
An On-line Variable Length BinaryEncoding 1Tinku Acharya Joseph F. J�a J�aInstitute for Systems Research andInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742facharya, josephg@umiacs.umd.eduAbstractWe present a methodology of an on-line variable-length binary encoding of a set ofintegers. The basic principle of this methodology is to maintain the pre�x propertyamongst the codes assigned on-line to a set of integers growing dynamically. The pre�xproperty enables unique decoding of a string of elements from this set. To show theutility of this on-line variable length binary encoding, we apply this methodology toencode the LZW codes. Application of this encoding scheme signi�cantly improves thecompression achieved by the standard LZW scheme. This encoding can be applied inother compression schemes to encode the pointers using variable-length binary codes.1 IntroductionThe basic idea behind any lossless data compression technique [1] is to reduce the redun-dancy in data representation. The two general categories of text compression techniquesare statistical coding and dictionary coding. The statistical coding is based on the statisticalprobability of occurrence of the characters in the text, e.g. Hu�man coding [2], Arithmeticcoding [3] etc. In dictionary coding, a dictionary of common words is generated such thatthe common words appearing in the text are replaced by their addresses in the dictionary.Most of the adaptive dictionary based text compression algorithms belong to a family ofalgorithms originated by Ziv and Lempel [4, 5], popularly known as LZ coding. The basicconcept of all the LZ coding algorithms is to replace the substrings (called phrases or words)with a pointer to where they have occurred earlier in the text. Di�erent variations of thesealgorithms have been described in [6] which di�er in the way the dictionary is referencedand how it is mapped onto a set of codes. This mapping is a code function to represent apointer. The size of this pointer is usually �xed and determines the size of the dictionary. Asa result, the same number of bits are transmitted for each pointer, irrespective of the number1Technical Report : CS-TR-3442, UMIACS-TR-95-391



of phrases in the dictionary at any stage. This a�ects the compression performance at thebeginning when more than half of the dictionary is empty. The most popular variation isthe LZW algorithm [7] for text compression. We will describe a methodology of an on-linevariable-length binary encoding of a set of integers and apply this methodology to the LZWcodes to enhance the compression ratio. The variable-length on-line binary encoding schemecan be applied to other LZ encoding schemes as well.In section 2, we formulate an on-line variable length binary encoding of a set of integers.We propose a solution to this problem, assuming that the correlation amongst the elementsas well as their statistics are not known. The encoding will maintain the pre�x property inorder to uniquely decode any string formed by the elements of the set. We describe the LZWalgorithm and redundancy in binary encoding of its output in sections 3 and 4 respectively.In section 5, we use the proposed binary encoding scheme to encode the LZW codes forvariable-length binary encoding of text. The decoding operation to recover the original textwill be discussed in section 6. We present the experimental results in section 7.2 An On-line Variable Length Binary Encoding ProblemBefore we formulate the on-line variable length binary encoding problem, let us de�ne a datastructure called the phase in binary tree and its properties below.
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respectively, arranged as shown in Figure 1.Lemma 1: A phase in binary tree T with N leaf nodes is unique and it contains N � 1internal nodes.Proof : The structure of the phase in binary tree with N leaf nodes is based on the repre-sentation of the positive integer N asN = sXm=1 2amwhere a1 > a2 > � � � > as � 0 and s > 0. Expression of N suggests that a1; a2; � � � ; asare the positions of bit 1 when N is represented as a normalized unsigned binarynumber using a1 + 1 bits. Since the representation of an integer in the form of anormalized unsigned binary number is always unique, the structure of the phase inbinary tree with N leaf nodes is also unique.According to the de�nition of a phase in binary tree, T consists of s complete binarysubtrees T1; T2; � � � ; Ts as shown in Figure 1 and the number of nodes in the completebinary tree Tm is 2am+1 � 1, where am is the height of Tm for every 1 � m � s. Hencesum of the number of nodes of all the above complete binary subtrees issXm=1 (2am+1 � 1) = 2 sXm=1 2am � s = 2N � sThe remaining nodes in T form the path starting from the root node of T to theroot node of Ts�1, consisting of s � 1 nodes including the root node of T as shownin Figure 1. As a result, total number of nodes in the phase in binary tree T is2N � s+ (s� 1) = 2N � 1. Since T has N leaf nodes, the number of internal nodes inT including the root node is 2N � 1�N = N � 1. 2Corollary 1: Height of the above phase in binary tree is a1 + 1 if s > 1 and a1 if s = 1.Corollary 2: A complete binary tree is a special case of a phase in binary tree.De�nition 2: Given a set of n binary codes V = fV1; V2; � � � ; Vng, such that jVi j� dlog2 nefor every 1 � i � n, the value(Vi) of the binary code Vi 2 V is de�ned by the decimalvalue of Vi formed by appending dlog2 ne� jVi j number of 0's at the end of Vi.De�nition 3: Given a phase in binary tree T with n leaf nodes, we can associate a uniqueset of binary codes V = fV1; V2; � � � ; Vng with the leaves by labeling every left edge ofT by 0 and every right edge by 1 such that Vi is the sequence of 0's and 1's in the3



unique path from the root node to the i th leaf node of T , where the leaves are indexedconsecutively from left to right. This set of binary codes is called a phase in binaryencoding of size n.Corollary 3: For a phase in binary encoding V = fV1; V2; � � � ; Vng of size n, the followingrelations always holds : value(Vi) < value(Vi+1) and jVi j�jVi+1 j for every 1 � i < n.Corollary 4: If V a and V b are two phase in binary encodings of sizes n1 and n2 respectivelysuch that n1 < n2, jV ai j�jV bi j and jV ai j=jV bi j) V ai = V bi for every 1 � i � n1.We formulate a problem of on-line variable length binary encoding of pointers arising ina dynamically growing dictionary here and present a solution with the aid of the abovede�nition of a phase in binary tree. To make the problem more general, we represent thisdynamically growing dictionary of pointers as a growing sequence of distinct elements inincreasing order. The sequence is extended in every step by concatenating a number of ele-ments at the end of the sequence and preserving the ordering. Let P i�1 = f�1; �2; � � � ; ��i�1gbe the sequence of �i�1 > 0 distinct elements such that �j < �j+1 for every 1 � j <�i�1 at step i � 1, 1 � i � t where t is a positive integer constant. At step i the se-quence P i = f�1; �2; � � � ; ��i�1 ; ��i�1+1; � � � ; ��ig is formed by concatenating the sequencef��i�1+1; � � � ; ��ig at the end of P i�1. We want to map the sequence P i dynamically into aset of variable length binary codes Ci = fCi1; Ci2; � � � ; Ci�ig maintaining certain pre�x prop-erties explained below.Problem: Develop an on-line algorithm to generate the binary encoding Ci = fCi1; Ci2; � � � ; Ci�igfor the elements of P i at any step i, such that(1) No Cij is a pre�x of Cil , for 1 � l 6= j � �i.(2) No Cij is a pre�x of Ci�1l , for 1 � l 6= j � �i�1.Solution: We can develop the above binary encoding Ci at step i by mapping the sequenceP i into the leaf nodes of a phase in binary tree Bi with �i leaf nodes. After constructionof the phase in binary tree Bi, we label every left edge by 0 and every right edge by 1.The sequence of 0's and 1's in the unique path from the root node of Bi to the j th leafnode from left is the binary code Cij of �j in P i. If �i is expressed as �i =Psm=1 2am ,where a1 > a2 > � � � > as � 0, the �rst 2a1 elements of P i will be encoded by a1 + 1bits, the next 2a2 elements will be encoded by a2 + 2 bits, the following 2a3 elementswill be encoded by a3 + 3 bits, and so on. But the last 2as elements will be encodedby as + s� 1 bits. 4



Since the encoding is generated from the binary tree and each code is represented by aleaf node of the corresponding phase in binary tree, no code in any step can be a pre�xof another code i.e. condition 1 of the problem holds. The condition 2 is obvious dueto the properties of the phase in binary codes as in corollary 4.2.1 Incremental Construction of the Phase in Binary TreeThe phase in binary tree Bi to represent the binary encoding Ci of the ordered se-quence P i in step i can be constructed incrementally by little systematic modi�ca-tions of the phase in binary tree Bi�1 generated in the previous step. This is ex-plained below in detail. The number of elements in the concatenating subsequencef��i�1+1; � � � ; ��ig is mi = �i � �i�1. This subsequence of mi elements is concate-nated at the end of the sequence P i�1 = f�1; �2; � � � ; ��i�1g to form the sequenceP i = f�1; �2; � � � ; ��i�1 ; ��i�1+1; � � � ; ��ig in step i. Several cases might arise depend-ing upon the values of �i�1 and mi :case 1: �i�1 is a power of 2, say �i�1 = 2k, k � 0 and mi � �i�1.
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In this case mi can be expressed as mi = n +Ps�1j=0 2k+j , where n < 2k. Weconstruct s complete binary trees B0i ; B1i ; � � � ; Bs�1i of heights k; k+1; � � � ; k+s�1respectively and a phase in binary tree Bs with n leaf nodes. The leaf nodes ofB0i will represent the �rst 2k elements of the subsequence f��i�1+1; � � � ; ��ig, theleaf nodes of B1i will represent the next 2k+1 elements and so on. The last nelements of the concatenating subsequence will be represented by the leaf nodesof Bs. Then we connect these trees with Bi�1 to construct Bi as shown in Figure3 below.
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According to the construction of the phase in binary tree Bi�1 with �i�1 leafnodes, it will consist of the complete binary subtrees Bk1 ; Bk2 ; � � � ; Bks of heightsk1; k2; � � � ; ks respectively as shown in Figure 4. As a result, height of Bi�1 isk1+1. To construct Bi from Bi�1, a phase in binary tree Bs is constructed usingmi leaf nodes. The leaf nodes of this Bs represent the mi concatenated elementsin the sequence. Bs is then joined with Bi�1 by converting Bks to be the leftchild and Bi as the right child of the node A as shown in Figure 4. Hence �rst�i�1 � 2ks codes in Ci will be identical to the corresponding codes in Ci�1 andthe rest of the codes are determined by the binary sequences corresponding to theleaf nodes of Bks and Bs respectively in Bi.case 4: �i�1 = 2k1 + 2k2 + � � �+ 2ks, where k1 > k2 > � � �> ks � 0 and mi > 2ks .This is a combination of the above three cases. In this case the complete binarytree Bks in Bi�1 is �rst considered and the procedure as in case 2 is iterateduntil the height of the complete binary tree becomes ks + 1 or all the elements ofthe concatenating subsequence have been considered depending upon the value ofmi. The new complete binary tree of height ks + 1 is then considered, if all theelements in the concatenating subsequence has not been considered yet. If anyelement in the concatenating subsequence remains not assigned to a leaf node,the same procedure as in case 2 is again applied. The above procedure is iterateduntil all the elements in the concatenating subsequence have been represented bya leaf node in Bi.3 The LZW AlgorithmLet S = s1s2 � � �sm be a string (or text) over the alphabet � = fa1; a2; � � � ; aqg. The LZWalgorithm maps S into the compressed string c(S) = p1p2 : : : pn, where pi is a positiveinteger and pi � n + q � 1, for i = 1; : : : ; n. This mapping can be achieved with the aid ofa \dictionary trie". This dictionary trie (T ) is constructed on-line during the compressionof the text as shown in Figure 5. Each node (N) in T at any step represents a substringwhich has been visited earlier into the already encoded text. This substring is found byconcatenating the characters in the label of each node on the path from the root node toN . Each node is numbered by an integer which is used as a pointer (code value) to replacea matching substring into the text to form the codes in the output compressed text. Thetrie T is initialized on a q + 1 rooted tree where the root is labeled (0; �) to represent thenull string (�). The root has q children nodes labeled (1; a1); (2; a2); : : : ; (q; aq) respectively7



to represent q single character strings. This is shown as T1 in Figure 5. The input text isexamined character by character and the longest substring in the text which already existsin the trie, is replaced by the integer number associated with the node representing thesubstring in the trie. This matching substring is called a pre�x string. This pre�x stringis then extended by the next character to form a new pre�x string. A child node is createdat the node representing the matching substring in the trie. This new child node will nowrepresent the new pre�x string. In the algorithm described below, we express a pre�x stringby the symbol ! and the input character by K. In each step of the Loop, the next characterK is read and the extended string !K is tested to �nd whether the string !K already existsin the trie. If it already exists, the extended string becomes the new pre�x string !. If !Kdoes not exist in the trie, it is inserted into the trie, the code value of ! is transmitted ascompressed data and the character K becomes the �rst character of the next string !.The LZW Compression Algorithm :beginInitialize the trie with single-character strings;Initialize ! with the �rst input character;Loop : Read next input character K;if no such K exists (input exhausted) thenOutput the code value of !;EXIT from the Loop;end if;if !K exits in the trie then!  !K;else /* The phrase !K doesn't exist in the trie */Output the code value of !;Insert the phrase !K into the trie;!  K;end if;end Loop;end.If we assume that the size of the dictionary is big enough to accommodate all the parsedstrings, the number of bits to encode each pointer is dlog2 (n+ q)e, i.e. if the pointer sizeis predetermined to be k-bits, we can accommodate a maximum of 2k parsed strings in thedictionary and reinitialize the dictionary trie each time (2k � q) pointers are output.8
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Figure 5: Example of the dictionary Trie using LZW algorithm.9



Example: � = fa; b; cg, S = abcabbcabbaaaaaa. c(S) = 1; 2; 3; 4; 5; 7; 1; 10; 11.The steps and the corresponding trie data structure to encode the above string S areshown in Figure 5. In each step i � 0, we output the pointer pi which we �nd from the labelassociated with the dark node in trie Ti. Ti is then modi�ed to Ti+1 by inserting a node torepresent the new pre�x string which is shown by the node lead by the dotted line in Ti+1.Also note that the number of nodes in Ti is always i+ q and the pointer pi to output at stepi is 1 � pi � i + q. Since the �nal dictionary trie T8 contains 11 pre�x strings (representedby 11 nodes), each pointer will be encoded by d11e = 4 bits each. As a result, the size of thecompressed string c(S) is 36 bits.4 Redundancy in Binary Encoding of the Output CodesThe size of the pointer in LZW algorithm is prede�ned and hence the same �xed number ofbits are output in each LZW code irrespective of the number of entries in the dictionary. Asa result a large number of bits are used unnecessarily when the number of phrases into thedictionary is less than half of its maximum size. In the LZC algorithm (which is a variant ofthe LZW algorithm used in UNIX-Z compression), string numbers are output in binary [8].The number of bits used to represent the string number in any step varies according to thenumber of phrases (say M) currently contained in the dictionary. For example, when thevalue of M is in the range 256 to 511 each string number can be represented using a 9 bitsbinary number and when M becomes in the range 512 to 1023, each string number will berepresented as a 10 bits binary number and so on. The scheme is also sub-optimal becausea fractional number of bits is still wasted unless M is a power of 2. For example, when Mis 513, it is possible to encode the �rst 512 string numbers in the dictionary (0 through 511)using 10 bits while 512 and 513 can still be represented as 2-bit binary numbers `10' and`11' respectively, without violating the pre�x property because the �rst 512 binary codes willstart with the bit 0 and the last two codes starts with the binary bit 1. The methodologycan be developed as a special case of the phase in binary encoding scheme, we proposed insection 2. This is explained in the following section.5 Allocation of the Phase in Binary Codes in LZW outputfor variable-length binary encodingIn each step of the LZW algorithm, only one phrase may be inserted into the dictionary, i.e.only one pointer is appended into the pointer list. We can express the set of pointers in step10



i as a sequence of q+ i integers P i = f1; 2; � � � ; q+ ig in increasing order. As a result, this canbe considered as a special instance of the proposed on-line variable length binary encodingproblem presented in section 3. Here the length of the subsequence being concatenated atevery step is 1, speci�cally the integer q + i is appended at the end of the sequence P i�1in step i to form the extended sequence P i. Hence the sequence P i of length q + i can bemapped into the leaf nodes of a phase in binary tree with q + i leaf nodes as described insection 2. As a result, the LZW codes (i.e. the pointers) in every step can be encoded by thephase in binary codes to form a variable-length binary encoding of text. We �rst show withthe same example how to assign the variable length binary codes to the pointers in eachstep of the compression. We later describe a decoding algorithm that uniquely generatesthe original LZW codes. The steps are shown in Figure 6. The single character strings arerepresented by the dictionary trie T0 with the set of pointers P 0 = f1; 2; 3g as shown in Figure6. These pointers can be mapped into the variable length binary encoding C0 = f00; 01; 1grepresented by the phase in binary tree B0. The set of binary codes of the pointers to thesingle character strings maintain the pre�x property, i.e. no code is a pre�x of another codeinto the set and the output pointer 1 can be encoded with 2 bits `00'. In the next step theset of pointers is P 1 = f1; 2; 3; 4g, which can be mapped into the set of binary encodingsC1 = f00; 01; 10; 11g represented by the binary tree B1 as shown in Figure 6. Hence theoutput pointer 2 can be encoded using two bits `01'. Following the same procedure the setsof pointers P 2; P 3; � � � ; P 8 can be mapped into the sets of binary encodings C2; C3; � � � ; C8obtained from the phase in binary trees B2; B3; � � � ; B8 respectively as shown in Figure 6.Accordingly, the output pointers 3, 4, 5, 7, 1, 10 and 11 in the next seven consecutive stepscan be encoded as `010', `011', `100', `110', `0000', `11' and `11' respectively. Hence thecompressed string c(S) can be encoded as 00 01 010 011 100 110 0000 11 11 using 24 bits,instead of 36 bits using the �xed-length encoding.6 Decoding of the Binary CodesDuring the decompression process using the LZW algorithm, logically the same trie is createdas in the compression process. But generation and interpretation of the binary tree is a littletricky although the same binary tree will be essentially generated as in the compressionprocess. To decompress the binary codes, we start with the same phase in binary tree B0and the corresponding trie T0 as in the compression process. In each step i, a string ofcharacters (say Si) is regenerated. In step i, the phase in binary tree Bi is traversed startingfrom the root node. The left child (or the right child) is traversed if the next input bit is 011



(or 1) until a leaf node in Bi is reached. The label of this leaf node in Bi is the pointer toa node in Ti which represents the regenerated substring Si to output. In step i, the phraseformed by concatenating the previous output substring Si�1 (only exception during the �rststep, i = 0 and S�1 = �) and the �rst character (say K) of the present output substring Si,i.e. Si�1K is inserted into the trie Ti to create the new trie Ti+1. If the substring Si�1Kalready exists in Ti, the trie Ti+1 will be identical to Ti. The new node (if any) in Ti+1 willbe represented by the pointer q+ i in Ti+1. The phase in binary tree Bi is then incrementedto Bi+1 and the new leaf node Bi+1 is labeled by the integer q + i+ 1. The same procedureis repeated until all the bits in binary code c(S) have been exhausted.It should be mentioned here that the decoding operation in LZW is handled di�erentlyin a special case. This special case occurs whenever the input string contains a substringof the form K!K!K, where K! already appears in the trie. Here K is a single characterfrom the alphabet and ! is a pre�x string. This is explained in detail in the original paperof LZW [7]. If the original input string (S) contains a substring of this form, during thedecoding operation of our proposed binary encoding, we will �nd that the decoded labelfrom the binary tree is not yet created in the trie in the corresponding step (say step j).In this case, we know that the output string Sj�1 (obtained in the immediate previous stepj � 1) was of the form K!. Hence we need to output a substring Sj of the form K!K inthe present step and insert the pre�x string Sj = K!K into the trie Tj to form Tj+1 andthe corresponding node representing Sj in Tj+1 will be marked by q + j.We describe the above decoding process using the same example to decode the binarycode c(S) = 00 01 010 011 100 110 0000 11 11. This binary code c(S) was obtained bycompressing S = abcabbcabbaaaaaa using the proposed phase in binary encoding scheme.We start with the phase in binary tree B0 with 3 leaf nodes and the trie T0 consisting of thesingle character strings as shown in Figure 7. Here the alphabet is � = fa; b; cg and hencesize of � is q = 3. In the �rst step (i = 0), we traverse the phase in binary tree B0 startingfrom the root node and reach to the leaf node of label 1 after reading the �rst two input bits00. This label 1 indicates a pointer in trie T0 which represents the output substring S0=`a'.The binary tree B0 is modi�ed to B1 to represent a phase in binary tree with 4 leaf nodesand the new leaf node is now labeled by q + i+ 1 = 4 as shown in the phase in binary treeB1 in Figure 7. In the next step (i = 1), the B1 is traversed and the next two input bits01 lead to the leaf node 2 in B1. The node of label 2 in trie T1 represents the output stringS1=`b'. This character concatenated with the previous output substring `a' forms the newpre�x string `ab' which is inserted into the trie to form T2. This is shown by the brokenedge in T2 in Figure 7. The new pointer to the pre�x string `ab' is q + i = 4. The phase in12



binary tree B1 is now incremented to form the phase in binary tree B2 with 5 leaf nodes.The new leaf node is labeled by q + i+ 1 = 5 as shown in B2 in Figure 7. In the followingstep (i = 2), B2 is traversed and the next three input bits 010 lead to the leaf node of label 3which represents the output substring S2=`c' in T2. This is concatenated with the previousoutput substring S1=`b' to form the new pre�x string `bc' and inserted into the dictionarytrie to form T3. The new pointer to the pre�x string `bc' in T3 is labeled by q + i = 5. Thephase in binary tree B2 is now incremented to form the phase in binary tree B3 with 6 leafnodes. The new leaf node is labeled by q+ i+1 = 6 in B3. B3 is then traversed and the nextthree input bits 011 lead to the leaf node of label 4 which represents the output substringS3=`ab' as shown in T3. The �rst character(a) of this output substring is concatenated withthe previous output string S2=`c' to form the new pre�x string `ca' which is inserted into thetrie to form T4. The pointer of this pre�x string `ca' in T4 is now q + i+ 1 = 6. The phasein binary tree B3 is now incremented to the phase in binary tree B4 with 7 leaf nodes andthe new leaf node is labeled by q + i + 1 = 7. Following the same procedure in next threesteps (i.e. i = 4; 5; 6), we can regenerate the decoded output substrings S4=`bc', S5=`abb'and S6=`a' for the binary sequences 100, 110 and 0000 from the phase in binary trees B4,B5, B6 and the corresponding tries T4, T5 and T6 respectively. In step 7 (i = 7), we willtraverse the binary tree B7 and the next two input bits 11 will lead to the leaf node markedby the integer 10 in B7. But there is no node in the trie T7 labeled by the pointer 10. Thisarises due to the special case of appearance of a substring K!K!K, as we described above.Hence the output substring should be of the form K!K. In this case, K! is the outputsubstring S6=`a' in the previous step. As a result, K = a and ! = � here. So we output thesubstring S7=K!K = aa and insert the pre�x string `aa' into the trie represented by thenode labeled by the pointer q + i = 10 to form T8. The same situation arises, for the nexttwo input bits 11. By traversing the tree B8 using the bits 11, we reach to the leaf node oflabel 11. But there is no pointer 11 in trie T8. Hence the special case arises, where K = aand ! = a. Hence output substring will be S8 = K!K = aaa. Since all the input bits areexhausted the decoding process stops. Now concatenating all the output substrings above,we �nd that the decoded string is abcabbcabbaaaaaa which is the original string S.7 Experimental ResultsWe have implemented our scheme and tested it with texts of di�erent sizes and charac-teristics. In all the cases, the phase in binary encoding method signi�cantly improves theperformance of the raw LZW technique with �xed-length pointer size of 12 bits and starting13



the dictionary all over again after it is full. We have performed our experiment with di�erentmaximum allowable height of the binary tree. The best performance is achieved when thebinary tree is allowed to grow to a maximum height of 15. In our implementation, we allowedthe binary tree to grow until it becomes a complete binary tree of height 15 and start allover again after that. We presented the experimental results in the table below to comparethe compression performance based on the LZW method and our proposed variable-lengthencoding scheme which we call the LZWAJ scheme. The experiment was performed on the�les obtained from the University of Calgary text corpus in addition to several other text�les. The experimental results of our scheme illustrate the signi�cant improvements obtainedby using our scheme over the LZW algorithm.
   

paper1           53               31              24

paper2           82               45              35

  

book1           768             446            346

book2           610             346            259

progc             39               22              18

progl              71               32              25

obj2              246             143            123

trans              93               50              36

news             377             246            188

obj1                21               14              13

progp             49               19              18

TEXT         Original      LZW       LZWAJ

(Sizes  are expressed in nearest Kilo-bytes)

Average       202             119             93

geo               102               84              77

bib                111               64              45

8 ConclusionIn this paper, we have presented a novel methodology for an on-line variable-length binaryencoding of a growing set of integers by mapping the integers into the leaf nodes of a specialbinary tree called the phase in binary tree. The characteristics of the phase in binary tree isthat the left subtree is always a complete binary tree and the height of the right subtree is14



no bigger than the height of the left subtree. This phase in binary tree can be representedas a composition of a number of height balanced complete binary trees. The binary codesare generated in such a way that pre�x property between two consecutive steps is alwaysmaintained for the sake of unique decoding operation to regenerate the original text. Wehave used this methodology to further enhance the compression performance using the LZWscheme to show the e�ectiveness of the newly de�ned phase in binary encoding. As a result,a variable-length binary encoding of the text is possible using the popular LZW codes andthe phase in binary encoding. The experimental results show that we can achieve muchbetter compressions than these obtained by using the standard LZW algorithm.References[1] Storer, J. A.\Data Compression: Methods and theory." Computer Science Press,Rockville, MD, 1988.[2] Hu�man, D.,\A Method for the Construction of Minimum Redundancy Codes," Proc.IRE, Vol. 40, 1952, pp. 1098-1101.[3] Witten, I.H., Neal, R., and Cleary, J.G.,\Arithmetic coding for data compression,"Communication of the ACM, 30(6), 520-540, June 1987.[4] Ziv, J. and Lempel, A.,\A Universal Algorithm for Sequential Data Compression," IEEETrans. on Info. Theory, IT-23, 3, May 1977, pp. 337-343.[5] Ziv, J., and Lempel, A.,\Compression of Individual Sequences Via Variable-rate Cod-ing," IEEE Trans. Info. Theory, IT-24, 5, September 1978, pp. 530-536.[6] Bell, T. C., Cleary, J. G. and Witten, I. H.,\Text Compression," Prentice Hall, NJ,1990.[7] Welch, T.,\A Technique for High-Performance Data Compression," IEEE Computer, 17(6), 8-19, June 1984, pp. 8-19.[8] Horspool, R. N.,\Improving LZW," Data Compression Conference, 1991, pp. 332-341.
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Figure 6: Example of the LZWAJ coding (Continued in the next page also).16
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Figure 7: Example of the LZWAJ decoding of binary codes.18
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