Information-Hiding URLSs for Easier Website Evolution

Charles Song and Vibha Sazawal
Department of Computer Science
University of Maryland
College Park, Maryland, USA
{csfalcon, vibha} @cs.umd.edu

Abstract

Many common elements of URLs do not adhere to the
principle of information hiding. For example, filename ex-
tensions and parameter names can reveal volatile imple-
mentation details. As a result, when website implementa-
tions change, links between pages break. Bookmarks and
code that generates URLSs often break as well.

In this paper, we present two tools for information-hiding
URLs. An information-hiding URL uses an alias to identify
a web resource and appends parameter values into the hier-
archical structure of the URL. The InformationHidingFilter
uses a Java Servlet filter to facilitate the use of information-
hiding URLs with JSP/Servilet web applications. Given a
request, the filter identifies the JSP or Servlet being re-
quested and identifies parameter values contained in the
information-hiding URL. Required values not provided in
the URL are automatically substituted with default values
specified by the web developer. Thus, old links remain valid
even when the website changes and new parameters have
been added to the page. The InformationHiding Checker
helps web developers adhere to information hiding by help-
ing them identify JSPs or Servlets that lack URL informa-
tion for the InformationHidingFilter or lack default values
for parameters. We also discuss the performance cost of
using information-hiding URLs.

1. Introduction

The uniform resource locator (URL) plays a public role
in the Internet. Popular browsers display a web page’s URL
in a prominent, top center location. Users commonly enter
URLSs directly, bookmark them, and share them. Web pages
link to other web pages via URLs. In effect, the URL serves
as the interface between a web page and those who wish to
see that page. The software engineering literature contains
extensive research on interface design; the most influential

of this work is David Parnas’ principle of information hid-
ing. In his seminal paper on information hiding, Parnas de-
signed a software system such that each module’s “interface
or definition was chosen to reveal as little as possible about
its inner workings” [13, p. 1056].

After even shallow examination, it becomes clear
that many elements of URLs do not hide the in-
ner workings of anything. Filename extensions,
such as “jsp,” reveal details about how the web-
site is implemented. Parameter names, such as
“hl=en&q=website+evolution&btnG=Google+Search,”
also reveal server-side details. As a result, when website
implementations change, URLs will change too. When
these URLs change, links between pages break. Bookmarks
and code that generates URLs may break as well.

Broken links matter [4, 6, 10, 15]. When links and book-
marks break over time, user experiences suffer. Customers
lose the ability to navigate through sites smoothly. More
importantly, information can get lost. Web developers can
expend effort updating URLs as website implementation
details change, but they can’t control links created outside
their organization.

To lower the effect of website change on URLSs, we
propose to apply Parnas’ approach for designing software
module interfaces to the URL. In this paper, we introduce
the information-hiding URL. An information-hiding URL
identifies a web resource indirectly via an alias and embeds
parameter values into the hierarchical structure of the URL.
If a programmer follows certain conventions, such as pro-
viding default values for parameters, a link or bookmark de-
fined using an information-hiding URL will not break even
if many details about the page have changed.

We also present two tools for information-hiding URLs
that support their use with JSP and Servlet web applica-
tions. The InformationHidingFilter uses a Java Servlet
filter; given a request, the filter identifies the JSP or Servlet
being requested and then identifies parameter values con-
tained in the information-hiding URL. Values not provided

in the URL are filled with default values specified by the
web developer. Thus, old links remain valid even when the
website changes and new parameters have been added to the
page. The InformationHidingChecker is another tool that
identifies JSPs or Servlets that lack URL information for the
InformationHidingFilter or lack default values for parame-
ters. While in a “debug mode,” accessing such offending
JSPs or Servlets with a browser will produce errors.

The contributions of this research are (1) a well-defined
standard for information-hiding URLSs that can be easily im-
plemented across server platforms, and (2) a set of tools that
enable both support and enforcement of information-hiding
URLS for one extremely common server-side platform (Java
Servlets and JSP).

In the next section, we present background information
on Parnas-style interfaces and describe their application to
the web domain. In section 3, we present implementation
details about the InformationHidingFilter and the Informa-
tionHidingChecker. Section 4 discusses the performance
implications of using information-hiding URLs. Section 5
discusses related work, Section 6 proposes future work, and
Section 7 concludes.

2. The information-hiding URL

In A Procedure for Design Abstract Interfaces for De-
vice Interface Modules, Britton, Parker, and Parnas elabo-
rated on the properties of good interfaces [5] first introduced
by Parnas in 1972. They defined the abstract interface of
a module as the list of assumptions that clients may make
about the module. This list should omit details that would
change if the module is replaced or if the module evolves in
likely ways.

Britton et al. suggest that the assumptions be written in
two ways — first as a literal list of assumptions written in nat-
ural language, and then as a set of programming constructs
that can be directly accessed by clients. The first list makes
assumptions explicit; implicit assumptions can otherwise go
unnoticed. The second way — one or more signatures in a
programming language — is mandatory, because without it,
client code cannot access module functionality.

Applying these ideas to the web domain, we present
the information-hiding URL. The information-hiding URL
is the analogue of the mandatory programming construct.
Information-hiding URLs omit details that are likely to
change, while still identifying a web resource of interest.
Using information-hiding URLs, links and bookmarks are
unaffected by likely changes.

We focus on three likely changes:

1. changes to server-side implementation technology

2. features are added to the webpage, causing parameters
to be added

3. features are removed from the webpage, causing pa-
rameters to be removed

We chose these types of changes because we believe they
are likely and because they are poorly handled by other
strategies such as redirection.

How can a URL remain valid in the presence of these
types of changes? An information-hiding URL uses an
implementation-independent alias to identify a web re-
source and appends parameter values into the hierarchi-
cal structure of the URL in the order specified by the de-
veloper. For example, A Java Server Page URL typically
looks like: http://www.example.com/directory/resource.
jsp?paraml=valuel ¶m2=value2. The information-
hiding URL counterpart of the above URL would be: http:
/Iwww.example.com/directory/resource/valuel/value?2.

With the information-hiding URL, volatile implementa-
tion details such as the platform (e.g., JSP) and parameter
names are hidden from the user of the web application. The
implementation-independent alias used in the information-
hiding URL does not change when the web resource’s name
or choice of implementation platform changes. Since names
of the parameters are also hidden, web developers are free
to change these names.

In addition, the information-hiding URL can handle the
addition and retirement of parameters without breaking old
links or bookmarks to previous versions. If a new param-
eter is required by the web resource, the new parameter is
appended to an existing information-hiding URL to create a
new URL. If the web resource is accessed with an old ver-
sion of the URL, the missing parameter value is filled with
a default value that web developers are required to provide.
If a parameter is no longer needed by the web resource, the
values of the retired parameter in the old information-hiding
URL are simply ignored. In new links to that information
hiding URL, the special keyword nil is used in the loca-
tion of the retired parameter to hold its place.

To use information-hiding URLs properly, programmers
must follow two conventions. First, they must design their
web pages so that sensible default values can be assigned
to parameters. Second, they should avoid modifying pa-
rameters; instead of modifying an existing parameter, a new
parameter should be created and the old one should be re-
tired. These conventions help maximize the likelihood that
links to information-hiding URLs continue to work cor-
rectly even when changes to the underlying page have been
made.

3. Tool support for information-hiding URLs

In this section, we present two tools that support the use
of information-hiding URLs with JSP/Servlet applications.
While it may seem strange to provide tool support that is

platform-specific when information-hiding URLs intend to
hide platform changes, it is vitally important to separate
the concept of the information-hiding URL from any one
platform-specific tool that supports such information-hiding
URLSs. The tool support we present here is a proof of con-
cept that we envision spreading to all platforms, as the JVM
has for Java.

3.1. InformationHidingFilter

The InformationHidingFilter is (not surprisingly) imple-
mented as a Servlet Filter. Java Servlet Filters [7] are enti-
ties that sit between an HTTP request and the JSP or Servlet
being requested. When the web application is configured to
allow it, these filters are invoked for every incoming request,
and they can choose to manipulate the request or throw
away the request before the intended target is reached.

At runtime, the InformationHidingFilter receives re-
quests to information-hiding URLS, transforms these URLs
into implementation-specific URLs the web application un-
derstands and then forwards the request to the web appli-
cation. The InformationHidingFilter performs the transfor-
mation from information-hiding URL to non-information-
hiding URL by reading metadata embedded in JSP files or
Servlet mappings. We refer to that metadata as information-
hiding configuration. To use the InformationHidingFilter,
all web developers must do is add an entry to their web ap-
plication’s web . xml file to include the filter and enter the
information-hiding configuration.

3.1.1 Configuration metadata

The information-hiding configuration metadata describes
a web resource and the parameters it requires. Figure 1
shows the information-hiding configuration needed by the
information-hiding URL in Section 2.

To separate the information-hiding configuration from
other comments, the usual HTML comment tags <! - - and
- -> are augmented with : > and < :. In other words, the In-
formationHidingFilter looks for comments demarcated by
<l--:>and<:-->.!

The configuration is formatted in XML. The root ele-
ment is the web resource. Inside the resource, a mandatory
name element specifies the implementation-independent
alias of this web resource. Then, an optional description
element can follow the name element; in the description,
developers can explain details about the web resource and
document assumptions in natural language. Next, zero or

I'The : > syntax was inspired by the “opaque signature” feature of Stan-
dard ML [17], because the opaque signature hides implementation details
of a structure from clients using the signature. However, this source of
inspiration does not imply that the information-hiding configuration offers
any kind of SML-like features.

<l-=-:>
<resource>
<name>resource</name>
<descriptions>resource description</descriptions>
<param>
<name>paraml</name>
<type>string</type>
<default-values>defl</default-value>
<description>parameter l</descriptions
</param>
<param>
<names>param2</names
<type>string</type>
<default-value>def2</default-value>
<descriptions>parameter 2</descriptions>
</param>
</resources>
<:i-->

Figure 1. Configuration for the information-
hiding URL http://www.example.com/directory/
resource/valuel/value2. Web developers enter
this meta-data manually.

more param elements follow to specify the parameters re-
quired by the web resource and the order in which they will
appear in the information-hiding URL. Inside each param
element are three required elements and one optional ele-
ment: a name element, a type element, and a default-value
element, followed by an optional description element.

In our current implementation, the name element can be
any string, and the default value can also be any string, al-
though the string “nil” has special meaning as described in
Section 3.1.4 below. The type element must be entered by
the web developer as documentation, but the Information-
HidingFilter does not currently use that information; sup-
port for type checking is future work.

JSPs and Servlets have different locations to embed these
configurations. For JSPs, the configurations are located in-
side the JSP file, preferably at the beginning of the file. For
Servlets, the configurations are located inside the web . xm1
file of the web application?; a Servlet’s configuration is in-
serted in the mapping for that Servlet. Figures 2 and 3 show
examples of configurations that we added to an existing JSP
and Servlet when modifying them to use information-hiding
URLs.

Figure 2’s metadata allows the Information-
HidingFilter to translate the information-hiding
URL of http://[hostname]/photodb/photo-list/

colorado-national-monument/ to the URL that the
web application expects: http://[hostname]/photodb/
photo-list.jsp?name=colorado-national-monument. ~ Sim-
ilarly, Figure 3’s metadata allows the filter to trans-

2web . xml describes deployment details of Java web applications.

<l--:>
<resource>
<name>photo-list</names>
<param>
<names>name</name>
<typesstring</type>
<default-value>nil</default-value>
</param>
</resource>
<i=-=->
<!-- beginning of the rest of the jsp -->

<%@ page errorPage="error.jsp" %>
<%@ page import="com.magiccookie.photodb.PhotoL. . .

o

<%@ page import="com.magiccookie.photodb.Util" %>

o

<%@ page import="com.magiccookie.html.HtmlUtil" %>

Figure 2. Information-hiding configuration
that we added to photo-list.jsp, a file in the
PhotoDB application [8] by Ari Halberstadt.

late from http://[hostname]/best_sellers/ARTS/0/ to
http://[hostname]/TPCW _best_sellers_Servlet?subject=
ARTS&SHOPPING_ID=0.

3.1.2 InformationHidingFilter initialization

The InformationHidingFilter initializes when the web ap-
plication starts. All of the initialization code is placed in the
init (FilterConfig) method from the Servlet Filter
interface. In this initialization method, the InformationHid-
ingFilter builds a lookup table that enables fast translation
from information-hiding URLSs to the “regular” URLs that
the web application expects.

The InformationHidingFilter builds the lookup table in
two steps. In the first step, the filter generates mappings for
Java Server Pages. The filter begins by recursively search-
ing for JSP files in the web application directory. When a
JSP file is located, the filter will extract information-hiding
configuration from the JSP file and use it to store details
about parameters for that JSP file in the lookup table. In
the second step, the filter generates similar mappings for
Servlets from web . xm1.

3.1.3 InformationHidingFilter operation

When a request to an information-hiding URL is issued to
the web application, the InformationHidingFilter will catch
the request and perform a URL transformation. First, the
InformationHidingFilter will try to identify the requested
resource using the lookup table mentioned above. The fil-
ter will match the longest alias contained in the URL. This

<!-- beginning of the servlet mapping -->
<servlet-mappings>
<servlet-name>
TPCW_best sellers servlet</servlet-namex>
<url-patterns>
/TPCW_best sellers_servlet</url-patterns>

<l--:>
<resource>
<name>best_sellers</name>
<param>
<name>subject</namex>
<type>string</type>
<default-value>nil</default-value>
</param>
<param>
<name>SHOPPING_ ID</name>
<types>string</type>
<default-valuesnil</default-value>
</param>
</resource>
<:i-->

</Servlet-mapping>

Figure 3. Information-hiding configuration
that we added for the TPCW best sellers
Servlet, a Servlet in the TPC-W benchmark
[16].

is done by truncating the incoming URL from the rear one
“directory” at a time until a mapping is found. When the
mapping is found, the filter builds a new URL to the re-
quested JSP file or Servlet.

The next step is to append the parameter values from the
incoming request to the JSP file or Servlet. The “directo-
ries” not used during the resource lookup are treated as pa-
rameters. The first directory name is the value of the first
parameter specified in the mapping and so on. If the filter
runs out of “directories” before all parameters are assigned
a value, default values are used. After the URL transfor-
mation is done, the InformationHidingFilter forwards the
request to the transformed URL for the web application to
process.

3.1.4 Nil values

A special value, nil, can be used in the information-hiding
configuration and the information-hiding URL. In a config-
uration, nil can be specified as the default value of a pa-
rameter. If the incoming request does not specify a value for
one or more trailing parameters in the information-hiding
URL, and the default values for these parameters are nil,
then the InformationHidingFilter will not pass these param-
eters to the web application.

In an information-hiding URL, nil can be used as an
embedded value. When nil appears in an information-
hiding URL, the InformationHidingFilter will not pass any
value for the parameter that corresponds to that location.
nil thus serves in this case as a place holder for an unused
parameter.

3.1.5 Documentation of information-hiding URLSs

To fully support Parnas’ vision for information-hiding inter-
faces, web developers must also document assumptions in
natural language text. To encourage programmers to write
down and maintain such documentation, the Information-
HidingFilter generates javadoc-like HTML documentation
from information-hiding configurations in a format that is
easy to access and read. The documentation displays a list
of web resources available in the web application, and for
each web resource it displays all the details and assumptions
developers put in the information-hiding configuration. To
view the documentation, web developers can access the spe-
cial URL /docs in each web application. Developers can use
this feature to inform others about a web application and the
parameters it accepts.

3.2. InformationHidingChecker

The InformationHidingChecker is a tool that helps
web developers adhere to information-hiding URL usage.
We see the InformationHidingChecker as integral to the
information-hiding URL concept — with it, the information-
hiding URL is upgraded from a collection of optional
language or framework features to an intentional use of
such features to consistently adhere to information hid-
ing throughout a web application. The InformationHid-
ingChecker is integrated into the InformationHidingFilter;
in fact, this checker is the debug mode of the Information-
HidingFilter. This tool can be enabled or disabled by editing
an initial parameter in the web . xm1 file of the web appli-
cation.

When the checker tool is enabled, it can provide er-
ror messages when a web resource does not have any
information-hiding configuration or when the configuration
contains omissions or errors. When a request is issued to
a web resource with missing or malformed information-
hiding configuration, the error messages are displayed in
the browser that is sending the request. The error message
style was designed to mimic other JSP and Servlet errors
sent by Apache Tomcat [2]. When one or more errors are
detected, the InformationHidingChecker will discard the re-
quest and instead respond with an error message. Errors
detected by the InformationHidingChecker are described in
Table 1. Figure 4 shows a screenshot of an InformationHid-
ingChecker error.

Table 1. InformationHidingChecker Error
Messages
] Error \ Description of Error
URL mapping information-hiding configuration is
not found not found or name element inside
configuration is not found
Duplicate two parameters have the same name
parameter name in the same information-hiding
found configuration
Parameter name param’s name element is not found
not found
Parameter type param’s type element is not found
not found
Parameter default | param’s default value is not found
value not found

When the InformationHidingChecker is disabled,
the InformationHidingFilter will only use well-formed
information-hiding configurations to transform incoming
URLs; if any error is detected, the configuration is ig-
nored and requests to the corresponding web resource are
forwarded to the web server unchanged.

Figure 5 summarizes how our system works. When a
request comes in, the InformationHidingFilter looks to see
if that request is for a resource it knows about. If the fil-
ter has valid information for that web resource, then it will
construct a transformed URL and send that to the web ap-
plication. If the filter does not have valid information for
that resource and the debug mode is turned on, then an error
message is displayed in the browser.

4. Performance evaluation

We measured the performance of two web applications
to evaluate the performance cost of the InformationHiding-
Filter. For each of the web applications, we created two
copies on the server; one copy is an unmodified version
and the other copy was manually modified to support the
InformationHidingFilter. Each version runs within its own
Apache Tomcat server. The modified versions were cre-
ated by manually adding information-hiding configurations
to JSP files and Servlet mappings. The InformationHiding-
Filter itself was also added to each modified version.

We picked Apache JMeter [3] as our test client; this tool
issues HTTP requests to the web applications and records
the time to complete the requests. The Tomcat server and
JMeter test client were running on the same machine for our
evaluations; this approach removed network latency which
can vary substantially.

We ran a JMeter “test case” fifty times for each version of

@ Aforma
File Edit View Go

Bookmarks Tools Help

2 - &0 @) [0 nupsiocathostaosy -] © Go [IGL |
information Hiding Filter Error
e
pescription

findex jsp:parameter 0:Parameter name not found
findex jsp:parameter 1:Parameter default value not found

Information Hiding Filter

Done 2

Figure 4. An error page served by the Infor-
mationHidingChecker. The offending file fails
to list one parameter’s name and doesn’t in-
clude a default value for another parameter.

each web application. A test case consists of a set of HTTP
requests (the same web pages are visited in each test case).
We interleaved the test cases for the original and modified
versions; the original version would execute a test case first,
and then the modified version would run and so on. For each
evaluation, we started the Tomcat server containing the ver-
sion of the web application being tested, ran the JMeter test
case, and then stopped the Tomcat server. We did this to en-
sure the initial compilation of JSPs and loading of Servlets
are reflected in our tests.

The test machine was a dual core Dell XPS 600 with
a 3.2 Ghz Pentium D processor, 2.0 GB RAM, and a 160
GB hard drive. Software running on the machine included
RedHat Enterprise Linux WS release 4, Sun Microsystem
Java SDK 1.5.0_07, Apache Tomcat 5.5.17, Apache JMeter
2.1.1, MySQL 14.7, and MySQL Connector 3.0.17 ga.

4.1. PhotoDB

To evaluate InformationHidingFilter’s performance on
a web application composed of JSP files, we chose Pho-
toDB, a photography database. The PhotoDB tested in this
paper was photodb-20030523-114014 distributed by http://
www.magiccookie.com/software/photodb/dist/. A MySQL
database was populated by the scripts provided in the Pho-
toDB package, and the two versions of this web application
shared the database.

A total of 28 unique URLs were gathered by a web spi-
der [11] from PhotoDB: 12 that took no parameters and
16 that took 1 parameter. To create the modified version,
information-hiding configurations were added to those JSP
files (16 in total) that were intended for direct access via the

[Information-Hiding URL Request]

| InformationHidingFilter

1 | Resource |dentification I 1

Lookup Table 1

hWapping

I R A
1 |Request Construction] |
I ! :
: IQuery Constructionl I

| Error Message I

[Transformed URL Request I

i WEb App“cation I—b Application Response

Figure 5. Processing of Information-Hiding
URLs

web browser.

The test case for both versions of PhotoDB consisted of
50 HTTP requests to each of the 28 URLs. For each test
case, the amount of time to complete all 1400 HTTP re-
quests was recorded.

4.2. TPC Benchmark W

We used TPC Benchmark W (TPC-W), a transactional
web benchmark, as our Servlet web application. We in-
stalled the TPC-W Java implementation packaged by http://
mitglied.lycos.de/jankiefer/tpcw/. A MySQL database was
populated by the scripts provided in the TPC-W Java im-
plementation package. Again, the two versions of this web
application shared the database.

TPC-W contains 14 Servlets. To modify TPC-W to use
the InformationHidingFilter, all 14 Servlet mappings were
modified by embedding information-hiding configurations.
A total of 1292 unique URLs were gathered by the web
spider. Of the 1292 unique URLs, 1 had no parameters,
149 had one parameter, 1037 had two parameters, and 105

T

e
)
MR T

time to complete 1 test case (sec)

5.0 5.0
w/o Filter w/ Filter

PhotoDB

w/o Filter w/ Filter

TPC-W

Figure 6. Box-and-whiskers plot of perfor-
mance evaluation results

had four parameters.

The test case for TPC-W consisted of 1292 HTTP re-
quests to the application. Due to an unstable JDBC connec-
tion observed for this web application, only one request for
each unique URL was issued per test case. For each test
case, the total amount of time to complete all 1292 HTTP
requests was recorded.

4.3. Results

Figure 6 shows a box-and-whiskers plot of results from
the tests. The whiskers are the minimum and maximum run-
ning times for each version, and the box outlines the middle
50% of running times. The line inside the box is the median
running time across all test cases. The median is also shown
in Table 2.

Given this experimental setup, the percent difference be-
tween the median times for unmodified and modified ver-
sions of both web applications is between 7.9 and 8.4%.
We believe that this level of overhead is promising given
the straightforward, unoptimized status of our current filter
implementation.

5. Related work
5.1. URL rewriting with Ruby on Rails

Using routing [9], Ruby on Rails programmers can also
pass parameters in the hierarchical structure of the URL.
Instead of maintaining a single lookup table for the entire

version #of | # HTTP median | %

test | requests per | run Diff

cases | test case time

(sec)

PhotoDB 50 1400 5612 7.91%
(unmodified)
PhotoDB 50 1400 6056
(modified)
TPC-W 50 1292 6083.5 | 8.38%
(unmodified)
TPC-W 50 1292 6593.5
(modified)

Table 2. Median running times for test cases
completed to evaluate the overhead of the In-
formationHidingFilter.

application as the InformationHidingFilter does, a parame-
ter hashtable is maintained by each controller class. With
Ruby code, parameters can be typed and also specified as
optional.

We believe that typical Rails URLs are quite close to the
information-hiding URLs discussed in this paper. A crucial
missing piece, however, is an InformationHidingChecker
that enforces use of information-hiding URLSs across an en-
tire web application.

5.2. Non-URL means of sending form parameters

The HTML specification defines POST as a mechanism
for sending form parameters without passing them on the
URL. Web application frameworks such as Struts [1] also
enable storage of form parameters directly into Java beans.
While these methods do hide parameters from clients, they
also limit the ability of clients to link and bookmark to cer-
tain kinds of functionality. The information-hiding URL
enables links and bookmarks to parameter-passing URLSs in
a way that eases evolution.

5.3. Automatic refactoring for improved web evolu-
tion

Xu and Dean [18] present an automated technique for
separating presentation markup from business logic. This
work also promotes Parnas’ information hiding princi-
ple because Parnas argued that unrelated design decisions
should not co-mingle and instead should be separated by
information-hiding interfaces. In the case of Xu and Dean’s
work, the information-hiding interfaces are custom JSP
tags.

Ping and Kontogiannis [14] propose automatically re-
structuring websites to a controller-centric architecture. In

this architecture, web pages do not link to each other di-
rectly, but instead link to a controller that acts as a middle-
man between web pages. This system can lower the cost
of changes to webpage names or to webpage locations, be-
cause only the controller needs to be notified of a change,
not all the other web pages that link indirectly to the modi-
fied page.

Ping and Kontogiannis’ approach is complementary to
our approach. In addition to the use of a controller-centric
architecture, information-hiding URLSs could also be used
to hide details about parameters and server-side implemen-
tation specifics.

5.4. Link versioning

Pan et al. [12] built Chrysant, a version control system
for hypertext that supports HTML content. When used to
store HTML, Chrysant versions both webpage content and
the structure of links between web pages in a website. Link
versioning support certainly helps web developers moni-
tor the evolution of web links, and it is complementary to
the InformationHidingFilter’s goal of reduced overall URL
change.

6. Future work

Type checking would be a useful addition to the Infor-
mationHidingFilter. Parameter types such as integers, dou-
bles, and enumerations could be supported; if links include
parameters of the wrong types, type mismatch exceptions
could be sent to the web application for robust handling.

Another improvement to the InformationHidingFilter is
support for runtime update of the information-hiding con-
figurations. Currently, metadata are read once during the
startup stage of the web application, but many web applica-
tions need to be updated while they are still live.

Finally, the tools could be implemented for other web
platforms, such as Ruby on Rails.

7. Conclusion

Information-hiding URLs essentially ask the program-
mer to perform a small amount of work in order to receive a
large amount of benefit. The programmer documents meta-
data as needed and designs their web applications in a way
that default values can always be assigned to parameters.
In return, links and bookmarks are highly likely to remain
valid over time.

The InformationHidingFilter and InformationHid-
ingChecker demonstrate how tools can support information-
hiding URL use. The InformationHidingFilter efficiently
translates information-hiding URLs into URLs that web

applications expect. The InformationHidingChecker helps
programmers enforce information-hiding across their entire
web application. Future work includes expanding the
functionality of these and other tools to enable even more
expressive interfaces for web applications.

Acknowledgments

We gratefully thank Neil Spring, Jeff Hollingsworth,
Chris Hayden, and Ken Yasuhara for their helpful advice
and feedback.

References

[1] Apache Foundation. Struts. [http://struts.apache.org].
[2] Apache Foundation. Tomcat. [http://tomcat.apache.org].

[3] Apache Jakarta Project. JMeter.
[http://jakarta.apache.org/jmeter].
[4] T. Berners-Lee. Cool URI’s don’t change.

[http://www.w3.org/Provider/Style/URI].

[5] K. Britton, R. A. Parker, and D. Parnas. A procedure for de-
signing abstract interfaces for device interface modules. In
Proc. of the 5th Intl. Conf. on Software Engineering (ICSE),
1981.

[6] R.P. Dellavalle, E. J. Hester, L. F. Heilig, A. L. Drake, J. W.
Kuntzman, M. Graber, and L. M. Schilling. Going, going,
gone: Lost internet references. Science, 302(5646), 2003.

[7] J. Falkner and K. Jones. Servlets and JavaServer Pages.
Addison-Wesley, 2004.

[8] A. Halberstadt. Photodb. http://www.magiccookie.com.

[9] D. H. Hansson et al. Routing: Native ruby rewriting.
[http://manuals.rubyonrails.com/read/chapter/65].

[10] S.Lawrence, D. M. Pennock, G. W. Flake, R. Krovetz, F. M.
Coetzee, E. Glover, F. A. Nielsen, A. Kruger, and C. L.
Giles. Persistence of web references in scientific research.
Computer, 34(2), 2001.

[11] R. Miller.
[http://www.cs.cmu.edu/ rcm/websphinx/].

[12] K. Pan, E. J. Whitehead, and G. Ge. Hypertext versioning
for embedded link models. In Proc. of HyperText, 2004.

[13] D.Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, Dec. 1972.

[14] Y. Ping and K. Kontogiannis. Refactoring web sites to the
controller-centric architecture. In Proc. of the European
Conf. on Software Maintenance and Reengineering, 2004.

[15] D. Spinellis. The decay and failures of web references. Com-
munications of the ACM, 46(1), 2003.

[16] TPC Council. TPC-W benchmark. [http://www.tpc.org].

[17] J. Ullman. Elements of ML Programming. Prentice Hall,
1997.

[18] S.Xu and T. Dean. Modernizing JavaServer Pages by trans-
formation. In Proc. of the Fifth IEEE Intl. Symp. on Web Site
Evolution, 2005.

Websphinx.

