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In this work we build on the idea of using Bluetooth sensors as a new intelli-

gent transportation system application of estimating travel time along a section of a

highway. Given the existence of High Occupancy Vehicle (HOV) lanes and Express

lanes in the U.S highway network, a mixed population estimation problem naturally

arises. This estimation problem is attacked from three different perspectives: (i) in

light of the Expectation Maximization (EM) algorithm, (ii) using Maximum Like-

lihood Estimation (MLE) techniques and finally (iii) applying a cluster-separation

approach to our mixed dataset.

The robust performance of the first approach leads to an EM-inspired MLE

technique, a hybrid of (i) and (ii) which combines the good estimation accuracy of

EM based algorithms and the lower complexity of MLE techniques. The limitations

and performance of all four approaches are tested on actual vehicular data on dif-

ferent highway segments in two different U.S states. The superiority of the hybrid

approach is shown along with it’s limitations.
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Chapter 1

Introduction

One of the goals an Intelligent Transportation System (ITS) is called to ac-

complish is to reduce traffic congestion and it’s impacts such as air pollution and

noise. As cited in [1], congestion has increased dramatically during the past 20 years

in the 85 largest U.S. cities. Investing in road infrastructure is expensive, which may

not even be an option in some areas where land is limited. Therefore making the

current highway system more efficient is of great importance in today’s society.

An important parameter considered in an ITS is the time a vehicle travels a

given highway segment. Our work builds on a novel travel time data collection

method using the Bluetooth technology covered in [1]. The idea is illustrated in Fig-

ure 1.1 where two Bluetooth detectors are placed along a specific highway segment.

Chapter 3 will explore in more detail three different segments where such detectors

are installed and operated in two states, New Jersey and Delaware. Figures 1.2 and

1.3 show a typical dataset of vehicles travelling on a New Jersey highway segment

along with its corresponding speed histogram.

1



Haghani, Hamedi, Sadabadi, Young, and Tarnoff 61

devices will be transmitting inquiries as long as they have their
discovery mode enabled.

In principle, the Bluetooth traffic monitoring system calculates
travel times by matching public Bluetooth wireless network IDs at
successive detection stations. The time difference of the ID matches
provides a measure of travel time and space mean speed based on the
distance between the successive stations as demonstrated in Figure 1.

Sampling Error Analysis

As it was explained, the Bluetooth receiver can pick up signals any-
where within a 300-ft radius around the sensor. Having two sensors
at both ends of a freeway segment implies that in the resulting travel
time samples obtained using this technology, one might expect to
see errors caused by a maximum of 600-ft error in the length trav-
eled (L). It can be shown that the maximum error in the speed esti-
mates resulting from local inaccuracies in readings at each sensor is
a function of the coverage radius of the sensor (R), the average speed
of the traffic (S), error in travel time estimate (ΔTmin), and the actual
travel time between a pair of sensors (T ).

Equations 1 and 2 show the relationship between the traveled length
and the average speed and travel time when accurate and inaccurate
values for each of these parameters are used, respectively. Equation 3
is derived by subtracting Equation 1 from Equation 2.

Equation 3 can be rearranged to obtain the statement for error in
speed estimate shown in Equation 4.

With the distance error set at its maximum possible level (ΔLmax =
2R = 600 ft) and with the smallest possible time error equal to the
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scan period of the sensor (ΔTmin = 5 sec), an upper bound for the
error in speed estimate can be obtained. Equations 5 and 6 can be
directly used to estimate the maximum error in speed estimate.

Figures 2 and 3 show the changes in maximum possible errors
in speed estimates at different speeds and over segments from 0.5 mi
to 3 mi long. It can be observed from both figures that in general
the maximum error in speed estimate will be less on longer seg-
ments. In a 1-mi segment the error will be less than 2.5 mph in all
different speed levels. Hence, using Bluetooth sensors on free-
way segments less than 1 mi may deteriorate the quality of travel
time estimates. Also, it should be noted that in Figure 2 at every
given length the maximum possible error first increases with
speed from 15 to 45 mph and then it starts to decrease as speed
goes beyond the 45-mph threshold as shown in Figure 3. This in
fact is the result of the nonlinear relationship between the maxi-
mum possible error in speed measurements and the actual speed
of the observed vehicles as described by Equation 6. Therefore,
in Figures 2 and 3 the curves representing the maximum possible
speed errors at speed ranges below and over 45 mph are separated
from each other.

These errors are the maximum for a single Bluetooth device. 
In practice, data from multiple Bluetooth detections are statisti-
cally combined (as described herein) to obtain highly accurate
estimates of ground truth travel time. As these errors are indepen-
dent and identically distributed, statistical averages tend to can-
cel the errors. As the segment length grows shorter, the dispersion
about the mean becomes greater as a result of the errors contribu-
tions described above. It must be noted that a MAC address could
be detected multiple times by each sensor in a short time period.

ΔS
S

L

S

mph
mph

mile

m

[ ] ≤
− ( )( ) [ ]

( ) [ ]
600 1 47 5

3 600

.

,
pph[ ] +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

÷
5

1 47 6. ( )

Δ Δ Δ
Δ

S
L S T

T T
≤ − ×

+
max min

min

( )5

2 miles

Bluetooth
Detectors

Bluetooth
Signal

Time = 8:04:26 AM

Time = 8:06:58 AM

Travel Time = 2:32 Minutes
Speed          = 47.4 MPH

FIGURE 1 Bluetooth traffic monitoring operation concept.

Figure 1.1: Bluetooth devices detection concept. Given the known distance between

two detectors and the exact times they were scanned by each one, we can calculate

the average speed that a vehicle travelled between them.

1.1 Bluetooth scanning limitations

The authors in [1] observe that on average, the Bluetooth sensors sample be-

tween 2.0% and 3.4% of the vehicles travelling through a specific highway segment.

In addition lane-by-lane vehicle detections are not available using the current tech-

nology. Also for best performance the sensors must be deployed on highway segments

that are at least 1 mi long. Keeping in mind that a Bluetooth sensor can have a

scanning radius of 300-ft, careful placement of these sensors away from parallel seg-

ments is recommended. Finally as emphasized in [1], a mixture of local and express

lanes (or HOV lanes), complicates the estimation of the correct travel time as the

underlying dataset comprises of more that one classes of vehicles. Such phenomena

could arise when a rest area, gas station, or a toll plaza, exist between two sensors.

In this case some vehicles may show larger than normal travel times. An example of
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Figure 1.2: A NJ highway segment traffic from 00:00 to 23:55 along with the number

of Bluetooth-devices equipped vehicles over time. We can see here the almost no

traffic midnight to 4am time period along with the rush hour periods around 7:30am

and 4:30pm. This data set consists of almost 1500 data points.
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Figure 1.3: Speed histogram (speed vs number of vehicles) and Normalized speed

histogram (Empirical pdf) for the dataset above in blue color. Different distribution

fitting techniques will be covered in the subsequent chapters.

4



a dataset containing a toll plaza is covered in Chapter 3 where different approaches

are taken to estimate the parameters of each underlying population.

In the following chapters we will try to estimate the underlying traffic speed

distribution not only in simple scenarios but also in complicated ones involving

express lanes and a toll plaza. Specifically, Chapter 2 will lay down the theo-

retical foundation we will use in our simulations. Maximum likelihood parameter

estimation will be covered along with a simple application. Also the Expectation

Maximization (EM) algorithm will be introduced and applied in a simple pattern

recognition problem. Finally Chapter 3 will explore our simulations on real-life

Bluetooth generated traffic measurements applying the methodology described in

Chapter 2. Chapter 4 will summarize and conclude our work.
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Chapter 2

Parameter Estimation

In this chapter we describe a popular method (Maximum Likelihood Estima-

tion) for estimating the parameters of a probability density function and apply it on

a simple example. Next we describe an algorithm (EM algorithm) that solves this

estimation problem (in most cases) but under more complicated scenarios includ-

ing: incomplete (or unobserved) data problems, problems dealing with truncated

distributions and as we will see in Chapter 3, problems involving finite mixtures of

distributions. This will be our theoretical ground on which our simulations in the

next chapter will be based.

2.1 Maximum-Likelihood Estimation

Maximum Likelihood (ML) estimation is a method for estimating the parame-

ters of a probability density function given a set of observed data that were generated

from it. Let θ = [θ1, θ2, ..., θr]
T be the unknown parameters of a distribution func-

tion f(x1, ...xn; θ), n ∈ N+ corresponding to n random variables X1, ...Xn. Given a

realization x1, ...xn of these random variables, the key idea behind ML estimation

is to find the parameter set θ for which the observed outcomes x1, ...xn are most

probable. Viewing f(x1, ...xn; θ) as a function of the unknown parameter set θ with

the observations x1, ...xn fixed, can help us meet our goal. The latter is called the

6



likelihood function corresponding to f(x1, ...xn; θ) and is denoted by L(θ). There-

fore our maximum likelihood estimate θML is given as the solution to the following

problem:

θML = arg max
θ
{L(θ)} = arg max

θ
{f(x1, ...xn; θ)} (2.1)

In many cases dealing with the logarithm (a monotonically increasing function)

of our likelihood functions is an equivalent approach to maximizing our original

likelihood function which simplifies the problem to some extent. Therefore we in-

troduce the log-likelihood function corresponding to f(x1, ...xn; θ) which we denote

by LL(θ) = log(f(x1, ...xn; θ)). Under the constraint that LL(θ) is a differentiable

function of its parameter θ that also attains its maximum value, a necessary condi-

tion to maximizing our (log) likelihood function is the following: its gradient with

respect to our parameter set diminishes at the value of θ that is the maximum

likelihood value. Therefore a necessary condition that a solution of (2.1) satisfies is:

∇θL(θ)|θ=θML
= 0 = ∇θLL(θ)|θ=θML

(2.2)

where

∇θ =



ϑ
ϑθ1

ϑ
ϑθ2

...

ϑ
ϑθr


is the gradient vector with respect to our parameter set θ = [θ1, θ2, ..., θr]

T . Equation

(2.2) is also known as the log-likelihood equation.
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For more applications of the MLE Method including its rich theory the reader

is encouraged to consult texts such as [3, 4]

2.1.1 Application

Let’s look at a simple application of the Maximum Likelihood Method related

to the estimation of the mean µ and variance σ2 of a normal distribution N(µ, σ2)

with probability density function:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.3)

Let’s assume that we are dealing with n independent and identically distributed

(i.i.d) ∼ N(µ, σ2) random variables having a joint probability density function:

f(x1, ..., xn) =
n∏
i=1

f(xi) = (
1

2πσ2
)
n
2 e
−

n∑
i=1

(x−µ)2

2σ2 (2.4)

The log-likelihood function which is a function of µ and σ2 only, in this case takes

the form:

LL(µ, σ2) = log

(
(

1

2πσ2
)
n
2 e
−

n∑
i=1

(x−µ)2

2σ2

)
(2.5)

Using the sample mean x̄ =
n∑
i=1

xi
n

the equation above takes the alternative form:

LL(µ, σ2) =

(
− n

2
log(2πσ2)−

n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

2σ2

)
(2.6)

In this simple i.i.d example it is possible to maximize the log-likelihood function for

8



µ and σ2 independently. Maximizing for µ we have that it’s maximum likelihood

estimator (MLE) µ̂ is:

0 =
ϑLL(µ, σ2)

ϑµ
=

ϑ

ϑµ

(
−

n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

2σ2

)
=

2n(x̄− µ)

2σ2
⇒ µ̂ =

n∑
i=1

xi
n

= x̄

(2.7)

Since ϑLL2(µ,σ2)
ϑµ2

= − n
σ2 < 0, the above value for µ is indeed a maximum for this

log-likelihood function. Also calculating it’s mean and having in mind (2.3)

E[µ̂] = E[
n∑
i=1

xi
n

] =

n∑
i=1

E[xi]

n
=
nµ

n
= µ (2.8)

we see that µ̂ is an unbiased estimator.

Similarly finding σ̂2 the MLE of the variance σ2 we obtain:

0 =
ϑLL(µ, σ2)

ϑσ2
=

ϑ

ϑσ2

(
− n

2
log(2πσ2)−

n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

2σ2

)
=

(2.9)

=
ϑ

ϑσ2

(
− n

2
log(2πσ2)−

n∑
i=1

(x− µ)2

2σ2

)
= −n

σ
+

n∑
i=1

(x− µ)2

σ3
⇒ σ̂2 =

n∑
i=1

(x− µ)2

n

Since µ is one of the unknown parameters, we can use µ̂ in it’s place, the MLE of µ

that we found above. Equation (2.9) then becomes: σ̂2 =
n∑
i=1

(x−µ̂)2
n

also known as

the sample variance of our data x1, ..., xn. Finally, it is not too difficult to calculate

the expected value of σ̂2 which turns out to be: E[µ̂] = n−1
n
σ2 which makes it a

biased maximum likelihood estimator. Asymptotically though σ̂2 is unbiased since:

limn→∞E[µ̂] = σ2.

9



2.2 Expectation Maximization

As we mentioned in section 2.1, under complicated scenarios, including par-

tially observed data or mixtures of distributions, maximum likelihood estimation

becomes intractable. For example, the log-likelihood equation (2.2) may not be

solvable in a closed form. In such situations the Expectation Maximization (EM)

algorithm can be applied. As its name suggests, the EM algorithm consists of

two steps: (i) an expectation with respect to the unknown underlying variables

conditioned on the observed data while using the current parameters estimates of

the underlying distribution and (ii) a maximization step updating the parameter

estimates. Steps (i) and (ii) are alternated until convergence is achieved.

This algorithm in its various instances was discovered and applied indepen-

dently by several researchers until Dempster, Laird and Rubin [5] organized this

approach, proved its convergence and introduced the term ”EM algorithm”. Af-

ter this work, numerous publications applying this algorithm were published in a

variety of scientific fields including genetics, econometrics, medicine, sociology and

engineering to name a few. It’s also used in tomographic image reconstruction,

speech recognition, neural network training, active noise cancellation and multi-

user spread-spectrum communications [8]. Next we describe the EM algorithm and

in the next section we will apply it to a simple mixed populations example. Finally

in Chapter 4 we will use it in a real-life estimation problem to statistically ”sepa-

rate” two or more mixed populations of vehicles that are equipped with Bluetooth

devices.

10



2.2.1 The Algorithm

Let y ∈ Rm denote our observed data set coming from an observation space Y .

Let x ∈ Rn denote the (augmented) complete data set coming from an observation

space X with m < n. In this context, we assume that x is not fully observable in the

sense that only the image of a many to one mapping y(x) of this data set, namely

y = y(x) , is available to us. In this case an observation y determines a subset of

the complete observation space X which we denote by X(y). (For example we may

be told that a total sum of 10 individuals participated in a survey (the mapping

here being the sum operator) whereas the complete data is that 6 men and 4 women

completed the survey. Clearly there are many combinations of men and women that

could comprise 10 individuals but we only get to observe their total number.)

X Y

X(y)

x y=y(x)

Figure 2.1: A depiction of a many to one mapping from X to Y .

Let θ ∈ Θ ⊂ Rr be our set of unknown parameters ”shaping” the probability density

function f(x; θ) of the complete data x. For our purpose we will assume that f(x; θ)

is a differentiable function in the parameter set θ and that the maximum likelihood

estimate of θ lies inside our parameter space Θ (note that these are the exact same

11



assumptions we had for the likelihood equation (2.2) to have a solution). The

probability density function (pdf) of the incomplete data y is:

g(y; θ) =

∫
X(y)

f(x; θ)dx (2.10)

Following the notation we introduced in section 2.1 the likelihood function of the

incomplete data y is:

L(θ) = g(y; θ)

and the log-likelihood function is:

LL(θ) = log(g(y; θ))

Under a maximum likelihood approach we would try to find a parameter set θ that

maximizes the log-likelihood function log(f(x; θ)) of the complete data. However

we do not have full knowledge of the complete data x. The EM algorithm offers

a different approach. It maximizes the expected value of log(f(x; θ)) given the

observed (incomplete) data y and the current estimate of the parameter set θ. This

is achieved in two steps. Denoting by θ[k] our estimate of the parameter θ at the kth

iteration, we first compute the following E-step:

Q(θ; θ[k]) = E[log(f(x; θ))|y, θ[k]] (2.11)

This step is followed by the M-step which updates θ[k+1] as the value of θ that

maximizes Q(θ; θ[k]):

θ[k+1] = arg max
θ
{Q(θ; θ[k])} (2.12)

Note that in (2.11) the second argument of Q(θ; θ[k]) is conditioned and is therefore

fixed and known during the E-step whereas the first argument, θ, is the currently

12



unknown parameter set shaping the log-likelihood function log(f(x; θ)). Choosing

an initial value for θ[k] and calculating the E-step and M-step successively one after

the other until either the parameter updates θ[k] cease changing or the Q(θ; θ[k])

function used in the E-step stops changing, constitute the EM algorithm. That is

the E-step and the M-step follow one another until ‖θ[k] − θ[k−1]‖ < ε or

‖Q(θ; θ[k])−Q(θ; θ[k−1]) < δ‖ for some relatively small positive quantities ε or δ and

an appropriate distance measure ‖.‖.

2.2.2 On the convergence of the EM algorithm

In their work [5], Dempster, Laird and Rubin showed that at every iteration,

the EM algorithm computes a value of the parameter θ such that the likelihood func-

tion does not decrease. However there is no guarantee that the likelihood function

will reach a global maximum. For a function with local maxima, the convergence

will be towards a local maximum depending on the initial value of the parameter

θ[0]. This interesting feature of the algorithm will also be met in Chapter 3 where

different (random) starting points for the parameters, will produce different results

in their final estimates. Another empirically observed feature of the EM algorithm

is its fast initial convergence towards a local maximum of the likelihood function

followed by a slow update of the current parameter estimates. This will also be

observed in the next section where we apply the algorithm to a simple mixed popu-

lations problem. Finally it should be noted that the EM algorithm offers some ad-

vantages over Newton-type likelihood optimization algorithms. There is no need to

13



compute gradients or Hessian matrices with respect to our parameters. This is par-

ticularly important when an algorithm is simulated on a modern computer where in

many cases gradient-free algorithms avoid computation instabilities present in other

gradient-based algorithms. Also there is a guarantee that the EM algorithm will

not ”overshoot” a local maximum of its likelihood function. For more information

on the EM algorithm covering its theory and many of its interesting applications

the reader is encouraged to consult texts such as [5, 6, 7, 8].

14



2.2.3 Application

In this section we consider a pattern recognition problem where two main

classes (or populations) can be detected: a class of dark objects and a class of light

objects. Additionally the class of dark objects consists of two subclasses: a class

of round objects and a class of a square objects. Assume it has been observed

that from a set of samples,
1

4
of them contain round dark objects,

1

4
+
p

4
contain

square dark objects and the rest
1

2
− p

4
of them contain light objects. Given a

partially observed data set (or samples each one containing exactly 1 of the 3 different

objects mentioned above) the goal is to estimate the parameter p, i.e to estimate the

proportions of each of the three classes present in the given data set. By partially

observed we mean a scenario where for example our pattern detector recognized

a specific number of dark objects and a specific number of light objects. It was

unable however to recognize the 2 differently shaped objects inside the dark objects’

population.

Formally, let X1 , X2, X3 be random variables representing the number of

round dark objects, square dark objects and light objects respectively, present in

a sample of size n. Let x = [x1, x2, x3]
T be the number of objects observed in a

specific experiment where x1 + x2 + x3 = n. Assume we know the joint probability

mass function (pmf) of X1 , X2, X3 to be multinomial with:

P (X1 = x1, X2 = x2, X3 = x3|p) =

(
n!

x1!x2!x3!

)(
1

4

)x1(1

4
+
p

4

)x2(1

2
− p

4

)x3
= f(x1, x2, x3|p)

(2.13)
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where p is an unknown parameter between -1 and 2. Given the incomplete (or

partially observed) data vector y = [y1, y2]
T where y1 = x1 +x2 (with corresponding

random variable Y1) represents the total number of dark objects and y2 = x3 (with

corresponding random variable Y2) the number of light objects, we would like to

estimate the unknown parameter p which would shed more light on the underlying

proportions of each of the three different classes. We can see that y1 = x1 + x2 is

an example of a many to one mapping since different combinations of x1 and x2

can produce the same total number of dark objects y1 (see section 2.2.1). From

Appendix A, we have that:

P (Y1 = y1|p) =

(
n

y1

)(
1

2
+
p

4

)y1(1

2
− p

4

)n−y1
= g(y1|p) (2.14)

where n− y1 = x3 and g(y1|p) is the pmf of the incomplete (observed) data y.

As we mentioned in section 2.2.1, the lack of knowledge of x1 and x2 is circumvented

in the EM algorithm at the E-step by averaging over them, using the complete data

log likelihood function LL(p) = logf(x1, x2, x3|p). From (2.13) we see that:

LL(p) = log

(
n!

x1!x2!x3!

)
+ x1log

(
1

4

)
+ x2log

(
1

4
+
p

4

)
+ x3log

(
1

2
− p

4

)
(2.15)

We can see that the dynamics of (2.15) are not affected by the first (unknown)

constant term, but only by x1 and x2. Assigning to p an initial value p[0], and

computing the expected value of x1 given the observation y1 = x1 + x2 and the

current estimate of our parameter p[0] we obtain (see Appendix A):
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E[LL(p[0])|y1, p[0]]

= E

[
log

(
n!

x1!x2!x3!

)
+ x1log

(
1
4

)
+ x2log

(
1
4

+ p[0]

4

)
+ x3log

(
1
2
− p[0]

4

)
|y1, p[0]

]
= log

(
n!

x1!x2!x3!

)
+ x

[1]
1 log

(
1
4

)
+ x

[1]
2 log

(
1
4

+ p[0]

4

)
+ x3log

(
1
2
− p[0]

4

)

where

x
[1]
1 = E[x1|y1, p[0]] = y1

1
4

1
2

+ p[0]

4

x
[1]
2 = E[x2|y1, p[0]] = y1

1
4

+ p[0]

4

1
2

+ p[0]

4

In this example x3 is known and does not need to be updated. Assuming that after

k iterations the current value for p is p[k], these two equations inform us how the

expected value of LL(p[k]) in (2.15) will evolve (apart from the parameter-free term).

After k iterations they become:

x
[k+1]
1 = E[x1|y1, p[k]] = y1

1
4

1
2

+ p[k]

4

(2.16)

x
[k+1]
2 = E[x2|y1, p[k]] = y1

1
4

+ p[k]

4

1
2

+ p[k]

4

(2.17)

Equations (2.16) and (2.17) constitute the E-step of the algorithm. The next step

of the algorithm is the M-step (2.12) where we maximize E

[
logf(x1, x2, x3|p)

]
17



over p. Since this expression is linear in x1 and x2 with E[x1|y1, p[k]] = x
[k+1]
1 and

E[x2|y1, p[k]] = x
[k+1]
2 we have that:

0 =
d

dp
E

[
logf(x1, x2, x3|p)

]
=

d

dp
logf(x

[k+1]
1 , x

[k+1]
2 , x3|p)

⇒ 0 =
x
[k+1]
2

1
4

+ p
4

(
1

4
) +

x3
1
2
− p

4

(
1

4
)

⇒ 0 =
x
[k+1]
2

1 + p
− x3

2− p
⇒ x3 + px3 = 2x

[k+1]
2 − px[k+1]

2

⇒ p = p[k+1] =
2x

[k+1]
2 − x3

x
[k+1]
2 + x3

(2.18)

Note that x
[k+1]
1 is not used in p[k+1]. Thus the EM algorithm consists of continually

going over (2.17) and (2.18) until convergence of p[k] is achieved. In this example

we can merge the two steps of the algorithm in one by substituting our estimate for

x
[k+1]
2 in p[k+1]. Therefore the final iterative algorithm consists of just the following

step where given an initial estimate for p[0] we obtain:

p[k+1] =
p[k](2y1 − x3) + 2y1 − 2x3
p[k](y1 + x3) + y1 + 2x3

(2.19)

We now draw 100 samples with true parameter p = 0.5 and population sizes x1 =

25, x2 = 38 and x3 = 100 − x1 − x2 = 37. We supply the EM algorithm with the

incomplete data y1 = x1 + x2 = 63 and x3 = 37 and an initial value for p, p[0] = 0.

In table 3.1 we see the algorithm’s parameter updates after 10 and also after 40
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Table 2.1: Parameter estimate updates for the multinomial example using the EM

algorithm

Iteration k Parameter p[k]

0 0

1 0.3795620

2 0.4902999

3 0.5140928

4 0.5188399

5 0.5197727

6 0.5199555

7 0.5199912

8 0.5199982

9 0.5199996

10 0.5199999

iterations. We see that it converges to a value very close to the true parameter

(0.5). As we mentioned in section 2.2.2 under the convergence of the algorithm,

we observe EM’s fast initial convergence towards a local maximum of the likelihood

function, which in this case is the only global maximum, followed by a slow update

of the parameter estimates.
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Figure 2.2: Parameter estimates for 10 iterations.
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Figure 2.3: Parameter estimates for 40 iterations.
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Chapter 3

Simulations

In this chapter we use the rich theory of Maximum Likelihood Estimation and

EM algorithm we covered in Chapter 2 to solve the problem we originally described

in Chapter 1. Towards this direction and given our real-life Bluetooth generated

data we use the powerful statistical toolbox that the scientific software package

Matlab R© offers [9]. The exact location of our Bluetooth sensors and the highway

segments we are interested in are depicted using the Google Earth R© geographical

information software [10] along with Google Maps R© [11].

3.1 Graphical User Interface

In Figure 3.1 we see a screenshot of the Graphical User Interface (GUI) we

built to so solve our original mixed populations problem. It consists of a group

of buttons related to two different populations and some common data processing

buttons. Specifically, under the Population 1 tag, we see two drop-down menus that

give the user the option to choose a specific highway segment either from the NJ

dataset or DE dataset. From these menus the user is also given the option to view

the traffic on a segment during a day or during a longer time period between 6 to 10

days. For example in the current screenshot we have selected segment NJ08-0008

and day 25 of April 2011 from the NJ dataset. Under the two drop-down menus we
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see two input boxes accepting the time duration of the segment we selected above.

Here we want to look at the traffic of the segment we just selected from midnight

(Begin Time=00:00 ) till 23:55 (End Time) or 11:55pm of April 25th, i.e over a period

of almost 24 hours. These same options are also provided for a second population

which in section 3.2 will be (artificially) mixed with the first population. Under

this group of buttons there is another drop-down menu used to see if a probability

density function of our choice, with parameters to be estimated using the MLE

method, including the Normal, Gamma and Weibull distributions, best describe

the speed distribution of our data (see Appendix A). Below it, there is a Close All

Graphs button. Finally, the remaining buttons, Plot & Fit, Run EM algorithm and

Fit Mixed PDFs, hide the core of our simulations and their results will be covered

in the next section.

Figure 3.1: Our Graphical User Interface.
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3.2 Artificially mixed data

In this section we provide our results of mixed populations speed distribution

estimation for 3 scenarios: (i) considering only one simple (non-mixed) dataset and

(ii) moderately mixing two different vehicle populations corresponding to different

highway segments and time of observation and (iii) significantly mixing two popula-

tions. Most of our comments here will be under the corresponding graph. Our final

holistic conclusions will be discussed in Chapter 4. Finally, Appendix A covers the

three probability distributions that we use in this section.

3.2.1 Simple dataset

In this subsection we visualize the highway segment (NJ08-0008 on April 25 i.e

NJ08-0008-25 ) we will be looking at along with our estimation results corresponding

to this segment. The typical set of 4 graphs (Figures 3.5 to 3.8) is introduced and

briefly commented.
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Figure 3.2: The 1.4 miles long NJ08-0008 segment. Vehicles are scanned at points

A and B and only those passing by point B after point A are considered. As we will

se later, a vehicle appearing to travel with a speed close to 0 mph is almost surely a

result of an incorrect sensor detection where a vehicle is passing by the sensors on

different days but is not getting recorded every time due to hardware limitations.

Figure 3.3: The NJ08-0008 segment where we can see a set of two directional lanes,

each comprised of regular and express lanes.

24



Figure 3.4: The NJ08-0008 segment from a vehicle’s perspective where we can see

the regular (right) and express (current) lanes.
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Figure 3.5: The NJ08-0008-25 segment’s data from 00:00 to 23:55 along with the

number of Bluetooth-devices equipped vehicles over time. We can see here the almost

no traffic midnight to 4am time period along with the rush hour periods around

7:30am and 4:30pm. This data set consists of almost 1500 (1498) data points.

Note the existence of a few very low speed data points around the midnight

period (see also Figure 3.2). As we will see, these two parameters, among others, will

prove to be critical in the performance of the MLE method and the EM estimation

algorithm.
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Figure 3.6: Speed histogram (speed vs number of vehicles) and Normalized speed

histogram (Empirical pdf) for the NJ08-0008-25 00:00-23:55 dataset in blue color.

In red we plot the MLE-fitted distribution we choose in our GUI, in this case the

normal pdf.
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In Figure 3.7 we try to model the speed distribution (empirical pdf) we ob-

tained in Figure 3.6 as a mixture of two normally distributed distributions of the

form p1N(µ1, σ
2
1) + p2N(µ2, σ

2
2) (see Appendix A). The unknown parameters in this

case are: p1, µ1, σ
2
1, µ2, σ

2
2 with p2 = 1 − p1. The legend of the first (top) graph

of Figure 3.7 and Table 3.1 provide these EM estimates. The sample average of

our dataset is 64.49 mph and we can see that the EM algorithm estimated our

empirical pdf as a 99.8% mixture of a N(64.62, 38.1) along with a 0.2% mixture

of a N(3.33, 21.9) distribution function. As we commented in Figures 3.2 and 3.5,

the EM algorithm is using the extra degree of freedom of having the possibility

to estimate two populations in this seemingly one population dataset, to return us

two estimates. One corresponding to the main population (N(64.62, 38.1)) and one

describing the very low speed data points present in our data. The third graph of

Figure 3.7 uses the estimates returned by the EM algorithm to separate our orig-

inal dataset into two populations. This just an another interpretation of the EM

found results from a clustering separation point of view as the underlying original

population is separated into a large (colored with blue) population and a small one

(in red) with proportions and means the same as the estimates of the EM algorithm.

Finally we also try to separate our original dataset into two subsets using a classical

K-Means clustering approach. In our case two populations were extracted (in red

and blue respectively) with proportions 57.44%, 42.25% and averages 68.8, 58.6.
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Figure 3.7: Empirical density function fitting as a mixture (in purple) of two normal

probability density function (in red and blue) using the EM algorithm for the NJ08-

0008-25 00:00-23:55 dataset (labeled ”Original data”).
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Table 3.1: Population results for the NJ08-0008-25 dataset.

Component 1 Results Component 2 Results

EM algorithm EM algorithm

Mixing proportion 0.002003 Mixing proportion 0.997997

Mean 3.330862 Mean 64.620082

Variance 21.918240 Variance 38.186087

EM-based clustering EM-based clustering

Mixing proportion 0.002003 Mixing proportion 0.997997

Mean 3.330862 Mean 64.620082

K-Means clustering K-Means clustering

Mixing proportion 0.422563 Mixing proportion 0.577437

Mean 58.616535 Mean 68.800865

Finally, Figure 3.8 provides the mixed distribution parameters we seek for

along with the average speed of each sub-population. One important question that

arises in mixed distributions problems is how do we determine the number of

components present in a mixed dataset. In other words how do we know that a 2

population or a higher population model is in fact accurate. Luckily for us, in the

statistical literature, a widely used criterion is available, the Akaike Information

Criterion (AIC). It is equal to 2m− 2log(L), where m is the number of estimated

parameters and L is the maximized value of the likelihood function for our estimated
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model. A model with the minimum AIC value is considered as a better model

compared to another one with a higher AIC value. The first term serves as a

penalty term for the number of estimated parameters. The bottom graph of Figure

3.8 runs the EM algorithm for a mixture of Gaussian probability functions with

more than 2 components. The model with the lowest AIC value (available in the

legend) is considered as an appropriate model for our dataset. Table 3.2 provides

the proportion estimates as well as the average speed of each component based on

the EM algorithm parameter estimates. Note the existence of a very low speed

population (mean speed is 3 mph and proportion about 0.2%) which is basically

an overestimate of the ”noise” present in our data. Populations with such low

proportions and low speeds should not be considered valid in our application. Their

removal will not affect our parameter estimates found by the EM algorithm or the

MLE method. As we will see in the next section, looking for a higher component

model gives more freedom to the EM algorithm even though few of the estimated

populations may be of the this unrealistic nature. Once the algorithm has detected

the main components in a mixed data set, in most cases these populations can safely

be ignored.
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Figure 3.8: Mixed distribution estimation of the NJ08-0008-25 dataset using: (i)

the EM algorithm (-*- label) and (ii) Maximum Likelihood Estimation using the

mean values found by the EM algorithm as input in estimating the parameters of

each density mixture. The latter is called a Hybrid approach (– label). All of

our simulations confirmed the superiority of this approach over a pure MLE method

starting with random parameter estimates. Appendix A gives the relation between

the parameters of a pdf and it’s expected value. MLE methods have the advantage

of estimating almost any mixture of pdfs in a less complex way compared to EM.
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Table 3.2: Population results for the NJ08-0008-25 dataset.

Field Component 1 Component 2 Component 3 Component 4

Mean 3.3309 64.6201

Variance 21.9182 38.1861

Mixing proportion 0.0020 0.9980

Mean 63.3482 3.3309 66.3497

Variance 34.6412 21.9182 37.8151

Mixing proportion 0.5751 0.0020 0.4229

Mean 68.0003 62.8335 3.3309 65.3329

Variance 31.6268 32.5513 21.9182 38.5074

Mixing proportion 0.1902 0.4876 0.0020 0.3201
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3.2.2 Moderately mixing two different populations

In this section we artificially mix the NJ08-0008-25 dataset we saw in the

previous section with a new one. We randomly picked the NJ08-0004 dataset,

depicted in Figures 3.9 and 3.10, and looked at it’s traffic on April 21st between 17:00

and 19:30 (Figures 3.11 and 3.12). The new dataset comprises of the data points

belonging to these two populations after the speed of NJ08-0004 set is increased

and it’s variance decreased. The ideas behind these two steps is that after them,

the new population would look more like an HOV lane population (having reduced

size and variance and also higher speed per data point).
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Figure 3.9: The NJ08-0004 highway segment from point A to B.

Figure 3.10: The NJ08-0004 highway segment where we can see an express lane

(current) and a local lane (right).
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Figure 3.11: The NJ08-0004-21 17:00-19:30 data set
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IAT, mean=142.8934

Figure 3.12: Speed distribution of the NJ08-0004-21 17:00-19:30 data set
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Figure 3.13: Empirical density function fitting as a mixture of two normal pdfs (in

red and blue) using the EM algorithm for the NJ08-0008-25 00:00-23:55 dataset with

the NJ08-0004-21 17:00-19:30 set whose speed is increased and variance decreased.

There is a clear separation of the two underlying populations around the value of

75 mph. The exact component populations are shown in the middle graph of

Figure 3.14, namely a 76.7% population (corresponding to 632 points of the NJ08-

0008-25 set) with mean speed 65.1 mph and a 23.4% population (191/823) with

mean speed 79.3 mph (corresponding to the ”shifted” 191 points of the second set).
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Table 3.3: Population results for the moderately mixed NJ08-0008-25 and NJ08-

0004-21 dataset.

Component 1 Results Component 2 Results

EM algorithm EM algorithm

Mixing proportion 0.003645 Mixing proportion 0.996355

Mean 3.330862 Mean 68.701784

Variance 21.918240 Variance 64.216553

EM-based clustering EM-based clustering

Mixing proportion 0.003645 Mixing proportion 0.996355

Mean 3.330862 Mean 68.701784

K-Means clustering K-Means clustering

Mixing proportion 0.392467 Mixing proportion 0.607533

Mean 76.916982 Mean 63.002540
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Figure 3.14: Parameter (and consequently probability density function) estimation

using the EM algorithm (EM Gaussian Mix) and our EM-based MLE approach (the

rest of the distributions) for the NJ08-0008-25 and NJ08-0004-21 dataset. Note the

role the constraint of affording only two components plays. Both approaches use one

of the component to model the very low speed points and the last component to model

the almost clearly mixed 65, 80 mph populations. Using the AIC, a 3 component

model seems better than a 2, 4 or 5 component model (see Table 3.4).
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Table 3.4: Population results for the moderately mixed NJ08-0008-25 and NJ08-

0004-21 dataset. The underlying proportions are (76.7%,23.3%) with correspond-

ing means (65.1, 79.3). Ignoring the ”noisy” small population the 3-component

based EM found (77.8%, 21.8%) with means (65.7,79.3). The higher component

models keep the small population and further divide the large population into

smaller ones using their extra degree of freedom.

Field Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

Mean 65.7158 3.3309 79.3430

Variance 37.9704 21.9182 12.7417

Mixing proportion 0.7780 0.0036 0.2183

Mean 3.3309 65.8517 66.1796 79.8705

Variance 21.9182 50.6822 34.4779 10.4576

Mixing proportion 0.0036 0.2953 0.5105 0.1906

Mean 65.5216 65.6144 80.1693 3.3309 67.7958

Variance 50.0191 35.6384 9.3637 21.9182 38.5419

Mixing proportion 0.2437 0.3270 0.1754 0.0036 0.2503
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3.2.3 Significantly mixing two different populations

Finally, in this section we try to see if by introducing an artificial very clear

distinction in our mixed dataset will result in detection by a 2 component model as

well. Figures 3.15 and 3.16 show that this is indeed the case. The underlying true

”parameters” are (73.9% 26.1%) with means (65.1, 86.6).
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Cluster 1: p1=0.71117 ,Mean=64.6477
Cluster 2: p2=0.28883 ,Mean=85.8851

Figure 3.15: Significantly mixing the NJ08-0008-25 00:00-23:55, NJ08-0004-21

17:00-19:30 datasets by increasing furthermore the speed of the second set before

mixing it with the first one.
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Table 3.5: Population results for the significantly mixed NJ08-0008-25 and NJ08-

0004-21 dataset.

Field Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

Mean 65.7158 3.3309 79.3430

Variance 37.9704 21.9182 12.7417

Mixing proportion 0.7780 0.0036 0.2183

Mean 3.3309 65.8517 66.1796 79.8705

Variance 21.9182 50.6822 34.4779 10.4576

Mixing proportion 0.0036 0.2953 0.5105 0.1906

Mean 65.5216 65.6144 80.1693 3.3309 67.7958

Variance 50.0191 35.6384 9.3637 21.9182 38.5419

Mixing proportion 0.2437 0.3270 0.1754 0.0036 0.2503

43



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

Speed (mph)

Original data.

 

 

Original Mix:p
1
:0.73978, avg:65.1845,86.6939, pop2/pop:191/734

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Speed (mph)

Mixed Distributions

 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Speed (mph)

Mixed Distributions

 

 

3 mode EM:5353.7633,Best Fit
4 mode EM:5356.5601
5 mode EM:5358.349

MLE Gaussian Mix:p
1
:0.43401, avg:65.3002,74.8143

EM Gaussian Mix:p
1
:0.23213, avg:87.08,65.8544

Weibull Mix:p
1
:0.27666, avg:86.0492,64.013

Gamma Mix:p
1
:1.2502e−014, avg:2139.4551,71.4861

Gaussian−Weibull Mix:p
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:0.76233, avg:65.7305,85.8961

Gaussian−Gamma Mix:p
1
:0.76879, avg:65.8745,87.0983

Weibull−Gamma Mix:p
1
:0.73602, avg:64.194,86.6277

Figure 3.16: Notation:F mix:p1, avg:m1,m2 implies a mixture of the form

p1F()+(1-p1)F with p1F having mean m1 and (1-p1)F, m2. Similarly a F-G

mix:p1, avg:m1,m2 implies a mixture of the form p1F()+(1-p1)G with p1F having

mean m1 and (1-p1)G, m2. Only the stared (-*-) normal mixture was found by pure

EM algorithm. The rest rely on the simpler MLE method whose intial parameters

though depend on the results of the EM algorithm (hybrid approach).
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3.3 Naturally mixed data

In this last section we consider a different dataset coming from the state of

Delaware. Figures 3.17-3.18 show the highway segment we are looking at, Figure

3.19 depicts the traffic on this segment over 11 days and Figures 3.20- 3.23 provide

the results of our EM and hybrid estimation approach. This 2.1 miles long highway

segment was observed during the period of late June and beginning of July 2011

including July 5th (dataset DE06-0003-07-05). Note the existence of a toll plaza

in figure 3.18 where vehicles can stop for a while before they are possibly scanned at

the end of our segment. This would make a vehicle appear travelling at a very low

speed. Also vehicles using the cash-free electronic tolling system would travel faster

on average on our segment compared to vehicles waiting in the cash-only lane. This

two reasons could explain the bimodal behaviour we observe in 3.19- 3.23. This is

an interesting naturally mixed dataset and as we can see both our methods seem to

perform really well on (i) capturing the 2 main modes present in our data (Figure

3.23)and (ii) clearly separating them around the 50 mph threshold (3.22).
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Figure 3.17: The DE06-0003 Delaware highway segment from A to B.

Figure 3.18: The toll plaza present in our dataset.
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Figure 3.19: Observed traffic on our segment over 11 days. There is a clear bimodal

trend one around 30 mph and another around 60 mph. Classical unimodal MLE or

EM estimation approaches would perform very bad in this case (e.g Figure 3.21).
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Figure 3.20: The traffic observed during 24 hours on July 5th. The 50 mph thresh-

old seems to separate the two mixed populations. This observation is confirmed in

Figures 3.22 and 3.23.
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Figure 3.21: Clearly the fitting of a unimodal distribution (normal in this case) does

not model at all our mixed dataset.
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Figure 3.22: All three methods (i) EM algorithm (top), (ii) EM-based clustering

and (iii) K-Means clustering (bottom) agree that our set of data is comprised of

one population around 35 mph and another one around 60 mph. Also the 50 mph

threshold seems to separate the two mixed populations in all three cases.
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Figure 3.23: (i) EM algorithm (-*- label) estimation vs EM-based MLE estimation (–

label). The strong bimodal nature present in our data is detected in both approaches.

Also according to the AIC criterion a 2 component model is better than a higher

component one.
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Table 3.6: Population results for the DE06-0003-07-05 dataset.

Field Component 1 Component 2 Component 3 Component 4

Mean 35.5215 60.5870

Variance 60.1178 24.5046

Mixing proportion 0.4593 0.5407

Mean 60.5808 35.0181 36.0860

Variance 24.5574 58.6164 60.9669

Mixing proportion 0.5411 0.2474 0.2115

Mean 58.6424 37.9236 34.3960 63.0477

Variance 15.8608 51.2250 61.3987 22.1922

Mixing proportion 0.2902 0.1591 0.3036 0.2472
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Chapter 4

Conclusions

Accurately estimating the speed of a population of vehicles travelling on a

highway network has proved an interesting challenge. Our work, building on the

Bluetooth-data collection concept [1], attacked this challenge from three different

perspectives: (i) using the Expectation Maximization algorithm, (ii) applying Maxi-

mum Likelihood Estimation methods and finally (iii) using a cluster-separation tech-

nique. All our simulations confirmed the robust performance of the EM approach

given some degree of freedom in modelling the number of underlying components

that comprise a mixed dataset. This iterative algorithm though contains an opti-

mization step following the calculation of a possibly complicated expected value.

The MLE approach on the other hand consists only of one optimization step and

can model almost any mixture of populations. Using the results found by the EM

algorithm as input to an maximum likelihood method we can harvest the advan-

tages of both techniques. Our simulations confirmed this idea as we looked at many

different artificially and naturally mixed datasets.

The true proportions of each underlying population are important in the per-

formance of all our methods. In many simulations we observed that a second pop-

ulation consisting of less than a hundred data points mixed with a much larger

population (with a few thousands of points) will not get detected unless its aver-
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age speed is significantly higher (or lower) than that of the larger population. Also

the degrees of freedom we allow in our models is critical in the performance of our

estimation techniques. For example higher order models where the EM algorithm

is given the freedom to also model the ”noise” or outliers present in our data, per-

formed much better in estimating the true parameters of the underlying populations.

Finally we have to make an important observation: higher order models can also

detect and characterize lower order models but not vice versa. For example an es-

timation of two populations with almost the same proportions and average speeds

is a sign that we are basically dealing with one larger population (twice as large as

each individual one) having the common mean as its average.
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Appendix A

Calculations and Probability Density Functions

In this appendix we provide some calculations whose results we use in Chapter

2 in an application of the EM algorithm. We also provide the probability density

function formulas we used in Chapter 3.

A.1 The multinomial distribution

Let X1 , X2, X3 be random variables with multinomial joint probability mass

function:

P (X1 = x1, X2 = x2, X3 = x3) =

(
(x1 + x2 + x3)!

x1!x2!x3!

)
px11 p

x2
2 p

x3
3

(A.1)

with p1 + p2 + p3 = 1. We are interested in combining two of the random variables

by introducing a new random variable Y = X1 +X2 with pmf:

P (X1 +X2 = y,X3 = x3) =

y∑
i=0

P (X1 = i,X2 = y − i,X3 = x3)

=
(y + x3)!

y!x3!
px33

y∑
i=0

(
y

i

)
pi1p

y−i
2 =

(y + x3)!

y!x3!
px33 (p1 + p2)

y

(A.2)
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Also:

P (X1 = x1, X1 +X2 = y) =
P (X1 = x1, X2 = y − x1)

P (X1 +X2 = y)

=
n∑

x3=0

(x1 + y − x1 + x3)!

x1!(y − x1)!x3!
px11 p

y−x1
2 px33 =

px11 p
y−x1
2

x1!(y − x1)!

n∑
x3=0

(y + x3)!

x3!
px33

=
px11 p

y−x1
2

x1!(y − x1)!

n∑
x3=0

(y + x3)!

y!x3!
px33

(p1 + p2)
y

(p1 + p2)y
y! =

y!

x1!(y − x1)!
px11 p

y−x1
2

1

(p1 + p2)y

(A.3)

Computing E[X1|X1 +X2 = y] we obtain:

E[X1|X1 +X2 = y] =

y∑
x1=0

x1P (X1 = x1, X1 +X2 = y)

=
1

(p1 + p2)y

y∑
x1=0

y!

x1!(y − x1)!
x1p

x1
1 p

y−x1
2 =

1

(p1 + p2)y
p1y(p1 + p2)

y−1

⇒ E[X1|X1 +X2 = y] = y
p1

p1 + p2

(A.4)

Similarly: E[X2|X1 +X2 = y] = y
p2

p1 + p2
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A.2 Probability Density Functions

A random variable X is Normally distributed (X ∼ N(µ, σ2)) if it’s proba-

bility density functions is of the form:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (A.5)

with µ ∈ R, σ2 > 0 and x ∈ R. The mean and variance of X are respectively:

E[X] = µ, V ar(X) = σ2 (A.6)

Figure A.2 shows the pdf of a normally distributed random variable with µ = 2 and

σ2 = 1.
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Figure A.1: Normal distribution function.

A random variable X is Gamma distributed (X ∼ Gamma(a, b)) if it’s prob-
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ability density functions is of the form:

f(x) =
1

baΓ(a)
xa−1e−

x
b (A.7)

with a, b > 0 and x > 0. The mean and variance of X are respectively:

E[X] = ab, V ar(X) = ab2 (A.8)

Figure A.2 shows the pdf of a gamma distributed random variable with a = 5 and

b = 1.
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Figure A.2: Gamma distribution function.

Finally, a random variable X is Weibull distributed (X ∼ Weibull(a, b)) if

it’s probability density functions is of the form:

f(x) = ba−bxb−1e−(
x
a
)bI(0,∞)(x) (A.9)

58



with a, b > 0 and I(0,∞)(x) = x if x > 0 and 0 otherwise. The mean and variance of

X are respectively:

E[X] = aΓ(1 +
1

b
), V ar(X) = a2Γ(1 +

2

b
)− E[X]2 (A.10)

Figure A.2 shows the pdf of a weibull distributed random variable with a = 1

and b = 5. In our work we are mainly interested in mixed distributions of
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Figure A.3: Weibull distribution function.

the form f(x) = p1f1(x) + p2f2(x) with p1, p1 > 0, p1 + p2 = 1 and f1(x), f2(x)

valid probability functions like the ones we saw above. For example, Figure A.4

shows the mixed pdf of a normal and weibull distributed random variable with

X ∼ 0.7N(−2, 1) + 0.3Weibull(2, 4). Figure A.5 shows the mixed pdf of 3 normally

distributed random variables with X ∼ 0.2N(−2, 1) + 0.5N(1, 4) + 0.3N(3, 2).

59



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

f(
x)

Normal and Weibull Mixed Density Function

Figure A.4: Normal and Weibull mixed distribution function.
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Figure A.5: Mixed pdf of 3 Normally distributed random variables.
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