
ABSTRACT

Title of dissertation: EFFICIENT ALGORITHMS FOR
CLUSTERING AND INTERPOLATION OF
LARGE SPATIAL DATA SETS

Nargess Memarsadeghi
Doctor of Philosophy, 2007

Dissertation directed by: Professor David M. Mount
Department of Computer Science

Categorizing, analyzing, and integrating large spatial data sets are of great

importance in various areas such as image processing, pattern recognition, remote

sensing, and life sciences. For example, NASA alone is faced with huge data sets

gathered from around the globe on a daily basis to help scientists better understand

our planet. Many approaches for accurately clustering, interpolating, and integrat-

ing these data sets are very computationally expensive. The focus of my PhD thesis

is on the development of efficient implementations of data clustering and interpola-

tion methods for large spatial data sets, and the application of these methods to geo-

statistics and remote sensing. In particular, I have developed fast implementations

of isodata clustering and kriging interpolation algorithms. These implementations

derive their efficiency through the use of both exact and approximate computational

techniques from computational geometry and scientific computing.

My work on the isodata clustering algorithm employs the kd-tree data struc-

ture and the filtering algorithm to speed up distance and nearest neighbor calcula-

tions. In the case of kriging interpolation, I applied techniques from scientific com-

puting including iterative methods, tapering, fast multipole methods, and nearest

neighbor searching techniques. I also present an application of kriging interpolation

method to the problem of data fusion of remotely sensed data.

EFFICIENT ALGORITHMS
FOR CLUSTERING AND INTERPOLATION OF

LARGE SPATIAL DATA SETS

by

Nargess Memarsadeghi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor David M. Mount, Chair
Associate Professor Ramani Duraiswami
Assistant Professor Lise Getoor
Doctor Jacqueline Le Moigne
Professor Dianne P. O’Leary
Professor John Townshend

c© Copyright by

Nargess Memarsadeghi

2007

Dedication

To my mother, Sedigheh Rastegaralam

and

To my father, Alinaghi Memarsadeghi.

ii

Acknowledgments

My graduate study years at University of Maryland, College Park, have been

one of the best periods of my life. I found many good friends with whom unforget-

table memories were created. I had the opportunity of knowing and working with

world-class researchers. I learned many lessons and survived some difficult times.

The completion of this thesis marks the commencement of a new period of my life.

This thesis would not have been possible without help and good intentions of many

people whom I would like to thank.

First and foremost, I would like to thank Professor David M. Mount for being

an extremely kind, patient, wise, and knowledgeable advisor. He demonstrates

being an excellent researcher and educator on a daily basis. I am deeply honored

and grateful for being his student and for having my share of his valuable time. He

helped me through various stages of my research, from providing insights for design

and implementation of different algorithms to editing my writings. I enjoyed our

meetings, in most of which Dr. Mount would enlighten me by associating physical

and geometric meanings to abstract ideas. I will always cherish these good memories

and lessons I have learned from him. I strive to be one of his good students.

I have also been fortunate to have Dr. Jacqueline Le Moigne as my supervisor

and advisor at work. She introduced me to the fields of remote sensing and image

processing, and patiently taught me various concepts in these areas. She gracefully

handles various crises, be it dealing with family emergencies or finding projects for

her employees after an extreme budget cut. I thank her for being such a great role

model, who makes many tasks seem easy and manageable.

iii

I would like to thank other members of my examining committee, Dr. Ramani

Duraiswuami, Dr. Lise Getoor, Dr. Dianne P. O’Leary, and Dr. John Townshend

for their time during both my preliminary oral exam and my final defense exam

as well as for their feedback which greatly improved this thesis. In particular,

Professor O’Leary was always available and responsive to my questions, even during

her sabbatical leave.

Special thanks to my collaborators Ramani Duraiswami, Jacqueline Le Moigne,

Jeffrey T. Morisette, David M. Mount, Nathan S. Netanyahu, Dianne P. O’Leary,

and Vikas C. Raykar for working with me. This thesis would not have been possible

without their insights, contributions, and support.

I would like to thank the Computer Science Department of the University of

Maryland, College Park, for a great educational environment, for gathering bright

students from all around the world, for wonderful faculty and staff, and for support-

ing my education during the first year of my graduate studies.

I started graduate school while I was already an employee of NASA GSFC.

I am grateful to NASA GSFC’s Advanced Architectures and Automation Branch

(code 588) and NASA GSFC’s Cooperative Education Office for supporting my re-

search and education for the past four years. Maintaining my employment and full

time graduate student status as well as having support for my research would not

have been possible without the continuous support of various supervisors and man-

agers at NASA GSFC’s code 580. In particular, I am thankful to Joseph Hennessy,

Jacqueline Le Moigne, Julie Loftis (formerly Breed), and Barbara Medina for their

encouragements and for allowing me work on the topics presented in this thesis.

iv

Special thanks to my first supervisor at NASA, Ms. Julie Loftis, for hiring me, for

her constant support ever since, and for her innovative ideas that give rise to de-

velopment of new technologies in our division. I also thank my colleagues at NASA

GSFC, code 588, for their kindness, friendship, and encouragements.

I am grateful for many caring friends who constantly contributed to my well-

being and happiness during my graduate study years. Two of them were with

me everyday at work for the past four years: Peyush Jain and Lisa Kane. A big

Thank You to my dear friends Sima Asgari, Maliheh Poorfarhani, Shabnam Tafreshi,

Indrajit Bhattacharya, Houman Alborzi, Jennifer Geiger, and many others for all

the good times and for providing me a safety net I could always rely on. I also thank

my uncle Heidarali Memarsadeghi for always being there for me.

I would like to thank my mother Sedigheh Rastegaralam, my father Alinaghi

Memarsadeghi, and my bothers Mohammad and Hossein Memarsadeghi for their

unconditional love and support throughout my life. Regardless of the situation,

getting a good education was always prioritized in order of matters by my parents.

For this reason, among countless others, I thank them. This thesis is dedicated to

them.

v

Table of Contents

List of Tables ix

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

2 Survey of Clustering Algorithms 6
2.1 Partition-based Methods . 8

2.1.1 K-center . 9
2.1.2 K-median and k-means . 10
2.1.3 isodata . 12

3 A Fast Implementation of the isodata Clustering Algorithm 14
3.1 The isoclus Algorithm . 18
3.2 The Filtering Algorithm . 22

3.2.1 The kd-tree . 23
3.2.2 The filtering process . 24
3.2.3 Additional statistical information 26
3.2.4 Assigning nodes to centers . 28
3.2.5 Approximate filtering . 30

3.3 Our Modifications and Improvements 35
3.4 Experiments . 36

3.4.1 Synthetic data . 39
3.4.2 Image data . 44
3.4.3 Experiments with approximate filtering 47
3.4.4 Dependence on the dimension 51

3.5 Average Distance and Average Distortion 55
3.6 Summary . 60

4 Survey of Interpolation Methods 62
4.1 Shepard’s Interpolation Methods . 62
4.2 Cubic Hermite Interpolation Problem 64
4.3 Spline Interpolants . 65
4.4 Natural Neighbors . 66
4.5 Triangulation (Tetrahedrization) Based Methods 68
4.6 Moving Least Squares . 69
4.7 Gaussian Process Regression . 70
4.8 Kriging/Cokriging Interpolation Methods 72

vi

5 Kriging via Covariance Tapering and Iterative Methods 76
5.1 Tapering Covariances . 80

5.1.1 Tapering via truncation . 80
5.1.2 Tapering via tapering functions 85

5.2 Our Approaches . 87
5.3 Data Sets . 89
5.4 Experiments . 91

5.4.1 Synthetic data . 95
5.4.2 Real data . 96

5.5 Summary . 98

6 Kriging via Fast Multipole and Iterative Methods 100
6.1 Gauss Transform . 101
6.2 Improved Fast Gauss Transform . 103
6.3 Gauss Transform with Nearest Neighbor Searching (gtann) 106
6.4 Our Approaches . 106
6.5 Data Sets . 108
6.6 Experiments . 109
6.7 Summary . 117

7 Data Fusion of Remotely Sensed Data 121
7.1 Objectives and Applications . 122
7.2 Data Sets Used in Remote Sensing Applications 122
7.3 Fusion Methods . 124

7.3.1 Preprocessing steps . 125
7.3.2 Fusion methods . 126

7.4 Evaluation Methods . 127

8 Cokriging as an Image Fusion Method 130
8.1 Improving the Spatial Resolution Via Cokriging 131

8.1.1 Data sets . 132
8.1.2 Methods . 132

8.1.2.1 Cokriging . 133
8.1.2.2 Principal component analysis (PCA) 134
8.1.2.3 Wavelet-based fusion 134

8.1.3 Evaluation . 136
8.1.4 Results . 138
8.1.5 Summary . 140

8.2 Improving the Spectral Resolution via Cokriging 140
8.2.1 Data sets . 141
8.2.2 Experiments . 142
8.2.3 Summary . 144

vii

9 Conclusions and Future Work 147
9.1 isodata Clustering Algorithm . 147
9.2 Kriging via Tapering . 148
9.3 Kriging via Fast Multipole Methods 150
9.4 Image Fusion via Cokriging . 151

Appendices 153

A Cokriging and Kriging Interpolation Methods 153
A.1 Mathematical Background for Solving Linear Systems 153
A.2 Geostatistics Background . 155

A.2.1 Spatial analysis . 155
A.2.2 Covariance . 156
A.2.3 Variance and standard deviation 157
A.2.4 Correlation coefficient . 157
A.2.5 Variogram . 158
A.2.6 Variogram modeling . 159
A.2.7 Variogram properties . 161

A.3 Cokriging . 163
A.3.1 Mathematical formalization of the cokriging problem 163
A.3.2 Generalized cokriging system 166
A.3.3 Mathematical formalization of the kriging problem 167
A.3.4 Unbiasedness condition . 168
A.3.5 Positive definiteness condition 171

A.4 Algorithmic Approach . 172
A.5 Past Implementations . 175
A.6 Error Analysis . 175
A.7 Computational Challenges and Solutions 178

B Satellite Data Specification 179

Bibliography 181

viii

List of Tables

3.1 Results for synthetic data with n = 10,000 41

3.2 Results for synthetic data with kinit = 20 41

3.3 Results for synthetic data where both n and kinit vary 43

3.4 Results for Landsat data set . 45

3.5 Results for MODIS data set . 46

3.6 Results for synthetic data with Approx. Filtering, n = 10, 000, and
kinit = 100 . 49

3.7 Results for Landsat data set with Approx. Filtering, kinit = 25 50

3.8 Results for MODIS data set with Approx. Filtering, kinit = 75 50

3.9 Dependence on dimension for synthetic data, n = 50, 000, kinit = 100 . 53

5.1 Average absolute errors over 200 randomly selected query points. . . 93

5.2 Average CPU times for solving the system over 200 random query
points. 93

5.3 Memory savings in the global tapered coefficient matrix 93

5.4 Average normalized absolute errors over 200 query points. 98

5.5 Average CPU times over 200 query points. 98

5.6 Memory savings in the global tapered coefficient matrix 98

6.1 Experiment 1: Average CPU time for solving the system for (a) 100
uniformly sampled query points, (b) 100 query points sampled from
the Gaussian distribution, (c) all 200 query points. 112

6.2 Experiment 1: Average iterations and exact residuals for (a) 100
uniformly sampled query points, (b) 100 query points sampled from
the Gaussian distribution, (c) all 200 query points. 112

6.3 Experiment 2: Average CPU time for solving the system for (a) 100
uniformly sampled query points, (b) 100 query points sampled from
the Gaussian distribution, (c) all 200 query points. 115

ix

6.4 Experiment 2: Average iterations and exact residuals for (a) 100
uniformly sampled query points, (b) 100 query points sampled from
the Gaussian distribution, (c) all 200 query points. 117

6.5 Experiment 3: Average CPU time for solving the system for (a) 100
uniformly sampled query points, (b) 100 query points sampled from
the Gaussian distribution, (c) all 200 query points. 118

6.6 Experiment 3: Average iterations and exact residuals for (a) 100
uniformly sampled query points, (b) 100 query points sampled from
the Gaussian distribution, (c) all 200 query points. 118

8.1 Correlation of the fused bands with MS input bands 138

8.2 Entropy of the MS and fused bands 139

8.3 Mean entropy of the entropy images obtained through co-occurrence
matrices . 139

B.1 Landsat 7 ETM data specification . 179

B.2 ALI bands and the corresponding calibrated and not corrupted Hy-
perion bands used . 180

x

List of Figures

3.1 An example of a kd-tree of a set of points in the plane, showing both
the associated spatial subdivision (left) and the binary tree structure
(right). 24

3.2 Classifying nodes in the filtering algorithm. The subdivision is the
Voronoi diagram of the centers, which indicates the neighborhood
regions of each center. 25

3.3 Filtering process where z is pruned. 30

3.4 Approximate filtering, where z is pruned. 32

3.5 CPU times and speed-ups for the various algorithms run on synthetic
data. (Note that the x and y axes do not intersect at the origin.) For
the bottom pair of plots, note that n also varies with kinit as indicated
in Table 3.3. 42

3.6 A Landsat scene and its clustered images: (a) 256×256 Landsat image
of Ridgely, Maryland (bands 3, 4, and 5), (b) clustered image due to
standard ISOCLUS, and (c) clustered image due to the Filtering variant. 45

3.7 CPU times for the various algorithmic versions as a function of the
dimension: (a) Standard, hybrid, and exact filtering, and (b) approx-
imate filtering for various ε’s. 54

3.8 Average distortion error (relative to standard version) for the ap-
proximate filtering algorithm (with various ε’s) as a function of the
dimension. 54

5.1 A small region of one of the dense data sets that were generated . . . 91

5.2 Left: Average absolute errors. Right: Average CPU running times . . 94

6.1 Evaluating an exact discrete Gauss Transform 104

6.2 Evaluating an approximate discrete Gauss Transform via ifgt 105

6.3 Experiment 1, Left: Average exact residual. Right: Average CPU
running times . 113

6.4 Experiment 2, Left: Average exact residuals. Right: Average CPU
running times . 116

xi

6.5 Experiment 3, Left: Average exact residuals. Right: Average CPU
running Times . 119

7.1 Processing levels of fusion [129]. 123

8.1 Landsat 7 multispectral bands 2, 3, and 4. Landsat 7 image courtesy
of ESA 1999 - distribution Eurimage. 132

8.2 Landsat panchromatic band 8. Landsat 7 image courtesy ESA 1999
- distribution Eurimage. 133

8.3 Pan-sharpening of Landsat MS bands with its PAN band through
principal component analysis. 135

8.4 Landsat Pan-sharpened MS bands 2, 3, and 4 through cokriging with
Pan band 8 . 136

8.5 ALI and Hyperion reflectance in their spectral domain 143

8.6 Fusion by Cokriging: estimating one ALI value in center of each
wavelength interval where ALI data is missing 145

8.7 Fusion by Cokriging: estimating up to three ALI values each wave-
length interval where ALI data is missing 145

8.8 Fusion by Cokriging: estimating ALI values in all Hyperion interval
centers where ALI data is missing . 146

xii

List of Abbreviations

NASA National Aeronautics and Space Administration
GSFC Goddard Space Flight Center
UMD University of Maryland

ALI Advanced Land Imager
CWL Central WaveLength
DEM Digital Elevation Model
DTC Decision Tree Classifier
EO-1 Earth Observing-1
FGT Fast Gauss Transform
FMM Fast Multipole Methods
GIS Geographic Information System
GP Gaussian Process
GT Gauss Transform
HMM Hidden Markov Model
HPF High Pass Filter
IFGT Improved Fast Gauss Transform
IHS Intensity Hue Saturation
ISODATA Iterative Self-Organizing Data Analysis Techniques
ISFS Invasive Species Forecasting System
LS Least Squares
MLS Moving Least Squares
MS Multispectral
NDVI Normalized Difference Vegetation Index
PAN Panchromatic
PCA Principal Component Analysis
RGB Red Green Blue
SAR Synthetic Aperture Radar
SPOT System d’Observation de la Terr
SVM Support Vector Machines
TM (Landsat) Thematic Mapper
ETM (Landsat) Enhanced Thematic Mapper
WLS Weighted Least Squares
YIQ Luminance Chrominance color space

xiii

Chapter 1

Introduction

Scientists in various disciplines are faced with large amounts of data that need

to be studied and analyzed. For example, NASA continuously collects data regarding

the earth, the solar system, and the universe beyond. Scientists analyze these data

to study and understand the earth, sun, oceans, and issues such as climate change.

Categorizing, analyzing, and integrating these data are vital to advancements in

various areas of science and to our understanding of our planet and the universe.

Clustering, interpolation, and multi-sensor data fusion are examples of important

computational tools for developing a better understanding of the mass of data being

gathered from numerous sensors. These tools are widely used in remote sensing and

geostatistics. Remote sensing in broad terms is defined as collection of information

about an object without being in physical contact with it [145]. In the case of earth

and space observation, this is done through the use of of aircraft, satellites, and so

on. The term “geostatistics” was first coined by G. Matheron (1962), who defined it

as the application of the formalism of random functions to the reconnaissance and

estimation of natural phenomena [85].

Given a large data set, clustering is the process of grouping together data

objects with similar properties [81]. For example, clustering is used in geosciences

and remote sensing applications to obtain vegetation maps of a given region. In-

1

terpolation of data values is of interest where gathering data at specific locations is

either impossible or impractical. This arises, for example, in geological and mining

applications [80, 85]. Scientists often integrate data covering the same geographic

region from various sensors for their studies. This is called data fusion [67,129]. In

the context of data fusion, interpolation techniques can compensate for missing or

noisy data. Data fusion is also an important step in filling the gaps where data are

gathered from multiple sources having different sampling rates. The application un-

der study can be earth science-related, e.g. preparing a vegetation map, performing

ecological modeling, weather forecasting, or wild fire prediction [67,129]. In all cases,

scientists would like to take advantage of complementary information provided by

multiple sources such as various sensors or in-situ measurements. These multiple

data sets representing different spatial, spectral, and temporal resolutions, or gath-

ered from multiple viewpoints, can then be used to supplement missing or spurious

data, and to generate new improved data sets. Both clustering and interpolation

methods can be used at various stages of the data fusion process.

Thus, clustering and interpolation are significant tools in the areas of remote

sensing, geostatistics, and earth sciences. However, they can be quite computa-

tionally expensive. Many formulations of clustering as an optimization problem are

known to be NP-hard [78]. This issue is particularly relevant when dealing with

large data sets. For example, most center-based clustering algorithms, such as k-

means [81], require the repeated calculation of the distances from each point to its

closest cluster center. This can be very time consuming when very large data sets are

involved. Depending on the method used, interpolation can also be computationally

2

expensive.

In this dissertation we will consider a popular clustering method called iso-

data. The isodata clustering algorithm is very similar to the k-means algorithm

in nature [16, 17, 81]. Unlike k-means, where the user specifies a fixed number of

initial clusters k, isodata has various heuristics through which it adaptively de-

termines the final number of clusters. As with the k-means algorithm, isodata is

computationally very expensive for large data sets.

The interpolation method that we will focus on throughout is called kriging.

Kriging is an important interpolation method that is widely used in geostatistics

applications [60, 80]. It is often referred to as the “gold standard” in interpolation

because it possesses a number of desirable statistical properties [111]. In particular,

it is a best linear unbiased estimator [60, 80]. There are a number of variants and

generalizations to kriging. Unfortunately, this general class of interpolation tech-

niques can be computationally very expensive when large data sets are involved,

since computing the value of the interpolant exactly for a single point might gener-

ally involve solving a dense linear system of size O(n2), where n is the number of

data points.

Clearly, the availability of efficient implementations of clustering and interpo-

lation algorithms for large data sets is essential for helping scientists analyze and

integrate their data in a timely and efficient manner. The focus of my thesis is on

the efficient implementations of computational tools for clustering and interpolation,

particularly for large spatial data sets. We will also consider their application to the

task of data fusion of remotely sensed data. As mentioned, the clustering algorithm

3

we will focus on is isodata, and the interpolation method is kriging. These imple-

mentations derive their efficiencies through the application of methods from both

computational geometry and scientific computing.

First, we will present a more efficient approach to isodata clustering, which

achieves better running times by storing the points in a common spatial data struc-

ture, the kd-tree [20], and through a modification of the way in which the algorithm

estimates the dispersion of each cluster. We also present an approximate version

of the algorithm, which allows the user to further improve the running time at the

expense of lower fidelity in computing the nearest cluster center to each point. We

provide both theoretical and empirical justification that our modified approach pro-

duces clusterings that are very similar to those produced by the standard isodata

approach. We also provide empirical studies on both synthetic data and remotely

sensed Landsat and MODIS images that show that our approach has significantly

lower running times.

We also present implementations of efficient kriging interpolation algorithms,

which have been specially designed for handling large data sets efficiently. Our al-

gorithms are based on the use of iterative methods for solving the linear systems

involved combined with a number of additional approximation techniques. These

include tapering [55], fast multipole methods [61], and nearest neighbor search-

ing methods [114]. We will present extensive experimental evidence that these ap-

proaches result in significant memory and running time savings without significantly

compromising the quality of the results. Finally, we present a study that shows how

kriging can be applied to the problem of data fusion involving remotely sensed data.

4

The remainder of this dissertation is organized as follows. First, a survey

of clustering techniques is presented in Chapter 2. One of these techniques is the

isodata clustering algorithm. In Chapter 3, our work on efficient implementation of

a variant of the isodata clustering algorithm is presented. In Chapter 4, we present

a survey of approaches to scattered data interpolation, with a particular focus on

interpolation techniques traditionally used in geostatistics applications. Following

this is a presentation of our work on efficient implementation of kriging interpolation

via two different approaches. The first approach, which is based on tapering and

iterative methods, is described in Chapter 5. Chapter 6 contains a presentation

of our work on efficient implementation of the kriging algorithm by using iterative

methods with ideas based on the fast multipole methods. We then proceed by

introducing data fusion, its applications and objectives in Chapter 7. In Chapter

8, we present results of our prior work on image fusion of remotely sensed data

and present an application of the kriging interpolation to this problem. Chapter

9 concludes this dissertation and presents some open research problems related to

the work presented in this thesis. Details of the kriging interpolation methods are

presented in Appendix A. Specifications of the satellite data that we have used in

Chapter 8 are available in Appendix B.

5

Chapter 2

Survey of Clustering Algorithms

Clustering can be loosely defined as the unsupervised classification of pat-

terns into groups [82]. Clustering has various applications in areas such as pat-

tern recognition, land cover and land use, remote sensing, machine learning, data

mining, data compression, image processing, document analysis, and life sciences

[9, 21, 44, 82, 84, 112, 143, 156, 165, 166]. Clustering algorithms are generally used in

a learning process where one wants to learn properties of a given data. For clus-

tering, this learning process is unsupervised. That is, the user does not have any

information about properties of data and their similarities. Thus, clustering can be

defined as the grouping of points with similar properties into the same class, without

knowing the class’s properties or its label.

Different clustering algorithms use different measures of similarity. In most al-

gorithms, points are considered to be similar if they are close to each other according

to some notion of spatial distance. Definition of closeness depends on the distance

function being considered. In this survey, we will present a number of clustering

algorithms, focusing on those that are most closely related to this dissertation.

There are two general families of clustering algorithms [21,82,161]: partition-

based and hierarchical clustering algorithms. The focus of this survey is on partition-

based clustering methods. I will present an overview of past work done for these

6

methods as well as explaining my prior work related to this area. See [32,82,128,161]

to learn more about work done in the area of hierarchial clustering algorithms.

There are variants and subcategories of the above mentioned families of clustering

algorithms. A few of the issues which can affect taxonomy of clustering algorithms

are as follows [82]:

Agglomerative versus Divisive: An agglomerative approach considers each

point to be a member of a singleton cluster and starts to merge points to form

a final clustering. On the other hand a divisive approach considers all points

to be in one big cluster and then splits them until some criteria are met.

Hard versus Fuzzy: Hard clustering techniques assign each point to a single

cluster. Fuzzy clustering algorithms, on the other hand, assign a degree of

membership in each cluster j, fij, to each data point xi. A fuzzy clustering

can be mapped to a hard one by assigning each point xi to the cluster j for

which fij is maximum [82].

Deterministic versus Stochastic: This implementation issue mostly shows itself

for partition-based algorithms where an optimization problem can be solved

either through traditional techniques or through a random search of the state

space of all possible clusterings.

These implementation issues (and a few others) result in various categories of clus-

tering algorithms, a few of which are presented below. See [21, 82, 161] for further

information. Examples of such categories include the following:

7

• Probabilistic Clustering (e.g. fuzzy clustering, see [21, 94,112].)

• Model-based clustering (e.g. mixture models, Gaussian mixture models, ex-

pectation maximization (EM), see [11,31,36].)

• Graph Theoretic Methods (e.g. spectral clustering, see [42,64,86,154].)

2.1 Partition-based Methods

Given a set P of n points in Rd and an integer k > 0, a typical clustering

problem asks for partitioning P into k subsets called clusters so that a certain

objective function (usually a function of distance) is minimized. These clustering

algorithms are also referred to as center-based clustering algorithms. That is, clusters

are represented by a set of k centers, and the goal of the clustering algorithm is to

assign each point to a cluster such that its objective function is minimized. The

objective function of center-based algorithms is to minimize a function of distance

from every point in P to its closest cluster center.

There are two types of objective functions: centered and summed [3]. That

is, given a function µ which measures the extent of a cluster, the objective function

being minimized in a centered clustering algorithm is of the form max1≤i≤k µ(Pi)

and in a summed clustering algorithm is of the form
∑k

i=1 µ(Pi). For example, k-

center is a centered clustering algorithms while k-median and k-means are summed

clustering algorithms.

Currently, there are no efficient exact solutions to any of the above mentioned

problems for general k and some formulations are known to be NP-hard [56]. Thus,

8

researchers have been working on efficient approximate implementations for these

cases. We will present a number of partition/center-based algorithms and the work

that has been completed in this area. Note that depending on which distance mea-

sure is being considered in the objective function of these clustering algorithms we

are dealing with different optimization problems. Throughout this survey Euclidean

distance will be assumed.

2.1.1 K-center

The objective of the k-center problem is to minimize the maximum distance

of points within a cluster from their cluster center (min-max radius clustering) [59].

In other words, given a set of data points, we would like to cover them with k-

balls where radius of the largest ball is minimized. This problem has two versions:

continuous and discrete. In continuous k-center, centers can be located anywhere in

the underlying space while in the discrete case centers must be selected from input

data points. Unless otherwise specified, we will assume the discrete case.

A naive exact solution to the discrete k-center problem would require Ω(nk)

time at least to generate all k-element subsets of the point set. This requires ex-

ponential time, if k is a function of n. Hochbaum and Shmoys introduced a graph

algorithm which provides a factor-2 approximation for the k-center and runs in

O(n2 log n) time [76, 77]. Independently, and around the same time, Gonzalez pre-

sented another factor-2 algorithm for the k-center problem [59]. He used a simple

greedy approach that runs in O(nk) time. This algorithm repeatedly selects the

9

farthest point from current set of centers as the next center to be added. Later,

Feder and Greene [47] presented a different implementation of this greedy approach

to achieve a factor-2 approximation to the k-center problem that runs in Θ(n log k)

time. They also showed that computing a c-approximation is NP hard for c ≤ 1.822

under the Euclidean norm and for c ≤ 2 for L∞ metric.

Agarwal and Procopiuc in [4] presented an (1+ε)-approximation algorithm for

the Euclidean k-center problem with a running time of O(n log k)+(k
ε
)O(k1− 1

d). Har-

Peled introduced the first approximate k-center algorithm for a set of moving data

points [68,69]. He used a static clustering approach for the moving points. That is,

at any given time, he selects a small subset of data points such that performing exact

clustering on them yields a good approximation to the optimal k-center clustering

at any time. Such a set is called a coreset. He also improved the Feder and Greene

algorithm to run in O(n) time.

2.1.2 K-median and k-means

The objective of the k-median problem is to minimize the sum of distances

to the nearest center [78]. For k = 1 this problem is known as the Fermat-Weber

problem [3]. The goal of the k-means clustering is to minimize the sum of squared

distances [57, 81, 100, 102]. We define the neighborhood of a center point to be the

set of data points for which this center is the closest. It is easy to prove that

any locally minimal solution to the k-means problem lies at the centroid of its

neighborhood [43, 45]. It is known that k-means has a local optimum equal to the

10

centroid of the points in each cluster, and that the k-means algorithm also called

Lloyd’s algorithm converges to this local centroid [24,72,104,130,147].

There is a (1 + ε)-approximation for the k-median problem which runs in

O(2
1

εd n log n log k) time assuming that dimension d is fixed [93]. This work, similar to [4]

mentioned for the k-center problem, is based on applying dynamic programming to

an adaptive hierarchial decomposition of space.

Jain and Vazirani gave a 6-approximation algorithm for the k-median problem

with O(n2(log n)(L + log n)) running time, where L denotes the number of bits

required to store the longest edge or largest connection cost [83]. This approximation

was later improved by Charikar and Guha to a factor-4 approximation algorithm

that runs in O(n3) time [25].

This approximation factor was further improved by Arya et al. to a 3-approximation

algorithm through a local search approach [14,15]. They show that when performing

a local search where up to p centers can be exchanged (swapped) in each step, an im-

proved approximation factor of 3+ 2
p

with a running time of O(np) can be obtained.

That is, the algorithm starts with k initial centers and at each step, it proceeds by

removing p centers and adding p others until the overall objective function cannot

be improved.

For the k-means problem, Matoušek made a breakthrough by introducing the

first (1 + ε)-approximation algorithm for this problem [106]. Matoušek showed that

his algorithm has a running time of O(n(logk n)ε−2k2d) for fixed d and k. Unfor-

tunately, this approach is impractical unless k is a small constant. Kanungo et

al. gave a practical local search approximation for the k-means algorithm yielding

11

a (9 + ε)-approximation algorithm [88]. Later, this implementation was improved

by Frahling and Sohler [51]. The first linear time (1 + ε)-approximation algorithm

(when treating k and ε as constants) for the k-means problem was introduced by A.

Kumar et al. [96]. Their algorithm uses random sampling and is very simple.

Har-Peled and Mazumdar showed that given any data set P , there exists a

nonempty subset Q ⊆ P of size O(kε−d log n), such that one can compute the k-

median/means clustering on Q instead of P to obtain an (1 + ε)-approximation to

the optimal solution to the problem on P [71]. They called such a set Q, a (k, ε)

coreset of P . As a result, they presented a (1 + ε)-approximation algorithm for the

k-means and k-median problem with linear running time for fixed k and ε. Har-

Peled and Kushal showed how to construct a smaller coreset of size O
(

k2

εd

)
and

O
(

k3

ε(d+1)

)
for k-median and k-means problems respectively, which are independent

in size of n, number of data points [70].

2.1.3 isodata

The isodata algorithm was first introduced in [16–18], and it is also described

in [59,81,156]. isodata is a clustering algorithm similar to k-means but it changes

the number of clusters by merging and splitting clusters. It has various heuristics

to determine when to merge a pair of clusters or when to split a cluster. This

algorithm is widely used in remote sensing where the user is dealing with large data

sets and would like to perform unsupervised clustering without having to know how

many distinct classes exist within the data [58,84,143]. Fast implementations of this

12

algorithm are presented in [109,110]. Detailed description of the original algorithm

is mentioned in [59,81,156]. Chapter 3 also provides the description of the isodata

algorithm as well as my work on its efficient implementations.

13

Chapter 3

A Fast Implementation of the isodata Clustering Algorithm

Unsupervised clustering is a fundamental tool in image processing for geo-

science and remote sensing applications. For example, unsupervised clustering is

often used to obtain vegetation maps of an area of interest. This approach is useful

when reliable training data are either scarce or expensive, and when relatively little

a priori information about the data is available. Unsupervised clustering methods

play a significant role in the pursuit of unsupervised classification [143].

The problem of clustering points in multidimensional space can be posed for-

mally as one of a number of well-known optimization problems, such as the Euclidean

k-median problem [78], in which the objective is to minimize the sum of distances to

the nearest center, the Euclidean k-center problem [59], in which the objective is to

minimize the maximum distance, and the k-means problem, in which the objective

is to minimize the sum of squared distances [57,81,100,102]. Efficient solutions are

known to exist only in special cases such as the planar 2-center problem [5, 148].

There are no efficient exact solutions known to any of these problems for general

k, and some formulations are known to be NP-hard [56]. Efficient approximation

algorithms have been developed in some cases. These include constant factor ap-

proximations for the k-center problem [47, 59], the k-median problem [15, 25, 83],

and the k-means problem [88]. There are also ε-approximation algorithms for the

14

k-median [12,93] and k-means [96,106] problems, including improvements based on

coresets [70,71]. Work on the k-center algorithm for moving data points, as well as

a linear time implementation of a 2-factor approximation of the k-center problem

have also been introduced [68,69].

In spite of progress on theoretical bounds, ε-approximation algorithms for

these clustering problems are still not suitable for practical implementation in mul-

tidimensional spaces, when k is not a small constant. This is due to very fast

growing dependencies in the asymptotic running times on the dimension and/or on

k. In practice, it is common to use heuristic approaches, which seek to find a rea-

sonably good clustering, but do not provide guarantees on the quality of the results.

This includes randomized approaches, such as clara [89] and clarans [119], and

methods based on neural networks [92]. One of the most popular and widely used

clustering heuristics in remote sensing is isodata [16, 81, 84, 156]. A set of n data

points in d-dimensional space is given along with an integer k indicating the initial

number of clusters and a number of additional parameters. The general goal is to

compute a set of cluster centers in d-space. Although there is no specific optimiza-

tion criterion, the algorithm is similar in spirit to the well-known k-means clustering

method [81], in which the objective is to minimize the average squared distance of

each point to its nearest center, called the average distortion. One significant advan-

tage of isodata over k-means is that the user need only provide an initial estimate

of the number of clusters, and based on various heuristics the algorithm may alter

the number of clusters by either deleting small clusters, merging nearby clusters, or

splitting large diffuse clusters. The algorithm will be described in Section 3.1.

15

As currently implemented, isodata can run very slowly, particularly on large

data sets. Given its wide use in remote sensing, its efficient computation is an

important goal. Our objective here is not to provide a new or better clustering

algorithm, but rather show how computational geometry methods can be applied

to produce a faster implementation of isodata clustering. There are a number of

minor variations of isodata that appear in the literature. These variations involve

issues such as termination conditions, but they are equivalent in terms of their

overall structure. We focus on a widely used version, called isoclus [124], which

will be presented in Section 3.1.

The running times of isodata and isoclus are dominated by the time needed

to compute the nearest among the k cluster centers to each of the n points. This

can be reduced to the problem of answering n nearest-neighbor queries over a set

of size k, which naively would involve O(kn) time. To improve the running time,

an obvious alternative would be to store the k centers in a spatial index such as a

kd-tree [20]. However, this is not the best approach, because k is typically much

smaller than n, and the center points are constantly changing, requiring the tree to

be constantly updated. Kanungo et al. [87] proposed a more efficient and practical

approach by storing the points, rather than the cluster centers, in a kd-tree. The

tree is then used to solve the reverse nearest neighbor problem, that is, for each center

we compute the set of points for which this center is the closest. This method is

called the filtering algorithm.

We show how to modify this approach for isoclus. The modifications are

not trivial. First, in order to perform the sort of aggregate processing that the

16

filtering algorithm employs, it was necessary to modify the way in which the isoclus

algorithm computes the degree of dispersion within each cluster. In Section 3.4 and

Section 3.5 we present, respectively, empirical and theoretical justification that this

modification does not significantly alter the nature of the clusters that the algorithm

produces. In order to further improve execution times, we have also introduced an

approximate version of the filtering algorithm. A user-supplied approximation error

bound ε > 0 is provided to the algorithm, and each point is associated with a center

whose distance from the point is not farther than (1 + ε) times the distance to its

true nearest neighbor. This result may be of independent interest because it can be

applied to k-means clustering as well. It is presented in Section 3.2.5.

The running time of the filtering algorithm is a subtle function of the structure

of the clusters and centers, and so rather than presenting a worst-case asymptotic

analysis, we present an empirical analysis of its efficiency based on both syntheti-

cally generated data sets, and actual data sets from a common application in remote

sensing and geostatistics. These results are presented in Section 3.4. As the exper-

iments show, depending on the various input parameters (that is, dimension, data

size, number of centers, etc.), the algorithm presented runs faster than a straight-

forward implementation of isoclus by factors ranging from 1.3 to over 50. In

particular, the improvements are very good for typical applications in geostatistics,

where the data size n and the number of centers k are large, and the dimension d is

relatively small. Thus, we feel that this algorithm can play an important role in the

analysis of geostatistical data analysis and other applications of data clustering.

The remainder of this chapter is organized as follows. In Section 3.1 we de-

17

scribe a variant of isodata, called isoclus, whose modification is the focus of this

chapter. In Section 3.2 we provide background, concerning basic tools such as the

kd-tree data structure and the filtering algorithm, that will be needed in our efficient

implementation of isoclus. We present, in Section 3.3, our improved variants of the

isoclus algorithm and, in Section 3.4, the experimental results for these variants.

In Section 3.5 we provide a theoretical justification of our cluster dispersion mea-

sure, which formed the basis of our efficient implementation. Finally, Section 3.6

contains concluding remarks.

3.1 The isoclus Algorithm

We begin by presenting the particular variant of isodata, called isoclus,

[124] whose modification will be presented later. Although our description is not

exhaustive, it contains enough information to understand our various modifications.

The algorithm tries to find the best cluster centers through an iterative approach.

It also uses a number of different heuristics to determine whether to merge or split

clusters.

At a high level, the following tasks are performed in each iteration of the

algorithm: Points are assigned to their closest cluster centers, cluster centers are

updated to be the centroid of their associated points, clusters with very few points

are deleted, large clusters satisfying some conditions are split, and small clusters

satisfying other conditions are merged. The algorithm continues until the number

of iterations exceeds a user-supplied value.

18

Let us present the algorithm in more detail. There are a number of user-

supplied parameters. These include the following. (In parentheses we give the

variable name of the parameter used in [124].)

kinit: initial number of clusters (numclus)

nmin: minimum number of points that can form a cluster (samprm)

Imax: maximum number of iterations (maxiter)

σmax: maximum standard deviation of points from their cluster center along each

axis (stdv)

Lmin: minimum required distance between two cluster centers (lump)

Pmax: maximum number of cluster pairs that can be merged per iteration (maxpair)

Here is an overview of the algorithm. (See [124] for details.) Let S = {x1, . . . ,xn}

denote the set of points to be clustered. Each point xj = (xj1, . . . , xjd) is treated as

a vector in real d-dimensional space, Rd. Let n denote the number of points. If the

original set is too large, all of the iterations of the algorithm, except the last, can

be performed on a random subset of S of an appropriate size. Throughout, let ‖x‖

denote the Euclidean length of the vector x.

(1) Letting k = kinit, randomly sample k cluster initial centers Z = {z1, z2, . . . , zk}

from S.

(2) Assign each point to its closest cluster center. For 1 ≤ i ≤ k, let Si ⊆ S be

the subset of points that are closer to zi than to any other cluster center of Z.

That is, for any x ∈ S,

x ∈ Sj if ‖x− zj‖ < ‖x− zi‖, ∀i 6= j.

19

(Ties for the closest center are broken arbitrarily.) Let nj denote the number

of points of Sj.

(3) Remove cluster centers with fewer than nmin points. (The associated points of

S are not deleted, but are ignored for the remainder of the iteration.) Adjust

the value of k and relabel the remaining clusters S1 . . . , Sk accordingly.

(4) Move each cluster center to the centroid of the associated set of points. That

is,

zj ← 1

nj

∑
x∈Sj

x, for 1 ≤ j ≤ k.

If any clusters were deleted in Step 3, then the algorithm goes back to Step 2.

(5) Let ∆j be the average distance of points of Sj to the associated cluster center

zj, and let ∆ be the overall average of these distances.

∆j ← 1

nj

∑
x∈Sj

‖x− zj‖, for 1 ≤ j ≤ k. ∆ ← 1

n

k∑
j=1

nj∆j.

(6) If this is the last iteration, then set Lmin = 0 and go to Step 9. Also, if

2k > kinit and it is either an even numbered iteration or k ≥ 2kinit, then go to

Step 9.

(7) For each cluster Sj, compute a vector vj = (v1, . . . , vd) whose ith coordinate

is the standard deviation of the ith coordinates of the vectors directed from

zj to every point of Sj. That is,

vji ←

 1

nj

∑
x∈Sj

(xi − zji)
2




1/2

for 1 ≤ j ≤ k and 1 ≤ i ≤ d.

Let vj,max denote the largest coordinate of vj.

20

(8) For each cluster Sj, if vj,max > σmax and either

((∆j > ∆) and (nj > 2(nmin + 1))) or k ≤ kinit

2
,

then increment k and split Sj into two clusters by replacing its center with two

cluster centers centered around zj and separated by an amount and direction

that depends on vj,max [124]. If any clusters are split in this step, then go to

Step 2.

(9) Compute the pairwise intercluster distances between all distinct pairs of cluster

centers

dij ← ‖zi − zj‖, for 1 ≤ i < j ≤ k.

(10) Sort the intercluster distances of Step 9 in increasing order, and select a subset

of at most Pmax of the closest such pairs of clusters, such that each pair has

an intercluster distance of at most Lmin. For each such pair (i, j), if neither Si

nor Sj has been involved in a merger in this iteration, replace the two clusters

Si and Sj with a merged cluster Si ∪ Sj, whose associated cluster center is

their weighted average

zij ← 1

ni + nj

(nizi + njzj).

Relabel the remaining clusters and decrease k accordingly.

(11) If the number of iterations is less than Imax, then go to Step 2.

If the algorithm is implemented in the most straightforward manner, and if it

is assumed that the number of clusters, k, is much smaller than the total number of

points, n, then the most time-consuming stage of the algorithm is Step 2. Computing

21

naively the distances from each of the n points of S to each of the k centers for a

total of O(kn) time (assuming a fixed dimension d).

Our approach for improving the algorithm’s running time is to speed up Step 2

through the use of an appropriate spatial data structure. Note that the algorithm

does not need to explicitly compute the closest center to each point. What is needed

is the centroid of the points that are closest to each center. Our approach is to

compute this quantity directly. Before describing how to do this, we provide some

background on a related clustering algorithm, called Lloyd’s algorithm, and its fast

implementation by a method called the filtering algorithm.

3.2 The Filtering Algorithm

At its heart, the isoclus algorithm is based on an enhancement of a simple and

widely used heuristic for k-means clustering, often called Lloyd’s algorithm or the

k-means algorithm [49, 100,102]. It iteratively repeats the following two steps until

convergence. First, for each cluster center, it computes the set of points for which

this center is the closest. Next, it moves each center to the centroid of its associated

set. It can be shown that with each step the average distortion decreases and that

the algorithm converges to a local minimum [147]. See Refs. [[24, 72, 104, 130]] for

further discussion on the statistical properties and convergence conditions of Lloyd’s

algorithm and other related procedures. The isoclus algorithm combines Lloyd’s

algorithm with additional mechanisms for eliminating very small clusters (Step 3),

splitting large clusters (Steps 7–8), and merging nearby clusters (Steps 9–10).

22

As with isoclus, the running time of Lloyd’s algorithm is dominated by the

time to compute the nearest cluster center to each data point. Naively, this would

require O(kn) time. Kanungo et al. [87] presented a more efficient implementation of

Lloyd’s algorithm, called the filtering algorithm. Although its worst-case asymptotic

running time is not better than the naive algorithm, this approach was shown to be

quite efficient in practice. In this section we present a high-level description of the

filtering algorithm. We also introduce an approximate version of this algorithm, in

which points may be assigned, not to their nearest neighbor, but to an approximate

nearest neighbor.

3.2.1 The kd-tree

If considered at a high level, the filtering process implicitly involves computing,

for each of the k centers, some aggregate information for all the points that are closer

to this center than any other. In particular, it computes the centroid of these points

and some other statistical information that is used by the isoclus algorithm. Thus,

the process can be viewed very abstractly as answering a number of range queries

involving k disjoint ranges, each being the Voronoi cell of some cluster center. As

such, an approach based on hierarchical spatial subdivisions is natural.

The filtering algorithm builds a standard kd-tree [20], augmented with addi-

tional statistical information, which will be discussed. A kd-tree is a hierarchical

decomposition of space into axis-aligned hyperrectangles called cells. Each node

of the tree is implicitly associated with a unique cell and the subset of the points

23

u

10
p

p
1

p

9
p

3
p

2
p

8
p

1
p

10
p5

p4
p

6
p

7 p

9
p

8
p

7
p

6
p

5
p

4
p

3
p

2

Fig. 3.1: An example of a kd-tree of a set of points in the plane, showing both the
associated spatial subdivision (left) and the binary tree structure (right).

that lie within this cell. Each internal node of the kd-tree stores an axis-orthogonal

splitting hyperplane. This hyperplane subdivides the cell into two subcells, which

are associated with the left and right subtrees of the node. Nodes holding a single

point are declared to be leaves of the tree. In Fig. 3.1, the highlighted node u of

the tree is associated with the shaded rectangular cell shown on the left side of the

figure and the subset {p1, p2, p3} of points. It is well known that a kd-tree on n

points can be constructed in O(n log n) time in any fixed dimension [53].

3.2.2 The filtering process

We provide an overview of how the filtering algorithm is used to perform one

iteration of Lloyd’s algorithm. (See [87] for details.) Given a kd-tree for the data

points S and the current set of k center points, the algorithm processes the nodes

of the kd-tree in a top-down recursive manner, starting at the root. Consider some

node u of the tree. Let S(u) denote the subset of points S that are associated with

this node. If it can be inferred that all the points of S(u) are closer to some center zj

than to any other center (that is, the node’s associated rectangular cell lies entirely

within the Voronoi cell of zj), then we may assign u to cluster Sj. Every point

24

associated with u is thus implicitly assigned to this cluster. (For example, this is

the case for the node associated with cell a as shown in Fig. 3.2.) If this cannot

be inferred, then the cell is split, and we apply the process recursively to its two

children. (This is the case for the node associated with cell b in the figure, which

is split and whose two children are b1 and b2.) Finally, if the process arrives at a

leaf node, which contains a single point, then we determine which center is closest

to the point, and assign its associated node to this center. (This is the case for the

node associated with cell c of the figure.)

1

a

c

b
b 2b

Fig. 3.2: Classifying nodes in the filtering algorithm. The subdivision is the Voronoi
diagram of the centers, which indicates the neighborhood regions of each center.

At the conclusion of the process, the filtering algorithm assigns the nodes of

the kd-tree to clusters in such a manner that every point of S is implicitly assigned

to its closest cluster center. Furthermore, this is done so that the sets S(u) assigned

to a given cluster form a disjoint union of the associated cluster. There are two

issues to be considered: (1) How to determine whether one center is closer to every

25

point of a node’s cell than all other centers, and (2) when this occurs, how to assign

en masse the points of the node to this center. We address these issues in reverse

order in the following two sections.

3.2.3 Additional statistical information

As previously mentioned, the k-means algorithm seeks a placement of the

centers that minimizes the average squared distance of each point to its nearest

center. Formally, for each cluster Sj, we recall that nj = |Sj|, and define the average

distortion of the jth cluster, denoted ∆
(2)
j , to be the average squared distance of

each point in cluster Sj to its cluster center, that is,

∆
(2)
j =

1

nj

∑
x∈Sj

‖x− zj‖2.

(Contrast this quantity with the average distance ∆j, computed in Step 5 of the

isoclus algorithm.) The overall distortion of the entire data set is the weighted

average distortion among all clusters, where the weight factor for the jth cluster is

nj/n, that is, the fraction of points in this cluster.

In order to compute this information efficiently for each cluster, we store the

following statistical information with each node u of the kd-tree. (Recall that each

point of the data set is represented as a coordinate vector in Rd.)

s(u): weighted centroid ; contains the vector sum of the points associated with this

node.

ss(u): sum of squares ; contains the sum of the dot products (x · x) for all points x

associated with this node.

26

w(u): weight ; contains the number of points associated with this node.

The above quantities can be computed in O(dn) time by a simple postorder

traversal of the kd-tree. We omit the straightforward details. The following lemma

shows that once the set of nodes associated with a given center is known, the centroid

of the set and the distortion of the resulting cluster can then be computed.

Lemma 3.2.1 Consider a fixed cluster Sj, and let U = {u1, u2, . . . , um} be a set of

nodes that are assigned to this cluster, so that Sj is the disjoint union of S(ui), for

1 ≤ i ≤ m. Consider the following sums of the above quantities associated with the

nodes in U :

sj =
m∑

i=1

s(ui), ssj =
m∑

i=1

ss(ui), wj =
m∑

i=1

w(ui).

Then the size of the cluster is nj = wj, the centroid of the cluster is (1/nj)sj, and

the average distortion of the cluster is

∆
(2)
j =

1

wj

ssj − 2

wj

(zj · sj) + (zj · zj).

Proof : Because
⋃m

i=1 S(ui) is a disjoint partition of Sj the following identities hold:

sj =
∑
x∈Sj

x, ssj =
∑
x∈Sj

(x · x), wj =
∑
x∈Sj

1 = |Sj| = nj.

The first two claims follow directly from these identities, leaving only the expression

of the average distortion to prove. In a slight abuse of notation, for two vectors x

and z, we express their dot products as x2 = (x · x) and xz = (x · z). Then we can

27

express the total distortion for the jth cluster as:

nj∆
(2)
j =

∑
x∈Sj

(x− zj)
2 =

∑
x∈Sj

(x2 − 2xzj + z2
j) =

∑
x∈Sj

x2 −
∑
x∈Sj

2xzj +
∑
x∈Sj

z2
j

=
∑
x∈Sj

(x · x)− 2


zj ·

∑
x∈Sj

x


 + wj(zj · zj)

= ssj − 2(zj · sj) + wj(zj · zj).

The final result follows by dividing by nj = wj. ut

3.2.4 Assigning nodes to centers

All that remains is to explain how the filtering algorithm assigns nodes to each

of the cluster centers. Recall that the input to the algorithm is the set S given in

the form of a kd-tree, the statistical quantities s(u), ss(u), and w(u) for each node u

of the kd-tree, and the locations of the cluster centers zj. As the algorithm assigns

a node u to a center zj, it adds these three quantities to the associated sums sj, ssj,

and wj, as defined in the proof of Lemma 3.2.1. Upon termination of the algorithm,

each center zj is associated with the sum of these quantities for all the points Sj.

As previously mentioned, the filtering algorithm visits the nodes of the tree

in a recursive top-down manner. For each node it visits, it maintains the subset of

centers, called candidates, such that the closest center to any point in the node’s

cell is one of these candidate centers. Thus, for each node we keep track of a

subset of centers that may serve as the nearest center for any point within the cell.

Unfortunately, we know of no sufficiently efficient test to determine the set of true

candidates (which involves determining the set of Voronoi cells overlapped by an

28

axis-aligned rectangle). Instead, we will describe a simple procedure that associates

each node with a superset of its true candidates.

To start the process, the candidates for the root node of the kd-tree consists

of all k centers. The centers are then filtered through the kd-tree as follows. Let C

be the cell associated with the current node u, and let Z be the set of the candidate

centers associated with C. First, the closest center z∗ ∈ Z to the midpoint of C is

computed. Then, for the rest of the candidates z ∈ Z\z∗, if all parts of C are farther

from z than they are from z∗, we may conclude that z cannot serve as the nearest

center for any point in u. So we can eliminate, or filter, z from the set of candidates.

If there is only one candidate center (that is, |Z| = 1), then the node in question

is assigned to this center. In particular, this means that the quantities s, ss , and

w for node u are added to the corresponding sums for this center. Otherwise, for

an internal node, we pass the surviving set of candidates to its two children, and

repeat the process recursively. If the algorithm reaches a leaf node having two or

more candidates, the distances from all centers of Z to the node’s data point are

calculated, and this data point is assigned to the nearest candidate center.

In order to determine whether any part of C is closer to candidate z than to z∗

we proceed as follows. Let H be the hyperplane bisecting the line segment zz∗ (see

Fig. 3.3). We can filter z if C is entirely on the same side of H as z∗. This condition

is tested through the use of a vector w = z− z∗, from z∗ to z. Let v be the vertex

of C that maximizes the dot product (v · w), that is v is the farthest vertex in C

in the direction of w. If dist(z,v) ≥ dist(z∗,v), then z is pruned. The choice of the

vertex v can be determined simply by the signs of the individual coordinates of w.

29

(See [87] for details.) The process requires O(d) time for each center tested.

C

*

v

w

z

H
z

Fig. 3.3: Filtering process where z is pruned.

The filtering algorithm achieves its efficiency by assigning many points at once

to each center. A straightforward implementation of Lloyd’s algorithm requires

O(kn) time to compute the distance from each of the n points to each of the k

centers. The corresponding measure of complexity for the filtering algorithm is the

number of interactions between nodes and candidates. Kanungo et al. [87] have

shown experimentally that this number is smaller by factors ranging from 10 to 200

for low dimensional clustered data sets. Even with the additional preprocessing time

and overhead, the speed-ups in actual CPU time can be quite significant.

3.2.5 Approximate filtering

As with many approaches based on spatial subdivision methods, the filtering

algorithm suffers from the so-called “curse of dimensionality,” which in our context

means that as the dimension increases the algorithm’s running time increases ex-

ponentially as a function of the dimension. This was observed by Kanungo et al.

in their analysis of the filtering algorithm [87]. The problem with high dimensions

stems from the fact that any approach based on kd-trees relies on the hypothesis

that the rectangular cell associated with each node is a good approximation to the

30

extent of the subset of points of S that lie within the cell. This is true when the di-

mension is low. As the dimension increases, however, the cell progressively becomes

a poorer approximation to the set of points lying within it. As a result, the pruning

process is less efficient, and more nodes need to be visited by the filtering algorithm

before termination.

Our approach for dealing with this problem is to apply filtering in an approx-

imate manner, and so to trade accuracy for speed. In our case, we allow the user

to provide a parameter ε > 0, and the filtering algorithm is permitted to assign

each point of S to any center point that is within a distance of up to (1 + ε) times

the distance to the closest center. This makes it easier to prune a cell from further

consideration, and thus ameliorates the adverse effects arising in high dimensions.

This can be incorporated into the filtering process as follows. We recall the

notation from the previous section, where u is the current node being processed,

C and Z denote, respectively, the cell and set of candidate centers associated with

u, and z∗ ∈ Z is the closest center in Z to the midpoint of C. Given two vectors

x and z, we used the notation ‖xz‖ to denote the Euclidean length of the vector

z− x. Our goal is to determine those centers z ∈ Z\{z∗}, such that for every center

x ∈ C we have ‖xz∗‖ ≤ (1 + ε)‖xz‖. All such center points z can be filtered. In

geometric terms, this is equivalent to replacing the bisector test used in the exact

algorithm with a test involving an approximate bisector, denoted Hε(z, z
∗). The

latter is defined to be the set of points x, such that ‖xz∗‖ = (1 + ε)‖xz‖. (See

Fig. 3.4.)

The hyperplane bisector test of the previous section must be adapted to deter-

31

C

* εHH

z

z

Fig. 3.4: Approximate filtering, where z is pruned.

mine whether C is stabbed by Hε(z, z
∗). At first, this seems to be a much harder test

to perform. For example, it is no longer sufficient to merely test an appropriate ver-

tex of C, since it is possible that the approximate bisector intersects the interior of

a facet of C, while all the vertices lie to one side of the approximate bisector. What

saves the day is the fact that the approximate bisector is a hypersphere, and hence

the problem reduces to computing the distance between an axis-aligned rectangle

and the center of this hypersphere, which can be computed easily. For complete-

ness, we present the following two technical lemmas, which provide the necessary

groundwork.

Lemma 3.2.2 Given ε > 0, and two points z and z∗ in d-space, Hε(z, z
∗) is a

(d− 1)-sphere of radius rε centered at the point cε, where

rε =
1 + ε

γ − 1
‖zz∗‖ and cε =

1

γ − 1
(γz− z∗), where γ = (1 + ε)2.

Proof : A point x lies on Hε if and only if

‖xz∗‖2 = (1 + ε)2‖xz‖2.

As before, it will be convenient to express dot products using x2 = (x · x) and

32

xz = (x · z). The above is equivalent to

(x− z∗)2 = (1 + ε)2(x− z)2

x2 − 2xz∗ + z∗2 = γ(x2 − 2xz + z2).

Expanding and completing the square yields

(γ − 1)x2 − 2(γz− z∗)x + (γz2 − z∗2) = 0

x2 − 2

γ − 1
(γz− z∗)x +

1

(γ − 1)2
(γz− z∗)2 =

1

(γ − 1)2
(γz− z∗)2 − 1

γ − 1
(γz2 − z∗2) =

(
x− 1

γ − 1
(γz− z∗)

)2

=

1

(γ − 1)2
(γz− z∗)2 − 1

γ − 1
(γz2 − z∗2).

The left-hand side is (x− cε)
2. Expanding the right-hand side gives

(x− cε)
2 =

1

(γ − 1)2
((γz− z∗)2 − (γ − 1)(γz2 − z∗2))

=
1

(γ − 1)2
((γ2z2 − 2γzz∗ + z∗2)− (γ2z2 − γz∗2 − γz2 + z∗2))

=
1

(γ − 1)2
(γz2 − 2γzz∗ + γz∗2)

=
γ

(γ − 1)2
(z− z∗)2 =

(
1 + ε

γ − 1
‖zz∗‖

)2

= r2
ε .

This is the equation of the desired hypersphere. ut

Lemma 3.2.3 The closest (Euclidean) distance between an axis-aligned hyperrect-

angle in Rd and any point c ∈ Rd can be computed in O(d) time.

Proof : Let v = (v1, . . . , vd) and w = (w1, . . . , wd) be the rectangle vertices with

the lowest and highest coordinate values, respectively. (For example, these would

33

be the lower left and upper right vertices in the planar case.) The rectangle is just

the d-fold intersection of axis-orthogonal strips

{(x1, . . . , xd) | vi ≤ xi ≤ wi}.

Based on the location of c relative to each of these strips, we can compute the

squared distance from c = (c1, . . . , cd) to the rectangle as
∑d

i=1 δ2
i , where

δi =





vi − ci if ci < vi

0 if vi ≤ ci ≤ wi

ci − wi if wi < ci.

The final distance is the square root of this sum. ut

Using these two lemmas, it is now easy to see how to replace the exact filtering

step described in the previous section with an approximate filtering test, which also

runs in O(d) time. Given candidate centers z and z∗, we apply Lemma 3.2.2 to

compute rε and cε. We then apply Lemma 3.2.3 to compute the closest distance

between the cell C and cε. If this distance is greater than rε, then z is pruned.

The remainder of the algorithm is the same. In Section 3.4.3 below, we present

experimental evidence for the benefits of using approximate filtering.

Although points are assigned to cluster centers that are ε-nearest neighbors, it

does not follow that the result produced by the approximate version of the isoclus

algorithm results in an ε-approximation in the sense of distortion. The reason is

that isoclus is a heuristic and does not provide any guarantees on the resulting

distortion. It follows some path in the space of possible solutions to some local

minimum. Even a minor change to the algorithm’s definition can alter this path,

and may lead to a local minimum of a significantly different value, either larger or

smaller.

34

3.3 Our Modifications and Improvements

As mentioned earlier, most of the computational effort in the isoclus al-

gorithm is spent calculating and updating distances and distortions in Steps 2–5.

These steps take O(kn) time, whereas all the other steps can be performed in O(k)

time, where k is the current number of centers. Our improvement is achieved by

adapting the filtering algorithm to compute the desired information. This is the

reason for computing the additional statistical information, which was described in

the previous section.

There is one wrinkle, however. The filtering algorithm achieves its efficiency

by processing points in groups, rather than individually. This works fine as long

as the statistical quantities being used by the algorithm can be computed in an

aggregated manner. This is true for the centroid, as shown in Lemma 3.2.1, since

it involves the sum of coordinates. Generally, the filtering method can be applied

to any polynomial function of the point and center coordinates. However, there is

one statistical quantity computed by the isoclus algorithm that does not satisfy

this property. In particular, Step 5 of the isoclus algorithm involves computing

the sum of Euclidean distances from each point to its closest center as a measure of

the dispersion of the cluster. This information is used later in Step 8 to determine

whether to split the cluster. This involves computing the sum of square roots, and

we know of no way to aggregate this processing.

Rather than implementing isoclus exactly as described in [124], we modified

Step 5 as follows. For each cluster j, instead of computing the average Euclidean

35

distance of each point to its center, ∆j, we compute the average squared Euclidean

distance, denoted ∆
(2)
j . In order to preserve the metric units, we use the square

root of this quantity, denoted ∆′
j. In short, we modified the definitions of Step 5 by

computing the following quantities:

∆
(2)
j =

1

nj

∑
x∈Sj

‖x− zj‖2, for 1 ≤ j ≤ k

∆′
j =

√
∆

(2)
j , for 1 ≤ j ≤ k

∆′ =
1

n

k∑
j=1

nj∆
′
j.

The decision as to whether to split a cluster in Step 8 depends on the relative

sizes of ∆′
j and ∆′, rather than ∆j and ∆. Note that this can produce different

results. Nonetheless, having experimented with both synthetically generated data

and real images, we observed that the actual performance of our algorithm was quite

similar to that of isoclus, in terms of the number of clusters obtained and the

positions of their centers. This will be demonstrated in the next section. Thus, we

believe that this modification does not significantly alter the nature of the algorithm,

and has the benefit of running significantly faster. The value ∆′
j can be computed

as outlined in Lemma 3.2.1. In the next section we present the experimental results

obtained using our convention, and in Section 3.5 we provide theoretical justification

for the modifications made.

3.4 Experiments

In order to establish the efficiency of both our new exact and approximate

algorithmic versions, and to determine the degree of similarity in clustering perfor-

36

mance with the existing isoclus algorithm, we ran a number of experiments on

synthetic data, as well as remotely sensed images. Our modified algorithm involves

changing both the functionality and computational approaches. To make the com-

parisons clearer, we implemented an intermediate, or hybrid, algorithm, which is

functionally equivalent to one variant but uses the same computational approach as

the other.

Standard version (Std): The straightforward implementation of isoclus as de-

scribed in [124], which uses average Euclidean distances in Step 5 and Step 8.

Hybrid version (Hyb): A modification of the standard version using ∆′
j and ∆′

rather than ∆j and ∆ in Step 5 and Step 8, but without using the filtering

algorithm.

Filtering version (Fil): The same modification, but using the filtering algorithm

for greater efficiency.

The Hybrid and Filtering versions are functionally equivalent, but use different

computational approaches. The Standard and Hybrid versions are roughly equiva-

lent in terms of the computational methods, but are functionally distinct. Our goal

is to show that the Standard and Hybrid versions are nearly functionally equiva-

lent, and that in many instances the Filtering version is significantly more efficient.

All experiments were run on a SUN Blade 100 running Solaris 2.8, using the g++

compiler (version 2.95.3).

We mention for completeness that we also implemented and tested a fourth

version, the results of which are not reported, as they were not competitive with

37

the filtering algorithm. The latter variant stores the k center points in a kd-tree,

as implemented in the ANN library [13]. The nearest center to each data point is

then computed by a search of this tree. This approach proved to be consistently

slower than the filtering algorithm for two reasons. First, there are significantly

fewer center points than query points (k ¿ n). Thus, there are lower savings in

running time that would result by storing the k center points in a tree as compared

to the savings that result by storing the n data points in a tree. Second, the

center points change with each iteration, and so the tree would need to be rebuilt

constantly. We also compared the performance of our code with a similar software

called gmeans [38, 39]. This software is efficient for high dimensional sparse data.

For low dimensional dense data, however, gmeans calculates distances in a brute-

force manner. Our software was faster by roughly an order of magnitude, with lower

or comparable final distortion values.

The remainder of this chapter is devoted to presenting the results of the various

experiments we ran. Section 3.4.1 presents the performance of these algorithms on

synthetically generated clustered data sets of various sizes and in various dimensions.

In Section 3.4.2 we present experiments on data sets generated from an application

in remote sensing, in which isoclus is regularly used. Next, in Section 3.4.3 we

investigate the performance of the approximate version of the filtering algorithm.

Finally, in Section 3.4.4 we consider the effect of increasing the dimension of the

data set on the running time and speed-up, for both the exact and approximate

versions.

38

3.4.1 Synthetic data

We ran the following three sets of experiments on synthetically generated data

sets to analyze the performance of our algorithm. All experiments were run in

dimensions 3, 5, and 7. (This choice of dimensions was guided by the fact that

many applications of isoclus in remote sensing involve Landsat satellite image

data. Raw Landsat data contains 7 spectral bands, and reductions to dimensions 3

and 5 are quite common.)

(1) For the first set of experiments we generated n = 10, 000 data points. In each

case the points were sampled with equal probability from a variable number

of Gaussian clusters ranging from 10 to 100, by a method described below.

(2) In the second set of experiments five data sets were considered, containing

100, 500, 1000, 5000, and 10, 000 points, respectively. In each case the points

were distributed evenly among 20 Gaussian clusters.

(3) In the third set of experiments, we varied both the number of randomly gen-

erated points and the number of clusters. Specifically, we considered data sets

containing 100, 500, 1000, 5000, and 10, 000 points. For each data set, the

points were distributed evenly among 5, 10, 20, 40, and 80 Gaussian clusters.

All of the above experiments involved points drawn from a collection of some

number k of Gaussian clusters. This was done as follows. Cluster centers were

sampled uniformly at random from the hypercube [−1, 1]d of side length 2. In order

to generate a point for each cluster, a vector was generated, such that each of its

39

coordinates was drawn from a Gaussian distribution with a given standard deviation

σ = (1/k)1/d.

The value of σ was derived by the following reasoning. In order for the results

to be comparable across different dimensions and with different numbers of clusters,

it is desirable that clusters have comparable degrees of overlap. In low dimensions, a

significant amount of the probability mass of a Gaussian cluster lies within a region

whose volume is proportional to (2σ)d. We wish to subdivide a cube of unit volume

uniformly into k clusters, which suggests that each cluster should cover 1/k-th of

the total volume, and hence σ should be chosen such that (2σ)d = 2d/k, from which

the above value of σ was obtained.

We ran the isoclus algorithms for a maximum of 20 iterations (Imax = 20).

In each case the initial number of clusters was set to the actual number of clusters

generated (kinit = k), the maximum cluster standard deviation was set to twice

the standard deviation of the distribution (σmax = 2σ), and the minimum cluster

separation was set to 0.001 (Lmin = 0.001). We decided to remove a cluster if it

contained fewer than 1/5 of the average cluster size, and so set nmin = n/(5kinit). For

the first set of experiments where n = 10, 000 was fixed, we set the initial number

of clusters to 10, 20, 40, 80, and 100, in accordance with the respective number of

actual clusters generated. In each case, the results were averaged over five runs.

The results of the above 3 sets of experiments are shown in Table 3.1, Table 3.2,

and Table 3.3.

For each run, we computed the running time in CPU seconds, the final number

of centers, and the final average distortion. Not surprisingly, since the hybrid and

40

Table 3.1: Results for synthetic data with n = 10,000

Dim kinit Final Centers Avg. Distortion CPU Seconds Speed-

Std Hyb/Fil Std Hyb/Fil Std Hyb Fil up

10 10 10 0.385 0.385 5.00 5.14 1.420 3.62
20 20 20 0.286 0.286 8.74 9.07 1.788 5.07

3 40 40 40 0.120 0.120 16.39 17.20 2.022 8.50
80 78 78 0.077 0.077 33.87 34.99 2.626 13.32

100 100 100 0.061 0.061 43.34 44.95 2.956 15.21

10 9 9 2.108 2.108 6.86 6.77 3.092 2.189
20 19 19 1.184 1.184 12.58 13.20 3.880 3.403

5 40 36 36 0.819 0.819 21.79 22.83 5.372 4.249
80 79 79 0.490 0.490 48.69 50.01 7.998 6.253

100 93 93 0.478 0.478 57.67 59.30 9.172 6.465

10 10 10 4.062 4.062 9.18 9.38 5.29 1.771
20 20 20 1.971 1.971 16.31 16.82 7.40 2.274

7 40 32 32 2.303 2.303 26.11 26.59 11.50 2.312
80 74 74 1.447 1.447 59.27 60.29 22.07 2.732

100 93 93 1.242 1.242 75.27 76.55 26.02 2.942

Table 3.2: Results for synthetic data with kinit = 20

Dim n Final Centers Avg. Distortion CPU Seconds Speed-

Std Hyb/Fil Std Hyb/Fil Std Hyb Fil up

100 20 20 0.164 0.164 0.100 0.088 0.048 1.833
500 20 20 0.278 0.278 0.446 0.428 0.148 2.892

3 1000 20 20 0.265 0.265 0.902 0.876 0.256 3.422
5000 20 20 0.288 0.288 4.512 4.232 0.960 4.408

10000 20 20 0.286 0.286 9.290 8.804 1.770 4.974

100 20 20 0.828 0.828 0.138 0.116 0.092 1.261
500 17 17 1.095 1.095 0.560 0.556 0.286 1.944

5 1000 20 20 1.074 1.074 1.368 1.300 0.600 2.167
5000 19 19 1.188 1.188 6.304 6.130 2.234 2.744

10000 19 19 1.184 1.184 12.958 12.812 3.868 3.312

100 20 20 1.349 1.349 0.168 0.158 0.112 1.411
500 17 17 1.957 1.957 0.690 0.692 0.478 1.450

7 1000 18 18 1.990 1.990 1.546 1.526 0.924 1.652
5000 19 19 1.990 1.990 8.078 7.994 4.146 1.928

10000 20 20 1.971 1.971 16.740 16.604 7.472 2.222

41

10 20 30 40 50 60 70 80 90 100
Number of Clusters (kinit)

1.0

2.0

5.0

10

20

50

C
P

U
 T

im
e

(s
ec

)

Filtering
Hybrid
Standard

CPU Time vs. Num. Clusters (n=10,000, dim=3)

10 20 30 40 50 60 70 80 90 100
Number of Clusters (kinit)

1.5

2

5

10

12

16

S
pe

ed
-u

p
(H

yb
 T

im
e

/ F
il

T
im

e)

Dim 3
Dim 5
Dim 7

Speed-up vs. Num. Clusters (n=10,000)

100 2000 4000 6000 8000 10000
Number of Points (n)

0.1

0.2

0.5

1

2

5

10

C
P

U
 T

im
e

(s
ec

)

Filtering
Hybrid
Standard

CPU Time vs. Number of Points (kinit=20, dim=3)

100 2000 4000 6000 8000 10000
Number of Points (n)

1

2

3

4

5

S
pe

ed
-u

p
(H

yb
 T

im
e

/ F
il

T
im

e)

Dim 3
Dim 5
Dim 7

Speed-up vs. Number of Points (kinit=20)

5 10 20 30 40 50 60 70 8070
Number of Clusters (kinit)

0.015

0.05

0.1

0.2

0.5

1

2

5

10

20

36

C
P

U
 T

im
e

(s
ec

)

Filtering
Hybrid
Standard

CPU Time vs. Data Size (kinit and n both vary, dim=3)

5 10 20 30 40 50 60 70 80
Number of Clusters (kinit)

1.0

2.0

5.0

10

15

S
pe

ed
-u

p
(H

yb
 T

im
e

/ F
il

T
im

e)

Dim 3
Dim 5
Dim 7

Speed-up vs. Data Size (kinit and n both vary)

Fig. 3.5: CPU times and speed-ups for the various algorithms run on synthetic data.
(Note that the x and y axes do not intersect at the origin.) For the bottom pair of
plots, note that n also varies with kinit as indicated in Table 3.3.

42

Table 3.3: Results for synthetic data where both n and kinit vary

Dim n kinit Final Centers Avg. Distortion CPU Seconds Speed-

Std Hyb/Fil Std Hyb/Fil Std Hyb Fil up

100 5 5 5 0.480 0.480 0.028 0.03 0.020 1.500
500 10 10 10 0.357 0.357 0.236 0.24 0.100 2.380

3 1000 20 20 20 0.265 0.265 0.870 0.91 0.232 3.931
5000 40 40 40 0.120 0.120 8.082 8.50 1.158 7.344

10000 80 78 78 0.077 0.077 34.074 35.33 2.682 13.174

100 5 5 5 2.350 2.350 0.036 0.04 0.030 1.334
500 10 8 8 2.095 2.095 0.280 0.29 0.200 1.450

5 1000 20 20 20 1.074 1.074 1.280 1.27 0.608 2.086
5000 40 39 39 0.797 0.797 11.904 12.12 3.208 3.778

10000 80 79 79 0.490 0.490 48.470 50.49 7.994 6.316

100 5 4 4 4.417 4.417 0.042 0.05 0.03 1.471
500 10 9 9 4.321 4.321 0.398 0.42 0.33 1.282

7 1000 20 18 18 1.990 1.990 1.550 1.58 0.90 1.750
5000 40 36 36 2.201 2.201 14.782 15.07 7.06 2.135

10000 80 74 74 1.447 1.447 46.966 60.69 22.04 2.753

filtering versions implement the same functional specifications, the final numbers

of centers and final distortions obtained were almost identical. (Small differences

were observed due to floating point round-off errors.) Thus, we listed together the

corresponding results in the tables (under “Hyb/Fil”). We also computed the speed-

up, which is defined as the ratio between the CPU time of the hybrid version and

that of the filtering version.

In support of our claim that using squared distances does not significantly

change the algorithm’s clustering performance, observe that both algorithms per-

formed virtually identically with respect to average distortions and the final number

of centers. Also observe that the standard and hybrid versions ran in roughly the

same time, whereas the filtering version ran around 1.3 to 15.2 times faster than

the other two. Fig. 3.5 shows our experimental results on the synthetic data sets.

43

We can see that for a fixed number of points, increasing the number of clusters in-

creases both the CPU time and speed-up. The same result holds when we increase

the number of points and fix the other parameters.

3.4.2 Image data

For image data we used two different data sets from remotely sensed imagery:

A Landsat data set and a MODIS scene. For the Landsat data we ran nine tests on

a 256× 256 image of Ridgely, Maryland (n = 65, 536). The first set of experiments

involved three tests on 3-dimensional data using spectral bands 3, 4, and 5. The

initial number of clusters was set to 10, 50, and 100. This choice covers the range of

values used in typical remote sensing applications. The second set of experiments

was performed in 5-dimensional space using spectral bands 3 through 7, and the

third set was carried out in 7-dimensional space using all seven bands. The tests

in dimensions 5 and 7 were performed with 10, 50, and 100 initial centers (kinit), as

well. We ran all nine tests with the three versions of isoclus, each for 20 iterations,

σmax = 15, Lmin = 10, and nmin = n/(5kinit) (approximately), and kinit of 10, 50, and

100. Each experiment was run 10 times, invoking every time the algorithmic version

in question with a different set of initial random centers. The results obtained were

averaged over these 10 runs. (This accounts for the noninteger number of “Final

Centers” reported in the tables.)

The results are summarized in Table 3.4. As with the tests on synthetic data,

all versions performed essentially equivalently with respect to the number of centers

44

and final distortions. The filtering version was faster by a factor of roughly 4 to

30. Fig. 3.6 shows the original data and the clustered images obtained due to the

standard and filtering isoclus in 3-dimensional space. (As indicated, the clusters

for the two versions were essentially identical.)

Table 3.4: Results for Landsat data set

Dim kinit Final Centers Avg. Distortion CPU Seconds Speed-

Std Hyb/Fil Std Hyb/Fil Std Hyb Fil up

10 6.3 6.3 67.92 67.86 28.109 27.370 5.838 4.688
3 50 10.1 9.9 43.49 44.11 84.729 82.213 7.182 11.447

100 22.1 22.9 25.31 24.55 290.110 280.470 9.117 30.763

10 5.9 5.9 144.04 144.04 43.989 43.169 10.352 4.170
5 50 15.6 15.7 85.50 91.02 174.590 171.160 17.778 9.628

100 23.9 22.7 33.93 35.12 367.130 359.200 18.748 19.159

10 7.3 7.3 169.17 169.17 62.214 61.277 15.788 3.881
7 50 15.8 15.8 107.68 107.68 206.720 203.610 26.659 7.638

100 22.1 22.1 46.21 46.21 442.650 430.860 31.655 13.611

(a) (b) (c)

Fig. 3.6: A Landsat scene and its clustered images: (a) 256 × 256 Landsat image
of Ridgely, Maryland (bands 3, 4, and 5), (b) clustered image due to standard
ISOCLUS, and (c) clustered image due to the Filtering variant.

For the MODIS data set we repeated the above three sets of experiments on a

128×128 (n = 16, 384) subimage acquired over an agricultural area from the Konza

Prairie in Kansas. The results are summarized in Table 3.5. As with the Landsat

data set, we experimented in dimensions 3, 5, and 7, only that here the spectral

45

bands were selected through principal component analysis (PCA) by the standard

approach based on the Karhunen-Loéve transformation [54].

The initial number of clusters experimented with in each case was 10, 50, and

100. The remaining parameters used were essentially the same as those for the

Landsat data set, except for nmin = 45. As before, each experiment was repeated 10

times, invoking the algorithm in question every time with a different set of initial

random centers. The results reported were averaged over these 10 runs.

Table 3.5: Results for MODIS data set

Dim kinit Final Centers Avg. Distortion CPU Seconds Speed-

Std Hyb/Fil Std Hyb/Fil Std Hyb Fil up

10 17.2 17.8 389.69 383.46 14.515 14.577 2.231 6.534
3 50 51.7 51.7 177.95 177.94 38.562 37.209 2.784 13.365

100 98.4 98.4 114.86 114.87 83.172 80.444 3.600 22.345

10 20.3 21.0 970.00 946.91 22.761 21.901 4.345 5.041
5 50 69.5 69.5 478.09 478.09 82.020 79.916 7.450 10.727

100 116 116.0 372.55 372.56 143.360 139.910 9.805 14.269

10 20.8 20.8 1437.30 1443.00 28.506 28.360 6.454 4.394
7 50 79.5 81.2 728.53 722.13 143.950 144.740 16.950 8.539

100 134.9 134.5 564.94 565.80 255.950 252.320 24.393 10.344

The final results in dimensions 3 and 5 were identical with respect to both

the final number of clusters and the final distortions. In dimension 7, while all

versions of the algorithm resulted in an (almost) identical final number of clusters,

their distortions were slightly different. The filtering version was faster by factors

ranging from roughly 4 to 22. The speed-ups were most dramatic for the cases

involving a large numbers of clusters. This is to be expected because the filtering

algorithm achieves its improvement by eliminating unpromising candidate centers

from consideration.

46

3.4.3 Experiments with approximate filtering

In order to better understand the effect of approximation, we experimented

with the approximate version of the filter-based algorithm. Recall that the algorithm

differs from the exact algorithm in how candidate centers are pruned from each node

in the process of determining which center is closest to the points of a node. The

user supplies a value ε > 0, and the algorithm may assign a point to a center

whose distance (from the point) is (up to) (1 + ε) times the point’s distance to

its true nearest center. We performed experiments on both synthetic and satellite

image data. In all cases, we ran experiments with approximation parameter ε ∈

{0.1, 0.2, 0.5, 1.0, 1.5}, and compared the results against the exact (ε = 0) case.

Note that approximation was used in all but the last iteration of the algorithm, in

which case exact pruning was performed. The reason is that when the algorithm

terminates, we want all the points to be assigned to their true closest center.

The use of ε values greater than 1 may seem to be unreasonably large for

practical purposes, since this allows for more than 100% relative error. But note

that the ε value is merely an upper bound on the error committed for each individual

point-to-center assignment, and the aggregated effect of these errors is subject to

cancelation and may be much smaller. As we shall see below, even for fairly large

values of ε, the observed distortions relative to the exact version of isoclus were

almost always less than 5%.

As mentioned at the end of Section 3.2.5, isoclus is a heuristic and not

an optimization algorithm. Thus, minor changes to the algorithm can result in

47

convergence to local minima with significantly different average distortions. This

can happen even when ε = 0, because the algorithm is invoked with random initial

center points. For this reason, all of the results were averaged over the number of

invocations of the algorithm.

For synthetic data, we generated five random sets of n = 10, 000 points in di-

mensions 3, 5, and 7. Points were sampled with equal probability from 100 Gaussian

clusters with uniformly distributed centers. The distributions and program parame-

ter settings were the same as for the experiments on synthetic data of Section 3.4.1.

We measured the CPU time, the final distortion, and the final number of clusters

in each experiment. Finally, we evaluated the algorithm’s relative performance with

respect to the standard version of isoclus (by invoking the latter on the same data

sets). We computed (average) speed-ups, as well as relative distortion errors with

respect to the standard version. These results are summarized in Table 3.6.

For the satellite image data, we used the same Landsat and MODIS data sets

and the same parameter settings described in Section 3.4.2. Also, we used the same

experimental setup described above (for the approximate version). The results are

shown in Table 3.7 and Table 3.8 for the Landsat and MODIS data sets, respectively.

The results demonstrate that approximation can result in significant speed-

ups. In spite of the relatively large values of ε supplied, it is noteworthy that the

average error in the final distortion relative to the exact case (“Rel Dist Err %”)

was dramatically smaller. It never exceeded 8% and was usually less than 3%. The

phenomenon of a geometric approximation algorithm performing significantly better

on average than the allowable error bound has been observed elsewhere [13]. Since

48

Table 3.6: Results for synthetic data with Approx. Filtering, n = 10, 000, and
kinit = 100

Dim ε Final Centers Avg. Dist.×100 CPU Seconds Speed-up Rel Dist

Std Fil Std Fil Std Fil Err %

0.0 98.2 98.2 6.09 6.09 43.12 2.72 15.85 0.00
0.1 98.2 6.09 4.36 9.89 0.00
0.2 98.4 6.09 3.90 11.06 0.00

3 0.5 98.6 6.11 2.88 14.97 0.33
1.0 98.0 6.35 1.99 21.67 4.27
1.5 97.4 6.57 1.61 26.78 7.88

0.0 94.6 94.6 47.20 47.20 58.44 8.84 6.61 0.00
0.1 94.6 47.20 17.40 3.36 0.00
0.2 94.8 47.11 14.39 4.06 -0.19

5 0.5 95.6 47.10 9.40 6.22 -0.21
1.0 96.8 47.58 5.89 9.92 0.81
1.5 96.6 48.59 4.20 13.91 2.94

0.0 93.2 93.2 124.76 124.76 73.70 24.64 2.99 0.00
0.1 93.2 124.76 48.63 1.52 0.00
0.2 93.2 124.76 39.79 1.85 0.00

7 0.5 93.6 124.62 23.45 3.14 -0.11
1.0 93.0 126.36 12.19 6.05 1.28
1.5 93.4 129.04 7.48 9.85 3.43

49

Table 3.7: Results for Landsat data set with Approx. Filtering, kinit = 25

Dim ε Final Centers Avg. Distortion CPU Seconds Speed-up Rel Dist

Std Fil Std Fil Std Fil Err %

0.0 7.9 7.9 56.58 56.85 47.31 6.61 7.16 0.47
0.1 7.9 58.03 6.54 7.23 2.56

3 0.2 7.8 58.05 5.93 7.98 2.60
0.5 7.9 57.28 5.35 8.84 1.24
1.0 8.3 54.87 5.12 9.24 -3.02
1.5 8.5 55.14 5.06 9.35 -2.55

0.0 9.7 9.7 114.32 114.43 88.82 14.17 6.27 0.10
0.1 9.4 115.26 16.45 5.40 0.82

5 0.2 9.3 116.82 13.96 6.36 2.19
0.5 9.5 109.81 9.45 9.40 -3.95
1.0 9.2 114.52 7.91 11.23 0.17
1.5 8.5 116.87 7.79 11.40 2.23

0.0 10.8 10.9 139.85 137.75 115.51 20.06 5.76 -1.50
0.1 11.0 135.88 28.36 4.07 -2.83

7 0.2 10.8 137.38 24.36 4.74 -1.77
0.5 11.2 135.47 17.00 6.79 -3.13
1.0 10.3 137.34 10.86 10.64 -1.79
1.5 9.0 145.46 9.64 11.98 4.01

Table 3.8: Results for MODIS data set with Approx. Filtering, kinit = 75

Dim ε Final Centers Avg. Distortion CPU Seconds Speed-up Rel Dist

Std Fil Std Fil Std Fil Err %

0.0 74.9 74.9 137.93 138.04 58.83 3.18 18.50 0.08
0.1 74.6 138.59 4.44 13.25 0.48

3 0.2 74.5 138.74 3.86 15.24 0.59
0.5 74.3 141.23 2.74 21.47 2.39
1.0 75.6 143.55 1.90 30.96 4.07
1.5 76.8 145.28 1.71 34.40 5.33

0.0 93.5 93.5 412.43 412.80 112.62 8.76 12.86 0.09
0.1 93.3 413.88 15.39 7.32 0.35

5 0.2 93.2 414.00 12.69 8.87 0.38
0.5 94.1 412.80 8.39 13.42 0.09
1.0 98.7 410.71 5.76 19.55 -0.42
1.5 104.9 401.72 4.59 24.54 -2.60

0.0 106.3 106.1 633.54 635.31 180.77 18.63 9.70 0.28
0.1 105.8 635.66 32.81 5.51 0.33

7 0.2 106.3 634.93 27.71 6.52 0.22
0.5 105.5 636.08 17.52 10.32 0.40
1.0 110.0 631.15 10.73 16.85 -0.38
1.5 118.4 618.51 8.60 21.02 -2.37

50

isoclus is a heuristic, it is possible for the approximate version to converge on a

better local minimum, and so in some cases the distortion error is actually negative.

It is also noteworthy that the approximate algorithm achieved speed-ups of

up to one order of magnitude with low average distortion errors throughout the

range of parameter values. Note that increasing ε did not always lead to a decrease

in execution time. This is because of the sensitivity of isoclus to its starting

configuration, which further affects the number of iterations and the number of

clusters and their structure.

3.4.4 Dependence on the dimension

In this section we study the effect of the dimension of the data set on the

running times for various versions of our algorithm. Because of their greater sen-

sitivity to the dimension, the filtering and approximate filtering algorithms exhibit

poorer speed-ups as the dimension of the data set increases. To investigate this

phenomenon more thoroughly, we generated a synthetic data set of 50,000 points

(as described in Section 3.4.1). We ran experiments in various dimensions for the

standard, hybrid, filtering, and approximate filtering algorithms. For the approxi-

mate version we considered ε values ranging from 0 (equivalent to pure filtering) to

2. The dimensions considered range from 2 to 35. Each experiment was run 5 times,

invoking each run with a different set of 100 randomly selected centers (kinit = 100).

The final number of clusters, distortions, and running times were measured and

averaged over these five runs.

51

The results for the standard, hybrid, and (exact) filtering algorithms are pre-

sented in Table 3.9 and Fig. 3.7(a). We see that while filtering yields identical perfor-

mance to the standard and hybrid versions, in terms of the final number of clusters

and distortions, the speed-ups diminish rapidly with the dimension. Nonetheless, it

is interesting to note that speed-ups greater than 1 are obtained even for dimensions

as high as 35.

Although the exact version of the algorithm exhibited modest speed-ups in

higher dimensions, we wanted to find out whether the approximate version could

produce still better speed-ups. We repeated the same experiments for the approx-

imate version of the filtering algorithm with ε values of 0.5, 1.0, and 2.0. The

results show the expected tradeoff, that is, as ε increases, the running time tends

to decrease while the distortion errors tend to increase. As the dimension increases,

nodes are pruned with lower efficiency, and so the algorithm’s running time tends to

approach that of the exact algorithm. In some cases the running time of the approx-

imate version is even higher than the exact filtering algorithm. This is because the

pruning test for the approximate version is computationally more complicated than

the pruning test for the exact version. As shown in Fig. 3.7(b), the approximate

filtering algorithm with ε = 0.5 is slightly faster than the exact filtering algorithm

up to dimension 12. As ε increases, the running times improve. For ε = 1, the

approximate filtering is faster than the exact filtering algorithm up to dimension 20,

and for ε = 2, the approximate filtering is faster in all of the dimensions tested.

Of course, ε = 1 and ε = 2 are quite large approximation bounds (allowing for

100% and 200% errors, respectively). For this reason we computed the actual error

52

committed by the algorithm by comparing it with the exact version. Fig. 3.7(b) and

Fig. 3.8 show that for higher values of ε (for example, ε = 2) the average distortion

errors are very small, while the speed-ups are quite significant. Remarkably, as the

dimension increases, the distortion error becomes successively smaller. Thus, the

algorithm obtains significant speed-ups in almost all the dimensions tested with very

small actual distortion errors. Unfortunately, the algorithm cannot guarantee small

distortion errors for all inputs, and it seems to be difficult to characterize the class

of inputs for which this would be the case.

Table 3.9: Dependence on dimension for synthetic data, n = 50, 000, kinit = 100

Dim Final Centers Avg. Distortion CPU Seconds Speed-up

Std Hyb/Fil Std Hyb/Fil Std Hyb Fil

2 97.0 97.0 0.007 0.007 316.38 306.74 5.35 57.31
3 98.0 98.0 0.064 0.064 360.30 352.26 9.19 38.33
4 97.8 97.8 0.210 0.210 409.12 398.98 15.36 25.97

5 95.6 95.6 0.483 0.483 426.48 432.40 26.18 16.52
6 96.0 96.0 0.887 0.887 485.88 479.02 46.97 10.20
7 93.8 93.8 1.275 1.275 517.72 510.22 77.18 6.61

8 91.4 91.4 1.985 1.985 537.64 528.96 123.80 4.27
9 92.2 92.2 2.531 2.531 593.90 586.20 179.70 3.26
10 87.2 87.2 2.909 2.909 588.84 580.44 213.80 2.71

12 83.8 83.8 5.208 5.208 636.58 630.06 312.14 2.02
14 84.2 84.2 6.590 6.590 717.56 710.48 359.72 1.98
16 79.4 79.4 8.660 8.660 749.32 742.48 387.52 1.92

18 73.2 73.2 10.892 10.892 753.06 746.50 408.54 1.83
20 73.0 73.0 13.278 13.278 817.90 810.50 492.86 1.64
25 68.8 68.8 19.278 19.278 936.04 931.08 616.90 1.51

30 60.6 60.6 25.650 25.650 968.98 964.26 660.56 1.46
35 54.4 54.4 30.998 30.998 1004.26 998.70 702.30 1.42

53

2 5 10 15 20 25 30 35
Dimension

4

10

100

200

500

1000

50

C
P

U
 T

im
e

(s
ec

)

Filtering
Hybrid
Standard

CPU Time vs. Dimension (n=50,000, kinit=100)

2 5 10 15 20 25 30 35
Dimension

4

10

100

200

500

1000

50

C
P

U
 T

im
e

(s
ec

)

Filtering (epsilon = 0.0)
Filtering (epsilon = 0.5)
Filtering (epsilon = 1.0)
Filtering (epsilon = 2.0)

CPU Time vs. Dimension (n=50,000, kinit=100)

(a) (b)

Fig. 3.7: CPU times for the various algorithmic versions as a function of the di-
mension: (a) Standard, hybrid, and exact filtering, and (b) approximate filtering for
various ε’s.

2 5 10 15 20 25 30 35
Dimension

0.05

0.10

0.13

0

D
is

to
rt

io
n

E
rr

or

Filtering (epsilon = 0.0)
Filtering (epsilon = 0.5)
Filtering (epsilon = 1.0)
Filtering (epsilon = 2.0)

Distortion Error vs. Dimension (n=50,000, kinit=100)

Fig. 3.8: Average distortion error (relative to standard version) for the approximate
filtering algorithm (with various ε’s) as a function of the dimension.

54

3.5 Average Distance and Average Distortion

As mentioned, our use of the square root of the average distortion as a measure

of cluster dispersion is different from the average distance used in the standard

isoclus algorithm. Our experiments suggest that this modification does not make

a significant difference in the quality of the resulting clustering. isoclus uses the

value of ∆j in determining whether or not to split a cluster in Step 8. In particular,

the jth cluster is split if ∆j > ∆. Thus, it would be of interest to establish the

conditions for which the following equivalence holds:

∆j > ∆ (in standard isoclus) ⇐⇒ ∆′
j > ∆′ (in filtering isoclus).

This raises an important question as to whether our modification is justifiable,

in some sense. To further motivate this question, note that there are other reasonable

generalizations of the dispersion that could produce substantially different results.

Had we not considered the square root of the distortion, large distortions would

have had a disproportionately greater influence on the average dispersion, which

would have resulted in different clusters being split in Step 8 of the algorithm.

To see this, consider the following simple 1-dimensional example. We are given

three well-separated clusters, each consisting of an equal number of points. The

points are drawn from three normal distributions of standard deviations 1, 6, and

9, respectively. Suppose further that the algorithm places three centers, one at

the mean of each cluster. If the number of points is large, then the three average

Euclidean distances, as computed by the standard version of isoclus, would be

close to 1, 6, and 9, respectively. Thus, the overall average would be roughly ∆ =

55

(1 + 6 + 9)/3 ≈ 5.333, implying that the two clusters with standard deviations of 6

and 9 would be eligible for a split in Step 8 of the algorithm. If squared distances

were used instead, however, then the average of the squared distances for each cluster

would be very close to 1, 36, and 81, respectively. The overall average would then

be (1 + 36 + 81)/3 ≈ 39.333, implying that only the cluster of standard deviation 9

would be eligible for a split.

An alternative approach involves taking the square root of the average dis-

tortion for each cluster (as we do in the filtering algorithm), and then taking the

overall average dispersion as the square root of the weighted average of the squared

distortions over all the clusters. (This is in contrast to the filtering algorithm, which

takes square roots before averaging.) However, this alternative suffers from the same

problem as the above approach.

Although it does not seem to be possible to make any worst-case theoretical

assertions about the similarity between the results of the standard isoclus algo-

rithm and our modified version, we will endeavor to show that, in the limit, the

approach taken in the filtering algorithm does not suffer from the biases of the

above alternatives. Our analysis is based on the statistical assumption that points

are drawn independently from a number of well separated cluster distributions that

are identical up to translation and uniform scaling. This assumption is satisfied in

the above examples, where the alternative definitions are shown to fail.

More specifically, we assume that the point set S is drawn from k distinct clus-

ter distributions in Rd. We assume that all the cluster distributions are statistically

identical up to a translation and uniform scaling. In particular, let f(x1, . . . , xd) be

56

a d-variate probability density function [48] of the base cluster distribution, and let

X denote a random vector sampled from this distribution. Without loss of gener-

ality, we may assume that its expected value, E[X], is the origin. Let Y = ‖X‖

be a random variable whose value is the Euclidean length of a vector drawn from

this distribution. For the purposes of our analysis, we do not need to make any

more specific assumptions about the base distribution. For example, the distribu-

tion could be a Gaussian distribution centered about the origin with an arbitrary

covariance matrix.

For 1 ≤ j ≤ k, we assume that the points of the jth cluster are sampled from

a distribution that arises by uniformly scaling all the coordinates of X by some

positive scale factor ai ∈ R+ and translated by some vector tj ∈ Rd. Thus, a point

of the jth cluster is generated by a random vector Xj = aiX + tj. Since the origin

is the mean of the base distribution, tj is the mean of the jth cluster, which we

will call the distribution center. Let Yj = ‖Xj − tj‖ be the random variable that

represents the Euclidean distance from a point of the jth cluster to tj. Because this

is a uniform scaling of the base distribution by ai and translation by tj, it is easily

verified that E[Yj] = aiE[Y] and E[Y 2
j] = a2

i E[Y 2].

We make the following additional assumptions about the clusters and the

current state of the algorithm’s execution:

(1) The clusters are well-separated, that is, the probability that a point belonging

to one cluster is closer to the center of another cluster than to its own cluster

center is negligible.

57

(2) The number of points nj in each cluster is sufficiently large, that is, the law

of large numbers can be applied to each cluster. (We do not assume that the

clusters have equal numbers of points.)

(3) The algorithm is near convergence, in the sense that the difference between

the current location of cluster center zj and the actual cluster center tj is

negligible.

Theorem 3.5.1 Subject to Assumptions (1)–(3) above, standard isoclus and the

filtering variant behave identically.

Proof : As mentioned earlier, the only differences between the two algorithms are in

the computations of the individual and average cluster dispersion in Step 5 and their

use in determining whether to split a cluster in Step 8. Consider a cluster center

j, for 1 ≤ j ≤ k. Recall that to establish the equivalence of the two algorithms it

suffices to show that

∆j > ∆ (in standard isoclus) ⇐⇒ ∆′
j > ∆′ (in filtering isoclus).

First let us consider the average Euclidean distance of the standard algorithm.

Recall that nj denotes the number of points in a cluster. From the definitions of

the cluster distributions and Assumption (3) we have

∆j =
1

nj

∑
x∈Sj

‖x− zj‖ ≈ 1

nj

∑
x∈Sj

‖x− tj‖,

where ≈ denotes approximate equality (subject to the degree to which Assumption

(3) is satisfied).

58

Sj consists of the points that are closer to zj than to any other cluster center.

By Assumptions (1) and (3) it follows that the contribution to the dispersion of Sj

that arises due to points from other clusters is negligible. From Assumption (2) it

follows from the law of large numbers that this quantity, which is just a sample mean

of a large number of independent and identically distributed random variables, will

be arbitrarily close to the expected value for the cluster distribution. Thus we have

∆j ≈ E[‖Xj − tj‖] = E[Yj] = ajE[Y].

Next, consider the average squared distance of the filtering algorithm. From

Assumption (3), the corresponding quantity in this case is

∆′
j =

√
∆

(2)
j =


 1

nj

∑
x∈Sj

‖x− zj‖2




1/2

≈

 1

nj

∑
x∈Sj

‖x− tj‖2




1/2

.

As before, from our assumptions we may approximate this sample mean with the

expected value for the cluster distribution, from which we obtain

∆′
j ≈

√
E[‖Xj − tj‖2] =

√
E[Y 2

j] =
√

a2
jE[Y 2] = aj

√
E[Y 2].

Now, let us consider the average dispersions computed by the two algorithms.

Let wj = nj/n denote the fraction of points of S that are in cluster Sj. By the

definitions of ∆ and ∆′ we have

∆ =
1

n

k∑
i=1

ni∆i =
k∑

i=1

wi∆i and ∆′ =
1

n

k∑
i=1

ni∆
′
i =

k∑
i=1

wi∆
′
i.

Finally, we combine all of this to obtain the desired conclusion. Observe that

the implications are not absolute, but hold in the limit as Assumptions (1)–(3) are

59

satisfied:

∆j > ∆ ⇐⇒ ∆j >
∑k

i=1 wi∆i ⇐⇒ ajE[Y] >
∑k

i=1 wiaiE[Y]

~wÄ

aj >
∑k

i=1 wiai

~wÄ

∆′
j > ∆′ ⇐⇒ ∆′

j >
∑k

i=1 wi∆
′
i ⇐⇒ aj

√
E[Y 2] >

∑k
i=1 wiai

√
E[Y 2]

This completes the proof. ut

3.6 Summary

We have demonstrated the efficiency of a new implementation of the isoclus

algorithm, based on the use of the kd-tree data structure and the filtering algorithm.

Our algorithm is a slight modification of the original isoclus algorithm, because it

uses squared distances, rather than Euclidean distances as a measure of cluster dis-

persion in determining whether to split clusters. We have provided both theoretical

and experimental justification that the use of squared distances yields essentially

the same results. The experiments on synthetic clustered data showed speed-ups in

running times ranging from 1.3 to 57, while the experiments on Landsat and MODIS

satellite image data showed speed-ups of 4 to 30 and 4 to 22, respectively.

We also presented an approximate version of the algorithm which allows the

user to further improve the running time at the expense of lower fidelity in com-

puting the nearest cluster center to each point. We showed that with relatively

small distortion errors, significant additional speed-ups can be achieved by this ap-

60

proximate version. The software is freely available, and can be downloaded from

http://www.cs.umd.edu/∼mount/Projects/ISODATA.

One possible direction for future research involves sensitivity to the input

parameters. The running times for the standard and hybrid versions increase linearly

with the number of points n, the number of centers k, and the dimension d. For

the inputs we tested, however, the running time of the filtering version increases

sublinearly in n and k, but superlinearly in the dimension d. Thus, the filtering

version is most appropriate when n and k are large and the dimension is fairly

small.1

1The results of this chapter are based on joint work with David M. Mount, Nathan S. Netanyahu,
and Jacqueline Le Moigne [110]. We would like to thank Jeffery Morisette of NASA/GSFC and
the EOS Validation Core Sites project for providing us with the MODIS data, and In-Joon Chu
for his contributions to the geometrical analysis used in approximate filtering.

61

Chapter 4

Survey of Interpolation Methods

Interpolation is an important computational tool, which is widely used through-

out science and engineering. Interpolation is a method of estimating new intermedi-

ate values or points from a discrete set of surrounding known values or points [159].

In this chapter we will present a survey of a number of interpolation methods. Our

focus is mainly on interpolation methods used for scattered data points. These

interpolation methods include Shepard’s interpolation [149], Nadaraya-Watson es-

timator [116,117], moving least squares [97], natural neighbors [152], Gaussian pro-

cesses [133], and kriging [80]. Many interpolation methods for scattered-data utilize

spline functions [19,75,101,163], radial basis functions [22], and triangulation meth-

ods [10,34]. We discuss few of these interpolation methods below.

4.1 Shepard’s Interpolation Methods

Shepard’s interpolation methods, also known as inverse distance weighted

methods, were initially introduced by Donald Shepard in 1968 [149]. The simplest

interpretation of this method is that of a weighted inverse distance interpolation:

f(P) =
n∑

i=1

wifi,

where n is the number of scattered data points in the set, the fi are function values

at known scattered data points, and the wi are the weights assigned to each scatter

62

point. The classical form of the weight function is

wi =
h−p

i∑n
j=1 h−p

j

,

where p is an arbitrary positive real number (power parameter), and hi is the dis-

tance from the scatter point to the interpolation point. Since Shepard’s method

is a global technique, the above weight assignments allow too much influence by

distant points [10]. Franke and Nielson showed that the following inverse distance

relative weight function yields smoother results while making Shepard’s interpola-

tion a local method so that points outside a radius, R, will not have any effect on

the interpolation results [52].

wi =

[
R−hi

R·hi

]2

∑n
j=1

[
R−hj

R·hj

]2 .

In his paper [149] Shepard observed that the shortcomings of this method

include the following:

• High computational costs for large n.

• Dependance of the interpolant value only on its distance from the query point.

• Representation of an arbitrary and undesirable constraint on the interpolated

surface.

He also suggests approaches one can take to alleviate these problems by suggesting

ways of selecting nearby points, incorporating direction in function evaluations, and

so on.

Renka developed a modified quadratic power Shepard’s method. Without sac-

rificing the advantages of Shepard’s method, it also has accuracy comparable to

63

other local methods and improved computational efficiency [139,140]. This compu-

tational efficiency is achieved by using a cell method for nearest neighbor searching.

While this method is less efficient and less accurate than some triangle-based meth-

ods, it is a better candidate for extensions to three or more independent variables

because triangulation-based methods have greater complexity and storage require-

ments. Note that Shepard’s method requires O(n) storage as opposed to O(n2) for

tetrahedron-based methods based on 3-dimensional Delaunay triangulations. Also,

the linear preprocessing time of Shepard’s method is faster than triangulation time

of O(n log n). The main advantage of his modified version is that data is fit to a

function of three or more independent variables. Later, Renka presented a slightly

different implementation of his algorithm, which achieves cubic precision and second

derivative continuity at little additional cost [141].

4.2 Cubic Hermite Interpolation Problem

Given n triplets (x1, y1, s1) . . . (xn, yn, sn), the goal of this interpolation method

is to find a function C(x) that is piecewise cubic on partition x1 . . . xn such that for

i = 1 . . . n we have C(xi) = yi and C ′(xi) = si [101].

Interpolating given the data and requiring continuity of the first derivative

imposes (3n−4) constraints (n constrains for passing through data points and 2n−4

constraints for continuity of first derivatives) [75, 101]. However, the total number

of parameters that need to be calculated is 4(n− 1) since there are n− 1 intervals

and each cubic function requires 4 parameters. Thus, the Hermite interpolation

64

problem still leaves n other free parameters. These n parameters can be calculated

by imposing other constraints such as those due to convexity or monotonicity [75].

4.3 Spline Interpolants

A spline is a piecewise polynomial function of degree k that is continuously

differentiable k − 1 times [75]. For example, a linear spline is a piecewise-linear

function that is continuous but not differentiable. A spline can have a very simple

form locally but be very flexible and smooth globally. For this reason, splines are

widely used for interpolation of data. Two of the most commonly used class of spline

functions are thin-plate splines [163] and polyharmonic splines [19].

Given n triples (x1, y1, s1) . . . (xn, yn, sn), the goal of the cubic spline inter-

polants is to obtain a function S(z) with the property that S, S ′, and S ′′ are contin-

uous [101]. The requirements that the function and its first derivative are continuous

imposes 3n− 4 constraints. Continuity of the second derivatives imposes n− 2 ad-

ditional constraints, giving a total of 4n − 6 constraints. We are left with two

free parameters mainly due to having one less constraint on the end points of our

data’s interval (x1 and xn). Depending on what the two additional constraints are,

different interpolation methods are defined. For example, the complete spline inter-

polant constrains the first derivative at the two end points by imposing S ′(x1) = µ1

and S ′(xn) = µ2, where µ1 and µ2 are the required end point values for the first

derivative. Similarly, natural splines require the second derivatives at the two end

points be constrained, and the not-a-knot spline interpolant requires third derivative

65

continuity at x2 and xn−1.

4.4 Natural Neighbors

Natural neighbors is a local interpolation method that was first introduced by

Sibson [152]. Natural neighbors interpolation uses a weighted averaging method,

where weights are area-based rather than distance-based. Area-based methods are

more robust and perform equally well in clustered and sparse areas of given data

set. However, they are more computationally intensive than other methods. Natural

neighbors interpolation requires a preprocessing step that constructs the Voronoi

diagram of the given point set [10]. The Voronoi diagram (also called the Dirichlet

or Thiessen tessellation) partitions the plane into disjoint tiles; (or polytopes) where

each tile Ti encloses one point xi of the given point set, and the area of Ti is closer

to the data point xi than to any other data point.

Suppose we have n scatter data points x1 . . . xn. After the tessellation is con-

structed, we add the query point xq to the data set and update the Voronoi diagram.

Let’s call the Voronoi cell of xq, T (xq), and its intersections with the old Voronoi

cells/tiles, Ti(xq), that is Ti(xq) = T (xq) ∩ Ti. Note that intersection Ti(xq) is

nonempty only for neighboring cells from which T (xq) has inherited its area. The

actual calculations of these intersecting areas is a complicated but reasonably ef-

ficient geometric calculation. See [152] for more details. The natural neighbor

interpolant at point xq can then defined as

f(xq) =
∑

i

wi(xq)zi, (4.1)

66

where

wi(xq) =
Area[Ti(xq)]

Area[T (xq)]
, (4.2)

∑
i

wi(xq) = 1,

0 ≤ wi(xq) ≤ 1.

This method results in cone-like peaks at data points xi which are natural

neighbors of xq. This means that the resulting interpolant is only C0 continuous.

Sibson [152] obtained a C1 continuous surface by taking into account the gradient at

the data points. That is, in equation 4.1, he replaced zi by a first degree polynomial

gi(xq) where

gi(xq) = zi +∇z(xi)
T (xq − xi). (4.3)

In order to guarantee the correct slopes at the points xi, weights wi are also replaced

by the weights

w′
i(xq) =

wi(xq)‖xq − xi‖−1

∑
i wi(xq)‖xq − xi‖−1

. (4.4)

Thus, Eq. 4.1 is modified to the following interpolant:

f(xq) =
∑

i

w′
i(xq)gi(xq), (4.5)

Note that if we replace w′
i(xq) by ‖xq − xi‖−1 we obtain a linearly precise ver-

sion of Shepard’s method [6]. Later, Farin [46] extended Sibson’s work by giving

a continuous parametrization of the Sibson’s coordinates. He presented a C1 con-

tinuous interpolation method based on Bernstein-Bézier techniques which exactly

interpolates quadratic functions, assuming that the function gradient is known [46].

67

4.5 Triangulation (Tetrahedrization) Based Methods

The idea for this interpolation technique is based on Delaunay triangulation of

points. Delaunay triangulation is a dual structure of the Voronoi diagram in which

sites located at each three adjacent cells are connected and form a triangle.

Once a Delaunay triangulation of points is constructed, one can interpolate

value at a query point q in two steps.

1. Find the triangle to which the query point belongs. This can be done through

the following search procedure [10]:

• Let pi be a point belonging to a known tetrahedron T .

• q belongs to the same tetrahedron if there is no intersection between seg-

ment pq and any surface of T . If this holds we have found the tetrahedron

to which q belongs.

• If we had not found the tetrahedron, a new point pi+1 is chosen in the

tetrahedron adjacent to T , which shares with T its intersected surface.

The procedure is repeated until the correct tetrahedron is found.

2. Use a linear, linear multi-valued triangular, or cubic triangular interpolation

method to come up with the value for the query point. For details of each of

these methods please see [10].

Triangulation based methods are local and thus capable of handling large

data sets. Their only drawback is the need for calculating the triangulation. Once

triangulation of points is calculated, interpolation method is very simple.

68

4.6 Moving Least Squares

Moving Least Squares (MLS) was first introduced in [97]. Before defining

MLS, we need to first know what Least Squares (LS) and Weighted Least Squares

(WLS) are.

Given n points at locations xi in <d where i ∈ {1 . . . n}, the goal of LS problem

is to find a global function f(x) such that f(x) approximates values fi at points xi

such that it minimizes sum of squared errors, E. That is

f(x) = min
f∈Qd

m

∑
i

‖ f(xi)− fi ‖2 .

In the WLS formulation, f(x) is calculated as the solution to the minimization

of sum of weighted squared errors. Weights are usually selected as a function,θ, of

distances of points xi to a fixed point x. Thus, f(x) is calculated as follows:

f(x) = min
f∈Qd

m

∑
i

θ(‖ x− xi ‖) ‖ f(xi)− fi ‖2 .

In each case, partial derivatives of the error function we are minimizing with respect

to the unknown coefficients are taken, set to zero, and solved for unknowns. In

MLS formulation, one starts with the weighted least squares formulation for a fixed

point in <d. Then, this point is moved over the entire parameter domain, where a

weighted least squares fit is evaluated for each point individually. Thus,

f(x) = fx(x), min
fx∈

Qd
m

∑
i

θ(‖ x− xi ‖) ‖ f(xi)− fi ‖2 .

It can be shown that the global function f(x) is continuously differentiable if

and only if the weighting function is continuously differentiable [98].

69

4.7 Gaussian Process Regression

Gaussian process (GP) is defined as collection of random variables, any finite

number of which have a joint Gaussian distribution [133]. Thus, Gaussian process is

completely specified by its mean function and covariance function. Let m(x) be the

mean function of random variables (real process) f(x), and k(x, x′) be the covariance

function of a real process f(x), then the Gaussian process f(x) is represented as

f(x) ∼ GP (m(x), k(x, x′)), where

m(x) = E[f(x)]

and

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

Thus, learning a Gaussian process is exactly the problem of finding suitable

properties for the covariance function to produce a model of the data.

Regression is concerned with the prediction of continuous quantities. We focus

on application of Gaussian Processes for regression problems [133]. In order to

understand how GP is used for linear regression, we first review concepts of linear

regression model and Bayesian inference.

A standard linear regression model with noise can be modeled by f(x) = xTw

and y = f(x) + ε. In this model, the vector x is the input vector, w is a vector of

weights (parameters) of the linear model, and f is the actual function value, y is

the observed target value, and the observed values differ from the function values

by an additive noise ε. Bayesian inference is based on maximizing a probability dis-

tribution. For regression, this probability is the posterior distribution over weights,

70

P (w|x, y) . This probability is calculated using Bayes’ rule as follows.

P (w|x, y) =
P (y|x,w)P (w)

P (y|x)
.

Performing regression using the above approach has the disadvantage that one

needs to restrict the estimation to a particular class of functions. Another possible

approach is to consider all possible functions and calculate the probabilities in the

function space. Initially it appears that since we are dealing with an infinite number

of possible functions, it would be impossible to calculate prior probabilities of every

possible function. This is where we take advantage of the GP. A GP is generalization

of a Gaussian distribution. A Gaussian distribution describes properties of data

and variables whereas a GP governs properties of functions. One can think of a

function as an infinite vector where each element of it is the function value f(x) for

a particular input x.

To use GP in Bayesian inference, inputs are projected into a high dimensional

space. In particular, let φ(x) be the function that maps vector x from an D di-

mensional feature space to an N dimensional space. Then, the linear regression

model will have the form f(x) = φ(x)Tw. Let X be the aggregated n input col-

umn vectors in a matrix. Predictive distribution for f∗, f(x∗), is given by averaging

over the output of all possible linear models with respect to the Gaussian posterior

p(f∗|x∗, X, y). This Gaussian posterior is Gaussian as well.

It can be shown that y ∼ N(0, K + σ2
nI) where K is the covariance matrix of

input X, and σ2
n is the noise variance to the predictive variance of f∗ [133]. Given a

value x∗ one can calculate predictive mean f ∗(x∗) as f ∗(x∗) = kT
∗ α, where k∗ = k(x∗)

71

denotes the vector of covariances between the query point and n input data. α is

calculated as α = (K + σ2
nI)−1y. Another way of representing the same result is

that f ∗(x∗) =
∑n

i=1 αik(xi, x∗). For details of these derivations please see [133].

Note that in order to predict f∗(x∗) one needs to solve a symmetric linear

system to calculate α vector as mentioned above. For large input data, representing

and solving this linear system can be very expensive (both in computation and

memory).

In summary, a Gaussian process can be used as a prior probability distribution

over functions in Bayesian inference. Inference of continuous values with a Gaussian

process prior is known as Gaussian process regression, or Kriging. Gaussian process

prediction is well known in the geostatistics field as kriging [85], which we will discuss

in Section 4.8.

4.8 Kriging/Cokriging Interpolation Methods

Interpolating noisy or scattered data points is a problem of wide ranging in-

terest, where gathering data at specific locations is either impractical or expensive.

Because of the high cost of collecting measurements, high accuracy is required in

the interpolants. A popular class of interpolation methods used in these situations

is kriging. Kriging is a class of interpolation methods named after Danie Krige,

a South African mining engineer, who pioneered in the field of geostatistics [60].

Kriging is also referred to as the Gaussian process predictor in the machine learning

domain [133]. Kriging and its variants have been traditionally used in mining and

72

geostatistics applications [60,80,85]. The most commonly used variant is called or-

dinary kriging, which is often referred to as a BLUE method, that is a Best Linear

Unbiased Estimator [60, 80, 85]. Ordinary kriging is considered to be best because

it minimizes the variance of the estimation error. It is linear because estimates

are weighted linear combination of available data, and is unbiased since it aims to

have the mean error equal to zero [80]. A more generalized technique used for geo-

statistics and mining applications is cokriging [60, 80, 85]. A special characteristic

of cokriging is that it can utilize data of different nature to model and interpolate a

particular attribute [37,60,80].

As mentioned before, kriging is a Gaussian process predictor. In fact, kriging

equations are equal to those obtained for GP if we do not assume any noise asso-

ciated with our observations. However, we present equations from a geostatistics

perspective rather than from a Bayesian inference point of view.

Cokriging is a generalization of kriging that minimizes the variance of the

estimation error by taking into consideration the spatial correlations between the

variables of interest and the secondary variables. In other words, a function U at

location 0 is estimated as a linear combination of both the variable of interest and

the secondary variable(s). That is, in the case where we have one secondary vari-

able, the estimate of U at location 0, û0, using the two sets of variables as mentioned

in [80], is given by û0 =
∑n

i=1 aiui +
∑m

j=1 bjvj, where u1, u2, . . . , un are primary data

at n nearby locations, v1, v2, . . . , vn are secondary data at m nearby locations, and

a1, a2, . . . , an and b1, b2, . . . , bm are cokriging weights which are needed to be found

and calculated. The estimation error, R, is calculated as R = Û0−U0 = wT Z, where

73

wT = (a1, . . . , an, b1, . . . , bm,−1), and ZT = (U1, . . . , Ui, V1, . . . , Vm, U0). The goal

of cokriging is to find the weights a1, . . . an and b1 . . . bm such that the variance of

the error is minimized and the estimate for Û0 is unbiased, that is, the mean error

residual is zero. In Appendix A we show conditions under which these requirements

are satisfied. We also present necessary mathematical and geostatistical background

needed to understand the kriging problem. We then derive mathematical formaliza-

tion and algorithmic approaches for solving the kriging problem. We also introduce

available software for kriging and mention this problem’s computational issues in

more detail. In summary, in Appendix A, we show that the generalized cokriging

system is the following.

(
C L
LT 0

) (
w
µ

)
=

(
C0
I0

)
, (4.6)

where C is the pairwise covariances of all known variable values, and C0 is the

vector of pairwise covariances between the unknown variable U0 and all other known

variables. The µ entry is a vector of all Lagrange multipliers µ1 . . . µs. L is a vector

of matrices I1 . . . Is. Each matrix Ii, i ∈ {1 . . . s} is of size (ni × s), where ni is the

number of points in the ith variable set. All elements in the ith column of Ii are one

and all other entries are zero. The w entry is the vector of all coefficients, and I0 is

a column vector of size s× 1 of all elements under C0 on the right hand side of the

equation. Similarly to ensure unbiasedness, this vector is made of a 1 on top and all

zeros for the rest of entries. It can also be proven that in order for the above system

to have a solution, we need C to be positive definite [28, 115] (see Appendix A for

details). Note that in all the above mentioned equations, if we had only one type

74

of variable U , at n different locations, the problem reduces to the ordinary kriging

problem. In this case, L would be a column of all 1s, and we solve for one set of

coefficients a1, . . . an, µ1.

Thus, for a data set of size n the kriging problem involves solving a system

of order O(n × n). For large data sets, solving this system using traditional meth-

ods such as Gaussian Elimination is impractical. We explored two approaches for

efficiently solving these systems for very large spatial data sets. One is through in-

troducing sparsity to the system, and the other is based on utilizing Fast Multipole

Method (FMM) [61]. In the next two chapters, we describe each of these approaches

along with computational issues involved in each case, our work, and results. For

background information and details of the kriging interpolation methods please see

Appendix A.

75

Chapter 5

Kriging via Covariance Tapering and Iterative Methods

Scattered data interpolation is a problem of interest in numerous areas such as

electronic imaging, smooth surface modeling, and computational geometry [6, 10].

Our motivation arises from applications in geology and mining. In many instances

data can be costly to compute and are available only at nonuniformly scattered

positions. Because of the high cost of collecting measurements, high accuracy is

required in the interpolants. The method of choice, sometimes called the “gold

standard” in this area [111], is ordinary kriging (please see Section 4.8 and Appendix

A for more details). This is because it is a best linear unbiased estimator [60,80,85].

The price for its statistical optimality is that the estimator is computationally very

expensive. For n scattered data points, computing the value of a single interpolant

involves solving a dense linear system of size roughly n×n. This is infeasible for large

n. In practice, kriging is solved approximately by local approaches that are based

on considering only a relatively small number of points that lie close to the query

point [60, 80]. There are many problems with this local approach, however. The

first is that determining the proper neighborhood size is tricky, and is usually solved

by ad hoc methods such as selecting a fixed number of nearest neighbors or all the

points lying within a fixed radius. Such fixed neighborhood sizes may not work well

for all query points, depending on local density of the point distribution [60]. Local

76

methods also suffer from the problem that the resulting interpolant is not continuous.

Meyer showed that while kriging produces smooth continuous surfaces, it has zero

order continuity along its borders [111]. Thus, at interface boundaries where the

neighborhood changes, the interpolant behaves discontinuously. Therefore, it is

important to consider and solve the global system for each interpolant. However,

solving such large dense systems for each query point is impractical.

Recently a more principled approach to approximating kriging has been pro-

posed based on a technique called covariance tapering [55]. We will discuss its

computational issues in greater detail, but the problems arise from the fact that the

covariance functions that are used in kriging have global support. In tapering these

functions are approximated by functions that have only local support, and that pos-

sess certain necessary mathematical properties. This achieves greater efficiency by

replacing large dense kriging systems with much sparser linear systems. Covariance

tapering has been successfully applied to a restriction of our problem, called simple

kriging [55]. Simple kriging is not an unbiased estimator for stationary data whose

mean value differs from zero, however. In this chapter we generalize these results by

showing how to apply covariance tapering to the more general problem of ordinary

kriging. Ordinary kriging ensures unbiasedness for stationary data, whose mean can

have any value.

Our implementations combine, use, and enhance a number of different ap-

proaches that have been introduced in literature for solving large linear systems for

interpolation of scattered data points. For very large systems, exact methods such

as Gaussian elimination are impractical since they require O(n3) time and O(n2)

77

storage. As Billings et al. [22] suggested, we use an iterative approach. In particular

we use the symmlq method [122] for solving the large but sparse ordinary kriging

systems that result from tapering. There are a number of technical issues that need

to be overcome in our algorithmic solution. In particular, we describe in Section

A.3.5 why the points’ covariance matrix for kriging should be symmetric positive

definite. The goal of tapering is to obtain a sparse approximate representation of the

covariance matrix while maintaining its positive definiteness. Furrer et al. [55] used

tapering to obtain a sparse linear system of the form Ax = b, where A is the tapered

symmetric positive definite covariance matrix. Thus, Cholesky factorization [101]

could be used to solve the linear system for their application. They further uti-

lized the sparseness of A to implement an efficient sparse Cholesky decomposition

method for solving the linear system. They also applied the Fast Fourier Transform

in conjunction with their sparse implementation to obtain better efficiency in solv-

ing the system. In addition, they show if these tapers are used for a limited class of

covariance models, the solution of the system converges to the solution of the origi-

nal system. While their results show significant improvements over dense Cholesky

factorization, their approach is not applicable to the ordinary kriging problem. This

is mainly due to the fact that matrix A in the ordinary kriging linear system, while

symmetric, is not positive definite. We will discuss details of the ordinary kriging

system in Section A.3 of Appendix A.

In ordinary kriging, additional constraints are imposed on the interpolation

coefficients to ensure the unbiasedness of the estimator. These constraints result in

one or more additional rows and columns in matrix A. As we will see in Section A.3

78

of Appendix A, these constraints result in a matrix that fails to be positive definite.

Thus, efficient implementations of Cholesky factorization (which require a positive

definite matrix) are not applicable to the ordinary kriging problem. Therefore, we

use tapering only to obtain a sparse linear system, and then use a sparse iterative

method to solve our linear systems. In particular, we use symmlq method which is

an iterative method for solving symmetric but not positive definite systems [122].

We show that solving large kriging systems becomes practical via tapering and

iterative methods, and results in lower estimation errors compared to traditional

local approaches, and significant memory savings compared to the original global

system. We achieve further significant speed-ups by introducing a variant of the

global tapered system. This variant is obtained by projecting our global system to

an appropriate lower dimensional system. This approach can be viewed as adaptively

finding the correct local neighborhood for each query point in the ordinary kriging

interpolation process. We compare both quality of our results and running times

with those obtained using traditional approaches based on neighborhood sizes for

solving large ordinary kriging systems.

The remainder of this chapter is organized as follows. In Section 5.1.2 we

describe what is meant by tapering, and the effect that it has on the ordinary kriging

system (see Appendix A for details). We proceed by introducing our approaches for

solving the ordinary kriging problem in Section 5.2. Section 5.3 describes data sets

used in this chapter. Then, we describe our experiments and results in Section 5.4.

We conclude this chapter in Section 5.5.

79

5.1 Tapering Covariances

Tapering covariances for the kriging interpolation problem, as described in [55],

is the process of obtaining a sparse representation of the points’ pairwise covariances

such that positive definiteness of the covariance matrix is preserved and the solution

to the approximate (tapered) system is very close to the exact system. There are

two approaches for obtaining such a sparse representation. One approach is to set

all sufficiently small covariance values to zero. That is, we assign zero to pairwise

covariances of points that are farther than a threshold distance, θ, from each other.

We refer to this approach as truncation. The other approach used by Furrer et.

al. [55] is to modify the covariance function via some tapering functions such that

the above objectives are met. Next, we will describe each of these approaches and

their computational issues involved.

5.1.1 Tapering via truncation

Consider the ordinary kriging system mentioned in Eq. (A.25) in Appendix

A. For very large data sets of size O(n), this system is of size O(n2). For large n

it would be impractical to solve the system using traditional approaches. Let τ be

a user-specified small value. Instead of solving this system, we consider solving a

system in which the covariance values that are sufficiently small are set to zero. That

is, we replace the kriging system of Eq. (A.25) in Appendix A with the following.

(
C̃ L
LT 0

)(
T
µ

)
=

(
C̃0

I0

)
, (5.1)

where

80

c̃ij =

{
0 if |cij| ≤ τ ,
cij otherwise.

(5.2)

and

c̃0i1
=

{
0 if |c0i1

| ≤ τ ,
c0i1

otherwise.
(5.3)

We refer to the original linear system Eq. (A.25) in Appendix A as Ax = b and

the modified system Eq. (5.1) as Ãx̃ = b̃. There are several issues that need to be

addressed. In particular, the matrix Ã should be nonsingular, C̃ should be positive

definite, and the solution of Eq. (5.1) should be approximately equal to that of

Eq. (A.25) in Appendix A. Let us consider each of these individuals. First, we would

like to determine conditions under which the truncated matrix Ã is nonsingular. Let

matrix E and vector f be defined as follows:

eij =

{ −aij if |aij| ≤ τ ,
0 otherwise.

(5.4)

and

fi1 =

{ −bi1 if |bi1| ≤ τ ,
0 otherwise.

(5.5)

Our modified system in terms of E and f is (A+E)x = (b+f), where Ã = A+E and

b̃ = b+ f . We know from Theorem 5 in [101] (page 185) that if a matrix A is stored

as Ã = A + E, where |eij| < τ |aij| then ‖E‖ ≤ τ‖A‖ (considering the Frobenius

norm). Similarly, we can conclude ‖f‖ ≤ τ‖b‖ in our problem formulation. Based

on the Banach Lemma [121], also mentioned in Appendix A, A + E is nonsingular

if ‖A−1‖ · ‖E‖ < 1. Putting these together, yields the following.

‖A−1‖ · ‖E‖ ≤ τ‖A−1‖ · ‖A‖ ≤ τκ, (5.6)

81

where κ = ‖A‖ · ‖A−1‖. Thus, in order for A+E to be nonsingular we should select

the threshold for the sparse representation of the matrix to be less than 1
κ
.

The error analysis presented in Section A.6 of Appendix A applies to our

truncated system as well. Considering that discussion and α = κ‖E‖‖A‖ , we have

(‖E‖
‖A‖ ≤ τ

)
⇐⇒

(
κ
‖E‖
‖A‖ ≤ κτ

)

⇐⇒
(

1− κ · ‖E‖‖A‖ ≥ 1− κτ

)

⇐⇒
(

1

1− κ‖E‖‖A‖
≤ 1

1− κτ

)

⇐⇒
(

1

1− α
≤ 1

1− κτ

)
. (5.7)

Putting this together with Eq. (A.37) in Appendix A, implies that the relative

error of the truncated systems’ solution, x̂, with respect to the solution of the original

system, x, can be bounded as follows.

‖x− x̂‖
‖x‖ ≤

(
κ

1− κτ
(τ + τ)

)

=

(
2κτ

1− κτ

)
.

In order to make sure that the relative error in solving the system is less than

a certain threshold, ε, we need to select τ such that 2κτ
1−κτ

≤ ε. In other words, the

value of τ for performing truncation should satisfy

τ ≤ ε

κ(2 + ε)
. (5.8)

Finally, assuming that C is positive definite, we would like to know whether

or not its tapered form via truncation, C̃, is also positive definite. Before presenting

our analysis of the general case, it will be helpful to first consider a special case in

82

which positive definiteness is preserved. We consider two data points are correlated

with each other if their pairwise covariance value is greater than or equal to τ . We

then say that data points are well-clustered if it is possible to partition them into

disjoint sets, or clusters, such that points lying within the same cluster are correlated

with each other and points that are in different clusters are not. If points are well-

clustered, then the tapered matrix, C̃, can be expressed in block diagonal form, C̃ ′.

In other words, there is a permutation matrix P , such that C̃ ′ = P T C̃P . Since we

have a similarity transformation, P−1 = P T , thus the eigenvalues of C̃ ′ are equal

to the eigenvalues of C̃ [121]. Therefore, it suffices to show that the permuted and

tapered block diagonal covariance matrix is positive definite. Note that each matrix

block on the diagonal is positive definite since it is the covariance matrix of the set

of points in one of the clusters. Then, as a result of Fischer’s inequality [79] we

conclude that the eigenvalues of the whole block diagonal matrix C̃ ′ is the union of

all eigenvalues of each of the block matrices. Since all the eigenvalues are positive

so is their union, and thus the tapered covariance matrix is positive definite.

For the general case, the clusters may overlap and thus this block diagonal

representation may not exist. The tapered matrix C̃ can be written as C̃ = C + D,

where

d̃ij =

{ −cij if |cij| ≤ τ ,
0 otherwise.

It can be shown that if ||D|| is smaller than the smallest eigenvalue of the matrix C,

then C̃ is still positive definite. To see this, observe that since C is positive definite

all its eigenvalues, λ1, . . . , λn, are strictly positive. Suppose we have labeled the

83

eigenvalues in decreasing order such that λ1 ≥ λ2 ≥ . . . ≥ λn > 0. Now, consider

the eigen-decomposition of matrix C. Since C is symmetric positive definite, there

exists an orthogonal matrix Q such that C = QΛQT , where Λ is a diagonal matrix

with eigenvalues of C on its diagonal, and Q is an orthogonal matrix. That is,

Λ = diag(λ1, λ2, . . . , λn) and QQT = I. Now, suppose that the smallest eigenvalue

of C, λn, is perturbed by an amount δ. Let Λ̃ = diag(λ1, λ2, . . . , (λn − δ)). In this

case, the perturbed matrix C̃ is QΛ̃QT . Let ∆ be the norm of the change in matrix

C (amount of perturbation). That is,

∆ = ||C̃ − C|| = ||Q(Λ̃− Λ)QT || = λn − δ.

Note that if δ ≥ λn, then C̃ is not positive definite. Thus, in order to ensure that

the perturbed matrix (tapered matrix) is positive definite, it is sufficient that the

selected value τ for tapering the covariance matrix in the kriging system be smaller

than λn, its smallest eigenvalue. In fact, τ should be smaller than λn by a constant

factor roughly equal to the number of elements being truncated.

Based on the discussion presented here, the correct choice of τ for truncation

is crucial to guaranteeing that the truncated system has a solution with relative

error less than a desired error threshold, ε, and that positive definiteness of C is

preserved. In order to make such a correct choice, one is required to know the κ

(the condition number of matrix A) as well as λn (the smallest eigenvalue of C).

However, solving for these values requires solving linear systems of the same size

as our original problem, which were impractical to solve exactly (which we wanted

to solve efficiently via truncation). In the next section, we present an alternative

84

way for introducing sparsity to the kriging linear system which preserves positive

definiteness of the covariance matrix C. This approach is based on using tapering

functions. Some of these tapering functions guarantee convergence to the optimal

solution of the system for certain classes of the covariance functions as well [55].

5.1.2 Tapering via tapering functions

In the past section, we discussed limitation of introducing sparsity to the

kriging system via truncation. In particular, we discussed that selecting a valid

threshold for truncation, requires knowledge of the smallest eigenvalue of the points

covariance matrix, as well as the condition number of our linear system’s matrix.

However,estimating these values for large matrices, reduces to solving large linear

systems of the same size as the original problem. Instead, the sparse representation

via tapering can be obtained through the Schur (or termwise) product of the original

positive definite covariance matrix by another positive definite covariance matrix.

Ctap(h) = C(h)× Cθ(h). (5.9)

The resulting tapered covariance matrix, Ctap, has zero values for points that are

more than a certain distance apart from each other. It is also positive definite since

the Schur product of two positive definite matrices are positive definite. A taper is

considered valid for a covariance model if it preserves its positive definiteness prop-

erty and makes the approximate system’s solution converge to the original system’s

solution.

The authors of [55] mention few valid tapering functions. They also showed

85

that tapers need to be as smooth as the original covariance function to ensure

convergence to the original system’s solution. In this chapter, we used the following

tapers [55].

Spherical =

(
1− h

θ

)2

+

(
1 +

h

2θ

)
, (5.10)

Wendland1 =

(
1− h

θ

)4

+

(
1 +

4h

θ

)
, (5.11)

Wendland2 =

(
1− h

θ

)6

+

(
1 +

6h

θ
+

35h2

3θ2

)
, (5.12)

TopHat =

(
1− h

θ

)

+

, (5.13)

where x+ = max{0, x} and θ is chosen so that pairwise covariances can be supported

in [0, θ). Note that the above tapers result in positive definite covariance functions

in R3 and lower dimensions [55]. However, considering convergence to the optimal

estimator, these tapers are not valid for all covariance functions. Tapers need to

be as smooth as the original covariance function at origin to guarantee convergence

to the optimal estimator [55]. Thus, for a Gaussian covariance function, which is

infinitely differentiable, no taper exists that satisfies this smoothness requirement.

However, since tapers proposed in [55] still maintain positive definiteness of the co-

variance matrices, we examined using these tapers for Gaussian covariance functions

as well. We used these tapers mainly to build a sparse approximate system to our

original global system even though these tapers do not guarantee convergence to

the optimal solution of the original global dense system theoretically. Of the above

mentioned tapering functions, the Top Hat taper is closest to the truncation idea

while guaranteeing positive definiteness of the covariance matrix.

86

5.2 Our Approaches

We implemented and examined both local and global interpolation methods

for the ordinary kriging interpolation problem as follows.

Local Methods: This is the traditional and the most common way of solving

kriging systems. That is, instead of considering all known values in the interpo-

lation process, points within a neighborhood of the query point are considered.

Neighborhood sizes are defined either by a fixed number of points closest to the

query point or by points within a fixed radius from the query point. Therefore,

the problem is solved locally. We experimented our interpolations using both of

these local approaches. We defined the fixed radius to be the distance beyond which

correlation values are less than 10−6 of the maximum correlation. Similarly, for the

fixed number approach, we used maximum connectivity degree of points’ pairwise

covariances, when covariance values are larger than 10−6 of the maximum covariance

value. Gaussian elimination [118] was used for solving the local linear systems in

both cases.

Global Tapered Methods: In global tapered methods we first redefine our

points’ covariance function to be the tapered covariance function obtained through

Eq. (5.9), where C(h) is the covariance function which was used (Eq. (A.13) or (A.14)

in Appendix A), and Cθ(h) is one of the tapering functions defined in Section 5.1.2.

We then solve the linear system using the symmlq approach as mentioned in [122].

Note that, while one can use conjugate gradient method for solving symmetric sys-

87

tems, the method is guaranteed to converge only when the coefficient matrix is both

symmetric and positive definite [150]. Since ordinary kriging systems are symmet-

ric and not positive definite, we used symmlq. We modified the original symmlq

implementation to take advantage of the sparseness of the matrix A, similar to the

sparse conjugate gradient implementation mentioned in [131]. Note that in [131]’s

implementation, matrix elements that are less than or equal to a threshold value

are ignored. Since we obtain sparseness through tapering, this threshold value for

our application is zero. One appealing approach would be to obtain a sparse system

by having a small nonzero threshold value, instead of obtaining sparseness through

tapering. However, as mentioned before, this approach does not necessarily result

in a positive definite covariance matrix, and that is the main reason why tapering

functions are of great value for kriging applications [55].

Global Tapered and Projected Methods: This implementation is motivated

by numerous empirical results in geostatistics which show that interpolation weights

associated with points that are very far from the query point tend to be very close

to zero. That is, very far points do not seem to contribute much to the interpola-

tion weights. This phenomenon is called the screening effect in the geostatistical

literature [155]. Stein showed conditions under which the screening effect occurs for

gridded data [155]. While the existence of the screening effect has been the basis

for using local methods in the past, there is no proof of this empirically supported

idea for scattered data points [55]. We use this conjecture for solving the global

ordinary kriging system Ax = b, observing that many elements of b are zero after

88

tapering. This indicates that for each zero element bi , representing the covariance

between the query point and the ith data point, we have Ci0 = 0. Thus, we ex-

pect their associated interpolation weight, wi, to be very close to zero. We assign

zero to such wi’s, and consider solving a smaller system A′x′ = b′, where b′ consists

of nonzero entries of b. We store indices of nonzero rows in b in a vector called

indices. A′ contains only those elements of A whose row and column indices both

appear in the indices vector. Then, we solve the projected system A′x′ = b′. This

method is effectively the same as the fixed radius neighborhood size. The difference

is that the local neighborhood is found adaptively by looking at covariance values

in the global system for each query point. There are several differences between this

approach and the local methods. One is that we build the global matrix A once,

and use relevant parts of it, contributing to nonzero weights, for each query point.

Second, for each query point, the local neighborhood is found adaptively by looking

at covariance values in the global system. Third, the covariance values are modified

through tapering.

5.3 Data Sets

We need large scattered data sets to test and evaluate performance of various

approaches mentioned in Section 5.2. As mentioned before, we cannot solve the

original global systems exactly for very large data sets, and thus cannot compare

our solutions with respect to the original global systems. Therefore, we would need

ground truth values for our data sets. Also, since performance of local approaches

89

can depend on data points’ density around the query point, we would like our data

sets to be scattered non-uniformly. Therefore, we create our scattered data sets by

sampling points of a large dense grid from both uniform and Gaussian distributions.

Values of the dense grid are either synthetically generated or are real measurements.

We generated our synthetic data sets using the sgems [138] software. We

generated values on a (1000×1000) grid. Values were generated using the Sequential

Gaussian Simulation (sgsim) algorithm of the sgems software (please see [137, 138]

for more details). Points were simulated through ordinary kriging with a Gaussian

covariance function Eq. (A.13) in Appendix A of range equal to 12. Each point

was simulated using a maximum of 400 neighboring points within a 24 unit radius

area. Figure 5.1 illustrates a small region of one of these dense terrains. Then, we

created five sparse data sets by sampling 1% to 5% of the original simulated grid’s

points. This procedure resulted in sparse data sets of sizes ranging from over 9K

to over 48K. The sampling was done so that the concentration of points in different

locations vary. That is, for each data set, 5% of the points were sampled from

ten randomly selected Gaussian distributions. The rest of the points were drawn

from the uniform distribution. We then removed duplicates that were resulted from

sampling in these two different manners.

We also used the exhaustive Walker Lake data set, which is described in [80].

This data set was originally derived from a digital elevation model from the Walker

Lake area in Nevada, U.S. There are two variables measured at 78000 points on

a 260 × 300 grid. These two variables are continuous and their values range from

zero to several thousands. These variables, which we will refer to as U and V , are

90

Fig. 5.1: A small region of one of the dense data sets that were generated

related to topographic features. Authors in [80] try to keep their book generic by

mentioning that these variables can represent various features such as thickness of a

geographic horizon, rainfall measurements, soil strength, etc. From the dense grid,

we created two scattered data sets (one for U , and one for V). In each case we

sampled less than 5% of the points from the grid. About 95% of the sampled points

were from the uniform distribution while the rest were sampled from five Gaussian

clusters.

5.4 Experiments

All experiments were run on a Sun Fire V20z running Red Hat Enterprise

release 3, using the g++ compiler version 3.2.3. Our software is implemented in

91

C++ and uses the Geostatistical Template Library (GsTL) [137] and Approximate

Nearest Neighbor library (ANN) [114]. GsTL is used for building and solving the

ordinary kriging systems, and ANN is used for finding nearest neighbors for local

approaches.

For each input data we examined various ordinary kriging interpolation meth-

ods on 200 query points which are missing in our sparse data sets. One hundred of

these query points were sampled uniformly from the original grids. The other 100

query points were sampled from the same Gaussian distributions that were used in

the generation of a small percentage of the sparse data. We used two classes of

interpolation techniques: local and global methods. Local methods used Gaussian

elimination for finding the solution of the linear system while global methods used

a sparse symmlq with threshold = 0 (see Section 5.2). All experiments’ running

times are averaged over five runs.

We examined methods mentioned in Section 5.2 for each query point. Global

approaches require selection of a tapering function. Note that the covariance model

for synthetic data is Gaussian, which is infinitely differentiable. Therefore, there is

no function which is as smooth as the covariance model to guarantee convergence

to the optimal solution. For synthetic data, we examined all tapers mentioned in

Section 5.1.2 to introduce sparsity while maintaining positive definiteness of the

covariance matrix. For real data, we used the spherical tapering function since the

underlying covariance model was spherical as well, and thus we have a valid taper.

The value for θ was chosen as the distance beyond which our data’s covariance

function, is less than 10−6. After performing tapering and storing the global sparse

92

covariance matrix, we examined two approaches for solving the linear system. One

approach solves the tapered global system using sparse symmlq, and the other

approach solves the tapered and projected global system as described in Section

5.2. Next, we analyze the quality of results, time spent solving the linear systems,

and memory savings associated with our global approaches.

Table 5.1: Average absolute errors over 200 randomly selected query points.

Local Tapered Global

n Fixed Fixed Top Top Hat Spherical Spherical W1 W1 W2 W2

Num Radius Hat Projected Projected Projected Projected

48513 0.416 0.414 0.333 0.334 0.336 0.337 0.278 0.279 0.276 0.284
39109 0.461 0.462 0.346 0.345 0.343 0.342 0.314 0.316 0.313 0.322
29487 0.504 0.498 0.429 0.430 0.430 0.430 0.384 0.384 0.372 0.382
19757 0.569 0.562 0.473 0.474 0.471 0.471 0.460 0.463 0.459 0.470
9951 0.749 0.756 0.604 0.605 0.602 0.603 0.608 0.610 0.619 0.637

Table 5.2: Average CPU times for solving the system over 200 random query points.

Local Tapered Global

n Fixed Fixed Top Top Hat Spherical Spherical W1 W1 W2 W2

Num Radius Hat Projected Projected Projected Projected

48513 0.03278 0.00862 8.456 0.01519 7.006 0.01393 31.757 0.0444 57.199 0.04515
39109 0.01473 0.00414 4.991 0.00936 4.150 0.00827 17.859 0.0235 31.558 0.02370
29487 0.01527 0.00224 2.563 0.00604 2.103 0.00528 08.732 0.0139 15.171 0.01391
19757 0.00185 0.00046 0.954 0.00226 0.798 0.00193 02.851 0.0036 05.158 0.00396
9951 0.00034 0.00010 0.206 0.00045 0.169 0.00037 00.509 0.0005 00.726 0.00064

Table 5.3: Memory savings in the global tapered coefficient matrix
n (n + 1)2 Stored % Stored Savings

(Total Elements) Elements Factor

48513 2,353,608,196 5,382,536 0.229 437.267
39109 1,529,592,100 3,516,756 0.230 434.944
29487 869,542,144 2,040,072 0.235 426.231
19757 390,378,564 934,468 0.239 417.755
9951 99,042,304 252,526 0.255 392.206

93

10000 20000 30000 40000
Number of Scattered Data Points (n)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Fixed Num
Fixed Radius
Wendland1 Tapered
Wendland1 Tapered & Projected

Average Absolute Error Over 100 Sampled Query Points
from Uniform Distribution

10000 20000 30000 40000
Number of Scattered Data Points (n)

1E-3

1E-4

1E-2

1E-1

1

10

100

10

1E-5

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e

Fixed Num
Fixed Radius
Wendland1 Tapered
Wendland1 Tapered & Projected

Average CPU Time for Solving the System
for 100 Uniformly Sampled Query Points

10000 20000 30000 40000
Number of Scattered Data Points (n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Fixed Num
Fixed Radius
Wendland1 Tapered
Wendland1 Tapered & Projected

Average Absolute Error Over 100 Sampled Query Points
from Gaussian Distributions

10000 20000 30000 40000
Number of Scattered Data Points (n)

1E-5

1E-4

1E-3

1E-2

1E-1

1

10

100
A

ve
ra

ge
 C

PU
 R

un
ni

ng
 T

im
e

Fixed Num
Fixed Radius
Wendland1 Tapered
Wendland1 Tapered & Projected

Average CPU Time for Solving the System
for 100 Query Points from Gaussian Distribution

10000 20000 30000 40000
Number of Scattered Data Points (n)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Fixed Num
Fixed Radius
Wendland1 Tapered
Wendland1 Tapered & Projected

Average Absolute Error Over 200 Query Points

10000 20000 30000 40000
Number of Scattered Data Points (n)

1E-3

1E-5

1E-2

1E-4

1E-1

10

1

100

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e

Fixed Num
Fixed Radius
Wendland1 Tapered
Wendland1 Tapered & Projected

Average CPU Time for Solving the System
Over 200 Query Points

Fig. 5.2: Left: Average absolute errors. Right: Average CPU running times

94

5.4.1 Synthetic data

Table 5.1 gives the overall average absolute estimation errors over the 200

query points compared to the ground truth values generated on the original grid.

Table 5.2 reports the corresponding average CPU running times for solving the lin-

ear systems involved. Even though there is no taper which is as smooth as the

Gaussian model to guarantee convergence to the optimal estimates, in almost all

cases, we obtained lower estimation errors when using global tapered approaches.

As expected, smoother functions result in lower estimation errors. Also, results from

tapered and projected cases are comparable to their corresponding tapered global ap-

proaches. In other words, projecting the global tapered system did not significantly

affect the quality of results compared to the global tapered approach in our experi-

ments. In most cases, Top Hat and Spherical tapers performed similar to each other

with respect to the estimation error, and so did Wendland1 and Wendland2 tapers.

Wendland tapers give the lowest overall estimation errors since they are smoother

functions. Among Wendland tapers, Wendland1 has lower CPU running times for

solving the systems (Table 5.2). Thus, we plot the absolute errors and CPU running

times for local approaches and global cases where Wendland1 taper is being used

(Figure 5.2). As seen in Table 5.2, global tapered and projected approaches are a

factor of 2–3 orders of magnitude faster than the global tapered approaches, and are

comparable to running times of the local approaches. Right column of Figure 5.2

displays these running times. The absolute estimation errors for global approaches,

as seen on Table 5.1 and the left column of Figure 5.2, are lower than the local

95

approaches.

For local approaches, using fixed radius neighborhoods resulted in lower over-

all errors for query points from the Gaussian distribution. Using fixed number of

neighbors seems more appropriate for query points from the uniform distribution,

where not enough points may be within a fixed radius. Considering maximum de-

gree of points’ covariance connectivity as number of neighbors to use in the local

approach requires extra work and longer running times compared to the fixed radius

approach. The fixed radius local approach is faster than the fixed neighborhood ap-

proach by 1–2 orders of magnitude for the uniform query points, and is faster within

a constant factor to one order of magnitude for query points from clusters, while

giving better or very close by estimations compared to the results obtained when

using fixed number of neighbors.

Tapering covariances, when used with sparse implementations for solving the

linear systems, results in significant memory savings. Ordinary kriging of n data

points involves a coefficient matrix of size (n + 1)2 (see Eq. (A.25) in Appendix A).

Table 5.3 reports memory savings due to tapering. Memory needed after tapering

is a factor of roughly 400 less than the original coefficient matrix’s size.

5.4.2 Real data

As explained in Section 5.3, we have two real data sets, each representing a dif-

ferent measurement, called U and V . Since we know that the underlying covariance

model for these data sets is a Spherical model, Eq. (A.14) in Appendix A, we only

96

applied the Spherical taper (Eq. 5.10). Table 5.4 presents the overall average nor-

malized absolute error. As before, global approaches give better estimation errors

than the local approaches, even though the difference in errors is subtler compared

to the synthetic data.

Similarly, Table 5.5 present CPU running times for solving the ordinary kriging

systems. The running times, in contrast to the estimation errors, show significant

improvements, even when using the global tapered system without projection. This

is due to two reasons. First, the data sets are denser than the synthetic data. For

real data, we have sampled almost 5% of the original grid, while for synthetic data

this ratio ranged from 1% to 5%. This makes the maximum number of neighbors

to consider in local approaches much larger than number of neighbors that were

considered in local approaches for synthetic data. Second, the original covariance

model, Spherical model (Eq. (A.14) in Appendix A), is a tapered function itself (un-

like the Gaussian model), even before more sparsity is introduced via tapering. This

sparseness is not being taken advantage of in local approaches that use Gaussian

elimination to solve the interpolation systems, and where the largest safest neigh-

borhood is being used. Even though the tapered global systems are solved quite

fast compared to the dense local systems, we still can improve their running times

by an order of magnitude using the tapered and projected approach.

Table 5.6 indicates that global tapered approaches use a factor of 4-22 less

memory compared the original global systems. Again, these factors are smaller

compared to the synthetic data sets, since the sampled points are denser (higher

percentage of the original grid).

97

Table 5.4: Average normalized absolute errors over 200 query points.
Local Tapered Global

n Variable Fixed Fixed Spherical Spherical
Num Radius Projected

3720 u 0.380 0.379 0.364 0.360
3675 v 0.346 0.346 0.342 0.341

Table 5.5: Average CPU times over 200 query points.
Local Tapered Global

n Variable Fixed Fixed Spherical Spherical
Num Radius Projected

3720 u 4.649 4.023 0.729 0.045
3675 v 4.649 4.650 1.642 0.119

5.5 Summary

Solving very large ordinary kriging systems via direct approaches is infeasible

for large data sets. We implemented efficient ordinary kriging algorithms through

covariance tapering [55] and iterative methods [118, 131]. Furrer et al. [55] used

covariance tapering along with sparse Cholesky decomposition to solve simple krig-

ing systems. We explained why Cholesky decomposition is not applicable to the

ordinary kriging problem. We used tapering with sparse symmlq method to solve

large ordinary kriging systems. We also implemented a variant of the global tapered

method through projecting the large global system onto an appropriate smaller sys-

tem. Global tapered methods resulted in saving factors ranging from roughly 4 to

400 for the storage of the coefficient matrix of the ordinary kriging system compared

Table 5.6: Memory savings in the global tapered coefficient matrix
n (n + 1)2 Stored % Stored Savings

(Total Elements) Elements Factor

3720 13,845,841 3,013,823 21.77 4.59
3675 13,512,976 2,973,046 22.00 4.54

98

to the original global system. Global tapered iterative methods gave better estima-

tion errors compared to the local approaches. In all cases, the estimation results

of the global tapered method were very close to the global tapered and projected

method. This is while global tapered and projected method solves the linear systems

within order(s) of magnitude faster than the global tapered method. This method

can be viewed as a way of adaptively finding the correct neighbors to consider for

the interpolation problem. Results of traditional local approaches depend on the

underlying points’ distribution, and whether or not enough points are included in

the specified neighborhood.1

1I would like to thank Galen Balcom for his contributions to the C++ implementation of the
symmlq algorithm during his summer 2006 internship at NASA GSFC. I would also like to thank
Dianne P. O’Leary for helpful discussions that greatly contributed to the work presented in this
chapter, in particular to analysis presented in Section 5.1.1.

99

Chapter 6

Kriging via Fast Multipole and Iterative Methods

We mentioned computational challenges involved in solving large kriging sys-

tems in Chapter 5 and Appendix A. In particular, for very large systems, exact

methods such as Gaussian elimination are impractical since they require O(n3) time

and O(n2) storage. Iterative methods such as symmlq reduce these requirements

to O(n2) and O(n) for solving time and storage, respectively. However, for very

large data sets O(n2) solving time is still an unexpectedly high computational cost.

In Chapter 5 we demonstrated efficient implementations based on iterative methods

and tapering functions. We also mentioned that achieving high estimation accuracy

is related to finding valid tapers [55]. Such valid tapers are sometimes hard to design

for many covariance functions. In fact, for the Gaussian covariance function, which

is indefinitely differentiable, such a valid taper does not even exist. Tapering is also

most effective when covariance functions have small ranges.

In this chapter, we address the shortcomings of the previous approaches through

an alternative based on Fast Multipole Methods (FMM). The FMM was first intro-

duced by Greengard and Rokhlin for fast multiplication of a structured matrix by a

vector [61,62]. An (M×N) matrix is structured if its elements depend on O(M +N)

parameters. For example, consider the covariance matrix of two data sets, where

entries are calculated as a function of the points’ pairwise distances. Such a matrix

100

is structured. If the Gaussian function is used for generating the matrix entries,

the matrix-vector product is called the Gauss transform. In this chapter, we uti-

lize efficient implementations of the Gauss transform based on the FMM approach

(see [136,162]) for solving the large ordinary kriging systems. As Billings et al. [22]

suggested, we also use an iterative approach in combination with an FMM-based

approach for solving large ordinary kriging systems. Similar to Chapter 5, we use

the symmlq method [122], for solving the large ordinary kriging systems.

The remainder of this chapter is organized as follows. We proceed by intro-

ducing the Gauss Transform in Section 6.1. We then describe two existing efficient

implementations for the Gauss Transform in Sections 6.2 and 6.3. We explain the

applicability of these approaches to solving the ordinary kriging system of Section

6.4. Section 6.5 describes data sets used for this chapter. Then, we describe our

experiments and results in Section 6.6. Section 6.7 summarizes this chapter.

6.1 Gauss Transform

The Gaussian kernel function of two points x and y in d-dimensional space,

denoted ker(x, y), is defined as

ker(x, y) = e
−||x−y||2

b2 , (6.1)

where b is the bandwidth of the kernel. The sum of multivariate Gaussian kernels is

known as the discrete Gauss transform in scientific computing. In other words, for

101

each target point yi ∈ Rd, {i = 1 . . . M}, the discrete Gauss transform is defined as

G(yj) =
N∑

i=1

qie
−||xi−yj ||2

b2 , (6.2)

where {xi ∈ Rd}{i=1,...N} are the source points (the center of their Gaussians), and

b ∈ R+ is the source scale or bandwidth or range, and {qi ∈ R}{i=1...N} are the source

weights.

The task of evaluating the discrete Gauss transform for M target points to N

different source locations arises in many applications. A straightforward implemen-

tation would take O(MN) time. This problem can also be viewed as calculating a

matrix-vector product g = Kq, where K is an (M ×N) matrix, q is an (N × 1) vec-

tor, and g is an (M × 1) vector. Considering the Gaussian kernel k, source weights,

and source and target points sets, elements of K, q, and g are calculated as follows.

K(i, j) = ker(xi, yj)

g(j) = G(yj)

q(i) = qi.

In the remainder of this chapter, the Gauss Transform (gt) refers to calculating

such matrix-vector products:

g = Kq. (6.3)

Suppose we are interested in product of matrix K by different vectors. That

is, we use matrix K repeatedly. There are two possible implementations. One ap-

proach it to calculate entries of matrix K once, store them, and use them every

time needed. This approach avoids repeated calculations of entries of the K matrix.

However, it requires O(n2) memory, which is a problem for very large data sets. The

102

other alternative is to generate entries of the matrix K on demand and avoid stor-

ing them explicitly. This approach, while memory-efficient, suffers from excessive

computational cost. However, for very large data sets, this implementation can be

carried out, although very slowly, by a computer of moderate resources. Thus, we

use the memory-efficient approach as our reference implementation of the gt. We

compare performances of this approach with other implementations that gain their

efficiency by approximating the matrix-vector product.

6.2 Improved Fast Gauss Transform

The Improved Fast Gauss Transform (IFGT) is an efficient algorithm for

approximating the Gauss transform (see Eq. (6.3)). For any ε > 0, Ĝ is an ε-exact

approximation to G if the maximum absolute error relative to the total weight

Q =
∑N

i=1 |qi| is upper bounded by ε:

max
yj

[
|Ĝ(yj)−G(yj)|

Q

]
≤ ε.

The fast Gauss transform, first proposed by Greengard and Stein [63], is an ε-exact

approximation algorithm for the Gauss transform. This algorithm reduces the Gauss

transform’s computational complexity from O(MN) to O(M + N). However, this

algorithm’s constant factor grows exponentially with dimension d. Later improve-

ments, including the ifgt algorithm, reduced this constant factor to asymptotically

polynomial order in terms of d. The ifgt algorithm was first introduced by Yang

et al. [162]. Their implementation did not use a sufficiently tight error bound to

be useful in practice. Also, they did not adaptively select the necessary parameters

103

to achieve the desired error bound. Raykar et al. later presented an approach that

overcame these shortcomings [135, 136]. The efficiency of the ifgt algorithm, de-

pends on the desired ε accuracy. The computational cost of ifgt increases as we

decrease the desired ε value.

for j = 1 to M do
gj = 0;
for i = 1 to N do

gj = gj + φ(xi, yj)qi;
end for

end for

Fig. 6.1: Evaluating an exact discrete Gauss Transform

Suppose elements of an (M ×N) matrix K are calculated via a function φ of

N source points x1 . . . xN , and M target points y1, . . . yM . Then, the matrix-vector

product g = Kq, is usually coded as shown in Figure 6.1. Thus, this product is

calculated in O(MN) time. The idea is to decompose this calculation into two

steps. The process of representing an O(MN) matrix-vector multiplication by two

consecutive processes with total complexity of O(M + N) is called factorization.

Suppose such a factorization exists. That is, the function φ(xi, yj) can be calculated

as an expansion around a center point x∗ ∈ Rd as follows.

φ(xi, yj) =
∞∑

m=0

am(xi − x∗)fm(yj − x∗). (6.4)

Then, the vector gj mentioned above can be closely approximated as follows.

gj =
N∑

i=1

qiφ(xi, yj) =
N∑

i=1

qi

p−1∑
m=0

am(xi − x∗)fm(yj − x∗)

=

p−1∑
m=0

fm(yj − x∗)
N∑

i=1

qiam(xi − x∗).

104

If we precalculate and store cm =
∑N

i=1 qiam(xi− x∗), for m = 0 . . . p− 1, the above

approximation can be calculated as shown in Figure 6.2 (see [65] for details).

for m = 0 to p− 1 do
cm = 0;
for i = 1 to N do

cm = cm + am(xi − x∗)qi;
end for

end for

for j = 1 to M do
gj = 0;
for m = 0 to p− 1 do

gj = gj + cmfm(yj − x∗);
end for

end for

Fig. 6.2: Evaluating an approximate discrete Gauss Transform via ifgt

These two steps are calculated in O(Mp) and O(Np) time respectively, where

p ¿ min(M,N), for a total time of O(Mp + Np). Please note that if one center x∗

is used for factorization, a relatively large values of p is required for the truncation

to ensure that the matrix-vector approximation is sufficiently close to the exact one.

Instead, multiple centers are used to reduce this computation complexity. This is

usually done via clustering data points, and then using each point’s corresponding

cluster center as x∗ in the mentioned expansion. We use an implementation due to

Raykar et al. [135, 136]. This implementation works for points in 1, 2, or 3 dimen-

sional spaces. The algorithm has four stages. The first stage involves determining

the parameters of the algorithm based on specified error bounds, kernel bandwidth,

and data distribution. Second, the d-dimensional space is subdivided using a k-

center clustering (see Chapter 2). Next, a truncated representation of kernels inside

each cluster is built using a set of decaying basis functions. Finally, the influence of

105

all the data in a neighborhood using coefficients at cluster centers are collected and

the approximate gt is evaluated. Please see [135,136] for more details.

6.3 Gauss Transform with Nearest Neighbor Searching (gtann)

gtann is another efficient algorithm for calculating matrix-vector products.

This method was implemented by Raykar [134], where it is referred to as the FigTree

method. This method is most effective when the Gaussian models being used have

small ranges. Instead of converting a double for-loop into two consecutive for-loops

as ifgt does (see Figure 6.2), gtann reduces the complexity of the second inner loop

in the exact method. Since the Gaussian function dissipates very rapidly, nearby

points have the greatest influence. This method avoids multiplying each target point

by distant source points. This method utilizes the kd-tree data structure and the

nearest neighbor finding algorithms from the ann library [114].

6.4 Our Approaches

The Gaussian covariance model used in geostatistics, Eq. (A.13) in Appendix

A, differs slightly from the Gaussian kernel, Eq. (6.1). Thus, efficient Gauss Trans-

form implementations can be applied to the kriging problems with a Gaussian co-

variance models. We applied all mentioned Gauss Transform implementations to

the calculation of matrix-vector products involved in solving the ordinary kriging

system, where the covariance model involved is Gaussian.

106

Gauss Transform (gt): This version solves the exact ordinary kriging system

with a Gaussian covariance model, which generates all matrix entries on demand.

Improved Fast Gauss Transform (ifgt): This version approximates the matrix-

vector multiplications involved in solving the kriging system via the ifgt method

(see Section 6.2). We use this method for solving the kriging linear, system men-

tioned in Eq. (A.25) in Appendix A, via the symmlq iterative method. We use the

fact that a large portion of the matrix-vector product involves multiplication of the

covariance matrix C by a vector, and that elements of matrix C are estimated via a

modeling function, which we can factor. For example, consider the Gaussian covari-

ance model, Eq. (A.13) in Appendix A, for points in R1. This covariance function

for two points xi and yj can be represented and factorized as follows. (Please note

that a Taylor expansion is used in the last step.)

φ(xi, yj) = e
−3·(xi−yj)2

a2

= e
−3·((xi−x∗)−(yj−x∗))2

a2

= e
−3·(xi−x∗)2

a2 e
−3·(yj−x∗)2

a2 e
6·(xi−x∗)(yj−x∗)

a2

= e
−3·(xi−x∗)2

a2 e
−3·(yj−x∗)2

a2

∞∑
m=0

6m · (xi − x∗)m(yj − x∗)m

a2 ·m!
.

Let

am(xi − x∗) =
1

a
·
√

6m

m!
· e−3(xi−x∗)2

a2 · (xi − x∗)m,

fm(yj − x∗) =
1

a
·
√

6m

m!
· e

−3(yj−x∗)2
a2 · (yj − x∗)m,

for m = 0 . . . (p−1) in Eq. (6.4). Please note that the approximation and efficiency

is introduced by summing the Taylor series expansion up to p elements only. We

107

use this factorization for the Gaussian covariance model, when solving the ordinary

kriging system. Thus, whenever multiplication of matrix C by a vector is needed in

the symmlq method, we use the ifgt implementation for its calculation.

Gauss Transform with Nearest Neighbor Searching (gtann): This version

approximates the matrix-vector multiplications involved in solving the kriging sys-

tem via gtann method (see Section 6.3). First, based on the desired error bound,

a search radius is calculated. Then, for each target point, source points within that

radius are considered. These source points are calculated via fixed-radius nearest

neighbor search routines of the ann library [114]. Finally, for each target point, their

nearest neighbor source points are calculated in matrix-vector product calculations,

involving the covariance matrix C in the ordinary kriging system.

6.5 Data Sets

We use large scattered data sets to test and evaluate performance of the vari-

ous approaches given in Section 6.4. As mentioned before, it would be infeasible to

solve the original global systems exactly for very large data sets, and thus cannot

compare our solutions with respect to the original global systems. Also, since per-

formance of local approaches may depend on the density of the data points around

the query point, we generated data sets that are not uniformly distributed to better

model realistic input configurations. Therefore, we create our scattered data sets by

sampling points of a large dense grid from both uniform and Gaussian distributions.

The data generation process is very similar to the one explained in Section 5.3. This

108

time, 0.1%–0.5% of points from the dense grid were sampled. In order to evaluate

the effect of data sizes and covariance function’s ranges on the performance of the

gtann and ifgt approaches, we generated three sets of sparse data sets. For the

first set, the number of sampled points varied from 1000 up to 5000, while their

covariance model had a small range value of 12 compared to data points’ maximum

pairwise distances, where range corresponds to value a in Eq. (A.13) in Appendix

A. For the second set of experiments, we varied the number of samples in the same

manner, except that the points’ covariance model had a larger range equal to 100.

Finally, for the last set of experiments, we sampled 5000 points from dense grids,

where points’ covariance model had ranges equal to 12, 24, 100, 250, and 500. That

is, for each data set, 5% of the points were sampled from ten randomly selected

Gaussian distributions. The rest of the points were drawn from the uniform dis-

tribution. We removed duplicates that were resulted from sampling in these two

different manners.

6.6 Experiments

All experiments were run on a Sun Fire V20z running Red Hat Enterprise

release 3, using the g++ compiler version 3.2.3. Our software is implemented in

C++ and uses the Geostatistical Template Library (GsTL) [137] and Approximate

Nearest Neighbor library (ANN) [114]. GsTL is used for building and solving the

ordinary kriging systems, and ANN is used for finding nearest neighbors when using

the gtann approach.

109

For each input data set we examined various ordinary kriging interpolation

methods on 200 query points which are drawn from the same dense grid but are not

present in the sampled data set. One hundred of these query points were sampled

uniformly from the original grids. The other 100 query points were sampled from the

same Gaussian distributions that were used in the generation of a small percentage

of the sparse data. We used two classes of interpolation techniques: local and global

methods. Local methods used Gaussian elimination for finding the solution of the

linear system while global methods used a sparse symmlq with threshold = 0 (see

Section 5.2). All experiments’ running times are averaged over five runs. In all

cases, for the ifgt and gtann approaches we required the approximate matrix-

vector products to be evaluated within ε = 10−4 accuracy. We set the desired

solutions’ relative error, which is the convergence criteria for the symmlq method,

to 10−3. Thus, if the system was solved exactly, we expect the relative error to be

less than 10−3. The exact error is likely to be higher than that. However, note

that for the ifgt and gtann approaches the system is not solved exactly, either.

For these methods, at every iteration, the matrix-vector products are calculated

approximately. Thus, when compared to the exact solution obtained from the gt

method, our approximate approaches may result in both relative and absolute errors

higher than 10−3. Recent studies in linear algebra [153], also mentioned in Chapter

8 of [134], studies the effect of approximate matrix-vector multiplication for solving

Krylov subspace methods for the solution of symmetric and nonsymmetric systems.

Results indicate that as the number of iterations increases, one can increase the

amount of error introduced for solving the system, and still expect convergence to

110

the solution [153].

We examined methods mentioned in Section 6.4 on the three data sets men-

tioned in Section 6.5. In the first experiment we examined the effect of the number

of data points for each approach, when using a small Gaussian covariance range.

Since ifgt and gtann are expected to perform differently on different covariance

ranges, we tried two sets of fixed range values when varying the number of data

points. That is, we solved the ordinary kriging system for 200 query points on data

sets of size ranging from 1000 up to 5000, with a small fixed Gaussian covariance

model of range 12. Table 6.6 presents the running times for solving the linear sys-

tems for these data sets. Table 6.6 presents the error residuals of solving these

systems, as well as the average number of iterations it took symmlq in each case to

converge. Figure 6.3 shows these results. As we can see, when utilizing approximate

methods ifgt and gtann the exact residuals are comparable. The ifgt approach

gave speed-ups ranging from 1.3–7.6, while gtann resulted in speed-ups ranging

roughly from 50–150. This is mainly due to the fact that the covariance function’s

range is rather small. Since only a limited number of source points influences each

target point, collecting and calculating the influence of all source points for each

target point (the ifgt approach) is excessive. The gtann approach works well for

such cases by considering only the nearest source points to each target point, which

are in fact the only points influencing the final result. In both cases, the speed-ups

grow with number of data points. The algorithms’ performances do not differ sig-

nificantly for points from the Gaussian distribution compared to those from uniform

distribution.

111

Table 6.1: Experiment 1: Average CPU time for solving the system for (a) 100
uniformly sampled query points, (b) 100 query points sampled from the Gaussian
distribution, (c) all 200 query points.

n gt ifgt gtann ifgt (Speed-up) gtann (Speed-up)

1000 1.225 0.879 0.019 1.394 65.810
2000 5.985 1.971 0.058 3.037 102.664

(a) 3000 16.826 3.372 0.134 4.990 125.795
4000 35.272 4.796 0.252 7.354 140.159
5000 77.022 10.102 0.503 7.624 153.223

1000 1.716 1.222 0.025 1.404 68.404
2000 11.584 3.827 0.114 3.027 101.598

(b) 3000 35.201 7.053 0.280 4.991 125.879
4000 92.232 12.499 0.657 7.379 140.396
5000 253.728 35.379 1.669 7.172 151.982

1000 1.470 1.050 0.022 1.400 67.299
2000 8.785 2.899 0.086 3.030 101.959

(c) 3000 26.014 5.213 0.207 4.990 125.852
4000 63.752 8.648 0.454 7.372 140.330
5000 165.375 22.741 1.086 7.272 152.269

Table 6.2: Experiment 1: Average iterations and exact residuals for (a) 100 uni-
formly sampled query points, (b) 100 query points sampled from the Gaussian dis-
tribution, (c) all 200 query points.

Iterations Exact Residuals

n gt ifgt gtann gt ifgt gtann

1000 2.87 2.87 2.87 0.000756 0.000756 0.000756
2000 4.51 4.46 4.46 0.000597 0.000608 0.000608

(a) 3000 6.82 6.83 6.83 0.000719 0.000721 0.000721
4000 8.99 9.02 9.02 0.000769 0.000773 0.000772
5000 14.52 17.18 14.49 0.000839 0.000839 0.000841

1000 5.94 5.94 5.94 0.000678 0.000679 0.000679
2000 13.45 13.40 13.40 0.000810 0.000836 0.000837

(b) 3000 19.70 19.65 19.65 0.000986 0.000986 0.000983
4000 31.60 31.47 31.54 0.001096 0.001109 0.001106
5000 59.31 72.51 59.64 0.001300 0.001304 0.001312

1000 4.41 4.41 4.41 0.000717 0.000717 0.000717
2000 8.98 8.93 8.93 0.000704 0.000722 0.000722

(c) 3000 13.26 13.24 13.24 0.000853 0.000854 0.000852
4000 20.30 20.25 20.28 0.000932 0.000941 0.000939
5000 36.92 44.85 37.07 0.001069 0.001072 0.001076

112

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

1E-4

1E-3

5E-4

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 100 Uniformly Sampled Query Points

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

0.01

0.1

1.0

10

100

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 100 Uniformly Sampled Query Points

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

1E-4

1E-3

5E-4

2E-3

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 100 Query Points Sampled from Gaussian Distributions

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

0.01

0.1

1.0

10

100
200
300

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 100 Query Points Sampled from Gaussian Distributions

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

1E-4

1E-3

5E-4

15E-4

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 200 Query Points

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

0.01

0.1

1.0

10

100
200

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 200 Query Points

Fig. 6.3: Experiment 1, Left: Average exact residual. Right: Average CPU running
times

113

Similarly, we repeated the experiments for our second data set. In this exper-

iment, we again varied the number of sampled points. This time, we used a larger

covariance range of 100 for the model. Table 6.6 presents running times of solving

the linear systems for these data sets. Table 6.6 includes the exact error residuals of

solving these systems, as well as average number of iterations used for solving the

system. Figure 6.6 presents these results. While the gtann approach did not result

in significant speed-ups, the ifgt gave constant factor speed-ups ranging roughly

from 1.5 to 7.5, as we increased the number of data points. The ifgt approach

results in larger residuals for small data sets, and when solving the ordinary kriging

system for query points from the uniform distribution. In particular, for n = 1000

and n = 2000, the performance of ifgt is not acceptable with respect to the ex-

act residuals calculated. This poor overall result for these two cases is because the

symmlq method did not meet its convergence criteria before reaching its maximum

number of iterations in few cases, raising the overall error average. For n = 1000,

the iterative solver did not converge for 9 out of 100 random points from the uniform

distribution. For n = 2000, the solver did not converge only for 3 out of 100 random

points from the uniform distribution. Increasing the required accuracy for the ifgt

algorithm, resolved this issue. Another possible approach to avoid such cases, and

area for future work is to decrease the required accuracy as the number of iterations

increases. As we mentioned before, one can increase the amount of error introduced

for solving the system, and still expect convergence to the solution [153]. Our ex-

periments show that as the number of data points increases, the quality of results

approaches those of the exact methods. For the query points from the Gaussian

114

distribution, the quality of results are comparable to the exact method, when using

the ifgt approach. The gtann approach also results in comparable residuals to

the exact methods in all cases.

Table 6.3: Experiment 2: Average CPU time for solving the system for (a) 100
uniformly sampled query points, (b) 100 query points sampled from the Gaussian
distribution, (c) all 200 query points.

n gt ifgt gtann ifgt (Speed-up) gtann (Speed-up)

1000 23.643 14.131 15.148 1.673 1.561
2000 50.464 16.497 48.971 3.059 1.030

(a) 3000 105.296 23.605 136.793 4.461 0.770
4000 174.982 29.660 169.391 5.900 1.033
5000 277.039 37.545 408.058 7.379 0.679

1000 12.534 7.287 6.819 1.720 1.838
2000 27.639 8.189 13.363 3.375 2.068

(b) 3000 62.108 13.336 38.630 4.657 1.608
4000 94.357 15.440 58.500 6.111 1.613
5000 152.174 19.808 104.192 7.682 1.461

1000 18.088 10.709 10.983 1.689 1.647
2000 39.051 12.343 31.167 3.164 1.253

(c) 3000 83.702 18.471 87.711 4.532 0.954
4000 134.669 22.550 113.945 5.972 1.182
5000 214.607 28.676 256.125 7.484 0.838

Finally, we examined the effect of different covariance ranges on a fixed data

set of size 5000. Table 6.6 presents running times of solving the linear systems for

these data sets. Table 6.6 includes the exact error residuals for these systems, as well

as the average number of iterations used for solving the system. Figure 6.6 presents

these results. In all cases, the quality of results is comparable to those obtained

from exact methods. The ifgt approach resulted in speed-ups of 7–15 in all cases.

The gtann approach is best when used for covariance functions with small range

values of 12, and 25. While the gtann approach is slower than the exact methods

115

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 100 Uniformly Sampled Query Points

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

10

50

100

200

300

400410

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 100 Uniformly Sampled Query Points

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

2E-3

3E-3

4E-3

5E-3

6E-3

7E-3

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 100 Query Points Sampled from Gaussian Distributions

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

5
10

50

100

150
160

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 100 Query Points Sampled from Gaussian Distributions

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

2E-3

0.01

0.02

0.03

0.04

2E-3

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 200 Query Points

1000 2000 3000 4000 5000
Number of Scattered Data Points (n)

10

50

100

150

200

250
270

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 200 Query Points

Fig. 6.4: Experiment 2, Left: Average exact residuals. Right: Average CPU running
times

116

Table 6.4: Experiment 2: Average iterations and exact residuals for (a) 100 uni-
formly sampled query points, (b) 100 query points sampled from the Gaussian dis-
tribution, (c) all 200 query points.

Iterations Exact Residuals

n gt ifgt gtann gt ifgt gtann

1000 267.76 327.87 222.27 0.002346 0.070919 0.003468
2000 154.00 184.02 163.44 0.003265 0.013714 0.003462

(a) 3000 141.56 173.90 174.04 0.003843 0.003835 0.003968
4000 131.74 158.67 131.44 0.004421 0.004393 0.004459
5000 133.72 159.88 196.71 0.004868 0.004833 0.004973

1000 154.30 197.31 146.62 0.002760 0.002773 0.002910
2000 82.05 98.14 82.39 0.004186 0.004174 0.004184

(b) 3000 81.48 96.08 94.55 0.004931 0.004922 0.004930
4000 68.74 80.20 68.76 0.006016 0.006012 0.006028
5000 71.20 82.06 71.37 0.006327 0.006331 0.006312

1000 211.03 262.59 184.45 0.002553 0.036846 0.003189
2000 118.03 141.08 122.92 0.003725 0.008944 0.003823

(c) 3000 111.52 134.99 134.30 0.004387 0.004379 0.004449
4000 100.24 119.44 100.10 0.005218 0.005203 0.005243
5000 102.46 120.97 134.04 0.005597 0.005582 0.005643

for range values larger than 100, it results in speed-up factors of 151–153, and 47–49

for range values 12 and 25 respectively. Thus, as we can see in Figure 6.6, it is

recommended to use the gtann approach when the covariance function has small

range values, and the ifgt approach when dealing with large ranges.

6.7 Summary

We adapted efficient implementations of the Gauss Transform for solving or-

dinary kriging systems. Please note that while ifgt was used for cases where the

covariance function is Gaussian, a similar approach can be used for other covari-

ance functions where a factorization, similar to the one described for the Gaussian

function in Section 6.4, exists. The gtann approach can also be used in other cases

117

Table 6.5: Experiment 3: Average CPU time for solving the system for (a) 100
uniformly sampled query points, (b) 100 query points sampled from the Gaussian
distribution, (c) all 200 query points.

Range gt ifgt gtann ifgt (Speed-up) gtann (Speed-up)

12 77.022 10.102 0.503 7.624 153.223
25 572.715 65.589 11.58776 8.732 49.424

(a) 100 277.039 37.545 408.0578 7.379 0.679
250 139.229 15.811 1320.934 8.806 0.105
500 70.994 4.587 2406.208 15.478 0.030

12 253.728 35.379 1.669 7.172 151.982
25 944.685 112.943 19.815 8.364 47.676

(b) 100 152.174 19.808 104.192 7.682 1.461
250 110.328 12.161 1040.044 9.073 0.106
500 63.226 4.017 2167.496 15.741 0.029

12 165.375 22.741 1.086 7.272 152.269
25 758.701 89.266 15.701 8.499 48.321

(c) 100 214.607 28.676 256.125 7.484 0.838
250 124.779 13.986 1180.490 8.922 0.106
500 67.110 4.302 2286.852 15.601 0.029

Table 6.6: Experiment 3: Average iterations and exact residuals for (a) 100 uni-
formly sampled query points, (b) 100 query points sampled from the Gaussian dis-
tribution, (c) all 200 query points.

Iterations Exact Residuals

Range gt ifgt gtann gt ifgt gtann

12 14.52 17.18 14.49 0.000839 0.000839 0.000841
25 163.36 199.58 164.58 0.001476 0.001476 0.001525

(a) 100 133.72 159.88 196.71 0.004868 0.004833 0.004973
250 64.72 85.52 65.30 0.010961 0.010849 0.011008
500 30.54 42.48 30.36 0.017983 0.018409 0.018402

12 59.31 72.51 59.64 0.001300 0.001304 0.001312
25 272.72 347.41 284.81 0.002227 0.002249 0.002711

(b) 100 71.20 82.06 71.37 0.006327 0.006331 0.006312
250 50.24 64.63 50.39 0.011910 0.011835 0.011931
500 26.64 36.62 26.86 0.020036 0.019847 0.020152

12 36.92 44.85 37.07 0.001069 0.001072 0.001076
25 218.04 273.49 224.70 0.001851 0.001862 0.002118

(c) 100 102.46 120.97 134.04 0.005597 0.005582 0.005643
250 57.48 75.08 57.85 0.011436 0.011342 0.011470
500 28.59 39.55 28.61 0.019009 0.019128 0.019277

118

12 100 200 300 400 500
Range of the Gaussian Covariance Function

1E-3

1E-2

2E-2

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 100 Uniformly Sampled Query Points

12 100 200 300 400 500
Range of the Gaussian Covariance Function

1000

2500

500

100

50

10

5

1

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 100 Uniformly Sampled Query Points

12 100 200 300 400 500
Range of the Gaussian Covariance Function

1E-3

1E-2

2E-2

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 100 Query Points Sampled from Gaussian Distributions

12 100 200 300 400 500
Range of the Gaussian Covariance Function

1000

2500

500

100

50

10

5

1

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 100 Query Points Sampled from Gaussian Distributions

12 100 200 300 400 500
Range of the Gaussian Covariance Function

0

5E-3

1E-3
2E-3

0.02

0.01

A
ve

ra
ge

 E
xa

ct
 R

es
id

ua
ls

GT
IFGT
GTANN

Average Exact Residuals
Over 200 Query Points

12 100 200 300 400 500
Range of the Gaussian Covariance Function

1000

2500

500

100

50

10

5

1

A
ve

ra
ge

 C
PU

 R
un

ni
ng

 T
im

e
(s

ec
)

GT
IFGT
GTANN

Average CPU Time for Solving the System
Over 200 Query Points

Fig. 6.5: Experiment 3, Left: Average exact residuals. Right: Average CPU running
Times

119

regardless of the covariance function but it will be efficient for covariance functions

with small ranges.

We examined the effect of number of points, query points’ distribution, and

the covariance functions’ ranges on the running time for solving the system and the

quality of results. The ifgt is more effective as number of data points increases.

Our experiments using the ifgt approach for solving the ordinary kriging system

demonstrated speed-up factors ranging from 7–15 when using 5000 points. Based on

our tests on varying number of data points, we expect even higher speed-up factors

compared to the exact method when using larger data sets. While for small data sets

the ifgt method may not give high quality results compared to the exact methods,

the quality of results are comparable to the exact methods for large data sets. The

gtann approach outperformed the ifgt method for small covariance range values

of 12 and 25, resulting in speed-up factors as high as 153 and 49 respectively. The

gtann approach is slower than the exact methods for large ranges (100 and over in

our experiments), and thus is not recommended to be used in these cases. A safe

cutoff value for determining whether to use gtann or ifgt is a covariance range

value of 50. The quality of results when using gtann was comparable to the exact

methods in all cases.1

1I would like to thank Vikas Raykar for helpful discussions on integration and applicability
of the ifgt and gtann algorithms to the kriging problem. I would also like to thank Ramani
Duraiswami for helpful discussions and his interest in this work.

120

Chapter 7

Data Fusion of Remotely Sensed Data

Data fusion has been defined in literature in different ways. Hall defined

it as process of dealing with information from multiple sources to achieve refined

and improved information for decision making [66]. Image fusion is a special case

of the general data fusion problem where data being fused are images. The goal of

performing image fusion is usually to increase either the spatial or spectral resolution

of images involved.

One particular case of image fusion is pan-sharpening. Pan-sharpening is a

technique that deals with limitations of sensors in capturing high resolution multi-

spectal images [164]. That is, Panchromatic (Pan) images have high spatial resolu-

tion and low spectral resolution. On the other hand, multispectral images have high

spectral resolution, since they cover a narrower wavelength, but have a lower spatial

resolution. The goal of image fusion in this context is to create a high spatial and

spectral resolution image given original images.

As in [129] we will present applications and objectives of data fusion in general

and image fusion in particular and describe data types that are involved in remote

sensing applications. We also review various fusion methods and the preprocessing

or computational issues involved in each case. Another main area of research is

assessing the quality of fusion performed. Thus, we also review various evaluation

121

techniques for image fusion.

7.1 Objectives and Applications

The objectives of fusion are well presented in a survey done by Pohl [129]. Some

of the most commonly sought objectives of image fusion are improved registration

accuracy, creation of stereo data sets, feature enhancement, improved classification,

temporal aspects for change detection, and overcoming gaps. Please see [129] for

descriptions of these objectives.

Data fusion has applications in various fields. Its many applications include

topographic mapping and map updating, land use, forestry and agriculture, flood,

ice, and snow monitoring, weather modeling, and study of invasive species.

All the mentioned applications are examples of what can be done through

remote sensing. While we mention related work that has been done for other ap-

plications, we mainly focus on remote sensing application, data fusion methods in

general and image fusion techniques in particular, and issues involved in evaluating

the quality of fused data.

7.2 Data Sets Used in Remote Sensing Applications

In remote sensing applications the data that are used in fusion are usually from

one or multiple sensors with different spatial, spectral, or temporal resolutions [129].

These data sets usually have a temporal aspect involved since one cannot assure that

data were obtained exactly at the same time. Also in recent years, a lot of research

122

has been done in the area of sensor networks where one deals with large number of

small scattered sensors [35,74]. Integrating data received from each of these sources

to model a physical phenomena is another source of data fusion applications.

Fig. 7.1: Processing levels of fusion [129].

In this chapter, when talking about fusion, image fusion at its finest level of

data (pixel) level is meant unless otherwise is specified. Fusion can also be performed

after some processing is performed on the original data. Here are the three principal

levels of fusion (see figure 7.1).

Pixel Level: This is fusion at the finest level which requires each sensor’s data

to be registered within sub-pixel accuracy to avoid fusing irrelevant pixels

together [67].

Feature Level: This is fusion at an intermediate level which requires each data set

to go through some process of object/feature recognition, and then fusion be

performed on the extracted features using some statistical approach or neural

networks [129].

123

Decision Level: Fusion at this level requires that decision making be first done

though each data set separately, and then a final decision be made by using

logical operators or by some heuristic enforcement [67].

While old surveys in the area mainly focus on pixel level fusion [129], recent

works are mostly concerned with decision level fusion [27,142]. This may be due to

the fact that data of various natures (for example, temperature and humidity) need

to be processed differently, fusing them at the pixel level may either not provide

good results or simply not make sense due to different natures of data.

7.3 Fusion Methods

There are a number of methods used to perform data fusion. Here we review

the most commonly used methods. Traditionally, methods used for data fusion

were classified as one of the following two groups: color related methods, and nu-

merical/statistical methods [129]. These methods will be discussed in greater detail

below. In recent years, we see a third group of approaches to data fusion using

machine learning approaches. When performing data fusion, one needs to consider

the following two issues for the result: color distortion, and quality of fusion [164].

There are different approaches for each data fusion method mentioned below in

order to reduce color distortions and improve quality of results.

First, we mention the preprocessing that needs to be performed on input data

before being fused. Then, we mention a few image fusion methods as well as metrics

that are used for assessing the quality of image fusion.

124

7.3.1 Preprocessing steps

Image fusion requires a few preprocessing steps. One needs to calculate and

apply the correct translation, rotation, and scaling to map images to a common

framework and resolution [26,129]. Calculating and applying transformations to an

image so that it corresponds exactly to a particular reference image is called image

registration. Please see [29] for more details. Results can be smoothed by a low pass

filter to eliminate the block effects. Suppose each pixel of our high spatial resolution

data (PAN) covers h units, and that each pixel of the low spatial resolution data

(MS) covers l units. The first preprocessing step is to digitally enlarge the MS

image by a factor l
h

in both directions so that we have pixel sizes the same as the

PAN image [26, 129]. Results can be smoothed by a low pass filter to eliminate

the block effects. Then, image-to-image points can be selected to register the MS

images to the PAN image. Image registration is the process by which we determine

a transformation that provides the most accurate match between two images [29].

After finding and applying such a transformation to the MS image to match our

PAN image, we have registered images of the same size and from the same area,

to which we can apply various fusion techniques. We would like the fused image

to maintain high spectral accuracy of the MS image while containing high spatial

resolution of the PAN image.

125

7.3.2 Fusion methods

There are various data fusion techniques mentioned in the literature that can

perform fusion of data at either their lowest level (pixel for images) or at the decision

level (label or class associated with data). We focus on image fusion rather than the

broad data fusion problem. As mentioned above, there are three main categories of

these methods.

Color related methods: These methods take advantage of various ways of dis-

playing data in color. Some of these representations are RGB, IHS, YIQ. There

are few variations in which these methods can be applied to data fusion [129].

In many cases the RGB technique is used with another fusion method such as

IHS. IHS techniques can be applied to image fusion in different ways. In the

direct approach, three image bands assigned to I, H, and S are transformed

to RGB. In the substitutional approach, one of the I, H, or S bands, most

commonly intensity band I, is replaced with another image with higher spatial

resolution (Pan image). Then, the result is transformed back into the RGB

space. In the color contrast stretching approach, hue and saturation bands are

stretched before transforming them back to RGB space. This is usually done

to enhance the fused image’s color, and to reduce color distortion in result. For

details of these display techniques and how they are applied to image fusion

see [26,50, 129]. These methods can fuse a limited number of images (usually

three) after being registered and resampled.

126

Statistical/numerical methods: These methods deal with fusion of image data

at the pixel level. They produce a fused image by applying some arithmetic or

statistical operations on each input image and then assigning the result to the

fused data set. These numerical methods vary depending on whether differ-

ences or similarities among data need to be captured. In some fusion methods,

image data is treated as a signal from which one needs to extract either high

or low frequency data. This class of fusion methods utilize techniques such

as Brovey transform [129], Principal Component Analysis (PCA) [26, 129],

arithmetic combination [129], High Pass Filters (HPF) [26, 129] and Wavelet

Transformations [26,113,129,167]. Most of these methods have the limitation

that they require their input images be resampled and registered or that they

can only fuse limited number of images at a time, or both.

Machine learning methods: These techniques are mostly applied when dealing

with decision level fusion where a label need to be assigned to each pixel.

Some of the machine learning tools used for image fusion are Support Vector

Machines (SVM) [129], Hidden Markov Models (HMM) [91, 112, 129], Neural

Networks [112,129], and Decision Tree Classifiers (DTC) [112,129].

7.4 Evaluation Methods

After performing data fusion, one needs to evaluate the quality of the results.

There are various methods for evaluating the performance of a particular fusion

technique. Some of these methods aim to measure spectral quality of the fused data

127

while others focus on spatial quality [157]. Some measures are based on human

visual perception of the fused data [26]. In recent years such methods have been

studied in conjunction with psychological issues involved in human visual perception

of an image [40,41]. We mention several image fusion evaluation methods.

We categorize image fusion evaluation techniques into three groups: spatial

quality metrics, spectral quality metrics, and joint spectral and spatial quality metrics.

Some spatial quality metrics are based on the edge analysis of the input and fused

images. The idea is that edges that appear in the high spatial resolution image need

to be present in the fused image. See [125] for more details.

Spectral quality metrics are based on various statistical measures which are

calculated for the high spectral resolution input images and the fused result. Exam-

ples of these measures are correlation coefficient, relative shift in mean, variations

in standard deviation, and (root) mean squared error [26, 157]. A fused image is

considered to have a good spectral quality if relative to the image of high spectral

resolution it is highly correlated, has relatively low shift in its mean value, and low

(root) mean squared error.

Joint spectral and spatial quality metrics are a more active area of research.

Obtaining an objective image fusion quality measure that considers both the spectral

and spatial quality of the result is of great interest especially in the absence of the

ground truth. When ground truth is present, one can evaluate the fusion method

by comparing classification accuracy of the fused image and comparing it with that

of each input image [157]. In the absence of ground truth, only a few statistical

measures such as entropy and mutual information seem to be applicable. Entropy

128

measures the amount of increased information while mutual information represents

a measure of relative entropy between the two sets [29,132].

Wang and Bovik proposed a universal image quality index which later resulted

in various image fusion measures both by themselves and other researchers [158].

They showed that their quality measure models distortion as combination of three

factors: loss of correlation, luminance distortion, and contrast distortion. Wang and

Bovid showed that their measure performs better than mean squared error since it

also captures correlation between images in addition to their differences.

There are various fusion quality metrics introduced later based on the work of

Wang and Bovik. Piella [126,127] proposed a variant fusion quality metric which is

a weighted average of image quality indices calculated for pairs of input and fused

images. The weights for quality indices are chosen based on relevance of each image

to the fused image. This relevance is calculated through a saliency measure such as

contrast, variance, or amount of edges being transferred. Please see [126, 127] for

more details.

While Piella’s quality index was the first to measure both spectral and spatial

quality of a fused image with respect to its two input images, it has its own lim-

itations. First, it only can be used for grey level values. It is not clear how this

measure can be used when more than two input images are used to obtain a fused

image. Alparone et al. [8] modified this image quality index so that it can evaluate

quality of four fused images with respect to a reference image. This partially allevi-

ates problems mentioned above. They did so by using the concept of hypercomplex

correlation. See [8] for more information.

129

Chapter 8

Cokriging as an Image Fusion Method

As mentioned in Chapter 7, the aim of image fusion is to integrate different

data in order to obtain more information than can be derived from each of the

single sensor data alone [129]. While methods like PCA and wavelet-based fusion

have been traditionally used for image fusion, they have their own shortcomings.

For example, PCA results are very sensitive to the selected area for fusion [129].

Both of these methods cannot handle fusion of scattered or rather sparse data, or

fusion of images that differ greatly in either their spectral or spatial resolutions. In

this chapter, we consider image fusion of remotely sensed data via cokriging as a

solution to these limitations.

As we have seen earlier in this dissertation, cokriging is an interpolation

method for scattered data (see Appendix A for details). Cokriging can integrate

data of various sources with different spatial and spectral resolutions, or at arbi-

trary scattered locations. Unlike many other image fusion methods, cokriging does

not require resampling of the data sets when registration of the remotely sensed data

is being performed. This avoids introduction of errors due to rotation, translation,

and interpolation of the data during the resampling process. Cokriging is also appli-

cable to the vision of future sensor networks, where many small sensors are located

at scattered locations. Using cokriging one can estimate sensor measurements for a

130

particular property at locations where those values are missing. For these reasons,

we find cokriging suitable for addressing image fusion needs.

In this context, image fusion problem can be considered as an interpolation

problem to estimate values at missing location for either low spatial or spectral reso-

lution data. That is, we can perform fusion via cokriging either in the spatial or the

spectral domain. We examine both problems of increasing the spatial and spectral

resolution of images via cokriging. In Section 8.1 we perform fusion via cokriging

in spatial domain. In particular, we increase the spatial resolution of Landsat’s

MS bands by fusing them with its PAN band. In Section 8.2 we demonstrate how

cokriging can be utilized to improve the spectral resolution of the imagery data.

In particular, we demonstrate increasing ALI’s spectral resolution by fusing it with

Hyperion.

8.1 Improving the Spatial Resolution Via Cokriging

We employed the cokriging interpolation method for image fusion of remotely

sensed data [60, 80]. In particular, we show preliminary results on applying a vari-

ant called ordinary cokriging for pan-sharpening of multispectral images from the

Landsat 7 sensor. We then evaluate both spectral and spatial quality of our fused

images through a few quantitative measures. We also compare our results to those

obtained from more traditional approaches based on principal component analysis

and wavelets.

131

8.1.1 Data sets

We used Landsat 7 ETM data sets provided by the IEEE Data Fusion Com-

mittee, data set grss dfc 0002 [1]. The images were taken over Hasselt (Belgium)

in 1999. Landsat 7 ETM imagery has 8 bands. Landsat data specifications are

presented in Table B.1 of Appendix B. Note that the spectral resolution of the

panchromatic band 8 corresponds to MS bands 2, 3, and 4 combined. Thus, for our

experiments, we used a 200×200 subset of multispectral bands 2, 3, and 4 and their

corresponding 400 × 400 panchromatic band 8 which are shown in Figures 8.1 and

8.2 respectively.

Fig. 8.1: Landsat 7 multispectral bands 2, 3, and 4. Landsat 7 image courtesy of
ESA 1999 - distribution Eurimage.

8.1.2 Methods

We performed pan-sharpening of Landsat MS bands 2, 3, and 4 by fusing

them with Pan band 8 using three different fusion methods: cokriging, principal

component analysis (PCA), and wavelet-based fusion. In this section, we describe

each method briefly.

132

Fig. 8.2: Landsat panchromatic band 8. Landsat 7 image courtesy ESA 1999 -
distribution Eurimage.

8.1.2.1 Cokriging

In order to set up the ordinary kriging linear system, one needs to model pair-

wise covariances among available measurements. A requirement on these models is

that they should generate a positive definite covariance matrix. A few covariance

models are known to have this property (see [60, 80] for more details). We selected

a few of these models with a limited number of parameters, and in each case we

chose the one which best fit our data, which was spherical model with range 10.

We performed our modeling and cokriging interpolation through a freely available

software for interpolation of agro-climatic data [23]. For each query point, we con-

sidered its 32 nearest neighbors although different neighborhood sizes may result

in better results. Cokriging interpolation and evaluation steps are computationally

expensive tasks. For this reason, and because far points are expected to have less

effect on interpolation weights, cokriging systems are traditionally solved over a lo-

133

cal neighborhood from the query point [60, 80]. Efficient implementations of these

tasks will be the focus of our future research. Pan-sharpened MS bands 2, 3, and 4

(fused bands) by cokriging are shown in Figure 8.4.

8.1.2.2 Principal component analysis (PCA)

We applied PCA for image fusion similarly to [26, 160]. First, we performed

principal component transformation on Landsat multispectral bands. Then, the first

principal component (PC) was replaced with the high resolution Pan band, which

was scaled so that its mean and standard deviation match those of the first principal

component of the MS bands. This scaling was performed to avoid distortion of the

spectral information. Then, the first component was replaced by the stretched band.

We then proceeded by performing inverse PCA on the stretched pan band and other

PCs. Figure 8.3 demonstrates this method.

8.1.2.3 Wavelet-based fusion

A wavelet decomposition of any given signal (1-D or 2-D) is the process that

provides a complete representation of the signal according to a well-chosen division

of the time-frequency (1-D) or space-frequency (2-D) plane [33]. Through iterative

filtering by low-pass and high-pass filters, it provides information about low- and

high-frequencies of the signal at successive spatial scales. For fusion purposes, multi-

resolution wavelet decomposition separates high- and low-frequency components of

the two given data sets and these components are then recomposed differently in

134

Fig. 8.3: Pan-sharpening of Landsat MS bands with its PAN band through principal
component analysis.

the reconstruction phase.

In our experiments, we are using a Daubechies filter [33] of size 4 and a Mallat

Multi-Resolution Analysis (MRA) [103] decomposition and reconstruction scheme.

Then, components from both decompositions are combined during the reconstruc-

tion phase to create the new fused data. In this scheme and similarly to [90], where

different spatial resolution data are fused, we fuse the different spectral resolution

data in the following manner: high-frequency information of the high spatial resolu-

tion data (e.g., Pan Landsat band 8) is combined with low-frequency information of

the high spectral resolution data (e.g., Landsat MS bands). In our experiments, the

same Daubechies filter of size 4 is used for both decomposition and reconstruction

phases and for both types of data.

135

Fig. 8.4: Landsat Pan-sharpened MS bands 2, 3, and 4 through cokriging with Pan
band 8

8.1.3 Evaluation

We increased the spatial resolution of Landsat ETM multispectral bands 2, 3,

and 4 by fusing them with its panchromatic band 8. We performed fusion based on

cokriging, PCA, and wavelets as described in the previous section. Next, we evalu-

ated the quality of our results. Ideally, this evaluation would involve a comparison

of the classification accuracy on ground-truth data. One could perform classifica-

tion on input bands and fused bands respectively, assess the classification accuracy

through ground truth in each case, and see which fused bands resulted in the most

improvement of the classification accuracy. We evaluate our fusion methods through

a few quantitative methods.

We evaluate both the spectral and spatial quality of our fused bands. The

spectral quality was evaluated by calculating how highly each fused band is corre-

lated with its corresponding input MS band. We expect the spectral quality of MS

136

bands to be preserved in the fused bands. Thus, the higher the correlation of the

fused bands with their corresponding MS bands is, the better the spectral quality

of the fusion. In order to evaluate the spatial quality of the fused bands we cal-

culate the entropy of the multispectral input bands and their corresponding fused

bands. The idea is that the fused images should have enhanced information content

compared to their corresponding input MS bands. Because entropy is a measure of

information content, the higher the entropy of the fused band as compared to its

corresponding MS input band, the better the spatial quality of the fusion is.

In [108] we proposed using Haralick’s texture quality metrics [73] as a fusion

quality metric. The motivation for doing so is that an image with high textural

information is more likely to result in better classification accuracy. Haralick [73]

first proposed using a co-occurrence matrix to calculate various statistical texture

properties for an image. A co-occurrence matrix calculates the number of occur-

rences of all pairs of gray level which are separated by a distance d along a given

direction. From the co-occurrence matrix, several texture measurements can be

computed among which are contrast, variance, and entropy. Usually co-occurrence

matrices are calculated locally by considering a small window around each pixel. For

each window, co-occurrence matrices are calculated along four directions. Then, a

statistical measure (e.g., contrast, variance, entropy) is calculated for that local

window. Then, the middle pixel of that window is replaced by the mean of the

calculated statistical measure over all four directions. This is repeated for every

pixel so that at the end of the process we have an image where each of its pixels is

representing a statistical measure of its local neighborhood. We calculated entropy

137

images and then calculated the mean value of each of these images. Increase in mean

of entropy images indicates increase in textural information contained in the image,

which most likely causes better classification accuracy. However, the true evaluation

criteria for our fusion methods would be through ground truth and comparing the

classification results of original and fused bands against them.

8.1.4 Results

First we evaluate the spectral quality of fused images by calculating each fused

band’s correlation with its corresponding input MS band. Pairwise correlation of

fused bands and their corresponding input MS bands are shown in Table 8.1. While

PCA gives the best spectral quality results for bands 2 and 3, wavelet-based fusion

performs best for band 4. However, we see that cokriging performs consistently for

all bands and correlations of fused bands with all input MS bands exceeded 90% in

all cases.

Table 8.1: Correlation of the fused bands with MS input bands

Bands Wavelet PCA Cokriging

f2, b2 0.82 0.99 0.91
f3, b3 0.84 0.99 0.93
f4, b4 0.92 0.75 0.93

Average 0.86 0.91 0.92

As for spatial quality measures we considered both the overall entropy of im-

ages as well as the mean of entropy images calculated through local co-occurrence

matrices [73]. The entropies of input MS bands and fused images are reported in

Table 8.2, and the mean entropy of entropy images calculated through local co-

138

occurrence matrices are presented in Table 8.3. In both cases, cokriging results

in increased spatial information compared to their corresponding MS bands. In all

cases, cokriging performed better than wavelet-based fusion in increasing the spatial

content of MS bands. PCA performed better in spatial domain for bands 3 and 4.

However, cokriging performed more consistently overall in increasing spatial infor-

mation of all MS bands. As we see in Table 8.2, cokriging resulted in higher average

entropy of the fused bands compared to PCA and wavelet based fusion. Similarly,

results in Table 8.3 indicate that PCA does not increase the textural information

significantly for band 2. Cokriging performs more consistently in increasing the tex-

tural information across all bands. However, the overall textural information gained

is comparable to that obtained from PCA.

Table 8.2: Entropy of the MS and fused bands

Original Bands Fused Bands Wavelet PCA Cokriging

b2 2.68 f2 3.12 2.69 3.23
b3 3.01 f3 3.28 3.72 3.64
b4 3.44 f4 3.93 5.21 4.90

Average 3.04 3.44 3.87 3.92

Table 8.3: Mean entropy of the entropy images obtained through co-occurrence
matrices

Original Bands Fused Bands Wavelet PCA Cokriging

b2 1.37 f2 1.37 1.37 1.44
b3 1.42 f3 1.45 1.49 1.45
b4 1.77 f4 1.78 2.02 1.96

Average 1.52 1.53 1.63 1.62

139

8.1.5 Summary

Our experiments indicate that cokriging can be used as a fusion method for

pan-sharpening of multispectral data. Methods like PCA or wavelet-based fusion are

sensitive to particular wavelengths for preserving spectral resolution of MS bands

or increasing their spatial information. Cokriging, on the other hand, performed

consistently by producing fused bands that are more than 90% correlated with

their corresponding MS input bands and that have significantly increased spatial

information compared to their input MS bands. This effort only provides preliminary

results on the applicability of cokriging to image fusion. There are various factors

and parameters that can lead to better-quality fused images. These include having

better models for pairwise covariances of data, and considering the best possible

neighborhood size for interpolation of data. Evaluation of the results would also be

more accurate if reference data were available. After submitting these results for

publication [107], we learned that Pardo-Iguzquiza et al. independently and around

the same time also used cokriging for the pan-sharpening of the remotely sensed

imagery [123].

8.2 Improving the Spectral Resolution via Cokriging

We investigated the advantages of increasing ALI’s spectral resolution via fu-

sion with Hyperion. Our underlying motivation and application for this exercise in-

volved the analysis of invasive species through a collaborative project among NASA

Office of Earth Science and the US Geological Survey called Invasive Species Fore-

140

casting System (ISFS) [2,146]. The data sets used in this section’s experiments are

from one of the four main Tamarisk study sites in Colorado.

While many vegetation types may appear to have the same color when viewed

in the visible spectrum, they can be differentiated from each other when viewed

in the infra-red [99]. Even when viewed in the non-visible spectrum, reflectance of

these vegetation types may be of different degrees and from nearby portions of the

spectrum. For this reason hyperspectral data is of great importance to the ISFS

project. However, one would need to choose appropriate bands for a particular study

based on the application.

We investigated candidate choices for Hyperion bands to be used for the ISFS

project by learning the amount of detail that they introduce to the classification

compared to their corresponding ALI bands. The fusion of ALI with Hyperion data

was studied using PCA and wavelet-based fusion. We then utilized a geostatistical

based interpolation method called cokriging for image fusion in spectral domain.

8.2.1 Data sets

Our data sets were acquired on July 5, 2004 from “Debeque” (near Grand

Junction, Colorado) site which is one of the four study sites for ISFS’s Tamarisk

mapping effort [2]. The ALI and Hyperion are two instruments on the EO-1 plat-

form. Hyperion is a hyperspectral instrument with 242 bands covering wavelengths

ranging from 356 nm to 2577 nm at a spatial resolution of 30 meters per pixel. ALI

on the other hand, has only 10 bands, one of which is panchromatic at 10 meters

141

spatial resolution and 9 of which are multispectral at a 30 meters spatial resolution,

covering wavelengths ranging from 433 nm to 2350 nm. Thus, ALI data represent

low spectral resolution data while Hyperion provides high spectral resolution im-

ages. ALI is considered a successor system to the Landsat Thematic Mapper series,

and thus five of its multispectral bands’ wavelengths correspond to that of Landsat

7. Hyperion is the only civilian hyperspectral instrument operating in space.

For this work, we used two data sets, one obtained from ALI and one from

Hyperion instrument, containing approximately the same area. We had the 9 mul-

tispectral bands of ALI as well as all Hyperion bands for the region under study.

8.2.2 Experiments

We first performed fusion of ALI MS bands with Hyperion bands in spectral

domain using PCA and wavelet-based fusion methods. Our objective for perform-

ing these two image fusion techniques on ALI and Hyperion images, one with low

spectral resolution and one with high spectral resolution, was to study how much

we can improve the quality of the classification performed on ALI MS bands using

hyperspectral data for our application. Fusion results based on PCA and wavelets

show that texture, measured through Haralick’s texture quality metrics [73], can be

improved through fusion, while preserving almost all the input original information.

Haralick’s texture quality metrics were used to validate the results and form the

basis for a new fusion quality metric. Details of these experiments and their results

are available in [108].

142

We then demonstrate how cokriging can be used to improve the spectral res-

olution of ALI. Looking at Table B.2 of Appendix B, we can see there are some

wavelength ranges which are not covered by ALI data. In particular, considering

only calibrated bands of Hyperion which did not seem visually corrupted, wave-

lengths covered by Hyperion bands 17, 26–27, 34–41, 46–48, 54–105, 116–140, 161–

194, and bands 220–224 are not covered by ALI bands. Thus, one could create

8 new bands of ALI through cokriging, where each new ALI band will cover the

missing intervals of the spectrum. Another fusion goal might also be to interpolate

ALI only at a particular wavelength of interest, based on the application. Figure

Fig. 8.5: ALI and Hyperion reflectance in their spectral domain

8.5 shows the reflectance at one pixel both with the Hyperion and ALI sensors. Our

experiments deal with estimating ALI values at missing intervals by using both ALI

143

and Hyperion, and investigate how we can mimic Hyperion’s spectral signature at

wavelengths of interest for ALI. This is done by first interpolating ALI at one wave-

length location at each interval by estimating ALI values at wavelengths matching

centers of wavelength ranges for Hyperion bands 17, 26, 37, 47, 77, 134, and 180.

In the second experiment, we get a smoother ALI coverage, by estimating ALI at

wavelength centers of Hyperion bands 17, 26, 37, 39, 47, 57, 77, 97, 130, 134, 138,

170, 180, and 190. Finally, we examine how cokriging would perform if we were to

reconstruct ALI at centers of every single interval where we have Hyperion cover-

age. This demonstrates how cokriging performs for the spectral fusion of ALI with

Hyperion. In practice, a user could specify an interval of interest for ALI coverage

based on the application, and thus construct new fused bands for ALI.

In our preliminary results for the cokriging, Figures 8.6, 8.7, and 8.8 show that

as we increase the number of wavelengths at which the ALI data is interpolated, we

can construct ALI bands that have Hyperion’s spectral signature while being within

ALI’s range of values. Of course, one will choose intervals of interest to perform

this cokriging so that instead of dealing with 242 bands of Hyperion, or only nine

bands of ALI, one can get a full spectrum coverage through about 17 ALI bands

(nine original and about eight or more fused ALI bands).

8.2.3 Summary

Cokriging was used as an image fusion technique, and preliminary fusion ex-

periments were performed with the intent of improving the spectral resolution of ALI

144

Fig. 8.6: Fusion by Cokriging: estimating one ALI value in center of each wavelength
interval where ALI data is missing

Fig. 8.7: Fusion by Cokriging: estimating up to three ALI values each wavelength
interval where ALI data is missing

145

Fig. 8.8: Fusion by Cokriging: estimating ALI values in all Hyperion interval centers
where ALI data is missing

data by fusing ALI with Hyperion data. Results show that new fused ALI bands

can be created to have similar spectral pattern to that of the Hyperion’s spectral

signature. Estimated values were also within the range of ALI’s measurements.1

1The results of this chapter are based on joint work with Jacqueline Le Moigne, David M. Mount,
and Jeffrey T. Morisette [107,108]. We thank the IEEE Data Fusion Committee, GRSS DFC, for
providing us the grss dfc 0002 data set.

146

Chapter 9

Conclusions and Future Work

The focus of this dissertation has been on efficient implementations of compu-

tational tools for clustering and interpolation on large spatial data sets, and their

application to the task of data fusion of remotely sensed data. Chapter 3 presented

my work on efficient implementations of the isodata clustering algorithm, and

Chapters 5 and 6 presented my work on efficient implementation of the ordinary

kriging interpolation methods. A brief presentation of how the kriging interpola-

tion method can be applied to image fusion problem of remotely sensed data was

provided in Chapter 8. In this chapter, we will summarize these results and discuss

future related work and open problems.

9.1 isodata Clustering Algorithm

In Chapter 3 we demonstrated the efficiency of a new implementation of the

isoclus algorithm based on the use of the kd-tree data structure and the filtering

algorithm. This algorithm is a slight modification to the original isoclus algo-

rithm. We have provided both theoretical and experimental justification that our

implementation yields essentially the same results. The experiments on synthetic

clustered data showed speed-ups in running times up to roughly 60, while the ex-

periments on Landsat and MODIS satellite image data showed speed-ups of roughly

147

4 to 30 and 4 to 20, respectively.

We also presented an approximate version of the algorithm which allows the

user to further improve the running time at the expense of lower fidelity in com-

puting the nearest cluster center to each point. We showed that with relatively

small distortion errors, significant additional speed-ups can be achieved by this

approximate version. The approximate version is most effective for data sets in

high dimensions. The software is freely available, and can be downloaded from

http://www.cs.umd.edu/∼mount/Projects/ISODATA.

One possible direction for future work is analyzing the sensitivity of the algo-

rithm to various parameters. While the kd-tree data structure with the filtering al-

gorithm was first applied for efficient implementation of the k-means algorithm [87],

the approximate filtering approach was first applied in our work. Thus, applying

these methods, in particular the approximate filtering, for efficient implementations

of other partitioning-based clustering algorithms (see Chapter 2) is another possible

area of future work.

9.2 Kriging via Tapering

In Chapter 5 we implemented efficient ordinary kriging algorithms through

utilizing covariance tapering [55] and iterative methods [118, 131]. We also imple-

mented a variant of the global tapered method through projecting the large global

system on to an appropriate smaller system. Global tapered methods resulted in

memory saving factors ranging from 4 to 400 roughly for the storage of the coeffi-

148

cient matrix of the ordinary kriging system compared to the original global system.

Global tapered iterative methods gave better estimation errors compared to the lo-

cal approaches. In all cases, the estimation results of the global tapered method

were very close to the global tapered and projected method. This is while global

tapered and projected method solves the linear systems order(s) of magnitude faster

than the global tapered method. This method can be viewed as a way of adaptively

finding the correct neighbors to consider for the interpolation problem. Results

of traditional local approaches depend on the underlying points’ distribution, and

whether or not enough points are included in the specified neighborhood.

This work has raised some open problems for possible future research. For the

truncation approach, we showed the importance of knowing the smallest eigenvalue

of two large matrices (see Section 5.1.1). The smallest eigenvalue of the covariance

matrix is the upper bound for allowable change we can apply via truncation to this

matrix to persevere the positive definiteness of the matrix. Also, the smallest eigen-

value of the system’s coefficient matrix determines the maximum change we can

introduce to the system to ensure the estimation error is below a desired threshold.

Both of these matrices are very large, for which calculating the smallest eigenvalue

involves solving a system as large as the original ordinary kriging system. However,

the original kriging system was impractical to solve exactly to begin with. Finding

the upper and lower bounds for the smallest eigenvalues of such large matrices is

an open area of research. There exist methods for calculating or estimating the two

largest eigenvalues of some graph’s adjacency matrix [120], as well as estimating

them via their upper and lower bounds [95]. While there has been some work on

149

bounding the smallest eigenvalue for some graphs [7], these bounds are not suffi-

ciently tight nor do they apply to more general matrices. Therefore, this theoretical

problem is an important area of research.

We also mentioned that empirical results support that the screening effect

takes place (see Section 5.2). While there are some evidence of this hypothesis for

gridded data [155], there are no theoretical results on this idea for general scattered

data sets [55]. Formalizing and proving this hypothesis is an open mathematical

question in the geostatistics domain.

9.3 Kriging via Fast Multipole Methods

Chapter 6 presented my work on efficient implementation of the ordinary krig-

ing algorithm using a different approach. We integrated the efficient implementa-

tions of the Gauss Transform for solving ordinary kriging systems. Please note that

while ifgt was used for cases where the covariance function is Gaussian, a similar

approach can be used for other covariance functions where a factorization, similar

to the one described for the Gaussian function in Section 6.4, exists. We also im-

plemented another efficient variant, which we referred to as the gtann approach.

This method is effective when the covariance functions have small range values. As

the number of data points increases, the ifgt approach yields higher speed-ups.

Our experiments using the ifgt approach for solving the ordinary kriging system

demonstrated speed-up factors ranging from 7-15 when using 5000 points. Based

on our tests with varying number of data points, we expect even higher speed-ups

150

when using larger data sets. The ifgt method’s estimations were comparable to

the exact methods for large data sets. The gtann approach outperformed the ifgt

method in cases where the covariance functions used had very small values, resulting

in speed-up factors of approximately 50–150. The gtann approach is slower than

the exact methods for large covariance ranges, and thus is not recommended to be

used in these cases. Based on our experiments and those presented in [134], a safe

cutoff value for determining whether to use gtann or ifgt is a covariance range

value of 50. The quality of results when using gtann was comparable to the exact

methods in all cases.

The ifgt approach was applicable to cases where the covariance function

is Gaussian. Future work includes implementing the same approach for different

covariance models (e.g. spherical and exponential). Also, the iterative method for

solving the kriging system took more number of iterations to converge when using

the ifgt approach compared to the gt approach. One can reduce the number of

iterations and further improve the speed-ups obtained from the ifgt approach by

first preconditioning [144] the linear systems. Preconditioning the kriging linear

systems and studying the effect of various preconditioners for solving the system

with different covariance models can be an immediate area for future work.

9.4 Image Fusion via Cokriging

Chapter 8 presented an application of the generalization of the kriging interpo-

lation method, to the image fusion of remotely sensed data. Cokriging was applied

151

to address two problems in the image fusion domain. In one instance, cokriging was

used for improving the spatial resolution of Landsat imagery (pan-sharpening). In

the other case, the objective was to improve the spectral resolution of ALI data by

fusing it with Hyperion via cokriging.

In Section 8.1, we performed pan-sharpening of the Landsat MS bands by fus-

ing it with the Landsat Pan bands using cokriging. Methods like PCA or wavelet-

based fusion are sensitive to particular wavelengths for preserving spectral resolution

of MS bands or increasing their spatial information. Cokriging, on the other hand,

performed consistently by producing fused bands that are more than 90% corre-

lated with their corresponding MS input bands and that have significantly increased

spatial information compared to their input MS bands. This effort only provides

preliminary results on the applicability of cokriging to image fusion. Similarly in

Section 8.2, we examined improving the spectral resolution of ALI data by fusing it

with the Hyperion data. Preliminary fusion experiments were performed. Results

show that new fused ALI bands can be created to have similar spectral pattern to

that of the Hyperion spectral signature.

We demonstrated how kriging can be used for increasing the spatial or spectral

resolution of satellite imagery. Future work includes applying kriging methods for

image fusion of various sensors’ data for different applications. Also, designing new

quantitative metrics as well as improving the current measures for evaluating the

quality of the fused image in the absence of a reference image is another possible

direction for future work.

152

Appendix A

Cokriging and Kriging Interpolation Methods

In this Appendix we present necessary mathematical and statistical back-

ground for better understanding the cokriging interpolation method in general, and

ordinary kriging in particular. Cokriging involves the solution of an optimization

problem with an equality constraint. It also involves calculations of some statistical

quantities such as covariance matrices, variograms, etc. This chapter is organized by

first reviewing the necessary background material. Section A.1 reviews the mathe-

matics involved in solving an optimization problem with equality constraints. Then,

we present related statistical definitions and properties in Section A.2. In Section

A.3, we explain what is meant by cokriging and present its derivation, assumptions,

objectives, properties, and computational issues involved. Similarly in Section A.3.3,

we describe the kriging problem in general, and the ordinary kriging problem. This

appendix concludes by explaining why this problem is computationally expensive as

well as introducing existing implementations of cokriging.

A.1 Mathematical Background for Solving Linear Systems

Let x be a vector in Rd, and suppose we would like to minimize a function f

subject to a linear constraint Ax = b, where x and b are d-vectors and A is a n× d

matrix.

153

There are two approaches for solving this problem. First approach is as follows.

Let Z be a basis for null space of A. Then, it is well known that if x is a solution to

Ax = b, so is x+Zv, where v is any d-vector. Thus, we can restate our optimization

problem with an equality constraint as an unconstrained optimization problem as

follows: minv f(x + Zv).

The second approach is that solving our minimization problem is equivalent to

solving the following Lagrangian equation, L(x, λ) = f(x) − λT c(x), where c(x) =

Ax − b. Note that we are not minimizing the Lagrangian function. Rather we are

finding a saddle point of this function. We will go over optimality conditions for a

solution to our original problem and the meaning of Lagrange multipliers.

In terms of the first approach, necessary conditions for optimality are that the

reduced gradient be zero and that the reduced Hessian be positive semidefinite [118].

That is: ZT 5 f(x) = 0 and ZT 52 f(x)Z is positive semidefinite. ZT 5 f(x) = 0

is also the sufficient condition for optimality.

In terms of the second approach, partial derivatives of the Lagrangian with

respect to both x and λ must be zero. That is, first order necessary conditions for

optimality are

5xL = 5f(x)− AT λ = 0, and (A.1)

−5λ L = Ax− b = 0. (A.2)

Suppose the solution to the above minimization problem is x∗. Also, suppose we

have a point x̂ very close to x∗ so that ||x∗−x̂|| ≤ ε and Ax̂ = b+δ, where both ε and

||δ|| are very small. Then, we can approximate f(x̂) using Taylor series expansion.

154

Note that since Ax̂ = b + δ and Ax∗ = b, we have A(x̂− x∗) = δ.

f(x̂) = f(x∗) + (x̂− x∗)T g(x∗) + O(ε2)

= f(x∗) + (x̂− x∗)T AT λ∗ + O(ε2)

= f(x∗) + δT λ∗ + O(ε2). (A.3)

This means that if we perturb bi by δi, then optimal value is changed by δiλ
∗
i . Thus,

λi is the change in the optimal objective per unit change in bi. We say that, λi is

the sensitivity of f to bi [118]. For this reason Lagrange multipliers are also called

shadow prices or dual variables [118].

A.2 Geostatistics Background

In this section we go over various statistical definitions. In order to do so,

assume we are dealing with two random variables X and Y , such that X can take

on the values {x1, . . . xn} and Y can take on the values {y1 . . . ym}. Also let µx and

µy denote the expected values of these variables.

A.2.1 Spatial analysis

When performing geostatistical modeling, some assumptions are usually made

about the data. Some of the main assumptions made are defined below.

Stationarity Assumption means that the statistics of a random function are invari-

ant under translation [60,80,151].

Isotropic Assumption means that data statistics are independent of direction.

155

Thus, for various statistics only the distance between the pairs of data points

needs to be taken into account and not their orientation [60,80,151].

Anisotropic Assumption indicates that variability of data changes as a function

of direction. Thus, for computation of data statistics both the distance and

orientation between pairs of data points needs to be taken into account [60,80].

Intrinsic Hypothesis indicates that variance may be unbounded [151].

Quasi-stationarity implies that stationarity applies to a neighborhood of the data

and not to the entire domain of data [151].

A.2.2 Covariance

Generally, the covariance between two random variables xi ∈ X and yj ∈ Y

is defined as Cov(X,Y) = E [(X − µx)(Y − µy)] = E(XY)− µxµy. In geostatistics,

two random variables z and z′ of the same distribution are usually location depen-

dent, that is, they are a function, let’s say Z, of their locations. Let us denote these

locations by u and u′ respectively. Thus, z = Z(u) and z′ = Z(u′). In geostatis-

tics, C(u, u′) is a shorthand for Cov(Z(u), Z(u′)), where Z(u) and Z(u′) are values

of a random function in locations u and u′. The covariance between two random

variables Z(u) and Z(u′) is defined as follows.

C(u, u′) = Cov(Z(u), Z(u′)) = E [(Z(u)− E(Z(u)))(Z(u′)− E(Z(u′))]

= E(Z(u)Z(u′))− E(Z(u))E(Z(u′)). (A.4)

The stationary covariance, C(h), is defined as the covariance between two

156

random variables Z(u) and Z(u + h), separated in location by vector h:

C(h) = Cov(Z(u + h), Z(u))

= E(Z(u + h)Z(u))− (E(Z(u)))2,∀u, u + h ∈ A. (A.5)

A.2.3 Variance and standard deviation

For a variable X, variance is defined as follows:

Var(X) = Cov(X,X) =
1

n

n∑
i=1

(xi − µx)
2 = E [X − µx]

2 = E(X2)− µ2
x.

Recall the definition of stationary covariance function C(h) from Section A.2.2. For

h = 0, C(0) = Cov(Z(u), Z(u)) = Var(Z(u)). Thus, for a stationary random

variable Z(u), we have C(0) = Var(Z(u)). Standard deviation of a variable is

defined as square root of its variance: δ(X) =
√

Var(X).

A.2.4 Correlation coefficient

Correlation coefficient, ρ, is a measure of linear relationship between two vari-

ables, or how close the values come to falling into a straight line. For two variables

X and Y we have ρ(x, y) = Cov (x,y)
δ(x)δ(y)

, where δ(x) and δ(y) are standard deviations

of variable X and Y respectively. The stationary correlation coefficient, denoted

ρ(h), is defined as the correlation coefficient between values of random function Z

at locations u and u + h, ρ(h) = ρ(Z(u + h), Z(u)) ∀ u, u + h.

157

A.2.5 Variogram

Variogram is a measure of calculating spatial variability or dissimilarity be-

tween values of a random variables approximately separated by a vector h. This

measure can be used as an alternative to measure C(h), described above. For a set

of points, variogram, or 2γ(h), is defined as follows ([37,60,80]):

2γ(h) =
1

N(h)

∑

hij=h

(xi − xj)
2, (A.6)

where N(h) is number of pairs separated by vector h, xi and xj are values of variables

at two ends of the vector, and hij = loc(xi)− loc(xj). Value of loc(xi) represents the

location where xi is measured, and loc(xj) indicates the location of xj. Similarly,

semivariogram, is defined as half of the average squared difference between two

attributes separated by vector h:

γ(h) =
1

2N(h)

∑

hij=h

(xi − xj)
2. (A.7)

We expect spatial variability of values of a random variable, or its variogram, to

increase as the distance between locations of those values increase. However, after

reaching a certain distance, this increase in variogram function stops. The distance

at which variogram function stops increasing is called range of variogram, and the

value that variogram has at distance equal to range is called the sill.

The sill value of the variogram is also the variance of the random function [80].

That is, C(0) = γ(∞). In other words the maximum variability of the random func-

tion values whose locations are far enough from each other is the same as maximum

similarity among values of a random function evaluated at the same location. There

are few points we need to consider when speaking of variogram and semivariogram.

158

1. Variogram and semivariogram are used interchangeably in practice. In fact,

in most cases, a semivariogram as defined above is calculated, while for con-

venience it is referred to as variogram.

2. For a stationary random function variogram is defined as the variance of the

increment between two random variables separated by vector h:

2γ(h) = Var(Z(u + h)− Z(u)), ∀u, (A.8)

where Z is a random function taking a location as its parameter.

A.2.6 Variogram modeling

As we will see in Section A.4, in order to perform cokriging, we need to model

variograms. That is, we need to fit variogram values (see Section A.2.5) as function

of distance h to a function which best fits it. Variograms are usually modeled so that

we be able to model pairwise covariances as a function of distance h. For stationary

data, having a variogram model γ(h) allows us to come up with a covariance model

C(h), as a function of distance, using relation C(h) = C(0) − γ(h) (see details in

Section A.2.7, Property (3a)). In other words, once we have a model for variogram,

the covariance model for distance h can be calculated by subtracting γ(h) from

variogram’s sill value.

As we will see in Section A.3, to perform (co)kriging it is important that the

involved covariance matrix C be positive definite. Thus, only models which will re-

sult in positive definite covariance matrices are considered for modeling variograms.

Christakos showed necessary and sufficient conditions for permissible covariance

159

and variogram models [28]. Some of these permissible variogram models are as

follows [30]:

Nugget effect model:

γ(h) =

{
0 if h = 0,
c0 + c(h) otherwise.

(A.9)

Spherical model: This is the mostly used variogram model, where a represents

the range of the variogram. This model is defined as follows:

γ(h) =





0 if h = 0,

c0 + c{1.5h
a
− 0.5(h

a
)3} if 0 < h ≤ a,

c0 + c if h ≥ a.
(A.10)

Exponential model:

γ(h) =

{
0 if h = 0,

c0 + c{1− exp(−3h
a

)} otherwise.
(A.11)

Gaussian model: This model is mostly used for extremely continuous values, and

is defined as follows:

γ(h) = c0 − exp(−3h2

a2
). (A.12)

There are several issues that need to be considered when dealing with the

mentioned models.

1. Usually the simplified version of above models are used where c0 = c = 1, that

is variogram values are normalized to have the sill value equal to one [60,80].

2. Practical range a for Gaussian and exponential models is defined as the dis-

tance where variogram reaches 95% of its sill value [60,80].

160

3. In some geostatistical literature, Gaussian and exponential models are defined

without the factor 3, and thus in those cases variable a would be 1
3

of the

practical range [80].

4. Linear combination of acceptable variogram models is also an acceptable model.

A.2.7 Variogram properties

Above mentioned statistical quantities have several properties which we will

review in this section [37,60,80].

1. Variance of a random variable created as linear combination of other random

variables, V1 . . . Vn, is estimated as follows (see [80], p. 216):

Var(
n∑

i=1

wiVi) =
n∑

i=1

n∑
j=1

wiwjCov(ViVj),

where w1 . . . wn are the weights associated with V1 . . . Vn respectively.

2. It is trivial to see for variograms that γ(h) = γ(−h).

3. For a stationary random function, we have

(a) γ(h) = C(0)− C(h).

2γ(h) = Var [Z(u + h)− Z(u)]

= E [Z(u + h)− Z(u)]2 − [E (Z(u + h)− Z(u))]2

= E [Z(u + h)− Z(u)]2 − [E (Z(u + h))− E (Z(u))]2

= E [Z(u + h)− Z(u)]2 − 0 (by stationarity)

= E (Z(u + h))2 + E (Z(u))2 − 2E (Z(u + h)) E (Z(u))

= 2E (Z(u))2 − 2E (Z(u + h)) E (Z(u)) ⇐⇒
γ(h) = E (Z(u))2 − E (Z(u + h)) E (Z(u)) .

We also have:

C(0) = E(Z(u))2 − [E(Z(u))]2 , and

C(h) = E(Z(u + h)Z(u))− [E(Z(u))]2 ⇐⇒
C(0)− C(h) = E(Z(u))2 − E(Z(u + h)Z(u)) = γ(h).

161

Note that derivation of second definition for semivariogram requires Z

be a stationary random function. That is, the mean, or expected value

of its values are invariant under transformation of variables passed to it

and is always constant.

This property allows one to easily derive the data’s corresponding covari-

ance function from its variogram function and vice versa. For example,

the Spherical and Gaussian covariance functions (Cs and Cg respectively)

are derived from Eq. (A.10) and (A.12), assuming c0 = 1 as follows.

Cg (h) = exp

(
−3h2

a2

)
, (A.13)

Cs (h) =





1 h = 0

1− 1.5h
a

+ 0.5(h
a
)3 if 0 < h ≤ a,

0 otherwise
(A.14)

where a is the range for the covariance values, and h is the Euclidean

distance of a pair of points. The range is the distance after which the

covariance values remain constant at their lowest possible value. Please

see [28,60,80] for other examples of permissible covariance functions.

(b) ρ(h) =
C(h)

C(0)
. Recall that

C(h) = Cov(Z(u + h), Z(u)), and

C(0) = Cov(Z(u), Z(u)) = Var(Z(u)).

Then, we have:

ρ(h) = ρ(Z(u + h), Z(u)) =
Cov(Z(u + h), Z(u))

δ(Z(u + h))δ(Z(u))

=
Cov(Z(u + h), Z(u))

δ(Z(u))2
(by stationarity)

=
Cov(Z(u + h), Z(u))

Var(Z(u))
=

C(h)

C(0)
.

162

(c) ρ(h) = 1− γ(h)

C(0)
. Using the previous property, we have

ρ(h) =
C(h)

C(0)
=

C(0)− γ(h)

C(0)
= 1− γ(h)

C(0)
.

A.3 Cokriging

Cokriging is multivariate version of kriging. A method for estimation that

minimizes the variance of the estimation error by taking into consideration the

spatial correlation between the variables of interest and the secondary variables [80].

In other words, a function U at location 0 is estimated as a linear combination of

both the variable of interest and the secondary variables. That is, to estimate û0,

the estimate of U at location 0, as mentioned in [80], is given by

û0 =
n∑

i=1

aiui +
m∑

j=1

bjvj. (A.15)

Note that u1, . . . , un are primary data at n nearby locations, v1, . . . , vn are secondary

data at m nearby locations, a1, . . . , an and b1, . . . , bm are cokriging weights which

need to be calculated. Also, estimation error, R, can be calculated as

R = Û0 − U0 = wT Z, (A.16)

where wT = (a1, . . . , an, b1, . . . , bm,−1), and ZT = (U1, . . . , Un, V1, . . . , Vm, U0).

A.3.1 Mathematical formalization of the cokriging problem

The objective of cokriging is to find weights, vector wT mentioned previously,

such that the variance of the error be minimized and the estimate for Û0 be unbiased.

163

That is, the mean residual or error be equal to 0. Constraints that are imposed on

the linear system ensure unbiasedness of the interpolant, and form various types of

cokriging methods (see [60], page 204 and [80], chapter 17), few of which are the

following.

Simple Cokriging: No constraints are imposed on the weights. Means of primary

and secondary data are required. Simple cokriging considers that local means

are known and constant through the study area.

Ordinary Cokriging: Imposes the following two constraints on coefficients:

∑n
i=1 ai = 1 and

∑m
j=1 bj = 0. This method limits the influence of the sec-

ondary variables greatly. As we will see, these conditions indicate that ordinary

cokriging considers local means to be constant but unknown.

Standardized Ordinary Cokriging : is performed by creating new secondary

variables so that they have the same mean as the primary variables. The

constraint is that coefficients should add up to one:
∑n

i=1 ai +
∑m

j=1 bj = 1.

In Section A.3.4 we show how the above conditions on coefficients of the system

ensures unbiasedness of the interpolant for each type of cokriging. Next, we describe

how the weight coefficient for a cokriging system is found. We do so by forming and

solving the ordinary cokriging problem. Setting up and solving other varieties of

cokriging are then clear and very similar.

164

Variance of a random variable created as a linear combination of other random

variables, Z1 . . . Zn, is estimated as follows (see [80], p. 216):

Var

(
n∑

i=1

w′
iZi

)
=

n∑
i=1

n∑
j=1

w′
iw

′
jCov (ZiZj) . (A.17)

where Z1 . . . Zn are random variables at given locations, and w′
1 . . . w′

n are the weights

associated with them. Equations A.16 and A.17 imply the following objective func-

tion for minimizing the variance of the estimation error.

Var(R) = wT CZw

=
n∑
i

n∑
j

aiajCov(UiUj) +
m∑
i

m∑
j

bibjCov(ViVj)

+ 2
n∑
i

m∑
j

aibjCov(UiVj)− 2
n∑
i

aiCov(UiU0)

− 2
m∑
j

bjCov(VjU0) + Cov(U0U0). (A.18)

One way of ensuring unbiasedness for our estimation Û0 is to require
∑n

i=1 ai = 1

and
∑m

j=1 bj = 0 (we will show in Section A.3.4). So now we have an optimiza-

tion problem with two constraints. This is where we take advantage of Lagrange

multipliers (see Section A.1). Let our Lagrange multipliers be µ1 and µ2. Then,

we are trying minimize Var(R) subject to two mentioned constraints by solving for

coefficients a1 . . . an, b1 . . . bm, µ1, µ2, where

Var(R) = wT CZw + 2µ1(
n∑

i=1

ai − 1) + 2µ2(
m∑

j=1

bj). (A.19)

The next step is taking partial derivatives of the above equation with respect to

all n + m cokriging variables and the two Lagrange multipliers and setting them to

zero. Then, we will get the following n + m + 2 equations to solve:

165

n∑
i=1

aiCov(UiUj) +
m∑

i=1

biCov(ViUj) + µ1 = Cov(U0Uj) (j = 1...n), (A.20)

n∑
i=1

aiCov(UiVj) +
m∑

i=1

biCov(ViVj) + µ2 = Cov(U0Vj) (j = 1...m), (A.21)

n∑
i=1

ai = 1, and (A.22)

m∑
i=1

bi = 0. (A.23)

Equivalently:



Cu1u1 . . . Cunu1 Cv1u1 . . . Cvmu1 1 0
. 1 0

Cu1un . . . Cunun Cv1un . . . Cvmun 1 0
Cu1v1 . . . Cunv1 Cv1v1 . . . Cvmv1 0 1
. 0 1

Cu1vm . . . Cunvm Cv1vm . . . Cvmvm 0 1
1 . . . 1 0 . . . 0 0 0
0 . . . 0 1 . . . 1 0 0







a1

. . .
an

b1

. . .
bm

µ1

µ2




=




Cu0u1

. . .
Cu0un

Cu0v1

. . .
Cu0vm

1
0




.(A.24)

Once the above system of equations is solved, we have necessary coefficients

a1, a2, . . . , an, b1, b2, . . . , bm to estimate function U at location 0.

A.3.2 Generalized cokriging system

One can see that instead of having one set of secondary variables V1 . . . Vm, we

may use multiple sets of secondary variables. Each additional set of secondary vari-

ables W1 . . . Wk will introduce a new set of coefficients c1 . . . ck and a new Lagrange

multiplier µw.

For the general case where we have s set of variables (as opposed to just two

sets, one primary and one secondary), our linear system will be as follows:

(
C L
LT 0

)(
T
µ

)
=

(
C0

I0

)
. (A.25)

166

Where C is the covariance (or its estimate) matrix of all known variables’ pair, and

C0 is the vector of pairwise covariances between the unknown variable U0 and all

other known variables. The µ entry is the vector of all Lagrange multipliers µ1 . . . µs.

L is a vector of matrices I1 . . . Is. Each matrix Ii, i ∈ {1 . . . s} is of size ni×s, where

ni is the number of points in ith variable set . All elements in the ith column of Ii

are one and all other entries are zero. The T entry is the vector of all coefficients,

and I0 is a column vector of size s × 1 of all elements under C0 on the right hand

side of the equation. Similarly to ensure unbiasedness, this vector is made of a 1 on

top and all zeros for the rest of entries. It can also be proven that in order for the

system to have a solution, we need matrix C to be positive definite [60,80].

A.3.3 Mathematical formalization of the kriging problem

Kriging is a special case of cokriging where we estimate value of a variable at

a location using only values of the same variable at scattered points around it. That

is, to estimate the value of a random function U at location 0, u0, using values of U

at n other locations (u1, . . . un) we need to calculate the coefficients a1, . . . an such

that û0 =
∑n

i=1 aiui and variance of the error be minimized.

Similarly we have Simple and Ordinary Kriging, depending on whether or not

local means are known and/or constant or not (see Section A.3). Simple kriging

does not require any constraints on coefficients while ordinary kriging requires sum

of coefficients to add up to one for insuring unbiasedness (see Section A.3.4 for

details). Thus, for ordinary kriging, Eq. (A.3.1) simplifies as follows:

167

n∑
i=1

aiCov(UiUj) + µ1 = Cov(U0Uj) (j = 1...n),

n∑
i=1

ai = 1.

Equivalently:




Cu1u1 . . . Cunu1 1
. 1

Cu1un . . . Cunun 1
1 . . . 1 0







a1

. . .
an

µ1


 =




Cu0u1

. . .
Cu0un

1


 . (A.26)

A.3.4 Unbiasedness condition

For kriging and cokriging interpolation methods, it is often required that esti-

mates obtained via interpolation be unbiased. Unbiasedness of the estimator means

that expected value of error should be zero.

Lemma A.3.1 (Isaaks and Srivastava [80]) A kriging estimate of an stationary

variable is unbiased iff sum of its kriging weights is 1.

Suppose we have a random function V (x), where x is a location. Assume that for

points x1 to xn we know value of function V , and we would like to estimate V at

an unknown location x0 as a linear combination of n known function values so that

our estimate be unbiased (this is the case in kriging).

168

Let V̂ be our estimate function, R the error associated with our estimate, and

v1 . . . vn be weights given to each known function value in estimation. Then we have

V̂ (x0) =
n∑

i=1

viV (xi), and

R(x0) = V̂ (x0)− V (x0) =
n∑

i=1

viV (xi)− V (x0).

Unbiasedness condition states

E (R(x0)) = 0 ⇐⇒

E

(
n∑

i=1

viV (xi)− V (x0)

)
= 0 ⇐⇒

E(V)
n∑

i=1

vi − E(V) = 0 ⇐⇒

E(V)

[
n∑

i=1

vi − 1

]
= 0.

This indicates that we need to have
∑n

i=1 vi = 1 to assure unbiasedness of our

estimate, and this is often one of the constraints in optimization problems that we

end up solving for our interpolation methods [80]. It is easy to similarly derive the

necessary conditions for ensuring unbiasedness in ordinary cokriging. In this case,

we estimate a random function value as a linear combination of values of more than

one random function at each point. Let our secondary random function be W . Also,

assume we know values of W at points x1 . . . xm. Then,

V̂ (x0) =
n∑

i=1

viV (xi) +
m∑

i=1

wiW (xi), and

R(x0) = V̂ (x0)− V (x0) =
n∑

i=1

viV (xi) +
m∑

i=1

wiW (xi)− V (x0).

Unbiasedness condition states

169

E (R(x0)) = 0 ⇐⇒

E

(
n∑

i=1

viV (xi) +
m∑

i=1

wiW (xi)− V (x0)

)
= 0 ⇐⇒

E(V)
n∑

i=1

vi + E(W)
m∑

i=1

wi − E(V) = 0 ⇐⇒

E(V)

[
n∑

i=1

vi − 1

]
+ E(W)

m∑
i=1

wi = 0.

By requiring
∑n

i=1 vi = 1 and
∑m

i=1 wi = 0 we ensure that the above equation

and thus our unbiasedness condition holds. Similarly, if we use more additional

functions in ordinary cokriging, we need to require sum of coefficients of values

in our linear combination obtained from each particular additional function to be

equal to zero. Standardized cokriging assumes that all random functions used in

our estimation process have the same mean. That is, in above equation we have

E(V) = E(W). This condition results in reducing our number of constraints from

s to 1, where s is the number of random functions used in our linear interpolation.

E(V)

[
n∑

i=1

vi − 1

]
+ E(W)

m∑
i=1

wi = 0 ⇐⇒

E(V)

[
n∑

i=1

vi − 1

]
+ E(V)

m∑
i=1

wi = 0 ⇐⇒

E(V)

[
n∑

i=1

vi +
m∑

i=1

wi − 1

]
= 0.

Thus, in standardized cokriging we require
∑n

i=1 vi +
∑m

i=1 wi = 1. Similarly, if

more random functions are involved, we require sum of all coefficients in our linear

combination be one.

170

A.3.5 Positive definiteness condition

A requirement for cokriging system to have a solution is that its covari-

ance/variogram matrix, lets call it K, needs to be positive definite.

Lemma A.3.2 (Isaaks and Srivastava [80]) The variance of the ordinary krig-

ing estimation error is positive if C is positive definite.

Lemma A.3.3 (Myers [115]) The ordinary kriging system described in Eq. (A.25)

has a solution if C is positive definite.

The first lemma is easy to show. As seen above, the error involved in cokriging

result can be written as follows:

R = Û0 − U0 = wT Z

Var(R) = wT CZw.

Requiring Var(R) to be positive is the same as requiring C = Cz to be positive

definite: wT Czw > 0.

Recall the generalized cokriging system from Eq. (A.25). Correctness of Lemma

A.3.2 can be shown by proving its contrapositive statement: If the system does not

have a solution, then C not positive definite [115]. Let

G =

(
C L
LT 0

)
. (A.27)

If G is not invertible, it means that there exist non-zero U and V such that
(

C L
LT 0

)(
U
V

)
=

(
0
0

)
. (A.28)

Thus,

171

1. CU + LV = 0 =⇒ UT CU + UT LV = 0

2. LT U = 0 =⇒ UT L = 0

(1) and (2) =⇒ UT CU = 0 =⇒ C is not positive definite. Notice that this

positive definiteness condition on C is different from positive definiteness condition

for insuring optimality of a minimization/optimization problem. Here we are just

insuring that the coefficient matrix is invertible while in an optimization problem

we require Hessian of the system to be positive definite as described in Section A.1.

A.4 Algorithmic Approach

Estimating an unknown variable via (co)kriging involves the following steps.

1. Setting up the linear system as mentioned in its most general form in Section

A.3.2 satisfying conditions mentioned in Sections A.3.4 and A.3.5.

2. Solving the linear system for coefficients.

3. Evaluating the estimation for the unknown variable.

The main task in the first step is calculating elements of C and C0. Elements

of C are pairwise covariances between random variables for which we have only one

value. That is, we know values of a primary variable at n points (u1, . . . un), and we

are treating each of these values as an instance of a random variable U1. Thus, for Cij

we need covariance functions of the two random variables Ui and Uj that generated

values ui and uj at ith and jth points respectively. Here is where variograms come

into the picture. Variograms between pairwise variables are functions of distances

172

between the two particular samples. Notice that for a stationary random variable,

once we know variogram values between variables at a pair of points separated by

distance h, it is easy to calculate their pairwise covariances as well (see Section

A.2.7, Property (3a)). Also, one can transform anisotropic data to data which is

isotropic (stationary) [60, 80].

Usually variograms are modeled as a function of distance between points, and

so are the covariances. After fitting various possible models to calculated variograms,

the best one which gives the least error is picked and used to model the pairwise

variograms. Having a general variogram function γ(h), we can obtain a covariance

function C(h) using equation in Section A.2.7, Property (3a).

At this point, we have a modeled variogram and covariance, γ(h) and C(h) as

a function of distance between two samples of random variables. Then, matrices C

and C0 in Section A.3.2 are generated as follows: for every element cij in C or C0,

calculate distance hij between point labeled i and the one labeled j. Then simply

calculate cij = C(hij).

In addition to just calculating matrix C, we need to make sure that it is

positive definite (see Section A.3.5). Instead of checking for this condition every

time a model is picked, we limit our selection of variogram models to only those

functions which will lead to a positive definite matrix C (see Section A.2.6). Also,

it is important that the model we choose for our variogram be bounded so that we

be able to calculate C(h) given γ(h) for a given distance h using equation in Section

A.2.7, Property (3a).

173

Now that we are done with first step, and have our linear system set up, we can

solve it for the coefficients. There are a variety of well-known methods for solving

a linear system of equations [118], and once the solution to the system in Section

A.3.2 is known, evaluating the unknown variable is just a matter of substituting

values and calculating û0 as mentioned in Section A.3.

Another advantage of kriging methods over other interpolation methods is that

one can calculate the variance of the estimation error without having the true values.

We mentioned that the variance of the error for ordinary cokriging is Eq. (A.18).

Using Eq. (A.20–A.23), we have:

n∑
i=1

aiCov(UiUj) +
m∑

i=1

biCov(ViUj) = −µ1 + Cov(U0Uj)

n∑
i=1

aiCov(UiVj) +
m∑

i=1

biCov(ViVj) = −µ2 + Cov(U0Vj)

Substituting the above in Eq. (A.18) gives us the following simplified version for

variance of error in ordinary cokriging:

Var(R) =
n∑
i

aiCov(UiU0)− µ1 +
m∑
j

bjCov(U0Vj)

− 2
n∑
i

aiCov(UiU0)− 2
m∑
j

bjCov(VjU0) + Cov(U0U0)

= Cov(U0U0)− µ1 −
n∑
i

aiCov(UiU0)−
m∑
j

bjCov(VjU0).

If we do not consider constraints imposed in Eq. (A.25), we obtain the following

general equation for variance of the error for the cokriging system which can then

be simplified based on conditions imposed on coefficients. Var(R) = Cov(U0U0) −
∑n

i aiµ1 −
∑m

j bjµ2 −
∑n

i aiCov(UiU0)−
∑m

j bjCov(VjU0).

174

A.5 Past Implementations

There are various software which support kriging and/or cokriging interpola-

tion methods. Here we list the most commonly used ones.

GSLIB: Geostatistical Software Library [37]: This library is written in For-

tran by Deutsch and Journal, and has support for both kriging and cokriging.

Cokriging in Matlab [105]: This program supports cokriging in two and three

dimensional space. The program makes calls to Fortran executables.

C Implementation [23]: This software supports variogram modeling and cok-

riging of data in two dimensional space only.

GsTL: Geostatistical Template Library [137]: This is a library written in

C++ which supports various geostatistical algorithms including kriging and

cokriging.

S-GeMS: The Stanford Geostatistical Modeling Software [138]: This soft-

ware is implemented in C++, and utilizes the GsTL library. This software can

perform three dimensional geostatistical modeling, and has a graphical user

interface as well.

A.6 Error Analysis

There are three different sources of error that need to be considered in kriging

problems using iterative methods.

175

• ε1: the kriging error, which is the difference between the estimated value and

the true value, Eq. (A.16).

• ε2: the absolute or relative residual that the iterative solver calculates. This

value is usually used as the convergence criteria for iterative methods.

• ε3: error involved in solving the kriging system Eq. (A.25).

First error indicates the best that kriging (or any other interpolation method)

can do if the system is solved exactly. The second error represents the solution’s

accuracy level that we are requiring, either for the absolute or residual error. The

third error represents the limitations of the machine precision and errors that arise

in solving an approximate system. Suppose we are solving a linear system

Ax = b, (A.29)

and instead we end up finding an approximate solution, x̂, which is the answer to a

system of the form

(A + E)x̂ = b + f. (A.30)

We would like to analyze the relative error of the approximate solution x̂ satisfying

Eq. (A.30) with respect to the exact solution x satisfying Eq. (A.29). This error can

be introduced either due to limitations of the machine precision or the way we set

up the linear system (as we described in Section 5.1.1). To analyze ε3, we first need

to introduce the notion of the condition number for a matrix A.

176

Definition: Let A be an n × m matrix. Then, the condition number of A

with respect to the particular norm used, κ(A), is defined as follows [121]:

κ(A) =





‖A‖ · ‖A−1‖ if A is nonsingular,

+∞ otherwise.

(A.31)

According to the Perturbation Lemma, also known as Banach Lemma [121], if

‖A−1‖‖E‖ < 1, then A + E is nonsingular and

‖ (A + E)−1 ‖ ≤
(‖A−1‖

1− ‖A−1‖‖E‖
)

. (A.32)

Assuming that both A and A+E are nonsingular, and that x and x̂ satisfy Equations

A.29 and A.30 respectively, we have

x− x̂ = A−1b− (A + E)−1 (b + f)

= (A + E)−1 (
(A + E)A−1b− (b + f)

)

= (A + E)−1 (
(b + EA−1b− b− f

)

= (A + E)−1 (Ex− f) . (A.33)

From Eq. (A.29) we have:

‖b‖ ≤ ‖A‖‖x‖ =⇒ ‖x‖ ≥ ‖A‖−1‖b‖.

Equations (A.32) and (A.33), give the following expression for the relative error of

our estimated solution:

‖x− x̂‖
‖x‖ ≤ ‖ (A + E)−1 ‖ (‖Ex‖+ ‖f‖) 1

‖x‖
≤ ‖ (A + E)−1 ‖

(‖E‖‖x‖
‖x‖ +

‖f‖
‖x‖

)

≤ ‖ (A + E)−1 ‖
(
‖E‖+ ‖A‖‖f‖‖b‖

)
(A.34)

177

Using the above equation and Eq. (A.32), we get

‖x− x̂‖
‖x‖ ≤

(‖A−1‖‖A‖
1− ‖A−1‖‖E‖

)(‖E‖
‖A‖ +

‖f‖
‖b‖

)

≤
(

κ(A)

1− κ(A)‖E‖‖A‖

)(‖E‖
‖A‖ +

‖f‖
‖b‖

)
. (A.35)

Let

α = κ(A)

(‖E‖
‖A‖

)
= ‖A−1‖‖E‖ < 1. (A.36)

Thus, the relative error estimate reduces to

‖x− x̂‖
‖x‖ ≤ κ(A)

1− α

(‖E‖
‖A‖ +

‖f‖
‖b‖

)
. (A.37)

A.7 Computational Challenges and Solutions

As we discussed in this Appendix, estimating an unknown value using (co)kriging

requires us to first set up the (co)kriging linear system (see Section A.3.2). This

includes the problem of fitting data values to acceptable variogram models, which

results in a positive definite covariance matrix for the linear system we need to solve.

Then, we solve a linear system. Finally, the unknown value is estimated as the linear

combination of known values by using the weights that were obtained from solving

the linear system (see Section A.3).Factors that make (co)kriging computationally

expensive are large sizes of the linear systems involved for large data sets and the fact

that we cannot reuse weights obtained for one query point for another estimation.

178

Appendix B

Satellite Data Specification

Table B.1: Landsat 7 ETM data specification

Band Resolution

Spatial Spectral
(meters) (µm)

1 30 0.45–0.52
2 30 0.53–0.61
3 30 0.63–0.69
4 30 0.78–0.90
5 30 1.55–1.75
6 60 10.4–12.5
7 30 2.09–2.35
8 15 0.52–0.90

179

Table B.2: ALI bands and the corresponding calibrated and not corrupted Hyperion
bands used

ALI Spectral CWL Matching CWL
MS Range (nm) Used (nm)

Bands (nm) Hyperion
Bands

1 9 436.99
(MS-1’) 433–453 441.6 10 447.17

11 457.34
... ...

2 450–515 484.8 14 487.87
(MS-1) 15 498.04

16 508.22

18 528.57
... ...

3 525–605 567.2 22 569.27
(MS-2) 23 579.45

... ...
25 599.80

28 630.32
... ...

4 630–690 660 31 660.85
(MS-3)

33 681.200

42 772.78
43 782.95

5 775–805 790 44 793.13
(MS-4) 45 803.30

49 844.00
50 854.18

6 845–890 865.6 51 864.35
(MS-4’)

53 884.70

106 1205.07
... ...

7 1200–1300 1244.4 110 1245.36
(MS-5’)

115 1295.86

141 1558.12
... ...

8 1550–1750 1640.1 149 1638.81
(MS-5)

160 1749.70

195 2102.94
... ...

202 2173.53
204 2193.73
... ...

9 2080–2350 2225.7 207 2224.03
(MS-7) 208 2234.12

211 2264.32

180

Bibliography

[1] Data fusion community. http://www.dfc-grss.org. January 2006.

[2] Invasive species forecasting system. http://bp.gsfc.nasa.gov/isfs.html.
April 2007.

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approx-
imation via coresets. A survey: http://valis.cs.uiuc.edu/∼sariel/
research/papers/04/survey, February 2005.

[4] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms
for clustering. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 658–667, San Francisco, CA, January 1998.

[5] P. K. Agarwal, M. Sharir, and E. Welzl. The discrete 2-center problem. Dis-
crete & Computational Geometry., 20(3):287–305, 1998.

[6] P. Alfeld. Scattered data interpolation in three or more variables. Mathemat-
ical methods in computer aided geometric design, pages 1–33, 1989.

[7] N. Alon and B. Sudakov. Bipartite subgraphs and the smallest eigenvalue.
Combinatorics, Probability and Computing, 9:1–12, 2000.

[8] L. Alparone, S. Baronti, A. Garzelli, and F. Nencini. A global quality measure-
ment of pan-sharpened multispectral imagery. IEEE Geoscience and Remote
Sensing Letters, 1(4):313–317, October 2004.

[9] E. Alpaydin. Introduction to Machine Learning. MIT Press, October 2004.

[10] I. Amidror. Scattered data interpolation methods for electronic imaging sys-
tems: A survey. Journal of Electronic Imaging, 11(2):157–176, April 2002.

[11] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In Pro-
ceedings of the 33rd ACM Symposium on Theory of Computation (STOC),
pages 247–257, 2001.

[12] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean
k-median and related problems. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, pages 106–113, Dallas, TX, May 1998.

[13] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. Journal of the ACM,
45:891–923, 1998.

[14] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala.
Local search heuristics for k-median and facility location problems. In Pro-
ceedings of the 33rd Annual ACM Symposium on Theory of Computing, pages
21–29, Crete, Greece, 2001.

181

[15] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala.
Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004.

[16] G. H. Ball and D. J. Hall. Some fundamental concepts and synthesis proce-
dures for pattern recognition preprocessors. In International Conference on
Microwaves, Circuit Theory, and Information Theory, pages 281–297, Tokyo,
Japan, September 1964.

[17] G. H. Ball and D. J. Hall. Isodata, a novel method of data analysis and pat-
tern classification. Technical Report AD 699616, Stanford Research Institute,
Menlo Park, CA, 1965.

[18] G. H. Ball and D. J. Hall. Research on isodata techniques. Technical Report
AD 744337, Stanford Research Institute, Menlo Park, CA, 1971.

[19] R. K. Beatson, J. B. Cherrie, and D. L. Ragozin. Curve and Surface Fit-
ting: San Malo 1999, chapter Polyharmonic Splines in Rd: Tools for Fast
Evaluation, pages 47–56. Vanderbilt University Press, Nashville,, 2000.

[20] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18:509–517, 1975.

[21] P. Berkhin. Survey of clustering data mining techniques. Technical report,
Accrue Software, San Jose, CA, 2002.

[22] S. D. Billings, R. K. Beatson, and G. N. Newsam. Interpolation of geo-
physical data using continuous global surfaces. Geophysics, 67(6):1810–1822,
November-December 2002.

[23] P. Bogaert, P. Mahau, and F. Beckers. Cokriging Software: The Spatial Inter-
polation of Agro-Climatic Data, November 1995. http://metart.fao.org/

T I/GBR/Tools/Ecokrig/Man0.htm, January 2005.

[24] L. Bottou and Y. Bengio. Convergence properties of the k-means algorithms.
In G. Tesauro and D. Touretzky, editors, Advances in Neural Information
Processing Systems 7, pages 585–592. MIT Press, 1995.

[25] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility
location and k-median problems. In Proceeding of the 40th Annual Symposium
on Foundations of Computer Science (FOCS), pages 378–388, New York, NY,
USA, October 1999.

[26] P. S. Chavez, S. C. Slides, and J. A. Anderson. Comparison of three differ-
ent methods to merge multiresolution and multispectral data: Landsat TM
and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing,
57(3):295–303, March 1991.

182

[27] A. Cheriyadat and L. M. Bruce. Decision level fusion with best-bases for
hyperspectral classification. In IEEE Workshop on Advances in Techniques
for Analysis of Remotely Sensed Data, a workshop honoring Professor David
Landgrebe, pages 399–406, NASA/GSFC, Greenbelt, MD, USA, October 27-28
2003.

[28] G. Christakos. On the problem of permissible covariance and variogram mod-
els. Water Resources Research, 20(2):251–265, February 1984.

[29] A. A. Cole-Rhodes, K. L. Johnson, J. L. Moigne, and I. Zavorin. Multiresolu-
tion registration of remote sensing imagery by optimization of mutual infor-
mation using a stochastic gradient. IEEE Transactions on Image Processing,
12(12):1495–1511, December 2003.

[30] N. A. C. Cressie. Statistics for Spatial Data. Wiley Series in probability and
mathematical statistics. Applied probability and statistics section. John Wiley
& Sons, Inc, New York, U.S.A, 1993.

[31] S. Dasgupta. Learning mixtures of Gaussians. In Proceeding of the 40th Annual
Symposium on Foundations of Computer Science (FOCS), pages 634–644, New
York, NY, USA, October 1999.

[32] S. Dasgupta and P. M. Long. Performance guarantees for hierarchical cluster-
ing. Journal of Computer and System Sciences, 70(4):555–569, June 2005.

[33] I. Daubechies. 10 Lectures on Wavelets. CMBS-NSF Series Applications
in Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1992.

[34] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Ger-
many, 2nd edition, 2000.

[35] K. A. Delin and S. P. Jackson. Sensor Web for in situ exploration of gaseous
biosignatures. In Proceedings of the IEEE Aerospace Conference, volume 7,
pages 465–472, 2001.

[36] A. P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm (with discussion). Journal of the Royal
Statistical Society, Series B (Methodological), 39:1–38, 1977.

[37] C. V. Deutsch and A. G.Journal. GSLIB Geostatistical Software Library and
User’s Guide, volume second. Oxford University Press, 1998.

[38] I. S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering of high dimen-
sional text data augmented by local search. In Proceedings of the 2002 IEEE
International Conference on Data Mining, pages 131–138, 2002.

183

[39] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text
data using clustering. Machine Learning, 42(1):143–175, January 2001.

[40] T. D. Dixon, E. F. Canga, S. G. Nikolov, T. Troscianko, J. M. Noyes, D. R.
Bull, and C. N. Canagarajah. Quality assessment of false-colored fused dis-
plays. Journal of the Society for Information Display, 14(10):883–894, October
2006.

[41] T. D. Dixon, E. F. Canga, J. M. Noyes, T. Troscianko, S. G. Nikolov, D. R.
Bull, and C. N. Canagarajah. Methods for the assessment of fused images.
Transactions on Applied Perception, 3(3):309–332, July 2006.

[42] P. Drineas, R. Kannan, A. Frieze, S. Vempala, and V. Vinay. Clustering in
large graphs and matrices. In Proceedings of the 10th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 291–299, January 1999.

[43] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tesselations: Ap-
plications and algorithms. SIAM Review, (41):637–676, 1999.

[44] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience, 2nd edition, October 2000.

[45] V. Faber. Clustering and the continuous k-means algorithm. Los Alamos
Science, (22):138–144, November 1994.

[46] G. Farin. Surfaces over dirichlet tessellations. Computer Aided Geometric
Design, 7(1–4):281 – 292, June 1990.

[47] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In
Proc. 20th Annual ACM Symposium on Theory of Computing, pages 434–444,
1988.

[48] W. Feller. An Introduction to Probability Theory and Its Applications. John
Wiley & Sons, New York, NY, 3rd edition, 1968.

[49] E. Forgey. Cluster analysis of multivariate data: Efficiency vs. interpretability
of classification. Biometrics, 21:768, 1965.

[50] D. A. Forsyth and J. Ponce. Computer Vision A Modern Approach. Prentice
Hall, Upper Saddle River, New Jersey,07458, 2003.

[51] G. Frahling and C. Sohler. A fast k-means implementation using coresets. In
Twenty-second Annual Symposium on Computational Geometry, pages 135 –
143, Sedona, Arizona, USA, June 2006.

[52] R. Franke and G. Nielson. Smooth interpolation of large sets of scattered data.
International Journal of Numerical Methods in Engineering, 15(11):1691–
1704, 1980.

184

[53] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical
Software, 3:209–226, 1977.

[54] K. Fukunaga. Introduction to Statistical Pattern Recognition. Morgan Kauf-
man, San Diego, CA, 1990.

[55] R. Furrer, M. G. Genton, and D. Nychka. Covariance tapering for interpolation
of large spatial datasets. Journal of Computational and Graphical Statistics,
15(3):502–523, September 2006.

[56] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[57] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic, Boston, MA, 1992.

[58] P. J. Gibson and C. H. Power. Introductory Remote Sensing: Digital Image
Processing and Applications. Routledge, NY, 2001.

[59] T. Gonzalez. Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science, 38:293–306, 1985.

[60] P. Goovaerts. Geostatistics for Natural Resources Evaluation. Oxford Univer-
sity Press, New York, Oxford, 1997.

[61] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems.
PhD thesis, Yale, NYU, 1987.

[62] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. Journal
of Computational Physics, 73(2):325–348, 1987.

[63] L. Greengard and J. Strain. The fast Gauss transform. SIAM Journal of
Scientific and Statistical Computing,, 12(1):79–94, 1991.

[64] S. Guattery and G. Miller. The quality of spectral separators. SIAM Journal
on Matrix Analysis and Applications, 19(3):701–719, 1998.

[65] N. A. Gumerov and R. Duraiswami. Fast Multipole Methods for the Helmholtz
Equation in Three Dimensions. The Elsevier Electromagnetism Series. Else-
vier Science, March 2005.

[66] D. L. Hall. Mathematical techniques in multisensor data fusion. Norwood:
Artech House Inc, 1992.

[67] D. L. Hall and J. Llinas. Handbook of Multisensor Data Fusion. CRC Press
LLC+, 2001.

[68] S. Har-Peled. Clustering motion. In Proceedings of the 42nd IEEE symposium
on Foundations of Computer Science, page 84, Washington, DC, USA, 2001.

185

[69] S. Har-Peled. Clustering motion. Discrete and Computational Geometry,
31(4):545–565, 2004.

[70] S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means
clustering. In Symposium on Computational Geometry (SoCG), pages 126–
134, 2005.

[71] S. Har-Peled and S. Mazumdar. Coresets for k-means and k-median clustering
and their applications. In Proc. 36th Annual ACM Symposium on Theory of
Computing, pages 291–300, Chicago, IL, 2004.

[72] S. Har-Peled and B. Sadri. How fast is the k-means method? Algorithmica,
41(3):185–202, January 2005.

[73] R. M. Haralick, K. Shanmugan, and I. Dinstein. Textural features for im-
age classification. IEEE Transactions on Systems, Man, and Cybernetics,
3(6):610–621, 1973.

[74] J. K. Hart and K. Martinez. Environmental sensor networks: A revolution in
the earth system science? Earth-Science Reviews, 78:177–191, 2006.

[75] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill
Companies, 1997.

[76] D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of Operations Research, 10(2):180–184, 1985.

[77] D. Hochbaum and D. Shmoys. A unified approach to approximation algo-
rithms for bottleneck problems. Journal of the ACM (JACM), 33(3):533–550,
July 1986.

[78] D. S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, Boston, MA, 1997.

[79] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Press, 1985.

[80] E. H. Isaaks and R. M. Srivastava. An Introduction to Applied Geostatistics.
Oxford University Press, New York, Oxford, 1989.

[81] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, NJ, 1988.

[82] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

[83] K. Jain and V. Vazirani. Primal-dual approximation algorithms for metric
facility location and k-median problems. In IEEE Symposium on Foundations
of Computer Science, pages 2–13, 1999.

186

[84] J. R. Jensen. Introductory Digital Image Processing: A remote sensing per-
spective. Prentice Hall, Englewood Cliffs, NJ, 1996.

[85] A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press
Inc, New York, 1978.

[86] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad, and spec-
tral. In Proceedings of the 41st Annual Symposium on the Foundation of
Computer Science, pages 367–380. IEEE Computer Society, 2000.

[87] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and
A. Y. Wu. An efficient k-means clustering algorithm: Analysis and imple-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24:881–892, 2002.

[88] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and
A. Y. Wu. A local search approximation algorithm for k-means clustering.
Computational Geometry: Theory and Applications, 28:89–112, 2004.

[89] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. John Wiley & Sons, New York, NY, 1990.

[90] Roger L. King and Jianwen Wang. A wavelet based algorithm for pan sharp-
ening Landsat 7 imagery. In International Geoscience and Remote Sensing
Symposium (IGARSS), volume 2, pages 849–851, 2001.

[91] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239,
March 1998.

[92] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag,
New York, NY, 3rd edition, 1989.

[93] S. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for
the Euclidean k-median problem. In J. Nesetril, editor, Proceedings of the
Seventh Annual European Symposium on Algorithms, volume 1643 of Lecture
Notes in Computer Science, pages 362–371. Springer-Verlag, 1999.

[94] R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering.
IEEE Transactions on Fuzzy Systems, 1(2):98–110, May 1993.

[95] M. Krivelevich and B. Sudakov. The largest eigenvalue of sparse random
graphs. Combinatorics, Probability and Computing, 12(1):61–72, 2003.

[96] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ε)-
approximation algorithm for k-means clustering in any dimensions. In Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 454 – 462, October 2004.

187

[97] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares
methods. Mathematics of Computation, 87:141–158, 1981.

[98] D. Levin. The approximation power of moving least-squares. Mathematical
Computing, 67(224):1517–1531, 1998.

[99] Thomas M. Lillesand and Ralph W. Kieffer. Remote Sensing and Image In-
terpretation. John Wiley and Sons, New York, second edition, 1987.

[100] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28:129–137, 1982.

[101] C. F. Van Loan. Introduction to Scientific Computing. Prentice-Hall, Upper
Saddle River, NJ 07458, second edition, 2000.

[102] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–296, Berkeley, CA, 1967.

[103] S. Mallat. Theory for multiresolution signal decomposition. IEEE Pattern
Analysis and Machine Intelligence (PAMI), 11(7):674–693, 1989.

[104] O. L. Mangasarian. Mathematical programming in data mining. Data Mining
and Knowledge Discovery, 1:183–201, 1997.

[105] D. Marcotte. Cokriging with Matlab. Computers and Geosciences, 17(9):1265–
1280, 1991.

[106] J. Matoušek. On approximate geometric k-clustering. Discrete and Compu-
tational Geometry, 24:61–84, 2000.

[107] N. Memarsadeghi, J. L. Moigne, and D. M. Mount. Image fusion using cok-
riging. In IEEE International Geoscience and Remote Sensing Symposium
(IGARSS’06), pages 2518 – 2521, July 2006.

[108] N. Memarsadeghi, J. L. Moigne, D. M. Mount, and J. Morisette. A new
approach to image fusion based on cokriging. In the Eighth International
Conference on Information Fusion, volume 1, pages 622–629, July 2005.

[109] N. Memarsadeghi, D. M. Mount, N. S. Netanyahu, and J. L. Moigne. A fast
implementation of the ISOCLUS algorithm. In IEEE International Geoscience
and Remote Sensing Symposium (IGARSS’03), volume 3, pages 2057–2059,
Toulouse, France, July 2003.

[110] N. Memarsadeghi, D. M. Mount, N. S. Netanyahu, and J. L. Moigne. A fast
implementation of the ISODATA clustering algorithm. International Journal
of Computational Geometry and Applications (IJCGA), 17(1):71–103, 2007.

188

[111] T. H. Meyer. The discontinuous nature of kriging interpolation for digital ter-
rain modeling. Cartography and Geographic Information Science,, 31(4):209–
216, 2004.

[112] T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math,
March 1997.

[113] J. Le Moigne, N. Laporte, and N. S. Netanyahu. Enhancement of tropical
land cover mapping with wavelet-based fusion and unsupervised clustering of
SAR and Landsat image data. In Proceedings of the Eighth SPIE Interna-
tional Symposium on Remote Sensing, volume 4541, pages 190–198, Toulouse,
France, September 2001.

[114] D. M. Mount and S. Arya. ANN: A library for approximate nearest neighbor
searching. http://www.cs.umd.edu/∼mount/ANN/, May 2005.

[115] D. E. Myers. Pseudo-cross variograms, positive-definiteness, and cokriging.
Mathematical Geology, 23(6):805–816, 1991.

[116] E. A. Nadaraya. On estimating regression. Theory of Probability and Its
Applications, 9:141–142, 1964.

[117] E. A. Nadaraya. On non-parametric estimates of density functions and regres-
sion curves. Theory of Probability and Its Applications, 10:186–190, 1965.

[118] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill
Companies, 1996.

[119] R. T. Ng and J. Han. CLARANS: A method for clustering objects for spa-
tial data mining. IEEE Transactions on Knowledge and Data Engineering,
14(5):1003–1016, 2002.

[120] D. P. O’Leary, G. W. Stewart, and J. S. Vandergraft. Estimating the
largest eigenvalue of a positive definite matrix. Mathematics of Computation,
33(148):1289–1292, October 1979.

[121] J. M. Ortega. Numerical Analysis, A Second Course. Computer Science and
Applied Mathematics. Academic Press, Inc, 111 Fifth Avenue, New York, NY,
10003, 1972.

[122] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal on Numerical Analysis, 12(4):617–629, September
1975.

[123] E. Pardo-Igzquiza, M. Chica-Olmo, and P. Atkinson. Downscaling cokriging
for image sharpening. Remote Sensing of Environment, 102(1–2):86–98, 2006.

[124] PCI Geomatics Corp. ISOCLUS–Isodata clustering program. http://www.

pcigeomatics.com/cgi-bin/pcihlp/ISOCLUS, January 2005.

189

[125] V. Petrovic and C. Xydeas. Objective image fusion performance measure.
IEEE Electronics Letters, 36(4):308–309, February 2000.

[126] G. Piella. New quality measure for image fusion. In 7th International Confer-
ence on Information Fusion, pages 542–546, 2004.

[127] G. Piella and H. Heijmans. A new quality metric for image fusion. In Inter-
national Conference on Image Processing (ICIP), volume 3, pages 173–176,
September 2003.

[128] L. Pitt and R. E. Reinke. Criteria for polynomial-time (conceptual) clustering.
Machine Learning, 2(4):371–396, April 1988.

[129] C. Pohl and J. L. van Genderen. Multisensor image fusion in remote sens-
ing: concepts, methods, and applications. International Journal of Remote
Sensing, 19(5):823–854, 1998.

[130] D. Pollard. A centeral limit theorem for k-means clustering. Annals of Prob-
ability, 10:919–926, 1982.

[131] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C++, The Art of Scientific Computing. Cambridge University
Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 2nd edition, 2002.

[132] G. H. Qu, D. L. Zhang, and P. F. Yan. Medical image fusion by wavelet trans-
form modulus maxima. Journal of the Optical Society of America, 9(4):184–
190, 2001.

[133] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[134] V. C. Raykar. Scalable Machine Learning for Massive Datasets: Fast Sum-
mation Algorithms. PhD thesis, University of Maryland, College Park, MD,
20742, March 2007.

[135] V. C. Raykar and R. Duraiswami. Large Scale Kernel Machines, chapter The
Improved Fast Gauss Transform with applications to machine learning. MIT
Press, 2007.

[136] V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast computation
of sums of Gaussians in high dimensions. Technical report, Department of
Computer Science, University of Maryland, College Park, MD, 20742, 2005.
CS-TR-4767,.

[137] N. Remy. GsTL: The Geostatistical Template Library in C++. Master’s
thesis, Department of Petroleum Engineering of Stanford University, March
2001.

190

[138] N. Remy. The Stanford Geostatistical Modeling Software (S-GeMS). SCRC
Lab, Stanford University, May 2004. http://sgems.sourceforge.net.

[139] R. J. Renka. Algorithm 660: QSHEP2D: Quadratic shepard method for bi-
variate interpolation of scattered data. ACM Transactions on Mathematical
Software (TOMS), 14(2):149–150, June 1988.

[140] R. J. Renka. Multivariate interpolation of large sets of scattered data. ACM
Transactions on Mathematical Software (TOMS), 14(2):139–148, June 1988.

[141] R. J. Renka. Algorithm 790: CSHEP2D: cubic shepard method for bivariate
interpolation of scattered data. ACM Transactions on Mathematical Software.,
25(1):70–73, 1999.

[142] J. Richards. Information and understanding: Analysis of remotely sensed
data. In IEEE Workshop on Advances in Techniques for Analysis of Remotely
Sensed Data, a workshop honoring Professor David Landgrebe, NASA/GSFC,
Greenbelt, MD, USA, October 27–28 2003.

[143] J. A. Richards and X. Jia. Remote Sensing Digital Image Analysis. Springer,
Berlin, 1999.

[144] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[145] F. Jr. Sabins. Remote Sensing Principles and Interpretation. W.H. Freeman
and Company, San Francisco, 1978.

[146] J. Schnase, T. Stohlgren, and J. A. Smith. The National Invasive Species
Forecasting System: A strategic NASA/USGS partnership to manage biolog-
ical invasions. NASA Earth Science Enterprise Applications Division Special
Issue. Earth Observing Magazine, pages 46–49, August 2002.

[147] S. Z. Selim and M. A. Ismail. K-means-type algorithms: A generalized con-
vergence theorem and characterization of local optimality. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6:81–87, 1984.

[148] M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete
Computational Geometry, 18:125–134, 1997.

[149] D. Shepard. A two-dimensional interpolation function for irreqularly-spaced
data. In the 1968 23rd ACM national conference, pages 517–524. ACM Press
New York, NY, USA, 1968.

[150] J. R. Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. CMU-CS-94-125, School of Computer Science, Carnegie
Mellon University, 1994.

[151] J. A. Shine and Krause. Exploration and estimation of North American cli-
matological data. In 32nd Symposium on the Interface: Computing Science
and Statistics, April 5-8 2000.

191

[152] R. Sibson. Interpreting Multivariate Data, chapter A brief description of nat-
ural neighbour interpolation, pages 21–36. John Wiley & Sons, New York,
1981.

[153] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and
applications to scientific computing. SIAM Journal of Scientific Computing,
25(2):454–457, 2004.

[154] D. A. Spielman and S. Teng. Spectral partitioning works: Planar graphs
and finite element meshes. In IEEE Symposium on Foundations of Computer
Science, pages 96–105, 1996.

[155] M. L. Stein. The screening effect in kriging. Annals of Statistics, 1(30):298–
323, 2002.

[156] J. T. Tou and R. C. Gonzalez. Pattern Recognition Principles. Addison-
Welsley, London, 1974.

[157] V. Vijayaraj, C. G. O’Hara, and N. H. Younan. Quality analysis of pansharp-
ened images. In International Geoscience and Remote Sensing Symposium
(IGARSS), volume 1, pages 85–84. IEEE, September 2004.

[158] Z. Wang and A. C. Bovik. A universal image quality index. IEEE Signal
Processing Letters, 9(3):81–84, March 2002.

[159] E. W. Weisstein. Interpolation. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Interpolation.htm.

[160] R. Welch and W. Ahlers. Merging multiresolution SPOT HRV and Landsat
TM data. Photogrammetric Engineering & Remote Sensing, 53(3):301–303,
1987.

[161] R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, May 2005.

[162] C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the
improved fast Gauss transform. In L. K. Saul, Y. Weiss, and Lon Bottou,
editors, Advances in Neural Information Processing Systems, volume 17, pages
1561–1568. MIT Press, 2005.

[163] A. Zandifar, S. Lim, R. Duraiswami, N. Gumerov, and L. S. Davis. Multi-level
fast multipole method for thin plate spline evaluation. In IEEE International
Conference on Image Processing (ICIP), pages 1683–1686, 2004.

[164] Y. Zhang. Understanding image fusion. Photogrammetric Engineering and
Remote Sensing, pages 657–661, June 2004.

[165] Y. Zhao and G. Karypis. Functional Genomics: Methods in Molecular Biology,
chapter Clustering in Life Sciences. Humana Press, 2003.

192

[166] Y. Zhao and G. Karypis. Hierarchical clustering algorithms for document
datasets. Data Mining and Knowledge Discovery, 10(2):141–168, March 2005.

[167] J. Zhou, D. L. Civco, and J. A. Silander. A wavelet transform method to
merge Landsat TM and SPOT panchromatic data. International Journal of
Remote Sensing, 19(4):743–757, 1998.

193

