0026 0.0655 0.0014 0.0606 -0.0199
0.00 -0.25 1 0.1187 0.0022 0.0781 0.0024 0.0701 -0.0296
0.25 -025 1 0.1711 0.0030 0.0902 0.0037 0.0816 -0.0441
0.75 -0.25 1 1.2234 -0.3342 0.0948 0.0052 0.0914 -0.0606
0.90 -0.25 1 0.2557 -0.0095 0.0733 0.0019 0.0783 -0.0533
-0.90 0.00 1 0.0364 0.0018 0.0362 0.0011 0.0346 -0.0048
-0.75 0.00 1 0.0446 0.0015 0.0413 0.0010 0.0396 -0.0064
-0.25 0.00 1 0.0845 0.0016 0.0644 0.0020 0.0591 -0.0181
0.00 0.00 1 0.1135 0.0022 0.0736 0.0014 0.0651 -0.0257
0.25 0.00 1 0.1660 0.0028 0.0856 0.0008 0.0766 -0.0391
0.75 0.00 1 1.3519 -0.3439 0.0884 0.0058 0.0849 -0.0538
0.90 0.00 1 0.2572  -0.0050 0.0713 0.0050 0.0725 -0.0487
-0.90 0.25 1 0.0385 0.0000 0.0365 0.0018 0.0357 -0.0055
-0.75 025 1 0.0477 0.0012 0.0430 0.0022 0.0427 -0.0084
-0.25 025 1 0.0884 0.0012 0.0669 0.0030 0.0629 -0.0196
0.00 0.25 1 0.1229 0.0022 0.0804 0.0032 0.0714 -0.0295
0.25 025 1 0.1824 0.0022 0.0927 0.0019 0.0825 -0.0423
0.75 025 1 1.2421 -0.3463 0.0979 0.0032 0.0912 -0.0622
0.90 0.25 1 0.2583 -0.0029 0.0768 0.0046 0.0792 -0.0544
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Table D1 cont.
Initial IV Estimators of @

Estimator AHI1 AH2 AB

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 0.50 1 0.0473 0.0002 0.0443 0.0013 0.0426 -0.0071
-0.75 0.50 1 0.0574 0.0010 0.0528 0.0016 0.0497 -0.0107
-0.25 0.50 1 0.1058 0.0028 0.0807 0.0047 0.0732 -0.0264
0.00 0.50 1 0.1449 0.0019 0.0992 0.0040 0.0885 -0.0428
0.25 0.50 1 0.2197 0.0029 0.1153 0.0064 0.1037 -0.0616
0.75 0.50 1 1.0355 -0.2428 0.1204 0.0041 0.1190 -0.0896
090 0.50 1 0.2672 -0.0110 0.0948 0.0042 0.1001 -0.0751
-0.90 0.90 1 0.0950 -0.0029 0.0960 0.0013 0.0916 -0.0229
-0.75 090 1 0.1178 -0.0037 0.1145 0.0013 0.1100 -0.0321
-0.25 090 1 0.2298  -0.0047 0.1761 0.0073 0.1691 -0.0896
0.00 0.90 1 0.3335 -0.0058 0.2008 0.0084 0.2131 -0.1363
0.25 090 1 0.5477 -0.0176 0.2251 0.0143 0.2764 -0.2062
0.75 090 1 0.9974 -0.1566 0.2144 0.0061 0.3543 -0.2889
0.90 090 1 0.3929 -0.0086 0.1662 -0.0005 0.2672 -0.2119
-0.90 -0.90 2 0.0408 0.0006 0.0379 0.0002 0.0372  -0.0067
-0.75 -0.90 2 0.0498  -0.0002 0.0448 0.0004 0.0434 -0.0091
-0.25 -0.90 2 0.0937 0.0001 0.0676 0.0001 0.0655 -0.0235
0.00 -0.90 2 0.1300 -0.0027 0.0821 -0.0015 0.0788 -0.0353
0.25 -0.90 2 0.1905 0.0008 0.0923 0.0003 0.0881 -0.0509
0.75 -0.90 2 1.0960 -0.2450 0.0989 0.0011 0.0985 -0.0708
0.90 -0.90 2 0.2442 -0.0024 0.0770 0.0018 0.0853 -0.0604
-0.90 -0.50 2 0.0367 0.0015 0.0356 0.0009 0.0349 -0.0052
-0.75 -0.50 2 0.0451 0.0003 0.0413 0.0010 0.0412 -0.0074
-0.25 -0.50 2 0.0864 -0.0011 0.0638 0.0004 0.0603 -0.0202
0.00 -0.50 2 0.1170 0.0020 0.0770  -0.0002 0.0696 -0.0283
0.25 -0.50 2 0.1750 0.0060 0.0859 -0.0002 0.0806 -0.0423
0.75 -0.50 2 1.1873 -0.3030 0.0921 0.0035 0.0897 -0.0599
0.90 -0.50 2 0.2555 -0.0040 0.0723 0.0025 0.0762 -0.0521
-0.90 -0.25 2 0.0364 0.0015 0.0349 0.0011 0.0347 -0.0043
-0.75 -0.25 2 0.0441 0.0010 0.0403 0.0009 0.0400 -0.0064
-0.25 -0.25 2 0.0849 -0.0002 0.0640 0.0017 0.0583 -0.0180
0.00 -0.25 2 0.1141 0.0037 0.0747 0.0000 0.0677 -0.0270
0.25 -0.25 2 0.1697 0.0049 0.0844 0.0015 0.0782 -0.0406
0.75 -0.25 2 1.3170  -0.3437 0.0901 0.0032 0.0863 -0.0561
090 -0.25 2 0.2563 -0.0088 0.0703 0.0040 0.0732  -0.0489
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Table D1 cont.
Initial IV Estimators of @

Estimator AHI1 AH2 AB
True Values
() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 0.00 2 0.0364 0.0018 0.0362 0.0011 0.0346 -0.0048
-0.75 0.00 2 0.0446 0.0015 0.0413 0.0010 0.0396 -0.0064
-0.25 0.00 2 0.0845 0.0016 0.0644 0.0020 0.0591 -0.0181
0.00 0.00 2 0.1135 0.0022 0.0736 0.0014 0.0651 -0.0257
0.25 0.00 2 0.1660 0.0028 0.0856 0.0008 0.0766 -0.0391
0.75 0.00 2 1.3519 -0.3439 0.0884 0.0058 0.0849 -0.0538
0.90 0.00 2 0.2572  -0.0050 0.0713 0.0050 0.0725 -0.0487
-0.90 025 2 0.0370 0.0011 0.0360 0.0015 0.0345 -0.0047
-0.75 025 2 0.0465 0.0011 0.0427 0.0017 0.0399 -0.0069
-0.25 025 2 0.0855 0.0013 0.0656 0.0034 0.0604 -0.0202
0.00 025 2 0.1192 0.0034 0.0783 0.0033 0.0693 -0.0289
0.25 025 2 0.1760 0.0026 0.0886 0.0029 0.0794 -0.0413
0.75 025 2 1.2863 -0.3508 0.0909 0.0043 0.0880 -0.0584
0.90 025 2 0.2585 0.0024 0.0755 0.0047 0.0759 -0.0516
-0.90 0.50 2 0.0416 0.0011 0.0409 0.0024 0.0391 -0.0063
-0.75 0.50 2 0.0507 0.0012 0.0479 0.0030 0.0460 -0.0090
-0.25 0.50 2 0.0958 0.0016 0.0721 0.0041 0.0679 -0.0250
0.00 0.50 2 0.1344 0.0075 0.0894 0.0060 0.0797 -0.0354
0.25 0.50 2 0.1997 0.0094 0.1063 0.0060 0.0935 -0.0526
0.75 0.50 2 1.2256  -0.2925 0.1091 0.0093 0.1046  -0.0755
0.90 0.50 2 0.2678 -0.0126 0.0885 0.0055 0.0907 -0.0659
-0.90 090 2 0.1252 -0.0041 0.1163 0.0077 0.1105 -0.0267
-0.75 090 2 0.1538 -0.0030 0.1380 0.0121 0.1285 -0.0365
-0.25 090 2 0.2908 -0.0019 0.2099 0.0137 0.2005 -0.1060
0.00 0.90 2 0.4118 -0.0013 0.2549 0.0156 0.2457 -0.1611
0.25 090 2 0.6497 -0.0186 0.2939 0.0166 0.3227 -0.2403
0.75 090 2 1.2519 -0.3148 0.2742 0.0071 0.4062 -0.3263
0.90 090 2 0.5361 -0.0507 0.2255 0.0068 0.3408 -0.2655
-0.90 -0.90 3 0.0392 0.0016 0.0370 0.0020 0.0364 -0.0052
-0.75 -0.90 3 0.0474 0.0021 0.0431 0.0023 0.0419 -0.0075
-0.25 -0.90 3 0.0900 0.0035 0.0664 0.0026 0.0635 -0.0184
0.00 -0.90 3 0.1228 0.0058 0.0790 0.0015 0.0728 -0.0291
0.25 -0.90 3 0.1857 0.0068 0.0916 0.0021 0.0834 -0.0442
0.75 -0.90 3 1.1327 -0.3200 0.0931 0.0023 0.0901 -0.0631
0.90 -090 3 0.2562 -0.0151 0.0741 0.0041 0.0777 -0.0534
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Table D1 cont.
Initial IV Estimators of @

Estimator AHI1 AH2 AB
True Values
() p W] RMSE Bias RMSE Bias RMSE Bias

-0.90 -0.50 3 0.0372 0.0014 0.0359 0.0012 0.0344 -0.0042
-0.75 -0.50 3 0.0455 0.0021 0.0417 0.0007 0.0411 -0.0067
-0.25 -0.50 3 0.0886 0.0012 0.0642 0.0015 0.0605 -0.0181
0.00 -0.50 3 0.1181 0.0045 0.0764 0.0016 0.0685 -0.0278
0.25 -0.50 3 0.1757 0.0043 0.0863 0.0009 0.0791 -0.0404
0.75 -0.50 3 1.2685 -0.3750 0.0893 0.0046 0.0855 -0.0572
0.90 -0.50 3 0.2589 -0.0104 0.0714 0.0056 0.0736  -0.0499
-0.90 -0.25 3 0.0363 0.0019 0.0358 0.0005 0.0348 -0.0038
-0.75 -0.25 3 0.0454 0.0014 0.0413 0.0008 0.0397 -0.0062
-0.25 -0.25 3 0.0858 0.0008 0.0641 0.0015 0.0596 -0.0183
0.00 -0.25 3 0.1163 0.0041 0.0744 0.0018 0.0668 -0.0270
0.25 -0.25 3 0.1672 0.0051 0.0857 0.0020 0.0764 -0.0384
0.75 -0.25 3 1.3017 -0.3856 0.0886 0.0052 0.0843 -0.0555
0.90 -0.25 3 0.2542 -0.0107 0.0702 0.0051 0.0720 -0.0484
-0.90 0.00 3 0.0364 0.0018 0.0362 0.0011 0.0346 -0.0048
-0.75 0.00 3 0.0446 0.0015 0.0413 0.0010 0.0396 -0.0064
-0.25 0.00 3 0.0845 0.0016 0.0644 0.0020 0.0591 -0.0181
0.00 0.00 3 0.1135 0.0022 0.0736 0.0014 0.0651 -0.0257
0.25 0.00 3 0.1660 0.0028 0.0856 0.0008 0.0766 -0.0391
0.75 0.00 3 1.3519 -0.3439 0.0884 0.0058 0.0849 -0.0538
0.90 0.00 3 0.2572  -0.0050 0.0713 0.0050 0.0725 -0.0487
-0.90 025 3 0.0374 0.0009 0.0364 0.0015 0.0344 -0.0045
-0.75 025 3 0.0456 0.0013 0.0417 0.0016 0.0395 -0.0054
-0.25 025 3 0.0869 0.0003 0.0651 0.0021 0.0597 -0.0193
0.00 025 3 0.1154 0.0028 0.0772 0.0018 0.0693 -0.0276
025 025 3 0.1709 0.0037 0.0889 0.0025 0.0795 -0.0396
0.75 025 3 1.3535 -0.3464 0.0878 0.0023 0.0864 -0.0568
0.90 025 3 0.2564 0.0049 0.0739 0.0034 0.0743  -0.0494
-0.90 0.50 3 0.0405 0.0006 0.0397 0.0020 0.0379 -0.0052
-0.75 0.50 3 0.0493 0.0014 0.0472 0.0022 0.0447 -0.0081
-0.25 0.50 3 0.0940 0.0036 0.0720 0.0021 0.0674 -0.0227
0.00 0.50 3 0.1316 0.0046 0.0855 0.0039 0.0774 -0.0328
0.25 0.50 3 0.1919 0.0072 0.1013 0.0039 0.0889 -0.0471
0.75 0.50 3 1.2627 -0.3083 0.1014 0.0098 0.0954 -0.0670
090 050 3 0.2714 -0.0080 0.0802 0.0042 0.0847 -0.0588
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Table D1 cont.
Initial IV Estimators of @

Estimator AHI1 AH2 AB
True Values
() p W] RMSE Bias RMSE Bias RMSE Bias

-0.90 0.90 3 0.1371  -0.0009 0.1252 0.0076 0.1180 -0.0288
-0.75 090 3 0.1699 -0.0027 0.1503 0.0126 0.1369 -0.0393
-0.25 090 3 0.3219 0.0020 0.2256 0.0187 0.2058 -0.1003
0.00 0.90 3 0.4354 0.0032 0.2673 0.0204 0.2551 -0.1572
0.25 090 3 0.6794 0.0100 0.3249 0.0148 0.3273 -0.2381
0.75 090 3 1.3234 -0.3345 0.3122 0.0082 0.4046 -0.3253
0.90 090 3 0.5756 -0.0721 0.2463 0.0068 0.3432 -0.2676
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TableD2
Second Stage GMM Estimators of ®

Estimator ignoring mix exp

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 -0.90 1 0.0853 -0.0065 0.0713  -0.0082 0.0850 -0.0016
-0.75 -0.90 1 0.0987 -0.0093 0.0845 -0.0147 0.0987 -0.0070
-0.25 -0.90 1 0.1419 -0.0425 0.1333  -0.0536 0.1468 -0.0411
0.00 -0.90 1 0.1676  -0.0678 0.1616 -0.0822 0.1736  -0.0735
0.25 -0.90 1 0.1989 -0.0998 0.1934 -0.1158 0.2113 -0.1165
0.75 -0.90 1 0.1773  -0.0866 0.1757 -0.1082 0.2431 -0.1575
0.90 -090 1 0.1279 -0.0562 0.1291 -0.0787 0.1783 -0.0911
-0.90 -0.50 1 0.0417 -0.0030 0.0404 -0.0027 0.0426 0.0003
-0.75 -0.50 1 0.0490 -0.0039 0.0462 -0.0040 0.0499 -0.0022
-0.25 -0.50 1 0.0703 -0.0140 0.0681 -0.0138 0.0693 -0.0113
0.00 -0.50 1 0.0845 -0.0224 0.0783 -0.0186 0.0773 -0.0162
0.25 -0.50 1 0.0983 -0.0317 0.0927 -0.0306 0.0883 -0.0236
0.75 -0.50 1 0.0901 -0.0319 0.0868 -0.0378 0.0928 -0.0410
0.90 -0.50 1 0.0668 -0.0221 0.0688 -0.0274 0.0777 -0.0279
-0.90 -0.25 1 0.0347 -0.0017 0.0349 -0.0017 0.0367 0.0005
-0.75 -0.25 1 0.0408 -0.0027 0.0406 -0.0025 0.0424 -0.0008
-0.25 -0.25 1 0.0585 -0.0094 0.0589  -0.0085 0.0589 -0.0078
0.00 -0.25 1 0.0688 -0.0147 0.0667 -0.0146 0.0658 -0.0118
025 -025 1 0.0796 -0.0232 0.0765 -0.0210 0.0737 -0.0150
0.75 -0.25 1 0.0744 -0.0260 0.0771  -0.0281 0.0784 -0.0309
0.90 -0.25 1 0.0584 -0.0180 0.0594 -0.0188 0.0683 -0.0202
-0.90 0.00 1 0.0338 -0.0012 0.0338 -0.0013 0.0349 0.0012
-0.75 0.00 1 0.0386  -0.0021 0.0388 -0.0024 0.0403 -0.0003
-0.25 0.00 1 0.0572 -0.0091 0.0568 -0.0090 0.0556 -0.0058
0.00 0.00 1 0.0649 -0.0127 0.0646 -0.0126 0.0634 -0.0086
0.25 0.00 1 0.0738 -0.0189 0.0734 -0.0191 0.0707 -0.0133
0.75 0.00 1 0.0744 -0.0252 0.0742 -0.0252 0.0764 -0.0284
0.90 0.00 1 0.0572 -0.0167 0.0573 -0.0168 0.0657 -0.0205
-0.90 0.25 1 0.0345 -0.0024 0.0344 -0.0024 0.0378 -0.0005
-0.75 025 1 0.0410 -0.0029 0.0403 -0.0035 0.0422  -0.0008
-0.25 025 1 0.0594 -0.0099 0.0585 -0.0099 0.0572 -0.0072
0.00 0.25 1 0.0696 -0.0143 0.0688 -0.0149 0.0641 -0.0086
0.25 025 1 0.0770  -0.0228 0.0776  -0.0213 0.0739 -0.0118
0.75 025 1 0.0765 -0.0271 0.0787 -0.0291 0.0790 -0.0319
0.90 025 1 0.0619 -0.0197 0.0611 -0.0206 0.0696 -0.0236
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Table D2 cont.
Second Stage GMM Estimators of ®

Estimator ignoring mix exp

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 0.50 1 0.0400 -0.0016f 0.0390 -0.0034| 0.0432 -0.0021
-0.75 0.50 1 0.0465 -0.0032| 0.0471 -0.0047({ 0.0502 -0.0021
-0.25 050 1 0.0699 -0.0115 0.0678 -0.0131 0.0642 -0.0105
0.00 0.50 1 0.0792 -0.0191 0.0779 -0.0191 0.0736 -0.0131
025 050 1 0.0928 -0.0306] 0.0890 -0.0314f 0.0821 -0.0203
0.75 0.50 1 0.0938 -0.0340| 0.0962 -0.0396f 0.0923 -0.0426
0.90 050 1 0.0710 -0.0237| 0.0723 -0.0284f 0.0788 -0.0329
-0.90 090 1 0.0899 -0.0101 0.0765 -0.0138 0.0863 -0.0055
-0.75 090 1 0.1042 -0.0139] 0.0882 -0.0171 0.1009 -0.0072
-0.25 090 1 0.1466 -0.0369| 0.1290 -0.0453 0.1445 -0.0418
0.00 090 1 0.1733  -0.0592 0.1529 -0.0719] 0.1709 -0.0700
0.25 090 1 0.1917 -0.0890] 0.1819 -0.1069| 0.2045 -0.1085
0.75 090 1 0.1767 -0.0865 0.1862 -0.1129] 0.2410 -0.1530
090 090 1 0.1372  -0.0623 0.1417 -0.0823 0.1722  -0.0912
-0.90 -0.90 2 0.0367 -0.0028 0.0372 -0.0028| 0.0399 -0.0005
-0.75 -0.90 2 0.0421 -0.0038 0.0439 -0.0040] 0.0456 -0.0018
-0.25 -0.90 2 0.0611 -0.0108 0.0604 -0.0112| 0.0595 -0.0069
0.00 -0.90 2 0.0713 -0.0175 0.0696 -0.0163 0.0681 -0.0126
0.25 -090 2 0.0834 -0.0265 0.0828 -0.0262| 0.0780 -0.0185
0.75 -0.90 2 0.0812 -0.0278 0.0828 -0.0304| 0.0871 -0.0365
0.90 -0.90 2 0.0615 -0.0175 0.0631 -0.0196/ 0.0703 -0.0230
-0.90 -0.50 2 0.0342 -0.0024| 0.0345 -0.0021 0.0373 0.0007
-0.75 -0.50 2 0.0400 -0.0031 0.0407 -0.0033 0.0432 -0.0014
-0.25 -0.50 2 0.0579 -0.0093 0.0579 -0.0085 0.0561 -0.0060
0.00 -0.50 2 0.0655 -0.0131 0.0658 -0.0137| 0.0628 -0.0088
0.25 -0.50 2 0.0763 -0.0211 0.0767 -0.0211 0.0731 -0.0148
0.75 -0.50 2 0.0752 -0.0246] 0.0766 -0.0261 0.0802 -0.0308
0.90 -0.50 2 0.0586 -0.0171 0.0596 -0.0181 0.0666 -0.0208
-0.90 -0.25 2 0.0339 -0.0016f 0.0340 -0.0013 0.0347  0.0011
-0.75 -0.25 2 0.0399 -0.0027| 0.0400 -0.0025 0.0408 -0.0008
-0.25 -0.25 2 0.0563 -0.0086f 0.0574 -0.0093 0.0560 -0.0057
0.00 -0.25 2 0.0645 -0.0123 0.0649 -0.0130f 0.0615 -0.0093
0.25 -0.25 2 0.0762 -0.0188 0.0763 -0.0185 0.0693 -0.0140
0.75 -0.25 2 0.0756  -0.0255 0.0753 -0.0256| 0.0779 -0.0303
0.90 -0.25 2 0.0577 -0.0168 0.0585 -0.0171 0.0651 -0.0206
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Table D2 cont.
Second Stage GMM Estimators of ®

Estimator ignoring mix exp

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 0.00 2 0.0338 -0.0012| 0.0337 -0.0016f 0.0349 0.0013
-0.75 0.00 2 0.0386 -0.0021 0.0387 -0.0021 0.0401 -0.0005
-0.25 0.00 2 0.0572 -0.0091 0.0565 -0.0090] 0.0549 -0.0060
0.00 0.00 2 0.0649 -0.0127| 0.0650 -0.0127[ 0.0621 -0.0084
0.25 0.00 2 0.0738 -0.0189| 0.0734 -0.0192f 0.0704 -0.0133
0.75 0.00 2 0.0744 -0.0252| 0.0745 -0.0253 0.0766  -0.0284
0.90 0.00 2 0.0572 -0.0167| 0.0570 -0.0166f 0.0655 -0.0203
-090 025 2 0.0341 -0.0007| 0.0346 -0.0013 0.0362  0.0001
-0.75 025 2 0.0401 -0.0028 0.0397 -0.0026] 0.0411 -0.0009
-0.25 025 2 0.0581 -0.0084| 0.0573 -0.0085 0.0571 -0.0059
0.00 025 2 0.0674 -0.0137| 0.0680 -0.0137[ 0.0635 -0.0089
025 025 2 0.0754 -0.0203 0.0766  -0.0208 0.0723 -0.0138
0.75 025 2 0.0748 -0.0275 0.0741 -0.0277| 0.0773 -0.0299
090 025 2 0.0589 -0.0191 0.0584 -0.0191 0.0673 -0.0213
-0.90 0.50 2 0.0384 -0.0023 0.0379 -0.0029] 0.0383 -0.0016
-0.75 0.50 2 0.0453 -0.0030] 0.0447 -0.0030f 0.0449 -0.0023
-0.25 0.50 2 0.0661 -0.0106] 0.0614 -0.0109f 0.0611 -0.0080
0.00 0.50 2 0.0736  -0.0155 0.0708 -0.0173 0.0673 -0.0121
0.25 050 2 0.0850 -0.0258 0.0814 -0.0235 0.0752 -0.0156
0.75 050 2 0.0859 -0.0305 0.0858 -0.0350f 0.0830 -0.0357
090 0.50 2 0.0676 -0.0223 0.0684 -0.0258] 0.0724 -0.0271
-0.90 090 2 0.1070  -0.0068 0.0657 -0.0109| 0.0730 -0.0073
-0.75 0.90 2 0.1243 -0.0118 0.0759 -0.0150f 0.0837 -0.0103
-0.25 0.90 2 0.1726  -0.0500] 0.1142 -0.0420f 0.1173 -0.0326
0.00 090 2 0.2035 -0.0835 0.1381 -0.0656] 0.1349 -0.0479
0.25 090 2 0.2406 -0.1138 0.1691 -0.0929| 0.1492 -0.0674
0.75 090 2 0.2403 -0.1234] 0.2314 -0.1464| 0.1812 -0.1127
0.90 090 2 0.1807 -0.0827| 0.1811 -0.1088 0.1585 -0.0905
-0.90 -0.90 3 0.0356 -0.0014| 0.0359 -0.0015 0.0390  0.0004
-0.75 -0.90 3 0.0413 -0.0038 0.0417 -0.0028| 0.0443 -0.0011
-0.25 -0.90 3 0.0589  -0.0095 0.0603 -0.0088|] 0.0595 -0.0063
0.00 -0.90 3 0.0688 -0.0148 0.0691 -0.0138 0.0679 -0.0116
0.25 -090 3 0.0821 -0.0215 0.0819 -0.0206] 0.0762 -0.0152
0.75 -0.90 3 0.0779 -0.0252| 0.0791 -0.0270f 0.0840 -0.0339
0.90 -090 3 0.0610 -0.0172 0.0613 -0.0177| 0.0712 -0.0232
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Table D2 cont.
Second Stage GMM Estimators of ®

Estimator ignoring mix exp

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 -0.50 3 0.0344 -0.0019] 0.0342 -0.0018] 0.0370  0.0011
-0.75 -0.50 3 0.0395 -0.0034| 0.0397 -0.0027| 0.0418  0.0000
-0.25 -0.50 3 0.0574 -0.0088 0.0569 -0.0078| 0.0574 -0.0066
0.00 -0.50 3 0.0658 -0.0128 0.0664 -0.0121 0.0643 -0.0098
0.25 -0.50 3 0.0783 -0.0189| 0.0783 -0.0187| 0.0711 -0.0138
0.75 -0.50 3 0.0742 -0.0249| 0.0747 -0.0249| 0.0781 -0.0307
0.90 -0.50 3 0.0587 -0.0170] 0.0603 -0.0174f 0.0670 -0.0217
-0.90 -0.25 3 0.0338 -0.0016] 0.0339 -0.0015 0.0357  0.0015
-0.75 -0.25 3 0.0391 -0.0023 0.0396 -0.0021 0.0407 -0.0004
-0.25 -0.25 3 0.0564 -0.0085 0.0569 -0.0083 0.0562 -0.0064
0.00 -0.25 3 0.0659 -0.0130f 0.0665 -0.0135 0.0626 -0.0094
0.25 -025 3 0.0756 -0.0179] 0.0745 -0.0182f 0.0700 -0.0140
0.75 -0.25 3 0.0744 -0.0247| 0.0746 -0.0244f 0.0752 -0.0292
090 -0.25 3 0.0582 -0.0172] 0.0588 -0.0173 0.0662 -0.0208
-0.90 0.00 3 0.0338 -0.0012 0.0336 -0.0012| 0.0349  0.0013
-0.75 0.00 3 0.0386 -0.0021 0.0387 -0.0022| 0.0401 -0.0006
-0.25 0.00 3 0.0572 -0.0091 0.0569 -0.0089| 0.0554 -0.0059
0.00 0.00 3 0.0649 -0.0127| 0.0651 -0.0129f 0.0621 -0.0091
0.25 0.00 3 0.0738 -0.0189| 0.0738 -0.0190f 0.0706 -0.0136
0.75 0.00 3 0.0744 -0.0252| 0.0741 -0.0253 0.0763  -0.0286
0.90 0.00 3 0.0572 -0.0167| 0.0573 -0.0167[ 0.0658 -0.0204
-0.90 0.25 3 0.0347 -0.0009| 0.0349 -0.0012f 0.0354  0.0000
-0.75 0.25 3 0.0395 -0.0023 0.0398 -0.0023 0.0405 -0.0008
-0.25 0.25 3 0.0574 -0.0094| 0.0582 -0.0090| 0.0551 -0.0058
0.00 0.25 3 0.0658 -0.0137| 0.0665 -0.0137{ 0.0614 -0.0091
025 025 3 0.0758 -0.0201 0.0777 -0.0208| 0.0713 -0.0136
0.75 025 3 0.0741 -0.0270| 0.0741 -0.0274f 0.0776 -0.0284
0.90 0.25 3 0.0588 -0.0186] 0.0591 -0.0186f 0.0666 -0.0203
-0.90 050 3 0.0381 -0.0015 0.0364 -0.0029] 0.0378 -0.0015
-0.75 050 3 0.0449 -0.0027| 0.0439 -0.0039( 0.0429 -0.0021
-0.25 0.50 3 0.0633 -0.0097| 0.0604 -0.0100f 0.0580 -0.0079
0.00 0.50 3 0.0720 -0.0162| 0.0688 -0.0156f 0.0646 -0.0117
0.25 050 3 0.0809 -0.0219] 0.0805 -0.0232f 0.0729 -0.0157
0.75 0.50 3 0.0816 -0.0309] 0.0850 -0.0340{ 0.0808 -0.0325
0.90 0.50 3 0.0650 -0.0225 0.0677 -0.0253 0.0698 -0.0244

191



Table D2 cont.
Second Stage GMM Estimators of ®

Estimator ignoring mix exp

True Values

() p W] RMSE Bias RMSE Bias RMSE Bias
-0.90 090 3 0.1131 -0.0056| 0.0570 -0.0086] 0.0666 -0.0091
-0.75 090 3 0.1307 -0.0109| 0.0674 -0.0131 0.0740 -0.0130
-0.25 090 3 0.1833 -0.0499| 0.0986 -0.0335 0.1008 -0.0252
0.00 090 3 0.2080 -0.0836| 0.1128 -0.0459] 0.1135 -0.0371
0.25 090 3 0.2467 -0.1224| 0.1455 -0.0736f 0.1227 -0.0489
0.75 090 3 0.2560 -0.1356] 0.2234 -0.1442| 0.1462 -0.0799
0.90 090 3 0.1988 -0.0946/ 0.1803 -0.1092f 0.1385 -0.0702
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TableD3
Unweighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values
% ” % ” % ” % .
< < < <

o p W & 5|5 515 5|5 £
-090 -090 1§ 0.028 0.013f 0.028 0.013] 0.033 0.016f 0.018 -0.001
-0.75 -090 1} 0.028 0.014f 0.028 0.013] 0.033 0.016] 0.018 -0.001
-0.25 -090 1§ 0.033 0.019f 0.030 0.014] 0.036 0.019] 0.018 -0.001
0.00 -0.90 1§ 0.039 0.024f 0.030 0.016f 0.040 0.024] 0.018 -0.001
0.25 -0.90 1§ 0.052 0.032f 0.030 0.017f{ 0.048 0.030] 0.018 -0.001
0.75 -0.90 1} 0.069 0.046f 0.029 0.017f{ 0.055 0.037| 0.018 -0.001
090 -0.90 1] 0.039 0.024f 0.029 0.015f( 0.045 0.030] 0.018 -0.001
-0.90 -0.50 1} 0.047 0.003f 0.047 0.003] 0.047 0.005] 0.048 -0.001
-0.75 -0.50 1} 0.047 0.004f 0.047 0.004] 0.048 0.005| 0.048 -0.001
-0.25 -0.50 1} 0.048 0.006f 0.047 0.004] 0.047 0.007] 0.048 -0.001
0.00 -0.50 1§ 0.047 0.008f 0.048 0.005( 0.048 0.007| 0.048 -0.001
0.25 -0.50 1§ 0.052 0.014f 0.047 0.005( 0.050 0.011] 0.048 -0.001
0.75 -0.50 1§ 0.115 0.067 0.047 0.006] 0.055 0.018] 0.048 -0.001
0.90 -0.50 1§ 0.057 0.020f 0.047 0.005( 0.052 0.014] 0.048 -0.001
-0.90 -0.25 1} 0.057 0.001f 0.056 0.000] 0.057 0.001] 0.057 -0.001
-0.75 -0.25 1} 0.056 0.001f 0.056 0.000] 0.057 0.001] 0.057 -0.001
-0.25 -0.25 1§ 0.058 0.001f 0.057 0.001] 0.056 0.002] 0.057 -0.001
0.00 -0.25 1} 0.057 0.002f 0.057 0.001f 0.058 0.003] 0.057 -0.001
0.25 -0.25 1} 0.057 0.005f 0.057 0.001f 0.057 0.004] 0.057 -0.001
0.75 -0.25 1] 0.088 0.041f 0.056 0.002f 0.057 0.007| 0.057 -0.001
090 -0.25 1} 0.061 0.011f 0.057 0.001f 0.058 0.006] 0.057 -0.001
-0.90 0.00 1§ 0.061 -0.001f 0.061 -0.001] 0.060 -0.001] 0.061 -0.001
-0.75 0.00 1§} 0.061 -0.001f 0.061 -0.001] 0.060 -0.001] 0.061 -0.001
-0.25 0.00 1§ 0.061 -0.001f 0.060 -0.002] 0.061 -0.001] 0.061 -0.001
0.00 0.00 1§ 0.062 -0.001f 0.060 -0.002] 0.061 -0.001| 0.061 -0.001
0.25 0.00 1§ 0.061 -0.001f 0.060 -0.002f 0.061 -0.001] 0.061 -0.001
0.75 0.00 1§ 0.075 -0.001f 0.062 -0.001f 0.060 -0.001] 0.061 -0.001
090 0.00 1§ 0.063 0.001f 0.061 -0.001f 0.060 0.000] 0.061 -0.001
-090 025 1f 0.059 -0.003]f 0.060 -0.003] 0.058 -0.003] 0.058 -0.001
-0.75 025 1f 0.059 -0.003f 0.059 -0.003] 0.057 -0.003] 0.058 -0.001
-0.25 025 1f 0.059 -0.004f 0.059 -0.004] 0.057 -0.004] 0.058 -0.001
0.00 0.25 1] 0.058 -0.005| 0.058 -0.005( 0.058 -0.005] 0.058 -0.001
0.25 025 1} 0.061 -0.007[ 0.059 -0.005( 0.060 -0.006] 0.058 -0.001
0.75 025 1] 0.100 -0.049f 0.060 -0.005( 0.061 -0.008] 0.058 -0.001
090 025 1] 0.064 -0.011f 0.060 -0.005f( 0.061 -0.006] 0.058 -0.001
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Table D3 cont.

Unweighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values
% ” % ” % ” % .
< < < <

o o W g 5|5 515 5|5 £
-0.90 050 1§ 0.051 -0.006f 0.051 -0.006] 0.051 -0.006] 0.049 -0.001
-0.75 050 1} 0.051 -0.006f 0.050 -0.005] 0.051 -0.007| 0.049 -0.001
-0.25 0.50 1§ 0.050 -0.007f{ 0.051 -0.007] 0.051 -0.008] 0.049 -0.001
0.00 0.50 1§ 0.052 -0.009f 0.050 -0.007f{ 0.052 -0.010] 0.049 -0.001
0.25 0.50 1§ 0.055 -0.013] 0.051 -0.008f 0.054 -0.013] 0.049 -0.001
0.75 0.50 1§ 0.120 -0.075f 0.051 -0.009f 0.058 -0.020] 0.049 -0.001
090 0.50 1§ 0.059 -0.018f 0.051 -0.008f 0.054 -0.014] 0.049 -0.001
-0.90 090 1} 0.028 -0.013f 0.027 -0.013] 0.031 -0.015] 0.019 0.000
-0.75 090 1} 0.028 -0.014f 0.028 -0.013] 0.031 -0.016]/ 0.019 0.000
-0.25 090 1} 0.034 -0.019f{ 0.029 -0.016] 0.035 -0.019] 0.019 0.000
0.00 090 1§ 0.039 -0.023f 0.031 -0.017| 0.038 -0.023] 0.019 0.000
0.25 090 1§ 0.051 -0.032f 0.031 -0.018| 0.049 -0.030{ 0.019 0.000
075 090 1§ 0.070 -0.048( 0.031 -0.017] 0.059 -0.040f 0.019 0.000
090 090 1f 0.040 -0.025( 0.028 -0.015| 0.045 -0.029] 0.019 0.000
-0.90 -090 2§ 0.132 0.005({ 0.132 0.006] 0.131 0.007] 0.132 -0.002
-0.75 -090 2§ 0.132 0.005f{ 0.132 0.006] 0.130 0.007] 0.132 -0.002
-0.25 -090 2§ 0.131 0.011f 0.133 0.007; 0.134 0.012| 0.132 -0.002
0.00 -0.90 2§ 0.136 0.016f 0.133 0.008| 0.134 0.015] 0.132 -0.002
0.25 -0.90 2§ 0.143 0.032f 0.136 0.009] 0.140 0.025] 0.132 -0.002
0.75 -0.90 2§ 0.325 0.223| 0.132 0.012| 0.149 0.044] 0.132 -0.002
090 -090 2¢ 0.154 0.046f 0.133 0.009] 0.135 0.028] 0.132 -0.002
-0.90 -0.50 2§ 0.128 -0.001f 0.127 0.000f 0.127 0.001} 0.126 -0.003
-0.75 -0.50 2§ 0.127 -0.001f 0.126 0.001| 0.126 0.001| 0.126 -0.003
-0.25 -0.50 2§ 0.124 0.002f 0.126 0.000f 0.123 0.002] 0.126 -0.003
0.00 -0.50 2§ 0.125 0.005f 0.125 0.001f 0.124 0.003] 0.126 -0.003
0.25 -0.50 23 0.126 0.012f 0.125 0.002f 0.127 0.007| 0.126 -0.003
0.75 -0.50 2§ 0.209 0.118f 0.128 0.001f 0.131 0.016] 0.126 -0.003
0.90 -0.50 23 0.136 0.020f 0.127 0.000f 0.127 0.008] 0.126 -0.003
-0.90 -0.25 2 0.120 -0.004f 0.119 -0.003] 0.119 -0.002| 0.116 -0.003
-0.75 -0.25 2§ 0.120 -0.003f 0.118 -0.002| 0.118 -0.002| 0.116 -0.003
-0.25 -0.25 2§ 0.117 -0.001f 0.117 -0.002| 0.115 -0.002] 0.116 -0.003
0.00 -0.25 23 0.118 -0.001f 0.116 -0.003| 0.118 -0.001| 0.116 -0.003
0.25 -0.25 23 0.115 0.004f 0.117 -0.002f 0.118 0.000f 0.116 -0.003
0.75 -0.25 2} 0.161 0.055[ 0.119 -0.003| 0.123 0.003] 0.116 -0.003
0.90 -0.25 23 0.129 0.005f 0.118 -0.004f 0.120 0.001} 0.116 -0.003

194




Table D3 cont.

Unweighted Spatial GM Estimators of p

Initial Estimato AHI1 AH2 AB True
True Values
% ” % ” % ” % .
< < < <

o p W g 5|5 515 5|3 £
-0.90 0.00 2§ 0.106 -0.005( 0.107 -0.004| 0.106 -0.004] 0.103 -0.003
-0.75 0.00 2§ 0.107 -0.004f 0.106 -0.005| 0.104 -0.003] 0.103 -0.003
-0.25 0.00 2§ 0.107 -0.003f 0.107 -0.006] 0.104 -0.004] 0.103 -0.003
0.00 0.00 2} 0.106 -0.004f 0.105 -0.005| 0.104 -0.004] 0.103 -0.003
0.25 0.00 2§ 0.105 -0.005f 0.105 -0.005f 0.107 -0.004] 0.103 -0.003
0.75 0.00 2§ 0.139 0.004f 0.107 -0.005| 0.108 -0.005| 0.103 -0.003
090 0.00 23 0.116 -0.006f 0.106 -0.006f 0.108 -0.005| 0.103 -0.003
-0.90 025 2 0.089 -0.006f 0.090 -0.006] 0.090 -0.005| 0.087 -0.002
-0.75 025 2§ 0.088 -0.006f 0.090 -0.005] 0.089 -0.005] 0.087 -0.002
-0.25 025 2} 0.089 -0.006f 0.090 -0.007] 0.088 -0.006] 0.087 -0.002
0.00 0.25 2f 0.089 -0.006f 0.088 -0.006/ 0.087 -0.006] 0.087 -0.002
0.25 0.25 2§ 0.090 -0.008f 0.088 -0.007| 0.089 -0.008] 0.087 -0.002
0.75 025 2¢ 0.130 -0.037{ 0.090 -0.007] 0.095 -0.010f 0.087 -0.002
090 0.25 2§ 0.099 -0.013f 0.089 -0.006/ 0.093 -0.009] 0.087 -0.002
-0.90 0.50 2 0.068 -0.007f{ 0.068 -0.006] 0.069 -0.006] 0.068 -0.002
-0.75 0.50 2 0.068 -0.006f 0.068 -0.007] 0.068 -0.006] 0.068 -0.002
-0.25 050 2§ 0.069 -0.007[ 0.069 -0.007] 0.069 -0.007| 0.068 -0.002
0.00 0.50 2§ 0.069 -0.008f 0.068 -0.007| 0.070 -0.009] 0.068 -0.002
0.25 0.50 2§ 0.067 -0.009f 0.069 -0.007| 0.071 -0.010] 0.068 -0.002
0.75 0.50 2§ 0.124 -0.058f 0.070 -0.009] 0.077 -0.016] 0.068 -0.002
090 050 2§ 0.080 -0.020f 0.070 -0.009] 0.073 -0.013|] 0.068 -0.002
-0.90 090 2§ 0.028 -0.007{ 0.027 -0.007] 0.027 -0.008] 0.025 0.000
-0.75 090 2§ 0.028 -0.008f 0.027 -0.007] 0.027 -0.008] 0.025 0.000
-0.25 090 2§ 0.031 -0.012f 0.028 -0.009] 0.030 -0.011] 0.025 0.000
0.00 090 2 0.033 -0.016f 0.029 -0.010; 0.033 -0.014| 0.025 0.000
0.25 0.90 2§ 0.040 -0.022f 0.030 -0.012| 0.039 -0.020f 0.025 0.000
0.75 090 2§} 0.056 -0.031f 0.030 -0.011| 0.050 -0.027] 0.025 0.000
090 090 2§ 0.041 -0.018f 0.029 -0.010f 0.044 -0.022] 0.025 0.000
-0.90 -090 3§ 0.194 0.003f 0.193 0.001] 0.189 0.001| 0.187 -0.011
-0.75 -090 3} 0.193 0.003f 0.193 0.000] 0.187 0.002] 0.187 -0.011
-0.25 -090 3} 0.189 0.006f 0.189 0.000] 0.185 0.005| 0.187 -0.011
0.00 -0.90 3} 0.187 0.015f 0.187 0.000f 0.183 0.007| 0.187 -0.011
0.25 -090 3§ 0.191 0.034f 0.185 0.001} 0.179 0.013] 0.187 -0.011
0.75 -0.90 3} 0.395 0.255| 0.183 0.004f 0.189 0.039] 0.187 -0.011
0.90 -0.90 3] 0.204 0.047 0.188 0.002f 0.187 0.023] 0.187 -0.011
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Table D3 cont.

Unweighted Spatial GM Estimators of p

Initial Estimato AHI1 AH2 AB True
True Values
% ” % ” % ” % .
< < < <

o p W & 5|5 515 5|5 £
-0.90 -0.50 3§ 0.170 -0.005f{ 0.171 -0.005] 0.170 -0.004] 0.168 -0.010
-0.75 -0.50 3§ 0.171 -0.004f 0.171 -0.005] 0.168 -0.002] 0.168 -0.010
-0.25 -0.50 3} 0.169 -0.002f 0.170 -0.006] 0.166 -0.003] 0.168 -0.010
0.00 -0.50 3} 0.167 0.002f 0.170 -0.006/ 0.165 -0.003] 0.168 -0.010
0.25 -0.50 3} 0.167 0.009f 0.167 -0.007| 0.164 -0.002] 0.168 -0.010
0.75 -0.50 3} 0.261 0.127 0.167 -0.003| 0.170 0.011] 0.168 -0.010
0.90 -0.50 3§ 0.172 0.020f 0.171 -0.006f 0.167 0.006] 0.168 -0.010
-0.90 -0.25 3} 0.154 -0.006f 0.155 -0.007] 0.154 -0.006] 0.152 -0.009
-0.75 -0.25 3} 0.155 -0.006f 0.155 -0.006] 0.152 -0.006] 0.152 -0.009
-0.25 -0.25 3} 0.154 -0.005({ 0.155 -0.007] 0.150 -0.007| 0.152 -0.009
0.00 -0.25 3} 0.152 -0.005f 0.154 -0.008| 0.149 -0.007] 0.152 -0.009
0.25 -0.25 3} 0.150 -0.001f 0.152 -0.009] 0.150 -0.006] 0.152 -0.009
0.75 -0.25 3} 0.199 0.054f 0.150 -0.007| 0.151 0.001] 0.152 -0.009
0.90 -0.25 3} 0.152 0.001f 0.153 -0.007| 0.151 0.001} 0.152 -0.009
-0.90 0.00 3§ 0.136 -0.007f{ 0.135 -0.008] 0.133 -0.009] 0.132 -0.009
-0.75 0.00 3} 0.136 -0.007f{ 0.136 -0.007| 0.133 -0.007| 0.132 -0.009
-0.25 0.00 3§} 0.135 -0.007{ 0.134 -0.009] 0.131 -0.008] 0.132 -0.009
0.00 0.00 3 0.132 -0.008f 0.134 -0.009] 0.131 -0.009] 0.132 -0.009
0.25 0.00 3§ 0.134 -0.007 0.133 -0.010f 0.132 -0.008] 0.132 -0.009
0.75 0.00 3} 0.166 0.001f 0.134 -0.009] 0.132 -0.005] 0.132 -0.009
090 0.00 3} 0.136 -0.009f 0.132 -0.010f 0.132 -0.005] 0.132 -0.009
-0.90 0.25 3} 0.111 -0.007f{ 0.112 -0.008] 0.109 -0.008] 0.109 -0.007
-0.75 0.25 3} 0.111 -0.008f 0.113 -0.008] 0.109 -0.008] 0.109 -0.007
-0.25 0.25 3} 0.112 -0.009f{ 0.111 -0.009] 0.109 -0.010{ 0.109 -0.007
0.00 0.25 3} 0.111 -0.008f 0.111 -0.009| 0.110 -0.011} 0.109 -0.007
0.25 0.25 3§ 0.111 -0.011f 0.110 -0.009] 0.111 -0.011} 0.109 -0.007
0.75 0.25 3} 0.148 -0.040f 0.111 -0.011| 0.111 -0.013}] 0.109 -0.007
090 0.25 3} 0.115 -0.019f 0.112 -0.012| 0.109 -0.011} 0.109 -0.007
-0.90 0.50 3§ 0.083 -0.007[ 0.084 -0.007] 0.083 -0.007| 0.082 -0.006
-0.75 0.50 3} 0.083 -0.007{ 0.085 -0.007] 0.083 -0.008] 0.082 -0.006
-0.25 0.50 3} 0.085 -0.009f{ 0.084 -0.009] 0.084 -0.010] 0.082 -0.006
0.00 0.50 3} 0.085 -0.010f 0.085 -0.009] 0.085 -0.011] 0.082 -0.006
0.25 0.50 3] 0.084 -0.013f 0.084 -0.009] 0.085 -0.011] 0.082 -0.006
0.75 0.50 3} 0.139 -0.059f 0.087 -0.012| 0.088 -0.017] 0.082 -0.006
0.90 0.50 3] 0.094 -0.022f 0.087 -0.012| 0.086 -0.016] 0.082 -0.006
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Table D3 cont.

Unweighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values

% ” % ” % ” % .

< < < <

o p W g 5|5 515 5|5 £
-090 090 3§ 0.033 -0.007[ 0.033 -0.006] 0.032 -0.006f 0.031 0.001
-0.75 090 3} 0.034 -0.007{ 0.033 -0.007] 0.032 -0.007| 0.031 0.001
-0.25 090 3} 0.035 -0.012f 0.033 -0.009] 0.035 -0.010] 0.031 0.001
0.00 0.90 3] 0.038 -0.016f 0.035 -0.011f 0.037 -0.015] 0.031 0.001
025 090 3§ 0.044 -0.022f 0.036 -0.012] 0.044 -0.020f 0.031 0.001
0.75 0.90 3} 0.066 -0.035 0.037 -0.012f 0.054 -0.029] 0.031 0.001
090 0.90 3] 0.052 -0.020f 0.037 -0.010f 0.053 -0.023] 0.031 0.001
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Table D4
Weighted Spatial GM Estimators of p

Initial Estimato AHI1 AH2 AB True
True Values
% ” % ” % ” % .
< < < <

o p W & 5|5 515 5|3 £
-0.90 -090 1§ 0.036 0.017f{ 0.036 0.017| 0.041 0.021] 0.023 0.000
-0.75 -090 1§ 0.037 0.018f 0.036 0.017] 0.041 0.022] 0.023 0.000
-0.25 -090 1§ 0.044 0.026f 0.039 0.020] 0.047 0.027] 0.023 0.000
0.00 -0.90 1§ 0.051 0.032f 0.039 0.022] 0.053 0.032] 0.023 0.000
0.25 -0.90 1} 0.069 0.044f 0.041 0.024] 0.063 0.041] 0.023 0.000
0.75 -0.90 1§ 0.087 0.060f 0.039 0.021| 0.073 0.051] 0.023 0.000
0.90 -0.90 1§ 0.052 0.032f 0.037 0.019] 0.059 0.039] 0.023 0.000
-0.90 -0.50 1} 0.048 0.002f 0.049 0.003] 0.048 0.004] 0.047 -0.001
-0.75 -0.50 1} 0.048 0.003f 0.049 0.003] 0.049 0.004] 0.047 -0.001
-0.25 -0.50 1} 0.049 0.006f 0.049 0.004] 0.049 0.006] 0.047 -0.001
0.00 -0.50 1§ 0.049 0.009f 0.048 0.004f 0.048 0.007| 0.047 -0.001
0.25 -0.50 1§} 0.052 0.015] 0.048 0.006f 0.050 0.010] 0.047 -0.001
0.75 -0.50 1§ 0.117 0.070f 0.049 0.006f 0.054 0.018] 0.047 -0.001
0.90 -0.50 1§ 0.058 0.020f 0.048 0.004f 0.051 0.013] 0.047 -0.001
-0.90 -0.25 1} 0.054 0.000f{ 0.054 0.000] 0.054 0.000f 0.054 -0.002
-0.75 -0.25 1} 0.054 0.000f{ 0.055 0.000] 0.053 0.000] 0.054 -0.002
-0.25 -0.25 1} 0.054 0.001f 0.054 0.000] 0.053 0.000f 0.054 -0.002
0.00 -0.25 1} 0.053 0.002f 0.053 0.001| 0.053 0.001] 0.054 -0.002
0.25 -0.25 1] 0.054 0.006f 0.053 0.001| 0.053 0.002] 0.054 -0.002
0.75 -0.25 1} 0.089 0.042f 0.054 0.002] 0.055 0.007] 0.054 -0.002
090 -0.25 1] 0.058 0.012f 0.055 0.000f 0.052 0.004] 0.054 -0.002
-0.90 0.00 1§ 0.057 -0.002f 0.057 -0.002| 0.057 -0.002] 0.056 -0.003
-0.75 0.00 1§ 0.057 -0.001f 0.057 -0.002] 0.056 -0.002] 0.056 -0.003
-0.25 0.00 1§ 0.057 -0.002f 0.057 -0.002| 0.056 -0.003] 0.056 -0.003
0.00 0.00 1g 0.055 -0.003] 0.056 -0.003] 0.056 -0.003f 0.056 -0.003
0.25 0.00 1} 0.056 -0.002f 0.055 -0.002f 0.055 -0.003] 0.056 -0.003
0.75 0.00 1} 0.074 -0.001f 0.057 -0.002f 0.057 -0.002|] 0.056 -0.003
090 0.00 1} 0.062 -0.001f 0.057 -0.001| 0.056 -0.001| 0.056 -0.003
-090 025 1§ 0.056 -0.003f 0.056 -0.003] 0.055 -0.003] 0.054 -0.002
-0.75 025 1} 0.056 -0.003f 0.056 -0.004] 0.056 -0.004] 0.054 -0.002
-0.25 025 1} 0.056 -0.004f 0.055 -0.004] 0.055 -0.005| 0.054 -0.002
0.00 0.25 1 0.055 -0.006f 0.056 -0.005| 0.055 -0.006] 0.054 -0.002
0.25 025 1} 0.057 -0.008f 0.055 -0.005| 0.056 -0.007] 0.054 -0.002
0.75 025 1§} 0.095 -0.050f 0.056 -0.006/ 0.057 -0.010] 0.054 -0.002
090 025 1} 0.061 -0.011f 0.056 -0.004] 0.057 -0.007] 0.054 -0.002
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Table D4 cont.
Weighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values
% . | @ . | @ . | @ .
< < o] <

o o, W & 5|25 518 =] =z
-0.90 050 1§ 0.049 -0.006f 0.049 -0.006] 0.050 -0.007| 0.047 -0.002
-0.75 050 1f 0.050 -0.006f 0.049 -0.006] 0.050 -0.007| 0.047 -0.002
-0.25 050 1f 0.050 -0.008f 0.050 -0.007] 0.050 -0.009| 0.047 -0.002
0.00 0.50 1} 0.053 -0.011f 0.051 -0.008] 0.051 -0.010{ 0.047 -0.002
0.25 0.50 1§ 0.056 -0.015f 0.051 -0.008] 0.053 -0.013] 0.047 -0.002
0.75 050 1§ 0.120 -0.076f 0.050 -0.010f 0.057 -0.021] 0.047 -0.002
090 0.50 1§ 0.059 -0.018f 0.050 -0.007| 0.053 -0.015] 0.047 -0.002
-0.90 090 1} 0.037 -0.018f 0.037 -0.017| 0.041 -0.020] 0.022 -0.001
-0.75 090 1} 0.038 -0.019f 0.038 -0.018] 0.042 -0.021] 0.022 -0.001
-0.25 090 1} 0.044 -0.025( 0.039 -0.021| 0.047 -0.026] 0.022 -0.001
0.00 090 1] 0.053 -0.032f 0.041 -0.023f 0.052 -0.031] 0.022 -0.001
0.25 090 1§ 0.071 -0.047[ 0.041 -0.024f 0.065 -0.041| 0.022 -0.001
0.75 090 1] 0.094 -0.066f 0.040 -0.022f 0.078 -0.054] 0.022 -0.001
090 090 1] 0.055 -0.035 0.037 -0.020f 0.061 -0.041|] 0.022 -0.001
-0.90 -090 2§ 0.115 0.005( 0.115 0.005] 0.118 0.007] 0.118 -0.001
-0.75 -090 2§ 0.117 0.007f{ 0.114 0.006] 0.116 0.009] 0.118 -0.001
-0.25 -090 2§ 0.116 0.011f 0.115 0.009] 0.118 0.014] 0.118 -0.001
0.00 -0.90 2§ 0.120 0.019f 0.116 0.009f{ 0.121 0.018] 0.118 -0.001
0.25 -0.90 2§ 0.126 0.034f 0.117 0.012f 0.128 0.025] 0.118 -0.001
0.75 -0.90 2§ 0.307 0.210f 0.119 0.016f 0.134 0.041] 0.118 -0.001
0.90 -0.90 2§ 0.140 0.046f 0.117 0.011f 0.125 0.026] 0.118 -0.001
-0.90 -0.50 2§ 0.111 0.002f 0.110 0.001} 0.110 0.002] 0.110 -0.001
-0.75 -0.50 2§ 0.110 0.002f 0.110 0.001} 0.110 0.002] 0.110 -0.001
-0.25 -0.50 2§ 0.109 0.003f 0.108 0.003] 0.109 0.004] 0.110 -0.001
0.00 -0.50 2§ 0.110 0.006f 0.110 0.003f 0.110 0.006] 0.110 -0.001
0.25 -0.50 2§ 0.111 0.014f 0.110 0.006f 0.114 0.008] 0.110 -0.001
0.75 -0.50 2§ 0.191 0.108f 0.112 0.005( 0.115 0.013] 0.110 -0.001
0.90 -0.50 2§ 0.123 0.021f 0.110 0.005( 0.113 0.010f 0.110 -0.001
-0.90 -0.25 2§ 0.102 -0.001f 0.103 -0.001] 0.103 0.001] 0.102 -0.002
-0.75 -0.25 2§ 0.102 -0.001f 0.102 -0.001] 0.102 0.001] 0.102 -0.002
-0.25 -0.25 2§ 0.101 0.000{ 0.102 -0.001] 0.101 0.000f 0.102 -0.002
0.00 -0.25 2§ 0.100 0.001f 0.102 0.001| 0.102 0.000f 0.102 -0.002
0.25 -0.25 23 0.101 0.005f 0.104 0.002| 0.103 0.002] 0.102 -0.002
0.75 -0.25 2§ 0.145 0.051f 0.103 0.001| 0.105 0.006] 0.102 -0.002
090 -0.25 23 0.111 0.006f 0.103 0.001| 0.105 0.003] 0.102 -0.002
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Table D4 cont.
Weighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values
% . | @ . | @ . | @ .
< < o] <

o o W & 5|5 5|8 =] =z
-0.90 0.00 2§ 0.092 -0.002f 0.092 -0.002] 0.093 -0.002] 0.091 -0.002
-0.75 0.00 2§ 0.091 -0.002f 0.092 -0.002] 0.093 -0.002] 0.091 -0.002
-0.25 0.00 2§ 0.091 -0.002f 0.092 -0.001] 0.094 -0.002] 0.091 -0.002
0.00 0.00 2§ 0.091 -0.002f 0.092 -0.001| 0.094 -0.001] 0.091 -0.002
0.25 0.00 2§ 0.090 0.000f 0.092 -0.001| 0.093 -0.001}] 0.091 -0.002
0.75 0.00 2§ 0.129 0.005f 0.091 -0.003] 0.094 -0.003] 0.091 -0.002
0.90 0.00 2§ 0.104 -0.003f 0.093 -0.003] 0.096 -0.003] 0.091 -0.002
-0.90 025 2 0.080 -0.003f 0.080 -0.003] 0.082 -0.003] 0.079 -0.002
-0.75 025 2} 0.080 -0.003f 0.080 -0.002] 0.081 -0.004] 0.079 -0.002
-0.25 0.25 2} 0.078 -0.005({ 0.080 -0.003] 0.080 -0.004] 0.079 -0.002
0.00 0.25 2§ 0.078 -0.004f 0.080 -0.003] 0.081 -0.004] 0.079 -0.002
0.25 0.25 2} 0.079 -0.004f 0.080 -0.004| 0.080 -0.005] 0.079 -0.002
0.75 0.25 2§ 0.122 -0.033f 0.079 -0.005| 0.083 -0.009] 0.079 -0.002
090 0.25 2] 0.086 -0.010f 0.081 -0.005| 0.084 -0.006] 0.079 -0.002
-0.90 0.50 2 0.065 -0.005( 0.064 -0.005] 0.066 -0.004] 0.065 -0.001
-0.75 0.50 2} 0.065 -0.005( 0.064 -0.004] 0.065 -0.004] 0.065 -0.001
-0.25 0.50 2} 0.064 -0.005( 0.066 -0.005] 0.066 -0.007| 0.065 -0.001
0.00 0.50 2 0.064 -0.006f 0.065 -0.005( 0.067 -0.008] 0.065 -0.001
0.25 0.50 2] 0.064 -0.009f 0.065 -0.007f{ 0.067 -0.009] 0.065 -0.001
0.75 0.50 2§ 0.123 -0.060f 0.065 -0.008f 0.071 -0.014] 0.065 -0.001
090 0.50 23 0.072 -0.016f 0.067 -0.007({ 0.069 -0.010] 0.065 -0.001
-0.90 090 2f 0.033 -0.009f{ 0.032 -0.009] 0.033 -0.010]{ 0.029 0.000
-0.75 090 2§} 0.034 -0.011f 0.033 -0.010f 0.033 -0.010]{ 0.029 0.000
-0.25 090 2} 0.037 -0.016f 0.034 -0.012] 0.037 -0.014] 0.029 0.000
0.00 0.90 2§ 0.040 -0.020f 0.035 -0.013] 0.040 -0.017] 0.029 0.000
0.25 090 2§ 0.049 -0.028f 0.037 -0.015| 0.048 -0.025] 0.029 0.000
0.75 090 2] 0.068 -0.040f 0.039 -0.014] 0.059 -0.035] 0.029 0.000
090 090 2] 0.048 -0.023 0.036 -0.013] 0.053 -0.028] 0.029 0.000
-0.90 -090 3§ 0.166 0.013f 0.165 0.014] 0.167 0.016] 0.165 0.003
-0.75 -090 3§ 0.167 0.013f 0.164 0.014] 0.167 0.015] 0.165 0.003
-0.25 -090 3§ 0.164 0.018f 0.160 0.012| 0.163 0.016] 0.165 0.003
0.00 -0.90 3} 0.165 0.021f 0.162 0.014f 0.161 0.019] 0.165 0.003
0.25 -0.90 3} 0.173 0.033] 0.162 0.016f 0.167 0.027] 0.165 0.003
0.75 -0.90 3} 0.366 0.239f 0.167 0.018| 0.177 0.043] 0.165 0.003
090 -0.90 3] 0.182 0.049f 0.167 0.010f 0.164 0.027| 0.165 0.003
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Table D4 cont.
Weighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values
% . | @ . | @ . | @ .
< < o] <

o o, W & 5|2 5|2 =] =z
-0.90 -0.50 3§ 0.148 0.005( 0.148 0.007| 0.146 0.007| 0.147 0.002
-0.75 -0.50 3} 0.147 0.006f 0.145 0.006] 0.146 0.006] 0.147 0.002
-0.25 -0.50 3§ 0.148 0.009({ 0.144 0.006] 0.146 0.007| 0.147 0.002
0.00 -0.50 3} 0.146 0.012f 0.142 0.007| 0.145 0.007] 0.147 0.002
0.25 -0.50 3§ 0.144 0.017[ 0.143 0.008| 0.144 0.013] 0.147 0.002
0.75 -0.50 3} 0.240 0.122f 0.147 0.006/ 0.144 0.018] 0.147 0.002
0.90 -0.50 3} 0.157 0.022f 0.145 0.002| 0.144 0.012] 0.147 0.002
-0.90 -0.25 3} 0.135 0.004f 0.133 0.004] 0.133 0.004] 0.134 0.002
-0.75 -0.25 3} 0.135 0.003f 0.134 0.004] 0.132 0.003] 0.134 0.002
-0.25 -0.25 3} 0.133 0.004f 0.130 0.003] 0.131 0.003] 0.134 0.002
0.00 -0.25 3§} 0.132 0.005f 0.129 0.004| 0.128 0.004] 0.134 0.002
0.25 -0.25 3} 0.131 0.011f 0.128 0.003| 0.130 0.007] 0.134 0.002
0.75 -0.25 3} 0.177 0.058f 0.132 0.002| 0.131 0.005] 0.134 0.002
0.90 -0.25 3} 0.140 0.011f 0.133 -0.001| 0.132 0.005] 0.134 0.002
-0.90 0.00 3§ 0.118 0.002f 0.117 0.002] 0.117 0.001] 0.117 0.000
-0.75 0.00 3§ 0.118 0.001f 0.117 0.001] 0.116 0.001] 0.117 0.000
-0.25 0.00 3§ 0.116 0.001f 0.114 0.002] 0.114 0.001}] 0.117 0.000
0.00 0.00 3§ 0.115 0.001f 0.115 0.001| 0.114 0.001} 0.117 0.000
0.25 0.00 3§ 0.113 0.002f 0.113 0.000f 0.114 0.001} 0.117 0.000
0.75 0.00 3} 0.145 0.006f 0.115 -0.002| 0.117 -0.001} 0.117 0.000
0.90 0.00 3§ 0.123 -0.003f 0.119 -0.004| 0.119 -0.002] 0.117 0.000
-0.90 0.25 3} 0.099 -0.001f 0.098 -0.002] 0.098 -0.003] 0.098 -0.001
-0.75 0.25 3} 0.098 -0.001f 0.098 -0.001] 0.098 -0.003] 0.098 -0.001
-0.25 0.25 3} 0.095 -0.002f 0.096 -0.002] 0.097 -0.003] 0.098 -0.001
0.00 0.25 3} 0.097 -0.002f 0.096 -0.002f 0.096 -0.004] 0.098 -0.001
0.25 0.25 3} 0.097 -0.005 0.097 -0.003f 0.097 -0.003] 0.098 -0.001
0.75 0.25 3} 0.133 -0.038f 0.097 -0.006f 0.099 -0.006] 0.098 -0.001
090 0.25 3} 0.105 -0.011f 0.103 -0.006f 0.100 -0.008] 0.098 -0.001
-0.90 0.50 3} 0.076 -0.004f 0.075 -0.004] 0.075 -0.004] 0.076 -0.002
-0.75 0.50 3} 0.075 -0.004f 0.075 -0.004] 0.076 -0.005| 0.076 -0.002
-0.25 0.50 3} 0.075 -0.005f{ 0.075 -0.004] 0.076 -0.006] 0.076 -0.002
0.00 0.50 3} 0.075 -0.006f 0.076 -0.004| 0.077 -0.007] 0.076 -0.002
0.25 0.50 3} 0.078 -0.009f 0.076 -0.005| 0.078 -0.008] 0.076 -0.002
0.75 0.50 3} 0.137 -0.064f 0.078 -0.008] 0.081 -0.012] 0.076 -0.002
090 0.50 3] 0.088 -0.016f 0.078 -0.008] 0.079 -0.010; 0.076 -0.002
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Table D4 cont.
Weighted Spatial GM Estimators of p

Initial Estimato AH1 AH2 AB True
True Values

% . | @ . | @ . | @ .

< < o] <

o o W & 5|8 5|8 =] =z
-0.90 090 3} 0.038 -0.011f 0.038 -0.010f 0.037 -0.011] 0.035 -0.001
-0.75 090 3} 0.038 -0.011f 0.039 -0.010f 0.037 -0.011] 0.035 -0.001
-0.25 090 3} 0.042 -0.015( 0.039 -0.012] 0.040 -0.014] 0.035 -0.001
0.00 0.90 3] 0.046 -0.021f 0.040 -0.014f 0.044 -0.019] 0.035 -0.001
0.25 0.90 3] 0.055 -0.029f 0.042 -0.016f 0.053 -0.027| 0.035 -0.001
0.75 0.90 3} 0.077 -0.045| 0.041 -0.016f 0.066 -0.036] 0.035 -0.001
090 0.90 3] 0.057 -0.027 0.041 -0.014f 0.059 -0.030] 0.035 -0.001
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Figure 1

Figurel: QQ Plot of IV Estimator AH1

Figure 2

Figure 2: QQ Plot of 1V Estimator AH2
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Figure 5
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Figure 3: QQ Plot of 1V Estimator AB
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Figure 10
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Figure 6: QQ Plot of GMM Estimator AB based on V2
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Figure 31
Normal Probability Plot
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Figure 7: Normal Probability QQ Plot
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E Appendix: Symbolsand Notation Used

In this Appendix, | provide abrief explanation of the different (standard) symbols
used throughout the thesis.

N cross-sectiona dimension of the data under consideration

T time dimension of the data under consideration

Iy N x N identity matrix

er T x 1 vector of ones

Jr T x T matrix of ones

Qo transformation matrix that subtracts |ocation specific sample means
Q: transformation matrix that calculates location specific sample means
A first difference operator (in time dimension)

D first difference transformation matrix

v for al (logica predicate)

= exists (logical predicate)

€ relation operator 'belongsto a set’
00 infinity

R set of real numbers

N set of natural numbers
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o(x) neighborhood of areal number x

sup supremum

inf infimum

min minimum

arg mingeg { } argument that maximizes a maximization problem in brackets
with parameters § restricted to aset ©

lim,, o0y limes superior of the sequence a,,

® Kronecker product operator
M| matrix norm [tr (M/M)]*/?
Amin (2)  smallest eigenvalue of amatrix 2

diag (dy, ..., dy) diagona matrix with dy, ..., dy on the main diagonal

E(y) expected value of a vector/scalar y
VC(y) variance covariance matrix of avector y

Cov (21, 29) covariance of atwo scalar random variables

< convergence in distribution
2. convergencein probability

N convergence in r-th mean
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N (x,9) multivariate normal distribution with mean x and variance covari-
ance matrix

L space of random variables with finite p-th absolute moments

|| absolute value of a number/random variable

Il GO

0, (k) sequence random variables is of order in probability of at most N*

O (k) deterministic sequenceis of order of at most N*

2SLS two stage least squares

3SLS three stage least squares

CVv covariance (estimator)

GLS generalized least squares

GM generalized moments

GMM generaized method of moments

HAC heteroscedasticity and autocorrelation consistent
v instrumental variable

LIML limited information maximum likelihood
LSDV |east-squares dummy variable (estimator)
MD minimum distance

ML maximum likelihood

OLS ordinary least squares

SAR gpatial autoregressive

STAR Space-time autoregressive
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STARMA Space-time autoregressive moving average
SUR seemingly unrelated regressions

VAR vector autoregressive

VARMA Vector autoregressive moving average

WG within group
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F Appendix: Inequalities

In this Appendix, | provide alist of inequalities used throughout the thesis. The
following is based on, e.g. Bierens (1994), Section 1.4.

F.1 Deterministic Inequalities

(Bernoulli) Let x € R,z > 1 andn € N. Then
(1+2)" > 1+ nx, (C1)

with the inequality being sharp for z 4 0 and n > 1.

(Triangle) Let 2,y € C. Then

2] = Jy| < |z £y| < x| + |yl (C12)

F.2 Stochastic Inequalities

(Chebyshev) Let X be anon-negative random variable with afinite mean ;. and

finite variance 0% . Thenforany e € R, > 0

P <|X — pix| >4/ %) <e. (C.2.3)

(Holder) Let X and Y berandom variablesandletp,q € R, p > 1, %Jré = 1.
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Then
E(XY]) < [E(XP)7 [E(Y]9)]. (C.24)

(Cauchy-Schwartz) For p = ¢ = 2, we have

E(IXY]) < /B (XP)E (V). (C.2.5)
(Lyapunov) For Y = 1 we havefor p > 1
E(|X]) < [E(XP)). (C.26)
(Minkowski) If for somep > 1, E (| X[*) < oo and E ([Y|?) < oo, then
E(X +Y|) <[E(XP)? BV (C27)

(Jensen) Let X bearandom variableand f : D C R — R be a convex real
function. Then

FIEX)] < E[f(X)]. (C.2.8)

Observe that by selecting the random variables to be constants, the above in-
equalities can be applied in the deterministic case as well.
Since the mean of afinite number of non-random variablesin R may be con-

sidered as mathematical expectations, it follows from Holder’s inequality that for
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real numbers z;, v;, p > 1, % + é =1

< (Zin; |$i|p)

Similarly from Lyapunov’s inequality (or by selecting y; = 1 in the above):

3 =

(Z |yi|‘I> : (C29
i=1

m
E T;Yi
i=1

m p

>

i=1

<mP Y wl”, p> 1 (C.2.10)

i=1

Finally, by Minkowski’s inequality

=1

; §<Z|a:i!”> +<Z’yi‘q) : (C.2.11)
i—1

Noteif z; and y; are random variables, then the last three inequalities hold for
al their realizations. As a result, we can apply these inequalities also in cases

where z; and y; are stochastic. The same holds for the triangle inequality.
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