
Facility Location with Dynamic Distance FunctionsRandeep Bhatia 1 Sudipto Guha 2 Samir Khuller 3 Yoram J. Sussmann 4Dept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742
1Also with LCC Inc., 7925 Jones Branch Drive, McLean VA 22102. Email addr: randeep@cs.umd.edu2This work was done while this author was at the University of Maryland and his research was supportedby NSF Research Initiation Award CCR-9307462. Author's current address is Stanford University. Emailaddr: sudipto@cs.stanford.edu3Research supported by NSF Research Initiation Award CCR-9307462, and NSF CAREER Award CCR-9501355. Email addr: samir@cs.umd.edu4Research supported by NSF CAREER Award CCR-9501355. Email addr: yoram@cs.umd.edu

AbstractFacility location problems have always been studied with the assumption that the edge lengths inthe network are static and do not change over time. The underlying network could be used tomodel a city street network for emergency facility location/hospitals, or an electronic network forlocating information centers. In any case, it is clear that due to tra�c congestion the traversaltime on links changes with time. Very often, we have some estimates as to how the edge lengthschange over time, and our objective is to choose a set of locations (vertices) as centers, such thatat every time instant each vertex has a center close to it (clearly, the center close to a vertex maychange over time). We also provide approximation algorithms as well as hardness results for theK-center problem under this model. This is the �rst comprehensive study regarding approximationalgorithms for facility location for good time-invariant solutions.

1. IntroductionPrevious theoretical work on facility location typically has addressed situations in which we want tolocate facilities in a network and optimize an objective function. The edge lengths in the network(or the distance function) are typically assumed to be static. In practice however, edge lengths arenot static. For example, in emergency facility location, the transit time may be a function of thetra�c load at the current time. The same is true for locating information centers in networks. Inthis paper, we de�ne a model of dynamic distance functions and study approximation algorithms forthe K-center problem, a fundamental facility location problem, under this general model. Althoughin reality edge lengths may behave unpredictably, we often have estimates as to how they behaveas a function of time at the macro level. In particular, the transit times in a city may oscillateperiodically during the day. We will therefore assume that we have some knowledge of the behaviorof the edge lengths.Our objective in this paper is to study the problem of placing facilities in such a way that atall possible times we meet our objective criteria e�ectively. We have to choose placements for thefacilities, to minimize the distance d so that each node has a facility within distance d at all possibletimes.The dynamic edge length model is a much more realistic model for studying many fundamentalnetwork problems. In this paper we initiate this study for the facility location problem and leaveopen a host of other problems. For example it is natural to study the problem of �nding a spanningtree of the network whose maximum weight over time is minimum. Ravi et. al. [18] studied thisproblem in the context of bicriterion approximation and their results imply a 1 + � approximationfor this problem when there are only two \time-slots". Similar bicriterion approximation resultsare known for the shortest path problem [6]. Some of the other fundamental problems, such as�nding a matching whose maximum weight over time is minimized, are completely open. Ourexperience with this general model has convinced us that even the simplest network problems arequite complex when studied under this model. For example, many of the problems which can besolved in polynomial time on a static network are NP-complete in the general model even whenthere are two time-slots. In addition, the techniques used for solving these problems on a staticnetwork do not easily extend to the general model.We �rst discuss the basic K-center problem and then discuss our speci�c model and results.K-Center Problem:The basic K-center problem is a fundamental facility location problem [20, 5, 10, 8, 9] and isde�ned as follows: given an edge-weighted graph G = (V;E) �nd a subset S � V of size at mostK such that each vertex in V is \close" to some vertex in S. More formally, the objective functionis de�ned as follows: minS�V maxu2V minv2S d(u; v)where d is the distance function de�ned by the underlying edge weights and hence stais�es thetriangle inequality. For example, one may wish to install K �re stations and minimize the maximumdistance (response time) from a location to its closest �re station. Some applications are mentionedin [14, 15]. The problem is known to be NP-hard [4].1

1.1. Basic NotationAn approximation algorithm with a factor of �, for a minimization problem, is a polynomial timealgorithm that guarantees a solution with cost at most � times the optimal solution. Approximationalgorithms for the basic K-center problem [5, 8] that achieve an approximation factor of 2 areknown to be optimal [5, 10, 8, 9]. Several approximation algorithms are known for interestinggeneralizations of the basic K-center problem as well [3, 9, 17, 1, 13, 12, 2, 11]. The generalizationsinclude cases when each node v has an associated cost c(v) for placing a center on it, and ratherthan limiting the number of centers, we have a limited budget K [9, 17]. In this case we want to�nd a subset S � V with the property c(S) =Ps2S c(s) � K, with the objective functionminS�V maxu2V minv2S d(u; v):Other generalizations include cases where each node v has a weight w(v) associated with it and wewant to minimize the weighted distance from a node to its closest center [3, 17]. More formally wewant to �nd a subset S � V of size at most K, where the objective function isminS�V maxu2V minv2S w(u)d(u; v):For the basic K-center problems, w(v) = c(v) = 1 for every node v. For the weighted (cost)problems c(v) = 1 (w(v) = 1) for every node v.The K-suppliers problem [9] is a variant of the K-center problem in which we are given anedge-weighted bipartite graph G = (U; V; E), and we are required to �nd a subset S � U of sizeat most K such that each vertex in V is \close" to some vertex of S. More formally, the objectivefunction is de�ned as follows: minS�U maxu2V minv2S d(u; v):Generalizations of the K-suppliers problem involving costs and weights are de�ned analogously tothose given above, where the cost function is now de�ned on U and the weight function is de�nedon V . We discuss the other generalizations studied in this paper in Section 2.We address the case when the distance function changes with time. Assume that dt(u; v) isthe distance from u to v at time t. We assume that this function is speci�ed in some convenientmanner (for example, it could be speci�ed as a piecewise linear function, or as a step function).The function dt(u; v) could also be speci�ed simply as a set of points (t; dt(u; v)). These could beobtained for example by \sampling" transit times at di�erent times of day. Our objective function(for the basic K-center problem) is minS�V maxu2V maxt minv2S dt(u; v)such that jSj � K.1.2. Our ResultsWe study the basic K-center problem and the K-suppliers problem, as well as several variationsof these problems under this model. We provide constant-factor approximation algorithms for allthese problems when there are two time-slots (this models the situation of \rush hour" and \non-rush hour" travel times). For example, we could declare 7am to 9am and 4pm to 6pm as \rush2

hour" and all other times as \non-rush hour". (The rush hour could happen many times duringthe day. What is important is that there are only two distinct graphs to consider, one for rushhour and one for non-rush hour.) We provide best-possible approximation algorithms for variantsof the K-suppliers problem under this model.We also provide approximation algorithms for several variations of the K-center problem andthe K-suppliers problem for arbitrarily many time-slots, including weights and costs, with factorsthat are close to the best possible unless P = NP . These results are summarized in the tablebelow. The only known lower bound for any of the K-center problems is 2, the lower bound for thebasic K-center problem. A lower bound of 3 due to Karlo� for the K-suppliers problem appearsin [9]. It can be shown that the K-center problem with weights and costs is a generalization of theK-suppliers problem, which implies a lower bound of 3 for this problem. For two time-slots withcosts, all factors achieved in this paper match the best known factor for static distance functions.2 time-slots T time-slotsProblem factor lower bound factor lower boundBasic + weights 3 2 1 + � max(2; �)Basic + weights + costs 3 3 1 + 2� max(3; �)K-suppliers + weights + costs 3 3 1 + 2� max(3; �)�-K-suppliers + weights + costs 3 3 1 + 2� max(3; �)�-all-neighbor + weights + costs 3 3 1 + 2� max(3; �)�-neighbor + costs 4 2Capacitated + costs 13 2� � is the maximum ratio of an edge's greatest length to its shortest lengthWe can solve all of the above problems in a uni�ed manner using matching techniques. Thealgorithms for arbitrary time-slots are based on an extension of the Hochbaum-Shmoys method [8,9]. We also apply the matching approach to obtain a bicriteria approximation for the asymmetricK-center problem, in which G is a directed graph. For this problem dt(u; v) = dt(v; u) may nothold. We give an algorithm that, for any nonegative integer �, uses at most K �1 + 3�+1� centersand covers all nodes within distance c log� n+� times the optimal distance, where c is the constantfrom the set cover phase of the algorithm in [22].Recently, we have learned that Hochbaum and Pathria [7] motivated by [19] have obtained afactor 3 approximation for the basic K-center problem as well (for 2 time-slots).2. PreliminariesThe �-all-neighbor K-center problem with weights and costs [11, 2] is de�ned as follows: Givenan edge-weighted graph G = (V;E) with weight and cost functions de�ned on the vertices, �nd asubset S � V of total cost at most K so that every vertex is \close" to at least � vertices in S.More formally, minS�V maxu2V �(�)(u; S)where �(�)(u; S) = minA�S;jAj=�maxa2A w(u)d(u; a):3

The �-neighbor K-suppliers problem with weights and costs [11, 2] is de�ned as follows: Givenan edge-weighted bipartite graph G = (U; V; E) with a weight function de�ned on V and costfunction de�ned on U , �nd a subset S � U of total cost at most K such that each vertex in V is\close" to at least � vertices in S. More formally,minS�U maxv2V �(�)(v; S):The (unweighted) �-neighbor K-center problem with costs [13, 11, 2] is de�ned as follows: Givenan edge-weighted graph G = (V;E) with a cost function de�ned on the vertices, �nd a subset S � Vof total cost at most K so that every vertex in V � S is \close" to at least � vertices in S. Moreformally, minS�V maxu2V�S �(�)(u; S)where �(�)(u; S) = minA�S;jAj=�maxa2A d(u; a):The (unweighted) capacitated K-center problem with costs [1, 12] requires us to place centersof total cost at most K and assign at most L vertices to each center so that (1) all nodes areassigned to a center, and (2) every vertex is \close" to its assigned center (not its closest center).More formally, minS�V maxu2V d(u; �(u))such that jfu j �(u) = vgj � L 8v 2 Swhere � : V ! S:A time-slot is de�ned to be those instants of time over which all edge lengths are constant. Weassume that time can be partitioned into T time-slots. Note that each time-slot t can be associatedwith a static distance function dt, which is assumed to be distinct for each time-slot. Let � be thesmallest value such that for any edge ei, maxt dt(ei)mint dt(ei) � �. � is called the tra�c-load factor.A dominating set in a graph (digraph) is a subset S of vertices with the property that everyvertex is either in S or is adjacent (has an edge) to some vertex in S. A matching M in a graph isa subset of edges that do not share a vertex in common. An edge cover S in a graph is a subset ofedges such that every vertex is incident to at least one edge in S. A minimum-cost edge cover canbe found in polynomial time [21, pages 580{583].3. Hardness of Approximation for 3 time-slotsLemma 3.1: With three time-slots and no restriction on how the distance function can changewith time, no approximation ratio for the K-center problem is possible unless P = NP .Proof. For contradiction let us assume that a polynomial time �-approximation algorithm exists,for some constant �. We show that we can use this algorithm to solve the 3-dimensional matchingproblem [4] in polynomial time. 4

Let the instance of the 3-dimensional matching problem (3DM) be the three sets A;B;C anda set of m ordered triples over A � B � C, where jAj = jBj = jCj = K. For every triple u letu(i) denote its ith component. Note that u(1) 2 A; u(2) 2 B and u(3) 2 C. We create a graph Gwith m vertices, one for each ordered triple. G has an edge between every pair of vertices. We setT = 3. In the following we use the term vertices and triples interchangeably, as there is a one toone correspondence between them. We set:di((u; v)) = (1 if u(i) = v(i)�+ � otherwiseFirst note that any solution to the 3DM instance corresponds to K centers which cover thevertices of G at distance at most one, in every time-slot. Hence if the �-approximation algorithmreturns a solution of cost more than � then the 3DM instance has no solution. Let S be the solutionof cost at most � returned by the �-approximation algorithm. We show that S is also a solutionto the 3DM instance. Let a 2 A. Let u be a triple for which u(1) = a (if such a triple does notexist then we already know that the 3DM instance has no solution). Since u must be covered atdistance at most � at time-slot 1, and since all the edges at any time-slot are of length 1 or �+ �,there exists a triple v 2 S such that v(1) = a. Similarly for any b 2 B (c 2 C) there exists a tripleu 2 S such that u(2) = b (u(3) = c). Also since jSj � K, S is a solution to the 3DM instance.From the proof it is easy to conclude the following.Corollary 3.2: Unless P = NP no polynomial time algorithm achieves a factor of � � �, for any� > 0, where � is the tra�c-load factor.4. Approximation for 2 time-slotsIn this section we present algorithms that �nd approximate solutions for several generalizations ofthe K-center problem with two time-slots.We are given a graph G = (V;E), and functions d1; d2 from the edge set E into R, which denotethe distances in the �rst and the second time-slots respectively.High-Level Description:We will use the standard approach of constructing a threshold graph as pioneered by Hochbaumand Shmoys [8, 9]. We describe the algorithm for the most general case, when each node has aweight and an associated cost to construct centers.The algorithm operates as follows. Consider the following set of weighted edge lengths:nw(ui)dt(ui; uj); w(uj)dt(uj ; ui) j 1 � t � 2; 1 � i < j � jV joLet `1; `2; : : : ; `p be the sorted list of these weighted edge lengths in increasing order.The algorithm �xes a distance threshold � = `i for increasing values of i, and then considersthe directed graphs Gt� one for each time slot t = 1; 2. The threshold graph Gt� includes only thoseedges whose weighted length in time slot t is at most the threshold �. More formally Gt� = (V;Et�),where Et� is the set of edges (u; v) with the property that w(u)dt(u; v) � �. Note that if thereis a solution to the original problem with distance �, then there is a subset of vertices S, with5

cost at most K, such that S is a solution for each graph Gt� under the distance function dt. Thealgorithm independently �nds two solutions one for each threshold graph. Note that since theedge weights of the threshold graphs do not change with time, the algorithm can invoke existingapproximation algorithms for solving the static version of the problem, for each threshold graph.The algorithm now uses the two solutions found above to reduce the problem to a minimum costedge cover problem in an auxiliary graph to �nd a solution with cost K. The last step increasesthe approximation factor.Note that the algorithm will search for the smallest threshold value for which it �nds a solutionwith cost at most K. This can be done by linear or binary search on the list of edge lengths.We illustrate this general technique in the following sections.4.1. Basic K-centersWe �rst �nd potential center locations in each graph Gt� for t = 1; 2, using the Hochbaum-Shmoysmethod1. Assume that all vertices in Gt� are unmarked initially and Mt = ;. We repeatedly pickan unmarked vertex v with maximum weight and place a center on it, and also add it to Mt. Wemark all vertices within weighted distance 2� from v. Speci�cally, we mark all vertices x such thatw(x)dt(x; v)� 2�.We now construct a new auxiliary graph G0 on the vertex sets M1 and M2. A vertex in eachset contributes to a distinct node in G0.We de�ne neighborhood as follows: Vertex z is in the neighborhood of x 2 Mt in time-slot t ifw(x)dt(x; z) � �.Note that by construction a vertex can be in the neighborhood of only one vertex in Mt in atime-slot. If it was in the neighborhood of two nodes in a time-slot, say of x and y, then the �rstnode to be added to Mt would mark the other node. (If w(x) � w(y) then x is chosen before y andsince w(y)dt(x; y) � w(y)dt(y; z) + w(x)dt(x; z) � 2�, y will get marked when x is chosen.)If a vertex z belongs to the neighborhood of x 2M1 and y 2M2, create an edge ez = (x; y) inG0. If a vertex z belongs to the neighborhood of x 2M1 (M2) but of no vertex in M2 (M1), createa self loop ez = (x; x) in G0. The cost of edge ez is c(z).Find a minimum cost edge cover C of this graph G0, and let VC be the vertices correspondingto the labels on the edges in C. If c(VC) � K, return VC as the solution. Otherwise repeat theabove procedure for a higher threshold value.Theorem 4.1: The above algorithm yields a solution of distance at most 3 times the distance forthe optimal placement of centers.Proof. Assume there is a placement of centers with total cost at most K, such that every vertexhas weighted distance at most � from its nearest center in either time-slot. Let the set of centersbe OPT . The placement of the centers has to be such that each center in OPT appears in theneighborhood in G1� (G2�) of only one node in M1 (M2).For each center z 2 OPT , choose the edge ez in G0. This set of edges covers all the nodes inG0, guaranteeing the existence of an edge cover of cost at most K.1Strictly speaking, their method does not address the case when nodes have weights, but can be easily extendedto handle node weights. 6

G1� G2�
h j gf c h j kgca bbad e fd eki i vv

Center in the optimal solutionIndependent set node selected by the algorithm K = 6Figure 1: Tight example for the 2 time-slot algorithmThe distance bound follows from the fact that in each time-slot t and for every vertex v 2 V ,there is a vertex u in Mt within weighted distance at most 2� from v (by the maximality of Mt).Since that node ofMt is covered by some edge ez in C, it is at most weighted distance � from the nodein VC that corresponds to that edge. Thus w(v)di(v; z) � w(v)di(v; u)+w(u)di(u; z) � 2�+� = 3�.Hence all the vertices in G are at most distance 3� from some node in VC in each time-slot.Fig. 1 gives an example that shows that the performance bound of 3 is tight for our algorithm.In this example nodes a, b, c, h and j are chosen as potential centers in G1� . Observe that a naturalheuristic in practice would be to attempt to maximize the overlap between the independent setschosen in each graph, thus reducing the number of centers that must be shifted. However, in thisexample the algorithm greedily tries to overlap the two independent sets, but is foiled anyway. InG2� the algorithm �rst selects node h as a potential center, thus preventing the selection of nodesa, b and c. Now the edge cover step will cover nodes c and f by placing a center at node v, whichmeans that the closest center to node g in time-slot 1 selected by the algorithm is v at distance 3�.However, the optimal solution has an objective function value of �.Remark. We showed above how to obtain a solution to the K-center problem with two time-slotswhose distance is at most 3 times the optimal. However, it is possible that one time-slot will havemany short edges, in which case the value of � that we use could be much larger than necessary forthat time-slot. For example, if one time-slot represents rush hour and the other represents non-rushhour, then distances will be much shorter in the second time-slot. We cannot avoid long distancesduring rush hour, but we would like everyone to have a center nearby (in terms of travel time)during non-rush hour, since there is no reason not to.We can guarantee this by using two di�erent values �1 and �2, one for each time-slot, andsolving each time-slot separately as before. To combine the solutions, we make the de�nition of7

neighborhood depend on the time-slot. That is, we say that vertex z is in the neighborhood ofx 2Mt in time-slot t if w(x)dt(x; z) � �t. Thus in each time slot t the distance is at most 3�t.4.2. K-suppliersThe above algorithm can easily be generalized to obtain a factor 3 algorithm for the K-suppliersproblem with weights and costs, using the approach of Hochbaum-Shmoys. We �rst pick vertex setsMt in each graph Gt� only among nodes in V using the same method as before. We now constructG0 as follows: if a vertex u 2 U belongs to the neighborhood of x 2 M1 and y 2 M2, create edgeeu = (x; y) in G0. If u belongs to the neighborhood of x 2 M1 (M2) but of no vertex in M2 (M1),create a self loop eu = (x; x) in G0. The cost of edge eu is c(u). We now �nd a minimum-cost edgecover as before to obtain our approximate solution.Theorem 4.2: A solution to the K-suppliers problem with weights and costs with distance atmost 3 times the distance for the optimal placement of centers, can be found in polynomial time.4.3. Fault tolerant K-Centers4.4. �-neighbor K-centersIn this section we show how to use the high-level approach given above to obtain an algorithm forthe �-neighbor K-center problem with costs for two time-slots.In this case all node weights are equal to 1 and so the graphs G�t are undirected. The maindi�culty is that the edge-cover approach used in the previous section does not work since a vertexmay be adjacent to more than one center in the set Si. (We can easily reduce this to a set-coverinstance, but that problem cannot be solved optimally in polynomial time.) We are �nally able tosurmount this di�culty by a reduction to min-cost perfect matching in an auxiliary graph.First construct approximate solutions S1 and S2 independently for the graphs G1� and G2� usingthe algorithm for the �-neighbor K-center problem given in [11]. (Each vertex either has a centerplaced on it, or at least � centers within distance two.)We now construct an auxiliary graph G0 using the vertex sets S1 and S2. The vertex set for G0consists of all the vertices in S1 and S2 as well as two copies of V , which we will call V1 and V2. Avertex appearing in multiple sets will have multiple instantiations in G0. There is also a vertex setC with jS1j+ jS2j vertices.We introduce the following gadget for each vertex in V . For each v 2 V , let its two copies bev1 2 V1 and v2 2 V2. Connect v1 and v2 by an edge ev of cost 0 in G0.We rede�ne neighborhood as follows: Vertex z is in the neighborhood of x 2 St in time-slot t ifx = z or if dt(z; x) � � and the degree of x in Gt� is at least �. If a vertex z 2 V belongs to theneighborhood of x 2 S1, create edge exz = (x; z1), and similarly if z belongs to the neighborhoodof y 2 S2, create edge eyz = (y; z2) in G0. Assign all such edges cost c(z) (see Fig. 2).Finally, let C be a clique with edges of cost 0, and connect each vertex x 2 V1[V2 to all verticesin C with edges of cost c(x). This clique guarantees the existence of a perfect matching. Find amin-cost perfect matching in G0. The solution returned by the algorithm is the set of nodes in V1(equivalently V2) that are not matched to their counterparts in V2 (V1).8

adjacent to zNodes in S1 adjacent to zNodes in S2z1 z2ezvxw uyFigure 2: Gadget to replace edgesTheorem 4.3: The above algorithm yields a solution with distance at most 4 times the distancefor the optimal placement of centers.Proof. A proof by induction shows the existence of a matching from S1 and S2 to the set of centersin the optimal solution in V1 and V2. By construction of G0, the cost of the perfect matching isexactly twice that of the set of centers selected by the matching. Observe that any node in S1 (S2)with degree in G1� (G2�) less than � must be in the optimal solution, and these nodes are matchedto their counterparts by the algorithm. Thus the cost of the solution returned is at most the costof the optimal solution.To prove the distance bound, �rst note that the algorithm in [11] returns a solution to the �-neighbor K-center problem with an approximation factor of 2. The solution returned by the abovematching procedure selects new centers in the neighborhoods of the original centers. Nodes whichwere not chosen as centers in the �rst phase now have at least � centers at distance 3� rather than2�. A node v which was chosen as a center in the �rst phase but did not match to its counterpartmust have had at least one node which was not a center in its neighborhood. This node has atleast � centers within distance 3�, implying that v has at least � centers within distance 4�.4.4.1. �-all-neighbor K-centersWe can easily generalize the algorithm of Section 4.1 for the �-all-neighbor K-center problem withweights and costs. In this case the existence of a solution guarantees the existence of an �-edgecover (where each vertex has degree � �) in the graph G0. Such a cover will provide a solutionin which every vertex has at least � centers within a distance 3 times that of optimal. Since the�-edge cover problem can be solved in polynomial time even with costs [21, pages 580{583], we can�nd a minimum cost �-edge cover in G0 and obtain an approximate solution to the �-all-neighborK-center problem with weights and costs.Theorem 4.4: A solution to the �-all-neighbor K-center problem with weights and costs with dis-tance at most 3 times the distance for the optimal placement of centers can be found in polynomialtime. 9

4.4.2. �-neighbor K-suppliersBy combining the techniques of Sections 4.2 and 4.4.1, we can obtain a 3-approximation algorithmfor the �-neighbor K-suppliers problem with weights and costs.Theorem 4.5: A solution to the K-suppliers problem with weights and costs with distance atmost 3 times the distance for the optimal placement of centers can be found in polynomial time.4.5. Asymmetric K-centersThe asymmetric K-center problem requires us to place at most K centers on a directed graph sothat all vertices are \close" to some center, where distance is measured by the length of the edgefrom the center to the vertex. Since we can try all possible threshold values (there are at most 2n2distinct distances), we assume that we construct the threshold digraphs G1 and G2 for time-slots1 and 2 respectively with the optimal radius.We use a variant of the algorithm described in [22] to solve the asymmetric K center problem foreach time-slot that guarantees a factor of O(log� n). The algorithm developed by Panigrahy [16](also described in [22]) uses a set cover approach to obtain a solution with 2K centers with anapproximation factor of O(log� n). We refer to the vertices chosen to be centers for the two time-slots as S1 and S2 respectively. We are left with at most 4K \candidate" centers.Suppose each St satis�es the following property: for any pair of vertices x; y 2 St, there is novertex z s:t:(z; x); (z; y) 2 Gt� (recall that Gt� has self-loops as well). Then there is an easy way ofsolving the problem. The existence of K centers guarantees that there are K nodes from whichthese vertices are reachable in one step. Since a vertex has an edge to at most one candidate foreach time-slot, it can \cover" at most two candidates (one from each St). In fact, in this caseclearly jStj � K.We construct a graph G0 on the vertices S1 [S2. For each vertex v which can \cover" twocandidates, we join the candidates by an edge labeled ev. If some vertex v0 \covers" only onecandidate, we introduce a self loop labeled ev0 . We now compute a minimum edge cover in G0. Thevertices corresponding to the labels of the edges chosen form the solution and all the nodes in eachtime-slot are serviced within a distance of O(log� n) + 1 times the threshold.Hence the �rst part of the algorithm will be to modify the candidate sets so that the conditionis satis�ed. The algorithm is shown in Fig. 3.Lemma 4.6: At the end of Stage 3 we have (� + 1) � jTtj+ jS 0tj � jStj.Proof. The proof of this lemma requires the observation that for each node at level j(< �), thesize of S 0t has decreased by at least j. This is easily proved by induction as follows. For j = 1 thisis trivial. Assume it is true for all j � m. Then for j = m+ 1, let x and y be the two nodes whowere responsible for this node to become a member of St, and assume without loss of generalitythat level(x) = m. Then the size of S 0t has already decreased by m because of x, and in the currentiteration it decreases by one.However, for each node z in Tt, the size of S0t decreases by at least � + 1, since just previouslyto the selection of z, the size of S 0t has decreased by at least � � 1, and when z becomes a memberof Tt, the size of S 0t decreases by two. Since the initial size of S0t was jStj, the lemma follows.We now prove the following theorem. 10

Stage 1. Fix a threshold � and construct the threshold graphs G1� and G2� . Let � be a nonnegativeinteger.Stage 2. Use a repeated set cover algorithm to �nd 2K centers for the digraph G1�. Call this set ofvertices S1. Similarly for G2� �nd a set S2 of 2K centers.Stage 3.1 for each t = 1; 2 do2 Set S0t = St.3 for all nodes v 2 S0t, set level(v) = 0.4 while there are two nodes x; y 2 S0t such that for some z, (z; x) 2 Gt� and (z; y) 2 Gt�5 S0t S 0t � fx; yg.6 level(z) = max(level(x); level(y))+ 1.7 if level(z) = � then Tt Tt [fzg else S 0t S0t [fzgStage 4. Construct a graph on the vertices S01 [S 02. We say that a vertex v covers a candidatevertex x 2 St i� v has an edge to x in graph Gt�. For each vertex v which can cover two candidates,we join the candidates by an edge labelled ev . If some vertex v0 covers only one candidate, weintroduce a self loop labeled ev0 . We now compute a minimum edge cover in this graph. Let Sdenote the vertices corresponding to the edges in the edge cover of S01 [S 02.Stage 5. Our �nal solution is S [T1 [T2.Figure 3: Algorithm for Asymmetric K-centersTheorem 4.7: The above algorithm uses at most K �1 + 3�+1� centers. and every node has acenter within distance O(log� n) + � times the optimal, in each time-slot.Proof. Using the above lemma, (� + 1)(jT1j+ jT2j) + jS 01j+ jS 02j � jS1j+ jS2j � 4K, after stage 3.We can �nd an edge cover in the graph on S01 [S02 of size at most jS01j+ jS 02j, (where jS 0tj is the sizeof S0t after stage 3). Plugging this inequality in the expression above,(� + 1)(jT1j+ jT2j) + jSj � 4KSince jSj � K we have �jSj � �K. Adding the two equations and dividing by � + 1, we getjSj+ jT1j+ jT2j � K �1 + 3�+1�.In time-slot t, every node is within distance O(log� n) times the threshold of some candidatecenter x. After stage 3, x is reachable either within � � 1 steps from some node in S 0t, or within� steps from a node in Tt. If x is reachable within � � 1 steps from some node in S0t, then x isreachable within � steps from some node in S. Thus x is reachable within � steps from some nodein S [Tt. Hence every node is within O(log� n) + � steps from a node in S [Tt.5. Approximation for bounded variance on edge-lengthsIn this section we consider the case when there are arbitrarily many time-slots. We restrict ourattention to instances of the problem in which the ratio of an edge's maximum length to its minimum11

length is bounded by some constant �. This section considers the case of distinct time-slots withedge lengths given by a step function.5.1. Basic K-centersFor each edge ei we assume that maxt dt(ei) � � �mint dt(ei):We �rst give an algorithm for the weighted version (weights on the nodes), and then show howto modify it when there are costs associated with building centers as well. We note that gettingan approximation factor of 2� is trivial by a direct extension of the algorithm for the K-centerproblem with static distance functions. We present a better algorithm with an approximation ratioof 1 + �.List all the weighted edge lengthsnw(ui)dt(ui; uj); w(uj)dt(uj ; ui) j 1 � t � T; 1 � i < j � jV joLet `1; `2; : : : ; `p be the sorted list of these weighted edge lengths in increasing order. We will usethe standard approach of constructing a threshold graph as pioneered by Hochbaum and Shmoys[8, 9].The main idea behind the algorithm is to �x a distance threshold � = `i for increasing valuesof i, and to then consider the directed graph Gt�. For each time-slot t, let Gt� = (V;Et�), where Et�is the set of edges (v; u) with the property that w(v)dt(v; u) � �. (Note that by this de�nition, theself-loop (v; v) is also included.) If there is an optimal solution with optimal weighted distance �,then there is an optimal subset S� of K vertices that forms a dominating set for each graph Gt�.(In other words, at any point of time, each vertex is either in the dominating set or has an edge tosome vertex in the dominating set.)The algorithm works as follows: consider a vertex v. Assume that v has an edge to u 2 S� attime-slot t. If we place a center at v for time-slot t, we would like to \cover" all the vertices thatare covered by u during any time-slot. If we pick the heaviest unmarked vertex (at some time-slott) at each step, we can cover all unmarked vertices that can cover it. By our choice of v, all thevertices covered by u can reach v by using at most two edges: one edge from Et� and one edge fromEt0� for any time-slot t0. So we \mark" v together with all vertices w such that w can reach v byusing at most two such edges. We mark the nodes for the time-slots during which they are covered:the goal is for every node to be marked during every time-slot. This guarantees that we cover eachvertex within a distance of (1 + �)�. The algorithm is shown in Fig. 4.Theorem 5.1: The above algorithm returns a solution to the weighted time-varying facility loca-tion problem with an approximation ratio of 1 + �, where � = maxe maxtdt(e)mintdt(e) .Proof. Consider a vertex x =2 S. Let 1 � t � T and markedt(x) be set TRUE for the �rst time inthe WHILE loop when a center is placed at v 2 S by the algorithm. Note that w(x) � w(v). Wehave to argue that for each vertex that is marked for time-slot t, we can guarantee that x is withina weighted distance (1 + �)� of v 2 S in time slot t. There are a few cases, and the proof for eachcase is shown as part of the pseudo-code in comments.12

Time-Invariant Bounded K-centers(G; �).1 S = ;.2 for 1 � t � T3 for all v4 markedt(v) = FALSE.5 while 9v =2 S; t 2 [1; T] with markedt(v) = FALSE do6 let v; t be such a pair for which w(v) is maximized.7 create center at v and set S = S [v.8 for (v; u) 2 Et�9 for 1 � t0 � T10 set markedt0 (u) = TRUE. (* w(u)dt0(u; v) � w(v)�dt(u; v) � ��. *)11 for (w;u) 2 Et0�12 set markedt(w) = TRUE. (* w(w)dt(w;v) � w(w)dt(w;u) + w(w)dt(u; v) � ��+ �. *)13 set markedt0(w) = TRUE. (* w(w)dt0(w; v) � w(w)dt0(w;u) +w(w)dt0(u; v) � � + ��. *)14 for 1 � t0 � T15 for (v; u) 2 Et0�16 set markedt(u) = TRUE. (* w(u)dt(u; v) � w(v)�dt0(u; v) � ��. *)17 set markedt0 (u) = TRUE. (* w(u)dt0(u; v) � w(v)dt0(u; v) � �. *)18 for (w;u) 2 Et�19 set markedt(w) = TRUE. (* w(w)dt(w;v) � w(w)dt(w;u) + w(w)dt(u; v) � � + ��. *)20 set markedt0(w) = TRUE. (* w(w)dt0(w; v) � w(w)dt0(w;u) +w(w)dt0(u; v) � �� + �. *)Figure 4: Algorithm for K-centers with bounded variance on edge lengthsSince when the algorithm terminates all nodes not in S are marked for every time-slot, Sdominates all vertices, in every time-slot, within a weighted distance of (1 + �)�.It remains to show that if jSj > K, then the optimal solution using K centers has weighteddistance strictly greater than �.Consider a vertex v 2 S and a vertex u in the optimal solution that covers v at some time t(u could be v). We will show that the selection of vertex v as a center, along with the choice tfor time-slot, causes any node w covered by u at any time t0, to be marked for t0. We have edge(v; u) 2 Et� and edge (w; u) 2 Et0� . Therefore vertex w is marked for time-slot t0 (see Fig. 5). Sincethe selection of vertex v as a center, along with the choice t for time-slot, causes all vertices thatare covered by u in any time-slot t0 to be marked for time-slot t0, the size of the optimal solutionis at least jSj.5.1.1. The cost caseHere we assume that vertices have cost and we have a limited budget to spend on the centers. Ouralgorithm for the cost case �rst runs the algorithm for the weighted case to get the set S of centers,and then just shifts each center in S to a node with the least cost, among all nodes that it hasedges to (including itself). Let S 0 be the resulting set of centers.Theorem 5.2: The above algorithm returns a solution to the time-varying facility location prob-lem with costs, with an approximation ratio of 1 + 2�, where � = maxe maxtdt(e)mintdt(e) .Proof. Note that by the proof of Thm. 5.1, in every time-slot each node is within a distance(1 + �)� + �� of some node in S0. Also by the proof of Theorem 5.1, for each v 2 S there is adistinct optimal center xv , which is a neighbor of v in some time-slot. Hence if v is shifted to v013

v t00t0t Marked by vw0u w
Figure 5: Nodes marked by vby the algorithm then c(v0) � c(xv). Summing over all the nodes in S we get that the cost of thenodes in S0 is a lower bound on the optimal cost.5.2. K-suppliersThe above algorithm can easily be generalized to obtain a factor 1+2� algorithm for theK-suppliersproblem with weights and costs.As before, we �x a threshold � and try to �nd a solution with cost at mostK. For each time-slott, let Gt� = (U; V; Et�), where Et� is the set of edges (v; u) with the property that w(v)dt(v; u) � �.If there is an optimal solution with optimal weighted distance �, then there is an optimal subset ofK vertices chosen from U , such that for each graph Gt�, all nodes in V are dominated. (In otherwords, at any point of time, each vertex in V has an edge to some vertex in the dominating setchosen from U .)The algorithm works as follows: consider a maximum weight unmarked vertex v 2 V (in sometime-slot t). Assume that v has edges to nodes in U at time-slot t. We pick the lowest cost node uthat v has an edge to in time-slot t and place a center there. This is a lower bound on the optimalsolution's cost to cover v at time t. The optimal solution may place a center at a vertex u0 to coverv in time-slot t. We would like to \cover" all the vertices w that are covered by u0 during anytime-slot. By our choice of v, such vertices w can reach u, where we placed a center, by using atmost three edges: one edge (w; u0) from Et0� for any time-slot t0, and two edges from Et� (from u0to u). So we \mark" all nodes w such that (w; u0) and (v; u0) are edges in Et0� and Et� respectively.We mark the nodes for the time-slots during which they are covered: the goal is for every node tobe marked during every time-slot. This guarantees that we cover each vertex within a distance of(1 + 2�)�.Theorem 5.3: We can �nd in polynomial time a solution to the K-suppliers problem with weightsand costs with distance at most 1 + 2� times the distance for the optimal placement of centerswhere � = maxe maxtdt(e)mintdt(e) . 14

5.3. Fault tolerant K-centers5.3.1. �-all-neighbor K-centersWe can extend the algorithm in Section 5.1 to provide a 1 + 2� algorithm for the �-all-neighborK-center problem with weights and costs. Select an initial set of nodes as in the algorithm for theweighted basic K-center problem. Then for each node v in the initial set, place � centers on the �cheapest neighbors of v (including itself) in any time-slot.Theorem 5.4: The above algorithm returns a solution to the �-all-neighbor K-center problemwith weights and costs, with an approximation ratio of 1 + 2�, where � = maxe maxtdt(e)mintdt(e) .Proof. Note that by the proof of Thm. 5.1, in every time-slot each node is within a distance(1 + �)� + �� of some node in S 0. Also a simple extension of the proof of Theorem 5.1 shows thatfor each v 2 S there are � distinct optimal centers x1v ; : : : ; x�v , which are neighbors of v in sometime-slot. Hence if the algorithm places centers on v01; : : : ; v0� then Pi c(v0i) � Pi c(xiv). Summingover all the nodes in S we get that the cost of the nodes in S0 is a lower bound on the optimal cost.5.3.2. �-neighbor K-suppliersA straightforward extension of the algorithm in Section 5.2 yields the following result.Theorem 5.5: We can obtain an algorithm for the �-neighbor K-suppliers problem with weightsand costs, with an approximation ratio of 1 + 2�, where � = maxe maxtdt(e)mintdt(e) .5.3.3. �-neighbor K-centersBy only considering the edge weights in one time-slot, and running the algorithm given in [11], wecan obtain the following result.Theorem 5.6: We can obtain an algorithm for the �-neighbor K-center problem with weights andcosts, with an approximation ratio of 4�, where � = maxe maxtdt(e)mintdt(e) .Proof. The algorithm given in [11] gives a 4-approximation to the �-neighbor K-center problemwith weights and costs for one time-slot. Each edge weight increases by at most a factor of � inany time-slot, resulting in a 4-approximation for all time-slots.5.4. Capacitated K-centersTheorem 5.7: We can obtain an algorithm for the capacitated K-center problem with all costsequal to 1, with an approximation ratio of 6�, where � = maxe maxtdt(e)mintdt(e) .15

References[1] J. Bar-Ilan, G. Kortsarz and D. Peleg, \How to allocate network centers", J. Algorithms,15:385{415, (1993).[2] S. Chaudhuri, N. Garg, and R. Ravi, \Best possible approximation algorithms for generalizedk-Center problems", Technical Report MPI-I-96-1-021, Max-Planck-Institut f�ur Informatik,Im Stadtwald, 66123 Saarbr�ucken, Germany, (1996).[3] M. Dyer and A. M. Frieze, \A simple heuristic for the p-center problem", Operations ResearchLetters, Vol 3:285{288, (1985).[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory ofNP-completeness, Freeman, San Francisco, 1978.[5] T. Gonzalez, \Clustering to minimize the maximum inter-cluster distance", Theoretical Com-puter Science, Vol 38:293{306, (1985).[6] R. Hassin, \Approximation schemes for the restricted shortest path problems", Mathematicsof Operations Research, Vol 17:36-42, No 1. Feb. 1992.[7] D. Hochbaum, personal communication, Oct (1996).[8] D. Hochbaum and D. B. Shmoys, \A best possible heuristic for the k-center problem", Math-ematics of Operations Research, Vol 10:180{184, (1985).[9] D. Hochbaum and D. B. Shmoys, \A uni�ed approach to approximation algorithms for bot-tleneck problems", Journal of the ACM, Vol 33(3):533{550, (1986).[10] W. L. Hsu and G. L. Nemhauser, \Easy and hard bottleneck location problems", DiscreteApplied Mathematics, Vol 1:209{216, (1979).[11] S. Khuller, R. Pless, and Y. J. Sussmann, \Fault tolerant K-Center problems", Proc. of the3rd Italian Conference on Algorithms and Complexity, LNCS 1203, pages 37{48, (1997).[12] S. Khuller and Y. J. Sussmann, \The capacitated K-Center problem", Proc. of the 4th AnnualEuropean Symposium on Algorithms, LNCS 1136, pages 152{166, (1996).[13] S. O. Krumke, \On a generalization of the p-center problem", Information Processing Letters,Vol 56:67{71, (1995).[14] H. L. Morgan and K. D. Levin, \Optimal program and data locations in computer networks",Communications of the ACM, Vol 20:315{322, (1977).[15] K. Murthy and J. Kam, \An approximation algorithm to the �le allocation problem in com-puter networks", Proc. of the 2nd ACM Symposium on Principles of Database Systems, pages258{266, (1983).[16] R. Panigrahy, \An O(logn) approximation algorithm for the asymmetric p-center problem",manuscript, 1995.[17] J. Plesnik, \A heuristic for the p-center problem in graphs", Discrete Applied Mathematics,Vol 17:263{268, (1987) 16

[18] R. Ravi, M. X. Goemans, \The constrained minimum spanning tree problem", SWAT 1996,66-75.[19] D. Serra and V. Marianov, \The P-median problem in a changing network: The case ofBarcelona", paper presented at the International Symposium in Locational Decisions VII,(ISOLDE), Edmonton, Canada, (1996).[20] C. Toregas, R. Swain, C. Revelle and L. Bergman, \The location of emergency service facili-ties", Operations Research, Vol 19:1363{1373, (1971).[21] J. Van Leeuwen, Ed., Handbook of Theoretical Computer Science, Vol. A: Algorithms andComplexity, The MIT Press/Elsevier, 1990.[22] S. Vishwanathan, \An O(log� n) approximation algorithm for the asymmetric p-Center prob-lem", Proc. of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1{5,(1996).

17

