
THE NEWYACC USER'S MANUALElizabeth L. White John R. Callahan James M. PurtiloComputer Science DepartmentUniversity of MarylandCollege Park, Maryland 20742This manual introduces NewYacc, a parser generator system built upon theoriginal yacc system within Unix [3]. NewYacc's principle extension is to provideusers with a way to associate rewrite rules with individual productions in thelanguage grammar. These rules are used to describe how the parse tree (whichis saved in NewYacc but not in original yacc) should be traversed, plus userscan easily control what action is performed at each node in the tree duringtheir traversals. This provides users with great leverage in the construction ofa variety of source to source translation tools. This manual assumes a generalfamiliarity with original yacc.

The research leading to construction of NewYacc was supported by O�ce of Naval Researchunder contract N0014-90-J4091.

1 INTRODUCTIONNewYacc, an extension of the UNIX tool Yacc[3], is a tool which allows users to do source-to-source transformations on input languages. A Yacc speci�cation consists of grammar rulesdescribing the input structure, C code to be invoked when rules are recognized, and a low-levellexical analysis function which divides the input into tokens. From this speci�cation, Yacc gen-erates a C function which calls the lexical analysis routine, parses the input and invokes actionswhen grammar rules are recognized. A speci�cation for NewYacc contains all the elements of aYacc speci�cation with the addition of user-de�ned traversal speci�cations. The NewYacc gen-erated function also parses the input and invokes actions when grammar rules are recognized.However, once the input has been accepted as a legal string in the language de�ned, the parse treefor the input can be traversed and additional actions performed using the user-de�ned traversalspeci�cations. These traversals loosely correspond to attribute-dependencies in traditional at-tribute grammar systems. The idea is closely related to generalized syntax-directed translationschema (GSDTS) [2] from which attribute-based approaches were developed.The functionality of many tools can be discussed in terms of the input language structure asde�ned by its grammar. This suggests an alternative to the low-level approach traditionally usedfor tool development. The idea is to adapt input at a high level so that existing compilers, codegenerators and other processing tools can be employed without alteration. Users need the abilityto do high-level source-to-source translations quickly and easily by specifying what needs to bedone in terms of the language constructs themselves. Traditionally, attribute grammar-basedapproaches have been used to perform such actions during a parse. NewYacc is less powerfulthan most attribute-based systems, but it is simple to employ and su�ciently powerful to dealwith a wide class of translation tasks. It has proven to be an ideal \�rst-pass" tool in manyapplications, allowing reuse of language-independent tools. Some examples can be found in [5].One type of tool which is easy to develop using NewYacc is one which outputs a transformationon its input. An example of such a tool is an instrumenter. If these desired transformationscan be de�ned in terms of the input structure, the grammar de�ning the input language can beaugmented to associate actions with di�erent productions of the grammar such that the resultingtool builds a parse tree for a given input, traverses this tree, and outputs a �ltered, augmented,or altered version.A tool which extracts information from the input for the purposes of computing some type ofstatistics is also easily constructed. The input grammar can be augmented such that functioncalls and/or outputs are made at speci�c points in the parse tree during a selective traversal.These calls and outputs can be analyzed at the end of processing to compute the desired statistics.If the tool's functionality requires multiple passes over a segment of the parse tree or that theparse tree be traversed in an unusual way, this can also be done easily using NewYacc. Thesubtrees of a node in the parse tree of an input to the tool can be traversed in any order and anynumber of times the tool developer speci�es. Traversals can even be conditional, based on theinformation in another part of the parse tree. 1

NewYacc allows the use of dynamically scoped reference variables. Reference variables allowinformation from one section of the parse tree to be stored and used at other sections of theparse tree. This feature is very useful when developing tools which require the use of context-sensitive information. Reference variables are also useful when used as a \macro" packager forcommonly used auxiliary stacks in Yacc. Opening a scope and declaring a new reference variableis analogous to pushing an item on a stack.Numerous tools have already been developed using the NewYacc tool. These tools include a Ccinema tool, a C pro�ler, an Ada static analyzer program and an Ada instrumenter.Users who are unfamiliar with the tool Yacc should read the Yacc manual before continuing withthis document. The next section gives a brief introduction to Yacc but is insu�cient for thosewho have never used the tool. Those readers with a strong understanding of Yacc should skip toSection 3.Use of the NewYacc tool is introduced in this document by way of example. Section 3 discusseswhat NewYacc speci�cations look like and how they are developed using two sample applicationswhich the reader can implement if desired. Many (although not all) of the features of NewYaccare described in this section. All of the features of NewYacc are detailed along with examples inSection 4. These two sections may be read in either order.2 YACCThis section contains a brief discussion of Yacc for those users who have some familiarity with thetool. Much of what follows is paraphrased from the Yacc documentation, but only aspects of Yaccwhich are important to understanding and using NewYacc are mentioned. In particular, only thesyntax of Yacc speci�cations, lexical analysis, and the environment are discussed. Readers whoare interested in Yacc actions, error handling, and an overall description of how the resultingYacc and NewYacc parsers work are referred to the Yacc documentation.2.1 BASIC SPECIFICATIONSA Yacc speci�cation �le looks like:declarations%%rules%%programsThe declaration and program sections may be empty.2

The declarations section is used to declare the tokens (using %token) and the start symbol(%start) as well as give other pieces of information to the speci�cation (%left, %right, %nonassoc,etc.). Declarations for C code can appear in the declarations section enclosed in the marks \%f"and \%g". These declarations have global scope, so they are known to the speci�cation statementsand the lexical analyzer. For example, %fchar * a ;%gcan be placed in the declarations section making a accessible to all parts of the program. TheYacc parser only uses names beginning in \yy" (the parser produced by NewYacc also uses namesbeginning with \ny"); the user should avoid such names.The rules section is made up of one or more grammar rules. A grammar rule has the form:A : BODY ;\A" represents a nonterminal name and \BODY" represents a sequence of zero or more namesand literals. The colon and semicolon are Yacc punctuation. The names used in the body of agrammar rule may represent tokens or nonterminal symbols.The program section contains code which will be included in the resulting parser. Any user-de�ned functions can be placed here if desired.2.2 LEXICAL ANALYSISThe user must supply a lexical analyzer to read the input stream and communicate tokens to theparser. The lexical analyzer is an integer-valued function called yylex. The function returns aninteger token number representing the kind of token read. If there is a value associated with thattoken, it should be assigned to the external variable yylval.A very useful tool for constructing lexical analyzers is the Lex[4] program, which is designed towork in harmony with Yacc parsers.2.3 ENVIRONMENTWhen the user inputs a speci�cation to Yacc, the output is a �le of C programs called y.tab.c(on most systems). The primary function produced by Yacc is called yyparse. When yyparseis called, it repeatedly invokes yylex to obtain an input token. The user must provide a certainamount of environment to this parser in order to develop a working program. A program calledmain, which calls yyparse, and a function called yyerror, which prints a message when a syntax3

error is detected, are necessary. These two routines may be supplied by the user or the defaultversions in the Yacc library may be used.3 NEWYACCBefore going into the details of NewYacc and NewYacc traversals, it is easier to look at a smallexample of its use. This section introduces a simple programming language SAMPL and two dif-ferent tools (both of which operate on SAMPL program text) which can easily be implementedusing NewYacc. Section 2.1 contains a speci�cation of the language itself and a description oftwo tools: a pretty-printer and a
ow graph extracter. Development of an application tool usingNewYacc involves several steps which are outlined in Section 2.2. The �nal subsection followsthese steps to show how the pretty printer and the
ow graph extracter might be implemented us-ing NewYacc. The two NewYacc speci�cations given use features of NewYacc which are discussedin depth in Section 4. Complete code for these two tools can be found in Appendix B.3.1 SAMPLLet us suppose that someone has implemented a new programming language called SAMPL.You are asked to develop some SAMPL tools | a pretty-printer and a
ow-graph tool. Thesetasks will require di�erent approaches: (1) the pretty-printer will augment SAMPL programswith additional text and (2) the
ow-graph tool will extract information from SAMPL programs.Figure 2 displays a small SAMPL program and Figure 3 shows both the pretty-printed versionand the
ow graph for this program.You do not have access to the SAMPL compiler, but you do have the SAMPL grammar writtenin BNF notation shown in Figure 1. Parser generator tools like Yacc and Lex are necessitieshere, yet the tasks will be tedious even with the use of such tools. To implement the prettyprinter, for example, each grammar rule will have to be augmented with actions that echo theinput matching that rule. Furthermore, Yacc and Lex do not bu�er input tokens. Your parserwill have to save and echo input tokens explicitly.The
ow-graph tool will need to output a graph encoded as a list of lists. A list represents a\basic block" of code that may include nested blocks. For each block in the code there is a listwith the following format:(blocknum ((varlist)(branchlist)(stmt1) . . . (stmtn)))Each blocknum is of the form \B" followed by a unique number for each block. The varlistis a list of variables referenced in the conditional part of the statement (either a while or if)which encloses the block. The branchlist is a list of blocks to branch to upon exit. If the blockis contained in a loop, this branchlist will contain a self-reference. There is also a list entry foreach statement or block contained within the current block. The output is used as input to a4

<program> ::= <block><block> ::= BEGIN <statement list> END<statement list> ::= /* empty */j <statement> <statement list><statement> ::= IF <expression> THEN <block>j WHILE <expression> DO <block>j IDENTIFIER ASSIGNOP <expression><expression> ::= <expression> <binaryop> <expression>j LPAREN <expression> RPARENj IDENTIFIERj LITERALj NOT LPAREN <expression> RPAREN<binaryop> ::= EQUALS j LESSTHANj GRTRTHAN j PLUSj DASH j STARj SLASHFigure 1: The SAMPL grammar.language-independent tool(written in Common Lisp) that performs various
ow-graph analysisfunctions.3.2 USING NEWYACCParsed text can be represented as a tree | a parse tree | consisting of a root node, internalnodes, and leaf nodes. Each node is an instance of a rule in the grammar used to parse theinput. To augment input or extract information contained in a parse tree, one must follow a paththrough the parse tree and output the required information once found. NewYacc allows usersto specify traversals through the parse tree and actions to be performed at di�erent points in thetraversal.3.2.1 TRANSLATIONS NewYacc is a superset of Yacc. NewYacc speci�cation �les are sim-ilar to the Yacc speci�cation �les as shown in Section 2, but have two di�erences:1. The \%tag" speci�ers in the declarations section.2. Rule translations appended to some grammar rules (after the last Yacc semantic action).The \%tag" speci�er is placed in the declarations section along with other Yacc speci�ers (e.g.,%token, %left, %right, %start). It simply lists all of the display masks (see below) used in all5

begin x := inputwhile x > 0 do beginy := x*x+y output := yx := input end endFigure 2: A SAMPL program .beginx := inputwhile x > 0 do beginy := x*x+youtput := yx := inputendend(a) (setq fg (quote(B0 (() ()(B7 (x (input)))(B26 ((x) (B26)(B51 (y (x x y)))(B62 (output (y)))(B74 (x (input)))))))))(b)Figure 3: Pretty-printed (a) and
ow-graph (b) versions of the SAMPL program in Figure. 2.NewYacc translations. Masks are used to label and direct traversals through a parse tree. Theyroughly correspond to attributes used in more traditional approaches.Translations are attached to the end of a grammar rule, after the last Yacc semantic action butbefore the semicolon that ends the rule. For example, the pretty-printer should separate eachtoken in a SAMPL statement of the form \if x then y" by a single space character. To do this,the grammar rule statement : IFR exp THENR blockwould be appended with the translation[(PRETTYP) #1() \ " #2 \ " #3() \ " #4]in order to specify a separation between terminals and non-terminals. Translations may also beattached to groups of rules. The group of statement rules in Figure 1 would be annotated for thepretty-printer as follows:
6

statement : IFR exp THENR block[(PRETTYP) #1() \ " #2 \ " #3() \ " #4]j WHILER exp DOR block[(PRETTYP) #1() \ " #2 \ " #3() \ " #4]j IDENTIFIER ASSIGNOP exp[(PRETTYP) #1() \ " #2 \ " #3()];The translations above are labelled with the PRETTYP mask. Each #n in the body of thetranslation refers to the nth symbol on the right-hand side of the grammar rule. A symbolrepresents a non-terminal or terminal corresponding to a subtree or token (respectively) in theparse. Yacc semantic actions are not included in the enumeration of symbols. Symbols can beused repeatedly in a translation and in any order. The \()" following a #n in a translationindicates that the subtree or token is to be output literally. NewYacc handles the details of tokenstorage. Translation may also include other objects: strings, references, conditionals, blocks, andassignments.Each translation is supposed to re
ect an \unparsing" of tokens that match a grammar rule [6].A traversal starts at the root of a constructed parse tree and applies each matched translationas it is encountered along the traversed path. Traversals are masked to match translations witha particular mask. For example, a PRETTYP traversal from the root of a SAMPL parse treewould eventually encounter the PRETTYP translations on the SAMPL statement rules.Translations also control the paths of traversals. Some of the #n symbol references in thestatement translations above, for instance, do not represent tokens, but subtrees (non-terminals).In these cases, the subtrees are traversed recursively with the PRETTYP mask. If a rule doesnot have a translation matching a traversal, all of the subtrees are traversed in the order theyappear on the right-hand side of the grammar rule.3.2.2 MAIN PROGRAMS The main program for a NewYacc application looks similar to thatused in a Yacc application. The function yyparse is called �rst to perform the parse, executingthe semantic actions attached to grammar rules while constructing the parse tree. If this is donesuccessfully, the parse tree may be traversed by calling the function nyprint which has the form:nyprint(outputf,mask,traversaltype,�lterstrings)where outputf is the name of the output function.mask is a mask (one of the %tag symbols).traversaltype is either NY OPEN or NY SELECT.�lterstrings is either 0 (TRUE) or 1 (FALSE).7

The simplest possible main program is one which �rst parses the input stream into a parse treeusing yyparse and then uses nyprint to perform a traversal using a mask. It also contains aninclude �le, nytags.h, for the NewYacc tags used. This program looks like:#include \nytags.h"main()f if (yyparse() == 1) error(-1);nyprint(outputf, mask, traversaltype,�lterstring);gTraversals are initiated by this function at the root of a parse tree. The function nyprint may beinvoked multiple times after the parse because the tree is not discarded until the program exits.The mask argument is simply a %tag symbol used to match translations with the same label inthe parse tree. The traversal type argument is either open or selective. These concepts will bediscussed in the Features section. The string �lter argument is used to specify whether or not a\n" character should be placed in front of other \n"'s produced by the traversal. This argumentis necessary because the \n" is a special character in the C programming language.An output function is called each time a string is produced during a traversal. This function isuser-speci�ed so that the programmer might collect tokens in an array, direct output to some �leunder user control, or send output to standard output. The output function written by the usershould have one parameter of type pointer to character. One of the simpliest possible outputfunctions is one which simply uses printf to print the string to standard output.outputf(s)char *s;f if (s)printf(\%s",s);gThere is no default output function.
8

3.2.3 INVOKING NEWYACC TOOL There are several option available when invoking theNewYacc tool:-f in�le speci�es the input grammar �le-l leave the NewYacc and Yacc intermediate �lesused in the current directory-s use stdin for grammar input instead of naming a �le-d turn on Yacc debugging-Y yacc�le the yacc to use after NewYacc preprocessing(the default is /usr/bin/yacc)3.3 USING NEWYACC TO DEVELOP SAMPL APPLICATIONSWe can view the tasks of pretty-printing and
ow graph extraction as traversals of a tree repre-senting the parsed input text with the input tokens at the leaves of the tree. A traversal startsat the root of the tree and proceeds down subtrees to the leaves. NewYacc saves the entire parsetree (with the tokens as leaves) in memory so that application programs can traverse the treein order to augment or extract context-sensitive information. If some subtree of the parse treeshould be echoed verbatim, one can specify this at the root of the subtree in the grammar insteadof at the leaves. Likewise, one can select information from subtrees at their root without theneed for explicitly managing global variables or paths of inherited and synthesized attributes.Pretty-printing a SAMPL program involves outputting all of the leaves of the parse tree forthe program with spaces, tab characters, and carriage returns placed in certain spots. Figure 4shows a NewYacc speci�cation which will produce a parser to perform this operation. Thisspeci�cation only uses one display mask PRETTYP which is included in the declarations sectionusing a \%tag". Three built-in functions, tab, tabincr, and tabdecr, are declared and used. Ruletranslations were added to the input grammar:� In the production for \program", a translation was added to put a carriage return at theend of the input stream.� In the production for \block", a translation was added which will put a carriage return afterthe BEGIN token, increment the current tabbing level (to supply the correct indentation),pretty-print out the statement list inside the block, then decrement the tabbing level beforeprinting the END token.� In the production for \statement list", a translation was added to insert a carriage returnbetween statements. 9

� In the productions for \statement", translations were added to insert blanks between theelements of a statement.� In the productions for \expression", translation were added to insert blanks between theelements of an expression.It should be fairly easy for the reader to see that these rule translations will produce the desiredresult if the tree is traversed in such a way that the leaf nodes are visited in the same order asthe tokens they represent occur in the original program. This can be achieved using an opentraversal, which is discussed in the Features section.The
ow graph producer for SAMPL programs is a more complex tool. Here, the output isa Lisp-like structure rather than the input program. The parse tree needs to be traversed asin the pretty-printer, but the purpose of the traversal is the extraction of information withoutoutputting the input. A di�erent kind of traversal, a selective traversal, is needed here. Thistraversal type is also discussed in the Features section.A speci�cation for the
ow graph tool is shown in Figure 5. The grammar has been modi�edslightly from the original speci�cation of SAMPL to simplify the computation of the location ofthe �rst character of an expression. This modi�cation is not necessary, but serves to increasereadability of the speci�cation. The speci�cation given uses three display masks, BLOCKS, BIN,and POS. It also uses three reference variables (which are discussed in the Features section), b,c and e and a built-in function bcharno. The \&" character indicates selective traversal of theindicated subtree or token.As can be seen in the speci�cation, each block is numbered by the character position within thesource �le of the �rst lexical token of that block. This ensures each block has a unique number.In order to keep track of the current block number, the parser will have to manage a global stackof block contexts as the input is parsed. This is done through the use of the reference variablesb, c and e. The variable b always contains the current block number, while e holds the branchlist for the block and c holds the variable list. Several rule translations are necessary to specifythe information extraction:� In the production for \program", a translation was added to declare an occurrence of thethree reference variables and set them to hold the information about the outermost blockof the program.� In the production for \block", a translation was added which outputs the block informationcomputed previously, followed by a traversal of the statements contained within the block.� In the production \statement ::= IFR exp THENR block", a translation was added whichcomputes the block number using a traversal on the second subtree with mask POS, com-putes the variable list by traversing the same list with mask BIN, and then traverses theblock. 10

%f char *tab(),*tabincr(),*tabdecr();%g%tag PRETTYP%token BEGINR ENDR IFR THENR WHILER DOR IDENTIFIER ASSIGNOP%token EQUALS LESSTHAN GRTRTHAN NOTR PLUS DASH STAR SLASH%token LPAREN RPAREN LITERAL%left EQUALS LESSTHAN GRTRTHAN PLUS DASH STAR SLASH%start program%%program : block[(PRETTYP) #1 "nn"];block : BEGINR statement list ENDR[(PRETTYP) #1() "nn" tabincr()#2 tabdecr() tab() #3()];statement list : /* empty */j statement statement list[(PRETTYP) tab() #1 "nn" #2];statement : IFR expression THENR block[(PRETTYP) #1() " " #2 " " #3() " " #4]j WHILER expression DOR block[(PRETTYP) #1() " " #2 " " #3() " " #4]j IDENTIFIER ASSIGNOP expression[(PRETTYP) #1() " " #2 " " #3()];expression : expression binaryop expression[(PRETTYP) #1() " " #2() " " #3()]j LPAREN expression RPAREN[(PRETTYP) #1 " " #2() " " #3]j IDENTIFIERj LITERALj NOTR LPAREN expression RPAREN[(PRETTYP) #1 " " #2 " " #3() " " #4];binaryop : EQUALS j LESSTHANj GRTRTHAN j PLUSj DASH j STARj SLASH;%%#include "lex.yy.c"Figure 4: A solution to pretty-print SAMPL programs.11

� In the production \statement ::= WHILER exp DOR block", a translation was addedwhich computes the block number using a traversal on the second subtree with mask POS,computes the branch list the same way, computes the variable list by traversing the samelist with mask BIN, and then traverses the block.� In the production \statement ::= IDENTIFIER ASSIGNOP exp", a translation was addedto print out the unique number for the statement, the identi�er being modi�ed, and theidenti�ers which are being used in this modi�cation.� In the production for \exp", a translation was added to return the position within the input�les of the character at the beginning of the expression.� In the production \expression ::= IDENTIFIER", a translation was added which prints outthe identi�er followed with a space.Figure 6 shows the commands necessary to create both of the SAMPL tools in a Unix environ-ment. The necessary commands are shown following the \%" symbol with the parts for whichcomplete pathnames must be added in boldface. Output from the tools is shown in italics. Alex �le for processing tokens (sampl.l), a NewYacc speci�cation �le for both the pretty-printerand
ow graph program (sampl.ny), a main program (main.c) and a sample make�le are allgiven in Appendix B. There are two tools used here which have not been previously mentioned.nylex�x.lex and nytabc�x.yacc are used to do some �nal editing of the lex and yacc �les beforecompilation.4 FEATURESThis section discusses the features of the NewYacc tool. The two di�erent methods of treetraversal, open and selective, are explained in Section 4.1. NewYacc speci�cations may alsocontain built-in functions, user-de�ned functions, reference variables and statements. Use of built-in and user-de�ned functions are described in Sections 4.2 and 4.3. Section 4.4 discusses referencevariables, and Sections 4.5 and 4.6 describe the block statement and conditional statement types.4.1 TRAVERSALSThere are two types of nodes in a NewYacc produced parse tree of an input source �le. Interiornodes represent some production rule of the input grammar for the language being parsed. Leafnodes are produced for some string which is a terminal symbol of the language and has noassociated subtrees.A traversal in NewYacc is a user-speci�ed dynamic walk through the parse tree and correspondsto a single translation of the input. The display masks and grammar symbols control the path ofthe traversal. Traversals always begin at the root with an associated display mask and proceed12

%f char *b,*c,*e,*bcharno();%g%tag BLOCKS BIN POS%token BEGINR ENDR IFR THENR WHILER DOR IDENTIFIER ASSIGNOP%token EQUALS LESSTHAN GRTRTHAN NOTR PLUS DASH STAR SLASH%token LPAREN RPAREN LITERAL%left EQUALS LESSTHAN GRTRTHAN PLUS DASH STAR SLASH%start program%%program : block[(BLOCKS) !b !c !e@b="B0" @e="()" "(setq fg (quote "@c="()" #1 "))nn"];block : BEGINR statement list ENDR[(BLOCKS) "(" @b " (" @c "("@e ") " #2 "))"];statement list :j statement statement list;statement : IFR exp THENR block[(BLOCKS) !b !c !e@b="B"+&2(POS)@c="("+&2(BIN)+")" #4]j WHILER exp DOR block[(BLOCKS) !b !c !e@b="B"+&2(POS)@e="B"+&2(POS)@c="("+&2(BIN)+")" #4]j IDENTIFIER ASSIGNOP exp[(BLOCKS) "(B" bcharno()" (" #1() " (" &3(BIN) ")))"];exp : expression[(POS) bcharno()];expression : expression EQUALS expressionj expression LESSTHAN expressionj expression GRTRTHAN expressionj expression PLUS expressionj expression DASH expressionj expression STAR expressionj expression SLASH expressionj LPAREN expression RPARENj IDENTIFIER[(BIN) #1() " "]j LITERALj NOTR LPAREN expression RPAREN;%%#include "lex.yy.c"Figure 5: A solution to extract SAMPL
ow-graphs.13

% lex sampl.l% nylex�x.lex lex.yy.c% newyacc -f sampl.ny -dAdding display tag BLOCKSAdding display tag BINAdding display tag PRETTYPAdding display tag POSExecuting /usr/bin/yacc -vd ./ny.temp.y% nytabc�x.yacc y.tab.c% cc -c main.c% cc -c y.tab.c% cc -o sampl main.o y.tab.o /jteam/callahan/lib/libny.a -llFigure 6: Creating the SAMPL tools on a Unix system .downward according to the NewYacc rule translations encountered. The grammar symbols anddisplay masks control the path of the parse tree traversal. When a node is encountered duringa traversal, there is always a current display mask. If this node has a rule translation with amask that matches the current mask, then the elements of this translation are evaluated fromleft to right. During evaluation, literal strings in the rule translation are output and the subtreesindicated by grammar symbols are traversed. A subtree traversal by default uses the same displaymask and traversal type as that of the current node, but this can be changed. These changes willbe discussed later in this section. If there is no matching display mask, the default action dependsupon whether the current traversal type is open or selective. After the entire rule translation hasbeen evaluated, control returns to the parent of the node.4.1.1 OPEN TRAVERSALS A grammar symbol reference containing the \#" character in aNewYacc rule translation or the use of the NY OPEN option in an invocation of nyprint() at theroot speci�es an open traversal. In the default case for open traversals, the subtrees for both theterminals and non-terminals are traversed in the same order they occur on the right-hand side ofthe rule. For a production of the form: A : B c D e(where uppercase letters represent non-terminals and lowercase letter represent terminals) thedefault action during an open traversal would be:[#1 #2 #3 #4]As a simple example of open traversals, consider a grammar which recognizes lists of ITEMs. Ifthe necessary task was the reversal of this input list, a selective traversal could do this quite well:14

tlist : list[(REVERSE) #1 \nn"];list : list ITEM(**) [(REVERSE) #2 \ " #1]j ITEM[(REVERSE) #1 \ "];The # character followed by a number n is a grammar symbol which corresponds to the n-th element on the right hand side of the production. These symbols indicate a traversal of theindicated subtree. In the line marked with \(**)", the #2 indicates traversal of the second subtree(which literally outputs the ITEM), followed by the output of the literal string \ ", and �nally thetraversal of the �rst subtree, the rest of the list. It is easy to see that this traversal will performthe necessary reversal. A NewYacc speci�cation which makes the input into a palindrome (i.e.transforms the list \a b c" to the list \a b c c b a") would be a simple extension which the readermay want to try.As another example of open traversals, consider a set of productions, Yacc speci�cations andNewYacc actions for specifying two traversals, one to produce pre�x output and the other toproduce post�x output.Expression : `(' Expression `)' f $$ = $2 g[(PREFIX,POSTFIX) #2]j Expression `+' Expression f $$ = $1 + $3 g[(PREFIX) #2 \ " #1 \ " #3](**) [(POSTFIX) #1 \ " #3 \ " #2 \ "]j Expression `�' Expression f $$ = $1 - $3 g[(PREFIX) #2 \ " #1 \ " #3][(POSTFIX) #1 \ " #3 \ " #2]j digit;The Yacc actions are contained in the braces and the NewYacc speci�cations are in the squarebrackets.A parse tree for the input sentence \(3 + (2� 1))� (4 + 5)" is shown in Figure 7. If the task tobe performed is the translation of in�x expressions to post�x expressions, the above speci�cationcould be used and a POSTFIX traversal speci�ed. In this case the nodes of the parse treewould be visited in the order indicated by the numbering in the �gure and the output would be\3 2 1� +4 5 +�". 15

1

d

-

)
d

+

-

EE

54

2

3

+

E(
d

d

d

EEEE

EE)()(

E

EE

Figure 7: Parse Tree for (3 + (2� 1))� (4 + 5).Initiating a traversal with the display mask PREFIX would result in the output of \�+3�2 1+4 5". A traversal can also be initiated at the root with a null display mask which will result in aparse tree traversal that visits all nodes and outputs the input sentence unchanged.4.1.2 SELECTIVE TRAVERSALS The second type of traversal is a selective traversal. Thisis indicated by a grammar symbol in a rule translation pre�xed with the character \&" or byusing the NY SELECT option in the invocation of nyprint(). Lacking a matching display mask, thedefault translation for a selective traversal is the traversal of the subtrees for the non-terminals onthe right-hand side of the production. Using the example production of the previous subsection,the default translation during a selective traversal would be:[#1 #3]16

Since leaf nodes are not output during a selective traversal, initiating the traversal with a nulldisplay mask will result in no output.The expression grammar previously used can be modi�ed slightly to extract information from theinput without echoing the input itself. The following speci�cation produces a translation whichcounts and returns the number of operands in the input expression. Two functions are used here.One function, bump, increments an integer counter which is declared in the main program andreturns a null string. The second function, outputcount, looks at this integer counter, converts itinto a string and returns this string.Exp : Expression[(COUNTER) #1 outputcount()];Expression : `(' Expression `)'j Expression `+' Expressionj Expression `�' Expressionj digit[(COUNTER) bump()];Traversed selectively, this speci�cation will output the number of digits found in the input ex-pression.4.1.3 CHANGING MASKS AND TRAVERSAL MODES DURING TRAVERSALS A few morewords are needed in regard to symbol references within translations. A grammar symbol referenceis of the form1 [n]#n[([mask])]or [n]&n[([mask])]where mask is a label with which the traversal searches the nth grammar symbol (usually a non-terminal representing a subtree). A mask may be optional. When no mask is used, the mask ofthe current translation applies for the traversal searching the subtree. The mask of the currenttranslation is called the descending mask because the current traversal mask is speci�ed in anancestor node or by the nyprint function if the current node is the root of the parse tree. If MSKis the descending traversal mask and the translation[(MSK) #1 #2 #3]1Square brackets denotes optional. 17

descending type and masksymbol open M selective M#n open n(M) selective n(M)#n() open n(NULL) open n(NULL)#n(X) open n(X) open n(X)&n selective n(M) selective n(M)&n() selective n(NULL) selective n(NULL)&n(X) selective n(X) selective n(X)Table 1: Symbol references and their contextual meaningsis matched, then this translation is equivalent to the translation[(MSK) #1(MSK) #2(MSK) #3(MSK)]if the descending traversal type is open and[(MSK) &1(MSK) &2(MSK) &3(MSK)]if the descending traversal type is selective. Twelve types of symbol references can be constructedfrom these forms. Table 1 displays six symbol forms and their meanings in the context of de-scending traversals. The other six forms are constructed from these by pre�xing a \n" characterto the symbol to enable string �ltering on a subtree traversal. String �ltering is brie
y discussedin Section 3.2.2.The NULL traversal mask is prede�ned and matches no translation. If NULL is the currentdisplay mask and a traversal is open, the input on the subtree is simply echoed. If the traversalis selective, the output for the subtree will be empty (e.g., see the \&n()" case in Table 1).Normally, the NULL mask is used only on terminal symbols during a selective traversal to causea leaf node to be output. If the \()" is omitted and the descending traversal is selective, theterminals will not be echoed.By combining traversal masks and types within translations, traversal may also be mixed. Almostall applications of NewYacc will require the use of mixed traversals. A selective traversal, forinstance, may need to echo whole subtrees, or an open traversal might echo the entire input exceptfor a few tokens. These mechanisms allow developers to view their annotations as operations onparse trees, rather than abstract attributes.For example, a small modi�cation can be made to the grammar to produce a translation thatchanges the current display mask during a traversal so that an expression can be printed out ina strange combination of pre�x and post�x notation.18

Expression : `(' Expression `)'[(PREFIX) #1 #2(POSTFIX) #3][(POSTFIX) #1 #2(PREFIX) #3]j Expression `+' Expression[(PREFIX) \+" #1 \ " #3][(POSTFIX) #1 \ " #3 \+"]j Expression `�' Expression[(PREFIX) \�" #1 \ " #3][(POSTFIX) #1 \ " #3 \�"]j digit;Assuming the traversal is initiated to be an open traversal initially, the occurrence of parenthesescauses the current traversal type to change. For example, given the input "(3 + (2 - 1)) - (4+5)" and an initial display mask of POSTFIX and a traversal type of open, the string \(+ 3 (21 -))(+ 4 5) -" would be output. Looking again at Figure 7, the display mask changes for thesecond subtree of every node which has parentheses as a subtree.A speci�cation which switches between open and selective modes can be used to output alladdition operands in the input expression.Expression : `(' Expression `)'j Expression `+' Expression[(ADDERS) #1() #2() #3() \nn"]j Expression `�' Expressionj digit;If this traversal is initiated to be selective with display mask ADDERS, the null mask, indicatedby \()", causes an open traversal (and literal output) of some subtrees while the rest of the parsetree is still traversed selectively. For the input \(3 + (2 - 1)) - (4 + 5)", the output would be:3 + (2 - 1)4 + 5since these are the two addition expressions of the input.19

4.1.4 SEMANTICS OF TRAVERSAL AT A NODE At a node in the parse tree for a grammarrule of the form: A : E1E2:::En;where the current display mask is M and the traversal type is either open or selective.Algorithm Traversalif there is no rule translation with a mask = M thenif traversal type is open thentraverse the subtrees E1:::En from left to rightelsetraverse the non-leaf subtrees of E1:::En from left to rightend if;else /* there is a matching rule translation */For each element of the rule translation which matches docase element type ofliteral: send it to outputfunction: make the call and send the result to outputreference var decl: allocate space for the variable; initialize to the null stringreference var: send the value of the variable to outputassignment to reference var: evaluate the right hand side and store the resultconditional statement: evaluate the expression and use the result to decide the direction offurther evaluationblock opening (closing) : open (close) blocksubtree symbol:if the symbol has an associated display mask M1 thenif symbol pre�xed with a \#" thentraverse the subtree with open traversal using M1elsetraverse the subtree with selective traversal using M1end if;elseif symbol pre�xed with a \#" thentraverse with the same traversal as before using Melsetraverse with selective traversal using Mend if;end if;end case;end for;end if;end Algorithm;4.2 USER-DEFINED FUNCTIONSA user may de�ne functions for use during the parse tree traversal process. The type of thesefunctions must be pointer to character (string) and all functions are de�ned in the declarationssection of the NewYacc speci�cation. User-de�ned functions may have zero or more actual pa-rameters (arguments of the function invocation) of type string. The formal parameters (the20

arguments in the function declaration) are accessed via two parameters. The �rst parameter isan integer which tells how many arguments were used and the second contains the value of thesepassed arguments stored in an array of strings. For example, a function foobar could be declaredfor use with NewYacc as follows: char *foobar(argc, argv)int argc;char **argv;f body of foobar gThe actual parameters of the function invocation are contained in strings argv[0], argv[1], . . . ,argv[argc-1]. The value returned by a function is incorporated into the translation, assigned to avariable, or used as input to another function.For example, a function makestr which takes 1 or more string and returns a single string can bewritten for use in a rule translation.char *makestr(argc, argv)int argc;char **argv;f char * s;int len=0, i;for (i=0; i < argc; i++)len += strlen(argv[i]);s = (char *) malloc(len + 1);strcpy(s,argv[0]);for (i = 1; i < argc; i++)strcat(s,argv[i]);return (s);gThis function takes a variable number of string arguments and returns a single string argument.If declared in the NewYacc speci�cation, it can be used in a rule translation for a variety ofpurposes.In Figure 8 gensym() is an example of the invocation of a user-de�ned function whose returnvalue is assigned to a variable. The use of bcharno() in Figure 5 shows a user-de�ned functionwhose value is incorporated into the output of the translation.4.3 BUILT-IN FUNCTIONSThere are several built-in functions which are useful when transforming and extracting informa-tion from a source �le: 21

Function for tabbing:char * tabdecr() - decrement the current tab levelchar * tabincr() - increment the current tab levelchar * tab() - place tab characters corresponding to the current tab levelinto the outputFunctions that generate input line numbers:char * blineno() - the beginning line number of the input matching the current rulechar * elineno() - the ending line number of the input matching the current ruleFunctions that generate input character numbers:char * bcharno() - the beginning character number within the text of the inputmatching the current rulechar * echarno() - the ending character number within the text of the inputmatching the current rulechar * bcwline() - the beginning character number within the line of the inputmatching the current rulechar * ecwline() - the ending character number within line of the input matchingthe current ruleExamples of the use of these functions can be found among the example speci�cations whichcome with the NewYacc tool itself.4.4 REFERENCE VARIABLESNewYacc allows the de�nition and use of reference variables within rule translations. Thesedynamically scoped variables are visible to nodes which are descendants of the node declaringthe variables. Use of reference variables allows easy access to context sensitive information andcan replace the use of an auxiliary stack to hold necessary information.The symbol \!" is used to declare an instance of a reference variable and \@" is used to indicatethe access of the variable. Variables must be declared at the beginning of the rule translationfollowing the display mask. The following example shows the declaration and simple use of tworeference variables. A : B c D e[(REFVAR) !a !b @a=\stringtype" #1 @b=#3()]The value of variable \a" is assigned to the value of a literal string. As the �rst subtree istraversed, any reference to \a" (assuming another reference variable \a" is not declared) willreturn the value \stringtype". A reference to \b" (with the same assumptions) will return a null22

string, since \b" is only given a value after the traversal. When \b" is given a value, it is assignedto the string value that the open traversal with no display mask of the third subtree will return.This string will consist of the literal string value of all of the leaf nodes of this subtree appendedtogether.The next simple example uses the list grammar seen previously and creates a tool which rotatesthe �rst element of a list to the last spot in the list.tlist : list(*1) [(ROTATE) !�rst #1 \ " @�rst];list : list ITEM[(ROTATE) #1 \ " #2]j ITEM(*2) [(ROTATE) @�rst=#1()];A single reference variable \�rst" is declared at the start of the traversal (at location *1) and isused to hold the value of the �rst item in the list when found (at location *2). When the entirelist is traversed, this �rst item is output (at *1). If the input list is \a b c", the output will be\b c a".A more complex example of the use of reference variables can be seen in Figure 8. The purposeof this speci�cation is to substitute simple variable names for digits in the input string. Forexample, the input string \2+(7�3)+2" would result in the output \a = 2 b = 7 a+(b�3)+a"during an open traversal with the display mask SUBSTITUTE. Two reference variables are used,one to hold the digit being substituted and the second to hold the simple variable name whichis to be substituted. The �rst rule translation simply declares a new occurrence of the variables\var" and \val" whenever a node \stat" occurs in the parse tree. The second rule translation inthe speci�cation takes advantage of the fact that reference variables are given a null string valuewhen they are declared to decide whether the digit has been assigned a variable name yet.4.5 BLOCKSAnother useful feature of NewYacc is the ability to create blocks for scoping purposes. Theblocks are delimited by the characters \f" and \g". Any variables declared within a block arenot visible outside the block. For example, if the following rule translation was encounteredduring a traversal:[(BLOCK) !a !b @a=\outstring" @b=\instring" f!a @a=@b @a \ "g @a]the output would be the string \instring outstring" since the value of \a" inside the block isassigned to the value of b and then output followed by a blank. Finally, the value of \a" outside23

the block is output.Each rule translation can also be thought of as opening a new block. Blocks are commonly usedwith conditional statements which are discussed in the next sections and examples of block usagemay be found there.4.6 CONDITIONALSNewYacc provides conditional tests in a rule translation based on string comparisons betweentranslation items. Examples of translations items which can be compared are literal strings,reference variables, strings returned from functions, and strings returned from subtree traversals.The syntax of conditional statements is:if stmt : `IF' `(' expression1 condition expression2 `)' `THEN'`f' statements `g'`ELSE'`f' statements `g'where \expression1" and \expression2" are string types and the condition is one of f ==, ! =,<, >, >=, <= g.Going back to the list grammar, this next example takes a list and removes the elements whichare of value a.tlist : list;list : list ITEM[(NOA) IF (#2() !=\a") THEN f #1 \ " #2gELSE f#1 g]j ITEM[(NOA) IF (#1() != \a") THEN f#1 g ELSE fg];Here each leaf value is checked and output if it is not equal to a.A more interesting task using the same grammar is one which merges adjacent identical elementsinto a single element. 24

list ::= list stat ;stat ::= expr[(SUBSTITUTE) !var !val #1]j LETTER `=' expr ;expr ::= `(' expr `)'j expr `+' exprj expr `-' expr. . .j term[(SUBSTITUTE) IF (@var == \") THENf @var = gensym() @val = #1 @var \=" #1 gELSE f IF (@val == #1) THEN f @var gELSE f#1 g]Figure 8: Use of Conditionals, References, and User-De�ned Functions.tlist : list[(MERGE) !item #1];list : list ITEM[(MERGE) IF (#2() != @item) THEN f@item=#2() #1 \ " #2gELSE f#1 g]j ITEM[(MERGE) IF (#1() != @item) THEN f#1 g ELSE fg];The idea in this example is to always keep the most recently seen ITEM in a reference variable\item". For each new element of the list seen, compare it to the most recently seen ITEM. If theymatch, do not output the new elements. If they do not match, save the value of the new elementin \item" and continue traversing (remembering to output this elements when the traversal isdone).Figure 8 shows a more complex example use of conditional tests and reference variables. Thenested conditional decides whether to initialize the auxiliary variable, to output the contentsof a reference variable, or to traverse a subtree based on the string values of the two referencevariables in relation to the contents of the current node.25

References[1] Aho, A. and J. Ullman. Principles of Compiler Design, Addison-Wesley, (1979).[2] Aho, A. and J. Ullman. The Theory of Parsing, Translation, and Compiling,vol 2. Prentice Hall, (1973), pp. 758-782.[3] Johnson, S. Yacc: Yet Another Compiler-Compiler. Bell Laboratories, (1979).[4] Lesk, M. E. and E. Schmidt. Lex: A Lexical Analyzer Generator. Bell Laboratories,(1979).[5] Purtilo, J. and J. Callahan. Parse Tree Annotations, Communications of the ACM,vol. 32, (December 1989), pp. 1467- 1477.[6] Reps, T. and T. Teitelbaum. The synthesizer generator. Proceedings of the ACMSIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-opment Environments, (April 1984), pp. 42-48.

ACKNOWLEDGEMENT: Thanks to Spencer Rugaber for his assistance in checking out the NewY-acc distributions, and also for his helpful comments concerning this document.26

A OPERATIONTool development using the NewYacc system is a several step process. These steps are enumeratedbelow along with the actual commands for producing the tool.1. A grammar for the input language and a lexical analyzer for the tokens of that languagemust be produced. The lexical analyzer can be produced by the user or generated using Lex[4] and is invoked in the same way as in Yacc. The input grammar must be LALR(1) withdisambiguating rules as required for Yacc. In some systems if Lex is used to produce thelexical analyzer, the produced lex.yy.c �le must be further edited using a script nylex�x.lex.lex <�lename>.lnylex�x.lex lex.yy.c2. The grammar is augmented Yacc and NewYacc speci�cations as needed for the application.Be sure to either \#include" lex.yy.c in the program section or link the lex.yy.c code withthe parser, so that the lexical analyzer will be part of the package.3. This augmented grammar is input to the NewYacc tool which produces a parser in a �ley.tab.c (on most system). On some systems, this �le must be edited using the scriptnytabc�x.yacc. newyacc -f sampl.ny -v -d -Ynytabc�x.yacc y.tab.c4. A main program written in C must be produced. This main program must contain a callto yyparse() to parse the input sentence and output the parse tree followed by a call tonyprint() (with the appropriate parameters) to perform a traversal. The nyprint() functionmay be called multiple times. This �le must also \#include" a �le called nytags.h which isproduced by the NewYacc tool.5. Compile and link together y.tab.c, the main program, and any other C code being used inthe application. cc -c main.ccc -c y.tab.ccc -o <out�lename> main.o y.tab.o <newyacclib> -ll
27

B SPECIFICATION FILES FOR SAMPL TOOLSB.1 LEXICAL ANALYZER SPECIFICATION FILE: sampl.l%%begin f return(BEGINR); gend f return(ENDR); gif f return(IFR); gthen f return(THENR); gwhile f return(WHILER); gdo f return(DOR); gn:n= f return(ASSIGNOP); gn= f return(EQUALS); gn < f return(LESSTHAN); gn > f return(GRTRTHAN); gnot f return(NOTR); gn+ f return(PLUS); gn� f return(DASH); gn* f return(STAR); gn/ f return(SLASH); gn(f return(LPAREN); gn) f return(RPAREN); g[0-9]+ f return(LITERAL); g[A-Za-z][A-Za-z0-9]* f return(IDENTIFIER); g[ntnrnn] ;B.2 NEWYACC SPECIFICATION FILE: sampl.ny%f char *b,*c,*e,*bcharno(), *tab(), *tabincr(), *tabdecr();%g%tag BLOCKS BIN POS PRETTYP%token BEGINR ENDR IFR THENR WHILER DOR IDENTIFIER ASSIGNOP%token EQUALS LESSTHAN GRTRTHAN NOTR PLUS DASH STAR SLASH%token LPAREN RPAREN LITERAL%left EQUALS LESSTHAN GRTRTHAN PLUS DASH STAR SLASH%start program%%program : block[(BLOCKS) !b !c !e @b="B0" "(setq fg (quote " @c="()" #1 ")) nn"][(PRETTYP) #1 "nn"] ;block : BEGINR statement list ENDR[(BLOCKS) "(" @b " (" @c "(" @e ") " #2 "))"][(PRETTYP) #1() "nn" tabincr() #2 tabdecr() tab() #3()] ;statement list :j statement statement list[(PRETTYP) tab() #1 "nn" #2];statement : IFR exp THENR block[(BLOCKS) !b !c !e @b="B"+&2(POS) @c="("+&2(BIN)+")" #4][(PRETTYP) #1() " " #2 " " #3() " " #4]j WHILER exp DOR block[(BLOCKS) !b !c !e @b="B"+&2(POS) @e="B"+&2(POS)@c="("+&2(BIN)+")" #4][(PRETTYP) #1() " " #2 " " #3() " " #4]j IDENTIFIER ASSIGNOP exp[(BLOCKS) "(B" bcharno() " (" #1() " (" &3(BIN) ")))"][(PRETTYP) #1() " " #2() " " #3 `] ;exp : expression[(POS) bcharno()] ; 28

expression : expression EQUALS expressionj expression LESSTHAN expressionj expression GRTRTHAN expressionj expression PLUS expressionj expression DASH expressionj expression STAR expressionj expression SLASH expressionj LPAREN expression RPARENj IDENTIFIER[(BIN) #1() " "]j LITERALj NOTR LPAREN expression RPAREN ;%%#include "lex.yy.c"B.3 MAIN PROGRAM : main.c#include <stdio.h>#include "nytags.h"myprint(s)char *s;{ if (s) fputs(s,stdout);}main(){ if (yyparse() == 1) exit(-1);nyprint(myprint,PRETTYP,NY_OPEN,0); /* pretty-printer */nyprint(myprint,BLOCKS,NY_SELECT,0); /* flow-graph extracter */}B.4 make�leall: samplsampl: y.tab.o main.occ main.o y.tab.o -o sampl $(NEWYACCLIB) -lly.tab.o: y.tab.ccc -c y.tab.cmain.o: main.ccc -c main.cy.tab.c: sampl.ny lex.yy.c$(NEWYACC) -f sampl.ynytabcfix.yacc y.tab.cmain.c: nytags.hlex.yy.c: sampl.llex sampl.lnylexfix.lex lex.yy.c 29

