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In quantum mechanics, the definition of a Von Neumann measurement can be

generalized using positive-operator-valued measures. This modified definition of a

quantum measurement allows one to better distinguish between a set of nonorthogo-

nal quantum states. In this thesis we examine a quantum detection problem, where

we have a physical system whose state is limited to be in only one of a finite number

of possibilities. These possible states are not necessarily orthogonal. We want to

find the best method of measuring the system in order to distinguish which state the

system is in. Mathematically, we want to find a positive-operator-valued measure

that minimizes the probability of a detection error.

It is shown that all tight-frames with frame constant 1 correspond to positive-

operator-valued measures. We reformulate the problem in terms of tight-frames that

minimize the detection error. In the finite dimensional case, the problem of finding

the tight-frame that minimizes the error can be converted into a Hamiltonian system

on the group SO(N). The minimum energy solutions of this Hamiltonian system

correspond exactly to the tight-frames that minimize the detection error. In this



setting, several numerical methods can be applied to give numerical constructions

of the desired tight-frames.
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Chapter 1

Introduction and outline of thesis

In this thesis we study a quantum detection problem, which entails finding a quan-

tum measurement that is optimal at distinguishing between a set of given nonorthog-

onal states. This can be reduced to the optimization problem of finding a 1-tight

frame that minimizes a term that, in the context of quantum physics, represents the

probability of a detection error. Mathematically, we have a d-dimensional Hilbert

space H and a set {ψi}Ni=1 ⊂ H, N ≥ d, with positive weights {ρi}Ni=1 ⊂ R that sum

to 1. Our goal is to find a 1-tight frame {ei}Ni=1 for H that minimizes the term

Pe = 1−
N∑
i=1

ρi|〈ψi, ei〉|2.

We begin in chapter 2 with the mathematical background of the subject. Here,

finite frame theory is introduced, followed by the spectral theorem, which is used

to define quantum measurements in chapter 3. We end the chapter with a small

discussion of the special orthogonal group, which is used in chapter 5 as a means of

parameterizing tight frames and converting the quantum detection problem into a

classical mechanics problem.

Chapter 3 is an introduction to quantum theory. The theory of quantum

measurements is introduced via the spectral theorem, followed by a generalization of

the theory with the use of positive-operator-valued measures. We prove that certain

classes of positive-operator-valued measures correspond to tight frames, which makes
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the application of frame theory to the theory of quantum measurement quite natural.

This relation has been mentioned in [13] but was not proven.

Chapter 4 introduces the quantum detection problem. We use the relation-

ship between positive-operator-valued measures and tight frames given in chapter

3 to restate the problem in terms of frames, followed by a proof that solutions to

the quantum detection problem exists. We then use Naimark’s theorem to further

simplify and restate the problem in terms of orthonormal sets.

Chapter 5 begins with some background of classical mechanics, then proceeds

with my main results. We give a method of parameterizing tight frames using the

group SO(N). A Hamiltonian on SO(N) is introduced, and using Lagrangian me-

chanics we obtain corresponding equations of motion. We prove that the minimum

energy solutions to the equations of motion exist and correspond to the tight frames

that solve the quantum detection problem. Furthermore, friction terms can be

added to the equations of motion so that solutions tend towards a minimum energy

solution. This reformulation of the problem opens the possibility of using numerical

methods to approximate the tight frames that solve the quantum detection problem.

Finally, in chapter 6 we examine a least-squares error term. Mathematically,

we want to find a tight frame {ei}Ni=1 that minimizes the least-squares error

E =
N∑
i=1

ρi‖ψi − ei‖2.

When the given set {ψi}Ni=1 are linearly independent, explicit constructions for

{ei}NI=1 are given that minimize the least-squares error [13, 12]. We expand this

work by examining the case when {ψi}Ni=1 are linearly dependent and produce con-
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structive methods of producing tight frames with a small error E and provide bounds

for E. We end the chapter with a presentation of the work done in [12]. They show

that if the weights {ρi}Ni=1 are all equal and if the given set {ψi}Ni=1 are geometrically

uniform, then the frame that minimizes the least-squares error E also minimizes the

detection error Pe of the quantum detection problem.
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Chapter 2

Frame theory, linear algebra, and the spectral theorem

This chapter presents the mathematical background for studying quantum detec-

tion. We start with a short introduction to frame theory [6, 8, 22] followed by

Naimark’s theorem [7, 13] which relates frames with orthonormal sets. We then

present the spectral theorem [30, 27] which plays a central role in the theory of

quantum measurement in chapter 3. We end the chapter with a discussion of the

group SO(N) and its parameterization with N(N − 1)/2 real variables. This pa-

rameterization is used in chapter 5 to create a Hamiltonian system on SO(N) that

corresponds to the quantum detection problem.

2.1 Frame theory

A frame is a generalization of an orthonormal basis. Let H be a separable Hilbert

space, K ⊆ Z, and {ei}i∈K an orthonormal basis for H. An orthonormal basis has

the property that for all x ∈ H

‖x‖2 =
∑
i∈K

|〈x, ei〉|2.

We use this property to motivate the definition of a frame.

Definition 2.1. Let H be a separable Hilbert space and K ⊂ Z. A set {ei}i∈K ⊂ H
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is a frame with frame bounds A,B ∈ R if 0 < A < B and for all x ∈ H we have

A‖x‖2 ≤
∑
i∈K

|〈x, ei〉|2 ≤ B‖x‖2.

A frame {ei}i∈K is a tight frame if A = B, and in this case the constant A is called

the frame constant. We refer to a tight frame with frame constant A as an A-tight

frame.

Let H be a separable Hilbert space and {ei}i∈K a frame for H. Define the

Bessel map L : H → l2(K) defined for all x ∈ H by

Lx = {〈x, ei〉}i∈K .

By the definition of a frame, it is easy to see that L is continuous. Consider the

adjoint L∗ : l2(K) → H. Let x ∈ H and {ci}i∈K ∈ l2(K). Then

〈x, L∗({ci}i∈K)〉 = 〈Lx, {ci}i∈K〉 = 〈{〈x, ei〉}i∈K , {ci}i∈K〉

=
∑
i∈K

〈x, ei〉ci =

〈
x,
∑
i∈K

ciei

〉
.

Since this is true for all x ∈ H, given any {ci}i∈K ∈ l2(K),

L∗({ci}i∈K) =
∑
i∈K

ciei ∈ H.

Define the frame operator S = L∗L. It is not hard to show that for any x ∈ H,

S(x) =
∑
i∈K

〈x, ei〉ei.

Like an orthonormal basis, all elements of H can be written as a linear combination

of the frame elements. It can be shown that for all x ∈ H,

x =
∑
i∈K

〈x, ei〉S−1ei =
∑
i∈K

〈x, S−1ei〉ei.
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In fact, if {ei}i∈K is a tight frame with frame constant A, then the reconstruc-

tion formula is much simpler. We show that for all x ∈ H we have

x =
1

A
Sx =

1

A

∑
i∈K

〈x, ei〉ei.

Theorem 2.1. Let H be a separable Hilbert space and {ei}i∈K ⊂ H. {ei}i∈K is a

tight frame with frame constant A if and only if the frame operator satisfies

S = AI

where I is the identity operator on H.

Proof. First, assume that S = L∗L = AI. Then given any x ∈ H we have

A‖x‖2 = A〈x, x〉 = 〈Ax, x〉 = 〈Sx, x〉

= 〈L∗Lx, x〉 = 〈Lx,Lx〉

= ‖Ly‖2
l2(K)

=
∑
i∈K

|〈x, ei〉|2,

hence we see that {ei}i∈K is a tight frame for H with frame constant A.

Now assume that {ei}i∈K is a tight frame for H with frame constant A. Then

for all x ∈ H,

A〈x, x〉 = A‖x‖2 =
∑
i∈K

|〈x, ei〉|2 =
∑
i∈K

〈x, ei〉〈ei, x〉 =

〈∑
i∈K

〈x, ei〉ei, x

〉
= 〈Sx, x〉

hence for all x ∈ H

〈(S − AI)x, x〉 = 0.
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Note that the operator S−AI is self-adjoint and positive semidefinite. By Theorem

19 from [30], given any x, y ∈ H we have

|〈(S − AI)x, y〉| ≤
√
〈(S − AI)x, x〉〈(S − AI)y, y〉 = 0

so it follows that (S − AI) = 0 and the result follows.

Under certain conditions, tight frames coincide with orthonormal bases. For

example, if {ei}i∈K is a tight frame consisting of unit normed vectors and has frame

constant 1, then it must be an orthonormal basis.

Theorem 2.2. Let H be a separable Hilbert space. Let K ⊂ Z and {ei}i∈K ⊂ H be

a normalized set of vectors. Then {ei}i∈K is a tight frame for H with frame constant

1 if and only if {ei}i∈K is an orthonormal basis for H.

Proof. Assume that {ei}i∈K is a tight frame for H with frame constant 1. Then

given any y ∈ H we have

‖y‖2 =
∑
i∈K

|〈y, ei〉|2.

Since {ei}i∈K are normalized, for each i ∈ K we have

1 = ‖ei‖2 =
∑
k∈K

|〈ei, ek〉|2

= ‖〈ei, ei〉|2 +
∑

k∈K,k 6=i

|〈ei, ek〉|2

= 1 +
∑

k∈K,k 6=i

|〈ei, ek〉|2,

hence we must have ∑
k 6=i

|〈ei, ek〉|2 = 0.
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So for i 6= k, 〈ei, ek〉 = 0, hence {ei}i∈K is an orthonormal set for H. By the previous

theorem, the frame operator S = I so for any y ∈ H we have

y = Sy =
∑
i∈K

〈y, ei〉ei

so {ei}i∈K is complete, and {ei}i∈K is an orthonormal basis for H.

Conversely, if {ei}i∈K is an orthnormal basis, it is clear that it is a normalized

tight frame with frame constant 1.

2.2 Finite frames

In this section, we consider the case where H = Kd where K = R or K = C

and frames consisting of a finite set of elements of H, that is frames of the form

{ei}Ni=1 ⊂ H where N is an integer with N > d.

Many of the operators associated with finite frames have a matrix representa-

tion. Denote by M(m×n) as the set of all m×n matrices. For example, the Bessel

map can be written as a matrix. Let {ei}Ni=1 ⊂ H be a frame for H and {bi}di=1 an

orthonormal basis. The Bessel map L : H → l2(ZN) can be written as a matrix

L ∈M(N × d) with components Lij = 〈bj, ei〉, i.e,

L =


—– e∗1 —–

...

—– e∗N —–


with respect to the basis {bi}di=1 of H, and where ∗ denotes the conjugate transpose.
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To verify this matrix corresponds to the Bessel map, given any x ∈ H we can write

x =


x1

...

xd


with respect to the basis {bi}di=1 and hence

L(x) =


—– e∗1 —–

...

—– e∗N —–




x1

...

xd

 =


〈x, e1〉

...

〈x, eN〉

 ∈ l2(ZN).

The conjugate Bessel map L∗ : l2(ZN) → H can also be written as a matrix

L∗ ∈M(d×N) with components L∗ij = 〈bi, ej〉, i.e. it is of the form

L∗ =


| |

e1 . . . eN

| |

 .

Let x ∈ H and denote the ith component of ek by ek(i). Then the frame

operator S : H → H, defined by S = L∗L, can be written as

Sx = L∗Lx =


| |

e1 . . . eN

| |




〈x, e1〉

...

〈x, eN〉



=


∑N

i=1〈x, ei〉ei(1)

...∑N
i=1〈x, ei〉ei(d)

 =
N∑
i=1

〈x, ei〉ei

Which is the expression for S we obtained earlier.

9



In the finite dimensional case, it can be shown that any spanning set of vectors

is a frame. We first prove a lemma involving the operator S for a given spanning

set.

Lemma 2.1. Let H be a d-dimensional Hilbert space and {ei}Ni=1 ⊂ H such that

span{ei}Ni=1 = H. Then the operator S : H → H defined for all x ∈ H by

Sx =
N∑
i=1

〈x, ei〉ei

is positive-definite.

Proof. Let x ∈ H such that x 6= 0. Then by definition

Sx =
N∑
i=1

〈x, ei〉ei.

Taking the inner product with x on both sides gives us

〈Sx, x〉 =
N∑
i=1

〈x, ei〉〈ei, x〉 =
N∑
i=1

|〈x, ei〉|2.

Since x ∈ H = span{ei}Ni=1 it follows that 〈x, ei〉 6= 0 for some i. Suppose not, that

is suppose 〈x, ei〉 = 0 for all 1 ≤ i ≤ N . Since H = span{ei}Ni=1, for any basis

{bi}di=1 for H we can write

bi =
N∑
j=1

A
(i)
j ej

for some constants {A(i)
j : 1 ≤ i ≤ d, 1 ≤ j ≤ N}. Hence for all 1 ≤ i ≤ d,

〈x, bi〉 =

〈
x,

N∑
j=1

A
(i)
j ej

〉
=

N∑
j=1

A
(i)
j 〈x, ej〉 = 0

so it follows that x = 0, which is a contradiction since we assumed that x 6= 0.
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So,

〈Sx, x〉 =
N∑
i=1

|〈x, ei〉|2 > 0

and S is positive definite.

Theorem 2.3. Let H be a d-dimensional Hilbert space and {ei}Ni=1 ⊂ H. {ei}Ni=1 is

a frame for H if and only if H = span{ei}Ni=1.

Proof. Assume that span{ei}Ni=1 = H. By Lemma 2.1, we know that the operator

S = L∗L is positive-definite and Hermitian, so it follows that S has d positive real

eigenvalues {λi}di=1. So, for all x ∈ H we have

A‖x‖2 ≤ 〈Sx, x〉 ≤ B‖x‖2

where A = min{λi : 1 ≤ i ≤ d} and B = maxi{λi : 1 ≤ i ≤ d}, hence

A‖x‖2 ≤
N∑
i=1

|〈x, ei〉|2 ≤ B‖x‖2.

By definition, {ei}Ni=1 is a frame for H.

Conversely, assume that {ei}Ni=1 is a frame for H. Suppose that x ∈ H and

x ∈
(
span{ei}Ni=1

)⊥
. Then

A‖x‖2 ≤
∑
i

|〈x, ei〉|2 = 0

so ‖x‖ = 0 hence x = 0. So

(
span{ei}Ni=1

)⊥
= {0}

and we have

H = span{ei}Ni=1 +
(
span{ei}Ni=1

)⊥
= span{ei}Ni=1.

11



Here, we give a condition where tight frames coincide with orthogonal bases.

Theorem 2.4. Let H be a d-dimensional Hilbert space and assume that {ei}di=1 is a

tight frame for H with frame constant A. Then {ei}di=1 is a
√
A-normed orthogonal

set.

Proof. First, since {ei}di=1 is a frame in an d-dimensional space, {ei}di=1 must be

linearly independent. Suppose not, that is suppose {ei}di=1 is linearly dependent.

Then there exists constants {ci}di=1 ∈ C not all zero such that

d∑
i=1

ciei = 0.

In particular, there is some 1 ≤ j ≤ d such that cj 6= 0. Then

ej = − 1

cj

∑
i6=j

ciei.

Hence, for any x ∈ H we can write,

x =
1

A

d∑
i=1

〈x, ei〉ei =
1

A

∑
i6=j

(
〈x, ei〉 −

ci
cj

)
ei

so H = span{ei}i6=j so dim(H) ≤ d − 1 which contradicts the fact that H is d-

dimensional.

Let 1 ≤ k ≤ d. Then,

ek =
1

A

d∑
i=1

〈ek, ei〉ei =
1

A
‖ek‖2ek +

1

A

∑
i6=k

〈ek, ei〉ei

hence subtracting ek on both sides gives us,

[
1

A
‖ek‖2 − 1

]
ek +

1

A

∑
i6=k

〈ek, ei〉ei = 0.
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Since the {ei}di=1 are linearly independent, we must have,

‖ek‖ =
√
A and 〈ek, ei〉 = 0 i 6= k

and the result follows.

2.2.1 Naimark’s theorem

In this section we present Naimark’s theorem. As a preliminary needed to prove

Naimark’s theorem, we present the singular value theorem without proof. This

theorem generalizes the process of diagonalizing matrices in cases where the matrix

is not necessarily square. This decomposition is valid for arbitrary matrices. This

theorem is also used in chapter 6 where a least-squares quantum detection problem

is examined.

Theorem 2.5. (Singular Value Decomposition)

Given any A ∈ M(m × n) there exists matrices U ∈ M(m ×m), V ∈ M(n × n)

and Σ ∈ M(m× n) where U, V are unitary and the diagonal components σi = Σii

are positive and real, and Σij = 0 if i 6= j, such that A = UΣV ∗. The components

σi are called the singular values of A.

The proof of this theorem is constructive. U is the unitary matrix whose

columns are the orthonormal eigenvectors of the self-adjoint matrix AA∗, V is the

unitary matrix whose columns are the orthonormal eigenvectors of the self-adjoint

matrix A∗A, and the singular values σi are the positive square root of the nonneg-

ative eigenvalues of AA∗.
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We now state some observations that shall be useful in the proof of Naimark’s

theorem, as well as in chapters 4 and 6.

1. We show another form of the singular value decomposition that becomes useful

in the proof of Naimark’s theorem. If A ∈ M(m × n) is of rank r, we can

reorder the indices i in the singular value decomposition such that the first r

singular values {σi}ri=1 are nonzero. Then with this reordering, it is not hard

to show that its singular value decomposition can be written as

A =
r∑
i=1

σiuiv
∗
i

where ui is the ith column of U , vi is the ith column of V , and σi are the

nonzero diagonal elements of Σ.

2. Here we give explicit expressions for orthogonal projections. Let H be a d-

dimensional Hilbert space and let W be a finite N -dimensional subspace of

H where N ≤ d. Let {wi}Ni=1 be an orthonormal basis for W . Then we can

express the orthogonal projection P : H → W as

P =
n∑
i=1

wiw
∗
i ,

which is not hard to see since for any x ∈ H we have

P (x) =
n∑
i=1

wiw
∗
i x =

n∑
i=1

〈x,wi〉wi ∈ W.

3. Let {ei}Ni=1 be a tight frame for H with frame constant A. Then for all x ∈ H

we have

Sx =
N∑
i=1

〈x, ei〉ei

14



hence we can write

S =
N∑
i=1

eie
∗
i .

Also, by Theorem 2.1 it follows that {ei}Ni=1 is a tight frame if and only if

N∑
i=1

eie
∗
i = AI.

Naimark’s theorem [13] relates tight frames with equal-normed orthogonal sets.

All tight frames can be considered as projections of an equal-normed orthogonal set

where the orthogonal set exists in a larger Hilbert space. This theorem is crucial

for the construction of the Hamiltonian system on SO(N) given in chapter 2.

Theorem 2.6. (Naimark’s Theorem) Let H be a d-dimensional Hilbert space. Let

{ei}Ni=1 be a tight frame for H with frame constant A. Then there exists an orthogonal

A-normed set {ẽi}Ni=1 ⊂ H̃, where H̃ is a N-dimensional Hilbert space such that H

is a linear subspace of H̃, and

PH ẽi = ei

where PH is the orthogonal projection onto H.

Proof. Let {bi}di=1 be an orthonormal basis for H. Define M ∈ M(N × d) as the

Bessel map matrix corresponding to the vector set {ei}Ni=1 with respect to the basis

{bi}di=1, that is M is of the form

M =


—– e∗1 —–

...

—– e∗N —–

 .

It suffices to show that there exists a matrix M̃ ∈M(N ×N) such that

15



1. M̃M̃∗ = A2IN

2. PHM̃
∗ = M∗.

M̃M̃∗ is the matrix whose entries are the inner products of the columns of M̃∗.

Hence, 1. shows that the columns of M̃∗ are orthogonal and have norm A. 2. shows

that the projection of the columns of M̃∗ onto H gives the original tight frame

{ei}Ni=1. So the A-normed orthogonal set we are looking for are just the columns of

M̃∗.

We take the singular value decomposition of M∗ to get

M∗ = UΣV ∗ =
d∑
i=1

σiuiv
∗
i .

We will show that the singular values {σi}di=1 are all equal. Since each vector ui is d

dimensional, and {ui}di=1 are orthonormal, since they are the columns of a unitary

matrix, we have span{ui}di=1 = H. Since M is the Bessel map for a tight frame, by

Theorem 2.1 and observation 2 we have for the corresponding frame operator,

S = M∗M = A2IH = A2

d∑
i=1

uiu
∗
i .

We can also write, using the singular value decomposition of M∗ and the fact that

{vi}Ni=1 is an orthonormal set,

M∗M =
d∑
i=1

σiuiv
∗
i

d∑
k=1

σkvku
∗
k

=
d∑

i,k=1

σiσkui〈vi, vk〉u∗k =
d∑
i=1

σ2
i uiu

∗
i

hence we see that for all i = 1, . . . , d, we must have σi = A. So

M∗ = A

d∑
i=1

uiv
∗
i .
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Now consider an enlarged N -dimensional Hilbert space H̃ such that H ⊂ H̃.

We can find a set of N−d vectors {ui}Ni=d+1 ⊂ H̃ such that {ui}Ni=1 is an orthonormal

basis for H̃. Define

M̃∗ = A

N∑
i=1

uiv
∗
i .

Then M̃ has the desired properties we want. We have,

M̃M̃∗ = A2

N∑
i=1

viu
∗
i

N∑
k=1

ukv
∗
k = A2

N∑
k,i=1

vi〈ui, uk〉v∗k

= A2

N∑
i=1

viv
∗
i = A2IN .

Since {ui}di=1 is an orthonormal basis for H, we can write PH =
∑d

j=1 uju
∗
j hence

we have,

PHM̃
∗ =

d∑
j=1

uju
∗
jA

N∑
i=1

uiv
∗
i = A

d∑
j=1

N∑
i=1

uj〈uj, ui〉v∗i

= A
d∑
j=1

ujv
∗
j = M∗.

For the case where H is infinite dimensional, see [7].

2.3 Spectral theorem

All self-adjoint N ×N matrices can be diagonalized. If A is an N ×N self-adjoint

matrix, then A has N real eigenvalues {λi}Ni=1, counting multiplicities, and N cor-

responding orthonormal eigenvectors {vi}Ni=1 such that

A =
N∑
i=1

λiviv
∗
i .

Each viv
∗
i can be considered as an orthogonal projection onto the 1-dimensional

space spanned by vi. The spectral theorem is a generalization of this idea when A
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is a self-adjoint operator on a separable Hilbert space H. We replace the sum of the

projections by a resolution of the identity.

Definition 2.2. Let B be a σ-algebra of sets of X and H a Hilbert space. Denote

by L(H) as the collection of all bounded linear operators on H. A mapping E :

B → L(H) is a resolution of the identity if:

1. E(∅) = 0, E(X) = I.

2. For all w ∈ B, E(w) is a orthogonal projection.

3. For all w,w′ ∈ B, E(w ∩ w′) = E(w)E(w′).

4. If w ∩ w′ = ∅ then W (w ∪ w′) = E(w) + E(w′).

5. for all x, y ∈ H, 〈E(·)x, y〉 is a complex measure on B.

With this definition, we can present the spectral theorem [27].

Theorem 2.7. Let T be a bounded normal operator on a separable Hilbert space H.

Then there exists a unique resolution of the identity such that for all x, y ∈ H,

〈Tx, y〉 =

∫
λd〈E(λ)x, y〉.

As an abuse of notation, we sometimes write

T =

∫
λdE(λ).

For those familiar with quantum mechanics, many times we consider the Hilbert

space H = L2(R) and the self-adjoint operators Ox and Op defined on a dense

subset of H for some f ∈ H by

Oxf(x) = xf(x), Opf(x) =
~
i

df

dx
(x).
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Note that these operators are not bounded, nor are they defined on all of H. How-

ever, the spectral theorem can be modified to apply to all self-adjoint operators

[27, 30].

Definition 2.3. Let H be a separable Hilbert space and A a self-adjoint operator

defined on a dense subset of H. The Cayley transform U of A is the operator that

satisfies for all f ∈ Dom(A)

U(Af + if) = Af − if.

If A is self-adjoint, then it is shown by [27] that the domain and range of U satisfies

Dom(U) = Range(U) = H

and U is a unitary operator on H.

Theorem 2.8. Let T be a self-adjoint operator defined on a dense subset of a

separable Hilbert space H. Then there exists a unique resolution of the identity

such that

T =

∫
λdE(λ).

We present a sketch of the proof. Let U be the Cayley transform of T . Since

Dom(U) = Range(U) = H

one can show that U is a unitary operator on H. By the Spectral theorem, there

exists a unique resolution of the identity E such that

U =

∫
σdE(σ).
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Using the change of variables,

λ = − cotπσ

one can show that

T =

∫
λdE

(
− 1

π
cot−1 λ

)
gives a unique resolution of the identity for T .

2.4 The special orthogonal group

Finally, we present some facts of the orthogonal and special orthogonal group [26].

We later use the fact that O(N) is a smooth manifold in chapter 5 to develop a

method of parameterizing orthonormal sets in an N -dimensional Hilbert space.

Let N be a positive integer. The orthogonal group is defined by

O(N) = {A ∈M(N ×N) : AτA = I}

where τ denotes the transpose of the matrix A, and I is the N ×N identity matrix.

We will mainly be considering the special orthogonal group given by

SO(N) = {A ∈ O(N) : det(A) = 1}.

It can be shown that SO(N) is a N(N − 1)/2-dimensional manifold. To show this,

we construct a smooth map from RN(N−1)/2 into SO(N).

Define the exponential map exp : M(N × N) → M(N × N) for all X ∈

M(N ×N) by

exp(X) =
∞∑
n=0

1

n!
Xn.
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where we define X0 = I. It is not hard to show that if A,B ∈M(N ×N) commute,

then

exp(A) exp(B) = exp(A+B).

Consider the space of all N ×N antisymmetric matrices

A(N) = {A ∈M(N ×N) : Aτ = −A}.

A(N) is a N(N − 1)/2-dimensional real linear space under matrix addition. Note

that for any A ∈ A(N),

exp(A)τ =
∞∑
n=1

1

n!
(An)τ =

∞∑
n=0

1

n!
(Aτ )n =

∞∑
n=0

1

n!
(−A)n = exp(−A)

hence

exp(A)τ exp(A) = exp(−A+ A) = exp(0) = I

so exp(A) ∈ SO(N).

Let {A1, . . . , AN(N−1)/2} ⊂ A(N) be a basis for A(N). Define the map f :

RN(N−1)/2 → SO(N) for all (q1, . . . , qN(N−1)/2) ∈ RN(N−1)/2 by

f(q1, . . . , qN(N−1)/2) = exp

N(N−1)/2∑
i=1

qiAi

 ∈ SO(N).

It can be shown that f is a diffeomorphism taking a neighborhood of 0 in RN(N−1)/2

into a neighborhood of I in SO(N). Given any B ∈ SO(N), one can further show

that Bf : RN(N−2)/2 → SO(N) is a diffeomorphism taking a neighborhood of 0

in RN(N−1)/2 into a neighborhood of B in SO(N). Hence, SO(N) is a smooth

N(N − 1)/2-dimensional manifold.

O(N) is also a smoothN(N−1)/2-dimensional manifold with two components,

the component with positive determinant corresponds to SO(N).
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Chapter 3

Quantum physics

This chapter presents some of the history and motivations of quantum theory. The

historical facts in sections 3.1.1, 3.1.2, and 3.1.3 were taken from [16] and the basic

theory and examples in sections 3.1.4, 3.1.5, 3.1.6, and 3.2 were taken from [15].

The general quantum theory in terms of Hilbert spaces, section 3.3, was borrowed

from [30] and the introduction of POM measurements in section 3.4 can be found

in [13, 12, 31, 18] with physical realizations of POM measurements given by [5, 4].

The relationship between POMs and tight frames given in section 3.5 has been done

by the author.

3.1 Motivations of quantum mechanics

3.1.1 Light as waves

Ever since the 1600’s, there was a debate whether light is a wave or a particle. In

1801, Thomas Young performed the double-slit experiment. This consisted of a

monochromatic light source and a screen separated by two barriers, the one on the

left with one slit and the one on the right with two slits. See the figure below for

an illustration.
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Figure 3.1: The setup of Young’s experiment, indicating that light is a wave.

The light spreads by diffraction after passing through the first barrier. The

light emanating from the single slit acts as a point source of light. The light then

passes through the second barrier and through the two slits, creating two point

sources of light. On the screen, on the far right in figure 3.1, the light from the two

point sources create a pattern of bright and dark patches as in figure 3.2 below.

Figure 3.2: A diffraction pattern created by the constructive and destructive inter-

ference of light from two point sources.

This was strong evidence that light behaves like a wave, and the pattern on

the screen was due to constructive and destructive interference of the light waves

emanating from the two point sources. In fact, in the mid 1800’s it was discov-

ered that light is an electromagnetic wave, an oscillating electric and magnetic field

governed by Maxwell’s equations. In empty space, the waves are governed by the

following wave equations

∇2E =
1

c2
∂2E

∂t2
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∇2B =
1

c2
∂2B

∂t2

where c is the speed of light, t corresponds to time, and E and B are the electric and

magnetic vectors fields respectively, both functions of space and time. The intensity

of the light on the screen in Young’s experiment can be shown to be proportional

to |E|2.

3.1.2 Light as particles

It has been found that if light of a certain wavelength λ is directed on a piece of

metal, it knocks off electrons from the metal. It is as if light, something with no

mass, has a momentum and can physically push a particle with mass. Einstein was

able to explain this effect by modeling light as a stream of particles, called photons,

which have a momentum given by the expression

p =
h

λ

where h is Plank’s constant. In fact, in 1921 Einstein won the Nobel prize for his

analysis of the photoelectric effect. With this view that light is nothing but a stream

of particles, the intensity |E|2 of the light on the screen in Young’s experiment can

be viewed as a probability distribution of where the photons are likely to hit the

screen. The bright spots on the screen represent areas where the photon is likely to

hit.
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3.1.3 Matter has wave-like properties

If light has both wave-like and particle-like properties then perhaps matter does as

well, that is perhaps matter also has wave-like properties. Momentum was attributed

to a photon using the expression p = h/λ. In 1924, Louis de Broglie suggested that

this same expression might be used to assign particles of mass a wavelength

λ =
h

p
.

In fact, in 1989 it was shown that using a beam of electrons instead of light in the

double-slit experiment also produced interference patterns on the screen, which was

consistent with de Broglie’s expression for the wavelength of matter [29].

Since the wave-like properties of light are governed by Maxwell’s wave equa-

tions, then it seems natural to have a wave equation that models the wave-like

properties of matter. In 1926, Schrödinger produced the Schrödinger equation to do

just that,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ

where ~ is Plank’s constant, m is the mass of the particle being modelled, V is a

real scalar field, and Ψ is a complex field, sometimes referred to as the state of the

system. Like the photon interpretation of Young’s experiment, |Ψ|2 is interpreted

as the probability distribution of the location of the massive particle in question.

Since |Ψ|2 is a probability distribution, we require the conditions Ψ ∈ L2 and

∫
|Ψ|2 = 1.
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3.1.4 Dynamical quantities as operators

Suppose we have a particle in a 1-dimensional space, that is Ψ(x, t) is a function of

one space variable x and time t. Since |Ψ(x, t)|2 is the probability distribution of

the location of the particle at time t, the expectation value of the position is given

by

E(x) =

∫
R
x|Ψ(x, t)|2dx = 〈Ψ(x, t), xΨ(x, t)〉

where the above bracket denotes the usual L2(R) inner-product with respect to the

variable x. Since momentum is defined by p = mv, it is quite natural to define the

expectation value for momentum as

E(p) := m
d

dt
E(x).

We obtain,

d

dt
E(x) =

d

dt

∫
R
x|Ψ(x, t)|2dx =

∫
R
x
∂

∂t
|Ψ(x, t)|2dx

=

∫
R
x

(
Ψ∗(x, t)

∂

∂t
Ψ(x, t) + Ψ(x, t)

∂

∂t
Ψ∗(x, t)

)
dx.

Since Ψ must satisfy the Schrödinger equation, we have

∂Ψ

∂t
=

i~
2m

∂2Ψ

∂x2
− i

~
VΨ

∂Ψ∗

∂t
= − i~

2m

∂2Ψ∗

∂x2
+
i

~
VΨ∗.

Plugging this back into the equation above gives us

d

dt
E(x) =

∫
R
x

(
Ψ∗(x, t)

[
i~
2m

∂2Ψ

∂x2
− i

~
VΨ

]
+ Ψ(x, t)

[
− i~

2m

∂2Ψ∗

∂x2
+
i

~
VΨ∗

])
dx

=
i~
2m

∫
R
x

(
Ψ∗(x, t)

∂2Ψ

∂x2
−Ψ(x, t)

∂2Ψ∗

∂x2

)
dx

26



=
i~
2m

∫
R
x
∂

∂x

(
Ψ∗(x, t)

∂Ψ

∂x
−Ψ(x, t)

∂Ψ∗

∂x

)
dx

= − i~
2m

∫
R

(
Ψ∗(x, t)

∂Ψ

∂x
−Ψ(x, t)

∂Ψ∗

∂x

)
dx integration by parts

= − i~
2m

∫
R

(
Ψ∗(x, t)

∂Ψ

∂x
+ Ψ∗(x, t)

∂Ψ

∂x

)
dx integration by parts

= −i~
m

∫
R

Ψ∗(x, t)
∂Ψ

∂x
dx =

〈
Ψ(x, t),

~
im

∂

∂x
Ψ(x, t)

〉
.

So,

E(p) =

〈
Ψ,

~
i

∂

∂x
Ψ

〉
.

It seems natural to define self-adjoint position and momentum operators defined on

a dense subset of L2(R) by

Oxf(x) = xf(x)

Opf(x) =
~
i

∂

∂x
f(x).

Then we can write the expectation values of position and momentum as

E(x) = 〈Ψ, OxΨ〉

E(p) = 〈Ψ, OpΨ〉.

Since any dynamical variable w can be written in terms of position and momentum

w(x, p), we can get a corresponding self-adjoint operator Ow by substituting, in the

expression for w(x, p), the momentum p with the operator Op and substituting the

position x with the operator Ox, that is Ow = w(Ox, Op). If we have a particle in

the state Ψ ∈ H, the expectation value for the quantity w is given by

E(w) = 〈Ψ, OwΨ〉.
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For example, energy is the sum of kinetic and potential energy

E =
1

2
mv2 + V (x) =

1

2m
p2 + V (x)

so its corresponding operator, known as the Hamiltonian, is

OE =
1

2m
O2
p + V (Ox) = − ~2

2m

∂2

∂x2
+ V (x).

Note that this is the right hand side of the Schrödinger equation, so we can

write

i~
∂Ψ

∂t
= OEΨ.

The expectation value of the energy is given by

E(E) = 〈Ψ, OEΨ〉.

3.1.5 Another look at momentum

Suppose Ψ(x, t) is a unit-normed solution of Schrödinger’s equation, that is for each

fixed t ∈ R,
∫

R |Ψ(x, t)|2dx = 1. We want to find the average spatial frequency γ of

Ψ. Since the Fourier transform of a function gives information about its frequencies,

a natural definition of the average frequency of Ψ for a given t would be

γ =

∫
R
γ|Ψ̂(γ, t)|2dγ

where Ψ̂(γ, t) is the Fourier transform of Ψ(x, t) with respect to the spatial variable,

that is

Ψ̂(γ, t) =

∫ ∞

−∞
Ψ(x, t)e−2πixγdx.

By the de Broglie relation,

p =
h

λ
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and the relation between wavelength λ and frequency γ

γ =
2π

λ

we have

γ =
2π

h
p =

1

~
p,

where ~ = h/2π. So the momentum p is proportional to the frequency γ and E(p)

should be proportional to γ with proportionality constant ~. We have

E(p) = ~γ = ~
∫

R
γ|Ψ̂(γ, t)|2dγ

= 〈Ψ̂(γ, t), ~γΨ̂(γ, t)〉

=

〈
Ψ(x, t),

~
i

d

dx
Ψ(x, t)

〉
by Parseval.

So by the de Broglie relation, it again seems natural to define the momentum oper-

ator as

Op =
~
i

d

dx
.

3.1.6 General statistical interpretation

Self-adjoint operators can always be decomposed by the Spectral Theorem. If H is a

separable Hilbert space, and A a self-adjoint operator, then there exists a resolution

of the identity E such that

A =

∫
R
λdE(λ).

Using this, we can define what it means to take functions of self-adjoint operators.

Given a dE measurable function f : R 7→ R we define the operator f(A) by

f(A) :=

∫
R
f(λ)dE(λ).
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It can be shown that f(A) is also a self-adjoint operator on H, see pages 143-145 of

[30].

Suppose we have an electron in a 1-dimensional space with corresponding

solution to the Schrödinger equation Ψ(x, t) and we want to know when the values

of its momentum lie in the interval I = [a, b]. The corresponding dynamical variable

can be written as a function of momentum p given by

f(p) =


1 if p ∈ I

0 if p /∈ I.

Suppose Op is the corresponding operator for momentum and E its corresponding

resolution of the identity.

Note that the probability that the momentum of the electron lies in the region

I is the same as the expectation value of f(p). So we have

P (I) = E(f(Op)) = 〈Ψ, f(Op)Ψ〉 =

∫
R
f(λ)d〈Ψ, E(λ)Ψ〉

=

∫ b

a

d〈Ψ, E(λ)Ψ〉 = 〈Ψ, E(I)Ψ〉.

This probabilistic expression is general and works for other dynamical quan-

tities, not just momentum. Suppose the state of the system is Ψ ∈ H. Given any

dynamical quantity w with its corresponding self-adjoint operator Ow and resolution

of the identity E, the probability that after measuring w, the outcome lines in a

region I = [a, b] is given by

P (I) = 〈Ψ, E(I)Ψ〉.
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3.2 Example: a particle in a box

Suppose we have an electron in a 1-dimensional box of length a > 0. Suppose further

that the walls of the box are inpenetrable. The physicists describe the potential as

V (x) =


0 if x ∈ [0, a]

∞ if x /∈ [0, a]

Figure 3.3: A diagram of two infinite potential barriers creating a box.

We consider the closed interval I = [0, a] and solve the Schrödinger equation on

I with the boundary conditions Ψ(0, t) = Ψ(a, t) = 0. Inside the box, the potential

V = 0 so we solve

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
.

To simplify the Schrödinger equation, we use separation of variables and assume we

can decompose the solution as Ψ(x, t) = ψ(x)θ(t). Plugging this into the Schrödinger

equation we obtain

i~ψ(x)
∂θ

∂t
(t) = −θ(t) ~2

2m

∂2ψ

∂x2
(x)
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and for all x and t such that ψ(x) 6= 0 and θ(t) 6= 0 we can write

i~
θ(t)

∂θ

∂t
(t) = − 1

ψ(x)

~2

2m

∂2ψ

∂x2
.

So, there must be a constant E such that

i~
θ(t)

∂θ

∂t
(t) = E ⇒ i~

∂θ

∂t
(t) = Eθ(t) (3.1)

− 1

ψ(x)

~2

2m

∂2ψ

∂x2
= E ⇒ − ~2

2m

∂2ψ

∂x2
= Eψ(x). (3.2)

Solving (3.1) gives us

θ(t) = e−i
E
~ t.

The general solution of (3.2) is

ψ(x) = A cos(κx) +B sin(κx) where κ =

√
2mE

~2
.

Imposing the boundary conditions gives us

ψ(0) = 0 ⇒ A = 0

ψ(a) = 0 ⇒ κ =
πn

a
, n ∈ Z.

The second boundary condition tells us the possible values of the constant E

E =
n2π2~2

2ma2
.

Since Ψ is a probability function we require∫ a

0

|Ψ(x, t)|2dx =

∫ a

0

|θ(t)ψ(x)|2dx =

∫ a

0

B2 sin2(κx)dx

=
B2

2

[
− cos(κx) sin(κx) + κx

κ

]a
0

= B2a

2
= 1

so

B =

√
2

a
.
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So our solution to the Schrödinger equation is

ψn(x) =

√
2

a
sin
(nπ
a
x
)
, En =

n2π2~2

2ma2
, n ∈ Z. (3)

The first three solutions are plotted below.

Figure 3.4: A plot of the three lowest energy solutions of the Schrödinger equation

of an electron in a box with impenetrable walls.

Since equation (3.2) can be written in terms of the energy operator

OEψ(x) = Eψ(x)

we see that the constants En are the eigenvalues of OE, hence (3.3) gives the different

wave-functions corresponding to different energy levels.

3.3 Generalization using Hilbert theory

Since for a fixed t, |Ψ(x, t)|2 is a probability distribution of a particle, if there are no

boundaries imposed of where the particle can go then Ψ ∈ L2(R), and if the particle
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is in a box then Ψ ∈ L2([0, a]). For each physical system considered, we sometimes

use a different Hilbert space H. So it seems natural to generalize the theory to a

theory involving general separable Hilbert spaces.

Another motivation for this generalization is that in 1925, before Schrödinger’s

wave mechanics, Heisenberg developed a matrix theory of quantum mechanics. Ac-

cording to Von Neumann [30], the two theories can be shown to be equivalent.

Their apparent difference is due to the fact that they use different representations

of essentially the same Hilbert space. So the essence of the theory involves Hilbert

spaces.

The theory is as follows:

1. A physical system is modeled using a separable Hilbert space H and a self-

adjoint linear operator H. H is called the Hamiltonian and is related to the

total energy of the system.

2. The state of the system is given by a unit-normed element Ψ ∈ H. Ψ evolves

in time by the Schrödinger equation

i~
d

dt
Ψ = HΨ.

3. All dynamical variables w are represented by self-adjoint linear operators Ow

on H. Suppose E is the corresponding resolution of the identity of Ow. If the

state of the system is given by Ψ ∈ H, then the expectation value of w is given

by

E(w) = 〈Ψ, OwΨ〉
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and the probability distribution of w is given by the measure

〈Ψ, E(·)Ψ〉.

With this generalization, physicists have modeled other physical systems with

Hilbert spaces other than those that naturally appear when using Schrödinger’s

original wave mechanics. An example is the Stern-Gerlach experiment, where a

beam of electrons are subjected to a inhomogeneous magnetic field [15]. In this

situation the Hilbert space H = C2 is used.

3.4 Generalization to POMs

We now generalize the definition of a quantum measurement. As before, every pos-

sible measurable quantity corresponds to a self-adjoint operator on H. However, if

instead we only require the corresponding resolution of the identity E to be a family

of positive self-adjoint linear operators and not necessarily orthogonal projections,

then E is said to be a positive-operator-valued measure, or POM for short. To denote

the distinction between a POM and a resolution of the identity, we use the symbol

Π instead of E. The formal definition of a POM is as follows.

Definition 3.1. Let B be a σ-algebra of sets of X. A positive operator-valued

measure (POM) is a function Π : B → L(H) such that:

1. ∀U ∈ B, Π(U) is a positive self-adjoint operator,

2. Π(∅) = 0 (zero operator),

3. ∀ disjoint {Ui}∞i=1 ⊂ B, x, y ∈ H ⇒

〈
Π

(
∞⋃
i=1

Ui

)
x, y

〉
=

∞∑
i=1

〈Π(Ui)x, y〉 ,
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4. Π(X) = I (identity operator).

We think of X as the space of all possible outcomes. X might be countable or

uncountable. For example, suppose we wanted to measure the energy of a hydrogen

atom. The energy levels of a hydrogen atom are discrete and X would consist of

all the possible discrete energy levels, hence X is countable. On the other hand, if

we were measuring the position of the electron orbiting the nucleus, then X would

be the space of all possible spatial locations of the electron, i.e. X = R3 which is

uncountable.

Every dynamical quantity in quantum mechanics corresponds to a space of

outcomes X and a POM Π. If the state of the system is given by ψ ∈ H with

‖ψ‖ = 1, then the probability that the measured outcome lies in a region U ⊂ X is

given by

P (U) = 〈ψ,Π(U)ψ〉.

3.4.1 Example 1

Consider the Hilbert space H = L2(R3) and suppose the state of a particle is given

by ψ ∈ L2(R3) with ‖ψ‖ = 1. Suppose we are interested in measuring position.

Then the space of outcomes is just X = R3. Given a set U ∈ B the position

POM is given by Π(U) = 1U , i.e. point-wise multiplication by 1U where 1U is the

characteristic function of U . So the probability that the particle is found in a region

U ⊂ R3 is given by

P (U) = 〈ψ,Π(U)ψ〉 =

∫
U

|ψ|2.
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Using a POM in place of a resolution of the identity enriches the subject of

quantum communications. There are many reasons for its use. To name a few, in

some situations using a POM measurement decreases the likelihood of making a

measurement error [24]. Also, the foundation of quantum encryption where mes-

sages cannot be intercepted by an eavesdropper is based on the theory of POM

measurements [2].

3.5 Relationship between POMs and tight-frames

The theory of tight-frames can be used to construct POMs. Let H be a separable

Hilbert space and K ⊂ Z. Assume {ei}i∈K ⊂ H is a 1-tight-frame for H. Define a

family of self-adjoint positive operators for all w ⊂ K and x ∈ H by

Π(w)x =
∑
i∈w

〈x, ei〉ei.

It is clear that this family of operators satisfy conditions 1-3 of the definition of a

POM. Since {ei}i∈K is a 1-tight-frame, we also have for all x ∈ H,

Π(K)x =
∑
i∈K

〈x, ei〉ei = x

so condition 4 is satisfied and Π, constructed in this manner, is a POM.

Conversely, we have the following theorem.

Theorem 3.1. Let H be a d-dimensional Hilbert space. Given a POM Π with a

countable set X, there exists a subset K ⊂ Z, a 1-tight-frame {ei}i∈K for H, and a

disjoint partition {Bi}i∈X ⊂ B of K such that for all i ∈ X and x ∈ H,

Π(i)x =
∑
j∈Bi

〈x, ej〉ej.
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Proof. For each i ∈ X, Π(i) is self-adjoint and positive by definition, so by the

spectral theorem there exists an orthonormal set {vj}j∈Bi
and positive numbers

{λj}j∈Bi
such that for all x ∈ H,

Π(i)x =
∑
j∈Bi

λj〈x, vj〉vj =
∑
j∈Bi

〈x, ej〉ej

where for all j ∈ Bi,

ej =
√
λjvj.

Since Π(X) = I we have for all x ∈ H,

x = Π(X)x =
∑
j∈∪iBi

〈x, ej〉ej.

It follows that {ej}j∈K is a 1-tight-frame for H.

So if our Hilbert space H is finite-dimensional, analyzing quantum measure-

ments with a discrete set of outcomes X reduces to analyzing tight-frames.

3.6 Why finite frames?

In chapters 5 and 6, we focus on analyzing the quantum detection problem us-

ing finite frames. In the theory of quantum computing and quantum encryption,

finite-dimensional Hilbert spaces are used. For example, quantum computers store

information using qubits, which correspond to a finite-dimensional complex Hilbert

space. Some of the physical realizations of these qubits are the spin directions of an

electron, or the polarization directions of photons [25].

The application of the quantum detection problem is to be able to transmit

and receive information encoded through a quantum channel. Some justifications of
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using finite frames for the quantum detection problem are:

1. We only need a finite alphabet to transfer information. An infinite alphabet

is not necessary.

2. If quantum detection is applied to the areas of quantum computing or quantum

encryption, then finite-dimensional Hilbert spaces are used hence finite frames

are sufficient.
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Chapter 4

Quantum detection problem

In this chapter, sections 4.1 and 4.2, we present a quantum detection problem and in

section 4.3 we reformulate it as a frame-theoretic optimization problem as discussed

in [13, 12]. Using a compactness argument, we show that solutions exist. Section

4.4 simplifies the problem by showing that we need only consider orthonormal sets

rather than tight-frames. This last observation is made by the author.

4.1 Quantum communication

Suppose we have a separable Hilbert space H corresponding to a physical system,

but we cannot determine beforehand what state the physical system is in. However,

we do know that the state of the system must be in one of a countable number

of possible unit normed states {ψi}i∈K ⊂ H, where K ⊂ Z, with corresponding

probabilities {ρi}i∈K that sum to 1. Our job is to determine what state the system

is in, and the only way to do so is to perform a measurement. Hence, our job is to

construct a POM Π with outcomes X = K with the property that if the state of

the system is ψi for some i ∈ K, our measurement tells us the system is in the ith

state with high probability

P (j) = 〈ψi,Π(j)ψi〉 ≈


1 if i = j

0 if i 6= j

.
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If the state of the system is ψi, then 〈ψi,Π(j)ψi〉 is the probability that our measure-

ment device outputs j. So, 〈ψi,Π(i)ψi〉 is the probability of a correct measurement.

Since each ψj occurs with probability ρj, the average probability of a successful

measurement is

E(success) = E({〈ψi,Π(i)ψi〉}i∈K) =
∑
i∈K

ρi〈ψi,Π(i)ψi〉.

Quite naturally the probability of a detection error, that is the average probability

that our measurement is incorrect, is given by

Pe = 1−
∑
i∈K

ρi〈ψi,Π(i)ψi〉.

So we want to construct a POM Π that minimizes Pe.

4.2 A closer look at the detection error

Here we show that the above expression for Pe is the average of the probabilities of

incorrect measurements. If the state of the system is ψi for some i ∈ K and if i 6= j,

then 〈ψi,Π(j)ψi〉 is the probability that we incorrectly measure the system to be ψj,

an incorrect measurement. So, the average probability of an incorrect measurement

is given by

E(incorrect) = E({〈ψi,Π(j)ψi〉}i6=j) =
∑
i6=j

ρi〈ψi,Π(j)ψi〉.

We want to show that Pe = E(incorrect). To show this, note that

∑
i6=j

ρi〈ψi,Π(j)ψi〉+
∑
i∈K

ρi〈ψi,Π(i)ψi〉 =
∑
i,j∈K

ρi〈ψi,Π(j)ψi〉
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=
∑
i∈K

ρi

〈
ψi,
∑
j∈K

Π(j)ψi

〉
=

∑
i∈K

ρi〈ψi, Iψi〉

=
∑
i∈K

ρi = 1

hence

Pe = 1−
∑
i∈K

ρi〈ψi,Π(i)ψi〉 =
∑
i6=j

ρi〈ψi,Π(j)ψi〉 = E(incorrect).

4.3 Using tight-frames to construct the POM

Suppose we use a 1-tight-frame {ei}i∈K ⊂ H to construct our POM. Then for i ∈ K

and x ∈ H,

Π(i)x = 〈x, ei〉ei

and the detection error becomes,

Pe = 1−
∑
i∈K

ρi〈ψi,Π(i)ψi〉

= 1−
∑
i∈K

ρi〈ψi, 〈ei, ψi〉ei〉

= 1−
∑
i∈K

ρi|〈ψi, ei〉|2.

So our problem reduces to finding a 1-tight-frame that minimizes Pe. Suppose

H = Kd, where K = R or K = C, and K = ZN . We shall show that in this case,

such a tight-frame exists using a compactness argument. We start with a lemma.

Lemma 4.1. Assume that {ei}Ni=1 is an A-tight frame for a d-dimensional Hilbert

space H. Then,

‖ei‖ ≤
√
A.
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Proof. Note that for any 1 ≤ k ≤ N we have

A‖ek‖2 =
N∑
i=1

|〈ek, ei〉|2

= ‖ek‖4 +
∑
i6=k

|〈ek, ei〉|2

hence,

‖ek‖4 − A‖ek‖2 = −
∑

i6=k |〈ek, ei〉|2 ≤ 0

⇒ ‖ek‖2 − A ≤ 0

⇒ ‖ek‖ ≤
√
A.

Theorem 4.1. Suppose H is a d-dimensional Hilbert space and {ψi}Ni=1 ⊂ H are

given. Suppose we are also given a set of positive numbers {ρi}Ni=1 ⊂ R such that

N∑
i=1

ρi = 1.

Then there exists a 1-tight frame {ei}Ni=1 ⊂ H that minimizes the error

Pe = 1−
N∑
i=1

ρi|〈ψi, ei〉|2

over all 1-tight frames of N elements.

Proof. Let F be the set of all N element 1-tight frames. By observation 3 of section

2.2.1, we can write this set as

F =

{
{vi}Ni=1 ⊂ H :

N∑
i=1

viv
∗
i = I

}
.

First note that F is closed. Given any {ui}Ni=1 ⊂ H define the norm

‖{ui}Ni=1‖ =
N∑
k=1

‖uk‖H
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where ‖ · ‖H is the norm on H and define the operator norm for any d × d matrix

A as

‖A‖ = sup
‖v‖H=1

‖Av‖H .

Suppose we have a sequence {{uki }Ni=1}∞k=1 ⊂ F such that

lim
k→∞

‖{uki }Ni=1 − {ui}Ni=1‖ = 0

for some set {ui}Ni=1 ⊂ H. Then given any ε > 0 there exists a k > 0 such that

‖{uki }Ni=1 − {ui}Ni=1‖ < ε. Then,∥∥∥∥∥
N∑
i=1

uiu
∗
i − I

∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

uiu
∗
i −

N∑
i=1

uki (u
k
i )
∗

∥∥∥∥∥+

∥∥∥∥∥
N∑
i=1

uki (u
k
i )
∗ − I

∥∥∥∥∥
=

∥∥∥∥∥
N∑
i=1

uiu
∗
i −

N∑
i=1

uki (u
k
i )
∗

∥∥∥∥∥
= sup

‖v‖H=1

∥∥∥∥∥
N∑
i=1

〈v, uki 〉uki − 〈v, ui〉ui

∥∥∥∥∥
H

≤ sup
‖v‖H=1

N∑
i=1

‖〈v, uki 〉uki − 〈v, ui〉ui‖H

≤ sup
‖v‖H=1

N∑
i=1

(
‖〈v, uki 〉uki − 〈v, uki 〉ui‖H + ‖〈v, uki 〉ui − 〈v, ui〉ui‖H

)
= sup

‖v‖H

N∑
i=1

(
|〈v, uki 〉|‖uki − ui‖H + |〈v, uki − ui〉|‖uki ‖H

)
≤ sup

‖v‖H=1

(
‖{uki }Ni=1 − {ui}Ni=1‖+ ‖{uki }Ni=1 − {ui}Ni=1‖

)
≤ 2ε.

Since ε > 0 was arbitrary, it follows that

N∑
i=1

uiu
∗
i = I

hence {ui}NI=1 ∈ F , so F is closed.
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F is also bounded since given any {ui}Ni=1 ∈ F , by Lemma 4.1 we know that

‖{ui}Ni=1‖ =
N∑
i=1

‖ui‖H ≤ N.

Now consider the function f{ψi}N
i=1

: F → R defined for all {ei}Ni=1 ∈ F by

f{ψi}N
i=1

({ei}Ni=1) = 1−
N∑
i=1

ρi|〈ψi, ei〉|2.

Given any {vi}Ni=1, {ui}Ni=1 ∈ F we have

|f{ψi}N
i=1

({vi}Ni=1)− f{ψi}N
i=1

({ui}Ni=1)| =

∣∣∣∣∣
N∑
i=1

ρi|〈ψi, ui〉|2 −
N∑
i=1

ρi|〈ψi, ei〉|2
∣∣∣∣∣

≤
N∑
i=1

ρi
∣∣|〈ψi, ui〉|2 − |〈ψi, ei〉|2∣∣

=
N∑
i=1

ρi(|〈ψi, ui〉| − |〈ψi, vi|)(|〈ψi, ui〉|+ |〈ψi, vi〉|)

≤ 2
N∑
i=1

|〈ψi, ui〉 − 〈ψi, vi〉|

= 2
N∑
i=1

|〈ψi, ui − vi〉|

≤ 2
N∑
i=1

‖ψi‖2‖ui − vi‖H = 2
N∑
i=1

‖ui − vi‖H

= 2‖{ui} − {vi}‖

so f{ψi}N
i=1

is continuous on F . Since F is compact, it follows that there exists

{ei}Ni=1 ∈ F that minimizes f{ψi}N
i=1

.

4.4 Pe for tight-frames and orthonormal sets

Here, we simplify the quantum detection problem by showing that we only need

to consider orthonormal sets rather than 1-tight frames. Let H be a d-dimensional
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Hilbert space and let N ∈ N such that N ≥ d. Let {ψi}Ni=1 ⊂ H and {ρi}Ni=1 ⊂ R+

be given. For any vector set {ei}Ni=1 denote the probability error by

P ({ei}Ni=1) = 1−
N∑
i=1

ρi|〈ψi, ei〉|2.

Lemma 4.2. Assume that H̃ is an N-dimensional Hilbert space and {ẽi}Ni=1 an

orthonormal set for H̃. Then for any subspace U ⊂ H̃, {PU ẽi}Ni=1 is a 1-tight frame

for U , where PU denotes the orthogonal projection onto U .

Proof. For any x ∈ U , note that PUx = x. Since {ẽi}Ni=1 is an orthonormal basis for

H̃ we can write

‖x‖2 =
N∑
i=1

|〈ẽi, x〉|2

=
N∑
i=1

|〈ẽi, PUx〉|2

=
N∑
i=1

|〈PU ẽi, x〉|2.

Since this is true for all x ∈ U , it follows that {PU ẽi}Ni=1 is a 1-tight frame for U .

Theorem 4.2. Let H be a d-dimensional Hilbert space and let the set of unit normed

vectors {ψi}Ni=1 ⊂ H be given with weights {ρi}Ni=1. Let H̃ be a N-dimensional Hilbert

space such that H is a subspace of H̃. Let {ei}Ni=1 be the closest 1-tight frame for H

that minimizes Pe over all N element 1-tight frames for H, that is

P ({ei}Ni=1) = inf
{
P ({ξi}Ni=1) : {ξi}Ni=1 a 1-tight frame for H

}
.
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Let {ẽi}Ni=1 be the closest orthonormal set in H̃ that minimizes Pe over all other

orthonormal sets in H̃, that is

P ({ẽi}Ni=1) = inf
{
P ({ϕi}Ni=1) : {ϕi}Ni=1 a orthonormal set in H̃

}
.

Then,

P ({ei}Ni=1) = P ({ẽi}Ni=1) = P ({PH ẽi}Ni=1)

where PH is the orthogonal projection onto H.

Proof. Since each ψi ∈ H, note that PHψi = ψi, so we have

P ({ẽi}Ni=1) = 1−
N∑
i=1

ρi|〈ψi, ẽi〉|2

= 1−
N∑
i=1

ρi|〈PHψi, ẽi〉|2

= 1−
N∑
i=1

ρi|〈ψi, PH ẽi〉|2 since PH is self-adjoint,

= P ({PH ẽi}Ni=1)

so it remains to show that P ({ei}Ni=1) = P ({ẽi}Ni=1). By Lemma 4.2 {PH ẽi}Ni=1 is a

1-tight frame for H, so by the definition of the set {ei}Ni=1 ⊂ H it follows that

P ({ẽi}Ni=1) = P ({PH ẽi}Ni=1) ≥ P ({ei}Ni=1).

Now, by Naimark’s theorem, there exists an orthonormal set {θi}Ni=1 ⊂ H̃ such

that

{PHθi}Ni=1 = {ei}Ni=1.

Hence we have,

P ({ei}Ni=1) = 1−
N∑
i=1

ρi|〈ψi, ei〉|2

47



= 1−
N∑
i=1

ρi|〈ψi, PHθi〉|2

= 1−
N∑
i=1

ρi|〈PHψi, θi〉|2

= 1−
N∑
i=1

ρi|〈ψi, θi〉|2

= P ({θi}Ni=1)

≥ P ({ẽi}Ni=1)

where the last inequality follows from the definition of the set {ẽi}Ni=1 ⊂ H̃. The

result now follows.

In conclusion, finding the N element 1-tight frame {ei}Ni=1 for H that mini-

mizes Pe over all N element 1-tight frames is equivalent to finding the N element

orthonormal set {ẽi}Ni=1 in H̃ that minimizes Pe over all N element orthonormal

sets in H̃. Once we find {ẽi}Ni=1, we project back onto H and {PH ẽi}Ni=1 is a 1-tight

frame for H that minimizes Pe over all N element 1-tight frames.

So the quantum detection problem becomes: Let H be a d-dimensional Hilbert

space and let {ψi}Ni=1 ⊂ H be a normalized set with positive weights {ρi}Ni=1 ⊂ R

where N ≥ d. Let H̃ be a N -dimensional Hilbert space such that H ⊂ H̃. We

want to find an orthonormal set {ẽi}Ni=1 ⊂ H̃ that minimizes Pe over all N -element

orthonormal sets in H̃.
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Chapter 5

Classical mechanical interpretation

In this chapter, we present a classical mechanical interpretation of the quantum

detection problem. The background on Newtonian and Lagrangian mechanics in

sections 5.1 and 5.2 was borrowed from [21] and the presentation of central forces

and the frame force in sections 5.3 and 5.4 are from [1]. The remainder of the

chapter is the contribution of the author.

In section 5.5 we give a classical mechanical interpretation of the quantum

detection problem by treating the error Pe as a potential. In section 5.6, we give

a method of parameterizing orthonormal sets using the group O(N) and use La-

grangian mechanics to get a corresponding set of differential equations. We prove

that the minimum energy solutions correspond to the tight frames that solve the

quantum detection problem. In section 5.7, we add a friction term to the differential

equations and show that the energies of solutions decrease. In section 5.8, we prove

that it suffices to parameterize orthonormal sets using only SO(N) when working

with the quantum detection problem. We end the chapter with a closed form of a

solution of the quantum detection problem when given two vectors.
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5.1 Newtonian mechanics of 1 particle

Suppose we have a function x : R → Rd which is twice differentiable. For t ∈ R,

we denote the derivative of x(t) as ẋ(t) and the second derivative as ẍ(t). x(t) is

interpreted as the position of a particle in Rd at time t ∈ R. A force acting on x is

a vector field F : Rd → Rd and determines the dynamics of x by Newton’s equation

ẍ(t) = F (x(t)).

The force is said to be a conservative force if there exists a differentiable

function V : Rn → R such that

F = −∇V

where ∇ is the d-dimensional gradient. V is called the potential of the force F .

Theorem 5.1. If x(t) is a solution to Newton’s equation and the force is conserva-

tive, then it can be shown that the total energy defined by

E(t) =
1

2
[ẋ(t)]2 + V (x(t))

is constant with respect to the variable t.

Proof. Assume that x(t) is a solution to Newton’s equation. Multiplying Newton’s

equation by ẋ(t), we obtain,

ẋ(t) · ẍ(t) = ẋ(t) · F (x(t)).

Since F is conservative, there exists a function V : Rd → R such that F = −∇V .

So we have

d

dt

[
1

2
[ẋ(t)]2

]
= ẋ(t) · ẍ(t) = ẋ(t) · F (x(t)) = −∇V (x(t)) · ẋ(t) = − d

dt
V (x(t))
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so

d

dt
E(t) =

d

dt

[
1

2
[ẋ(t)]2 + V (x(t))

]
= 0.

Since E(t) is clearly continuous, the result follows.

5.2 Lagrangian mechanics of N particles

Suppose we have N particles in Rd whose positions are modeled by N twice differ-

entiable functions, for i = 1, . . . , N , ẽi : RK → Rd where K is not necessarily 1.

Suppose each particle has a corresponding force Fi acting on it with a correspond-

ing potential Vi. Denote by C2(R) the space of all real valued functions that are

twice differentiable. Define the Lagrangian function L : (C2(R))K → C1(R) for all

{qi(t)}Ki=1 ⊂ C2(R) by

L =
N∑
i=1

[
1

2
˙̃ei(q1(t), . . . , qK(t)) · ˙̃ei(q1(t), . . . , qK(t))− Vi(ẽi(q1(t), . . . , qK(t)))

]

where for each 1 ≤ i ≤ N ,

˙̃ei(q1(t), . . . , qK(t)) =
d

dt
ẽi(q1(t), . . . , qK(t)).

Then the Euler-Lagrange equations of motion are the K differential equations for

each 1 ≤ i ≤ K given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

that determine the dynamics of {qi(t)}Ki=1.

We define the total energy of the system by

E =
1

2

N∑
i=1

˙̃ei · ˙̃ei +
N∑
i=1

Vi({ẽi}Ni=1).
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Theorem 5.2. We can write the kinetic energy in terms of the variables {qi}Ki=1 as

T =
1

2

N∑
i=1

˙̃ei · ˙̃ei =
1

2

K∑
i=1

q̇i
dT

dq̇i
.

Proof. Denote the kth component of ẽi by ẽi,k. Then

˙̃ei,l =
K∑
k=1

∂ẽi,l
∂qk

q̇k

and

˙̃e
2

i,l =
K∑
k=1

K∑
m=1

∂ẽi,l
∂qk

∂ẽi,l
∂qm

q̇kq̇m.

So,

˙̃ei · ˙̃ei =
d∑
l=1

˙̃e
2

i,l

=
d∑
l=1

K∑
k=1

K∑
m=1

∂ẽi,l
∂qk

∂ẽi,l
∂qm

q̇kq̇m.

Hence,

T =
1

2

N∑
i=1

˙̃ei · ˙̃ei

=
1

2

N∑
i=1

d∑
l=1

K∑
k=1

K∑
m=1

∂ẽi,l
∂qk

∂ẽi,l
∂qm

q̇kq̇m

∂T

∂q̇p
=

1

2

N∑
i=1

d∑
l=1

K∑
k=1

∂ẽi,l
∂qk

∂ẽi,l
∂qp

q̇k +
1

2

N∑
i=1

d∑
l=1

K∑
m=1

∂ẽi,l
∂qp

∂ẽi,l
∂qm

q̇m

K∑
p=1

q̇p
∂T

∂q̇p
=

1

2

K∑
p=1

N∑
i=1

d∑
l=1

K∑
k=1

∂ẽi,l
∂qk

∂ẽi,l
∂qp

q̇pq̇k +
1

2

K∑
p=1

N∑
i=1

d∑
l=1

K∑
m=1

∂ẽi,l
∂qp

∂ẽi,l
∂qm

q̇pq̇m

=
K∑
p=1

N∑
i=1

d∑
l=1

K∑
m=1

∂ẽi,l
∂qk

∂ẽi,l
∂qp

q̇pq̇m = 2T.
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Solving for T gives us

T =
1

2

K∑
p=1

q̇p
∂T

∂q̇p
.

Theorem 5.3. If {qi(t)}Ki=1 satisfies the Euler-Lagrange equations of motion and

the potential Vi is independent of the variables {q̇i}Ki=1, then E is a constant in time.

Proof. We first take the time derivative of the Lagrangian and get

dL

dt
=

K∑
j=1

∂L

∂qj
q̇j +

K∑
j=1

∂L

∂q̇j
q̈j.

Since the {qi}Ki=1 satisfy the Euler-Lagrange equations,

∂L

∂qj
=

d

dt

∂L

∂q̇j

hence plugging this into our derivative of L gives us,

dL

dt
=

K∑
j=1

[
q̇j
d

dt

∂L

∂q̇j
+
∂L

∂q̇j
q̈j

]
=

K∑
j=1

d

dt

[
q̇j
∂L

∂q̇j

]
hence

d

dt

[
K∑
j=1

q̇j
∂L

∂q̇j
− L

]
= 0.

Now since each Vi is independent of the variables {q̇i}Ki=1, we have that

∂L

∂q̇j
=
∂T

∂q̇j
.

Using this relation and the previous theorem gives us

K∑
j=1

q̇j
∂L

∂q̇j
− L =

K∑
j=1

q̇j
∂T

∂q̇j
− L = 2T − L = T + V = E

hence

dE

dt
= 0.
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5.3 Central force

Suppose we have an ensemble of particles in Rd that interact with one another by a

conservative force F : Rd×Rd → Rd. Given two particles ~a,~b ∈ Rd, ~a feels the force

from ~b given by F (~a,~b). If the force is conservative, then there exists a potential

function P : Rd × Rd → R such that

F (~a,~b) = −∇~a−~bP (~a,~b)

where ∇~a−~b is the gradient taken by keeping ~b fixed and differentiating with respect

to ~a. Denote by R+ as the set of all positive real numbers. The force F is a central

force if its magnitude depends only on the distance ‖~a −~b‖, that is there exists a

function f : R+ → R such that for all ~a,~b ∈ Rd,

F (~a,~b) = f(‖~a−~b‖)[~a−~b].

In this case, the same can be said of the potential, that is if the force is conservative

and central, then there is a function p : R+ → R such that

P (~a,~b) = p(‖~a−~b‖).

Computing the potential for conservative central forces is simple. For any

~a,~b ∈ Rd the condition

F (~a,~b) = −∇(~a−~b)P (~a,~b)

implies that for all x ∈ R+,

p′(x) = −xf(x).
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To show this, note that for some ~x = (x1, . . . , xd) ∈ Rd,

∇‖~x‖ = ∇
√
x2

1 + . . . x2
d =


x1√

x2
1+...+x2

d

...

xd√
x2
1+...+x2

d

 =
~x

‖~x‖

So, setting ~x = ~a−~b ∈ Rd,

−∇P (~a,~b) = −∇p(‖~x‖)‖~x‖ = −p′(‖~x‖)∇‖~x‖ = −p′(‖~x‖)~x/‖~x‖.

Setting this equal to F (~a,~b) = f(‖~x‖)~x gives us

p′(‖~x‖) = −‖~x‖f(‖~x‖)

which is want we wanted.

5.4 Frame force

Two electrons with charge e and positions given by x, y ∈ R3 feel a repulsive force

given by Coulomb’s law. Particle x feels the force exerted on it by particle y given

by

F = K
e2

‖x− y‖2
(x− y)

where K is a constant. Suppose we have a metallic sphere where a number of elec-

trons move freely and interact with each other by the Coulomb force. An unsolved

problem in physics is to determine the equilibrium positions of the electrons, that

is an arrangement of the electrons where all the interaction forces cancel so there is

no motion.
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Benedetto-Fickus [1] used a similar idea to characterize all finite unit-normed

tight frames. The goal was to find a force such that the equilibrium positions on

the sphere would correspond to finite unit-normed tight-frames. Given two points

x, y ∈ Rd, particle x feels the force exerted on it by particle y given by the frame

force

FF (x, y) = 〈x, y〉(x− y).

It can be shown that this is a central force with the frame potential given by

FP =
1

2
|〈x, y〉|2.

Given a collection of unit-normed points {xi}Ni=1 ⊂ Rd the total frame potential is

given by

TFP
(
{xi}Ni=1

)
=

N∑
m=1

N∑
n=1

|〈xm, xn〉|2.

Theorem 5.4. Let N ≤ d. The minimum value of the total frame potential for the

frame force and N variables, is N ; and the minimizers are the orthonormal sets of

N elements in RN .

Theorem 5.5. Let N ≥ d. The minimum value of the total frame potential, for the

frame force and N variables, is N2/d; and the minimizers are the finite-unit-normed

tight frames of N elements for Rd.

5.5 Physical interpretation of the frame problem

Inspired by the Benedetto-Fickus frame force [1], the quantum detection problem, as

stated in section 4.4, can be given another physical interpretation in the case where
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H = Rd. Let H ⊂ H̃ = RN . We want to find the orthonormal set {ẽi}Ni=1 ⊂ H̃ that

minimizes Pe over all N element orthonormal sets in H̃. We consider the error Pe

as a potential

V = Pe =
N∑
i=1

ρi(1− |〈ψi, ẽi〉|2) =
N∑
i=1

Vi

where each

Vi = ρi(1− 〈ψi, ẽi〉2) = ρi

(
1−

(
1− 1

2
‖ψi − ẽi‖2

)2
)

= ρi

(
1−

(
1− 1

2
‖ψi − ẽi‖2

)2
)

where we have used the fact that ‖ψi‖ = ‖ẽi‖ = 1 and the relation

‖ψi − ẽi‖2 = 〈ψi − ẽi, ψi − ẽi〉 = ‖ψi‖2 − 2〈ψi, ẽi〉+ ‖ẽi‖2 = 2− 2〈ψi, ẽi〉.

Since each Vi is a function of the distance ‖ψi − ẽi‖, Vi corresponds to a

conservative central force between the points ψi and ẽi given by Fi = −∇iVi where

∇i is an N -dimensional gradient taken by keeping ψi fixed and differentiating with

respect to the variable ẽi. Setting x = ‖ψi − ẽi‖ we can write

Vi(ẽi, ψi) = vi(‖ẽi − ψi‖) = ρi

[
1−

(
1− 1

2
x2

)2
]
.

Taking the derivative gives us

v′i(x) = −2ρi

(
1− 1

2
x2

)
(−x) = 2ρi

(
1− 1

2
x2

)
x = −xfi(x)

so

fi(x) = −2ρi

(
1− 1

2
x2

)
and the corresponding central force can be written as

Fi(ψi, ẽi) = fi(‖ψi−ẽi‖)(ψi−ẽi) = −2ρi

(
1− 1

2
‖ψi − ẽi‖2

)
(ψi−ẽi) = −2ρi〈ψi, ẽi〉(ψi−ẽi).
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Hence this can be viewed as a physical system where the given vectors {ψi}Ni=1

are fixed points on a sphere in H̃, and we have a ”rigid” N element orthonormal set

{ẽi}Ni=1 which moves according to the interactions between each ẽi and ψi according

to the force fi. We want to find the equilibrium points {ẽi}ni=1. These are the points

where all the forces fi balance and produce no net motion. In this situation, the

potential V is minimized.

5.6 Hamiltonian system on O(N)

We now need to take into consideration the constraint that the set {ẽi}Ni=1 is an

orthonormal basis. In this process, we get a Hamiltonian system on O(N) where

O(N) is the orthogonal group.

Let {bi}Ni=1 be a fixed orthonormal basis for H̃. Since O(N) is a smooth

compact N(N−1)/2 dimensional manifold, there exists a finite number of open sets

{Uk}Mk=1 in RN(N−1)/2 and smooth mappings Θk : Uk → O(N) such that

M⋃
k=1

Θ(Uk) = O(N).

Since any two orthonormal sets are related by an orthogonal transformation, for

each k = 1, . . . ,M , we can smoothly parameterize our orthonormal set in terms of

N(N − 1)/2 variables in Uk by

{ẽi(q1, . . . , qN(N−1)/2)}Ni=1 = {Θk(q1, . . . , qN(N−1)/2)bi}Ni=1.

As k runs from 1 to M , we get all possible orthonormal sets. We now use Lagrangian

mechanics to convert the frame forces fi acting on the tight-frame {ẽi}Ni=1 into a set
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of differential equations that determine the dynamics of functions {qi(t)}N(N−1)/2
i=1 ⊂

C2(R). Since the N(N − 1)/2 variables can be considered as local coordinates of

O(N), we get a Hamiltonian system onO(N) with trajectories given by (q1(t), . . . , qN(N−1)/2(t)).

Define the Lagrangian function for each {qi(t)}N(N−1)/2
i=1 ⊂ C2(R) by

L =
1

2

N∑
i=1

∥∥∥∥ ddt ẽi(q1(t), . . . , qN(N−1)/2(t))

∥∥∥∥2

− Pe(q1(t), . . . , qN(N−1)/2(t))

= T (q1(t), . . . , qN(N−1)/2(t))− Pe(q1(t), . . . , qN(N−1)/2(t))

where

T (q1(t), . . . , qN(N−1)/2(t)) =
1

2

N∑
i=1

‖ ˙̃ei(q1(t), . . . , qN(N−1)/2(t))‖2

and the dot denotes the total derivative with respect to t. Then the equations of

motion of the functions {qi}N(N−1)/2
i=1 is given by the N(N − 1)/2 Euler-Lagrange

equations

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0

where 1 ≤ j ≤ N(N − 1)/2. We omit writing the variables

T = T (q1(t), . . . , qN(N−1)/2(t)), Pe = Pe(q1(t), . . . , qN(N−1)/2(t))

to simplify the notation. We can write

∂L

∂qj
= −∂V

∂qj
= − ∂

∂qj

N∑
i=1

Vi

= −
N∑
i=1

∇Vi ·
∂ẽi
∂qj

= 2
N∑
i=1

ρi〈ψi, ẽi〉(ẽi − ψi) ·
∂ẽi
∂qj

= 2
N∑
i=1

ρi〈ψi, ẽi〉
〈
ẽi,

∂ẽi
∂qj

〉
− 2

N∑
i=1

ρi〈ψi, ẽi〉
〈
ψi,

∂ẽi
∂qj

〉
.

Since

〈ẽi, ẽi〉 = 1
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taking the derivative with respect to qj gives us〈
∂

∂qj
ẽi, ẽi

〉
+

〈
ẽi,

∂

∂qj
ẽi

〉
= 0

so, 〈
∂

∂qj
ẽi, ẽi

〉
= 0

and we have

∂L

∂qj
= −2

N∑
i=1

ρi〈ψi, ẽi〉
〈
ψi,

∂ẽi
∂qj

〉
.

Also

∂L

∂q̇j
=

∂

∂q̇j
(T − Pe) =

∂T

∂q̇j

since Pe is independent of q̇j. So the Euler-Lagrange equations become

d

dt

(
∂T

∂q̇j

)
= −2

N∑
i=1

ρi〈ψi, ẽi〉
〈
ψi,

∂ẽi
∂qj

〉
.

By Theorem 5.3, it can be shown that if (q1(t), . . . , qN(N−1)/2(t)) is a solution

to the Euler-Lagrange equations of motion, then the energy

E(t) =
1

2

N∑
i=1

‖ ˙̃ei(q1(t), . . . , qN(N−1)/2(t))‖2 + Pe(q1(t), . . . , qN(N−1)/2(t))

is a constant in time t.

Lemma 5.1. Let {ψi}Ni=1 ⊂ H be given with corresponding positive weights {ρi}Ni=1.

Let {ẽi}Ni=1 be the orthonormal set that minimizes Pe. Let Θk(q̃1, . . . , q̃N(N−1)/2) be

a point in O(N) such that for each i = 1, . . . , N ,

ẽi(q̃1, . . . , q̃N(N−1)/2) = ẽi.

Then the constant function defined by

(q1(t), . . . , qN(N−1)/2(t)) = (q̃1, . . . , q̃N(N−1)/2)
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is a solution of the Euler-Lagrange equations of motion in O(N) that minimizes the

energy E and

N∑
i=1

ρi〈ψi, ẽi(q̃1, . . . , q̃N(N−1)/2)〉
〈
ψi,

∂ẽi
∂qj

(q̃1, . . . , q̃N(N−1)/2)

〉
= 0.

Proof. First, since {ẽi}Ni=1 minimizes Pe at the point (q̃1, . . . , q̃N(N−1)/2), we must

have for all j = 1, . . . , N(N − 1)/2,

∂Pe
∂qj

(q̃1, . . . , q̃N(N−1)/2) = 0.

Since

∂Pe
∂qj

=
N∑
i=1

ρi〈ψi, ẽi〉
〈
ψi,

∂ẽi
∂qj

〉
we have one of our assertions.

Second, we show that this is a solution to the Euler-Lagrange equations. Each

ẽi(q1, . . . , qN(N−1)/2) is constant with respect to t, hence

d

dt

∂T

∂q̇j
(q1, . . . , qN(N−1)/2) = 0 = −2

∂Pe
∂qj

(q1, . . . , qN(N−1)/2))

= −2
N∑
i=1

ρi〈ψi, ẽi(q1, . . . , qN(N−1)/2)〉
〈
ψi,

∂ẽi
∂qj

(q1, . . . , qN(N−1)/2)

〉
so (q1, . . . , qN(N−1)/2) is a solution to the Euler-Lagrange equations.

Furthermore, since for each i = 1, . . . , N

˙̃ei(q̃1, . . . , q̃N(N−1)/2) = 0

the energy becomes

E = Pe

and since ẽi(q̃1, . . . , q̃N(N−1)/2) minimizes Pe, it follows that the energy is minimized.
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The utility of this lemma is that it opens the problem to numerical ap-

proximations, for example a multidimensional Newton iteration could be used to

approximate the (q1, . . . , qN(N−1)/2) that satisfy the above expression. Further-

more, the error Pe can now be considered as a smooth function of the variables

(q1, . . . , qN(N−1)/2), hence other numerical methods become available. For example,

the conjugate gradient method may be used to approximate a 1-tight-frame that

minimizes Pe.

The following lemma and theorem relates the Hamiltonian system with the

original quantum detection problem.

Lemma 5.2. Assume that (q1(t), . . . , qN(N−1)/2(t)) is a solution to the equations of

motion that is not a constant solution. Denote the domain of (q1(t), . . . , qN(N−1)/2(t))

by Dom(~q). Then there exists a t0 ∈ Dom(~q) such that

T (q1(t0), . . . , qN(N−1)/2(t0)) 6= 0.

Proof. Suppose not. Then for all t ∈ Dom(~q),

T (q1(t), . . . , qN(N−1)/2(t)) = 0.

By the definition of T it follows that for all i = 1, . . . , N and t ∈ Dom(~q),

˙̃ei(q1(t), . . . , qN(N−1)/2(t)) = 0

hence for all i = 1, . . . , N and some k = 1, . . . ,M ,

ẽi(q1(t), . . . , qN(N−1)/2(t)) = Θk(q1(t), . . . , qN(N−1)/2(t))bi

is constant with respect to t. Since {bi}Ni=1 is an orthonormal basis, it follows that

Θk(q1(t), . . . , qN(N−1)/2(t))
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is constant, with respect to t. Since it was assumed that (q1(t), . . . , qN(N−1)/2(t)) is

not constant with respect to t, this contradicts the fact that Θk : Uk → O(N) is a

diffeomorphism since it would not be one-to-one.

Theorem 5.6. Let (q1(t), . . . , qN(N−1)/2(t)) be the solution of the Euler-Lagrange

equations of motion that minimizes the energy E. Then (q1(t), . . . , qN(N−1)/2(t)) is

a constant solution, that is for all i = 1, . . . , N(N − 1)/2,

dqi
dt

(t) = 0

and

{PH ẽi(q1(t), . . . , qN(N−1)/2(t))}Ni=1 ⊂ H

is the 1-tight frame for H that minimizes Pe.

Proof. Suppose (q1(t), . . . , qN(N−1)/2(t)) is a solution of the Euler-Lagrange equations

of motion that minimizes the energy E. Assume that (q1(t), . . . , qN(N−1)/2(t)) is not

a constant solution. Denote by (q̃1, . . . , q̃N(N−1)/2) the point from Lemma 5.1 such

that

{ẽi(q̃1, . . . , q̃N(N−1)/2)}Ni=1

is the orthonormal set that minimizes Pe. Then by Lemma 5.2 there exists a t0 ∈ R

such that

T =
1

2

N∑
i=1

‖ ˙̃ei(q1(t0), . . . , qN(N−1)/2(t0))‖2 6= 0

and by Theorem 5.3 the energy is constant, so for all t we have

E(q1(t), . . . , qN(N−1)/2(t)) = T (q1(t0), . . . , qN(N−1)/2(t0)) + Pe(q1(t0), . . . , qN(N−1)/2(t0))

> Pe(q̃1, . . . , q̃N(N−1)/2) = E(q̃1, . . . , q̃N(N−1)/2)
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which contradicts the assumption that (q1(t), . . . , qN(N−1)/2(t)) is the solution that

minimizes the energy E. It follows that (q1(t), . . . , qN(N−1)/2(t)) must be a constant

solution, hence T = 0, so it minimizes E = Pe. By Theorem 4.2 it follows that

{PH ẽi(q1(t), . . . , qN(N−1)/2(t))}Ni=1 ⊂ H

is the 1-tight frame for H that minimizes Pe.

5.7 Friction

Intuitively, since the equations of motion is a conservative system, it is possible that

solutions may oscillate around the optimum value. However, if we add a friction

term in the equations of motion, it is possible that solutions will converge to the

optimal value of (q1, . . . , qN(N−1)/2) that minimize the potential V .

Now consider adding a friction term. The idea is that with friction, solutions

will tend to the minimum energy solutions. The modified equations of motion with

friction are for each j = 1, . . . , N(N − 1)/2

d

dt

∂T

∂q̇j
+
∂Pe
∂qj

= −q̇j.

Theorem 5.7. Assume that (q1(t), . . . , qN(N−1)/2(t)) is a solution to the modified

equations of motion given by

d

dt

∂T

∂q̇j
+
∂Pe
∂qj

= −q̇j.

Then the energy satisfies

d

dt
E(t) = −

N(N−1)/2∑
i=1

q̇2
i .
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Proof. Multiplying the equations of motion by q̇j and summing over j gives us

N(N−1)/2∑
j=1

[
d

dt

∂T

∂q̇j
+
∂Pe
∂qj

]
q̇j = −

N(N−1)/2∑
j=1

q̇2
j .

Note that the right term is

N(N−1)/2∑
j=1

∂Pe
∂qj

q̇j =
dPe
dt

.

We can write

d

dt

N(N−1)/2∑
j=1

∂T

∂q̇j
q̇j =

N(N−1)/2∑
i=1

N(N−1)/2∑
j=1

∂2T

∂q̇i∂q̇j
q̇j +

N(N−1)/2∑
j=1

∂T

∂q̇j
q̈j

hence

N(N−1)/2∑
j=1

d

dt

∂T

∂q̇j
q̇j =

N(N−1)/2∑
j=1

N(N−1)/2∑
i=1

∂2T

∂q̇i∂q̇j
q̈iq̇j

=
d

dt

N(N−1)/2∑
1

∂T

∂q̇j
q̇j −

d

dt
T =

dT

dt

So we have,

d

dt
(T + Pe) = −

N(N−1)/2∑
j=1

q̇2
j .

which is what we wanted.

5.8 Parameterization on SO(N)

Let {ẽi}Ni=1 be an orthonormal basis forH ′. We can locally parameterize the elements

in O(N) by N(N − 1)/2 variables so that θ(q1, . . . , qN(N−1)/2) ∈ O(N). We get a

smooth parameterization of our orthonormal set by setting for all i = 1, . . . , N ,

ẽi(q1, . . . , qN(N−1)/2) = θ(q1, . . . , qN(N−1)/2)ẽi.
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Now O(N) has two connected components, SO(N) and G(N) = O(N) −

SO(N). So this parameterization depends on the choice of which component θ(q1, . . . , qN(N−1)/2) ∈

O(N) is in.

Lemma 5.3. Let {ẽi}Ni=1 be an orthonormal basis for the Hilbert space H ′ and denote

by ξ the linear transformation defined by

ξ(ẽ1) = −ẽ1

ξ(ẽi) = ẽi∀ N > i > 1.

Define the function g : SO(N) → G(N) for all θ ∈ SO(N) by

g(θ) = θ · ξ.

Then g is a bijection.

Proof. For all θ ∈ SO(N), it is clear that g(θ) ∈ G(N) since

det(θ) = 1 ⇒ det(g(θ)) = det(θ · ξ) = det(θ) · det(ξ) = −1 ⇒ g(θ) ∈ G(N).

With respect to the basis {ẽi}Ni=1, we can write ξ as

ξ =



−1 0

0 1

. . .

1


.

Clearly, ξ is invertible, hence injective, and surjective, so g is a bijection.
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Theorem 5.8. Let {ẽi}Ni=1 be a orthonormal basis for a real Hilbert space H ′,

{ψi}Ni=1 ⊂ H ′ a fixed set of unit normed vectors, and weights {ρi}Ni=1 ⊂ R+. Consider

the error function P : O(N) → R defined for all θ ∈ O(N) by

P (θ) = 1−
N∑
i=1

ρi|〈ψi, θẽi〉|2.

Since SO(N) is compact and P is continuous, there exists a θ′ ∈ SO(N) such that

for all θ ∈ SO(N),

P (θ′) ≤ P (θ).

Similarly, since G(N) is compact, there exists a θ′′ ∈ G(N) such that for all θ ∈

G(N),

P (θ′′) ≤ P (θ).

Then,

P (θ′) = P (θ′′).

Proof. First, note that for any θ ∈ SO(N),

P (g(θ)) = 1−
N∑
i=1

ρi|〈ψi, g(θ)ẽi〉|2

= 1−
N∑
i=1

ρi|〈ψi, θ · ξẽi〉|2

= 1− ρ1|〈ψ1, θ(−ẽ1)〉|2 −
N∑
i=2

ρi|〈ψi, θẽi〉|2

= 1− ρ1|〈ψ1, θ(ẽ1)〉|2 −
N∑
i=2

ρi|〈ψi, θẽi〉|2

= P (θ).

We complete the proof by contradiction. Suppose that P (θ′) 6= P (θ′′). Consider the

case that P (θ′′) > P (θ′). Then g(θ′) ∈ G(N) has the property that P (θ′′) > P (g(θ′))
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which contradictions the definition of θ′′ ∈ G(N). A similar argument works for the

case with P (θ′′) < P (θ′) by considering the function g−1 : G(N) → SO(N).

By the above theorem, it suffices to do the parameterization over SO(N).

5.9 Examples

5.9.1 N = 2

Example: Consider the case where we are given {ψi}2
i=1 ⊂ H = R2 and correspond-

ing nonnegative weights {ρi}2
i=1. We want to find the orthonormal system {ẽi}2

i=1

that minimizes Pe. SO(2) is a 1-dimensional manifold. A parameterization of SO(2)

can be given for all q ∈ [0, 2π),

Θ(q) =

 cos(q) − sin(q)

sin(q) cos(q)

 .

Let {wi}2
i=1 be the standard orthonormal basis for H = R2. We construct the

parameterized orthonormal set by defining

ẽ1(q) = Θ(q)w1 =

 cos(q)

sin(q)

 , ẽ2(q) = Θ(q)w2 =

 − sin(q)

cos(q)

 .

Now assume q(t) is a function of time. We have

˙̃e1(q(t)) =
d

dt

 cos(q(t))

sin(q(t))

 =

 − sin(q(t))q̇(t)

cos(q(t))q̇(t)

 = ẽ2(q(t))q̇(t)

˙̃e2(q(t)) =
d

dt

 − sin(q(t))

cos(q(t))

 =

 − cos(q(t))q̇(t)

− sin(q(t))q̇(t)

 = −ẽ1(q(t))q̇(t)
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T =
1

2

2∑
i=1

‖ėi(q(t))‖2 =
1

2
[q̇(t)2 + q̇(t)2] = q̇(t)2

d

dt

d

dq̇
T =

d

dt
2q̇(t) = 2q̈(t)

d

dq
ẽ1(q(t)) =

d

dq

 cos(q(t))

sin(q(t))

 =

 − sin(q(t))

cos(q(t))

 = ẽ2(q(t))

d

dq
ẽ2(q(t)) =

d

dq

 − sin(q(t))

cos(q(t))

 =

 − cos(q(t))

− sin(q(t))

 = −ẽ1(q(t))

So our Lagrangian can be written as

L = T − Pe = q̇2 −
2∑
i=1

ρi[1− 〈ψi, ẽi〉2]

and our equation of motion is given by

d

dt

dT

dq̇
= −2

2∑
i=1

ρi〈ψi, ẽi(q(t))〉
〈
ψi,

d

dq
ẽi(q(t))

〉
.

Plugging in the expressions for T and the derivatives of ẽi gives us

2q̈ = 2[ρ2〈x2, ẽ2(q(t))〉〈x2, ẽ1(q(t))〉 − ρ1〈x1, ẽ1(q(t))〉〈x1, ẽ2(q(t))〉]

which is a second-order ordinary differential equation.

In R2, the minimizer can be explicitly found. To simplify the notation, we

write

ẽi = ẽi(q(t)) and q = q(t).

We can write our given vectors as

ψ1 =

 a

b

 , ψ2 =

 c

d

 .
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We get,

2∑
i=1

ρi〈ẽi, ψi〉2 = ρ1(a cos(q) + b sin(q))2 + ρ2(−c sin(q) + d cos(q))2

= (ρ1a
2 + ρ2d

2) cos2(q) + 2(ρ1ab− ρ2cd) cos(q) sin(q) + (ρ1b
2 + ρ2c

2) sin2(q)

= (ρ1a
2 + ρ2d

2 − ρ1b
2 − ρ2c

2) cos2(q) + 2(ρ1ab− ρ2cd) cos(q) sin(q) + (ρ1b
2 + ρ2c

2)

= α cos2(q) + β cos(q) sin(q) + γ

where

α = (ρ1a
2 + ρ2d

2 − ρ1b
2 − ρ2c

2)

β = 2(ρ1ab− ρ2cd)

γ = (ρ1b
2 + ρ2c

2).

So we have,

2∑
i=1

ρi〈ẽi, ψi〉2 = cos(q)[α cos(q) + β sin(q)] + γ

=
√
α2 + β2 cos(q)[cos(ξ) cos(q) + sin(ξ) sin(q)] + γ

where ξ ∈ [0, 2π) such that

cos(ξ) =
α√

α2 + β2
, sin(ξ) =

β√
α2 + β2

.

Using the relation

cos(A) cos(A+B) =
1

2
[cos(2A+B) + cos(B)]

we get,

2∑
i=1

ρi〈ẽi, ψi〉2 =
√
α2 + β2 cos(q)[cos(ξ) cos(q) + sin(ξ) sin(q)] + γ

=
√
α2 + β2 cos(q)[cos(q − ξ)] + γ

=

√
α2 + β2

2
[cos(2q − ξ) + cos(ξ)] + γ.
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So to minimizes the error Pe, we want to maximize
∑2

i=1 ρi〈ψi, ẽi〉2 which occurs

exactly when q = ξ/2 + πn for some integer n. We can write

q =
1

2
tan−1

(
2(ρ1ab− ρ2cd)

(ρ1a2 + ρ2d2 − ρ1b2 − ρ2c2)

)
+ πn

for some n ∈ N.
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Chapter 6

Least-squares error

Other authors have solved the problem by considering different types of error. In

this chapter, we consider a least-squares error. Given a d-dimensional Hilbert space

H = Kd, where K = R or K = C, and a set {ψi}Ni=1 ⊂ H with corresponding positive

weights {ρi}Ni=1 ⊂ R, we want to find a tight-frame {ei}Ni=1 for H that minimizes the

error

E =
N∑
i=1

ρi‖ψi − ei‖2.

We first present a solution in section 6.1 without weights, that is for all i = 1, . . . , N

we set

ρi = 1.

We then present a solution for general weights in section 6.2 when the given vectors

{ψi}Ni=1 are linearly independent. These solutions are based on work done in [13].

In section 6.2.1 we present some original work and analyze the case when {ψi}Ni=1 is

linearly dependent and develop a method of obtaining a 1-tight frame {ei}NI=1 that

has a small weighted least-squares error and provide bounds for the error. In sections

6.3 we construct examples of 1-tight frames that minimize the least-squares error.

In section 6.4 we borrow material from [11] and introduce geometrically uniform

frames and illustrate some of their properties. Finally in section 6.5, we show the

result from [12] which states that if the given vectors {ψi}Ni=1 are geometrically
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uniform, then the tight-frame that minimizes the non-weighted least-squares error

also minimizes the equal-weighted probability of a detection error Pe.

6.1 Non-weight case

Theorem 6.1. Let H be a d-dimensional Hilbert space with {ψi}Ni=1 ⊂ H such that

span{ψi}Ni=1 = H. Let A ∈ R with A > 0 be given. Then there exists a unique tight

frame {ei}Ni=1 for H with frame constant A2 such that

E =
N∑
i=1

‖ψi−ei‖2 = inf

{
N∑
i=1

‖ψi − ξi‖2 : {ξi}Ni=1 a A2-tight frame on H

}
=

d∑
i=1

(σi−A)2

where {σi}di=1 are the singular values of the corresponding Bessel map matrix for the

sequence {ψi}Ni=1.

The proof of this will be constructive. (1) We will first assume that we have

a A2 tight frame {ξi}Ni=1. We then plug {ξi}Ni=1 into the expression for E, and then

minimize E which gives restrictions on {ξi}Ni=1. These restrictions will completely

determine {ξi}Ni=1.

Note that minimizing E and trying to determine {ξi}Ni=1 would be much easier

if {ξi}Ni=1 were an orthogonal set instead of a tight frame. (2) We change this problem

into an equivalent one by replacing {ξi} by an equal-normed orthogonal set {ai}.

The error would then become

E =
N∑
i=1

‖ψi − ξi‖2 =
N∑
i=1

‖ψ′i − ai‖2.

We have N vectors ξi and dim(H) = d ≤ N . So we cannot replace {ξi}Ni=1

by an equal-normed orthogonal set {ai}Ni=1 since we would have more orthogonal
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vectors than we have dimensions. So before we do (2), we need to (3) change the

sum in the error E from a sum of N terms into a sum of d terms.

E =
d∑
i=1

‖ψ′i − ai‖2.

(4) Finally we minimize E which determines {ai}di=1 and in turn determines

{ξi}Ni=1. We now present the proof.

Proof. Let {ei}di=1 be an orthonormal basis for H. Define Ψ ∈ M(N × d) as the

Bessel map matrix of the set {ψi}Ni=1, i.e. Ψ is the matrix whose ith row is ψ∗i , for

1 ≤ i ≤ N with respect to the basis {ei}di=1, where ∗ denotes complex conjugation.

We can write this as

Ψ =


—– ψ∗1 —–

...

—– ψ∗N —–

 .

(1) Let {ξi}Ni=1 be a A2-tight frame for H and define F ∈ M(N × d) as the

Bessel map matrix corresponding to {ξi}Ni=1, i.e. the matrix whose ith row is ξ∗i with

respect to the basis {ei}di=1. We can write this as

F =


—– ξ∗1 —–

...

—– ξ∗N —–

 .

As in step (3), we want to change the number of things being summed in E.

The error can be written as

E =
N∑
i=1

〈ψi − ξi, ψi − ξi〉
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= Tr((Ψ− F )(Ψ− F )∗)

= Tr((Ψ− F )∗(Ψ− F )),

where (Ψ−F )∗(Ψ−F ) ∈M(d×d), hence the trace now becomes a sum of d terms.

We now further simply this expression. We take the singular value decomposition

Ψ∗ = UΣV ∗ =
∑d

i=1 σiuiv
∗
i . Since U ∈M(d×d) and we know that similar matrices

have the same trace, we have

E = Tr((Ψ− F )∗(Ψ− F ))

= Tr(U∗(Ψ− F )∗(Ψ− F )U)

=
d∑
i=1

〈di, di〉

where di = (Ψ− F )ui. We further simplify di. Now,

Ψui =
d∑

k=1

σkvku
∗
kui =

d∑
k=1

σkvk〈uk, ui〉 = σivi

since {ui}di=1 are the columns of a unitary matrix, hence are orthonormal. So,

di = σivi − ai

where ai = Fui. (2) We will now show the {ai}di=1 are an equal-normed orthogonal

set. Since F is the Bessel map of a tight frame, by Theorem 2.1 we know that the

corresponding frame operator satisfies

F ∗F = S = A2IH

hence

〈ai, ak〉 = 〈Fui, Fuk〉 = 〈ui, F ∗Fuk〉

= A2〈ui, IHuk〉 = A2δik
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where

δik =


1 if i = k

0 if i 6= k

.

So, {ai}di=1 are a A-normed orthogonal set.

We now minimize E and determine {ai}di=1. We expand the error E and get

E =
d∑
i=1

〈di, di〉 =
d∑
i=1

〈σivi − ai, σivi − ai〉

=
d∑
i=1

[〈σivi, σivi〉−〈σivi, ai〉−〈ai, σivi〉+〈ai, ai〉]

=
d∑
i=1

[
σ2
i − 2<{〈ai, σivi〉}+ A2

]
where we have used the fact that {vi}Ni=1 are columns of a unitary matrix, hence

are orthonormal, and {ai}di=1 are a A-normed orthogonal set. Note that σi, vi and

A are all given in the hypothesis of the theorem. Hence we only have control over

the A-normed orthogonal set {ai}di=1. In order to minimize E we need to make

<{〈ai, σivi〉} as large as possible. Note that we have the upper bound

<{〈ai, σivi〉} ≤ σi|〈ai, vi〉|

≤ σi〈ai, ai〉1/2〈vi, vi〉1/2 = σiA

and we have equality if and only if ai = Avi. So the A-normed orthogonal set that

minimizes the error E is just {Avi}di=1.

Finally, we determine {ξi}Ni=1. The Bessel map matrix F that minimizes the

error E must satisfy for all 1 ≤ i ≤ d,

Fui = ai = Avi
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and with a bit of algebra this implies that

F = A

d∑
i=1

viu
∗
i

with corresponding error

E =
d∑
i=1

[
σ2
i − 2σiA+ A2

]
=

d∑
i=1

(σi − A)2.

With a bit of work, we can also write

F = [AΨ∗((ΨΨ∗)1/2)†]∗ = A[((Ψ∗Ψ)1/2)†Ψ∗]∗

where † corresponds to the Penrose-Moore pseudo inverse. See the appendix for the

definition of the Penrose-Moore pseudo inverse. The set {ξi}Ni=1 that minimizes E

are the columns of the matrix F ∗.

We have shown that if {ξi}Ni=1 minimizes E, then the corresponding matrix F

must be of the form

F = [AΨ∗((ΨΨ∗)1/2)†]∗ = A[((Ψ∗Ψ)1/2)†Ψ∗]∗.

Since this uniquely determines the matrix F , this shows that the set {ξi}Ni=1 that

minimizes E is unique.

Remark. If we are not constrained to keep the frame constant A fixed, we can further

decrease the error E by setting

A =
1

r

d∑
i=1

σi

which is not hard to show by using some calculus.
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6.2 Weighted case

Lemma 6.1. Let H be a separable Hilbert space. Let K ⊂ Z and {ψi}i∈K ⊂ H be a

set of normalized vectors with corresponding positive weights {ρi}i∈K. Suppose that

{ei}i∈K ⊂ H is a normalized set of vectors. Then the least-squares error becomes,

E =
∑
i∈K

ρi‖ψi − ei‖2 =
∑
i∈K

‖ρiψi − ei‖2 −
∑
i∈K

(1− ρi)
2.

Proof. For a given i ∈ K we have,

‖ρiψi − ei‖2 + (1− ρi)(ρi‖ψi‖2 − ‖ei‖2) = ρ2
i ‖ψi‖2 − 2ρi<(〈ψi, ei〉) + ‖ei‖2

−‖ei‖2 + ρi‖ei‖2 + ρi‖ψi‖2 − ρ2
i ‖ψi‖2

= ρi‖ei‖2 − 2ρi<(〈ψi, ei〉) + ρi‖ψi‖2

= ρi‖ψi − ei‖2.

So the weighted-error becomes

E =
∑
i∈K

ρi‖ψi − ei‖2 =
∑
i∈K

‖ρiψi − ei‖2 −
∑
i∈K

(1− ρi)(ρi‖ψi‖2 − ‖ei‖2).

Now using the fact that {ψi}i∈K and {ei}i∈K are normalized, we have

E =
∑
i∈K

ρi‖ψi − ei‖2 =
∑
i∈K

‖ρiψi − ei‖2 −
∑
i∈K

(1− ρi)
2

which is what we wanted.

From this lemma, it appears that the problem of finding a tight frame that

minimizes the weighted least squares error E reduces to a non-weighted problem.

Given a set of normalized vectors {ψi}Ni=1 ⊂ H we consider a modified error defined
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for all tight frames {ei}Ni=1 ⊂ H by

Ẽ =
N∑
i=1

‖ρiψi − ei‖2.

We then apply Theorem 6.1 to find the unique tight frame that minimizes Ẽ, and

by the lemma if this tight frame is normalized then we minimizes E. However, the

constructed tight frame of Theorem 6.1 is not necessarily normalized. In the case

when N = d, the resulting 1-tight frame construction of Theorem 6.1 is normalized,

so we have the following theorem.

Theorem 6.2. Let H be a d-dimensional Hilbert space, and {ψi}di=1 ⊂ H a normal-

ized linearly independent set with corresponding positive weights {ρi}di=1. Then there

exists a unique normalized tight frame {ei}di=1 with frame constant 1 that satisfies

E =
d∑
i=1

ρi‖ψi − ei‖2 = inf

{
d∑
i=1

ρi‖ψi − ξi‖2 : {ξi}di=1 a 1-tight frame

}
.

Proof. Consider the error defined for all tight frames {ξi}di=1 by

Ẽ =
d∑
i=1

‖ρiψi − ξi‖2.

By Theorem 6.1 there exists a unique 1-tight frame {ei}di=1 that minimizes Ẽ over

all other tight frames with frame constant 1.

Let {ei}di=1 be an orthonormal basis for H and let Ψ ∈ M(d × d) be the

matrix corresponding to the Bessel map of {ρiψi}di=1. Then take the singular value

decomposition of Ψ∗ = UΣV ∗. By the proof of Theorem 6.1, we know the Bessel

map F ∈M(d× d) corresponding to the 1-tight frame {ei}di=1 that minimizes Ẽ is

given by

F = V U∗.
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Since V and U are d × d unitary matrices, it follows that F ∗ is a d × d unitary

matrix. Since the columns of F ∗ are the components of the tight frame {ei}di=1 with

respect to the basis {ei}di=1, it follows that {ei}di=1 are normalized.

We can now apply the previous lemma and write the error as

E =
∑
i∈K

ρi‖ψi − ei‖2 = Ẽ −
∑
i∈K

(1− ρi)
2.

Since {ei}di=1 is the unique tight frame with frame constant 1 that minimizes Ẽ, we

see that by the above expression that {ei}di=1 is also the unique tight frame with

frame constant 1 that minimizes E.

6.2.1 Linearly dependent case

In this section, we analyze the weighted least-squares problem case when the given

set {ψi}Ni=1 ⊂ H are linearly dependent and span{ψi}Ni=1 = H. The idea used here

is to perturb the set by ε so that {ψi(ε)}Ni=1 ⊂ H ′ is a linearly independent set in

some enlarged Hilbert space H ′ for ε > 0 and {ψi(0)}Ni=1 = {ψi}Ni=1. We then find

the optimal tight frame {ei(ε)}Ni=1 ⊂ H ′ corresponding to this vector set. We then

take the limit ε → 0 and hope {ei}Ni=1 = limε→0{ei(ε)}Ni=1 has properties that we

desire.

Suppose we have a set of normalized linearly dependent vectors {ψi}Ni=1 ⊂ H

such that H is d-dimensional. We construct the d×N matrix,

Ψ =


| |

ψ1 . . . ψN

| |

 .
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Consider the (N + d)×N matrix

Ψ(ε) =



| |

ψ1 . . . ψN

| |

ε 0

. . .

0 ε



.

The columns of Ψ(ε) can be interpreted as the linearly independent equal normed

perturbed vectors {ψi(ε)}Ni=1 ⊂ H ′ where H ′ is an (N + d)-dimensional Hilbert

space. In fact, for all i = 1, . . . , N , ‖ψi(ε)‖2 = 1 + ε2. We want to find the 1-tight

frame {ei(ε)}Ni=1 for the span{ψi(ε)}Ni=1 that minimizes the weighted least-squares

error. From Theorem 6.2, we know that {ei(ε)}Ni=1 is orthonormal, and using the

expression from Lemma 6.1 we write the error as

E =
d∑
i=1

ρi‖ψi(ε)− ei(ε)‖2

=
d∑
i=1

‖ρiψi(ε)− ei(ε)‖2 +
d∑
i=1

(1− ρi)(ρi‖ψi(ε)‖2 − ‖ei(ε)‖2)

=
d∑
i=1

‖ρiψi(ε)− ei(ε)‖2 +
d∑
i=1

(1− ρi)(ρi(1 + ε2)− 1).

So the problem reduces to finding the closest 1-tight frame {ei(ε)} to the set of
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vectors {ψ̃i(ε)} = {ρiψi(ε)}. So, we consider the (N + d)×N matrix

Ψ̃(ε) =


| |

ρ1ψ̃1(ε) . . . ρN ψ̃N(ε)

| |

 =



| |

ρ1ψ1 . . . ρNψN

| |

ρ1ε 0

. . .

0 ρNε



.

To simplify the analysis, we omit the weights ρi on the ε terms, since we plan to

take the limit as ε→ 0. We have,

Ψ̃(ε) =



| |

ρ1ψ1 . . . ρNψN

| |

ε 0

. . .

0 ε



.

Recall that the corresponding tight-frame matrix whose columns are the tight-

frame vectors that minimize the least-squares error is

M(ε) = Ψ̃(ε)((Ψ̃(ε)∗Ψ̃(ε))1/2)†

where † corresponds to the Moore-Penrose pseudo-inverse.

It is easy to check that

Ψ̃(ε)∗Ψ̃(ε) = Ψ̃∗(0)Ψ̃(0) + ε2IN .
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Since Ψ̃∗(0)Ψ̃(0) is a self-adjoint positive N × N matrix, there exists an N × N

unitary matrix V such that

Ψ̃(ε)∗Ψ̃(ε) = V


σ2

1 + ε2 0

. . .

0 σ2
N + ε2

V ∗

where the {σi} are the singular values of Ψ̃ (i.e. {σ2
i } are the nonnegative eigenvalues

of Ψ∗Ψ). Note that V is independent of ε, since the columns of V consists of the

orthonormal eigenvectors of Ψ(ε)∗Ψ(ε), which by the above expression can be seen

to be the orthonormal eigenvectors of Ψ̃∗(0)Ψ̃(0) which are independent of ε.

We now take the “square-root” and pseudo inverse to get

((Ψ̃(ε)∗Ψ̃(ε))1/2)† = V


1√
σ2
1+ε2

0

. . .

0 1√
σ2

N+ε2

V ∗.

Recall that we want to analyze

lim
ε→0

M(ε) = lim
ε→0

Ψ̃(ε)((Ψ̃(ε)∗Ψ̃(ε))1/2)†.

The singular value decomposition of Ψ̃(ε) is of the form

Ψ̃(ε) = U(ε)



√
σ2

1 + ε2 0

. . .

0
√
σ2
N + ε2

0 . . . 0

...
. . .

...

0 . . . 0



V ∗
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where U ∈ M((d + N) × (d + N)), V ∈ M(N × N) are unitary and the diagonal

matrix has dimensions (d+N)×N . We obtain,

M(ε) = Ψ̃(ε)((Ψ̃(ε)∗Ψ̃(ε))1/2)†

= U(ε)



√
σ2

1 + ε2 0

. . .

0
√
σ2
N + ε2

0 . . . 0

...
. . .

...

0 . . . 0



V ∗V


1√
σ2
1+ε2

0

. . .

0 1√
σ2

N+ε2

V ∗

= U(ε)



√
σ2

1 + ε2 0

. . .

0
√
σ2
N + ε2

0 . . . 0

...
. . .

...

0 . . . 0




1√
σ2
1+ε2

0

. . .

0 1√
σ2

N+ε2

V ∗

= U(ε)



1 0

. . .

0 1

0 . . . 0

...
. . .

...

0 . . . 0



V ∗.

We want limε→0M(ε) so we need to find limε→0 U(ε). Proving that this limit exists
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is not an easy task. However, it is not hard to show that U(ε = 0) exists. First,

Ψ̃(ε = 0)Ψ̃(ε = 0)∗ is a self-adjoint N × N matrix, hence there exists a set of N

orthonormal eigenvectors. The matrix U(ε = 0) is the matrix whose columns are

the orthonormal eigenvectors of Ψ̃(ε = 0)Ψ̃(ε = 0)∗, hence U(ε = 0) exists.

Note that

M(ε)∗M(ε) = V


1 . . . 0 0 . . . 0

. . .
...

. . .
...

0 1 0 . . . 0

U(ε)∗U(ε)



1 0

. . .

0 1

0 . . . 0

...
. . .

...

0 . . . 0



V ∗

= V


1 0

. . .

0 1

V ∗ = V V ∗ = IN .

So the columns of M(ε) are orthonormal for all ε, hence {ei(ε = 0)}Ni=1 is an or-

thonormal set. We shall show that {ei(ε = 0)}Ni=1 ⊂ H ′ minimizes the weighted

least-squares error E over all other N element orthonormal sets in H ′.

Lemma 6.2. Let {ψi}Ni=1 ⊂ H, where H is a d-dimensional Hilbert space, and

{ρi}Ni=1 ⊂ R be given where the weights have the property that

N∑
i=1

ρi = 1

and span{ψi}Ni=1 = H. Let H ′ be a larger Hilbert space such that H ⊂ H ′. Then the
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orthonormal set {ei}Ni=1 ⊂ H ′ minimizes the weighted error

E =
N∑
i=1

ρi‖ψi − ei‖2

over all other N-element orthnormal sets in H ′ if and only if {PHei}Ni=1 minimizes

the error

E ′ =
N∑
i=1

‖ρiψi − PHei‖2

over all N-element 1-tight frames for H, where PH denotes the orthogonal projection

onto H. Furthermore, the minimal error for the orthonormal set in H must satisfy

E =
N∑
i=1

ρi‖ψi − ei‖2 =
d∑
i=1

(σi − 1)2 −N + d+
N∑
i=1

(1− ρi)
2

where {σi} are the singular values of the Bessel map matrix corresponding to the

sequence {ρiψi}Ni=1.

Proof. Assume that {ei}Ni=1 is an orthonormal set in H ′. By lemma 6.1, the error is

can be written as,

E =
N∑
i=1

ρi‖ψi − ei‖2 =
N∑
i=1

‖ρiψi − ei‖2 +
N∑
i=1

(1− ρi)
2.

So the orthonormal set {ei}Ni=1 also minimizes the non-weighted error

E ′ =
N∑
i=1

‖ρiψi − ei‖2.

We decompose our orthogonal set as ei = eHi +e⊥i where eHi = PHei ∈ H and e⊥i ⊥U .

Then the non-weighted error becomes,

E ′ =
N∑
i=1

‖ρiψi − eHi − e⊥i ‖2

=
N∑
i=1

(‖ρiψi − eHi ‖2 + ‖e⊥i ‖2)

=
N∑
i=1

〈ρiψi − eHi , ρiψi − eHi 〉 −
N∑
i=1

〈e⊥i , e⊥i 〉.
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Note by Lemma 4.1, {eHi } forms a 1-tight frame for H. Denote by SH as the frame

operator for the set {eHi }.

N∑
i=1

〈e⊥i , e⊥i 〉 =
N∑
i=1

〈ei, ei〉 −
N∑
i=1

〈eHi , eHi 〉

= N − Tr(SH) = N − dim(H) = N − d.

So the total error becomes,

E =
N∑
i=1

‖ρiψi − eHi ‖2

︸ ︷︷ ︸
=Ẽ

−N + dim(H) +
N∑
i=1

(1− ρi)
2.

So E is minimized if and only if E ′ is minimized, and the result is clear.

To get the expression for the minimal E, note that by Theorem 6.1, if {eHi }Ni=1

minimizes E ′, then

E ′ =
d∑
i=1

(σi − 1)2

where {σi}di=1 are the singular values of the matrix whose columns are given by

{ρiψi}Ni=1. Plugging E ′ into the expression for E gives us our result.

Theorem 6.3. The set {ei(ε = 0)}Ni=1 ⊂ H ′ is the closest orthonormal set that

minimizes the weighted error E over all other N-element orthonormal sets in H ′.

Proof. Consider the d×N matrix Ψ̃ defined by

Ψ̃ =


| |

ρ1ψ1 . . . ρNψN

| |

 .

87



By the construction, {ei(ε = 0)}Ni=1 are the columns of the matrix

M(ε = 0) = U(ε = 0)



1 0

. . .

0 1

0 . . . 0

...
. . .

...

0 . . . 0



V ∗

where V is the N ×N unitary matrix whose columns are the orthonormal eigenvec-

tors of Ψ̃∗(ε = 0)Ψ̃(ε = 0) = Ψ̃∗Ψ̃, and U(ε = 0) is the (d+N) unitary matrix whose

columns are the orthonormal eigenvectors of Ψ̃(ε = 0)Ψ̃∗(ε = 0) and the diagonal

matrix is a (N + d)×N matrix consisting of the N ×N identity matrix on top and

the rest zeroes.

Note that

Ψ̃(ε)Ψ̃∗(ε) =

 Ψ̃

εIN

( Ψ̃∗ εIN

)

=

 Ψ̃Ψ̃∗ εΨ̃

εΨ̃∗ ε2IN

 .

Since the columns of U(ε) consist of the orthonormal eigenvectors of Ψ̃(ε)Ψ̃∗(ε), its

not hard to show that

U(ε = 0) =

 U 0

0 IN


where U is the unitary matrix whose columns are the orthonormal eigenvectors of

the matrix ΨΨ∗ and IN is the N×N identity matrix. Let PH denote the orthogonal

88



projection onto H. Then,

PHM(ε = 0) = PH

 U 0

0 IN


 IN

0

V ∗

=

(
U 0

) IN

0

V ∗

= UΣV ∗

where Σ is a d × N matrix with 1s on the diagonal and zeroes elsewhere. By the

construction given in Theorem 6.1, it follows that the columns of PHM(ε = 0)

consist of the unique tight-frame that minimizes the error

E ′ =
N∑
i=1

‖ρIψi − ei‖2

over all other 1-tight frames. It follows from Lemma 6.2 that the columns of M(ε =

0) is an orhogonal set that minimizes E over all otherN -element orthogonal sets.

When the given set of vectors {ψi}Ni=1 ⊂ H are linearly dependent, we can

find the orthonormal set {ei}Ni=1 ⊂ H ′ that minimizes the error E over all other N -

element orthonormal sets in H ′. A natural question is whether {PHei}Ni=1 minimizes

E over all other N -element 1-tight frames for H. A partial answer is given in

Theorem 6.4 where upper and lower bounds are computed for the weighted least-

squares error for the set {PHei}Ni=1.

We first present a lemma dealing with partial traces of matrices.

Lemma 6.3. Let W be a self-adjoint operator on an N-dimensional Hilbert space

H and {si}di=1 ⊂ H be an orthonormal set where d ≤ N . Let {λi}Ni=1 ⊂ R be the

89



eigenvalues of W ordered such that λi ≥ λi+1. Then

N∑
i=N−d

λi ≤
d∑
i=1

〈si,Wsi〉 ≤
d∑
i=1

λi.

Proof. Set U = span{si}di=1 and denote by PU the orthogonal projection onto U .

Since W is self-adjoint, by the spectral theorem we can find an orthonormal

basis {bi}Ni=1 ⊂ H for H of eigenvectors of W such that for all x ∈ KN ,

Wx =
N∑
i=1

λi〈x, bi〉bi.

We get,

d∑
i=1

〈si,Wsi〉 =
d∑
i=1

〈
si,

N∑
j=1

λi〈si, bi〉bi

〉

=
N∑
j=1

d∑
i=1

λj〈si, bj〉〈bj, si〉

=
N∑
j=1

λj

d∑
i=1

〈bj, si〉〈si, bj〉

=
N∑
j=1

λj

〈
bj,

d∑
i=1

〈bj, si〉si,

〉

=
N∑
j=1

λj〈bj, PUbj〉.

Note that
N∑
j=1

〈bjPUbj〉 = d.

Define the sequence {αi}N+1
i=1 recursively by

α0 = 0

αi = αi−1 + 〈bi, PUbi〉.
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Consider the interval [0, d) and partition the interval into N disjoint subintervals

{In}Ni=1 ⊂ [0, d] such that for n = 1, . . . , N ,

In = [αn−1, αn).

Define the step functions f, g, and h for all x ∈ [0, d) by

f(x) =
d∑
i=1

λi1Ii(x)

g(x) =
N∑
i=1

λi1[i−1,i](x)

h(x) =
N∑

i=N−d

λi1[i−1,i](x).

With these definitions, its not hard to show that for all x ∈ [0, d),

h(x) ≤ f(x) ≤ g(x).

We show g ≤ f . Let x ∈ [0, d). Then there exists an integer n such that x ∈ In and

f(x) = λn. Note that for all i = 1, . . . , N ,

|Ii| = αi − αi−1 = 〈bi, PUbi〉 ≤ 1.

Hence,
n⋃
i=1

Ii ⊂ [0, n)

so x ∈ [0, n) and by the definition of the function g,

g(x) ≥ λn = f(x).

A similar argument shows that h ≤ f . Integrating the inequality gives us

N∑
i=N−d

λi ≤
N∑
i=1

λi〈bi, PUbi〉 ≤
d∑
i=1

λi.
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But we have shown that

d∑
i=1

〈si,Wsi〉 =
N∑
j=1

λi〈bi, PUbi〉,

hence we have our result.

Lemma 6.4. Let {ei}Ni=1 ⊂ H be a frame for a d-dimensional Hilbert space H.

Given weights {ρi}Ni=1 ⊂ R, define the weighted-frame operator S ′ : H 7→ H for all

x ∈ H by

S ′(x) =
N∑
i=1

ρi〈ei, x〉ei.

Then,

Tr(S ′) =
N∑
i=1

ρi‖ei‖2.

Furthermore, if {ei}Ni=1 is a 1-tight frame for H and if the weights are ordered such

that ρi ≥ ρi+1, then
N∑

i=N−d

ρi ≤ Tr(S ′) ≤
d∑
i=1

ρi.

Proof. Assume {ei}Ni=1 ⊂ H is a frame. Let {bi}di=1 be a basis for H. Then,

Tr(S ′) =
d∑
l=1

〈S ′bl, bl〉

=
d∑
l=1

〈
N∑
i=1

ρi〈bl, ei〉ei, bl

〉

=
d∑
l=1

N∑
i=1

ρi〈bl, ei〉〈ei, bl〉

=
N∑
i=1

ρi

d∑
l=1

|〈bl, ei〉|2

=
N∑
i=1

ρi‖ei‖2

which is what we wanted.
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Now assume further that {ei}Ni=1 is a 1-tight frame for H. Let {bi}di=1 be an

orthonormal basis for H. Consider the corresponding N×d Bessel map matrix with

respect to the basis {bi}di=1

L =


—– e∗1 —–

...

—– e∗N —–


and the N × N weight matrix W defined as the diagonal matrix with diagonal

elements Wii = ρi,

W =


ρ1 . . . 0

. . .

0 . . . ρN

 .

Then, we can write the weighted frame operator as S ′ = L∗WL. We take the trace

tr(S ′) =
d∑
i=1

〈bi, S ′bi〉

=
d∑
i=1

〈bi, L∗WLbi〉

=
d∑
i=1

〈Lbi,WLbi〉.

Note that the set {Lbi}di=1 ⊂ CN is an orthonormal set since for any intergers

i = 1, . . . , d and j = 1, . . . , d we have

〈Lbi, Lbj〉CN = 〈L∗Lbi, bj〉H = 〈bi, bj〉H =


1 if i = j

0 if i 6= j

since the frame operator satisfies S = L∗L = IH . By Lemma 6.3 we have

N∑
i=N−d

ρi ≤
d∑
i=1

〈Lei,WLei〉 ≤
d∑
i=1

ρi.
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Since

tr(S ′) =
d∑
i=1

〈Lbi,WLbi〉

we have our result.

Theorem 6.4. Assume that {ei}Ni=1 is the orthonormal set in H ′ that minimizes

the weighted least-squares error E over all other N-element orthonormal sets in

H ′. Assume further that the weights are ordered so that ρi ≥ ρi+1. Let {eHi }Ni=1 =

{PHei}Ni=1 be the 1-tight frame for H obtained by projecting the orthonormal set

{ei}Ni=1 into H. Then,

E +
N∑

i=N−d

ρi − 1 ≤
N∑
i=1

ρi‖ψi − eHi ‖2 ≤ E +
d∑
i=1

ρi − 1

where

E =
N∑
i=1

ρi‖ψi − ei‖2 =
d∑
i=1

(σi − 1)2 −N + d+
N∑
i=1

(1− ρi)
2

where {σi} are the singular values of the matrix with columns {ρiψi}Ni=1.

Proof. Assume that {ei}Ni=1 is the orthonormal set in H ′ that minimizes E over all

other N -element orthonormal sets in H ′. We can write the error E as

E =
N∑
i=1

ρi‖ψi − eHi ‖2 +
N∑
i=1

ρi‖e⊥i ‖2

where eHi ∈ H is the orthgonal projection into H and e⊥i ⊥H. We can write the

second term on the right as

N∑
i=1

ρi〈e⊥i , e⊥i 〉 =
N∑
i=1

ρi〈ei, ei〉 −
N∑
i=1

ρi〈eHi , eHi 〉

=
N∑
i=1

ρi −
N∑
i=1

ρi〈eHi , eHi 〉 = 1−
N∑
i=1

ρi〈eHi , eHi 〉.
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Since the projected set {eHi }Ni=1 is a 1-tight frame for H, by Lemma 6.4 we have

−
d∑
i=1

ρi ≤ −
N∑
i=1

ρi‖eHi ‖2 ≤ −
N∑

i=N−d

ρi

hence,

1−
d∑
i=1

ρi

N∑
i=1

ρi〈e⊥i , e⊥i 〉 ≤ 1−
N∑

i=N−d

ρi.

Since

E −
N∑
i=1

ρi‖ψi − eHi ‖2 =
N∑
i=1

ρi‖e⊥i ‖2

plugging this into the above inequality gives us

1−
d∑
i=1

ρi ≤ E −
N∑
i=1

ρi‖ψi − eHi ‖2 ≤ 1−
N∑

i=N−d

ρi.

Subtracting E and multiplying everything by −1 gives us

E +
N∑

i=N−d

ρi − 1 ≤
N∑
i=1

ρi‖ψi − eHi ‖2 ≤ E +
d∑
i=1

ρi − 1

which is the inequality we wanted. Also, by Lemma 6.2 we have the corresponding

expression for E.

Note that since
N∑
i=1

ρi = 1

we always have
d∑
i=1

ρi − 1 ≤ 0.

Hence the projected tight-frame has a smaller error than the corresponding orthonor-

mal set – that is, we have

N∑
i=1

ρi‖ψi − eHi ‖2 ≤ E =
N∑
i=1

ρi‖ψi − ei‖2.
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6.3 Examples of computing the least-squares solution

Consider the Hilbert space H = R2 and suppose we have a set of vectors {ψi}3
i=1 ⊂

H such that span{ψi} = H. We want to compute the 1-tight frame for H that

minimizes the error

E =
1

3

3∑
i=1

‖ψi − ei‖2

over all other 3-element 1-tight frames. We construct the 2× 3 matrix,

Ψ =


| | |

ψ1 ψ2 ψ3

| | |

 .

We perform the singular value decomposition of Ψ to get,

Ψ = U

 σ1 0 0

0 σ2 0


︸ ︷︷ ︸

Σ

V ∗

where U ∈ M(2 × 2) and V ∈ M(3 × 3) are unitary matrices. The columns of

U consist of the orthonormal eigenvectors of the self-adjoint matrix ΨΨ∗ and the

columns of V consist of the orthonormal eigenvectors of the self-adjoint matrix Ψ∗Ψ.

The eigenvalues of the 2×2 matrix ΨΨ∗ are the square of the singular values, hence

we see that Ψ has at most two singular values. The closest 1-tight frame are the

columns of the matrix

M = ((ΨΨ∗)1/2)†Ψ

= ((UΣV ∗V Σ∗U∗)1/2)†UΣV ∗

= U((ΣΣ∗)1/2)†U∗UΣV ∗
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= U((ΣΣ∗)1/2)†ΣV ∗

= U


 σ1 0 0

0 σ2 0




σ1 0

0 σ2

0 0





†/2 σ1 0 0

0 σ2 0

V ∗

= U


 σ2

1 0

0 σ2
2



†/2 σ1 0 0

0 σ2 0

V ∗

= U

 1
σ1

0

0 1
σ2


 σ1 0 0

0 σ2 0

V ∗

= U

 1 0 0

0 1 0

V ∗.

In general, to compute the closest 1-tight frame matrix, we simply replace the sin-

gular values of Ψ by 1s.

6.3.1 Explicit example in R2

Consider the Hilbert space H = R2 and the vectors

ψ1 =

 1

0

 , ψ2 =

 0

1

 , ψ3 =

 1

1


with weights

ρ1 = ρ2 = ρ3 =
1

3
.

We want to find the 1-tight frame {ei}3
i=1 that minimizes the least-squares error

E =
1

3

3∑
i=1

‖ψi − ei‖2
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over all other 3-element 1-tight frames. We construct the matrix

Ψ =


| | |

ψ1 ψ2 ψ3

| | |

 =

 1 0 1

0 1 1

 .

We now take the singular decomposition of Ψ. First we look at

ΨΨ∗ =

 2 1

1 2

 .

The eigenvalues of ΨΨ∗ are 1 and 3 with corresponding eigenvectors

1√
2

 −1

1

 ,
1√
2

 1

1

 .

These eigenvalues are the squares of the singular values of Ψ. We form the matrix

U ∈M(2× 2) and Σ ∈M(2× 3) by

U =
1√
2

 −1 1

1 1

 , Σ =

 1 0 0

0
√

3 0

 .

Finally, we consider the matrix

Ψ∗Ψ =


1 0 1

0 1 1

1 1 2

 .

The eigenvalues are 1, 3, and 0 with corresponding eigenvectors

1√
2


−1

1

0

 ,
1√
3


−1

−1

1

 ,
1√
6


1

1

2

 .
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We form the matrix V ∈M(3× 3) by

V =


− 1√

2
1√
6
− 1√

3

1√
2

1√
6
− 1√

3

0 2√
6

1√
3

 .

These are exactly the matrices that are used in the singular value decomposition of

Ψ, i.e. Ψ = UΣV ∗. To find the 1-tight-frame that minimizes the least-squares error,

we replace the singular values of Ψ with 1s and get

M = U

 1 0 0

0 1 0

V ∗ =

 1
2

+
√

3
6

−1
2

+
√

3
6

√
3

3

−1
2

+
√

3
6

1
2

+
√

3
6

√
3

3


the columns for the 1-tight frame of R2. that minimizes the least squares error.

6.3.2 Example of ε-modified vectors

The vectors in the previous example were linearly dependent. We now expand the

Hilbert space to H ′ = R5 and consider the linearly independent vectors

ψ1 =



1

0

ε

0

0


, ψ2 =



0

1

0

ε

0


, ψ3 =



1

1

0

0

ε


for some ε > 0 and we find the orthonormal set in {ei(ε)}3

i=1 ⊂ H ′ = R5 that

minimizes the least-squares error

E =
1

3

3∑
i=1

‖ψi(ε)− ei(ε)‖2
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over all other 3-element orthonormal sets.

Note that it may seem simpler to just go up one dimension, that is consider

the Hilbert space R3 and the perturbed vectors

ψ1 =


1

0

0

 , ψ2 =


0

1

0

 , ψ3 =


1

1

ε

 .

However, if we were to do this, we lose some symmetry which makes things much

harder to compute. For example, the corresponding matrix ΨΨ∗ has eigenvalues

1,
ε2

2
± 3

2
+

√
9 + 2ε2 + ε4

2

and eigenvectors of the form
−1

1

0

 ,


−

ε2

2
− 3

2
±
√

9+2ε2+ε4

2

2ε

−
ε2

2
− 3

2
±
√

9+2ε2+ε4

2

2ε

1

 .

Since we need the normalized eigenvectors to form the matrix V (ε), the expression

for V (ε) is further complicated by the normalization factors. The resulting matrices

U(ε) and V (ε) are very complicated, and the expression for the resulting 1-tight

frame matrix is so complicated that it will not even fit onto the page!

We analogously go through the same procedure. We form the matrix

Ψ =


| | |

ψ1 ψ2 ψ3

| | |

 =



1 0 1

0 1 1

ε 0 0

0 ε 0

0 0 ε


.
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We now take the singular decomposition of Ψ. First we look at

ΨΨ∗ =



2 1 ε 0 ε

1 2 0 ε ε

ε 0 ε2 0 0

0 ε 0 ε2 0

ε ε 0 0 ε2


.

The eigenvalues of ΨΨ∗ are ε2, 1 + ε2, 3 + ε2 with corresponding eigenvectors

1√
3



0

0

−1

−1

1


,

1√
2 + 2ε2



−1

1

−ε

ε

0


,

1√
18 + 6ε2



3

3

ε

ε

2ε


,

1√
2 + 2ε2



ε

−ε

−1

1

0


,

1√
2 + ε2



−ε

0

1

0

1


.

These eigenvalues are the squares of the singular values of Ψ. We form the matrix

U(ε) ∈M(5× 5) and Σ ∈M(5× 3) by

U(ε) =



0 − 1√
2+2ε2

3√
18+6ε2

ε√
2+2ε2

− ε√
2+ε2

0 1√
2+2ε2

3√
18+6ε2

− ε√
2+2ε2

0

− 1√
3
− ε√

2+2ε2
ε√

18+6ε2
− 1√

2+2ε2
1√

2+ε2

− 1√
3

ε√
2+2ε2

ε√
18+6ε2

1√
2+2ε2

0

1√
3

0 2ε√
18+6ε2

0 1√
2+ε2


, Σ =



ε 0 0

0
√

1 + ε2 0

0 0
√

3 + ε2

0 0 0

0 0 0


.

Finally, we consider the matrix

Ψ∗Ψ =


1 + ε2 0 1

0 1 + ε2 1

1 1 ε2 + 2

 .
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The eigenvalues are the same as for ΨΨ∗ with corresponding eigenvectors

1√
3


−1

−1

1

 ,
1√
2


−1

−1

0

 ,
1√
6


1

1

2

 .

We form the matrix V ∈M(3× 3) by

V =


− 1√

3
− 1√

2
1√
6

− 1√
3
− 1√

2
1√
6

1√
3

0 2√
6


which, as expected, is independent of ε.

So in our example, we have,

M(ε) = U(ε)



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


V ∗

the columns form the 1-tight frame of R5 that minimizes the least squares error for

the given vectors {ψi(ε)}3
i=1. We set ε = 0

U(ε = 0) =



0 − 1√
2

1√
2

0 0

0 1√
2

1√
2

0 0

− 1√
3

0 0 − 1√
2

1√
2

− 1√
3

0 0 1√
2

0

1√
3

0 0 0 1√
2


.
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So we have,

M(ε = 0) = U(ε = 0)



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


V ∗

=



1
2

+
√

3
6

−1
2

+
√

3
6

√
3

3

−1
2

+
√

3
6

1
2

+
√

3
6

√
3

3

1
3

1
3

−1
3

1
3

1
3

−1
3

−1
3

−1
3

1
3


.

The columns are the closest orthogonal set that minimizes the least-squares

error. Note that if we project these vectors into the original space of R2, we get

our previous solution, that is we get the 1-tight frame in R2 that minimizes the

least-squares error.

6.4 Geometrically uniform frames

Let H be a d-dimensional Hilbert space. Let Q = {Ui ∈ L(H) : 1 ≤ i ≤ N} be a

finite abelian group of N unitary linear operators. A set of N vectors {φi}Ni=1 ⊂ H

is said to be geometrically uniform if there exists a φ ∈ H such that

{φi}Ni=1 = {Uiφ}Ui∈Q.
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φ is usually referred to as the generating vector. A frame is said to be a geometrically

uniform frame (GU) if it is also a geometrically uniform set of vectors.

6.4.1 Examples of GU vector sets

Consider the Hilbert space H = R2. First note that any two distinct vectors of the

same length, as shown in Figure 1, is GU. The abelian group of unitary operators

consists of just the identity map, and a reflection along the line of symmetry between

the two vectors.

Figure 6.1: A GU set consisting of 2 vectors.

Now consider the generating vector φ =

 1
2

√
3

2

 and the abelian group

Q = {I,Rπ/3,R2π/3}

where Rπ/3 is the rotation by angle π/3 and R2π/3 is the rotation by angle 2π/3.

This GU set of vectors is depicted in Figure 2.
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Figure 6.2: A GU set consisting of 3 vectors.

6.4.2 Properties of GU frames and a second solution

Geometrically uniform frames have several nice properties. If we have a frame, and

if we still have a frame after removing a single vector, then clearly the frame bounds

will change. However, it has been shown in [11] that if it is a GU frame, then the

frame bounds change independently of which frame vector is removed.

Second, if we are given a GU frame, it has been shown in [12] that the cor-

responding tight frame that minimizes the least-squares error E also minimizes the

probability of detection error Pe and inherent the geometrically uniform property.

This is shown in the following theorems.

Theorem 6.5. Let H be a finite dimensional Hilbert space. Let φ ∈ H and assume

that T = {φi}Ni=1 = {Uiφ : Ui ∈ Q} is a GU frame for H. Additionally, assume that

for any integer j, T (j) = {Uiφ : Ui ∈ Q, i 6= j} is still a frame for H. Then the

frame bounds change independently of the choice of j, i.e. the frame bounds of T (j)

are the same for all j.
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Proof. Let {ei}di=1 be an orthonormal basis for H and let Φ ∈ M(N × d) be the

Bessel map matrix corresponding to the vector set {Uiφ}Ni=1 with respect to the basis

{ei}di=1. By observation 3 from section 2.2.1, the d × d frame operator matrix can

be written as

S = Φ∗Φ =
N∑
i=1

φiφ
∗
i .

Note that S is self-adjoint and positive, hence it has real nonzero eigenvalues. If T

has frame bounds A and B, then we have for all x ∈ H,

A‖x‖2 ≤
N∑
i=1

|〈x, φi〉|2 ≤ B‖x‖2

and using the definition of the frame operator we have

N∑
i=1

|〈x, φi〉|2 = ‖Φx‖2
l2(ZN ) = 〈Φx,Φx〉 = 〈x,Φ∗Φx〉 = 〈x, Sx〉

hence

A‖x‖2 ≤ 〈x, Sx〉 ≤ B‖x‖2.

So we see that the frame bounds are

A = min{λ : λ is an eigenvalue of S}

and

B = max{λ : λ is an eigenvalue of S}.

So to prove the theorem, it suffices to show that the removal of a vector φj gives us

a new frame operator whose set of eigenvalues doesn’t dependent on the choice of

φj. We can write this new frame operator with φj removed as

S(j) =
N∑
i=1

φiφ
∗
i − φjφ

∗
j =

N∑
i=1

Uiφφ
∗U∗

i − Ujφφ
∗U∗

j .
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Note that since Q is a group we have

U∗
jQ = {U∗

j Uiφ : 0 ≤ i ≤ N} = {Uiφ : 0 ≤ i ≤ N} = Q.

So conjugating the original frame operator with Uj gives,

U∗
j SUj =

N∑
i=1

U∗
j Uiφφ

∗U∗
i Uj =

N∑
i=1

U∗
j Uiφφ

∗(U∗
j Ui)

∗ = S.

Also, since similar matrices have the same eigenvalues, we consider U∗
j S(j)Uj and

get

U∗
j S(j)Uj =

N∑
i=1

U∗
j Uiφφ

∗U∗
i Uj − φφ∗ = S − φφ∗.

The eigenvalues of S−φφ∗ do not depend on j, hence the eigenvalues of S(j) do not

depend on j. It follows that the frame bounds for T (j) are the same for all choices

of j.

Theorem 6.6. Let

T = {Uiφ : Ui ∈ Q}

be a GU tight frame in a d-dimensional Hilbert space H where φ ∈ H and ‖φ‖ = 1.

Suppose T is still a frame with φj = Ujφ removed, i.e. suppose

T (j) = {Uiφ : Ui ∈ Q, i 6= j}

is a frame. Then T (j) has frame bounds A = N
d
− 1 and B = N

d
.

We first start with a lemma.

Lemma 6.5. Assume we have a GU frame in a d-dimensional Hilbert space with

generating vector φ. Then the frame bounds satisfy A ≤ N
d
‖φ‖2 ≤ B.
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Proof of Lemma 6.5. Let {ei}di=1 be an orthonormal basis for H and S ∈M(d× d)

be the frame operator matrix with respect to the basis and let {λi}di=1 represent the

eigenvalues of S. We can write the frame operator matrix for a GU frame as

S =
N∑
i=1

Uiφφ
∗U∗

i .

We have,

d∑
i=1

λi = Tr(S) =
N∑
i=1

Tr(Uiφφ
∗U∗

i ) =
N∑
i=1

Tr(φφ∗) = N‖φ‖2,

and

dA = dmin
i
{λi} ≤

d∑
i=1

λi ≤ dmax
i
{λi} = dB.

Dividing by d gives the result we want.

Proof of Theorem 6.6. By the lemma, we see that T has frame constant A = N
d
.

By observation 3 from section 2.2.1 we can write the frame operator matrix S with

respect to some orthonormal basis of H as,

S =
N∑
i=1

φiφ
∗
i =

N

d
Id

where Id is the d × d identity matrix. Let T (j) be the frame where φj is removed.

Then the corresponding frame operator is

S(j) =
N∑
i=1

φiφ
∗
i − φjφ

∗
j =

N

d
Id − Ujφφ

∗U∗
j .

Again, we consider the similar matrix U∗
j S(j)Uj and get,

U∗
j S(j)Uj =

N

d
Id − φφ∗.
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Note that φφ∗ is a matrix with only one nonzero eigenvalue of 1, since ‖φ‖ = 1,

with eigenvector φ. So by the above expression, it follows that S(j) has distinct

eigenvalues of N
d

and N
d
−1, hence the frames bounds are A = N

d
−1 and B = N

d
.

It can be shown that if the given vectors T = {φi}Ni=1 ⊂ H is a GU frame,

then the unique tight frame {ei}Ni=1 with frame constant A2 that minimizes the

least-squares error E also minimizes the probability of detection error Pe and is a

GU tight frame. We must introduce several new definitions before proceeding with

the proof.

6.4.3 Preliminaries

Definition 6.1. Given a GU frame T = {φi}Ni=1, we define the N ×N Gram matrix

G as the matrix with entries Gij = 〈φi, φj〉 = 〈Uiφ, Ujφ〉 = 〈φ, U∗
i Ujφ〉.

Since Q is a group and U∗
i Uj ∈ Q, we see that for fixed i the set {U∗

i Ujφ : 1 ≤

j ≤ n} is just a permutation of the set {Ujφ : 1 ≤ j ≤ n}. As a side note, we see

that all the columns of G have the same entries but are just permuted in a different

order. A matrix of this type is called a permuted matrix. All GU vectors have a

permuted Gram matrix. This in fact characterizes GU vectors. According to [4], if

a set of vectors T = {φi}Ni=1 has a permuted Gram matrix, and has the property for

all i and j that 〈φi, φj〉 = 〈φj, φi〉, then T is a GU set.
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6.4.4 Change of notation

Let Q be a finite abelian group of N elements. Then Q is isomorphic to a direct

product of cyclic groups, i.e.

Q ∼= Q = Zn1 ⊗ . . .⊗ Znp

where the group operation on Q is componentwise modular addition and N =∏p
i=1 ni. Let φ ∈ H and T = {Uiφ : Ui ∈ Q} a GU set of vectors. Since Q ∼= Q, for

any Ui ∈ Q there corresponds a q ∈ Q so that we can denote

φi = Uiφ = φ(q).

In this notation, we can change the indices of the Gram matrix G to elements of Q,

i.e. for g, h ∈ Q, the (g, h)th entry is Gg,h = 〈φ(g), φ(h)〉.

Definition 6.2. Define the Gram function s : Q→ C for all g ∈ Q as,

s(g) = 〈φ, φ(g)〉.

We now illustrate the connection between the Gram function and the Gram

matrix. Let g, h ∈ Q and let Ui and Uj be the corresponding elements in Q respec-

tively. Then note that

s(g − h) = 〈φ, φ(g − h)〉 = 〈φ, UiU∗
j φ〉 = 〈φ, U∗

j Uiφ〉

= 〈Ujφ, Uiφ〉 = 〈φ(h), φ(g)〉 = Gh,g.
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6.4.5 Fourier transform of functions on Q

Definition 6.3. Given a function f : Q→ C we define the Fourier Transform of f

for all h ∈ Q as

f̂(h) =
1√
N

∑
q∈Q

〈h, q〉f(q)

where

〈h, q〉 =

p∏
i=1

e−2πihiqi/ni

where hi, qi ∈ Zni
are the ith components of h and q respectively.

With this definition, we have for all g, h, h′ ∈ Q,

〈h, g〉 = 〈g, h〉

〈h, g〉∗ = 〈−h, g〉 = 〈h,−g〉

〈h+ h′, g〉 = 〈h, g〉〈h′, g〉

where ∗ denotes complex conjugation. It is natural to define the N × N Fourier

transform matrix F as the matrix with entries Fg,h = 1√
N
〈h, g〉 for indices h, g ∈ Q.

With this definition, it is not hard to show that F is a unitary matrix. Note that

a function f : Q → C can be considered as a vector ~f = {f(g)}g∈Q with Fourier

transform
~̂
f = F ~f .

Lemma 6.6. Let T = {φi}Ni=1 be a set of GU vectors in an d-dimensional Hilbert

space H. Then the corresponding Gram matrix G is diagonalizable by the FT matrix

F .

Proof. It suffices to show that the columns of F are eigenvectors of the Gram matrix

G. Let k ∈ Q be fixed and let Fk be the kth column of F . Then the hth component
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of the vector GFk is,

[GFk]h =
∑
g∈Q

Gh,gFg,k =
1√
N

∑
g∈Q

〈k, g〉s(g − h)

=
1√
N

∑
g∈Q

〈k, g + h〉s(g) =
1√
N

∑
g∈Q

〈k, h〉〈k, g〉s(g)

= 〈k, h〉 1√
N

∑
g∈Q

〈k, g〉s(g) = 〈k, h〉ŝ(k)

=
√
Nŝ(k)

1√
N
〈k, h〉 =

√
Nŝ(k)Fh,k.

So, we see that

GFk =
√
Nŝ(k)Fk.

Using the fact that F is unitary it is not hard to show that F∗GF is a diagonal

matrix with diagonal components
√
Nŝ(k) for k ∈ Q.

Note that the Gram matrix can be written as

G = ΦΦ∗

where Φ is the Bessel map matrix for the set T . So G is nonnegative and self-adjoint,

hence ŝ(k) is both real and nonnegative for all k ∈ Q.

We have the following lemma from [31].

Lemma 6.7. Let H be a d-dimensional Hilbert space and {φi}Ni=1 ⊂ H be a frame

for H with corresponding weights {ρi}Ni=1. Define the operators {Wi}Ni=1 ⊂ L(H) for

all x ∈ H by

Wix = ρi〈φi, x〉φi.

Let {ei}Ni=1 be a tight frame corresponding to a POM Π defined for all x ∈ H and
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1 ≤ i ≤ N by

Π(i)x = 〈ei, x〉ei.

Then {ei}Ni=1 minimizes the probability of detection error

Pe = 1−
N∑
i=1

ρi|〈φi, ei〉|2

if

1. Π(i)(Wj −Wi)Π(j) = 0 ∀ i, j = 1, . . . , N

2.
N∑
i=1

Π(i)Wi −Wj ≥ 0 ∀ j = 1, . . . , N.

6.5 Minimizers of Pe

We are now in a position to prove a second solution to the quantum detection

problem.

Theorem 6.7. Let H be an d-dimensional Hilbert space and assume that T =

{φi}Ni=1 ⊂ H is a GU frame for H, and let A > 0 be given. Then the unique tight

frame {ei}Ni=1 with frame constant A2 that minimizes the least-squares error E also

minimizes the probability of detection error

Pe = 1−
N∑
i=1

1

N
|〈ψi, ei〉|2

and is a GU tight frame.

Proof. We will first show that the tight frame {ei}Ni=1 that minimizes the least-

squares error E is also GU. Let T = {φi}Ni=1 be a GU frame for H and let A > 0 be

given. Let Φ ∈ M(N × d) be the Bessel map matrix corresponding to the vector
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set T with respect to some orthonormal basis {ei}di=1 for H. Let Φ∗ = UΣV ∗ be the

singular value decomposition of Φ∗. The corresponding Gram matrix can be written

as

G = ΦΦ∗ = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗.

From Lemma 6.6, we see that we must have V = F and that the singular values are

N1/4
√
ŝ(k) for k ∈ Q, i.e. we have

Φ∗ = UΣF∗ = N1/4
∑
g∈Q

√
ŝ(g)ug(Fg)∗ (1)

where ug is the gth column of U and Fg is the gth column of F .

By Theorem 6.1 and observation 1 from section 2.2.1, we know that the con-

jugate Bessel map matrix whose columns are the A2 tight frame that minimizes the

least-squares error E has the form

F ∗ =

Rank(Φ)∑
i=1

uiv
∗
i =

∑
h∈Q,ŝ(h) 6=0

uh(Fh)∗

=
∑

h∈Q,ŝ(h) 6=0


uh(1)

...

uh(d)


1√
N

(〈h, g1〉∗, . . . , 〈h, gN〉∗)

=
∑

h∈Q,ŝ(h) 6=0

1√
N


uh(1)〈h, g1〉∗ . . . uh(1)〈h, gN〉∗

...
. . .

...

uh(d)〈h, g1〉∗, . . . uh(d)〈h, gN〉∗


where uh(i) corresponds to the ith component of the vector uh and gi is the ith

element of Q. Hence the gth column can be written as

e(g) = F ∗
g =

1√
N

∑
h∈Q,ŝ(h) 6=0

〈h, g〉∗uh. (2)
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We want to show that for Ui ∈ Q, corresponding to g′ ∈ Q, that

Uie(g) = UiF
∗
g = F ∗

g+g′ = e(g + g′)

where addition of the indices is modular addition in each component of Q = Zn1 ⊗

. . . ⊗ Znp . This would show that the A2-tight frame {e(g)}g∈Q is GU. In order to

analyze Uie(g), inspection of equation (2) tells us that we first must look at Uiuh,

hence we now want to find an expression for uh. Since F is unitary, the column

vectors are orthonormal, hence multiplying by the column vector Fh on both sides

of (1) gives us,

Φ∗Fh = N1/4
∑
g∈Q

√
ŝ(g)ugF∗

gFh = N1/4
√
ŝ(h)uh. (3)

We write,

Φ∗Fh =
1√
N


| |

φ(g1) φ(g2) · · ·

| |




〈h, g1〉

〈h, g2〉

...

 = φ̂(h)

where we define the Fourier transform of φ : Q→ CN by

φ̂(h) =
1√
N

∑
g∈Q

〈h, g〉φ(g).

So solving for uh in equation (3) gives us,

uh =
1

N1/4
√
ŝ(h)

φ̂(h) (4)

for values of h such that ŝ(h) 6= 0. So we see that in order to find an expression for

Uiuh, we must determine an expression for Uiφ̂(h). First note that for any g ∈ Q
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and φ(g) ∈ T , where Uk ∈ Q corresponds to the element g ∈ Q, we have Uiφ(g) =

UiUkφ = φ(g + g′). So we have

Uiφ̂(h) =
1√
n

∑
k∈Q

〈h, k〉Uiφ(k) =
1√
n

∑
k∈Q

〈h, k〉φ(k + g′)

=
1√
n

∑
k∈Q

〈h, k − g′〉φ(k) = 〈h,−g′〉 1√
n

∑
k∈Q

〈h, k〉φ(k)

= 〈h,−g′〉φ̂(h)

hence applying Ui to equation (4) gives

Uiuh =
1

N1/4
√
ŝ(h)

Uiφ̂(h) = 〈h,−g′〉 1

n1/4
√
ŝ(h)

φ̂(h) = 〈h,−g′〉uh.

So computing Uieg by using the above expression and equation (2) gives us

Uie(g) = UiF
∗
g =

1√
N

∑
h∈Q,ŝ(h) 6=0

〈h, g〉∗Uiuh =
1√
N

∑
h∈Q,ŝ(h) 6=0

〈h, g〉∗〈h,−g′〉uh

=
1√
N

∑
h∈Q,ŝ(h) 6=0

〈h,−g〉〈h,−g′〉uh =
1√
N

∑
h∈Q,ŝ(h) 6=0

〈h,−g − g′〉uh

=
1√
N

∑
h∈Q,ŝ(h) 6=0

〈h, g + g′〉∗uh = F ∗
g+g′ = e(g + g′)

which is what we wanted to show. Hence {e(g)}g∈Q is GU.

Now we want to show that {e(g)}g∈Q minimizes the probability of a detection

error. We will show that the {e(g)}g∈Q satisfies the conditions of Lemma 6.7, hence

minimizes Pe.

Note that we can write the singular value decomposition of the conjugate

Bessel map matrix for {e(g)}g∈Q as

F ∗ =
∑
g∈Q

ugF∗
g = UΥF∗ (5)

116



where Υ ∈ M(d × N) has singular values of 1 along the diagonal. So by equation

(1) and the expression of F ∗ given above we have,

FΦ∗ = N1/4
∑
k∈Q

Fku∗k
∑
g∈Q

√
ŝ(g)ugF∗

g = N1/4
∑
k,g∈Q

√
ŝ(g)Fku∗kugF∗

g

= N1/4
∑
k,g∈Q

√
ŝ(g)Fk〈uk, ug〉F∗

g = N1/4
∑
k,∈Q

√
ŝ(k)FkF∗

k

= FΥ∗ΣF∗.

So we see that FΦ∗ is self-adjoint. Note that the components of the matrix FΦ∗

are given, for any g, h ∈ Q, by [FΦ∗]g,h = 〈e(g), φ(h)〉. Since FΦ∗ is self adjoint we

have for all g, h ∈ Q,

〈φ(h), e(g)〉 = 〈e(g), φ(h)〉∗ = [(FΦ∗)∗]g,h = [FΦ∗]h,g = 〈e(h), φ(g)〉. (6)

Given any g ∈ Q let Ui be the corresponding element of Q. Since FΦ∗ = FΥ∗ΣF∗

the diagonal elements of FΦ∗ for any g ∈ Q are

[FΦ∗]g,g = 〈e(g), φ(g)〉 = 〈(F∗)g,Υ
∗Σ(F∗)g〉 (7)

where (F∗)g is the gth column of F∗. Also,

〈e(g), φ(g)〉 = 〈Uie, Uiφ〉 = 〈e, U∗
i Uiφ〉 = 〈e, φ〉. (8)

So we see that all of the diagonal elements of FΦ∗ are constant. Note also that by

equation (6),

〈e, φ〉 = 〈e(g), φ(g)〉 = 〈φ(g), e(g)〉 = 〈φ, e〉 = 〈e, φ〉∗,

hence 〈e, φ〉 ∈ R.
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We now define the operators {Wg}g∈Q and {Πg}g∈Q for all x ∈ H as

W (g)(x) = 〈φ(g), x〉φ(g)

and

Π(g)(x) = 〈e(g), x〉e(g).

Note that we can write W (g) = φ(g)φ(g)∗ and Π(g) = e(g)e(g)∗. We now examine

the first condition of Lemma 4. We have for all g, h ∈ Q,

Π(g)(W (h)−W (g))Π(h) = Π(g)W (h)Π(h)− Π(g)W (g)Π(h)

= e(g)e(g)∗φ(h)φ(h)∗e(h)e(h)∗ − e(g)e(g)∗φ(g)φ(g)∗e(h)e(h)∗

= e(g)〈e(g), φ(h)〉〈φ(h), e(h)〉e(h)∗ − e(g)〈e(g), φ(g)〉〈φ(g), e(h)〉e(h)∗

= e(g)[〈e(g), φ(h)〉〈φ(h), e(h)〉 − 〈e(g), φ(g)〉〈φ(g), e(h)〉]e(h)∗

by (6) and (8) = e(g)[〈φ(g), e(h)〉〈φ, e〉 − 〈e, φ〉〈φ(g), e(h)〉]e(h)∗ = 0.

So condition 1 of Lemma 4 is satisfied.

Now we need to show condition 2, i.e. we want to show that for all h ∈ Q,

∑
g∈Q

Π(g)W (g)− φ(h)φ(h)∗ ≥ 0.

By equations (1), (5) and (8) we have,

∑
g∈Q

Π(g)W (g) =
∑
g∈Q

e(g)e(g)∗φ(g)φ(g)∗ =
∑
g∈Q

e(g)〈e(g), φ(g)〉φ(g)∗

= 〈e, φ〉
∑
g∈Q

e(g)φ(g)∗ = 〈e, φ〉F ∗Φ

= 〈e, φ〉(UΥF∗)(FΣtU∗) = 〈e, φ〉UΥΣtU∗

= 〈e, φ〉UΣU∗
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where Σ = ΥΣt ∈ M(d × d) is the diagonal matrix with singular values the same

as Σ. Since Φ∗ = UΣF∗, we have for any g ∈ Q,

φ(g) = UΣ(F∗)g

where (F∗)g is the gth column of F∗. Hence

φ(g)φ(g)∗ = UΣ(F∗)g(F∗)∗gΣ
tU∗.

Hence to satisfy condition 2 of Lemma 4, for a fixed h ∈ Q we want to show that

the d× d matrix

T =
∏
g∈Q

Π(g)Wg − φ(h)φ(h)∗ = 〈e, φ〉UΣU∗ − UΣ(F∗)g(F∗)∗gΣ
tU∗

= U [〈e, φ〉Σ− Σ(F∗)g(F∗)∗gΣ
t]U∗

is positive. We will first show that T ′ = 〈e, φ〉Σ − Σ(F∗)g(F∗)∗gΣ
t is positive. Let

x ∈ Cd. Define Σ1/2 to be the d × N matrix with diagonal singular values of

(
√
Nŝ(k))1/2 for k ∈ Q. Then,

〈x, T ′x〉 = 〈e, φ〉〈x,Σx〉 − 〈x,Σ(F∗)g(F∗)∗gΣ
tx〉

= 〈e, φ〉〈x,Σx〉 − 〈Σtx, (F∗)g〈(F∗)g,Σ
tx〉〉

= 〈e, φ〉〈x,Σx〉 − 〈Σtx, (F∗)g〉〈(F∗)g,Σ
tx〉

= 〈e, φ〉〈x,Σx〉 − |〈Σtx, (F∗)g〉|2

= 〈e, φ〉〈x,Σx〉 − |〈(Σ1/2)tx,Υ∗Σ1/2(F∗)g〉|2

by Cauchy Schwartz ≥ 〈e, φ〉〈x,Σx〉 − ‖(Σ1/2)tx‖2‖Υ∗Σ1/2(F∗)g‖2

= 〈e, φ〉〈x,Σx〉 − 〈x,Σx〉〈(F∗)g,Υ
∗Σ(F∗)g〉

by (7) and (8) = 〈e, φ〉〈x,Σx〉 − 〈x,Σx〉〈e, φ〉 = 0
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hence T ′ is a positive matrix. Now, given any x ∈ Cd we have

〈x, Tx〉 = 〈x, UT ′U∗x〉 = 〈U∗x, T ′U∗x〉 ≥ 0

hence T is a positive operator. So we see that condition 2 of Lemma 4 is satisfied.

It follows that {e(g)}g∈Q minimizes the probability of detection error Pe.
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Appendix A

Penrose-Moore pseudo inverse

Let A ∈ M(n × m). The Penrose-Moore pseudo inverse is the unique matrix

A† ∈M(m× n) such that,

1. AA†A = A

2. A†AA† = A†

3. (AA†)∗ = AA†

4. (A†A)∗ = A†A.

If A = UΣV ∗ is the singular decomposition of A, where U ∈ M(n × n), Σ ∈

M(n×m), V ∈ M(m×m), then the solution to the above is A† = V Σ†U∗ where

Σ† ∈M(m× n) is of the form

Σ† =


1/σ1

1/σ2

. . .


where {σi} are the singular values of A.

Also, if A ∈ M(n × m) with singular value decomposition A = UΣV ∗ we

define A1/2 by A1/2 = UΣ1/2V ∗ where Σ1/2 has diagonals {√σi}, i.e. the singular

values of A1/2 are {√σi}.
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Appendix B

Hilbert space definitions

Let K = R or K = C.

Definition B.1. Let H be a vector space over K. A real-valued function ‖ · ‖ on

H is a norm if:

1. For all x ∈ H, ‖x‖ ≥ 0.

2. ‖x‖ = 0 if and only if x = 0.

3. For all x, y ∈ H, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

4. For all x ∈ H and a ∈ K, ‖ax‖ = |a|‖x‖.

Definition B.2. Let H be a vector space with norm ‖ · ‖. H is complete if every

Cauchy sequence in H converges, that is if a sequence {fi}i∈Z ⊂ H has the property

that for any ε > 0, there exists an N > 0 such that for all n,m ≥ N ,

‖fn − fm‖ ≤ ε

then there exists an f ∈ H such that

lim
n→∞

‖fn − f‖ = 0.

Definition B.3. A Hilbert space H is a Banach space over K with a K-valued

function 〈·, ·〉 defined on H ×H, called an inner product, that has the properties:
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1. For all α, β ∈ K and x, y, z ∈ H,

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉.

2. For all x, y ∈ H,

〈x, y〉 = 〈y, x〉∗

where ∗ indicates complex conjugation.

3. For all x ∈ H, 〈x, x〉 = ‖x‖2.

Definition B.4. Let H be a Hilbert space. H is separable if there exists a countable

dense set X in H.

Separable Hilbert spaces always have an orthonormal basis, as the following

theorem shows.

Theorem B.1. Let H be a separable Hilbert space. Then there exists a complete

orthonormal set in H.

Definition B.5. Let H be a Hilbert space and T : H → H a linear operator. T is

bounded if there exists a constant A ∈ R such that for all x ∈ H,

‖T (x)‖ ≤ A‖x‖.

For bounded linear operators T , the adjoint T ∗ is defined for all x, y ∈ H by

〈Tx, y〉 = 〈x, T ∗y〉.

However, if T is not bounded and defined on only a dense subset of H, more care

must be used to define the adjoint. The following gives a more general definition of

the adjoint, which reduces to the above definition when the operator T is bounded.
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Definition B.6. Let H be a Hilbert space and T a linear operator defined on a

dense subset Dom(T ) of H. Define Dom(T ∗) as the set of all y ∈ H such that the

operator Ty defined for all x ∈ H by

Ty(x) = 〈Tx, y〉

is bounded. Then by the Hahn-Banach theorem, we can extend Ty to all of H, and

hence there exists a unique element T ∗y ∈ H such that

Ty(x) = 〈Tx, y〉 = 〈x, T ∗y〉.

T ∗ is defined to be the adjoint of T , with domain Dom(T ∗).

Definition B.7. Let H be a Hilbert space and T a linear operator defined on a

dense subset of H. T is self-adjoint if T = T ∗.

B.1 Examples of Hilbert spaces

Let K = R or K = C.

1. Let K ⊂ Z. Define l2(K) by

l2(K) =

{
{ai}i∈K ⊂ K :

∑
i∈K

|ai|2 <∞

}
.

For all {ai}i∈K , {bi}i∈K ∈ l2(K), we have the inner product defined by

〈{ai}i∈K , {bi}i∈K〉 =
∑
i∈K

aib
∗
i

where ∗ represents complex conjugation. With this inner product, l2(K) is a

Hilbert space. In section 2.2 dealing with finite frames, K = ZN where

ZN = {0, 1, 2, . . . , N − 1}.
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2. Let Ω ⊂ R and consider the space

L2(Ω) =

{
f measurable functions on Ω :

∫
Ω

|f |2 <∞
}
.

L2(Ω) is a Hilbert space with inner product defined for all f, g ∈ L2(Ω) by

〈f, g〉 =

∫
Ω

f(x)g∗(x)dx.
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