An On-line Variable Length Binary
Encoding:

Tinku Acharya Joseph F. Ja Ja

Institute for Systems Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

{acharya, joseph}@umiacs.umd.edu

Abstract

We present a methodology of an on-line variable-length binary encoding of a set of
integers. The basic principle of this methodology is to maintain the prefix property
amongst the codes assigned on-line to a set of integers growing dynamically. The prefix
property enables unique decoding of a string of elements from this set. To show the
utility of this on-line variable length binary encoding, we apply this methodology to
encode the LZW codes. Application of this encoding scheme significantly improves the
compression achieved by the standard LZW scheme. This encoding can be applied in
other compression schemes to encode the pointers using variable-length binary codes.

1 Introduction

The basic idea behind any lossless data compression technique [1] is to reduce the redun-
dancy in data representation. The two general categories of text compression techniques
are statistical coding and dictionary coding. The statistical coding is based on the statistical
probability of occurrence of the characters in the text, e.g. Huffman coding [2], Arithmetic
coding [3] etc. In dictionary coding, a dictionary of common words is generated such that
the common words appearing in the text are replaced by their addresses in the dictionary.
Most of the adaptive dictionary based text compression algorithms belong to a family of
algorithms originated by Ziv and Lempel [4, 5], popularly known as LZ coding. The basic
concept of all the LZ coding algorithms is to replace the substrings (called phrases or words)
with a pointer to where they have occurred earlier in the text. Different variations of these
algorithms have been described in [6] which differ in the way the dictionary is referenced
and how it is mapped onto a set of codes. This mapping is a code function to represent a
pointer. The size of this pointer is usually fixed and determines the size of the dictionary. As

a result, the same number of bits are transmitted for each pointer, irrespective of the number

!Technical Report : CS-TR-3442, UMIACS-TR-95-39



of phrases in the dictionary at any stage. This affects the compression performance at the
beginning when more than half of the dictionary is empty. The most popular variation is
the LZW algorithm [7] for text compression. We will describe a methodology of an on-line
variable-length binary encoding of a set of integers and apply this methodology to the LZW
codes to enhance the compression ratio. The variable-length on-line binary encoding scheme

can be applied to other LZ encoding schemes as well.

In section 2, we formulate an on-line variable length binary encoding of a set of integers.
We propose a solution to this problem, assuming that the correlation amongst the elements
as well as their statistics are not known. The encoding will maintain the prefix property in
order to uniquely decode any string formed by the elements of the set. We describe the LZW
algorithm and redundancy in binary encoding of its output in sections 3 and 4 respectively.
In section 5, we use the proposed binary encoding scheme to encode the LZW codes for
variable-length binary encoding of text. The decoding operation to recover the original text

will be discussed in section 6. We present the experimental results in section 7.

2 An On-line Variable Length Binary Encoding Problem

Before we formulate the on-line variable length binary encoding problem, let us define a data

structure called the phase in binary tree and its properties below.

Complete Complete
Binary Tree Binary Tree Binary Tree

T T T
1 2 3

Figure 1: A phase in binary tree.

Definition 1: Given a positive integer N expressed as N = > > _, 2%, where a1 > ay >
--+>a, > 0and s > 1, a phase in binary tree? T’ with N leaf nodes is a rooted binary

tree that consists of s complete binary trees® 1,75, --, T, of heights a;, aq, - -, a,

2A broken triangle in this paper represents a phase in binary tree.
°A complete binary tree of height k is a binary tree with 2" leaf nodes and 2" — 1 internal nodes. A
complete binary tree is represented by a solid triangle in this paper.



respectively, arranged as shown in Figure 1.

Lemma 1: A phase in binary tree T' with N leaf nodes is unique and it contains N — 1

internal nodes.

Proof : The structure of the phase in binary tree with N leaf nodes is based on the repre-

sentation of the positive integer N as

NS
m=1

where a1 > a3 > -+ > as > 0 and s > 0. Expression of N suggests that ay,as,---,a;
are the positions of bit 1 when N is represented as a normalized unsigned binary
number using ay + 1 bits. Since the representation of an integer in the form of a
normalized unsigned binary number is always unique, the structure of the phase in

binary tree with NV leaf nodes is also unique.

According to the definition of a phase in binary tree, T' consists of s complete binary
subtrees Ty, T5,---,Ts as shown in Figure 1 and the number of nodes in the complete
binary tree 1), is 2¢m*1 — 1, where a,, is the height of T}, for every 1 < m < s. Hence
sum of the number of nodes of all the above complete binary subtrees is

S

St —1)=2> 2" —s=2N—3s
m=1

m=1

The remaining nodes in T form the path starting from the root node of T to the
root node of Ts_1, consisting of s — 1 nodes including the root node of T as shown
in Figure 1. As a result, total number of nodes in the phase in binary tree T is
2N — s+ (s—1)=2N — 1. Since T has N leaf nodes, the number of internal nodes in
T including the root node is 2N —1—- N =N — 1. O

Corollary 1: Height of the above phase in binary treeis a; + 1if s > 1 and aq if s = 1.

Corollary 2: A complete binary tree is a special case of a phase in binary tree.

Definition 2: Given a set of n binary codes V = {Vq,V5,---,V,,}, such that |V;|< [log, n|
for every 1 < i < n, the value(V;) of the binary code V; € V' is defined by the decimal
value of V; formed by appending [log, n]— | V;| number of 0’s at the end of V;.

Definition 3: Given a phase in binary tree T with n leaf nodes, we can associate a unique
set of binary codes V = {Vi,V5,---,V,,} with the leaves by labeling every left edge of
T by 0 and every right edge by 1 such that V; is the sequence of 0’s and 1’s in the



unique path from the root node to the 2th leaf node of T, where the leaves are indexed
consecutively from left to right. This set of binary codes is called a phase in binary

encoding of size n.

Corollary 3: For a phase in binary encoding V = {Vi,V5,---,V,,} of size n, the following
relations always holds : value(V;) < value(Viyq1) and | V;|>| Vig1| for every 1 <i < n.

Corollary 4: If V¢ and V? are two phase in binary encodings of sizes 71 and ny respectively

such that ny < ng, |VA|<| VP | and |V |=| VP |= V2 = VP for every 1 < i < ny.

We formulate a problem of on-line variable length binary encoding of pointers arising in
a dynamically growing dictionary here and present a solution with the aid of the above
definition of a phase in binary tree. To make the problem more general, we represent this
dynamically growing dictionary of pointers as a growing sequence of distinct elements in
increasing order. The sequence is extended in every step by concatenating a number of ele-
ments at the end of the sequence and preserving the ordering. Let P'~! = {ay, ay, - - e
be the sequence of 7,_; > 0 distinct elements such that a; < aj;4; for every 1 < j <

ni—1 at step 1 — 1, 1 < 7 < ¢ where ¢ is a positive integer constant. At step ¢ the se-

quence P' = {ay,ay,-- SO O 41, o b is formed by concatenating the sequence
{141, -+, ay} at the end of P~ We want to map the sequence P* dynamically into a
set of variable length binary codes ¢ = {C%,C%, - -,C;i} maintaining certain prefix prop-

erties explained below.

Problem: Develop an on-line algorithm to generate the binary encoding C* = {C1, Ci, - - -, th}

for the elements of P! at any step 7, such that

(1) No C; is a prefix of O}, for 1 <1 # j < n;.
(2) No C} is a prefix of C;_l, for 1 <1 # 7 <my_q.

Solution: We can develop the above binary encoding C* at step i by mapping the sequence
P’ into the leaf nodes of a phase in binary tree B; with 7; leaf nodes. After construction
of the phase in binary tree B;, we label every left edge by 0 and every right edge by 1.
The sequence of 0’s and 1’s in the unique path from the root node of B; to the jth leaf
node from left is the binary code C; of a; in PU.If n; is expressed as n; = Y05 _, 29,
where a1 > ag > -+ > ag > 0, the first 2% elements of P* will be encoded by ay + 1
bits, the next 2?2 elements will be encoded by ay + 2 bits, the following 2% elements
will be encoded by as + 3 bits, and so on. But the last 2% elements will be encoded
by as + s — 1 bits.



Since the encoding is generated from the binary tree and each code is represented by a
leaf node of the corresponding phase in binary tree, no code in any step can be a prefix
of another code i.e. condition 1 of the problem holds. The condition 2 is obvious due

to the properties of the phase in binary codes as in corollary 4.

2.1 Incremental Construction of the Phase in Binary Tree

The phase in binary tree B; to represent the binary encoding C* of the ordered se-
quence P! in step i can be constructed incrementally by little systematic modifica-
tions of the phase in binary tree B;_; generated in the previous step. This is ex-

plained below in detail. The number of elements in the concatenating subsequence

{ag_y4+1,- -,y } is my = n; — mp—1. This subsequence of m; elements is concate-
nated at the end of the sequence P~1 = {a1,0a2, -+, a,,_,} to form the sequence
P! = {ay,ay, - QO 41,0, 0 b in step 4. Several cases might arise depend-

ing upon the values of n;_1 and m; :

case 1: 7;_1 is a power of 2, say 1,1 = 2’“, k> 0and m; < n_q.

k+1

2 K leaf nodes

Figure 2: Construction of B; from B;_; for case 1.

According to the definition, B;_; is a complete binary tree of height k with 2%
leaf nodes as shown in Figure 2. To generate B; from B;_1, we first construct a
phase in binary subtree B with m; leaf nodes corresponding to the concatenating
subsequence {ay; _, 11, ,a,}. Then we create the root node R of B; whose left
child is the root node of B;_; and the right child is the root node of B, as shown
in Figure 2. As a result, first 77;_; binary codes in C", i.e. {C%,C%, - -,C;i_l} are
generated by appending a 0 at the beginning of the corresponding codes in €1,
The last m; codes in C°, i.e. {C;i_l_l_l, ,e -,C;i} will be the binary sequences

represented by the leaf nodes of the right subtree B, in B;.

case 2: 7;_1 is a power of 2, say 1,1 = 2k k>0 and m; > Ni—1-



In this case m; can be expressed as m; = n + Z;;é 2F+7 where n < 2%, We
construct s complete binary trees B?, B}, - -,Bf_l of heights k, k+1,--- k+s—1
respectively and a phase in binary tree By with n leaf nodes. The leaf nodes of
BY will represent the first 2% elements of the subsequence {141, ay,}, the
leaf nodes of B} will represent the next 2%*! elements and so on. The last n

elements of the concatenating subsequence will be represented by the leaf nodes

of Bs;. Then we connect these trees with B;_; to construct B; as shown in Figure

3 below.

Figure 3: The phase in binary tree B; in case 2.

As a result, the left subtree of the root node of B; is a complete binary tree of
height k& 4+ s which can easily be verified from Figure 3. Note that the first 7,4
binary codes in C* corresponding to the 7,_1 elements in P*~! will be formed by
simply appending s + 1 0’s at the beginning of the corresponding codes in =1,
The last m; binary codes {C;,_l_l_l, - -,C;i} in C* are the binary sequences of 0’s

7

and 1’s represented by the leaf nodes of B?, B!, .. -,Bf_l and B, in B;.

case 3: 1,y =2F £ 2% 4. 4 2k where ky > ky > --- > kg > 0 and m; < 2Fs.

Figure 4: The phase in binary trees in case 3.



According to the construction of the phase in binary tree B;_; with ;1 leaf
nodes, it will consist of the complete binary subtrees By, , By,,- - -, By, of heights
ki,ko, -+, ks respectively as shown in Figure 4. As a result, height of B;_1 is
k14 1. To construct B; from B;_1, a phase in binary tree B, is constructed using
m; leaf nodes. The leaf nodes of this B, represent the m; concatenated elements
in the sequence. By is then joined with B;_q by converting By, to be the left
child and B; as the right child of the node A as shown in Figure 4. Hence first
ni_1 — 2% codes in C'* will be identical to the corresponding codes in "' and
the rest of the codes are determined by the binary sequences corresponding to the
leaf nodes of By, and By respectively in B,.
case 4: n;_q =2M 4+ 2k 4. 4 2P where ky > ko > - > kg > 0 and m; > 2%,

This is a combination of the above three cases. In this case the complete binary
tree By, in B;_q is first considered and the procedure as in case 2 is iterated
until the height of the complete binary tree becomes kg + 1 or all the elements of
the concatenating subsequence have been considered depending upon the value of
m;. The new complete binary tree of height ks 4+ 1 is then considered, if all the
elements in the concatenating subsequence has not been considered yet. If any
element in the concatenating subsequence remains not assigned to a leaf node,
the same procedure as in case 2 is again applied. The above procedure is iterated
until all the elements in the concatenating subsequence have been represented by

a leaf node in B;.

3 The LZW Algorithm

Let S = sysy2---5s, be a string (or text) over the alphabet ¥ = {a,a9,---,a,}. The LZW
algorithm maps S into the compressed string ¢(S) = pipz...p,, where p; is a positive
integer and p; <n+¢g—1, for ¢ = 1,...,n. This mapping can be achieved with the aid of
a “dictionary trie”. This dictionary trie (T') is constructed on-line during the compression
of the text as shown in Figure 5. Each node (N) in 7' at any step represents a substring
which has been visited earlier into the already encoded text. This substring is found by
concatenating the characters in the label of each node on the path from the root node to
N. Each node is numbered by an integer which is used as a pointer (code value) to replace
a matching substring into the text to form the codes in the output compressed text. The
trie T' is initialized on a ¢ + 1 rooted tree where the root is labeled (0, ) to represent the

null string (A). The root has ¢ children nodes labeled (1,a4),(2,as3),...,(q,a,) respectively



to represent ¢ single character strings. This is shown as 77 in Figure 5. The input text is
examined character by character and the longest substring in the text which already exists
in the trie, is replaced by the integer number associated with the node representing the
substring in the trie. This matching substring is called a prefix string. This prefix string
is then extended by the next character to form a new prefix string. A child node is created
at the node representing the matching substring in the trie. This new child node will now
represent the new prefix string. In the algorithm described below, we express a prefix string
by the symbol w and the input character by K. In each step of the Loop, the next character
K is read and the extended string wk is tested to find whether the string wK already exists
in the trie. If it already exists, the extended string becomes the new prefix string w. If wk
does not exist in the trie, it is inserted into the trie, the code value of w is transmitted as

compressed data and the character K becomes the first character of the next string w.

The LZW Compression Algorithm :
begin

Initialize the trie with single-character strings;
Initialize w with the first input character;
Loop : Read next input character K;
if no such K exists (input exhausted) then
Output the code value of w;
EXIT from the Loop;
end if;
if wK exits in the trie then
w — wl;
else /* The phrase wK doesn’t exist in the trie */
Output the code value of w;
Insert the phrase wk into the trie;
w— K;
end if;
end Loop;

end.

If we assume that the size of the dictionary is big enough to accommodate all the parsed
strings, the number of bits to encode each pointer is [logy (n + q)], i.e. if the pointer size
is predetermined to be k-bits, we can accommodate a maximum of 2 parsed strings in the

dictionary and reinitialize the dictionary trie each time (2¥ — ¢) pointers are output.



N o/&

1, a (2, b) 3,0

(0, \)

6 3

(6, a)

(O! e )
SRE
(2, b)
5,
\( 9 96, a)
O (8 a)

Figure 5: Example of the dictionary Trie using LZW algorithm.




Example: ¥ ={a,b,c}, 5 = abcabbcabbaaaaaa. ¢(S)=1,2,3,4,5,7,1,10,11.

The steps and the corresponding trie data structure to encode the above string S are
shown in Figure 5. In each step ¢ > 0, we output the pointer p; which we find from the label
agsociated with the dark node in trie 7;. T; is then modified to T;41 by inserting a node to
represent the new prefix string which is shown by the node lead by the dotted line in T;41.
Also note that the number of nodes in T} is always 7 + ¢ and the pointer p; to output at step
iis 1 < p; <14 ¢q. Since the final dictionary trie Ts contains 11 prefix strings (represented
by 11 nodes), each pointer will be encoded by [11] = 4 bits each. As a result, the size of the
compressed string ¢(.9) is 36 bits.

4 Redundancy in Binary Encoding of the Output Codes

The size of the pointer in LZW algorithm is predefined and hence the same fixed number of
bits are output in each LZW code irrespective of the number of entries in the dictionary. As
a result a large number of bits are used unnecessarily when the number of phrases into the
dictionary is less than half of its maximum size. In the LZC algorithm (which is a variant of
the LZW algorithm used in UNIX-Z compression), string numbers are output in binary [8].
The number of bits used to represent the string number in any step varies according to the
number of phrases (say M) currently contained in the dictionary. For example, when the
value of M is in the range 256 to 511 each string number can be represented using a 9 bits
binary number and when M becomes in the range 512 to 1023, each string number will be
represented as a 10 bits binary number and so on. The scheme is also sub-optimal because
a fractional number of bits is still wasted unless M is a power of 2. For example, when M
is 513, it is possible to encode the first 512 string numbers in the dictionary (0 through 511)
using 10 bits while 512 and 513 can still be represented as 2-bit binary numbers ‘10’ and
‘11’ respectively, without violating the prefix property because the first 512 binary codes will
start with the bit 0 and the last two codes starts with the binary bit 1. The methodology
can be developed as a special case of the phase in binary encoding scheme, we proposed in

section 2. This is explained in the following section.

5 Allocation of the Phase in Binary Codes in LZW output
for variable-length binary encoding

In each step of the LZW algorithm, only one phrase may be inserted into the dictionary, i.e.

only one pointer is appended into the pointer list. We can express the set of pointers in step

10



i as a sequence of ¢+7 integers P* = {1,2,---,¢+1} in increasing order. As a result, this can
be considered as a special instance of the proposed on-line variable length binary encoding
problem presented in section 3. Here the length of the subsequence being concatenated at
every step is 1, specifically the integer ¢ + ¢ is appended at the end of the sequence P~!
in step i to form the extended sequence P'. Hence the sequence P of length ¢ + i can be
mapped into the leaf nodes of a phase in binary tree with ¢ + ¢ leaf nodes as described in
section 2. As a result, the LZW codes (i.e. the pointers) in every step can be encoded by the
phase in binary codes to form a variable-length binary encoding of text. We first show with
the same example how to assign the variable length binary codes to the pointers in each
step of the compression. We later describe a decoding algorithm that uniquely generates
the original LZW codes. The steps are shown in Figure 6. The single character strings are
represented by the dictionary trie Ty with the set of pointers P° = {1,2, 3} as shown in Figure
6. These pointers can be mapped into the variable length binary encoding C° = {00,01, 1}
represented by the phase in binary tree By. The set of binary codes of the pointers to the
single character strings maintain the prefix property, i.e. no code is a prefix of another code
into the set and the output pointer 1 can be encoded with 2 bits ‘00’. In the next step the
set of pointers is P* = {1,2,3,4}, which can be mapped into the set of binary encodings
C! = {00,01,10,11} represented by the binary tree By as shown in Figure 6. Hence the
output pointer 2 can be encoded using two bits ‘01’. Following the same procedure the sets
of pointers P2, P3,..., P® can be mapped into the sets of binary encodings C%,C3,--.,C®
obtained from the phase in binary trees Bj, Bs,---, Bg respectively as shown in Figure 6.
Accordingly, the output pointers 3,4, 5, 7, 1, 10 and 11 in the next seven consecutive steps
can be encoded as ‘010°, ‘011°, ‘100°, ‘110°, ‘0000°, ‘11’ and ‘11’ respectively. Hence the
compressed string ¢(.9) can be encoded as 00 01 010 011 100 110 0000 11 11 using 24 bits,
instead of 36 bits using the fixed-length encoding.

6 Decoding of the Binary Codes

During the decompression process using the LZW algorithm, logically the same trie is created
as in the compression process. But generation and interpretation of the binary tree is a little
tricky although the same binary tree will be essentially generated as in the compression
process. To decompress the binary codes, we start with the same phase in binary tree By
and the corresponding trie Ty as in the compression process. In each step ¢, a string of
characters (say 9;) is regenerated. In step ¢, the phase in binary tree B; is traversed starting

from the root node. The left child (or the right child) is traversed if the next input bit is 0

11



(or 1) until a leaf node in B; is reached. The label of this leaf node in B; is the pointer to
a node in T; which represents the regenerated substring 5; to output. In step ¢, the phrase
formed by concatenating the previous output substring S;_; (only exception during the first
step, ¢ = 0 and S_; = A) and the first character (say K') of the present output substring 5;,
t.e. S;_1 K is inserted into the trie T; to create the new trie T;4q. If the substring 5;_1 K
already exists in T;, the trie T;11 will be identical to T;. The new node (if any) in 7;41 will
be represented by the pointer ¢+ 7 in 7;47. The phase in binary tree B; is then incremented
to Bi11 and the new leaf node B;1q is labeled by the integer ¢ + ¢ + 1. The same procedure

is repeated until all the bits in binary code ¢(.5) have been exhausted.

It should be mentioned here that the decoding operation in LZW is handled differently
in a special case. This special case occurs whenever the input string contains a substring
of the form KwKwk, where Kw already appears in the trie. Here K is a single character
from the alphabet and w is a prefix string. This is explained in detail in the original paper
of LZW [7]. If the original input string (.9) contains a substring of this form, during the
decoding operation of our proposed binary encoding, we will find that the decoded label
from the binary tree is not yet created in the trie in the corresponding step (say step j).
In this case, we know that the output string S;_1 (obtained in the immediate previous step
Jj — 1) was of the form Kw. Hence we need to output a substring 5; of the form Kwk in
the present step and insert the prefix string 5; = KwK into the trie 7} to form 74, and

the corresponding node representing 5; in 7;41 will be marked by ¢ 4 j.

We describe the above decoding process using the same example to decode the binary
code ¢(S) = 0001 010 011 100 110 0000 1111. This binary code ¢(.5) was obtained by
compressing S = abcabbcabbaaaaaa using the proposed phase in binary encoding scheme.
We start with the phase in binary tree By with 3 leaf nodes and the trie Ty consisting of the
single character strings as shown in Figure 7. Here the alphabet is ¥ = {a,b, ¢} and hence
size of ¥ is ¢ = 3. In the first step (¢ = 0), we traverse the phase in binary tree By starting
from the root node and reach to the leaf node of label 1 after reading the first two input bits
00. This label 1 indicates a pointer in trie Ty which represents the output substring So="‘a’.
The binary tree By is modified to By to represent a phase in binary tree with 4 leaf nodes
and the new leaf node is now labeled by ¢ + ¢+ 1 = 4 as shown in the phase in binary tree
By in Figure 7. In the next step (¢ = 1), the By is traversed and the next two input bits
01 lead to the leaf node 2 in By. The node of label 2 in trie T} represents the output string
S1="b". This character concatenated with the previous output substring ‘a’ forms the new
prefix string ‘ab’ which is inserted into the trie to form 7T5. This is shown by the broken

edge in T, in Figure 7. The new pointer to the prefix string ‘ab’ is ¢ + ¢ = 4. The phase in

12



binary tree B; is now incremented to form the phase in binary tree B, with 5 leaf nodes.
The new leaf node is labeled by ¢ + ¢+ 1 = 5 as shown in Bs in Figure 7. In the following
step (i = 2), By is traversed and the next three input bits 010 lead to the leaf node of label 3
which represents the output substring Se=‘¢’ in T5. This is concatenated with the previous
output substring S7=" to form the new prefix string ‘b¢’ and inserted into the dictionary
trie to form T5. The new pointer to the prefix string ‘be’ in 75 is labeled by ¢+ ¢ = 5. The
phase in binary tree Bj is now incremented to form the phase in binary tree Bs with 6 leaf
nodes. The new leaf node is labeled by ¢+¢+4+1 = 6 in B3. Bz is then traversed and the next
three input bits 011 lead to the leaf node of label 4 which represents the output substring
Ss=‘ab’ as shown in T5. The first character(a) of this output substring is concatenated with
the previous output string S;="‘c¢’ to form the new prefix string ‘ca’ which is inserted into the
trie to form Ty. The pointer of this prefix string ‘ca’ in T4 is now ¢ + ¢ + 1 = 6. The phase
in binary tree Bs is now incremented to the phase in binary tree By with 7 leaf nodes and
the new leaf node is labeled by ¢ + ¢4+ 1 = 7. Following the same procedure in next three
steps (i.e. @ = 4,5,6), we can regenerate the decoded output substrings S4="b¢’, S5=°‘abb’
and Sg=*‘a’ for the binary sequences 100, 110 and 0000 from the phase in binary trees By,
Bs, Bg and the corresponding tries Ty, Ts and Ts respectively. In step 7 (i = 7), we will
traverse the binary tree B; and the next two input bits 11 will lead to the leaf node marked
by the integer 10 in B7. But there is no node in the trie 1% labeled by the pointer 10. This
arises due to the special case of appearance of a substring KwKwk , as we described above.
Hence the output substring should be of the form KwkK. In this case, Kw is the output
substring S¢=‘a’ in the previous step. As a result, K = @ and w = A here. So we output the
substring S;=KwK = aa and insert the prefix string ‘aa’ into the trie represented by the
node labeled by the pointer ¢ + ¢ = 10 to form 7. The same situation arises, for the next
two input bits 11. By traversing the tree Bg using the bits 11, we reach to the leaf node of
label 11. But there is no pointer 11 in trie Tg. Hence the special case arises, where K = a
and w = a. Hence output substring will be Ss = KwkK = aaa. Since all the input bits are
exhausted the decoding process stops. Now concatenating all the output substrings above,

we find that the decoded string is abcabbcabbaaaaaa which is the original string 5.

7 Experimental Results
We have implemented our scheme and tested it with texts of different sizes and charac-

teristics. In all the cases, the phase in binary encoding method significantly improves the

performance of the raw LZW technique with fixed-length pointer size of 12 bits and starting

13



the dictionary all over again after it is full. We have performed our experiment with different
maximum allowable height of the binary tree. The best performance is achieved when the
binary tree is allowed to grow to a maximum height of 15. In our implementation, we allowed
the binary tree to grow until it becomes a complete binary tree of height 15 and start all
over again after that. We presented the experimental results in the table below to compare
the compression performance based on the LZW method and our proposed variable-length
encoding scheme which we call the LZWAJ scheme. The experiment was performed on the
files obtained from the University of Calgary text corpus in addition to several other text
files. The experimental results of our scheme illustrate the significant improvements obtained

by using our scheme over the LZW algorithm.
(Sizes are expressed in nearest Kilo-bytes)

TEXT Original LZW LZWAJ
bib 111 64 45
book 1 768 446 346
book?2 610 346 259
geo 102 84 77
news 377 246 188
obj1 21 14 13
obj2 246 143 123
paperl 53 31 24
paper 2 82 45 35
progc 39 22 18
progl 71 32 25
progp 49 19 18
trans 93 50 36
Aver age 202 119 93

8 Conclusion

In this paper, we have presented a novel methodology for an on-line variable-length binary
encoding of a growing set of integers by mapping the integers into the leaf nodes of a special
binary tree called the phase in binary tree. The characteristics of the phase in binary tree is

that the left subtree is always a complete binary tree and the height of the right subtree is

14



no bigger than the height of the left subtree. This phase in binary tree can be represented
as a composition of a number of height balanced complete binary trees. The binary codes
are generated in such a way that prefix property between two consecutive steps is always
maintained for the sake of unique decoding operation to regenerate the original text. We
have used this methodology to further enhance the compression performance using the LZW
scheme to show the effectiveness of the newly defined phase in binary encoding. As a result,
a variable-length binary encoding of the text is possible using the popular LZW codes and
the phase in binary encoding. The experimental results show that we can achieve much

better compressions than these obtained by using the standard LZW algorithm.

References

[1] Storer, J. A.“Data Compression: Methods and theory.” Computer Science Press,
Rockville, MD, 1988.

[2] Huffman, D.,“A Method for the Construction of Minimum Redundancy Codes,” Proc.
IRFE, Vol. 40, 1952, pp. 1098-1101.

[3] Witten, I.H., Neal, R., and Cleary, J.G.,“Arithmetic coding for data compression,”
Communication of the ACM, 30(6), 520-540, June 1987.

[4] Ziv, J. and Lempel, A.,“A Universal Algorithm for Sequential Data Compression,” I[EEE
Trans. on Info. Theory, I'T-23, 3, May 1977, pp. 337-343.

[5] Ziv, J., and Lempel, A.,*Compression of Individual Sequences Via Variable-rate Cod-
ing,” IEEF Trans. Info. Theory, IT-24, 5, September 1978, pp. 530-536.

[6] Bell, T. C., Cleary, J. G. and Witten, I. H.,“Text Compression,” Prentice Hall, NJ,
1990.

[7] Welch, T.,“A Technique for High-Performance Data Compression,” IFFFE Computer, 17
(6), 819, June 1984, pp. 8-19.

[8] Horspool, R. N.,“Improving LZW.” Data Compression Conference, 1991, pp. 332-341.

15



0]
PO = (1,2 3} c% = {00, 01 13

B1
82

1 K

1 : 5

(4, b) O 5,9 S . B,
2 2

P~ ={1,2,34,5}

C ~ = {000, 001, 010, 011, 1}

O, )

3.9

(5, ©) .
6, a O

P3={1,2,3,4,5 6}

7O,
P ={1,234,56,7}

C 4 { 000, 001, 010, 011, 100, 101, 11}

Figure 6: Example of the LZWAJ coding (Continued in the next page also).

16




© N)

T5 : 5
. b) (3.0
(4.b) ) (5, 0)
@ O (6, a)
(7.b) O (8,a)
P°={1,2345678} C° ={000,001 010,011, 100, 101, 110, 111}
: 0, A
T, 0 X) “ B
@ La 3.9 ot
(4,b) | o
1 2 3 45 67 8 9
(7,b) ¢ ea .- - - - -
- ®5
©.a0) 6 6
P°={1,234,586,789} C ={0000,0001, 0010, 0011, 0100, 0101, 0110, 0111, 1}

©, M)
B
$ @b OG0
1
@ N
(10, a) (4, b) (5,0 R
(6, a) °
1 2 3 4 5 67 8 9 10
(7. b) O (82
7
(9, a) P’={1,23456,789, 10}C ={0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 10, 11}
Tg ©, N)
P 39
O (10
® (6,

b
(7, b) ® 2)

o, aKP 8={ 1,23,456,7,8,9 10} C 8={OOOO, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 100, 101, 11}

Example of the LZWAJ encoding (Continued).

17




: 0, \
TO . .%
1, a (2, b) 3,0

: 0, A
(1, ) 2 b) 3,00

: 0, A
' 2 /j\
(1.3 Q (2, b) 30 @

(4, t\J\)\O
Ty 0 )
s CLISRNEELS
(4, b) OGo
T, O/ ©2)
(1, a) (2, b) (3, 0) O
(4, b) (50 . a)b

Figure 7: Example of the LZWAJ decoding of binary codes.

18



© N)

@ @9 2, b) 3.0
(4,b)
(5,¢)
(7, b) (6,9
O 8,3
0, N\)

1.9 (2, b) 3,0
(6,4)
3,¢)

(6,2)

Example of the LZWAJ decoding (Continued).

19




