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Statistical learning is widely used in business analytics to discover structure

or exploit patterns from historical data, and build models that capture relationships

between an outcome of interest and a set of variables. Optimal learning on the

other hand, solves the operational side of the problem, by iterating between decision

making and data acquisition/learning. All too often the two problems go hand-in-

hand, which exhibit a feedback loop between statistics and optimization.

We apply this statistical/optimal learning concept on a context of fundraising

marketing campaign problem arising in many non-profit organizations. Many such

organizations use direct-mail marketing to cultivate one-time donors and convert

them into recurring contributors. Cultivated donors generate much more revenue

than new donors, but also lapse with time, making it important to steadily draw

in new cultivations. The direct-mail budget is limited, but better-designed mailings

can improve success rates without increasing costs.

We first apply statistical learning to analyze the effectiveness of several design

approaches used in practice, based on a massive dataset covering 8.6 million direct-



mail communications with donors to the American Red Cross during 2009-2011. We

find evidence that mailed appeals are more effective when they emphasize disaster

preparedness and training efforts over post-disaster cleanup. Including small cards

that affirm donors’ identity as Red Cross supporters is an effective strategy, while

including gift items such as address labels is not. Finally, very recent acquisitions

are more likely to respond to appeals that ask them to contribute an amount similar

to their most recent donation, but this approach has an adverse effect on donors

with a longer history. We show via simulation that a simple design strategy based

on these insights has potential to improve success rates from 5.4% to 8.1%.

Given these findings, when new scenario arises, however, new data need to be

acquired to update our model and decisions, which is studied under optimal learn-

ing framework. The goal becomes discovering a sequential information collection

strategy that learns the best campaign design alternative as quickly as possible.

Regression structure is used to learn about a set of unknown parameters, which

alternates with optimization to design new data points. Such problems have been

extensively studied in the ranking and selection (R&S) community, but traditional

R&S procedures experience high computational costs when the decision space grows

combinatorially. We present a value of information procedure for simultaneously

learning unknown regression parameters and unknown sampling noise. We then de-

velop an approximate version of the procedure, based on semi-definite programming

relaxation, that retains good performance and scales better to large problems. We

also prove the asymptotic consistency of the algorithm in the parametric model, a

result that has not previously been available for even the known-variance case.
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Chapter 1: Introduction and Overview

The terms statistics, machine learning, data mining and predictive analytics

have been used interchangeably in both academia and industry. They can all be

generally described, however, as learning from data. This ambiguity in terminology

reflects interdisciplinary collaborations among different fields on tackling the same

problem. In the early days, statisticians often encountered data from agriculture,

industrial engineering, social science, etc., and these data were relatively small.

Recent advances in computing power, data storage and web technology have brought

us into an era of big data, which have captured interests of researchers from many

other domains such as computer science and electronic engineering.

Despite considerable overlap between fields, different terms may imply a differ-

ent focus or objective. Statistics often aims at explaining the relationship between

an outcome of a measurement (quantitative or categorical) and a set of independent

variables, or estimating the underlying distribution of given data. Machine learning

on the other hand, concentrates on prediction power of the model, i.e., if the learner

built from the training data generalizes to new or future unseen data [1]. Data min-

ing focuses more on the practical side of learning, which may indicate many aspects

such as data wrangling, integration, exploratory analysis to learning, prediction and
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data visualization [2]. In this thesis, however, we use the term statistical learning

to refer to all of these facets.

Statistical learning can usually fall into two categories: supervised and unsu-

pervised learning [1]. In supervised learning, we try to build a model or learner

that relates a response variable (such as risk, revenue, success rate, etc.) to a set of

features (such as experimental designs, field measurements, subject characteristics,

etc). The learner should generalize beyond the training data. To guarantee good

prediction performance, one should pay extra attention on the over/under-fitting

dilemma, namely the model should fit well enough to the pattern of the training

data (low bias) while not being overly complex which picks up errors or random-

nesses in the training data, thus being robust to new testing data (low variance),

i.e., the bias-variance trade-off [3].

In unsupervised learning, we observe features or covariates but are not given

the response variable. The problem is instead using features to describe how data are

organized or structured. Such examples include clustering, feature transformation

and selection.

The following sections provide a survey of classical and recent work on sta-

tistical learning. Discussions in Section 1.1, 1.3, 1.4, 1.5 are directly applicable in

Chapters 2. Methods discussed in Section 1.6 are related to Chapter 3.
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1.1 Linear Statistical Models

Linear models as well as their generalized versions are widely used in statistical

learning and can be considered as one of the most classical approaches in supervised

learning. Linear regression and ordinary least squares (OLS) can be dated back to

the 19th century when Gauss and Legendre first used them on astronomical data [4].

The performance and many good properties of OLS estimates highly depend on

assumptions on the errors, e.g., independence, constant variance, zero mean etc.

When they are normally distributed, the OLS estimates can be proved to be the

best linear unbiased estimator (BLUE) [5].

1.1.1 Generalized Linear Models

Generalized linear models (GLMs) [6] incorporate more general distributions

(within the exponential family) other than the normal distribution for the response

variable, e.g., binomial, Poisson, Gamma as well as compound Poisson-Gamma

(Tweedie) distributions [7]. The relation between the mean of response µ and the

set of covariates x is described by a link function g, i.e.,

g(µ) = η = x>β,

where β is the vector of coefficients. If we write the density of the response in the

canonical form of the exponential family

fY (y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
,
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it is easy to obtain µ = b′(θ), or θ = (b′)−1(µ). The canonical link function is

then defined by g(µ) = θ = (b′)−1(µ). By using the canonical link function we

obtain a sufficient statistic equal in dimension to β in the linear predictor η [6].

Each distribution corresponds to a specific canonical link, e.g., the link for normal

distribution is η = µ, while for binomial distribution it is η = logit(µ) = log(µ/(1−

µ)).

In GLMs the parameters are estimated using the maximum likelihood (ML)

approach. Instead of looking at the sum of squared errors, we use deviance to

assess model fit, which is defined as 2l(y, φ; y)− 2l(µ̂, φ; y), i.e., twice the difference

between log likelihood of a saturated model (with n parameters) and the model under

investigation. Maximizing the likelihood is equivalent to minimizing the deviance.

Notice that, for normal distribution, the deviance is exactly the same as the sum

of squared error, so GLMs cover least squares regression as a special case. For the

binomial distribution, the deviance can be derived as

2Σi (yi log(yi/µ̂i) + (mi − yi) log((mi − yi)/(mi − µ̂i)) ,

where i denotes the i-th covariate class and mi, yi denote the number of experiments

and number of successes in i-th class respectively.

Typical ways of solving the ML problem include Fisher scoring [6] or Newton’s

method. In Fisher scoring the expected Hessian matrix E( ∂2l
∂βi∂βj

) is used, while

Newton’s method uses the observed value. However, under the canonical link, the

Hessian matrix is constant so the two methods coincide.

A further generalization of GLMs are the generalized additive models (GAMs).
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In GAMs the predictor is transformed using some smooth functions, and the model

can be written as

g(µ) = β0 + f1(x1) + . . .+ fp(xp).

Methods such as the backfitting algorithm [8] can be used to estimate the param-

eters. When using GAMs or any such more complicated models, the problem of

over-fitting becomes more prominent and deserves more caution.

1.1.2 Mixed Model

In many cases specific characteristics of the data can determine which statis-

tical model to use. For example, when data are longitudinal, i.e., data entries are

grouped by panels or blocks, we should consider the effects from each panel. Exam-

ples include transaction data of a set of customers, where the transaction records

are grouped by customer ids, or teaching evaluations from a number of high schools,

where the teachers are grouped by schools. In such cases the number of panels can

be extremely large, which makes it unwise to treat them directly as fixed effects.

We might also have limited access to specific information about each panel, such as

demographic information of customers or characteristics of schools. One common

approach is to use random variables to model the effects for each panel, i.e., the

mixed model [9]. If we use it under the GLM framework, the resulting model is

referred to as a generalized linear mixed model (GLMM). The model can be written

as

E(y|u) = Xβ + Zu,
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where X and β are the design matrix and coefficients for the fixed effects, and Z

and u are the matrix and variables for the random effects. To obtain the likelihood

function we need to compute an integration over the random variables. The prob-

lem is typically solved using expectation-maximization (EM) algorithms [10] where

random effect terms are treated as missing data and estimated iteratively. When

data become large, however, the computation becomes intractable [11].

1.2 Other Supervised Learning Methods

There are many other supervised learning algorithms that have been developed

in machine learning and artificial intelligence domains to solve either classification

or regression problems. Such learning algorithms focus less on statistical properties

of the model but more on its prediction performance. Sometimes the learner is

described directly by its prediction outcome. For example, in binary classification

problems, the learner can be specified by its decision boundaries, which depict re-

gions on the domain of features where the responses should be labeled as positive

or negative.

1.2.1 Decision Tree

Decision trees (DTs) use recursive algorithm to build a tree-like graph or model

of features or decisions and their corresponding outcomes [3]. DTs are typically used

for classification problems. In DTs, each internal node tests an attribute and each

branch corresponds to the attribute value. The leaf node then assigns a classification
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to the data point. The decision boundaries of DTs are usually shaped as high

dimensional rectangles in the feature space.

The top-down order in which features enter the model is determined by infor-

mation gain. Specifically, define entropy for a sample S as Entropy(S) = −p+ log p+−

p− log p−, where p+ and p− are the proportion of positive and negative examples re-

spectively. The information gain is then defined as

Gain(S,A) = Entropy(S)− Σv∈values(A)
|Sv|
S

Entropy(Sv),

where A is a particular feature and Sv is the subset of S having A = v.

Hyper parameters in DTs include height of the tree or threshold for minimum

number of points allowed in leaf nodes. A typical way of preventing over-fitting

is by pruning, which evaluates impact on validation dataset from pruning each

possible node (and nodes below it). Nodes are removed greedily according to the

improvement on validation set accuracy.

1.2.2 K-nearest neighbor

K-nearest neighbor (KNN) [12] is a type of instance-based learning or lazy

learning, meaning that there is no training phase and the learning only occurs when

predicting new instances. In classification problem, the label of a new instance

is based on labels of k data points that are closest to the data point in interest.

The distance metric varies by problems. Examples include Euclidean distances,

Manhattan distances, Hamming distances [13], etc. Results can be determined by

a majority vote or weighted average based on the distance of each data point to the
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particular point in interest. KNN can also be used in regression problems. Given

a new data point, KNN first select k nearest data points based on certain distance

metric, then a local linear regression model is build only using these k data points.

The hyper-parameter k in KNN can be used to specify the variance-bias trade-

off. For smaller k we obtain more complicated decision boundaries in the model,

which has lower bias but higher variance. For larger k we obtain simpler model with

higher bias but lower variance. A validation dataset is typically used to specify this

parameter.

There are several issues in using KNN. The first one is the curse of dimen-

sionality, especially for Euclidean distance metric. In high dimensional space the

Euclidean distance between any two data points is almost equivalent, which makes

it more difficult to define “neighbors” [14]. Another problem is scaling of each fea-

ture, which dramatically influences the distance. Thus one needs to make sure the

unit used for each feature represents its actual contributions to the distance. A

third problem is correlation among features. In such cases special distance metric

needs to be considered, such as Mahalanobis distance with a predefined covariance

matrix [15].

1.2.3 Support Vector Machine

Classic support vector machine (SVM) uses a hyperplane to separate negative

from positive examples in the feature space in classification problems. Thus the

learner produces a linear decision boundary for linearly separable samples [16]. The
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orientation of the plane is determined by maximizing the margin, which is defined

as the distance of nearest point to the plane. The two marginal hyperplanes can be

written as w>x + b = ±1, i.e., positive examples satisfy w>x + b ≥ 1 and negative

examples satisfy w>x+ b ≤ −1. The optimization problem can be written as

min
1

2
‖ w ‖2

s.t. yi(w
>xi + b) ≥ 1, for i = 1 . . . n.

The optimization is solved by finding its dual problem using Lagrange multipliers

and maximizing the quadratic linear program

max Σn
i=1λi −

1

2
Σn
i=1Σn

j=1λiλjyiyjx
>
i xj

s.t. λ ≥ 0 and λ>y = 0,

where λ = (λ1, . . . , λn)> denotes the Lagrange multipliers. The second term in

the dual objective yiyjx
>
i xj reveals a particular choice of the kernel function. To

obtain a non-linear decision boundary for non-linearly separable samples, the kernel

function needs to be changed. Examples include the polynomial kernel (x>i xj + 1)d

or the radial basis kernel exp(−‖xi−xj‖
2

2σ2 ) [17].

1.2.4 Artificial Neural Network

Artificial neural network (ANN) is an example of a “black-box” learner, which

is capable of producing any arbitrary decision boundary as needed. Its structure

resembles a biological neural network, which consists of interconnected nodes or

“neurons”. It typically contains three layers: input layer, intermediate layer and
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output layer. The intermediate layer can contain multiple sub-layers. Each node in

the input layer receives an input of a particular feature, and passes the “signal” to all

the nodes in intermediate layers. The intermediate nodes receive information from

multiple sources and produce certain outputs, governed by the activation function.

The outputs are then passed to the output nodes to generate predictions [3].

The performance of an ANN learner highly depends on the structure of the

network and specification of nodes. Two commonly used neuron types are percep-

tron and sigmoid. The activation function for perceptron is

y =


1 x>β > b

0 otherwise

The sigmoid activation function is

y =
1

1 + exp(x>β)
.

Both activation functions are non-linear, which enables the possibility of creating

arbitrary decision boundaries. There are many algorithms for estimating the pa-

rameters in ANN. Most of the algorithms employ some form of gradient descent,

using back-propagation to compute the actual gradients [18].

1.3 Model Validation

The process of statistical modeling often involves iterations between model

fitting and model validation. It is often difficult to obtain a good model in one run,

but the quality of the model can be improved through an iterative process.
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Correctness of statistical assumptions needs to be checked in model validation

process. For OLS, residual vs. fitted value/covariates plot validates the homoscedas-

ticity and zero-mean assumptions of the error. QQ-plot provides validation about

the normality assumption. Jack-knife plot and Cook’s distance plot can be used to

check the outliers and influential points respectively [19].

The problem of collinearity occurs when covariates are linearly dependent on

each other, i.e., the design matrix is singular or close to singular. In such case

the variance of parameter estimates increase dramatically and the model becomes

less robust, i.e., small perturbation in the data would lead to large difference in the

estimates [20]. The interpretation of estimated parameters also becomes ambiguous.

A typical way of detecting collinearity is to use variance inflation factor (VIF),

defined as

ˆvar(β̂j) =
s2

(n− 1) ˆvar(xj)

1

1−R2
j

,

where R2
j is the R2 when xj is regressed on other covariates.

In GLMs, instead of using residual, we can generate deviance plot in a similar

fashion and do F test for significance of the model. The test, however, is only valid

asymptotically and should not be relied upon when data are small [6].

Beyond assumption validation, the model performance also needs to be checked,

as well as the issue of over-fitting and under-fitting. Out-of-sample testing is usually

used in such task. When data are relatively small, cross-validation (CV) can be used

to reduce the variance in the testing data. When data are large, however, CV can

be computationally expensive and splitting the data into training and testing sets
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will suffice. The problem of over-fitting is detected when the performance in the

training data is significantly better than that in the testing data.

Different metrics can be used to test model performance for various pur-

poses. For binary classification problem, we can plot receiver operating charac-

teristic (ROC) curve and compute area under the curve (AUC) if the model output

is the probability of being positive (e.g. logistic regression) [21]. When lowering the

threshold for classifying new data as positive (thus increasing sensitivity), one would

expect to increase the false positive rate (fall-out), so the larger the AUC the better

the model. For continuous response variable, cumulative gain chart or Gini index

are sometimes used to assess the model [22]. The cumulative gain chart is obtained

by ordering the data by fitted value and cumulatively plot the true response for

each tier of the fitted value. It reveals the effectiveness of the predictive model on

separating high responses from low responses.

1.4 Model Selection

The problem of model selection arises when we want to build a concise and

interpretable model, but are given a large number of variables which are likely to

be correlated. The problem are often coupled with the collinearity issue. Below, we

discuss several approaches to tackle this issue.
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1.4.1 Ridge Regression

Ridge regression [23] uses an l2 penalty term to address the collinearity issue.

The coefficients are estimated by minimizing

Σi(yi − x>i β)2 + λΣp
j=1β

2
j ,

where λ is the tuning parameter. The solution is given by

β̂ = (X>X + λI)−1X>y.

Recall that collinearity results in a singular or close to singular X>X. By adding

the term λI, the inversion becomes much less problematic. Thus ridge regression

reduces the variance of β̂. On the other hand, since denominator is increased, the

estimates are down-biased. Ridge regression provides a way of reducing the model

variance, but unfortunately doesn’t do the model selection task.

1.4.2 Stepwise Regression

Stepwise regression is a combination of forward selection and backward elimi-

nation, which includes or excludes variables using a series of F-tests or t-tests [24–26].

The algorithm uses thresholds of p-values for entering the model (pin) and leaving

the model (pout). In the forward selection step, it adds one variable from the pool of

remaining variables with the smallest p-value in t-test for coefficient estimates given

existing variables present in the model, and stops when all p-values are greater than

pin. In the backward elimination step, it deletes one variable from the existing vari-
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ables with the largest p-value while satisfying p > pout, and stops deleting if all

p-values are smaller than pout.

We can see that, the lower the thresholds for pin and pout, the harder it is for

variables to enter the model and the easier it is for variables to leave the model. Thus

the lower the threshold, the conciser the model and in turn the less the over-fitting

problem.

Stepwise regression provides a practical way for model selection. It still, how-

ever, searches in a large candidate space and usually involves large number of iter-

ations. When data are large, it becomes more computationally intensive.

1.4.3 Principal Component Analysis

Principal component analysis (PCA) [27] is an unsupervised learning algo-

rithm for model selection. It transforms a set of possibly correlated variables into

a new set of linearly uncorrelated variables (orthogonal components). The method

is particularly useful when there exists a complex and unclear dependence relation

among covariates. In such case directly applying the original covariates to the model

provides no clear explanation about the effects of each covariate. Thus it is plausible

to generate new features which bear no physical interpretation, since the main task

here is to prevent over-fitting and improve prediction performance [28].

The principal components are defined as the vector in the feature space with

the largest variance, defined as the sample variance of projections of all data points

onto the vector. It is also the eigenvector with the largest eigenvalue in the feature
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space. Another way of interpreting it is finding the vector such that the sum of

squares of distance of all other points to the vector is minimized. In some fields it

is also named singular value decomposition (SVD) [29].

The number of principal components can be smaller than the original number

of features, if we set a minimum threshold on the variance or eigenvalue. Thus it

can perform model selection and dimension reduction, but the interpretability of

the model or features is lost.

1.4.4 Lasso

Lasso stands for “least absolute shrinkage and selection operator”, which uses

an l1 penalty to reduce some of the coefficients down to zero, achieving both model

selection and variance reduction [30]. It was first proposed for improving the per-

formance of OLS. The objective can be written as

β̂λ = arg min
(
‖ Y −Xβ ‖2

2 +λΣp
j=1|βj|

)
,

where λ is a hyper-parameter. Notice that the penalty term does not include the

intercept. Tuning of λ changes the balance between model bias and model concise-

ness. It is typically determined in an out-of-sample fashion, e.g., cross-validation.

When data are large, however, other metric can be used such as Akaike’s Information

Criterion (AIC) [31] or Bayesian Information Criterion (BIC) [32].

An extension of the method named “grouped Lasso” can select variables in

groups [33], which is particularly useful for categorical variables, where it may be
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desirable to select all dummy variables all at once. The objective in this case becomes

β̂λ = arg min
(
‖ Y −Xβ ‖2

2 +λΣG
g=1 ‖ βIg ‖2

)
,

where Ig is the index set for gth group of variables. The penalty can be considered

as one in between l1 and l2 penalty. The group Lasso method can also be used

together with GLM such as logistic regression [34]. A further extension of Lasso is

one combined with mixed effects models [35].

Lasso was first introduced to solve the problem when N � p. Recent research,

however, has also found substantial practical benefits of using Lasso in applications

with N � p [36].

Similar to ridge regression, Lasso also introduces a down-bias to the estimates.

A common practice is to implement a two-stage procedure, which first uses Lasso

to perform model selection, and then use the selected feature to refit the model

without using any penalties.

1.4.5 Gradient Boosting

Gradient boosting machine (GBM) is an ensemble learning method built from

a group of weak learners [37]. It has gained recent popularity for solving model

selection and collinearity problems [38]. GBM can work with any model fit meaure

ρ given that it is differentiable. The fitting procedure is typically conducted in a

step-wise fashion. Define the negative gradient of ρ as

U(Ŷ ) = −∂ρ(Y, Ŷ )

∂Ŷ
,
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where Ŷ is fitted value for the response Y . At step m, it regresses U(Ŷ m) on one

of week learners and obtains Û(Ŷ m) which is the fitted result from the best learner.

Then it updates

Ŷ m+1 = Ŷ m + vÛ(Ŷ m),

with v being the step size. The process is then repeated until some convergence

threshold.

The weak learners are typically the features, i.e., each feature corresponds to

one weak learner. Since they enter the model in a particular order (however, one

feature can enter the model multiple times), less important features would be less

likely to enter the model, or at least in a much later time. Thus a more concise

model is obtained if we stop the process at an earlier time. Similar to Lasso, GBM

also produces down-biased estimates.

1.5 Bootstrapping and Bagging

A bootstrap sample is obtained by resampling from the data with replace-

ment. It is possible for one data point to enter the bootstrap sample multiple times,

which provides a way to generate new samples from existing data. Bootstrapping

has been used to assess many properties of estimators, such as bias, variance, confi-

dence intervals, prediction error, etc [39]. Uniform distribution is typically used in

the sampling process, but more general distributions have also been proposed such

as importance sampling [40]. We may sample data by panels, or assign different

weights on data points, e.g., up-sampling of positive examples when the proportion
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of positive examples is low.

Bootstrap sample can be generated on the same size-scale as the original

dataset, but the computation becomes burdensome for large datasets. One nat-

ural approach is small sub-sampling, which generates samples on a smaller scale

compared to the original dataset. The statistics literature demonstrates, however,

that using a single smaller-order subsample can bias the outcome of model by in-

troducing false positives [41]. This can occur if M < N
5

(where N is the sample

size and M is the subsample size). Furthermore, a stronger result has been proved

that, if only a single subsample is considered, it is virtually impossible to retrieve

a sparse set of significant features (that is, the probability of doing so vanishes to

zero) [42]. Subsampling introduces additional noise into the problem. Thus, a single

subsample may inflate the variance of the estimated coefficients, analogous to how

the variance of a classical sample mean is larger when the sample size is smaller.

A feature that appears infrequently in the big data may be misrepresented in the

subsample.

On the contrary, multiple subsamples can give a more representative picture,

i.e., bootstrap aggregating, or bagging [41]. Bagging is an ensemble learning method

designed to improve stability and accuracy of learn algorithms. It generates multi-

ple learners using multiple bootstrapped samples and them aggregates them to get

the final model. For classification problem the aggregation is done by a majority

vote, while for regression problem the result is obtained by averaging or weighted

averaging. The bag of little bootstraps (BLB) is a recent method that combines

bagging with subsampling to achieve both computational efficiency and model ade-

18



quacy [43]. Recent work in statistics [44, 45] proves that, if M and S are correctly

chosen (where M is the subsample size and S is the number of subsamples), the

aggregated results retain theoretical properties such as consistency, and correct bias

that may arise with a single subsample.

1.6 Stochastic Optimization

An optimization problem typically consists of an objective function, a set of

decision variables and a number of constraints on the variables. Decision variables

are tuned so that the objective function is maximized or minimized, while satisfying

the set of constraints. The objective function and constraints can be linear (linear

programming) [46,47], or the variables can be confined in discrete space such as inte-

gers (integer programming) [48,49], or the problem can be about optimizing convex

functions over convex sets (convex optimization) [50]. For convex optimization prob-

lems the objective function can be differentiable or non-differentiable (non-smooth

optimization [51]). For non-smooth optimization there is e.g. the sub-gradient

method [52] which utilizes sub-derivatives to solve the problem. If the objective is

convex, the sub-gradient method reduces to the steepest descent method [52].

All cases above can be classified as deterministic optimization problems, which

use fixed parameters to describe the model. A harder class of optimization problems

arises when there is uncertainty in the parameters, i.e., the stochastic optimization

[53, 54]. Many examples fall into this framework:

• In the newsvendor problem, the seller tries to determine the quantity of a daily
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order of newspapers to satisfy a random demand D, so as to maximize the

revenue defined as dollar amount earned by selling the newspaper minus the

cost of the order;

• In travel planning, the traveler needs to find a shortest path from a set of al-

ternatives, when the observed traveling time for a particular path is subject to

random changes such as traffic lights, weather condition or road constructions;

• In marketing campaign design, the manager wants to determine the best set

of designs for the marketing tools (direct-mails, emails or webpages) to raise

the maximum amount of revenue, the highest conversion rate or the greatest

customer satisfactory. The outcome is highly uncertain.

In all the examples above, our decisions not only determine the value of objective

functions, but also observations of unknown parameters. If we consider the distribu-

tion of unknown parameters as known, the distribution is fixed and new observations

are viewed only as realizations of the underlying distribution. If, however, we are

uncertain about the distribution, new observations ought to be used to change our

beliefs about the distribution. In such case, one needs to optimize on the learning

process as well as the objective function, i.e., how to choose a series of decisions

so that the optimal solution can be found as quickly as possible. This is when the

optimal learning comes into play [54].

One set of statistical learning methods uses Bayesian statistics to address this

problem [55–58]. The initial belief about the random quantities can be represented

as a prior distribution. When a new outcome is observed, Bayes’ rule can be used
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to update the belief distribution to obtain the posterior distribution.

Another application of statistical learning in stochastic optimization is model-

ing complex objective function. One such example is stochastic dynamic program-

ming (or reinforcement learning in the computer science community) [59,60], which

addresses the problem of choosing an action given a state which generates a reward

and takes us to the new state [54]. The Q-learning method [61] is one candidate for

solving such problem, which uses a Q-function to approximate the true utility func-

tion. Another way to construct this approximation is by means of a regression model

relating the value of a state to a relatively small set of inputs or parameters [62].

Chapter 3 provides a more detailed introduction about applications of op-

timal learning on ranking and selection (R&S), which is a sub-class of stochastic

optimization that focuses on selecting the best alternative from a set of possible

choices [63].
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Chapter 2: Statistical Learning for Non-profit Fundraising

2.1 Overview

In this work we apply statistical learning on a non-profit fundraising problem

for the American Red Cross (ARC). When a major disaster strikes (e.g. Hurricane

Katrina or the Haiti earthquake), ARC experiences sharp spikes in one-time dona-

tions. These donations are coordinated for immediate disaster relief, as well as a

wide variety of “development” programs, such as community disaster preparation,

emergency response training, and sustainability efforts. However, fewer than 30%

of one-time donors return to give a second time. The unpredictability of donor

response limits managers’ ability to plan long-term operations for programs that

require steady funding [64]. In order to secure a consistent, reliable cash flow, ARC

devotes significant efforts toward cultivating one-time “disaster donors” into long-

term donors.

Cultivation is largely accomplished through direct mail, which accounts for

about 2/3 of the total direct marketing budget in ARC. However, fewer than 50%

of these are retained from one year to the next, so it is important to ensure that

new donors are always being converted. Simply sending more mail may not be an

effective way to achieve this goal [65], and in any case may not be feasible under a
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fixed budget.

In this work we study the problem of improving conversion and retention rates

through the design attributes of the mailings themselves. “Design” can refer to the

content of the letter, the presence or absence of a free gift (such as a set of address

labels), various methods for setting suggested donation options, and other marketing

strategies. From an organizational point of view, a non-profit manager may have

records of millions of past communications with donors, but does not have access

to detailed demographic information of donors. The operational decision of how to

design and target a new fundraiser must be based on the information that is visible

to the organization.

Our main contribution is an empirical analysis that identifies design attributes

of direct-mail fundraisers that exert a significant impact on donor cultivation and

retention. The context for our analysis is provided by a dataset jointly compiled by

the Red Cross and Russ Reid Company during 2009-2011, for a cultivation program

known as STAART (Strategy Through Applied Analytics, Research, and Testing).

The dataset covers $49 million in donations to STAART from over 300,000 donors,

with detailed campaign information available for over 8,000,000 individual recorded

communications with over 1,000,000 individuals. Specifically, we have records of the

characteristics of the outreach strategy used, such as the design or formulation of the

mailed appeal; limited characteristics of individual donors, such as their previous

donation amounts; and some characteristics of disasters such as their magnitude and

location. We also consider interactions between design attributes of campaigns, thus

accounting for potential heterogeneity of design effects by donor class.
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We focus on four important design strategies used by the Red Cross:

• Supporter cards that affirms the donor’s identity as a Red Cross supporter;

• Different ways of composing the story, or the written appeal included in a

mailing, such as stories focusing on disaster preparedness or relief efforts;

• Free gift items such as address labels, glow sticks, etc;

• The technique of dynamically generating the suggested donation amounts

based on the donor’s previous behaviour (e.g. 75%, 100%, or 150% of the

donor’s most recent donation).

To summarize, we contribute to the literature on non-profit analytics by iden-

tifying designs that exert a significant impact on the outcome of a fundraising cam-

paign, as well as key interactions between these designs and various donor segments.

To our knowledge, this is the largest study to date on the interactions between

donors, disasters, and designs. Our results (e.g., for preparedness stories and gift

items) suggest ways in which cultivation campaigns (such as STAART) should be

considered differently from other types of fundraisers. These insights lead to clear,

simple policy recommendations; we conduct simulations that suggest that these

recommendations have significant potential to improve fundraising efficiency.

2.2 Other related work

The subject of charitable donations has been studied in economics, marketing,

and public policy. There has been relatively little work focusing on donor cultivation
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and retention, particularly from the operational perspective; we believe our work to

be the first large-scale study of this type. Below, we survey the viewpoints of other

communities and contrast them with our own.

Both theoretical and empirical studies of non-profit donations have often fo-

cused on the impact of donor income level, donor demographics, and policy decisions

such as tax credits, on trends in charitable giving. Empirical work on this topic

tends to rely on publicly available surveys on family expenditures [66,67], which of-

fer detailed income and demographic data on relatively small samples of households.

One example of this demographics-oriented approach is a recent study based on the

U.S. Panel Study of Income Dynamics, which surveys 5,000 families in the United

States [68, 69]. See also [70] for a thorough demographic analysis of the market for

charitable donations. Other recent work has presented evidence correlating dona-

tion amounts with other factors such as media coverage [71] and trends in the stock

market [72].

The operations perspective has mostly considered revenue management and

efficient resource allocation [73–75]. A recent work [76] studied how charitable mo-

tives can maximize the revenue generated in an auction. The literature also contains

a number of theoretical models designed from the donor’s point of view, e.g. seek-

ing to optimally allocate resources to maximize a utility function [77, 78]. There is

also a great deal of interest in behavioural drivers of donations. For example, how

the prestige of a university affects alumni donations [79], how “foot-in-the-door”

behaviour (e.g. asking potential donors to fill out a survey before asking them to

donate) affects the likelihood of donor response [80], how donor motivation is af-
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fected by information about other donors [81], how the propensity of repeated direct

mailings to irritate donors and negatively impact retention [82], or how donations

are impacted by the promise of matching grants [83, 84]. Donor motivation is an-

other important topic of research [85,86], but is outside the scope of our study (and

our data). We use the data to infer variation between donors, whether it stems from

behavioural, demographic, or economic factors.

The literature has considered a number of theoretical econometric models for

predicting donation amounts. One widely-used class of such models is known as the

Tobit model [87], applied e.g. to investigate the effect of income and estate taxes on

donations by [88]. This approach (see also the extension in [68]) is motivated by the

particular structure of donations, which are always non-negative, and have a high

incidence of zero values, because many surveyed households do not give to charity

at all. In our setting, however, most individual donations to the ARC are fairly

small, and the organization places high value on the incidence of donation (that

is, the ability to reliably elicit a response), as opposed to the monetary amount.

Additionally, while the organization can distinguish between individual donors, it

does not have access to personally identifiable information (PII) about them (e.g.

income or demographics). We rely on the data to establish the drivers of donor

cultivation, treating the PII as an unobservable random effect.

The ARC has been the subject of extensive previous studies, for example,

incentives in the context of blood donations [89], or consumer attitudes toward

brands that partner with the organization [90]. Behavioural studies such as [91]

have used Red Cross donations to provide a context for studying donor motivations.

26



Logistical issues faced by the organization have been studied e.g. in [92]. To our

knowledge, however, our study is the first to focus on the effective design of direct-

mail fundraisers, particularly in regard to donor cultivation. Our work is closer

to [93], which also studies the incidence of donation for a direct-mail fundraiser (by

a different organization), with a dataset covering 48,000 communications with 3,000

households, and a small number of basic design attributes such as the presence of a

brochure or payment slip in the mailing. By contrast, we study a massive dataset

with over 8 million communications and a rich set of donor and campaign attributes

(up to 300 in the largest model we consider).

2.3 Description of STAART data

New donors enter the STAART database by contributing to a specific disaster

relief campaign (e.g. after a major disaster), or by responding to an acquisition

campaign. These new acquisitions subsequently receive mailed appeals encouraging

them to continue their support. If a donor responds to such an appeal, he or she is

said to be “converted,” and is considered a current supporter of the program. Note

that, in order to be converted, a donor must give at least two donations: the first

donation identifying the donor as an acquisition, and a second donation in response

to a conversion attempt. Once converted, a donor is regularly sent several types of

mailings, broadly classified as renewal (direct appeals for a contribution), cultivation

(newsletter-like mailings, primarily intended to build a relationship with the donor)

and follow-up (other intermittent mailings). If the donor does not respond to any
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of these appeals for a period of 18 months, he or she is reclassified as lapsed. Some

campaigns have a generic type, meaning that they are catch-all fundraisers targeted

at all donors.

The Red Cross dataset consists of several large lists that separately catalogue

communications, donations, donors, and disasters. We performed data processing

to cross-reference and extract information from these lists. These data have a “lay-

ered” structure, such that increasingly smaller subsets of the data contain more

detailed information (with finer granularity). In all, the dataset records 20.2 million

(20.2M) individual communications with 1.3M different donors during 2006-2011.

However, most of the information pertaining to fundraiser design is available for

8.6M communications taking place during 2009-2011, and we also have more de-

tailed information about donors for 4.3M of these communications. Fewer than

10% of communications result in donations, and we also have multiple layers of data

for these gifts. Table 2.1 shows how much of each type of information is available.

Below, we describe the data in more detail.

Donors. Each donor is assigned a unique account number, so that we can

always identify the specific donor with whom any given communication occurred.

The location of a donor is represented in our study by the U.S. state associated with

an account. Limited affiliation information is available, e.g. whether the donor is

listed with a county or city chapter. At the same time, the Red Cross does not have

access to personally identifiable information about the donors (such as demographic

or income information). This generally holds for the entire non-profit industry.

Communications with donors are classified according to campaign type, which
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Table 2.1: Amount of data available for various types of information.

Type Amount Donors Content
Raw
size

Full
size

Communications

20.2M 1.3M
Account ID, location, affiliation

1.6 GB —
Campaign types of communica-
tions

8.6M 1.2M All design features 1.1 GB 3.0 GB
4.3M 531K Donor segmentation information 609 MB 2.4 GB

Gifts

819K 366K
Dates, amounts, payment meth-
ods

105 MB —

308K 193K All design features 69 MB 103 MB
169K 98K Donor segmentation information 39 MB 110 MB

89K 87K
Disaster type, magnitude, loca-
tion

28 MB 49 MB

6.9K 6.5K
Segmentation+disaster informa-
tion

2 MB 6 MB

“Raw size” refers to the data obtained directly from the Red Cross; “Full
size” also includes additional information derived from the dataset, described in
Section 2.4.2.

reflects the status of a donor (acquisition, renewal, lapsed, etc.) at the time of

the communication. Donors are further categorized according to donor class, a

measure of how much they give per donation, which can be low ($10−$99), medium

($100− $499), or high ($500− $9999), with some additional classes such as “Haiti-

influenced donors” representing connections to a particular disaster. We also have

records of donor recency, which represents the time since their last donation (e.g. 0-6

months, 6-12 months, etc.). These two pieces of information are jointly referred to

as segmentation information. Other donor classes may also be defined in connection

with specific disasters, e.g. “Haiti-influenced donors” whose first donation followed

on the Haiti earthquake.

To understand our results, it is important to bear in mind the specifics of

the relationship between campaign type and donor recency. Table 2.2 shows the
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Table 2.2: Breakdown of communications by campaign type and donor recency for
several important campaign types.

0-6 mos. 7-12 mos. 13-18 mos. 19-24 mos. 25-36 mos. 37-48 mos.
Acquisition 52192 6313 1562 2657 0 125525
Cultivation 478665 98744 87008 3546 0 0

Lapsed 0 0 22009 17006 38158 0
Renewal 308236 407490 22366 11149 1370 770
Generic 1017854 350986 361570 79511 0 0

number of communications in each recency category, for five important campaign

types. All donors in the Acquisition category have only made one disaster donation.

As expected, many of them did so within the past six months, reflecting the effort

to cultivate recent donors. However, a substantial group of communications in this

category were targeted at donors who donated over 36 months ago, demonstrating

a late effort by the Red Cross to reach out to donors who had never been cultivated.

Among our current supporters (Renewal and Cultivation), many have made their

last donation recently, but substantial proportions fall into the 7-12 and 13-18 month

categories.

Donations. The date, amount, and payment method of every donation are

recorded, as well as the fund receiving the donation. In the available data, 60

funds are associated with specific disasters (e.g. Iowa flood, Haiti earthquake, or

Tohoku tsunami), for which we have records of disaster type (e.g. earthquake,

flood, or hurricane), magnitude (death toll, cost in millions), and location (domestic

or international).

Designs. Any given piece of mail is constructed with a set of design features.

These include personalization of the mailing (inclusion of the donor’s name and
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address), the presence or absence of various donation options (e.g. checkboxes for

donating $20 or $30), and the possible inclusion of gift items such as mailing labels

or a glowstick. A supporter card is included in 5.5% of communications. Cards are

sent to the Renewal type, but cover all of the main donor and recency categories

within that type; the gift items were sent to Acquisition and Lapsed types, again

covering a variety of recency groups. A proportion of 64% of all communications

offers the option to donate online. In 3.5% of communications, the donor has the

option to choose the fund that will receive his or her donation. The formulation of

the appeal is described, e.g. whether the letter mentions a specific disaster (about

40% of communications) or offers a generic story about disaster relief (10%), or

whether it emphasizes disaster preparedness (50%). Figure 2.1 shows an example of

a mailing with three suggested amounts of $40, $50 and $65. These amounts may

also be dynamically generated, i.e., the amount is calculated based on the previous

donations.

We often have records of multiple communications with the same donor ac-

count. Figure 2.2 shows the empirical distribution of the number of communications

Figure 2.1: Example of a rapid response mailing (publicly available [94]).
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Figure 2.2: Empirical distribution (log-scale) of the number of communications per
account.

per account, that is, the frequency of accounts for various numbers of communica-

tions. As expected, most accounts have fewer than 10 communications, but there

are some with over 60. The decision to continue communicating with a particular

donor is influenced by factors in our dataset such as the donor class and recency

(high-class, recent donors are targeted more often). Note that class and recency are

determined by the donor’s most recent donation only; Red Cross analysts believe

that this information is sufficient for deciding whether to target a donor. In general,

the Red Cross also prefers to target donors who choose to give to general funds (such

as “Where Our Need Is Greatest”) rather than to specific disaster funds; however,

this is not a major factor in STAART, since over 91% of all gifts in our data are

made to general funds, and only 3.5% of mailings allow a choice of fund.

However, these communications may have different campaign types, reflecting

the donor’s transition from Acquisition to Renewal, or Renewal to Lapsed. The
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donor’s segmentation information can also change over time. The design features

can change with every communication as the organization experiments with new

outreach methods. Note also that the outcome of a communication (success or

failure, i.e. whether or not the communication elicited a donation) determines the

amount of information that we receive. We can only observe detailed fund and

disaster information for successful communications, where there is a record of money

sent to a particular fund. Because the number of gifts is far smaller than the

number of communications, the total volume of fund and disaster information is

also relatively small; see Table 2.1 for the exact numbers. To leverage as much of

the data as possible, we develop a separate model for each layer of data.

2.4 Methodology

We describe the methodology used to analyze the Red Cross dataset. In

Section 2.4.1, we describe the basic statistical model that forms the foundation of

our analysis. Section 2.4.2 discusses additional modeling and feature generation.

Section 2.5 gives the full technical details of the estimation of the model on the

data.

2.4.1 Statistical model and procedure

Let i ∈ {1, ..., I} denote the ith donor account, with I being the total number

of accounts. To reflect the longitudinal nature of the data, let the panel size Ni be

the number of recorded communications with account i, and let N =
∑I

i=1Ni be the
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total number of communications. Also let yij denote the result of communication

j = 1, ..., Ni with account i.

A communication is “successful” (yij = 1) if it results in a donation. Other-

wise, the communication is considered to be a failure (yij = 0). We begin with a

mixed-effect logistic regression model, which assumes that

E (yij | bi) = g−1
(
xTijβ + bi

)
, (2.1)

where g denotes the logit link function. The p-vector xij represents the attributes of

the jth communication with account i. This includes any relevant donor, donation

and design information (see Section 2.3, Table 2.1) available for this communication.

For example, a particular component xijk can be equal to 1 if the jth communication

with account i included an option to donate online, and 0 otherwise.

The parameter bi is a random effect [95]; we assume that bi ∼ N (0, σ2), where

σ2 represents random variation between panels, and that the individual observations

yij are conditionally independent given bi. We include random effects in the model

for several reasons. First, bi can be used to represent unobservable variation in

donor behaviour, specific to account i, and reduces statistical bias that arises when

multiple observations come from the same source. Second, random effects reflect the

fact that the donors in the dataset come from a larger population of donors, and the

Red Cross continuously communicates with new individuals. Random effects thus

allow us to reason about the entire population (and, potentially, new donors). Third,

random effects allow for a much more compact model with only a single additional

parameter σ2, whereas adding a fixed effect for each account would add hundreds
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of thousands of attributes. Finally, modeling bi as a random variable reflects the

organization’s considerable uncertainty about individual donor characteristics and

behaviour.

For given β and σ2, the joint probability of observing yij, i = 1, ..., I, j =

1, ..., Ni, can be written as

L (β, σ) =
I∏
i=1

∫ ∞
−∞

Ni∏
j=1

(
ex

T
ijβ+bi

1 + ex
T
ijβ+bi

)yij (
1

1 + ex
T
ijβ+bi

)1−yij e−
b2i

2σ2

√
2πσ2

dbi (2.2)

where the integral represents an expectation of a conditional probability given bi.

Then,

(β∗, σ∗) = arg max
β,σ

logL (β, σ) (2.3)

represents the maximum-likelihood estimates of β and σ. The MLE optimization

problem in (2.3) is typically solved using expectation-maximization (EM) algo-

rithms [96] where the random effect terms are treated as missing data and estimated

iteratively. However, this approach is intractable in our problem, because (2.2) is a

product of I integrals (where I is on the order of 106), which cannot be expressed in

closed form and must be evaluated numerically. Numerical methods such as Gaus-

sian quadrature may be feasible for small I, Ni or p, but scale very poorly to large

data [97,98].

All else being equal, a concise model with a smaller number of features is

preferable. Hundreds of features can be extracted from the Red Cross dataset,

including those described in Section 2.3 and the interaction terms discussed later

in Section 2.4.2. However, from a managerial viewpoint, it is preferable to focus on

a small set of key drivers of campaign success, and from a statistical viewpoint, a
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smaller model reduces the risk of overfitting and is easier to generalize; also, extra

attributes impose additional noise on prediction. To identify the most significant

features, we use Lasso for model selection [99] and replace (2.3) by

(β∗, σ∗) = arg min
β,σ

{
− logL (β, σ) + λ

∑
k

|βk|

}
, (2.4)

where L is as defined in (2.2). The tuning parameter λ represents a price or penalty

incurred if we choose a non-zero value for any βk included in the final model. The

penalty function ‖β‖1 =
∑

k |βk| is non-differentiable around zero, causing βk to

shrink exactly to zero if the kth feature is found to be insignificant. See Section 1.4.4

for more discussion. Equation (2.4) balances the need for an accurate model with

more predictive power against the need for a compact model with fewer features.

By choosing λ carefully, we ensure that non-zero regression coefficients will only be

assigned to attributes with a significant impact on model accuracy. See Section 2.5

for additional numerical results demonstrating the benefits of this approach.

The choice of λ is automated as follows. Let β (λ) and σ (λ) be the choice of

β and σ that solves (2.4) for given λ. Then, let

A (λ) = {k : βk (λ) 6= 0}

be the set of attributes identified by (2.4) as being significant. The size |A (λ)| is

the number of features included in this model. We then solve

λ∗ = arg min
λ

{
−2 logL

(
β(λ), σ (λ)

)
+ |A (λ)| · logN

}
, (2.5)

choosing the penalty term to minimize the well-known Bayesian Information Crite-

rion (BIC) of [100]. Combining BIC with Lasso is a fairly widespread technique, and
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has been found to yield good practical performance on a variety of problems [101].

Other possible criteria from the literature include Akaike’s Information Criterion (or

AIC; see [102]) and cross-validation (see e.g. [103]). However, AIC-Lasso tends to

include more non-zero predictors than necessary [104]. Furthermore, although the

CV criterion is widely used in the literature, it has less theoretical support; a recent

work [105] has obtained consistency results only for a restrictive class of models with

orthogonal design matrices, which rarely occur with discrete data.

Finally, we remark on the additional challenge of estimating (2.4) on a large

dataset. Model selection reduces the feature space, but (2.4) remains computation-

ally prohibitive for large N . In such circumstances, a natural strategy is to take a

random sample (of a tractable size) from the data, and use this “subsample” to es-

timate the model. We adopt this approach; however, the statistics literature [41,45]

has demonstrated that using a single subsample can introduce bias into the model,

as well as inflate the variance of the estimated coefficients. To mitigate this issue,

we draw S small subsamples, thus obtaining S distinct Lasso models. Due to the

noise introduced by subsampling, the set A (λ∗) of selected features varies across

subsamples. To reduce this variability and ensure that only significant features are

selected, we use a “majority vote,” i.e., we include the kth feature in our model if

it is selected in over 50% of the S Lasso models. Please see the Section 2.5 for the

full technical details of this procedure.

Letting A∗ be the set of all such features, we can finally recompute

arg max
β,σ

logL (β, σ) ,

37



subject to the additional constraint that βk = 0 for k /∈ A∗, yielding the optimal

estimates of the significant regression coefficients. This step is known as “debias-

ing” or “post-Lasso,” and has been demonstrated to eliminate bias from the Lasso

estimator and produce more precise confidence intervals in settings such as least

squares and quantile regression [106, 107]. Because the computational cost of this

step is still prohibitive, we can perform debiasing on a new set of subsamples and av-

erage the results to obtain the final coefficients. Please see Section 2.5 for a detailed

discussion.

2.4.2 Modeling and feature generation

In addition to the information already present in the data and described in

Section 2.3, we generated additional attributes to address important statistical and

modeling issues. To study the effectiveness of segment-specific fundraising strate-

gies, we constructed numerous interaction terms and incorporated them into our

model. In particular, we considered interactions between design features, such as

the presence or absence of dynamic amounts, and donor features such as type (Ac-

quisition, Renewal, etc.) and recency. This allows us to capture segment-specific

effects, e.g. strategies that work better with new donors than lapsed donors. In-

teractions between donor features and the presence or absence of other donation

options were also investigated. Model selection becomes crucial when considering

interactions, as the number of two-way interaction terms grows quadratically with

the number of features. The last column of Table 2.1 shows that the size of the data
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increases dramatically once the additional features have been generated.

Secondly, we generated additional control covariates to reduce bias due to

unobservable correlations between communications. The bias is potentially due to

correlation between measured and unmeasured, confounded, or “missing” features

of each communication. Most notably, the behaviour of a single donor during the

surveyed time period may be subject to time dependencies. A donor is unlikely

to maintain the same level of contribution over time; rather one may expect the

donor to lapse once the resources he or she has allocated for donation have been

exhausted. From a behavioural standpoint, a donor who contributes frequently may

simply be more motivated, or place higher value on pro-social activity. We control

for the time factor as follows. For communication j with account i, we calculate 1)

the number of previous communications with i, prior to the date of communication

j; 2) the number of previous successful communications with i; 3) the number of

previous communications of the same type with i; and 4) the number of different

funds that have sent requests to the donor thus far. These attributes are included

in xij. Additional information on the time lapsed between donations is provided in

the form of the recency attribute.

Another interesting research question deals with the dynamic generation of ask

amounts. Donor class information, based on the size of the donor’s last donation,

allows us to control for the magnitude of the asked amount and separate the effect of

dynamic generation from the effect of the precise amount asked for. We also control

for any fixed ask amounts (donation options) that appear on the mailing.

We also validated our results through cross analysis, comparing the results of
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feature selection across different model types. For example, we compared the results

of the model in Section 2.4.1, where each observation corresponds to an individual

communication, and a different model where an entire campaign is viewed as a single

observation, and the response variable is the success rate of the campaign. While the

exact values of the estimated coefficients differ between models, the key managerial

implications of the results are consistent throughout the study.

2.5 Challenge of massive data

From the point of view of traditional statistics, the logistic regression model

described in Section 2.4.1 should always benefit from more data. From a purely

theoretical viewpoint, a large sample size N is always a good thing, and theoretical

issues arise only when N < p. However, in practice, the estimation of the model

becomes computationally intractable when N is in the millions. We emphasize that

the computational challenge arises, not from memory issues (various techniques and

software packages, e.g. biglm in R, can be used to address that issue), but rather

from the estimation of (2.1), which requires us to optimize an expensive, highly

non-linear function.

Recall that (2.2) is a product of I integrals, where I is the number of unique

donor accounts (over 1M in all). Furthermore, each integrand is a product of Ni

logistic functions with a normal density, and thus is highly non-linear and non-

convex. None of the I integrals has a closed-form solution; consequently, (2.2)

can only be evaluated numerically, e.g. using Monte Carlo integration or Gaussian

40



quadrature. Numerical integration introduces additional error into the evaluation

of the likelihood function, and is also expensive for large I and Ni since each in-

tegrand must be evaluated multiple times. For these reasons, quadrature methods

are infeasible for large problems, leading to both memory and convergence issues

for expectation-maximization (EM) algorithms. This issue is well-known in the lit-

erature; for example, EM algorithms scale poorly to large datasets [98]. In our

experience, the available computational procedures for solving (2.3) with random

effects simply stalled, crashed, or otherwise failed to produce meaningful results.

With the advent of increasingly large datasets, the statistics literature has

now begun to pay closer attention to large-sample data, where N is very large

(in the millions) and p is moderately large (several hundred). Even with a large

number of samples, such data may be vulnerable to noise accumulation, spurious

correlations, and algorithmic instability [108]. Ideally, statistical methods for such

data should be computationally tractable while retaining the theoretical guarantees

of classical statistics (such as consistency). In order to scale up to the Red Cross

dataset, we synthesize several emerging statistical methodologies, such as small-

sample bootstrapping and stability selection, that yield both tractable and rigorous

results.

As discussed in Section 1.5, the Bag of Little Bootstraps (BLB) method, which

combines the idea of bootstrapping and subsampling, can be a useful tool to mitigate

these issues. We draw S small subsamples, leading to S distinct, independently

estimated Lasso models. Each subsample will produce different results: the number

of selected features may vary across subsamples, and the set of selected features
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itself may vary. However, as we describe below, these results can be aggregated to

obtain a single final set of accepted features, regression coefficients, and standard

errors.

We separate the estimation procedure into two stages: we perform variable

selection first, removing insignificant features to produce a model of reduced size,

and then estimate random effects to correct for variation between donors. See

e.g. [109] for a theoretical treatment of an approach separating fixed effect and

random effect estimation. Both stages use subsampling to address big data issues.

Model selection. We perform subsampling in line with the technique of

[43, 44] as follows. For each of S subsamples, we draw M communications with

replacement from the complete dataset. The work by [43] recommends setting M =

Nγ for 1
2
≤ γ < 1, and obtains robust empirical results for γ = 0.7. For a dataset

with N = 8.6× 106 communications, the size of a single subsample is M ≈ 71, 500.

With regard to the number of samples, a common technique [99] is to use S = N
M

,

or approximately S ≈ 120.

We then perform model selection as in Section 2.4.1, replacing N by M in

(2.5); however, as long as M > p, BIC preserves its theoretical consistency prop-

erties, which means that it will still correctly identify significant features [110]. To

aggregate the results, we use a version of the stability selection criterion of [111] as

follows. Each subsample s = 1, ..., S produces a different solution λ∗s of (2.5), and

a different acceptance set A (λ∗s). Intuitively, the kth feature is more likely to be

significant if it is selected by a larger number of these subsets. We include the kth
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feature in our final model if

1

S

S∑
s=1

1{k∈A(λ∗s)} ≥ ρ, (2.6)

that is, the proportion of samples in which k is selected exceeds a threshold 1
2
<

ρ < 1. Note that the extreme cases ρ = 0 and ρ = 1 correspond to the union and

intersection, respectively, of the sets A (λ∗s). Let A∗ be the set of all k for which

(2.6) holds.

Estimation. To correct for unobserved variation between donors, it is neces-

sary to refit the random effects model of (2.1) with the additional constraint that

βk = 0 for k /∈ A∗ (as proved in [107], this also corrects bias in the regression coef-

ficients). However, even with this reduction in the size of the model, (2.3) remains

prohibitively expensive to compute for the entire dataset. Again, we approach this

problem through subsampling. To preserve the longitudinal structure of the large

dataset across all subsamples, we now use entire panels as the unit of sampling.

We modify the BLB technique to include importance sampling from the empirical

distribution of the number of communications per panel (shown in Figure 2.2).

Formally, this is done as follows. LetM ′ = Iγ be the number of donors included

in each subsample, and let S ′ = I
M ′

be the number of subsamples generated. A single

subsample is created by simulating M ′ realizations of a discrete random variable Z

with pmf

P (Z = i) =
Ni∑I
i′=1Ni′

.

Let Z1, ..., ZM ′ denote these M ′ sampled values. For each m′ = 1, ...,M ′, if Zm′ = i,

we add Ni communications yi,1, ..., yi,Ni to the subsample. In this way, a particular
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panel has a higher probability of being sampled if it contains more communications.

Furthermore, if a panel is sampled, we automatically add every communication in

that panel to the subsample, thus preserving the longitudinal nature of the data.

It remains to obtain a single set of estimated coefficients from the results of

subsampling. We reoptimize (2.3), subject to βk = 0 for k /∈ A∗, independently on

each of the S ′ new subsamples. Let β̂k,s′ be the estimated coefficient of feature k

returned by (2.1) on subsample s′ ∈ {1, ..., S ′}. We calculate

β̄k =
1

S ′

S′∑
s′=1

β̂k,s′

and report this as our final estimate of the effect of feature k. In words, we aggregate

the results of subsampling by simply averaging the estimated coefficients across

subsamples. Under available consistency results for subsampling, this average should

converge to the true coefficient βk with enough subsamples. Then, we let

σ̂2
k =

1

S ′ − 1

S′∑
s′=1

(
β̂k,s′ − β̄k

)2

(2.7)

be the sample standard error of the regression output across subsamples. We then

use β̄k
σ̂k

as the relevant t-statistic, with S ′ − 1 degrees of freedom, for the null hy-

pothesis that βk = 0. Standard techniques can be used to calculate a p-value.

We briefly discuss the choice of (2.7) to calculate standard errors. Notice

that (2.7) is calculated based only on the estimated coefficients in our subsamples,

not on the estimated standard errors produced by the regression model within each

subsample. A recent work by [112] has argued that these within-subsample standard

errors do not contribute to the asymptotic standard error of the aggregated estimator

β̄k. Moreover, (2.7) over-estimates the true variance, meaning that σ̂2
k will produce
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conservative confidence intervals [112]. For our purposes, this conservative estimator

is sufficient to evaluate the significance of our results.

To summarize, we analyze the massive Red Cross dataset by separating statis-

tical estimation into two stages. The first stage selects the most important features

by conducting Lasso-type regularization on each bootstrapped subsample, then ag-

gregating the results with stability selection. The second stage removes all features

k /∈ A∗, and corrects for the unobserved variation between donors by estimating

random effects in this reduced model. In addition to the theoretical advantages of

aggregation, we can see from Figures 2.3(a)-2.3(b) that our approach empirically

produces more conservative feature sets – there is clearly a small core of features

that are “agreed” on by a majority of subsamples, but there are also clear out-

liers in the “tails” of the histograms that are selected in a very small proportion of

subsamples (or in just one subsample).

Numerical illustration. We briefly illustrate the advantages of GLMM-

Lasso with subsampling over a rougher but simpler technique, namely ordinary

logistic regression (LR), in terms of two standard performance metrics (see, e.g.,

[113] for details). We compare these methods using 5-fold cross-validation (CV), a

common technique in data mining for evaluating the predictive power of a model.

First, we compare the deviance residuals achieved by both methods (averaged over

the 5 folds in CV). The comparisons are carried out individually on 10 different

subsamples, each of size Nγ. (As we discussed earlier, it is always necessary to

run models on small subsamples in order to tractably obtain results.) The logistic

regression model does not perform any model selection; thus, the results illustrate
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Table 2.3: Deviance residuals of GLMM-Lasso with subsampling vs. plain logistic
regression, demonstrated on 10 random subsamples.

Subsample Plain LR GLMM-Lasso
1 100.2518 12.30325753
2 41.28834 12.61857265
3 57.07833 12.42619023
4 74.61048 12.8426679
5 86.99473 12.73456152
6 73.44249 12.28891669
7 145.982 12.39356766
8 53.33318 12.2563628
9 79.01672 12.31632096
10 30.35353 12.27578767

the benefits of using a more parsimonious model with fewer features.

Table 2.3 presents the results of this comparison. Our model outperforms

LR (achieves lower deviance) in each subsample. The results are also much more

consistent for the aggregated Lasso model (LR fluctuates more across subsamples),

suggesting that there is significant benefit in aggregating over multiple subsamples

to reduce variance. Recall also from Figures 2.3(a)-2.3(b) that aggregation leads to

more conservative results: by eliminating outlier features that are not selected by a

majority of subsamples, we reduce the risk of over-confidently reporting significance.

Next, we compare the area under the ROC curve for both methods. This

metric is widely used as a measure of accuracy when the data has binary responses

with a small proportion of 1s (as is the case in our application). Results for 10

subsamples are given in Table 2.4. The Lasso model consistently outperforms LR

(achieves higher AUC). Furthermore, LR generally has poor predictive power (AUC

close to 0.5).

These results are quite consistent with what is known about Lasso in the liter-
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Table 2.4: Area under the ROC curve for GLMM-Lasso with subsampling vs. plain
logistic regression, demonstrated on 10 random subsamples.

Subsample Plain LR GLMM-Lasso
1 0.51984 0.70489
2 0.52615 0.70022
3 0.50530 0.69283
4 0.51175 0.70806
5 0.53812 0.69613
6 0.51591 0.70018
7 0.53985 0.71100
8 0.52010 0.68855
9 0.52511 0.69241
10 0.52399 0.69920

ature. Classical models, such as logistic regression, estimate coefficients for a large

number of features that Lasso simply removes from the model. Consequently, any

prediction made by such models is subject to a much higher level of noise. Even if a

plain LR model were to accurately estimate some of the coefficients, these accurate

estimates are essentially drowned out by a large number of inaccurate estimates

for other features. This issue, known as “noise accumulation,” is quite common;

for example, the performance of LR is often no better than random guessing in

the presence of noisy data [108]. Furthermore, simple linear models may produce

over-inflated standard errors when the data is subject to a high degree of empirical

correlation, an issue discussed in Section 2.6.3. In such settings, the p-values pro-

duced by LR may themselves be unreliable [114], while Lasso is known to be less

vulnerable to this issue. These examples illustrate the benefits offered by model

selection in analyzing large datasets.
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2.6 Results

Sections 2.6.1 and 2.6.2 discuss the logistic regression model described in Sec-

tion 2.4.1, used to predict the success probability of an individual communication.

Sections 2.6.3 and 2.6.4 present additional analysis of campaigns and donations, re-

spectively. Finally, Section 2.6.5 lays out simulation results illustrating the potential

of our key insights to improve conversion rates.

2.6.1 Communication-based models: design information

We begin with the model from (2.1), where yij is the outcome of the jth com-

munication with donor i, and g is the logistic link function. Recall from Table 2.1

that the data have a layered structure. We apply this model to two layers. The

first layer uses 8.6M communications from 2009-2011 for which design information is

available; the second layer uses 4.3M communications, but adds segmentation infor-

mation. We do not consider the outermost layer of 20.2M communications, because

it lacks the crucial dimension of design information. We also do not consider the

innermost layer of 89K communications, because fund information is only available

for donations (i.e. successful communications), and is thus unsuitable for predicting

the success probability of a communication; however, we will return to the issue of

fund information in Section 2.6.4.

The first layer, covering 8.6M communications, gives us a total of p = 197 fea-

tures, comprised of campaign types (binary features indicating Acquisition, Culti-

vation, Lapsed, etc.), design features, donor locations, and the additional covariates
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(a) Base model (Section 2.6.1). (b) Model with segmentation data (Section 2.6.2).

Figure 2.3: Ranking of features, in descending order of the proportion of subsamples
where each feature was selected.

and interaction terms described in Section 2.4.2. Due to space considerations, we do

not list all of these features here; rather, we list (in Table 2.5) the most significant

features identified by the model selection procedure from Section 2.4.1.

We draw S = 120 subsamples (see the Section 2.5 for a discussion of how S is

calculated) by Monte Carlo sampling with replacement from the large dataset. We

run model selection separately on each subsample, and include a feature in the final

model if it is selected in a sufficiently high proportion of subsamples. We view this

proportion as the empirical probability of selecting a feature. Figure 2.3(a) shows

the 197 features ranked in descending order of selection probability. We see that

over 40% of these features are not selected in any subsample, suggesting that they

can be safely eliminated from our model. Moreover, fewer than 15% of features are

selected in over half of all subsamples.1 Table 2.5 lists the top 20 ranked features,

1In this way, we obtain more conservative results by using multiple subsamples rather than just

one. Aggregation reduces the risk of over-confidently reporting a feature as being significant, when
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Table 2.5: Final estimated coefficients for first layer (8.6M communications).
Rank Feature Avg. coefficient Std. deviation p-value

1 Intercept -3.8329 0.4636 <1e-30
2 Previous successes 0.6623 0.0889 8.2531e-25
3 $50 option 0.6330 0.0990 1.3843e-14
4 Year 2009 0.7559 0.0950 <1e-30
5 $20 option/generic type -1.9487 0.3503 1.1276e-10
6 $15 option -0.3373 0.0681 2.5277e-8
7 Allow choice of fund -1.8780 0.2834 6.1010e-17
8 Dynamic amt./Renewal type* 0.0810 0.0760 0.1473
9 Dynamic amt./Acquisition type -2.1242 0.3451 1.0304e-13
10 Dynamic amt./$50 option 4.8331 1.0783 1.0715e-6
11 Dynamic amt./Lapsed type* -3.0032 1.4797 0.0212
12 Generic story/generic type -0.9814 0.1294 1.2341e-28
13 Supporter card 0.2881 0.0642 1.0269e-6
14 Donor city indicated -0.1823 0.0561 4.1723e-4
15 Renewal type 0.2693 0.0891 1.1323e-3
16 Donor city/Acquisition type 0.1729 0.0651 3.8793e-3
17 Preparedness story 0.3406 0.0495 3.0188e-18
18 $50 option/Renewal type -5.1345 1.1209 3.8085e-7
19 $30 option/$50 option 1.6980 0.2131 3.6301e-37
20 Dynamic amt./Cultivation type -2.6663 0.6355 4.2092e-6

All features are significant at the 0.01 level except those marked with an
asterisk (*).

of which half are interaction terms. The technical details for the computation of

coefficients and standard errors are given in the Section 2.5.

Managerial insights. The results provide immediate insights into the effec-

tiveness of supporter card, formulation of appeal and gift items on campaign success.

Feature 13 shows that the presence of a supporter card exerts a positive impact on

the odds of success for an individual communication (as hypothesized). Features

12 and 17 suggest that a generic story (that is, a story describing disaster relief

in fact it may be an outlier whose apparent significance is only due to the additional noise induced

by subsampling.

50



without reference to a specific disaster) performs poorly, while a preparedness story

has a positive effect. Also, no gift items (mailing labels or glowsticks) are selected

in the final model, suggesting that these gifts do not exert a significant effect on

the outcome. The model also does not select features representing the inclusion of

a personal disaster preparedness checklist, or a photograph depicting people being

helped.

The results suggest that mailings are more effective when they focus on disas-

ter preparedness, rather than on post-disaster relief efforts. This result is somewhat

surprising, as it runs counter to the conventional wisdom (even among some prospec-

tive donors, surveyed by [115]), that more visceral, “emotive” imagery translates to

more donations. Empirical studies such as [116] and [117] have also found evidence

that emotive content is more likely to elicit donations.

One possible explanation is that donor cultivation programs, such as STAART,

are targeted at a specific audience, whose characteristics differ from that of the

broader pool of prospective donors. In this light, an interesting connection can be

made to a study of hospice donations by [117], which found evidence that emotively

designed webpages led to a higher overall volume of online donations. However,

among 239 donors who submitted in-depth information about their motivations,

the authors also identified a group of 101 donors, who had a history of giving to

charity, and who also reacted better to informative rather than emotional content.

Similar results were observed by [118] for donations to a homeless shelter.

The donors in the STAART dataset have all made at least one donation prior

to their inclusion in the program, and thus all have at least some experience making
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donations. Unsurprisingly, we also see that a longer history of giving (represented

by feature 2) contributes positively to the outcome. However, more informative,

preparedness-oriented content contributes an additional positive effect, while more

visceral stories and even visual images of people being helped appear to have no

impact, or even a negative one. Additionally, a supporter card emphasizing the

donor’s identity as a conscientious supporter also contributes positively. Thus, we

do not argue that preparedness-oriented appeals will attract more donations in every

setting; rather, we argue that such appeals are more effective in the specific setting

of cultivating and retaining donors.

The results also provide some initial insight into the last question in Section 2.

Recall that dynamic generation of ask amounts occurs in 44% of all communications,

making it a significant component of the organization’s strategy. Table 2.5 suggests

that the impact of this strategy is dependent on the campaign type. The effect

appears to be positive for the Renewal type, representing current supporters of

the program, and negative for the Acquisition and Lapsed types, representing new

and lapsed donors, respectively. However, features 8 and 11 have high standard

errors. Furthermore, Table 2.2 shows that donors in these types exhibit substantial

heterogeneity with regard to their recency. We examine this issue in more detail in

Section 2.6.2, where we consider a smaller but richer layer of the dataset.
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Table 2.6: Final estimated coefficients for second layer (4.3M communications).
Rank Feature Avg. coefficient Std. deviation p-value

1 Intercept -3.2204 0.0336 <1e-30
2 Previous successes 0.1298 0.0065 6.6399e-29
3 Year 2010 -0.4265 0.0253 6.6727e-25
4 $15 option/$20 option -2.0118 0.1816 1.5356e-16
5 0-6 mos. recency/Low donor class* 0.0814 0.0398 0.0226
6 Supporter card 0.5744 0.0449 3.0471e-19
7 Generic story -0.7580 0.0519 6.9461e-22
8 Haiti-influenced donors -0.3055 0.0389 3.9877e-11
9 Dynamic amt./0-6 mos. recency 0.1100 0.0307 3.4019e-4
10 Acquisition type/0-6 mos. recency 0.7042 0.1317 7.1230e-7
11 Preparedness story 0.4060 0.0359 6.5999e-17
12 37-48 mos. recency -0.2995 0.1124 4.9178e-3
13 Specific disaster story -0.5899 0.0336 7.9810e-26
14 13-18 mos. recency -0.2742 0.0498 3.8371e-7
15 Allow choice of fund/0-6 mos. recency* 0.0878 0.1579 0.2902
16 Dynamic amt./Renewal type -0.1774 0.0535 7.7752e-4
17 Renewal type/Low donor class 0.2041 0.0543 1.9305e-4

All features are significant at the 0.01 level except those marked with an
asterisk (*).

2.6.2 Communication-based models: design and donor information

The next layer of data uses 4.3M communications, but adds segmentation in-

formation in the form of two groups of features representing donor class and recency.

After adding interaction terms between these new features and the design informa-

tion available from before, the total number of possible features in our model is

p = 310. However, Figure 2.3(b) shows that, once again, only a small number of

these features is consistently identified as significant. Indeed, only 17 features were

selected in at least 50% of subsamples; these are listed in Table 2.6 with aggregated

estimates, standard errors, and p-values.

Managerial insights. Most importantly, Table 2.6 corroborates our previous
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findings in Section 2.6.1. Both supporter cards (feature 6) and preparedness-oriented

stories (feature 11) carry significant positive effects. Unsurprisingly, a specific dis-

aster story works better than a generic disaster story (features 7 and 13). What is

more surprising (but in line with our interpretation from before) is that both spe-

cific and generic stories carry negative effects. Additionally, a special class of donors

whose first contribution was influenced by the Haiti disaster (feature 8) exhibits a

significant negative effect. We note that the Haiti disaster received a great deal of

media attention, and thus this donor pool may contain more impulsive donors who

value emotive over informative content, and may be unlikely to convert into regular

supporters.

Dynamic amounts present a more complex issue. We see that this strategy

now appears to produce a negative effect when applied to the Renewal type (feature

16), which seems to contradict the findings of Table 2.5. At the same time, the

same strategy produces a positive effect for the “0-6 mos. recency” category, which

contains donors from multiple campaign types (Table 2.2). Feature 10 also suggests

interactions between campaign type and donor recency. To clarify this issue, we ran

a version of the model in which features 9, 10, and 16 were replaced with three-way

interaction terms. The estimated coefficients for these features are given in Table

2.7. For the other features in the model (carried over from Table 2.6), the estimated

coefficients changed slightly in magnitude, but kept the same signs as before, so we

omit them out of space considerations.

The results indicate that dynamic amounts are effective for recent donors (0-6

mos. recency) who have not yet converted (Acquisition type). Earlier, in Table 2.5,
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the strategy appeared to work poorly on the Acquisition type; however, Table 2.2

shows that 2/3 of the communications in this type actually targeted donors with a

very long recency (37-48 mos.). From Table 2.6, we see that these donors, unsur-

prisingly, do not respond, leading to an overall negative effect on the Acquisition

type. However, if we consider only those unconverted donors whose first donation

was made in the past six months, we see that dynamic amounts have a significant

positive effect.

By contrast, the strategy exhibits a negative effect for the Renewal type, par-

ticularly on less recent donors (7-12 month recency). For recent new donors, who

have made their first disaster donation within the past six months, there is an op-

portunity to “strike while the iron is hot” by offering them the chance to replicate

their behaviour, this time in the role of “Red Cross supporter” rather than “dis-

aster donor.” However, for donors who have made a second donation and already

converted into the STAART program, this approach is no longer effective.

We note that all dynamic amounts in use by the Red Cross use a scale that

includes, or is close to, 100% of a donor’s most recent donation. We do not ar-

gue against all possible dynamic scales. However, the evidence suggests that it is

Table 2.7: Final estimated coefficients and standard deviations for three-way inter-
actions.

Feature Avg. coefficient Std. deviation p-value
Dynamic amt./Renewal type/0-6 mos. recency* -0.0880 0.0543 0.0549
Dynamic amt./Renewal type/7-12 mos. recency -0.2177 0.0645 6.4953e-4

Dynamic amt./Acquisition type/0-6 mos. recency 0.7822 0.1284 4.0931e-8
Dynamic amt./Generic type/0-6 mos. recency* 0.0463 0.0370 0.1079

Features are significant at the 0.01 level unless marked with an asterisk (*).
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unrealistic to use dynamic amounts that essentially ask a donor to maintain the

same donation amount in the long term. It may be useful to experiment with other

scales that, for example, use much lower ask amounts for longer donation histories.

The main managerial implication of our results is that the best chance to influence

donors to repeatedly give the same amount occurs at the very beginning of their

donation history, before conversion occurs.

Finally, we briefly note that both Tables 2.5 and 2.6 indicate that, all else being

equal, there were fewer donations in 2010 than 2009. This is particularly clear in

Table 2.6, where “Year 2010” has a strong negative effect, while no other year is even

selected. It is interesting to note that the stock market performed especially poorly

in 2009. [72] found a positive correlation between stock market performance and

charitable donations, but observed that the effect appears to be lagged; under this

model, poor stock market performance in 2009 would be expected to lead to fewer

donations in 2010, providing a possible explanation for the pronounced negative

effect of 2010 in Table 2.6.

2.6.3 Campaign-based models

We constructed a different set of models that considered the data in Sections

2.6.1 and 2.6.2 from another viewpoint. These models aggregate the set of com-

munications by campaign. Again, we use the logistic model in (2.1), but now yij

represents the success rate of campaign i on the jth donor segment. Success rate

is expressed as the ratio of the number of successful communications (resulting in
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donations) to the total number of communications in the campaign. For example,

if the organization mailed 100 copies of a letter to a certain class of donors, and re-

ceived 6 gifts in response, the success rate of the letter is 0.06 for that donor segment.

A simple modification of (2.1) allows us to consider continuous-valued observations

between 0 and 1. The main purpose of this analysis is to corroborate the results

obtained in Sections 2.6.1 and 2.6.2 and demonstrate that similar results emerge

without the subsampling techniques described in the Section 2.5. Our discussion

focuses on the second model (Section 2.6.2, segmentation information included);

we show that the relationships observed in this model also hold when the data are

reorganized for campaign-centric analysis.

The attributes xij of the ith campaign and jth segment are largely the same

as in Sections 2.6.1 and 2.6.2, and interaction terms are constructed as in Section

2.4.2. However, we are not able to include features that are not in one-to-one

correspondence with campaign segments. For example, donor location varies on

the level of individual communications, as the same letter can be mailed to people

in different states. With recency and donor class included in the model, the total

number of features was p = 157, with I = 60 panels (campaigns) and N = 952

campaign segments in all. The size Ni of each campaign ranges up to 132 segments.

The relatively small size of this dataset allows for a tractable analysis on its

entirety, without the need for small subsamples. At the same time, aggregation

across campaigns leads to the new problem of inflated empirical correlation, stem-

ming from the relatively small magnitude of N relative to p. Figure 2.4(a) shows

empirical correlations between all 157 features; in particular, the dark blocks visible
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(a) Heatmap of 157 features. (b) Heatmap of 21 selected features.

Figure 2.4: Empirical correlations of (a) all features and (b) selected features. Darker
colours represent heavier correlation (closer to 1).

in Figure 2.4(a) show that, for certain groups of features, the empirical correlations

are close to 1. This issue complicates statistical analysis, as the matrix xTx is not

invertible. Random effect models are even more sensitive to correlation, as the num-

ber of panels is even smaller than the sample size. Model selection solves this issue

by reducing the number of features from 157 to just 21, not counting the intercept.

Figure 2.4(b) shows that these selected features exhibit much lighter correlation.

Table 2.8 shows the final results for this model, ranking the selected features by

p-value.

Managerial insights. It is most relevant to compare Tables 2.6 and 2.8,

because they both include segmentation information. With this in mind, we see

that Table 2.8 reproduces our key findings from Section 2.6.2. Most crucially, we

observe identical insights on relief vs. preparedness: both generic (feature 9) and

specific (feature 6) disaster stories carry negative effects. By contrast, preparedness-
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Table 2.8: Final estimated coefficients for the campaign-based model with segmen-
tation information.

Rank Feature Estimate Std. error p-value
1 (Intercept) -3.12390 0.07434 <1e-30
2 $15 option/$20 option -1.40281 0.12573 3.1995e-29
3 0-6 mos. recency/Low donor class 0.55805 0.07598 1.0679e-13
4 13-18 mos. recency -0.40337 0.06540 3.4145e-10
5 7-12 mos. recency/Low donor class 0.50571 0.08343 6.8060e-10
6 Specific disaster story -0.38501 0.07145 3.5228e-08
7 Card 0.66038 0.18892 2.3262e-04
8 Includes specific fund/37+ mos. recency -0.79300 0.26354 1.3062e-03
9 Generic story -0.33655 0.13033 4.9400e-03
10 Preparedness story 0.21504 0.08808 7.3436e-03
11 Dynamic amt./0-6 mos. recency 0.22205 0.10655 0.0187
12 Dynamic amt./Lapsed type -0.86614 0.43200 0.0227
13 Allow choice of fund/0-6 mos. recency 0.61133 0.33262 0.0328
14 0-6 mos. recency/Haiti-influenced donors 0.18883 0.11368 0.0484
15 Followup type 0.25435 0.17342 0.0707
16 Includes specific fund/7-12 mos. recency -0.50035 0.44334 0.1292
17 0-6 mos. recency/High donor class 0.17362 0.16390 0.1445
18 Dynamic amt./Renewal type -0.18834 0.20609 0.1814
19 19-24 mos. recency/Haiti-influenced donors 0.15064 0.21575 0.2419
20 Renewal type/Low donor class -0.13402 0.19576 0.2482
21 Option to donate online/High donor class 0.11607 0.19923 0.2809
22 Renewal type -0.01884 0.15227 0.4522

“Std. error” refers to the usual statistical standard error of an estimated
coefficient. The first 14 features were significant at the 0.05 level.

oriented campaigns (feature 10) have significantly higher success rates. Furthermore,

supporter cards (feature 7) continue to contribute to campaign success.

We also considered a campaign-centric version of the model from Section 2.6.1

(design information, but no segmentation). We do not give the full details here for

space considerations, as they mostly repeat our previous discussion. However, we

briefly note that this model produced the same results with regard to preparedness

vs. relief, as well as supporter cards.
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2.6.4 Gift-based models

We also considered another set of models incorporating donation and disaster

information. That is, we link an incoming donation to a specific disaster with

attributes such as type (flood, earthquake, etc.), location (foreign or domestic), and

magnitude (e.g. death toll). Each donation is associated with a monetary amount

and a payment method, which we have also not discussed up to this point. We mostly

obtain the negative result that disaster-specific information does not significantly

affect donations, and include the discussion below for completeness.

Donation and disaster information is difficult to include in our previous models,

because it can only be observed for successful communications (those that result in

donations). Russ Reid has confirmed that there is no way to connect an unsuccessful

communication to a specific fund. While the literature offers models for handling

“donations” of size zero, our situation is more complicated because we also observe

additional information (extra features) when a communication succeeds that is not

observable if the communication fails. We chose to conduct a separate analysis that

is confined to gifts only, removing all unsuccessful communications. That is, we

return to equation (2.1), but now define yij to be the dollar amount of the jth gift

contributed by the ith account. The link g is chosen to be the identity function,

corresponding to a linear regression model.

Fewer than 5% of all communications are successful, which drastically reduces

the model size. Table 2.9 shows the sizes of models fit to different layers of data; no

model is large enough to require subsampling. For space considerations, we do not

60



Table 2.9: Sizes of gift-oriented models.
Layer Size Features Interactions Total No. selected 0.05 level

1: All gifts, 2009-2011 309,451 96 33 129 52 34
2: Segmentation only 168,588 104 163 267 68 51

3: Disaster only 89,529 103 104 207 23 17
4: Segmentation+disaster 6,908 108 228 336 23 14

list the full results from all four models here, but we highlight the main points from

all four models. Note that, due to the smaller size of these models, fewer features

are statistically significant at the 0.05 level. The last column of Table 2.9 counts

these features for each layer.

Disaster attributes appeared to have no significant impact on donation amounts.

Of the 14 features in Layer 4 that were statistically significant at the 0.05 level, only

one involved a disaster attribute. This was the interaction “Earthquake/High donor

class.” It is unsurprising that the high donor class should have a strong positive cor-

relation with donation amount, as this class includes the largest gifts, up to $9999.

As for the earthquake attribute, we note that it applies to the Haiti disaster, which

was widely publicized and led to a high volume of donations.

Of the 34 statistically significant features in Layer 1, 18 corresponded to differ-

ent donor locations (represented by U.S. state). Potentially, this suggests that there

may be regional differences in donation amounts (though not in campaign success

rates; see Sections 2.6.1-2.6.3). However, as segmentation and disaster information

was added in Layers 2-4, the number of statistically significant locations shrunk to

6/51 in Layer 2, 9/17 in Layer 3, and just 2/14 in Layer 4. On this basis, we argue

that the impact of campaign design and donor segmentation is much greater, and
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more important for policy decisions, than the possible impact of regional differences.

Design attributes seemed to have relatively little impact on donation amounts.

Layer 4 contains only a single significant feature involving such an attribute, the

interaction “Dynamic amt./High donor class,” with a significant positive effect.

However, there are several significant features involving the high donor class, all

with strong positive effects, suggesting that the effect is more likely due to the fact

that donors in the high donor class simply give more money to begin with.

Managerial insights. Most of the statistically significant features selected in

Layers 1-4 were related to donor attributes such as recency and low/medium/high

class, in contrast with our results from Sections 2.6.1-2.6.3. This suggests that

a well-designed appeal may get more donors to respond (increasing the campaign

success rate or the probability of receiving a donation from a particular donor),

but the amounts of their donations are largely determined by immanent donor

characteristics such as the donor class. Of course, this result should be considered

in the specific context of cultivation campaigns.

2.6.5 Simulation results

We conducted a simulation study to quantify the potential benefits of the

insights in Sections 2.6.1-2.6.4. By simulating donors, we can compare historical

fundraising strategies with our recommended ones. It is difficult to evaluate our

recommendations based purely on the historical data, since the data represent the

actual outcomes of a particular set of design choices used in the past, and there is
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no way to redo those same communications with a different set of designs.

For our simulations, we randomly sampled 10,000 donors who received mailings

during the first six months of 2009. For the ith donor account, we randomly generate

a value b̂i from the random effect distribution estimated in our statistical analysis.

These values are viewed as fixed in the subsequent procedure. Then, for the jth

historical communication with account i within the six-month period, we simulate

an outcome ŷij from a Bernoulli distribution satisfying E (ŷij) = g−1
(
xTijβ̄ + b̂i

)
,

where g is the logit link function and β̄ is a vector of the final estimated coefficients

from Section 2.6.2 (including the three-way terms).

The vector xij can now be modified to reflect different fundraising strategies.

The historical strategy simply consists of setting the elements of xij equal to their

historical values. The new strategy uses the following rules. First, a supporter card is

always included in the first communication with donor i that is of the Renewal type,

but not in any other communications with that donor. Second, dynamic amounts

are only applied to new, unconverted donors, as discussed in Section 2.6.2. Third,

generic stories are never used; preparedness and specific stories are each used 50%

of the time (we assumed that the organization may prefer to use a variety of stories,

even if one type works better than another). Fourth, gift items are never included.

For the first communication with a donor, descriptive features such as recency are

always set to their historical values.

In this way, we can generate donors with realistic features, as well as outcomes

for two versions of the same communication that have different design features. We

updated time-dependent features dynamically for both strategies. For example, for
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the ith donor, we store a counter representing the number of successful communi-

cations with that donor. The counter is incremented if ŷij = 1 (for the particular

strategy used) and used to set the “previous successes” feature for the next commu-

nication with the donor. Likewise, if ŷij = 1, the recency of donor i is reset to “0-6

months” for the next communication.

On average, the sampled donors receive 12-13K mailings in the six-month

period. The 99% confidence intervals for the success rates achieved by the two

strategies are 0.0539± 0.0006 for the historical strategy, and 0.0812± 0.0009 for the

new strategy. The new strategy significantly improves the success rate. Additionally,

when ŷij = 1, we can plug xij into the models in Section 2.6.4 to obtain predicted

donation amounts for the simulated successes (this also allows us to dynamically

update the donor class features for the next communication with donor i). On

average, the historical strategy collects $61,231 ± $1,167 in revenues, while the

new strategy collects $99,559 ± $1,453 (99% confidence intervals reported for both

strategies).

We should note several grounds for caution in interpreting this comparison.

First, all success probabilities are calculated from the estimated model, although

this model was calibrated using a massive volume of historical data. Second, the

simulations assume that, in both scenarios, the Red Cross sent the same number

of mailings to the same donors. However, this may actually cause the simulations

to under-report the improvement achieved by the new strategy: in practice, if the

organization were to receive more donations, it would also tend to communicate with

those donors more frequently, thus creating an opportunity for still more successes.
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Ultimately, while the precise numerical improvement achieved by the new strategy

reflects the assumptions made in our simulations, these results suggest that the

managerial insights from Section 2.6 can be translated into a few simple design

rules that offer significant potential for improving retention rates, even under a

pre-specified number of communications with each donor.

2.7 Conclusion

This chapter presents a data-driven study of disaster donor cultivation, using

a massive dataset from the American Red Cross, to formulate several models of

fundraising success. The results of this analysis lead to the following managerial

insights for managers at the Red Cross and other non-profits who work on cultivation

of first-time donors into regular supporters:

1. Relief vs. preparedness. The influence of emotive imagery on charitable be-

haviour is widely recognized. However, in donor cultivation, there is evidence

to suggest that preparedness-based appeals are much more effective than relief-

based appeals. More broadly, this suggests that non-profits may benefit from

more informative (rather than emotive) content in programs that focus on

cultivation.

2. Supporter cards. A small card affirming a donor’s identity as a Red Cross

supporter appears to exert a significant positive impact on cultivation efforts.

We recommend the inclusion of this item as a standard component of STAART

mailings, perhaps in the first communication with a donor. We believe that
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non-profits in general can improve donor retention by using such techniques

to reinforce the identity of potential supporters.

3. Gift items. On the other hand, other gift items, such as emergency lights

and address labels, appear to have no significant effect on cultivation. From

the evidence, we conclude that these items can be eliminated as a cost-saving

measure.

4. Dynamic amounts. The strategy of dynamic amount generation individualizes

the ask amounts in a mailed appeal, based on each donor’s previous donation

history. Essentially this strategy encourages a donor to maintain an earlier

level of contribution. The evidence suggests that this works on very recent

first-time donors who have not yet been converted, but may actually be coun-

terproductive with current and lapsed supporters. In such cases, it may be

better to use a few standard ask amounts, or substantially scale down the

dynamic amounts.

A major challenge of donor cultivation, and a limiting factor of this study, is the

relative lack of information on donors. Previous work on donor behaviour has drawn

from surveys and policy studies, which cover a relatively small number of individ-

uals, but provide detailed information on income, demographics, donor motivation,

and other relevant factors. At the same time, while these attributes are valuable in

understanding the economic and behavioural drivers of donations, they are unob-

servable to organizations like the Red Cross during operational decisions. We have

formulated recommendations to help non-profit managers to improve cultivation
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campaigns based on information that they have available at the time the decision

is made. To our knowledge, this is the first study to adopt a data-driven approach

to this problem. We believe this to be an important contribution to the study of

non-profit donations.
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Chapter 3: Optimal Learning with Combinatorial Feature Selection

3.1 Overview

Many applications in business analytics and operations research exhibit a feed-

back loop between statistics and optimization. First, historical data are used to fit

regression models that relate a performance metric of interest to a set of user-

specified design inputs. Second, the decision-maker chooses a new set of inputs,

guided by their estimated effects in the regression model. This decision is then im-

plemented in the field and a response is observed; this response, in turn, becomes a

new data point used to improve the regression model, and the process is repeated.

Statistical estimation thus alternates with optimization: in the first step, the design

inputs are treated as fixed (taken from historical data) and regression coefficients

are estimated, and in the second step, the coefficients are treated as fixed and the

regression features become decision variables that determine the next data point.

Consider how these issues arise in non-profit fundraising discussed in Chapter

2. A manager at the American Red Cross is tasked with designing a monthly or

quarterly fundraising campaign using direct-mail. The manager are still facing the
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problem of choosing from a large number of features, such as the story type, match-

ing grants [84], including or excluding a free gift item, a photograph, a supporting

card, etc.

The manager’s objective is to choose a set of designs that maximizes the re-

sponse rate (or proportion of mailings that elicit a gift). The model may include

interaction terms as in Chapter 2, and the chosen design may be subject to con-

straints (for example, only one type of story may be used). Thus, the manager’s

problem can be formulated as a binary integer program, where the variables repre-

sent decisions to include different design features.

The challenge in this problem stems from the fact that the regression model

available to the manager is subject to uncertainty. Moreover, after the campaign

is implemented, its outcome can be treated as a new observation and added to

the available data. Upon refitting the model, we may obtain a different set of

coefficients, leading to a different IP and possibly a different decision for the next

campaign. Thus, it may be suboptimal to implement the decision suggested by the

current model; likewise, a decision that appears to be suboptimal may in fact be

much better than the current coefficients indicate. In this work, we consider design

strategies that anticipate the effect of new information on the model and quantify

the economic value of this information. Our goal is to integrate the statistical and

optimization components of the problem and make decisions that have high potential

to be optimal, or to improve the quality of the statistical model.

In the simulation literature, optimal information collection problems are widely

studied in the context of ranking and selection or R&S [119, 120]. In R&S, there
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is a finite set of alternatives (e.g., combinations of design features), each of which

has an unknown value (the mean response rate for a campaign with those designs).

The decision-maker has a limited experimental budget for collecting information

about individual alternatives. We wish to allocate the budget efficiently, in order to

identify the true best alternative as quickly as possible. Bayesian statistics can be

used in R&S [56] to model our evolving beliefs about the value of each alternative;

one advantage of Bayesian models is that they allow “correlated beliefs” [121,122] for

modeling relationships between different alternatives (for example, two combinations

with multiple common elements). Correlated beliefs can also be extended to a linear

regression framework [58].

However, in the problem we consider, the number of alternatives grows com-

binatorially with the number of regression features, leading to high computational

costs for many standard classes of R&S algorithms:

• Value of information procedures (VIPs) calculate an expected improvement

criterion for each alternative [123]. In our setting, this calculation would re-

quire us to either enumerate every alternative, or solve a nonlinear, nonconvex

binary IP. While [124] proposes a VIP specifically for a parametric learning

model (such as our regression model), the parametric structure is only used

to reduce the storage cost, not the computational cost, and the VIP still enu-

merates every alternative.

• Indifference-zone methods [63,125] are often based on the idea of sequentially

screening the set of alternatives; in each stage, we collect some number of
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observations from every alternative in our set, and then screen out those alter-

natives that fail a certain statistical test. However, in non-profit fundraising,

the number of possible combinations of designs is much greater than the total

experimental budget, making it problematic to test large numbers of alterna-

tives even once.

• Optimal computing budget allocation (OCBA) methods [126, 127] determine

a proportion of the budget to be allocated to each alternative. These methods

can be implemented sequentially, but usually do not allow correlated beliefs;

[128] considers correlated sampling distributions, but requires the correlation

structure to be known rather than learned over time. Furthermore, OCBA

methods do not consider parametric belief models.

In this work, we develop information collection algorithms for regression prob-

lems with combinatorial feature selection. The learning process is modeled by a

version of Bayesian linear regression that allows the noise variance to be unknown

(as is certainly the case in non-profit fundraising). Using VIPs as a foundation, we

first derive an explicit form for the expected improvement criterion in the context of

this model, and prove the asymptotic optimality of the VIP in this setting. However,

due to the combinatorial decision space, the cost of computing expected improve-

ment remains high, motivating additional algorithmic developments. We create a

convex approximation, based on optimal quantization and semidefinite programming

relaxation, to the nonconvex expected improvement problem. The computational

complexity of this problem is polynomial in the number of features, not the number
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of alternatives. Finally, we solve a small binary IP to round the solution. As a result,

we obtain decisions with high value of information much more quickly than if we

were to compute the expected improvement criterion exactly for every alternative.

Some recent work has touched on similar issues. For example, [129] studies a

general framework for learning in combinatorial optimization (e.g., subset selection).

However, the model and algorithmic approach in this work rely on the ability to

individually collect information about each element of the chosen subset during a

single experiment, which enables the assumption of independent beliefs about the

elements. By contrast, in regression, we only observe a single scalar response for the

chosen set of features, thus creating correlations. Another recent work by [130] has

considered SDP relaxations for VIPs, but assumes known sampling noise as well as

a continuous and highly structured decision space. [124] considers learning in linear

regression, but assumes a generic finite set of alternatives, and does not consider

the challenges arising from combinatorial feature selection. Finally, one stream

of research [131, 132] applies branch-and-bound techniques to discrete simulation

optimization, but treats the objective function as a black box, without the additional

parametric structure afforded by regression.

This work makes the following contributions. 1) We introduce a conjugate

Bayesian learning model with unknown variance and derive the expected improve-

ment criterion in this setting, thus generalizing the results for the known-variance

model in [124]. 2) We prove the asymptotic consistency of the VIP in the parametric

model, a result that has not previously been available for even the known-variance

case. 3) We propose two additional algorithmic developments to improve the com-
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putational efficiency of the VIP. First, we show how the computation is simplified in

the special case where the binary decision is not subject to any additional linear con-

straints. Second, we provide an approximate algorithm, based on SDP relaxation,

that mitigates the difficulties of computing expected improvement in the general

case. 4) We provide numerical results showing the added value of the new VIP

and its approximate variant over several benchmarks, as well as the computational

savings afforded by the SDP approximation.

Finally, we briefly note that, while we use the non-profit fundraising appli-

cation for motivation throughout this work, the algorithmic and theoretical results

apply to a broader problem class, in which regression and optimization alternate

as decisions are made over time. For example, [133] estimates a linear regression

model for the quality of a cancer treatment as a function of drug dosage. Given

such a model, an optimization problem can be solved to create a treatment for a

new clinical trial. We observe that, in practice, the outcome of each new trial would

feed back into the regression model, giving rise to an information collection problem

similar to the one considered here.

3.2 Model

In Section 3.2.1, we formulate an integer programming model for the feature

selection problem, using the Red Cross fundraising application to provide motiva-

tion. In Section 3.2.2, we give a Bayesian learning model used to update a set of

beliefs about the regression parameters in the presence of unknown sampling noise.
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3.2.1 Regression-based optimization

Consider the linear regression model

η = ϕ>β + ε, (3.1)

where η is a response variable, ϕ is a vector of r features, and ε is a zero-mean

noise term. We assume that ϕ ∈ {0, 1}r, that is, all of the features are binary.

Each component ϕi represents the presence or absence of a particular design input.

In traditional regression, we would be given a fixed set of observations η1, ..., ηn

and corresponding feature vectors ϕ1, ..., ϕn, and our task would be to estimate β.

Suppose, however, that β has already been estimated and our task is to choose

inputs that maximize the mean of the next observation. We then solve, for fixed β,

the binary integer program

V (β) = maxϕ β>ϕ

s.t. Aϕ = h

ϕ ∈ {0, 1}r

(3.2)

where A and h represent constraints on the allowable inputs.

In the context of the non-profit fundraising application, campaign performance

can be evaluated in terms of the success rate y ∈ (0, 1), or the proportion of mailings

that elicit donations. A transformation η = logit(y) enables us to apply linear

regression. See Section 2.3 for a detailed description of design features and Section

2.6 for a subset of features we selected based on historical data for potential key

drivers.
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The linear constraints Aϕ = h may come from multiple-choice decisions, e.g.,

ϕi + ϕj = 1 if i and j represent two possible story types. More importantly, they

may come from interactions between attributes, which are common in applications of

linear regression. For example, the combined effect of a disaster preparedness story

with the Renewal campaign type may be greater than the sum of the individual

effects of these features. Then, if ϕi and ϕj represent the respective decisions to

include a preparedness story and target the Renewal type, our model will include

an additional binary variable ϕk with the requirement ϕk = ϕiϕj. This constraint

may be linearized by including

ϕk ≤ ϕi

ϕk ≤ ϕj

ϕi + ϕj − 1 ≤ ϕk

among the constraints in (3.2). By adding slack variables, these constraints can be

converted into the form Aϕ = h. Note that such slack variables will still satisfy the

binary constraints.

Finally, for notational convenience, we let Φ = {ϕ ∈ {0, 1}r|Aϕ = h} denote

the feasible region of (3.2). Then, K = |Φ| is the number of feasible decisions. Note

that K depends exponentially on r if most of the attributes are controllable by the

decision-maker. In non-profit fundraising, r may be fairly small; for example, [134]

identifies 10-20 significant features that impact donor cultivation. The deterministic

IP in (3.2) may thus be relatively easy to solve, but the dimension of information

collection substantially complicates the problem, as will be shown in the following
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sections.

3.2.2 Bayesian model for information collection

In practice, the regression coefficients β are subject to considerable uncertainty,

particularly for newer mailing designs for which extensive historical data are not

available. We model this uncertainty using a Bayesian prior distribution on β. The

parameters of the distribution will change as new information is collected, leading

to improved solutions of (3.2). We also allow the variance of the noise term ε to

be unknown (which is certainly the case in non-profit fundraising), and include our

uncertainty about the noise into the model.

Returning to (3.1), we assume that ε ∼ N
(

0, 1
ρ

)
, where ρ is an unknown

measurement precision. We further assume that ρ ∼ Gamma (a0, b0), where the

prior parameters a0, b0 are pre-specified by the decision-maker. Finally, we assume

that the conditional distribution of β given ρ is multivariate normal with mean

vector θ0 and covariance matrix 1
ρ
Σ0, where θ0,Σ0 are also user-specified.

Suppose that our budget allows us to conduct N experimental campaigns (e.g.,

on small groups of donors) before committing to a final estimate of β (e.g., for a

large-scale campaign). For n = 0, 1, ..., N−1, the (n+ 1)st campaign is characterized

by the feature vector ϕn ∈ Φ, and ηn+1 denotes the outcome of the campaign. The

noise terms ε1, ..., εN are assumed to be i.i.d., as is standard in linear regression. Let

Fn denote the sigma-algebra generated by ϕ0, η1, ϕ1, η2, ..., ϕn−1, ηn. The following

result shows that the conditional distribution of (β, ρ) given Fn remains multivariate
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normal-gamma for all n, and provides a fast recursive update for the parameters.

The proof is given in the Appendix.

PROPOSITION 1. Suppose that the conditional distribution of (β, ρ) given Fn is

multivariate normal-gamma with parameters (θn,Σn, an, bn). Then, the conditional

distribution of (β, ρ) given Fn+1 is multivariate normal-gamma with parameters

θn+1 = θn +
ηn+1 − (ϕn)>θn

1 + (ϕn)>Σnϕn
Σnϕn, (3.3)

Σn+1 = Σn − Σnϕn(ϕn)>Σn

1 + (ϕn)>Σnϕn
, (3.4)

an+1 = an +
1

2
, (3.5)

bn+1 = bn +
(ηn+1 − (ϕn)>θn)2

2(1 + (ϕn)>Σnϕn)
. (3.6)

Note that (3.3)-(3.4) are identical to the recursive least-squares update [62, Sec.

9.3] in frequentist statistics. Thus, the sequence of posterior mean vectors obtained

from the Bayesian model is precisely the sequence of least-squares estimators ob-

tained after each new data point. Furthermore, it follows from the properties of the

normal distribution that, for any ϕ ∈ Φ, we have ϕ>β ∼ N
(
ϕ>θn, 1

ρ
ϕ>Σnϕ

)
con-

ditionally given Fn and ρ. Thus, the Bayesian model characterizes our uncertainty

about the value of every feasible alternative, but incurs a cost of O (r2) to store and

update.

Finally, we can state the objective of the information collection problem. We

wish to create an adaptive policy that will design campaigns based on the most

recent information. Let Π be the set of all functions π : Rr × Sr+ ×R×R mapping
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(θ,Σ, a, b) to a decision ϕ ∈ Φ. The optimal policy solves the problem

sup
π∈Π

EπV
(
θN
)
, (3.7)

where Eπ denotes a conditional expectation given ϕn = π (θn,Σn, an, bn) for all n.

Essentially, (3.7) evaluates a policy in terms of its ability to guide us to a more

favourable solution of (3.2) using the final regression estimates θN . The problem in

(3.7) is a finite-horizon dynamic program with a multi-dimensional and continuous

state space; thus, while the optimal policy can be characterized using Bellman’s

equation [135], it is computationally intractable. In the following, we develop effi-

cient heuristics for this problem.

3.3 The KGUP algorithm for combinatorial feature selection

In this section, we propose a VIP for combinatorial feature selection in para-

metric models. Section 3.3.1 derives a closed-form expression for the value of infor-

mation in this setting. The consistency of the VIP is proved in Section 3.3.2. For

the moment, we consider the exact form of the VIP, which requires enumeration

of every alternative; algorithmic improvements will be presented in the following

section.

3.3.1 Derivation of the KGUP algorithm

Value of information procedures are based on the insight that, while (3.7) is

intractable in general, it may admit a closed-form solution for N = 1. This solution

yields the alternative that would be optimal to implement, if this were the last
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experiment with no additional chances to collect information. Such an alternative

maximizes the well-known expected improvement criterion [136], given for fixed

ψ ∈ Φ by

vKG,nψ = En
[
max
ϕ∈Φ

(ϕ>θn+1)|ϕn = ψ

]
−max

ϕ∈Φ
(ϕ>θn), (3.8)

where En[·] = E[·|Fn], i.e., the conditional expectation given Fn. Since (3.8) rep-

resents the marginal value of a single measurement of ψ, it is also known as the

knowledge gradient [135] or KG, a name that we also adopt in this work.

Notice from (3.3) that, at stage n, the posterior mean θn+1 is unknown, but

the uncertainty in this vector derives only from a scalar quantity ηn+1. All other

quantities in (3.3)-(3.6) are known at time n. The following result characterizes the

conditional distribution of θn+1 given Fn in terms of a scalar random variable.

PROPOSITION 2. The predictive distribution of ηn+1 given Fn and ϕn = ψ is

given by

ηn+1 ∼ t

(
2an, ψ>θn,

bn(1 + ψ>Σnψ)

an

)
,

which denotes a univariate Student’s t-distribution with mean ψ>θn, scale parameter

bn

an
(1 + ψ>Σnψ), and 2an degrees of freedom.
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Proof. The characteristic function of ηn+1 given ρ is

E(eitη
n+1|ρ) =E(E(eitη

n+1 |ρ, β)|ρ)

=E(eitψ
>β− 1

2
1
ρ
t2|ρ)

=e−
1
2

1
ρ
t2E(eitψ

>β|ρ)

=e−
1
2

1
ρ
t2eitψ

>θn− 1
2
ψ> 1

ρ
Σnψt2

=eitψ
>θn− 1

2
1
ρ

(1+ψ>Σnψ)t2 .

Consequently, we can write the density of ηn+1 as

p(ηn+1) =

∫
R+

g(ηn+1|ρ)g(ρ)dρ

=

∫
R+

√
ρ

2π(1 + ψ>Σnψ)
exp

(
−ρ(ηn+1 − ψ>θ)2

2(1 + ψ>Σnψ)

)
(bn)a

n

Γ(an)
ρa

n−1 exp(−bnρ)dρ

=
Γ(an + 1

2
)

Γ(an)

1√
2π(1 + ψ>Σnψ)bn

(
1 +

(
ηn+1 − ψ>θn

)2

2(1 + ψ>Σnψ)bn

)−an− 1
2

.

Define η̃n+1 =
√

an

(1+ψ>Σnψ))bn
(ηn+1 − ψ>θn). Then, the pdf of η̃n+1 is given by

p
(
η̃n+1

)
=

Γ(2an+1
2

)

Γ(2an

2
)(π2an)

1
2

(
1 +

(η̃n+1)2

2an

)− 2an+1
2

,

which is the pdf of the standard Student’s t-distribution with 2an degrees of freedom.

Thus

ηn+1 =

√
bn(1 + ψ>Σnψ)

an
η̃n+1 + ψ>θn

follows the desired distribution.

As in [122], we observe an analogy with classical frequentist statistics. When

the noise variance is known [124], a similar result can be derived where the scalar
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random variable is normally distributed. However, when the variance is unknown,

we use Student’s t-distribution instead.

Let Tsn denote a random variable following a standard Student’s t-distribution

with sn = 2an degrees of freedom. Using (3.3) with Proposition 2, we can rewrite

θn+1 as

θn+1 = θn + Σnψ

√
bn

an (1 + ψ>Σnψ)
Tsn . (3.9)

Combining (3.8) and (3.9), we can derive a new formulation of the KG quantity,

given by

vKG,nψ = En
(

max
ϕ∈Φ

pnϕ + qnϕ(ψ)Tsn

)
−max

ϕ∈Φ
pnϕ, (3.10)

where pnϕ = ϕ>θn and

qnϕ(ψ) = ϕ>Σnψ

√
bn

an (1 + ψ>Σnψ)
. (3.11)

Now, observe that the quantity inside the expectation in (3.10) is a piecewise lin-

ear function with slopes represented by the quantities qnϕ(ψ). We sort the pairs

{pnϕ, qnϕ(ψ)}ϕ∈Φ and relabel them as {pni , qni }Ki=1 such that the values qni are in as-

cending order. Standard techniques (see Section 5.3 of [54]) can be applied to

obtain a sequence {cni }
K
i=1 of breakpoints satisfying j = arg maxi (p

n
i + qni t) if and

only if t ∈
[
cnj−1, c

n
j

)
(this may involve removing some dominated alternatives that

never achieve the argmax for any value of t). Finally, the analysis of [122] can be
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applied to obtain

vKG,nψ =
K−1∑
i=1

(
qni+1(ψ)− qni (ψ)

)
E
[
(Tsn − |cni |)

+]
=

K−1∑
i=1

(
qni+1(ψ)− qni (ψ)

)(sn + (cni )2

sn − 1
gsn(|cni |)− |cni | (1−Gsn(|cni |))

)
(3.12)

where gs(·) and Gs(·) are the pdf and cdf, respectively, of the standard Student’s

t-distribution with s degrees of freedom.

We define a new VIP, called the Knowledge Gradient with Unknown Precision

(KGUP), which chooses the design of the (n+ 1)st campaign to be

ψKGUP,n = arg max
ψ∈Φ

vKG,nψ . (3.13)

In this way, the value of information approach is extended to learn linear regression

coefficients in the presence of unknown noise variance. The procedure strikes a bal-

ance between the estimated value of a design ϕ (given by ϕ>θn) and our uncertainty

about that design, which depends on the posterior variances of the coefficients of

the features included in the design as well as their correlations with other features

(which may not be included).

In R&S, we would typically solve (3.13) by evaluating vKG,nψ for every ψ ∈ Φ.

Currently available algorithms for this computation incur a cost of O (K logK) for

each ψ [54]. Thus, the overall computational complexity is O (K2 logK). Because K

grows exponentially in the number of attributes r, that is, K ∼ 2r, this translates to

a complexity of O (r4r), which can be prohibitively expensive. Furthermore, it may

be difficult to exploit the binary structure of ϕ since (3.12) is highly nonlinear and

82



nonconvex in the belief parameters. We will return to these important algorithmic

issues in the next section after demonstrating the consistency of the procedure.

3.3.2 Consistency of the KGUP algorithm

In this section we show a form of consistency for the KGUP procedure, namely

that V ar
(
ϕ>β | Fn

)
→ 0 for every feasible ϕ ∈ Φ, which implies that we asymptot-

ically obtain perfect information about every alternative. We also show that, if the

feasible region Φ contains r linearly independent vectors, this is equivalent to the

statistical consistency of θn in the classical sense. However, if some of the regression

coefficients are irrelevant to the feasible decisions (e.g., if we have a constraint ϕi = 0

for some i), it may not be necessary to learn their exact values. It is also possible to

have pathological constraints such as ϕi = ϕj that would cause identifiability issues

for any regression model. The assumption on Φ excludes these cases; in practice,

one could use model selection techniques [108] on historical data to eliminate such

irrelevant features prior to beginning the information collection problem.

For convenience, we also assume in this analysis that Σ0
i,i > 0 for all i, that

is, we do not have perfect information about any feature. Such features are auto-

matically uncorrelated with any other features, and thus have no impact on the KG

quantity. If ϕi is a slack variable, as discussed in Section 3.2.1, we can model θ0
i = 0

and Σ0
i,i = 0, and exclude the ith feature from the subsequent analysis.

PROPOSITION 3. For any sampling policy, limN→∞
aN

bN
= ρ a.s.

Proof. From Proposition 1, we know that an

bn
= En (ρ). It follows from Theorem
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V.4.7 of [137] that the process
(
an

bn

)∞
n=0

is a uniformly integrable martingale and

converges a.s. to E (ρ | F∞). Thus, it remains to show that ρ is F∞-measurable.

Since the set Φ is finite, any policy π must measure at least one alterna-

tive ϕ̄ infinitely often as N → ∞. Note that ϕ̄ may depend on the sample path,

but is measurable with respect to F∞. The sample variance of all ηn+1 for which

π (θn,Σn, an, bn) = ϕ̄ converges a.s. to the true variance 1
ρ
. It follows that ρ is

measurable with respect to F∞, whence En (ρ)→ ρ a.s.

From martingale arguments, it also follows that (θn,Σn) have finite a.s. limits

under any policy, since it is possible to write(
θn,

bn

an − 1
Σn + θn (θn)>

)
= En

(
β, ββ>

)
(3.14)

and apply Theorem V.4.7 of [137] to find that bn

an−1
Σn converges. Since Proposition

3 also implies that bn

an−1
→ 1

ρ
a.s., it follows that Σn converges. However, the limit

here may now depend on the policy. We now bring the KGUP policy back into the

discussion and write

hs (p, q) = E
(

max
ϕ∈Φ

pϕ + qϕTs

)
−max

ϕ∈Φ
pϕ

for fixed s > 1 and p, q ∈ RK . The next two results study the properties of hsn for

sn = 2an and an = a0 + n
2

as in (3.5).

PROPOSITION 4. Suppose that (pn, qn) converges to a finite limit in RK ×RK.

Then, the sequence
{

maxϕ∈Φ p
n
ϕ + qnϕTsn

}
n≥0

is uniformly integrable.

Proof. From p. 75 of [137], the componentwise maximum of finitely many uniformly

integrable sequences is uniformly integrable. Since both {pn} and {qn} are bounded,
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it remains to show that {Tsn} is uniformly integrable. We choose s0 = 2a0 > 1 so

that each Tsn has finite expectation. Consider the pdf gsn of the standard Student’s

t-distribution with sn degrees of freedom. Because the tails of gs become lighter with

larger s, there exists a value tn > 0 such that gsn (tn) = gs0 (tn) with gsn(t) < gs0(t)

for t > tn and gsn(t) > gs0(t) for 0 < t < tn. Note that sn → ∞ and g∞ is

the standard normal pdf since Tsn converges in distribution to a standard normal

random variable as sn →∞. Consequently, tn → t∞ where g∞ (t∞) = gs0 (t∞).

Thus, t̃ = supn≥1 t
n is finite. For M > t̃, we have

sup
n

E
(
Tsn1{Tsn>M}

)
≤ E

(
Ts01{Ts0>M}

)
,

whence

lim
M→∞

sup
n

E
(
|Tsn|1{|Tsn |>M}

)
= 2 lim

M→∞
sup
n
E
(
Tsn1{Tsn>M}

)
≤ 2 lim

M→∞
E
(
Ts01{Ts0>M}

)
.

The limit in the second line is equal to zero since Ts0 has finite expectation.

PROPOSITION 5. Suppose that (pn, qn) converges to a finite limit (p∞, q∞). The

following statements are equivalent:

1. limn→∞ hsn (pn, qn) = 0.

2. There exists a constant ` such that limn→∞ q
n
ϕ = ` for all ϕ.

Proof. Assume that 1) holds. Since sn → ∞, we know that Tsn converges in dis-

tribution to a standard normal random variable Z. Note, however, that we are

only interested in taking expectations over the distribution of Tsn for the purpose
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of computing hsn . By Skorokhod’s representation theorem [137, Corollary III.5.9],

there exist random variables T̄sn and Z̄ that have the same distribution as Tsn and

Z, but with T̄sn → Z̄ almost surely. Thus,

lim
n→∞

max
ϕ∈Φ

pnϕ + qnϕT̄sn = max
ϕ∈Φ

p∞ϕ + q∞ϕ Z̄ (3.15)

almost surely. From Proposition 4, it follows that the convergence in (3.15) also

holds in L1, whence

lim
n→∞

E
(

max
ϕ∈Φ

pnϕ + qnϕT̄sn

)
= E

(
max
ϕ∈Φ

p∞ϕ + q∞ϕ Z̄

)
.

Since T̄sn has the same distribution as Tsn , it follows that

lim
n→∞

hsn (pn, qn) = E
(

max
ϕ∈Φ

p∞ϕ + q∞ϕ Z̄

)
−max

ϕ∈Φ
p∞ϕ

=
K−1∑
i=1

(
q∞i+1 − q∞i

)
(f (− |c∞i |)− |c∞i |F (− |c∞i |))

= 0, (3.16)

where the functions f, F are the standard normal pdf and cdf [121], the values q∞i

are obtained by sorting q∞ϕ in increasing order, and c∞i are the breakpoints of the

piecewise linear function t 7→ maxi p
∞
i +q∞i t as discussed previously. It can be shown

that the function z 7→ f (−z) − zF (−z) is strictly positive, whence (3.16) implies

q∞i = q∞i+1 for all i, as required.

Now, assume that 2) holds. In this case,

lim
n→∞

max
ϕ∈Φ

pnϕ + qnϕT̄sn =

(
max
ϕ∈Φ

p∞ϕ

)
+ `Z̄

almost surely. Applying Proposition 4 again, we obtain hsn (pn, qn)→ 0 as required.
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We now connect these results to the KGUP policy. First, we demonstrate

that vKG,nψ → 0 for all ψ ∈ Φ, which is then shown to imply statistical consistency

of the regression estimators θn. Note that, due to the parametric structure of the

problem, this does not necessarily require every ψ to be measured infinitely often,

as it does in R&S [135]; in fact, as Corollary 1 shows, we may not need to measure

some alternatives at all.

PROPOSITION 6. Suppose that ψ ∈ Φ is measured infinitely often. Then,

ϕ>ΣNψ → 0 for all ϕ ∈ Φ and vKG,Nψ → 0 a.s.

Proof. For fixed N , let Nψ =
∑N

n=0 1{ϕn=ψ} be the number of times ψ is measured

by time N . Define Σ̄N by the equation

(
Σ̄N
)−1

=
(
Σ0
)−1

+
N∑
n=0

1{ϕn 6=ψ}ϕ
n (ϕn)> .

By the matrix inverse lemma, it follows that

ΣN =
((

Σ̄N
)−1

+Nψψψ
>
)−1

= Σ̄N − NψΣ̄Nψψ>Σ̄N

1 +Nψψ>Σ̄Nψ
.

Consequently,

ψ>ΣNψ = ψ>Σ̄Nψ −
Nψ

(
ψ>Σ̄Nψ

)2

1 +Nψψ>Σ̄Nψ

=
ψ>Σ̄Nψ

1 +Nψψ>Σ̄Nψ
,

which vanishes to zero as Nψ →∞. By the Cauchy-Schwarz inequality,

(
ϕ>ΣNψ

)2 ≤
(
ϕ>ΣNϕ

) (
ψ>ΣNψ

)
≤
(
ϕ>Σ0ϕ

) (
ψ>ΣNψ

)
,

implying that ϕ>ΣNψ → 0 for all ϕ ∈ Φ. Proposition 5 then implies that vKG,nψ → 0

a.s.
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COROLLARY 1. If ψ1, ψ2, . . . , ψk are measured infinitely often, then vKG,nψ → 0

almost surely for any ψ ∈ span(ψ1, ψ2, . . . ψk).

Proof. By Proposition 6 we have ϕ>Σnψi → 0 almost surely for all ϕ ∈ Φ and all

1 ≤ i ≤ k. This implies ϕ>Σnψ → 0 almost surely for all ϕ ∈ Φ. By Proposition 5,

we then have vKG,nψ → 0 almost surely.

PROPOSITION 7. Suppose that ϕn is selected using the KGUP policy for all n.

Then, for all ψ ∈ Φ, limn→∞ v
KG,n
ψ = 0 almost surely.

Proof. We prove this statement by contradiction. Fix ω and let Aω ⊆ Φ be the set

of all ψ ∈ Φ for which vKG,nψ (ω) does not converge to zero. Suppose that Aω is

non-empty. Then, Proposition 6 implies that Aω 6= Φ and also that any ψ ∈ Aω has

only been measured finitely many times on the sample path ω.

Since |Aω| is finite, we can find a large enough N1 such that, if n > N1, then

ϕn (ω) /∈ Aω. Furthermore, there exists some ε such that, for any N , there exists

n > N satisfying minψ∈Aω v
KG,n (ω) > ε. At the same time, for this ε, there also

exists N2 such that, for all n > N2, maxψ/∈Aω v
KG,n
ψ (ω) < ε. Consequently, there

exists n > max (N1, N2) for which

min
ψ∈Aω

vKG,n (ω) > ε > max
ψ/∈Aω

vKG,nψ (ω) .

Thus, any alternative in Aω is preferable to any alternative not in Aω at this time.

However, since n > K1, the KGUP policy must select an alternative not in Aω,

contradicting the definition of the policy. We conclude that limn→∞ v
KG,n
ψ = 0 a.s.

for all ψ ∈ Φ.
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THEOREM 1. Suppose that ϕn is selected using the KGUP policy for all n. Then,

ψ>Σnψ → 0 and V ar
(
ψ>β | Fn

)
→ 0 almost surely for all ψ ∈ Φ.

Proof. Consider a fixed ω. Propositions 5 and 7 imply that, for fixed ψ ∈ Φ, there

exists ` (ω) such that ϕ>Σn (ω)ψ → ` (ω) for all ϕ ∈ Φ. We now show that ` (ω)

does not depend on ψ. By Proposition 7, we have vKG,nψ1
(ω)→ 0 and vKG,nψ2

(ω)→ 0

for any ψ1, ψ2 ∈ Φ. Suppose that ψ1 6= ψ2. By Proposition 5, we have

ϕ>Σ∞ (ω)ψ1 = `1 (ω) , ϕ>Σ∞ (ω)ψ2 = `2 (ω)

for all ϕ ∈ Φ.

Now, fix some ϕ. Proposition 7 implies that vKG,nϕ (ω) → 0. It then follows

from Proposition 5 that there exists some ` (ω) such that ψ>Σ∞ (ω)ϕ = ` (ω) for

all ψ. Therefore, `1 (ω) = `2 (ω) = ` (ω).

Furthermore, as N → ∞, there is at least one alternative that is measured

infinitely often on the sample path ω. Combining Proposition 6 with the above

results, we obtain ` (ω) = 0. Thus, ψ>Σn (ω)ψ → 0 for all ψ ∈ Φ, as required. It

then follows from (3.14) that the conditional variance vanishes to zero as well.

COROLLARY 2. Suppose that the decision space Φ contains r linearly indepen-

dent vectors. Then, the regression coefficients θn are consistent under the KGUP

policy.

Proof. Combining Theorem 1 with Corollary 1 implies that Σn → 0 almost surely.

It follows that the largest eigenvalue of Σn converges to zero. From (3.3)-(3.4), recall

that θn is identical to the least-squares estimator. It is well-known [138, 139] that

λmax (Σn)→ 0 is necessary and sufficient for consistency.
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3.4 Computational enhancements for the KGUP algorithm

We now present two approaches for computing the KG quantity in (3.10)

with lower computational complexity. First, we consider a special case where the

regression features are independent (i.e., the constraints Aϕ = h are not present),

and derive a direct calculation of the KG quantity that does not require direct

computation of breakpoints. Second, we develop a convex approximation, based

on SDP relaxation, for the general case. The approximation leads to much faster

computations in practice.

3.4.1 The KGUP2 algorithm for independent features

Suppose that the regression features are independent, and the constraints

Aϕ = h are removed from (3.2), with the possible exception of ϕ0 = 1 for the

intercept. In this case, all of the attributes are directly controllable (except for

the intercept), and K = 2r−1. By exploiting the binary structure of the decision

variables, we obtain the following result.

PROPOSITION 8. Suppose that Φ is the set of all possible combinations of r− 1

controllable features. Then,

vKG,nψ =
∑

j≥1,unj 6=0

θnjGsn

(∣∣∣∣ θnj
unj (ψ)

∣∣∣∣)+
sn(unj (ψ))2 + (θnj )2

(sn − 1)|unj (ψ)|
gsn

((
θnj

unj (ψ)

)2
)
− (θnj )+,

(3.17)

where unj (ψ) = (Σn
j·)
>ψ
√

bn

an(1+ψ>Σnψ)
, and θn = (θn0 , θ

n
1 , . . . , θ

n
r−1)>.

Proof. Since ϕ is a binary vector and we control (ϕ1, ϕ2, . . . , ϕr−1), the maximum
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of ϕ>θn is simply obtained by letting ϕj = 1 when θnj ≥ 0 and ϕj = 0 otherwise.

Then, (3.8) can be rewritten as

vKG,nψ = En
[∑
j≥1

(θn+1
j )+|ϕn = ψ

]
−
∑
j≥1

(θnj )+. (3.18)

Using (3.9) and (3.18), we obtain

vKG,nψ =
∑
j

Enψ
[
(θnj + unj Tsn)+

]
− (θnj )+

=
∑

j≥1,unj >0

∫ ∞
−
θn
j
un
j

(θnj + unj t)gsn(t)dt+
∑

j≥1,unj <0

∫ − θnj
un
j

−∞
(θnj + unj t)gsn(t)dt−

∑
j≥1,unj 6=0

(θnj )+.

(3.19)

The conclusion follows after simple rearrangements of the terms in (3.19).

Note that (3.17) is an exact calculation of the KG quantity, but does not

require us to sort slopes or compute breakpoints, thus eliminating a cost factor of

O (K logK). The alternative with the largest KG factor can now be found at a cost

of O (K), a dramatic improvement in efficiency over the general form in Section

3.3.1, although K may still be large.

3.4.2 The KGUP3 algorithm for combinatorial feature selection

The derivation of the KGUP2 algorithm assumes that every feature is directly

controllable by the decision-maker, that is, any combination of zeros and ones is

allowed. However, this is usually not the case in non-profit fundraising or regression

in general, since the model can include interactions between attributes, as discussed

in Section 3.2.1. For the general case, we develop a convex approximation of the KG

quantity by first applying a quantization procedure to approximate the expectation
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over the distribution of Ts, and then applying an SDP relaxation to the resulting

problem. The SDP can be solved to fixed precision using interior-point methods,

whose complexity is polynomial in r [50].

Optimal quantization. Note that the second term of the KG quantity in

(3.10) is independent of ψ, and the decision ψKGUP,n made by the KGUP policy

only depends on the first term. Thus, for convenience, we omit the second term and

redefine

vKG,nψ = En (m(Tsn)) , (3.20)

where m (t) = maxϕ∈Φ pϕ + qϕ (ψ) t for fixed p, q, ψ. Since m is a maximum of linear

functions of t, it is convex in t.

The Voronoi quantizer for Ts is the function qvor: R→ {t1, . . . , tJ} defined as

qvor(Ts) =
J∑
j=1

tj1C(tj)(Ts),

where {C(tj)}1≤j≤J is a Borel partition of R with C(tj) = {t ∈ R : |t − tj| ≤

|t− tj′ |, j′ = 1, . . . , J}. Because Ts is one-dimensional and unimodal, for any fixed J

there exists a unique qvor(·) and corresponding sequence tJ = {tj}1≤j≤J minimizing

the quadratic quantization error [140] given by

DTs,2
J = E|Ts − qvor(Ts)|2 =

∫
R

min
j
|tj − t|2gs(t)dt.

We know m(t) is Lipschitz continuous in t. Letting L be its modulus, we write

|Enm(Ts)− Enm(qvor(Ts))| ≤ En|m(Ts)−m(qvor(Ts))|

≤ LEn|Ts − qvor(Ts)|

≤ L

√
DTs,2
J .
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Define {wj}1≤j≤J as wj = Gs

(
tj+tj+1

2

)
−Gs

(
tj−1+tj

2

)
, with the convention t0 = −∞

and tJ+1 =∞. Then Enm(qvor(Ts)) =
∑

j wjm(tj).

Thus, by finding the quantization sequence tJ that minimizes DTsn ,2
J , we can

approximate the KG quantity in (3.20) by

v̂J =
J∑
j=1

wjm(tj). (3.21)

Newton’s method has been used to compute the quantization sequence for

several distributions, e.g., the standard normal distribution [141]. Here, we use a

similar approach to find the quantization sequence for Ts. We first compute the

gradient d(DTs,2
J ) and Hessian matrix d2(DTs,2

J ) of the quadratic quantization error.

Starting from some told ∈ RJ , we compute

tnew = told −
[
d2(DTs,2

J )(told)
]−1

· d(DTs,2
J )(told)

and iteratively replace told by tnew in order to find the zero of d(DTs,2
J ) in RJ . In

the Appendix, we present tables of the optimal quantizations for J = 5, J = 10,

and s = 3, ..., 20; in our numerical experiments, we found that J = 10 produces

competitive performance.

Semidefinite relaxation. We now describe the SDP relaxation of the prob-

lem in (3.13). The algorithm solves this problem for every n with a different set of

inputs (θn,Σn, an, bn). For convenience, we drop the superscripts from these quan-

tities and show the computation for a generic, fixed (θ,Σ, a, b).

By (3.11), (3.21), and the definition of m, we have

max
ψ∈Φ

v̂J = max
ψ∈Φ

max
ϕ1,...,ϕJ∈Φ

J∑
j=1

wj
(
ϕj
)>

(θ + Σtjdψ) , (3.22)
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where

dψ =
ψ√

a
b
(1 + ψ>Σψ)

.

We now reformulate this result to obtain the objective function for the SDP.

PROPOSITION 9. Define

Cj =
1

2


0 θ> 0>

θ 0 tjΣ

0 tjΣ 0

 , Zj =


1

ϕj

dψ




1

ϕj

dψ



>

=


Z11
j Z1ϕ

j Z1d
j

Zϕ1
j Zϕϕ

j Zϕd
j

Zd1
j Zdϕ

j Zdd
j

 .

Then,

max
ψ∈Φ

v̂J = max
ψ∈Φ

max
ϕ1,...,ϕJ∈Φ

J∑
j=1

wjtr (CjZj) . (3.23)

Proof. We evaluate

tr(CjZj) =
1

2
tr




0 θ> 0>

θ 0 tjΣ

0 tjΣ 0




1 (ϕj)> (dψ)>

ϕj ϕj(ϕj)> ϕjd>ψ

dψ dψ(ϕj)> dψd
>
ψ




= (ϕj)>θ + tr(tjΣdψ(ϕj)>)

= (ϕj)>θ + tj(ϕ
j)>Σdψ. (3.24)

The conclusion follows from comparing (3.23) and (3.24) with (3.22).

We observe that Cj is a constant matrix and Zj is a positive semidefinite

matrix with rank 1. This holds for all j ∈ {1, . . . , J}. The problem in (3.23) is

similar to an SDP, but has the following nonlinear constraints:

1. The rank-1 constraint on Zj;
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2. The binary constraints on ψ and ϕj;

3. The nonlinear constraints on dψ transformed from ψ.

To formulate (3.23) as an SDP, we relax the nonlinear constraints using a set of

linear constraints. We first drop the rank-1 constraint on Zj, then relax the binary

constraints as ψ, ϕj ∈ [0, 1]r, and finally develop a set of linear constraints on dψ

from Aψ = h.

From Aψ = h, we have ψ>A>Aψ = h>h. Thus

dψ =
ψ√

ψ>
(
a
b

(
A>A
h>h

+ Σ
))

ψ

=
ψ√
ψ>Pψ

,

where P = a
b

(
A>A
h>h

+ Σ
)

. It follows that

d>ψPdψ = 1. (3.25)

We define Y = dψd
>
ψ , whence (3.25) is equivalent to

tr(PY ) = 1. (3.26)

By definition, Y is symmetric and positive semidefinite, and we also require Y to

be non-negative:

Yi,j ≥ 0, 1 ≤ i, j ≤ r. (3.27)

Next, we obtain a bound on the elements of Y by letting

δ = min
ψ∈[0,1]r,Aψ=h

ψ>Pψ,

whence

diag(Y ) ≤ 1r/δ, (3.28)
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where 1r is an r-vector of ones. By convention, there is no upper bound if δ = 0.

The quantity δ can be easily found by solving a small quadratic program with

linear constraints and r variables, which can be done efficiently using a convex

programming solver.

Following [130], we add another constraint on ϕ that can strengthen the re-

laxations. Given ξ ∈ Rr with ξi > 0 for each i, we define ζ = supϕ∈Φ ξ
>ϕ. Then, for

any ϕ ∈ Φ we have

ϕϕ> � ζDiag(ϕ)Diag(ξ)−1, (3.29)

where Diag(z) denotes the diagonal matrix with elements zi. The value of ζ can

be found by solving a small IP. If the IP cannot be solved to optimality, the best

available upper bound on ζ should be used, based on, e.g., the optimality gap

returned by the IP solver.

Combining (3.26), (3.27), (3.28), (3.29) and the linear constraints on ϕj, we

formulate (3.23) as the SDP

max
Y,Z1,...,ZJ

J∑
j=1

wjtr(CjZj)
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subject to

Zj � 0,

Z11
j = 1,

AZϕ1
j = h,

0 ≤ Zϕ1
j ≤ 1,

AZϕϕ
j A> = hh>,

Zϕϕ
j ≥ 0,

Zϕϕ
j � ζDiag(Zϕ1

j )Diag(ξ)−1,

Zdd
j = Y,

Y ≥ 0,

tr(PY ) = 1,

diag(Y ) ≤ 1r/δ,

for j = 1, ..., J .

After solving this SDP, we obtain the matrix Y . With rank(Y ) = 1,
dψ
||dψ ||

is equivalent to the unique normalized eigenvector of Y . After relaxing the rank-1

condition, we can approximate
dψ
||dψ ||

by the normalized eigenvector corresponding to

the largest eigenvalue of Y . We define this eigenvector as v and let ṽ = v
maxj(vj)

,

which satisfies ṽ ∈ [0, 1]r. Since ψ and dψ only differ by a scaling factor, we can

interpret ṽ as a fractional approximation for the binary ψ ∈ {0, 1}r. To recover a
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binary ψ, we can perform a rounding procedure by solving the small IP given by

minψ,z 1>r z

s.t. ψ − ṽ ≤ z,

ṽ − ψ ≤ z,

Aψ = h

ψ ∈ {0, 1}r.

(3.30)

This problem projects the solution ṽ onto {0, 1}r by minimizing the L1-norm of the

difference between ψ and ṽ. While any IP can potentially be difficult to solve, note

that the linear IP in (3.30) is substantially simpler than the nonlinear, nonconvex

IP defined by (3.13). In practice, the SDP procedure provides considerable compu-

tational savings over the basic version of KGUP that enumerates every alternative.

3.5 Numerical experiments

We now study the practical performance of the KGUP policy and the SDP

relaxation. All policies are evaluated through simulation: first, simulated experi-

ments allow a fair comparison between two policies given identical starting condi-

tions; second, by simulating the underlying true values of the alternatives, we are

able to quantify how well a policy could have done if it had made different de-

cisions; third, simulations allow us to perform large numbers of experiments and

identify statistically significant distinctions between policies. However, we use the

non-profit fundraising application to provide a realistic context for the simulations.

The starting prior parameters θ0,Σ0 are taken from the results of the empirical
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analysis in [134], which were estimated based on historical data. In the following,

we consider the effects of different a0, b0 (beliefs about the sample variance) on per-

formance. The value of r can be adjusted to experiment with different problem

sizes by simply fixing some of the features (e.g., we may constrain ourselves to the

Acquisition campaign type while varying the designs and donor segments).

The time horizon in the fundraising application is typically small, and we con-

sider N = 20 in our experiments (e.g., 20 monthly campaigns). For each policy

we consider, we simulate 100 macro-replications in order to obtain statistically sig-

nificant results. Within each macro-replication, we generate a single “true” value

of ρ from the prior Gamma (a0, b0), and then generate a set of “true” coefficients

β ∼ N
(
θ0, 1

ρ
Σ0
)

. However, these true values are not observed by any policy when

making decisions. Each policy chooses a design ψn according to some decision rule

and observes ηn+1 ∼ N
(
β>ψn, 1

ρ

)
. After N measurements, the performance of

the policy π is evaluated by letting ψπ be the solution that optimizes V
(
θN
)

and

computing the normalized opportunity cost

Cπ,N =
maxϕ∈Φ ϕ

>β − (ψπ)> β

maxϕ,ψ∈Φ(ϕ>β − ψ>β)
. (3.31)

The denominator in (3.31) confines Cπ,N to be in [0, 1]. We also compute the

precision estimation error, defined as |ρ− an

bn
|.

The literature on simulation optimization typically considers settings where

the value of a single decision or alternative is only observable from a black box,

without the additional structure imposed by the regression model. However, a few

benchmarks are available. We compare the following policies:
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Knowledge gradient with unknown precision (KGUP). The exact version of the

policy calculates (3.13) by enumerating the alternatives. We include this policy in

order to evaluate the loss incurred by the SDP relaxation. Our experiments consider

problems where the enumeration can still be performed.

KGUP with SDP relaxation (KGUP3). The SDP relaxation is computed as

described in Section 3.4.2. We used J = 10 in the quantization procedure; see the

Appendix for the values of tJ .

Knowledge gradient with correlated beliefs (CKG). We implement the policy

of [124], a VIP designed for regression models, but with a learning mechanism that

assumes known sampling variance (i.e., that ρ = a0

b0
). Like KGUP, the CKG policy

enumerates the alternatives (no faster version is available).

Greedy policy (Greedy). The greedy heuristic implements the argmax of V (θn)

at time n, simply replacing the unknown coefficients with their current point esti-

mates. The decision can thus be obtained by solving a small IP.

Thompson sampling (Thompson). The Thompson sampling policy has at-

tracted recent attention [142] because it is easy to implement and enjoys theoretical

guarantees on the rate of convergence in some settings. In our problem, the pol-

icy first draws a single sample β̂n from the time-n posterior distribution, namely

the marginal distribution of β given the normal-gamma parameters (θn,Σn, an, bn).

Then, the policy implements the argmax of V
(
β̂n
)

. Thus, it is very similar to a

greedy policy, but uses a random sample instead of a point estimate, thus promoting

more exploration.

It is important to note that, in the following experiments, we keep r relatively
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small (so that K is a few hundred or thousand) because one of our main benchmarks

(CKG) works by enumerating alternatives, making it computationally expensive to

run multiple sample paths. Furthermore, we wish to evaluate the SDP relaxation

against the exact KGUP policy, which also enumerates the decision space. However,

toward the end of this study, we show that the SDP relaxation provides substantial

computational savings in a problem with over 100, 000 alternatives.

In the first experiment, we focus on the value of modeling unknown variance, so

KGUP3 is omitted from the comparison. We let r = 10, where the first nine features

are directly controllable and the tenth is an interaction term. Thus, K = 29 = 512.

Figures 3.1(a)-3.1(c) illustrate Cπ,N as a function of N for different policies π under

different starting conditions for a0, b0. We average performance over 100 macro-

replications and report 95% confidence intervals. The KGUP policy significantly

outperforms CKG for small a0

b0
(Figs. 3.1(b) and 3.1(c)), when the sampling vari-

ance tends to be large and exhibits more variation between instances. However,

when a0

b0
is large, there is much less variation in ρ between macro-replications and

CKG is competitive with KGUP. The Thompson policy yields similar performance

to CKG overall. Finally, Figure 3.1(d) shows how the sampling precision ρ is learned

over time by KGUP; we see that learning occurs rapidly within the first few mea-

surements. The other policies are omitted from Figure 3.1(d), but we observed

that they learn the variance at about the same rate as KGUP (except CKG, which

assumes that the variance is known).

In the second experiment, we consider the performance loss incurred by using

KGUP3 to approximate the KG computation instead of enumerating the alterna-

101



(a) Opportunity cost, a0 = 10, b0 = 1. (b) Opportunity cost, a0 = 1, b0 = 10.

(c) Opportunity cost, a0 = 0.5, b0 = 1. (d) Opportunity cost, a0 = 0.5, b0 = 1.

Figure 3.1: Averaged opportunity cost and precision estimation error over time.

tives. We test the performance of the SDP relaxation for two problem sizes. First,

we consider the problem from the first experiment with K = 512; second, we con-

sider a larger problem with 3 more independent features and 3 more interaction

terms, so that K = 4096. The prior for ρ is set to be a0 = 0.5, b0 = 1 in all cases.

Figure 3.2 shows that the KGUP3 policy continues to outperform CKG, despite the

fact that CKG is still allowed to enumerate the alternatives. This suggests that the
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(a) Opportunity cost, K = 512. (b) Opportunity cost, K = 4096.

Figure 3.2: Averaged opportunity cost over time.

SDP relaxation provides a reasonably good approximation to KGUP.

Finally, we note that both CKG and KGUP3 can be viewed as approximate

versions of KGUP, in the sense that they both seek to identify alternatives with high

value of information, but do not calculate that value exactly in the unknown-variance

setting. To test the quality of these approximations, we randomly generate 100 priors

for β using θ0 ∼ N(0r, Ir×r) and Σ0 = (s+ s>)(s+ s>), where si,j ∼ N(0, 1),∀1 ≤

i, j ≤ r. The feasible regions for the test problems remain the same as before. For

each of these 100 priors, we compute the approximate value of information using

KGUP3 (or CKG), and find the alternative ϕ′ that maximizes this quantity. We then

rank the alternatives according to their precise values of information (as computed

by KGUP) and see how highly ϕ′ places in that ranking. Figure 3.3(a) shows that

KGUP3 produces a better approximation to the KGUP policy than CKG; over 50%

of the alternatives chosen by KGUP3 have values of information ranked in the top

50 (out of 512).
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(a) Empirical distribution of value of information
ranks.

(b) Averaged log2(CPU time) for one iteration.

Figure 3.3: Accuracy and efficiency assessment of KGUP3 using simulated priors for
β.

We also compare the computational complexity of KGUP and KGUP3 for

various problem sizes. Figure 3.3(b) reports the computational costs (in log-scale)

for increasing values of r where we successively add a new independent feature into

each problem. The computational cost of KGUP increases exponentially (linear

increase in logarithm), whereas the cost of KGUP3 grows much more slowly. This

indicates that KGUP3 will run much faster than KGUP (or CKG) when the number

of alternatives is large. We note that, for K = 217, a single iteration of KGUP takes

about 30 hours to run, whereas KGUP3 takes under 10 minutes.

3.6 Conclusion

We have proposed a framework for information collection in regression-based

optimization where we have the ability to select features from a combinatorial space.

Such problems arise in applications of business analytics where statistical estimation
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alternates with decision-making, and we may engage in a limited amount of experi-

mentation to learn about the uncertainty in the statistical model. In particular, this

challenge arises in the problem of designing a fundraising campaign for a non-profit

organization.

We derived a value of information policy for parametric (regression-based) be-

liefs with unknown sampling variance. This policy improves upon an existing policy

that assumes known variance; however, in practice, neither may be practical due to

the high computational cost of enumerating a combinatorial set of alternatives. For

this purpose, we have proposed an improved algorithm, based on SDP relaxation,

that exhibits significant computational savings in problems with large numbers of

alternatives. We believe that this approach provides significant value for learning in

regression-based optimization with large decision spaces.
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Appendix A: Chapter 3 Supplements

A.1 Proof of Proposition 1

Assume that (β, ρ) follows a multivariate normal-gamma distribution with

parameters (θ,Σ, a, b). The joint density is given by

p (β, ρ | θ,Σ, a, b) = p (β | ρ, θ,Σ) p (ρ | a, b)

=
( ρ

2π

) r
2 |Σ|−

1
2 e−

ρ
2

(β−θ)>Σ−1(β−θ) ba

Γ (a)
ρa−1e−bρ

where Γ is the gamma function. Let η ∼ N
(
ϕ>β, 1

ρ
ϕ>Σϕ

)
be the observation

corresponding to the chosen feature vector ϕ. From Bayes’ rule [143], we know that

p (β, ρ | η) is proportional to p (β, ρ) q (η | β, ρ). We then write,

p (β, ρ) q (η | β, ρ) =
( ρ

2π

) r
2 |Σ|−

1
2 e−

ρ
2

(β−θ)>Σ−1(β−θ) ba

Γ (a)
ρa−1e−bρ

√
ρ

2π
e−

ρ
2(η−φ>β)

2

=
( ρ

2π

) r
2 |Σ|−

1
2 e
− ρ

2

[
(β−θ)>Σ−1(β−θ)+(η−ϕ>β)

2
]
ba

Γ (a)
ρa+ 1

2
−1e−bρ

1√
2π
.

Define

θ′ = θ +
η − ϕ>θ

1 + ϕ>Σϕ
Σϕ,

Σ′ = Σ− Σϕϕ>Σ

1 + ϕ>Σϕ
.

106



By completing the square for β, and using the matrix inversion lemma to observe

that Σ′ =
(
Σ−1 + ϕϕ>

)−1
, we obtain

(β − θ)>Σ−1 (β − θ) +
(
η − ϕ>β

)2
= (β − θ′)> (Σ′)

−1
(β − θ′) +

(
η − ϕ>θ

)2

1 + ϕ>Σϕ
.

It follows that

p (β, ρ) q (η | β, ρ) =
( ρ

2π

) r
2 |Σ′|−

1
2 e−

ρ
2

(β−θ′)>(Σ′)−1(β−θ′) ba

Γ (a)
ρa+ 1

2
−1e
−ρ

b+ (η−ϕ>θ)
2

2(1+ϕ>Σϕ)


1√
2π

√
|Σ′|
|Σ|

.

Letting a′ = a+ 1
2

and

b′ = b+

(
η − ϕ>θ

)2

2 (1 + ϕ>Σϕ)
,

we obtain

p (β, ρ) q (η | β, ρ) ∝
( ρ

2π

) r
2 |Σ′|−

1
2 e−

ρ
2

(β−θ′)>(Σ′)−1(β−θ′) (b′)a
′

Γ (a′)
ρa
′−1e−ρb

′
,

which is precisely the normal-gamma density with parameters (θ′,Σ′, a′, b′) calcu-

lated according to the desired updating equations.

A.2 Tables of Voronoi quantizations for the Student’s t-distribution

In this appendix, we present tables of two Voronoi quantizations tJ of the

standard Student’s t-distribution with varying degrees of freedom s. The quantiza-

tion does not exist when s = 1, as the mean of the distribution is undefined in this

case, or when s = 2, since this corresponds to infinite variance. As s increases, the

quantization approaches that of the standard normal distribution, which we also

include.
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s t1 t2 t3 t4 t5

3 -5.6124 -1.5520 0.0000 1.5520 5.6124

4 -3.4130 -1.1977 0.0000 1.1977 3.4130

5 -2.7943 -1.0636 0.0000 1.0636 2.7943

6 -2.5065 -0.9929 0.0000 0.9929 2.5065

7 -2.3406 -0.9493 0.0000 0.9493 2.3406

8 -2.2327 -0.9197 0.0000 0.9197 2.2327

9 -2.1569 -0.8982 0.0000 0.8982 2.1569

10 -2.1008 -0.8820 0.0000 0.8820 2.1008

11 -2.0576 -0.8693 0.0000 0.8693 2.0576

12 -2.0233 -0.8591 0.0000 0.8591 2.0233

13 -1.9954 -0.8507 0.0000 0.8507 1.9954

14 -1.9722 -0.8436 0.0000 0.8436 1.9722

15 -1.9527 -0.8377 0.0000 0.8377 1.9527

16 -1.9361 -0.8325 0.0000 0.8325 1.9361

17 -1.9217 -0.8281 0.0000 0.8281 1.9217

18 -1.9091 -0.8242 0.0000 0.8242 1.9091

19 -1.8980 -0.8207 0.0000 0.8207 1.8980

20 -1.8882 -0.8176 0.0000 0.8176 1.8882

∞ -1.7241 -0.7646 0.0000 0.7646 1.7241

Table A.1: Optimal quantizations with J = 5.
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s t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

3 -22.3881 -7.3823 -3.2540 -1.4892 -0.4392 0.4392 1.4892 3.2540 7.3823 22.3881

4 -7.8620 -3.7060 -2.0375 -1.0601 -0.3315 0.3315 1.0601 2.0375 3.7060 7.8620

5 -5.3116 -2.8550 -1.6854 -0.9116 -0.2900 0.2900 0.9116 1.6854 2.8550 5.3116

6 -4.3417 -2.4886 -1.5190 -0.8364 -0.2682 0.2682 0.8364 1.5190 2.4886 4.3417

7 -3.8426 -2.2862 -1.4222 -0.7912 -0.2549 0.2549 0.7912 1.4222 2.2862 3.8426

8 -3.5409 -2.1581 -1.3590 -0.7610 -0.2459 0.2459 0.7610 1.3590 2.1581 3.5409

9 -3.3396 -2.0697 -1.3144 -0.7394 -0.2394 0.2394 0.7394 1.3144 2.0697 3.3396

10 -3.1959 -2.0052 -1.2813 -0.7231 -0.2345 0.2345 0.7231 1.2813 2.0052 3.1959

11 -3.0884 -1.9560 -1.2558 -0.7105 -0.2306 0.2306 0.7105 1.2558 1.9560 3.0884

12 -3.0049 -1.9173 -1.2355 -0.7005 -0.2276 0.2276 0.7005 1.2355 1.9173 3.0049

13 -2.9382 -1.8860 -1.2190 -0.6922 -0.2250 0.2250 0.6922 1.2190 1.8860 2.9382

14 -2.8837 -1.8601 -1.2053 -0.6853 -0.2229 0.2229 0.6853 1.2053 1.8601 2.8837

15 -2.8384 -1.8385 -1.1937 -0.6795 -0.2212 0.2212 0.6795 1.1937 1.8385 2.8384

16 -2.8001 -1.8200 -1.1839 -0.6746 -0.2196 0.2196 0.6746 1.1839 1.8200 2.8001

17 -2.7673 -1.8042 -1.1753 -0.6702 -0.2183 0.2183 0.6702 1.1753 1.8042 2.7673

18 -2.7389 -1.7904 -1.1679 -0.6665 -0.2172 0.2172 0.6665 1.1679 1.7904 2.7389

19 -2.7141 -1.7782 -1.1613 -0.6631 -0.2161 0.2161 0.6631 1.1613 1.7782 2.7141

20 -2.6922 -1.7675 -1.1555 -0.6602 -0.2152 0.2152 0.6602 1.1555 1.7675 2.6922

∞ -2.3451 -1.5913 -1.0578 -0.6099 -0.1996 0.1996 0.6099 1.0578 1.5913 2.3451

Table A.2: Optimal quantizations with J = 10.
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