
ABSTRACT

Title of dissertation: WISE Abstraction Framework
For Wireless Networks

Seungjoon Lee, Doctor of Philosophy, 2006

Dissertation directed by: Professor Samrat Bhattacharjee
Department of Computer Science

Current wireless networks commonly consist of nodes with different capabilities

(e.g., laptops and PDAs). Link quality such as link error rate and data transmit rate can

differ widely. For efficient operation, the design of wireless networks must take into

account such heterogeneity among nodes and wireless links.

We present systematic approaches to overcome problems due to heterogeneous

node capability and link quality in wireless networks. We first present a general frame-

work called WISE (Wireless Integration Sublayer Extension) that abstracts specific details

of low-level wireless communication technologies (e.g., modulation or backoff scheme).

WISE provides a set of common primitives, based on which upper-level protocols can

operate efficiently without knowing the underlying details.

We also present a number of protocol extensions that employ the WISE framework

to enhance the performance of specific upper-level protocols while hiding lower-level

heterogeneity (e.g., link error rate). Our multihop WLAN architecture improves system

performance by allowing client nodes to use multihop paths via other clients to reach

an AP. Our geographic routing extension considers both location and link quality in the

next hop selection, which leads to optimal paths under certain conditions. To address het-

erogeneity in node capability, we consider virtual routing backbone construction in two

settings: cooperative and selfish. In the cooperative setting, we present a protocol exten-

sion that constructs an optimal backbone composed of a small number of high-capability

nodes, which can be generalized to a more resilient backbone. For the selfish case, we

use game theory and design an incentive-compatible backbone construction scheme.

We evaluate our work from multiple perspectives. We use theoretical analysis to

prove that our extensions lead to optimal solutions. We use simulations to experiment

with our schemes in various scenarios and real-world implementation to understand the

performance in practice. Our experiment results show that our schemes significantly out-

perform existing schemes.

WISE ABSTRACTION FRAMEWORK
FOR WIRELESS NETWORKS

by

Seungjoon Lee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Samrat Bhattacharjee, Chair/Advisor
Professor Udaya Shankar
Professor Samir Khuller
Professor François Guimbretière
Professor Mark Shayman

c© Copyright by
Seungjoon Lee

2006

DEDICATION

To my family.

ii

ACKNOWLEDGMENTS

I deeply thank my advisor Professor Bobby Bhattacharjee for his constant support,

encouragement, and guidance. He always believed in me and encouraged me based on

positive aspects from me. He also spent a great amount of his time and energy helping

me improve on my weak points. I also thank my committee members for their feedback

and support. Professor Udaya Shankar provided me with valuable feedbacks throughout

my thesis work. I am indebted to his attention and encouragement throughout my grad-

uate study. Research discussions with Professor Samir Khuller about various projects

were very helpful, and conversations with him on various issues were always pleasant

and provided me with surprising insight. Professor Mark Shayman was willing to be on

my defense committee and share his expertise in wireless networking from electrical en-

gineering background. Professor François Guimbretière suggested different perspectives

and helped me think in a broader way.

I was extremely fortunate to work with Professor Aravind Srinivasan, which was a

pure pleasure. He always welcomed scholarly discussions as well as other conversations

about various issues. I thank Professor Neil Spring for his valuable feedback on various

parts of my graduate work. I am also indebted to my former advisor Professor Chong-

kwon Kim at Seoul National University for his continuous guidance and support.

During my graduate study, I was fortunate to work with many talented individuals. I

learned a tremendous amount working with Professor Suman Banerjee, who also provided

iii

valuable feedback and support. Working and writing papers with Professor Richard La,

Dr. Girija Narlikar, Dr. Lisa Zhang, Dr. Gordon Wilfong, Dr. Martin Pàl, Minho Shin,

Dr. Hyojun Lim, Dr. Bohyung Han, Professor Yoo Ah Kim, Vijay Gopalakrishnan, Rob

Sherwood, Dave Levin, Ryan Braud, Yijie Han, and Bo Han was a great experience. I

was fortunate to have weekly research meetings and discussions with KGSYS members

and want to acknowledge them: Professor Hyeonsang Eom, Joon-Hyuk Yoo, Jihwang

Yeo, Minho Shin, Soobum Lee, Sunghyun Chun, Professor Yoo Ah Kim, Jae Hwan Lee,

Minkyong Cho, Ji Sun Shin, and Jinhyuk Jung.

I am grateful that Mind Lab generously allowed me to use some of their equip-

ments for various experiments. I am especially indebted to Bao Trinh, who willingly

helped me with various technical issues during the experiments. I thank Dr. Christopher

Kommareddy, Arunchandar Vasan, and Sunyoung Ju for helping me with various wireless

experiments. I also thank administrative and technical staff members of the department

for their support.

I want to thank many friends in Korea and those who I met in Maryland. They

supported me during different phases of my life in the graduate school. There are too

many, and I will not list all their names to avoid making a mistake of leaving out someone.

Nevertheless, I wish my most sincere gratitude to reach each of them.

iv

TABLE OF CONTENTS

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Our Approach . 3
1.2 Contributions and Organization . 6

2 Related Work 9
2.1 Heterogeneous Wireless Networks . 9
2.2 Using Multihop Paths in Infrastructure-based Wireless Networks 11
2.3 Geographic Routing in Multihop Wireless Networks 13
2.4 Virtual Routing Backbone in Multihop Wireless Networks 15
2.5 Protocol Design in Selfish Environments 16

3 Wireless Integration Sublayer Extension (WISE) 19
3.1 WISE Interfaces and Implementation 20

3.1.1 Packet Error Rate (PER) Estimation 21
3.1.1.1 Error Models . 21
3.1.1.2 Estimation Techniques 23

3.1.2 Link Delay Estimation . 26
3.1.3 Link Bandwidth Estimation . 27
3.1.4 Energy Consumption Estimation 28
3.1.5 Remaining Battery Level . 28

3.2 Testbed Experiments for PER Estimation 28
3.2.1 Experiment Setup . 29
3.2.2 Experiment Results . 31

3.2.2.1 Estimation Accuracy of Different Schemes 31
3.2.2.2 Experiments with Various Links 33
3.2.2.3 Varying Data Packet Sizes 34

3.3 Summary . 35

4 Protocol Extension for Multihop Wireless Local Area Networks 36
4.1 Multihop WLAN Architecture . 37

4.1.1 Advantages . 37
4.1.1.1 Enhanced Performance 38
4.1.1.2 Extended Wireless Coverage 39
4.1.1.3 Enabling Automated Re-organization of AP Distribution 39

4.1.2 Potential Pitfalls . 40
4.1.2.1 Increased Channel Contention 40
4.1.2.2 Resource Consumption at Proxies 41
4.1.2.3 Security Threats . 41

4.1.3 Incremental Deployment . 42

v

4.1.4 Comparison to Routing-based Solutions 43
4.2 Measurement-based Evaluation . 44

4.2.1 Experimental Setup . 44
4.2.2 Results . 45

4.3 Multihop WLAN Architecture and Deployment 49
4.3.1 Aware client . 51

4.3.1.1 Forward Path . 52
4.3.1.2 Return Path . 56

4.3.2 Unaware client . 57
4.3.3 Discussion . 60

4.4 Simulation Studies . 61
4.4.1 Simulated Environment . 62
4.4.2 Experiments with a Single Sender 63
4.4.3 Impact on Other Senders . 67

4.5 Conclusions . 71

5 Protocol Extension for Multihop Geographic Routing 72
5.1 New Link Metric for Geographic Routing 74

5.1.1 Background . 74
5.1.2 Normalized Advance . 75
5.1.3 Optimality of NADV in an Idealized Environment 77

5.2 NADV with Various Link Cost Types 79
5.2.1 Packet Error Rate (PER) . 79
5.2.2 Delay . 80
5.2.3 Power Consumption . 80

5.3 Simulation Model . 80
5.3.1 Error Model . 82
5.3.2 Transmission Rate Adaptation and Link Delay 83
5.3.3 Power Consumption Model . 84

5.4 Simulation Results . 85
5.4.1 Experiments with Perfect Estimation of Link Errors 86
5.4.2 Experiments using WISE PER Estimation Techniques 89

5.4.2.1 Changing Noise Power 91
5.4.2.2 Varying the Number of Data Flows 92
5.4.2.3 Experiments with Mobile Nodes 93

5.4.3 Using Delay as Link Cost . 95
5.4.4 Using Power Consumption as Link Cost 98
5.4.5 Experiments with Generic Cost 100

5.5 Summary and Future Work . 102

6 TRUNC-K: Virtual Backbone Construction for Wireless Networks 103
6.1 Leader Nomination . 105

6.1.1 Algorithm Description . 106
6.1.2 Properties of the Leader Set L 107

6.2 Connecting the Leaders . 109

vi

6.2.1 Multigraph Representation . 109
6.2.2 Spanning Tree-Based Algorithm 110
6.2.3 TRUNC-K: Our Parameterized Algorithm 113
6.2.4 Evaluation of the TRUNC-K Algorithm 115

6.2.4.1 Backbone Size . 115
6.2.4.2 Capacity Distribution among Backbone Nodes 116
6.2.4.3 Average Path Length 117

6.3 Distributed Protocol Description . 118
6.3.1 Leader Nomination Protocol . 119
6.3.2 Protocol for Fragment Members 120
6.3.3 Backbone Maintenance . 123

6.3.3.1 Discussion . 124
6.4 Simulation Study . 125

6.4.1 Brief Description of Existing Schemes 125
6.4.2 Comparison Study in Large Networks 126
6.4.3 Packet-level Simulations . 129

6.4.3.1 Simulation Environment 130
6.4.3.2 Simulation Results . 132

6.5 Summary and Future Work . 140

7 Backbone Construction in Selfish Settings 141
7.1 Model and Assumptions . 142
7.2 Backbone Formation: Theory . 144

7.2.1 The Volunteer’s Dilemma . 144
7.2.2 Generalized VTD . 145

7.2.2.1 GVTD Solution Properties 148
7.3 Backbone Formation: Protocol . 150

7.3.1 Leader Selection Protocol . 151
7.3.2 Connecting the Leaders . 153

7.4 Incentive-Compatible Forwarding . 158
7.5 Simulation Results . 158
7.6 Implementation Results . 166

7.6.1 Implementation and Testbed . 166
7.6.2 Experiment Results . 168

7.6.2.1 Effect of the Backbone on Network Performance 169
7.6.2.2 Punishment . 170
7.6.2.3 Energy Consumption 172

7.7 Summary and Future Work . 172

8 Conclusions and Future Work 174

A Proofs for Theorems in Chapter 6 179
A.1 Proof of Theorem 6.1.2 . 179
A.2 Proof of Lemma 6.1.3 . 181
A.3 Proof of Theorem 6.1.4 . 181

vii

A.4 Proof of Theorem 6.2.1 . 181

B Derivation Sketch for Eq. 7.2 183

Bibliography 185

viii

LIST OF TABLES

3.1 Current primitives exported by WISE. 20

3.2 Constants used to calculate medium time in Eq. 3.7. 27

3.3 Comparison of different estimation techniques. 33

4.1 Actual throughput values (Mbps) measured at representative points . . . 48

4.2 Mechanisms required to deploy multihop WLANs. 60

4.3 Performance improvement by multihop extensions. 71

5.1 Bit error rate values with different levels of noise. 82

5.2 NADV and different WISE PER estimation techniques. 89

5.3 MAC-level data transmission overhead. 90

5.4 Data delivery ratio (in %) when the number of data flows is varied. . . . 93

5.5 Average end-to-end latency. 95

5.6 The average costs by different routing schemes. 101

6.1 Capacity values of backbone nodes with varying node density 117

6.2 Information about individual nodes in a HELLO message. 119

6.3 Backbone size constructed by different schemes. 127

6.4 Capacity value of backbone nodes by each scheme 128

6.5 Average path length by different schemes. 130

6.6 Network lifetimes. 134

6.7 Average delivery ratio with varying traffic load. 138

6.8 Average control overhead. 139

7.1 Average backbone size and remaining battery value for each node type. . 160

7.2 Means and standard deviations of backbone construction time. 161

ix

7.3 Results with incorrect knowledge of cost distribution. 162

7.4 Throughput and latency with and without the backbone. 169

7.5 Throughput (in Mbps) with punishment. 171

x

LIST OF FIGURES

1.1 Example problem due to link quality heterogeneity. 2

1.2 The proposed WISE abstraction framework. 3

1.3 Proposed multihop WLAN architecture. 4

3.1 Gilbert/Elliot model. 22

3.2 The floor map of Emulab wireless testbed with ten nodes. 29

3.3 PER estimation based on 1000 packets. 31

3.4 Estimation of PER when we vary the size of data packets. 34

4.1 The multihop 802.11 architecture . 37

4.2 Potential data throughput improvement by using multihop extensions. . . 46

4.3 The experimental setup to measure performance of a multihop WLAN. . 47

4.4 The Composition, Replacement, and Relaxation constructs. 49

4.5 Relaxation of the last proxy on a multihop path. 54

4.6 Location of clients and AP in the some of the experiments. 63

4.7 Bandwidth benefits of multihop extensions for a single sender. 64

4.8 Adaptation of multihop path using the Replacement operation. 65

4.9 Average end-to-end throughput when we vary the distance. 66

4.10 Impact of multihop extensions on bandwidth at other senders. 69

4.11 Impact of multihop extensions on latency at other senders. 70

5.1 An example scenario for geographic routing. 73

5.2 Illustration of gray zone and corresponding contour map of NADV. . . . 77

5.3 MAC-level data overhead. 86

5.4 The average path lengths of NADV and ADV. 91

xi

5.5 Average end-to-end latency when nodes are mobile. 94

5.6 Average end-to-end delay with multiple flows. 97

5.7 Average power consumption. 99

6.1 Leader nomination and resulting fragments. 106

6.2 Multigraph representation of Figure 6.1(b). 110

6.3 Example graph. 111

6.4 MST-based backbone . 111

6.5 Illustration of truncated algorithm. 111

6.6 The size of the backbone with different K values. 116

6.7 Overview of protocol operations. 121

6.8 Local maintenance. 123

6.9 The capacity distribution of backbone nodes in different schemes. 129

6.10 Number of dead nodes over time. 132

6.11 TRUNC-1 backbone coverage. 136

6.12 SPAN backbone coverage. 137

7.1 An example GVTD game. 147

7.2 Dashed ovals represent likely volunteers. 148

7.3 First iteration of bridge node selection. 154

7.4 Second iteration of bridge node selection. 155

7.5 Representative backbone properties over time. 159

7.6 Results with free-riding nodes. 164

7.7 Experiment layout for measurements. 168

xii

Chapter 1

Introduction

Current wireless networks typically consist of heterogeneous devices. For example,

a laptop and a PDA can be in the same wireless local area network (WLAN). However,

the disparity in CPU speed between them can lead to orders of magnitude difference in

performance for cryptographic operations [1]. Wireless links connecting these nodes have

different qualities as well. When a node in a multihop wireless network communicates

with its neighbors using an IEEE 802.11g network interface card, the data transmission

rates of wireless links can range from 1 Mbps to 54 Mbps with widely varying link error

rates [2, 3]. With the increase of mobile devices and the evolution of communication

technologies, the degree of such heterogeneity within a single network will grow further

in the future.

We develop systematic strategies to overcome problems due to heterogeneous node

capacity and link quality in wireless networks. Such problems result mainly from the bi-

nary abstraction (viz, a link up/down) exported by the link layer. While such an abstrac-

tion has served well in the wired network domain, wireless links exhibit diverse prop-

erties, and network operations need to adapt to these underlying differences to achieve

satisfactory system performance. In Figure 1.1, suppose that S is communicating with

T using the shortest path composed of links with high error rates. This causes repeated

packet errors, which can lead to operation inefficiency and even unsuccessful commu-

1

Path using
high-error links

Path using
low-error links

S

L

L

T

H

H

H

Figure 1.1: One path is composed of low-error links (thick lines on the top), while the

other uses high-error links (dotted lines in the bottom).

nication. To solve this problem, upper-layer routing protocols need to differentiate link

quality and find an alternate (possibly longer) path made of links with low error rates. In

this dissertation, we provide efficient and effective mechanisms for upper-layer protocols

to differentiate node capability and link quality.

In some prior approaches, individual upper-layer protocols explicitly consider lower-

level details in their operations for heterogeneity adaptation [3, 4]. For example, the

SP-Power routing scheme [4] considers the path loss exponent value to find an energy-

efficient path. However, in these approaches, upper-layer protocols have to deal with

various details possibly for a number of link-level protocols (e.g., CSMA, TDMA). As a

result, the design and implementation of upper-layer protocols inevitably becomes more

complicated. In addition, to reflect changes at the lower level such as new MAC proto-

cols or better quality estimation techniques, all the relevant upper-layer protocols need to

be modified. Consequently, this approach of modifying individual upper-layer protocols

leads to complexity and extensibility issues.

2

Upper layer
Protocol 1

TDMACDMA CSMA

Wireless Integration
Sublayer Extension (WISE)

Interface for
upper-layer
protocols

Protocol
Extension

Upper layer
Protocol 2

Figure 1.2: The proposed WISE abstraction framework. The WISE abstracts link-level

details and provides well-defined interfaces to upper-layer protocols. Protocol extensions

use WISE primitives to solve specific problems due to heterogeneity.

1.1 Our Approach

We first propose a new framework called Wireless Integration Sublayer Extension

(WISE) that abstracts specific details of underlying wireless communication technolo-

gies. (See Figure 1.2.) WISE defines and provides a set of common primitives, which

enables structured access to link-level details. To differentiate node capacity or link qual-

ity, upper-layer protocols simply use exported primitives without knowing the underlying

details. For example, WISE exports the available link bandwidth using the state-of-the-

art estimation technique for the underlying MAC protocol, and an upper-level protocol

uses the estimate to find a high-bandwidth path. To realize the defined service, a WISE

implementation deals with underlying characteristics specific to lower-level protocols. To

estimate the available bandwidth, for example, a WISE implementation may use under-

lying details such as data transmission rate, backoff scheme, and contention level. A

3

(a) (b)

Multihop
WLAN

Extension

Multihop
WLAN

Extension

Client

. . .

WISE

IEEE
802.11

WISE

IEEE
802.11

Multihop
WLAN

Extension

WISE

IEEE
802.11

. . .

. . .

- Device-dependent logic

- Find the best path to AP
- Exchange control messages

 link error rate, CPU power
available bandwidth

energy consumption, battery life

Multihop
WLAN

Extension

WISE

 multihop WLAN service

 data xmit rate, xmit power
modulation scheme, SNR

ARQ/backoff scheme
xmit failure notification

 send/recv

IEEE
802.11

- Xmit rate/power adjustment
- Modulation/Demodulation
- Received signal processing

- Carrier sense/backoff
- Error detection/ARQ
- MAC-level monitoring

 get

 get

AP Client

Figure 1.3: Diagram for the proposed multihop WLAN architecture. (a) Unaware of

the lower-level details, a client and an AP software use the transparent multihop WLAN

service to communicate through a multihop path. (b) A more detailed view of provided

and used services between different layers. (Names in bold are used in the multihop

WLAN extension.)

specific WISE instantiation depends on the underlying MAC and physical-layer (PHY)

protocols, interface card, device driver, operating system, etc. However, the WISE pro-

vides the same set of common service despite the underlying differences. Thus, the WISE

framework provides the flexibility to incorporate later changes (e.g., new estimation tech-

niques) in its implementation without having to modify upper-layer protocols.

We also propose a number of protocol mechanisms called protocol extensions that

handle underlying heterogeneity in node capacity and link quality (Figure 1.2). A protocol

extension addresses a specific problem (e.g., disparate link quality as shown in Figure 1.1)

and hides underlying heterogeneity from upper-level protocols. Using the enhanced ser-

4

vice by the protocol extension, upper-layer protocols can focus on their own objectives

without considering underlying diversity. Actual mechanisms in a protocol extension

may use one or more WISE primitives and possibly exchange control messages between

neighbors. We further elaborate on adaptation extensions with an example below.

We use our design of a multihop WLAN (Wireless Local Area Network) architec-

ture to illustrate the usage of an extension and its interaction with an upper-layer protocol

and the WISE. In the IEEE 802.11-based WLAN environment, a client communicates

with an AP using a direct link. We extend the current WLAN system to enable the selec-

tive use of multihop paths to an AP in case the direct link is of low quality. In the pro-

posed architecture shown in Figure 1.3(a), instead of directly using an 802.11 MAC/PHY

entity as in the current WLAN system, a client uses the service provided by the multi-

hop WLAN extension. To find a better multihop path than the direct link, the multihop

WLAN extension uses the bandwidth estimation primitive offered by the WISE. It also

exchanges control messages between neighbors (Figure 1.3(b)). The WISE in turn esti-

mates and exports the available bandwidth using lower-level details such as current data

transmit rate and backoff scheme. When the client requests a packet transmission, the

multihop WLAN extension uses the data transmit service by the IEEE 802.11 interface

card, and depending on the direct link quality, this packet may go through multiple nodes

to reach an AP. However, the client is completely unaware of the underlying details and

receives the same WLAN service as in the single-hop WLAN case, only with significantly

improved performance.

5

1.2 Contributions and Organization

In this dissertation, we make a number of contributions in various areas of wireless

networking systems.

• We propose a general abstraction framework that provides a uniform set of access

interfaces to low-level details. We present a number of interfaces we employ in our

protocol extensions and describe how to implement them in the context of IEEE

802.11 systems.

• As discussed above, we design a novel multihop WLAN architecture, where unlike

the current WLAN systems, end users (or clients) can act as proxies and use multi-

hop paths as necessary to reach their access points (APs). We perform a measure-

ment study in the current IEEE 802.11 WLAN environment, and the results show

that a carefully designed multihop WLAN can improve the system performance

significantly in terms of end-to-end throughput as well as extended coverage. We

present protocol mechanisms for the new multihop WLAN architecture with incre-

mental deployment paths. Our simulation results show that when a node adopts the

multihop extension, it improves the performance of non-adopting nodes as well as

the adopting node itself. (Chapter 4)

• We propose an extension for efficient geographic routing as a general framework

for cost-aware geographic routing in multihop wireless networks. In geographic

routing (or position-based routing), nodes use location information for packet de-

livery [5–9]. Our new link metric considers link cost as well as location information

6

and leads to optimal paths in idealized environments. Our simulation results show

that in more realistic scenarios, the new metric achieves significant performance im-

provement when compared to the current geographic routing scheme. For example,

in harsh environments with frequent packet losses, the extended scheme delivers six

times more data packets than the current geographic routing protocol. (Chapter 5)

• We consider scenarios where nodes have different resource levels and develop

a routing backbone extension that uses the concept of connected dominating set

(CDS). This backbone can allow low-capacity nodes not in the backbone to save

their resources (e.g., save energy to increase their lifetime). We prove that our

distributed algorithm can construct a connected backbone that is essentially best

possible approximation to a minimum connected dominating set. The resulting

backbone also maximizes the minimum capacity node in the backbone. We also

generalize this scheme such that it builds a resilient backbone that is more suitable

in dynamic networks. Our experiment results show that compared to best existing

schemes, the resulting backbone achieves significant energy saving and network

lifetime increase. It also provides end-to-end connectivity in high-mobility scenar-

ios. (Chapter 6)

• We consider backbone construction when wireless devices are selfish; unlike co-

operative scenarios assumed in Chapter 6, nodes do not want to join the backbone

since it consumes more energy. We apply and generalize a game theoretic model for

multihop wireless networks and present a backbone construction protocol. Our sim-

ulation results show that the resulting backbone is comparable to existing schemes

7

that assume cooperative nodes. We also have implemented the scheme using real

hardware and present experiment results on a testbed. This is the first evaluation of

routing backbone used in real systems, and the results show that compared to the

case without a backbone, we can achieve a similar level of performance when we

use a backbone. (Chapter 7)

We discuss potential areas of future research and conclude in Chapter 8. We first

describe some of related work in the next chapter.

8

Chapter 2

Related Work

In this chapter, we describe previous work related to this dissertation. We first re-

view prior approaches to handling heterogeneity in wireless link quality and node capac-

ity. Then, we describe several schemes proposed to employ multihop paths in infrastructure-

based wireless networks (e.g., WLAN, cellular systems). We then present some previous

work related to geographic routing and virtual routing backbone construction in multihop

wireless networks. We finally review some recent work that considers selfish nodes in

wireless networks.

2.1 Heterogeneous Wireless Networks

One of the earliest schemes that attempt to hide peculiarities of wireless links is in

the context of TCP throughput enhancement [10]. Since a TCP source interprets packet

losses as congestion and reduces the congestion window size, frequent wireless link er-

rors significantly degrade TCP performance. To address this problem, the snoop scheme

uses TCP-level information at the link layer [10]. When a snoop agent, located at a base

station, detects duplicate acknowledgments or local timeouts, it initiates local retrans-

missions using cached packets. It also suppresses duplicate TCP acknowledgments to

prevent the source from initiating the fast retransmit algorithm. The snoop scheme at-

tempts to hide wireless link losses, but does not differentiate qualities between wireless

9

links.

There are many experiment results that report diverse wireless link quality in prac-

tice, and the differentiation of wireless links based on the link quality has become popular.

Lundgren et al. [3] identify gray zone, where due to high bit error probability, nodes can-

not exchange long data packets in most cases. Banerjee et al. [11] propose the use of a link

metric based on link error probability. De Couto et al. [2] propose to use a similar routing

metric called ETX (Expected Transmission Count), which considers link error probability.

They incorporate ETX into DSDV and DSR routing protocols, and the experiment results

in a real rooftop network show that paths with smaller ETX perform better than shortest

paths. Most IEEE 802.11 products support multiple transmission rates, and Heusse et

al. [12] report that the sender with the lowest transmission rate acts as the limiting factor

for the throughput of other senders in a WLAN. It is because transmissions by the slow-

est node take disproportionately long time, and the other nodes must wait before they

can transmit next packets. Sadeghi et al. [13] propose a new MAC protocol called OAR

(Opportunistic Auto Rate), in which a node transmits multiple packets consecutively if

the channel condition is good. This scheme provides temporal fairness among nodes and

significantly improves the throughput of links at higher data transmission rates.

Since most wireless devices are powered by exhaustible batteries, energy-efficient

operation is an important issue in wireless networks. One intensive research area has

been about how to find intermediate nodes that minimize power consumption along the

paths in multihop wireless networks [4, 14–16]. This line of work is based on the fact

that required transmit energy increases super-linearly to the distance [17]. Rodoplu et

al. [14] present a localized algorithm that preserves network connectivity and achieves

10

the globally minimum-energy topology. In PARO [15], a node becomes a relay node if it

finds that the relaying leads to lower energy consumption. Given traffic flows and node

energy levels, Chang et al. [16] find a set of routes that maximize the system lifetime.

On the other hand, according to many measurement studies on current wireless interface

cards, an idle or receiving wireless card consumes a comparable amount of energy to a

transmitting one, while a card in sleep mode expends far less energy [18]. To exploit this

finding, many backbone construction algorithms have been proposed, such that backbone

nodes stay awake and maintain network connectivity, and non-backbone nodes can be

in sleep mode to save energy [19, 20]. We describe this line of work in more detail in

Section 2.4.

2.2 Using Multihop Paths in Infrastructure-based Wireless Networks

Most wireless networks mainly use direct paths to infrastructure such as access

points or base stations. In Chapter 4, we present a multihop wireless LAN architecture

and describe some of related work here. Lin and Hsu [21] define a new multihop cellular

architecture for wireless communication. They examine the general principles of using

multihop paths to base stations in cellular networks. Based on useful but simplifying as-

sumptions (e.g., static configurations, centralized routing table construction at all nodes

based on an all-pair shortest path algorithm), they demonstrate that such a multihop ar-

chitecture is beneficial in improving data throughput of cellular systems. In contrast, our

work in Chapter 4 significantly builds on these general observations made in [21]. We

propose multihop extensions at the MAC-layer, define detailed protocol mechanisms for

11

interoperability with existing IEEE 802.11 standards, and present detailed performance

evaluation studies through actual measurements as well as simulations involving both

static and mobile scenarios. Wu et. al. [22] proposed an ad-hoc relaying system on top

of existing cellular networks. Focused on reducing the call blocking probability, the iCar

system uses dedicated ad hoc relaying stations (ARSs) at vantage points. In contrast, our

multihop WLAN architecture is based on the cooperation of enhanced clients and works

without additional dedicated infrastructure.

Dousse et al. [23] have proposed a hybrid network to improve the connectivity of

an ad-hoc network. In their definition, a hybrid network is an ad-hoc network which is

interconnected by a sparse set of wired backbone nodes. Liu et al. [24] analyze the capac-

ity of such hybrid networks and identify the scaling behavior of capacity with increasing

number of wireless and wired nodes. Kozat and Tassiulas [25] also analyze the scaling

behavior of hybrid networks where nodes and access points are randomly distributed.

Hsieh and Sivakumar [26] present performance comparisons of conventional cellu-

lar networks with ad-hoc wireless networks, and briefly introduce another hybrid network

model that switches between a purely cellular network and an ad-hoc network. The base

station of the cell uses a centralized algorithm to compute all routes as in multihop net-

works and disseminates this information to the wireless nodes. In their proposed scheme,

at any instant, all wireless nodes operate in the same mode (i.e., either cellular mode or

ad-hoc mode, but not both at the same time). In contrast, in our proposed architecture,

direct paths and multihop paths co-exist at the same time.

Miller et. al. [27] propose a routing protocol in a hybrid network that uses both APs

and multihop relaying clients. The protocol has both proactive and reactive components,

12

and multihop relaying is restricted to K hops, where K is a small constant (e.g., 2 or

3). As in our proposed mechanism, this work attempts to extend the reach of infrastruc-

ture. However, their approach is based on network layer routing, while our work uses

MAC-specific information. LUNAR [28] is an ad-hoc routing protocol that also limits

the number of intermediate nodes (up to three hops). LUNAR is similar to our work in

that it places the ad-hoc routing between MAC layer and IP layer. More recently, Luo

et al. [29] have proposed an architecture called UCAN that utilizes ad-hoc routing over

802.11-based interfaces to improve the performance of 3G cellular networks. All nodes

in the UCAN architecture are equipped with both 3G cellular and 802.11 interfaces, and a

node that observes very low bandwidth on its 3G interface connects to another node with

higher 3G bandwidth using multihop relaying over 802.11 capable nodes.

Ben Salem et al. [30] have examined the construction of a multihop wireless packet

forwarding technique in the context of cellular networks. The goal of their work was to

define incentive-based mechanisms such that cellular users provide multihop forwarding

services for each other. Therefore the techniques developed in [30] define a solution to

a useful and complementary problem (in the context of cellular networks) to what we

address in Chapter 4. Our work can leverage such an approach to provide incentives for

mobile clients to serve as proxies in a multihop WLAN.

2.3 Geographic Routing in Multihop Wireless Networks

In Chapter 5, we present a protocol extension for geographic routing such that

we can find a low-cost path in multihop wireless networks. In geographic routing (or

13

position-based routing), nodes use location information for packet delivery in multi-

hop wireless networks [5–9]. Neighbors locally exchange location information obtained

through GPS (Global Positioning System) or other location determination techniques [31].

Most geographic routing protocols use one-hop information, but generalization to two-

hop neighborhood is also possible [32]. Traditional geographic routing schemes use only

geometric information such as the length of projection (called progress) and angle value

against the straight line between source and the destination (please see [9] and the ref-

erences therein). However, the most straightforward and popular strategy for geographic

routing is simply forwarding data packets to the neighbor geographically closest to the

destination [5–7].

Although the above greedy method is effective in many cases, packets may get

routed to where no neighbor is closer to the destination than the current node. Many

recovery schemes have been proposed to route around such voids for guaranteed packet

delivery as long as a path exists [5–7, 33]. These techniques typically exploit planar

subgraphs (i.e., Gabriel graph, Relative Neighborhood graph) and specific rules to re-

cover from such local minima. For example, Face Routing [5] uses the right-hand rule in

Gabriel graph, and GPSR employs a similar scheme in its perimeter mode [6]. Terminode

routing uses Anchored Geodesic Packet Forwarding (AGPF) similar to loose source rout-

ing [33]. Kuhn et al. present GOAFR+, which is efficient on average cases and worst-case

optimal [7]. These recovery schemes are orthogonal and complementary to the use of our

proposed link metric.

As in other table-driven and on-demand routing work described in Section 2.1,

more recent geographic routing schemes consider link costs in the next hop selection.

14

Stojmenovic et al. [34] propose a routing metric for power-efficient routing, as discussed

in Section 5.4. Seada et al. [35] focus on the minimum energy consumption in lossy

environments and propose threshold-based schemes as well as a link metric in Eq. 5.4.

Zorzi and Armaroli also independently propose the same link metric [36]. Our work in

Chapter 5 is different from them in that we present a more general framework and provide

the rationale behind the use of new link metric by proving the optimal tradeoff between

hop count and link cost.

2.4 Virtual Routing Backbone in Multihop Wireless Networks

In multihop wireless networks, end-nodes are typically responsible for relaying traf-

fic [37]. However, we often utilize a “connected dominating set” of nodes that form a

routing backbone [38, 39]. Many distributed algorithms are proposed to find a connected

dominating set. Das and Bharghavan [39] directly apply well-known centralized algo-

rithms [40]. Using the unit-disk graph model, Wan et al. [41] propose a message-optimal

algorithm that achieves a constant approximation ratio. Dubhashi et al. [42] propose a dis-

tributed algorithm that finds an O(log ∆) approximation to the minimum connected dom-

inating set in O(log n log ∆) running time. None of them consider backbone maintenance

or node capacity. Since backbone nodes consume more resource (e.g., energy), it is bene-

ficial to include only high-capacity nodes in the backbone. There are a few prior schemes

that consider remaining energy level when finding a connected backbone [19, 20, 43].

However, they use node capacity only as a secondary metric, and the resulting backbones

often include low-capacity nodes. (See Chapter 6.) In contrast, our scheme described

15

in Chapter 6 can build a backbone composed only of high-capacity nodes. Also, under

reasonable assumptions, we can show the backbone is essentially the smallest possible.

In the context of sensor networks, HEED [44] selects cluster-heads based on the

residual energy and other parameters such as node degree. However, HEED assumes that

the network is quasi-stationary, whereas in Chapter 6, we consider the problem of back-

bone construction and maintenance in dynamic wireless networks. More recently, given

different node cost, Wang et al. independently propose a backbone construction scheme

that attempts to minimize the sum of node cost in the backbone [45]. In contrast, our

scheme maximizes the minimum capacity node to increase the network lifetime, which

we validate by analysis and simulation experiments based on our proposed distributed

protocol. There are schemes that exploit the sleep mode operation, but are not based

on the connected backbone approach. Zheng and Kravets [46] propose an on-demand

power saving scheme, where nodes stay awake according to traffic load and their soft-

state timers. As mentioned in Section 2.1 we also can achieve energy saving through

transmission power control at each node [14, 47, 48], and such topology control schemes

are complementary to our backbone construction scheme.

2.5 Protocol Design in Selfish Environments

In Chapter 7, we present a backbone construction scheme for wireless networks

composed of selfish nodes. We describe related prior schemes here.

Among systems that enforce cooperation in wireless networks, the vast majority

make use of external incentive mechanisms. Ad hoc-VCG [49] finds a minimum-energy

16

path by carefully determining the payment amount. Each forwarding node is rewarded

(e.g., using money) depending on their forwarding cost announcement, and the authors

present a strategy-proof mechanism by applying the game-theoretic principle of Vick-

rey, Clarke, and Groves auctions [50]. Zhong et al. propose a credit-based system in

Sprite [51]. They assume the existence of a centralized Credit Clearance Service (CCS).

Each node receives a receipt for each packet forwarded, and submits these receipts to the

CCS for compensation. Buttyán and Hubaux [52] use a similar approach using virtual

currencies, but rely on tamper resistant hardware to store information about the remain-

ing currency. Zhong et al. [53] design protocols that stimulate cooperation for routing and

forwarding using cryptographic techniques. Note that all of these approaches require a

public key infrastructure for correctness. In contrast, our work in Chapter 7 uses internal

incentives only and does not require external money or security infrastructure. Catch [54]

is closely related to our work in two aspects: (1) it uses internal (dis)incentive and (2)

requires a detection mechanism such as Watchdog [55], which utilizes the broadcasting

property of wireless medium for misbehavior detection.

A few recent papers consider the scenario where selfish nodes do not follow the

IEEE 802.11 MAC protocol, for example, by using a small contention window. Cagali

et al. [56] apply the bargaining game theory to derive an optimal contention window

size that each of multiple cheaters should use depending on the total number of cheaters.

Kyasanur and Vaidya [57] present modifications to the IEEE 802.11 protocol to facilitate

the detection of such selfish nodes using RTS and CTS frames. Raya et al. [58] classify

different MAC level misbehavior techniques and present a monitoring system that runs on

access points to detect and prevent selfish nodes from achieving higher performance. All

17

these protocols consider the issue of a node deviating from the MAC protocol to achieve

gain (e.g., higher throughput). In contrast, our work in Chapter 7 considers the existence

of selfish nodes in the context of backbone construction and correct message forwarding

in multihop wireless networks. Hence, these prior schemes are complementary to our

work.

18

Chapter 3

Wireless Integration Sublayer Extension (WISE)

WISE provides a structured set of mechanisms for upper-layer protocols to access

lower-level information. WISE exports a number of primitives independent of lower-level

communication technologies. To differentiate node capability and link quality, upper-

layer protocols use the exported WISE primitives without knowing the underlying mech-

anisms. In some cases, the WISE processes several low-level details to return a value

of interest. For example, the WISE can return link error probability inferred from the

current modulation scheme, data transmission rate, and signal-to-noise ratio (SNR). The

implementation of WISE depends on the underlying communication technology, hard-

ware architecture, operating system, and device driver.

The WISE framework nominally exports all interesting behaviors and characteris-

tics of a generic underlying wireless link. However, depending on the capability of un-

derlying wireless interface card and device driver, a specific WISE implementation may

implement only a subset of primitives. Therefore, upper-level applications should first

check which WISE primitives are implemented in the current node. In this section, we

present the exported WISE primitives and implementation techniques that we have used

in our work. Although we can have different link-level protocols under the WISE, in

this chapter we focus on the implementation techniques based on the IEEE 802.11 stan-

dard. In the future, we plan to expand the WISE framework with more primitives, which

19

WISE Interface Return Value

get per(from, to, plen) Packet error rate (PER)

get delay(from, to, plen) Link delay of wireless link

get link bw(from, to, plen) Link bandwidth of the link

get pwr required(from, to, plen) Power consumption required for packet transmission

get remaining battery() Remaining battery level

Table 3.1: Current primitives exported by WISE.

operates on top of different wireless technologies (e.g., TDMA).

3.1 WISE Interfaces and Implementation

We first present a set of primitives that WISE exports for interesting lower-level

details. In Table 3.1, we list the WISE primitives we have defined and used in the design

of proposed extensions described in Chapters 4, 5, 6, and 7. In the table, from is the

one end of wireless link, to is the other end, and plen is the packet length. There can

potentially be other useful WISE primitives (e.g., get CPU power()), but we focus on

those we use later in this dissertation.

We now demonstrate how the WISE implements these exported primitives. Note

that the techniques used to implement the primitives are hidden from upper-level proto-

cols, and we can later reflect any future advances into the system-specific implementation

without modifying upper-layer protocols.

20

3.1.1 Packet Error Rate (PER) Estimation

Wireless links are typically more prone to packet errors than wired ones, and many

theoretical and empirical schemes are proposed to estimate packet error probability on a

wireless link [2, 17, 59, 60]. Some of previous work uses additional probe messages for

packet error rate estimation in the bootstrapping phase [2, 61]. However, such control

messages consume already scarce network resources. Also, network environments may

change over time (e.g., due to mobility), and old link estimates may become obsolete.

We first describe two simple packet error models that can be easily used in real

wireless networks. We then provide multiple estimation techniques thus enabling nodes

to choose the best scheme for the current network and system setting. In a resource-rich

network, for example, nodes can use a method that uses probe messages. In the case of a

dense large-scale network with limited resources, such probe messages may prove to be

costly, and nodes can use an alternate scheme that uses no extra control messages.

3.1.1.1 Error Models

Many theoretical models for wireless packet error have been proposed [2, 17, 59].

The independent bit error model is among the simplest for wireless packet errors. In this

model, each bit is corrupted independent of other bits in the packet. Specifically, if the bit

error rate is pb, then the error probability for an L-bit packets is:

PER(L) = 1− (1− pb)
L. (3.1)

A number of previous results show that bit errors are often correlated and occur in

a bursty fashion [17, 59, 62, 63]. Some previous works use finite-state Markov models to

21

p
q1-p

1-q

G B

Figure 3.1: Gilbert/Elliot model. G denotes good state, and B denotes bad state.

model such correlated bit errors. Although such a model can have an arbitrary number

of states, for simplicity, we use the two-state Markov model proposed by Gilbert and

Elliot [62, 63] in this chapter. In the Gilbert/Elliot (GE) model, a wireless channel is in

one of the following two states: good and bad (Figure 3.1). If the channel is in good

state, then a bit transmission error occurs with the probability of eg. On the other hand,

if the channel is in bad state, the probability of bit transmission error is eb. Prior to the

transmission of each new bit, the channel may change states or remain in the current state.

Figure 3.1 shows the GE model representation with state-transition probabilities. In this

chapter, we assume that eg = 0 and eg = 1 for simplicity.

For this model, we can calculate the steady-state probability of being in good state

(PG) and bad state (PB) as follows:

PG =
1− q

2− p− q
, PB =

1− p

2− p− q
.

Then, the error probability of an L-bit packet is:

PER(L) = 1− (PG pL + PB (1− q)pL−1). (3.2)

Note that there are two cases where no bit error occurs in a packet. First, the channel

is initially in good state and remains there for all bit transmissions, and the probability

22

is PG pL for L-bit packet. In the other case, the channel is initially in bad state, but the

channel changes into good state for the first bit transmission and remains in good state.

This probability is PB (1 − q)pL−1. A packet error occurs if none of them happens, and

hence Eq. 3.2.

3.1.1.2 Estimation Techniques

Using Signal-to-Noise Ratio (SNR) for PER Estimation We can estimate the link

bit error rate (BER) using SNR measurement by the wireless card and theoretical error

models for different modulation schemes [17]. Assuming an AWGN (Additive White

Gaussian Noise) channel, the bit error rate pb of the BPSK (Binary Phase Shift Keying)

modulation scheme is given by:

pb = 0.5× erfc(

√

Pr ×W

N × f
), (3.3)

where Pr is the received power, W the channel bandwidth, N the noise power, f the

transmission bit rate, and erfc the complementary error function. Most wireless cards

typically measure SNR = 10 log Pr

N
(dB) for each received packet, and using such SNR

values and Eq. 3.3, a node can calculate pb for its neighbors and corresponding packet

error rates, for example, by using Eq. 3.1. Due to potential asymmetry in link quality, a

node may need to inform its neighbors of respective SNR values. This can be done either

via additional control messages or by modifying the beacon message format to include

the information.

This scheme is useful primarily in free-space environments, but not applicable for

indoor environments, where signal path characteristics are more complex. The measure-

23

ment results using a rooftop mesh network show that it is hard to predict link quality using

SNR even in outdoor environments [64]. However, in a different measurement study us-

ing a sensor network, Zuniga et al. [60] report that empirical results closely match their

analytical models.

Using Probe Messages for PER Estimation If any upper-level protocol is already

using probe messages [2,6,61], the WISE can extract the link error probability from them.

However, since such probe messages are usually shorter than data packets, a node may

experience higher PERs for actual packets than the observed PER [2]. To obtain more

accurate link cost estimation, we need to adjust PER depending on the data packet length.

We next describe how to adjust PERs for longer data packets.

Suppose we use the independent bit error model and know only one observed PER

value for l-bit probe messages denoted by PER(l). Then, from Eq. 3.1, we can infer

pb = 1− (1− PER(l))1/l, and for a L-bit data frame we use the following estimation:

PER(L) = 1− (1− PER(l))L/l. (3.4)

In case we want to use the two-state Markov model shown in Figure 3.1, we need

at least two distinct PER values observed for different probe message types. In addition

to PER(l), consider PER(m) for m-bit probe messages. Using Eq. 3.2, we can get one of

the state transition probabilities in Figure 3.1 as follows:

p =

(

1− PER(l)

1− PER(m)

)
1

l−m

.

Then, we can estimate the PER of L-bit data messages using the following formula:

PER(L) = 1− (1− PER(m))

(

1− PER(l)

1− PER(m)

)
L−m
l−m

(3.5)

24

In Section 3.2, we present measurement results to illustrate how we can employ these

estimation approaches in practical wireless systems.

Neighborhood Monitoring for PER Estimation The WISE also can use passive

monitoring to infer link PERs. For example, in IEEE 802.11 networks, node A in promis-

cuous mode can monitor all frames sent by neighbors. In that case, A can infer the PER

of link B → A by using the MAC sequence number and counting how many frames from

neighbor B it has missed. Again, since the quality of two directional links may differ, A

needs to inform B of the PER estimation as in the previous scheme.

Self Monitoring for PER Estimation The three methods above require either ad-

ditional control messages or the modification of beacon message format. When these are

not possible, we suggest the following technique. Whenever a node transmits a data frame

to neighbor n, the MAC-layer informs the WISE whether the transmission was successful

or not. Let us define an indicator variable F ; F = 1 when a frame exchange failed, and

F = 0 otherwise. Then, WISE infers the PER of wireless link to neighbor n as follows:

PERn ← (1− α)PERn + αF, (3.6)

where α denotes the weight parameter. In the simulation study in Section 5.4, we use

α = 0.1, and the default PER value is set to 0. Note that F = 1 even when an ACK frame

failure occurs in IEEE 802.11 networks [2].

To track the link quality change even when no packets are forwarded to n, we use an

aging scheme and periodically reduce PERs of unused links. When this reduction makes

the estimated PER become lower than the actual one, packets may be forwarded to n, but

25

the estimated PER will increase after transmission failures. The magnitude and frequency

of reduction should balance such overhead and prompt adjustment. In the simulation in

Section 5.4, we multiply PERs of unused links by 0.9 every 30 seconds.

3.1.2 Link Delay Estimation

We can think of two types of link delay. First, due to the broadcast nature of wireless

medium, it is desirable to minimize the medium time, the time spent in sending a packet

over the link [65]. When the underlying physical medium supports multi-rate transmis-

sions (e.g., the IEEE 802.11 standard), it is a function of the current transmission rate.

The WISE can easily retrieve the current value of transmission rate from the MAC layer

and calculate the necessary medium time to the neighbor as follows. Consider the IEEE

802.11 RTS/CTS access method, where RTS and CTS are transmitted at 1 Mbps. We can

calculate the medium time τ as follows:

τ =
LRTS + LCTS

1.0× 106
+

LDATA + LACK

bdata
+ 4TPHY + 3SIFS + DIFS, (3.7)

where LX denotes the length of respective frame in bits, TPHY is the transmission time

for 192-bit PHY header, and SIFS and DIFS are inter-frame intervals [66]. In Table 3.2,

we present typical values for IEEE 802.11b/g. LDATA is determined by plen (See Ta-

ble 3.1).

Another delay metric of interest to upper-layer protocols is total delay, which de-

notes the time from the packet insertion into the interface queue until the notification of

successful transmission. It includes queueing delay, backoff timeout, contention period,

and retransmissions due to errors or collisions. Ideally, a routing scheme can use this

26

Interval Time (µs) Frame Length (bytes)

TPHY 192 LRTS 20

SIFS 10 LCTS 14

DIFS 50 LACK 14

Table 3.2: Constants used to calculate medium time in Eq. 3.7.

value as link cost to enable packets to detour congested areas, which is an interesting area

of future work.

3.1.3 Link Bandwidth Estimation

For the estimation of link bandwidth, we use the following heuristic based on the

IEEE 802.11 standard. We use the backoff algorithm as well as the medium time τ and

estimated PER. The IEEE 802.11 standard uses a backoff counter, which corresponds to

the time a client should wait before transmitting. The backoff counter value is chosen

uniformly at random between [0, CW], where a “contention window” parameter CW is

initialized to CWmin and doubled on each transmission failure until it reaches a maximum

value. Let us denote β = CWmin/2. With some simplifying assumptions, the average

data delivery latency on the wireless link is given by (see [67] for details):

l =
∑

i≥1

{(2i − 1)β + iτ}PERi−1(1− PER) =
τ

1− PER
+

β

1− 2PER
. (3.8)

Then, the WISE implementation can return the following as link bandwidth:

b =
LDATA

l
. (3.9)

27

3.1.4 Energy Consumption Estimation

Many wireless systems have a MAC-level control mechanism for transmission power

adjustment to save battery and reduce interference [17, 68]. The WISE can retrieve the

value and calculate the total system power consumption considering additional compo-

nents of power consumption [69].

3.1.5 Remaining Battery Level

To achieve energy efficiency, some protocols use the remaining battery level in their

operation [19,20,43,70]. WISE provides a uniform access mechanism across various un-

derlying platforms and implementations such as APM (Advanced Power Management)

and ACPI (Advanced Configuration and Power Interface). In our current WISE imple-

mentation, we use ACPI on Linux, where battery information is exported as /proc en-

tries typically under /proc/acpi/battery/BAT. There can be multiple ways to use

this information, and we currently divide the remaining battery value by the maximum

capacity and use the normalized value.

3.2 Testbed Experiments for PER Estimation

In this section, we present our experiment results on two wireless testbeds and in-

vestigate performance of some of the estimation strategies described in Section 3.1.1.2.

28

10 meters
1

2

13

7

8

9

4
16

11

5

Figure 3.2: The floor map of Emulab wireless testbed with ten nodes.

3.2.1 Experiment Setup

We have performed our experiments on two open access wireless testbeds: Emu-

lab (http://www.emulab.net) and ORBIT (http://www.orbit-lab.org).

Although Emulab is often used to provide emulated network environments for wired net-

works experiments, the Emulab wireless testbed uses real air communication through

IEEE 802.11 wireless interfaces between stationary PC nodes scattered around a typical

office building. Figure 3.2 shows testbed nodes we use in our experiments. We use nine

nodes on the third floor and one node (11) on the fourth floor to experiment with high-loss

links. Each PC has two Netgear WAG311 wireless interface cards based on the Atheros

5212 chipset. It uses Redhat 9.0 with 2.4 kernel and the MadWifi open-source device

driver1. The ORBIT testbed currently consists of 400 wireless nodes, each equipped with

two IEEE 802.11 wireless cards laid out in a 20-by-20 grid with approximately one meter

spacing between nearby nodes. Due to the relatively small deployment area, observed

packet error rates in ORBIT show less diversity, and estimation results on ORBIT show

1http://www.madwifi.org

29

trends similar to those obtained from Emulab. Thus, in this chapter, we focus on results

from Emulab to illustrate the performance of estimation techniques under both low-error

and high-error settings.

In our experiments, a sender alternately broadcasts 16, 32, 64, 128, 256, 512 and

1024-byte UDP packets every 0.05 seconds to minimize the effect of link condition varia-

tion over time. In our experiments, we use only one sender at any instant to minimize the

interference and collisions. Each sender broadcasts 10000 packets for each size (70000

packets total). All nodes receiving the packets record the packet size and sequence num-

ber. In this chapter, we use the fixed transmission rate of 1 Mbps for all messages. In-

vestigating the impact of different data rates will be an interesting area of future research.

The transmit power is fixed at 31 mW, which is the default value in the device driver.

We compare the estimation performance of the following strategies:

• BASIC(m): This scheme uses the average error rate of m-byte probe messages for

data packets of all sizes.

• INDEP(m): This scheme assumes the independent bit error model and extrapolates

the expected packet error rate based on the statistics of m-byte probe messages.

• GE(m, n): This is the estimation scheme based on the GE model, which uses the

statistics of m-byte and n-byte probe messages.

• OBSERVED: This is the actual observed packet error rate.

While only one measurement value is required for INDEP, GE uses two parameters, and

there can be more possible combinations of the two parameters. For both schemes, proper

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 900 800 700 600 500 400 300 200 100

Pa
ck

et
 e

rr
or

 r
at

e

The number of packets used

GE(16, 32)
Indep(128)

GE(16, 128)
Observed

Figure 3.3: PER estimation based on 1000 packets. We use link from node 1 to node 4 in

Figure 3.2.

parameter choice can be crucial to correct PER estimation. We consider three different

combinations of parameters for GE and two different cases for INDEP and compare the

estimation performance.

3.2.2 Experiment Results

3.2.2.1 Estimation Accuracy of Different Schemes

We first consider how well the above estimation strategies perform. In Figure 3.3,

we plot the observed error rate for 1024-byte packets and estimated error rates by different

schemes2. We use a representative experiment sending 1000 packets for each probe type,

and each point in the figure is based on cumulative packet error rates after every 100 pack-

ets. (We use a smaller number of packets (1000) to illustrate how quickly the estimated

2We include additional 84 bytes of lower layer headers in the calculation.

31

PER converges to the observed PER.) We use the link from node 1 to node 4 in Emu-

lab (Figure 3.2). The estimation by GE(16,128) closely matches the actual average PER.

However, GE(16,128) still requires several hundred probe messages before achieving rea-

sonable accuracy, which takes around ten minutes when we send a probe message every

second. This amount of time is acceptable for more static wireless mesh networks [64],

while more dynamic wireless networks such as ad hoc networks may require faster con-

vergence. One possible approach to reducing the number of required probe messages

is to experiment with regression analysis techniques combined with observed error rates

for actually transmitted data packets. Addressing this issue will be an interesting area of

future research.

In our experiments, GE(16,32) does not perform as well as GE(16,128); there is con-

siderable fluctuation in the estimated value, and the measurement error is relatively large

even when we use a larger number of probe messages (See Table 3.3). Specifically, with

10000 probe messages (ten times the size shown in Figure 3.3), the absolute estimation

error by GE(16,32) stays around 19% (52.4% vs. 33.4%). One possible explanation to

this error is that the estimation by GE(16,32) is less robust because we use extrapolation

based on two relatively nearby sample points; a slight measurement error can amplify the

estimation error. Also, Kopke et al. [59] find that there is difference in bit error probabil-

ity depending on the bit position, and bit errors occur more frequently at the beginning of

a packet. In that case, estimation using short probe messages alone can potentially lead

to higher estimation errors. In the figure, INDEP does not estimate PER correctly, and

although not shown in the figure, the estimation error by INDEP(16) is larger than that of

INDEP(128). Although we do not show all the results here, we have experimented with

32

Emulab Links

8→9 1→13 1→7 1→4 1→8 11→16 16→5

OBSERVED 0.018 0.135 0.145 0.334 0.375 0.548 0.738

GE(16,128) 0.021 0.131 0.145 0.385 0.393 0.526 0.754

GE(16,64) 0.025 0.222 0.247 0.465 0.332 0.415 0.791

GE(16,32) 0.046 0.154 0.043 0.524 0.243 0.594 0.677

INDEP(128) 0.052 0.222 0.255 0.629 0.645 0.907 0.996

INDEP(16) 0.092 0.332 0.383 0.816 0.831 0.993 1.000

BASIC(128) 0.010 0.047 0.055 0.173 0.180 0.385 0.646

Table 3.3: Comparison of different estimation techniques against actual packet error rates.

We use 10000 packets for each of probe and data message types. Values in bold represent

the cases with minimum estimation error.

other links and performed multiple experiments for each link, and the results are similar.

We next present some results obtained from other links.

3.2.2.2 Experiments with Various Links

In previous results, we considered results only from one particular link. We now

present results from various wireless links with diverse link quality. In Table 3.3, we

report estimated PERs by different schemes as well as observed error rates for 1024-byte

packets based on 10000 packets for each message type. We observe that the GE(16,128)

estimation is the most accurate in all cases (highlighted in bold), and the estimation error

is small regardless of link quality. GE(16,64) often performs better than GE(16,32), but

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 1400 1200 1024 750 512 256

Pa
ck

et
 e

rr
or

 r
at

e

Data packet length (in bytes)

Indep(128)
GE(16, 32)

Observed
GE(16, 128)

Figure 3.4: Estimation of PER when we vary the size of data packets. We use the link

from node 1 to node 4 in Figure 3.2

both of them result in larger estimation errors than GE(16,128). As in Figure 3.3, INDEP

always overestimates packet error rates, and the degree of overestimation is higher with

INDEP(16) than INDEP(128). Although the independent bit error model has served as a

reasonable model in [60], it does not seem to reflect the channel characteristics correctly in

our indoor experiments. In BASIC(128), we use the error rate of 128-byte probe messages

as the estimation for 1024-byte packets, which results in significant underestimation of

PERs.

3.2.2.3 Varying Data Packet Sizes

In the previous experiments, we fixed the data packet length to 1024 bytes. In this

set of experiments, we vary the data packet size and compare the estimated and observed

error rates. In this experiment, we use additional packet sizes (750, 1200, and 1400 bytes).

In Figure 3.4, we plot the estimated and actual packet error rates with varying packet sizes.

34

We use the statistics of 10000 message for each probe type. Not surprisingly, average PER

increases as data packets become larger. We observe that GE(16,128) again performs best

in estimating error rates for other packet sizes. Other schemes show similar trends to

Figure 3.3. This result illustrates that our proposed estimation technique estimates error

rates for various packet sizes.

3.3 Summary

In this chapter, we have defined a number of WISE interfaces and presented tech-

niques needed for implementation. We also presented measurement experiments to com-

pare possible strategies for packet error rate estimation. In the following chapters, we

describe how we can use the WISE interfaces in actual wireless systems.

35

Chapter 4

Protocol Extension for Multihop Wireless Local Area Networks

IEEE 802.11 based wireless LANs (WLANs) are one of the primary enablers of

untethered access to the Internet. A typical WLAN consists of two different entities—

Access Points (APs) and stations (STAs), which we refer to as clients in this chapter. A

client associates itself with an AP within its direct communication range. The set of all

such clients for a specific AP is known as the Basic Service Set (BSS) for that AP. A

single WLAN can consist of a number of such BSSs, one corresponding to each AP. The

APs are connected via a backbone distribution system (DS), which provides a conduit

to the external network. All the BSSs together with the DS are known as the Extended

Service Set (ESS). The entire ESS is identified by a single ESSID.

In this chapter we (1) define a multihop 802.11-based WLAN architecture (Sec-

tions 4.1 and 4.3), (2) demonstrate how such a system can provide significant performance

benefits over existing single-hop counterparts (Sections 4.2 and 4.4), and (3) describe a

deployment path that will enable it to seamlessly interoperate with existing WLAN in-

frastructures (Section 4.3). We first present the multihop WLAN architecture and discuss

the advantages and potential issues.

36

AP0

AP1

AP2

Proxy

Client

C6

C0

C1

Multi-hop LAN
manager
(optional)

MLM

C3
C2 C4

C5

Figure 4.1: The multihop 802.11 architecture. The circles represent the communication

range for the specific APs.

4.1 Multihop WLAN Architecture

In Figure 4.1 we illustrate our proposed multihop 802.11 architecture. In this archi-

tecture, each client can directly associate itself with an AP in the WLAN. Additionally,

the client can also have a multihop path, via other clients acting as intermediaries or prox-

ies, to indirectly associate with the AP. In a typical scenario we expect the proxies to be

“resource-rich” clients that take data forwarding responsibilities on behalf of “resource-

depleted” clients.

4.1.1 Advantages

There are a number of benefits of a multihop wireless LAN architecture. We discuss

them in turn.

37

4.1.1.1 Enhanced Performance

Some clients in a WLAN are resource-depleted. Consider the case when a specific

client (say client C5 in Figure 4.1) is low on battery power. The energy required for it to

communicate directly with AP2 is prohibitively expensive. However, the availability of

a nearby client that can serve as a proxy (e.g., client C3) significantly reduces the energy

requirements for communication. Therefore the multihop path leads to increased lifetime

for C5.

Similarly, consider another scenario where the direct channel between C5 and AP2

is very noisy. Therefore, data transmitted on this channel will encounter significant errors

and losses. Typical implementations of the IEEE 802.11 protocol reacts to such losses

by reducing the data rate. Alternatively we can use the 802.11 protocol and maintain

the higher data rate by using a higher transmit power. Increasing the transmit power in-

creases the signal to noise ratio, which in turn reduces the bit error rate on the channel

and allows the 802.11 protocol to operate at the higher data rate. This high power solu-

tion leads to increased interference in the WLAN. For example, transmissions from C5

may now interfere with data transmissions between AP0 and its clients, thus reducing

the data throughput of the WLAN. In a multihop system, C5 can use a “better-located”

client (e.g., C3) to communicate with the AP. We performed detailed measurements in

existing WLANs to study the benefits of a multihop approach to clients. Our results in

Section 4.2 indicate that in many such cases clients can leverage a multihop path to sig-

nificantly improve their data throughput. Additionally, the performance improvement of

these “resource-depleted” clients also positively impacts the performance of clients in the

38

same WLAN that are not even aware of multihop extensions.

4.1.1.2 Extended Wireless Coverage

In the usual single-hop WLANs, a client must be located within the coverage area of

some AP to receive wireless services. A multihop WLAN leverages participating proxies

to extend the coverage area, e.g., client C0 in Figure 4.1. Such a solution is particularly

useful in handling flash crowds. If a transient user population moves into an area with

no wireless coverage, a multihop WLAN can be used to provide immediate wireless ser-

vices. Obviously, the long-term solution to provide wireless connectivity in a popular user

location is to add more APs in that area. However, the multihop solution is more appro-

priate to handle transience. This is because it requires no setup, administrative overhead,

or additional hardware.

4.1.1.3 Enabling Automated Re-organization of AP Distribution

The goal of a WLAN designer is to ensure that each location in the area is visible

to at least one of the APs of the WLAN. WLAN administrators currently use various

techniques to monitor the expected performance of WLANs. One of the more popular

methods is to perform signal strength measurements at various locations of the coverage

area from the nearby APs. Such an approach is tedious and cannot be performed very

frequently. As a result, WLAN administrators often do not have accurate radio maps that

reflect the existing conditions in the wireless environment [71].

The multihop WLAN presents a new opportunity for the online performance moni-

39

toring. For example, when proxies in a specific location get heavily used (e.g., due to poor

channel conditions in the direct path to the APs), the system can trigger alerts to the LAN

administrators to appropriately add or re-distribute the APs in that location. In the pro-

posed multihop 802.11 architecture, the proxies provide such information to the Multihop

LAN Manager (MLM) and the latter is responsible for providing such notifications.

In some of the above examples such as extended wireless coverage, the long term

solution is to add more APs to the WLAN. In such cases the multihop architecture can be

leveraged to (1) provide a short term solution, (2) handle transient situations, e.g., flash

crowds, (3) provide performance benefits in cases where re-organization of the WLAN

is too expensive, and (4) allow administrators to discover performance problems in the

WLAN which can trigger the long-term re-deployment based solutions. In other cases,

the multihop architecture provides the only logical solution to improve the performance

of resource-depleted devices (e.g., a device with low residual battery power).

4.1.2 Potential Pitfalls

While there are a number of benefits of the multihop architecture, it is important to

evaluate some of the potential pitfalls that may arise in this environment.

4.1.2.1 Increased Channel Contention

When a packet follows a multihop path to an AP, it uses the wireless channel two or

more times. This may increase the contention of the channel and potentially allow reduced

data throughput for the source as well as other clients in the vicinity. To quantify the

40

effect of multihop paths on data throughput, we have performed detailed measurements

as well as simulations. The results show that in many cases the data throughput increase

due to better (multihop) path choices more than compensates for the loss due to channel

contention. Our proposed mechanisms take channel contention effects into account when

making such multi-path choices.

4.1.2.2 Resource Consumption at Proxies

Packets following multihop paths consume resources at the proxies, e.g., battery

power, bandwidth. Clearly, there is no incentive for wireless clients to operate in such an

altruistic mode. Each client in the WLAN can choose independent policies on when it is

willing to serve as a proxy. For example, some users may volunteer their laptop clients

when they are powered from an electric outlet, and when the laptops are idle, i.e., not

actively generating network traffic. Additionally, it is possible to define incentive based

packet forwarding rules in such multihop environments as shown in [30].

4.1.2.3 Security Threats

Allowing an intermediary to forward data packets on behalf of a client may poten-

tially open the WLAN to new security threats. For example, a malicious proxy can (1)

mount a denial of service attack by dropping all frames forwarded to it by the clients, or

(2) tamper sensitive data sent through it. However, we believe that multihop extensions do

not add any new threat that is not already present in WLAN environments. For example,

in current WLANs it is relatively easy to mount a denial of service attack by using sim-

41

ple channel jamming techniques. Similarly, all sensitive data should be encrypted using

end-to-end mechanisms even in existing WLANs, since the entire network between the

endpoints should be considered to be untrusted for such applications.

4.1.3 Incremental Deployment

IEEE 802.11 based WLANs are currently widely deployed. Therefore a new mul-

tihop architecture that requires a change to existing entities (e.g., clients and APs) is not

always feasible. Therefore, we explore the potential paths of deployment of multihop

WLANs that require various degrees of change to existing entities. The proxies are new

entities in the system, and any client that acts as a proxy needs to implement the multi-

hop extensions. However, to maintain backward compatibility with existing systems we

consider cases where the other entities (i.e., regular clients and APs) are not aware of

multihop extensions to the WLAN. We consider the four different cases—(1) unaware-

AP, unaware-client, (2) unaware-AP, aware-client, (3) aware-AP, unaware-client, and

(4) aware-AP, aware-client—and define techniques for implementing a multihop 802.11

WLAN for each of these cases. While the basic principles of the protocols in these cases

are similar, the mechanisms required to achieve the desired effect vary from case to case.

The protocols and mechanisms for the aware-client cases are more interesting, and we

primarily focus on these two cases in this chapter.

42

4.1.4 Comparison to Routing-based Solutions

One way to construct this multihop access infrastructure is to use a routing layer

based solution. In fact, a number of on-demand routing protocols have been defined to

provide network level connectivity between arbitrary pairs of wireless nodes in an ad-

hoc wireless network (e.g., DSR [37], AODV [72], TORA [73], ZRP [74]). While these

protocols can be used to construct appropriate multihop paths from the wireless clients to

the Access Points (APs) of an 802.11 WLAN, we believe that the benefits of a multihop

wireless access infrastructure can be better realized when implemented at the wireless

medium access layer due to the following reason.

In most popular wireless environments (e.g., office buildings, homes, and WiFi

hotspots), wireless clients typically need mechanisms to access the wired infrastructure.

Consequently, the goal of the access infrastructure is to construct appropriate (single-hop

or multihop) paths to the nearest AP of a WLAN. A full routing protocol that allows

flexible routing between arbitrary pairs of nodes is not necessary for such purposes. Note

that some of the proposed route construction mechanisms (e.g., network-wide flooding

to locate destination nodes) are based on arbitrary separation between the source and

the destination. In contrast, the clients in a WLAN are in a much more limited region,

where typically the clients are in direct communication range of the APs. In fact, as

our experimental results show, most data performance benefits are gained by using short

paths (using one or two proxies) between the clients and the APs. We next present our

measurement and simulation results to validate the proposed architecture.

43

4.2 Measurement-based Evaluation

In the previous section, we identified some of the potential pitfalls of a multihop

WLAN architecture. In particular, we identified the issue of increased channel contention

as a potential disadvantage of multihop WLANs. In this section we primarily examine the

channel contention effects and their impact on data throughput. Our results indicate that

a carefully designed multihop WLAN protocol can lead to significant data performance

benefits in all cases.

4.2.1 Experimental Setup

We performed our experiments on the 4th floor of A.V. Williams building (which

hosts the Computer Science Department at the University of Maryland). The map of the

floor is shown in Figure 4.2. In the experiments described in this section, we performed

the experiments with respect to a representative AP running the 802.11b protocol and

located at the position marked in the figure. We measured the data throughput achieved

by clients using both direct and multihop configurations. In both these configurations,

the client performed a reliable data transfer (using TCP) of 51.12 MB of data to a sink,

located in the same wired subnet as the AP. (This translates to 100,000 IP packets of

size 536 bytes each, generated at the source.) In each experiment we measured the data

transfer latency as observed at the application layer.

For the multihop measurements, we did not implement the full version of our pro-

posed protocol (to be described in Section 4.3). Instead we emulated the multihop link

layer mechanisms using statically assigned IP addresses and routes, as shown in Fig-

44

ure 4.3. In this setup, the proxy device used two separate wireless cards—one to associate

with the AP and operate in the managed mode, and the other to interact with the source

client and operate in the ad hoc mode. Due to physical constraints of the PCMCIA slots

of laptops, we found it convenient to use two laptops, connected by 100 Mbps Ethernet, to

operate as a single proxy as shown in the figure. Note that such an arrangement is actually

disadvantageous to the multihop experiment. Unlike multihop link layer mechanisms, the

data packets encounter additional delay due to network layer processing. This setup also

leads to an additional latency due to data transfer between laptops A and B via Ethernet.

In these experiments we used IBM Thinkpad laptops running Linux with kernel version

2.4.19, equipped with Orinoco Silver PC cards.

The IEEE 802.11 standard allows multiple channels to be used simultaneously. In

the multihop experiments there are two wireless links, one from the source to the proxy,

and the other from the proxy to the AP. We experimented with using the same channel as

well as two independent channels for these two links and compared the performance of

both these scenarios with the single-hop case. In an actual deployment, specific network

conditions and other administrative factors will determine whether multiple channels can

be used.

4.2.2 Results

We performed this measurement study throughout the month of June 2003, in which

we observed the data throughput of more than 30 sample positions. Not surprisingly,

we found that the wireless data throughput fluctuated between different measurements.

45

AP

Good Fair Bad No connection

Two-channel
multi-hop
beneficial

One-channel
multi-hop
beneficial

G1

F1

B1

B2

N1

N2

G2

70.0 m

26.6 m

Extended coverage
by multi-hop WLAN

Figure 4.2: Potential data throughput improvement by using multihop extensions to the

currently deployed WLAN on the 4th floor of the A.V. Williams building. The “Good,”

“Fair,” “Bad,” and “No Connection” marks the performance of the single-hop WLAN.

The multihop benefits shown in this figure are obtained using two hop paths.

However, it was easy to identify a consistent ordering among the data throughput achieved

at different locations.

In Figure 4.2 we present an approximate wireless coverage and direct-hop data

throughput from different locations to a representative AP (marked in the figure). In the

area marked “Good” users can get data throughput of more than 4 Mbps. (Although the

maximum data rate in the 802.11b WLAN is 11 Mbps, it is not possible to achieve an 11

Mbps data rate due to control overhead such as ACK frames, backoff mechanism, etc.) In

the area marked “Fair” the throughput varies between 1 and 4 Mbps. In the area marked

“Bad” the throughput is less than 1 Mbps, and finally the users lose connectivity with the

AP in the area so marked.

46

AP

Proxy
Client

Sink

802.11b
Ad-hoc
mode

802.11b
Managed

mode

10.0.0.1

10.0.0.2 192.168.0.2

10.0.0.3 192.168.0.3

192.168.0.4192.168.0.5

100 Mbps Ethernet

A B

C

Figure 4.3: The experimental setup to measure performance of a multihop WLAN.

In Figure 4.2, the two dotted lines on the left identify the regions where the emu-

lated multihop wireless paths lead to improved performance over the existing infrastruc-

ture (e.g., > 2 times higher bandwidth in the “bad” region). The two-channel multihop

paths are useful even when users are located within the good wireless coverage region

(e.g., location G2). It provides considerable performance improvement for users in “fair”

and “bad” areas (e.g., F1, B1) as well as in “no connection” area. The single-channel

scenario is expected to have worse performance than the two-channel case due to greater

contention effects in the single channel. The results indicate that in spite of these effects,

single-channel multihop wireless paths provide significantly improved performance in the

areas marked “Bad” and “No connection” (e.g., B1, N1). Finally we can observe that the

multihop WLAN considerably extends coverage, as shown in the figure.

In Table 4.1 we tabulate some of the representative measurements at selected loca-

tions on the floor.

Using three hops We also have conducted some experiments with three-hop paths.

We observe that the bandwidth achieved in these experiments are similar to the two-hop

47

Position Direct Multihop

One-channel Two-channel

G1 4.94 2.42 4.56

G2 4.12 2.58 4.50

F1 2.46 2.50 4.60

B1 0.84 2.26 4.30

B2 0.83 2.37 4.24

N1 - 1.83 3.77

N2 - 2.50 2.96

Table 4.1: Actual throughput values (Mbps) measured at representative points

measurements. For example, at location N1, the end-to-end throughput is 1.70 Mbps for

a single channel experiment and 3.79 Mbps when three channels were used, which are

similar to the two-hop results shown in Table 4.1. As discussed in previous study [75],

when we use a single channel for a three-hop path, all links in the path interfere with one

another, which cancels the benefit of using high-quality links. Even when we use different

channels for each of the three links, a packet needs to access the shared medium multiple

times (e.g., binary backoff and retransmissions due to collision [76]). Our results show

that due to such overhead, in typical WLANs scenarios with reasonable AP coverage, the

additional benefits of using three or more hops are marginal.

Overall, we believe that these experiments serve as evidence that multihop WLANs

can be useful to clients in many cases. In the next section, we describe the network

architecture and its deployment path in more detail.

48

AP

Y

C

composition replacement

AP

Y

C

X

MY, AP

MX,Z

MZ,Y

10

X

MX,Y ZZ

AP

Y

C

MZ, AP

2

X

MX,Z
Z

AP AP

Z

C

relaxation

3

X

MX, Y
Y

AP

Z

C

MX, Z

4

X

Y

MY, Z

Figure 4.4: The Composition, Replacement, and Relaxation constructs. C is a client. X ,

Y , and Z are proxies.

4.3 Multihop WLAN Architecture and Deployment

In this section, we describe the proposed multihop WLAN architecture and pro-

tocol mechanisms. We first define three important constructs necessary to implement

a multihop WLAN. We call them composition, relaxation, and replacement of proxies

(Figure 4.4). In the examples in the figure we use three or more hops for the multihop

paths. The protocol mechanisms generalize to an arbitrary number of hops. However,

our measurements (Section 4.2) indicate that in most typical scenarios, two hop paths are

sufficient for performance benefits, and benefits of additional hops are marginal.

Let us consider any general metric,M (e.g., bandwidth, loss rate, latency, energy

consumption). Composition defines the protocol mechanisms to add a proxy on the path

from the client to the AP (Panel 1→ Panel 0). Such an addition is performed if and only

if the path improves with respect to the given metric,M, i.e., in the figure:

MX,Z

⊕

MZ,Y better thanMX,Y

(We use the
⊕

operator to denote composition.) The definition of “better than” depends

49

on the specific metric.

Replacement describes mechanisms where one proxy replaces another (Panel 1→

Panel 2) and leads to an improvement of the path quality with respect toM. In the figure

this implies that:

MX,Z

⊕

MZ,AP better thanMX,Y

⊕

MY,AP

Note that the proxy Z may be associated with a different AP within the same WLAN.

Finally, relaxation defines protocol mechanisms to remove a proxy on the path be-

tween the client and the AP (Panel 3→ Panel 4), to improve the path quality. In the figure

this requires:

MX,Z better thanMX,Y

⊕

MY,Z

In this chapter, we describe the implementation of the constructs with respect to an

example metric—bandwidth available on the path from the client to the AP. We use the

following notation. For a link X → Y , bX,Y denotes the bandwidth on that link. For a

client C, we represent the end-to-end bandwidth on its single or multihop path to the AP,

by bC . Thus bC = min{bX,Y } over all X → Y hops on this path. bC is our objective of

maximization.

Note that there are two key components that determine the bandwidth of a wireless

path: (1) noise on the wireless channel, and (2) contention with other clients. As the

noise on the channel increases, the 802.11b implementations on the wireless cards reduce

the data rate, thus increasing the path latency and reducing the path bandwidth. Simi-

larly as collisions occur on the wireless channel, the 802.11b clients perform contention

resolution which leads to reduction in bandwidth and increase in latency.

50

In order to compute multihop paths with good bandwidth or latency performance,

we need to estimate these metrics for individual wireless hops. One possibility is to use

periodic message exchange as in [2]. However, this method may introduce considerable

control overhead even when we do not need to use multihop paths. In this chapter, we

focus on a WISE interface based on passive observations (See Chapter 3). There are

two advantages of this proposed heuristic: (1) it requires no active measurement traffic

and hence does not increase the contention of the data channel, and (2) an endpoint of

a wireless link or any external entity with the capability to snoop packets can use this

technique to estimate the the metrics for that link. Although it is possible that nodes

occasionally do not detect nearby transmissions, such link quality estimation techniques

based on passive observations are widely used in practical wireless applications [77].

As explained in Section 4.1.3, we have considered four different scenarios for de-

ployment of a multihop WLAN. We now describe the multihop architecture that imple-

ments the composition, relaxation, and replacement constructs for improved performance

in these scenarios.

4.3.1 Aware client

We first describe the protocol mechanisms for clients that are aware of multihop

extensions. We independently consider the path from the client to the AP (forward path)

and the path from the AP to the client (return path).

51

4.3.1.1 Forward Path

Let us assume that a client C currently uses some forward path (either direct or

multihop) to an AP, where the client is the source of traffic. Consider a specific hop

on this path, X → Y as shown in Panel 1, Figure 4.4. X computes the bandwidth

available on that hop, bX,Y , using the WISE interface call. Also, when a client C uses

a multihop path, C (or proxy P on the path) periodically advertises the value of bC (or

bP) in its single-hop neighborhood. This periodic advertisement can be done either using

local broadcasts of an additional packet type at a low frequency, or piggy-backing onto

data packets. In Panel 1, Figure 4.4, Y advertises bY , and using this information, X can

calculate bX as min{bX,Y , bY }. Then, X also advertises bX , and any proxy in the vicinity

snoops and uses this information to determine if the multihop path through itself is better

than the current one.

For example, consider another proxy Z that is within direct communication range

of X . Z receives the bandwidth advertisement, bX , on this path. X has a better path to an

AP through Z rather than its existing path through Y , if

{min(bX,Z , bZ)− bX} > bthresh (4.1)

where bthresh is the bandwidth advantage threshold. Note that Z is also a regular client in

the system and therefore computes and maintains the available bandwidth, bZ , to its AP.

Z estimates the value of bX,Z using the passive estimation technique implemented by the

WISE interface call as described in Chapter 3.

If using Inequality 4.1, Z detects that the path C → . . .X → Z → . . . → AP has

higher bandwidth, it sends a ForwardProxyBid message to X . This message includes the

52

values of bX,Z and bZ . If X receives multiple such ForwardProxyBid messages, it chooses

a proxy that leads to the best bandwidth improvement. X sends a ForwardProxyAccept

message to the chosen proxy and starts forwarding data packets to Z.

If the path from Z to the AP has Y as its first hop, then this operation would be

a Composition (shown in Panel 1 → Panel 0, Figure 4.4). If the first hop from Z is

some node other than Y , this would be a Replacement operation (Panel 1 → Panel 2,

Figure 4.4). Finally, if in the original multihop path from the client C to the AP, Z was

the next hop to Y , then the operation describe above is equivalent to a Relaxation (Panel

3→ Panel 4, Figure 4.4).

The proxy state is soft. Therefore, in absence of data packets, X is required to

periodically refresh the state at Y by sending gratuitous ForwardProxyAccept messages.

Y can revoke proxy services to its previous hop X by using a ForwardProxyRevoke mes-

sage. This can be invoked due to many reasons. For example, the laptop serving as the

proxy is unplugged from the electric outlet and, hence, is no longer willing to serve as

a proxy. Alternatively it can also be that the proxy is dissociated from its AP. As a final

fallback mechanism, X can also detect the failure of Y , when it fails to acknowledge a

threshold number of consecutive RTS packets forwarded to it (in the RTS/CTS access

method).

Clients outside direct range of AP In case no AP is directly reachable from C, it

attempts to set up an initial multihop path to an AP. For this, C monitors messages in its

single-hop wireless neighborhood. If C finds a proxy in its vicinity, e.g., by detecting

any proxy-specific control message, then it sends an unsolicited ForwardProxyAccept

53

AP

Y

C

Relaxation
(special case)

X

MX,Y

AP

Y

C

X

MX, AP

MY, AP

Figure 4.5: Relaxation of the last proxy on a multihop path.

message to it to set up a multihop path. (Subsequently C might discover better multihop

paths to some AP using the mechanisms described above.) Otherwise, C probes each

neighboring client by sending an unsolicited ForwardProxyAccept until it finds a proxy-

enabled client. When a proxy-enabled client receives such an unsolicited message, it

sends ForwardProxyBid and a multihop path is established.

Special case for unaware-AP All the above operations work independent of whether

the AP is aware or unaware of multihop extensions to the MAC protocol, except one spe-

cial case. This special case arises for the unaware-AP case, when the original multihop

client path was C → . . . → X → Y → AP , and a relaxation operation is required to

eliminate the last proxy, Y , from the path (Figure 4.5).

Note that in the aware-AP case, we implement the same ForwardProxyBid mech-

anism in the AP that leads to this relaxation operation. We call such a relaxation step

Relaxation assisted-by Access Point (RAP). However, if the AP is unaware, such an op-

eration is not feasible. An unaware-AP will not attempt to evaluate the bandwidth of

the X → AP link, nor send a ForwardProxyBid message to eliminate Y from the path.

54

Therefore to enable the elimination of the last proxy from a multihop path, if and when

necessary, we need to define additional mechanisms for the unaware-AP case.

In the unaware-AP case, X actively probes the quality of the direct path between

itself and the AP. In this active probe technique, X periodically sends a NULL frame

to the AP. The NULL frame is a special frame which is automatically dropped by the

AP and therefore does not add any extra load on the Distribution System. However,

like any data packet, the AP will perform the four-way handshake to receive this packet

(i.e., RTS-CTS-NULL-ACK). Using this low frequency stream of NULL frames, X es-

timates two parameters: (1) the packet error rate, p, on this link, and (2) the latency of

the four-way handshake for a successful data transfer across the link, τ . Estimation of

these two parameters is sufficient for X to infer bX,AP using the WISE interface call. If

bX,AP − bX > bthresh then X directly eliminates Y from the multihop path, by sending a

ForwardProxyRevoke message.

MAC Address Translation Consider a forward multihop path from the client C to

the AP, C → P → AP , where P is a proxy. When P forwards data frames to the AP, on

behalf of the client C, it uses its own MAC address as the source address for those data

frames.1 (Alternatively P can use a specially chosen independent MAC address when

forwarding packets for each specific client.) The proxy therefore performs MAC-level

Address Translation (MAT) for data frames transmitted by C. This is true for a multihop

return path as well, as described next.

1If P spoofs the MAC address of C, it can lead to ambiguities and incorrect operation at the MAC layer.

55

4.3.1.2 Return Path

Typically, the return path from the AP to the client should use the direct single

hop path if available. This is because the AP is usually a resource-rich device and can

transmit with adequate power to tide over moderate noise levels in the channel. However,

there may still be cases where the bandwidth of direct return path from AP is poor, or

no direct path is available. In such cases we use the reverse of the forward multihop

path, as described below. The client C makes a decision on which path to use. If it

chooses to use the reversed forward multihop path, it sends a ReverseProxyRequest along

the multihop path. The return multihop path is activated by the last proxy on the path

(i.e., the proxy Z in Panel 4, Figure 4.4) using ARP mechanisms. However, C continues

to stay associated with its AP and continually estimates the bandwidth on the direct hop

from the AP to itself. On detecting an improvement of this single-hop path, it reverts

back to this path. C sends a ReverseProxyRevoke message to its first-hop proxy to effect

this change. Alternatively C stops refreshing the proxy state on the reverse path, and the

states at the proxies time out.

It is also possible to consider an independent return path. For example, in Panel 4,

Figure 4.4, while the forward path is C → X → Z → AP , it is possible that AP → Y →

C is the best return path. However, although C can infer the bandwidth of link Y → C,

it is not always able to know the link bandwidth from AP to Y (e.g., C is beyond the AP

coverage area). As a result, to find the best independent return path, all candidate proxies

such as Y need to advertise their return path bandwidth (e.g., from AP to Y in the figure).

Since such advertisement can be expensive, we do not further explore this alternative in

56

this chapter.

MAC Address Resolution Let us first consider the direct single-hop return path.

In this case, when the AP sends an ARP request for C’s IP address, C sends the ARP

response with its own MAC address. Hence the AP transmits all data packets addressed

to C using C’s MAC address as the destination.

Next consider the case when the return traffic uses the multihop path. In this case,

when the AP sends an ARP request for C’s IP address, the last proxy (Y in Panel 0,

Figure 4.4) on the multihop path sends proxied ARP responses with its own MAC address

(or a specially chosen independent MAC address). Subsequently all traffic destined for C

will be forwarded by the AP to Y ’s MAC address. Whenever C switches between the two

paths, an explicit ARP response is sent to update the cache entry at the AP appropriately.

In the aware-client case, all interaction between the clients and proxies takes place

using the ad-hoc mode of the Distributed Coordination Function (DCF) of 802.11b oper-

ation.

4.3.2 Unaware client

We now describe the implementation path for a multihop WLAN for the unaware

client scenarios. In these scenarios since the clients are unaware of multihop extensions,

they will not associate with any entity other than APs with the designated ESSID. There-

fore the key problem in this scenario is to compose a proxy on the path from the client to

the AP.

In these scenarios a multihop path can only be constructed if the proxies operate

57

as APs in the WLANs. All these active proxies (acting as APs) need to interact with

the actual APs in the WLAN to form a Wireless Distribution System (WDS). Some im-

plementations of WDS are already commercially available today, e.g., Orinoco AP-2000

from Agere Systems2 and WX-1520 from SparkLAN3.

If all possible proxies act as APs, then the number of APs in the system can be-

come very large. Therefore, unlike existing implementations of WDS, the proxies in our

proposed system emulates AP functionality on-demand, i.e., only when it is needed by

low-performance clients.

Consider a client C that is directly associated with an actual AP (which we call

wired AP in this description). A proxy X emulates AP functionality when it detects that

the path C → X → AP has a higher bandwidth than the direct path C → AP . As in the

aware client scenarios, X maintains the estimate of bandwidth from itself to its wired AP

(i.e., bX) and computes the direct bandwidth from C to itself (i.e., bC,X). X also estimates

the direct bandwidth from C to AP (i.e., bC) by snooping the wireless traffic sent by C

to the AP. Note that only proxy X estimates link bandwidths, but unaware client C does

not.

Let us first consider the Composition operation in the unaware-AP, unaware-client

case. Low link quality between the client and AP is typically due to two reasons: (1) poor

channel conditions, i.e., high noise in the wireless medium on the path from C to AP,

or (2) high network traffic which leads to significant channel contention. 802.11b clients

respond to both these scenarios by trying to identify a “better” AP and associating it. If

2See http://www.agere.com
3See http://www.sparklan.com

58

C attempts such a re-association and sends a probe message, the proxy P (operating as

an AP) will receive the probe message and respond to it. Of course, in this unaware client

scenario, it is possible that the client selects a sub-optimal proxy since it may consider the

quality of the immediate link to the proxy, not the quality of the composite path. Hence,

we cannot guarantee bandwidth-optimal paths in the unaware client case.

In the aware-AP, unaware-client case, the aware APs can actively participate in a

Composition operation as follows. A proxy X , on detecting a better path for C, can

optionally send a ClientDissociateRequest to the AP with which C is currently associated.

The AP on receiving this message will explicitly dissociate C. This will force C to locate

an alternate AP, and in the process will find proxy X . We call this process Composition

assisted-by Access Point (CAP). With CAP the Composition operation can be initiated

before the link between the client and AP becomes very poor.

In the unaware client scenarios, the Relaxation step is also hard to guarantee. For

the aware-AP, unaware-client case, we rely on the AP to initiate the relaxation step (RAP).

When the AP detects that the direct path has better bandwidth than the composed multi-

hop path, it sends a ClientDissociateRequest to the proxy, X , which has been emulating

AP functionality. The proxy X subsequently dissociates the client, C, and C eventually

re-associates directly with the wired AP. In the unaware-AP, unaware-client case, relax-

ation is possible only if the channel conditions on the path between the client and the

proxy becomes bad, and the client automatically attempts to locate a better AP for itself.

Therefore, to force the client to locate better alternate and possibly direct paths, the proxy

should periodically dissociate the client, forcing the latter to locate a better AP. This is

the only possible mechanism that can enable path relaxation when both a client and an

59

Access Point

Client Unaware Aware

Unaware WDS WDS + RAP/ CAP

Aware MAT MAT + RAP

Table 4.2: Mechanisms required to deploy multihop WLANs for the four different sce-

narios.

AP are unaware.

When a proxy is eliminated from a multihop path through the relaxation process,

and it is not serving as a proxy for any other client, it stops operating as a wireless AP

and reverts back to the regular client mode.

We summarize the mechanisms to implement all the four scenarios in Table 4.2.

4.3.3 Discussion

In this section, we discuss other issues relevant to our proposed multihop WLAN

system.

Association Overhead As the results in Section 4.2 demonstrated, in many cases

there are significant benefits of using multihop paths. However, transitions between the

direct to the multihop path typically will incur some overhead at the clients. We expect

this overhead to be equivalent to that experienced by clients when they re-associate from

one AP to another in existing WLAN environments. We will need an actual measurement

study from a prototype system to be able to quantify this aspect further.

60

Path Oscillation Since a client and its proxies attempt to find the best multihop

path, it is possible that path changes occur too frequently. There are several ways to over-

come this problem. First, we can use a reasonably large value for bthresh in Inequality 4.1.

Second, we can use a running average of bandwidth metric to mask temporary fluctuation

of measurements. Finally, we can set an upper bound on the path changing rate (e.g., at

most one proxy change every N seconds).

Loop-freedom The use of a reasonably large value for bthresh ensures that any

multihop path is loop-free in a stable environment. However, infrequent and transient

loops may potentially occur in case of inconsistent metric measurements among mobile

nodes. However, such loops will quickly disappear as the measurements converge to a

consistent state. In addition, if we limit the number of proxies on the path to two (which

is sufficient in most cases), we can trivially guarantee loop-freedom on all multihop paths.

4.4 Simulation Studies

To evaluate the performance of our proposed protocol in the aware-clients case, we

have performed detailed simulations using the ns-2 network simulator.4 In addition to

static scenarios, we have also performed detailed experiments that involve mobile clients.

We use a circular topology with radius of 250 meters, which is the maximum transmission

range of each node (Figure 4.6). The AP is located at the center of the circle, which does

not move. Other nodes may or may not move depending on particular simulation settings.

In this section we focus on the scenario of the aware client and aware AP. We primarily

4Available at: http://www.isi.edu/nsnam/ns

61

investigate the impact of our proposed techniques for the bandwidth and latency metrics,

but we also report results on extended coverage due to the multihop extensions.

4.4.1 Simulated Environment

In our experiments, we use ftp traffic to model reliable TCP-based data transfer be-

tween sources and destinations to measure the end-to-end throughput. These data sources

are typically mobile clients that sent traffic through APs to a wired sink node. Since our

study focuses on the data performance of the WLAN, we assume that the link between

the AP and the wired sink is not a bandwidth bottleneck. Typical simulation durations are

between 300 and 600 seconds. In this section, we primarily present results for multihop

extensions where all communication used a single channel. We present a brief summary

of results for the two-channel experiments at the end of this section.

We model the environment as a noisy channel. We assume that the underlying

physical layer uses the Binary Phase Shift Keying (BPSK) modulation scheme in which

we can calculate the bit error rate using Eq. 3.3 in Chapter 3. We also assume that signal

strength is reduced proportionally to the square of distance. Therefore the quality of the

channel depends on the noise in the environment and the distance between the endpoints.

Most wireless cards incorporate a mechanism called Automatic Rate Fallback (ARF)

to handle noisy channel conditions [78]. In this mechanism, each node initially uses a data

transmission rate of 11 Mbps. On detecting repeated data transmission failures, it reduces

its transmission data rate to 5.5 Mbps, 2 Mbps, and 1 Mbps successively. Later, if the node

receives ACKs for several successive data packets, it increases its transmission bandwidth

62

AP

P

Q

R

S

C

B

North

Figure 4.6: Location of clients and AP in the some of the experiments. The radius of the

circle is 250 meters.

until the bandwidth reaches 11 Mbps. Note that the IEEE 802.11 standard does not spec-

ify any ARF algorithm, and implementations of this mechanism vary between different

card vendors. We have incorporated an ARF mechanism into the ns-2 simulator based on

the description presented in [78]. We use Figure 4.6 to explain the relative locations of

nodes in the following experiments.

4.4.2 Experiments with a Single Sender

In the first experiment, an ftp sender is placed at C in Figure 4.6. We consider two

mobility cases for a proxy-capable client: (1) A proxy is initially co-located with the AP,

and moves towards C (westbound), starting at time 25 seconds, at the speed of 1 m/s.

It reaches C at 275 seconds. (2) It is initially at P , and moves towards S (southbound)

with the same speed. Both these scenarios capture how the location of a proxy affects

bandwidth performance at the client.

Figure 4.7 illustrates the achieved bandwidth averaged over 20 second intervals for

63

0

0.5

1

1.5

2

0 50 100 150 200 250 300
T

hr
ou

gh
pu

t (
M

bp
s)

Time (sec)

move starts move ends

southbound proxy
westbound proxy

no multihop

Figure 4.7: Bandwidth benefits of multihop extensions for a single sender. The sender

is at C in Figure 4.6. The westbound proxy-enabled client moves from AP to C The

southbound proxy-enabled client moves from P to S.

these two cases, and compares it with the single-hop scenario. In absence of multihop

extensions, the client achieves a data throughput of about 0.5 Mbps. The data throughput

achieved in the multihop scenario depends on the location of the proxy. For example,

when the westbound client is close to the AP, it is not useful as a proxy to the sender.

Therefore, the sender continues to use the direct path to the AP. At time 75 seconds, the

westbound client has moved sufficiently away from the AP, and the sender starts using it

as a proxy. Note that the bit error rate is higher for a channel with larger distance. Hence

the best data performance is observed when the proxy is located at R (mid-way between

the client and the AP) at time 150 seconds. As expected, we observe that the proxy-

enabled client moving along the Y-axis is better located for bandwidth performance at C.

In the next experiment, we show that the proposed protocol allows a Replacement

operation when a better proxy becomes available. In this experiment, the sender is at C as

64

0

0.5

1

1.5

2

0 50 100 150 200 250 300
T

hr
ou

gh
pu

t (
M

bp
s)

Time (sec)

Proxy at Q
enabled

Proxy at R
enabled

multihop
no multihop

Figure 4.8: Adaptation of multihop path using the Replacement operation. The sender

is at C in Figure 4.6, and two proxy-enabled clients are at Q and R, respectively. The

two upward transitions in bandwidth, corresponds to the adoption of each proxy in the

multihop path.

before. There are two proxy-enabled clients, at Q and at R, respectively. Furthermore, the

client at Q is enabled to act as a proxy after 50 seconds from the start of the simulation.

The other client (at R) is enabled to act as a proxy after 150 seconds. (We can imagine that

these two proxy-enabled clients are plugged into the power source and become willing to

serve as proxies at those respective time instants.)

In Figure 4.8 we present the results from this experiment. The sender starts to use

the client at Q as a proxy starting at around 70 seconds. This corresponds to an increase

in the bandwidth in the plot (from 0.5 Mbps to 1.3 Mbps). Subsequently, when R is

available, it is evaluated to be a better proxy. R sends an appropriate ForwardProxyBid

which is accepted by the sender in a Replacement operation. This happens at time 165

seconds, and the bandwidth increases to around 1.8 Mbps.

65

 0

 0.5

 1

 1.5

 2

 2.5

 150 200 250 300 350 400

T
hr

ou
gh

pu
t (

M
bp

s)

Distance (meter)

Multi-hop (40 proxies)
Multi-hop (20 proxies)

Single hop

Extended Coverage
(Max Range = 250m)

Figure 4.9: Average end-to-end throughput when we vary the distance between the source

and the AP.

In the previous experiments, we placed proxies at interesting locations. In the fol-

lowing experiments, we place proxies uniformly at random within the coverage area of

AP while experimenting with different numbers of available proxies. We also vary the dis-

tance between a source and the AP and examine how the end-to-end throughput changes.

In some of the experiment scenarios, the sender client is located beyond the transmission

range of the AP. We use ten different proxy placement scenarios for each distance and

compare the average end-to-end throughput against the single-hop scenario.

In Figure 4.9, we plot the average end-to-end throughput when we vary the distance

between the source and the AP. For clarity, we report only the results when there are 20

proxies and 40 proxies. As in the previous results, we observe that by using the multihop

extensions the sender can achieve higher end-to-end throughput. For example, when the

sender is 250 meters from the AP, the use of multihop extensions allows the sender to

66

achieve 45% throughput improvement with 20 proxies and 77% improvement with 40

proxies. With more proxies, the performance improvement is larger because the source

can choose to use a better-located proxy. However, as the source becomes farther from

the AP, the difference between the two multihop cases becomes smaller. As shown in the

figure, without using proxies, the source farther than the maximum transmission range

(250 meters) cannot communicate with the AP. In contrast, the use of multihop extensions

significantly increases the coverage area. Specifically, with the multihop extensions, when

the source is 350 meters away from AP, it still can communicate with the AP at a rate of

0.60 Mbps (with 40 proxies), which is higher than the single-hop throughput of the source

at 250 meters. We also note that as the distance between the sender and the AP becomes

larger, the sender is sometimes unable to find a multihop path using randomly placed

proxies. For example, when there are 20 proxies, in two experiments out of ten, the

source at 400 meters from the AP was not able to find a multihop path.

In the next section, we present the results when we use the multihop extensions in

the presence of multiple senders in a WLAN.

4.4.3 Impact on Other Senders

We now examine the impact of such multihop paths on other sources. Intuitively it

appears that a source using a multihop path incurs a higher channel contention in the com-

mon wireless medium and adversely affects the performance of other sources. However,

in this set of experiments we demonstrate that when sources with poor bandwidth to the

AP use multihop paths instead of the direct paths, they positively impact the performance

67

of other data sources sharing the same wireless medium.

We first consider a scenario with two senders, located at B (“near” sender) and C

(“far” sender) respectively (in Figure 4.6). At time 200 seconds, a proxy-enabled client is

activated at location R. At time 400 seconds, the far client starts to move eastbound from

C (to R) at the speed of 2 m/s. We examine the bandwidth and latency experienced by

the two clients in Figures 4.10 and 4.11 respectively.

In the first 200 seconds, both the clients achieve around 0.5 Mbps of data throughput

on the channel (Figure 4.10). Note that the far client experiences higher error rate than

the near client, and therefore due to ARF mechanisms, typically uses a lower data rate (1

Mbps) than the near client (which often can use 11 Mbps). Consequently when the far

client gets access to the channel, it occupies the channel for a longer time duration than

the near client to transmit the data packet of the same size. This is because it transmits the

data frame at a lower data rate. Although the near client transmits at a higher data rate,

the far client gets a larger time share of the channel, effectively canceling out the benefits

of the higher data rate of the near client. Similar observations of 802.11 WLAN behavior

were made in [12, 79].

Now we observe how multihop extensions used by the far client positively impacts

the near client. Note that the near client itself does not use multihop extensions. At time

200 seconds the proxy-enabled client is activated at R and the far client starts using this

proxy to enhance its own bandwidth. We can observe in Figure 4.10 that simultaneously,

the bandwidth of the near client also improves. This can be explained as follows. With the

availability of the proxy, the far client is able to use higher data rates, and consequently

reduces the time occupancy of the channel. Consequently the near client is able to occupy

68

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Proxy at R
enabled

Far client
starts moving

Sum
Near client

Far client (mobile)

Figure 4.10: Impact of multihop extensions on bandwidth at other senders. Two senders

are located at B (near client) and C (far client) in Figure 4.6. A proxy-enabled client

(located at R) is activated at time 200 seconds. At time 400 seconds, the far client starts

moving towards R at the speed of 2 m/s.

the channel for a larger proportion. This leads to the improved data throughput for the

near client. In Figure 4.10 we can see that the availability of the proxy-enabled client

increases the aggregate data throughput (line marked ‘sum’) from 1.2 Mbps to about 2.05

Mbps. The use of multihop paths by the far client also positively impacts the end-to-end

latency experienced by both the clients (Figure 4.11). When the far client starts using the

proxy, the latency of the two clients drop from 80 and 60 ms respectively to about 33 ms

for both of them.

Finally, as the far client starts to move towards the AP (at time 400 seconds), the

error rate on its direct path to AP further reduces. When it reaches location R, the direct

path is obviously more efficient than the multihop path. It switches back to a direct single-

69

0

20

40

60

80

100

120

0 100 200 300 400 500 600

La
te

nc
y

(m
s)

Time (sec)

Proxy at R
enabled

Far client
starts moving

Near client
Far client (mobile)

Figure 4.11: Impact of multihop extensions on latency at other senders. This is the latency

plot corresponding to Figure 4.10.

hop path to the AP (Relaxation), and we observe another increase in aggregate bandwidth

for the two clients (Figure 4.10).

Finally we report the results of experiments with a larger number of wireless senders

to see the impact of multihop extensions in such a scenario. In these experiments there

are 20 wireless clients randomly distributed around the AP. Five of these clients are ftp

sources. We classify these sources into two groups—those that leveraged a multihop path

(“proxied”), and those for which the direct hop path provided good bandwidth (“direct”).

In Table 4.3 we present a summary of the bandwidth received by all these clients. All the

values are averaged over 50 runs of the simulations.

In Table 4.3, we observe that multihop extensions lead to better bandwidth perfor-

mance for both direct as well as proxied clients. For the single channel case the improve-

ments are 61% and 16% for direct and proxied clients respectively. For the two-channel

70

No multihop Multihop 1-channel Multihop 2-channel

Client Mbps Mbps Ratio Mbps Ratio

Direct 0.28 (0.02) 0.45 (0.07) 60.7% 0.48 (0.04) 71.4%

Proxied 0.32 (0.01) 0.37 (0.03) 15.6% 0.49 (0.04) 53.1%

All 0.30 (0.01) 0.41 (0.05) 36.7% 0.48 (0.04) 60.0%

Table 4.3: Performance improvement of multihop extensions in Direct, Proxied, and all

clients for both 1-channel and 2-channel cases. Numbers in parenthesis indicate standard

deviations.

case, they are 71% and 53% respectively. Note that the clients close to the AP use di-

rect paths. Their data performance were significantly impacted by the distant clients in

the single-hop WLAN. The distant clients used proxied paths in the multihop WLAN

environment and allowed the near clients to significantly improve their path bandwidths.

Control Overheads The extra control overheads due to the multihop extensions

was marginal. This is because most of the inference was done using passive measurement

techniques. In all our experiments, the extra control traffic was < 1 packet per second.

4.5 Conclusions

In this chapter we have defined a multihop WLAN architecture and quantified its

benefits. We also have defined deployment paths for these multihop extensions that can

interoperate with existing deployed WLANs. Through detailed measurements and simu-

lation studies we show that the proposed mechanisms benefit all WLAN users: those that

use the proposed multihop extensions, as well as those who do not adopt these extensions.

71

Chapter 5

Protocol Extension for Multihop Geographic Routing

In geographic routing, nodes locally select next hop nodes based on location in-

formation of neighbors and destination. Therefore, neither route establishment nor per-

destination state is required. As large-scale sensor networks become more feasible, prop-

erties such as stateless nature and low maintenance overhead make geographic routing

increasingly more attractive [80].

The most popular strategy for geographic routing is simply forwarding data packets

to the neighbor geographically closest to the destination [5–7]. In this chapter, we propose

the use of a new link metric that considers both location and link quality. In Figure 5.1,

for example, although A is closest to destination T among S’s neighbors, the link between

S and A is experiencing high packet error probability. B is slightly farther from T than

A, but provides a higher quality link from S. In this scenario, forwarding packets to B is

better, and our new metric lets us choose B over A.

The contributions of this work are as follows.

• We propose a new link metric called normalized advance (NADV) in geographic

routing. Instead of the neighbor closest to the destination, NADV lets us select the

neighbor with the best trade-off between link cost and proximity. We show that a

path chosen by NADV approaches the optimal minimum cost path in networks with

sufficiently high node density.

72

T

A

B

D(A)

D(B)

D(S)

closest to T, but frequent packet errors

S

Figure 5.1: An example scenario for geographic routing. While among S’s neighbors,

node A is closest to T , the link between S and A is experiencing a high packet error rate.

Consequently, higher performance can be achieved if S forwards packets to B.

• NADV presents a general framework for efficient geographic routing. Unlike prior

schemes that consider only one link cost type [34–36], the NADV framework can

accommodate a variety of different cost types.

• Due to the local rule for next hop decision, the use of NADV in geographic routing

provides a unique opportunity for adaptive routing. In dynamic ad hoc networks, it

is possible that the link costs change while the path is still in use (e.g., due to mobil-

ity or environment changes). As long as link cost estimation schemes employed by

WISE can track link costs change, NADV immediately reflects the change, which

in turn would result in the selection of the best next hop in geographic routing.

• Our experiment results show that NADV significantly improves network perfor-

mance in various environments. For example, when compared to the current ge-

ographic routing scheme in challenging environments with frequent packet losses,

NADV leads to 81% higher packet delivery ratio on average (from 16% to 97%).

73

The simulation results also show that when link costs change, the use of NADV

in geographic routing enables adaptive path migration, where the quality of found

paths is close to the optimum found by the centralized algorithm.

5.1 New Link Metric for Geographic Routing

In this section, we introduce a new link metric for geographic routing and discuss

its optimality in an ideal setting. Here, we assume link cost is positive and known a priori.

In practice, we use WISE interfaces to retrieve estimated link cost values.

5.1.1 Background

In this chapter we differentiate link cost and link metric. An example of link cost is

the power consumption required for a packet transmission over the link. We define link

metric as “degree of preference” in path selection. For example, even though two neigh-

bors require the same power consumption, in geographic routing we prefer the neighbor

closer to the destination. The goal of this section is to propose a new link metric for ge-

ographic routing that can be generalized to various cost types (e.g., power consumption,

link delay).

In many geographic routing protocols, the current node S greedily selects the neigh-

bor that is closest to destination T whenever possible [5–7]. The implicit goal of this

strategy is to minimize the hop count between source and destination. Let us consider

the amount of decrease in distance by a neighbor n, which we call the advance (ADV) of

74

n [81]:

ADV(n) = D(S)−D(n), (5.1)

where D(x) denotes the distance from node x to T . Then, the above strategy tries to

maximize the ADV of next hop, and ADV is the link metric in this case. However, this

link metric ADV does not take link cost into account, while different wireless links can

have different link costs. For example, Lundgren et al. [3] identify gray zone, where due to

high error probability, nodes cannot exchange long data packets in most cases. Therefore,

the simple policy using ADV may use poor quality links and lead to unnecessarily high

communication cost [2].

Clearly, when choosing next hops we want to avoid neighbors with very low quality

links. At the same time, we want to gain as large advance as possible for fast and efficient

packet delivery. The goal of our work is to balance the trade-off, so that we can select

a neighbor with both large advance and good link quality. We can achieve this goal by

using the new metric proposed next.

5.1.2 Normalized Advance

We now introduce a new metric called normalized advance (NADV). Suppose we

can identify the link cost Cost(n) of the link to neighbor n. Then the normalized advance

of neighbor n is simply:

NADV(n) =
ADV(n)

Cost(n)
. (5.2)

Intuitively, NADV denotes the amount of advance achieved per unit cost. For example,

suppose we know that only P succ(n) fraction of data transmissions to neighbor n are

75

successful. If we use 1/P succ(n) as link cost, NADV(n) = ADV(n) × P succ(n), which

means the expected advance per transmission.

We propose to use NADV as link metric in geographic routing, such that a node

forwards packets to the neighbor with largest NADV. Besides obvious simplicity, NADV

has the following desirable properties:

• As shown in Section 5.1.3, the path found by using NADV approaches the optimal

path under certain conditions. The experiment results in Section 5.4 show that the

use of NADV significantly improves path quality in realistic environments as well.

• It is general and accommodates various types of cost metrics, so that applications

can utilize the NADV framework for different objectives. We further describe this

feature in Section 5.2.

• Loop freedom is guaranteed as long as we select a node with positive NADV [81].

Using NADV, we can select neighbors that balance the advance against the link

cost. Depending on the link cost values, NADV can select a neighbor with strictly less

advance (e.g., node B over A in Figure 5.1). We further illustrate this feature in Figure 5.2.

Figure 5.2-(a) shows the degree of packet errors to simulate a gray zone1. In Figure 5.2-

(b), we present the corresponding contour map of NADV when link cost is a function

of packet error probability. We can observe that compared to their ADV values, points

within the gray zone have relatively low NADV values. As a result, by using NADV, we

can easily avoid neighbors in the gray zone. We next provide the theoretical rationale

1We assume independent bit errors and use Eq. 3.3 as bit error probability function, which increases

rapidly after a certain distance.

76

228m
(PER<20%)

211m
(PER<1%)

Max=250m

(a) Illustration of gray zone

50 100 150 200 250
−250

−200

−150

−100

−50

0

50

100

150

200

250

50 100 150 200

(b) NADV contour map

Figure 5.2: Illustration of gray zone and corresponding contour map of NADV. (a) Two

inner circles represent the border lines for 1% and 20% packet error rates (PERs) for

a 1024-byte frame, respectively. (b) The corresponding contour map of NADV when

the packet error probability determines link cost. The current node is at (0,0), and the

destination is 900 meters away on the X-axis. Values within the plot denote the NADVs

of corresponding lines.

behind using NADV in geographic routing.

5.1.3 Optimality of NADV in an Idealized Environment

We now show that in an idealized environment, paths found by using NADV are

optimal. The goal of routing in this discussion is to minimize the sum of link costs along

the found path. We make two assumptions: (1) we can find a node at an arbitrary point,

and (2) link cost is an unknown increasing convex function of distance (e.g., transmission

power consumption [14, 34]). Let DIST be the distance between the source and the desti-

77

nation, which we assume is relatively large. Since the cost function is increasing, and we

can find a node at an arbitrary point, an optimal path will use only nodes along the straight

line between the source and the destination. Also, since link cost is a convex function of

distance, the sum of link costs is minimized when all links have the same distance. As

a result, the optimal policy is to choose nodes on an equidistant basis along the line that

connects the source and the destination.

Now, it remains to find the optimal interval. Suppose ADVX is an interval, and

CostX is the corresponding link cost. Then we want to minimize:

Total Cost = (Link Cost)× (Hop Count)

= CostX ×
⌈ DIST

ADVX

⌉

≈ DIST× CostX
ADVX

. (5.3)

The last line comes from the assumption of large DIST, which makes the rounding error

negligible. From Eq. 5.3 we can find the minimum cost path by iteratively selecting nodes

with minimum Cost
ADV , or equivalently maximum NADV = ADV

Cost .

In practical wireless networks, the above assumptions are unlikely to be true. In

low-density networks, nodes may not be able to use the greedy forwarding rule, and the

recovery procedure will likely result in performance degradation [7]. Also, although many

existing schemes are based on the simplified model, and there usually exists strong corre-

lation [3, 60], the link cost is not a strict function of distance in practice. In Section 5.4,

we use simulations to show that NADV significantly improves performance in realistic

environments as well.

Although the concept of NADV is simple, the implementation for practical use

78

involves a number of challenges. Link cost estimation is one of the most critical elements,

and we use WISE interfaces to retrieve link cost values. In the next section, we describe

how NADV framework can be used with various link cost types.

5.2 NADV with Various Link Cost Types

In this section, we describe how to use the NADV framework with various types

of link cost. We consider three cost types: packet error rate, link delay, and energy

consumption. We use WISE interfaces to obtain link cost estimation and find the next hop

node based on the corresponding NADV values. This section focuses on the independent

use of each link cost, and the issue of interdependence among multiple cost criteria is

discussed in Section 5.5.

5.2.1 Packet Error Rate (PER)

Most recent attention has been on how to find a high performance path considering

wireless link errors [2, 11]. In this scenario, we use the following as link cost: Cerror =

1/(1−PER). It denotes the expected transmission count (ETX) proposed in [2].2 We use

the following link metric, which is the expected advance per transmission:

NADVerror =
ADV
Cerror

= ADV(1− PER). (5.4)

An equivalent link metric is independently developed in [35, 36], as discussed in Sec-

tion 2.3.
2The estimation techniques described here can easily incorporate ACK frame loss probability as in [2],

but here we have simplified the description for brevity.

79

5.2.2 Delay

If link delay Cdelay is used as link cost to reduce the path end-to-end delay, we can

use NADVdelay = ADV
Cdelay

. Assuming multiple data transmit rates are available in the sys-

tem, we use the medium time as Cdelay. (See Section 3.1.2.) The WISE can easily retrieve

the current value of data transmit rate from the MAC layer and export the requested value.

5.2.3 Power Consumption

Many wireless systems have a control mechanism for transmission power adjust-

ment to save battery and reduce interference [17,68]. We assume that using such a mech-

anism, nodes know the appropriate transmission power level (ptx) to each neighbor. Then,

the WISE can retrieve the ptx value and calculate the actual system power consumption

Cpower considering additional components of power consumption [69]. If Cpower is used

as link cost, a geographic routing protocol can use NADVpower = ADV
Cpower

to find a path that

minimizes power consumption to deliver packets to a destination.

So far, we have listed interesting cost types and shown how the NADV framework

can incorporate them. The NADV framework can include other types of link cost as well

(for example, reluctance metric in [82]). However, in this chapter we limit our attention

to the cost types discussed above and report simulation results in the following sections.

5.3 Simulation Model

We use ns-2 simulations to evaluate the system performance when we employ the

proposed NADV metric when coupled with WISE interfaces described in Chapter 3. In

80

this section, we describe various aspects of simulation in detail. We present the simulation

results in Section 5.4.

We place nodes uniformly at random on a 1000m by 1000m square. Unless oth-

erwise stated, 100 static nodes are used in the simulation.3 We usually use only one

source-destination pair to capture the individual performance effects accurately. In this

scenario, denoting the lower left corner of the square as (0, 0), the static source is located

at (50, 500). The destination is placed at (50+D, 500), where D is the distance between

the source and the destination. We usually use D=900. The source generates a CBR

(Constant Bit Rate) flow, which sends a 1024-byte UDP packet every two seconds from

10 seconds to 1000 seconds of simulation time. The maximum transmission range R is

250 meters.

For geographic routing, we use the simulation code for GPSR.4 We have slightly

modified the next hop selection algorithm to include NADV. The simulation code for

GPSR provides an option about whether to exploit transmission failure notification from

the MAC layer [6]. If a node exploits the option, then upon receiving a notification, it

selects the next best neighbor for retry until the forwarding is successful. This option

leads to higher delivery ratio with higher resource consumption. When not using the

notification, a node does not attempt to retransmit to other neighbors. We explore both

cases in the simulation. The beaconing period in GPSR is set to 1.5 seconds. We use

the IEEE 802.11b standard for the underlying MAC layer protocol [66]. We assume the

3We also experimented using sparser networks with 50 nodes. However, in scenarios with high packet

error rates, networks frequently became disconnected (e.g., due to repeated beacon message losses).
4Available at http://www-2.cs.cmu.edu/˜bkarp/gpsr/gpsr.html

81

Noise power (×1.0e-12 W)

0.8 1.0 1.2 1.4 1.6

(dBm) (-91.0) (-90.0) (-89.2) (-88.5) (-88.0)

BER at 220m 6.0e-8 1.1e-6 7.8e-6 3.2e-5 9.1e-5

BER at 240m 4.4e-6 3.5e-5 1.4e-4 3.9e-4 8.3e-4

Table 5.1: Bit error rate values with different levels of noise.

location of the destination is known to the source.

In the following subsections, we describe models of individual simulation compo-

nents in more detail.

5.3.1 Error Model

To simulate a lossy channel, we use two different error models. First, assuming the

use of BPSK modulation in the physical layer, we simulate packet errors using Eq. 3.3

as bit error model. (We assume independent bit errors for simplicity.) In the default ns-2

propagation model, the signal strength is reduced proportionally to d2 if the distance d is

smaller than a certain threshold. Otherwise, the path loss is proportional to d4. In this

experiment scenario the transmit signal power is fixed at 20 mW (or 13dBm) supported

in Cisco Aironet 350 interface cards [83]. Then the received signal strength for a node

250 meters away is -85dBm. The noise channel bandwidth in Eq. 3.3 is set to 2MHz.

In this model, we use ambient noise environments, where the noise value is identical

everywhere. Therefore the quality of a link depends only on the distance between two

nodes, and Cerror is a convex function of distance. In Table 5.1 we tabulate the used noise

82

values and corresponding bit error rates (BERs).5

To examine the performance of NADV in the presence of randomness in packet er-

rors [64], we also perform simulations using a random packet error model. In this model,

for each wireless link, we assign a packet error rate, which is distributed uniformly at ran-

dom between 0 and a maximum value (max-PER). We vary the maximum packet error

probability for different degrees of packet losses. In practice, shorter packets such as pe-

riodic beacons experience lower error probability [2], and we adjust the error probability

for these packets according to Eq. 3.4. Clearly, link cost is not a function of distance in

this model.

In some of our simulations, we compare NADV against another scheme called

blacklisting [35, 84]. This scheme uses a fixed threshold, and when selecting a next hop,

a node excludes neighbors with low-quality link based on the threshold. For example, if

we use a threshold value of 0.5, then a node excludes neighbors that are closer to the des-

tination and belong to the lower half in the link quality. Among the remaining neighbors,

the blacklisting scheme selects the neighbor with largest ADV.

5.3.2 Transmission Rate Adaptation and Link Delay

Most IEEE 802.11b wireless cards dynamically adjust the data transmission rate

bdata using Automatic Rate Fallback (ARF) [78]. In ARF, according to MAC transmission

failures or successes, each node adjusts bdata to 1, 2, 5.5, or 11 Mbps. For control frames

such as RTS and CTS, nodes use another transmission rate bbasic, which is fixed at 1

5Noise values from more than 20000 measurements in our building range from -91dBm to -73dBm,

with the median at -89dBm. The noise value used in Figure 5.2 is -89.2dBm.

83

Mbps in the simulation study. We incorporate ARF algorithm to the MAC simulation

code. Then, we can calculate the medium time as described in Eq. 3.7 in Chapter 3.

5.3.3 Power Consumption Model

As discussed above, the strength of transmitted signal decreases in proportion to

dn, where d is distance, and n is the path loss exponent (usually 2 ≤ n ≤ 6). Suppose

that a receiver network interface requires a received signal strength of at least Smin for

successful packet reception. To simplify the description we assume that the transmission

power should be at least dnSmin for successful reception at a receiver whose distance is

d. Modeling after most wireless systems and products [17, 83], we assume in this section

that the transmission power is restricted to one of L levels in the set P = {p1, p2, ..., pL}.

In this scenario, it is best for a node to use the smallest power level no less than dnSmin:

ptx = min{pm : dnSmin ≤ pm, 1 ≤ m ≤ L}. (5.5)

Simplifying the ns-2 propagation model, we fix n = 4 in the power consumption ex-

periments. Also, we focus on the relative magnitude of power consumption and use

Smin = 1/(R)n, where R is the maximum transmission range. Based on the specifi-

cation of the Cisco Aironet 350 card [83], we use the following set P = {0.01, 0.05, 0.2,

0.3, 0,5, 1.0}.

We also simplify a widely used power consumption model [14, 34, 69] and assume

that each packet forwarding consumes the following amount of energy:

Cpower = 1 + c ptx, (5.6)

84

where c is a proportionality constant to the transmission power component. Note that

c = 0 degenerates Cpower to the hop count metric. c is a hardware-specific constant, which

we assume WISE can retrieve. Actual c values of different interfaces range between 0.17

and 1.30, and we use c = 1.0 in the simulation [69]. Previous measurement results show

that the energy consumption of an idle or receiving wireless interface card is comparable

to that of a transmitting one [19]. Although NADV can include these aspects of such

energy consumption, for ease of comparison against an existing scheme, we focus on the

energy consumption due to transmission. In this model, link cost is a non-decreasing step

function.

In some of our simulations, we compare NADVpower against SP-Power [34]. Given

a power consumption equation, the authors of [34] derive a formula for link metric and

prove that the node selection based on the metric is optimal in an ideal setting. If SP-

Power uses Eq. 5.6 as power consumption equation, the current node selects the neighbor

that minimizes the following formula:

E = (1 + c tpx) +
D

R
(c(n− 1))

1

n +
D

R
c(c(n− 1))

1−n
n (5.7)

where D denotes the distance between the neighbor and the destination.

5.4 Simulation Results

In this section we present the results of simulation experiments. We begin with the

effect of wireless link errors. We first assume the perfect knowledge of link error rates

when we investigate the performance. Then we compare the performance when we use

NADV with the WISE interfaces in Chapter 3. We then consider the cases when delay

85

 4

 6

 8

 10

 12

 14

 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 tr

an
sm

is
si

on
s/

de
liv

er
y

Maximum Packet Error Rate

ADV
Blacklisting

NADV

(0.0)

(0.0)

(0.3) (0.6)

(0.6)

best threshold
for blacklisting

Figure 5.3: The number of MAC-level data transmissions per delivered packet with dif-

ferent degrees of packet errors. Cerror is used as link cost. Unless the error rate is low,

next hops chosen by ADV can cause multiple retransmissions, and ADV significantly in-

creases the number of data transmissions. As marked in the bottom, when max-PER=0.2,

the average path length using ADV is 4.7 hops.

and power consumption are used as link costs in turn. Finally we compare geographic

routing using NADV against idealized routing.

5.4.1 Experiments with Perfect Estimation of Link Errors

We first present the results when nodes experience packet losses due to wireless

link errors. In this section, we assume that there exists a perfect estimation scheme that

provides accurate link cost values, and compare the performance when NADV and other

geographic routing schemes operate based on the knowledge. We later present results

when we combine NADV with link cost estimation schemes by WISE.

86

In the first set of experiments, we use the random packet error model described

in Section 5.3.1, where packet error rates are distributed uniformly at random between

0 and max-PER. Although in this model the frequency of links at a given error rate is

similar to the previous measurement results in [64], this model does not consider the

correlation between the distance and link error. As a result, on average, packets sent to

distant neighbors have the same error probability as those sent to close neighbors. In fact,

this setting is in favor of ADV, because in practice, transmissions to neighbors with large

ADV are likely to suffer from frequent errors [3,60]. We use an average of ten runs, each

with different placement of stationary nodes. To avoid the packet errors due to the ARF

algorithm, we fix the data transmission rate at 1 Mbps in this set of experiments.

In Figure 5.3, we report the number of MAC-level data transmissions (including re-

transmissions) per delivered packet for each scheme when we vary the value of max-PER.

In this set of experiments, GPSR employs MAC-level failure notification, and all results

are based on 100% packet delivery. We can observe that as the packet error rate increases,

the data transmission overhead of ADV increases abruptly (up to 71% higher than that of

NADV). This is because ADV often selects neighbors with low-quality link, which causes

repeated retransmissions. In contrast, NADV intelligently avoids nodes with high PER,

and although the data overhead of NADV increases as max-PER increases, the number

of data transmissions is much smaller than that of ADV. Each transmission requires net-

work bandwidth as well as node resources (e.g. battery power), and NADV uses system

resources more efficiently.

In Figure 5.3, we also compare the performance of NADV against the blacklisting

scheme described in Section 5.3.1. Blacklisting uses a fixed threshold, and to find the

87

best threshold, we consider nine different blacklisting threshold values between 0.1 and

0.9 with an increment of 0.1. (The use of threshold value 0.0 in blacklisting corresponds

to ADV.) In Figure 5.3, we plot the best result for blacklisting in each setting and mark the

corresponding threshold value in parenthesis. We can observe that depending on the net-

work environment, different threshold values lead to best results for blacklisting—a fixed

threshold value in blacklisting does not work well. When packet errors are frequent, it is

better to use a high threshold value in blacklisting and exclude many neighbors with low-

quality links. However, when there are few low-quality links, the use of a high threshold

value may exclude useful neighbors and lead to longer paths. In contrast, NADV adapts to

the changing network environment and is able to achieve low data transmission overhead

in all cases.

Repeated retransmissions also affect the packet delay. Although not displayed here,

the end-to-end latencies of ADV also show an increasing trend similar to Figure 5.3.

Specifically, as max-PER changes from 0.2 to 1.0, the average packet latency of ADV

increases from 54.9ms to 151.6ms. The performance degradation by NADV is less se-

vere (increase from 54.9ms to 81.8ms). We later present more results on end-to-end la-

tency. Instead of NADV, we also experimented using different combination of ADV and

link cost, and NADV outperformed them as well. A more conservative link metric (e.g.,

ADV/Cost2) often results in longer paths, while a different metric such as ADV/
√

Cost

often underestimates high-cost links and causes more retransmissions due to packet er-

rors.

In the previous experiments, we assumed the perfect knowledge of link cost. We

next investigate the performance of NADV used with the proposed PER estimation tech-

88

Name Description

NADV-Beacon Using periodic beacon messages (Eq. 3.4)

NADV-SNR Using SNR (Eq. 3.3)

NADV-Self Using own data packets (Eq. 3.6)

NADV-Perfect Assuming the perfect knowledge of link cost

Table 5.2: Different scenarios when NADV and different WISE PER estimation tech-

niques are combined.

niques.

5.4.2 Experiments using WISE PER Estimation Techniques

In Table 5.2, we tabulate three schemes when we use NADV and three different

PER estimation schemes by WISE together, in addition to the case with perfect estima-

tion (NADV-Perfect). Note that none of the three estimation schemes use extra control

messages. However, in the case of NADV-SNR and NADV-Beacon, we modify the pe-

riodic beacon format to include reverse link information, and the message length slightly

increases (See Chapter 3.1.1.2). For simplicity, NADV-Beacon and NADV-SNR assume

the independent bit error model for packet error estimation. Storage overhead for the link

cost estimation is also negligible since each node in GPSR already maintains neighbor

information.

In the first set of experiments, we use the random packet error model used in the

previous section and compare the actual performance of NADV against the case with

the perfect knowledge of link cost. In this model, there is no correlation between SNR

89

max-PER

0.6 0.8 1.0

NADV-Self 7.0 (0.6) 7.8 (0.8) 8.9 (1.1)

NADV-Beacon 6.6 (0.7) 7.2 (0.6) 7.8 (1.2)

NADV-Perfect 6.3 (0.5) 6.7 (0.7) 7.6 (1.2)

Table 5.3: The number of data transmissions per delivered packet when NADV and dif-

ferent WISE PER estimation techniques are used. Values in parentheses are the standard

deviations. When there are no link errors, the average path length is 4.7 hops.

and packet error rate, and we experiment with NADV-Beacon and NADV-Self only. In

Table 5.3, we show the data transmission overhead of NADV schemes for high-error sce-

narios. In this table, the overhead of NADV-Beacon and NADV-Self is reasonably close

to that of NADV-Perfect, and we can infer that WISE schemes described in Chapter 3

provide good link cost estimation. Although NADV-Self has the most flexibility in de-

ployment (e.g., no modification of protocol message format), its performance is slightly

worse than NADV-Beacon.

In the previous experiments, we used the random packet error model. In the next

experiments, we use the independent bit error model, where a bit error occurs accord-

ing to Eq. 3.3 (See Table 5.1). To identify the performance of proposed PER estimation

schemes, we consider three simulation scenarios. First, we change the ambient noise

power over time and observe how each estimation technique adapts to varying environ-

ments. Second, we increase the number of data flows to vary the network contention level.

Third, we consider the scenario with node mobility.

90

 4.5

 4.8

 5.1

 5.4

 5.7

 6

 0 200 400 600 800 1000

A
ve

ra
ge

 P
at

h
Le

ng
th

Time (sec)

High noise Low Noise Medium Noise

(16.3%)

(91.6%)

(27.3%)

[97.7%]

[98.5%]

[98.3%]

(90.6%)

-88.0dBm

(99.2%)

(93.2%)

-90.0dBm -88.5dBm

ADV

NADV-SNR

NADV-Self

NADV-Self
NADV-SNR

ADV

Figure 5.4: The average path lengths of NADV and ADV. The noise value changes from

high (-88.0dBm) to low (-90.0dBm), and finally to medium (-88.5dBm). Numbers next to

the lines are corresponding delivery ratios in each phase. PER estimation schemes enable

NADV to choose appropriate neighbors and maintain high delivery ratios.

5.4.2.1 Changing Noise Power

In these experiments, we investigate the adaptiveness of WISE PER estimation

schemes, and we start with a high noise value, change to a low noise value after 300

seconds, and change again to a medium noise value after 700 seconds. In Figure 5.4 we

plot the average path lengths for ADV and NADV when we vary the ambient noise power

value. We do not employ MAC-level failure notification in GPSR, and the values in the

parentheses show the average delivery ratios for different scenarios. Since the perfor-

mance of NADV-Beacon is similar to that of NADV-SNR, we do not show the result of

NADV-Beacon for clarity.

91

In Figure 5.4, the length of the path chosen by ADV is always shortest, but the

packet delivery performance is always worse than that of NADV. For example, in the

high-error scenarios (noise value=-88dBm), the difference in packet delivery ratio is more

than 81% (16.3% vs. 97.7%). In this scenario, although ADV does not adapt to the en-

vironment, beacons from far neighbors are frequently lost, and the path length increases.

When we use NADV, we observe that the WISE PER estimation schemes successfully

assign appropriate link costs in dynamic environments. As a result, NADV uses differ-

ent neighbors according to the current environment, and the path length change is more

noticeable. NADV-SNR explicitly utilizes the link characteristic value, and in this sim-

ulation model, NADV-SNR exhibits more accurate estimation and faster convergence.

NADV-Self occasionally employs slightly longer paths than NADV-SNR, but it is also

able to adapt to environment changes.

5.4.2.2 Varying the Number of Data Flows

In the previous experiments, we use only one pair of source and destination. When

we have more source-destination pairs, the network contention increases, in which the

proposed estimation techniques may estimate PER values incorrectly. For example, al-

though received SNR values may be high, a node can experience high packet error rates

due to increased collisions. To identify the performance of estimations schemes in this

scenario, we vary the the number of data flows in the next set of experiments. We choose

source-destination pairs uniformly at random. As in the previous experiments, we do not

use the MAC-level notification of GPSR and report the average packet delivery ratio for

92

Number of Flows

1 2 4 8

NADV-Beacon 98.6 98.7 97.3 97.6

NADV-SNR 99.2 99.3 97.9 98.1

NADV-Self 98.8 99.0 97.4 97.8

ADV 71.9 73.8 71.3 77.6

Table 5.4: Data delivery ratio (in %) when the number of data flows is varied.

each scenario. Among the values in Table 5.1, we fix the noise value at -89.2dBm, which

is the closest to the median of noise measurements in our building.

In Table 5.4, we report the average data delivery ratios in different scenarios. In

these experiments, all NADV schemes perform similarly. Although the delivery ratio ap-

pears to decrease when we increase the number of flows, the amount of degradation is

small. When we experimented using 16 flows without packet errors, we observed low

delivery ratios due to the network saturation, and eight data flows in this setting corre-

sponds to relatively high network utilization. These results show that WISE estimation

techniques work well in the presence of high network load. In contrast, when we use

ADV, the average delivery ratio lies between 70% and 80%, depending on the random

node placement.

5.4.2.3 Experiments with Mobile Nodes

In the previous results, we have shown that WISE PER estimation techniques per-

form well in static networks. We now investigate how well they adapt to network topology

93

 0

 30

 60

 90

 120

 150

 0 200 400 600 800 1000

La
te

nc
y

(m
s)

Pause time (sec)

ADV
NADV-Self

NADV-SNR

Figure 5.5: Average end-to-end latency when nodes are mobile. Cerror is used as link

cost. We changed the pause time for different degrees of mobility. NADV and WISE PER

estimation schemes are effective with node mobility.

changes. In this scenario, the source and destination pair do not move, but the remaining

98 nodes move according to the random waypoint model. The speed is randomly chosen

between 1 and 10 m/s, and we vary the pause time for different degrees of node mobility.

We use the MAC-level failure notification and fix the ambient noise power at -89.2dBm.

In Figure 5.5, we present the end-to-end latency results with varying mobility. As

mentioned before, the data transmission overhead shows a similar trend to Figure 5.5.

We observe that average latencies increase as node mobility becomes higher. This is be-

cause frequent link failures cause more retransmissions. Compared to ADV, both NADV

schemes achieve lower average latency. With NADV-SNR, PER estimation is more ac-

curate, and the increase in end-to-end latency is minimal even with the highest mobility

(50% lower compared to ADV). When NADV-Self is used in high mobility scenarios,

94

Distance 500m 600m 700m 800m 900m

ADV 22.9 26.5 31.7 36.2 42.9

NADVdelay 14.5 17.3 20.0 22.7 26.2

Table 5.5: Average end-to-end latency (in ms) with different source-destination distances.

most neighboring nodes move out of range before the estimated values can converge. As

a result, the performance gain is smaller than in low mobility cases. Still, its average

latency is 15% shorter than that of ADV when nodes move constantly. NADV-Beacon

also requires a certain number of beacon messages for good estimation, and the results

are similar to those of NADV-Self (within 5% difference in all cases), which we do not

show here for clarity.

To summarize, we observe that WISE PER estimation schemes are effective even

with node mobility, and NADV combined with them provides an efficient and adaptive

geographic routing strategy. As the network environment becomes harsher, the perfor-

mance of NADV degrades gracefully. In the next subsection, we discuss the results when

link delay is used as link cost.

5.4.3 Using Delay as Link Cost

In this subsection, we use link delay as link cost, and NADV ≡ NADVdelay in this

scenario. We use the independent bit error model using Eq. 3.3, and ARF is used for

transmit rate adjustment. In this model, due to the interaction with ARF, link cost is not

a convex function. In this experiment, we use a low noise value of -91.0dBm in this

95

set of simulations. Note that this scenario is in favor of ADV because with high noise,

ADV suffers from increased end-to-end latency as previously discussed. The MAC-level

failure notification is used, and the delivery ratios are 100% in all cases. Each value in

this experiment is an average of ten runs.

In Table 5.5, we report the average end-to-end latency of each scheme when we

vary the distance between the source and the destination. As the distance increases, pack-

ets go through more relay nodes, and the latency increases accordingly. Compared to

ADV, NADV significantly decreases the end-to-end latency (by up to 35%). It is because

when we use ADV, we are likely to choose far neighbors to minimize the distance to

the destination. However, the transmission rates to such nodes are usually 1 or 2 Mbps,

which causes the transmission to take longer. With the use of NADV, the current node

may choose a neighbor that is not the closest to the destination, but the corresponding link

is good enough for a higher transmission rate such as 11 Mbps. This strategy eventually

leads to shorter transmission time.

When using NADVdelay in this simulation scenario, the current node usually selects

neighbors close to itself, which leads to more relay nodes (e.g., 55% increase when the

distance is 900m). Since this increase is based only on the local decision to minimize the

medium time, it may degrade the overall performance, especially when multiple traffic

flows exist in the network. To investigate this potential problem, we perform experiments

using different numbers of source-destination pairs, which we select uniformly at random.

In Figure 5.6, we plot the average end-to-end latency when we change the number

of flows in the network. We can observe that with more flows in the network, ADV

increases the average latency noticeably. This is because ADV holds the wireless medium

96

 0

 10

 20

 30

 40

 50

 10 20 30 40 50

La
te

nc
y

(m
s)

Number of source and destination pairs

ADV
NADV

Figure 5.6: Average end-to-end delay with multiple flows. ARF and Cdelay are used.

When NADV is used, the network can support more flows without significant increase in

the latency.

longer than necessary, leading to a higher level of network contention. In contrast, NADV

maintains the aggregate medium time low enough, such that the network can support

more flows without significant increase in the latency. Consequently, compared to ADV,

NADV improves the latency performance even more with higher network traffic load.

Specifically, in the case of 10 flows, NADV decreases the average latency by 30%, but

with 50 flows the improvement is 48%.6 In the case of 50 flows, only 2 flows experience

slight increase (< 2ms) in the end-to-end delay. This experiment result shows that the use

6In the experiments for Table 5.4, we use the fixed data transmission rate of 1 Mbps, and we observe

network saturation when we send more than 8 packets per second. In the experiments for Figure 5.6, the

data transmission rate can be up to 11 Mbps, and NADV can support more data flows without network

saturation.

97

of NADVdelay does not negatively affect the performance of other traffic in the network.

5.4.4 Using Power Consumption as Link Cost

We compare NADV (≡ NADVpower) against the metric proposed in the SP-Power

scheme [34]. When the power consumption equation is Cpower = 1 + c tpx, NADV needs

to know the current transmission power ptx, which we assume WISE exports using in-

formation from a control mechanism. SP-Power requires the exact value of path loss

exponent, which we also assume is available. In practice, however, the path loss exponent

estimation is not trivial, and depending on the measurement parameters, the estimated

values can vary significantly [17,85]. We assume that both schemes know the proportion-

ality value c, which is a hardware-specific constant. In the following set of simulations,

the distance between source and destination is 900m, and there are no packet errors. We

vary the node density and use average values of 20 runs for each case. We also compare

the performance of optimal paths found by the centralized algorithm.

In Figure 5.7, we plot the average power consumption of each scheme with differ-

ent node density. The amount of power consumption in each scheme decreases as node

density increases. This is because with higher node density, more neighbors become

available, and all schemes likely choose better next hops. We also observe that compared

to ADV, both NADV and SP-Power find paths that reduce overall power consumption.7

The performances of NADV and SP-Power are almost identical; NADV performs slightly

7In Figure 5.7, the performance difference between the optimal case and ADV is not large. It is because

the constant term in Eq. 5.6 constitutes a significant power consumption regardless of the transmission

power, as is the case with most existing products [69].

98

 6

 7

 8

 9

 100 150 200 250 300 350 400

A
vg

. P
ow

er
 C

on
su

m
pt

io
n

Number of nodes

ADV
SP-Power

NADV
IDEAL

Figure 5.7: Average power consumption with different schemes. In dense networks, as

more neighbors are available, power consumption decreases. The power consumption

values by NADV and SP-Power are similar, which are close to the optimal value.

better. (NADV and SP-Power find the same path in 15 cases out of 20 in the 400-node

scenarios.) Even though we do not report detailed results in this chapter, NADVpower

and SP-Power also show very similar performance in other settings (e.g., distance, con-

tinuous power adjustment, different path loss exponents, and proportionality constants

c). For other aspects of energy consumption (e.g., in idle or receiving mode), we expect

that NADVpower and SP-Power will consume a similar amount of energy and that their

performance will be close to each other as well.

When the goal of geographic routing is to minimize the path power consumption,

we argue that NADVpower is the metric of choice. NADVpower and SP-Power are based

on a similar rationale for next hop selection and exhibit almost identical performance.

However, as mentioned above, SP-Power needs to estimate the path loss exponent, which

99

can be difficult in practice. In contrast, NADVpower only requires tpx, which WISE can

easily determine with the support of existing control mechanisms [17, 68].

5.4.5 Experiments with Generic Cost

Recently, new metrics are being proposed for various multihop routing purposes.

For example, Draves et al. [86] propose the WCETT (Weighted Cumulative Expected

Transmission Time) metric to improve network throughput in multi-radio mesh networks.

As multihop wireless networks become more widely used for different objectives, we ex-

pect to see other new routing metrics proposed to achieve specific goals. In this section,

we apply NADV to a generic cost metric to see whether the use of NADV can be gener-

alized to other types of link cost. We use the following link cost:

Cgeneric = 1.0 + r

(

d

R

)2

, 1 ≤ r ≤ 5, (5.8)

where r is a uniformly distributed random number, d is the distance between two nodes,

and R is the maximum transmission range. The above link metric attempts to capture

both the correlation with distance and the random property of link quality [60,64]. In this

subsection, we assume the availability of accurate and up-to-date link cost information.

We use the following experiment scenario. The source and the destination are 900

meters apart, and the source starts to send data packets after 10 seconds. At 30 seconds,

we assume that the environment of some part of the network changes (e.g., due to new

obstacles, increased interference, node mobility), and we randomly select 50% of links

and increase their link costs by 50%. For NADV, we additionally consider a geographic

routing scheme that uses two-hop neighborhood information [32]. To compare NADV

100

ADV Non-adaptive NADV NADV IDEAL

(AODV) one-hop two-hop

Initial 14.43 11.14 11.28 10.82 10.32

After change 18.51 14.30 13.50 12.52 11.62

Table 5.6: The average costs of paths found by respective routing schemes when link

costs change.

against AODV [72], we modify the AODV simulation code, such that AODV finds paths

that minimize the sum of link costs along the paths, not hop count.

In Table 5.6, we report average path quality of each scheme before and after the link

cost change. Each value in the table is an average of ten experiments. In this table, we

can see that using NADV, geographic routing (both one-hop and two-hop) can find paths

comparable to the optimal paths. Not surprisingly, utilizing two-hop neighborhood infor-

mation leads to higher-quality paths than the one-hop case. The performance of initial

paths by AODV lies between those by one-hop NADV and two-hop NADV. However,

even after some link cost values increase after 30 seconds, AODV keeps using the initial

path, and the path performance degrades accordingly. In contrast, the use of NADV en-

ables localized geographic routing to detect the change and determine better next hops,

which results in better paths.

In summary, geographic routing with NADV can find paths whose costs are com-

parable to the optimum. It is also able to adapt to network environment changes, due to

the localized next hop decision.

101

5.5 Summary and Future Work

We have introduced NADV as link metric for geographic routing in multihop wire-

less networks. Geographic routing with NADV provides an adaptive routing strategy,

which is general and can be used for various link cost types. We have presented how

NADV can be used with multiple WISE interfaces. In the simulation experiments, the

combination of NADV and WISE cost estimation techniques outperforms the current ge-

ographic routing scheme. NADV also finds paths whose cost is close to the optimum.

In this section, we have treated each link cost type independently. However, if we

consider multiple interdependent costs simultaneously, choosing the next hop based on

one cost type may not be always the best choice for other costs. One possible future

direction will be to design a link cost model that balances multiple cost criteria, which

would allow the NADV framework to leverage the combined link cost to find a low cost

path.

102

Chapter 6

TRUNC-K: Virtual Backbone Construction for Wireless Networks

In this chapter, we present a backbone construction scheme to increase the lifetime

of multihop wireless networks. The most popular model for backbone is connected dom-

inating set. Nodes not in the backbone have at least one backbone neighbor (hence the

backbone is a dominating set) and do not participate in routing and forwarding to save en-

ergy. Smaller backbones1 lead to greater overall energy savings [39–42], but when nodes

are battery-powered, the use of low-battery nodes in the backbone can shorten the overall

network lifetime. Therefore, many schemes have been proposed that consider the residual

battery power in selecting backbone nodes [19, 20, 43]. However, along with the battery

capacity, these schemes often also use other criteria for including nodes in the backbone

(e.g., randomized node selection for arbitration [19]). This leads to the inclusion of low-

capacity nodes in the resulting backbone. The construction of small backbones composed

of high-capacity nodes is the subject of this chapter.

The operating environments for multihop wireless networks can vary widely (e.g.,

minimal node mobility in sensor or rooftop networks [64] vs. higher mobility for rescue

operation). Ideally, a backbone construction algorithm should work well in a wide range

of network environments. In some existing backbone construction algorithms, nodes use

only local information to build and maintain a backbone quickly [19, 20, 38, 43]. Al-

though this class of backbone algorithms can be useful in dynamic networks, they do not

1In general, finding an optimal connected dominating set is NP-hard.

103

provide any guarantee on performance objectives such as backbone size or node capac-

ity. Other backbone construction schemes find a “good” connected backbone, e.g., with

provable bounds on backbone size or control overhead. However, this second class of

algorithms typically have higher control overhead, require longer convergence times, and

do not provide efficient mechanisms for backbone maintenance [39, 41]. Therefore, they

are most useful in static environments, but in dynamic networks, the overhead of main-

taining a “good” backbone can be prohibitive. Due to such inherent heterogeneities in the

operating environments for multihop wireless networks, it is unlikely that a single fixed

algorithm will work best in all situations. In this work, we develop a general solution that

can be tailored to particular network environments.

The contributions of this work are as follows:

• We present a parameterized backbone construction algorithm, which permits ex-

plicit tradeoffs between different performance measures including backbone size,

resilience to node movement and failure, node capacity, and path length. Our

scheme has two logical steps. First, each node nominates its highest-capacity neigh-

bor as its leader (Section 6.1). Next, we connect these leaders such that the resulting

backbone achieves specific efficiency and resilience properties (Section 6.2).

• We prove that our scheme can construct essentially best possible backbones with

respect to node capacity and backbone size (Sections 6.1 and 6.2). To the best of

our knowledge, this is the first work that achieves both objectives at the same time.

• Based upon our backbone construction algorithm, we present a distributed protocol

that builds and maintains a connected backbone in dynamic networks where nodes

104

are mobile, and node capacity constantly changes (Section 6.3).

• We present simulation results that investigate different performance aspects of our

proposed algorithm, including backbone size, network lifetime, backbone node

capacity, and path length. Compared to previous energy-saving techniques, our

scheme increases network lifetimes by 20–220% without adversely affecting data

delivery or end-to-end latency (Section 6.4).

6.1 Leader Nomination

In this section, we first describe how each node nominates a leader in the initial

phase of our algorithm, and then show desirable properties of the resulting set of leaders.

We defer the description of connecting the leaders to Section 6.2.

We assume the network is connected and model it as undirected graph G = (V, E),

where V is the set of nodes, and E is the set of edges between nodes. (We discuss the

issue of uni-directional links in Section 6.3.) We denote the total number of nodes in

the network by n = |V |. We define N(v) to be the set of neighbors of node v, and

N+(v) = N(v) ∪ {v}. We denote v’s degree by dv = |N(v)|, and ∆ = maxv∈V dv.

A node v has a unique ID and a capacity value cv. Although we can consider various

attributes for cv (e.g., CPU speed, storage space), we focus on the battery capacity in this

work.2

2For the ease of exposition, we assume distinct capacity values throughout this chapter. In practice, we

use unique IDs to break ties.

105

D, 5

A, 6

J, 7

F, 9

C, 8

H, 2G, 4

B, 3

Fragment X Fragment Y

E, 1

(a) Leader nomination

Fragment X Fragment Y

Leader

D, 5

A, 6

J, 7

F, 9

C, 8

H, 2G, 4

B, 3

E, 1

(b) Resulting fragments

Figure 6.1: Leader nomination and resulting fragments.

6.1.1 Algorithm Description

We assume that each node knows the capacity value of its neighbors. The algo-

rithm proceeds as follows: each node nominates the node with highest capacity value in

N+(v) as leader. Each node then informs its leader of its decision, and all nominated

nodes constitute the set of leaders, which we denote by L. For example, in Figure 6.1(a),

the network has nine nodes. The number in each circle denotes the node capacity (e.g.,

cA = 6). Thin lines between nodes represent wireless links, while thick lines with arrows

represent leader nomination. In the figure, G nominates D because cD = 5 is higher than

cH = 2 and cG = 4. As a result, nodes A, C, D, F , and J become leaders, as shown in

Figure 6.1(b). (Nodes A and F nominate themselves as leader, which we do not show

here.)

The above algorithm requires only one-hop neighborhood information and constant

time. A similar clustering scheme is proposed in [87]. Gao et al. [88] analyze the size of

resulting set using specific geometrical properties. However, their analysis assumes that

106

all nodes have a square-shaped communication region of the same size, which is seldom

the case in practice [64]. We next present new analysis results, based on more realistic

assumptions.

6.1.2 Properties of the Leader Set L

We show that (1) L forms a dominating set using high-capacity nodes, and (2) the

cardinality of L is small under reasonable assumptions. Recall that a dominating set DS

of G = (V, E) is a subset of V , where each node in V either is in DS or has a neighbor

in DS [40]. If all nodes in DS are connected, then it is called a connected dominating

set (CDS). A minimum (connected) dominating set is of smallest cardinality among all

(connected) dominating sets. We define a maximum-capacity (connected) dominating set

DSM to be a (connected) dominating set that maximizes the bottleneck node capacity.

Formally, DSM satisfies:

∀DS, minv∈DSM
cv ≥ minu∈DS cu, (6.1)

where DS denotes a (connected) dominating set.

Theorem 6.1.1 L is a maximum-capacity dominating set.

Proof: L is a dominating set by construction. We prove the maximum-capacity

property by contradiction. Assume that L is not a maximum-capacity dominating set.

Consider a maximum-capacity dominating set DSM . Then, the minimum-capacity node

v ∈ L satisfies the following: ∀u ∈ DSM , cv < cu. By the leader nomination rule, there

exists a node w for which v is the maximum-capacity node in N+(w). However, DSM

also has a node in N+(w), which is contradiction.

107

We now show that the expected size of L (denoted by E[|L|]) is small. For the sake

of simpler analysis, we first consider the case of D-regular graphs (i.e., ∀v, dv = D) and

analyze a more generalized case later in this section. In this analysis, we assume cv is

uniformly distributed between 0 and 1, and log(·) denotes the natural logarithm.3 (The

proof of Theorem 6.1.2 is in Appendix A.1.)

Theorem 6.1.2 Suppose ∀v, dv = D for a positive integer D. Then, there exists a con-

stant ε > 0 such that:

E[|L|] ≤ (1 + ε) n
D

log (D + 1). (6.2)

Also, ε approaches 0 as D increases.

In practice, wireless nodes are likely to have different numbers of neighbors, and

Theorem 6.1.2 does not hold in general. However, due to spatial locality in the node dis-

tribution, we expect that neighboring nodes in multihop wireless networks have a similar

number of neighbors. Formally, for a constant α ≥ 1, we define G = (V, E) to be α-

locally-regular if ∀(u, v) ∈ E, dv ≤ α du. In a 3-locally-regular graph, for example, the

degree of v’s neighbor is between dv/3 and 3 dv.

We now generalize Theorem 6.1.2 to show that in α-locally-regular graphs, E[|L|]

is within an O(log ∆)-factor of the size of a minimum dominating set. (The proofs are in

Appendix A.)

Lemma 6.1.3 Suppose G = (V, E) is α-locally-regular for constant α ≥ 1. Then,

E[|L|] ≤ c′
∑

v∈V
1
dv

log (dv + 1), where c′ is a constant that depends on α.

3Our current analysis assumes a uniform distribution of node capacity, and we plan to examine other

distributions in the future.

108

Theorem 6.1.4 Suppose G = (V, E) is α-locally-regular for constant α ≥ 1. Then,

E[|L|] = O(log∆) OPT, where OPT is the size of a minimum dominating set.

Discussion Note that Theorems 6.1.2 and 6.1.4 are essentially best possible. The-

orem 6.1.2 holds for any D-regular graph, and as shown in [89], there exist D-regular

graphs whose minimum dominating sets are of size at least (1 − ε′) n
D

log D for ε′ > 0.

As D becomes large, this value becomes arbitrarily close to the upper bound in The-

orem 6.1.2. Also, the approximation ratio of Theorem 6.1.4 to OPT is O(log ∆). In

general, finding a minimum dominating set for a given graph is NP-hard [40]. Further-

more, no polynomial time algorithm can achieve the approximation ratio of (1− ε′) log ∆

for any ε′ > 0 unless NP has nO(log log n)-time deterministic algorithms [90]. Thus, the

bound in Theorem 6.1.4 is within a constant factor of best possible approximation.

6.2 Connecting the Leaders

In this section, we present the second phase of our algorithm that connects the

leaders to construct a connected dominating set. We first describe how to represent the

leader set using a multigraph before the algorithm description.

6.2.1 Multigraph Representation

The set of leaders form a forest in which edges are leader nomination relations. We

refer to each tree in this forest as a fragment. For example, in Figure 6.1(b), there are two

fragments: fragment X (nodes A and D) and fragment Y (nodes C, F , and J). Since

L is a dominating set, as shown in [40], chains of up to two non-leader nodes are suffi-

109

X

weight = 2

weight = 3

weight = 1 Y

Figure 6.2: Multigraph representation of Figure 6.1(b).

cient to connect all fragments. We define a virtual edge to be such a chain of (up to two)

non-leader nodes that connects two fragments. We transform the graph into a multigraph,

where each fragment corresponds to a vertex with (possibly multiple) virtual edges con-

necting fragments. For a given virtual edge, we use the minimum node capacity as the

weight of the edge.4 In Figure 6.1(b), there are three virtual edges between fragments X

and Y . The first one connects the fragments using nodes G and H , the second one uses

nodes E and B, and the last one uses node B only. Since we use the minimum node ca-

pacity as virtual edge weight, the weights of these three edges are 2, 1, and 3, respectively.

Figure 6.2 shows the corresponding multigraph representation. We next describe how we

use this multigraph to find a connected backbone.

6.2.2 Spanning Tree-Based Algorithm

We begin with an approach based on the well-studied minimum spanning tree

(MST) problem. This MST-based approach is a special case of our parameterized al-

gorithm (Section 6.2.3). Recall that an MST of edge-weighted graph G = (V, E) con-

nects all nodes in V using a tree T ⊆ E, such that the sum of edge weights in T is

4It is possible that no nodes are involved in a virtual edge. In this case, we set the weight of the virtual

edge to∞.

110

C

A B

D

E

H
GF

9

4
5

10

111

7

8

6 3

2

Figure 6.3: Example graph.

C

A B

D

E

H
GF

9
5

10

11

7

8

6

Figure 6.4: MST-based backbone

C

A B

D

E

H
GF

9

4
5

10

111

7

8

6 3

2

(a) After first round

C

A B

D

E

H
GF

9

4
5

10

11

7

8

6

2

(b) Resulting backbone (B1)

Figure 6.5: Illustration of truncated algorithm.

minimized [91].

In many algorithms that find MSTs, nodes select a minimum outgoing edge that

does not result in a loop [91, 92]. However, since we want to select high-capacity nodes

in the backbone, we need to use maximum-weight outgoing virtual edges. For example,

in Figure 6.2, when connecting fragments X and Y to obtain high-capacity connected

backbone, we should use the virtual edge of weight 3. We further illustrate this approach

using an example graph in Figure 6.3. In this figure, each node corresponds to a fragment

after the leader nomination phase, and each fragment is connected by virtual edges. (We

show only the maximum-weight virtual edges between fragments for clarity.) Figure 6.4

shows the MST (as defined above).

111

Let BMST denote the connected backbone obtained by using an MST algorithm. We

next show that BMST produces a small connected backbone using high-capacity nodes.

Theorem 6.2.1 BMST is a maximum-capacity connected dominating set.

Proof: Please see Appendix A.4.

Lemma 6.2.2 |BMST| ≤ 3|L|, where L denotes the leader set.

Proof: Suppose that L initially consists of f fragments. We need to use (f − 1)

virtual edges to find a spanning tree. Since there are at most two nodes in each virtual

edge and f ≤ |L|, |BMST| ≤ |L|+ 2(f − 1) ≤ 3|L|.

Theorem 6.2.3 For α-locally-regular graphs, E[|BMST|] = O(log ∆) OPT, where OPT

denotes the size of minimum connected dominating set.

Proof: This follows from Theorem 6.1.4 and Lemma 6.2.2.

Discussion Theorem 6.2.1 states that BMST includes a node with low capacity

only when it is necessary in maintaining connectivity. We show in Theorem 6.2.3 that for

α-locally-regular graphs, BMST is an O(log ∆)-approximation to a minimum connected

dominating set. As discussed in Section 6.1, this is within a constant factor of best pos-

sible approximation. However, if desired, we can further reduce the constant factor of

approximation ratio by slightly modifying an existing distributed CDS algorithm, which

we describe in detail in [70].

Although an MST-based approach achieves our desired goals (i.e., finding a small

backbone using high-capacity nodes), the running time can be long. For example, a

112

Algorithm 1 Description of Truncated Algorithm (Centralized)
1: Round← 0

2: while more than one fragment exists do

3: if Round = K then

4: Merge with all neighboring fragments

5: Return

6: end if

7: Each fragment selects the best outgoing edge

8: Merge fragments using the selected edges

9: Round← Round + 1

10: end while

distributed MST algorithm by Gallager, Humblet, and Spira (the GHS algorithm) takes

O(n log n) running time [92]. Also, there is a clear trade-off between small backbones

and shorter path lengths as well as resilience. In Figure 6.4, the backbone becomes dis-

connected even when a single link fails. Also, to reach a node in fragment G, a node in

fragment H needs to use a path consisting of five virtual edges, compared to only one

when no backbone is used. We address this issue next.

6.2.3 TRUNC-K: Our Parameterized Algorithm

We now describe our generalized scheme that balances the above-mentioned trade-

off when connecting the leader set (Algorithm 1). It is based on a well-known MST algo-

rithm by Boruvka [93]. In Boruvka’s algorithm, each fragment finds and marks the best

outgoing edge. Then, using those edges, fragments are merged into new larger fragments.

113

This step is repeated until there is no outgoing edge (i.e., there is only one fragment).

During the first K rounds, our algorithm runs just as Boruvka’s algorithm, where K is an

algorithm parameter. However, in our truncated algorithm, all remaining fragments after

K rounds mark edges to all neighboring fragments and are merged into one fragment.

One extreme case is K = 0, where after leader nomination, each pair of neighboring

fragments marks one virtual edge (e.g., all edges shown in Figure 6.3). Another extreme

case is when K =∞, which results in BMST.

Figure 6.5 shows the operations of the algorithm applied to the graph in Figure 6.3.

Here, we set K = 1. In the first round, each individual fragment selects the best outgo-

ing edge among neighboring fragments, and fragments are merged using selected edges.

Then, as shown in Figure 6.5(a), there remain four fragments at the end of first round.

Since K = 1 in this example, each remaining fragment after the first round connects to

all neighboring fragments. For example, fragment FG chooses three edges to fragments

AC, BD, and EH. The resulting connected backbone is shown in Figure 6.5(b).

We call this algorithm TRUNC-K and the resulting backbone BK . In contrast to

O(log n) rounds in Boruvka’s algorithm, TRUNC-K needs only a constant number (K) of

rounds to complete, and the resulting backbone has higher redundancy than BMST. This

eventually leads to both increased resilience against node mobility and decreased average

path length. Note that the resulting backbone is not a maximum-capacity backbone and

may include low-capacity nodes. However, by construction, nodes included in the first K

rounds are part of a maximum-capacity backbone. After the K-th round, when connecting

to each of remaining neighboring fragments, we choose the best virtual edge among typ-

ically multiple edges, and we are likely to include relatively high-capacity nodes. Also,

114

the resulting backbone includes more virtual edges than BMST, and Theorem 6.2.3 does

not hold. However, we can adjust K to control the amount of increase. Our future goal

is to analyze the performance trade-offs (e.g., backbone size, capacity distribution) when

we vary K. We next use simulation experiments to illustrate that even with small values

of K, the increase in backbone size is not significant.

6.2.4 Evaluation of the TRUNC-K Algorithm

In this subsection, we use simulations to understand performance trade-offs of the

TRUNC-K algorithm (e.g., backbone size, capacity) when we use different values of the

parameter K. In this simulation, stationary nodes are distributed on a square uniformly

at random, and we vary the number of nodes and the size of square to experiment with

various settings. Node capacity values are uniformly distributed between 0 and 1.5 Nodes

within the nominal transmission range (250 meters) become neighbors. For each set

of parameters, we use 25 runs with different node placement scenarios and report the

average.

6.2.4.1 Backbone Size

In Figure 6.6, we show the average size of the backbone with varying K. We use

two different network settings—the one with 1000 nodes on a 2km×2km square, and the

other with 4000 nodes on a 4km×4km square. In Figure 6.6, the use of extra rounds

is most effective when K is small. Specifically, the first round (K = 1) leads to the

5For simulations in Section 6.2.4 and Section 6.4, we also experimented using various scenarios with

non-uniform node placement and different capacity distribution, and obtained similar results.

115

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7 8

B
ac

kb
on

e
S

iz
e

Number of Rounds (K)

4000 nodes in 4km by 4km square
1000 nodes in 2km by 2km square

Figure 6.6: The size of the backbone with different K values. The error bars represent

standard deviations.

largest reduction in backbone size. With larger K > 2, there are a small number of

remaining fragments after K rounds. As a result, when compared to BMST, connecting all

neighboring fragments does not significantly increase the backbone size.

6.2.4.2 Capacity Distribution among Backbone Nodes

We investigate another potential problem with TRUNC-K backbone—the resulting

backbone may include low-capacity nodes. In this scenario, we use 1000 nodes but vary

the square size, thus varying node density. In Table 6.1, we list the minimum and average

capacity values depending on K values with different node density. Even with small

K (1 or 2), the difference in minimum-capacity between BK and BMST is small. For

example, in the case of 2km×2km square, the difference between B1 and BMST is around

10% (0.705 vs. 0.787). The difference in average capacity values is even smaller: less

116

1.4 km×1.4 km 2.0×2.0 2.8×2.8 4.0×4.0

min. avg. min. avg. min. avg. min. avg.

B0 0.349 0.913 0.111 0.854 0.021 0.771 0.007 0.666

B1 0.860 0.967 0.705 0.934 0.307 0.872 0.054 0.760

B2 0.888 0.970 0.787 0.942 0.573 0.892 0.188 0.796

BMST 0.888 0.970 0.787 0.942 0.574 0.893 0.200 0.802

Table 6.1: Capacity values of backbone nodes with varying node density

than 1% for the same scenario. As discussed in 6.2.3, this is because fragments after

K rounds choose best possible virtual edges to connect neighboring fragments, and very

low-capacity nodes are not likely to join the backbone. However, in sparser networks,

fewer virtual edges are available between neighboring fragments, and the difference in

minimum capacity between BK and BMST is slightly larger.6 In the actual deployment of

the TRUNC-K algorithm, we should choose an appropriate K value based on estimated

node density and mobility.

6.2.4.3 Average Path Length

We consider the average shortest path length (induced by the backbone) between

each of all possible node pairs. This measure provides a good lower bound for the perfor-

mance of practical routing protocols such as [37]. In this chapter, we report results for the

cases with 1000 nodes placed in a 4km×4km square only. When there is no backbone,

6When 5km×5km squares are used with 1000 nodes, only four cases out of 25 resulted in connected

networks, and the use of 4km×4km squares with 1000 nodes corresponds to considerably sparse scenarios.

117

the average path length is 11.2. The use of any routing backbone inevitably increases

path length since we are forced to find paths using a restricted set of nodes. B0 has most

redundancy, and the average path length is 12.5 with minimum increase. As K increases,

the redundancy decreases and the path length thus increases; the average path length of

B1 is 14.8, while that of B2 is 18.8. In contrast, the average expansion in path length for

BMST is 23.0, which is more than twice the underlying shortest paths. We observe that

small K values again offer a good trade-off. For example, compared to BMST, the average

path length of B1 is up to 36% shorter, while the backbone size is only up to 13% larger.

To summarize, backbones obtained using small K (1 or 2) perform well and provide

a reasonable balance among a number of performance measures. We next describe a

distributed protocol that implements the TRUNC-K algorithm.

6.3 Distributed Protocol Description

In this section, we present our distributed protocol that implements the TRUNC-K

algorithm to construct and maintain a connected backbone in dynamic network environ-

ments. Our protocol is based on the GHS algorithm, which is a distributed version of

Boruvka’s algorithm [92]. We assume that each node has a unique ID (e.g., IP address).

We first describe the leader nomination and explain how to connect the fragments ob-

tained after the nomination phase. We also present a backbone maintenance mechanism

later in this section.

118

Field Name Description

Node ID node identifier

Capacity current capacity of node

IsLeader whether this node is a leader or not

Leader ID highest-capacity neighbor

Level-0 fragment root ID of level-0 fragment root

· · · · · ·

Level-K fragment root ID of level-K fragment root

Table 6.2: Information about individual nodes in a HELLO message.

6.3.1 Leader Nomination Protocol

Each node broadcasts a HELLO message periodically that includes information

about itself and its neighbors. Table 6.2 shows the fields for individual node information

in HELLO messages. Using these fields, each node maintains information about two-hop

neighbors (e.g., capacity, fragment root IDs).

Before broadcasting a HELLO message, node v checks which neighbor has the high-

est capacity (e.g., residual battery power). Suppose u is the highest-capacity neighbor of

v. Then, v sets its Leader ID field to u in its HELLO message. Upon receiving a HELLO

message from v, u becomes a leader and sets its IsLeader field to TRUE in subsequent

HELLO messages until v changes leaders and there exist no other neighbors nominating u

(e.g., due to later decrease in residual battery).

Suppose node u finds itself as the highest-capacity node in N+(u). Then, in addi-

119

Algorithm 2 Distributed operation of level-i fragments
1: Level-i fragment root periodically sends REQi message

2: Fragment members send REPLYi messages with neighboring level-i fragment infor-

mation

3: if level-i fragment root receives all REPLYi messages, or a timeout occurs then

4: if i = K then {highest level}

5: Fragment root sends CONNECTi messages to all neighboring level-i fragments

6: else { i < K}

7: Fragment root sends CONNECTi message only to best neighboring level-i frag-

ment

8: end if

9: end if

tion to being a leader, u also becomes a level-0 fragment root, where a level-0 fragment

is a set of leaders who are themselves connected via the leader-nomination relation. In

Figure 6.1(b), nodes A and F are level-0 fragment roots.

6.3.2 Protocol for Fragment Members

As discussed in Section 6.2, the set of leaders form a forest consisting of multiple

fragments, and the protocol described here merges the fragments to form one connected

component. In Algorithm 2, we present a high-level protocol description. We begin

with the operation of level-0 fragments and later discuss the operation of higher-level

fragments.

We illustrate the protocol operations of level-0 fragments using Figure 6.7. Each

120

X

A B

C D

REQ Fx

(a) REQ message

X

A B

C D

2. REPLY
 (Fy:w=7)

1. REPLY
 (Fy:w=7)

weight=7

weight=4
Fx

Fy

U

Y

(b) REPLY message with outgo-

ing virtual edges

X

A B

C D

CONNECT

Fx

Fy

U

Y

P Q

(c) CONNECT message

Figure 6.7: Overview of protocol operations.

level-0 fragment forms a tree rooted at its fragment root. To discover neighboring level-0

fragments, level-0 fragment roots periodically send REQ0 messages, which are forwarded

down this tree to the leaves (who cannot forward the REQ message any further). The

leaves then generate a REPLY0 message that contains information about other fragments

(if any) that they are connected to. The REPLY0 messages are forwarded back towards the

fragment root. For example, in Figure 6.7(b), node D generates a REPLY0 message, which

contains the ID of other level-0 fragments that D knows of (Fy in this example) along

with the cost of the virtual edge to connect to Fy. (Recall that D keeps the information

about fragment roots of two-hop neighbors.) At each hop, before forwarding the REPLY

message towards the leader, nodes update the message if they know of a better virtual

edge than the one carried in the message. Also, nodes add information about any new

neighboring fragments that are not in the REPLY message. In our example, node B does

not modify the REPLY message from D, since its path to Fy is worse than the one that D

found (Figure 6.7(b)). (A and C also send REPLY0 messages, which are not shown in the

figure.)

121

Once the fragment root has accumulated all REPLY messages (or has timed out on

some), it sends a CONNECT message using the best outgoing virtual edge. This is shown

in Figure 6.7(c), where X connects to Y using the weight 7 edge through D. This virtual

edge has two non-backbone nodes P and Q, and upon receiving the CONNECT0 message,

they become bridges and join the backbone. Using these bridge nodes, Fx and Fy are

merged to form a new level-1 fragment.

Level-1 fragments also need to find neighboring level-1 fragments to form next-

level fragments. To elect level-1 fragment roots that send REQ1 messages, we use the

following rule similar to [92]: If two fragments choose each other as their best neigh-

boring fragment, then two fragment roots become candidates for the next-level fragment

root. We choose the node with lower ID as the level-1 fragment root.

Level-i fragments (0 < i < K) operate similarly to above procedures until their

level reaches K. At the highest level-K, instead of using only the best virtual edge, the

level-K fragment roots send CONNECT messages to all neighboring level-K fragments,

thus assuring a connected backbone.

In Figure 6.7, X is a both level-0 and level-1 fragment root, and it periodically

sends both REQ0 and REQ1 messages. In general, a node can be a fragment root of up to

(K+1) levels at the same time. Even if higher-level fragments are already found, lower-

level fragment roots (e.g., Y in Figure 6.7) still send REQi messages periodically. This

allows lower-level fragments to find new or better virtual edges to neighboring fragments

in dynamic networks.

122

D

P Q

U

M,1

N,2

Fx Fy

Figure 6.8: Local maintenance.

6.3.3 Backbone Maintenance

All of the protocol specific states (e.g., leaders, bridges, fragment roots) are “soft.”

A node removes a neighbor if it does not receive a HELLO message from the neighbor

for a certain duration (e.g., four HELLO-PERIODs). If the capacity of the leader becomes

lower (e.g., due to battery consumption), a node may choose a different node with highest

capacity as leader. If a leader finds that no neighbors nominate it as leader for some time,

it stops being a leader. When a bridge does not receive a CONNECT message for a certain

period of time, it stops being a bridge.

In a dynamic network, however, the basic protocol mechanisms described above

may not be sufficient for the timely maintenance of the connected backbone. We effi-

ciently reconstruct the backbone using a simple local search protocol that exploits spatial

locality. We illustrate its operation via an example. In Figure 6.8, node P detects a link

failure to backbone neighbor Q. P looks up its neighbor table to find other nodes that also

had Q as neighbor. (Note that these nodes need not currently be part of the backbone).

In this example, P finds two such neighbors, M and N , and sends a RECOVER message

to N , which has higher capacity. Upon receiving this message, N temporarily joins the

123

backbone and forms a bridge to Q. In the next REQ-REPLY phase, X might choose a

different virtual edge (of higher weight) to connect to Fy. If that happens, N will leave

the backbone after a timeout.

There are potential problems with the local recovery scheme. First, the repaired

backbone may include lower-capacity nodes than necessary. However, as mentioned

above, in the next REQ-REPLY phase, the fragment root will discover the best virtual

edge and send the appropriate CONNECT message. Also, a node may not be able to find

a common neighbor for recovery. However, in networks with reasonable node density,

such events will likely be infrequent. Finally, the recovery scheme does not help when

nodes fail. However, the TRUNC-K backbone should have sufficient resilience to main-

tain connectivity against infrequent recovery failures. We examine the effectiveness of

this recovery scheme using simulations in Section 6.4.

6.3.3.1 Discussion

As shown in Table 6.2, HELLO messages in TRUNC-K contain (K+3) node IDs per

neighbor: Node ID, Leader ID, and fragment roots for K+1 levels. For example, suppose

that node U in Figure 6.7(c) is about to broadcast a HELLO message. When K=1, the

information for neighbor Q should include (Q, U , Y , X). Including more information in

HELLO messages increases the control overhead. However, many neighbors share leaders

and fragment roots, and we can reduce the amount of increase by using a simple table-

based indexing scheme. We describe this scheme in detail in Technical Report [70], and

our simulation results in Section 6.4 show that the overall control overhead of TRUNC-K

124

is minimal.

Another issue is that wireless links in practice show a wide range of difference

in their quality [64]. Thus, it is beneficial to use high-quality links when connecting

backbone nodes. In the future, we plan to incorporate the link quality aspect into back-

bone construction and maintenance mechanisms. Also related is the existence of uni-

directional links, which we discuss in more detail in Technical Report [70].

6.4 Simulation Study

In this section, we compare TRUNC-K with prior approaches using simulation ex-

periments. Based on the results in Section 6.2.4, we consider only the case of K = 1.

Although we performed experiments in other various scenarios using different topologies,

traffic patterns, and capacity distributions, we present only a subset of representative re-

sults in this chapter. We first describe prior approaches and then compare the performance

of our scheme against them.

6.4.1 Brief Description of Existing Schemes

In this section, we compare the performance of our algorithm with that of SPAN [19],

GAF [20], and the scheme proposed by Wu et al. [43]. (We do not compare against other

schemes that do not consider node capacity [38, 39, 41, 42].)

In SPAN [19], a node becomes a coordinator and joins the backbone when any two

neighbors are not connected using up to two current coordinators. To minimize contention

and give priority to high-energy nodes, SPAN uses a randomized backoff using the energy

125

level, number of neighbors, and a random number. A coordinator withdraws after some

period of time to give other neighbors a chance to become coordinators.

In GAF [20], the area is divided into square-shaped virtual grids. GAF assumes the

availability of location information (e.g., from GPS), and each node can know its virtual

grid from the location information. Then, GAF elects the highest-energy node in each

grid, and these elected nodes form a connected backbone due to the grid construction

rule [20].

In the scheme by Wu et al. [43], a node initially joins the backbone if its two neigh-

bors are not connected. Then, to reduce the size of this initial backbone, node v searches

for a neighbor u, or two neighbors u and w, such that the (union of) neighbor set(s) in-

cludes the neighbor set of v. Due to symmetry, the above rule may lead to connectivity

loss, and the authors of [43] also use the power level and degree of node to avoid the loss

of connectivity.

6.4.2 Comparison Study in Large Networks

In this set of experiments, we use the same settings as in Section 6.2.4. We consider

capacity values in [0, 1]; in GAF, the side length of the square grid is set to 100 meters

(which is the value the authors of GAF use [20]). We measure the performance when the

initial backbone stabilizes, and report the average of 25 runs each.

We first examine the size of backbones constructed by different schemes. In this

set of experiments, we vary the number of nodes and the size of square, but maintain the

average node degree constant. In Table 6.3, we present the average backbone sizes for

126

No. of nodes 500 1000 2000 4000

Square size (km×km) (1.4×1.4) (2.0×2.0) (2.8×2.8) (4.0.×4.0)

SPAN 54.5 113.9 227.7 467.4

Wu et al. 67.4 150.3 308.9 652.5

GAF 158.0 308.6 605.6 1236.9

TRUNC-1 44.7 89.0 174.6 355.1

Table 6.3: Backbone size constructed by different schemes.

various scenarios. The standard deviations are small (less than 6% of the average in all

cases), which we do not present here. We observe that TRUNC-1 backbones are smallest

in all cases. Specifically, when the network has 4000 nodes, the TRUNC-1 backbone has

355 nodes on average. This is 24% smaller than the SPAN backbone, which is the second

smallest in all these experiments.

Our proposed scheme also builds a backbone consisting of higher-capacity nodes.

In Table 6.4, we tabulate the minimum and average capacity values of backbone nodes.

In all cases, the backbone by TRUNC-1 achieves the highest values for both minimum

and average node capacity. For example, in 4000-node networks, the TRUNC-1 backbone

does not include any of bottom 30% nodes, while the GAF backbone includes some of

bottom 0.5% nodes. In the same scenario, the average capacity of TRUNC-1 backbone

is also 30% higher than those of SPAN and GAF. When the routing backbone is used

to reduce power consumption and increase the network lifetime, the use of low-capacity

nodes can drain their energy unnecessarily. We later investigate this aspect using packet-

level simulations.

127

No. of Nodes (square size in km×km)

500 1000 2000 4000

(1.4×1.4) (2.0×2.0) (2.8×2.8) (4.0.×4.0)

min. avg. min. avg. min. avg. min. avg.

SPAN 0.056 0.700 0.046 0.686 0.025 0.704 0.011 0.708

Wu et al. 0.005 0.504 0.002 0.480 0.002 0.495 0.002 0.504

GAF 0.032 0.714 0.014 0.707 0.007 0.720 0.003 0.723

TRUNC-1 0.752 0.937 0.705 0.934 0.502 0.933 0.335 0.933

Table 6.4: Capacity value of backbone nodes by each scheme

In Figure 6.9, we present a detailed snapshot of a representative run with 1000

nodes. We sort all nodes in an ascending order of capacity value and cumulatively plot the

number of backbone nodes whose capacity is less than or equal to that of a given node.

For example, the GAF backbone includes 49 nodes out of 500 lowest-capacity nodes,

while SPAN chooses 19 nodes from the lowest 500 nodes. In contrast, the TRUNC-1

backbone does not include any of the lowest-capacity nodes, but selects only 93 nodes

among the top 330 nodes.

In Table 6.5, we report the average path lengths by different schemes as well as

the case using no backbones. Not surprisingly, since TRUNC-1 backbones are smaller in

size than any other scheme (Table 6.3), its average path lengths are the longest. However,

the amount of reduction in backbone size is more than the increase in the path length,

especially in larger networks. Specifically, in 4000-node networks, the difference in the

average path length between SPAN and TRUNC-1 is around 20%, while the difference in

128

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

N
um

be
r

of
 n

od
es

 in
 b

ac
kb

on
e

Node rank (sorted in ascending order of capacity value)

GAF

Wu

SPAN

TRUNC-1

Figure 6.9: The capacity distribution of backbone nodes in different schemes.

backbone size is more than 30%. The other two schemes (GAF and Wu et al.) have shorter

path lengths on average, but their backbones are substantially larger in size (Table 6.3).

This result illustrates that TRUNC-1 backbones provide relatively good paths considering

the small size.

6.4.3 Packet-level Simulations

In this subsection, we focus on saving energy and extending network lifetime using

ns-2 simulations [94]. SPAN and TRUNC-1 performed best in Section 6.4.2, and we

compare only these two schemes here. We use the SPAN simulation code written by the

authors of SPAN.7. Due to high resource requirements, we have been able to perform

simulations only with relatively small topologies (with 150 nodes). We first describe our

simulation environment before reporting the results.

7Available at http://www.pdos.lcs.mit.edu/span/.

129

No. of nodes (square size in km×km)

500 1000 2000 4000

(1.4×1.4) (2.0×2.0) (2.8×2.8) (4.0.×4.0)

No backbone 3.66 5.04 6.86 9.60

SPAN 4.39 6.17 8.44 11.89

Wu et al. 4.14 5.75 7.86 11.01

GAF 3.93 5.45 7.45 10.46

TRUNC-1 5.66 7.84 10.27 14.35

Table 6.5: Average path length by different schemes.

6.4.3.1 Simulation Environment

Both TRUNC-K and SPAN run on top of the IEEE 802.11 MAC layer [66], and

non-backbone nodes stay in the power saving mode. In the IEEE 802.11 power saving

mode, time is partitioned into beacon periods. All nodes stay awake in the beginning of

each beacon period and exchange messages to inform neighbors of pending messages.

If a node finds that there are buffered incoming messages, it requests the messages and

stays awake during the beacon period. Otherwise, it goes back to sleep until the start of

the next beacon period. Power saving mode usually leads to increased delay and reduced

throughput (e.g., due to additional control packets), and Chen et al. [19] slightly modified

the power saving mode in the 802.11 MAC to improve performance, which we use in our

simulations.

We assume there are three classes for the node energy level. A low-energy node

130

has 300J of energy, which is used in the experiments in [19]. A medium-energy node

has 600J, and a high-energy node has 2500J. (2500J is usually sufficient to last 3000

seconds of simulation time.) We vary the node percentage of each class to examine the

performance in different settings. Node energy is constantly updated using the following

power consumption values reported in [19]: 1.4W for transmission, 1.0W for receiving,

0.83W for idling, and 0.13W for sleeping. We place 150 nodes uniformly at random on

a 1000 meter by 1000 meter square area. The transmission range of each mobile node is

250 meters.

We choose 10 pairs of source and destination nodes uniformly at random among

high-energy nodes; each source generates traffic 50 seconds into the simulation at the

constant rate of one 128-byte packet per second. The MAC-level transmission rate is 2

Mbps. As we discuss later, SPAN rotates backbone nodes frequently (e.g., 2 changes per

second), which shortens path lifetimes. When we used on-demand routing protocols over

SPAN, the path maintenance overhead was high. Instead, we use an idealized scheme

for packet routing, where a path is found on top of the connected backbone using the

centralized Floyd-Warshall algorithm [91] implemented in ns-2. This corresponds to a

best case scenario for SPAN. Nodes move according to the Random Waypoint mobility

model (pause time=400s, and maximum speed is 1–16m/s) [94]. We also set the minimum

speed to be 0.1m/s to avoid speed decay [95]. Unless otherwise stated, we use mobile

scenarios with the maximum speed of 1m/s.

In both TRUNC-1 and SPAN, each node sends a HELLO message every two sec-

onds. For TRUNC-1, we set the period of REQ messages to 14 seconds, which leads to

reasonable performance. In each case, we report the average of 5 runs.

131

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 D

ea
d

N
od

es

Time (sec)

Half (75)

No PSM

Lower Bound

SP
AN

TR
U

N
C

-1

Figure 6.10: Number of dead nodes over time. L:M:H=3:4:3.

6.4.3.2 Simulation Results

For the first set of results, we examine two types of network lifetimes [96]. Network

1-life is the time when the first node dies, and half-life is the time when the half of initial

nodes die.8 In addition to TRUNC-1 and SPAN, we use two other schemes for reference.

The first one is to identify a lower bound, in which all nodes always stay in sleep mode

except when they wake up at the beginning of beacon periods. Each node also sends a

128-byte HELLO message every two seconds. In the second scheme (No-PSM), no power

saving operation is used, and all nodes always stay awake without sending any control

messages. We send no data traffic in either of the two reference cases.

In Figure 6.10 we present a snapshot for the number of dead nodes over time. In

this setting, approximately 30% of nodes are low-energy (L), 40% of them are medium-

8We assume that the network needs external support after this time (e.g., addition of fresh nodes in the

case of sensor networks).

132

energy (M), and the rest 30% are high-energy (H) nodes. (To denote this ratio, we use an

abbreviated notation L:M:H=3:4:3.) In Figure 6.10, the network 1-life of SPAN is similar

to that of “No-PSM.” This is expected from Figure 6.9 to some extent; SPAN includes

low-energy nodes in the backbone, and their lifetime decreases significantly. Although

SPAN rotates the backbone node responsibility, there exists an unfortunate low-energy

node in most of our experiments that stays in the backbone during the first 350 seconds.

In contrast, with TRUNC-1, the network 1-life is close to 960 seconds, which is 2.7 times

longer than that of SPAN. This is because the TRUNC-1 backbone consists mostly of

high-energy nodes plus a few medium-energy nodes, and low-energy nodes can stay in

sleep mode and save energy. In the case of TRUNC-1, we observe a sharp increase in

the number of dead nodes as the first node dies. This is the time (960 seconds) when all

low-energy nodes in TRUNC-1 run out of power. Note that this is earlier than the case

of lower-bound (around 1050 seconds). This is because with TRUNC-1, nodes consume

more energy to exchange larger HELLO messages (in this experiment around 211 bytes

on average) than the lower-bound case (128 bytes). Compared to SPAN, TRUNC-1 also

increases the average lifetime of low-energy nodes by 28% (1038.1 seconds vs. 811.3

seconds).

We now consider the lifetime of medium-energy nodes in Figure 6.10. The use of

low-energy backbone nodes in SPAN allows more medium-energy nodes to be in sleep

mode and potentially increase their lifetime. Still, compared to SPAN, the TRUNC-1

backbone increases the network half-life by around 26%. We explain this as follows. In

this network setting, a connected backbone needs to use several medium-energy nodes

to maintain connectivity. Ideally, as the initial medium-energy backbone nodes expend

133

Ratio of 1-Life (sec) Half-Life (sec)

L:M:H TRUNC-1 SPAN TRUNC-1 SPAN

4:4:2 892.1 365.5 1911.0 1506.3

(101.0) (28.3) (139.6) (54.5)

3:4:3 946.6 375.0 2106.2 1689.8

(22.0) (29.1) (33.7) (40.5)

2:4:4 962.0 412.3 2208.3 1842.3

(13.7) (54.7) (41.1) (43.9)

Table 6.6: Network lifetimes when the proportion of nodes at different energy levels is

varied. The values in parentheses are standard deviations.

their energy, they should be replaced with different medium-energy nodes, such that their

lifetime does not decrease significantly. From Figure 6.10, we infer that TRUNC-1 evenly

distributes the backbone responsibility among all medium-energy nodes, and no medium-

energy nodes die until 1600 seconds. (In Figure 6.10, after all low-energy nodes die in the

case of TRUNC-1 backbone, we observe a relatively stable period during which no node

dies.) In contrast, in SPAN, medium-energy nodes start to die before 1200 seconds, and

the network half-life of SPAN decreased.

In Table 6.6, we tabulate the average network lifetimes and standard deviations

while varying the proportion of nodes at different energy levels. We observe that in all

scenarios, TRUNC-1 achieves longer network lifetimes than SPAN (133–152% longer

for 1-life and 20–26% longer for half-life). We also experimented using different pa-

rameters (e.g., different initial battery capacity values and L:M:H ratios), and TRUNC-1

134

outperformed SPAN in all cases. In all these experiments, the average backbone sizes

of TRUNC-1 and SPAN are very similar (between 21 and 23 nodes depending on the

scenarios).

The previous results are based on the energy consumption values reported in [19].

We briefly report results that we obtained using different sets of energy consumption

values in [18] and [20]. In general, as nodes in sleep mode consume less energy, TRUNC-

1 achieves larger network lifetime extension over SPAN. Specifically, when using values

in [20], idle nodes consume 40 times more energy than nodes in sleep mode, and TRUNC-

1 achieves 220% increase in 1-life and 43% increase in half-life over SPAN. (In Table 6.6,

the respective increases are 152% and 24%.)

Backbone Maintenance

We now examine the backbone resilience as well as the effectiveness of our pro-

posed maintenance mechanisms against backbone partition. Let us define the coverage

of a connected backbone to be the number of nodes that are in the backbone or have

a neighbor in the backbone. For an ideal connected backbone, its coverage would al-

ways be equal to the number of nodes alive in the network. In Figure 6.11, we show the

largest coverage of the TRUNC-1 backbone over time, while we change the maximum

speed (1m/s and 16m/s). Due to node mobility or energy-level change, the backbone may

get disconnected, and we see occasional drops in the coverage of TRUNC-1 backbone.

However, our protocol detects such disconnections quickly, and the local maintenance

scheme helps to regain the perfect coverage in a short period of time. As node mobility

135

 30

 60

 90

 120

 150

 0 500 1000 1500 2000 2500 3000
N

um
be

r
of

 n
od

es

Time (sec)

Alive Nodes
Largest Coverage

(a) Maximum speed=1m/s. (TRUNC-1)

 30

 60

 90

 120

 150

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 n

od
es

Time (sec)

Alive Nodes
Largest Coverage

(b) Maximum speed=16m/s. (TRUNC-1)

Figure 6.11: TRUNC-1 backbone coverage.

becomes higher, we observe modest increase in the number of partitions in the TRUNC-1

backbone. Compared to the TRUNC-1 backbone, the SPAN backbone results in more fre-

quent coverage loss (Figure 6.12). In SPAN, nodes periodically leave the backbone only

after ensuring that the departure does not cause backbone disconnection. However, it is

possible that a node makes such a decision based on outdated information (e.g., due to

node mobility), which occurs frequently, for example, once every 30 seconds on average

in Figure 6.12(a).

Another aspect of backbone maintenance is the frequency with which nodes in the

backbone change. In Figure 6.12(a), the SPAN backbone undergoes 674 membership

136

 30

 60

 90

 120

 150

 0 500 1000 1500 2000 2500 3000
N

um
be

r
of

 n
od

es

Time (sec)

Alive Nodes
Largest Coverage

(a) Maximum speed=1m/s. (SPAN)

 30

 60

 90

 120

 150

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 n

od
es

Time (sec)

Alive Nodes
Largest Coverage

(b) Maximum speed=16m/s. (SPAN)

Figure 6.12: SPAN backbone coverage.

changes between 100 and 400 seconds. This is because backbone nodes in SPAN peri-

odically leave the backbone. In the same scenario, TRUNC-1 causes 49 changes in the

backbone membership. Suppose that an on-demand routing protocol such as DSR [37]

found a path using backbone nodes. With SPAN, nodes on such a path are likely to leave

the backbone about 12 times more frequently than TRUNC-1, and the source may need to

find a new path consisting of backbone nodes frequently. (Recall that this is why we use

the idealized routing in our experiments.)

137

1 packet/sec 2 packets/sec 4 packets/sec

SPAN 0.96 (0.04) 0.88 (0.05) 0.62 (0.02)

TRUNC-1 0.98 (0.02) 0.92 (0.05) 0.58 (0.04)

Table 6.7: Average delivery ratio with varying traffic load. The values in parentheses are

standard deviations.

Data Delivery

We briefly report the results about data delivery performance of TRUNC-1 back-

bone. In the previous light-load experiments, both TRUNC-1 and SPAN achieve near-

perfect data delivery ratios. In this set of experiments we consider high-load scenarios

using 1024-byte data packets with varying packet rates. We also use static networks and

ensure the distance between source and destination is more than 500 meters such that all

data packets go through at least two intermediate hops. In Table 6.7, we tabulate the aver-

age data delivery ratios and standard deviations with different sending rates. We observe

that as the amount of data traffic increases, the average delivery ratio decreases in both

schemes, and the difference between TRUNC-1 and SPAN is marginal. In these experi-

ments, TRUNC-1 leads to shorter average end-to-end delays than SPAN, but the difference

is not significant.

Control Overhead

In both TRUNC-1 and SPAN, each node sends a HELLO message every two sec-

onds. HELLO messages in TRUNC-1 contain more information, and the average message

138

Max. speed REQ REPLY CONNECT RECOVER HELLO

1m/s 1.80 2.15 1.64 0.12 52.73

8m/s 2.02 2.29 1.94 0.34 53.43

16m/s 1.83 2.04 2.14 0.49 53.65

Table 6.8: Average number of control packets per second in the entire 150-node network.

is longer than that of SPAN. Specifically, in TRUNC-1, the average length of HELLO mes-

sages is around 192 bytes, and in SPAN it is around 131 bytes. Note that the difference

is due in part to more dead nodes in SPAN, which lead to fewer neighbors in HELLO

messages.

TRUNC-1 uses additional control messages (e.g., REQ and CONNECT), and in Ta-

ble 6.8 we tabulate the average numbers of those control packets per second used in the

entire network. As shown in the table, the total number of non-HELLO control packets

is only around 6 packets per second in the 150-node network, and their average sizes are

20 to 70 bytes. When each of 150 nodes sends a HELLO message every two seconds, the

expected number is 75 per second. In Table 6.8, however, due to dead nodes, the number

of HELLO messages is around 30% smaller. We also observe that the overall increase in

control overhead due to higher mobility is marginal. We believe that the advantages of

TRUNC-1 (e.g., longer network lifetime, better backbone coverage) outweigh the modest

increase in control overhead.

139

6.5 Summary and Future Work

We have presented a parameterized scheme TRUNC-K that builds a connected back-

bone in multihop wireless networks. We have proved that our scheme can construct es-

sentially best possible backbones with respect to backbone size and node capacity. We

have generalized our scheme to construct and maintain a resilient backbone in dynamic

networks. Through detailed simulations, we have demonstrated that our proposed scheme

outperforms existing energy-saving techniques in many aspects.

In the future, we plan to investigate how to adjust the K value according to network

environments (e.g., node mobility or density). Then, we will be able to include adaptive

protocol mechanisms that can automatically change the K value when network parame-

ters change over time (e.g., increased mobility or new node deployment). We also want to

analytically investigate the backbone performance with different K values. As discussed

earlier, another obvious extension to the current scheme is to consider the difference in

link quality [64], such that we simultaneously consider node capacity and link quality in

nominating leaders and connecting fragments.

140

Chapter 7

Backbone Construction in Selfish Settings

Most prior work for multihop wireless networks has assumed either (1) nodes in the

network are inherently altruistic or cooperative, or (2) external mechanisms such as secure

hardware or a central bank can be used to enforce cooperation. In this chapter, we consider

a network in which participants have data to send (or receive) but are selfish—they are

not inclined to relay packets for others. Thus, nodes in our system do not want to join

the backbone (since they do not want to relay packets for others), but do want a backbone

to exist (since they want their own packets to be forwarded). Under this assumption, we

use tools from game theory and present a mechanism for backbone construction, without

resorting to external mechanisms for enforcing cooperation.

We model the problem of building a backbone as that of creating a public good: a

commodity from which all nodes benefit, but which they must collectively provide. We

apply a well-known game-theoretic model called the Volunteer’s Dilemma [97–99]. Each

participant in the network needs some of the nodes to volunteer to provide the public good

(i.e., backbone), but no one wants to be one of the volunteers. We extend the base model,

and show how to apply it in the wireless network setting. Nodes compute an amount

of time to wait before they volunteer to join the backbone, and we derive a dominant

strategy that considers the node’s remaining battery and its local neighborhood to compute

this waiting time. The resultant protocol retains the goodness of cooperative backbone

141

construction algorithms: the backbone size is small, and nodes with greater capacity are

preferentially added to the backbone.

We make the following contributions:

• We generalize Volunteer’s Dilemma in Section 7.2, and use it to compute the op-

timal waiting time before a node volunteers. In Section 7.3, we present a protocol

that uses these computed times to form connected backbones.

• We evaluate our protocol using extensive simulations in Section 7.5. Our results

show that a backbone connects quickly and consists predominately of nodes with

higher capacity, allowing low-capacity nodes to save their battery by sleeping.

• We present our implementation experience using real hardware and experiment re-

sults on a testbed. This is the first to evaluate the network performance when we

use routing backbones in real wireless systems. Our results show that with a routing

backbone, we can achieve a similar level of network performance (e.g., end-to-end

throughput) when compared to cases without a backbone.

One potential issue after backbone construction is that a backbone node may refuse

to forward messages as promised. We address this type of misbehavior in Section 7.4.

We begin with a brief review of our network model and assumptions.

7.1 Model and Assumptions

We model the network as an undirected graph G = (V, E), where V is the set of

nodes in the network, and E is the set of bi-directional edges. As in previous protocols for

142

detecting neighborhood transmissions [54, 55], we assume that whenever a node u sends

a packet, it is received by each node in its 1-hop neighborhood, N 1(u), as well as the

packet’s intended recipient.

Node Utility and Capacity We assume the primary concern of each node in our

model is to ensure that its connections have high goodput. Since we do not consider any

external incentives, if a node knows that it will not be sending or receiving packets for

a significant amount of time, we cannot motivate the node to route and forward packets

on behalf of other nodes. We assume that nodes do not collude, which is a standard

assumption made in most game-theoretic analysis.

We use each node’s remaining battery to model its capacity. We do not define a

specific utility function that a node tries to maximize. Instead, we use the following

preference relation: for each node v, if there is any data to be sent or received, v first

attempts to maximize its goodput. If there are multiple paths that yield equal goodput,

then v uses the path that minimizes the energy utilized. When v has nothing to send or

receive, it strictly tries to conserve its battery.

Traffic Patterns To model traffic behavior, we assume that connections are period-

ically made between random source-destination pairs. Although this is common knowl-

edge to all nodes, nodes do not have any further knowledge about traffic patterns a priori.

Since we assume all the nodes wish to maximize their goodput, this assumption implies

that it is selfish nodes’ best interest to maintain end-to-end connectivity all the time.

143

7.2 Backbone Formation: Theory

In this section, we develop the background for our backbone formation protocol.

We begin with a review of the well-known Volunteer’s Timing Dilemma [98] and then

extend it to work in a generalized setting suitable to a multihop wireless network.

7.2.1 The Volunteer’s Dilemma

Consider the following social dilemma: a group of rational individuals want a single

person from the group to volunteer to offer some service. This service expends some of

the volunteer’s resources but, if provided, all the individuals, including the volunteer,

benefit from it. In other words, this service is a public good. Without loss of generality,

let us assume that each node, i = 1, .., N , derives 1 unit of benefit from the existence

of this public good and it costs node i ci ∈ [0, 1] to provide the service. Further, the

distribution F (ci) of these costs ci is public knowledge, but the cost to any individual

node is private (i.e., node i knows how all costs are distributed, but only i knows the

precise value of ci).

Diekmann [97] presents this formally as a one-shot game called the Volunteer’s

Dilemma (VOD). Each node has two possible strategies it may play: volunteer or free-

ride. Player v’s utility is:

Uv
def
=







































1− cv if v volunteers

1 if someone, but not v, volunteers

0 if no one volunteers

That is, if at least one node volunteers, everyone obtains the public good and receives

144

utility 1, but each node i that volunteers must pay ci. If no one volunteers, the public

good is not available and no one gains any benefit.

Bliss and Nalebuff [98] consider a slightly different scenario, often called the Vol-

unteer’s Timing Dilemma (VTD) [99]. In their model, each player’s strategy is no longer

to “volunteer or not”, but rather to determine a time T ≥ 0 that denotes “when to volun-

teer”. If no one volunteers until time t, then the public good is not available until then. To

capture this, each player’s utility decreases by the standard discount factor, giving player

v utility e−tUv. As in the VOD, cost is private information but the distribution of costs is

common knowledge. For the remainder of this paper, we assume the distribution of costs,

F , is the uniform. (In our simulations, we experiment with cases when the actual cost

distribution is different from the assumed distribution.)

Bliss and Nalebuff derive T (n, ci), the optimal time for node i to volunteer given

its cost, ci, and the total number of players, n:

T (n, ci) = (n− 1) ·
(

ci

1− ci

+ ln(1− ci)
)

(7.1)

This derivation has several nice properties. First, when all players are rational, the

node with highest capacity (lowest ci) is the one to volunteer. Second, as n increases, each

player’s expected utility increases, as does their optimal time to volunteer. Last, since T

is found by maximizing e−tUv for each v, T defines a dominant strategy for all players.

7.2.2 Generalized VTD

In both Diekmann’s and Bliss and Nalebuff’s models, all players can observe and

benefit from any volunteer. Here, we introduce the Generalized Volunteer’s Timing

145

Dilemma (GVTD). An input to the game is an arbitrary, undirected graph G = (V, E),

where V is the set of players. Each player v continues playing until either v or one of its

one-hop neighbors u volunteers where (u, v) ∈ E. Observe that when G is a clique, we

have the original VTD.

Let us assume that each node (player) knows only its two-hop neighborhood. We

now present a derivation of the optimal time that each node should wait before volunteer-

ing, and show that the final set of volunteers constitutes a maximal independent set.

Optimal Waiting Time To calculate the optimal time for u to wait before volunteer-

ing, u needs to know the global topology, which is typically costly. Instead, we assume

that each node learns its two-hop neighborhood using techniques suggested in Catch [54]

and computes its waiting time with this partial topology information. Our technique gen-

eralizes to the global optimal if a consistent view of the entire topology were available.

Each node u takes into account both u’s remaining battery level and energy loss

due to volunteering to obtain its volunteering cost cu.1 Nodes currently playing the game

also use the information of their two-hop neighborhood to calculate their optimal time to

volunteer. For a neighbor v of u, let nv denote the number of one-hop neighbors of v who

are not one-hop neighbors of u. Also, let R1(v) be the one-hop neighbors of v who are

currently playing the game. Then the optimal time for v to wait, as a function of its cost,

1An accurate prediction of the cost incurred by volunteering would require u to have an estimate on how

much traffic its neighbors wish to send, which is often difficult. In our implementation and simulation, we

let cu be one minus u’s relative remaining battery.

146

(a) (b) (c) (d)

Volunteered Opted outStill playing

0.2

0.6

0.4

0.7

Figure 7.1: An example GVTD game run on (a) a sample graph. (b) The top-most node

volunteers and notifies its neighbors who (c) opt out and inform their neighbor, who then

(d) volunteers immediately.

is:

Tv(c) ≈
∫ c

x=0

∑

u∈R1(v)

nux(1− x)nu−2

nu − 1 + (1− x)nu
dx, (7.2)

which is easily integrated numerically. (The derivation sketch is in Appendix B.)

Observe that Tv reflects the amount of time to wait to volunteer since the beginning

of the game. When a node w has waited long enough and none of its neighbors have

volunteered, w volunteers. Then, its one-hop neighbors opt out of the game; they stop

playing because they are already receiving the public good (as shown in Figure 7.1). Note

that R1(v) can change over time with some volunteering nodes, and each node v needs

to recalculate Tv. When a node v finds that the current value of Tv is less than the current

time elapsed in the game, it volunteers immediately. In Figure 7.1(d), the bottom-most

node recalculates T with no remaining neighbors (R1 = ∅) and therefore volunteers

immediately.

147

v

(b)

u

(a)

Figure 7.2: Dashed ovals represent likely volunteers. (a) A large one-hop neighborhood

reduces u’s probability of volunteering, whereas (b) a large two-hop neighborhood has

the opposite effect.

7.2.2.1 GVTD Solution Properties

The derivation in Equation 7.2 yields many of the same properties of the original

VTD. First, observe that, as in the model proposed by Bliss and Nalebuff, Tv in the GVTD

is increasing in cv — this ensures that (all other factors being equal), nodes with lower

cost volunteer earlier. Next, Tv is decreasing in |N 1(v)|; this implies each additional

one-hop neighbor is another candidate to allow v to opt out instead of volunteer itself.

For example, in Figure 7.2(a), node u is unlikely to volunteer, as it has many one-hop

neighbors who may do so earlier.

New to the GVTD is the notion of a non-trivialN 2(v); as this grows, Tv decreases.

To see this, note that each additional two-hop neighbor is another candidate for (at least)

one of v’s one-hop neighbors to opt out. In Figure 7.2(b), node v is likely to volunteer,

since each of its one-hop neighbors is likely to opt out.

GVTD does not always result in the nodes with the lowest cost volunteering. For

instance, suppose in Figure 7.2(a) that node u has cost 0.1 and every other node has cost

148

0.99. Though node u has the lowest cost, all of its neighbors have degree 1, hence they

will all have significantly larger probability of volunteering and therefore smaller values

of T . In this example, Tu(cu) = 0.1 and, for each neighbor w of u, Tw(cw) = 0.003. Such

an effect is a necessary outcome of this game. This is due to both private information and

the graph’s topological constraints. Since each node u does not know any other nodes’

cost to volunteer, it can at best estimate the probability that its neighbors will volunteer

before it does.

GVTD Yields a Maximal Independent Set Recall that an independent set S of G =

(V, E) is a subset of V such that no two vertices in S correspond to an edge in E. S is a

maximal independent set if no proper superset of S is an independent set. Recall also that

for a dominating set D, each node in V either is in D or has a neighbor in D.

Theorem 7.2.1 Given an input graph G = (V, E), when the GVTD game ends, the set of

volunteers constitutes a maximal independent set of G.

Proof: Let U ⊆ V denote the set of nodes that volunteered at the completion of

the VTD game. We have, for each node v ∈ V , exactly one of the following: v ∈ U or

∃α ∈ N 1(v) ∩ U . By definition, U is an independent dominating set, and is therefore a

maximal independent set.

In the unit-disk graph model [42], which is a simple yet popular model for wire-

less networks, a maximal independent set is a constant-factor approximation of a mini-

mum dominating set. Finding a minimum-sized dominating set is a well-known NP-hard

problem [40], and Theorem 7.2.1 proves that in the unit-disk graph model, the resulting

dominating set of a GVTD game is essentially smallest possible. This implies that the

149

backbone has a minimum possible number of volunteers, which in turn minimizes the

overall energy consumed. In Figure 7.2(a) and (b), the dashed ovals show a maximal

independent set for each of two graphs.

These GVTD properties are now sufficient background to construct a protocol for

backbone formation in selfish networks, which we describe next.

7.3 Backbone Formation: Protocol

Our backbone construction protocol consists of two logical steps: leader selection

and the connection of the leaders. In the first phase, nodes play the GVTD game. We

make the standard assumptions of incomplete information [100]: each node v knows

that all volunteering costs are chosen uniformly at random from (0, 1] and that its own

precise cost is cv. Given its two-hop neighborhood information, each node independently

computes how patient it will be, and then waits for some other node to volunteer. When

a node observes that there is no leader in the neighborhood for a long (enough) time, it

volunteers as a leader to speed up the backbone construction and thus minimize loss of its

own messages.

Nodes who volunteer become leaders. The GVTD game ensures that these leaders

form a maximal independent set. In the second phase, we choose bridge nodes to connect

the leaders and obtain a connected backbone (specifically, a connected dominating set).

In this section, we describe the backbone formation protocol using the IEEE 802.11 ter-

minology; however, the protocol can easily be generalized to operate with other schemes.

150

7.3.1 Leader Selection Protocol

Initially, we assume each node is in sleep mode. Nodes wake up periodically (e.g.,

as in IEEE 802.11) and exchange their neighbor information. This information includes

IDs of the transmitting node and all its neighbors. Each node also checks if any neighbor

has volunteered. If node v does not observe any volunteers for a period longer than its

optimal waiting time, Tv(cv), it volunteers as a leader and broadcasts a LEADERDECL

message to its neighbor information. This message includes a “service duration,” which

specifies how long v is willing to be part of the backbone. Upon receipt of this message,

all of v’s neighbors know that they have a volunteer; they opt out of the game and include

the leader information in subsequent periodic messages. Our leader selection protocol is

repeated when the service duration expires.

The service duration is an important system parameter. It should be long enough for

the backbone to amortize the overhead and function stably, and short enough for nodes to

change roles without consuming too much battery at once. One potential issue with the

service duration arises when a node wants to use a very short duration when volunteering.

In particular, if the node knows it has data packets to send soon, it can try to set the

duration such that it stays in the backbone just long enough for its own transmissions

and leaves the backbone immediately after the completion. In this case, however, its

neighbors can detect that the duration is below a certain threshold, and punish the node

by not forwarding packets destined for the node for a while. Since we assume there can be

incoming packets for the node at any moment, such a punishment can potentially lead to

multiple packet losses for the misbehaving node, which significantly decreases the node’s

151

utility.

Incentives for Truthfulness Obviously, the volunteering procedure described above

is trivial — the interesting part is ensuring that even selfish nodes perform the protocol

correctly.

Recall from Section 7.2 that v will volunteer sooner if its one-hop neighborhood is

sparser. Thus, it may appear that v’s neighbor u would choose not to broadcast its identity,

so that v does not count u as a neighbor and volunteers earlier. However, if v becomes a

leader, v will not regard u as a neighbor and will not provide the backbone service to u.

Hence, “hiding” is of no use to u.

Another way for u to shorten v’s waiting time is to pretend u has many neighbors

by including fake neighbors in periodic messages. This is, in effect, a Sybil attack [101].

We consider this an orthogonal problem, and direct the reader to Newsome et al. [102]

who detect and defend against Sybil attacks in a wireless setting.

Estimating Cost Distribution As discussed in Section 7.1, we assume that each

node knows its own cost and also the distribution of costs of other nodes. In practice,

various factors determine the cost, including remaining battery power, the degree of desire

for communication, and altruistic tendency. A network composed of many nodes with

cost close to 1 corresponds to the scenario where there are many selfish nodes that are

reluctant to volunteer. In contrast, if there are many low-cost nodes, then the network

is more altruistic and the backbone construction is faster. One way is to learn relative

willingness of neighbors over time and use them as sample points to infer the distribution.

152

In our results, we quantify the convergence time and quality of the backbone when the

estimated cost distribution is different from the actual. However, there exists little study

on altruistic behavior in real multihop wireless networks, and inferring the overall cost

distribution is an open question.

7.3.2 Connecting the Leaders

After leader selection, no two leaders will be adjacent. The second phase of our

backbone construction consists of choosing nodes between leaders to act as bridge nodes

and forward messages between them.

Since the final leader set is a dominating set (Theorem 7.2.1), each leader will be

no more than three hops away from at least one other leader [40]. It therefore suffices for

each leader node to learn about other leaders that are reachable within three hops (i.e.,

via a path through at most two non-leaders). To accomplish this, node u broadcasts to

its neighbors a message indicating that it has volunteered. u’s neighbors then forward

this message to their one-hop neighbors. (We defer the issue of enforcing the correct

delivery of this message to Section 7.4.) Each neighbor v of u then requires its neighbors,

N 1(v)\N 1(u), to forward this message to their one-hop neighbors. Node v has incentive

to do this because, otherwise, the backbone may not be constructed quickly enough to

meet v’s end-to-end delivery constraints.

After these messages are propagated, each node v knows of all leaders (say Lv)

in its 3-hop neighborhood; v also knows of all paths (of length at most 3) from v to

each node in Lv. This information can be used to connect the leaders in many different

153

(a) Start of Bridge Game (b) Volunteer (c) First bridge selected

a b

c
d

e

f

- leader - currently playing game - client - bridge

l1 l2

Figure 7.3: First iteration of bridge node selection between two leaders, `1 and `2. Nodes

are informed to play a bridge game for the first hop on each (at most two hops long) path

from `1 to `2. The winner of this iteration is node c, who joins the backbone.

ways, such that different metrics (e.g., backbone size [40,42], or minimum cost [103]) are

optimized. In this chapter, we consider the simplest case where each leader connects to

all other leaders that are in its 3-hop neighborhood. This will result in larger backbones

than are strictly necessary (e.g., BMST in Chapter 6). However, as we discuss further in

the following sections, some nodes may be punishing one another; these redundant links

can be helpful in allowing nodes to re-route packets around punishing areas. Furthermore,

Alzoubi et al. [104] show that the hop count increase for any path over such a backbone

is bounded by a constant when compared to the path without the backbone. Also, in a

unit-disk graph, the resulting set is still a constant-factor approximation of a minimum

connected dominating set. Further, it is not immediately clear how to provide incentive

for nodes to truthfully report enough connectivity information for nodes to determine

which links are redundant. Obtaining backbones that are small yet allow for resilience in

the face of punishment is a subject of future work.

154

(a) Start of second iteration (b) Volunteer (c) Second bridge selected

c
d

e

- leader - currently playing game - client - bridge

c
dl1 l2

Figure 7.4: Second iteration of bridge node selection. c, the new bridge node after the

first iteration is not a neighbor of `2 and tells d and e to play the original VTD game. In

this example, d becomes a new bridge node.

Bridge Node Selection For a leader to connect to other leaders, it must select a

set of bridge nodes to forward packets between leaders. The key difference in terms of

workload between bridge nodes and leaders is that leaders accept clients and buffer their

packets (while the clients sleep). When leader `1 wants to connect to leader `2 ∈ N 3(`1),

it uses the following bridge node selection process.2 First, using its knowledge of its 3-

hop neighborhood, `1 determines all of the available paths of length at most 3 from itself

to `2. Let B(`1 → `2) denote the set of one-hop neighbors of `1 who are on at least one

of these paths. In Figure 7.3, B(`1 → `2) = {a, c, f}.

We provide pseudocode for our bridge selection protocol in Algorithm 3. To sum-

marize, each hop on the path from `1 to `2 is obtained by applying VTD. Because the

goal of each VTD game is to select a single, high-capacity node, we need not use the

GVTD game. Instead, nodes play the standard, complete-graph VTD game, and use the

2To break symmetry, only the leader with the smaller ID will initiate the bridge node selection process.

155

Algorithm 3 Play Bridge Game(`1, `2, L)
Called by u when it receives a PLAYBRIDGEGAME message from prev hop to connect `1 to

`2. L is the list of potential volunteers.

1: if u 6∈ L then

2: return

3: end if

4: t← Calculate-Complete-VTD-Time(cu , |L|)

5: Wait for time t

6: if after waiting, prev hop has not announced a volunteer then

7: Send BRIDGEVOLUNTEER message to prev hop

8: if prev hop replies with a BRIDGEACK then

9: if `2 6∈ N 1(u) then

10: L′ ←
{

v : v ∈ N 1(u) ∧ `2 ∈ N 1(v)
}

11: Broadcast PLAYBRIDGEGAME(`1, `2, L
′)

12: end if

13: end if

14: end if

function derived from Eq. 7.1. The first iteration of the game is played by the nodes in

B(`1 → `2). Each node playing the game stops when either it volunteers and informs the

previous hop on the path, or when the previous hop broadcasts an acknowledgment to the

first volunteer. In Figure 7.3, c is the winner of the game (i.e., the first node to volunteer)

and becomes a bridge node. It then either informs `2 of the path (if c is connected to `2),

or else initiates another VTD game to obtain the next hop. As shown in Figure 7.4, the

second iteration of the game is played by the nodes who are both one-hop neighbors of c

and `2 (i.e., d and e). Note that, since `1 chose nodes who are within two hops of `2, this

156

process will require at most two such games.

Incentive for Truthfulness In our protocol, nodes have incentive to truthfully re-

port neighbors’ leaders. A leader accumulates this information to learn how to connect

to nearby leaders. Non-leader node u must include a leader ID for each of its neighbors;

otherwise, u’s leader will be able to detect the missing information and punish u (see Sec-

tion 7.4). Suppose u decides to report wrong information. For instance, u could pretend

that all of its neighbors share one leader, making it less likely that u’s leader would choose

u as a candidate bridge node. However, the wrong information sent by u will be detected

by u’s other neighbors, and u will be punished. Each node therefore has incentive to

include each neighbors’ leader ID correctly.

Bridge Selection without VTD The bridge selection algorithm incurs some over-

head due to the waiting times and control message exchanges. An alternate scheme is

to forgo the bridge nodes’ VTD games and to just have `1 designate bridge nodes. If a

designated node refuses the request, then `1 in turn can refuse to provide the backbone

service to the node. With this alternate scheme, the bridge selection is immediate, but the

backbone may include high-cost nodes. In our simulations, we experiment with the full

VTD-based bridge selection algorithm; in our implementation, leaders are chosen using

GVTD, but bridges are assigned by leaders without undertaking the VTD game.

157

7.4 Incentive-Compatible Forwarding

Another issue to consider after the backbone construction is how to ensure correct

end-to-end forwarding when backbone nodes are selfish. In fact, this subject alone con-

stitutes a large yet orthogonal space for interesting research [49, 51, 52]. In this section,

we present a high-level approach that we take without elaborating on details.

We employ a punishment scheme by channel jamming (i.e., transmitting continuous

signal on the wireless medium). Since we assume that each node wants to achieve high

goodput (Section 7.1), and nodes cannot receive messages while the jamming is active,

this punishment leads to strict loss of utility for misbehaving nodes. In fact, we can show

that this strategy can lead to a desirable equilibrium from a game theoretic perspective,

although we do not describe the detailed proof here. This analysis is based on the assump-

tion that the channel jamming is perfect; nodes cannot receive any messages during the

punishment. In Section 7.6 we present our experiment results to show the effectiveness

of jamming using commodity hardware and software.

7.5 Simulation Results

In this section, we present results from ns-2 simulations of our backbone construc-

tion protocol. First, we study the performance when all nodes in the system are rational

and none of them deviate from the protocol. Also, we analyze the price of irrationality

by allowing some of the nodes in the system to deviate by refusing to be either a leader

or a bridge node. Finally, we compare the performance of our backbone algorithm with

a cooperative backbone construction scheme. We conduct our studies on three different

158

 0

 0.25

 0.5

 0.75

 1

 0.01 0.1 1 10 100 1000

P
r.

 o
f
C

o
n
n
e
c
ti
o
n

Time (sec)

 0.25

 0.5

 0.75

 1

F
ra

c
.
o
f
N

o
d
e
s
 P

e
r

R
o
le

Representative Simulation Run

Clients
Bridge Nodes

Leaders

 0.25

 0.5

 0.75

 1 A
v
g
. R

e
m

a
in

in
g
 B

a
tte

ry

Clients
Bridge Nodes

Leaders

Backbone fully

 connected

All links

 added

Figure 7.5: Representative backbone properties over time, N = 227.

topologies composed of 130, 227, and 306 nodes [105]. Each of them is generated from

an urban setting in Portland, OR, modeling transceivers placed along the roadways.

All Peers Rational and Well-Informed In this set of experiments, all peers follow

the backbone construction protocol as detailed in Section 7.3 (i.e., they are rational), and

each node knows that the distribution of costs is uniform (i.e., they are well-informed). In

Figure 7.5, we present a sample run of this scenario on the 227 node topology. We can

observe several key properties. First, as shown in the top plot, the majority of nodes are

159

Fraction of Nodes Avg. Fraction of Remaining Battery

N Leader Bridge Client Leader Bridge Client

130 .191 (.00828) .323 (.0218) .486 (.0240) .746 (.0262) .545 (.0381) .388 (.0260)

227 .198 (.00924) .318 (.0253) .484 (.0293) .690 (.0244) .578 (.0140) .395 (.0185)

306 .160 (.00662) .316 (.0171) .524 (.0191) .736 (.0388) .592 (.0181) .389 (.0226)

Table 7.1: Average backbone size and remaining battery value for each type of nodes.

Values in parenthesis are standard deviations. All peers know the correct distribution

of costs (uniform). All values are measured once the backbone has been completely

constructed.

clients, and hence more than half of the network can enter sleep mode. Also in the top

plot, we see that the number of leaders is smallest, while the number of clients is largest.

For example, around 20% of nodes are leaders while more than 50% of nodes are clients

in sleep mode. In Table 7.1, we present means and standard deviations of 10 runs for

different settings. We observe that our scheme leads to small backbones across various

scenarios. Since the number of nodes doing each role is inversely proportional to the

overhead in performing that role, we can achieve a longer network lifetime in practice.

Network lifetime is further improved by choosing the high-capacity nodes to be

backbone nodes. The middle plot of Figure 7.5 shows that our system chooses high-

capacity nodes in the backbone. Specifically, the average capacity of leaders (around

0.7) is significantly higher than that of clients (around 0.4). Again, in Table 7.1, we

observe this is a general trend across various environments. Our scheme builds a small

backbone using high-capacity nodes even in selfish settings, which leads to significant

160

Backbone Completion Time

N Connected All Links

130 14.7 (13.0) 231 (230)

227 23.9 (14.4) 231 (202)

306 34.7 (22.1) 379 (234)

Table 7.2: Means and standard deviations of backbone construction time in seconds. All

nodes know the correct distribution of volunteering costs (uniform).

increase in network lifetime as demonstrated in Chapter 6. The plot shows that, as time

progresses, higher-capacity nodes are chosen first, and lower-capacity nodes are added

to the backbone later as necessary. Spikes in bridge node costs occur when there are no

better choices for bridge nodes between a pair of leaders.

Finally, in the bottom plot of Figure 7.5, we show the probability of a random

source-destination pair communicating over the backbone. As is evident from the plot,

it can take a considerable amount of time to include all backbone nodes (more than 3

minutes in this case). A connected backbone, however, is formed quickly (around 10

seconds in this plot), and every source-destination pair can communicate with each other.

This is because many of the links that are added are redundant (see Section 7.3). We

show further evidence of this in Table 7.2. For example, with 306-node networks, it takes

around 34 seconds to form a connected backbone, but 379 seconds to add all the links.

Also important to note is that while many nodes are added for redundancy, few nodes are

promoted into the backbone once the backbone is connected.

161

Average Remaining Battery Completion Time (in sec) Coverage of Maximum

N Leader Bridge Client Connected All Links Connected Component

130 .397 .215 .064 873 (414) 1849 (454) .986 (.0108)

227 .357 .226 .073 1560 (236) 1970 (390) .908 (.109)

306 .376 .223 .065 1860 (656) 2170 (495) .985 (.0170)

Table 7.3: Results when all peers believe that the cost distribution is uniform when it ac-

tually is long-tail (majority of nodes have low battery). Note that due to many low-battery

nodes, only 25% of the runs resulted in a fully connected component. The completion

times shown are from those runs only. Values in parenthesis are standard deviations.

The Effect of Incomplete Information One of the assumptions we make in our sys-

tems is that the volunteering cost distribution F of is public knowledge. This is a standard

assumption in many game theoretic scenarios, but it is generally untrue in practice. To

study the effect of incomplete information on our protocol, we ran experiments where

each node in the system assumes that the cost distribution F is uniform, when in reality

costs actually follow a different distribution. In practice, it is unclear what a reasonable

distribution of battery values is. In our experiments, we use the Pareto distribution be-

cause in this distribution, the real costs are substantially different from what is assumed

by each node.

We present our results in Table 7.3. For all system sizes, the distribution of costs for

each role remains the same as when the nodes are well-informed. In other words, leaders

still have the highest remaining capacity, clients have the least, etc. The fundamental

difference is in the completion time; the average completion times are orders of magnitude

162

longer than the case with uniform distributions (see Table 7.1). The coverage of the

maximum connected component in Table 7.3 shows that a few nodes do not join the

backbone before the simulation has ended. This shows that there are a few nodes whose

battery values are so low that they are patient enough to wait as long as it takes until one

of their neighbors volunteers. In 75% of our experiments, this exceeded the duration of

the simulation (20 minutes).

Besides the long-tail distribution, we also experimented with normal distributions.

Although we do not report the results here, our findings were similar: The distribution of

costs according to roles remain independent of the accuracy of the information. The time

to have a fully connected backbone, however, increases.

We can use the following fact to explain this: the behavior of a node can change

drastically depending on how it perceives others’ remaining capacities. When nodes’

battery levels are lower than the estimated average, they become increasingly patient, and

the backbone takes more time to converge, as evident in Table 7.3. Conversely, when

nodes have a battery level higher than the perceived average, they become more willing

to volunteer, and the backbone constructions is significantly faster.

The Price of Free-Riding We now study the effect of a node trying to free-ride

from the system. By free-riding, we mean that the node refuses to take any role in the

backbone. We show that free-riding has an adverse effect on each node in the network,

including the free-riders, and conclude that free-riding is not a rational strategy.

We experiment with a varying number of nodes acting as free-riders on the 130-

node topology. Clearly, if all nodes deviated in such a manner, the network would be

163

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
r.

 o
f C

on
ne

ct
in

g
to

 R
an

d.
 D

es
tin

at
io

n

Fraction of Nodes that Are Free-Riders

Connectedness At Completion

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0.100.050.010

Figure 7.6: Given an increasing number of nodes who refuse to take part in the backbone,

the probability of any node (selfish or not) being able to connect to a destination chosen

uniformly at random declines. Even when the network forms a connected backbone, the

free-riders delay the process (inset). N = 130.

completely disconnected and yield no social benefit.

As expected, we see in Figure 7.6 that the connectivity quickly declines with respect

to the number of free-riders in the system. In other words, rampant free-riding causes

system collapse, so utility-maximizing, rational nodes will have no incentive to free-ride

on such a large scale. When only a small percentage of nodes refuse to be either leader

or bridge nodes, the backbone may be connected, but the probability goes down. In the

inset to Figure 7.6, we focus on the regime with few free-riders (between 0% and 10%),

and include only the runs that resulted in a connected backbone. On the y-axis, we plot

the factor increase in time it takes for a connected backbone to form over the time it takes

when all nodes are rational. We observe that even when it does not fragment the network,

164

free-riding negatively affects each node’s utility by delaying the backbone from becoming

connected. Hence, a rational node trying to maximize its network connectivity would not

free-ride.

Comparison with a Cooperative Scheme We use SPAN [19] as an example scheme

for cooperative backbone construction and compare it with our scheme. We performed

experiments with SPAN using the code written by the authors of SPAN. We report re-

sults when we use the 306-node network and uniform distribution of battery level, which

are representative of other results in different scenarios. We use values right after SPAN

finds a connected backbone. On average, SPAN includes 84 of 306 nodes in the back-

bone, which is 61 fewer than our scheme (Table 7.1). However, our scheme includes

more backbone nodes by design so that messages can detour areas under punishment us-

ing redundant paths (Section 7.3.2). Interestingly, although our proposed scheme does

not assume cooperation, our scheme results in higher average battery level of backbone

nodes than SPAN (0.640 vs. 0.543). It is because SPAN uses randomization as well as

battery level when selecting backbone nodes and thus includes many low-battery nodes

in the backbone. We observe that the cooperative nature of SPAN leads to shorter conver-

gence time of 12.9 seconds than that of our proposed scheme (34.7 seconds). In summary,

our results indicate that our proposed incentives-compatible scheme can achieve similar

performance to existing backbone construction schemes that assume cooperation.

165

7.6 Implementation Results

In this section, we describe our implementation and present results from a testbed

consisting of laptops running GNU/Linux (kernel version 2.6.11), equipped with an 802.11g

card with the Atheros chipset. We modify the MadWifi open-source wireless device

driver. We use the Click software router package [106] to implement the protocol in

user space. We begin with an overview of our implementation, and report our results in

Section 7.6.2.

7.6.1 Implementation and Testbed

Driver-level Changes Our protocol requires leaders to buffer packets for sleeping

nodes. The 802.11 AP-mode operation natively supports such buffering for associated

nodes that are asleep, but ad-hoc mode in the current driver does not. Hence, we use AP

mode for leader nodes and managed mode (the default for 802.11 clients) for non-leaders.

We ensure that non-leader nodes stay associated with one leader by disabling the periodic

scanning (which finds better APs).

The primary purpose of the backbone is to allow nodes to conserve energy. This is

done by putting nodes to sleep. However, the original MadWifi driver does not support

sleep mode; we extended the driver to support full sleep-mode operation in managed

mode. We can implement our scheme on top of native ad-hoc networks by extending

sleep mode support to ad-hoc mode in the future.

In a multihop network, neighbors (regardless of backbone leader/client relation)

ought to be able to communicate directly with each other. In the original 802.11 driver,

166

however, nodes in managed mode can only communicate with their AP; we have extended

the driver to permit unrestricted communication even in managed mode.

Finally, in our testbed, the range of a single node at low transmission rates (e.g.,

1 Mbps) was too large, and we could not obtain interesting multihop paths. To reduce

the effective range, we pinned the MAC-level transmission rate at 11Mbps for all frames

generated by the backbone protocol and application. We would have preferred to reduce

the transmit power, but this was not supported in the driver we used.

Backbone and Routing The backbone protocol is implemented entirely in user-

space as a Click element and uses our modified MadWifi driver. To route packets over the

backbone, we use the Click implementation of the routing protocol proposed by Draves

et al. [86].

In addition to user data and routing messages, the backbone layer exchanges peri-

odic control messages. These messages are used to determine the network state; for exam-

ple, to learn the numbers of one-hop and two-hop neighbors. Additionally, the backbone

layer takes decisions about the operating mode. For example, it decides when to volunteer

or to go to sleep. Each node uses its locally compiled information about its neighbors and

its current remaining battery to determine its volunteering time. We use the battery values

reported by a WISE interface call, which in turn uses ACPI (Advanced Configuration and

Power Interface) in Linux.

Testbed Our testbed consisted of 12 laptops, laid out according to the floor plan as

shown in Figure 7.7. In our experiments, nodes ignore high-error and unidirectional links

167

A

H

C

J

K

B

I

G

D

F

M

70.0m

E

Affected area
by H’s jamming

28.6m

Figure 7.7: Experiment layout. In our backbone experiment, 50% of the nodes (B, D, F ,

G, I , K) are in sleep mode. Nodes with square (A, E, J) are leaders, nodes in black dots

(C, H , M) are bridges.

when selecting leaders and bridges. All packets generated by or destined to non-backbone

nodes always go through their leader. Bridge nodes can directly receive packets from

other backbone nodes in their vicinity (both leaders and bridge nodes). We measure end-

to-end TCP throughput using netperf (http://www.netperf.org) and end-to-end latency

using ping. We observe that the performance of each flow is consistent over multiple

runs, and report the average of five different runs.

7.6.2 Experiment Results

In this section, we first investigate the effect of using a backbone on overall network

performance. We also use our implementation to quantify the effectiveness and cost of

punishment in practical scenarios.

168

Backbone No Backbone

Throughput Latency Throughput Latency

(Mbps) (ms) (Mbps) (ms)

Flow 1: E → A 2.36 4.07 2.45 3.64

Flow 2: I →M 2.42 56.38 2.38 3.93

Flow 3: E → G 1.28 64.58 2.32 3.62

Table 7.4: Throughput and latency with and without the backbone. Flow 3 follows a

longer path over the backbone, resulting in a drop in throughput. With the backbone,

Flows 2 and 3 have a sleeping node, which results in larger latency.

7.6.2.1 Effect of the Backbone on Network Performance

In Table 7.4, we compare average throughput and latency of flows with and without

a backbone. Flow 1 (using E-C-A) consists only of backbone nodes, and the end-to-end

path is the same as the one without the backbone; for Flow 2 (using I-J-M), the path is

the same, but now it includes a node (I) that is a client and hence goes to sleep. For Flow

3, the path changes (E-M -J-G with the backbone and E-C-G without it).

For Flow 1, as expected, both end-to-end bandwidth and latency are largely un-

affected by the backbone since both the path and node state (awake or asleep) remain

unchanged. Flow 2 on the other hand, shows similar throughput results, but experiences

higher latency. This increase in latency is because node I is not in the backbone and is in

sleep mode (Figure 7.7). Both the throughput and latency for Flow 3 are affected when

we use the backbone. The throughput reduces by around 0.80 Mbps because the flow

takes one extra hop, and the latency increases by ∼60 ms because G is asleep. When J

169

receives packets destined to G, J buffers the packet until G wakes up for the next bea-

con (sent every 100 ms), learns about and requests the buffered packet. This additional

buffering delay, on average, is about half the beacon period. Although we do not report

details here, we also performed experiments with concurrent flows that share common

links. Our results show that the throughput using the backbone was comparable to the

network without a backbone.

Finally, we report the control overhead and convergence time of our protocol. For

the first five minutes of the protocol, there were 61 control messages per node, with

the message size being 56 bytes on average. The interval between periodic heartbeat

messages is around five seconds, and the vast majority (about 59 out of 61) of control

messages are heartbeat messages. In this 12-node network, it took around 7 seconds to

complete the backbone formation, which agrees with the results in Table 7.1.

7.6.2.2 Punishment

Recall that we have asserted that jamming is an effective punishment mechanism

in Section 7.4; here, we quantify the throughput degradation due to jamming. In our

experiment, we assume H detects a misbehaving neighbor. Specifically, the destination

A of Flow 1 is under punishment as well as the source I of Flow 2. While the two

endpoints of Flow 3 are not sufficiently close to H , the path (E-M -J-G) includes node

J which is within H’s jamming range. We ran two sets of experiments; (1) the node

starts jamming as soon as the flows start and (2) the jamming node takes 10 seconds to

detect that the misbehaving neighbor is sending or receiving data. We present our results

170

Flow 1 Flow 2 Flow 3

Throughput (with 10-sec delay) 0.69 0.26 0.16

Table 7.5: Throughput (in Mbps) with punishment. Without the initial 10-second delay,

the throughput was ∼0 Mbps in all cases.

in Table 7.5.

In our experiments, we observed that if H starts jamming immediately, then the

source was unable to establish a connection, resulting in no packets being sent or re-

ceived. On the other hand, when the jamming starts 10 seconds after the connection was

established, some packets got through, but the throughput is reduced by up to 88%. Ex-

cept for a small number of packets during the initial 10 seconds, communication through

a node being punished (e.g., J) is nearly impossible while jamming is active. Also, Flow

1 has only one node A within H’s jamming range (refer Figure 7.7) and maintains higher

throughput than Flow 2 in which two nodes (I and J) are affected by the punishment.

Since Flow 3 uses a longer path than Flows 1 and 2, and the destination G is in sleep

mode, the achievable throughput is even lower.

In Table 7.5, each flow has at least one node within H’s jamming range. To inves-

tigate the effect of jamming on distant paths, we used a different backbone to experiment

with a different path (E-C-G) for Flow 3. Although there is no link shown in Figure 7.7,

G occasionally receives packets from H (i.e., a weak link between H and G exists). In

this experiment, the throughput over the alternate path is 1.35 Mbps on average, which

is more than 8 times the throughput over the original path (Table 7.5). This experiment

demonstrates that the effect of jamming punishment is localized, and in a large network,

171

communication involving well-behaved nodes in distant parts of the network will not be

affected by local punishments.

7.6.2.3 Energy Consumption

A punishing node needs to transmit signals constantly, which may significantly

reduce its battery life. To quantify the cost of punishment, we measured the battery con-

sumed during a 5-minute interval using ACPI. We recharged the battery after each run

to its full capacity. We also disabled components such as the LCD screen to minimize

external effects. On average, a jamming node consumes 815 mWh of energy for five

minutes while leader and bridge nodes consume 700 mWh. Although jamming consumes

more energy, in practical uses, it typically lasts for a shorter period. Hence, in practice,

we expect only a modest increase in the energy consumed during jamming. We also ob-

served that a sleeping node consumes 645 mWh for five minutes, while a laptop without

a wireless card consumes 595 mWh. We believe that with improved hardware design and

a better software implementation, we can increase the amount of energy saved due to the

backbone.

7.7 Summary and Future Work

We have examined how internal incentive mechanisms can enforce cooperation in

a multihop wireless network consisting solely of greedy nodes. We generalize the well-

known Volunteer’s Timing Dilemma, based on which we develop an incentive-compatible

scheme that constructs efficient routing backbones. Our simulation and implementation

172

results demonstrate that the resulting backbone forms quickly and provides paths and

battery savings comparable to protocols designed for fully cooperative nodes.

This work describes the first complete set of results for backbone formation and

naturally leads to many interesting open questions, including how to handle node collu-

sion, how to model systems with some altruistic and some greedy nodes, and how to form

efficient backbones while taking possible punishment into account. Enforcing correct

forwarding and routing is another orthogonal area of interesting research. Designing an

incentive mechanism to achieve an efficient equilibrium for routing and forwarding will

be of immediate use for future wireless networks composed of self-interested devices.

173

Chapter 8

Conclusions and Future Work

In this dissertation, we have addressed the issues caused by heterogeneity in link

quality and node capability in wireless networks. We have proposed the WISE abstraction

framework that provides a uniform set of interfaces and enables upper-layer protocols to

access lower-level details without knowing the specific mechanisms. We also have pre-

sented a number of protocol extensions that address specific issues arising due to het-

erogeneity in wireless networks. We have used analytical techniques to prove theoretical

guarantees on the performance of some of our schemes. We also have evaluated these

protocol mechanisms using simulations and real-world experiments and demonstrated

significant performance improvement.

In the WISE framework, we have defined a set of uniform interfaces that can be used

to access lower-level information in wireless networks such as estimated packet error rate

over a wireless link, required transmit power over a link, link latency, and remaining

battery for a node. We have focused on packet error rate estimation and presented several

estimation techniques such that we can choose the most appropriate one according to

network environments. We also have performed experiments on real wireless testbeds

to validate our estimation schemes. One of them uses a well-known two-state Markov

model, and successfully estimates the error rates for packets of arbitrary size in an efficient

manner.

174

We have proposed a new architecture for multihop wireless LANs. Unlike the cur-

rent system where only a direct link to AP is used, the new architecture allows a node

to use multihop paths through intermediate clients to reach the AP if it leads to better

performance. We have performed a measurement study in a currently deployed IEEE

802.11 WLAN, and demonstrated that carefully designed multihop mechanisms can lead

to significant performance improvement. We have developed protocol mechanisms that

consider MAC-specific information and performed simulations to understand the perfor-

mance of proposed mechanisms. Our results show that our protocol leads to significant

improvement not only for the nodes that implement it, but also for those nodes that are

not aware of the protocol extension.

We have designed a protocol extension for efficient geographic routing. We have

proposed to use a new link metric called NADV that considers both location and link

quality. We prove that NADV finds paths whose cost is close to the optimum. Geographic

routing with NADV provides an adaptive routing strategy, which is general and can be

used for various link cost types. We have presented how NADV can be used with multiple

WISE interfaces. In the simulation experiments, the combination of NADV and WISE

cost estimation techniques outperforms the current geographic routing scheme in various

settings.

We also have considered the difference in node capability, especially in terms of

remaining battery life. We have focused on increasing network lifetime and presented a

backbone construction scheme. We have theoretically proved that the resulting backbone

is essentially smallest possible and simultaneously maximizes the minimum node capac-

ity among all connected backbones. We have generalized the scheme such that we can

175

build more resilient backbones that can maintain connectivity even in dynamic networks.

We have performed experiments and presented results to demonstrate that the proposed

backbone scheme outperforms the best existing scheme in terms of increasing network

lifetime and maintaining connectivity without adversely affecting message delivery per-

formance.

Finally, we have considered the backbone construction problem when nodes are

selfish. We have used game-theoretic approaches and modeled the backbone construc-

tion as providing a public good. We have generalized the Volunteer’s Timing Dilemma

(VTD) and presented an incentive-compatible backbone construction protocol based on

the generalized VTD analysis. We have performed simulation experiments and investi-

gated several performance aspects such as backbone size, remaining battery distribution

among backbone nodes, and backbone construction time. Our results show that the per-

formance of our scheme is similar to that of an existing backbone construction scheme in

which all nodes are assumed to be cooperative.

We also have implemented the backbone construction scheme on a real testbed

composed of 12 laptops. We have modified an open-source device driver and performed

the first evaluation study on the network performance when we use a backbone. Our

results show that although we may sometimes experience performance degradation due

to nodes in sleep mode, we can achieve a similar level of performance with and without a

backbone.

This dissertation work naturally leads to a number of interesting future research is-

sues. First, in Chapter 3, we have mentioned several approaches to achieve more efficient

176

WISE implementations (e.g., more efficient PER estimation using other available infor-

mation). As wireless communications become more prevalent, efficient use of network

resources through careful implementation will become more important. In the current im-

plementation of WISE framework, we have focused on the IEEE 802.11-based networks.

Although the basic functionality remains the same, different wireless technologies may

bring different aspects in implementing WISE interfaces. For example, TDMA (Time Di-

vision Multiple Access) will result in fewer collision-induced errors than CSMA, and the

channel usage will be more efficient when the network load is higher. It will be an inter-

esting piece of future work to implement the WISE interfaces on top of various underlying

MAC protocols and experiment with them.

In our work, we have addressed two aspects of heterogeneity in wireless networks:

link quality and node capability. Specifically, the new architecture proposed for multihop

WLANs and the protocol extension for geographic routing address problems due to het-

erogeneous link quality, while the two backbone construction schemes address problems

due to heterogeneous node capability. These schemes focus only on one aspect of hetero-

geneity, and an ideal scheme should consider both aspects simultaneously. For example,

we will be able to achieve network lifetime increase and efficient network operation if

we use a small backbone composed of high-capacity nodes while all links between back-

bone nodes are of high quality. As a first step, considering a static network with complete

information may give a good insight into this type of research problems.

In Chapter 7, we have considered the backbone construction problem in a net-

work composed of selfish nodes. As wireless communications become more wide-spread

among individual users, we need to take selfishness into account and design incentive-

177

compatible mechanisms. Specifically, routing and forwarding have been the most basic

functionality in multihop wireless networks, and simple and efficient incentive-compatible

mechanisms for the two functions will be essential to the wide deployment of multihop

wireless networks. Although several prior schemes that depend on external entities may

be applicable to networks with some infrastructure, in decentralized wireless networks,

we need mechanisms that do not depend on central authority, which will be a very inter-

esting issue to pursue. Another related issue arises when nodes are not just selfish but

malicious. Due to the broadcast property of wireless medium, a few malicious nodes

can disrupt the entire communication in wireless networks. Although apparently very

challenging, addressing this type of problems will be of increasing importance as decen-

tralized wireless networks become prevalent in the future.

178

Appendix A

Proofs for Theorems in Chapter 6

We describe a special case of the FKG inequality [107]. Consider an event F that is

determined by a vector ~Y = (Y1, · · · , Ym) of independent random variables Yi ∈ {0, 1}.

Suppose that whenever F holds for ~a, F also holds for any ~b that coordinate-wise domi-

nates ~a (i.e., ∀i, ai ≤ bi). Then, we call F an increasing event of ~Y . For increasing events

F1, · · · , Fl, the following holds: Pr(
∧l

i=1 Fi) ≥
∏l

i=1 Pr(Fi).

A.1 Proof of Theorem 6.1.2

We prove that in any D-regular graph with n nodes, E[|L|] ≤ c n
D

log (D + 1) for

a constant c that approaches 1 as D becomes large. Consider an indicator variable Xv,

where Xv = 1 iff v ∈ L. Then, |L| =
∑

v Xv. Let us denote by Pv the probability

that node v is nominated as leader. Then, from the linearity of expectation, E[|L|] =

E[
∑

v Xv] =
∑

v E[Xv] =
∑

v Pv. Then, to prove the theorem, it is sufficient to show:

∀ v, Pv ≤ c
D

log (D + 1). Since all nodes have exactly D neighbors, Pv is same for all

v’s.

We define Ei = Pr[i-th neighbor of v does not nominate v]. We also denote E0 =

Pr[v itself nominates other node]. For each node u, consider a binary random variable

Yu: Yu=1 iff cu > cv; Yu=0 otherwise. Then, Ei (0 ≤ i ≤ D) is an increasing event of n

179

random variable Yu’s, and we can apply the FKG inequality to pv, similarly to [108]:

Pv = 1−
∫ 1

0
Pr[E0 ∧ E1 ∧ · · · ∧ ED|cv = t] dt

≤ 1−
∫ 1

0

D
∏

i=0

Pr[Ei|cv = t] dt = 1−
∫ 1

0
(1− tD)D+1 dt (A.1)

Let us define A =
∫ 1
0 (1− tD)D+1 dt. Then, Pv ≤ 1−A. We want to find a constant

value c ≥ 1 that satisfies the following:

A ≥ (1
D+1

)
c
D (A.2)

Then, since x ≥ 1 + log x for all x > 0, we have A ≥ 1 − c log (D + 1)/D, and

consequently, Pv ≤ c log (D + 1)/D, which is what we want to show.

Now, it remains to determine c. By taking the natural logarithm of Inequality A.2,

c should satisfy:

c ≥ − D
log (D+1)

log A = D
log (D+1)

log (A−1). (A.3)

We note the following facts: H(n) =
∑n

i=1 1/i ≤ log n + 1, and 1 + x ≤ ex for all

x ≥ 0. We denote exp(x) = ex. Then, we can show that log(A−1) = log(
∏D+1

i=1 (1 + 1
Di

)) ≤

log(
∏D+1

i=1 exp(1
Di

)) = H(D + 1)/D. (See [70] for details.) Then, we can find an upper

bound of the righthand side of Inequality A.3, which we can use as c to satisfy Inequal-

ity A.3:

c = 1 + 1
log (D+1)

. (A.4)

It is easy to see that as D grows large, c approaches 1.

180

A.2 Proof of Lemma 6.1.3

We denote the righthand side of Equation A.4 as a function of degree d. Note

that c(d) is decreasing where c(1) = 1 + 1/ log 2 ≈ 2.44. Then, using similar steps in

Appendix A.1, we can show: E[|L|] ≤ ∑

v∈V α c(dv)
log (dv+1)

dv
≤ c′

∑

v∈V
log (dv+1)

dv
, where

c′ = α c(δ) and δ is the minimum degree in the network.

A.3 Proof of Theorem 6.1.4

Consider the following Integer Program (IP) for a minimum dominating set:

minimize
∑

v∈V xv,

subject to ∀v, xv +
∑

u:(u,v)∈E xu ≥ 1, xv ∈ {0, 1}

Relaxing the integrality constraints, we get a Linear Program (LP) where ∀v, xv ≥ 0. An

optimal LP solution is a lower bound of the optimal IP solution. If we consider the dual

of LP, by using the property of α-locally-regular graphs, we can show that
∑

v∈V
1

(1+α)dv

is a feasible dual solution. (See [70] for details.) Since any feasible dual solution is

a lower bound of any primal solution, from Lemma 6.1.3, we can show that E[|L|] ≤

c′
∑

v∈V
1
dv

log(∆+1) ≤ c′(1+α) log(∆+1) OPT. This completes the proof of E[|L|] =

O(log ∆) OPT.

A.4 Proof of Theorem 6.2.1

We denote by v the minimum-capacity node of the resulting backbone. If v ∈ L,

by Theorem 6.1.1, the backbone is a maximum-capacity connected dominating set. We

show the case where v is a part of a virtual edge. Consider the virtual edge that included

181

v while connecting fragments F1 and F2. Let us pick any two leaders each from F1 and

F2 and call them L1 and L2, respectively.

We first prove by contradiction that the following set is not connected: S = {u | cu >

cv}. Note that L1 ∈ S and L2 ∈ S. Let us assume S is connected. Then, L1 and L2 have

at least one path P consisting only of nodes in S. In this case, F1 and F2 can get merged

using possibly multiple virtual edges using the nodes on P . As a result, F1 and F2 would

not have chosen the virtual edge with v. This contradiction proves that S is not connected.

Since S is not connected, no subset of S can be a connected dominating set.

182

Appendix B

Derivation Sketch for Eq. 7.2

Here we prove the expression for the optimal waiting time given in Section 7.2.2.

Let Tv(cv) denote the function for the optimal waiting time for node v, where cv is v’s

cost to volunteer. Assume, as discussed in Section 7.2.2, that each node knows its two-hop

neighborhood, N 2. For the ease of exposition, let N 1(v) include only the neighbors of

u that have not opted out of the GVTD game. Further, define the set N 1
v (u)

def
= N 1(u) \

N 1(v), that is, the one-hop neighbors of u that are not also one-hop neighbors of v.

Letting nu = |N 1
v (u)|, we have:

Qv(cv)
def
= Pr[v will have to volunteer]

= Pr[∀u ∈ N 1(v) : u will not volunteer before v]

≈ Pr[∀u ∈ N 1(v) : (cv < cu) ∨

((cv ≥ cu) ∧ ∃v ∈ N 1
v (u) s.t. cv < cu)]

≈
∏

u∈N 1(x)

[

(1− cv) +
∫ cv

0
(1− (1− y)nu−1) dy

]

=
∏

u∈N 1(x)

[

1− 1− (1− cv)
nu

nu

]

(B.1)

Bliss and Nalebluff [98] show that the partial derivative of the optimal waiting time, Tv(c),

with respect to node v’s cost c is

∂Tv(c)

∂c
= − c

1− c
· 1

Qv(c)
· ∂Qv(c)

∂c
(B.2)

183

Using the above approximation of Qv(c), we obtain the following.

∂Tv(c)

∂c
≈

∑

u∈N 1(x)

nuc(1− c)nu−2

nu − 1 + (1− c)nu
(B.3)

The integral of this expression yields our final expression for Tv(c).

184

BIBLIOGRAPHY

[1] M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M. Kirkup, and A. Menezes.
PGP in constrained wireless devices. In Proceedings of the 9th USENIX Security
Symposium, pages 247–261, Denver, Colorado, August 2000. USENIX.

[2] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-
throughput path metric for multi-hop wireless routing. In Proceedings of Mobicom,
pages 134–146. ACM Press, 2003.

[3] Henrik Lundgren, Erik Nordstr, and Christian Tschudin. Coping with communica-
tion gray zones in IEEE 802.11b based ad hoc networks. In Proceedings of the 5th
ACM international workshop on Wireless mobile multimedia, pages 49–55, 2002.

[4] Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wireless networks.
IEEE Trans. Parallel Distrib. Syst., 12(11):1122–1133, 2001.

[5] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. In Proceedings of the 3rd Inter-
national Workshop on Discrete algorithms and methods for mobile computing and
communications. ACM Press, 1999.

[6] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th ACM/IEEE MobiCom, pages 243–254. ACM
Press, 2000.

[7] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-
hoc routing: of theory and practice. In Proceedings of the 22nd annual symposium
on Principles of distributed computing, pages 63–72. ACM Press, 2003.

[8] Dragos Niculescu and Badri Nath. Trajectory based forwarding and its applica-
tions. In Proceedings of the 9th ACM/IEEE MobiCom, pages 260–272. ACM Press,
2003.

[9] Ivan Stojmenovic. Position-based routing in ad hoc networks. IEEE Communica-
tions Magazine, pages 128–134, July 2002.

[10] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H.
Katz. A comparison of mechanisms for improving TCP performance over wireless
links. IEEE/ACM Trans. Netw., 5(6):756–769, 1997.

[11] Suman Banerjee and Archan Misra. Minimum energy paths for reliable communi-
cation in multi-hop wireless networks. In Proceedings of the 3rd ACM MobiHoc,
pages 146–156, 2002.

[12] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance anomaly
of 802.11b. In IEEE Infocom, April 2003.

185

[13] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. Opportunistic media ac-
cess for multirate ad hoc networks. In Proceedings of the 8th annual international
conference on Mobile computing and networking, pages 24–35. ACM Press, 2002.

[14] Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless networks.
IEEE JSAC, 17(8):1333–1344, August 1999.

[15] J. Gomez, A. Campbell, M. Naghshineh, and C. Bisdikian. PARO: Supporting
transmission power control for routing in wireless ad hoc networks. ACM/Baltzer
Journal on Mobile Networks, 2002.

[16] Jae-Hwan Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc
networks. In Proceedings of IEEE Infocom 2000, pages 22–31, 2000.

[17] Theodore Rappaport. Wireless Communications: Principles and Practice (2nd
Edition). Prentice Hall, 2001.

[18] L. Marie Feeney and M. Nilsson. Investigating the energy consumption of a wire-
less network interface in an ad hoc networking environment. In Proceedings of
IEEE INFOCOM, 2001.

[19] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks.
Wireless Networks, 8(5), 2002.

[20] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for
ad hoc routing. In Proc. of MobiCom, 2001.

[21] Y.-D. Lin and Y.-C. Hsu. Multihop cellular: A new architecture for wireless com-
munications. In IEEE Infocom, March 2000.

[22] Hongyi Wu, Chunming Qiao, S. De, and O. Tonguz. Integrated cellular and ad hoc
relaying systems: iCAR. IEEE JSAC, Vol.19, Iss.10, October 2001.

[23] O. Dousse, P. Thiran, and M. Hasler. Connectivity in ad-hoc and hybrid networks.
In IEEE Infocom, June 2002.

[24] Benyuan Liu, Zhen Liu, and Don Towsley. On the capacity of hybrid wireless
networks. In IEEE Infocom, April 2003.

[25] Ulas C. Kozat and Leandros Tassiulas. Throughput capacity of random ad hoc
networks with infrastructure support. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking, pages 55–
65. ACM Press, 2003.

[26] H.-Y. Hsieh and R. Sivakumar. Performance comparison of cellular and multi-hop
wireless networks: a quantitative study. In ACM Sigmetrics, June 2001.

[27] William D. List Matthew J. Miller and Nitin H. Vaidya. A hybrid network imple-
mentation to extend infrastructure reach. UIUC Technical Report, January 2003.

186

[28] Christian Tschudin. Simple ad hoc routing with LUNAR. In Proceedings of the
2nd Swedish Workshop on Wireless Ad-hoc Networks, 2002.

[29] Haiyun Luo, Ramachandran Ramjee, Prasun Sinha, Li (Erran) Li, and Songwu Lu.
Ucan: a unified cellular and ad-hoc network architecture. In Proceedings of the
9th annual international conference on Mobile computing and networking, pages
353–367. ACM Press, 2003.

[30] N. Ben Salem and M. Jakobsson L. Buttyan, J.P. Hubaux. A charging and reward-
ing scheme for packet forwarding. In ACM MobiHoc, June 2003.

[31] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous com-
puting. IEEE Computer, 34(8):57–66, 2001.

[32] I. Stojmenovic and X. Lin. Loop-free hybrid single-path/flooding routing algo-
rithms with guaranteed delivery for wireless networks. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1023–1032, October 2001.

[33] L. Blazevic, S. Giordano, and J. Y. Le Boudec. Self organized terminode routing.
Journal of Cluster Computing,, 5(2), April 2002.

[34] Ivan Stojmenovic and Xu Lin. Power-aware localized routing in wireless networks.
IEEE Trans. Parallel Distrib. Syst., 12(11):1122–1133, 2001.

[35] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari.
Energy-efficient forwarding strategies for geographic routing in lossy wireless sen-
sor networks. In Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 108–121. ACM Press, 2004.

[36] M. Zorzi and A. Armaroli. Advancement optimization in multihop wireless net-
works. In Proceedings of VTC, October 2003.

[37] D. Johnson and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks.
Kluwer Academic Publishers, 2001.

[38] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR), October
2003. IETF RFC 3626.

[39] Bevan Das and Vaduvur Bharghavan. Routing in ad-hoc networks using minimum
connected dominating sets. In International Conference on Communications, June
1997.

[40] S. Guha and S. Khuller. Approximation algorithms for connected dominating
sets. In Proc. of the Fourth Annual European Symposium on Algorithms. Springer-
Verlag, 1996.

[41] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. Distributed construction
of connected dominating set in wireless ad hoc networks. In Proceedings of IEEE
INFOCOM, pages 1597–1604, June 23–27 2002.

187

[42] Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrish-
nan, and Arvind Srinivasan. Fast distributed algorithms for (weakly) connected
dominating sets and linear-size skeletons. In Proceedings of the fourteenth an-
nual ACM-SIAM symposium on Discrete algorithms, pages 717–724. Society for
Industrial and Applied Mathematics, 2003.

[43] J. Wu, M. Gao, and I. Stojmenovic. On calculating power-aware connected dom-
inating sets for efficient routing in ad hoc wireless networks. In Proceedings of
IEEE Int’l Conf. on Parallel Processing, 2001.

[44] O. Younis and S. Fahmy. Distributed clustering in ad-hoc sensor networks: A
hybrid, energy-efficient approach. In Proceedings of IEEE INFOCOM, 2004.

[45] Y. Wang, W. Wang, and X. Li. Distributed low-cost backbone formation for wire-
less ad hoc networks. In In Proc. of ACM MobiHoc, 2005.

[46] R. Zheng and R. Kravets. On-demand power management for ad hoc networks. In
Proc. of IEEE Infocom, April 2003.

[47] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and Roger Wattenhofer.
Analysis of a cone-based distributed topology control algorithm for wireless multi-
hop networks. In Proceedings of the twentieth annual ACM symposium on Princi-
ples of distributed computing, pages 264–273. ACM Press, 2001.

[48] N. Li and J. C. Hou. FLSS: a fault-tolerant topology control algorithm for wireless
networks. In Proceedings of Mobicom, 2004.

[49] Luzi Anderegg and Stephan Eidenbenz. Ad Hoc-VCG: A Truthful and Cost-
Efficient Routing Protocol for Mobile Ad Hoc Networks with Selfish Agents. In
Proc. of MobiCom, 2003.

[50] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design. In ACM Sympo-
sium on Theory of Computing, 1999.

[51] S. Zhong, J. Chen, and Y. Yang. Sprite: A simple, cheat-proof, credit-based system
for mobile ad-hoc networks. In Proceedings of Infocom, April 2003.

[52] Levente Buttyan and Jean-Pierre Hubaux. Enforcing service availability in mobile
ad-hoc wans. In Proceedings of the 1st ACM international symposium on Mobile
ad hoc networking & computing, pages 87–96. IEEE Press, 2000.

[53] Sheng Zhong, Li (Erran) Li, Yanbin Grace Liu, and Yang (Richard) Yang. On
designing incentive-compatible routing and forwarding protocols in wireless ad-
hoc networks: an integrated approach using game theoretical and cryptographic
techniques. In Proc. of ACM Mobicom, 2005.

[54] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining Cooperation in
Multi-hop Wireless Networks. In NSDI, 2005.

188

[55] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbe-
havior in mobile ad hoc networks. In Proc. of Mobicom, 2000.

[56] M. Cagalj, S. Ganeriwal, I. Aad, and J. P. Hubaux. On Selfish Behavior in
CSMA/CA Networks. In Infocom, 2005.

[57] Pradeep Kyasanur and Nitin Vaidya. Selfish MAC Layer Misbehavior in Wireless
Networks. IEEE Transactions on Mobile Computing, 4(5), 2005.

[58] Maxim Raya, Jean-Pierre Hubaux, and Imad Aad. DOMINO: a System to Detect
Greedy Behavior in IEEE 802.11 Hotspots. In Proc. of MobiSys, 2004.

[59] Andreas Kopke, Andreas Willig, and Holger Karl. Chaotic maps as parsimonious
bit error models of wireless channels. In Proceedings of Infocom, April 2003.

[60] Marco Zuniga and Bhaskar Krishnamachari. Analyzing the transitional region in
low power wireless links. In Proceedings of IEEE SECON, October 2004.

[61] Abtin Keshavarzin, Elif Uysal-Biyikoglu, Falk Herrmann, and Arati Manjeshwar.
Energy-efficient link assessment in wireless sensor networks. In Proc. of IEEE
Infocom, March 2004.

[62] E. N. Gilbert. Capacity of a burst-noise channel. Bell Systems Technical Journal,
39:1253–1265, 1960.

[63] E. O. Elliot. Estimates of error rates for codes on burst-noise channels. Bell Systems
Technical Journal, 42:1977–1997, 1963.

[64] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level measurements
from an 802.11b mesh network. In ACM SIGCOMM, 2004.

[65] Baruch Awerbuch, David Holmer, and Herbert Rubens. High throughput route
selection in multi-rate ad hoc wireless networks. In First Working Conference on
Wireless On-demand Network Systems (WONS), 2004.

[66] IEEE. Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications. IEEE 802.11 Standard, 1999.

[67] S. Lee, S. Banerjee, and B. Bhattacharjee. The case for multi-hop wireless local
area network. In Proc. of IEEE Infocom, March 2004.

[68] IEEE 802.11h Standard. Part 11. Amendment 5: Spectrum and transmit power
management extensions in the 5GHz band in Europe, 2003.

[69] Rex Min and Anantha Chandrakasan. Top five myths about the energy con-
sumption of wireless communication. SIGMOBILE Mob. Comput. Commun. Rev.,
7(1):65–67, 2003.

189

[70] S. Lee, B. Bhattacharjee, A. Srinivasan, and S Khuller. Efficient
and resilient backbones for multihop wireless networks. Technical re-
port, CS-TR 4726, University of Maryland, College Park. Availabe at
http://www.cs.umd.edu/users/slee/pubs/tr4726.pdf, June 2005.

[71] Atul Adya, Paramvir Bahl, Ranveer Chandra, and Lili Qiu. Architecture and tech-
niques for diagnosing faults in ieee 802.11 infrastructure networks. In MobiCom
’04: Proceedings of the 10th annual international conference on Mobile computing
and networking, pages 30–44. ACM Press, 2004.

[72] C.E. Perkins and E.M. Belding-Royer. Ad hoc on-demand distance vector (AODV)
routing. In IEEE Workshop on Mobile Computing Systems and Applications,
February 1999.

[73] V. Park and M.S. Corson. A highly adaptive distributed routing algorithm for mo-
bile wireless networks. In IEEE Infocom, April 1997.

[74] Z. Haas, M. Pearlman, and P. Samar. The zone routing protocol (ZRP) for ad hoc
networks, July 2002. IETF draft, Work in progress.

[75] Jinyang Li, Charles Blake, Douglas S.J. De Couto, Hu Imm Lee, and Robert Mor-
ris. Capacity of ad hoc wireless networks. In MobiCom ’01: Proceedings of the
7th annual international conference on Mobile computing and networking, pages
61–69, New York, NY, USA, 2001. ACM Press.

[76] George Xylomenos and George C. Polyzos. TCP and UDP performance over a
wireless LAN. In IEEE Infocom, 1999.

[77] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec
Woo, Eric Brewer, and David Culler. The emergence of networking abstractions
and techniques in TinyOS. In Proceedings of First Symposium on Networked Sys-
tems Design and Implementation, 2004.

[78] A. Kamerman and L. Monteban. WaveLAN-II: A high performance wireless LAN
for the unlicensed band. Bell Labs Technical Journal, 1997.

[79] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. Opportunistic media ac-
cess for multirate ad hoc networks. In Proceedings of ACM Mobicom, 2002.

[80] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A scalable location service for geographic ad hoc routing. In Proc. of ACM
MobiCom, 2000.

[81] Tommaso Melodia, Dario Pompili, and Ian F. Akyildiz. Optimal local topology
knowledge for energy efficient geographical routing in sensor networks. In Proc.
of Infocom, March 2004.

190

[82] Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in mobile
ad hoc networks. In Proceedings of the 4th annual ACM/IEEE international con-
ference on Mobile computing and networking, pages 181–190. ACM Press, 1998.

[83] Cisco aironet 350 series client adapters data sheet, June 2003. Cisco Systems Inc.
Available at http://www.cisco.com/.

[84] Omprakash Gnawali, Mark Yarvis, John Heidemann, and Ramesh Govindan. Inter-
action of retransmission, blacklisting, and routing metrics for reliability in sensor
network routing. In Proceedings of the First IEEE Conference on Sensor and Ad
hoc Communication and Networks, Santa Clara, California, USA, October 2004.

[85] Scott Y. Seidel, Theodore S. Rappaport, Sanjiv Jain, Micheal L. Lord, and Rajen-
dra Singh. Path loss, scattering, and multipath delay statistics in four European
cities for digital cellular and microcellular raiodtelephone. IEEE Transactions on
Vehicular Technology, 40(4):721–730, November 1991.

[86] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio, multi-
hop wireless mesh networks. In MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and networking, pages 114–128.
ACM Press, 2004.

[87] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network. Wireless
Networks, 1(3):255–265, 1995.

[88] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers.
In Proc. of symposium on computational geometry, 2001.

[89] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2001.

[90] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–
652, 1998.

[91] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 2nd Edition. MIT press, 2001.

[92] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. on Programming Languages and
Systems, 1983.

[93] R. E. Tarjan. Data structures and network algorithms. CBMS-NSF Regional Con-
ference Series in Applied Mathematics. SIAM, 1983.

[94] The VINT Project. The Network Simulator–ns-2. Available at
http://www.isi.edu/nsnam/ns.

[95] J. Yoon, M. Liu, and B. D. Noble. Random waypoint considered harmful. In
Proceedings of Infocom, April 2003.

191

[96] D. M. Blough and P. Santi. Investigating upper bounds on network lifetime exten-
sion for cell-based energy conservation techniques in stationary ad hoc networks.
In Proc. of Mobicom. ACM Press, 2002.

[97] Andreas Diekmann. Volunteer’s Dilemma. Journal of Conflict Resolution, 29(4),
1985.

[98] C. Bliss and B. Nalebuff. Dragon-Slaying and Ballroom Dancing: The Private
Supply of a Public Good. Journal of Public Economics, 25, 1984.

[99] Jeroen Weesie. Incomplete Information and Timing in the Volunteer’s Dilemma.
Journal of Conflict Resolution, 38(3), 1994.

[100] Andreu Mas-Colell, Jerry Green, and Michael D. Whinston. Microeconomic The-
ory. Oxford University Press, 1995.

[101] John Douceur. The Sybil Attack. In Proc. of IPTPS, 2002.

[102] James Newsome, Elaine Shi, Dawn Song, and Adrin Perrig. The Sybil Attack in
Sensor Networks: Analysis & Defenses. In Proc. of IPSN, 2004.

[103] Yu Wang, WeiZhao Wang, and Xiang-Yang Li. Distributed low-cost backbone
formation for wireless ad hoc networks. In Proc. of ACM MobiHoc, 2005.

[104] Khaled Alzoubi, Xiang-Yang Li, Yu Wang, Peng-Jun Wan, and Ophir Frieder. Ge-
ometric spanners for wireless ad hoc networks. ACM Transactions on Parallel and
Distributed Systems, 14(5), 2003.

[105] Hari Balakrishnan, Christopher L. Barrett, V. S. Anil Kumar, Madhav V. Marathe,
and Shripad Thite. The Distance-2 Matching Problem and its Relationship to the
MAC-Layer Capacity of Ad Hoc Wireless Networks. IEEE Journal on Selected
Areas in Communications, 22(6):1069–1079, August 2004.

[106] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 18(3):263–297, 2000.

[107] C. M. Fortuin, F. Ginibre, and P. N. Kasteleyn. Correlational inequalities for par-
tially ordered sets. Communications of Mathematical Physics, 1971.

[108] H. Shachnai and A. Srinivasan. Finding large independent sets in graphs and hy-
pergraphs. In ACM Symposium on Parallel Algorithms and Architectures, 2001.

192

