
ABSTRACT

Over the past few decades, embedded systems have been widely infiltrated into

our daily lives. Prominent examples are cellular phones, personal digital assistants,

digital television set-top boxes, web-pads, and mp3 players. New kinds of embedded

devices are being introduced continually for various purposes.

Embedded systems have different combinations and prioritizations of objectives

and constraints for their proper design. With the increasing complexity in application

functionality, implementation constraints, and optimization objectives, more effective

techniques for modeling embedded applications, and for systematically synthesizing

implementations become more and more desirable on one hand, and more and more

challenging on the other.

In this thesis, we focus on the efficient design, implementation, and synthesis of

signal processing applications, which form a broad and important class of embedded

Title of Document: SYSTEM SYNTHESIS FOR IMAGE PROCESSING
APPLICATIONS

Dong-Ik Ko, Doctor of Philosophy, 2006

Directed By: Professor Shuvra S.Bhattacharyya
Department of Electrical and Computer Engineering

systems. We place special emphasis in the thesis on the signal processing domain on

image processing, a sector that has seen rapidly increasing demand in recent years, but

for which present techniques for signal processing design are often lacking in model-

ing and optimization capability.

In this thesis, we propose novel models and algorithms for streamlining schedul-

ing, memory management, and interprocessor communication in embedded multipro-

cessor implementations of signal processing applications, with the aforementioned

emphasis on the image processing domain.

For application modeling, we propose two novel modeling techniques called

blocked dataflow (BLDF) and dynamic graph topology (DGT). These modeling

approaches capture within their respective formal frameworks the structure of block-

based image processing operations and reconfigurable, multi-mode dataflow behav-

iors, respectively.

For scheduling, we develop a novel intermediate representation called the pipeline

decomposition tree (PDT). The PDT provides efficient representation and analysis of

alternative multiprocessing configurations for signal processing applications. We also

develop an algorithm, called pipeline decomposition tree scheduling (PDT schedul-

ing), which applies the PDT to systematically derive optimized multiprocessor sched-

ules that employ coarse-grained (task-level) pipelining, which is an especially useful

form of parallelism for signal processing. To optimize interprocessor communication,

we develop two novel post-optimization techniques for hardware resource mapping

and software synthesis.

The suite of techniques presented in this thesis address image processing system

optimization at key phases in the design process and lead to significant improvements

in performance, cost, and predictability of implementations that are derived from

them.

By

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

SYSTEM SYNTHESIS FOR IMAGE PROCESSING APPLICATIONS

Dong-Ik Ko

Professor Shuvra S. Bhattacharyya, Chairman/Advisor
Professor Rama Chellappa
Professor Gang Qu
Professor Manoj Franklin
Professor Chau-Wen Tseng

© Copyright by

Dong-Ik Ko

2006

Dedication

To my parents, and to Gye-sun, Yu-jin, and Yu-min
ii

Acknowledgements

Thank the Lord! He led me to the completion of this thesis.

It was a wonderful blessing to study under Prof. Shuvra Bhattacharyya.

His encouragement and kindness has kept me focusing on my research with great

passion.

I also thank my friends, Ming-Yung, Vida, Mainak, Chung-Ching, Sankalita, Jerry,

Sebastian, Ivan, Celine, Lin, Sadagopan and many other friends!

I also thank brothers and sisters in my church for their prayers and loves.

My lovely wife; Gye-Sun and two daughters; Yu-Jin and Yu-Min! I am sorry for not

having so much time with you.

Praise the Lord !!!
iii

Table of Contents

Dedication... ii

Acknowledgements.. iii

Table of Contents... iv

List of Tables .. vii

List of Figures .. viii

Chapter 1 : Introduction ...1

1.1 Background...2

1.1.1 Modeling.. 2

1.1.2 Scheduling[94,95,96,97] ... 10

1.1.3 Communication optimization... 15

1.2 Overview of the suggested techniques ...16

1.2.1 Modeling.. 16

1.2.2 Scheduling.. 22

1.2.3 Communication cost... 26

1.3 Contributions of this thesis...29

1.3.1 Modeling.. 29

1.3.2 Scheduling.. 34

1.3.3 Communication optimization... 36

1.4 Outline of thesis..37

Chapter 2 : Modeling of DSP applications ..39

2.1 Introduction ..39

2.2 Blocked Dataflow Graph (BLDF) ..39

2.2.1 Abstract ... 39

2.2.2 Related work... 40
iv

2.2.3 Blocked dataflow... 42

2.2.4 Application example .. 46

2.2.5 Experiments.. 50

2.2.6 Conclusions of BLDF... 58

2.3 Dynamically configured graph topology (DGT)......................................59

2.3.1 Abstract ... 59

2.3.2 Related Work .. 60

2.3.3 Dynamic Graph Topology ... 62

2.3.4 Experimental results... 70

2.3.5 Conclusions of DGT .. 75

Chapter 3 : Scheduling of DSP applications onto multiprocessors77

3.1 Introduction ..77

3.2 Pipeline Decomposition Tree scheduling...78

3.2.1 Abstract ... 78

3.2.2 Introduction .. 78

3.2.3 PDT(Pipeline Decomposition Tree) based scheduling................ 82

3.2.4 Scheduling.. 94

3.2.5 Application examples ... 126

3.2.6 Experimental results... 129

3.2.7 Conclusion ... 134

Chapter 4 : Communication optimization of
DSP applications implementation ..137

4.1 Introduction ..137

4.2 Modeling and optimization of buffering trade-off138

4.2.1 Abstract ... 138
v

4.2.2 Related Work .. 139

4.2.3 FIFO hardware mapping for dataflow graphs 140

4.2.4 Experimental results... 150

4.2.5 Conclusions and future work ... 152

4.3 Energy-driven partitioning of signal processing algorithms
in sensor networks ..153

4.3.1 Abstract ... 153

4.3.2 Introduction and Related work ... 154

4.3.3 Energy consumption optimization by distribution
of an application.. 156

4.3.4 Experimental results... 165

4.3.5 Summary.. 168

Chapter 5 : Conclusion and Future work ...170

5.1 Modeling...171

5.1.1 Blocked DataFlow (BLDF) ... 171

5.1.2 Dynamically configured graph topology 171

5.1.3 Future work .. 172

5.2 Scheduling ..176

5.2.1 Future work .. 177

5.3 Communication optimization ...179

5.3.1 Hardware communication optimization 179

5.3.2 Software communication optimization 179

5.3.3 Future work .. 180
vi

vii

List of Tables

Table 1. Comparison of three methods in “Buffer memory”
and “Token delivery”.. 58

Table 2. Memory usage comparison(MPEG2 encoder)....................................... 73

Table 3. Memory usage comparison (Multi resolution Spline Pyramid) 74

Table 4. Memory usage comparison (Laplacian Pyramid) 74

Table 5. Memory usage comparison (Pyramid Complex) 75

Table 6. Memory usage comparison (Image Complex) 75

Table 7. Memory usage comparison .. 76

Table 8. An example of comparison of buffer memory usages depending on task
duplication and a memory architecture both under general data parallelism
and under heterogeneous data parallelism. .. 95

Table 9. Function description of each block of figure 44 128

Table 10. Function description of each block of figure 45 129

Table 11. Comparison of FIFO mapping results. ... 148

Table 12. Latency comparison for different values of order. 168

Table 13. A comparison of runtime manipulation methods
of multiple dataflow graphs.. 174

List of Figures

Figure 1. Example of SDF graph ... 4

Figure 2. Comparison of a down-sampler actor by factor
4 each under SDF and under CSDF .. 5

Figure 3. Comparison of FIFO queues under SDF and MDSDF model................ 7

Figure 4. Control flow decision under BDF .. 8

Figure 5. Example of PSDF model .. 10

Figure 6. Fully static schedule ... 13

Figure 7. PSDF and BLDF. .. 44

Figure 8. BLDF and SDF: param(): parameterization; Φs: subinit graph,
Φb: body graph; “a”, “b”: tokens being delivered. 46

Figure 9. Data tokens with nested headers... 47

Figure 10. FSM and SDF Combination ... 52

Figure 11. Blocked data delivery in BLDF.. 55

Figure 12. MPEG2 Encoder under BLDF ... 56

Figure 13. DGT (Dynamic Graph Topology)... 63

Figure 14. An example of a graph under DGT... 64

Figure 15. DGT graph under SDF.. 66

Figure 16. Part of an MPEG2 video encoder ... 68

Figure 17. Operational semantics of DGT operating with any type of dataflow
model... 71

Figure 18. An “on-chip” memory and an internal cache of DSP chip................. 84

Figure 19. Comparison of a shared external memory architecture and a separate
external memory architecture.. 84

Figure 20. Heterogeneous data parallelism.. 87

Figure 21. Task duplication under general data parallelism and under heteroge-
viii

neous data parallelism... 89

Figure 22. Examples of tasks, clusters, clustering and window 94

Figure 23. FindSchedule() algorithm ... 96

Figure 24. Relationship between Latency, Throughput and Number of stages ... 99

Figure 25. CPAP algorithm .. 101

Figure 26. PDT() algorithm ... 102

Figure 27. A variation of the size of partitions depending on the cutflag.......... 104

Figure 28. An example of usage of CPAP in PDT.. 105

Figure 29. Effect of THDs and TNHDs in scheduling....................................... 107

Figure 30. Effect of executeTime(Tasks in the longest critical path) and exe-
cuteTime(Other tasks not included in the longest critical path) in sched-
uling .. 108

Figure 31. PDT(Pipeline Decomposition Tree) and division by basic division crite-
rion .. 109

Figure 32. Examples with a large difference in executeTime(Partition)s between
two sub partitions ...110

Figure 33. Handling of the case of one task dominating most of excuteTime (Parti-
tion) ..112

Figure 34. An example of making up pipelines with different trade-offs between
latency and throughput from PDT ...113

Figure 35. An example of a schedule by HDEST...116

Figure 37. Priority setting of tasks in RL (Ready List) based on a critical path of
succeeding tasks. ..117

Figure 36. HDEST algorithm..118

Figure 38. Example of consideration communication cost of HDEST in schedul-
ing.. 120

Figure 39. An example of how THDs reduce the execution time of a given stage .
121

Figure 40. Relationship among execution time of partition, p, the number of pro-
cessors, p and processor utilization, PU.. 123
ix

Figure 41. Examples of verification of Pgiven .. 123

Figure 42. Usage of on-chip and external memory.. 125

Figure 43. Adaptation of PDT scheduling algorithm with varying parameters to an
iterative search approach... 126

Figure 44. A graph of a complex module of morphological operations 127

Figure 45. Laplacian Pyramid as an application example. 127

Figure 46. Multi resolution Spine as an application example............................ 128

Figure 47. MPEG2 Encoder... 130

Figure 48. Latency and throughput comparison (Multi-Spline) 131

Figure 49. Latency and throughput comparison (Laplacian) 132

Figure 50. Latency and throughput comparison (Image Complex) 133

Figure 51. Latency and throughput comparison(MPEG2 Encoder) 133

Figure 53. Latency vs Throughput trade-off (Multi-resolution Spline, P=16,
Unconstrained, Shared memory)... 134

Figure 52. EST vs PDT comparison .. 135

Figure 54. Comparison of FIFO architectures ... 142

Figure 55. Effect of sub-frame division on latency and throughput. 143

Figure 56. Effect of data dependency on performance. 146

Figure 57. Comparison of FIFO mapping.. 148

Figure 58. FIFO mapping algorithm-PartA. .. 150

Figure 59. FIFO mapping algorithm-PartB.. 151

Figure 60. Complex, composite morphological image processing application
(TopHat, Gradient and Smoothing)... 152

Figure 61. An illustration of partitioning (cutting line) trade-offs..................... 159

Figure 62. Application mapping over sensor nodes... 165

Figure 63. MSP430-based sensor node platforms ... 166
x

Figure 64. Current consumption comparison of three application mappings. ... 168

Figure 65. Energy consumption comparison for different order values. 168

Figure 66. An example of simultaneous running of multiple dataflow graphs.. 174

Figure 67. Delayed context switch model of dataflow graphs........................... 174

Figure 68. Relationship between memory usage of graphs and the graph context
switch .. 176

Figure 69. Hierarchical bus architecture synthesis based on data dependency of
actors within a graph ... 178
xi

Chapter 1 : Introduction

As the complexity of functionality in modern embedded systems increases along

with the rising demand for multimedia processing capabilities, embedded systems are

increasingly incorporating image processing capabilities in various forms. Many

image processing applications impose critical performance constraints, require high

volumes of data processing, and also require tight resource usage due to cost consid-

erations. System design factors such minimizing the amount of on-chip memory

needed and the efficient configuration and utilization of digital signal processor cores

become especially important and challenging under these considerations.

The decision on an appropriate system architecture is difficult due to conflicting

requirements, such as the need for a cost- and power-efficient integrated circuit foot-

print, and the simultaneous need for extensive data management, high throughput, and

low latency. As technology advances for integrating multiple cores on a single inte-

grated circuit, embedded multiprocessor platforms become attractive for addressing

these challenges of image processing system implementation.

For such embedded multiprocessor platforms, image processing tasks must be

scheduled effectively onto the available processors in a manner that effectively

exploits the various forms of available parallelism, and the memory architecture must

be organized and utilized to support high volume data buffering and efficient interpro-

cessor communication. Useful to both of these steps is the application of appropriate

design representations based on image-processing-oriented models of computation.

Such representations expose high level application structure that designer and design
1

tools can use to explore the design space more efficiently, and derive more optimized

and more predictable implementations.

This thesis addresses key problems in the design and implementation of multipro-

cessor image processing systems. In this thesis, we divide the embedded multiproces-

sor implementation process into the three inter-related phases of application modeling,

task scheduling, and communication optimization, and we provide a comprehensive,

integrated approach to these phases.

In the remainder of this chapter, we provide an overview of relevant background

concepts and technology considerations, along with brief, motivational overviews of

the methods that are developed in the thesis.

1.1 Background

1.1.1 Modeling

Modeling semantics based on dataflow graphs are used widely in design tools for

digital signal processing (DSP). Dataflow is a directed graph called dataflow graph

where vertices within the graph called actors represent computation and edges corre-

spond to buffers between actors. These buffers hold data tokens which are delivered

from the output port of one actor to the input port of another. An actor is ready for exe-

cution when all input ports of the actor have at least the minimum number of data

tokens each input port requires for activation in the associated buffers. An actor con-

sumes a certain number of tokens from its input ports and produces a certain number

of tokens to its output ports when it is fired (executed).
2

Various kinds of dataflow models have been introduced for diverse purposes.

Each dataflow model has different features and advantages in terms of expressivity

and static (compile time) predictability of models. A common goal is to increase the

flexibility of modeling an application in terms of expressivity while taking advantage

of compile time predictability to reduce runtime overhead. Compile-time obtained

information may include the estimation of a runtime memory usage and verification of

valid schedule which guarantees the total number of data tokens produced within a

dataflow graph is same as the total consumed number of data tokens within the same

graph in one iteration.

1.1.1.1 Synchronous DataFlow (SDF)

Lee and Messerschmitt[63] have proposed the synchronous dataflow (SDF)

model. SDF assumes that the number of tokens produced/consumed by each actor

within a dataflow model is known at compile time. SDF enables us to predict bounded

memory usage including code and data size statically and generate valid schedules at

compile time. An optimal static schedule depends on the size of code and the size of

data. Various valid schedules can be obtained based on the number of data tokens pro-

duced/consumed and the repetition vector. The repetition vector represents the number

of firings of each actor. The repetition vector can be obtained through matrix computa-

tion with data tokens produced/consumed by each actor. Figure 1 shows an example of

SDF graph. represents the edge between actor A and actor B. is the edge

between actor A and actor B. A topology matrix of Eq 1 for a connected SDF graph

can be built based on the number of tokens produced/consumed between actors within

a SDF graph. The positive sign is set for the number of tokens produced and a minus

e0 e1
3

sign is set for the number of tokens consumed. A balance equation is built with a

topology matrix as shown Eq2. In a balance equation matrix Eq3 of figure 1, columns

of a topology matrix correspond to actors. Rows of a topology matrix correspond to

edges. Finally, repetition vector in eq 4 is obtained by solving eq3.

(1)

(2)

(3)

(4)
Figure 1 b) shows that figure 1 a) could have various valid schedules. For exam-

ple, in figure 1 b) represents a single appearance schedule where each actor

appears only once in a schedule by exploiting looped schedule. SAS is good for reduc-

ing a code size. in figure 1 b) is a multiple appearance schedule where each actor

could appear multiple times to reduce buffer size between actors. For example,

schedule requires 6 tokens between actor A and actor B. schedule

 requires only 4 tokens between actor A and actor B. Thus, is likely

to be a better choice due to the advantage of further buffer size reduction at the

expense of some code size increase when a buffer size dominates a total memory area

q

A B C23 1 1
e0 e1AA BB CC23 1 1
e0 e1

Figure 1. Example of SDF graph

a) SDF graph

SAS : 2A3B3C, 2A3(BC)
MAS : ABABBCCC, ABABCCBC, ABCABCBC

b) valid schedules of a)

T e, v()
 prd(e) if v = src(e)

 -cns(e) if v = src(e)

 0 otherwise

=

T q• 0=

3 2– 0, ,
0 1 1–, ,

q1

q2

q3

•
0

0
=

q 2 3 3, ,[]=

SAS

MAS

SAS

2A3B3C MAS

ABABBCCC MAS
4

used. Despite the benefits of a static scheduling and a memory manage of SDF, as the

need for the flexible expressivity for dataflow graphs increases, many other dataflow

models are introduced.

1.1.1.2 Cyclo-Static DataFlow (CSDF)

As an extension of SDF. Cyclo-Static DataFlow (CSDF)[25] allows for modeling

a dataflow graph whose actors can support a cyclic change of the number of data pro-

duced/consumed. Thus, over each iteration of a dataflow graph, actors under CSDF

semantics can have different production and consumption rates in a cyclic and periodic

pattern. Cyclo-Static DataFlow is more flexible than SDF in terms of the expressivity

while maintaining a static predictability of a bounded buffer memory of SDF. For

example[77], for the case of down-sampler actor by factor 4, in SDF semantics, the

actor should wait for firing until the input port of the down-sampler actor holds at least

4 tokens. In CSDF semantics, the behavior of the down-sampler can be described in

four different phases. The actor takes one token at the input port and produces one

token through its output port for the first phase. And then the actor can take one token

from its input port and produces zero token to the output port for the following three

phases. Figure 2 shows the comparison of modeling of a down-sampler actor each

under SDF and under CSDF semantic.

CSDF, as a generalization of SDF, increases the expressivity of dataflow model

DS4 1DS4 1

a) Under SDF b) Under CSDF

Figure 2. Comparison of a down-sampler actor by factor
4 each under SDF and under CSDF

DS:Down sampler actor

DS[1,1,1,1] [1,0,0,0]DS[1,1,1,1] [1,0,0,0]
5

but inevitably causes the complicated scheduling problem. As well, operational pat-

terns of actors of dataflow under CSDF semantic are confined to be periodic. How-

ever, many image processing applications have the feature of unpredictable changes of

the number of tokens produced/consumed in a non periodic manner. CSDF has the

limitation to fully adopt the diverse needs of various complicated image processing

applications.

1.1.1.3 MultiDimensional Synchronous DataFlow (MDSDF)

SDF and other dataflow models takes only one-dimensional signal processing

channel FIFO buffers and the associated one dimensional algorithms. As the demand

for the multi-dimensional data processing increases, the efficient way of modeling two

dimensional or higher dimensional data is necessary. As a generalized extension of

SDF, multidimensional synchronous dataflow (MDSDF) is introduced. MDSDF

extended the one dimensional FIFO queues used in SDF to array types of FIFO

queues. Figure 3[70] shows the comparison of FIFO queues between a SDF model and

a MDSDF model. In MDSDF, FIFO queue holds two dimensional data tokens. A bal-

ance equation for figure 3 a) is shown Eq 5. A balance equation of figure 3 b) under

MDSDF can be extended to two balance equations for each dimension as shown in Eq

6. represents repetition vector. is the number of tokens produced. is the number

of tokens consumed.

(5)

(6)

r O I

rA OA⋅ rB IB⋅=

rA 1, OA 1,⋅ rB 1, IB 1,
rA 2, OA 2,⋅ rB 2, IB 2,⋅=

⋅=
6

MDSDF increases flexibility and expressivity while maintaining static schedula-

bility of SDF model. However, as the data dimension and the complexity of an appli-

cation graph under MDSDF increase, there is a high chance that unexpected errors can

be smeared in the modeling process by a designer due to its dimensional complexity.

As well, multidimensional distinction of data tokens leads to complicated scheduling

problems even though MDSDF preserves data parallelism and functional parallelism

through dimensional distinction of data tokens.

1.1.1.4 Boolean DataFlow (BDF)

Boolean dataflow (BDF) model by Buck[18] allows for each port to hold either a

constant or a two-valued function for controlling a dataflow. This function is placed on

a control port of an actor. A control token delivered through a control port of an actor

controls the number of tokens transferred by a conditional data port. BDF extends the

scheduling method for SDF graphs to process BDF actors with conditional ports, by

associating symbolic expressions with conditional ports. By adding two simple control

actors with a control port such as switch and select, conditional constructs like if-then-

AA
(OA,1, OA,2) BB

(IB,1, IB,2)AA
(OA,1, OA,2) BB

(IB,1, IB,2)

AA
OA BB

IBAA
OA BB

IB

a) FIFO queue under SDF

b) FIFO queue under MDSDF

Figure 3. Comparison of FIFO queues under
SDF and MDSDF model
7

else and do-while loops can be built under BDF.

Figure 4 shows how the switch actor and the selector actor under BDF semantic

determine the number of tokens for an output port and an input port depending on a

control token. In figure 4, the switch actor and the selector actor are BDF actors that

take one token from the control input port and determine either a route or

route depending on whether the value of the control token on in figure 4 is true

or false.

A conditionally transferred data token allows for the runtime flow of a control to

be determined based on the values of tokens on control ports. At compile-time, a

scheduler analyzes the change of control flows based on values of control tokens. This

enables us to build an annotated schedule which is a compile-time schedule where

each firing of a BDF actor is linked with the runtime firing conditions.

BDF allows runtime change of a data flow while exploiting the benefit of compile

time scheduling technique. However, BDF leads to the addition of redundant ports and

paths for control token delivery. The change of token values of a BDF actor is limited

to two cases. Building various conditional paths with multiple token values leads to a

complicated graph topology with many switches and selectors.

1.1.1.5 Parameterized Synchronous DataFlow (PSDF)

A parameterized dataflow modeling emphasizes a hierarchical modeling of a

dataflow and relates the underlying hierarchical dataflow to a subsystem. A parameter-

Figure 4. Control flow decision under BDF

T r u e
F a ls e

TT
FF

TT
FF

in p u t o u tp u t

e n a b le

s w itc h s e le c to r
T r u e
F a ls e

TT
FF

TT
FF

in p u t o u tp u t

e n a b le

s w itc h s e le c to r

True False

enable
8

ized dataflow modeling framework allows a subsystem’s behavior to be controlled by

a set of parameters. These parameters can change at runtime by allowing the sub-

system behavior to vary dynamically. Parameters can control the functional behaviors

of subsystems as well as the token flow behavior of a dataflow graph. In parameterized

dataflow model, the model can have different parameter configurations at each itera-

tion of a graph. But, after parameters are configured, parameters are held during the

corresponding iteration of a graph. Parameterized dataflow modeling is a meta-model-

ing technique which allows schedules of a graph to be expressed with meta variables

of parameters enabling the use of quasi-static scheduling.

In quasi-static scheduling, the number of firings of actors could be annotated with

meta-variable coefficients related to the values of parameters and those meta variable

coefficients could be determined at runtime whereas firing orders of actors are deter-

mined at compile time. Thus, parameterized models allows dynamic reconfiguration

of parameters.

Parameterized dataflow could be applied to any types of underlying dataflow

graphs. As an extension of SDF semantic with parameterization, a parameterized syn-

chronous dataflow (PSDF) is suggested.

PSDF adopts a hierarchical modeling of parametrization. A hierarchy represents

an abstraction of subsystem. Parameters are used to control the functional behavior of

hierarchical subsystems. PSDF specification consists of three distinct graphs: the init

graph, the subinit graph and the body graph. Intuitively, the body graph models the

main functional behavior of the subsystem, whereas the init and subinit graphs control

the behavior of the body graph by appropriately configuring the body graph parame-
9

ters. The init graph is invoked prior to each invocation of the associated (hierarchical)

parent subsystem while the subinit graph is invoked prior to each invocation of the

associated body subsystem, thus allowing for two distinct reconfiguration of controls.

Figure 5 shows an example of PSDF graph. Parent has three sub graphs. Subinit

graph sets parameters of the body graph before the associated body graph is fired.

PSDF increases the expressivity by adopting parameterized modeling, and exploits a

quasi-static schedule. PSDF model allows runtime reconfiguration of a dataflow

model.

1.1.2 Scheduling[94,95,96,97]

Mapping an application graph onto a multiprocessor architecture needs three

major steps; processor assignment, actor ordering and actor invocation. The pro-

cess assignment step corresponds to assignment of actors to processors. The actor

ordering step is ordering the execution of tasks assigned to the same processor. The

actor invocation step determines the time at which each actor starts execution. Actors

are assumed to be non-preemptive. Once an actor is invoked on a processor, the pro-

Φ

s u b s y s t e m

p a r e n t g r a p h

s u b i n i t i n i t

b o d y

p a r a m e t e r m , n . . .

s e t m

Φ

n

s e t n

m

s u b s y s t e m

p a r e n t g r a p h

s u b i n i t i n i t

b o d y

p a r a m e t e r m , n . . .

s e t m

Φ

n

s e t n

m

Figure 5. Example of PSDF model
10

cessor is allocated to the actor until the invocation completes. This is because preemp-

tion leads to a significant runtime context switch overhead and is of limited use in

time-critical DSP embedded applications. These three steps can be performed at runt-

ime (dynamic) or at compile time (static) depending on scheduling strategies.

Lee and Ha [64] suggested a scheduling taxonomy depending on scheduling strat-

egies from a fully dynamic approach to a fully static approach. Performing as many of

the three scheduling tasks as possible at compile reduces run time overhead specially

for the applications with hard real-time constraints. Performing processor assignment

and actor ordering at compile time is useful for a time-critical DSP applications. In

general, runtime assignment and ordering allows a more flexible run time variations in

terms of managing available hardware resources.

Depending on scheduling strategies, scheduling methods can be divided into four

categories; fully static, self-timed, static assignment and fully dynamic scheduling.

In scheduling an application over multiprocessors, homogeneous SDF graph

(HSDFG) is useful. In HSDF, every actor consumes and produces only one token from

each of its inputs and outputs. A multirate SDF graph can be converted into an HSDF

graph [61]. This conversion may lead to significantly increased number of actors in

HSDF graph. However, this conversion process simplifies scheduling an application

modeled by dataflow graph over multiprocessors. For algorithmic simplicity, HSDF

graph can be converted into Acyclic Precedence Graph (APG) by removing edges

with delays and replacing multiple edges between the same two actors in the same

direction with a single edge. APG removes multiple edges leading to the identical pre-

cedence.
11

As a performance evaluation metric of schedules, the average iteration period (or

makespan) is widely used. The average iteration period (or makespan) is time taken to

execute all the actors in the graph once.

1.1.2.1 Fully static schedule.

In a fully-static strategy, assignment, ordering, and invocation are all performed at

compile-time. The exact firing time of each actor is also determined at compile time.

This technique is applied to scheduling VLIW processors [59] and synthesizing VLSI

systems with guaranteed worst-case execution times[57].

Fully-static schedule can be expressed as a Gantt chart. In a Gantt chart the pro-

cessors are arranged along the vertical axis. Elapsed times are marked along the hori-

zontal axis. The actors are displayed as rectangles whose horizontal lengths

correspond to the execution time of the actor. The left side of each rectangle in the

Gantt chart corresponds to a starting time of the associated actor. Scheduling can be

displayed by filling a Gantt chart with actors based on scheduling technique while

minimizing the total schedule length and idle time slots.

Fully static schedules can be divided into two categories (blocked schedule and

overlapped schedule) depending on the way of placing successive iterations of the

HSDFG onto a Gantt chart.

1.1.2.1.1 Blocked schedule

In a blocked schedule, each iteration of the HSDFG is scheduled separately. Namely,

executions of all actors in the previous iteration complete before the next iteration

begins. Thus, dependencies between iterations are not considered. The schedule is
12

assumed to be repeated in a infinite periodic manner. Under a blocked schedule, the

length of the critical path of the graph becomes a makespan.

1.1.2.1.2 Overlapped schedule

In an overlapped schedule, operations within a successive iteration of a graph can be

overlapped with a previous iteration. To exploit an overlapped schedule, unfolding and

retiming techniques are widely used. Unfolding schedules N iterations together where

N is a blocking factor to improve a blocked schedule. However, unfolding leads to the

increase of program size and complexity. Retiming manipulates delays in the HSDF

graph to reduce the critical path in the graph[32,61].

Figure 6 [94] shows an example of a fully static schedule. Figure 6 c) shows a

blocked schedule. Each iteration finish before the next one starts.

Figure 6 d) displays an overlapped schedule. Successive iterations in the HSDFG

overlap. An overlapped schedule improves a makespan of a HSDF graph. The

a) HSDF graph b) acyclic precedence graph

CC AA

DD BB

P1P1

P2P2

CC AA

DD BB

P1P1

P2P2

CC AA

DD BB

CC AA

DD BB

P1P1

P2P2

CC AA

DD BB

P1P1

P2P2

CC AA

DD BB

CC BB

DD AA

P1P1

P2P2

CC BB

DD AA

P1P1

P2P2

CC BB

DD AA

CC BB

DD AA

CC BB

DD AA

P1P1

P2P2

CC BB

DD AA

P1P1

P2P2

CC BB

DD AA

CC BB

DD AA

c) blocked schedule

d) overlapped schedule

Figure 6. Fully static schedule

B C

A D

B C

A D

2 d2 d

B C

A D

B C

A D

2 d2 d
13

makespan of the blocked schedule of Figure 6 c) occupies 3 time slots whereas the

makespan of Figure 6 d) occupies 2 slots.

1.1.2.2 Self-timed schedule[60,61]

The fully-static strategy requires a precise estimation of actor execution times for pro-

cessor communication synchronization and doesn’t allow for the variations of execu-

tion times of actors. Self-timed schedule loosens this tight requirement by allowing the

variations of execution times of actors. After the fully-static schedule, only the proces-

sor assignment and the firing orders of actors on each processor are retained while

removing timing information among actors. Each processor holds a firing order of

actors allocated to the process. Communication synchronization is performed at runt-

ime by the associated processors. Runtime synchronization increases IPC cost and

leads to a runtime bus arbitration. To reduce runtime communication cost, ordered

transaction is introduced. Ordered transaction holds three scheduling information; the

processors assignment, actor ordering and communication order at compile time. By

making processors accesses to shared communication hardwares in an compile time

obtained order, runtime arbitrations overhead can be alleviated.

1.1.2.3 Static assignment and dynamic scheduling

In a static assignment, only assignment of actors on processors is performed at

compile-time but ordering and invocation of actors are performed at runtime. In fully

dynamic scheduling, assignment, ordering, and invocation are all performed at runt-

ime which is based on greedy approach and only guarantees locally optimal decisions.

Dynamic scheduling also leads to resource contention problems at runtime. A static
14

scheduling approach may often lead to a better result.

This thesis provides an elaborate scheduling technique by applying a self-timed

scheduling strategy to a pipelined processor manner while considering various con-

straints requirements.

1.1.3 Communication optimization

The communication optimization stage includes post optimization processes such as

resource mapping or software communication optimization depending on application

specific requirements and limitations. For example, after scheduling, a trade-off

between resource costs and performance or between low power and high performance

can be further exploited depending on priorities of an application’s requirements.

Applying the appropriate hardware or software communication optimization tech-

niques can lead to reduced system cost or improved energy saving without sacrificing

performance loss. This thesis studies two cases of an application specific post optimi-

zation technique each in terms of an efficient hardware mapping for resource cost

reduction and a dataflow cutting technique for low power consumption.

In a hardware resource mapping study, this thesis contributes toward reducing

hardware costs of FIFO buffers within a dataflow graph by analyzing data dependency

of a dataflow graph without sacrificing performance loss. In a dataflow cutting tech-

nique, this thesis performed the case study of a sensor network application optimiza-

tion in terms of power consumption minimization combined with the overall system

performance improvement in conjunction with effects of communication traffic

change on a sensor network.
15

1.2 Overview of the suggested techniques

In this section, brief descriptions of novel algorithms suggested in this thesis will be

given in each category of system synthesis; modeling, scheduling and communication

optimization. In modeling category, this thesis suggests two novel modeling tech-

niques; Blocked DataFlow (BLDF) and Dynamically configured graph topol-

ogy(DGT). In scheduling category, this thesis suggests a new multiprocessor based

scheduling technique named Pipeline Decomposition Tree (PDT) scheduling. For

communication optimization, this thesis suggests two new algorithms for communica-

tion optimization for a hardware and software mapping of a dataflow graph.

1.2.1 Modeling

1.2.1.1 Blocked DataFlow (BLDF)

In the digital signal processing (DSP) domain, rapid prototyping tools based on

coarse-grain dataflow semantics are widely used [10]. One important requirement in

these tools is support for block-based processing, such as that involved in image and

video applications. A number of efforts have examined block processing at the level of

individual actors. The scalable synchronous dataflow (SSDF) [53] model formalized

this concept in the context of multirate dataflow graphs, and algorithms have been

developed to extract the maximum vectorization potential from an SSDF graph [83].

More recently, retiming techniques have been explored for manipulating homoge-

neous dataflow graphs (graphs in which the production and consumption parameters

are all equal to one) to improve vectorizability [58]. The objective in such vectoriza-

tion is to improve throughput and reduce context-switching overhead by executing
16

actors many times in succession. BLDF(Blocked Dataflow) suggested in this thesis

differs from these approaches in its applicability beyond the level of individual actors,

and into arbitrary subsystems at any level of the modeling hierarchy. BLDF also dif-

fers in its close integration with parameterized dataflow semantics [9], which allows

for powerful dynamic reconfiguration capabilities.

Modeling semantics based on dataflow graphs are used widely in design tools for

digital signal processing (DSP). This thesis develops efficient techniques for repre-

senting and manipulating block-based operations in dataflow-based DSP design tools.

In this context, a block refers to a finite-length sequence of data items, such as a

sequence of speech samples, an image, or a group of video frames, as part of an

enclosing data stream. We develop in this thesis a meta-modeling technique called

blocked dataflow (BLDF) for augmenting DSP design tools with more effective

blocked data support in an efficient and general manner. We compare BLDF against

alternative modeling approaches through a detailed case study of an MPEG 2 video

encoder system.

As dataflow modeling alternatives emerge further it is highly desirable to identify

new modeling features that can be achieved through novel applications of existing

models rather than defining a totally new dataflow variant for each new extension.

This promotes reuse and integration rather than reinvention of the growing body of

knowledge on established dataflow styles. BLDF adheres to this approach by defining

general mechanisms that can be used to augment existing dataflow models with sys-

tematic data grouping capabilities. It is in this sense that we refer to BLDF as a meta-

model. BLDF can be used with the well-known decidable dataflow models, SDF,
17

CSDF, MDSDF, and SSDF, as described above. Its use with other, more dynamic mod-

els such as boolean dataflow [17] and SBF [46] may be possible, although efficient

application to such models requires further investigation.

Blocked data token delivery of BLDF enables us to reduce dimensions of

MDSDF [70] by processing multi dimensional data tokens dimension by dimension

with blocked data processing of nested BLDF subsystems. At the same time, BLDF

can be used in conjunction with MDSDF, with BLDF parameter control used to define

the boundaries of processing to be performed using MDSDF semantics.

We develop in this thesis a blocked dataflow (BLDF) modeling approach for effi-

cient handling of block-based data in dataflow-based DSP design tools. BLDF com-

bines meta-modeling, block-based processing, multidimensional representation, and

dynamic parameter reconfiguration in a single, unified framework that leads to more

efficient dataflow graphs for scheduling and software synthesis.

Blocked dataflow builds on parameterized dataflow semantics[9]. BLDF inherits

most features of parameterized dataflow [9]. Thus, a BLDF specification (or sub-

system) Φ also consists of three distinct graphs: 1) the init graph Φi; 2) the subinit

graph Φs; and 3) the body graph Φb. Intuitively, the body graph models the main func-

tional behavior of the subsystem, whereas the init and subinit graphs control the

behavior of the body graph by appropriately configuring the body graph parameters.

The init graph is invoked prior to each invocation of the associated (hierarchical) par-

ent subsystem, , while the subinit graph is invoked prior to each invocation

of the associated body subsystem Φb, thus allowing for two distinct “frequency lev-

els” of reconfiguration control [9]. In a blocked dataflow subsystem, blocks of input

parent Φ()
18

data are treated as subsystem parameters, and the initialization graphs (the subinit or

init graphs, as described below) are used in-between processing of successive blocks

to change the value of the associated block-parameter. Thus successive blocks of data

are translated into successive reconfigurations of block-parameter values.

For example, consider an image processing system that performs a given filtering

operation on a stream of input images. A blocked dataflow representation might define

the processing of a single image using a dataflow graph . The graph operates on

input from a special image source actor that is parameterized with an image . The

image source actor simply transfers its image parameter to its output according to the

desired protocol. The transfer protocol involves both rasterization aspects, and may

also involve sub-blocking (e.g., outputting the image as a sequence of row blocks).

Such sub-blocking can be used to defined nested BLDF subsystems.

1.2.1.2 Dynamically configured graph topology(DGT)

Dataflow is widely used for designing DSP applications. Despite its intrinsic

advantages, one weak point is its difficulty in flexible expression of applications with

data dependent change in execution structure. To handle data driven changes in execu-

tion structure, several dataflow models such as CDDF [109], BDF [18], and BDDF

[75], have been proposed. CDDF uses control tokens to determine the token transfer at

an actor port. However, determination by a control token is applied to the actor in the

next phase of execution, therefore, control tokens are not present at the moment that

the actual phase is determined. BDDF introduces dynamic ports and an upper bound is

provided for the data rate so that each dynamic port can keep the model bounded.

However, control flow depends on FSMs. Using FSMs for minor changes of control

Gc Gc

I

19

flow with dataflow graphs can make application models unnecessarily complicated

and result in limited flexibility. BDF provides “SWITCH” and “SELECT” actors to

determine control flow. For satisfying bounded memory and consistency, a symbolic

function of probability is introduced. This function increases the complexity of solving

the balance equations (for verifying sample rate consistency), and results in the possi-

bility of “weak consistency,” which is less desirable in an implementation. This thesis

suggests an approach to providing dynamically configured dataflow graph topologies

using a new modeling and synthesis technique called DGT (Dynamic Graph Topol-

ogy). DGT builds on PSDF semantics [84]. All possible graph topologies for a given

graph are obtained at compile time and the corresponding graph based on parameters

and data is dynamically set up in an efficient manner at runtime before the invocation

of the associated graph.

To provide for more powerful and efficient data dependent execution related to

application mode changes, where entire graphs or subsystem are replaced or reconfig-

ured at run time, this thesis tackles dynamic set-up of dataflow graph topologies before

the graphs are invoked. All configurations of possible graph topologies are pre-com-

puted at compile time and stored for usage at run time. At runtime, the initialization

step of DGT generates an appropriate graph topology based on parameters extracted

from data being delivered and picks up a pre-computed schedule to fit the current

parameter configuration.

However, not all configurations are valid or can be obtained at compile time.

Some configurations may cause deadlock or inconsistency or may not be predictable

at compile time. Reconfiguration of dataflow graphs is carefully considered in [73].
20

[73] analyzes the reconfiguration of a model based on behavioral types and extracts

the least change context to check approximate semantic constraints. This thesis stati-

cally checks the validity of each configuration like [73] and keeps the scheduling

results for use at run time.

The main distinguishing feature of DGT is that it efficiently supports multi-func-

tion applications by configuring graph topologies dynamically. There are two kinds of

multi-function applications. The first, which we call type-I applications, are exclusive-

or applications, where only one graph topology is selected from multiple sets of possi-

ble graph topologies for a given application. The other, which we call type-II applica-

tions, are concurrent applications where two or more applications with different graph

topologies are running at the same time. This thesis focuses on type-I (exclusive-or)

application for experimentation of DGT. For synthesis of type-I applications, [40]

extracted commonality measures of each actor and used these values to determine a

hardware bias of each actor by hardware oriented partitioning. This thesis focuses on

software implementation, and applies novel scheduling techniques based on graph

characteristics to reduce code and buffer size, which is critical for DSP software.

Systematic methods for reducing code and buffer size are applied based on char-

acteristics of each configured graph. We have compared DGT against conventional

modeling approaches through a detailed case study of an MPEG 2 video encoder sys-

tem, and our experiments demonstrate the efficiency of the DGT approach. The DGT

approach provides efficiency and flexibility in modeling applications with data driven

change of graph topology from runtime parameter changes by using pre-computed

information (information related to graph topology, scheduling, code/buffer size,
21

bounded memory, etc.).

1.2.2 Scheduling

1.2.2.1 Pipeline Decomposition Tree (PDT) scheduling

Scheduling an application under multiprocessors environment is a NP hard problem

due to its complexity. Many heuristics or evolutionary[2][19][23][28][115] efforts

have been proposed. Evolutionary algorithm can be used in case a deterministic algo-

rithm cannot be easily applied. Under evolutionary approach, the manipulation of the

effect of external constraints on the scheduling results is difficult due to its non deter-

ministic optimization process. Besides an evolutionary approach, many heuristic algo-

rithms have been exploited. Banerjee. [7] presented two-step approach by separating

partitioning and process allocation under heterogeneous architecture. Hoang. [32] sug-

gested a heuristic algorithm by providing detailed IPC cost model. Konstantinides.

[53] tackled detailed issues in modeling I/O by subdividing I/O parts into sequential I/

O parts and parallel I/O parts. However, these approaches overlooked the benefit of

potential data parallelism that most DSP applications commonly have. Exploiting data

parallelism contributes toward speed-up. Subhlok. [99] tackled data parallelism along

with task parallelism for scheduling. However, this approach mainly focuses on a lin-

early chained dataflow. Applying data parallelism and task parallelism to an applica-

tion with non-linearly connected dataflow paths causes more complicated and various

difficult problems.

Modern embedded systems for digital signal processing (DSP) integrate more and

more complicated functions in one system. As the complexity of functionality
22

increases, considering multiple processing units in one system is inevitable. The

demand for the real-time response also grows along with various functionalities. Inte-

gration of multiple functions under tightly environmental constraints causes many

complicated problems. Many efforts have been made for schedul-

ing[29][37][69][78][93]and integrating an application over multiple processing

units[10][11][12][13][14][29][71][85]. Researches mainly tend to focus on partial

interactions of the overall problems environmental constraints may cause

[3][65][68][74].

An application can be expressed as a dataflow graph of tasks. Many efforts tack-

ling task dependencies of a graph have been widely taken to distribute the workloads

of tasks over multiple processing units[85][86][93][97]. However, the internal opera-

tional features of each task was not widely exploited. Internal operations of a single

task can be copied to multiple tasks and copied tasks can run in parallel over multiple

processors. Finally a response time of the application can be reduced.

For this purpose, this thesis presents a deterministic scheduling method named

PDT scheduling (Pipeline Decomposition Tree) by exploiting both heterogeneous

data parallelism and task parallelism. In general, data parallelism allows multiple cop-

ies of a single task to run on multiple processing units. Operation of each task is inde-

pendent of each other. Each copied task handles different sequences of data frames.

Thus, a general data parallelism increase the overall buffer size since separate memory

regions are required for holding different sequential data frames.

PDT scheduling suggests heterogeneous data parallelism model. Heterogeneous

data parallelism is an extension of data parallelism. A single data frame can be divided
23

into smaller sub areas named copy-set. A sets of copied tasks can handle different

copy-sets within a single data frame whose size can vary depending on available pro-

cessors. Each copy-set can also be divided into sub regions. Thus, a single data frame

consists of several copy-set-regions. Each copy set consists of sub regions. The size of

a sub region is obtained by dividing the copy-set-region by the number of copied tasks

allocated to the corresponding copy-set. Thus, all sub regions within a single copy-set

are of the same size. But, the sizes of copy-set-regions may or may not be the same

depending on available idle processors. The copy-set-region is an array of data tokens

in a multi dimensional data stream frame, especially, two dimensional data tokens for

most 2-D based image processing applications. Copied tasks can be allocated to differ-

ent copy-sets whose sizes can vary. But, copied tasks allocated to the same copy-set

handle the same size of sub regions within the corresponding copy-set-region. The

number of tasks in a copy-set may vary from 1 to N depending on available idle pro-

cessors. Ultimately, heterogeneous data parallelism allows for dynamic change of the

size of sub regions and handles a single data frame by multiple processors without

increasing the buffer size while exploiting the parallelism. The suggested technique

tackles task parallelism by exploiting a pipelined architecture for the high throughput.

The suggest scheduling technique provides constraints satisfactory solution by taking

into consideration IPC communication cost model of a separate memory architec-

ture[21][56][106][112] and a bus contention model of a shared memory architecture.

Constraints could be the limitation of on/off chip memory size[100][108][113],

latency, or throughput etc.

Most embedded systems for digital signal processing (DSP) integrate an image
24

processing application. The common feature of image processing applications is paral-

lelism. The completion of the whole operations of a single task is based on an unit

operation and each unit operation requires only a subset of neighboring data and each

unit operation is independent of each other. This neighboring data can be a block or a

window. The unit operation is called a window based operation in this thesis. The

window based operation enables us to exploit potential parallelism by running a single

task over multiple processors by task duplication[1][22][47][80]. This potential paral-

lelism by a window based operation is called a data parallelism [55][81]. Data paral-

lelism hasn’t been deeply exploited for a multi-processors based scheduling compared

to task parallelism. Task parallelism exploits pipelined scheduling for improving

throughput[4][16][20][26][36]. This thesis tackles heterogeneous data parallelism and

task parallelism together for improving latency and throughput at the same time.

A lot of tasks in DSP applications have the feature of heterogeneous data parallel-

ism due to their window based operation patterns. The representative application

examples with a window based operation are image processing applications. We

selected a complex image processing module consisting of multiple morphological

operations like opening, closing, gradient, Laplacian, smoothing and top-hat simulta-

neously, Laplacian pyramid, Multi-resolution spline pyramid and MPEG2 encoder for

experimentations.

Our scheduling algorithm basically chooses a pipelined architecture. Each stage

of the pipeline can be mapped to multiple processing cores, which may or may not

span over multiple DSP chips depending on the synthesis constraints. To determine the

number of stages in a pipeline, this thesis suggests a new algorithm called PDT(Pipe-
25

line Decomposition Tree) exploration process, which builds pipelines by a depth first

search tree. By PDT, tasks are partitioned into stages of the pipeline[44][101].

Depending on a task dependency and relationship between neighboring tasks, different

memory architectures and bus architectures are considered by PDT scheduling.

The suggested scheduling technique contributes toward finding a constraints satisfac-

tory solution in consideration of memory architectures along with the studies of the

associated communication models such as IPC model from a separate memory archi-

tecture or a bus contention model of a shared memory architecture.

1.2.3 Communication cost

1.2.3.1 Hardware communication optimization

Various efforts on dataflow graph mapping onto hardware implementations have

been undertaken. For example, the approach of [30] exploits loop parallelism to map

nested loop kernels onto a coarse-grained reconfigurable architecture. The approach of

[33,34] uses direct mapping of each dataflow graph component (actor) onto the corre-

sponding hardware resource. The approach of [38] uses shared resources and looped

schedules. The approach of [40] analyzes a given set of applications to extract com-

monalities across nodes in different applications and uses them to bias the mapping of

nodes in the partitioning process. For FPGA implementation, the approach of [92] pro-

vides a rapid system prototyping method through a component architecture and an

associated set of software tools. The approach of [103] provides a pipelined asynchro-

nous circuit mapping method. For pointer synthesis, the approach of [87] encodes

pointer values and generates circuits that can dynamically access different locations
26

with each pointer reference. The approach of [105] points out that pointers can refer-

ence indices to RAM, registers or even wires in a hardware mapping. The approach of

[8] applies an external memory for mapping FIFO buffers and implements real-time

image convolution on an FPGA. The approach of [72] implements image processing

applications on FPGAs and points out that such implementations lead to a large on-

chip FIFO buffers that prevent flexible usage of FPGAs for image processing applica-

tions. The approach of [104] presents an elaborate technique for mapping global, static

arrays to distributed communication structures while classifying four types of inter-

process communication patterns. The approach of [110] studies memory optimization

for embedded software, particularly the performance of cache-based systems. The

approach of [107] presents a novel technique for background memory allocation in

multi-dimensional signal processing applications based on dataflow analysis.

The efforts described above make useful contributions toward mapping applica-

tion representations at various levels of abstraction into hardware implementations.

However, the simultaneous analysis of both performance and cost implications when

mapping image processing applications, which involve especially large volumes of

data token delivery, has not been thoroughly investigated in previous work.

This thesis helps to bridge this gap by studying, in the context of mapping data-

flow graphs into hardware, the relationship between token delivery methods (indirect,

pointer-based token delivery vs. direct-reference, raw token delivery) and FIFO archi-

tecture. This thesis exploits pointer-based token delivery to reduce on-chip FIFO sizes,

and also provides a range of efficient trade-offs between performance (latency and

throughput) and FPGA resource cost through a novel FIFO mapping algorithm. This
27

thesis also shows how overall performance and cost vary in relation to the selected

sub-frame size at which block processing is carried out. Finally, this thesis provides a

new mapping algorithm for dataflow representations of image processing applications

to reduce overall FPGA resource costs without significant performance loss.

1.2.3.2 Software communication optimization

This thesis studies a software communication optimization technique under the

sensor network application domain in terms of power consumption minimization of a

sensor network system and provides a dataflow graph cutting technique for mapping

the divided graphs over multiple sensor nodes for minimizing communication traffics.

In a sensor network, energy consumption of a sensor node is related to a network life-

time. To increase the network lifetime, low power friendly design of a sensor network

is necessary. Many efficient approaches are suggested to reduce an energy consump-

tion of a sensor network. [89] distributed FFT function over a master node and slave

nodes to reduce energy consumption without consideration of data traffic change by

moving FFT function from a cluster head node to slave nodes. [54] provides a trade-

off of an energy and a latency by considering different computational capabilities for a

master node and a slave node. However, [54] didn’t consider the potential possibility

of using a low computational micro controller by balancing functional workloads over

sensor nodes. [66,91] suggested a hierarchical and physical layer driven sensor net-

work design to reduce data traffic and energy consumption of a sensor node in connec-

tion with each physical function. However, the node optimization should be optimized

in conjunction with a underlying protocol characteristics and change of data transmis-

sion method depending on specific characteristics of network related devices. This
28

thesis suggests an overall minimization of an energy consumption of a sensor network

in connection with a trade-off of latency and network lifetime by balancing workload

of each sensor node. This thesis exploits internal token flows of an application data-

flow graph and divides the application over a master node and slave nodes by applying

dataflow modeling technique. A sensor network application can be efficiently mod-

eled under a dataflow semantics. By analyzing dataflow graph modeling an applica-

tion[11,18,40], energy consumption and operational complexity of an application can

be effectively estimated in a coarse grain level. Especially, parameterized dataflow

semantic[9] is intrinsically friendly to reconfigurable demands of most sensor network

applications. Parameterized dataflow allows for dynamic change of meta variables

which can be mapped to internal parameters of an application. This thesis selects

DGT[48] (Dynamic Graph Topology) method for modeling an application. DGT inher-

its from a parameterized dataflow and provides more efficiency by allowing for

dynamic change of graph topologies based on runtime request. In DGT semantics,

connection between nodes and the number of tokens produced/consumed by each

node can be changed at runtime and be expressed along with reconfigurable parame-

ters. This feature enables a master cluster to control slave nodes efficiently and allows

each sensor node to support various graph topologies.

1.3 Contributions of this thesis

1.3.1 Modeling

In this thesis, we challenge new modeling techniques for image processing appli-
29

cations under a dataflow semantic while exploiting blocked processing and dynamic

reconfigurability. This thesis suggests two new dataflow based modeling techniques

named Blocked DataFlow (BLDF) and Dynamically reconfigurable Graph Topology

(DGT), respectively.

1.3.1.1 Blocked DataFlow (BLDF)

This thesis suggests a new modeling technique named Blocked DataFlow

(BLDF). Unlike other dataflow models, BLDF exploits a blocked processing feature

of data tokens in a dataflow graph, which makes it possible to model most image pro-

cessing applications. In BLDF, a blocked processing feature of multi dimensional data

streams can be allowed in an automated manner. BLDF model enables the firing num-

bers of each actor within a dataflow graph to be expressed in meta variables. Meta

variables are obtained through parameterization of blocked data tokens. Parameterized

firing numbers allow for quasi-static schedule which can be reconfigured at runtime

by the subinit sub system during the parameterization process of blocked data frames.

1.3.1.1.1 Iteration control

The major enhancement in BLDF is the delivery method of data tokens into body

graphs. In BLDF, blocked data tokens such as sequential MPEG2 video streams are

delivered via the parameter value updating process of init or subinit graphs so that an

init or a subinit graph can extract information concerned for the associated body graph

from raw data tokens delivered, and then convert raw data tokens as well as the infor-

mation extracted into sets of new parameter values for the body graph. Thus, raw data
30

tokens are delivered to the associated body graph as parameters along with other

parameters extracted from them before the body graph starts running.

Blocked tokens are transferred to the subinit graph and then converted into a

block of parameters, which are set as parameters of each relevant actor in the associ-

ated body graph. Here, BLDF provides Dynamic configuration of parameters for the

associated body graph such as image resolution and block size as basic processing

units along with other provisional parameters at the stage of the subinit graph, which

directs detailed operation of the associated body graph before that body graph starts an

invocation of itself.

At the same time, iterations of each actor within a body graph can be obtained

along with other parameters. Suppose, for example, that an init or a subinit graph takes

a Z pixel frame from its input port. An init or a subinit graph can obtain Z / N2 itera-

tions of the associated body graph actor by setting the block size parameter for the

body graph as N by which image frames are divided into sub-image frames. Each actor

within the body graph then operates on the basis of sub-image frames for high

throughput and more parallelism. Iteration numbers may be used further as factors in a

quasi-static looped schedule by a BLDF scheduler. Obtaining parameters relevant to

the scheduling of the associated body graph before it runs and reconfiguring those

parameters dynamically based on concerned payloads of tokens delivered at a runtime

gives an application developer enhanced flexibility and efficiency in the design phase.

1.3.1.1.2 Token delivery

One of the advantages of BLDF is its efficiency in token delivery. First, in token deliv-

ery, BLDF enables us to reduce buffers required for delivering tokens among actors.
31

This is because tokens can be delivered from parent graphs to nested body graphs by

parameterization. This parameterization process enables us to remove redundant con-

nections and buffers between actors in BLDF.

1.3.1.1.3 Data tokens with nested headers

Most multimedia data tokens consist of a header part and a payload part. The header

part has the information for handling the payload. However, the payload also may

have sub-header and sub-payload components. Therefore, each level of composite

actors implemented hierarchically or heterogeneously may process a different area of a

packetized multimedia data token. BLDF provides an efficient way for delivering data

tokens to composite actors of lower hierarchical levels by parameterization. Only the

relevant part needs to be decoded for configuration and the remaining parts can be

encapsulated as parameters for composite actors of lower hierarchical levels in the

dataflow specification. Decoding headers sequentially according to the need for the

associated header information allows us to implement each module within an applica-

tion consistently, which is easy to understand for future code reuse. This approach also

reduces the number of connections and buffers required between actors by parameter-

ization.

1.3.1.2 Dynamically reconfigurable Graph Topology (DGT)

1.3.1.2.1 Modeling of separate dataflow graphs in a single dataflow semantic.

This thesis suggests a new modeling technique named Dynamically reconfig-

urable Graph Topology (DGT). Unlike other approaches challenging the change of

data/control flow within dataflow models, DGT allows separate individual dataflow
32

graphs to be integrated in a single dataflow semantic. Under DGT semantic, vertices

and edges within a dataflow graph can be categorized into two groups; fixed or vary-

ing. In DGT domain, Any vertex/edge whose topological behaviors are commonly

constant among individual dataflow graphs can be marked fixed edge/vertex. Any ver-

tex/edge not marked as fixed graphic components belongs to varying vertex/edge.

In DGT, the topological behaviors of varying edges/vertices can be dynamically

changed based on the change of parameters or tokens being delivered while allowing

for dynamic change of graph topologies and a single dataflow integration of separate

individual dataflow graphs.

1.3.1.2.2 Minimization of resource usage among separate dataflow graphs

In modeling of separate dataflow graphs which share operational functionality or have

topological similarity, separate modeling for each dataflow graph may lead to unnec-

essarily increased buffer/code size due to overlapped resources among the dataflow

graphs modeled. DGT allows separate dataflow graphs to be integrated in a single

dataflow semantic. By analyzing the shared functionalities and graph topological pat-

terns among separate dataflow graphs, DGT minimizes an overall resource usage of

dataflow graphs.

1.3.1.2.3 Dynamic reconfiguration of a graph topology

In DGT semantic, Memory usage and scheduling information of each possible

graph topology are obtained at compile time. By inheriting the characteristics of PSDF

semantic, DGT semantic consists of three sub graphs; init, subinit and body graphs.

Under DGT semantic, subinit system dynamically configures the graph topology
33

of the associated body graph and applies the corresponding precomputed scheduling

information to the configured body graph before the body graph is invoked. Ulti-

mately, DGT increases the expressivity and the flexibility of a dataflow graph model

by allowing runtime reconfiguration of a graph topology based on runtime change of

parametric variables.

1.3.2 Scheduling

As multiprocessors based scheduling technique, this thesis suggests a deterministic

heuristic scheduling method named PDT(Pipeline Decomposition Tree)-schedule.

1.3.2.1 Pipeline Decomposition Tree (PDT) scheduling

1.3.2.1.1 Constraint aware multiprocessor scheduling for non-linearly linked data-

flow graph

Unlike other existing approaches for multiprocessor scheduling methods, PDT

scheduling considers complicated environmental constraints such as memory con-

straints, performance requirement or architectural limitation and provides influence of

each individual constraint or interference of individual constraints on scheduling. PDT

scheduling also provides an automatic shielding method, especially, for non-linearly

configured application graph.

1.3.2.1.2 Exploitation of heterogeneous data parallelism with task parallelism

PDT scheduling exploits a pipelined processors architecture and tackles data par-

allelism and task parallelism together for improvement of both latency and throughput.

To improve throughput, this thesis exploits a task parallelism which can be obtained
34

through a pipelined processing of an application. Besides task parallelism, this thesis

suggests a novel concept of data parallelism named a heterogeneous data parallelism.

A heterogeneous data parallelism improves both latency and throughput at the same

time without buffer size increase. A general data parallelism usually increases the

buffer size since duplicated tasks handle different sequential data frames and require

separate memory areas for each sequential data frame. In heterogeneous data parallel-

ism, duplicated tasks handles different divided regions within a single data frame with-

out causing buffer size increase.

Thus, PDT scheduling contributes toward maximizing the performance of an

application over multi processors environment under complicated environmental con-

straints such as resource usage limitation, performance requirements and architectural

constraints.

1.3.2.1.3 Automatic pipelined multiprocessor architecture generation

Under PDT scheduling, multiple pipelines with different scheduling trade-offs are

automatically generated through the PDT scheduling’s pipeline exploration process.

Pipeline exploration process recursively divides a given application graph into sub

graphs by taking into account characteristics of a graph such as data dependency, exe-

cution time distribution of stages of a pipeline, operational characteristics of each actor

in a depth first search way and finally generates pipelines with various potential per-

formances and resource usage.
35

1.3.3 Communication optimization

This thesis suggests two novel post optimization techniques in terms of hardware and

software communication optimization.

1.3.3.1 Minimization of FIFO buffer cost

 In hardware communication optimization, this thesis tackles different features of

memory devices in terms of performance and cost. Thus, FIFO buffers modeled within

a dataflow graph could be mapped to memory devices with different performances and

costs. This thesis reduces an overall hardware resource cost for FIFO mapping by ana-

lyzing data dependencies among actors (nodes) within a data flow graph. The sug-

gested technique allows a maximal use of low cost memory devices for the

synthesized system without performance loss.

1.3.3.2 Minimization of network communication cost

This thesis provides an efficient communication optimization technique for soft-

ware code mapping of a dataflow graph for a sensor network application by redistrib-

uting a dataflow graph over multiple sensor nodes. This technique reduces a

communication traffic and an overall power consumption of a sensor network, which

are the most critical problems in a sensor network application design. This is a new

approach in that this technique analyzes internal data token exchange rates of a data-

flow graph for reducing communication cost between sensor nodes in consideration of

response time change of an application. This is possible through finding a cutting line

of a dataflow graph by tracking of edges with the lowest data token exchange rate

within a dataflow graph. Based on the cutting line, a dataflow graph is divided into
36

two sub-graphs and sub-graphs are distributed to hierarchically clustered sensor nodes.

The technique contributes toward increasing network lifetime by allowing a longer

battery lifetime through reduced power consumption.

1.4 Outline of thesis

In chapter 1 (Introduction), the thesis introduced three sub categories of system

synthesis process defined in this thesis; modeling, scheduling and communication

optimization. In each description of modeling, scheduling and communication optimi-

zation, the thesis described major challenging issues and various present research

efforts to solve these issues followed by a brief description of novel research studies

suggested by this thesis belonging to each categories of system synthesis.

Chapter 2, as a modeling method of DSP systems, especially image processing

applications, describes two individual novel modeling techniques suggested by this

thesis separately. The first is named Blocked DataFlow (BLDF) which exploits a

blocked processing feature most image processing applications commonly have. The

other modeling technique is named Dynamic Graph Topology graph (DGT). DGT

allows for runtime dynamic change of dataflow graphs under the variations of compile

time obtained configurations. Chapter 3 describes a novel scheduling technique named

PDT scheduling for scheduling image processing applications modeled under a data-

flow semantic onto multiprocessors environment. PDT scheduling considers various

system constraints such as memory usage limitation for on-chip or external memory,

performance requirement (latency/throughput) in consideration of many architecture

related challenges such as a shared memory architecture or a separate memory archi-
37

tecture and different communication costs (IPC or bus contention) related to memory

models. Finally, PDT scheduling generates a pipelined architecture of processors

through the suggested PDT(Pipeline Decomposition Tree) exploration process and

exploits a data parallelism and a task parallelism together for improving latency and

throughput at the same time. Chapter 4 describes two novel post optimization tech-

niques as hardware/software communication optimization technique. The communica-

tion optimization technique exploits an application specific requirements in terms of

power consumption, performance and resource cost. Finally, chapter 5 summarizes the

results and discusses possible directions for the related future works.
38

Chapter 2 : Model ing of DSP applications

2.1 Introduction

In the previous chapter, we categorized the system synthesis technique into three

areas; modeling, scheduling and communication optimization. We described the back-

ground technologies related to the system synthesis technique for DSP based embed-

ded system in each category and briefly described motivations and the major

contributions of the suggested techniques.

In this chapter, we describe major features and contributions of two suggested

novel modeling techniques; Blocked DataFlow (BLDF) and Dynamically configured

Graph Topology (DGT). A preliminary summary of part of this chapter is published in

[48][49]

2.2 Blocked Dataflow Graph (BLDF)

2.2.1 Abstract

Modeling semantics based on dataflow graphs are used widely in design tools for dig-

ital signal processing (DSP). This thesis develops efficient techniques for representing

and manipulating block-based operations in dataflow-based DSP design tools. In this

context, a block refers to a finite-length sequence of data items, such as a sequence of

speech samples, an image, or a group of video frames, as part of an enclosing data

stream. We develop in this thesis a meta-modeling technique called blocked dataflow
39

(BLDF) for augmenting DSP design tools with more effective blocked data support in

an efficient and general manner. We compare BLDF against alternative modeling

approaches through a detailed case study of an MPEG 2 video encoder system.

2.2.2 Related work

In the digital signal processing (DSP) domain, rapid prototyping tools based on

coarse-grain dataflow semantics are widely used [10]. One important requirement in

these tools is support for block-based processing, such as that involved in image and

video applications. We develop in this thesis a blocked dataflow (BLDF) modeling

approach for efficient handling of block-based data in dataflow-based DSP design

tools. BLDF combines meta-modeling, block-based processing, multidimensional rep-

resentation, and dynamic parameter reconfiguration in a single, unified framework

that leads to more efficient dataflow graphs for scheduling and software synthesis.

In this thesis, by a dataflow model of computation (dataflow MoC), we mean a

programming model based on dataflow semantics. Programs in a dataflow MoC are

thus represented as directed graphs in which vertices, called dataflow actors, represent

computational tasks, and edges represent logical FIFO communication channels

between tasks.

A decidable dataflow model is one in which deadlock and unbounded buffer accu-

mulation can be determined in finite time for every specification in the model. Exam-

ples of decidable dataflow models are CSDF [99], SDF [63], MDSDF [70] and SSDF

[53]. For consistent specifications in each of these models, there is a unique, integer-

valued repetitions vector that is indexed by the graph actors and gives the number of
40

times each actor needs to be invoked to form a minimal periodic schedule for the

graph.

A number of efforts have examined block processing at the level of individual

actors. The objective in such vectorization is to improve throughput and reduce con-

text-switching overhead by executing actors many times in succession. The scalable

synchronous dataflow (SSDF) [53] model formalized this concept in the context of

multirate dataflow graphs, and algorithms have been developed to extract the maxi-

mum vectorization potential from an SSDF graph [83]. More recently, retiming tech-

niques have been explored for manipulating homogeneous dataflow graphs (graphs in

which the production and consumption parameters are all equal to one) to improve

vectorizability [58]. BLDF differs from these approaches in its applicability beyond

the level of individual actors, and into arbitrary subsystems at any level of the model-

ing hierarchy. BLDF also differs in its close integration with parameterized dataflow

semantics [9], which allows for powerful dynamic reconfiguration capabilities.

As dataflow modeling alternatives emerge further it is highly desirable to identify new

modeling features that can be achieved through novel applications of existing models

rather than defining a totally new dataflow variant for each new extension. This pro-

motes reuse and integration rather than reinvention of the growing body of knowledge

on established dataflow styles. BLDF adheres to this approach by defining general

mechanisms that can be used to augment existing dataflow models with systematic

data grouping capabilities. It is in this sense that we refer to BLDF as a meta-model.

BLDF can be used with the well-known decidable dataflow models, SDF, CSDF,

MDSDF, and SSDF, as described above. Its use with other, more dynamic models such
41

as boolean dataflow [17] and SBF [46] may be possible, although efficient application

to such models requires further investigation.

2.2.3 Blocked dataflow

Blocked dataflow builds on parameterized dataflow semantics [9]. In a blocked data-

flow subsystem, blocks of input data are treated as subsystem parameters, and the ini-

tialization graphs (the subinit or init graphs, as described below) are used in-between

processing of successive blocks to change the value of the associated block-parameter.

Thus successive blocks of data are translated into successive reconfigurations of

block-parameter values.

For example, consider an image processing system that performs a given filtering

operation on a stream of input images. A blocked dataflow representation might define

the processing of a single image using a dataflow graph . The graph operates on

input from a special image source actor that is parameterized with an image . The

image source actor simply transfers its image parameter to its output according to the

desired protocol. The transfer protocol involves both rasterization aspects, and may

also involve sub-blocking (e.g., outputting the image as a sequence of row blocks).

Such sub-blocking can be used to defined nested BLDF subsystems.

BLDF inherits most features of parameterized dataflow [9]. Thus, a BLDF speci-

fication (or subsystem) Φ also consists of three distinct graphs: 1) the init graph Φi; 2)

the subinit graph Φs; and 3) the body graph Φb. Intuitively, the body graph models the

main functional behavior of the subsystem, whereas the init and subinit graphs control

the behavior of the body graph by appropriately configuring the body graph parame-

Gc Gc

I

42

ters. The init graph is invoked prior to each invocation of the associated (hierarchical)

parent subsystem, , while the subinit graph is invoked prior to each invoca-

tion of the associated body subsystem Φb, thus allowing for two distinct “frequency

levels” of reconfiguration control [9].

2.2.3.1 Iteration control

The major enhancement in BLDF is the delivery method of data tokens into body

graphs. In BLDF, blocked data tokens such as sequential MPEG2 video streams are

delivered via the parameter value updating process of init or subinit graphs so that an

init or a subinit graph can extract information concerned for the associated body graph

from raw data tokens delivered, and then convert raw data tokens as well as the infor-

mation extracted into sets of new parameter values for the body graph. Thus, raw data

tokens are delivered to the associated body graph as parameters along with other

parameters extracted from them before the body graph starts running.

Figure 7 shows the mechanism by which BLDF builds on parameterized dataflow

semantics.

Since the body graph of Figure 7(a) takes image frames directly from the outside

without any parameterization process within an init or subinit graph, it is not possible

to extract important information such as iterations of the associated body graph and

also not possible to define detailed operation of each actor within that body graph by

setting iteration limits.

On the other hand, in figure 7(b), image frames are transferred to the subinit graph

and then converted into a block of parameters, which are set as parameters of each rel-

evant actor in the associated body graph. Figure 7(b) allows dynamic configuration of

parent Φ()
43

parameters for the associated body graph such as image resolution and block size as

basic processing units along with other provisional parameters at the stage of the sub-

init graph, which directs detailed operation of the associated body graph before that

body graph starts an invocation of itself.

At the same time, iterations of each actor within a body graph can be obtained

along with other parameters. Suppose, for example, that an init or a subinit graph takes

a Z pixel frame from its input port. An init or a subinit graph can obtain Z / N2 itera-

tions of the associated body graph actor by setting the block size parameter for the

body graph as N by which image frames are divided into sub-image frames. Each actor

within the body graph then operates on the basis of sub-image frames for high

throughput and more parallelism. Iteration numbers may be used further as factors in a

quasi-static looped schedule by a BLDF scheduler. Obtaining parameters relevant to

the scheduling of the associated body graph before it runs and reconfiguring those

parameters dynamically based on concerned payloads of tokens delivered at a runtime

gives an application developer enhanced flexibility and efficiency in the design phase.

Figure 7. PSDF and BLDF.

ΦbA

B

out

in

Φs Φi A

B

out

in

Φb

Φs Φi

a) PSDF approach b) BLDF approach

A: major data tokens (e.g. image frames)
B: general data tokens for parameterization
44

2.2.3.2 Token delivery

One of the advantages of BLDF is its efficiency in token delivery. First, in token deliv-

ery, BLDF enables us to reduce buffers required for delivering tokens among actors.

This is because tokens can be delivered from parent graphs to nested body graphs by

parameterization. Figure 8 shows how BLDF reduces buffering requirements in this

way. In Figure 8, the “D” actor requires both “a” and “b” tokens, while the “A”, “B”

and “C” actors require only token “a”. Here, suppose also that a sample rate change

from “A” to “D” exists in the specification. Then in Figure 8(a), “A”, “B” and “C”

actors must have additional input/output ports only for delivering token “b” to “D”

without sample rate inconsistency. This in turn causes “redundant” or “extra” buffers

between intermediate actors. However, in Figure 8(b), the subinit graph Φs converts

input data into two parameters “a” and “b”, and then token “a” is set to actor “A” as a

parameter while token “b” is set to the actor “D” directly as a parameter, while main-

taining sample rate consistency. This parameterization process enables us to remove

redundant connections and buffers between actors in BLDF.

2.2.3.3 Data tokens with nested headers

Most multimedia data tokens consist of a header part and a payload part. The header

part has the information for handling the payload. However, the payload also may

have sub-header and sub-payload components. Therefore, each level of composite

actors implemented hierarchically or heterogeneously may process a different area of a

packetized multimedia data token. BLDF provides an efficient way for delivering data

tokens to composite actors of lower hierarchical levels by parameterization. Only the

relevant part needs to be decoded for configuration and the remaining parts can be
45

encapsulated as parameters for composite actors of lower hierarchical levels in the

dataflow specification. Figure 9 shows how data tokens with nested headers can be

handled in BLDF. Decoding headers sequentially according to the need for the associ-

ated header information allows us to implement each module within an application

consistently, which is easy to understand for future code reuse. This approach also

reduces the number of connections and buffers required between actors by parameter-

ization.

2.2.4 Application example

2.2.4.1 Brief review of MPEG2 video streams

The MPEG2 specification has been widely selected as a standard for coding/decoding

moving picture frames. Therefore, many modern embedded systems handling multi

media integrate MPEG2 decoders. This thesis has selected MPEG2 as one example of

a real field application for an embedded system. The MPEG2 specification roughly

consists of three parts: the video, audio and system parts. In this thesis, we focus on the

video part to show differences in efficiency, flexibility and extensibility among alter-

native modeling formats.

Φ

Φs

Φi

A Β C

D

in out

in param(a)

param(b)

out

Φ

Φb

a a

a

Φ

A Β C

D

in out

in

out

Φ

a
b

a
b

a
b

Figure 8. BLDF and SDF: param(): parameterization; Φs: subinit graph,
Φb: body graph; “a”, “b”: tokens being delivered.

a) SDF b) BLDF
46

Moving pictures are made from combinations of consecutive image frames. Each

image frame is composed of pixels and each pixel has its own value representing the

degree of RGB or YCrCb. Pixel values are not independent but are correlated with

their neighbors. Therefore, the value of a pixel is predictable, given the values of

neighboring pixels. Image frames usually have redundant information in view of

image compression, which can be categorized into two redundancies: spatial redun-

dancy and temporal redundancy, based on whether they are exploited in relation with

neighboring frames or not. Spatial redundancy is redundant information lying in an

intra frame while temporal redundancy is redundant information lying between inter-

frames.

The MPEG2 specification separates image frames into three different types (I, P

and B frames). I frames exploit only spatial redundancy, while P and B frames exploit

both spatial redundancy and temporal redundancy. Thus, an I frame does not refer to

neighboring image frames for reducing redundant information within itself and plays a

role of an anchor frame to separate groups of pictures from continuous image frames.

Even though the P and the B frames exploit both spatial redundancy and temporal

H ead er
1 st leve l

A B C

H ead er
2 n d level

H ead er
3 rd level

1 st leve l p ay load
2 n d level p ay load

in

B 1 B 2

Φ s1
Φ b 1

Φ i1

p aram

Φ s2

Φ i2

p aram

ou t

B

Φ b 2

Figure 9. Data tokens with nested headers.
47

redundancy, there are different features between P and B frames in view of control

flow. The P frame reduces redundant information by referring to a previous I or P

image frame as a reference frame, differentiating pixel values between the current P

frame and the reference frame, and exploiting spatial redundancy like the I frame. In

contrast, the B frame requires two reference frames (a previous I or P frame and a

future I or P frame) as reference frames for reducing temporal redundancy. The differ-

ence in the number of reference frames required among frame types makes it difficult

to express an MPEG2 encoder in pure SDF form.

2.2.4.2 Problems in design of an MPEG video encoder with SDF

The problems from designing an MPEG2 video encoder using only SDF semantics

occur from the dynamic change in MPEG2 video streams. Some actors inside the

MPEG2 encoder dynamically change their operation based on the content of data

tokens being delivered to them while other actors maintain their operation consis-

tently. Also, motion compensation demands that image frames are encoded in different

sequences from sequences transferred to the encoder. More specifically, problems in

designing an MPEG2 video encoder under SDF are as follows.

• P1. Control problem. Every actor under SDF must consume and produce at least

one token, which means that every connection between actors has to deliver at least

one token during one invocation of the enclosing system. However, it is possible that

some actors need special tokens from their input ports only in special cases and in

other cases do not need any token. This situation arises in actors of an MPEG2 video

encoder.

• P2. Consistent schedule problem. Data tokens can be categorized into two sub-
48

classes: major data tokens every actor is concerned with, and additional data tokens

that are relevant for proper subsets of actors. Some actors of an MPEG2 video encoder

require additional input or output ports that are only for delivering additional tokens.

Those tokens have features of parameters and are usually used for setting internal state

of actors. With such additional input or output ports only for delivering tokens to other

actors, as the layout of applications get more and more complex, the possibility of

introducing sample rate inconsistency into the dataflow signal processing increases.

SPDF (Synchronous Piggybacked Data Flow) [76] suggested a piggybacked way to

solve this problem. However, [76] also cannot avoid unnecessary and redundant deliv-

ery of the information, even if the methods of [76] are used to reduce buffers required

by a piggybacked way, which delivers only a pointer of an entry in the global state

table.

• P3. Iteration counts. Obtaining actor iteration counts at compile time is a major

advantage in SDF. It reduces overhead of scheduling problems at a runtime. However,

in general, the invocations of each actor can vary dynamically based on data being

delivered. Such scenarios are not handled by SDF.

 Also, an application developer may wish to manually set or dynamically change

iteration numbers of special actors for low power requirements or quick user response

time, which will affect iteration counts of subsequent actors. Such situations are also

not permitted in SDF.

However, in BLDF, iteration numbers of subsequent actors can be determined at

the “init” or “subinit” stage by extracting corresponding information from data tokens

delivered and reconfiguring the associated parameters, while allowing for low over-
49

head quasi-static scheduling, as in parameterized dataflow [9]. This is possible

through blocked parameter delivery in BLDF, which takes a block of input tokens, e.g.

image frames at the init or subinit stage, and then converts them as blocked parameters

along with other parameters. At the same time, important configuration information

such as the resolution of an image frame and basic processing unit size (block size)

can be used for dynamically calculating iteration counts of relevant actors in the asso-

ciated body graph.

• P4. Saving buffers and reducing unnecessary delivery.

BLDF allows us to optimize data token delivery by “parameterization”. By

“parameterization”, low overhead, “low frequency” connections between actors can be

used. As mentioned in P2, we have two kinds of data tokens: tokens every actor

requires and tokens that are relevant for individual actors. The second type of tokens

can be directly delivered to the associated actors by parameter settings processed at the

init or subinit stage. This allows us to remove unnecessary data delivery as well as

unnecessary buffering requirements, as will be demonstrated in Section 2.2.5.

2.2.5 Experiments

We have prototyped a preliminary version of BLDF semantics in Ptolemy II [62], a

widely-used tool for developing and integrating models of computation.

2.2.5.1 MPEG2 Video encoder implementation

We have implemented an MPEG2 Video encoder under the Ptolemy II environment in

three different ways, including using BLDF, and have compared the resulting models

in efficiency and flexibility.
50

2.2.5.1.1 Method 1. FSM and SDF combination

An application developer often considers FSMs (Finite State Machines) when design-

ing an application with nontrivial control flow. An MPEG video encoder clearly has

features of dataflow, along with nontrivial control flow. In this method of implementa-

tion, we have used the two combined models of computation, SDF and FSM, in a het-

erogeneous and hierarchical way, using the heterogeneous modeling capabilities of

Ptolemy II. Figure 10 illustrates our resulting design.

Our FSM representation within the MPEG2 video encoder has three states where

each state is refined to three different SDF subgraphs, depending on the type of image

frame: I, P or B. Since an I frame is coded by exploiting only spatial redundancy, the

SDF graph shown in figure 10(c) for I frame processing does not have a motion com-

pensator module. The SDF graph shown in figure 10(d) for P frame processing, which

refers to only a previous I or P frame, has one motion compensator module, while the

SDF graph shown in figure 10(e) for B frame processing, which refers to both a previ-

ous and a future I or P frame, has two motion compensator modules.

Here, it is useful to focus on two special functional blocks: MPEGQuantizer and

ReferenceFrame, which help to distinguish our alternative encoder implementations.

MPEGQuantizer. This block needs a picture ID token to identify what image

frames are delivered to it. MPEGQuantizer is placed after several preceding actors that

are not concerned about the picture ID token. In implementation method 1 and method

2 (introduced below), the picture ID token must go through all preceding actors to the

target actor, MPEGQuantizer, which, due to sample rate changes through the preced-

ing actors, consumes that token to avoid an inconsistent schedule.
51

ReferenceFrame. This block operates differently, depending on the type of image

frame delivered, and uses dummy tokens with “0” values:

Case 1: When an I frame comes, ReferenceFrame produces “0” values to output

ports both for a previous and for a future reference frame. This is because an I image

frame does not perform motion compensation. ReferenceFrame consumes I frame

from its input port and updates its reference frame with the “I” frame. Here, Refer-

enceFrame has initial tokens as with a delay actor, for it is connected within a feed-

back loop.

Case 2: When a P frame comes, ReferenceFrame produces a previous I or P

frame, which was saved in a previous cycle, for the previous reference frame and a “0”

value for the future reference frame. Like when an I frame ID comes, a P frame is also

Figure 10. FSM and SDF Combination

a) MPEG2 Encoder
(Top) b) Inside the FSM c) I Frame encoder

e) B Frame encoderd) P Frame encoder
52

saved as a reference frame inside of ReferenceFrame.

Case 3: When a B frame comes, ReferenceFrame produces two saved reference

frames (P and I frames) to the output ports. However, since a B frame is not used as a

reference frame, it is discarded and not used for updating reference frames inside of

ReferenceFrame.

In summary, this implementation method (Method 1) can satisfy problem P1;

however, P2, P3 and P4 remain unsolved.

2.2.5.1.2 Method 2. SDF

In this method, we have implemented an MPEG2 Video encoder without integrating

the FSM model of computation. All functional blocks inside are same as the method 1.

However, method 2 does not have separated I, P and B sub-encoders so that all image

frames go through two motion compensators with real values or dummy values

depending upon the image frames. This implementation simplifies the design of an

MPEG2 Video encoder. However, it still has the same problems (P2, P3 and P4)

unsolved, as with method 1.

2.2.5.1.3 Method 3. BLDF

In this method, we separate the functional blocks of an MPEG2 video encoder into two

parts: a subinit and a body graph. The actors configuring the body subsystem are

placed in the subinit graph, and the actors actually processing image frames are placed

in the body subsystem. First, the subinit graph obtains information required for config-

uring a body subsystem from data tokens delivered to itself and then converts image
53

data tokens, themselves, into blocked parameters for the body subsystem along with

other parameters, such as block size and picture ID, obtained from image data tokens.

In parameterized dataflow, blocked data tokens such as image frames directly go

to a body graph. An init or subinit graph manipulates only data tokens with parameter

features for a body subsystem. Therefore, an init or subinit graph can not obtain

parameters such as image resolution or block size for manipulating iteration numbers

of the actors in the associated “body” graph.

Early knowledge of the iteration count of each functional block for a body sub-

system gives more efficiency and flexibility in manipulating and predicting actors of

the associated body graph. Above all, an iteration count acts as a factor in a looped

schedule of quasi-static scheduling in BLDF. Thus, a more efficient quasi-static sched-

ule of the associated body graph can be established, while keeping much of the advan-

tage (the predictability) of SDF in the schedule. The name of BLDF is originates from

this feature that a block of data tokens is packaged as parameters and then delivered to

the associated body subsystem. Blocked data token delivery of BLDF enables us to

reduce dimensions of MDSDF [70] by processing multi dimensional data tokens

dimension by dimension with blocked data processing of nested BLDF subsystems. At

the same time, BLDF can be used in conjunction with MDSDF, with BLDF parameter

control used to define the boundaries of processing to be performed using MDSDF

semantics.

Figure 11 shows iteration counts of the functional blocks in the associated body

subsystem and how iteration counts are used for factors in a looped quasi-static sched-

ule of the MPEG2 video encoder application. Here, the init subsystem contains the fol-
54

lowing three actors.

ImageFrameParameterizer. This actor delivers image frames to the ImagePropa-

gator actor of the body subsystem as BLDF parameter values.

MPEGHeaderGenreator. This actor generates a picture ID for the associated body

subsystem. The parameterized token delivery of a picture ID relieves the associated

body graph of a complicated meshed layout of an MPEG2 video encoder and the

inconsistent scheduling problem (P2).

BlockSize. This actor sets a block size parameter value for the associated body

subsystem, which is the basic processing unit by which a full image frame is divided

into groups of sub images for high throughput and more parallelism. Each functional

block in the associated body subsystem processes an image frame on the basis of sub

images defined in this manner.

In the body subsystem, it is useful to focus on two functional blocks: the

MPEGQuantizer and ReferenceFrame. These two actors have additional input ports

for a picture ID token in methods 1 and 2, but in BLDF, no additional input port for a

picture ID token is required any longer since the tokens are delivered to these actors as

Figure 11. Blocked data delivery in BLDF
55

parameters, not tokens. The parameterized token delivery simplifies the layout of the

MPEG2 video encoder and also removes redundant connections between all preceding

actors to the target actor actually consuming that information without inconsistent

schedule problem.

Also, this method allows dynamic configuration of parameters at a runtime. The

subinit graph analyzes the tokens delivered to itself and then sets parameters of the

associated body subsystem based on runtime need for parameter value delivery.

Parameters maintain their value consistently during one iteration of the associated

“body” graph. Figure 12 shows our implementation of the MPEG2 video encoder

application under BLDF.

2.2.5.2 Comparison

Method 1 (FSM + SDF Combination) has three different SDF graphs to which three

states of the FSM are refined. However, each refined SDF graph shares most of its

b) “subinit” graph

c) “body” graph
Figure 12. MPEG2 Encoder under BLDF

a) MPEG2 Encoder in BLDF (Top)
56

actors with other refined graphs, so there is a problem with redundant copies of actors

among each refined SDF graph.

Method 2 (SDF) simplifies three sub-encoders within method 1 into one common

encoder. Thus, method 2 removes the problem of redundant (duplicated) actors. How-

ever, it still has problems of P2, P3 and P4 unsolved. Thus, unnecessary connections

for picture ID delivery need to be established through preceding actors, most of which

don't need a picture ID, in order to avoid an inconsistent schedule when the sample

rate of tokens changes.

Method 3 (BLDF) has a similar layout as method 2, except that connections for

delivering the picture ID are removed due to parameterized token delivery. This makes

the layout of the encoder much simpler than method 2. Besides this, since parameters

of the body subsystem are dynamically set by the subinit graph, method 3 provides

more flexibility and extensibility in the design and maintenance of the application,

especially by making room for future changes of the specification, along with

improved efficiency in the design by reducing connections between functional blocks.

To illustrate this efficiency advantage, the following table shows how many buff-

ers and connections in BLDF can be saved as the application complexity increases. In

the MPEG2 application, we have two actors named MPEGQuantizer and InverseM-

PEGquantizer that require additional tokens for internal setting of values. The number

of connections and the number of buffers required can be calculated by multiplying the

number of preceding actors and the number of tokens for parameters.

Number of preceding actors: n
57

Number of tokens for parameters: m

Number of connections: n*m

Number of buffers required: n*m

Therefore, generally, n*m unnecessary connections and buffers between preced-

ing actors can be saved in BLDF, compared with alternative modeling formats.

2.2.6 Conclusions of BLDF

This thesis has developed a blocked dataflow (BLDF) modeling semantics for aug-

menting dataflow-based DSP design tools with integrated capabilities for meta-model-

ing, block-based processing, multidimensional representation, and dynamic parameter

reconfiguration. BLDF builds on parameterized dataflow semantics, and is compatible

with decidable dataflow models such as CSDF, MDSDF, SDF, and SSDF. This thesis

Table 1. Comparison of three methods in “Buffer memory”
and “Token delivery”

 “M PEGQuantizer” actor
< # of preceding actors >
SDF+FSM : 3(I), 4(P), 5(B)
SDF, BLDF : 5
of tokens for parameters : 1

“Inverse MPEGQuantizer” actor
of preceding actors : 1
of tokens for parameters : 1

 Total

#B: Number of buffers
required
#W : Number of words
required
#W = #B * #W pB
#WpB : Number of
words per buffer
cf) Picture ID : 1 word
per buffer is
required.(#W pB = 1)

Number of
connections

Number of
buffers
required

Number of
connections

Number of
buffers
required

SDF +
FSM

#B :
= (3+4+5)+(1+1+1)
= 15 buffers

#W = #B * #WpB :
=15 * 1 = 15 words

I subencoder:
= 3*1 = 3
P subencoder:
= 4*1 = 4
B subencoder:
= 5*1 = 5

I subencoder :
= 3*1 = 3
P subencoder :
= 4*1 = 4
B subencoder :
= 5*1 = 5

I subencoder :
= 1*1 = 1
P subencoder :
= 1*1 = 1
B subencoder :
= 1*1 = 1

I subencoder :
= 1*1 = 1
P subencoder :
= 1*1 = 1
B subencoder :
= 1*1 = 1

SDF #B :
= (5)+(1) = 6 buffers
#W = #B * #WpB :
= 6 * 1 = 6 words

5*1 = 5 5*1 = 5 1*1 = 1 1*1 = 1

BLDF #B : 0 buffers
#W : 0 words

0 0 0 0

58

has described the semantics of BLDF, and illustrated its efficiency through a case

study of an MPEG 2 video encoder system. Useful directions for further study include

optimized synthesis, hardware/software partitioning algorithms, and automated verifi-

cation from BLDF specifications.

2.3 Dynamically configured graph topology (DGT)

2.3.1 Abstract

Dataflow is widely used for designing DSP applications. Despite its intrinsic advan-

tages, one weak point is its difficulty in flexible expression of applications with data

dependent change in execution structure. This thesis suggests an approach to provid-

ing dynamically configured dataflow graph topologies using a new modeling and syn-

thesis technique called DGT (Dynamic Graph Topology). DGT builds on PSDF

semantics [84]. All possible graph topologies for a given graph are obtained at compile

time and the corresponding graph based on parameters and data is dynamically set up

in an efficient manner at runtime before the invocation of the associated graph. Sys-

tematic methods for reducing code and buffer size are applied based on characteristics

of each configured graph. We have compared DGT against conventional modeling

approaches through a detailed case study of an MPEG 2 video encoder system, and our

experiments demonstrate the efficiency of the DGT approach.
59

2.3.2 Related Work

To handle data driven changes in execution structure, several dataflow models such as

CDDF [109], BDF [18], and BDDF [75], have been proposed. CDDF uses control

tokens to determine the token transfer at an actor port. However, determination by a

control token is applied to the actor in the next phase of execution, therefore, control

tokens are not present at the moment that the actual phase is determined. BDDF intro-

duces dynamic ports and an upper bound is provided for the data rate so that each

dynamic port can keep the model bounded. However, control flow depends on FSMs.

Using FSMs for minor changes of control flow with dataflow graphs can make appli-

cation models unnecessarily complicated and result in limited flexibility. BDF pro-

vides “SWITCH” and “SELECT” actors to determine control flow. For satisfying

bounded memory and consistency, a symbolic function of probability is introduced.

This function increases the complexity of solving the balance equations (for verifying

sample rate consistency), and results in the possibility of “weak consistency,” which is

less desirable in an implementation.

To provide for more powerful and efficient data dependent execution related to

application mode changes, where entire graphs or subsystem are replaced or reconfig-

ured at run time, this thesis tackles dynamic set-up of dataflow graph topologies before

the graphs are invoked. All configurations of possible graph topologies are pre-com-

puted at compile time and stored for usage at run time. At runtime, the initialization

step of DGT generates an appropriate graph topology based on parameters extracted

from data being delivered and picks up a pre-computed schedule to fit the current

parameter configuration. However, not all configurations are valid or can be obtained
60

at compile time. Some configurations may cause deadlock or inconsistency or may not

be predictable at compile time. Reconfiguration of dataflow graphs is carefully consid-

ered in [73]. [73] analyzes the reconfiguration of a model based on behavioral types

and extracts the least change context to check approximate semantic constraints. This

thesis statically checks the validity of each configuration like [73] and keeps the

scheduling results for use at run time. The main distinguishing feature of DGT is that it

efficiently supports multi-function applications by configuring graph topologies

dynamically. There are two kinds of multi-function applications. The first, which we

call type-I applications, are exclusive-or applications, where only one graph topology

is selected from multiple sets of possible graph topologies for a given application. The

other, which we call type-II applications, are concurrent applications where two or

more applications with different graph topologies are running at the same time. This

thesis focuses on type-I (exclusive-or) application for experimentation of DGT. For

synthesis of type-I applications, [40] extracted commonality measures of each actor

and used these values to determine a hardware bias of each actor by hardware oriented

partitioning. This thesis focuses on software implementation, and applies novel sched-

uling techniques based on graph characteristics to reduce code and buffer size, which

is critical for DSP software. The DGT approach provides efficiency and flexibility in

modeling applications with data driven change of graph topology from runtime param-

eter changes by using pre-computed information (information related to graph topol-

ogy, scheduling, code/buffer size, bounded memory, etc.).
61

2.3.3 Dynamic Graph Topology

2.3.3.1 DGT (Dynamic Graph Topology) specifications

As applications for embedded systems grow more complicated, the requirement of

dynamic on/off of actors and ports of actors as well as the change of transfer rates(pro-

duction and consumption rates) on dataflow edges is unavoidable. To support dynamic

change of graph topologies, actors, ports of actors and transfer rates should be consid-

ered to be adaptable based on the delivered data. Dynamic change of a graph topology

requires run-time scheduling, which potentially causes problems of execution time

overhead. To alleviate this overhead, this thesis provides for dynamic change of graph

topologies through schedules that are pre-computed at compile time. DGT is based on

PSDF semantics [84],[48], but is significantly more flexible than PSDF in that it

allows graph actors and edges to be treated as dynamic parameters as well as the more

standard types of parameters supported in the dynamic reconfiguration capabilities of

PSDF. Therefore, in DGT, the transfer rate of each port of a graph, itself, is determined

by a special subgraph, called the init graph, as in PSDF [84], so that the consumption

rate and production rate of each port of the graph can be determined before the invoca-

tion of the associated DGT graph. However, in DGT, the subinit graph Φs controls the

behavior of the associated body graph by determining the graph topology of the asso-

ciated body graph before the invocation of the body graph. The number of possible

graph topologies is predicted at compile time.

Figure 13 shows that how a subinit graph can extract appropriate header information

and set up parameters (:param) with the required information for the associated body

graph. An appropriate graph is selected from a set of possible graphs(by

X

G1 G2 G3, ,{ }
62

the subinit graph with (:param). This mechanism is effective because many data

tokens for modern DSP applications are delivered as frames with a header part and a

payload part.

Here, we classify actors and ports into two categories based on the presence or

absence of data driven change of their behaviors. Actors and ports that are not changed

in a graph topology are called fixed actors () and fixed ports (), respectively, while

actors and ports having potential dynamic changes are named as varying actors ()

and varying ports (). Here, one point that requires careful consideration is that a

fixed actor() can have a varying port () since a fixed actor () can appear with

different types of ports. The subinit graph Φs dynamically sets up varying actors and

varying ports based on data being delivered and produces an appropriate graph topol-

ogy for the associated body graph. Consistency and bounded memory for each possi-

ble set of graph topologies are verified at compile time. At runtime, the subinit graph

Φs sets up an appropriate graph topology for the associated body graph and picks up

an appropriate pre-computed schedule that also contains code and buffer size mini-

mized for the configured graph. Code and buffer size minimization is obtained by a

scheduling technique appropriately chosen depending on graph characteristics. In

DGT, verification of validity of schedules can be performed at compile time and valid

Figure 13. DGT (Dynamic Graph Topology)

subinit

Identifiers
G1, G2 or G3

body
extract
header

X:param
X:param

domain(X) = {G1, G2,G3}

subinit

Identifiers
G1, G2 or G3

body
extract
header

X:param
X:param

domain(X) = {G1, G2,G3}

X

af pf

av

pv

af pv af
63

schedules can be guaranteed and can be ready to be used at runtime without the over-

head of dynamic scheduling. At runtime, the subinit graph Φs looks up pre-computed

schedules in a table with the appropriate parameter values.

Figure 14 shows an example of how DGT is applied to configure a body graph.

Here, represents all the possible sets of ports to which the varying output

port of the actor can be connected. represents a counterpart of an input

port. In figure 14, dotted line represents varying edges while solid lines represents

fixed edges. Also, a dash filled actor represents a varying actor while a white blank

actor represents a fixed actor. Each actor can have varying ports and fixed ports

together. The transfer rates or connections of varying edges are data dependent while

the transfer rates and connections of fixed edges are fixed. Varying edges and varying

actors can be turned on or off based on the data tokens delivered.

The following equation represents a general case where the varying output or

input port of the actor connects to the input or output port of another actor or

does not connect to anything.

This is an example of the input port of in Figure 14.

pv
o i ak,(){ } ith

ak pv
in i ak,(){ }

1 2

3 5

6 7

f i x e d c o n n e c t i o n
d y n a m i c c o n n e c t i o n

4 Φ b

Φ iΦ s
Φ

p a r a m e t e r i z a t i o n

Figure 14. An example of a graph under DGT

ith

ak jth an

pv
o i ak,(){ } pv

in j an,() ⊥,{ } pv
in i ak,(){ } pv

o j an,() ⊥,{ }=(),=
1st a6
64

Here, means there are no edges from or to the associated port. The graph

() is made up of (a graph with varying graph components) and (a

graph with fixed graph components). By separating from parts that are common

across different subsystems, possible overlapping of resources among different sub-

graphs can be removed.

2.3.3.2 Scheduling of DGT specifications

A DGT subsystem produces various sets of configurations for the associated body

graph Φb. For each graph generated, checking of both synchrony (synchronous data-

flow [63] behavior) for the duration of the configuration and bounded memory is per-

formed. For this purpose, a graph is considered as a general fixed graph after the

subinit graph configures the graph topology. All of the major configurations for the

corresponding graph are captured at the compilation stage and are kept for use at runt-

ime. The subinit graph Φs extracts parameters from the header part of data being pro-

cessed and then sets appropriately the associated body graph Φb. For many

applications, such as those involving a few to several or even dozens of different

modes, the number of combinations of DGT configurations is manageable for reason-

able implementation platforms. Here, the transfer rate of every port of each actor

within a body graph under DGT can be changed by the associated graph Φs.

A useful restriction in the use of DGT is that when a DGT graph is embedded

within a dataflow model other than DGT or PSDF, the transfer rates of interface ports

of a DGT graph must generally be fixed even though the graph topology inside the

DGT subsystem can be vary dynamically. This assumption allows DGT graphs to be

pv
in

1 a6,(){ } pv
o

1 a4,() pv
o

1 a5,(),{ } pv
o

1 a3,() pv
o

1 a2,(), ,{ }=
⊥ G

G Gf Gv∪= Gv Gf

Gf
65

embedded easily in other dataflow models with the external appearance of simple SDF

actors. Therefore, the transfer rates of input/output ports of the DGT graph, itself,

should be set by the init graph Φi before the DGT graph is invoked and should be kept

invariant during the entire iteration of the graph.

Figure 15 shows an example that illustrates DGT scheduling within SDF. The

DGT graph takes two tokens and produces two tokens. Therefore, the schedule for

Figure 15 will be like . However, by looking into the DGT graph , we see

that the actor is a varying actor that can be removed by the subinit graph Φs on

demand. Also, the transfer rates of actor are not fixed. The actor has one output

port, which is a varying port. Therefore, the actor can be connected to either the

actor or the actor . The actor has one varying input port and one fixed output

port. The actor consumes one token either from actor or actor and produces two

tokens to a fixed output port. The schedule of the DGT graph can be either

 or . The schedule for the graph is and the schedule for the

graph is either or . The schedule for each graph is hierarchically

maintained in this manner. Here, the two schedules for the graph are SAS (Single

Appearance Schedule)[11] where each actor appears only once. The following section

Φ

2s Φ 2e⋅ ⋅ Φ

b

b a

a

b c c

c a b

Figure 15. DGT graph under SDF

s

a b c e1 m n 1 2 1
Φb

Φ iΦs

Φ <− DGT graph

parameterization

1 2

SDF

G

s

a b c e1 m n 1 2 1
Φb

Φ iΦs

Φ <− DGT graph

parameterization

1 2

SDF

G

Φ

ma b nc⋅ ⋅ a c⋅ G 2s Φ 2e⋅ ⋅

Φ ma b nc⋅ ⋅ a c⋅

Φ

66

shows how different scheduling techniques are applied systematically based on char-

acteristics of the configured graphs.

2.3.3.3 Minimization of code and buffer requirements

According to graph characteristics and the granularity (complexity) of each actor, effi-

cient scheduling considering both code size and buffer memory requirements is impor-

tant when synthesizing implementations. Since a DGT system supports runtime

adjustment of pre-computed schedules, decisions on the methods for minimizing code

and buffer requirements can be made statically. For an application graph, the ratio of

code size vs. buffer size as well as graph characteristics are important factors to select

an appropriate technique for efficient minimization of both code and buffer size. For

example, for an application with a very small code size but requiring high buffer size,

minimizing code size by SAS (Single Appearance Schedule) is not likely to lead to a

cost-effective solution. Instead, a carefully-constructed MAS (Multiple Appearance

Schedule) is likely to be a better choice due to the advantage of further buffer size

reduction at the expense of some code size increase. In our DGT synthesis approach,

for efficient multiple appearance schedule generation, we have adapted the MAS

approach of [52], and for SAS generation, techniques from [84], [10] and [11] are

applied. For selection between MAS and SAS implementation, we have formulated a

normalized criterion (:Schedule Selector) to determine the most appropriate tech-

nique.

 is the uniformity metric of [52] (explained below) and is the ratio of total code

size to the average data frame size obtained based on simulation. and are user-

SS

SS γµ µ× γτ τ×+=

µ τ

γµ γτ
67

defined weight values and are chosen based on simulation. is proportional to the

number of edges whose transfer rates are multiples of one another. A high value of

reflects potentially low opportunity for buffer size reduction using the techniques of

[52]. suggests which factor between code size and buffer size is more important to

reduce the overall memory requirements. A graph with a higher suggests that a

scheduling technique that is more efficient in reducing code size produces a better

result rather than a buffer-oriented technique. Consequentially, a high value sug-

gests that an SAS is appropriate for the graph.

Figure 16 shows part of an MPEG2 encoder modeled using our DGT technique.

Some of the actors can operate with different parameters and transfer data at rates

depending on the graph() in which the actor is included. Those actors are symbol-

ized as . In Figure 16, represents MC (motion compensators) and represents

a DCT (Discrete Cosine Transform). In MPEG2, the frame requires two MCs and

the frame requires one MC, while the frame does not need a MC. Therefore, three

different graph topologies are required within the application, and the particular topol-

ogy to use at a given time depends on the picture frame type (, , or).

Each graph topology has different values depending on the characteristics the

graph. For G1 of frame, SAS implementation is selected, while for G2 of frame

µ

µ

τ

τ

SS

Figure 16. Part of an MPEG2 video encoder

B

P

I

2 4 2 8 2 4

2 3 2 5

2 5

SAS

MAS

MAS

G1

G2

G3

1GM
r

1GD
r

2GD
r

3GD
r

1GM
r

2GM
r

G

XG M DG

B

P I

I P B

SS

B P
68

and G3 of frame, MAS implementation is selected. In Figure 16, the behaviors of the

actor and the actor can be changed depending on the graph characteristics and

the change of parameters, while other actors are invariant.

From a DGT representation, we can often reduce code size by removing overlapping

graph components across graph sets. If is the number of common actors in graphs

with different configurations, and is the number of graphs () including the

common actor ().

2.3.3.4 Operational semantics of DGT

Figure 17 shows the operational semantics of DGT operating with any type of data-

flow model. Because of its ability to operate with different types of dataflow models,

DGT is more accurately characterized as a meta-modeling technique. Each hierarchi-

cal actor () in a DGT system also can be viewed as an independent graph and can

have its own schedule. In our implementation of DGT, we maintain schedules in a

hierarchical manner. Therefore a graph () has the schedule for itself and also main-

tains schedules for each hierarchical actor() under the graph (). Each hierarchical

actor under also maintains the schedule for itself and schedules for graphs repre-

senting every hierarchical actor inside . This way, the schedule for the graph

and schedules for sub graphs of s inside are maintained in a hierarchical way until

graphs in the lowest level of the hierarchy are scheduled.

The function is a function to schedule a graph . For all general

hierarchical actors () inside except s of DGT, is applied. The function

I

MG DG

m

λi Gi

ith Ci

ReducedCodeSize codeSize Ci()
j 1=

λi 1–

∑
i 1=

m

∑=

Φ

G

Φ G

Φ G

Φsub Φ G

Φ G

scheduleX G() G

Φ G Φ scheduleX
69

 is applied for of DGT within . Then is applied to have

the schedule for the graph , itself and schedules for s in kept linked together.

The function in generates the corresponding graph

with given parameters. Ultimately, in a generates an appro-

priate schedule based on the graph topology along with code and buffer size suitable

for each graph. For each configured graph, type checking of the given graph is per-

formed and then if is bigger than for selecting an scheduling technique,

the chosen SAS based technique () is applied. Otherwise, the chosen

MAS based technique () is chosen.

2.3.4 Experimental results

In our experiments, we developed MPEG2 encoder, Laplacian pyramid, Multi resolu-

tion spline pyramid, Pyramid complex application which is a combined model of

Laplacian pyramid and Multi-resolution spline and an image complex application con-

sisting of several individual morphological applications (Top-Hat, Smoothing, Lapla-

cian and Gradient).

For MPEG2 encoder, an MPEG2 video encoder has some different operational

blocks depending on the picture frame, but shares most of the blocks across picture

frames (I, B or P frame). We compared the total memory usage of a DGT graph imple-

mentation with a conventional separate-graph approach. A separate graph approach

uses a combination of SDF and FSM in all experiments (table 2~6). Each SDF graph

processes a different picture frame. The DGT method selects different scheduling

methods (SAS or MAS) depending on graph characteristics.

scheduleDGT Φ G linkSchedList

G Φ G

setGraphTopo ylog scheduleDGT

schedulerXDF scheduleX

SS ThresholdSS

SASTechnique

MASTechnique
70

For each Laplacian and Multi resolution pyramid application, we compared the

function {
for each of in

end for
 =

for each in
if(under)

else

end for

return
}
function {

if(>)

else

return
}
function {

//in & out port of

for each in

end for

return
}
function {

for each in

for each in

end for
for each in

end for
end for

return
}

scheduleX G()
Φi DGT G

schedΦi scheduleX Φi i[]()=

shedG scheduleXDF G()
Φ G

Φ DGT
schedΦ i[] scheduleDGT Φ i[]()=

schedΦ i[] scheduleX Φ i[]()=

schedG linkSC linkSC shedG schedΦ,() schedΦi,()=
schedG

schedulerXDF G()
SS ThresholdSS
schedG SASTechnique G()=

schedG MASTechnique G()=
schedG

scheduleDGT Φ()
schedΦs scheduleX Φs()=
setUpPortTransferRate Φ() Φ
Cb getParamConfigSets Φb()=

Cb Φb
Φ∗b setGraphTopo y Cb Φb,()log=
schedΦ∗b

i[] scheduleX Φ∗b()=

schedΦ linkSC schedΦ∗b
schedΦs,()=

schedΦ

setGraphTopo y Φ C,()log
determineGvTopo y Φ C,()log

a Φ
pv

o a
ev{ } connectEdge pv

o i av,()()=

pv
in a

ev{ } ev{ } connectEdge pv
in i av,()()∪=

Φv av{ } ev{ }∪=
Φ Φv Φf∪=

Φ

Figure 17. Operational semantics of DGT operating with any type of dataflow
model

 is obtained based on simulationThresholdSS
71

total memory usage of DGT modeling method with the conventional separate dataflow

model. Laplacian pyramid and Multi resolution pyramid may need different dataflow

graphs depending on the depth of an image pyramid. Finally, the change of an image

pyramid depth requires the variation of a dataflow graph topology. These variation can

be modeled under SDF and FSM refinement with overlapping of partial graph topol-

ogy among dataflow graphs. Under DGT semantics, an image pyramid application

with different pyramid depth can be efficiently modeled within a single dataflow graph

domain while avoiding redundant resource usage.

For a pyramid complex and an image complex application, each application (a

pyramid complex and an image complex application) consists of individual sub appli-

cations for different purposes while sharing partial operational functionalities (or

actors). Thus, a pyramid complex or an image complex application can be configured

for multiple sub applications at runtime while changing the combination of each sub

applications. Under SDF and FSM refinement approach, every combination of indi-

vidual sub applications may correspond to separate dataflow graph models. However,

under DGT semantic, these individual sub applications can be modeled within a single

dataflow semantic and can be reconfigured at runtime while setting up a combined sin-

gle graph topology for multiple individual applications while avoiding unnecessary

resource overlapping among applications.

For obtaining the code size, we used the Texas Instruments Code Composer simu-

lator of the 64XX series processor. In the experiments, as the frame size increases, the

impact of buffer size on total memory usage becomes larger than the impact of code

size. We applied SAS, MAS and a combination of SAS and MAS to each case.
72

In C3 and C6, (see Table 2) while SAS is selected for both 128*128 and 256*256,

either SAS or MAS is selected for each picture frame (I, B and P) dynamically for a

frame larger than 256*256. This is because a trade-off between code size and buffer

size exists in the vicinity of 480*720 size. In Multi resolution spline (see Table 3) and

Laplacian pyramid (see Table 4) experiments, this pattern (SAS to MAS migration)

appears around 480*720 resolution. In a pyramid complex (see Table 5) and an image

complex application (see Table 6), the migration of scheduling method from SAS to

MAS for minimization of total memory usage appears around 768*1024 resolution.

However, this pattern of scheduling method migration (SAS to MAS) is common to all

image processing benchmark applications (table 2 to 6). It’s because the minimization

of the buffer size is more effective than code size reduction as image size increases.

The experiment (table 2~6) shows that the DGT approach reduces total memory

usage from 60% to 72% compared with a separate graph approach through shared

DG SG Frame
Size

C1 C2 C3 C4 C5 C6

Code 26,469 31,946 26,469 63,341 79,773 63,341
Buffer 1,557 1,429 1,557 4,667 4,283 4,667

128 *
128

Total 28,026 33,375 28,026 68,008 84,056 68,008
Code 26,469 31,946 26,469 63,341 79,773 63,341
Buffer 6,173 5,661 6,173 18,515 16,979 18,515

256 *
256

Total 32,642 37,607 32,642 81,856 96,752 81,856
Code 26,469 44,903 31,393 63,341 118,645 94,180
Buffer 52,852 19,991 21,788 158,551 59,967 65,364

480 *
720

Total 79,321 64,894 53,181 221,892 178,612 159,544
Code 26,469 58,074 44,564 63,341 158,157 133,692
Buffer 130,680 45,320 49,397 392,035 135,955 148,192

768 *
1024

Total 157,149 103,394 93,961 455,376 294,112 281,884
Code 26,469 58,074 50,041 63,341 158,157 150,124
Buffer 1,817,064 100,940 100,937 5,451,187 302,815 302,524

1080
*
1920 Total 1,843,533 159,014 150,978 5,514,528 460,972 452,648

. DG: DGT approach, SG: Separate graph approach (FSM+SDF), C1: SAS, C2: MAS,

. C3: SAS+MAS, C4: SAS, C5: MAS, C6: SAS+MAS

Table 2. Memory usage comparison(MPEG2 encoder)
73

code and the streamlining of scheduling methods to fit graph characteristics. The runt-

ime overhead for finding a proper schedule for each graph topology is only

, where is the number of varying graph components (varying actors and

varying edges) and is the number of possible schedules for each DGT graph depend-

ing on the topology, which is relatively modest compared with the complexity of typi-

cal signal/image processing actors.

Ω N() Ω m()+ m

N

DG SG Frame
Size

C1 C2 C3 C4 C5 C6

Code 38,821 263,941 38,821 100,397 775,757 100,397
Buffer 11,661 1,293 11,660 34,977 3,873 34,976

128 *
128

Total 50,482 265,234 50,481 135,374 779,630 135,373
Code 38,821 263,941 38,821 100,397 775,757 100,397
Buffer 46,635 5,163 46,634 139,899 15,483 139,898

256 *
256

Total 85,456 269,104 85,455 240,296 791,240 240,295
Code 38,821 263,941 85,049 100,397 775,757 239,081
Buffer 210,171 23,547 147,962 630,507 70,635 443,882

480 *
720

Total 248,992 287,488 233,011 730,904 846,392 682,963
Code 38,821 263,941 263,941 100,397 775,757 775,757
Buffer 497,411 55,043 55,042 1,492,227 165,123 165,122

768 *
1024

Total 536,232 318,984 318,983 1,592,624 940,880 940,879
Code 38,821 263,941 263,941 100,397 775,757 775,757
Buffer 1,259,067 139,323 139,322 3,777,195 417,963 417,962

1080 *
1920

Total 1,297,888 403,264 403,263 3,877,592 1,193,720 1,193,719

Table 3. Memory usage comparison (Multi resolution Spline Pyramid)

DG SG Frame
Size

C1 C2 C3 C4 C5 C6

Code 22,515 128,387 22,515 51,479 369,095 51,479
Buffer 5,721 537 5,720 17,157 1,605 17,156

128 *
128

Total 28,236 128,924 28,235 68,636 370,700 68,635
Code 22,515 128,387 22,515 51,479 369,095 51,479
Buffer 22,875 2,139 22,874 68,619 6,411 68,618

256 *
256

Total 45,390 130,526 45,389 120,098 375,506 120,097
Code 22,515 128,387 44,311 51,479 369,095 116,869
Buffer 103,071 9,759 71,966 309,207 29,271 215,894

480 *
720

Total 125,586 138,146 116,277 360,686 398,366 332,763
Code 22,515 128,387 128,387 51,479 369,095 369,095
Buffer 243,971 22,787 22,786 731,907 68,355 68,354

768 *
1024

Total 266,486 151,174 151,173 783,386 437,450 437,449
Code 22,515 128,387 128,387 51,479 369,095 369,095
Buffer 617,547 57,675 57,674 1,852,635 173,019 173,018

1080 *
1920

Total 640,062 186,062 186,061 1,904,114 542,114 542,113

Table 4. Memory usage comparison (Laplacian Pyramid)
74

2.3.5 Conclusions of DGT

This thesis develops efficient support for dynamic graph topologies for dataflow

graphs requiring different execution structures based on dynamic parameters, and data

being processed. In addition to providing efficient and flexible support for multiple

modes of system operation, DGT allows us to reduce overall memory size by system-

atically sharing code and applying tailored scheduling methods across the different

graph topologies that make up a DGT application. Useful directions for future work

DG SG Frame
Size

C1 C2 C3 C4 C5 C6

Code 32,719 221,674 32,719 57,405 435,315 57,405
Buffer 8,723 947 8,723 17,444 1,892 17,444

128 *
128

Total 41,442 222,621 41,442 74,849 437,207 74,849
Code 32,719 221,674 32,719 57,405 435,315 57,405
Buffer 34,886 3,782 34,886 69,770 7,562 69,770

256 *
256

Total 67,605 225,456 67,605 127,175 442,877 127,175
Code 32,719 221,674 32,719 57,405 435,315 57,405
Buffer 157,520 17,552 157,520 315,038 35,102 315,038

480 *
720

Total 190,239 239,226 190,239 372,443 470,417 372,443
Code 32,719 221,674 221,674 57,405 435,315 435,315
Buffer 372,098 40,322 40,322 744,194 80,642 80,642

768 *
1024

Total 404,817 261,996 261,996 801,599 515,957 515,957
Code 32,719 221,674 221,674 57,405 435,315 435,315
Buffer 941,870 102,062 102,062 1,883,738 204,122 204,122

1080 *
1920

Total 974,589 323,736 323,736 1,941,143 639,437 639,437

Table 5. Memory usage comparison (Pyramid Complex)

DG SG Frame
Size

C1 C2 C3 C4 C5 C6

Code 13,049 17,001 13,049 28,097 43,905 28,097
Buffer 406 322 406 1,612 1,276 1,612

128 *
128

Total 13,455 17,323 13,455 29,709 45,181 29,709
Code 13,049 17,001 13,049 28,097 43,905 28,097
Buffer 1,612 1,276 1,612 6,436 5,092 6,436

256 *
256

Total 14,661 18,277 14,661 34,533 48,997 34,533
Code 13,049 17,001 13,049 28,097 43,905 28,097
Buffer 9,049 7,159 9,049 36,184 28,624 36,184

480 *
720

Total 22,098 24,160 22,098 64,281 72,529 64,281
Code 13,049 17,001 14,873 28,097 43,905 35,393
Buffer 20,104 15,904 17,704 80,404 63,604 70,804

768 *
1024

Total 33,153 32,905 32,577 108,501 107,509 106,197
Code 13,049 17,001 17,001 28,097 43,905 43,905
Buffer 54,274 42,934 42,934 217,084 171,724 171,724

1080 *
1920

Total 67,323 59,935 59,935 245,181 215,629 215,629

Table 6. Memory usage comparison (Image Complex)
75

include integrating DGT with other dataflow models as a meta-modeling technique,

and implementation of concurrent applications through DGT semantics under resource

and performance constraints.

DG SG Frame
Size

C1 C2 C3 C4 C5 C6

Code 26,469 31,946 26,469 63,341 79,773 63,341
Buffer 1,557 1,429 1,557 4,667 4,283 4,667

128 *
128

Total 28,026 33,375 28,026 68,008 84,056 68,008
Code 26,469 31,946 26,469 63,341 79,773 63,341
Buffer 6,173 5,661 6,173 18,515 16,979 18,515

256 *
256

Total 32,642 37,607 32,642 81,856 96,752 81,856
Code 26,469 44,903 31,393 63,341 118,645 94,180
Buffer 52,852 19,991 21,788 158,551 59,967 65,364

480 *
720

Total 79,321 64,894 53,181 221,892 178,612 159,544
Code 26,469 58,074 44,564 63,341 158,157 133,692
Buffer 130,680 45,320 49,397 392,035 135,955 148,192

768 *
1024

Total 157,149 103,394 93,961 455,376 294,112 281,884
Code 26,469 58,074 50,041 63,341 158,157 150,124
Buffer 1,817,064 100,940 100,937 5,451,187 302,815 302,524

1080 *
1920

Total 1,843,533 159,014 150,978 5,514,528 460,972 452,648

Table 7. Memory usage comparison

DG: DGT approach, SG: Separate graph approach (FSM+SDF), C1: SAS, C2:
MAS, C3: SAS+MAS, C4: SAS, C5: MAS, C6: SAS+MAS
76

Chapter 3 : Scheduling of DSP applications onto

mult iprocessors

3.1 Introduction

In the previous chapter, we described two new modeling techniques; Blocked Data-

Flow (BLDF) and Dynamically configured Graph Topology (DGT). Blocked Data-

Flow (BLDF) tackled blocked processing feature of image processing applications.

BLDF improved the expressivity of a dataflow model by a quasi-static scheduling

with meta-variables and provides an efficient way of modeling applications with a

blocked processing pattern by exploiting parameterized token delivery. Dynamically

configured Graph Topology (DGT) provided runtime reconfiguration of a graph topol-

ogy while taking advantage of static scheduling information. DGT enabled us to model

an application with various graph topologies depending on the change of parameters

in a single dataflow domain.

In this chapter, we introduce a novel scheduling technique for mapping a dataflow

graph over multiprocessors environment and describe the major features and contribu-

tions of the suggested scheduling technique.
77

3.2 Pipeline Decomposition Tree scheduling

3.2.1 Abstract

Modern embedded systems for image processing involve increasingly complex levels

of functionality under real-time and resource-related constraints. As this complexity

increases, the application of single-chip multiprocessor technology is attractive. To

address the challenges of mapping image processing applications onto embedded mul-

tiprocessor platforms, this paper presents a novel data structure called the pipeline

decomposition tree (PDT), and an associated scheduling framework, which we refer to

as PDT scheduling. PDT scheduling exploits both heterogeneous data parallelism

[55][81] and task-level parallelism [4][16][36], which are important considerations for

scheduling image processing applications, and systematically derives customized

pipelined architectures that are streamlined for the given implementation constraints.

3.2.2 Introduction

The proliferation of embedded systems that involve image processing, such as digital

cameras and video-conferencing systems, exhibits trends towards the integration of

multiple image processing operations to provide diverse functionalities, and the appli-

cation of embedded multiprocessor technology to provide the required performance.

This paper presents a novel data structure called the pipeline decomposition tree

(PDT), and an associated scheduling framework, which we refer to as PDT schedul-
78

ing, for mapping image processing applications onto embedded multiprocessor sys-

tems. PDT scheduling is based on a model of the target implementation as a coarse-

grained (task-level), pipelined architecture. PDT scheduling spreads functional opera-

tions over the underlying pipeline through construction and iterative analysis of the

PDT. Intuitively, the PDT can be viewed as a kind of depth first search tree whose

nodes are mapped to stages of the targeted pipeline. Any number of nodes of the PDT

can be mapped to a single stage of the pipeline. PDT scheduling ultimately generates

schedules with different latency/throughput trade-offs to effectively explore the multi-

dimensional space of signal processing performance considerations. Furthermore, the

PDT scheduling process can take into consideration various scheduling constraints,

such as constraints on the number of available processors, and the amounts of on-chip

and off-chip memory, as well as performance-related constraints (i.e., constraints

involving latency and throughput).

 The PDT scheduling approach places special emphasis on distinguishing and tak-

ing into account different modes of parallelism — task-level parallelism, as well as

homogeneous and heterogeneous data parallelism — that must be exploited carefully

to achieve efficient implementation of image processing applications. Data parallelism

is a specialized form of parallel processing that allows multiple copies of a single task

to execute simultaneously on multiple processing units. Heterogeneous data parallel-

ism is an extension of data parallelism that allows for variability in the sizes of the

memory regions to which data parallelism is applied. Under heterogeneous data paral-

lelism, each copy of a task handles different sizes of blocks from the input data stream.

Although concepts related to the PDT and PDT scheduling can be applied to vari-
79

ous domains of signal processing, including speech processing, high fidelity audio

processing, and digital communications, the emphasis in PDT on data parallelism con-

siderations makes the technique especially well suited to image processing.

Throughout the process of PDT scheduling, different interprocessor communica-

tion (IPC) architectures (point-to-point communication links or shared buses), and

memory architectures (shared-memory or distributed memory architectures) are con-

sidered in an effort to achieve the most effective balance under the given constraints

and available modes of parallelism.

3.2.2.1 Related Work

In most practical contexts, scheduling applications onto multiprocessors environments

is NP hard. Many deterministic heuristics and evolutionary algorithm techniques have

been proposed in this area (e.g., see [2][19][23][28][115]). In some cases, evolutionary

algorithms are used in conjunction with deterministic approaches to yield their com-

plementary advantages, and systematic methods have been developed also to perform

such integration between evolutionary and deterministic approaches [6]. In particular,

evolutionary approaches provide robust, easily adaptive methods for global search,

while deterministic approaches are effective at exploiting application-specific insights

that often provide for derivation of good solutions very rapidly, as well as effective

local optimization. The PDT approach can be viewed as a deterministic approach that

can be used in isolation as a fast, effective heuristic, and can also be combined with

evolutionary algorithms when more thorough, computationally-intensive optimization

is desired. This paper focuses on the former application of PDT scheduling; integra-
80

tion with evolutionary algorithms or other randomized search methods is a useful

direction for further investigation.

A number of important deterministic techniques have been proposed in previous

work related to embedded multiprocessor implementation of signal processing appli-

cations. Banerjee, Hamada, Chau, and Fellman[7] presented a two-step approach for

coarse-grain pipeline scheduling by separating partitioning and process allocation for

heterogeneous architectures. Hoang and Rabaey[32] developed a heuristic algorithm

by innovative modeling and incorporation of interprocessor communication costs into

the framework of coarse-grain pipelining. Konstantinides, Kaneshiro, and Tani[53]

tackled detailed issues in modeling input/output (I/O) operations by decomposing I/O

into sequential and parallel components. PDT scheduling is different from these

approaches in its deep integration of data parallelism configurations with task-level

parallelism and coarse-grained pipeline implementation. Our PDT approach is moti-

vated by the fundamental importance of data parallelism in performance optimization

of image processing applications.

Subhlok and Vondran[99] have previously considered the integration of data par-

allelism with task-level parallelism for multiprocessor scheduling. However, this work

focuses mainly on applications that can be represented as linearly-chained dataflow

graphs. Applying data parallelism and task parallelism to applications that have more

general dataflow topologies causes various complications that are not addressed by the

techniques of Subhlok.

In contrast, this paper targets general application dataflow topologies, including

those with linear and non-linear data dependencies, and configures data parallelism
81

and task parallelism appropriately based on the dataflow topology as well as the given

implementation constraints. To demonstrate our proposed methods, we have applied

them to complex morphological operations, Laplacian pyramid computation, Gaussian

pyramid computation, and multi-resolution splines, which are all important image pro-

cessing subsystems. The morphological operations that we have considered include

opening, closing, gradient, Laplacian, smoothing and top-hat.

3.2.3 PDT(Pipeline Decomposition Tree) based scheduling

3.2.3.1 Assumptions of PDT scheduling

PDT scheduling is applied based on the following constraints and architectural

assumptions.

• Assumption 0:

PDT scheduling operates under HSDF (Homogeneous Synchronous Dataflow

Graph). For an application modeled under non HSDF, conversion to HSDF is required

before applying PDT scheduling.

• Assumption 1:

On-chip memory are dumped down to an external memory or filled up from the

external memory based on a window (or block) size to reduce a data transfer overhead

between on-chip memory and external memory. This way, on-chip memory can be

efficiently managed by placing relating data onto neighboring block within on-chip

memory.

• Assumption 2:

Tasks in a graph are mapped to clusters based on task dependency[27]. Tasks
82

sharing a predecessor are mapped to the same cluster. These clusters are named TG-

Cluster(Task Grouped Cluster). In a graph, the point preceding TG-Cluster is named

branch point. Mapping tasks following branch point onto the same cluster allows for

exploiting the benefit of a shared memory architecture and leads to reducing a memory

size since tasks in TG-Cluster share input data. Other tasks are mapped to individual

different clusters. Figure 22 d) shows an example of branch point and TG-Clus-

ter(Task Grouped Cluster).

• Assumption 3:

Tasks in a TG-Cluster(Task Grouped Cluster) could run in parallel depending on

available processing units.

• Assumption 4:

A couple of processing cores can be integrated in a single chip; “DSP chip”. Each

core holds its own separate internal cache. Processor cores within each DSP chip hold

a shared on-chip memory. This thesis considers only a shared architecture for on-chip

memory to reduce the size of memory area in a DSP chip. PDT scheduling challenges

scheduling an application under limited on-chip and external memory size by monitor-

ing a peak memory usage of the application. Figure 18 shows how on-chip memory

and an internal cache are integrated in each DSP chip.

• Assumption 5:

External memory is located outside a DSP chip. There are two different architec-

tures available for an external memory: a shared external memory architecture and a

separate external memory architecture. In a shared architecture, an external memory

can be accessed by all DSP chips sharing it whereas in a separate architecture, each
83

DSP chip has its own external memory and can access only the associated external

memory.

• Assumption 6:

In case of separate external memory architecture, each DSP chip is assumed to be

connected through VME (Versa Module Europa). The IPC cost is modeled for estimat-

ing communication cost between processors. For a shared external memory architec-

ture, bus contention among DSP chips sharing a memory area is considered instead.

Figure 18. An “on-chip” memory and an internal cache of DSP chip

p r o c e s s o r
c o r e # 1

In t e r n a l c a c h e

p r o c e s s o r
c o r e # 2

I n t e r n a l c a c h e

p r o c e s s o r
c o r e # 3

In t e r n a l c a c h e

O n - C h i p (I n t e r n a l s h a r e d m e m o r y)

D S P C h i p

p r o c e s s o r
c o r e # 1

In t e r n a l c a c h e

p r o c e s s o r
c o r e # 2

I n t e r n a l c a c h e

p r o c e s s o r
c o r e # 3

In t e r n a l c a c h e

O n - C h i p (I n t e r n a l s h a r e d m e m o r y)

D S P C h i p

Figure 19. Comparison of a shared external memory architecture and a separate external memory
architecture

a) shared external memory architecture

cache cache cache

On-Chip Memory

cache cache cache

On-Chip Memory

External Memory
(shared memory)

cache cache cache

On-Chip Memory

cache cache cache

On-Chip Memory

External
Memory

External
Memory

VME bus

DSP Chip#1 DSP Chip#2 DSP Chip#3 DSP Chip#4

cache cache cache

On-Chip Memory

cache cache cache

On-Chip Memory

External Memory
(shared memory)

cache cache cache

On-Chip Memory

cache cache cache

On-Chip Memory

External
Memory

External
Memory

VME bus

DSP Chip#1 DSP Chip#2 DSP Chip#3 DSP Chip#4

b) separate external memory architecture
84

3.2.3.2 Heterogeneous data parallelism

In many image processing operations, the overall operation can be performed by itera-

tively executing a lower-level operation on different parts of the input image. Usually,

this lower level operation requires only a subset of neighboring pixels for any given

invocation, and furthermore different invocations of the lower level operation are usu-

ally independent of one other. The neighboring data items for each invocation is called

a “window” or “block” of image pixels.

Keinert, Haubelt, and Teich have studied the formal modeling of such window-

based image processing operations, and have developed novel extensions of the syn-

chronous dataflow model for effectively representing this important class of opera-

tions [43]. Keener’s work is limited to the constraint of static scheduling.

In contrast, the blocked dataflow modeling technique [48] that we present in this

thesis provides for more flexible quasi static scheduling. This is achieved by parame-

terizing windowed (“blocked”) data, and dynamically adjusting the associated param-

eter values as necessary before executing a dataflow subsystem. This feature of

windowed data representation allows us to flexibly exploit data parallelism when map-

ping image processing applications onto embedded multiprocessor platforms.

Data parallelism allows multiple copies of a single task to run on multiple pro-

cessing units by task duplication. An operation of each task is independent. Each cop-

ied task processes a sub region of the whole data frame. The whole data frame can be

divided into sub regions with different offsets. Finally the whole data frame is pro-

cessed by each copied task in parallel. The sizes of sub areas are same for all copied

tasks in a general data parallelism. Heterogeneous data parallelism is an extension of
85

data parallelism. Heterogeneous data parallelism allows for dynamic change of the sub

region size depending on the availability of resource. In heterogeneous data parallel-

ism, the whole data frame consists of copy-sets. The size of copy-set may or may not

be the same depending on available idle processors. Each copy-set consists of the

same size of sub regions. Each copied task are allocated to handle different copy-set

areas. Inside each copy set area, each task handles different sub regions. The size of

sub regions within a copy-set is same and can be obtained by dividing the size of the

copy-set by the number of tasks assigned to the copy-set. The number of tasks within a

copy-set may vary from 1 to N depending on available idle processors. Each copied

task corresponds to each invocation of the task. So each invocation of a single task

processes different sub regions and is allocated to different copy-sets.

Figure 20 a) shows copy-set 1 has a single task which is the first invocation of

task , and processes a half(=) of the whole data frame(). Each

invocation of the task can process different data frames, different copy-sets or different

sub regions. In figure 20, the size of a sub region of copy-set 1 becomes since the

number of task invocation(=) within the copy-set ia 1. Copy-set 2 has two copied

tasks which lead to two different invocations of the task ; and . Each

invocations and processes copy-set 2. The size for copy-set 2 is . The

size of each sub region of copy-set 2 is as copy-set 2 has two invocations. Figure

20 b) shows how the whole data frame is divided into copy-sets and, in turn, sub

regions within each copy-set. Figure 20 c) shows how the execution time for task A is

reduced by filling the idle processor under an idle interval; due to

exploiting heterogeneous data parallelism. In Figure 20 c),

A I1 A() ℜ 2⁄ ℜ W H×=

ℜ 2⁄

1

A I2 A() I3 A()

I2 A() I3 A() ℜ 2⁄

ℜ 4⁄

ℜ

P2 idleInterval
86

 is the earliest end time among processors within the

stage. is the next earliest end time. is an

interval where no tasks are available for scheduling due to task dependency between

 and . Task can be

invoked after receiving data from task due to data dependency between task A and

task E.

Task duplication under general data parallelism allows for each invocation of copied

tasks to process different sequential data frame in parallel. Thus, task duplication

under general data parallelism contributes toward improving throughput, but causes an

EarliestEndTimeForSchedule

EarliestEndNextTimeForSchedule idleInterval

EarliestEndTimeForSchedule EarliestEndNextTimeForSchedule E

A

Figure 20. Heterogeneous data parallelism.

I 1 (A)I 1 (A)

I 2 (A)I 2 (A) I 3 (A)I 3 (A)

c o p y - s e t 1

c o p y - s e t 2

I 1 (A)I 1 (A)

I 2 (A)I 2 (A) I 3 (A)I 3 (A)

c o p y - s e t 1

c o p y - s e t 2

I1(A)I1(A)

I2(A)I2(A) I3(A)I3(A)

W

H

2
H

2
W

2
W

data frame

I1(A)I1(A)

I2(A)I2(A) I3(A)I3(A)

W

H

2
H

2
W

2
W

I1(A)I1(A)

I2(A)I2(A) I3(A)I3(A)

W

H

2
H

2
W

2
W

data frame

P1

P2 C

B A

P3 D

E

EarliestEndTimeForSchedule NextEarliestEndTimeForSchedule

idleInterval

P1

P2 C

B I1(A)

P3 D

EI2(A)

I3(A)

By heterogeneous data parallelism

P1

P2 C

B A

P3 D

E

EarliestEndTimeForSchedule NextEarliestEndTimeForSchedule

idleInterval

P1

P2 C

B I1(A)

P3 D

EI2(A)

I3(A)

By heterogeneous data parallelism

a) copy-set

b) sub region c) effect of heterogeneous data parallelism on
scheduling
87

increased buffer size since each copied task processes multiple sequential data frames

at the same time. However, task duplication under heterogeneous data parallelism con-

tributes toward reducing execution time of the corresponding stage without increase of

buffer size. Each invocation of a single task processes different sub regions within a

single data frame.

Figure 21 compares task duplication of task each under general data parallel-

ism and under heterogeneous data parallelism. In figure 21 a), each invocation of task

 processes different sequential data frames. The first invocation of task ,

processes th data frame whereas and process each th and

th data frames respectively. Therefore, as the number of invocation increases, the

buffer size between and increases too. In figure 21 b), the whole data frame

is divided into several copy-sets. Each copy-set consists of different size of sub

regions and is processed by different invocations of task . Decision on the number

of invocations of a task in each copy-set, the size of a copy-set and the size of sub

regions within each copy-set are based on available idle processors.

For task , the relationship between the size of copy-sets and each invocation of

tasks is in equation 7-9.

(7)

(8)

(9)

 returns an area processed by invocation of task within th copy

set.Here, is same for all within the associated coy set. is the area pro-

cessed within th copy set. is the number of task invocations within th copy-

Ak

Ak Ak I1 Ak
n 1–()

n 1– I2 Ak
n() I2 Ak

n 1+() n

n 1+

Ak 1– Ak 1+

Ak

Ak

SRi region In Ak()() n, j CSm 1–

m 1=

i

∑+= =

region CSi() CSi SRi×=

frame region CSi()
i 1=

M

∑=

SRi nth Ak i

SRi j region CSi()

i CSi i
88

set(). is the total number of copy-sets for processing the data frame, .

3.2.3.3 memory usage

As CMOS technology progresses, the effective usage of on-chip memory

becomes a key issue in integration of DSP chip. This section shows how in general a

shared memory architecture and task duplication[1][22][47][80] influence the buffer

memory size both in on-chip memory and in external memory. This comparison is

based on an accumulative usage of memories used by tasks. The memory usage model

allows for predicting the effect of task duplication on memory usage by a linear mem-

ory consumption pattern.

Task duplication is considered only if the associated task has the feature of hetero-

geneous data parallelism and processors are available for duplication. The number of

duplications of a single task can be dynamically changed depending on the number of

available processors. This section also shows how task duplication each under data

parallelism and under heterogeneous data parallelism influences the size of used mem-

CS0 0= M frame

Figure 21. Task duplication under general data parallelism and under heterogeneous data parallelism

a) Task duplication under
general data parallelism

b) Task duplication under
heterogeneous data parallelism

)(1
n

kAI

)(2
n

kAI

)(3
n

kAI

)(
1

n
kCS AI

…

Copy-set 1

… …

Copy-set 1 Copy-set i

… …

)(
11

n
kCS AI +

)(
12

n
kCSCS AI +

)(
12

n
kCS AI +

)(
13

n
kCS AI +

)(
11

n
kCS

AI i

m
m∑ −+

)(
1

n
kCSCS

AI i

m
mi ∑ −+

)(
12

n
kCS

AI i

m
m∑ −+

)(
13

n
kCS

AI i

m
m∑ −+

)(1
n

kAI

)(2
n

kAI

)(3
n

kAI

)(
1

n
kCS AI

…

Copy-set 1

… …

Copy-set 1 Copy-set i

… …

)(
11

n
kCS AI +

)(
12

n
kCSCS AI +

)(
12

n
kCS AI +

)(
13

n
kCS AI +

)(
11

n
kCS

AI i

m
m∑ −+

)(
1

n
kCSCS

AI i

m
mi ∑ −+

)(
12

n
kCS

AI i

m
m∑ −+

)(
13

n
kCS

AI i

m
m∑ −+

)(1
1

−n
kAI

)(2
n

kAI

)(1
3

+n
kAI

…

1−kA 1+kA

)(1
1

−n
kAI

)(2
n

kAI

)(1
3

+n
kAI

…

1−kA 1+kA
89

ory region.

3.2.3.3.1 Memory usage comparison

3.2.3.3.1.1 “Without Task Duplication”

Equation 4 shows memory usage under a separate memory architecture. Here, is

the number of tasks within th cluster, . is the code size for task within .

 is the buffer size for th input port of task within . Equation 11 shows

memory usage under a shared memory architecture, for buffer memory becomes 1

since all tasks within shares buffer memory.

• 1. A separate memory architecture

(10)
• 2. A shared memory architecture

(11)
3.2.3.3.1.2 “With Task Duplication”

A shared memory architecture both under general data parallelism and under heteroge-

neous data parallelism allows for reducing buffer size compared to a separate memory

architecture whereas code size under both architectures is same. Task duplication

under general data parallelism increases buffer size proportional to whereas task

duplication under heterogeneous data parallelism doesn’t increase buffer size. It’s

because copied tasks by task duplication under heterogeneous data parallelism process

different offsets within the same data frame. Code size is assumed to include a stack

τi

i τi c i j,() j τi

b i j k, ,() k j τi

τi

τi

∑ ∑ ∑∑ ∑
= = == =

+=
cT

i

i

j

iIn

k

cT

i

i

j
kjibjicMemsp

1 1 11 1

ττ
),,(),(

∑ ∑∑ ∑∑ ∑ ∑∑ ∑
= == ==

=

= == =
+=+=

cT

i

iIn

k

cT

i

i

j

cT

i

i

j

iIn

k

cT

i

i

j
kibjickibjicMemsh

1 11 11

1

1 11 1
1),(),(),,(),(

τττ

Dj
90

size. Thus, code size increases proportional to for both general data parallelism

and heterogeneous data parallelism.

3.2.3.3.1.3 Task duplication under general data parallelism

• 1. A separate memory architecture

(12)
• 2. A shared memory architecture

(13)
3.2.3.3.1.4 Task duplication under a heterogeneous data parallelism

• 1. A separate memory architecture

(14)
• 2. A shared memory architecture

(15)

3.2.3.3.2 Memory usage ratio

3.2.3.3.2.1 A separate memory architecture vs. A shared memory architecture[With-

out task duplication]

(16)
3.2.3.3.2.2 A separate memory architecture vs. A shared memory architecture [With

Dj

∑ ∑ ∑ ∑∑ ∑ ∑
= = = == = =

+=
cT

i

i

j

jD

m

iIn

k

cT

i

i

j

jD

m
kmjibmjicMem DPn,duplicatio tasksp

1 1 1 11 1 1

ττ
),,,(),,(,

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑
= = == = ==

=

= = == = =
+=+=

cT

i

jD

m

iIn

k

cT

i

i

j

jD

m

cT

i

i

j

jD

m

iIn

k

cT

i

i

j

jD

m
kmibmjickmjibmjicMem DPn,duplicatio tasksh

1 1 11 1 11

1

1 1 11 1 1
),,(),,(),,,(),,(,

τττ

∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑
= = == = == =

=

= == = =
+=+=

cT

i

i

j

iIn

k

cT

i

i

j

jD

m

cT

i

i

j

jD

m

iIn

k

cT

i

i

j

jD

m
kjibmjickjibmjicMem HDPn,duplicatio tasksp

1 1 11 1 11 1

1

1 11 1 1
1

ττττ
),,(),,(),,,(),,(,

∑ ∑∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑ ∑
= == = ==

=

=

=

= == = =
+=+=

cT

i

iIn

k

cT

i

i

j

jD

m

cT

i

i

j

jD

m

iIn

k

cT

i

i

j

jD

m
kibmjickibmjicMem HDPn,duplicatio tasksh

1 11 1 11

1

1

1

1 11 1 1
11),(),,(),,,(),,(,

τττ

∑ ∑∑ ∑

∑ ∑ ∑∑ ∑

= == =

= = == =

+

+
=

cT

i

iIn

k

cT

i

i

j

cT

i

i

j

iIn

k

cT

i

i

j

kibjic

kjibjic

Mem
Mem

sh

sp

1 11 1

1 1 11 1

),(),(

),,(),(

τ

ττ
91

task duplication]

• Under general data parallelism

(17)
• Under heterogeneous data parallelism

(18)

Remark 1 : Definitions for PDT scheduling - 1

Definition 1: : a task.

Definition 2: : th cluster.

Definition 3: : the number of tasks; within th cluster, .

Definition 4: : a set of total clusters .

Definition 5: : the total number of clusters.

Definition 6: : a set of invocations of th task, by task duplication, .

Definition 7: : the number of invocations th task, by task duplication.

Definition 8: : a set of input ports of th cluster, .
.

Definition 9: : th input port of th cluster, .

Definition 10: : the number of input ports of th cluster, .

Definition 11: : a buffer of th input port of j th task, , within th cluster, .

Definition 12: : a buffer of th input port of th invocation of j th task, by task dupli-
cation, within cluster, .

e.g.) , when .

Definition 13: : a code of j th task, , within th cluster, .

∑ ∑ ∑∑ ∑ ∑

∑ ∑ ∑ ∑∑ ∑ ∑

= = == = =

= = = == = =

+

+
=

cT

i

jD

m

iIn

k

cT

i

i

j

jD

m

cT

i

i

j

jD

m

iIn

k

cT

i

i

j

jD

m

kmibmjic

kmjibmjic

DPMem
Mem

nduplicatio tasksh

DPn,duplicatio tasksp

1 1 11 1 1

1 1 1 11 1 1

),,(),,(

),,,(),,(

,,
,

τ

ττ

∑ ∑∑ ∑ ∑

∑ ∑ ∑∑ ∑ ∑

= == = =

= = == = =

+

+
=

cT

i

iIn

k

cT

i

i

j

jD

m

cT

i

i

j

iIn

k

cT

i

i

j

jD

m

kibmjic

kjibmjic

HDPMem
Mem

nduplicatio tasksh

HDPn,duplicatio tasksp

1 11 1 1

1 1 11 1 1

),(),,(

),,(),,(

,,
,

τ

ττ

t

τi i

τi t1 t2, … t τi
,{ , } i τi

Tc τ1 τ2, … τ Tc
,{ , }

Tc

Dj j tj I1 tj() I2 tj(), … I Dj
tj(),{ , }

Dj j tj

Ini i τi
Ini pin

1 τi,() pin
2 τi,() … pin Ini τi,(), , ,(){ }=

pin k τi,() k i τi

Ini i τi

b i j k, ,() k tj i τi

b i j m k, , ,() k m tj
ith τi

b i j m k, , ,() b i 1 m k, , ,() b i m k, ,()= = b i j k, ,() b i 1 k, ,() b i k,()= = τi 1=

c i j,() tj i τi
92

Definition 14: : a code of th invocation of j th task, by task duplication, within th clus-
ter, .

Definition 15: : window size. : data frame size.

Clustering process groups tasks depending on task dependencies and possible

sharing of buffers. More detailed explanation of clustering is given in the section 3.2.4.

Suppose we have an application graph(named a task dependency graph) as shown in

figure 22 a). Figure 22 b) is the graph after clustering, which is called a cluster depen-

dency graph. After clustering, by seeing , the number of input ports of some nodes

are changed, which affect memory usage of a cluster. Table 8 shows how buffer mem-

ory usage of figure 22 b) is changed depending on task duplication and a shared mem-

ory. Here code size is not influenced by task duplication or memory architecture. Table

8 provides an example of figure 22 with real numbers for a clear understanding of rela-

tionship between heterogeneous data parallelism and memory usage depending on

architectures. In table 8, the value of is 8 and the value of is 3 and the value of

 is 2. For cases except and , the value of is 1. The values of is assumed

to be constant for all tasks. Figure 22 e) shows the relationship between and

(frame size). is window size and is data frame size. We assume the value of is

= and the value of = (). The buffer size

between clusters is assumed to be . In case task duplication is applied, is assumed

to be 4. We also assume that task duplication is performed for only task 3 of the cluster

 like figure 22 c). By seeing figure 22 b), is 1 for all clusters except .

c i j m, ,() m tj i
τi

w N

buf

Tc τ3

τ4 τ3 τ4 τi D

w N

w N w

64 1B Byte()× 64B N 256 256× Total pixels

N D

τ3 Ini In8 3=
93

3.2.4 Scheduling

Our heuristic scheduling algorithm on multiprocessors tackles both heterogeneous

data parallelism and task parallelism together in a pipelined way while considering

user given constraints. Tasks immediately following a branch point are mapped to a

TG-Cluster(Task Grouped Cluster) for exploiting the benefit of a shared memory

architecture. By clustering, each task except tasks in TG-Cluster is mapped to the cor-

responding cluster one to one. After clustering, a new graph(a cluster dependency

graph) is generated based on dependencies of clusters. The cluster dependency graph

is used for partitioning clusters into stages of a pipeline. Each partition consists of a

Figure 22. Examples of tasks, clusters, clustering and window

a) Task dependency graph b) Cluster dependency graph

Clusters :

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

t3

t6

t8

t9

t10

buf1
0 buf2

1

buf3
1

buf4
1

buf5
1

buf6
1

buf7
1

buf8
1

buf9
1

buf10
2

buf11
3

τ1 τ2 τ3

τ4

τ5

τ6

τ7

τ8

buf1
0 buf2

1 buf3
1 buf5

1

buf4
1

buf6
1

buf7
2

buf8
3

after clusteringbefore clustering

TG-Cluster (Task Grouped Cluster) : τ3, τ4

t1 t2 t4

t5

t7

t11

: A task without heterogeneous data parallelism.

: A task with heterogeneous data parallelism.

t1 t2 t4 t5t3 t7t6 t8 t9 t10 t11Clusters :

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

t3

t6

t8

t9

t10

buf1
0 buf2

1

buf3
1

buf4
1

buf5
1

buf6
1

buf7
1

buf8
1

buf9
1

buf10
2

buf11
3

τ1 τ2 τ3

τ4

τ5

τ6

τ7

τ8

buf1
0 buf2

1 buf3
1 buf5

1

buf4
1

buf6
1

buf7
2

buf8
3

after clusteringbefore clustering

TG-Cluster (Task Grouped Cluster) : τ3, τ4

t1 t2 t4

t5

t7

t11

: A task without heterogeneous data parallelism.

: A task with heterogeneous data parallelism.

: A task without heterogeneous data parallelism.

: A task with heterogeneous data parallelism.

t1 t2 t4 t5t3 t7t6 t8 t9 t10 t11

w w
w w

w
w

w

widthN

heightN

widthW

heightW

W = widthW * heightW

N = widthN * heightN

branch point

d) TG-Cluster (Task Grouped Cluster)

t3

t2 t4

t5

t3
t3

t3
t3

c) task duplication of task 3 by 4

t4 t5t3
t4

t5

e) Relationship between
a window and data frame

w w
w w

w
w

w

widthN

heightN

widthW

heightW w w
w w

w
w

w

widthN

heightN

widthW

heightW

W = widthW * heightW

N = widthN * heightN

branch point

d) TG-Cluster (Task Grouped Cluster)

t3

t2 t4

t5
branch point

d) TG-Cluster (Task Grouped Cluster)

t3

t2 t4

t5

t3
t3

t3
t3

c) task duplication of task 3 by 4

t4 t5t3
t4

t5

e) Relationship between
a window and data frame
94

group of clusters. By partitioning clusters are allocated to stages of the pipeline corre-

spondingly. Clusters in each partition build a new cluster dependency graph within the

corresponding partition. After partitioning, for scheduling tasks within each stage of

the pipeline, the original task dependency graph is used not to violate data depen-

Table 8. An example of comparison of buffer memory usages depending on task
duplication and a memory architecture both under general data parallelism and
under heterogeneous data parallelism.

DP: general data parallelism. HDP: Heterogeneous data parallelism.
In each notation([->]), the number ahead of [->] represents the value of . e.g. 3[->]
means the value of is “3”. The notation is given to provide a clear understanding of where
each number comes from.

X X X τ3

τ3

 B u f f e r m e m o r y u s a g e
S e p a r a t e
M e m o r y
a r c h i t e c t u r e

4 [- > # o f n o r m a l c l u s t e r s] * 1 [- > |τ i |] * 1 [- > |I n i |] * 6 4 K
- > n o r m a l c l u s t e r s
+ 3 [- > |τ 3 |] * 1 [- > | I n 3 |] * 6 4 K - > τ 3
+ 2 [- > |τ 4 |] * 1 [- > | I n 4 |] * 6 4 K - > τ 4
+ 1 [- > |τ 8 |] * 3 [- > | I n 8 |] * 6 4 K - > τ 8
= 1 2 ∗ 6 4 Κ = 7 6 8 Κ Β

W i t h o u t
T a s k
D u p l i c a t i o n

S h a r e d
M e m o r y
A r c h i t e c t u r e

6 [- > # o f n o r m a l c l u s t e r s] * 1 [- > |τ i |] * 1 [-
> |I n i |] * 6 4 K - > n o r m a l c l u s t e r s
+ 1 [- > |τ 8 |] * 3 [- > | I n 8 |] * 6 4 K - > τ 8
= 9 ∗ 6 4 Κ = 5 7 6 Κ Β

S e p a r a t e
M e m o r y
a r c h i t e c t u r e

3 [- > # o f n o r m a l c l u s t e r s] * 1 [- > |τ i |] * 1 [- > |I n i |] * 1 [-
> |D i |] * 6 4 K - > n o r m a l c l u s t e r s
+ 2 [- > |τ 3 |] * 1 [- > | I n 3 |] * 1 [- > |D 3 |] * 6 4 K - > t a s k 4
a n d t a s k 5 i n τ 3
+ 1 [- > |τ 3 |] ∗ 1 [- > |I n 3 |] * 4 [- > |D 3 |] ∗ 6 4 Κ − > t a s k 3 i n
τ 3
+ 2 [- > |τ 4 |] * 1 [- > | I n 4 |] * 1 [- > |D 4 |] * 6 4 K - > τ 4
+ 1 [- > |τ 6 |] * 1 [- > | I n 6 |] * 4 [- > |D 6 |] * 6 4 K - > τ 6
+ 1 [- > |τ 8 |] * 3 [- > | I n 8 |] * 4 [- > |D 8 |] * 6 4 K - > τ 8
= 2 7 ∗ 6 4 Κ = 1 7 2 8 Κ Β

W i t h T a s k
D u p l i c a t i o n
u n d e r D P

S h a r e d
M e m o r y
A r c h i t e c t u r e

4 [- > # o f n o r m a l c l u s t e r s] * 1 [- > |τ i |] * 1 [- > |I n i |] * 1 [-
> |D i |] * 6 4 K - > n o r m a l c l u s t e r s
+ 1 [- > |τ 3 |] * 1 [- > | I n 3 |] * 1 [- > |D 3 |] * 6 4 K - > t a s k 4 ,
t a s k 5 i n τ 3
+ 1 [- > |τ 3 |] * 1 [- > |I n 3 |] * 4 [- > |D 3 |] * 6 4 Κ − > t a s k 3 i n
τ 3
+ 1 [- > |τ 6 |] * 1 [- > | I n 6 |] * 4 [- > |D 6 |] * 6 4 K - > τ 6
+ 1 [- > |τ 8 |] * 3 [- > | I n 8 |] * 4 [- > |D 8 |] * 6 4 K - > τ 8
= 2 5 ∗ 6 4 Κ = 1 6 0 0 Κ Β

S e p a r a t e
M e m o r y
a r c h i t e c t u r e

3 [- > # o f n o r m a l c l u s t e r s] * 1 [- > |τ i |] * 1 [- > |I n i |] * 1 [-
> |D i |] * 6 4 K - > n o r m a l c l u s t e r s
+ 2 [- > |τ 3 |] * 1 [- > | I n 3 |] * 1 [- > |D 3 |] * 6 4 K - > t a s k 4 a n d
t a s k 5 i n τ 3
+ 1 [- > |τ 3 |] ∗ 1 [- > |I n 3 |] * 1 [- > |D 3 |] ∗ 6 4 Κ − > t a s k 3 i n
τ 3
+ 2 [- > |τ 4 |] * 1 [- > | I n 4 |] * 1 [- > |D 4 |] * 6 4 K - > τ 4
+ 1 [- > |τ 6 |] * 1 [- > | I n 6 |] * 1 [- > |D 6 |] * 6 4 K - > τ 6
+ 1 [- > |τ 8 |] * 3 [- > | I n 8 |] * 1 [- > |D 8 |] * 6 4 K - > τ 8
= 1 2 ∗ 6 4 Κ = 7 6 8 Κ Β

W i t h T a s k
D u p l i c a t i o n
u n d e r H D P

S h a r e d
M e m o r y
A r c h i t e c t u r e

4 [- > # o f n o r m a l c l u s t e r s] * 1 [- > |τ i |] * 1 [- > |I n i |] * 1 [-
> |D i |] * 6 4 K - > n o r m a l c l u s t e r s
+ 1 [- > |τ 3 |] * 1 [- > | I n 3 |] * 1 [- > |D 3 |] * 6 4 K - > τ 3
+ 1 [- > |τ 6 |] * 1 [- > | I n 6 |] * 1 [- > |D 6 |] * 6 4 K - > τ 6
+ 1 [- > |τ 8 |] * 3 [- > | I n 8 |] * 1 [- > |D 8 |] * 6 4 K - > τ 8
= 9 ∗ 6 4 Κ = 5 7 6 Κ Β

95

dency. Figure 22 a) and b) show how the task dependency graph is converted into a

cluster dependency graph. A cluster dependency graph satisfies a topological sort

within each partition. A parent partition is divided into two sub partitions while mak-

ing clusters in each partition have weak cluster dependencies. A weak cluster depen-

() {

(= (); < .){
 = (, ,){

(better than)
 = ;

}
}

FindSchedule
CurrentBest ∞=
for Param setUpParam Param Param searchRegion

BestSchudule PDT schedule– G P Param
if BestSchudule CurrentBest

CurrentBest BestSchudule

: keeps all partitions produced by PDT. By
, () builds pipelines by searching partitions in different

depth of PDT.
: an initial partition and initially set as the original input graph.

[]: pipelines in every search depth level of
: th pipeline.
. []: holds th partition’s information of th pipeline.
. : holds th stage’s information of th pipeline.

: processors
: threshold of given constraints.

: the best solution produced by with a given parameter
values.

: current best solution held by .
(): A processor allocation algorithm based on EST(Earliest Start Time) with a

(Heterogeneous Data Parallelism).
(): produces pipelines based on PDT(Pipeline Decomposition Tree) algorithm.

partitionDB
partitionDB buildPipelines

πi
Pipeline PDT
Pipeline i[] i
Pipeline i[] Pa j j i
Pipeline i[] S j[] j i
P
Cth
BestSchudule PDT schedule–

CurrentBest FindSchedule
HDEST
HDP
PDT

Figure 23. FindSchedule() algorithm

(, ,){
;

;

(, , , , ,);
[] = . ();

for(=0; < . ; ++) {
for(=0; < . . ; ++) {

. [] = (. [], , ,);
}
if(. <)

 . (.);
}

 = . ();
return ;

}

PDT schedule– G P Param
ScheduleList Φ=
πi G=
partitionDB φ=
PDT G P Param πi i partitionDB
Pipeline partitionDB buildPipelines

i i Pipeline num i
j j Pipeline i[] Pa length j

Pipeline i[] S j HDEST Pipeline i[] Pa j P Cth Param

Pipeline i[] schedule Cth
ScheduleList put Pipeline i[] schedule

BestSchudule ScheduleList getBestSchedule
BestSchudule
96

dency in each partition allows for more potential parallelism. Here, partitioning is

applied to a cluster level[44][85][101] while processor allocation and task scheduling

are applied to a task level inside each cluster. Finally, each stage can have evenly

divided estimated execution time and potential parallelism[55][81]. Potential parallel-

ism is exploited through the scheduling of each stage. For partition, this thesis pro-

vides a heuristic method named CPAP(Critical PAth based Partitioning). CPAP

partitions clusters into two sub-partitions by cutting a critical path of the associated

cluster dependency graph evenly in terms of estimated execution time of clusters. A

critical path is the longest dependency chain. By CPAP, the possibility of an over-

loaded or an under-loaded stage can be prevented. This procedure is performed recur-

sively by a depth first search tree until an appropriate number of stages in a pipeline is

obtained. This recursive partitioning by a depth first search tree generates a tree named

PDT(Pipeline Decomposition Tree). Each node within PDT corresponds to a stage in

the pipeline.

PDT produces several sets of pipelines with different number of stages by choos-

ing partitions in different tree depth correspondingly. For tasks within each partition of

the associated pipeline, a precise process allocation and a scheduling process named

HDEST (Heterogeneous Data parallelism Earliest Start Time)[89] is applied. We

named our heuristic algorithm PDT scheduling. Here, heterogeneous data parallelism

and task parallelism are simultaneously considered along with IPC cost, memory

usage and bus contention. The scheduling algorithm has specific parameters which

influence the scheduling outcome. The values of these parameters may vary depending

on the change of applications. PDT scheduling is applied in an iterative way by
97

changing the values of parameters appropriately. The objective is to find the best

schedule satisfying given constraints for a given application. Figure 23 roughly shows

the top level function of scheduling algorithm.

Remark 2 : Definitions for PDT scheduling - 2

Definition 16:

Definition 17: : th partition.

Definition 18: : the number of clusters; within a th partition, .

Definition 19: : th cluster within th partition, . Here, is a local index within partition,
and is different from a global index in Definition 2.

Definition 20:

3.2.4.1 “PDT()” - Pipeline Decomposition Tree

Latency is inversely proportional to one per throughput (latency of bottleneck stage in

a pipeline). The schedule could be obtained based on a trade off between throughput

and latency while satisfying resources constraints. Ideally, the throughput can be

assumed to be improved by simply increasing the number of stages in a pipeline by

sacrificing latency. However, improperly divided pipeline with poor PUs(Processor

Utilization) deteriorates throughput as well as latency in spite of increased number of

stages of a pipeline. Figure 24 shows the relationship between the latency and the

throughput in a pipeline.

The number of stages is a critical factor influencing both throughput and latency in a

pipelined multiprocessor based scheduling. However, deciding an appropriate number

of stages in a pipeline under given constraints is not trivial. This thesis provides a new

way named PDT(Pipeline Decomposition Tree) for generating pipelines. PDT is a

modified depth first search algorithm. Starting from the whole graph, PDT divides the

executeTime τi() executeTime ti j,()
j 1=

τi

∑=

πi i

πi πi τi 1, τi 2, …, , τi πi,{ , }= i πi

τi k, k i πi k πi

executeTime πi() executeTime τi j,()
j 1=

πi

∑=
98

graph into two sub partitions while satisfying a topological sort in each partition. The

objective is that clusters in each partition have weak cluster dependencies so that, con-

sequently, each partition has more potential parallelism. Here, the cluster dependency

becomes highest when all clusters in a partition are linearly linked in a row. On the

other hand, the cluster dependency is weakest when all clusters in a partition are inde-

pendent. A relatively weak cluster dependency in a partition gives more potential par-

allelism in scheduling. Equation 19 and equation 20 are to divide a partition into two

sub partitions so that cluster dependency in each partition is evenly distributed and

each sub partition and has the similar level of an execution time of partition,

.

(19)

(20)

Here, clusters in each partition should satisfy the following condition.
 , or . (21)

 , . (22)

(23)

(24)

(25)

Figure 24. Relationship between Latency, Throughput and Number of stages

num (stagesnum (stages))

Latency :Latency :

Throughput :Throughput :

A lw aysA lways

N ot changingN ot chang ing

G ood PUG ood PU
--> good d ivis ion> good d iv is ion

Bad PUBad PU
--> good d ivis ion> good d iv is ion

: :

: :

num (stagesnum (stages))

Latency :Latency :

Throughput :Throughput :

A lw aysA lways

N ot changingN ot chang ing

G ood PUG ood PU
--> good d ivis ion> good d iv is ion

Bad PUBad PU
--> good d ivis ion> good d iv is ion

: :

: :

Latency :Latency :

Throughput :Throughput :

A lw aysA lways

N ot changingN ot chang ing

G ood PUG ood PU
--> good d ivis ion> good d iv is ion

Bad PUBad PU
--> good d ivis ion> good d iv is ion

: :

: :

: the number of in a pipelinenum Stages() Stages

π1 π2

executeTime π()

min Dep π1() Dep π2()–()

min executeTime π1() executeTime π2()–()

if τi π1⊂ successors τi() π1⊂ successors τi() π2⊂

if τi π2⊂ successors τi() π2⊂

Dep π() eπcp
i eπ

cp
•+=

Dep π() eπcp

2 eπ
cp

2+=

eπcp
j

j 1=

πcp

∑=
99

(26)

: dependency degree of clusters in partition, .
: the weighted sum of edges of clusters in a critical path within partition, .
: the weighted sum of edges of clusters outside a critical path within partition, .

: the number of clusters in a critical path within partition .
: the number of clusters not in a critical path within partition .
: a Cluster cHain() which is connected with two or more clusters in a row within partition, .

Each can have one or more isolated s.
: a set of s not in a critical path within partition, .

e.g. .

: the number of s not in a critical path within partition, .
: th not in a critical path within partition, .
: the length of .

 is dependency degree of clusters within partition . is a complex num-

ber. The real number of represents the weighted sum of edges of a critical path

in partition while the imaginary number represents the weighted sum of edges of

clusters which are not involved in a critical path within partition . The real number

potentially corresponds to the lowest bound of latency of the partition . This bound

can be further decreased by exploiting (Heterogeneous Data Parallelism). The

imaginary number shows dependency degree of clusters outside the critical path

within partition . The low number provides more parallelism during scheduling.

3.2.4.1.1 CPAP (Critical PAth based Partition)

To divide a partition into two sub partitions while satisfying both equation 19 and

equation 20, this thesis provides a heuristic method named CPAP(Critical PAth based

Partition) which uses estimated execution times of clusters as well as the critical path

of the graph. CPAP groups clusters depending on heterogeneous data parallelism and

cluster dependency. Figure 26 shows () algorithm with a basic criterion for decid-

 eπ
cp

k
k 1=

CHj π
cp

,

∑
j 1=

CHπ
cp

∑=

Dep π() π
eπcp

π
eπ

cp
π

πcp π
πcp π
CH CH π

π CH
CHπ

cp
CH π

CHπ
cp

CH1 π
cp

, CH2 π
cp

, … CH CHπ
cp

π
cp

,, , ,
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

CHπ
cp

CH π
CHk π

cp
, k CH π

CHk π
cp

, CHk π
cp

,

Dep π() π Dep π()

Dep π()

π

π

π

HDP

π

PDT
100

ing on further progress of PDT make-up process of a given node within PDT. Precise

criteria for () are introduced in the section 3.2.4.1.3.

•

PDT
(,) {

;
 = ;

 = ; = ; = ; = ;
() {

Step 1 => Find the longest critical path in a given graph.
for(= ;i< . ; ++) {

 = ();
(. < .)

 = ;
}

Step 2 => Add a half of clusters in current longest path, to the left partition
only if

each node in satisfies equation 21 and 22.
for((= ;i< . ; ++) {

[]= (.);
(||) {

 += . ;
. (.);

}

;
}

 = - ;

Step 3 => continue until reaches .
(or =)

;
}

 = . ();
. (. ());

;
 ;

}

CPAP G CutTh
CPAPDB ⊥=
LongestPath ⊥
πleft ⊥ πright ⊥ Gleft ⊥ Gright ⊥
while TRUE

i 0 G length i
CP i[] FindCP G
if LongestPath length CP i[] length

LongestPath CP i[]

LongestPath

LongestPath
i 0 LongestPath length i

predeNodes predecessor LongestPath node i[]
if predeNodes∀ ⊥= predeNodes∀ πleft⊂

πleft LongestPath node i[]
Gleft add LongestPath node i[]

else
break

G G LongestPath

executeTime πleft() CutTh
if executeTime πleft() CutTh≥ G ⊥

break

πright G nodes
Gright add G nodes
CPAPDB πleft πright Gleft Gright, ,{ , }=
return CPAPDB

Figure 25. CPAP algorithm

: return the critical path, from graph, .
[]: predecessors of a given node.
(); return predecessors, [] of a given node, .

: a data base of partitions and graphs(, and) grouped by .

FindCP LongestPath G
predeNodes
predecessor node predeNodes node
CPAPDB πleft πright Gleft Gright CPAP

findCutThreshold
101

(, , , , ,){
. ;

(==) {
 ()

 :

= ();
= (,);

= . ; = . ;
= . ; = . ;

(, , ,);
. (, ,);

(, , , , ++);
. (, ,);

(, , , , ++);

 :

. (, ,);

 :

;

}
 {

. (, ,);
}

}

PDT G P Param π depth partitionDB
AveExTime partitionDB= getAveTime depth()
if checkBasicCriterion π AveExTime num P(), ,() continuePDTDivision

switch checkPreciseCriterion π πleft πright, ,()
begin

case PDTDivisionContinue
begin

CutTh findCutThreshold G
CPAPDB CPAP G CutTh
πleft CPAPDB πleft πright CPAPDB πright
Gleft CPAPDB Gleft Gright CPAPDB Gright
DivideProcessors Pleft Pright P G
partitionDB put depth πleft OnGoingNode
PDT Gleft Pleft Param πleft depth
partitionDB put depth πright OnGoingNode
PDT Gright Pright Param πright depth

end
case PDTDivisionStop
begin

partitionDB put depth π TerminalNode
end
case PartitionDuplication
begin

partitionDuplication π()
end

end

else
partitionDB put depth π TerminalNode

(): find a which is used to be used for dividing a graph of a parent par-
tition into two sub partitions evenly and is a half of execution times of a given graph.

: a graph pruned to the left partition, .
: a graph pruned to the right partition, .

: divide a given number of processors for each sub partition based on each
 and .

: the longest execution time of a task which is a lower bound for the throughput.
: an average value of ()s of partitions in a given level of depth within a

pipeline.
This value is set by . . The

. calculates by referring to partitions in neigh-
boring depths around a given level of .

: check if partition, satisfies a basic criterion
for PDT division. The function will be described in the following section.

: For partition, satisfying a basic criterion, checking
with a precise criterion for PDT division is performed. The function will be described in the fol-
lowing section.

: a node whose further division in PDT is not possible.
: a node whose division in PDT can be exploited further.

findCutThreshold CutTh

Gleft πleft
Gright πright
DivideProcessors
excuteTime πleft() excuteTime πright()
maxT
AveExTime executeTime

partitionDB getAveTime depth()
partitionDB getAveTime depth() AveExTime

depth
checkBasicCriterion π AveExTime num P(), ,() π

checkPreciseCriterion π πleft πright, ,() π

TerminalNode
OnGoingNode

Figure 26. PDT() algorithm
102

This function is to find a which is a threshold for cutting a parent partition into

two sub partitions. A half of the total execution time of a given graph is used for a

threshold value for cutting.

• Precise way to divide a parent partition into two sub partitions.

In many cases, ideally and evenly dividing a partition into two sub partitions in terms

of the execution time is not possible due to inequity of the graph’s internal depen-

dency. Thus, specially, for the cluster in a boundary position precise cutting needs to

be considered.

(27)

: the number of clusters in a given partition, .
: the values subtracting from accumulated () up to cluster.
: the minimum value of .

: the flag for zigzagging a cut point in a graph, of a given partition, .
: accept the cluster just over in a to the left partition.
: excluded the cluster just over in a from the left partition.

Here, the needs to zigzag between and so that execution-

times of partitions are evenly distributed along with increase of tree depth in spite of

uneven pattern of data dependency. Otherwise, either left or right partition always gets

bigger than the other counterpart. It causes undesirable deviation increase between

partitions which in turn results in unbalanced execution time distribution. By seeing

CutTh

CutTh

executeTime τi()

i 1=

π

∑
2

---=

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

==

i

ji
CutTheexecuteTimMinZ iout

11
)(τ

π

Zout =

Zm in if (cutflag == accepted)
a cut point = i;

Zm in-1 if (cutflag == excluded)
a cut point = i-1

π π
Zout CutTh executeTime ith
Zmin Zout
cutflag Gπ π
accepted CutTh executeTime πleft()
excluded CutTh executeTime πleft()

cutflag accepted excluded
103

figure 27, if the is set to , then the right partitions are always bigger

than the left partitions like figure 27 a). Or like figure 27 b), the left partitions are

always bigger than the right partitions. figure 27 c) shows a precise partitioning by zig-

zag cutting.

Figure 28 shows how CPAP tracks down a global and a local critical path to divide a

parent partition into two sub partitions.

3.2.4.1.2 Effects of () and cluster dependencies.

An execution time of a cluster is a major factor for dividing partitions. Finally, parti-

tions relate to stages in a pipeline. The objective of partitioning is that each partition

have evenly divided execution time. So a pipeline provides the best throughput under a

given number of processors after processor allocation and then scheduling is applied

to the partition. Therefore, decision on how many stages(or partitions) are suitable for

a pipeline is a critical factor influencing the final schedule result. However, various

cluster dependency patterns between partitions and different operational features of

tasks within a cluster can result in unexpected execution time distribution among parti-

tions. It is because the proportion of heterogeneous data parallelism tasks in each clus-

ter or different patterns of cluster dependency in each partition causes an unbalanced

cutflag excluded

Figure 27. A variation of the size of partitions depending on the cutflag.

<=

<= <=

<=<=<=<=

>=

>= >=

>=>=>=>=

>=

>= <=

<=>=<=>=

<=

<= <=

<=<=<=<=

>=

>= >=

>=>=>=>=

>=

>= <=

<=>=<=>=

a) b) c)

executeTime
104

execution time between stages. While building up PDT, these potential factors must be

precisely considered by applying various criteria based on operational feature of tasks

in each cluster and cluster dependency pattern in a partition. Classification of clusters

depending on existence or nonexistence of heterogeneous data parallelism of tasks in

each cluster and a cluster dependency pattern in each partition allows for more pre-

cisely divided workload for stages in a pipeline.

Remark 3 : Definitions for PDT scheduling - 3

Definition 21: : A task with (Heterogeneous Data Parallelism).

Definition 22: : A task without (Heterogeneous Data Parallelism).

Definition 23: : the execution time of THDs

Figure 28. An example of usage of CPAP in PDT

1st critical path

2nd cp

3rd cp 4th cp

1st cp 1st cp

2nd cp

1st critical path

2nd cp

3rd cp 4th cp

1st cp 1st cp

2nd cp

THD HDP

TNHD HDP

executeTime THDs()
105

Definition 24: : the execution time of TNHDs

Definition 25: (Tasks in the longest critical path): the execution time of tasks in the
longest critical path.

Definition 26: (Other tasks not included in the longest critical path): the execution time
of other tasks not included in the longest critical path.

Observation 1: Effects of and .

Figure 29 shows that the final execution times of each partition obtained by HDEST is

different from predicted execution times due to tasks with heterogeneous data parallel-

ism which allows for further exploitation of hidden parallelism. HDEST is the linked

list based greedy scheduling method suggested in this thesis. HDEST adopts heteroge-

neous data parallelism. HDEST is described in detail in the section 3.2.4.2.1. In figure

29, PDT scheduling produces partition 1 to partition 4 initially. Here, both partition 3

and partition 4 have bad s(Processor Utilization) while partition 1 and partition 2

have good s by exploiting (Heterogeneous Data Parallelism). Exploitation of

 and an without consideration of (Processor

Utilization) results in undesirable execution time distribution among partitions. By

considering (Processor Utilization) of each partition, a further division is applied

both to partition 3 and to partition 4. Finally, six partitions(partition 1 to partition 6)

with evenly divided execution times are obtained.

Observation 2: Effect of (Tasks of clusters in the longest critical path) and

(Tasks of clusters not in the longest critical path).

An (Tasks of clusters in the longest critical path) within a graph is a major

factor determining the latency of the graph. Therefore, partitioning focuses on divid-

ing the longest critical path of the corresponding graph evenly in each level of tree

depth. A critical path based division allows for evenly distributed execution times of

executeTime THNDs()

executeTime

executeTime

executeTime THD() executeTime TNHD()

PU

PU HDP

executeTime THD() executeTime TNHD() PU

PU

executeTime

executeTime

executeTime
106

partitions which can be exploited later for further reducing execution time of stages in

a pipeline and increased potential parallelism in each partition. However, figure 30

shows that the execution time of partition A is almost twice as large as the one of par-

tition B after applying HDEST to them. It is because partition B has more potential

parallelism than partition A, which was not detected during PDT process. An

improved schedule is obtained through a further division in conjunction with (Pro-

cessor Utilization) and .

3.2.4.1.3 Division criteria

Partitioning of PDT is determined by referring to ()s of clusters based on

division criteria of PDT. Division criteria is classified by considering a predicted exe-

cution time of each partition. These criteria relate to coefficient values. Appropriate

values for these coefficients vary depending on graph characteristic. This thesis

Figure 29. Effect of THDs and TNHDs in scheduling

t5 t6t1

1020

divide a partition

divide a partition

t2 t3 t4

1020 1010

t5 t6t1

1020

t2 t3 t4

1020 1010

t5 t6t1

1020

t2 t3 t4

1020 1010

num (P) =8

num (P) = 4 num (P) = 4

num (P) = 2 num (P) = 2 num (P) = 2 num (P) = 2

Partition 1 Partition 2 Partition 3 Partition 4

P1

P2

t1

t1
Partition 1
-> Good PU

10

P1

P2

t2

t2
Partition 2
-> Good PU

10

P1

P2

t3 t4
Partition 3
-> Bad PU

20

P1

P2

t5 t6
Partition 4
-> Bad PU

20

PU > PUth

PU > PUth

PU < PUth

PU < PUth

idle

idle

divide a partition further

t5 t6
10

t3 t4
10 1010

num (P) = 1

Partition 3 Partition 4

num (P) = 1 num (P) = 1 num (P) = 1

Partition 5 Partition 6

level 1

level 2

level 3

: A task w ithout heterogeneous
data parallelism .

: A task w ith heterogeneous
data parallelism .

t5 t6t1

1020

divide a partition

divide a partition

t2 t3 t4

1020 1010

t5 t6t1

1020

t2 t3 t4

1020 1010

t5 t6t1

1020

t2 t3 t4

1020 1010

num (P) =8

num (P) = 4 num (P) = 4

num (P) = 2 num (P) = 2 num (P) = 2 num (P) = 2

Partition 1 Partition 2 Partition 3 Partition 4

P1

P2

t1

t1
Partition 1
-> Good PU

10

P1

P2

t2

t2
Partition 2
-> Good PU

10

P1

P2

t3 t4
Partition 3
-> Bad PU

20

P1

P2

t5 t6
Partition 4
-> Bad PU

20

PU > PUth

PU > PUth

PU < PUth

PU < PUth

idle

idle

divide a partition further

t5 t6
10

t3 t4
10 1010

num (P) = 1

Partition 3 Partition 4

num (P) = 1 num (P) = 1 num (P) = 1

Partition 5 Partition 6

divide a partition further

t5 t6
10

t3 t4
10 1010

num (P) = 1

Partition 3 Partition 4

num (P) = 1 num (P) = 1 num (P) = 1

Partition 5 Partition 6

level 1

level 2

level 3

: A task w ithout heterogeneous
data parallelism .

: A task w ith heterogeneous
data parallelism .

: A task w ithout heterogeneous
data parallelism .

: A task w ith heterogeneous
data parallelism .

PU

PUth

executeTime
107

applies PDT scheduling algorithm in an iterative way with different coefficient val-

ues.

• Basic criterion

During division of a partition of PDT, of partitions should be evenly

distributed to prevent a bottleneck stage in a pipeline since the bottle neck stage results

in degrading the throughput. Therefore, the decision on division of a certain partition

is based on the average value of ()s of other terminal node partitions. Each

partition of PDT tree can be classified into two groups, a terminal node partition,

 and an on-going node partition, . is a node

whose further division of PDT is not allowed whereas is a node whose

division of PDT can be exploited further. PDT keeps track of every partition in each

level of PDT make-up process so that PDT can provide multiple pipelines with differ-

ent trade-off between latency and throughput. To satisfy various graph characteristics,

Figure 30. Effect of executeTime(Tasks in the longest critical path) and executeTime(Other tasks not
included in the longest critical path) in scheduling

< B e fo re “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n A) = 2 0 0
e xe c u te T im e (C P) = 2 0 0
e xe c u te T im e (O th e rs) = 0

< A fte r “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n A) = 1 8 0

< B e fo re “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n B) = 2 0 0
e xe c u te T im e (C P) = 1 0 0
e xe c u te T im e (O th e rs) = 1 0 0

< A fte r “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n B) = 1 0 0

: A ta s k w ith o u t h e te ro g e n e o u s
d a ta p a ra lle lis m

: A ta s k w ith h e te ro g e n e o u s
d a ta p a ra lle lis m

P a rtit io n A P a rtit io n B

2 p ro c e s s o rs 2 p ro c e s s o rs

P 1
P 2

P 1
P 2
G o o d P U

d iv id e a p a rtitio n fu r th e r

P 1 P 2

B a d P U
1 8 0 1 0 0

e x e c u te T im e (T H D) is n o t b ig e n o u g h , s o a f te r H D E S T , o n ly “ 2 0 ” is re d u c e d

< B e fo re “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n A) = 2 0 0
e xe c u te T im e (C P) = 2 0 0
e xe c u te T im e (O th e rs) = 0

< A fte r “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n A) = 1 8 0

< B e fo re “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n B) = 2 0 0
e xe c u te T im e (C P) = 1 0 0
e xe c u te T im e (O th e rs) = 1 0 0

< A fte r “ H D E S T ” s c h e d u le >
e xe c u te T im e (P a rtit io n B) = 1 0 0

: A ta s k w ith o u t h e te ro g e n e o u s
d a ta p a ra lle lis m

: A ta s k w ith h e te ro g e n e o u s
d a ta p a ra lle lis m

P a rtit io n A P a rtit io n B

2 p ro c e s s o rs 2 p ro c e s s o rs

P 1
P 2

P 1
P 2
G o o d P U

d iv id e a p a rtitio n fu r th e r

P 1 P 2

B a d P U
1 8 0 1 0 0

e x e c u te T im e (T H D) is n o t b ig e n o u g h , s o a f te r H D E S T , o n ly “ 2 0 ” is re d u c e d

executeTime π()

executeTime

TerminalNode OnGoingNode TerminalNode

OnGoingNode
108

 varies depending on a graph characteristics. the algorithm uses coefficient,

for comparison of and . The following condition shows the

basic criteria for division. First, must be bigger than . Sec-

ond, should be bigger than for dividing partition, further.

Third, of course, the number of processors given for partition, should be larger than

or equal to at least two for further division.

Figure 31 shows PDT(Pipeline Decomposition Tree) and how a basic division cri-

terion is used for dividing partitions.

αbasic αbasic

executeTime π() AveExTime

executeTime π() AveExTime

executeTime π() maxT π

π

 {
(> && > &&)

 ;

 ;
}

checkBasicCriterion π AveExTime P, ,()
if executeTime π() αbasic AveExTime× executeTime π() maxT num P() 2≥

return continuePDTDivision
else

return stopPDTDivision

: a coefficient for a basic criterion, which allows adaptive comparison of
and to determine stopping condition of PDT-make up process.
αbasic executeTime π()

AveExTime

< Basic criterion >

Figure 31. PDT(Pipeline Decomposition Tree) and division by basic division
criterion

PDT (Pipeline Decomposition Tree)

Example : decision on division of Partition4
If (executeTime(Partition4) > αbdc∗ Average[executeTime(Partition1 to 3)])

divide Partition4;
else {

EndNodePartitions[level][endNodeCount] = Partition4;
endNodeCount++;

}

3

1 2

7 8

4

5 6

Eight partitions or
stages for a pipeline
are produced in the
final PDT make-up
process

PDT (Pipeline Decomposition Tree)

Example : decision on division of Partition4
If (executeTime(Partition4) > αbdc∗ Average[executeTime(Partition1 to 3)])

divide Partition4;
else {

EndNodePartitions[level][endNodeCount] = Partition4;
endNodeCount++;

}

3

1 2

7 8

4

5 6

Eight partitions or
stages for a pipeline
are produced in the
final PDT make-up
process

3

1 2

7 8

4

5 6

Eight partitions or
stages for a pipeline
are produced in the
final PDT make-up
process
109

• Precise criterion

In , criteria for partitioning are hierarchically applied so that graphs of unusual

patterns are filtered out for precise analysis. Therefore, when the deviation of

 between two partitions is over a threshold, more precise criterion of

equation 28 is applied. This usually happens when a cluster dominating an executing

time of parent partition is placed in a boundary between two sub partitions. Figure 32

shows two cases where a cluster dominating an execution time of a given partition is

located in a boundary. Despite extreme differences in an , case 1 pro-

duces evenly divided of partitions. However, case 2 can’t be divided

any further. So the corresponding partition becomes the terminal node partition,

, as a further division of the partition deteriorates execution time distri-

bution among partitions.

(||) (28)

() (29)

() (30)

Equation 29 checks a ratio between an execution time of a cluster in a boundary and an

overall execution time of the partition. So for partitions satisfying equation 29, further

division is considered. However, for any partition violating equation 29, two solutions

PDT

executeTime π()

executeTime π()

executeTime π()

TerminalNode

10 5 5 10 5525

divide a partition

10 5 5 10 5525

10 5 5 10 5525

divide a partition

5 525

Case 1 Case 2

divide a partition

Figure 32. Examples with a large difference in executeTime(Partition)s between two sub parti-
tions

if executeTime πleft() executeTime πright()» executeTime πleft() executeTime πright()«

if executeTime τboundary() αprecise1
executeTime π()×≤

if executeTime THDπ() αprecise2
executeTime π()×≥
110

are possible in conjunction of an . If the partition satisfies equation

30, then further division is not allowed and HDEST performs task duplication to

reduce the execution time of a given partition. For the partition violating equation 30,

partition duplication can be considered. Partition duplication is different from task

duplication. Partition duplication is performed by copying the whole partition up to

the number of processors available. Partition duplication can improve the throughput

by having each copied partition handle different sequential data frames. However,

partition duplication causes an increase in the buffer usage due to intrinsic feature of

data parallelism. It is desirable to consider partition duplication only if the partition

finally becomes a bottleneck stage in a pipeline. Figure 33 shows an example of a clus-

ter dominating most of an of a partition. Case 1 exploits heterogeneous

 {
(||) {

() {
 ;

}
 {
() {

 ;
}

 {
 ;

}
}

{
 ;

}
}

checkPreciseCriterion π πleft πright, ,()
if executeTime πleft() executeTime πright()» executeTime πleft() executeTime πright()«

if executeTime τboundary() αprecise
1

executeTime π()×≤
return PDTDivisionContinue

else
if executeTime THDπ() αprecise

2
executeTime π()×≥

return PDTDivisionStop

else
return PartitionDuplication

else
return PDTDivisionContinue

: a given partition which will be divided into two sub partitions (and).
: Cluster placed in a boundary of .
: is initially set around , however, this value is precisely reconfigured by iteratively

applying appropriate parameter values.
: is initially set around , however, this value is precisely reconfigured by iteratively

applying appropriate parameter values.
: in a partition, .

 : duplication of a whole up to a given number of processors

π πleft πright
τboundary π
αprecise

1
1 3⁄

αprecise
2

1 2⁄

THDπ THD π
PARTITION DUPULICATION π

< Precise criterion >

executeTime THDπ()

executeTime π()
111

data parallelism for scheduling and obtains stage latency(=25). Stage latency is the

execution time of a given stage. Case 2 copies the whole partition by two. If this parti-

tion in a pipeline is a bottleneck, throughput can be improved to 1/(40/2) even though

a stage latency of case 2 is still 40. It is assumed that an application run infinitely and

handle different sequential data frames in each iteration. In case 2, the original parti-

tion and the copied partition handle different sequential data frame.

3.2.4.1.4 Trade-off between Latency and throughput in PDT.

During PDT make-up process, information about all partitions in intermediate levels

is stored up. Partitions in intermediate levels provide various pipelines with various

trade-offs between latency and throughput while satisfying given constraints. Here,

partitions in each intermediate levels of PDT are mapped to different stages of various

pipelines. The way of mapping partitions to stages is based on the distribution of

s. Therefore, partitions in different depths of PDT can be picked up to

Figure 33. Handling of the case of one task dominating most of excuteTime (Partition)

t 1 t 2 t 3
5 53 0

d i v i d e a p a r t i t i o n

P 1

P 2

t 1 t 2

t 2

t 3

2 5S t a g e
L a t e n c y

C a s e 1 : e x p l o i t h e t e r o g e n e o u s d a t a p a r a l l e l i s m

2 p r o c e s s o r s

5 1 5 5
P 1

P 2

t 1 t 2 t 3

4 0S t a g e
L a t e n c y

C a s e 2 : P A R T I T I O N D U P L I C A T I O N

5 3 0 5

c o p y

t 1 t 2 t 3
5 3 0 5

Y E S N O

) n)e (P a r t i t i oe x e c u t e T i m
2
1 P a r t i t i o n) i n (T H De x c u t e T i m e I f (×≥

 2 0
2

4 0 : T h r o u g h p u t =

t 1 t 2 t 3
5 53 0

d i v i d e a p a r t i t i o n

P 1

P 2

t 1 t 2

t 2

t 3

2 5S t a g e
L a t e n c y

C a s e 1 : e x p l o i t h e t e r o g e n e o u s d a t a p a r a l l e l i s m

2 p r o c e s s o r s

5 1 5 5
P 1

P 2

t 1 t 2 t 3

4 0S t a g e
L a t e n c y

C a s e 2 : P A R T I T I O N D U P L I C A T I O N

5 3 0 5

c o p y

t 1 t 2 t 3
5 3 0 5

Y E S N O

) n)e (P a r t i t i oe x e c u t e T i m
2
1 P a r t i t i o n) i n (T H De x c u t e T i m e I f (×≥

 2 0
2

4 0 : T h r o u g h p u t =

executeTime π()
112

generate pipelines. Figure 34 shows how each pipeline is made of intermediate parti-

tions of PDT in different depth. Pipeline 2 is made up of partitions in different levels

of depths while pipeline 1 is made up with partitions in the same tree depth. Pipeline 1

has a better latency than both pipeline 2 and pipeline 3 even though throughput of

pipeline 1 is worse than both pipeline 2 and pipeline 3. Pipeline 3 provides the best

throughput for a given application.

3.2.4.2 - Processor allocation, communication model and memory model

Assignment of processors and scheduling of tasks[35][39][82][85] inside each parti-

tion are performed for each partition produced by (). This thesis suggests a heuris-

tic processor allocation and scheduling algorithm named HDEST (Heterogeneous

Data parallel Earliest Start Time)[89]. HDEST is a kind of a greedy algorithm which

allocates tasks with earliest start time in a () first. However, HDEST

applies dynamic scheduling policies depending on existence/nonexistence of heteroge-

neous data parallelism of tasks in a . This approach enables us to reduce the latency

of the associated stage in conjunction with (Processor Utilization) and heteroge-

Figure 34. An example of making up pipelines with different trade-offs between latency and throughp
from PDT

Pipeline 1(L1, Throughput 1)
num(Stages) = 2

Pipeline 2(L2, Throughput 2)
num(Stages) = 5

Comparison of pipelines
=> L1 < L2 < L3
=> Throughput 1 < Throughput 2 < Throughput 3

PDT (Pipeline Decomposition Tree)

Pipeline 3(L3, Throughput 3)
num(Stages) = 9
=> Pipeline with the best throughput PDT produces

Pipeline 1(L1, Throughput 1)
num(Stages) = 2

Pipeline 2(L2, Throughput 2)
num(Stages) = 5

Comparison of pipelines
=> L1 < L2 < L3
=> Throughput 1 < Throughput 2 < Throughput 3

PDT (Pipeline Decomposition Tree)

Pipeline 3(L3, Throughput 3)
num(Stages) = 9
=> Pipeline with the best throughput PDT produces

PDT

RL ReadyList

RL

PU
113

neous data parallelism. A processor allocation is restricted by memory usage status of

both on-chip memory and external memory along with consideration of communica-

tion cost in connection with consideration of communication cost depending on archi-

tectures. After HDEST, each stage in a pipeline can be mapped to multiple processing

cores, which may or may not span multiple DSP chips depending on memory usage of

that stage and the number of processors allocated to that stage. Each DSP chip is

assumed to have up to processor cores. Thus, each stage with more than

 processors in a pipeline can be mapped to multiple processing cores,

which may or may not span multiple DSP chips in synthesis processors. Or multiple

stages with less than processors can be merged to a single DSP chip only

if they satisfy memory requirement of a single DSP chip (refer to Assumption 1 to

Assumption 6.). is the maximum number of processors which can be syn-

thesized in a single chip. In this section, setting of communication model, memory

model and processor allocation based on resource constraints and high performance is

introduced.

3.2.4.2.1 HDEST (Heterogeneous Data Parallelism Earliest Start Time)

This algorithm is an extension of EST(Earliest Start Time). While EST puts the same

priority to tasks in a (Ready List), HDEST applies different priorities to tasks in a

 based on depth of a critical path of succeeding tasks. Thus, a task with the longest

critical path of succeeding tasks has the highest priority in a . HDEST also looks up

all tasks in a and classifies them based on existence or nonexistence of heteroge-

neous data parallelism into two groups. A task with heterogeneous data parallelism is

named whereas a task without heterogeneous data parallelism is named .

PDSP Chip– max

PDSP Chip– max

PDSP Chip– max

PDSP Chip– max

RL

RL

RL

RL

THD TNHD
114

Idle processors can be utilized by task duplication in conjunction with . HDEST

tackles heterogeneous data parallelism for increasing (Processor Utilization). In

case every task in a stage is , all processors in the associated stage of a pipeline

can be fully utilized 100%. In general, task dependencies and s prevents ideal

exploitation of (Processor Utilization). After HDEST, by checking s(processor

utilization) of stages of a pipeline, stages with poor (Processor Utilization) are rep-

artitioned by refining process. Refining process redistributes workloads of stages. Fig-

ure 35 shows one example about how HDEST fills available processors when

and coexist in the . is the number of processors allocated to s.

 is the number of processors to s. Because of data parallelism feature of

, can utilize an idle time of processors allocated to by task duplica-

tion. If all tasks in a given stage are , all processors can be fully utilized by task

duplication. In case and coexist in a given stage, an idle time of proces-

sors caused by task dependency can be filled with s. Figure 36 shows HDEST

algorithm. HDEST exploits heterogeneous data parallelism with EST(Earliest Start

Time). First, HDEST finds all tasks in and then classifies them depending on

existence or nonexistence of heterogeneous data parallelism into two groups; and

. Second, HDEST schedules by considering priority and communication

cost. The rule to set up priorities of tasks in and the method to measure communi-

cation cost will be explained in detail in the following sections. Here, is sched-

uled before . It’s because execution time of can be reduced by exploiting

heterogeneous data parallelism and also fills idles processors by task duplication

flexibly. When no tasks in are available, task duplication is considered for tasks of

THD

PU

THD

TNHD

PU PU

PU

THD

TNHD RL PHD THD

PNHD THND

THD THD TNHD

THD

THD THND

THD

RL

THD

TNHD TNHD

RL

TNHD

THD THD

THD

RL
115

 which have already been scheduled, but are still running over an so

that idle processors in an idle interval, can be filled with copied tasks of

. Here, EarliestEndTimeForSchedule is the end time of the first available proces-

sor among processors being scheduled in a stage. nextEarliestTimeForSchedule is the

end time of the second available processor among processors being scheduled in a

stage. An idle interval, is an interval in which RL is empty due to task

dependency.

3.2.4.2.1.1 Setting up priorities of tasks in .

Even though tasks in (Ready List) are ready to activate, tasks have different priori-

ties based on depth of the critical path of succeeding tasks. Thus, task with the longest

critical path of succeeding tasks has the highest priority in . Equation 31 is to return

the task with the highest priority. is the task with the highest priority in .

is the number of tasks in . is to return the critical path of

succeeding tasks of task .

(31)

THD idleInterval

idleInterval

THD

idleInterval

Figure 35. An example of a schedule by HDEST

: processors used for scheduling s
: processors used for scheduling s

PHD THD
PNHD TNHD

t1 t5

t7

15 60

90 t1

t2

t4

t4

t4

t3

t5

t5

t5 t6

t6

t6

t6

t6

P N H D

P H D

t5
t2

t3

t4

t6
t7

t7

t7

t7

t7

t730

30 50

75

60

TN H D :task w ithout h eterogeneous data para lle lism
TH D : task w ith heterogeneous data para lle lism

t1 t5

t7

15 60

90 t1

t2

t4

t4

t4

t3

t5

t5

t5 t6

t6

t6

t6

t6

P N H D

P H D

t5
t2

t3

t4

t6
t7

t7

t7

t7

t7

t730

30 50

75

60

TN H D :task w ithout h eterogeneous data para lle lism
TH D : task w ith heterogeneous data para lle lism
TN H D :task w ithout h eterogeneous data para lle lism
TH D : task w ith heterogeneous data para lle lism
TN H D :task w ithout h eterogeneous data para lle lism
TH D : task w ith heterogeneous data para lle lism

RL

RL

RL

Ahighest RL NRL

RL CriticalDepthsuccessor A()

A

)]([isuccessorhighest ApthCriticalDeMaxA
RLN

i 1=
=

116

Figure 37 shows how tasks in have different priorities based on the length of the

critical path of succeeding tasks. Task has the highest priority due to the longest crit-

ical path and then task is next and finally task has the lowest priority.

* Descriptions for terminologies used in HDEST algorithm of figure 36
<Data structure description >
tasksInStage: tasks in the corresponding stage.
processorsInStage: processors in the corresponding stage.
EarliestEndTimeForSchedule: the end time of the first available processor among processors
being scheduled in a stage.
nextEarliestTimeForSchedule: the end time of the second available processor among processors
being scheduled in a stage.
readyTasks[]: tasks in a ready list satisfying task dependency at “EarliestEndTimeForSchedule”
time. idleInterval: an interval in which RL is empty due to task dependency.
THDTasksInIdleInterval[]: THD tasks scheduled over an idle interval.
processorsForTaskDuplication[]: processors available for task duplication in a stage.
< Function description >
pickUpTasksEST(): return tasks with EST(Earliest Start Time) in RL (Ready List).
setTaskPriotity(): set priority of each task based on a critical path of successors of the task in
terms of the execution time.
returnHighestPriorityTask(): return the task with the highest priority.
returnProcessorMinimumCost(): return a processor which provides a minimum communication
cost for a given task.
allocateTaskToProcessor(): allocate a given task to the processor returned by the returnProces-
sorMinimumCost().
updateReadyList(): update a RL (Ready List) with the remaining tasks in the corresponding stage.
returnNextEarliestTimeForSchedule(): return the next “EarliestTimeForSchedule”.
pickUpTHDTasksInIdleInterval(): return THD tasks in an idle interval.
returnProcessorsForTaskDuplication(): return processors available for task duplication of a
given THD task.
taskDuplication(): perform task duplication of a given THD task up to “processorsForTaskDupli-
cation”.

RL

A

B C

A D

B

C

E F

R L (R e a d y L is t) : A , B , C P r io r i t y : A > B > C

1 s t

2 n d

3 r d

A D

B

C

E F

R L (R e a d y L is t) : A , B , C P r io r i t y : A > B > C

1 s t

2 n d

3 r d

Figure 37. Priority setting of tasks in RL (Ready List) based on a critical path of
succeeding tasks.
117

3.2.4.2.1.2 Communication cost in scheduling.

 allocates tasks to the processor with the minimum communication cost by

monitoring data dependency between tasks. We refer to Banerjee’s model[7] for IPC

cost estimation and then extend the communication model by adding bus contention

problem caused by a shared memory architecture.[21][56][106][112]

HDEST(tasksInStage, processorInStage) {
EarliestEndTimeForSchedule = updateReadyList(RL, tasksInStage);
While(tasksForSchedule != empty) {

if(RL != empty) {
readyTasks[] = pickUpTasksEST(RL, EarliestEndTimeForSchedule);
setTaskPriotity(readyTasks);
//allocate TNHD tasks first in readyTasks
for(i=0;i<readyTasks.TNHDtasks.length;i++) {

taskTNHD = returnHighestPriorityTask(readyTasks.TNHDtasks);
processor = returnProcessorMinimumCost(taskTNHD);
allocateTaskToProcessor(processor, taskTNHD);

}
//then allocate THD tasks first in readyTasks
for(i=0;i<readyTasks.THDtasks.length;i++) {

taskTHD = returnHighestPriorityTask(readyTasks.THDtasks);
processor = returnProcessorMinimumCost(taskTHD);
allocateTaskToProcessor(processor, taskTHD);

}
tasksInStage.remove(readyTasks);
EarliestEndTimeForSchedule = updateReadyList(RL, tasksInStage);

}
//exploit Heterogeneous Data Parallelism
else {

nextEarliestTimeForSchedule = returnNextEarliestTimeForSchedule(processorsInStage);
idleInterval= nextEarliestEndTimeForSchedule - EarliestEndTimeForSchedule;
THDTasksInIdleInterval[]

= pickUpTHDTasksInIdleInterval(processorsInStage, idleInterval);
while(true) {

taskTHD = returnHighestPriorityTask(THDTasksInIdleInterval);
THDTasksInIdleInterval.count--;
processorsForTaskDuplication[] = returnProcessorsForTaskDuplication(idleInterval);
taskDuplication(processorsForTaskDuplication, taskTHD);
if(idleInterval == filled or THDTasksInIdleInterval.count == null)

break;
}
EarliestEndTimeForSchedule = updateReadyList(RL, tasksInStage);

}
}

}

Figure 36. HDEST algorithm

HDEST

Dij s() C0ij C1ij s×+=
118

Here, is the communication delay from processor i to processor j. is the

fixed communication delay between processor i and processor j. is the communi-

cation delay per a unit data size communication.

(32)

(33)

(34)

In equation 34, is the delay from bus contention among processors sharing

memory region when task runs on . In equation 33, is IPC cost when task

 runs on processor and tasks running other processors except processor send

data to task . is delay per unit data size from bus contention among pro-

cessors sharing a memory region. Here, we select a linear model of .

, is a constant delay factor for bus contention, as operation patterns

of tasks allocated to each processor using a shared memory architecture are very simi-

lar. is the communication cost when task runs on processor either when

tasks running other processors except processor send data to task or when pro-

cessors share a memory region with processor . depends on the memory archi-

tecture chosen by a value of . If = 1, in equation 32, for bus contention from

a shared memory architecture is ignored whereas if = 0, of equation 32 for

IPC cost is ignored. is the number of tasks running on processors except processor

sending data to task . The following inequality shows how memory architecture

influences task activation time.

when = 1,

when = 0,

Dij s() C0ij

C1ij

CCk j, IPCk j, s() BCk p()+=

IPCk j, s() γ= Di j, s()
i 1=

η

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

×

BCk p() 1 γ–()= bcdelay p() s××

BCk p() p

k p IPCk j, s()

k j η j

k bcdelay p() p

p

bcdelay p() p λ×= λ

CCk j, k j η

j k p

j CCk j,

γ γ BCk p()

γ IPCk j, s()

η j

k

γ Ψi executeTime ti() Di j,+ +()max Ψj, i for η∀≤

γ Ψi executeTime ti() BCi p()+ +()ax Ψj, i for ∀≤
119

 and are starting times of each task and task . is the execution

time of task, . For task , allocates task to a process producing mini-

mum communication cost in terms of both IPC and bus contentions so that the overall

communication cost for the schedule is minimized.

 is the processor providing the minimum communication cost for task .

is the number of processors in a stage. Figure 38 shows how allocates task

when a separate memory architecture is applied. Task is allocated to processor , as

preceding tasks, task and task are allocated to processor which leads to a lower

communication cost than allocated to processor due to data dependency with task

and task .

3.2.4.2.1.3 Examples of how () operates.

Figure 39 shows how and influence

scheduling of each stage. From case 1 to case 3, (Heterogeneous Data Parallel-

ism) is exploited with different configurations. These cases produce better latencies

than a schedule without consideration of (Heterogeneous Data Parallelism).

Ψi Ψj i j executeTime ti()

ith ti k HDEST k

)(,min jkCCMinp
stageP

jCC 1=
=

PminCC k Pstage

HDEST D

D 2

B C 2

1 B

C

A D

B

C

P 1

P 2

A

B C D

A D

B

C

A D

B

C

P 1

P 2

A

B C D

Figure 38. Example of consideration communication cost of
HDEST in scheduling.

HDEST

executeTime THD() executeTime TNHD()

HDP

HDP
120

Here, case 3 produces the best result by reducing idle times of processors with .

In case 3, task 4 starts running on processor 2 in parallel with task 3, When task 3 fin-

ishes on processor 1, the remaining portion of task 4 is performed on both processor 1

and processor 2 in parallel by task duplication. Figure 39 shows that have hid-

den potential parallelism which can be exploited further by HDEST. Usually, the exe-

cution time of a partition can’t be smaller than the longest critical path within the

partition. Thus, the longest critical path within the partition becomes a lower bound for

latency. However, by exploiting (Heterogeneous Data Parallelism), the execution

time of a partition can be smaller than execution time of the longest critical path.

3.2.4.2.1.4 Verification of the number of processors allocated by (Processor Utili-

zation).

The number of processors allocated to a partition is based on an (). How-

ever, while applying HDEST, some partitions result in poor s. In general, the more

processors are allocated, the faster latency of the corresponding stage is. However,

HDP

THDs

HDP

Figure 39. An example of how THDs reduce the execution time of a given stage

t1 t2 t3

t4

P 1

P 2

t1

20 30 10

40

t2

t2

t3

t4

P 1

P 2

t1 t2

t2

t3

t4

P 1

P 2

t1 t2

t2

t3

t4

t4

t4

t4

P 1

P 2

t1 t2 t3

t2

1 . A schedu le w ith H D P (H e te rogeneous D a ta P ara lle lism) b y TA S K D U P LIC A T IO N

2 . A schedu le w ithou t H D P (H e te rogeneous D a ta P a ra lle lism)

75 65 60

90

S tag e
L aten cy

S tag e
L aten cy

C ase 1 C ase 2 C ase 3

C ase 4

= > B est sch ed u le : C ase 3

< S chedu le w ith 2 p rocessors >

: A task w ith o u t h e te ro g en eo u s d a ta p ara lle lism

: A task w ith h e tero g e n eo u s d a ta p a ra lle lism

t1 t2 t3

t4

P 1

P 2

t1

20 30 10

40

t2

t2

t3

t4

P 1

P 2

t1 t2

t2

t3

t4

P 1

P 2

t1 t2

t2

t3

t4

t4

t4

t4

P 1

P 2

t1 t2 t3

t2

1 . A schedu le w ith H D P (H e te rogeneous D a ta P ara lle lism) b y TA S K D U P LIC A T IO N

2 . A schedu le w ithou t H D P (H e te rogeneous D a ta P a ra lle lism)

75 65 60

90

S tag e
L aten cy

S tag e
L aten cy

C ase 1 C ase 2 C ase 3

C ase 4

= > B est sch ed u le : C ase 3

< S chedu le w ith 2 p rocessors >

: A task w ith o u t h e te ro g en eo u s d a ta p ara lle lism

: A task w ith h e tero g e n eo u s d a ta p a ra lle lism

PU

executeTime

PU
121

stages with poor (Processor Utilization) produce overall poor throughput and bad

latency since other candidate stages which could produce better latency along with

extra processors lose potential chances. Thus, verification of the number of processors

allocated to each partition is necessary in terms of (Processor Utilization). Figure

40 shows the relationship among latency, the number of processors and processor utili-

zation. By seeing figure 40 a), the latency drops slowly after a specific point. There-

fore, in the process of processor allocation, a scheduler needs to investigate how the

latency varies depending on the number of processors. Here, a search region from

to is chosen based on .

(35)
Equation 35 returns the point where execution time of partition, change slowly as

the number of processors, is changed. Thus, if is equal to and

 is larger than or equal to , it means that a given number of processors,

 for a partition is proper. Here, is execution time of partition,

under the number of processors, .

In both figure 41 a) and figure 41 b), three processors are given initially for sched-

uling. In figure 41 a), schedules of both two cases with one processor and two proces-

sors satisfy , but the schedule with is below . In this case, “

- ” is stored in a . Processors in a can be used to reduce the latency of a

bottleneck partition later. In figure 41 b), the schedule with satisfies . Here,

 also satisfies by improving latency of a given partition. In this case, if

processors are available in a and a given partition is a bottleneck partition in a

pipeline, extra processors can be applied for a better schedule in addition to .

PU

PU

Pmin

Pmax Pgiven

[] maxgivenminpp P P P : region search ,eexecuteTimeexecuteTimMax
P

Pp
≤≤− −

+

+=
)()(

max

min
ππ 1

1

1

π

p isel 1– Pgiven

PU Pgiven() PUth

Pgiven executeTimep π() π

p

PUth Pgiven 3= PUth Pgiven

Psel Pstored Pstored

Pgiven PUth

Pgiven 1+ PUth

Pstored

Pgiven
122

3.2.4.2.2 Memory model

This thesis considers two different memory architectures; a shared memory architec-

ture vs a separate memory architecture. For on-chip, only a shared memory is consid-

ered since multiple processing cores in a single DSP chip lead to the limited chip size.

For external memory, both a shared and a separate memory architecture are exclu-

Figure 40. Relationship among execution time of partition, π, the number of processors, p and pro-
cessor utilization, PU.

P

P U

P

P U t h

P s e l P m a xP m i n P s e l1 P s e l 2

P s e l : n u m b e r o f p r o c e s s o r s s e l e c t e d f o r s c h e d u l i n g

P m i n : m i n i m u m n u m b e r o f p r o c e s s o r s t o b e c o n s i d e r e d f o r s c h e d u l i n g

P m a x : m a x i m u m n u m b e r o f p r o c e s s o r s t o b e c o n s i d e r e d f o r s c h e d u l i n g

P U t h : t h r e s h o l d f o r p r o c e s s o r u t i l i z a t i o n t o b e a c c e p t e d .

P : P r o c e s s o r s , P U : P r o c e s s o r U t i l i z a t i o n

a) b)

)(πpee x e c u t e T i m

)(πpee x e c u t e T i m : e x e c u t i o n t i m e o f p a r t i t i o n , π u n d e r t h e n u m b e r o f p r o c e s s o r s , P .

P

P U

P

P U t h

P s e l P m a xP m i n P s e l1 P s e l 2

P s e l : n u m b e r o f p r o c e s s o r s s e l e c t e d f o r s c h e d u l i n g

P m i n : m i n i m u m n u m b e r o f p r o c e s s o r s t o b e c o n s i d e r e d f o r s c h e d u l i n g

P m a x : m a x i m u m n u m b e r o f p r o c e s s o r s t o b e c o n s i d e r e d f o r s c h e d u l i n g

P U t h : t h r e s h o l d f o r p r o c e s s o r u t i l i z a t i o n t o b e a c c e p t e d .

P : P r o c e s s o r s , P U : P r o c e s s o r U t i l i z a t i o n

a) b)

)(πpee x e c u t e T i m

)(πpee x e c u t e T i m : e x e c u t i o n t i m e o f p a r t i t i o n , π u n d e r t h e n u m b e r o f p r o c e s s o r s , P .

t2Pgiven = 3 t1 t3

30 10 40

P1 t1 t2 t3 num(P) = 1, PU(P=1) > PUth
Latency = 80

80

P1 t1

t2 t3
num(P) = 2, PU(P=2) > PUth
Latency = 50

50

P2

P1 t1

t2 t3
num(P) = 3, PU(P=3) < PUth
Latency = 45, Psel = 2

45

P2

t2P3 num(Pgiven) = 3 fails to meet PUth
Store up “Pgiven – Psel” to Pstored list

t2Pgiven = 3 t1 t3

30 10 40

P1 t1 t2 t3 num(P) = 1, PU(P=1) > PUth
Latency = 80

80

P1 t1

t2 t3
num(P) = 2, PU(P=2) > PUth
Latency = 50

50

P2

P1 t1

t2 t3
num(P) = 3, PU(P=3) < PUth
Latency = 45, Psel = 2

45

P2

t2P3 num(Pgiven) = 3 fails to meet PUth
Store up “Pgiven – Psel” to Pstored list

Figure 41. Examples of verification of Pgiven

a) b)

: the number of processors stored up which can be used for a bottleneck partition.
: the number of processors.

Pstored
num P()

t2P give n = 3 t1

5 50 20

P 1 t1 t2 t3 n um (P) = 1 , P U (P =1) > P U th
L a te nc y = 7 5

75

P 1 t1

t2
n um (P) = 2 , P U (P =2) > P U th
L a te n c y = 3 7 .5

37 .5

P 2

P 1 t1

t2
n um (P) = 3 , P U (P =3) > P U th
L a te nc y = 2 5

25

P 2

t2P 3

t2

t2

t2

t2

t2

P 1 t1

t2
nu m (P) = 4 , P U (P =4) > P U th
L a te n c y = 1 8 .7
=> If “P g iv en = 3 ” c a use s a b o ttle n e ck
th en , P se l = 4

18 .7

P 2

t2P 3

t2

t2

t2

t2P 2 t2

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3
: A ta sk w ith o u t h ete rog e n e o us d a ta p a ra lle lism

: A ta sk w ith h e tero g e n e o u s d a ta p a ra lle lis m

t2P give n = 3 t1

5 50 20

P 1 t1 t2 t3 n um (P) = 1 , P U (P =1) > P U th
L a te nc y = 7 5

75

P 1 t1

t2
n um (P) = 2 , P U (P =2) > P U th
L a te n c y = 3 7 .5

37 .5

P 2

P 1 t1

t2
n um (P) = 3 , P U (P =3) > P U th
L a te nc y = 2 5

25

P 2

t2P 3

t2

t2

t2

t2

t2

P 1 t1

t2
nu m (P) = 4 , P U (P =4) > P U th
L a te n c y = 1 8 .7
=> If “P g iv en = 3 ” c a use s a b o ttle n e ck
th en , P se l = 4

18 .7

P 2

t2P 3

t2

t2

t2

t2P 2 t2

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3
: A ta sk w ith o u t h ete rog e n e o us d a ta p a ra lle lism

: A ta sk w ith h e tero g e n e o u s d a ta p a ra lle lis m
123

sively considered depending on task dependency of an application graph(refer to

Assumption 1 to Assumption 6.). Intuitively, tasks immediately following a branch

point is assumed to be integrated to the same stage for maximizing the effect of a

shared memory architecture.

Since on-chip memory is shared by processor cores, monitoring of runtime mem-

ory usage within a on-chip memory usage is necessary for appropriately allocating

tasks with different window sizes to the associated processor core. is on-

chip memory threshold for a single DSP chip and is the maximum num-

ber of processor cores to be embedded within a single DSP chip. Thus, in equation 36,

, the total on-chip memory threshold for stage, with more processors than

 is readjusted to . Here, is the number

of processors allocated to a pipeline stage.

Runtime usage of external memory linked to each processor also limits allocation

of tasks to available processors. Figure 42 a) shows the case that can’t run on

idle due to the shortage of available on-chip memory. Figure 42 b) shows that the

shortage of available memory for prevents running on .

(36)

(37)

(38)

 is external memory threshold of a processor within stage . is the number

of tasks currently running on the associated stage, . is a task running on the associ-

ated stage, . is the number of input ports of task, . is the window of input

MOth glesin,

PDSP Chip– max

MOn
th n

PDSP Chip– max
Pstage PDSP Chip– max

MOth glesin,×⁄ Pstage

task4

P3

P1 task6 P1

MOn
th Pstage PDSP Chip– max

MOth glesin,×⁄=

wkti
k 1=

Iti

∑
i 1=

µ

∑ MOth
n≤

bkti
k 1=

Iti

∑
i 1=

µj

∑ MEth
n j() ≤

MEn
th j() j n µ

n ti

n Iti
ti wkti

kth
124

port of task, . is the number of tasks currently running on processor . is the

buffer of input port of task, . Both on-chip memory usage and external memory

usage of each stage within a pipeline are examined by equation 37 and 38 during

scheduling.

• Assumption 7:

For both on-chip and external memory, a memory region allocated by a sender-

task is held up until all receiver-tasks are activated. Here, a sender-task is a task send-

ing data to a receiver-task which consumes the data.

3.2.4.3 Iterative change of parameters

Parameters in PDT scheduling influence an output schedule. Appropriate values for

parameters can be intuitively predicted due to the deterministic feature of our algo-

rithm. However, calibrated values of these parameters may slightly vary depending on

a given application[5]. The initial values of parameters are obtained from arbitrary

generated application graphs. Starting from these initial values, PDT scheduling algo-

rithm is applied in an iterative way by changing values of those parameters until the

best schedule under given constraints is obtained.

ti µj j bkti

kth ti

Figure 42. Usage of on-chip and external memory

b) external memorya) on-chip memory

P1

P2

P3

p = 3

t4

t5t3

t2

t4

t1

t1

t1

t1

t2

t3

t5

t5

t4

MOth

mem

w1
w2

w3

w4

w5

w4w1

w1

t

P1

P2

P3

p = 3

t4

t5t3

t2

t4

t1

t1

t1

t1

t2

t3

t5

t5

t4

MOth

mem

w1
w2

w3

w4

w5

w4w1

w1

t

MOth

mem

w1
w2

w3

w4

w5

w4w1

w1

t

MEth

mem

t1

t3

P1

P2

t2 t4

t5 t6

t6

MEth

mem

m3

m5

m6

P1 P2

tt

m4

m1

m2

m6

t7t3

t2

t5

t1 t4 t6

MEth

mem

t1

t3

P1

P2

t2 t4

t5 t6

t6t1

t3

P1

P2

t2 t4

t5 t6

t6

MEth

mem

m3

m5

m6

P1 P2

tt

m4

m1

m2

m6

t7t3

t2

t5

t1 t4 t6

t7t3

t2

t5

t1 t4 t6
125

Figure 43 shows how PDT scheduling algorithm is applied along with varying

values of parameters in an iterative search way.

3.2.5 Application examples

This thesis mainly focuses on applications consisting of both tasks and

tasks. Since tasks operate on the basis of a window, they provide important infor-

mation at the compile stage for the resource management and the scheduling. Exam-

ples of those features are image processing applications. We selected a complex image

processing module based on morphological operations, Laplacian image pyramid and

Multi-resolution spline. Figure 44, 45 and 46 show graphs of application examples.

Figure 44 shows an application integrating major morphological image processing

modules. This application produces the outputs of several applications of morphologi-

cal operation modules (Top-hat, Gradient, Laplacian and Smoothing). Table 9 shows

functional descriptions of each blocks in figure 44.

Figure 45 and 46 show an application performing Laplacian pyramid and Gaussian

Pyramid. An image in level of Gaussian Pyramid is obtained by convolution of

Figure 43. Adaptation of PDT scheduling algorithm with varying parameters to an iterative
search approach

re tu rn “s o l” ;

a p p lic a tio n

P D T -s c h e d u le r (p a ram s)

B e s t
s o lu tio n

w h ile (lo ca ls ea rc hR e g io n < p a ram s.s e a rch R eg io n)
{

c a lib ra te (p aram s);

If(“s o l” is be tte r)
u p d a te c u rren t b es t so lu tio n ;

if(“s o l” c o n v erge s)
b rea k;

}

p a ra m s = In itia l p a ram e te rs ;

Ite ra tiv e se a rch

THD TNHD

THD

i 1+
126

an image in level with Gaussian filter and sub-sampling. An image in each level of

Laplacian Pyramid is obtained by differentiating the original image in each level and a

Figure 44. A graph of a complex module of morphological operations

Image Gr1

Ge1

Gr2

Dif

Gr3

Gr4

Ge2

Dif

Ge3

Dif

Ge4

Dif

Laplacian Pyramid

Image Gr1

Ge1

Gr2

Dif

Gr3

Gr4

Ge2

Dif

Ge3

Dif

Ge4

Dif

Laplacian Pyramid

Figure 45. Laplacian Pyramid as an application example.

: reduction of h level image by Gaussian Pyramid
: expansion of h level image by Gaussian Pyramid
: produce difference between two inputs

Gri i
Gei i
Dif

i

127

reconstructed image from an image in the next level of Gaussian Pyramid. Table 10

shows functional descriptions of each block of figure 45.

Figure 46 shows an application performing Multi-resolution spline. Multi-resolution

spline() produces a merged image from two different images by Laplacian Pyra-

Table 9. Function description of each block of figure 44

Function description of each task

Image
Reader

Provide the original image to an application

StrParam(Stream
Parameterizer)

Convert an image frame and frame information accompanied into
parameters for the body sub-system of BLDF

CntIn-
dex(CountIndex)

Produces indices to which each task of the associated body subsystem
refer to access image frame

Dilate Perform dilation operation

Erode Perform erosion operation

Aggre(Aggregate) Aggregate triggers each task produces to check if each task operating
in parallel is finished

Diff(Differentiate) Produce the difference from two input frames

2X Produce an output by multiplying an input with 2

M u l t i r e s o lu t io n S p l in e

Im a g e 1 G r 1

G e 1

G r 2

D if

G r 3 G r 4

G e 2

D i f

G e 3

D i f

G e 4

D i f

Im a g e 2 G r 1

G e 1

G r 2

D i f

G r 3

G r 4

G e 2

D i f

G e 3

D i f

G e 4

D i f

M S 1
M S 2

M S 3 M S 4

Im a g e 1 G r 1

G e 1

G r 2

D if

G r 3 G r 4

G e 2

D i f

G e 3

D i f

G e 4

D i f

Im a g e 2 G r 1

G e 1

G r 2

D i f

G r 3

G r 4

G e 2

D i f

G e 3

D i f

G e 4

D i f

M S 1
M S 2

M S 3 M S 4

Figure 46. Multi resolution Spine as an application example.

: produce a multi resolution spline of th level imagesMSi i

MS
128

mid. creates a new Laplacian Pyramid generated by combining two different

Laplacian Pyramids.

3.2.6 Experimental results

This thesis uses TMS320C64x DSP simulator of Texas Instruments’ code composer to

measure estimated execution time of each task within a dataflow graph by assuming

each task running on a single processor. We used complex morphological application,

Laplacian Pyramid, Multi-resolution spline and MPEG2 encoder for scheduling over

multi processors with the suggested technique. The application was scheduled under

different constraints and architectures. We assumed each DSP chip can integrate up to

Table 10. Function description of each block of figure 45

Function description of each task

Image Provide the original image

Produce an image reduced by convolution an original
image with Gaussian Filter and Sub-Sampling

Produce an image by convolution and Zero-padding

Dif Produce the difference from two input frames

, ,... = the levels of a Gaussian Pyramid

: an image in a level of Laplacian Pyramid.
: an image in a level of Gaussian Pyramid.
: a reconstructed image from an image by expanding operation.

G0 G1 Gi
Li Gi Gi′–=
Li i
Gi i
Gi′ Gi 1+

Gr

Ge

MS

(Limg1(i,j) + Limg2(i,j))/2

Limg2(i,j)

Limg1(i,j)

Limg3(i,j)

if i < width/2

if i = width/2

if i > width/2

(Limg1(i,j) + Limg2(i,j))/2

Limg2(i,j)

Limg1(i,j)

Limg3(i,j)

if i < width/2

if i = width/2

if i > width/2
: a Laplacian Pyramid of Multi-resolution spline.

: a Laplacian Pyramid of .

Limg3 i j,()

Limg1 i j,() img1
129

4 processor cores. Each DSP chip has on-chip memory and external memory. Each

stage of a pipeline consist of one or more DSP chips with different number of proces-

sors cores depending on data dependency. We assumed that external memory for each

processor core within DSP chip can be configured in either a separate memory archi-

tecture (SP) or a shared memory architecture (SH) whereas only a shared memory was

considered for on-chip memory due to the size issue of DSP chip. We applied 10%

reduction for on-chip and 50% memory reduction for an external memory compared to

peak memory usage of each processor core. We observed the effect of memory con-

straints on performance in each architecture configuration. We compared the sug-

gested technique with EST(Earliest Start Time) algorithm. We performed the

experimentation with 2, 4, 8 and 16 numbers of processors. Figure 48 through Figure

51 show the comparison of latency and throughput for Multi-resolution Spline, Lapla-

cian pyramid, Image complex and MPEG2 encoder benchmark applications under

either memory constraint or unconstraint environment with different numbers of pro-

Figure 47. MPEG2 Encoder

Current
Frame

Reference
Frame1

Motion
Estimator

DCT ZigZag Q
Run

Length
VLC

IDCT
Inverse
ZigZag

IQ

Frame
Encapsulator

Motion
Estimator

Reference
Frame2

Inverse
Motion

Estimator

Inverse
Motion

Estimator

< MPEG2 Encoder >< MPEG2 Encoder >

Inverse
Run Length

Inverse
VLC

Encoded
Stream

Current
Frame

Reference
Frame1

Motion
Estimator

DCT ZigZag Q
Run

Length
VLC

IDCT
Inverse
ZigZag

IQ

Frame
Encapsulator

Motion
Estimator

Reference
Frame2

Inverse
Motion

Estimator

Inverse
Motion

Estimator

< MPEG2 Encoder >< MPEG2 Encoder >

Inverse
Run Length

Inverse
VLC

Encoded
Stream
130

cessors (). Figure 48 shows that scheduling results under

memory constraints lead to each 80% (WTD) and 51%(WOTD) performance degrade

in terms of throughput under a shared memory architecture with 16 processors. Shared

memory architecture can save up to 37.5% memory usage under an unconstrained

memory and 16 processors environment while providing 25% faster latency than sepa-

rate memory architecture. Heterogeneous data parallelism of the suggested technique

provides 2.46 times better throughput and 62.5% reduced latency than scheduling of

without heterogeneous data parallelism () with 16 processors. In figure 50 and

a) Latency (Constrained) b) Latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)

0

20

40

60

80

100

120

140

160

180

200

SP SP SH SH

WTD WOTD WTD WOTD

L
a
te

n
c
y(

m
 s

e
c
)

P= 2

P= 4

P= 8

P= 16

0

20

40

60

80

100

120

140

160

180

200

SP SP SH SH

WTD WOTD WTD WOTD

L
a
te

n
c
y(

m
 s

e
c
)

P= 2

P= 4

P= 8

P= 16

0

10

20

30

40

50

60

70

SP SP SH SH

WTD WOTD WTD WOTD

T
h
ro

u
g
h
p
u
t(

1
/s

e
c
)

P= 2

P= 4

P= 8

P= 16

0

10

20

30

40

50

60

70

SP SP SH SH

WTD WOTD WTD WOTD

T
h
ro

u
g
h
p
u
t(

1
/s

e
c
)

P= 2

P= 4

P= 8

P= 16

Figure 48. Latency and throughput comparison (Multi-Spline)

SP: separate memory.
SH: shared memory.
WTD: With Heterogeneous data parallelism.
WOTD: Without Heterogeneous data parallelism.
< Constrained >
[SH: On-Chip 3.6KB, EX-MEM: The number of stages*64KB].
[SP: On-Chip 3.6KB, EX-MEM: The number of processors*64KB]
< Unconstrained >
[SH: On-Chip 4KB, EX-MEM: The number of stages*2*64KB].
[SP: On-Chip 4KB, EX-MEM: The number of processors*2*64KB]

Processors 2 4 8 and 16, ,=

WOTD
131

figure 51 a), latencies for and under memory constrained scheduling with

a shared memory architecture are not changed along with increased number of proces-

sors. This shows that memory constraint for the application is close to a low boundary

of memory usage, which prevents heterogeneous data parallelism or more available

processors for scheduling improving performance. In figure 51 b), latencies under

both a separate memory architecture and a shared memory architecture without mem-

ory constraints are not improved even though more processors are given for schedul-

ing. This result shows that the critical data dependency prevents the scheduler taking

advantage of idle processors. In this case, heterogeneous data parallelism by HDEST

reduces 84.6% of latency of configuration (P=16). This means heterogeneous

data parallelism is not sensitive to data dependency. Further exploitation of available

idle processors by heterogeneous data parallelism can be possible.,

WTD WOTD

WOTD

a) Latency (Constrained) b) Latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)

Figure 49. Latency and throughput comparison (Laplacian)

0
10
20
30
40
50
60
70
80
90

SP SP SH SH

WTD WOTD WTD WOTD

#processor

L
a
te

n
c
y(

m
 s

e
c
)

P= 2

P= 4

P= 8

P= 16

-10

10

30

50

70

90

SP SP SH SH

WTD WOTD WTD WOTD

#processor

L
a
te

n
c
y(

m
 s

e
c
)

P= 2

P= 4

P= 8

P= 16

0

50

100

150

200

SP SP SH SH

WTD WOTD WTD WOTD

#processor

T
h
ro

u
g
h
p
u
t(
1
/s

e
c

P= 2

P= 4

P= 8

P= 16

0

50

100

150

200

SP SP SH SH

WTD WOTD WTD WOTD

#processor

T
h
ro

u
g
h
p
u
t(
1
/s

e
c
)

P= 2

P= 4

P= 8

P= 16
132

a) latency (Constrained) b) latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)

Figure 50. Latency and throughput comparison (Image Complex)

0

10

20

30

40

50

60

70

SP SP SH SH

WTD WOTD WTD WOTD

#processor

L
a
te

n
c
y(

m
 s

e
c

P= 2

P= 4

P= 8

P= 16

0

10

20

30

40

50

60

70

SP SP SH SH

WTD WOTD WTD WOTD

#processor

L
a
te

n
c
y
(m

 s
e

P= 2

P= 4

P= 8

P= 16

0

50

100

150

200

250

SP SP SH SH

WTD WOTD WTD WOTD

#processor

T
h
ro

u
g
h
p
u
t(
1
/s

e
c

P= 2

P= 4

P= 8

P= 16

0

50

100

150

200

250

SP SP SH SH

WTD WOTD WTD WOTD

#processor
T
h
ro

u
g
h
p
u
t(
1
/s

e
c
)

P= 2

P= 4

P= 8

P= 16

a) latency (Constrained) b) latency (Unconstrained)

c) Throughput (Constrained) d) Throughput (Unconstrained)
Figure 51. Latency and throughput comparison(MPEG2 Encoder)

0
10
20
30
40
50
60
70
80
90

SP SP SH SH

WTD WOTD WTD WOTD

processor

La
te

nc
y(

m
 s

ec
) P=2

P=4

P=8

P=16

0

10

20

30

40

50

60

SP SP SH SH

WTD WOTD WTD WOTD

processor

La
te

nc
y(

m
 s

ec
) P=2

P=4

P=8

P=16

0

100

200

300

400

500

600

700

SP SP SH SH

WTD WOTD WTD WOTD

processor

Th
ro

ug
hp

ut
(a

/s
ec

)

P=2

P=4

P=8

P=16

0

100

200

300

400

500

600

700

SP SP SH SH

WTD WOTD WTD WOTD

processor

Th
ro

ug
hp

ut
(1

/s
ec

)

P=2

P=4

P=8

P=16
133

Figure 52 shows comparison between EST and PDT technique for experiments with

Multi-Spline, Laplacian, Image Complex and MPEG2 applications. The suggested

technique provides 63.8% reduced latency and 4.94 times fast throughput compared to

EST approach under an unconstrained memory configuration for Multi-Spline appli-

cation. The graph shows that tight memory constraint makes the results between the

suggested technique and EST less obvious compared to an unconstrained memory

environment. Especially, in latency of (Image Complex) and (MPEG2 encoder)

under memory constraints(configuration), a relatively tight memory constraint com-

pared to the minimum memory usage for scheduling prevents PDT exploiting idle pro-

cessors with heterogeneous data parallelism. Figure 53 shows that pipelines generated

by PDT have different latencies and throughputs. provides the lowest latency(31

msec) whereas has the best throughput (66.7 frames per sec). In figure 53,

(Latency: 52m sec, Throughput: 43.5 frames per sec) is chosen under given latency

(lower than 60m sec) and throughput (over 40 frames per sec) requirement boundary.

3.2.7 Conclusion

Effective, coarse-grained (task-level) pipelined scheduling of an application over

A3 A4

C

P1

P3

P2

Figure 53. Latency vs Throughput trade-off (Multi-resolution Spline,
P=16, Unconstrained, Shared memory)

0

20

40

60

80

100

120

4 7 6 5 1 4 3 7 6 8 5

#stages

m
 s

ec
(L

),
1/

se
c(

Th
)

Latency
L(Bottleneck)
T h

P1P1
P2P2

P3P3 L & L & ThTh
Constraint regionConstraint region

0

20

40

60

80

100

120

4 7 6 5 1 4 3 7 6 8 5

#stages

m
 s

ec
(L

),
1/

se
c(

Th
)

Latency
L(Bottleneck)
T h

P1P1
P2P2

P3P3 L & L & ThTh
Constraint regionConstraint region
134

multi processors generally provides increased throughput. However, pipelined sched-

uling can significantly increase latency. Furthermore, pipelined scheduling of image

processing applications requires careful and flexible consideration of data- and task-

level parallelism. This paper provides a new approach to generating coarse-grained

pipelines for image processing applications in a manner that simultaneously considers

latency/throughput trade-offs; memory and performance constraints; task-level paral-

lelism; and homogeneous and heterogeneous modes of data parallelism. The approach

is based on a novel data structure called the pipeline decomposition tree (PDT).

The PDT is useful for efficiently representing and exploring various sets of pipe-

Figure 52. EST vs PDT comparison

A1:Multi-Spline, A2:Laplacian, A3:ImageComplex, A4:MPEG2
C: Constrained memory
UC: Unconstrained memory

a) Latency comparison (EST vs PDT)

b) Throughput comparison (EST vs PDT)

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

L L L L L L L L

A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 4

C U C

La
te

nc
y(

m
-s

ec
)

E S T
P D T

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

T h T h T h T h T h T h T h T h

A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 4

C U C

Th
ro

ug
hp

ut
 (1

/s
ec

)

E S T
P D T
135

lining configurations that provide different trade-offs between latency and throughput.

After pipelined schedules are generated through the PDT analysis process, a new tech-

nique called heterogeneous data parallelism earliest start time (HDEST) maps appli-

cation tasks onto pipeline stages while considering memory and performance

constraints. In the HDEST mapping process, heterogeneous data parallelism is care-

fully applied to improve both throughput and latency.

Our experimental results on various applications demonstrate the utility of the

PDT data structure and HDEST mapping technique for embedded multiprocessor

implementation of image processing applications. The applications in our experiments

involved image processing because the emphasis in PDT on data parallelism consider-

ations makes the technique especially well-suited for image processing. However,

concepts related to the PDT, PDT scheduling, and HDEST can be applied to other

domains of signal processing, including speech processing, high fidelity audio pro-

cessing, and digital communications. Exploration and specialization of our techniques

for applications in such domains provide important directions for further study. For

example, application to wireless communications will require special attention to inte-

grating power optimization considerations into the PDT analysis framework.
136

Chapter 4 : Communication optimization of

DSP applications implementation

4.1 Introduction

In the previous chapter, we described a novel scheduling technique for mapping a

dataflow graph over multiprocessor environment named PDT scheduling. PDT sched-

uling tackled data parallelism and task parallelism together to improve latency and

throughput at the same time. The technique tackled various system constraints such as

a memory architecture, system performance and communication cost etc. during

scheduling. A preliminary summary of part of this chapter is published in [50][51].

In this chapter, we describe two post-optimization techniques as a communication

optimization technique. After modeling and scheduling, more detailed communication

optimization technique can be considered, which are sometimes application depen-

dent. Communication optimization technique can be divided into two parts; hardware

and software communication optimization. In hardware communication optimization,

we perform a FIFO buffer optimization of a dataflow graph in terms of a trade-off of

performance and cost among FIFO architectures. In software communication optimi-

zation, we perform the case study with a sensor network application. In the sensor net-

work domain, we suggest an application cutting technique for distributing a single

dataflow graph over several processing nodes to minimize the overall energy con-

sumption of a sensor network system in consideration of performance change.
137

4.2 Modeling and optimization of buffering trade-off

4.2.1 Abstract

As modern image and video processing applications handle increasingly higher image

resolutions, the buffering requirements between communicating functional modules

increase correspondingly. The performance and cost of these applications can change

dramatically depending on the implementation methods for FIFO buffers and the data

delivery methods between modules. This thesis introduces a new FIFO hardware map-

ping algorithm based on pointer-based token delivery from dataflow semantics for

image and video processing applications. This approach significantly improves the

performance of dataflow based implementation of image and video processing sys-

tems, and allows effective prediction of changes in performance and buffer memory

requirements associated with changes in image resolution. Our pointer-based token

delivery method allows indirect token delivery between actors by pointers in conjunc-

tion with use of a shared memory. Each pointer references a data block stored in the

shared memory. In pointer-based token delivery, a buffer can be configured to be

implemented as the combination of a small, fast FIFO and a larger, relatively cheap

shared memory while providing an attractive trade-off between performance and hard-

ware cost. We present the complete semantics of our pointer-based modeling method,

systematic techniques for mapping representations using these semantics into efficient

implementations, and experimental results that demonstrate the performance of the

proposed pointer-based techniques.
138

4.2.2 Related Work

Dataflow [63] is widely used for designing DSP applications. Various research efforts

on mapping dataflow graphs into hardware implementations have been undertaken.

For example, the approach of [30] exploits loop parallelism to map nested loop kernels

onto a coarse-grained reconfigurable architecture. The approach of [33,34] uses direct

mapping of each dataflow graph component (actor) onto a corresponding hardware

resource. The approach of [38] uses shared resources and looped schedules. The

approach of [40] analyzes a given set of applications to extract commonalities across

nodes in different applications and uses them to bias the mapping of nodes in the parti-

tioning process. For FPGA implementation, the approach of [92] provides a rapid sys-

tem prototyping method through a component architecture and an associated set of

software tools. The approach of [103] provides a pipelined asynchronous circuit map-

ping method. For pointer synthesis, the approach of [87] encodes pointer values and

generates circuits that can dynamically access different locations with each pointer ref-

erence. The approach of [105] points out that pointers can reference indices to RAM,

registers or even wires in a hardware mapping. The approach of [8] applies an external

memory for mapping FIFO buffers and implements real-time image convolution on an

FPGA. The approach of [72] implements image processing applications on FPGAs

and points out that such implementations lead to a large on-chip FIFO buffers that pre-

vent flexible usage of FPGAs for image processing applications. The approach of

[104] presents an elaborate technique for mapping global, static arrays to distributed

communication structures while classifying four types of inter-process communication

patterns. The approach of [110] studies memory optimization for embedded software,
139

particularly the performance of cache-based systems. The approach of [107] presents a

novel technique for background memory allocation in multi-dimensional signal pro-

cessing applications based on dataflow analysis.

The efforts described above make useful contributions to mapping application

representations at various levels of abstraction into hardware implementations. How-

ever, the simultaneous analysis of both performance and cost implications when map-

ping image processing applications, which involve especially large volumes of data

token delivery, has not been thoroughly investigated in previous work.

This thesis helps to bridge this gap by studying, in the context of mapping data-

flow graphs into hardware, the relationship between token delivery methods (indirect,

pointer-based token delivery vs. direct-reference, raw token delivery) and FIFO archi-

tecture. This thesis exploits pointer-based token delivery to reduce on-chip FIFO sizes,

and also provides a range of efficient trade-offs between performance (latency and

throughput) and FPGA resource cost through a novel FIFO mapping algorithm. This

thesis also shows how overall performance and cost vary in relation to the selected

sub-frame size at which block processing is carried out. Finally, this thesis provides a

new mapping algorithm for dataflow representations of image processing applications

to reduce overall FPGA resource costs without significant performance loss.

4.2.3 FIFO hardware mapping for dataflow graphs

4.2.3.1 Modeling and architecture

In this work, an application is modeled under synchronous dataflow (SDF) [63]

semantics and then mapped to an FPGA device. Each vertex (actor) within the given
140

SDF graph is mapped to a module within the target FPGA. Edges are converted into

either pure on-chip raw data FIFO architectures or composite FIFO architectures that

we call pointer based FIFOs. Figure 54 shows a comparison of raw data FIFOs and

pointer based FIFOs. In Figure 54b), the raw data FIFO is embedded inside the FPGA

chip and holds direct raw data tokens. Here, by token we mean the unit of data transfer

along an edge in the dataflow graph. The pointer based FIFO involves both an on-chip

FIFO, which holds references to token blocks rather than the tokens themselves, and

an external (off-chip) RAM-based memory, which may be shared across multiple

pointer based FIFOs as well as other storage constructs. In Figure 54a), raw data

tokens are located in the external memory, while a relatively small on-chip FIFO

buffer holds pointers that provide a stream of indices into the external memory.

The FIFO architectures (raw data vs. pointer based) and FIFO sizes can be config-

ured strategically based on optimization during the synthesis process. This thesis for-

mulates and investigates this optimization problem, and studies various important

factors that should be taken into account when configuring dataflow buffers for hard-

ware mapping. This is an important problem because the configurations of the FIFOs

in a dataflow graph implementation have significant impact on the overall perfor-

mance and hardware resource costs. This thesis presents an effective heuristic FIFO

mapping algorithm for mapping SDF graphs efficiently into hardware.

4.2.3.2 Performance and cost impact of token delivery methods

As implied above, we consider two alternative token delivery methods between data-

flow actors, pointer based token delivery (indirect token delivery) and raw token deliv-

ery (direct token delivery).
141

Raw token delivery is the conventional form of data delivery for dataflow graph

implementation. Raw token delivery directly transfers data tokens across the FIFOs

that connect adjacent pairs of actors in the dataflow graph. Therefore, for applications,

such as those found in the image processing domain, that require large volumes of

token transfer, very high resource requirements often result from extensive use of raw

token delivery. On the other hand, since there is no indirection overhead or external

memory access involved, raw token delivery improves performance through faster

dataflow communication.

The limited quantities of gates available on FPGAs makes it challenging to imple-

ment image processing applications efficiently on these devices. Although FPGA

resource density continues to increase from Moore’s law, the complexity and resolu-

tion requirements of state-of-the-art image processing applications is also increasing at

a significant pace.

Pointer based token delivery allows for more efficient use of limited FPGA

Interface buffer

M a in fun c

FIFO M a in
func

Interface buffer

FIFO

B u s D rive r B u s D rive r

S R A M 1

S R A M C o n tro lle r 0

B u s D rive r

S R A M 0

B u s
A rb ite r 0

M a s te r 0
[req]

M as te r 1
[re q]

A ck A ck

S lave 0

B u s D rive r

S R A M 1

S R A M C on tro lle r 1

B u s D rive r

S R A M 0

M as te r 0
[re q]

B u s
A rb ite r 1

po rt w id th : 8

R aw d a ta to ke n d e live ry p a thR aw d a ta to ke n d e liv ery p a th

P o in te r to k e n P o in te r to k e n d e live ry p a thd e live ry p a thMM o d u le (ac to ro d u le (a c to r)) MM o d u le (ac to ro d u le (a c to r))

Interface buffer

M a in fun c

FIFO M a in
func

Interface buffer

FIFO

B u s D rive r B u s D rive r

S R A M 1

S R A M C o n tro lle r 0

B u s D rive r

S R A M 0

B u s
A rb ite r 0

M a s te r 0
[req]

M as te r 1
[re q]

A ck A ck

S lave 0

B u s D rive r

S R A M 1

S R A M C on tro lle r 1

B u s D rive r

S R A M 0

M as te r 0
[re q]

B u s
A rb ite r 1

po rt w id th : 8

R aw d a ta to ke n d e live ry p a thR aw d a ta to ke n d e liv ery p a th

P o in te r to k e n P o in te r to k e n d e live ry p a thd e live ry p a th

Interface buffer

M a in fun c

FIFO M a in
func

Interface buffer

FIFO

B u s D rive r B u s D rive r

S R A M 1

S R A M C o n tro lle r 0

B u s D rive r

S R A M 0 S R A M 1

S R A M C o n tro lle r 0

B u s D rive r

S R A M 0

B u s
A rb ite r 0

M a s te r 0
[req]

M as te r 1
[re q]

A ck A ck

S lave 0

B u s D rive r

S R A M 1

S R A M C on tro lle r 1

B u s D rive r

S R A M 0 S R A M 1

S R A M C on tro lle r 1

B u s D rive r

S R A M 0

M as te r 0
[re q]

B u s
A rb ite r 1

po rt w id th : 8

R aw d a ta to ke n d e live ry p a thR aw d a ta to ke n d e liv ery p a th

P o in te r to k e n P o in te r to k e n d e live ry p a thd e live ry p a thMM o d u le (ac to ro d u le (a c to r)) MM o d u le (ac to ro d u le (a c to r))

Interface buffer

Main func FIFO
[sf1]

Read
FIFO
Buffer

Main
func

Write
FIFO
Buffer

FIFO
[sf2]

Interface buffer

port width : 8 8 bit/each line

equal to sub-frame size

Raw data token delivery pathRaw data token delivery path
MModule(actorodule(actor)) MModule(actorodule(actor))

Interface buffer

Main func FIFO
[sf1]

Read
FIFO
Buffer

Main
func

Write
FIFO
Buffer

FIFO
[sf2]

Interface buffer

port width : 8 8 bit/each line

equal to sub-frame size

Raw data token delivery pathRaw data token delivery path
MModule(actorodule(actor)) MModule(actorodule(actor))

Figure 54. Comparison of FIFO architectures

a) Pointer based FIFO architecture

b) Raw token FIFO architecture
142

resources by dividing inter-actor communication functionality into two parts. These

parts consist of a relatively small set of pointers, and blocks of token data that the

pointers reference. The pointers are kept in fast but expensive on-chip FIFOs, while

the raw token data is located in slow but cost-effective external RAM. Dataflow graph

actors send data to other actors by transferring pointers through the on-chip FIFOs.

Actors at the receiving end use the transferred pointers to access external memory and

retrieve the actual raw tokens. Pointer based token delivery significantly reduces

FPGA resource requirements at the expense of some degradation in latency and

throughput.

Equation (39) below describes relationships between pointer based token delivery

and raw token delivery in terms of performance (execution time) and cost (the

required number of gates). Here, denotes the number of gates required for the FIFO

; denotes the execution time for data token delivery through FIFO ; repre-

sents a coefficient for converting the number of gates between two delivery methods;

and represents a similar conversion coefficient for execution time. The values of

and depend on the sub-frame size .

, , , . (39)

The following equation describes the effects of raw token delivery and pointer

gF

F tF F αg

αt αg

αt sf

A B C
9 9 1 8

A B C
9 9 1 8

A B C

3 3 6

A B

A

C C

A B

A B C

a p p l i c a t io n ΙΙ

a p p l i c a t io n Ι ΙΙ Ι

a p p l i c a t i o n ΙΙ & Ι ΙΙ Ι

++

L W - ΙΙ : 9 + 9 = 1 8
T h W - ΙΙ : 1 / 3 6

L s f - ΙΙ : 9 + 2 * 6 = 2 1
T h s f - ΙΙ : 1 / 6

L s f - Ι ΙΙ Ι : 1 5 + 2 * 6 = 2 7
T h s f - Ι ΙΙ Ι : 1 / 6

B

A

B

A

C

6

B

A

C C

B

A

B

A

6 6 66

A B C
9 9 1 8L W - Ι ΙΙ Ι : 9 + 9 + 1 8 = 3 6

T h W - ΙΙ : 1 / 3 6

L : L a t e n c y

T h : T h r o u g h p u t

L s f - ΙΙ
T h s f - ΙΙ

LL WW -- ΙΙ T hT h WW -- ΙΙ

LL WW -- Ι ΙΙ Ι T hT h WW -- Ι ΙΙ Ι

LL s fs f -- Ι ΙΙ Ι T hT h s fs f -- Ι ΙΙ Ι

L 0 s f - ΙΙ

L 0 s f - Ι ΙΙ Ι
i d l ei d l e

A B C
9 9 1 8

A B C
9 9 1 8

A B C

3 3 6

A B

A

C C

A B

A B C

a p p l i c a t io n ΙΙ

a p p l i c a t io n Ι ΙΙ Ι

a p p l i c a t i o n ΙΙ & Ι ΙΙ Ι

++

L W - ΙΙ : 9 + 9 = 1 8
T h W - ΙΙ : 1 / 3 6

L s f - ΙΙ : 9 + 2 * 6 = 2 1
T h s f - ΙΙ : 1 / 6

L s f - Ι ΙΙ Ι : 1 5 + 2 * 6 = 2 7
T h s f - Ι ΙΙ Ι : 1 / 6

B

A

B

A

C

6

B

A

C C

B

A

B

A

6 6 66

A B C
9 9 1 8L W - Ι ΙΙ Ι : 9 + 9 + 1 8 = 3 6

T h W - ΙΙ : 1 / 3 6

L : L a t e n c y

T h : T h r o u g h p u t

L s f - ΙΙ
T h s f - ΙΙ

LL WW -- ΙΙ T hT h WW -- ΙΙ

LL WW -- Ι ΙΙ Ι T hT h WW -- Ι ΙΙ Ι

LL s fs f -- Ι ΙΙ Ι T hT h s fs f -- Ι ΙΙ Ι

L 0 s f - ΙΙ

L 0 s f - Ι ΙΙ Ι
i d l ei d l e

Figure 55. Effect of sub-frame division on latency and through-
put.

graw gptr» graw αggptr= tFraw tFptr« tFptr αttFraw=
143

based token delivery on latency and throughput:

. (40)

Here, a critical path of the given application must be extracted beforehand for the anal-

ysis, and is the number of actors on this critical path. The symbols and are

related, respectively, to the input port and output port of in the critical path (i.e.,

with respect to the edges in the critical path that are incident to). In (40),

() if the associated communication is mapped to a raw FIFO architecture, and

conversely, () if it is mapped to a pointer based FIFO. The other sym-

bols in (40) are defined below in Section 4.2.3.3.

4.2.3.3 Effect of sub-frame size on performance and cost

Sub-frame division reduces FIFO size along with pointer based token delivery since

the whole data frame can be processed in smaller units. However, depending on the

application, there may be strict constraints on the sub-frame size () that can be

employed. Many image processing subsystems have minimum window (or block)

sizes for their basic units of operation. Some globally-oriented operations, such as

contouring, require the whole image frame as their basic units of input.

Sub-frame division influences both performance and cost. To understand this bet-

ter, we can decompose the execution time of an actor into three different parts,

, and . Here, is the execution time for activation of ; is

the execution time for the main functional logic operation of ; and is the exe-

L tA ai() tO ai()

βi
intFraw ai() 1 βi

in–()tFptr ai()

β o () 1 β o() ()

+

+ +

+ +

[

]

i 1=

n

∑=

n βi
in βi

o

ai

ai βi
in

1=

βi
o

1=

βi
in

0= βi
o

0=

sf

ai

tA ai() tO ai() tF ai() tA ai() ai tO ai()

ai tF ai()
144

cution time required for token delivery of . is proportional to the number of

sub-frame divisions (), whereas the “total summation” of and are the

same regardless of the sub-frame division format. Usually, is relatively small

compared to and .

Equation 41 shows the relationship among the three different components of exe-

cution for an actor, taking into account sub-frame division.

, ,

, , ,

. (41)

Here, represents the size of the entire image frame; is the sub-frame size;

is the number of sub-frame divisions (); and is latency of actor .

Additionally, and are latencies of actor under the image frame size

and under the sub-frame size , respectively. Unlike the latency and throughput of a

single actor, as decomposed in (41), the latency and throughput of the entire applica-

tion are influenced by the interaction of data dependency, sub-frame size and FIFO

architecture. Although sub-frame division generally allows for reduction of FIFO size,

and also improves throughput, sub-frame division generally leads to some increase in

application latency. For example, in the case where a single dataflow graph represents

two or more applications operating concurrently, and those applications share actors in

the graph, data dependencies and execution time distributions of paths in the graph

influence the performance of each application in the dataflow graph differently.

Figure 55 compares, for an illustrative example, the performance of sub-frame

division by to the case where there is no sub-frame division. Here, throughput

is improved for both Applications I and II. However, sub-frame division degrades the

ai tA ai()

δ tO ai() tF ai()

tA ai()

tO ai() tF ai()

Lw ai() tAw
ai() tOw

ai() tFw
ai()+ += Lsf ai() δtAsf

ai() δ tOsf
ai() tFsf

ai()+[]+=

Lw ai() L ai() Lsf ai()≤ ≤ tOw
ai() tFw

ai()+ δ tOsf
ai() tFsf

ai()+[]≅ tAw
ai() tAsf

ai()=

tA
w

ai() δtA
sf

ai() tO
w

ai() tF
w

ai(),«<

w sf δ

δ w sf⁄= L ai() ai

Lw ai() Lsf ai() ai w

sf

δ 3=
145

latency of Application I, whereas the latency of Application II is improved. This phe-

nomenon generally arises when two or more applications share actors (e.g., for more

compact representation and implementation) in a common dataflow graph and

(defined in (42) below) is smaller than 0. This effect becomes prominent especially

when the ratio of and is large, where represents the pipeline idle time. In

(42), can be obtained by simply dividing by .

. (42)

, , , , ,

. (43)

In (43), is the execution time of the actor with the largest execution time,

and represents the initial latency for subframe size . Here, the number of gates

required for each application () in the common graph is reduced by increasing

. Equation (44) shows the effect of sub-frame division on the number of gates

required for an application():

. (44)

ρ

idle LW idle

Lo LW δ

Figure 56. Effect of data dependency on performance.
a) 0 delay FIFO b) 1 delay FIFO c) 2 delay FIFO

A

B C

DA

B C

D A

B C

D

A

E

B
1 1

1

C D
1 1

A
2

B
2

C D
2 2

A
3

A B
1 1

C D
1 1

A
2

E

E
2

B
2

C D
2 2

A
3

E
3

B
3

C
3

A
4

E
1

A B
1 1

C D
1 1

A
2

F
1

B
2

E
2

A
3

C
2

F
2

B
3

E
3

A
4

D
2

C
3

F
3

B
4

E
4

A
5

D
3

C
4

F
4

B
5

E
5

A
6

ThThndnd

ThTh1d1d

ThTh2d2d

E F
bbranch pointranch point

mergemerge pointpoint

A

B C

DA

B C

D A

B C

D

A

E

B
1 1

1

C D
1 1

A
2

B
2

C D
2 2

A
3

A B
1 1

C D
1 1

A
2

E

E
2

B
2

C D
2 2

A
3

E
3

B
3

C
3

A
4

E
1

A B
1 1

C D
1 1

A
2

F
1

B
2

E
2

A
3

C
2

F
2

B
3

E
3

A
4

D
2

C
3

F
3

B
4

E
4

A
5

D
3

C
4

F
4

B
5

E
5

A
6

ThThndnd

ThTh1d1d

ThTh2d2d

E F
bbranch pointranch point

mergemerge pointpoint

ρ δLo Lo idle δ 1–()
Th

-----------------+ +–

δ 1–() Lo
1

Th
------–⎝ ⎠

⎛ ⎞ idle–

=

=

Lw δLo= Thw 1 Lw⁄= Lsf L1
δ 1–()
Thsf

-----------------+= Thsf
1

actormax

----------------------= Always Thsf Thw<,

ρ 0> Lw Lsf≥→ otherwise Lw Lsf<→,

actormax

L1 sf

g Appl()

δ

Appl

gw Appl() δgsf Appl()≈
146

4.2.3.4 Effect of data dependency on performance and cost

In case a dataflow graph has a “branch point”, two or more paths following the branch

point merge again at some subsequent point, and these paths exhibit a large execution

time deviation, the associated data dependency can greatly deteriorate the performance

of all the associated applications in the dataflow graph. Here, a “branch point” repre-

sents a point where a single actor has two or more output ports or a single output port

goes to two or more successor actors.

Figure 56 shows how performance under sub-frame division can be improved

through insertion of special FIFOs that we call “delay FIFOs()” (these are the

FIFOs labeled and in Figure 56). Performance improvement by delay FIFO inser-

tion depends on the execution time distribution of the actors on each critical path fol-

lowing the branch point.

Equation (45) represents the relationship between performance and the added

delay FIFOs.

, , , ,

, (45)

Here, and are the latency and throughput, respectively, without . Fur-

thermore, and are the corresponding values with one . And and

 are those for two s. , and are latencies for processing the

first subframe in the cases of no , 1 and 2 s, respectively.

Equation (46) represents the increase in the number of gates required for the

application as delay FIFOs are added. The overhead of the delay FIFOs can be mini-

mized by using the pointer based FIFO architecture for their implementation.

Fdelay

E F

Lnd Lnd,1
δ 1–()
Thnd

-----------------+= L1d L1d,1
δ 1–()
Th1d

-----------------+= L2d L2d,1
δ 1–()
Th2d

-----------------+= Lnd,1 L1d,1 L2d,1= =

Thnd Th1d Th2d< < Lnd∴ L1d L2d> >

Lnd Thnd Fdelay

L1d Th1d Fdelay L2d

Th2d Fdelay Lnd,1 L1d,1 L2d,1

Fdelay Fdelay Fdelay
147

. (46)

4.2.3.5 Optimization of FIFO hardware mapping

Idle intervals and uneven execution time distributions exist due to data dependencies

and differences in operational complexity across dataflow actors. Performance and

cost can be improved by integrating cost-effective, pointer based FIFOs and fast, raw

token FIFOs in strategic ways.

Figure 57 provides a simple illustration of how the resource cost for a data-

flow graph can be reduced significantly while maintaining overall performance

through hybrid FIFO architecture selection. Here, the throughputs of both configura-

tions are identical. Furthermore, by using sub-frame division, the difference between

latency of Figures 57a and 57b can be made negligible, since the throughput () is

ultimately the primary factor for determining latency under sub-frame division, as

gnd Appl() g1d Appl() g2d Appl()≤ ≤

Figure 57. Comparison of FIFO mapping.

a)Raw data FIFO Only b) Combined FIFO

A B C

A B C A B C

P o i n t e r b a s e d F I F O : S l o w , b u t c o s t - e f f e c t i v e

R a w d a t a F I F O : F a s t , b u t e x p e n s i v e

T ha c t o r ≅m a x

A B CA B C

A B C A B C

P o i n t e r b a s e d F I F O : S l o w , b u t c o s t - e f f e c t i v e

R a w d a t a F I F O : F a s t , b u t e x p e n s i v e

T ha c t o r ≅m a x

Table 11. Comparison of FIFO mapping results.

L: Latency, Th: Throughput, : the number of gates for graph .
C1, C4: , C2, C5: , C3, C6: + .

g G() G
Fraw Fptr Fraw Fptr

 N o d e l a y D e l a y F IF O

s f (8 x 8) , δ = 2 5 6 C 1 C 2 C 3 C 4 C 5 C 6

L s 8 8 8 u s 1 1 5 7 u s 8 8 8 u s 4 4 7 u s 5 8 1 u s 4 4 7 u s

L g 8 8 4 u s 1 1 5 2 u s 8 8 4 u s 4 4 3 u s 5 7 6 u s 4 4 3 u s L

L t 8 8 5 u s 1 1 5 4 u s 8 8 6 u s 4 4 5 u s 5 7 8 u s 4 4 5 u s

T h 1 / 3 . 5 u s 1 / 4 . 5 u s 1 / 3 . 5 u s 1 / 1 . 5 u s 1 / 2 u s 1 / 1 . 5 u s

g (G)
1 2 2 , 9 1 5 2 6 , 8 4 0

1 0 1 , 5 6

5
1 2 5 , 5 1 6 2 9 , 4 4 1 1 0 4 , 1 6 6

s f (1 6 x 1 6) , δ = 6 4 C 1 C 2 C 3 C 4 C 5 C 6

L s 8 8 6 u s 1 1 5 8 u s 8 8 6 u s 4 5 5 u s 5 9 4 u s 4 5 5 u s

L g 8 6 9 u s 1 1 3 6 u s 8 7 1 u s 4 3 7 u s 5 7 2 u s 4 3 9 u s L

L t 8 7 6 u s 1 1 4 4 u s 8 7 8 u s 4 4 4 u s 5 8 1 u s 4 4 6 u s

T h 1 / 1 4 u s 1 / 1 8 u s 1 / 1 3 . 5 u s 1 / 6 u s 1 / 8 u s 1 / 6 u s

g (G) 5 6 2 , 7 9 3 2 6 , 9 6 9 4 4 3 , 7 2 1 5 6 5 , 4 0 3 2 9 , 5 7 9 4 4 6 , 3 3 1

g G()

G

Th
148

implied by (42) and (43).

Figures 58 and 59 show our FIFO mapping algorithm, which is motivated by the

observations and analysis above. It is assumed that the dataflow graph can involve

multiple applications, and moreover, that subsets of applications can share common

actors for more compact representation and implementation. The function

() sets up information about estimated execution times and execution

time distributions of the actors. The function also finds and . Here,

 represents the estimated number of gates for the main functional logic por-

tions the actors, and is the number of gates used for FIFOs under the assump-

tion that only raw token FIFOs are used. The actual that results from a mapped

implementation lies between and as shown in (47).

, ,

. (47)

For each application(), a critical path () is selected and an

appropriate FIFO type is determined based on the execution time distribution of actors

within the path.

For each hierarchical subsystem within the critical path, () is applied

recursively. Finally, delay FIFO () insertion is performed to improve perfor-

mance. For , pointer based FIFOs () are used, and therefore, the overhead of

redundant FIFOs can be minimized while achieving the desired performance improve-

ment.

G

initializeGraph

g iclog G() gFraw G()

g iclog G()

gFraw G()

g G()

gmin gmax

gmin G() glogic G() gFptr G()+= gmax G() glogic G() gFptr G() gFdelay G()+ +=

gmin G() g G() gmax G()≤ ≤

Gcur i[] GcurHg i[].crPath

detFIFOArch

Fdelay

Fdelay Fptr
149

4.2.4 Experimental results

Figure 60 shows a complex, composite morphological image processing application

used in this thesis for experimentation. Here, the performance and cost of each appli-

cation under the dataflow representation are influenced by the interaction of to shared

actors with the applications that contain them. Figure 60 is implemented by Verilog

and is simulated under the modelSim 6.0 environment. Synthesis is performed under

Xilinx XST with the Spartan3 (xc3s1500) used as the target device. Input images of

size () are consumed and processed by the graph. Experimentation is

performed under two different values of , corresponding to 8x8 and 16x16 sub-

frames. In Table 11, and of are lower bounds in performance optimiza-

tion, and and of are lower bounds in cost reduction. Equation (48) shows

how, in the following discussion, we compare the performance and costs of two differ-

ent configurations and .

initializeGraph(G) {
— Analyze the critical path of each application in

the dataflow graph.
— Obtain the estimated execution time
— Obtain the execution time distribution on the path
— Obtain and
return , ;

}

glogic G() gFraw G()
glogic G() gFraw G()

Figure 58. FIFO mapping algorithm-PartA.

detSubFrameDivision(G){

{
;

}
 {

;
}
— apply all other applications with

}

if Lw G.applhighest_priority()
Lsf G.applhighest_priority()<

(
)

dataFrame w=

else
dataFrame sf=

dataFrame

a

w 128 128×=

sf

C1 C4 Fraw

C2 C5 Fptr

CX CY
150

, . (48)

In comparison of and , and provide approximately 23% perfor-

mance improvement compared with and , while requiring about 81% more

gates. In comparison of , provides 54% performance improvement compared

with along with a slight (2%) cost increase. In comparison of sub-frame division

effects for , and , the latency of is slightly improved, whereas the

L∑ CX
L∑ CY

⁄ ThCX
ThCY

⁄+] 2⁄ g(GCX
) g(GCY

)⁄

Fraw Fptr C1 C4

C2 C5

Figure 59. FIFO mapping algorithm-PartB.

detFIFOArch(G){
=initializeGraph(G);

;
while(){

- Select an application() of highest
priority
- while(){

=detFIFOType();
;

for each hier actor of {
= +detFIFOArch(;

}
;

;
}

;
}

{
- Perform data dependency analysis of
- Insert delay FIFOs(: type)
and update

;
}
detSubframeDivision();
return ;

}

gFraw G() glogic G(),
gF

G
0=

G φ≠
GcurHg

GcurHg i[] φ≠
gF

path
GcurHg i[].crPath

gF
hier

0=
Φ j[] GcurHg i[].crPath

gF
hier

gF
hier

Φ j[]

GcurHg GcurHg GcurHg i[].crPath–=
gF

G
gF

G
gF

path
gF

hier
+ +=

G G GcurHg–=

if gF
raw

G() gF
G

>()
G

Fdelay Fptr

gF
GgF

G
gF

G
gFdelay+=

G
gF

G
glogic G()+

detFIFOType(){
=0;

for each actor on the {

{
;

}
else {

;
}

}
return ;

}

G
gFsum G

if tO G.a[i]() tFptr G.a[i]()+[]
tO actormax() tF actormax()+[]<

(
)

gFsum
gFsum

gFptr
a i[]()+=

gFsum
gFsum

gFraw
a i[]()+=

gFsum

Fdelay C6

C3

C4 C5 C6 Smoothing
151

latency of is decreased as is decreased. Here, the latency impact is negligi-

ble since is relatively small compared to the execution time of each actor for pro-

cessing the entire image frame . On the other hand, the throughput and cost

improvements are distinguishable as is increased.

Next, we see that , which involves both performance and cost optimization,

provides 54% performance improvement and 16% cost reduction compared with the

conventional approach of . Similarly, , which leans more toward cost optimiza-

tion, provides 39% performance improvement and 76% cost reduction compared with

the conventional approach of . Here, delay FIFO insertion in Path 1 (see Figure 60)

leads to significant improvement of performance along with 2% increase of .

Combined use of and with significantly improves overall performance

along with providing for cost reduction. For cases where cost is the primary issue, it is

important to note the significant cost reduction of .

4.2.5 Conclusions and future work

This thesis studies important issues in the mapping of dataflow representations of

image processing applications into hardware implementations. Specifically, we focus

on efficient mapping of FIFO buffers, and explore the effects of FIFO architecture,

sub-frame division and data dependency on performance and cost. Based on this

Gradient sf

idle

w

δ

C6

C1 C5

C1

g G()

Fptr Fraw Fdelay

Fptr

Figure 60. Complex, composite morphological image pro-
cessing application (TopHat, Gradient and Smoothing).

Im a g e
S o u r c e

E r o d e O

D i la t e C

D i la t e O

D i f f T o p

D if f
G r a d ie n t

E r o d e C E r o d e O S D ila t e O S

T o p H a t

G r a d ie n t

S m o o t h in g

F IF OF I F O d e la yd e la y

pp a t h 1a t h 1

pp a t h 2a t h 2
152

exploration, we provides heuristic optimization methods that simultaneously improve

performance and cost with manageable complexity. A strategic FIFO mapping

approach that comprehensively exploits dataflow graph characteristics results in sig-

nificantly lower FPGA resource requirements with nearly equal performance. Useful

directions for future work include extending the methodology developed in this thesis

to heterogeneous, embedded multiprocessors that include a variety of processing com-

ponents, such as conventional FPGAs, platform FPGAs, and programmable digital

signal processors.

4.3 Energy-driven partitioning of signal processing algorithms

in sensor networks

4.3.1 Abstract

In a sensor network, as we increase the number of nodes, the requirements on network

lifetime, and the volume of data traffic across the network, it is often efficient to move

towards hierarchical network architectures (e.g., see [31]). In such hierarchical net-

works, sensor nodes are clustered into groups, and their roles are divided into master

and slave nodes for more efficient structuring of network traffic. The operational com-

plexity of each sensor node and the amount of data to be transmitted across sensor

nodes strongly influence the energy consumption of the nodes, which ultimately deter-

mines the network lifetime. This paper provides a new way of reducing data traffic

across nodes by determining and exploiting the lowest data token delivery points

within an application graph that is distributed across a network. The technique divides
153

an application graph into two sub-graphs and then distributes each divided subgraph

over a master node and its associated slave nodes. The buffer costs of the graph edges

over the cutting line corresponds to the amount of data to be transmitted between

nodes after allocating the two partial subgraphs such that one subgraph executes on a

master node, and the other subgraph is distributed across the associated slave nodes.

Since the energy consumption on each node is dominated by the transceiver, the

reduced data traffic allows for reducing the turn-on time of the transceivers, and

thereby leads to high energy savings. This technique also distributes the workload of

sensor nodes in a systematic manner. The more balanced workload also contributes to

efficient battery usage, and also improves the latency for processing the data frames

captured by the sensor nodes.

4.3.2 Introduction and Related work

The energy consumption of the nodes in a wireless sensor network must be care-

fully optimized to increase network lifetime. This paper develops an overall minimiza-

tion of an energy consumption of a sensor network, and provides an efficient trade-off

between latency and network lifetime by balancing the workload of the sensor nodes,

and carefully determining the points in the application that must communicate across

nodes so that the turn-on time of transceivers is minimized.

Many useful approaches have been suggested previously to reduce the energy

consumption of sensor nodes. Shih. have distributed the FFT function over a master

node and slave nodes to reduce energy consumption by moving the function from a

cluster head node to slave nodes [88]. Kumar, Tsiatsis, and Srivastava [54] explore
154

energy and latency trade-offs by considering different computational capabilities for

master and slave nodes. Other researchers have suggested a hierarchical, physical

layer driven sensor network design to reduce data traffic and energy consumption of a

sensor node in connection with the physical-layer network functions [66, 91]. In these

latter approaches, the node optimization needs to be performed carefully in conjunc-

tion with the underlying protocol characteristics.

 The technique that we develop in this paper is novel in that it analyzes the pattern

of internal data exchange rates within an application to minimize the overall energy

consumption of a sensor network, while also taking into account changes in latency

due to distributed mapping, and application of a hierarchically clustered sensor net-

work organization. The approach is especially suited for multirate signal processing

applications, which exhibit complex and nonuniform patterns of data exchange across

functional modules of the application.

Many sensor network applications or important application subsystems can be

modeled efficiently with dataflow semantics. By analyzing a well-designed dataflow

graph model of an application, operational efficiency can be effectively estimated and

optimized at a coarse grain level for various kinds of target architectures (e.g., see [11,

18, 40]). Parameterized dataflow [9] is a form of dataflow that is especially well-suited

to sensor network signal processing applications due to its integrated support for adap-

tation and reconfiguration at various layers of abstraction. Parameterized dataflow

allows for dynamic change of variables and configuration settings that can be mapped

to module- or subsystem-level parameters of an application.

This paper employs the DGT (dynamic graph topology) [48] method for modeling
155

applications. DGT is a form of parameterized dataflow that emphasizes support for

run-time flexibility by allowing for efficient, dynamic changes in application graph

topologies based on run-time requests. In DGT semantics, the connections (dataflow

edges) between actors (functional modules), as well as the amount of data produced

and consumed by the actors can be changed, with the changes expressed in terms of

dynamic parameters of the application. In the context of sensor network optimization,

this feature can be used to integrate modeling of master/slave node relationships in a

clustered network, and also modeling of dynamically changing application graph

topologies that execute on sensor nodes.

4.3.3 Energy consumption optimization by distribution

of an application

4.3.3.1 Application cutting in a sensor network

In a clustered sensor network, each sensor node captures data from its set of one

or more sensors. The captured data can be sent to the associated master node immedi-

ately, or the data can be processed to some degree within the slave node before it is

sent to the master node. For the data processing functionality, each edge within the

application dataflow graph may have different data transfer characteristics. It is useful

to consider these characteristics carefully when dividing a dataflow graph for process-

ing across a master- and slave-node pair.

Dividing an application graph in this manner generally allows us to reduce the

amount of data that must be transmitted between the nodes, and it also allows us to

balancing the workloads of sensor nodes. The amount of data that must be transmitted
156

directly influences the turn-on time of the sensor node transceivers, which are major

sources of energy consumption. Similarly, distributing the workload of an application

for balanced processing increases network lifetime through balanced battery usage

across the sensor nodes. Therefore, it is useful to partition dataflow graphs across sen-

sor nodes with joint consideration of data transfer volume and workload balance.

Synchronous dataflow (SDF) is an especially useful model, due to its predictabil-

ity and formal properties, for representing many signal processing applications [11,

63]. In SDF, the number of data values (tokens) produced and consumed by each actor

is constant. As a result of this restriction, graphs can be scheduled statically based on

the so-called repetition vector), which is a vector that is indexed by the actors in the

graph, and gives the number of times that each actor needs to be invoked in a static

schedule for the graph. Such a schedule can be repeated indefinitely with bounded

memory requirements to process the indefinite-length data streams that are character-

istic in the signal processing domain.

The number of tokens that are transferred across an edge in the dataflow graph in

each schedule iteration can be obtained from the repetitions vector and the number

of tokens produced by the source actor of the edge. Given a partition of the dataflow

graph into two parts, the total number of tokens that must be transferred () across

the partition can be obtained by summing up the token transfer volumes of the edges

that cross the partition.

The repetitions vector can be obtained through (49) and (50) [63]:

(49)

R

R

buftr

T e v,()
prd e() if v = src(e)

cns e() if v = snk(e)–
0 otherwise

=

157

(50)
In (49), is the number of tokens produced onto edge by each execution of

, which denotes the source actor of . Similarly, is the number of tokens

consumed from by each execution of , which is the sink actor of .

The total number of tokens that cross a given partition in a schedule iteration

can then be expressed as

(51)

where is the number of actors whose outgoing edges cross the partition;

 is an ordering of the actors whose outgoing edges cross the partition;

 is the number of outgoing edges of actor that cross the partition; and is

the th outgoing edge of that crosses the partition, based on some ordering of the

outgoing edges.

Figure 61(a) illustrates how data transmission requirements can change depending

the selection of a partition. Figure 61(a) provides four possible candidates for a “cut-

ting line” to determine the partition. The edges that cross the cutting line determine the

network data transfer volume that must be incurred on each graph iteration due to the

associated application partition. The number shown inside each actor represents the

processing complexity in terms of the actor execution time. The number on the left

side of an edge represents the number of tokens produced by the source actor, and the

number on the right side represents the number of tokens consumed by the sink actor.

In Figure 61, there are four edges, . Figure 61(b) shows the repe-

tition vector for Figure 61(a), and Figure 61(c) shows for each cutting line candi-

date - .

T R• 0=
prd e() e

src e() e cns e()

e snk e() e

buftr

buftr R ni() prd ej ni()()⋅
j 1=

Edgeni

∑
i 1=

Nc

∑=

Nc

n1 n2 … nNc
, , ,()

Edgeni
ni ej ni()

j ni

e0,e1,e2 and e3

buftr

C0 C3
158

After a cutting line is determined for a graph, the graph is effectively divided into

“left” and “right” subgraphs, where the left subgraph represents preprocessing of sen-

sor signals and the right subgraph represents postprocessing. Accordingly, the left sub-

graph is allocated to the associated slave node, and the right subgraph is allocated to a

master node.

Each cutting line in general leads to different workload distributions of an appli-

cation graph, as well as different values of . Intuitively, leads to increased

workload for the master node, since the master node is in charge of most of the data

processing functionality. That value of for is 6 tokens. Similarly,

increases the workload of the slave node, while alleviating the workload of the master

node; however, for increases to 16 tokens. As an alternative to and ,

 allows for lower data transmission and more balanced workload distribution.

4.3.3.2 Cutting algorithm

Cutting an application dataflow graph is an NP hard problem. However, in many

buftr C0

buftr C0 C3

buftr C3 C0 C3

C1

Figure 61. An illustration of partitioning (cutting line) trade-offs.

10 20 10 20
2 2 4 2213

-> 6 -> 4 -> 16 - > 16

e0e0 e1e1 e2e2

c0 c1 c2 c3

e3e3
A C DB

10 20 10 20
2 2 4 2213

-> 6 -> 4 -> 16 - > 16

e0e0 e1e1 e2e2

c0 c1 c2 c3

e3e3
A C DB

[]8 4 , 2 ,3 ,R =
r

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

0
0
0

R
R
R
R

2 -4 , 0 , 0 ,
0 1 , 2 ,0 ,
0 0 , 3 , 2 ,

e 2
e 1
e 0

D C B A

4

3

2

1

[]8 4 , 2 ,3 ,R =
r

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

0
0
0

R
R
R
R

2 -4 , 0 , 0 ,
0 1 , 2 ,0 ,
0 0 , 3 , 2 ,

e 2
e 1
e 0

D C B A

4

3

2

1

1628

1644

422

623

3

2

1

0

=⋅=⋅=

=⋅=⋅=

=⋅=⋅=

=⋅=⋅=

))((

))((

))((

))((

Aebuf

Aebuf

Aebuf

Aebuf

p

p

p

p

Dc3tr,

Cc2tr,

Bc1tr,

Ac0tr,

RBuf

RBuf

RBuf

RBuf

 a) cutting line candidates

 b) Repetition vector

 c) s for each cutting linebuftr
159

sensor network applications, particularly those involving very simple, ultra-low cost/

power sensor node processing, the application graphs are of limited size, and are man-

ageable by exact techniques. This paper uses an exhaustive search method for finding

the best cutting line to target such applications and to demonstrate the potential of

high-level, dataflow graph analysis for coordinating the processing across senor

nodes.

More precisely, given an application dataflow graph , our objective is to parti-

tion into two subgraphs and . In this partitioning, we would like to minimize

(52)

subject to
 and (53)

(54)

Here, is the execution time of subgraph , assuming that the subgraph is

assigned to the same sensor node, and processing resources across the nodes are

homogeneous. The formulation can easily be extended to handle heterogeneous pro-

cessing resources, but for clarity and conciseness, we focus here on the homogeneous

case. The subgraph execution time is obtained by adding the execution time estimates

for the individual actors in the subgraph. Also, represents the set of actors in

subgraph , and given an actor , represents the set of immediate graph

successors of . The constraint in (22) is necessary to avoid cyclic dependencies

(potential deadlock) between the master and slave node.

The parameter is a coefficient that affects the load balancing aspect of the opti-

mization. An appropriate choice for can be estimated by experimentation, or one can

run the optimization multiple times for different values of and take the most attrac-

tive result. As the value of is increased, the workload of the master node is

Φ

Φ Φ1 Φ2

buftr ci Φ(),

if n actors Φ2(), then∈ successors n() actors Φ2()⊂

t Φ1() δt Φ2()– Ω≤

t X() X

actors X()

X n uccessors n(

n

δ

δ

δ

δ

160

decreased, and the latency of the application is also generally decreased since the

workload of the application is more distributed over slave nodes. The symbol repre-

sents a tolerance for workload imbalance in conjunction with .

4.3.3.3 Effect on energy consumption

The total energy of a sensor node can be divided into two parts: and ,

where represents the energy consumed by the transceiver, and represents

the energy consumed by the microcontroller and the associated peripherals, such as the

memory, UART, and ADC, apart from the transceiver. Thus,

(55)

The transceiver energy is usually dominant in the total energy consumption

of a sensor node, and in the context of dataflow processing, this energy is proportional

to the number of tokens that must be communicated. An optimal cutting of an applica-

tion graph in terms of token transfer minimization across the cutting line therefore

results in optimal streamlining of transceiver turn on time. In other words, by reducing

, can be minimized under the workload balance constraints.

Each partitioned subgraph is mapped to a slave node or a master node. The opera-

tions of a subgraph apart from its transceiver-related operations are modeled by .

Through a minor abuse of notation, we represent the energy consumption for data pro-

cessing in an application as . By distributing the application over a

master node and a slave node, can be divided into two sub energy consump-

tion components: and , corresponding respectively to the

slave and master nodes. Thus, we have

(56)

Ω

δ

E Eradio Emc

Eradio Emc

E Eradio Emc+=

Eradio

buftr Eradio

Emc

appl Emc appl()

Emc appl()

Emc,s appl() Emc,m appl()

Emc appl() Emc,s appl() Emc,m appl()+=
161

In a sensor network cluster that consists of a single master node and slave

nodes, the master node iterates times to process data frames from all of its slave

nodes. Then is the total energy consumption for microcontroller-related func-

tions by the master node during its iterations of right-side-subgraph processing of

data frames received from the slave nodes. The relationships among ,

, and can be summarized as

 and (57)

(58)

, which is the total energy consumption for microcontroller-related functions

of a single slave node, is equal to since data frames for an application

graph are transmitted from a slave node to a master node, and for a single data frame,

one iteration of a left-side (slave node) sub-graph is activated. Here, is propor-

tional to since the transceiver of the master node should be turned on during the

entire reception of data frames from the slave nodes.

The total energy consumed by the master node can be expressed as

 (59)
where is a coefficient that relates and . Since typically , the

master node has significantly more energy consumption compared to the slave nodes.

To reduce the overall energy consumption, the number of tokens that must be transmit-

ted across the nodes should be minimized under the given workload distribution con-

straints.

4.3.3.4 Effect on latency

The latency for processing a single data frame of a given application depends on

η

η

Emc,m

η

Emc,m

Emc,s appl() Emc,s appl()

Emc,m ηEmc,m appl()
η Emc appl() Emc,s appl()–()

=
=

Emc,s Emc,s appl()=

Emc,s

Emc,s appl()

Eradio,m

η

η η

Em Emc,m Eradio,m+ Emc,m ληEradio,s+= =
λ ηEradio,s Eradio,m λη 1»
162

the number of slaves in the network cluster, the network topology, and the volume of

data contained in each data frame. For a cluster that consists of a single master node

and slave nodes, the latency for processing a single application data frame

can be expressed by (60), independent of the underlying transmission protocol.

(60)

where is the latency of master node (right-side subgraph) processing for

a single data frame, and is the corresponding latency of slave node pro-

cessing. In total, a latency of is induced on the master node to process

the data from all of the slave nodes. The slave nodes, however, can operate in parallel,

and thus, the latency required for slave node processing is independent of the number

of slave nodes within the network cluster.

 also depends on the network delay for transmitting data frames across

nodes. thus denotes the latency for transmitting a single data frame from

a slave node to the master node. The total transmission latency for delivering data

frames from the slave nodes becomes .

Clearly, depends on the data frame size. In particular,

is proportional to .

Figure 62 shows three different cases of cutting line selection for an application

example that involves maximum entropy spectrum computation. This application is

based on an example in the Ptolemy II design environment [24]. The application can

be divided into two subgraphs, which are allocated to master and slave nodes as illus-

trated in the figure. The dotted lines represent cutting line candidates. The application

is characterized by a parameter , called the order of the spectrum computation.

η L app()

L app() ηLm frame, app() Ls frame, app()
ηLtr,frame app()

+
+

=

Lm frame, app()

Ls frame, app()

ηLm frame, app()

L app()

Ltr,frame app()

η

ηLtr,frame app()

Ltr,frame app() Ltr,frame app()

buftr

n

163

In Figure 62(a), the slave nodes capture raw data frames and send them directly to

the master node, where the maximum entropy spectrum processing is performed.

Here, between a single slave node and the master node is . Therefore, the

total data transmission for each data frame from the 5 slave nodes is .

In Figure 62(b), each slave node fully processes a data frame before sending to the

master node. This is a fully distributed approach, which minimizes the workload of the

master node. In this approach, each slave node sends tokens to the master node.

Thus, the total data transmission from the 5 slave nodes is .

In Figure 62(c), on the other hand, the application graph is divided more evenly

into two subgraphs and . A copy of subgraph is assigned to each slave node,

and is allocated to the master node. The carefully-constructed cutting line between

 and reduces to , which results in total slave-to-master data transmis-

sion of .

Without consideration of , the application latencies () of the

three cases in Figure 62 are related as . Case 2 provides the

maximal workload distribution by allowing raw data frames to be fully processed in

the slave nodes. However, the greatly-reduced of Case 3 offsets the

increase in due to the increased workload of the master, while allowing

reduced energy consumption because of reduced transceiver demands.

In summary, the example of Figure 62 illustrates the trade-offs that we can

explore among processor workload balancing, latency cost, and transceiver require-

ments when considering different cutting lines for a multirate signal processing appli-

cation.

buftr 2
n 1+

5 2
n 1+×

2
n

5 2
n×

A B A

B

A B buftr n 1+()

5 n 1+()×

Ltr,frame app() L app()

Lcase1 Lcase3 Lcase2> >()

Ltr,frame app()

Lm frame, app()
164

4.3.4 Experimental results

We have developed experimental prototype platforms (Figure 63) for master and

slave nodes using reconfigurable off-the-shelf components, including the Texas Instru-

 a) case 1

 b) case 2

 c) case 3

Figure 62. Application mapping over sensor nodes

ADC

M aster

12 +n

Slave Slave Slave Slave Slave

A D C AD C A D C AD C

12 +n 12 +n 12 +n 12 +n

Base station

AD C

Pulse

M ultiply

A CL

LevD

A rrayElem ent

Repeat

Const ArrayA ppend

Chop FFT

AbsoluteValue

Square M ultip ly

D B

slave node

12 += n
trbuf

m aster node

M EP S : M axim um -Entropy-P ow er-Spectrum

5x M EPS

ACL : Autocorrelation
LevD : LevinsonD urbin

2n+1
1 1

1

1

2n+1 2n 2n n+1 n+1 1 1 2n

2n2n

2n

n

n
1 1 n+1 n+1

1 1 1
1

1
1 1 1 1

ADC

M aster

12 +n

Slave Slave Slave Slave Slave

A D C AD C A D C AD C

12 +n 12 +n 12 +n 12 +n

Base station

AD C

Pulse

M ultiply

A CL

LevD

A rrayElem ent

Repeat

Const ArrayA ppend

Chop FFT

AbsoluteValue

Square M ultip ly

D B

slave node

12 += n
trbuf

m aster node

M EP S : M axim um -Entropy-P ow er-Spectrum

5x M EPS

ACL : Autocorrelation
LevD : LevinsonD urbin

2n+1
1 1

1

1

2n+1 2n 2n n+1 n+1 1 1 2n

2n2n

2n

n

n
1 1 n+1 n+1

1 1 1
1

1
1 1 1 1

M a ste r

S la v e S la v e S la v e S la v e S la v e

B a se sta tio n

n2 n2 n2 n2 n2

M E P SM E P S

A D C

P u lse

M u ltip ly

A C L

L e v D

A rra y E le m e n t

R e p e a t

C o n st
A rra y A p p e n d

C h o p F F T

A b so lu te V a lu e

Sq u a re M u ltip ly

D B
n

trb u f 2=

s la ve n o d es la ve n o d e m a s te r n o d em a s te r n o d e

M E P SM E P S M E P SM E P S M E P SM E P S M E P SM E P S

2 n+1

1

1 1

1

2 n+1 2 n 2 n n+1 n+1 1 1 2 n

n

1 1
n

n+1 n+1 2 n 2 n2 n

1 1 1 1
1 1
1

1 1

M a ste r

S la v e S la v e S la v e S la v e S la v e

B a se sta tio n

n2 n2 n2 n2 n2

M E P SM E P S

A D C

P u lse

M u ltip ly

A C L

L e v D

A rra y E le m e n t

R e p e a t

C o n st
A rra y A p p e n d

C h o p F F T

A b so lu te V a lu e

Sq u a re M u ltip ly

D B
n

trb u f 2=

s la ve n o d es la ve n o d e m a s te r n o d em a s te r n o d e

M E P SM E P S M E P SM E P S M E P SM E P S M E P SM E P S

2 n+1

1

1 1

1

2 n+1 2 n 2 n n+1 n+1 1 1 2 n

n

1 1
n

n+1 n+1 2 n 2 n2 n

1 1 1 1
1 1
1

1 1

M a ster

1+n

Sla ve Slave Sla ve Sla ve Sla ve

B a se station

1+n1+n 1+n1+n
su b su b

g ra p h 1g ra p h 1

2 graph sub 5 ×
A D C

P u lse M u ltip ly

A C L

LevD A rra yElem ent R ep ea t

C on st

A rra yA pp en d

C h op FFT

A b solu teV a lu e

Sq ua re

M u ltip ly D B

1+= nbuftr
slave nodeslave node m aster nodem aster node

su b su b
g ra p h 1g rap h 1

su b su b
g ra p h 1g rap h 1

su b sub
g rap h 1g ra p h 1

sub su b
g ra p h 1g ra p h 1

1

2n+1

1
1

1 1 2n+1 2n

2n

n

n+1 n+1 1 2n

1 1
n

n+1 n+1 2n2n 2n

1 1 1 1 1 1
1

1 1

M a ster

1+n

Sla ve Slave Sla ve Sla ve Sla ve

B a se station

1+n1+n 1+n1+n
su b su b

g ra p h 1g ra p h 1

2 graph sub 5 ×
A D C

P u lse M u ltip ly

A C L

LevD A rra yElem ent R ep ea t

C on st

A rra yA pp en d

C h op FFT

A b solu teV a lu e

Sq ua re

M u ltip ly D B

1+= nbuftr
slave nodeslave node m aster nodem aster node

su b su b
g ra p h 1g rap h 1

su b su b
g ra p h 1g rap h 1

su b sub
g rap h 1g ra p h 1

sub su b
g ra p h 1g ra p h 1

1

2n+1

1
1

1 1 2n+1 2n

2n

n

n+1 n+1 1 2n

1 1
n

n+1 n+1 2n2n 2n

1 1 1 1 1 1
1

1 1
165

ments MSP430 microcontroller, the LINX Technologies 916MHz wireless transceiver,

and a microphone sensor. The MSP430 provides a 16-bit processor core, along with a

12-bit ADC, 16-bit hardware timer, UART, 48kB program memory, and 10kB data

memory.

Figure 64 and Figure 65 show experimental results where we measured the cur-

rent consumption from our prototype platforms as they were running different parti-

tionings of the maximum entropy spectrum application. In these experiments, we used

TDMA operations for wireless communication. For the TDMA operations, we used 10

time slots per frame, and 250ms per time slot to guarantee that transmission and rele-

vant computations can be completed within each slot.

Figure 64 shows experimental results for current consumption comparison in

three different application mapping cases involving a single master node and three

slave nodes when is the application order. The amounts of data (in bytes) that

must be transmitted and received between nodes in each slot under cases 1, 2, and 3

are, respectively, 512(), 256(.) and 9(8+1).

Figure 64 shows that sensor node platforms consume much more current when the

nodes are transmitting or receiving data compared to when the nodes are in their idle

modes. Also, transceiver operation dominates the overall current consumption when

data is being transmitted or received.

Figure 63. MSP430-based sensor node platforms

n 8=

2
8 1+

2
8

166

According to the results in Figure 64, we observe that case 3 of the suggested

application cutting technique consumes 70.5% less energy than case 1 and 56.5% less

than case 2. Here, the current and voltage for each sensor node are obtained by a digi-

tal storage oscilloscope. The power consumption for a time frame is obtained accord-

ing to the sampling points for current and voltage values. The energy consumption

within a TDMA time frame is calculated by integrating the power consumption over

the time frame. Because the TDMA operations provide a periodic way to generate

similar modes of operations for consecutive time frames, we calculate energy con-

sumption results for several time frames and compute average values from these

results.

Figure 65 shows how energy comparison varies as the application order parameter

 is changed. For each order number, we measured current consumption and voltage

on our prototype platforms, and calculated the average energy consumption based on

the TDMA time frames. According to the results in Figure 65, we observe that as the

order number is increased, the disparities between different application mapping cases

become more prominent.

Table 12 shows that as the application order increases, which results in increased

data transmission, the relative latency gap between case 2 (best latency) and case 3

(best energy consumption) decreases. For any order, case 1, which is the conventional

master-node-centric mapping, generates the worst latency and energy consumption

pattern for our benchmark applications.

n

167

4.3.5 Summary

In this paper, we have developed a technique to partition an application graph into

 a) case 1(512B)

Figure 64. Current consumption comparison of three application mappings.

 b) case 2(256B)

 c) case 3(9B)

5 1 2 b y t e s

0
0 . 0 0 5

0 . 0 1
0 . 0 1 5

0 . 0 2
0 . 0 2 5

0 . 0 3
0 . 0 3 5

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
T i m e (m s)

C
ur

re
nt

 c
on

su
m

pt
io

n
(A

)

2 5 6 b y t e s

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

T i m e (m s)

C
ur

re
nt

 c
on

su
m

pt
io

n
(A

)

9 b y t e s

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

T i m e (m s)

C
ur

re
nt

 c
on

su
m

pt
io

n
(A

)

Table 12. Latency comparison for different values of order.

order 3 4 5 6 7 8

case1 180ms 254ms 404ms 721ms 1364ms 2699ms
case2 64ms 92ms 150ms 270ms 515ms 1021ms
case3 146ms 191ms 280ms 474ms 864ms 1683ms

Figure 65. Energy consumption comparison for different order values.

0

0 . 0 1

0 . 0 2

0 . 0 3

3 4 5 6 7 8

O r d e r

En
er

gy
(J

)

c a s e 1
c a s e 2
c a s e 3
168

subgraphs to optimize the workload distribution and data transmission when mapping

the application onto a hierarchical sensor network. The technique allows the overall

energy consumption of a sensor network to be minimized without considerable loss of

latency. In our future work, we will explore the integration of error correction into our

partitioning framework to provide further savings in energy consumption.
169

Chapter 5 : Conclusion and Future work

In this thesis, we have proposed novel models and algorithms for streamlining sched-

uling, memory management, and interprocessor communication in embedded multi-

processor implementations of signal processing applications. We have placed special

emphasis on the image processing domain. For application modeling, we have pro-

posed two novel modeling techniques called blocked dataflow (BLDF) and dynamic

graph topology (DGT). These modeling approaches capture within formal frameworks

the structure of block-based image processing operations and reconfigurable, multi-

mode dataflow behaviors, respectively.

For scheduling, we have developed a novel intermediate representation called the

pipeline decomposition tree for efficient representation and analysis of alternative

multiprocessing configurations for signal processing applications. We have also devel-

oped an algorithm, called pipeline decomposition tree scheduling (PDT scheduling),

which applies the PDT to systematically derive optimized multiprocessor schedules

that employ coarse-grained (task-level) pipelining. To optimize interprocessor com-

munication, we have developed two novel post-optimization techniques for hardware

resource mapping and software synthesis.

In the following sections, we provide more detailed summaries of these methods

and suggest useful directions for future work.
170

5.1 Modeling

5.1.1 Blocked DataFlow (BLDF)

This thesis has developed a blocked dataflow (BLDF) modeling semantic for aug-

menting dataflow-based DSP design tools with integrated capabilities for meta-model-

ing, block-based processing, multidimensional representation, and dynamic parameter

reconfiguration. BLDF builds on parameterized dataflow semantics, and is compatible

with decidable dataflow models such as CSDF, MDSDF, SDF, and SSDF.

In BLDF(Blocked Dataflow) model, by exploiting block based operational fea-

tures most image processing applications commonly have, the BLDF extracts an itera-

tion number of each actor within the associated body subsystem at compile time,

which is related to the number of firings of actors within a graph. An iteration number

allows for quasi-static scheduling of an application modeled under BLDF semantic. At

runtime, by recalculating relative ratios of iteration numbers among actors, the final

decision on the number of firings of each actor is made. By the parameterized token

delivery method, the BLDF simplifies connections between actors and reduces the

buffer size. BLDF intrinsically adapts to a hierarchical design of an application by

making an actor in each hierarchical level extracting the corresponding header infor-

mation and data from nested header and payload data.

5.1.2 Dynamically configured graph topology

In DGT(Dynamic Graph Topology), a new paradigm for the change of control/

data flow beyond the limit of existing dataflows is introduced. The DGT provides a

new way of modeling the flexible change of a graph topology and dynamic change of
171

token consumption and production rates depending on parameters. In addition to pro-

viding efficient and flexible support for multiple modes of system operation, DGT

allows us to reduce overall memory size by systematically sharing code and applying

tailored scheduling methods across the different graph topologies that make up a DGT

application. By providing meta-scheduling technique for graph configurations at com-

pile time, the requirements for dynamic change of both control and data path are satis-

fied.

5.1.3 Future work

Blocked dataflow and DGT(Dynamic Graph Topology) graph model provides a

quasi-static and meta scheduling environment. Theses techniques increase the expres-

sivity and the flexibility of a modeling paradigm in a dataflow based modeling

approach by providing a way of reconfiguring parameters at runtime while keeping the

benefits of major information obtained at compile time. Recently, as the complexity of

embedded systems increases, DSP based embedded system integrate several applica-

tions with various requirements and conflicting constraints, for example, a fast

response time, but loose memory size requirement or a soft-real time, but a small foot

print etc.

Combining separately modeled multiple dataflow graphs in a single system in

terms of performance maximization and resource usage minimization is non trivial

problem. This may lead to concurrent running of individually modeled dataflow

graphs, which in turn may lead to the use of the context switch of dataflow graphs.

Runtime use of scheduling information obtained at compile time for the context switch
172

of dataflow graphs is a new paradigm of dataflow based modeling of DSP applica-

tions.

Figure 66 shows three different cases of scheduling two dataflow graphs at runt-

ime in a single system. Table 13 shows a probable comparison for three methods in

figure 66 in terms of a code size, a buffer size and a response time. In table 13, a code

and buffer size, and an execution time of actors in graph and are assumed to be

identical for simplicity in comparison. In table 13, represents a code size of an actor

and represents a buffer size between two actors. represents an execution time of

any single actor within graphs and . In method 1, two graphs; and run

concurrently by sharing tasks in common. Method 1 produces a balanced outcome in

terms of code/buffer size and response time as shown table 13. In method 1, FIFO

buffer size from actor through actor are doubled due to a combined running of

shared actors in two separate graphs. It’s because while graph or is running,

FIFO buffers for shared actors (actor and actor) in the suspended graph must be

held. In method 2, two graphs run sequentially. Method 2 is efficient at reducing buffer

size since G1 and G2 are processed sequentially. In method 3, two dataflow graphs run

simultaneously. Method 3 may require dedicated processing resources for each sepa-

rate graph. Method 3 may lead to increased code size compared to method 1 and

method 2, but allows for the fastest response time for each graph.

For more specific model for method 1, delayed graph context switch model can be

used. Unlike a fully dynamic scheduling of tasks by operating systems, delayed con-

text switch model can handle multiple dataflow graphs by a polling mode based graph

context switch. Checking points for polling mode named SC (Switch Checker) or Tim-

G1 G2

C

B T

G1 G2 G1 G2

B C

G1 G2

B C
173

ers can be inserted into between clusters. A cluster may consists of several sequential

Table 13. A comparison of runtime manipulation methods
of multiple dataflow graphs

schedule Response
time

code size buffer size

method 1 AEBBCCDF G1: 6*T
G2: 6*T

6*C 6*B

method 2 ABCDEBCF G1: 4*T
G2: 8*T

6*C 3*B

method 3 ABCD
EBCF

G1: 4*T
G2: 4*T

8*C 6*B

A B* C* D
E F

A B* C* D
E B* C* F

A B* C* D
E B* C* F

Method 1

Method 2

Method 3

Shared
graph

Separate
graph

G1, G2

A B* C* D
E F

A B* C* D
E B* C* F

A B* C* D
E B* C* F

Method 1

Method 2

Method 3

Shared
graph

Separate
graph

G1, G2

Figure 66. An example of simultaneous running of multiple dataflow graphs

Figure 67. Delayed context switch model of dataflow graphs

SC (Switch Checker) is placed for clusters whose
execution time is smaller than “switch granularity”

SubinitSubinit

bodybody

DGT (Dynamic Graph Topology)
&

Graph Context Switching

G1G1

G2G2
G2 switchedG2 switched

Graph Ready ListGraph Ready List

G1G1

event
Dataflow SchedulerDataflow Scheduler

SC (Switch Checker)

G1 interruptedG1 interrupted

}
continue

else{
}

scheduler"dataflow " call

){ventpriority(e)y(eventif(priorit queuecurrent <

Timer
Timer (Switch Checker) is placed for the clusters whose
execution time is bigger than “switch granularity”.

B CAG1body:

Cluster 1 Cluster 2

Delayed context switch

SC (Switch Checker) is placed for clusters whose
execution time is smaller than “switch granularity”

SubinitSubinit

bodybody

DGT (Dynamic Graph Topology)
&

Graph Context Switching

G1G1

G2G2
G2 switchedG2 switched

Graph Ready ListGraph Ready List

G1G1

event
Dataflow SchedulerDataflow Scheduler

SC (Switch Checker)

G1 interruptedG1 interrupted

}
continue

else{
}

scheduler"dataflow " call

){ventpriority(e)y(eventif(priorit queuecurrent <

Timer
Timer (Switch Checker) is placed for the clusters whose
execution time is bigger than “switch granularity”.

B CAG1body:

Cluster 1 Cluster 2

B CAG1body:

Cluster 1 Cluster 2

Delayed context switch
174

invocation of actors. The size of clusters depends on the granularity of graph context

switch. SC could be a synchronous graph context switch mechanism which is useful

for memory management of loaded graphs since the context switch occurs between

clusters. This provides an efficient way of managing runtime memory usage by keep-

ing track of memory usage by loaded graphs. This information can be used for picking

up the appropriate graph for the graph context switch in a graph ready list, which holds

a list of loaded or interrupted graphs. Figure 68 shows how memory usage of graphs

can be used to determine the appropriate graph from a graph ready list. In case 1, the

context switch request for is allowed since a probable memory usage of can be

fit within an available memory. In case 2, context switch is delayed until com-

pletes due to a probable memory shortage can cause at runtime. Memory usage

information can be obtained within each dataflow model semantic at compile time.

The graph context switch technique guarantees a bounded memory usage among

graphs while allowing the priority based graph context switch at runtime. This tech-

nique can be further explored with various parameters and constraints. One of con-

G3 G3

G3 G2

G3
175

straints could be latency requirement of each gaph.

5.2 Scheduling

In this thesis, a novel scheduling technique named PDT scheduling is suggested.

PDT scheduling is a deterministic scheduling technique considering various realistic

problems occurring during the integration of a DSP embedded system. PDT schedul-

ing exploits a pipelined processor architecture to allocate actors onto processors. PDT

scheduling considers two different memory architectures; a shared memory and a sep-

arate memory architecture. Each memory architecture entails the associated communi-

cation costs; IPC (Inter Processor Communication) and a bus contention. IPC cost is

modeled under a separate memory architecture. A bus contention is modeled under a

shared memory architecture. The technique studies how a memory architecture influ-

Figure 68. Relationship between memory usage of graphs and the graph context
switch

G3G3

G3 registeredG3 registered
Graph Ready ListGraph Ready Listevent

G2G2

G2 interruptedG2 interrupted
G1G1

G1 interruptedG1 interrupted

Dataflow SchedulerDataflow Scheduler

G1 G2 G3

memory

G1 G2 G3

memory

Case 1Case 1

Case 2Case 2

Delayed context switch

G3G3

G3 registeredG3 registered
Graph Ready ListGraph Ready Listevent

G2G2

G2 interruptedG2 interrupted
G1G1

G1 interruptedG1 interrupted

Dataflow SchedulerDataflow Scheduler

G1 G2 G3

memory

G1 G2 G3

memory

Case 1Case 1

Case 2Case 2

Delayed context switch
176

ences performance each under memory constrained condition and unlimited memory

usage condition. Two different hierarchical memory models; an on-chip memory and

an external memory are considered during scheduling. Only a shared memory archi-

tecture is considered for an on-chip memory due to the limited size requirement of

DSP on-chip areas. PDT scheduling exploits data parallelism and task parallelism

together. Pipelined architecture which relates to a task parallelism improves the

throughput, but degrades latency in general. For data parallelism model, this thesis

provides a heterogeneous data parallelism model to improve latency and throughput

together. PDT generates various sets of pipelines which provide different combina-

tions of latency and throughput. Pipelines are generated by PDT exploration process.

And then the suggested technique named HDEST (Heterogeneous Data Parallelism

EST) allocates a dataflow graph onto stages of pipelines while considering given con-

straints such as memory constraints and performance requirements. This technique can

result in providing more improved way of prototyping embedded systems integrating

image processing applications and more accurate estimation of the system perfor-

mance depending on constraints at an early stage of system development stages.

5.2.1 Future work

Future work may include hardware or software synthesis using scheduling infor-

mation obtained during PDT scheduling process such as a minimum memory size for

either on-chip memory or external memory, a memory architecture, or a bus architec-

ture related to the specific memory architecture. Some directions for future work may

include how the variation of data frame size influences both execution-times of actors
177

within a dataflow graph and the final scheduling results. Figure 69 shows how mem-

ory architecture models and the associated bus architecture models can be synthesized

based on data dependency among actors within a dataflow graph. In figure 69, after

scheduling, three stages of a pipelined processor architecture is generated. Data depen-

dency among actors can be considered for configuring hierarchical bus architecture.

Processors with close data dependencies are placed to a common bus. For processors

for some actors sharing data tokens, a shared memory bus architecture can be consid-

ered.

A
C

B D F

E

G
H

J

I

Stage 1 Stage 2 Stage 3

P1
P2

A B
C P3

P4
D E

F
P5 G

P6
P7

H I
G

IPC edge

P2

P4

P5

P7

P1 P3 P6
P1

P2

P7

P3 P6

P4

P5
Mem

sh

Mem
sh

bridge

bridge

Hierarchical Bus Architecture

A
C

B D F

E

G
H

J

I

Stage 1 Stage 2 Stage 3

P1
P2

A B
C P3

P4
D E

F
P5 G

P6
P7

H I
G

IPC edge

A
C

B D F

E

G
H

J

I

Stage 1 Stage 2 Stage 3

P1
P2

A B
C P3

P4
D E

F
P5 G

P6
P7

H I
G

IPC edge

P2

P4

P5

P7

P1 P3 P6
P1

P2

P7

P3 P6

P4

P5
Mem

sh

Mem
sh

bridge

bridge

Hierarchical Bus Architecture

Figure 69. Hierarchical bus architecture synthesis based on data dependency of
actors within a graph
178

5.3 Communication optimization

5.3.1 Hardware communication optimization

This thesis studies an efficient mapping of dataflow representations of image process-

ing applications into hardware implementations. Specifically, we focus on cost-effec-

tive mapping of FIFO buffers, and explore the effects of FIFO architecture, sub-frame

division and data dependency on performance and cost. Based on this exploration, we

provide a heuristic optimization method in consideration of performance and resource

cost. A strategic FIFO mapping approach that comprehensively exploits dataflow

graph characteristics results in significantly lower FPGA resource requirements with

nearly equal performance.

5.3.2 Software communication optimization

As a post optimization technique for satisfying application specific requirements, this

thesis provides an application cutting technique in consideration of power consump-

tion minimization and performance improvement. The technique is applied to a sensor

network application which has a high priority on power management of sensor nodes.

The suggested technique divides an application graph into two sub-graphs in

terms of the workload distribution and data transmission between sub-graphs. The

technique allows the overall energy consumption of a sensor network to be minimized

by energy aware mapping of an application onto a sensor network.
179

5.3.3 Future work

For hardware resource mapping technique, useful directions for future work may

include extending the methodology developed in this thesis to heterogeneous, embed-

ded multiprocessors that include a variety of processing components, such as conven-

tional FPGAs, platform FPGAs, and programmable digital signal processors.

For software communication optimization technique, the future work may include

how application dependent optimization technique can further improve application

specific requirements such as power consumption, latency or memory usage.

For example, for a sensor network application, the future work will include how

an additional error correction routine can reduce further energy consumption by reduc-

ing output power of a transceiver in conjunction with an effect of an increased func-

tionality on an energy consumption of a microcontroller and the increase of the latency

in relation with the suggested technique.
180

BIBLIOGRAPHY

[1] I. Ahmed and Y. K. Kwok, “A new approach to scheduling parallel programs using

task duplication”, International Conference on Parallel Processing, August 1994, Vol.

2, pp 47-51.

[2] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: Comments

on the history and current state”, IEEE Transactions on Evolutionary Computation,

vol. 1, pp. 3.17, Apr. 1997.

[3] J. L. Baer, Tien-Fu Chen, An effective on-chip preloading scheme to reduce data

access penalty, Proceedings of the 1991 ACM/IEEE conference on Supercomputing,

p.176-186, November 18-22, 1991, Albuquerque, New Mexico, United States.

[4] S. Bakshi, Daniel D. Gajski, Partitioning and pipelining for performance-con-

strained hardware/software systems, IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, v.7 n.4, p.419-432, Dec. 1999.

[5] N. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid search strategies

for dynamic voltage scaling in embedded multiprocessors. In Proceedings of the Inter-

national Workshop on Hardware/Software Co-Design, pages 243-248, Copenhagen,

Denmark, April 2001.

[6] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic integration

of parameterized local search in evolutionary algorithms. IEEE Transactions on Evo-

lutionary Computation, 8(2):137-155, April 2004.

[7] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, Macropipelining based

scheduling on high performance heterogeneous multiprocessor systems. IEEE Trans.

Signal Processing, vol. 43, pp.1468-1484, June 1995.
181

[8] A. Benedetti, A. Prati, N. Scarabottolo, “Image Convolution on FPGAs: The

Implementation of a Multi-FPGA FIFO Structure,” 24 th. EUROMICRO Conference

Volume 1 (EUROMICRO'98), August 25 - 27, 1998.

[9] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for

DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October

2001.

[10] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code

generation for DSP. IEEE Transactions on Circuits and Systems -- II: Analog and Dig-

ital Signal Processing, 47(9):849-875, September 2000.

[11] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Synthesis from Dataflow

Graphs, Kluwer Academic Publishers, 1996.

[12] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchronization of Multipro-

cessor Schedules:Part 1-Fundamental Concepts and Unbounded-Latency Analysis,”

emorandum No. UCB/ERL M96/55, 15 October 1996.

[13] S. S. Bhattacharyya, “Exploiting Free Space Optical Interconnects for System-on-

Chip DSP Applications,” presented at DARPA opto-center kickoff meeting, December

11, 2000.

[14] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Optimizing Synchronization in

Multiprocessor DSP Systems,” IEEE Transactions on Signal Processing, June, 1997.

[15] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data-

flow. IEEE Transactions on Signal Processing, 44(2):397-408, February 1996.
182

[16] E.R. Bonsma, “Multiprocessor scheduling of fine-grain iterative data-flow graphs

using genetic algorithms,” M.S. thesis, University of Twente, Department of Electrical

Engineering, June 1997, EL-BSC-018N97.

[17] J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs

with integer-valued control systems. In Proceedings of the IEEE Asilomar Conference

on Signals, Systems, and Computers, pages 508-513, October 1994.

[18] J. T. Buck, E. A. Lee, “Scheduling Dynamic Dataflow Graphs with Bounded

Memory using the Token Flow Model”, Proc. ICASSP, April, 1993.

[19] B. P. Buckles and F. E. Petry. Genetic Algorithms. The IEEE Computer Society

Press, Los Alamitos, 1992.

[20] A. Choudhary, W. K. Liao, P. Varshney, D. Weiner, R. Linderman and M. Linder-

man ``Design, Implementation and Evaluation of Parallel Pipelined STAP on Parallel

Computers,'' 12th International Parallel Processing Symposium, to be appeared, 1998.

[21] J. Y. Colin and P. Chritienne, “C.P.M. Scheduling with small Communicational

delays and task duplication”, Operational research, Vol. 39, No. 4, July 1991, pp. 680-

684.

[22] S. Darbha and D. P. Agrawal, “A task duplication based scalable scheduling algo-

rithm for distributed memory systems”, Journal of parallel and Distributed Comput-

ing, Vol. 46, No. 1, October 1997, pp. 15-27.

[23] M.K. Dhodhi, Imtiaz Ahmad, and Ishfaq Ahmad. “A multiprocessor scheduling

scheme using problem-space genetic algorithms”. In IEEE Conf. on Evolutionary

Computation, pages 214{219, 1994.
183

[24] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S.

Sachs, and Y. Xiong. Taming heterogeneity. the Ptolemy approach. Proceedings of the

IEEE, January 2003.

[25] M. Engels, G. Bilsen, R. Lauwreins, J. Peperstraete, °×Cyclo-Static dataflow,

IEEE Transactions on Signal Processing, 44(2), pp 397-408, February 1996.

[26] H. Forsberg, M. Jonsson, and B. Svensson, “A scalable and pipelined embedded

signal processing system using optical hypercube interconnects,” Proc. IASTED 12th

International Conference on Parallel and Distributed Computing and Systems (PDCS

2000), Las Vegas, NV, USA, Nov. 6-9, 2000, pp. 265-272.

[27] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling

directed acyclic graphs onto multiprocessors”, Journal of Parallel and Distributed

Computing, Vol. 16, No. 4, December 1992, pp. 276-291.

[28] D.E. Goldberg. “Genetic Algorithms in Search, Optimization and Machine Learn-

ing”. Addison-Wesley, 1989.

[29] S. Ha, “Compile-time scheduling of dataflow program graphs with dynamic con-

structs”, University of California at Berkeley, Berkeley, CA, 1992.

[30] F. Hannig, H. Dutta and J. Teich, “Regular Mapping for Coarse-grained Reconfig-

urable Architectures”, In Proceedings of the 2004 IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2004), Vol. V, pp. 57-60, Mont-

real, Quebec, Canada, May 17-21, 2004.

[31] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient com-

munication protocol for wireless microsensor networks. In Proceedings of the Hawaii

International Conference on System Sciences, 2000.
184

[32] P. Hoang and J. Rabaey, Scheduling of DSP Programs onto Multiprocessors for

Maximum Throughput. In IEEE Transactions on Signal Processing, vol. 41, no.6,

June 1993.

[33] J. Horstmannshoff, T. Grotker, H. Meyr “Mapping multirate dataflow to complex

RT level hardware models”, IEEE International Conference on Application-Specific

Systems, Architectures and Processors (ASAP '97), July 14 - 16, 1997 Zurich, SWIT-

ZERLAND.

[34] J. Horstmannshoff, H. Meyr, “Efficient building block based RTL code genera-

tion from synchronous data flow graphs”, Annual ACM IEEE Design Automation

Conference Proceedings of the 37th conference on Design automation, Los Angeles,

California, United States, Pages: 552 - 555, 2000.

[35] C. C. Hui and S. T. Chanson, “Allocating task interaction graphs to processors in

heterogeneous networks”, IEEE Transactions on Parallel and Distributed Systems,

Vol. 8, No. 9, September 1997, pp. 908-926.

[36] J. Jonsson, J. Vasell, “Real-Time Scheduling for Pipelined Execution of Data

Flow Graphs on a Realistic Multiprocessor Architecture”, In Proceedings of IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), May

7-10, 1996, Atlanta, Georgia, USA, pp. 3314-3317.

[37] J. Jonsson, J. Vasell, “On Objective Function Selection in List Scheduling Algo-

rithms for Digital Signal Processing Applications”, In Proceedings of IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), April 21-

24, 1997, Munich, Germany, pp. 667-670.
185

[38] H. Jung, S. Ha, “Hardware Synthesis from Coarse-Grained Dataflow Specifica-

tion for Fast HW/SW Cosynthesis”, International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS'04), September 08 - 10, 2004.

[39] M. Kafil and I. Ahmed, “Optimal Task Assignment in Heterogeneous Distributed

Computing Systems”, IEEE Concurrency, Vol. 6, No. 3, July-September 1998, pp. 42-

51.

[40] A. Kalavade and P. A. Suhrahmanyam, “Hardware / Software Partitioning for

Multi-function Systems”, Proc. International Conference on Computer Aided Design,

pp. 516-521, Nov. 1997.

[41] A. Kahn, C. McCreary, J. Thompson, and M. McArdle, “A Comparison of Multi-

processor Scheduling Heuristics”, Proceedings of 1994 International Conference on

Parallel Processing, vol. II, pages 243-250, 1994.

[42] M. Katevenis, P. Vatsolaki, and A. Efthymiou. Pipelined memory shared buffer

for VLSI switches. In Proc. Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, 1995.

[43] J. Keinert, C. Haubelt, and J. Teich. Windowed Synchronous Data Flow. Depart-

ment of Computer Science 12, Hardware-Software-Co-Design, University of Erlan-

gen-Nuremberg, Am Weichselgarten 3, D-91058 Erlangen, Germany Co-Design-

Report 02-2005.

[44] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs. The Bell System Technical Journal, pages 291--307, February 1970.

[45] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction order-

ing in embedded multiprocessors. In Proceedings of the International Conference on
186

Application Specific Systems, Architectures, and Processors, pages 276-285, Boston,

Massachusetts, July 2000.

[46] B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the

SBF model of computation. In Proceedings of the IEEE Workshop on Signal Process-

ing Systems, pages 385-394, September 2001.

[47] S. J. Kim and J. C. Brown, “A general approach to mapping of parallel computa-

tions upon multiprocessor architectures”, proceedings of International Conference on

Parallel Processing, August 1988, Vol. 3, pp. 1-8.

[48] D. Ko and S. S. Bhattacharyya. Modeling of block-based DSP systems. In Pro-

ceedings of the IEEE Workshop on Signal Processing Systems, pages 381-386, Seoul,

Korea, August 2003.

[49] D. Ko and S. S. Bhattacharyya. Dynamic configuration of dataflow graph topol-

ogy for DSP system design. In Proceedings of the International Conference on Acous-

tics, Speech, and Signal Processing, pages V-69-V-72, Philadelphia, Pennsylvania,

March 2005.

[50] D. Ko, S. S. Bhattacharyya. Modelling and Optimization of Buffering Trade-offs

for Hardware Implementation of Image Processing Applications, In Proceedings of the

IEEE Workshop on Signal Processing Systems, pages 591-596, Athens, Greece,

November 2005.

[51] D. Ko and C. Shen and S. S. Bhattacharyya and N. Goldsman. Energy-driven par-

titioning of signal processing algorithms in sensor networks, In Proceedings of the

SAMOS Workshop on Wireless Sensor Networks, Samos, Greece, July 2006[To

appear].
187

[52] M. Ko, P. K. Murthy, and S. S. Bhattacharyya. Compact procedural implementa-

tion in DSP software synthesis through recursive graph decomposition. In Proceedings

of the International Workshop on Software and Compilers for Embedded Processors,

Amsterdam, The Netherlands, September 2004.

[53] K. Konstantinides, R. T. Kaneshiro, and J. R. Tani, “Task Allocation and Schedul-

ing Models for Multiprocessor Digital Signal Processing,” IEEE Trans. on Acoustics,

Speech, and Signal Processing, vol. 38, no. 12, pp. 2151{2161, Dec. 1990.

[54] R. Kumar, V. Tsiatsis, and M. B. Srivastava, Computation Hierarchy for In-net-

work Processing, the 2nd ACM international conference on Wireless sensor networks

and applications, pp. 68.77, 2003.

[55] Y. K. Kwok, Ishfaq Ahmad, Static scheduling algorithms for allocating directed

task graphs to multiprocessors, ACM Computing Surveys (CSUR), v.31 n.4, p.406-

471, Dec. 1999.

[56] K. Lahiri, Anand Raghunathan, Sujit Dey, Fast performance analysis of bus-based

system-on-chip communication architectures, Proceedings of the 1999 IEEE/ACM

international conference on Computer-aided design, p.566-573, November 07-11,

1999, San Jose, California, United States.

[57] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw Hill Inc.,

New Jersey, 1994.

[58] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Optimizing computa-

tions for effective block-processing. ACM Transactions on Design Automation of

Electronic Systems, 5(3):604-630, July 2000.
188

[59] M. Lam, Software Pipelining: An Effective Scheduling Technique for VLIW

Machines, Proceedings of the SIGPLAN 1988 Conference on Programming Language

Design and Implementation, pp. 318-328, June 1988.

[60] E. A. Lee and J. C. Bier, Architectures for Statically Scheduled Dataflow, Journal

of Parallel and Distributed Computing, Vol. 10, pp. 333-348, December 1990.

[61] E. A. Lee, A Coupled Hardware and Software Architecture for Programmable

DSPs, Ph. D. Thesis, Department of EECS, University of California Berkeley, May

1986.

[62] E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/11,

Department of Electrical Engineering and Computer Sciences, University of Califor-

nia at Berkeley, March 2001.

[63] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous dataflow

programs for digital signal processing. IEEE Transactions on Computers, February

1987.

[64] E. A. Lee and S. Ha, Scheduling Strategies for Multiprocessor Real Time DSP,

Proceedings of the Global Telecommunications Conference, November 1989.

[65] Y. Li, W. Wolf, “Hardware/Software Co-Synthesis with Memory Hierarchies,

“IEEE Transaction Computer-Aided Design of Integrated Circuits and Systems, Vol.

18, No. 10, pp. 1405--1417, 1999.

[66] S. Lindsey, C. Raghavendra, and K. Sivalingam, Data Gathering in Sensor Net-

works using the Energy Delay Metric. IEEE Transactions on Parallel and Distributive

Systems, special issue on Mobile Computing, pp. 924-935, April 2002
189

[67] J. Madsen, P. Bjorn-Jorgensen. Embedded System Synthesis under Memory Con-

straints. Proceedings of the seventh international workshop on Hardware/software

codesign table of contents. Rome, Italy. Pages: 188 - 192. 1999.

[68] S. Meftali, Ferid Gharsalli, Frederic Rousseau, Ahmed A. Jerraya, An optimal

memory allocation for application-specific multiprocessor system-on-chip, Proceed-

ings of the international symposium on Systems synthesis, September 30-October 03,

2001, Montreal, P.Q., Canada.

[69] L. J. Miller, “A heterogeneous multiprocessor design and the distributed schedul-

ing of its task group workload”, Proceedings of the 9th annual symposium on Com-

puter Architecture, p.283-290, April 26-29, 1982, Austin, Texas, United States.

[70] P. K. Murthy and E. A. Lee. Multidimensional synchronous dataflow. IEEE

Transactions on Signal Processing, 50(8):2064-2079, August 2002.

[71] P. K. Murthy and E. A. Lee, “On the Optimal Blocking Factor for Blocked, Non-

Overlapped Schedules,” ERL Memo No. UCB/ERL M94/93, Electronics Research

Lab, November 1994, UCBerkeley, CA.

[72] A. E. Nelson, “Implementation of Image Processing Algorithms on FPGA hard-

ware”, MS Thesis, Vanderbilt University, May 2000.

[73] S. Neuendorffer and Edward Lee, “Hierarchical Reconfiguration of Dataflow

Models”, Conference on Formal Methods and Models for Codesign (MEMOCODE),

June 22-25, 2004.

[74] C. Nicolescu, P. Jonker, A data and task parallel image processing environment.

Parallel Computing 28(7-8): 945-965 (2002).
190

[75] M. Pankert, O. Mauss, S. Ritz, H. Meyr, “Dynamic Data Flow and Control Flow

in High Level DSP Code Synthesis,” Proceedings of the 1994 IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, Vol. 2, pp 449-452, Adelaide,

Australia, April 19-22, 1994.

[76] C. Park, J. Chung and S. Ha, Efficient Dataflow Representation of MPEG-1

Audio (Layer III) Decoder Algorithm with Controlled Global States, IEEE Workshop

on Signal Processing Systems (SiPS): Design and Implementation, Taiwan, ROC, Oct,

1999.

[77] Thomas M. Parks, Jose Luis Pino and Edward A. Lee, “A Comparison of Syn-

chronous and Cyclo-Static Dataflow”, Proc. IEEE Asilomar Conference on Signals,

Systems, and Computers, Nov., 1995.

[78] J. Pino, S. S. Bhattacharyya, E. A. Lee, “A Hierarchical Multiprocessor Schedul-

ing System for DSP Applications,” Proceedings of the IEEE Asilomar Conference on

Signals, Systems, and Computers, October 1995.

[79] M. Potkonjak, M. Srivastava, “Design of High Throughput, Low Latency and

Low Cost Structures for Linear Systems”, ICASSP-94 International Conference on

Acoustic, Speech, and Signal Processing, Minneapolis, MN, Vol. 2, pp. 497-500, April

1994.

[80] S. Ranaweera, D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm

for Heterogeneous Systems”, 14th International Parallel and Distributed Processing

Symposium (IPDPS'00), p 445-450, May 01 - 05, 2000, Cancun, Mexico.

[81] J. Rehg, Kathleen Knobe, Umakishore Ramachandran, Rishiyur S. Nikhil, Arun

Chauhan, Integrated Task and Data Parallel Support for Dynamic Applications,
191

Selected Papers from the 4th International Workshop on Languages, Compilers, and

Run-Time Systems for Scalable Computers, p.167-180, May 28-30, 1998.

[82] H. E. Rewini, T. G. Lewis, “Scheduling parallel programs onto arbitrary target

architectures”, Journal of Parallel and Distributed Computing, Vol. 9, No. 2, June

1990, pp. 138-153.

[83] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of scalable synchronous

dataflow graphs. In Proceedings of the International Conference on Application Spe-

cific Array Processors, October 1993.

[84] S. Ritz, M. Pankert, and H. Meyr. High level software synthesis for signal pro-

cessing systems. In Proceedings of the International Conference on Application Spe-

cific Array Processors, August 1992.

[85] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors.

Cambridge, MA. The MIT Press, 1989.

[86] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiproces-

sors with Shared and Private Memory,” International Conference on Parallel Process-

ing, 1989.

[87] Luc Semeria, K. Sato, G. Micheli, “Synthesis of hardware models in C with point-

ers and complex data structures”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems archive Volume 9, Issue 6 (December 2001), Pages: 743 - 756.

[88] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan,

“Physical layer driven protocol and algorithm design for energy-efficient wireless sen-

sor networks”, in Proc. ACM MOBICOM'01, July 2001.
192

[89] G. C. Sih and E. A. Lee, “A compile time scheduling heuristic for interconnec-

tion-constrained heterogeneous processors architectures”, IEEE Transactions on Paral-

lel and Distributed Systems,Vol. 4, No. 2, February 1993, pp. 175-187.

[90] G. C. Sih and E. A. Lee, “Declustering: A New Multiprocessor Scheduling Tech-

nique,” IEEE Trans. on Parallel and Distributed Systems, vol. 4, No. 6, pp. 625-637,

June 1993.

[91] M. Singh and V. K. Prasanna, System-Level Energy Tradeoffs for Collaborative

Computation in Wireless Networks Norwell, MA: Kluwer, 2002.

[92] G. Spivey, S. S. Bhattacharyya, K. Nakajima, “A Component Architecture for

FPGA-based, DSP System Design”, In Proceedings of the International Conference on

Application Specific Systems, Architectures, and Processors, San Jose, California,

July 2002.

[93] A. Srinivasan, J. H. Anderson, Optimal rate-based scheduling on multiprocessors,

Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,

May 19-21, 2002, Montreal, Quebec, Canada.

[94] S. Sriram, MINIMIZING COMMUNICATION AND SYNCHRONIZATION

OVERHEAD IN MULTIPROCESSORS FOR DIGITAL SIGNAL PROCESSING,

Ph.D. Dissertation, Dept. of EECS, Technical Report UCB/RL 95/90 University of

California, Berkeley, October, 1995.

[95] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and

Synchronization, Marcel Dekker Inc., 2000.
193

[96] S. Sriram and E. A. Lee, “Determining the Order of Processor Transactions in

Statically Scheduled Multiprocessors”, Journal of VLSI Signal Processing, pp. 207-

220, 1997.

[97] Siram and E. A. Lee, “Statically Scheduling Communication Resources in Multi-

processor DSP Architectures,” Proceedings of the Asilomar Conference on Signals,

Systems, and Computers, November, 1994.

[98] M.B. Srivastava, M. Potkonjak, “Optimum and heuristic transformation tech-

niques for simultaneous optimization of latency and throughput”, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, pp 2-19, Mar 1995.

[99] J. Subhlok, G. Vondran. Optimal Latency-Throughput Tradeoffs for Data Parallel

Pipeline. SPAA, 1996, Padua, Italy.

[100] R. Szymanek, K. Kuchcinski, A constructive algorithm for memory-aware task

assignment and scheduling, Proceedings of the ninth international symposium on

Hardware/software codesign, p.147-152, April 2001, Copenhagen, Denmark.

[101] K. Taura, A. Chien. A heuristic algorithm for mapping communicating tasks on

heterogeneous resources. In Heterogeneous Computing Workshop, May 2000.

[102] N. Thepayasuwan, A. Doboli, “OSIRIS: Automated Synthesis of Flat and Hier-

archical Bus Architectures for Deep Submicron Systems-on-Chip”, IEEE Proceedings

of International Symposium on VLSI (ISVLSI), Lafayette, 2004.

[103] J. Teifel and R. Manohar. An Asynchronous Dataflow FPGA Architecture. IEEE

Transactions on Computers, Special issue on Field-Programmable Logic, November

2004.
194

[104] A. Turjan, B. Kienhuis, Ed F. Deprettere: An Integer Linear Programming

Approach to Classify the Communication in Process Networks. SCOPES 2004: 62-76

[105] N. Vanspauwen, E. Barros, S. Cavalcante, C. Valderrama, “On the Importance,

Problems and Solutions of Pointer Synthesis”, Proceedings of the 15th symposium on

Integrated circuits and systems design, pp: 317, 2002.

[106] G. Varatkar, R. Marculescu, Communication-Aware Task Scheduling and Volt-

age Selection for Total Systems Energy Minimization. Proc. Intl. Conf. on Computer-

Aided Design (ICCAD), November, 2003.

[107] I.Verbauwhede, F.Catthoor, J.Vandewalle, H.De Man, “Background memory

management for the synthesis of algebraic algorithms on multi-processor DSP chips”,

Proc. VLSI'89, Int. Conf. on VLSI, Munich, Germany, pp.209-218, Aug. 1989.

[108] Z. Wang, M. Kirkpatrick, Edwin Hsing-Mean Sha, “Optimal two level partition-

ing and loop scheduling for hiding memory latency for DSP applications”, Proceed-

ings of the 37th conference on Design automation, p.540-545, June 05-09, 2000, Los

Angeles, California, United States.

[109] P. Wauters, M. Engels, R. Lauwereins, J.A. Peperstraete, “Cyclo-dynamic data-

flow,”4th EUROMICRO Workshop on Parallel and Distributed Processing,

Braga,Portugal, January, 1996.

[110] W. Wolf and M. Kandemir, “Memory system optimization of embedded soft-

ware,” Proceedings of the IEEE, 91(1), January 2003, pp. 165-182.

[111] T. Yang and A. Gerasoulis, “A Fast Scheduling Algorithm for DAGs on an

Unbounded Number of Processors,” Proceedings of the 5th ACM International Con-

ference on Supercomputing, pages 633-642. ACM 1991.
195

[112] T. Y. Yen, Wayne Wolf, Communication synthesis for distributed embedded sys-

tems, Proceedings of the 1995 IEEE/ACM international conference on Computer-

aided design, p.288-294, November 05-09, 1995, San Jose, California, United States.

[113] Q. Zhuge, B. Xiao, E. H.-M. Sha and C. Chantrapornchai Efficient Variable Par-

titioning and Scheduling for DSP Processors with Multiple Memory Modules, IEEE

Transactions on Signal Processing, Vol. 52, No. 4, April 2002, pp. 1090-1099.

[114] X. Zhu, S. Malik. A Hierarchical Modeling Framework for On-Chip Communi-

cation Architectures. Proceedings of International Conference on Computer-Aided

Design 2002, November, 2002.

[115] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Evolutionary algorithms for the

synthesis of embedded software. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 8(4):452-456, August 2000.

[116] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor Scheduling with A-

priori Node Assignment,” VLSI Signal Processing, IEEE Press, 1994.
196

	SYSTEM synthesis for image processing applications
	Chapter 1 : Introduction
	1.1 Background
	1.1.1 Modeling
	1.1.1.1 Synchronous DataFlow (SDF)
	1.1.1.2 Cyclo-Static DataFlow (CSDF)
	1.1.1.3 MultiDimensional Synchronous DataFlow (MDSDF)
	1.1.1.4 Boolean DataFlow (BDF)
	1.1.1.5 Parameterized Synchronous DataFlow (PSDF)

	1.1.2 Scheduling[94,95,96,97]
	1.1.2.1 Fully static schedule.
	1.1.2.1.1 Blocked schedule
	1.1.2.1.2 Overlapped schedule

	1.1.2.2 Self-timed schedule[60,61]
	1.1.2.3 Static assignment and dynamic scheduling

	1.1.3 Communication optimization

	1.2 Overview of the suggested techniques
	1.2.1 Modeling
	1.2.1.1 Blocked DataFlow (BLDF)
	1.2.1.2 Dynamically configured graph topology(DGT)

	1.2.2 Scheduling
	1.2.2.1 Pipeline Decomposition Tree (PDT) scheduling

	1.2.3 Communication cost
	1.2.3.1 Hardware communication optimization
	1.2.3.2 Software communication optimization

	1.3 Contributions of this thesis
	1.3.1 Modeling
	1.3.1.1 Blocked DataFlow (BLDF)
	1.3.1.1.1 Iteration control
	1.3.1.1.2 Token delivery
	1.3.1.1.3 Data tokens with nested headers

	1.3.1.2 Dynamically reconfigurable Graph Topology (DGT)
	1.3.1.2.1 Modeling of separate dataflow graphs in a single dataflow semantic.
	1.3.1.2.2 Minimization of resource usage among separate dataflow graphs
	1.3.1.2.3 Dynamic reconfiguration of a graph topology

	1.3.2 Scheduling
	1.3.2.1 Pipeline Decomposition Tree (PDT) scheduling
	1.3.2.1.1 Constraint aware multiprocessor scheduling for non-linearly linked data flow graph
	1.3.2.1.2 Exploitation of heterogeneous data parallelism with task parallelism
	1.3.2.1.3 Automatic pipelined multiprocessor architecture generation

	1.3.3 Communication optimization
	1.3.3.1 Minimization of FIFO buffer cost
	1.3.3.2 Minimization of network communication cost

	1.4 Outline of thesis

	Chapter 2 : Modeling of DSP applications
	2.1 Introduction
	2.2 Blocked Dataflow Graph (BLDF)
	2.2.1 Abstract
	2.2.2 Related work
	2.2.3 Blocked dataflow
	2.2.3.1 Iteration control
	2.2.3.2 Token delivery
	2.2.3.3 Data tokens with nested headers

	2.2.4 Application example
	2.2.4.1 Brief review of MPEG2 video streams
	2.2.4.2 Problems in design of an MPEG video encoder with SDF

	2.2.5 Experiments
	2.2.5.1 MPEG2 Video encoder implementation
	2.2.5.1.1 Method 1. FSM and SDF combination
	2.2.5.1.2 Method 2. SDF
	2.2.5.1.3 Method 3. BLDF

	2.2.5.2 Comparison

	2.2.6 Conclusions of BLDF

	2.3 Dynamically configured graph topology (DGT)
	2.3.1 Abstract
	2.3.2 Related Work
	2.3.3 Dynamic Graph Topology
	2.3.3.1 DGT (Dynamic Graph Topology) specifications
	2.3.3.2 Scheduling of DGT specifications
	2.3.3.3 Minimization of code and buffer requirements
	2.3.3.4 Operational semantics of DGT

	2.3.4 Experimental results
	2.3.5 Conclusions of DGT

	Chapter 3 : Scheduling of DSP applications onto multiprocessors
	3.1 Introduction
	3.2 Pipeline Decomposition Tree scheduling
	3.2.1 Abstract
	3.2.2 Introduction
	3.2.2.1 Related Work

	3.2.3 PDT(Pipeline Decomposition Tree) based scheduling
	3.2.3.1 Assumptions of PDT scheduling
	3.2.3.2 Heterogeneous data parallelism
	3.2.3.3 memory usage
	3.2.3.3.1 Memory usage comparison
	3.2.3.3.1.1 “Without Task Duplication”
	3.2.3.3.1.2 “With Task Duplication”
	3.2.3.3.1.3 Task duplication under general data parallelism
	3.2.3.3.1.4 Task duplication under a heterogeneous data parallelism

	3.2.3.3.2 Memory usage ratio
	3.2.3.3.2.1 A separate memory architecture vs. A shared memory architecture[With out task duplication]
	3.2.3.3.2.2 A separate memory architecture vs. A shared memory architecture [With task duplication]
	Remark 1 : Definitions for PDT scheduling - 1

	3.2.4 Scheduling
	Remark 2 : Definitions for PDT scheduling - 2
	3.2.4.1 “PDT()” - Pipeline Decomposition Tree
	3.2.4.1.1 CPAP (Critical PAth based Partition)
	3.2.4.1.2 Effects of () and cluster dependencies.
	Remark 3 : Definitions for PDT scheduling - 3

	3.2.4.1.3 Division criteria
	3.2.4.1.4 Trade-off between Latency and throughput in PDT.

	3.2.4.2 - Processor allocation, communication model and memory model
	3.2.4.2.1 HDEST (Heterogeneous Data Parallelism Earliest Start Time)
	3.2.4.2.1.1 Setting up priorities of tasks in .
	3.2.4.2.1.2 Communication cost in scheduling.
	3.2.4.2.1.3 Examples of how () operates.
	3.2.4.2.1.4 Verification of the number of processors allocated by (Processor Utili zation).

	3.2.4.2.2 Memory model

	3.2.4.3 Iterative change of parameters

	3.2.5 Application examples
	3.2.6 Experimental results
	3.2.7 Conclusion

	Chapter 4 : Communication optimization of DSP applications implementation
	4.1 Introduction
	4.2 Modeling and optimization of buffering trade-off
	4.2.1 Abstract
	4.2.2 Related Work
	4.2.3 FIFO hardware mapping for dataflow graphs
	4.2.3.1 Modeling and architecture
	4.2.3.2 Performance and cost impact of token delivery methods
	4.2.3.3 Effect of sub-frame size on performance and cost
	4.2.3.4 Effect of data dependency on performance and cost
	4.2.3.5 Optimization of FIFO hardware mapping

	4.2.4 Experimental results
	4.2.5 Conclusions and future work

	4.3 Energy-driven partitioning of signal processing algorithms in sensor networks
	4.3.1 Abstract
	4.3.2 Introduction and Related work
	4.3.3 Energy consumption optimization by distribution of an application
	4.3.3.1 Application cutting in a sensor network
	4.3.3.2 Cutting algorithm
	4.3.3.3 Effect on energy consumption
	4.3.3.4 Effect on latency

	4.3.4 Experimental results
	4.3.5 Summary

	Chapter 5 : Conclusion and Future work
	5.1 Modeling
	5.1.1 Blocked DataFlow (BLDF)
	5.1.2 Dynamically configured graph topology
	5.1.3 Future work

	5.2 Scheduling
	5.2.1 Future work

	5.3 Communication optimization
	5.3.1 Hardware communication optimization
	5.3.2 Software communication optimization
	5.3.3 Future work

	Bibliography
	[1] I. Ahmed and Y. K. Kwok, “A new approach to scheduling parallel programs using task duplication”, International Conference on Parallel Processing, August 1994, Vol. 2, pp 47-51.
	[2] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: Comments on the history and current state”, IEEE Transactions on Evolutionary Computation, vol. 1, pp. 3.17, Apr. 1997.
	[3] J. L. Baer, Tien-Fu Chen, An effective on-chip preloading scheme to reduce data access penalty, Proceedings of the 1991 ACM/IEEE conference on Supercomputing, p.176-186, November 18-22, 1991, Albuquerque, New Mexico, United States.
	[4] S. Bakshi, Daniel D. Gajski, Partitioning and pipelining for performance-con strained hardware/software systems, IEEE Transactions on Very Large Scale Integra tion (VLSI) Systems, v.7 n.4, p.419-432, Dec. 1999.
	[5] N. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Hybrid search strategies for dynamic voltage scaling in embedded multiprocessors. In Proceedings of the Inter national Workshop on Hardware/Software Co-Design, pages 243-248, Copen...
	[6] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic integration of parameterized local search in evolutionary algorithms. IEEE Transactions on Evo lutionary Computation, 8(2):137-155, April 2004.
	[7] S. Banerjee, T. Hamada, P. M. Chau, and R. D. Fellman, Macropipelining based scheduling on high performance heterogeneous multiprocessor systems. IEEE Trans. Signal Processing, vol. 43, pp.1468-1484, June 1995.
	[8] A. Benedetti, A. Prati, N. Scarabottolo, “Image Convolution on FPGAs: The Implementation of a Multi-FPGA FIFO Structure,” 24 th. EUROMICRO Conference Volume 1 (EUROMICRO'98), August 25 - 27, 1998.
	[9] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, October 2001.
	[10] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for DSP. IEEE Transactions on Circuits and Systems -- II: Analog and Dig ital Signal Processing, 47(9):849-875, September 2000.
	[11] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Synthesis from Dataflow Graphs, Kluwer Academic Publishers, 1996.
	[12] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchronization of Multipro cessor Schedules:Part 1-Fundamental Concepts and Unbounded-Latency Analysis,” emorandum No. UCB/ERL M96/55, 15 October 1996.
	[13] S. S. Bhattacharyya, “Exploiting Free Space Optical Interconnects for System-on- Chip DSP Applications,” presented at DARPA opto-center kickoff meeting, December 11, 2000.
	[14] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Optimizing Synchronization in Multiprocessor DSP Systems,” IEEE Transactions on Signal Processing, June, 1997.
	[15] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data flow. IEEE Transactions on Signal Processing, 44(2):397-408, February 1996.
	[16] E.R. Bonsma, “Multiprocessor scheduling of fine-grain iterative data-flow graphs using genetic algorithms,” M.S. thesis, University of Twente, Department of Electrical Engineering, June 1997, EL-BSC-018N97.
	[17] J. T. Buck. Static scheduling and code generation from dynamic dataflow graphs with integer-valued control systems. In Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, pages 508-513, October 1994.
	[18] J. T. Buck, E. A. Lee, “Scheduling Dynamic Dataflow Graphs with Bounded Memory using the Token Flow Model”, Proc. ICASSP, April, 1993.
	[19] B. P. Buckles and F. E. Petry. Genetic Algorithms. The IEEE Computer Society Press, Los Alamitos, 1992.
	[20] A. Choudhary, W. K. Liao, P. Varshney, D. Weiner, R. Linderman and M. Linder man ``Design, Implementation and Evaluation of Parallel Pipelined STAP on Parallel Computers,'' 12th International Parallel Processing Symposium, to be appeared, 1998.
	[21] J. Y. Colin and P. Chritienne, “C.P.M. Scheduling with small Communicational delays and task duplication”, Operational research, Vol. 39, No. 4, July 1991, pp. 680- 684.
	[22] S. Darbha and D. P. Agrawal, “A task duplication based scalable scheduling algo rithm for distributed memory systems”, Journal of parallel and Distributed Comput ing, Vol. 46, No. 1, October 1997, pp. 15-27.
	[23] M.K. Dhodhi, Imtiaz Ahmad, and Ishfaq Ahmad. “A multiprocessor scheduling scheme using problem-space genetic algorithms”. In IEEE Conf. on Evolutionary Computation, pages 214{219, 1994.
	[24] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong. Taming heterogeneity. the Ptolemy approach. Proceedings of the IEEE, January 2003.
	[25] M. Engels, G. Bilsen, R. Lauwreins, J. Peperstraete, °°Cyclo-Static dataflow, IEEE Transactions on Signal Processing, 44(2), pp 397-408, February 1996.
	[26] H. Forsberg, M. Jonsson, and B. Svensson, “A scalable and pipelined embedded signal processing system using optical hypercube interconnects,” Proc. IASTED 12th International Conference on Parallel and Distributed Computing and Systems (P...
	[27] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling directed acyclic graphs onto multiprocessors”, Journal of Parallel and Distributed Computing, Vol. 16, No. 4, December 1992, pp. 276-291.
	[28] D.E. Goldberg. “Genetic Algorithms in Search, Optimization and Machine Learn ing”. Addison-Wesley, 1989.
	[29] S. Ha, “Compile-time scheduling of dataflow program graphs with dynamic con structs”, University of California at Berkeley, Berkeley, CA, 1992.
	[30] F. Hannig, H. Dutta and J. Teich, “Regular Mapping for Coarse-grained Reconfig urable Architectures”, In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), Vol. V, pp. 57-60, ...
	[31] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient com munication protocol for wireless microsensor networks. In Proceedings of the Hawaii International Conference on System Sciences, 2000.
	[32] P. Hoang and J. Rabaey, Scheduling of DSP Programs onto Multiprocessors for Maximum Throughput. In IEEE Transactions on Signal Processing, vol. 41, no.6, June 1993.
	[33] J. Horstmannshoff, T. Grotker, H. Meyr “Mapping multirate dataflow to complex RT level hardware models”, IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP '97), July 14 - 16, 1997 Zurich, SWIT ZERLAND.
	[34] J. Horstmannshoff, H. Meyr, “Efficient building block based RTL code genera tion from synchronous data flow graphs”, Annual ACM IEEE Design Automation Conference Proceedings of the 37th conference on Design automation, Los Angeles, Calif...
	[35] C. C. Hui and S. T. Chanson, “Allocating task interaction graphs to processors in heterogeneous networks”, IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No. 9, September 1997, pp. 908-926.
	[36] J. Jonsson, J. Vasell, “Real-Time Scheduling for Pipelined Execution of Data Flow Graphs on a Realistic Multiprocessor Architecture”, In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Ma...
	[37] J. Jonsson, J. Vasell, “On Objective Function Selection in List Scheduling Algo rithms for Digital Signal Processing Applications”, In Proceedings of IEEE Interna tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr...
	[38] H. Jung, S. Ha, “Hardware Synthesis from Coarse-Grained Dataflow Specifica tion for Fast HW/SW Cosynthesis”, International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS'04), September 08 - 10, 2004.
	[39] M. Kafil and I. Ahmed, “Optimal Task Assignment in Heterogeneous Distributed Computing Systems”, IEEE Concurrency, Vol. 6, No. 3, July-September 1998, pp. 42- 51.
	[40] A. Kalavade and P. A. Suhrahmanyam, “Hardware / Software Partitioning for Multi-function Systems”, Proc. International Conference on Computer Aided Design, pp. 516-521, Nov. 1997.
	[41] A. Kahn, C. McCreary, J. Thompson, and M. McArdle, “A Comparison of Multi processor Scheduling Heuristics”, Proceedings of 1994 International Conference on Parallel Processing, vol. II, pages 243-250, 1994.
	[42] M. Katevenis, P. Vatsolaki, and A. Efthymiou. Pipelined memory shared buffer for VLSI switches. In Proc. Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, 1995.
	[43] J. Keinert, C. Haubelt, and J. Teich. Windowed Synchronous Data Flow. Depart ment of Computer Science 12, Hardware-Software-Co-Design, University of Erlan gen-Nuremberg, Am Weichselgarten 3, D-91058 Erlangen, Germany Co-Design- Report 02-2005.
	[44] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Technical Journal, pages 291--307, February 1970.
	[45] M. Khandelia and S. S. Bhattacharyya. Contention-conscious transaction order ing in embedded multiprocessors. In Proceedings of the International Conference on Application Specific Systems, Architectures, and Processors, pages 276-285, B...
	[46] B. Kienhuis and E. F. Deprettere. Modeling stream-based applications using the SBF model of computation. In Proceedings of the IEEE Workshop on Signal Process ing Systems, pages 385-394, September 2001.
	[47] S. J. Kim and J. C. Brown, “A general approach to mapping of parallel computa tions upon multiprocessor architectures”, proceedings of International Conference on Parallel Processing, August 1988, Vol. 3, pp. 1-8.
	[48] D. Ko and S. S. Bhattacharyya. Modeling of block-based DSP systems. In Pro ceedings of the IEEE Workshop on Signal Processing Systems, pages 381-386, Seoul, Korea, August 2003.
	[49] D. Ko and S. S. Bhattacharyya. Dynamic configuration of dataflow graph topol ogy for DSP system design. In Proceedings of the International Conference on Acous tics, Speech, and Signal Processing, pages V-69-V-72, Philadelphia, Pennsylva...
	[50] D. Ko, S. S. Bhattacharyya. Modelling and Optimization of Buffering Trade-offs for Hardware Implementation of Image Processing Applications, In Proceedings of the IEEE Workshop on Signal Processing Systems, pages 591-596, Athens, Greece,...
	[51] D. Ko and C. Shen and S. S. Bhattacharyya and N. Goldsman. Energy-driven par titioning of signal processing algorithms in sensor networks, In Proceedings of the SAMOS Workshop on Wireless Sensor Networks, Samos, Greece, July 2006[To appear].
	[52] M. Ko, P. K. Murthy, and S. S. Bhattacharyya. Compact procedural implementa tion in DSP software synthesis through recursive graph decomposition. In Proceedings of the International Workshop on Software and Compilers for Embedded Process...
	[53] K. Konstantinides, R. T. Kaneshiro, and J. R. Tani, “Task Allocation and Schedul ing Models for Multiprocessor Digital Signal Processing,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 38, no. 12, pp. 2151{2161, Dec. 1990.
	[54] R. Kumar, V. Tsiatsis, and M. B. Srivastava, Computation Hierarchy for In-net work Processing, the 2nd ACM international conference on Wireless sensor networks and applications, pp. 68.77, 2003.
	[55] Y. K. Kwok, Ishfaq Ahmad, Static scheduling algorithms for allocating directed task graphs to multiprocessors, ACM Computing Surveys (CSUR), v.31 n.4, p.406- 471, Dec. 1999.
	[56] K. Lahiri, Anand Raghunathan, Sujit Dey, Fast performance analysis of bus-based system-on-chip communication architectures, Proceedings of the 1999 IEEE/ACM international conference on Computer-aided design, p.566-573, November 07-11, 19...
	[57] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw Hill Inc., New Jersey, 1994.
	[58] K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak. Optimizing computa tions for effective block-processing. ACM Transactions on Design Automation of Electronic Systems, 5(3):604-630, July 2000.
	[59] M. Lam, Software Pipelining: An Effective Scheduling Technique for VLIW Machines, Proceedings of the SIGPLAN 1988 Conference on Programming Language Design and Implementation, pp. 318-328, June 1988.
	[60] E. A. Lee and J. C. Bier, Architectures for Statically Scheduled Dataflow, Journal of Parallel and Distributed Computing, Vol. 10, pp. 333-348, December 1990.
	[61] E. A. Lee, A Coupled Hardware and Software Architecture for Programmable DSPs, Ph. D. Thesis, Department of EECS, University of California Berkeley, May 1986.
	[62] E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M01/11, Department of Electrical Engineering and Computer Sciences, University of Califor nia at Berkeley, March 2001.
	[63] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous dataflow programs for digital signal processing. IEEE Transactions on Computers, February 1987.
	[64] E. A. Lee and S. Ha, Scheduling Strategies for Multiprocessor Real Time DSP, Proceedings of the Global Telecommunications Conference, November 1989.
	[65] Y. Li, W. Wolf, “Hardware/Software Co-Synthesis with Memory Hierarchies, “IEEE Transaction Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, No. 10, pp. 1405--1417, 1999.
	[66] S. Lindsey, C. Raghavendra, and K. Sivalingam, Data Gathering in Sensor Net works using the Energy Delay Metric. IEEE Transactions on Parallel and Distributive Systems, special issue on Mobile Computing, pp. 924-935, April 2002
	[67] J. Madsen, P. Bjorn-Jorgensen. Embedded System Synthesis under Memory Con straints. Proceedings of the seventh international workshop on Hardware/software codesign table of contents. Rome, Italy. Pages: 188 - 192. 1999.
	[68] S. Meftali, Ferid Gharsalli, Frederic Rousseau, Ahmed A. Jerraya, An optimal memory allocation for application-specific multiprocessor system-on-chip, Proceed ings of the international symposium on Systems synthesis, September 30-October...
	[69] L. J. Miller, “A heterogeneous multiprocessor design and the distributed schedul ing of its task group workload”, Proceedings of the 9th annual symposium on Com puter Architecture, p.283-290, April 26-29, 1982, Austin, Texas, United States.
	[70] P. K. Murthy and E. A. Lee. Multidimensional synchronous dataflow. IEEE Transactions on Signal Processing, 50(8):2064-2079, August 2002.
	[71] P. K. Murthy and E. A. Lee, “On the Optimal Blocking Factor for Blocked, Non- Overlapped Schedules,” ERL Memo No. UCB/ERL M94/93, Electronics Research Lab, November 1994, UCBerkeley, CA.
	[72] A. E. Nelson, “Implementation of Image Processing Algorithms on FPGA hard ware”, MS Thesis, Vanderbilt University, May 2000.
	[73] S. Neuendorffer and Edward Lee, “Hierarchical Reconfiguration of Dataflow Models”, Conference on Formal Methods and Models for Codesign (MEMOCODE), June 22-25, 2004.
	[74] C. Nicolescu, P. Jonker, A data and task parallel image processing environment. Parallel Computing 28(7-8): 945-965 (2002).
	[75] M. Pankert, O. Mauss, S. Ritz, H. Meyr, “Dynamic Data Flow and Control Flow in High Level DSP Code Synthesis,” Proceedings of the 1994 IEEE International Con ference on Acoustics, Speech, and Signal Processing, Vol. 2, pp 449-452, Adelai...
	[76] C. Park, J. Chung and S. Ha, Efficient Dataflow Representation of MPEG-1 Audio (Layer III) Decoder Algorithm with Controlled Global States, IEEE Workshop on Signal Processing Systems (SiPS): Design and Implementation, Taiwan, ROC, Oct, 1999.
	[77] Thomas M. Parks, Jose Luis Pino and Edward A. Lee, “A Comparison of Syn chronous and Cyclo-Static Dataflow”, Proc. IEEE Asilomar Conference on Signals, Systems, and Computers, Nov., 1995.
	[78] J. Pino, S. S. Bhattacharyya, E. A. Lee, “A Hierarchical Multiprocessor Schedul ing System for DSP Applications,” Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers, October 1995.
	[79] M. Potkonjak, M. Srivastava, “Design of High Throughput, Low Latency and Low Cost Structures for Linear Systems”, ICASSP-94 International Conference on Acoustic, Speech, and Signal Processing, Minneapolis, MN, Vol. 2, pp. 497-500, April 1994.
	[80] S. Ranaweera, D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems”, 14th International Parallel and Distributed Processing Symposium (IPDPS'00), p 445-450, May 01 - 05, 2000, Cancun, Mexico.
	[81] J. Rehg, Kathleen Knobe, Umakishore Ramachandran, Rishiyur S. Nikhil, Arun Chauhan, Integrated Task and Data Parallel Support for Dynamic Applications, Selected Papers from the 4th International Workshop on Languages, Compilers, and Run-...
	[82] H. E. Rewini, T. G. Lewis, “Scheduling parallel programs onto arbitrary target architectures”, Journal of Parallel and Distributed Computing, Vol. 9, No. 2, June 1990, pp. 138-153.
	[83] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of scalable synchronous dataflow graphs. In Proceedings of the International Conference on Application Spe cific Array Processors, October 1993.
	[84] S. Ritz, M. Pankert, and H. Meyr. High level software synthesis for signal pro cessing systems. In Proceedings of the International Conference on Application Spe cific Array Processors, August 1992.
	[85] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. Cambridge, MA. The MIT Press, 1989.
	[86] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiproces sors with Shared and Private Memory,” International Conference on Parallel Process ing, 1989.
	[87] Luc Semeria, K. Sato, G. Micheli, “Synthesis of hardware models in C with point ers and complex data structures”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems archive Volume 9, Issue 6 (December 2001), Pages: 743 - 756.
	[88] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan, “Physical layer driven protocol and algorithm design for energy-efficient wireless sen sor networks”, in Proc. ACM MOBICOM'01, July 2001.
	[89] G. C. Sih and E. A. Lee, “A compile time scheduling heuristic for interconnec tion-constrained heterogeneous processors architectures”, IEEE Transactions on Paral lel and Distributed Systems,Vol. 4, No. 2, February 1993, pp. 175-187.
	[90] G. C. Sih and E. A. Lee, “Declustering: A New Multiprocessor Scheduling Tech nique,” IEEE Trans. on Parallel and Distributed Systems, vol. 4, No. 6, pp. 625-637, June 1993.
	[91] M. Singh and V. K. Prasanna, System-Level Energy Tradeoffs for Collaborative Computation in Wireless Networks Norwell, MA: Kluwer, 2002.
	[92] G. Spivey, S. S. Bhattacharyya, K. Nakajima, “A Component Architecture for FPGA-based, DSP System Design”, In Proceedings of the International Conference on Application Specific Systems, Architectures, and Processors, San Jose, Californi...
	[93] A. Srinivasan, J. H. Anderson, Optimal rate-based scheduling on multiprocessors, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, May 19-21, 2002, Montreal, Quebec, Canada.
	[94] S. Sriram, MINIMIZING COMMUNICATION AND SYNCHRONIZATION OVERHEAD IN MULTIPROCESSORS FOR DIGITAL SIGNAL PROCESSING, Ph.D. Dissertation, Dept. of EECS, Technical Report UCB/RL 95/90 University of California, Berkeley, October, 1995.
	[95] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and Synchronization, Marcel Dekker Inc., 2000.
	[96] S. Sriram and E. A. Lee, “Determining the Order of Processor Transactions in Statically Scheduled Multiprocessors”, Journal of VLSI Signal Processing, pp. 207- 220, 1997.
	[97] Siram and E. A. Lee, “Statically Scheduling Communication Resources in Multi processor DSP Architectures,” Proceedings of the Asilomar Conference on Signals, Systems, and Computers, November, 1994.
	[98] M.B. Srivastava, M. Potkonjak, “Optimum and heuristic transformation tech niques for simultaneous optimization of latency and throughput”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp 2-19, Mar 1995.
	[99] J. Subhlok, G. Vondran. Optimal Latency-Throughput Tradeoffs for Data Parallel Pipeline. SPAA, 1996, Padua, Italy.
	[100] R. Szymanek, K. Kuchcinski, A constructive algorithm for memory-aware task assignment and scheduling, Proceedings of the ninth international symposium on Hardware/software codesign, p.147-152, April 2001, Copenhagen, Denmark.
	[101] K. Taura, A. Chien. A heuristic algorithm for mapping communicating tasks on heterogeneous resources. In Heterogeneous Computing Workshop, May 2000.
	[102] N. Thepayasuwan, A. Doboli, “OSIRIS: Automated Synthesis of Flat and Hier archical Bus Architectures for Deep Submicron Systems-on-Chip”, IEEE Proceedings of International Symposium on VLSI (ISVLSI), Lafayette, 2004.
	[103] J. Teifel and R. Manohar. An Asynchronous Dataflow FPGA Architecture. IEEE Transactions on Computers, Special issue on Field-Programmable Logic, November 2004.
	[104] A. Turjan, B. Kienhuis, Ed F. Deprettere: An Integer Linear Programming Approach to Classify the Communication in Process Networks. SCOPES 2004: 62-76
	[105] N. Vanspauwen, E. Barros, S. Cavalcante, C. Valderrama, “On the Importance, Problems and Solutions of Pointer Synthesis”, Proceedings of the 15th symposium on Integrated circuits and systems design, pp: 317, 2002.
	[106] G. Varatkar, R. Marculescu, Communication-Aware Task Scheduling and Volt age Selection for Total Systems Energy Minimization. Proc. Intl. Conf. on Computer- Aided Design (ICCAD), November, 2003.
	[107] I.Verbauwhede, F.Catthoor, J.Vandewalle, H.De Man, “Background memory management for the synthesis of algebraic algorithms on multi-processor DSP chips”, Proc. VLSI'89, Int. Conf. on VLSI, Munich, Germany, pp.209-218, Aug. 1989.
	[108] Z. Wang, M. Kirkpatrick, Edwin Hsing-Mean Sha, “Optimal two level partition ing and loop scheduling for hiding memory latency for DSP applications”, Proceed ings of the 37th conference on Design automation, p.540-545, June 05-09, 2000, ...
	[109] P. Wauters, M. Engels, R. Lauwereins, J.A. Peperstraete, “Cyclo-dynamic data flow,”4th EUROMICRO Workshop on Parallel and Distributed Processing, Braga,Portugal, January, 1996.
	[110] W. Wolf and M. Kandemir, “Memory system optimization of embedded soft ware,” Proceedings of the IEEE, 91(1), January 2003, pp. 165-182.
	[111] T. Yang and A. Gerasoulis, “A Fast Scheduling Algorithm for DAGs on an Unbounded Number of Processors,” Proceedings of the 5th ACM International Con ference on Supercomputing, pages 633-642. ACM 1991.
	[112] T. Y. Yen, Wayne Wolf, Communication synthesis for distributed embedded sys tems, Proceedings of the 1995 IEEE/ACM international conference on Computer- aided design, p.288-294, November 05-09, 1995, San Jose, California, United States.
	[113] Q. Zhuge, B. Xiao, E. H.-M. Sha and C. Chantrapornchai Efficient Variable Par titioning and Scheduling for DSP Processors with Multiple Memory Modules, IEEE Transactions on Signal Processing, Vol. 52, No. 4, April 2002, pp. 1090-1099.
	[114] X. Zhu, S. Malik. A Hierarchical Modeling Framework for On-Chip Communi cation Architectures. Proceedings of International Conference on Computer-Aided Design 2002, November, 2002.
	[115] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Evolutionary algorithms for the synthesis of embedded software. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(4):452-456, August 2000.
	[116] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor Scheduling with A- priori Node Assignment,” VLSI Signal Processing, IEEE Press, 1994.

