
Hilbert R-tree: An improved R-tree using fractalsIbrahim Kamel and Christos Faloutsos�Department of Computer Science andInstitute for Systems Research (ISR)University of MarylandCollege Park, MD 20742February 22, 1994AbstractWe propose a new R-tree structure that outperforms all the older ones. The heart of theidea is to facilitate the deferred splitting approach in R-trees. This is done by proposing anordering on the R-tree nodes. This ordering has to be 'good', in the sense that it should group'similar' data rectangles together, to minimize the area and perimeter of the resulting minimumbounding rectangles (MBRs).Following [19] we have chosen the so-called '2D-c' method, which sorts rectangles accordingto the Hilbert value of the center of the rectangles. Given the ordering, every node has a well-de�ned set of sibling nodes; thus, we can use deferred splitting. By adjusting the split policy,the Hilbert R-tree can achieve as high utilization as desired. To the contrary, the R�-tree has nocontrol over the space utilization, typically achieving up to 70%. We designed the manipulationalgorithms in detail, and we did a full implementation of the Hilbert R-tree. Our experimentsshow that the '2-to-3' split policy provides a compromise between the insertion complexity andthe search cost, giving up to 28% savings over the R� � tree [3] on real data.1 IntroductionOne of the requirements for the database management systems (DBMSs) of the near future isthe ability to handle spatial data [28]. Spatial data arise in many applications, including: Car-tography [29]; Computer-Aided Design (CAD) [24] [14]; computer vision and robotics [2]; tradi-tional databases, where a record with k attributes corresponds to a point in a k-d space; temporal�This research was partially funded by the Institute for Systems Research (ISR), by the National Science Foun-dation under Grants IRI-9205273 and IRI-8958546 (PYI), with matching funds from EMPRESS Software Inc. andThinking Machines Inc. 1



databases, where time can be considered as one more dimension [20]; scienti�c databases withspatial-temporal data, such as the ones in the `Grand Challenge' applications [10], etc.In the above applications, one of the most typical queries is the range query: Given a rectangle,retrieve all the elements that intersect it. A special case of the range query is the point query orstabbing query, where the query rectangle degenerates to a point.We focus on the R-tree [15] family of methods, which contains some of the most e�cientmethods that support range queries. The advantage of our method (and the rest of the R-tree-based methods) over the methods that use linear quad-trees and z-ordering is that R-trees treatthe data objects as a whole, while quad-tree based methods typically divide objects into quad-treeblocks, increasing the number of items to be stored.The most successful variant of R-trees seems to be the R�-tree [3]. One of its main contri-butions is the idea of 'forced-reinsert' by deleting some rectangles from the over
owing node, andreinserting them.The main idea in the present paper is to impose an ordering on the data rectangles. Theconsequences are important: using this ordering, each R-tree node has a well de�ned set of siblings;thus, we can use the algorithms for deferred splitting. By adjusting the split policy (2-to-3 or 3-to-4etc) we can drive the utilization as close to 100% as desirable. Notice that the R�-tree does nothave control over the utilization, typically achieving an average of �70%.The only requirement for the ordering is that it has to be 'good', that is, it should lead tosmall R-tree nodes.The paper is organized as follows. Section 2 gives a brief description of the R-tree andits variants. Section 3 describes the Hilbert R-tree. Section 4 presents our experimental resultsthat compare the Hilbert R-tree with other R-tree variants. Section 5 gives the conclusions anddirections for future research.2 SurveySeveral spatial access methods have been proposed. A recent survey can be found in [26]. Thesemethods fall in the following broad classes: methods that transform rectangles into points in ahigher dimensionality space [16, 8]; methods that use linear quadtrees [9] [1] or, equivalently, thez-ordering [23] or other space �lling curves [7] [18]; and �nally, methods based on trees (R-tree [15],k-d-trees [4], k-d-B-trees [25], hB-trees [21], cell-trees [13] e.t.c.)One of the most promising approaches in the last class is the R-tree [15]: Compared tothe transformation methods, R-trees work on the native space, which has lower dimensionality;compared to the linear quadtrees, the R-trees do not need to divide the spatial objects into (several)2



pieces (quadtree blocks). The R-tree is the extension of the B-tree for multidimensional objects. Ageometric object is represented by its minimum bounding rectangle (MBR). Non-leaf nodes containentries of the form (R,ptr) where ptr is a pointer to a child node in the R-tree; R is the MBR thatcovers all rectangles in the child node. Leaf nodes contain entries of the form (obj-id, R) whereobj-id is a pointer to the object description, and R is the MBR of the object. The main innovationin the R-tree is that father nodes are allowed to overlap. This way, the R-tree can guarantee atleast 50% space utilization and remain balanced.Guttman proposed three splitting algorithms, the linear split, the quadratic split and theexponential split. Their names come from their complexity; among the three, the quadratic splitalgorithm is the one that achieves the best trade-o� between splitting time and search performance.Subsequent work on R-trees includes the work by Greene [11], the R+-tree [27], R-treesusing Minimum Bounding Polygons [17], and �nally, the R�-tree [3], which seems to have the bestperformance among the R-tree variants. The main idea in the R�-tree is the concept of forcedre-insert. When a node over
ows, some of its children are carefully chosen; they are deleted andre-inserted, usually resulting in a R-tree with better structure.3 Hilbert R-treesIn this section we introduce the Hilbert R-tree and discuss algorithms for searching, insertion,deletion, and over
ow handling. The performance of the R-trees depends on how good is thealgorithm that cluster the data rectangles to a node. We propose to use space �lling curves (orfractals), and speci�cally, the Hilbert curve to impose a linear ordering on the data rectangles.A space �lling curve visits all the points in a k-dimensional grid exactly once and never crossesitself. The Z-order (or Morton key order, or bit-interleaving, or Peano curve), the Hilbert curve,and the Gray-code curve [6] are examples of space �lling curves. In [7], it was shown experimentallythat the Hilbert curve achieves the best clustering among the three above methods.Next we provide a brief introduction to the Hilbert curve: The basic Hilbert curve on a 2x2grid, denoted by H1, is shown in Figure 1. To derive a curve of order i, each vertex of the basiccurve is replaced by the curve of order i� 1, which may be appropriately rotated and/or re
ected.Figure 1 also shows the Hilbert curves of order 2 and 3. When the order of the curve tends toin�nity, the resulting curve is a fractal, with a fractal dimension of 2 [22]. The Hilbert curve can begeneralized for higher dimensionalities. Algorithms to draw the two-dimensional curve of a givenorder, can be found in [12], [18]. An algorithm for higher dimensionalities is in [5].The path of a space �lling curve imposes a linear ordering on the grid points. Figure 1 shows3
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where Cn is the capacity of a non-leaf node, R is the MBR that encloses all the children of that node,ptr is a pointer to the child node, and LHV is the largest Hilbert value among the data rectanglesenclosed by R. Notice that we never calculate or use the Hilbert values of the MBRs. Figure 2illustrates some rectangles, organized in a Hilbert R-tree. The Hilbert values of the centers arethe numbers by the `x' symbols (shown only for the parent node 'II'). The LHV's are in [brackets].Figure 3 shows how is the tree of Figure 2 stored on the disk; the contents of the parent node 'II'are shown in more detail. Every data rectangle in node 'I' has Hilbert value �33; everything innode 'II' has Hilbert value greater than 33 and �107 etc.
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Before we continue, we list some de�nitions. A plain R-tree splits a node on over
ow, turning1 node to 2. We call this policy a 1-to-2 splitting policy. We propose to defer the split, waitinguntil they turn 2 nodes into 3. We refer to it as the 2-to-3 splitting policy. In general, we can havean s-to-(s+1) splitting policy; we refer to s as the order of the splitting policy. To implement theorder-s splitting policy, the over
owing node tries to push some of its entries to one of its s � 1siblings; if all of them are full, then we have an s-to-(s+1) split. We refer to these s� 1 siblings asthe cooperating siblings of a given node.Next, we will describe in detail the algorithms for searching, insertion, and over
ow handling.3.2 SearchingThe searching algorithm is similar to the one used in other R-tree variants. Starting from the rootit descends the tree examining all nodes that intersect the query rectangle. At the leaf level itreports all entries that intersect the query window w as quali�ed data items.Algorithm Search(node Root, rect w):S1. Search nonleaf nodes:invoke Search for every entry whose MBR intersects the query window w.S2. Search leaf nodes:Report all the entries that intersect the query window w as candidate.3.3 InsertionTo insert a new rectangle r in the Hilbert R-tree, the Hilbert value h of the center of the newrectangle is used as a key. In each level we choose the node with minimum LHV among thesiblings. When a leaf node is reached the rectangle r is inserted in its correct order according to h.After a new rectangle is inserted in a leaf node N , AdjustTree is called to �x the MBR and LHVvalues in upper level nodes.Algorithm Insert(node Root, rect r):/* inserts a new rectangle r in the Hilbert R-tree. h is theHilbert value of the rectangle. */I1. Find the appropriate leaf node: 6



Invoke ChooseLeaf(r, h) to select a leaf node L in which to place r.I2. Insert r in a leaf node L:if L has an empty slot, insert r in L in theappropriate place according to the Hilbert order and return.if L is full, invoke HandleOver
ow(L,r), whichwill return new leaf if split was inevitable.I3. Propagate changes upward:form a set S that contains L, its cooperating siblingsand the new leaf (if any).invoke AdjustTree(S)I4. Grow tree taller:if node split propagation caused the root to split, createa new root whose children are the two resulting nodes.Algorithm ChooseLeaf(rect r, int h):/* Returns the leaf node in which to place a new rectangle r. */C1. Initialize:Set N to be the root node.C2. Leaf check:if N is a leaf, return N .C3.Choose subtree:if N is a non-leaf node, choose the entry (R, ptr, LHV)with the minimum LHV value greater than h.C4.Descend until a leaf is reached:set N to the node pointed by ptr and repeat from C2.Algorithm AdjustTree(set S):/* S is a set of nodes that contains the node being updated, itscooperating siblings (if over
ow has occurred) and newly created node NN(if split has occurred).The routine ascends from leaf level towards the root, adjusting MBRand LHV of nodes that cover the nodes in S.siblings. It propagates splits (if any). */ 7



A1. if reached root level stop.A2.Propagate node split upwardlet Np be the parent node of N .if N has been split, let NN be the new node.insert NN in Np in the correct order according to its Hilbertvalue if there is room. Otherwise, invoke HandleOver
ow(Np, NN).if Np is split, let PP be the new node.A3. adjust the MBR's and LHV's in the parent level:let P be the set of parent nodes for the nodes in S.Adjust the corresponding MBR's and LHV's appropriately of the nodes in P .A4.Move up to next level:Let S become the set of parent nodes P , withNN = PP, if Np was split.repeat from A1.3.4 DeletionIn Hilbert R-tree we do NOT need to re-insert orphaned nodes, whenever a father node under
ows.Instead, we borrow keys from the siblings or we merge an under
owing node with its siblings. Weare able to do so, because the nodes have a clear ordering (Largest Hilbert Value LHV ); in contrast,in R-trees there is no such concept of sibling node. Notice that, for deletion, we need s cooperatingsiblings while for insertion we need s� 1.Algorithm Delete(r):D1.Find the host leaf:Perform an exact match search to �nd the leaf node Lthat contain r.D2.Delete r :Remove r from node L.D3. if L under
owsborrow some entries from s cooperating siblings.if all the siblings are ready to under
ow,merge s + 1 to s nodes, 8



adjust the resulting nodes.D4. adjust MBR and LHV in parent levels.form a set S that contains L and its cooperatingsiblings (if under
ow has occurred).invoke AdjustTree(S).3.5 Over
ow handlingThe over
ow handling algorithm in the Hilbert R-tree treats the over
owing nodes either by movingsome of the entries to one of the s � 1 cooperating siblings or splitting s nodes to s+ 1 nodes.Algorithm HandleOver
ow(node N, rect r):/* return the new node if a split occurred. */H1. let E be a set that contains all the entries from Nand its s� 1 cooperating siblings.H2. add r to E .H3. if at least one of the s� 1 cooperating siblings is not full,distribute E evenly among the s nodes according to the Hilbert value.H4. if all the s cooperating siblings are full,create a new node NN anddistribute E evenly among the s + 1 nodes accordingto the Hilbert value.return NN .4 Experimental resultsTo assess the merit of our proposed Hilbert R-tree, we implemented it and ran experiments on a twodimensional space. The method was implemented in C, under UNIX. We compared our methodsagainst the quadratic-split R-tree, and the R� � tree. Since the CPU time required to process thenode is negligible, we based our comparison on the number of nodes (=pages) retrieved by rangequeries. 9



Without loss of generality, the address space was normalized to the unit square. There areseveral factors that a�ect the search time; we studied the following ones:Data items: points and/or rectangles and/or line segments (represented by their MBR)File size: ranged from 10,000 - 100,000 recordsQuery area Qarea = qx � qy: ranged from 0 - 0.3 of the area of the address spaceAnother important factor, which is derived from N and the average area a of the datarectangles, is the `data density' d (or `cover quotient') of the data rectangles. This is the sum of theareas of the data rectangles in the unit square, or equivalently, the average number of rectanglesthat cover a randomly selected point. Mathematically: d = N � a. For the selected values of Nand a, the data density ranges from 0.25 - 2.0.To compare the performance of our proposed structures we used 5 data �les that containeddi�erent types of data: points, rectangles, lines, or mixed. Speci�cally, we used:A) Real Data: we used real data from the TIGER system of the U.S. Bureau of Census. Animportant observation is that the data in the TIGER datasets follow a highly skewed distri-bution.`MGCounty' : This �le consists of 39717 line segments, representing the roads of Mont-gomery county in Maryland. Using the minimum bounding rectangles of the segments,we obtained 39717 rectangles, with data density d = 0.35. We refer to this dataset asthe `MGCounty' dataset.`LBeach' : It consists of 53145 line segments, representing the roads of Long Beach, Cali-fornia. The data density of the MBRs that cover these line segments is d = 0:15. Werefer to this dataset as the `LBeach' dataset.B) Synthetic Data: The reason for using synthetic data is that we can control the parameters(data density, number of rectangles, ratio of points to rectangles etc.).`Points' : This �le contains 75,000 uniformly distributed points.`Rects' : This �le contains 100,000 rectangles, no points. The centers of the rectangles areuniformly distributed in the unit square. The data density is d = 1:0`Mix' : This �le contains a mix of points and rectangles; speci�cally 50,000 points and 10,000rectangles; the data density is d = 0:029.10



The query rectangles were squares with side qs; their centers were uniformly distributed inthe unit square. For each experiment, 200 randomly generated queries were asked and the resultswere averaged. The standard deviation was very small and is not even plotted in our graphs. Thepage size used is 1KB.We compare the Hilbert R-tree against the original R-tree ( quadratic split) and the R��tree.Next we present experiments that (a) compare our method against other R-tree variants (b) showthe e�ect of the di�erent split policies on the performance of the proposed method and (c) evaluatethe insertion cost.
50k points and 10k rectangles; 2-to-3 split policy
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100k rectangles; 2-to-3 split policy
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4.1 Comparison of the Hilbert R-tree vs. other R-tree variantsIn this section we show the performance superiority of our Hilbert R-tree over the R�� tree, whichis the most successful variant of the R-tree. We present experiments with all �ve datasets, namely:`Mix', `Rects', `Points', `MGCounty', and `LBeach' (see Figures 4 - 6, respectively). In all theseexperiments, we used the `2-to-3' split policy for the Hilbert R-tree.In all the experiment the Hilbert R-tree is the clear winner, achieving up to 28% savings inresponse time over the next best contender (the R� � tree). This maximum gain is achieved forthe 'MGCounty' dataset (Figure 7). It is interesting to notice that the performance gap is largerfor the real data, whose main di�erence from the synthetic one is that it is skewed, as opposed touniform. Thus, we can conjecture that the skeweness of the data favors the Hilbert R-tree.Figure 4 also plots the results for the quadratic-split R-tree, which, as expected, is outper-formed by the R� � tree. In the rest of the �gures, we omit the quadratic-split R-tree, because itwas consistently outperformed by R� � tree.4.2 The e�ect of the split policy on the performanceFigure 9 shows the response time as a function of the query size for the 1-to-2, 2-to-3, 3-to-4and 4-to-5 split policies. The corresponding space utilization was 65.5%, 82.2%, 89.1% and 92.3%respectively. For comparison, we also plot the response times of the R� � tree. As expected, theresponse time for the range queries improves with the average node utilization. However, thereseems to be a point of diminishing returns as s increases. For this reason, we recommend the'2-to-3' splitting policy (s=2), which strikes a balance between insertion speed (which deteriorateswith s) and search speed, which improves with s.4.3 Insertion costThe higher space utilization in the Hilbert R-tree comes at the expense of higher insertion cost. Aswe employ higher split policy the number of cooperating siblings need to be inspected at over
owincreases. We see that `2-to-3' policy is a good compromise between the performance and theinsertion cost. In this section we compare the insertion cost of the Hilbert R-tree `2-to-3' split withthe insertion cost in the R� � tree. Also, show the e�ect of the split policy on the insertion cost.The cost is measured by the number of disk accesses per insertion.Table 1 shows the insertion cost of the Hilbert R-tree and the R�� tree for the �ve di�erentdatasets. The main observation here is that there is no clear winner in the insertion cost.13



Montgomery County: 39717 line segements; 2-to-3 split policy
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Long Beach: 53145 line segements; 2-to-3 split policy
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Montgomery County: 39717 line segements; different split policies

R*-tree

s = 1

s = 2

s = 3

s = 4

Pages Touched

-3Qarea x 10
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

0.00 100.00 200.00 300.00 400.00 500.00Figure 9: The e�ect of the split policy; disk accesses vs. query areaTable 2 shows the e�ect of increasing the split policy in the Hilbert R-tree on the insertioncost for MGCounty dataset. As expected, the insertion cost increases with the order s of the splitpolicy.5 ConclusionsIn this paper we designed and implemented a superior R-tree variant, which outperforms all theprevious R-tree methods. The major idea is to introduce a 'good' ordering among rectangles.By simply de�ning an ordering, the R-tree structure is amenable to deferred splitting, which canmake the utilization approach the 100% mark as closely as we want. Better packing results in ashallower tree and a higher fanout. If the ordering happens to be 'good', that is, to group similarrectangles together, then the R-tree will in addition have nodes with small MBRs, and eventually,fast response times.Based on this idea, we designed in detail and implemented the Hilbert R-tree, a dynamictree structure that is capable of handling insertions and deletions. Experiments on real and syn-thetic data showed that the proposed Hilbert R-tree with the '2-to-3' splitting policy consistently15



(disk accesses)/insertiondataset Hilbert R-tree R� � tree(2-to-3 split)MGCounty 3.55 3.10LBeach 3.56 4.01Points 3.66 4.06Rects 3.95 4.07Mix 3.47 3.39Table 1: Comparison between insertion cost in Hilbert R-tree `2-to-3' split and R� � tree; diskaccesses per insertion split policy (disk accesses)/insertion1-to-2 3.232-to-3 3.553-to-4 4.094-to-5 4.72Table 2: The e�ect of the split policy on the insertion cost; MGCounty datasetoutperforms all the R-tree methods, with up to 28% savings over the best competitor (the R�-tree).Future work could focus on the analysis of Hilbert R-trees, providing analytical formulas thatpredict the response time as a function of the characteristics of the data rectangles (count, datadensity etc).References[1] Walid G. Aref and Hanan Samet. Optimization strategies for spatial query processing. Proc.of VLDB (Very Large Data Bases), pages 81{90, September 1991.[2] D. Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an e�cient and robustaccess method for points and rectangles. ACM SIGMOD, pages 322{331, May 1990.[4] J.L. Bentley. Multidimensional binary search trees used for associative searching. CACM,18(9):509{517, September 1975. 16
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