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Previous studies have shown that extreme weather events are on the rise in response 

to our changing climate. Such events are projected to become more frequent, more intense, 

and longer lasting. A consistent exposure metric for measuring these extreme events as well 

as information regarding how these events lead to ill health are needed to inform meaningful 

adaptation strategies that are specific to the needs of local communities.   

Using federal meteorological data corresponding to 17 years (1997-2013) of the 

National Health Interview Survey, this research: 1) developed a location-specific exposure 

metric that captures individuals’ “exposure” at a spatial scale that is consistent with publicly 

available county-level health outcome data; 2) characterized the United States’ population in 

counties that have experienced higher numbers of extreme heat events and thus identified 

population groups likely to experience future events; and 3) developed an empirical model 

describing the association between exposure to extreme heat events and hay fever.  



  

This research confirmed that the natural modes of forcing (e.g., El Niño-Southern 

Oscillation), seasonality, urban-rural classification, and division of country have an impact 

on the number extreme heat events recorded. Also, many of the areas affected by extreme 

heat events are shown to have a variety of vulnerable populations including women of 

childbearing age, people who are poor, and older adults. Lastly, this research showed that 

adults in the highest quartile of exposure to extreme heat events had a 7% increased odds of 

hay fever compared to those in the lowest quartile, suggesting that exposure to extreme heat 

events increases risk of hay fever among US adults. 
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Chapter 1: Introduction  

    

Recent studies suggest that extreme heat events will become more frequent, more 

intense, and of longer duration in the decades ahead due to climate change (Le Treut et al., 

2007; Mues et al., 2012). In the United States (US) temperatures have increased at a rate of 

0.1º F per decade since the 1990s and the prevalence of extreme weather events has grown 

(T. R. Karl & Knight, 1997; Meehl, Tebaldi, Teng, & Peterson, 2007; Williams Jr, Menne, 

Vose, & Easterling, 2007; T. Karl, 2008).The impact of such events on human health and 

wellbeing is a significant public health concern because a small change in the mean of a 

meteorological variable can lead to a large change in the number of rare events (e.g., increase 

in extreme heat days compared to decrease in extreme cold days). Although a large body of 

literature exist on the impact of climate change on infectious diseases (Colwell, 1996; de 

Magny et al., 2008; Epstein, 2001; Lipp, Huq, & Colwell, 2002; Patz, Epstein, Burke, & 

Balbus, 1996; Randolph, 2009; Rosenthal, 2009; Semenza & Menne, 2009), less is known 

about the effects of increased exposure to extreme weather events and the worsening and 

genesis of chronic diseases in westernized societies where the life expectancy of the geriatric 

population is increasing, more older adults are living with existing chronic diseases, and the 

prevalence of many chronic diseases are steadily increasing.  

 

Among residents in the US, the increased disease burden is likely to be exposed 

differentially across geographic regions (T. Karl, 2008; Parry, 2007; US EPA, 2008). 
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Research by O’Neill et al. (2005) and Yu et al. (2010) have highlighted the association 

between place of death, race, and socioeconomic status during short-term heat events 

(O’Neill, Zanobetti, & Schwartz, 2005; Yu, Vaneckova, Mengersen, Pan, & Tong, 2010). 

With the expected growth in the older adult population across the US and projected increases 

in the frequency, duration and intensity of extreme heat events, there is an urgent need to 

quantify the magnitude of chronic disease burden as well as identify the most vulnerable 

population.  

 Understanding how the attributes of a changing climate will impact susceptible 

populations with chronic respiratory diseases and how the disease burden vary by 

demographics (urban vs. rural, gender, ethnicity, socioeconomic status (SES), and disease 

status) will help to guide future adaptation strategies across the US. Prior studies have linked 

heat waves and hot weather with a higher incidence of mortality in both rural and urban 

environments (Curriero et al., 2002; Davis, Knappenberger, Michaels, & Novicoff, 2003; 

Gasparrini & Armstrong, 2011; J. E. Jackson et al., 2010). These studies have highlighted the 

role of  place, race, and socioeconomic status  in the heat wave-mortality link. Given the 

future projections of an increase in the old and elderly populace to 21% by 2030, this is both 

public health and economic concern (He, Sengupta, Velkoff, & DeBarros, 2005; Pillsbury, 

Miller, Boon, & Pray, 2010). Since the aging population is more sensitive to health 

complications from hot weather episodes—because aging is known to impair the temperature 

control mechanism of the body—additional stress by extreme heat events and acute and 

chronic diseases can disrupt the quality of life for many (Ebi & Meehl, 2007; Federal 

Interagency Forum on Aging-Related Statistics, 2008; Worfolk, 2000). Moreover, the health 

of children are also a concern because they eat, drink, and breathe proportionally more than 
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adults, making them more susceptible to thermal stress, infectious diseases, and other 

environmental hazards (Cooper, Marshall, Vanderlinden, & Ursitti, 2011). Identifying the 

impacts on the elderly and other vulnerable populations are current unknowns that this 

project aims to answer.  

Previous studies have proposed simple and tentative hypothesized schemas of the 

relationship between attributes to a changing climate and the exacerbation of chronic diseases 

in order to encourage new research ventures that fill the void knowledge (D’amato et al., 

2007; Shea, Truckner, Weber, & Peden, 2008; D’amato, Cecchi, D’amato, & Liccardi, 

2010). For example, in the case of chronic respiratory diseases, extreme heat events are 

thought to directly affect plant phenology—such as germination, onset of greening, flowering 

and growing season length (W. Easterling et al., 2007; Kunkel, 2009; M. D. Schwartz, Ahas, 

& Aasa, 2006). The earlier onset of the flowering season and longer duration of exposure to 

pollen can result in wheezing, emergency room visits among asthmatics, and hay fever (US 

EPA, 2008). The Robert Wood Johnson Foundation projects that 158 million people will be 

living with chronic conditions by 2040 (University of California, Institute for Health & 

Aging, & Robert Wood Johnson Foundation, 1996). This is important because small 

increases in risk among the people with respiratory ailments will have significant impacts on 

morbidity rates and healthcare costs. 

The purpose of this thesis is to develop empirical models to describe the relationship 

between exposure to extreme heat events and chronic diseases such as allergic rhinitis, 

commonly referred to as hay fever. This is important because prior studies have suggested 

that such extreme events will become more frequent, more intense, and longer lasting in 
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response to our changing climate. This was accomplished using a novel county-level extreme 

heat event exposure metric, which was linked to 17 years of hay fever data. These 17 years of 

data are used because they incorporate the years in which questions of interest were 

consistently collected by the National Center for Health Statistics (NCHS) for the National 

Health Interview Survey (NHIS). The central hypothesis of this dissertation is that exposure 

to extreme heat events contributes to the exacerbation of chronic respiratory diseases. The 

following specific aims are addressed in this dissertation: 

1) Develop a location-specific exposure metric that captures individual’s “exposure” to 

extreme heat events at a spatial scale that is consistent with publically available county-

level health outcome data.  

2) Characterize the US population in counties that have experienced extreme heat events and 

thus identify population groups likely to experience future events.   

3) Develop an empirical model describing the association between exposure to extreme heat 

events (developed under Aim 1) and hay fever.  

These research aims are addressed in three different manuscripts included in this 

dissertation, and the overall dissertation is organized into six chapters described as follows. 

Chapter 2 provides background information supporting the creation of a extreme heat 

exposure metric for use in environmental epidemiology studies. Chapter 3 is a manuscript 

titled “Frequency of Extreme Heat Event as a Surrogate Exposure Metric for Examining the 

Human Health Effects of Climate Change” published in PLOSOne in December 2015 

(Romeo Upperman et al. 2015). Chapter 4 is a manuscript titled “Geographic and 

Demographic Variability in County Level Exposure to Extreme Heat Events Using National 
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Data Sets, 2010-2013” that describes the prevalence of chronic disease in counties that 

experience the most extreme heat events. Chapter 5 is a manuscript titled “Frequency of 

Extreme Heat Events and Hay Fever Prevalence in the United States, 1997-2013” that is 

pending submission in April 2016. This paper evaluated the risk hay fever prevalence that is 

associated with extreme heat events. This thesis ends in Chapter 6 with a summary of the 

poignant conclusions that can be drawn from this body of research, discussion future research 

directions, and data needs in order to continue research advancement.  

 

 

 

  



 

 6 
 

Chapter 2: Background  

 

This background was completed through a comprehensive review of published literature as 

of 2012.  

 

Need for Extreme Heat Event Indicators  

The major challenge in quantifying the impact of extreme weather events—ascribed 

to climate variability and change—on chronic disease outcomes is the lack of a suitable 

exposure metric that appropriately captures the subtle variability in temperature with 

requisite spatial resolution while incorporating the long-term climate instead of short-term 

weather phenomenon. Additionally, since chronic health outcomes are very diverse, the 

metric used to quantify “exposure” should have malleability. Some metrics throughout the 

published literature are a simple measure of meteorological parameters (i.e., precipitation, 

ambient temperature, apparent temperature, etc.) and others aim to address some aspect of 

climate change itself.  

Research that has widely used daily maximum, minimum, and mean temperature to 

show the relationship between weather and human health outcomes. Also the available 

research has compared short periods of time prior to a time frame of interest, or, throughout a 

series of years. Moreover, the differences in measures used throughout publications do pose a 

significant challenge in synthesizing findings across studies and is limited for gauging the 

chronic human health effects. In view of these short comings, there is an urgent need for 
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exposure metrics that can quantify exposure to extreme weather events encountered under 

climate change that will enable researchers to investigate the impact of subtle changes in 

climatic patterns and adverse chronic health effects.  

 

Approaches to Create a Climate Sensitive Extreme Heat Event Indicator  

The measurement of exposure to extreme temperatures is cumbersome and difficult 

because temperature may vary due to an individual’s location, specific exposure time, or 

behavior (Moya et al., 2011; Harrison, 2004; Paustenbach, 2000). Furthermore, even if all of 

the exposure factors were constant across a set of individuals, variability in response ensues 

because of variability in susceptibilities such as health status and genetic composition 

(Harrison, 2004; Paustenbach, 2000; Nieuwenhuijsen et al., 2003). There are likely 

differences in exposure that are due to geographic location. In the case of climate change, 

spatial variability (due to geographic location) to prolonged changes may vary between 

people that live within the city center versus rural areas, or between people that live in the 

western region versus those living in the southern region of the country. Generally, residents 

in urban areas may experience increased exposure to higher and more prolonged warm 

temperatures, due to the urban heat island effect (Tomlinson, Chapman, Thornes, & Baker, 

2012). Similarly, the effects of extreme temperature will be different across populations 

warranting the necessity of studying the chronic effects across all populations exhaustibly.  

Following the principles of exposure science, the assessment of exposure to extreme 

heat events for an individual may involve the estimation or measurement of the magnitude, 
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frequency, and duration of exposure to the temperature of an environment (Moya et al., 2011; 

Nieuwenhuijsen et al., 2003). In the case of temperature as an exposure, the total personal 

exposure will reflect the time spent in particular environments and at the respective 

temperatures during that timeframe (Basu & Samet, 2002). Exposure to ambient temperature 

can be measured both directly and indirectly (Basu & Samet, 2002). Direct exposure 

assessment is tabulated with personal exposure monitoring devices that are placed on the 

person of each individual for a given time period. Whereas, indirect assessments rely on 

information provided by questionnaires, time–activity diaries, and environmental 

measurements made in the respective environments (Basu & Samet, 2002). In the case of 

indirect exposure assessment to temperature, ambient temperature measured at certain spatial 

areas and then assigned to a subject can serve as a viable surrogate to determine heat 

exposure (Basu & Samet, 2002; Moya et al., 2011) and is a plausible metric for quantifying 

weather anomalies, not climate events. Nonetheless, accounting for all possible variable 

factors, because individual exposure is differential, requires personal monitoring for every 

subject in the study would be costly and infeasible. These reasons explain the inability of the 

conventional approaches of exposure assessment to capture the attributes of a changing 

climate.   

 Using personal monitoring such as infrared technology in large studies that aim to 

assess exposure among entire populations is impractical and increases the cost of individual 

sampling over the long period of time necessary in the case of climate change. Therefore, a 

cost effective and strategically desirable alternative to quantifying personal exposure 

measurements based on the proxy of ambient temperature is a common and widely accepted 

method (Moya et al., 2011). Acceptable approaches include assuming a single value for a 
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given exposure level—mean and median—and the quantification of exposure at high levels 

are often expressed in percentiles, 99th, 95th, and 90th (Moya et al., 2011). Future studies on 

climate change and human health can use the meteorological indicators that are computed at 

varying spatial and temporal resolutions to match the resolution of the health survey data. 

The use of a baseline to identify temperature anomalies is also necessary to accurately 

compare the variability of present exposure compared to historical norms. Additional focus 

should be placed on exposure to the frequencies of temperature anomalies and not solely 

variations in the mean temperature; since small changes in the mean of a variable result in 

larger changes in their extreme and will not accurately quantify the type of exposure that 

affects the chronic diseased population (T. Karl, 2008). Moreover, measuring personal 

exposure for long-term climate is impractical; therefore, future research will have to use 

ambient data.  

Exposure metrics created from ambient data can be used to assess the positive and 

negative environmental determinants of health in order to identify areas for intervention and 

prevention. In addition, the metrics can be interchangeably used as important communication 

tools for making environmental health information available to stakeholders, including 

environmental health practitioners, partners, policy makers, and the general public. A place-

based metric that has spatial coordinates and altitude is one essential attribute for an indicator 

that aims to measure the attributes of changing climate. Given the variability of weather from 

place-to-place, climate is also variable on a larger-scale, therefore, the measurement has to 

have a location identifier such as a Zip Code and/or FIPS code. The exposure measure would 

also need to be calculated both directly and indirectly to quantify the likelihood, magnitude, 

and route of exposure—all factors that are used to identify the populations at risk.  
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Chapter 3: Frequency of Extreme Heat Event as a Surrogate Exposure 
Metric for Examining the Human Health Effects of Climate Change  

 
(Upperman, C. R., Parker, J., Jiang, C., He, X., Murtugudde, R., & Sapkota, A. (2015). 
Frequency of Extreme Heat Event as a Surrogate Exposure Metric for Examining the Human 
Health Effects of Climate Change. PloS one, 10(12), e0144202.) 
 

 

Acknowledgements 

The findings and conclusions in this paper are those of the authors and do not 

necessarily represent the views of the National Center for Health Statistics or the Centers for 

Disease Control and Prevention. The funding for this work was provided by the Centers for 

Disease Control and Prevention and the National Institute of Environmental Health Sciences 

(NIEHS: 1R21ES021422-01A1). 

 

Abstract 

Epidemiological investigation of the impact of climate change on human health, 

particularly chronic diseases, is hindered by the lack of exposure metrics that can be used as 

a marker of climate change that are compatible with health data. Here, we present a surrogate 

exposure metric created using a 30-year baseline (1960-1989) that allows users to quantify 

long-term changes in exposure to frequency of extreme heat events with near unabridged 

spatial coverage in a scale that is compatible with national/state health outcome data. We 

evaluate the exposure metric by decade, seasonality, area of the country, and its ability to 
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capture long-term changes in weather (climate), including natural climate modes. Our 

findings show that this generic exposure metric is potentially useful to monitor trends in the 

frequency of extreme heat events across varying regions because it captures long-term 

changes; is sensitive to the natural climate modes (e.g., El Niño-Southern Oscillation 

(ENSO) events); responds well to spatial variability, and; is amenable to spatial/temporal 

aggregation, making it useful for epidemiological studies. 

 

Introduction  

Climate change is expected to cause approximately 250,000 deaths per year between 

2030 and 2050 with direct damage costs totaling 2-4 billion USD per year by 2030 (WHO, 

2015). Chronic diseases, that may be exacerbated by climate change, disproportionately 

affect more vulnerable populations—including children, older adults, the socially isolated, 

and those with mental health issues (G Luber et al., 2014). Epidemiological investigation of 

the impact of climate change on human health is hindered by the differing temporal scale of 

the primary exposure of interest (climate change: decadal scale) and health outcomes that 

have varying sensitive time windows (days to years) in epidemiological studies that are based 

on a few years of data (Haines & McMichael, 1997; McMichael, 2001). There is a need for a 

set of suitable exposure metrics that can capture the subtle attributes of changing climate 

(e.g., frequency, duration, and intensity of extreme events that are expected to rise), and 

would allow for comparisons across different geographical locations and time periods. Such 

an exposure metric should have enough flexibility for temporal aggregation to meet the needs 

of different types of epidemiological studies. Furthermore, for national health studies, there is 
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a need for spatial compatibility, as meteorological data are often available at station level or a 

specific grid, whereas, national health data (e.g., behavioral risk factor surveillance system 

(BRFSS), Centers for Medicare and Medicaid Services (CMS), healthcare cost and 

utilization project (HCUP), CDC’s Public Health Tracking data) are commonly available at 

zip code, county or state levels, often with a non-uniform spatial resolution.   

Public health researchers are increasingly using temperature measures (maximum, 

minimum, heat index, and apparent temperature), and heat wave episodes to identify the 

acute health outcomes associated with weather. While the linkage of frequency and intensity 

of heat waves with acute health outcomes provide important information about long-term 

climate trends and health, heat waves are still relatively uncommon in most locations in the 

US (“Climate Communication | Heat Waves,” n.d.; Gutowski et al., 2008), limiting the 

generalizability of study results across locations and over time. Moreover, heat wave 

measurements are designed to capture physical phenomenon: most common definitions 

include a certain number of consecutive days exceeding a location-specific threshold 

(Perkins & Alexander, 2013). Hence, by definition, heat wave does not capture isolated days 

where temperatures may have been high and, possibly, affecting health. Extreme heat events, 

on the contrary, will capture such isolated event.  

For chronic health outcomes, the meaningful window of exposure may vary from 

months to several years. Not surprisingly, the relationships between climate change and 

chronic health outcomes are less understood than acute health outcomes, such as mortality or 

an emergency department (ED) visit, owing to the difficulty in defining appropriate exposure 

metrics that characterize underlying and long-term climate change at varying temporal and 
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spatial resolutions and that are appropriate for chronic health outcomes (Costello et al., 2009; 

Frumkin, Hess, Luber, Malilay, & McGeehin, 2008).  

In this paper we describe an indicator designed to capture exposure to climate 

variability and change at a spatial scale that is consistent with publically available county-

level health outcome data. This indicator, henceforth referred to as an exposure metric or 

“extreme heat event”, captures positive anomaly derived using distributions of county- and 

month-specific climatology using a 30-year reference period (1960-1989). Although both 

extreme heat and extreme cold are important, this manuscript focuses exclusively on extreme 

heat because warmer temperature is associated with etiology of many infectious (higher rates 

of pathogen replication) as well as chronic diseases (increases in concentration of pollutant 

such as ozone). The exposure metric enables users to look at spatial and temporal changes 

over time using location specific baselines and serves as an additional resource to investigate 

the potential relationships between climate change and human health. We tabulate this 

exposure metric by time period, season, census division, and 2006 urban-rural classification, 

documenting how the exposure metric is amenable to spatial and temporal aggregation across 

factors that are known to be associated with variability in temperature. Finally, we evaluate 

this exposure metric by assessing its correspondence to the different phases of El Niño-

Southern Oscillation (ENSO), a natural oscillation patterns that affect the weather 

phenomenon in the continental US and other parts of the world. 

Methodology  

Meteorological data were acquired from the National Climatic Data Center (NCDC) 

branch of the National Oceanic and Atmospheric Association (NOAA) that maintains the 
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world’s largest archive of meteorological data from the past 150 years. The data used to 

develop the metric are archived in two broad categories: DSI-3200 and DSI-3210. The DSI-

3210 network is a smaller subset of DSI-3200 stations that collect several additional weather 

variables besides temperature and precipitation (e.g., barometric pressure, wind speed, wind 

direction), but has a poor spatial coverage. Therefore we chose the DSI-3200 database that 

contains approximately 8,000 active stations, with up to 23,000 stations for various years. 

The stations cover all 50 states plus Puerto Rico, US Virgin Islands and Pacific Island 

territories. Each dataset underwent quality control measures through both automated and 

manual edits by the NCDC, which consisted of internal consistency checks and evaluation 

against adjacent stations (U.S. NOAA, 2016). To develop and evaluate the metric, we used 

climate data for the 48 contiguous states and the District of Columbia. The county boundaries 

used for all years were defined by the 2000 Federal Processing Standards (FIPS) codes.  

For Urban-Rural status, we used the 2006 county level NCHS Urban-Rural 

Classification Scheme. The 2006 NCHS urban-rural classification scheme was developed for 

use in studying and monitoring health disparities across the urban-rural continuum. The 2006 

scheme consists of four levels of metropolitan counties (large central, large fringe, medium 

and small metro) and two levels of nonmetropolitan counties (micropolitan and non-core). 

This scheme is based on the December 2005 Office of Management and Budget delineations 

of county classification, Metropolitan Statistical Area (MSA) and principal city, MSA 

population-size cut points, and classification rules formulated by NCHS (Ingram & Franco, 

2012).  In congruence with other studies (Barnett, Strogatz, Armstrong, & Wing, 1996; 

Ingram & Gillum, 1989; Knobeloch & Imm, 2007; Savitz, Stein, Ye, Kellerman, & 

Silverman, 2011; Savitz, Danilack, Engel, Elston, & Lipkind, 2014; Rossen, Khan, & 
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Warner, 2013), we opted to use this relatively recent classification scheme for the complete 

51 years of data (1960-2010). However, because the 2006 scheme is not as accurate for 

earlier time periods as it is for more recent time periods (Ingram & Franco, 2012), we also 

tabulated the extreme heat events using a 1990 urban rural classification (“Data Access - 

Urban Rural Classification Scheme for Counties,” n.d.) to conduct a sensitivity analysis. 

The census division classification used in this study consists of groups of contiguous 

states as defined by the US Bureau of the Census (as: New England – CT, ME, MA, NH, RI, 

VT; Middle Atlantic – NJ, NY, PA; South Atlantic – DE, DC, FL, GA, MD, NC, SC, VA, 

WV; East South Central – AL, KY, MS, TN; West South Central –AR, LA, OK, TX; East 

North Central- Il, IN, MI, OH, WI; West North Central – IA, KS, MN, MO, NE, ND, SD; 

Mountain – AZ, CO, ID, MT, NV, NM, UT, WY; and Pacific – CA, WA, OR).  Seasons 

were defined as: Winter – December, January, and February; Spring – March, April, and 

May; Summer – June, July, and August; and Autumn – September, October, and November. 

ENSO indicator data—Oceanic Niño Index (ONI)—were obtained from the National 

Oceanic and Atmospheric Administration (NOAA), National Weather Service Climate 

Prediction Center. The Climate Prediction Center is a coordinated program that monitors, 

assesses and predicts climate phenomena and their linkage to weather events. Warm and cold 

episodes are based on a threshold of +/- 0.5oC for the Oceanic Niño Index (ONI)—a 3-month 

running median anomalies in the sea surface temperature in the Niño 3.4 region (5oN-5oS, 

120o-170oW). The threshold values are based on centered 30-year base periods and are 

updated every 5 years. El Niño and La Niña episodes are defined when the threshold is met 

for a minimum of 5 consecutive over-lapping 3-month periods. This ENSO indices data were 
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used to categorize the months as La Niña, El Niño and Neutral months (“Climate Prediction 

Center - Global ENSO Temperature Linear Regressions Information,” n.d.). 

 

Extreme Heat Events 

We assigned daily maximum temperature for all counties using the following rules: 1) 

average of daily maximum temperatures from all stations within the county, 2) if no station 

data were available from the county, the daily maximum temperature used was from the 

closest available station within a 20 km radius of the county boundary, and 3) a missing 

value was assigned if the previous two criteria were not met. In the complete dataset of 

observations, 99% of all counties had less than 1.5% missing data and there was no spatial 

pattern to the location of missing data. To compute extreme heat events, we used 1960-1989 

as a reference period. This time period was chosen because the weather data were recorded 

consistently with current methods of NCDC measurement and the 30-year time period is 

generally accepted as the epoch (per the IPCC report) to represent the standardization of a 

climate regime (Solomon et al., 2007). For each county within the continental US, we 

compiled daily maximum temperatures (Tmax) by calendar months (e.g., Jan 1st to Jan 31st). 

For the 30-year reference period with no missing data, the total number of values would be 

approximately 900 observations (30 years by ~30 days in a month) for each county and 

calendar month. Using this distribution of daily Tmax, we calculated the month specific 95th 

percentile thresholds for each county. Using this cutoff value, we computed the calendar 

month and year specific extreme heat events for each county as:  
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1)  

where Ejk is the total number of extreme heat events for county � in calendar 

month � ; Tijk-max is the daily maximum temperature (Tmax) in county � for day � of calendar 

month �; Tjk-95 is the 95th percentile Tmax value for county � for calendar month � for the 

1960-1989 period; and Iijk represents the indicator of whether or not Tijk-max is greater 

than ������.  

 

Evaluation 

The units of analysis for our evaluation of the indicator were the annual and monthly 

total number of events; these are the metrics that are referenced throughout the paper. All 

covariates of interest were defined at the county, year and month levels. We computed 

descriptive statistics of the spatial (2006 urban-rural classification, Census division) and 

temporal (seasonal, decadal) characteristics. Additional descriptive statistics were calculated 

for ENSO periods. After checking the normality assumption, comparisons of means were 

performed using one-way analysis of variance (ANOVA) and post-hoc Tukey’s honest 

significant difference (HSD) tests (Abdi & Williams, 2010). We further investigated the 

temporal and spatial dependency of the exposure metric using negative binomial generalized 

estimation equation (GEE) models (Byers, Allore, Gill, & Peduzzi, 2003; Greene, 1994). The 

year and monthly total extreme heat event anomalies in each county were modeled as a 

function of seasonality, ENSO, 2006 urban-rural classification, and census division. We 
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identified findings as statistically significant with a p-value <0.05. Most statistical analyses 

were performed using SAS 9.3 (SAS Institute, Cary, NC). In particular, PROC GENMOD 

was used to fit the negative binomial GEE models using a first-order autoregressive 

covariance structure. The exponent of the estimated regression coefficients was calculated to 

estimate the percent change in the mean response (number of extreme heat events) associated 

with changes in the covariates. Regression maps were created using ArcGIS 10 (esri, 

Redlands, CA) to display the county level regression parameter estimate for the impact of 

ENSO on the number of extreme heat events after adjusting for seasonal and 2006 urban-

rural classification. 

 

Results 

The final extreme heat event dataset consisted of 3,109 counties over 51 years (1960 to 2010) 

located in the continental US (  
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Table 1). In general, we observed significantly higher frequency of extreme heat events 

during the 1990s and 2000s compared to the reference period (1960-1989). This trend was 

consistent across season, 2006 urban-rural classifications and most Census divisions, with 

few exceptions. Within the two time periods (1990s and 2000s) the large central metro areas 

observed higher number extreme heat events compared to small metro and micropolitan 

areas. We also found an increasing trend in extreme heat events that varied considerably by 

area of the country, with the most pronounced trend observed for the New England, Middle 

Atlantic and Mountain divisions with lesser increases in the East and West North Central 

divisions (Figure 1). Interactions between time periods and census divisions, ENSO, and 

seasons were found to be highly significant and justified the stratification of the analysis by 

time period.  
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Table 1. County-level annual frequency of extreme heat events (mean (standard deviation, 
SD)), excluding Alaska and Hawaii. 

  
No. 

Counties 

Time Period 

1960-1989 1990-1999 2000-2010 
Contiguous United States 3109 15.2 (1.2) 16.5 (6.2)+ 18. 2 (7.7)+ 
Season 

    
 

Autumn 3109 3.7 (0.4) 4.1 (1.7)+ 4.9 (2.0)+ 

 
Winter 3109 3.9 (0.4) 5.1 (1.6)+ 4.5 (1.6)+ 

 
Spring 3109 3.8 (0.4) 3.6 (1.6)‡ 4.4 (2.2)+ 

 
Summer 3109 3.6 (0.4) 3.8 (2.7)+ 4.4 (3.4)+ 

County Urban-Rural Classification 
   

 
Large central metro 63 15.2 (1.4) 20.9 (6.2)+ 19.7 (6.8)+ 

 
Large fringe metro 354 15.1 (1.4) 17.8 (6.2)+ 18.5 (8.0)+ 

 
Medium metro 329 15.2 (1.2) 17.7 (7.4)+ 19.2 (8.8)+ 

 
Small metro 340 15.0 (1.2) 17.0 (6.2)+ 18.0 (9.0)+ 

 
Micropolitan 688 15.1 (1.2) 16.1 (6.3)+ 18.0 (7.3)+ 

 
Non-core 1335 15.2 (1.2) 15.8 (5.6)+ 18.0 (7.3)+ 

Census Division 
    

 
New England 67 16.3 (0.5) 19.9 (5.8)+ 21.6 (8.4)+ 

 
Middle Atlantic 150 16.1 (0.5) 21.4 (5.2)+ 21.7 (6.0)+ 

 
South Atlantic 589 14.5 (1.4) 18.3 (7.8)+ 17.9 (10.6)+ 

 
East South Central 364 14.7 (1.0) 14.6 (5.0) 17.2 (6.2)+ 

 
West South Central 470 14.1 (1.2) 15.7 (6.7)+ 18.4 (7.8)+ 

 
East North Central 437 15.6 (1.0) 16.3 (3.6)+ 17.4 (4.4)+ 

 
West North Central 618 15.9 (0.8) 14.2 (3.3) ‡ 16.7 (4.2) + 

 
Mountain 281 15.4 (0.8) 18.0 (8.1)+ 21.5 (11.0)+ 

  Pacific 133 15.8 (0.7) 18.2 (5.7)+ 18.2 (6.1)+ 

 +Significantly higher than the baseline (1960-1989) period (Pvalue <0.05).    
‡ Significantly lower than the baseline (1960-1989) period (Pvalue <0.05) 
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Figure 1.Temporal trend in extreme heat events across census division for the 1960-2010 periods. 
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Table 2 provides the frequency of extreme heat events stratified by phases of ENSO 

for the 3 time periods (1960-1989, 1990-1999, and 2000-2010), across season, 2006 urban 

rural classification, and census division. In general, La Niña periods were characterized by 

significantly higher frequency of extreme heat events while El Niño periods showed 

significantly lower frequency of extreme heat events for all seasons, 2006 urban-rural 

classifications, and most census divisions when compared to the ENSO Neutral years. A 

noted exception to this pattern appeared in the 1990-1999 when the frequency of extreme 

heat events during El Niño were not lower than those observed during the ENSO neutral 

period, with some census divisions such as New England, Middle Atlantic, East/West North 

Central, Mountain and Pacific regions observing higher frequency of extreme heat events. 

Exceptions were also noted for winter of 1990s and 2000s, as well as summer of 1990s. 

Table 3 presents the results from three negative binomial GEE models of monthly 

frequency of extreme heat events stratified by three time periods: 1960-1989, 1990-1999, and 

2000-2010. Compared to ENSO neutral periods, El Niño periods were associated with 

significantly fewer events at the national scale, ranging from 9% fewer (estimated eβ =0.91, 

p<0.001) during the 1990s to 24% fewer (estimated eβ =0.76, p<0.001) during the 2000s, 

after adjusting for season, 2006 urban-rural classification and census division (Table 3). By 

comparison, La Niña periods were associated with as much as 29% higher frequency of 

extreme heat events at the national level (estimated eβ = 1.29, p<0.001 for 1990-1999 & 

2000-2010). For the 1990s and 2000s, counties that were large metropolitan areas based on 

the 2006 urban-rural classification tended to have a higher frequency of extreme heat events 

(estimated eβ >1.0) compared to non-core counties; although, this urban-rural difference was 

statistically significant only during the 1990s (p<0.05). Compared to New England, the other 
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census divisions of the country had significantly fewer differences in the extreme heat events 

for each of the three time periods (estimated eβ for all census divisions <1.0), with the 

exception of the Middle Atlantic division. 
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Table 2. County-level annual frequency of extreme heat events (mean (SD)) overall and by season, urbanization and Census 
Division, across decades and ENSO periods. 

  
No. 

Counties 

Time Periods 

1960-1989 (Baseline) 1990-1999 
 

2000-2010 

Neutral La Niña El Niño   Neutral La Niña El Niño   Neutral La Niña El Niño 
Contiguous US 3109 15.1 (2.3) 17.8 (3.0)+ 12.6 (2.1)‡ 

 
14.7 (6.2) 22.8 (11.0)+ 15.3(7.3)+  

 
17.8 (8.9) 22.3 (9.1)+ 13.0 (7.6)‡ 

Season 
 

  

   
 

   
 

  

 
Autumn 3109 16.0 (3.8) 16.0 (4.3) 13.0 (3.1)‡ 

 
13.9 (7.2) 21.6 (11.4)+  14.1 (8.6) 

 
19.4 (12.2) 24.6 (11.0)+ 11.8 (6.9)‡ 

 
Winter 3109 15.5 (2.6) 16.2 (3.8)+ 14.1 (4.9)‡ 

 
15.6 (7.1) 9.0 (11.1)‡ 13.7 (9.0)‡ 

 
18.2 (9.1) 15.1 (12.0)‡ 19.0 (13.0) 

 
Spring 3109 13.6 (3.2) 19.0 (6.8)+ 12.1 (4.3)‡ 

 
12.5 (10.0) 26.7 (24.3)+ 9.8 (11.4)‡ 

 
15.6 (14.5) 25.4 (23.1)+ 14.8 (13.8) 

 
Summer 3109 15.6 (3.7) 20.1 (6.0)+ 11.5 (3.4)‡ 

 
16.4 (8.3) 27.2 (11.5)+ 22.2 (8.9)+ 

 
18.7 (8.6) 21.1 (8.9)+ 9.4 (8.1)‡ 

County Urban-Rural Classification 
 

 
   

 
   

 
 

 
Large central metro 63 15.0 (2.1) 18.0 (2.9)+ 12.7 (2.1)‡ 

 
19.8 (6.7) 25.0 (10.0)+ 20.0 (8.1) 

 
19.6 (7.8) 22.8 (7.7)+ 15.2 (7.4)‡ 

 
Large fringe metro 354 14.6 (2.3) 18.7 (3.0)+ 12.3 (2.0)‡ 

 
15.9 (5.8) 23.1 (11.2)+ 17.6 (8.0)+ 

 
17.6 (9.0) 23.3 (9.2)+ 13.1 (7.2)‡ 

 
Medium metro 329 15.0 (2.1) 18.2 (3.1)+ 12.6 (2.1)‡ 

 
16.2 (7.8) 24.1 (11.8)+ 15.7 (7.9) 

 
18.2 (9.6) 23.8 (10.1)+ 14.2 (8.7)‡ 

 
Small metro 340 14.8 (2.3) 17.9 (3.1)+ 12.6 (2.2)‡ 

 
15.0 (5.8) 23.4 (12.3)+ 15.9 (7.4) 

 
17.6 (10.2) 22.0 (10.2)+ 12.7 (8.7)‡ 

 
Micropolitan 688 15.1 (2.3) 17.7 (3.1)+ 12.6 (2.2)‡ 

 
14.2 (6.3) 22.5 (11.0)+ 14.7 (7.2) 

 
17.5 (8.4) 22.2 (8.8)+ 12.8 (7.4)‡ 

 
Non-core 1335 15.4 (2.3) 17.5 (2.8)+ 12.6 (2.1)‡ 

 
13.9 (5.7) 22.4 (10.3)+ 14.5 (6.6) 

 
17.9 (8.6) 21.7 (8.6)+ 12.7 (7.3)‡ 

Census Division 
  

 
   

 
   

 
 

 
New England 67 15.4 (0.9) 18.9 (1.9)+ 15.4 (1.4) 

 
17.9 (5.2) 22.7 (8.4)+ 21.5 (6.9)+ 

 
22.1 (9.5) 24.1 (8.7)+ 16.9 (6.5)‡ 

 
Middle Atlantic 150 15.0 (1.1) 20.5 (1.6)+ 13.6 (1.1)‡ 

 
18.9 (4.8) 23.4 (8.3)+ 24.4 (6.2)+ 

 
21.9 (6.8) 25.6 (6.6)+ 15.5 (5.0)‡ 

 
South Atlantic 589 13.8 (2.0) 19.3 (2.4)+ 11.2 (1.9)‡ 

 
17.4 (7.7) 24.2 (12.8)+ 15.4 (9.2)‡ 

 
16.3 (11.1) 22.6 (12.0)+ 14.2 (9.6)‡ 

 
East South Central 364 14.5 (1.9) 17.9 (3.0)+ 11.9 (2.0)‡ 

 
12.0 (5.0) 25.4 (9.7)+ 11.3 (5.3) 

 
13.3 (5.9) 26.5 (8.9)+ 11.0 (5.3)‡ 

 
West South Central 470 13.7 (2.2) 14.9 (2.2)+ 14.1 (2.2)+ 

 
13.0 (6.4) 30.3 (14.0)+ 9.9 (4.9)‡ 

 
15.6 (7.8) 25.1 (9.0)+ 13.7 (8.3)‡ 

 
East North Central 437 14.6 (1.8) 20.1 (1.9)+ 12.9 (1.7)‡  

 
14.2 (3.7) 19.9 (6.1)+ 17.5 (4.1)+ 

 
17.6 (6.0) 21.6 (4.9)+ 10.8 (4.4)‡ 

 
West North Central 618 16.7 (1.5) 18.0 (1.9)+ 12.3 (1.5)‡ 

 
12.4 (3.2) 17.5 (5.6)+ 15.2 (4.4)+ 

 
17.8 (5.7) 19.7 (4.8)+ 10.2 (4.0)‡ 

 
Mountain 281 17.6 (1.9) 14.9 (2.5)‡  11.8 (1.8)‡ 

 
16.1 (7.8) 23.1 (12.0)+ 17.8 (8.1)+ 

 
24.7 (12.3) 20.0 (11.2)‡ 17.3 (11.4)‡ 

  Pacific 133 17.2 (1.4) 15.0 (2.3)‡  14.0 (2.3)‡   18.1 (6.6) 16.6 (7.0)‡ 19.6 (5.7)+   22.9 (7.4) 13.7 (7.1)‡ 15.9 (6.6)‡ 

 +Significantly higher than the ENSO Neutral period (Pvalue <0.05).   
 ‡ Significantly lower than the ENSO Neutral period (Pvalue <0.05) 
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Table 3. Relative percent change in extreme heat events, by time period, for the continental 
United States, excluding Alaska and Hawaii.  

Factors 1960-1989 1990-1999 2000-2010 

ENSO 
 Neutral Reference 
 El Niño 0.85‡ 0.91‡ 0.76‡ 
 La Niña 1.17‡ 1.29‡ 1.29‡ 
Season 
 Autumn Reference 
 Winter 1.04‡  1.28‡ 0.88 
 Spring 1.03‡ 1.01 1.00 
 Summer 0.98‡  0.91‡ 1.00 
Urbanization 
 Large central metro 0.99 1.22‡ 1.05 
 Large fringe metro 0.99 1.06‡ 1.01 
 Medium metro 1.00 1.06‡   1.04** 
 Micropolitan 0.99 0.99 0.99 
 Small metro 0.99   1.04** 1.00 
 Non-core Reference 
Census Division  
 New England Reference 
 Middle Atlantic          0.98 1.07*          1.00 
 South Atlantic 0.88‡ 0.92‡ 0.83‡ 
 East South Central 0.90‡ 0.72‡ 0.77‡ 
 West South Central 0.87‡ 0.77‡ 0.84‡ 
 East North Central 0.95‡ 0.82‡ 0.80‡ 
 West North Central  0.97** 0.72‡ 0.78‡ 
 Mountain 0.94‡ 0.91‡ 0.99 
  Pacific 0.97  0.92** 0.85‡ 
Note: *p<.05 ** p<.005  ‡ p<.001 
The coefficients are from the negative binomial GEE model described in 
the text. 
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The analysis for continental US were further broken down by Census division (Table 

4). Overall, the Census division results agreed with the country level analysis presented in 

Table 3 with few noted exceptions. For example, compared to ENSO neutral periods, El 

Niño years were associated with significantly lower frequency of extreme heat events across 

census divisions during 1960-1989 and 2000-2010 period.  However, during 1990-1999, El 

Niño years were associated with increased frequency of extreme heat events compared to 

ENSO neutral years in several Census divisions (New England, Mid Atlantic and the Pacific 

divisions). La Niña periods were associated with a higher frequency of extreme heat events 

than ENSO neutral periods across most Census divisions; with the largest effect (75%) 

observed for the West South Central division during the 1990-1999 time periods. An 

exception to this pattern was in the Pacific division, where the La Niña period was associated 

with 15% lower frequency of extreme heat events compared to the ENSO neutral period 

during 2000-2010 (estimated eβ=0.85, p<0.001). Spatial heterogeneity in these findings was 

further investigated using the county level regression coefficients (Figure 2). The findings 

presented in Figure 2 are in agreement with the results of the divisional model (Table 4), but 

the finer county level resolution allows for the identification of additional counties whose 

results were masked in the divisional level analysis (e.g., selected counties in TX and ME 

experienced larger percent changes in frequency of extreme heat events during El Niño 

periods). We conducted sensitivity analysis using 1990 NCHS Urban-Rural Classification 

Scheme for Counties instead of the 2006 schemes; however this did not change our 

conclusions.  
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Figure 2. Relative percent change in monthly total extreme heat events for La Niña and El 
Niño months in 1960-2010 compared to ENSO Neutral months, adjusted for seasonal and 
2006 land-use classification type.  
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Table 4. Relative percent change in count of extreme heat events, by Census Division (excluding Alaska and Hawaii). 

Period  Factors 
New 

England 

Middle 

Atlantic 

South 

Atlantic 

East 

South 

Central 

West 

South 

Central 

East 

North 

Central 

West 

North 

Central 

Mountain Pacific 

1960-1989 (Baseline) 

 

ENSO          
 Neutral# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 El Niño 0.94** 0.86‡ 0.8‡ 0.82‡ 1.02** 0.82‡ 0.81‡ 0.81‡ 0.90‡ 
 La Niña 1.13‡ 1.24‡ 1.31‡ 1.23‡ 1.04‡ 1.27‡ 1.15‡ 1.04‡ 0.99 
Season          
 Autumn# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 Winter 1.02 1.06** 1.05‡ 1.04** 1.05‡ 1.06‡ 1.03** 1.01 0.96* 
 Spring 1.05 1.08‡ 1.06‡ 1.03* 1.04* 1.05‡ 1.01 1.02 1.01 
 Summer 0.96 0.95* 1.03** 1.00 0.98 0.95‡ 0.97** 0.92‡ 0.97 
Urbanization          
 Large central metro 1.00 1.02 1.00 0.95 0.95 0.97 0.95 0.98 1.00 
 Large fringe metro 1.01 1.00 1.02 0.98 0.94* 0.97 1.01 0.98 0.98 
 Medium metro 0.99 1.01 1.01 0.98 1.01 1.01 1.00 0.99 1.00 
 Micropolitan 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 0.99 
 Small metro 0.99 0.99 1.01 0.98 0.97 0.97 1.01 0.98 0.98 
  Non-core# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1990-1999 

 

ENSO          
 Neutral# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 El Niño 1.10** 1.15‡ 0.89‡ 0.81‡ 0.71‡ 1.01 1.01 1.00 1.08‡ 
 La Niña 1.07* 1.04 1.23‡ 1.57‡ 1.75‡ 1.19‡ 1.12‡ 1.17‡ 0.91 

Season          

 Autumn# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 Winter 1.63‡ 1.68‡ 1.29‡ 1.13‡ 1.30‡ 1.64‡ 1.32‡ 0.87‡ 0.86‡ 
 Spring 1.16** 1.20‡ 1.04* 0.94* 1.32‡ 1.11‡ 0.80‡ 0.86‡ 0.94 
 Summer 1.2‡ 1.29‡ 1.21‡ 0.87‡ 1.17‡ 0.89‡ 0.42‡ 0.76‡ 0.84‡ 
Urbanization          
 Large central metro 1.05 1.14* 1.39‡ 1.31* 1.34** 1.13 1.01 1.2* 1.15* 
 Large fringe metro 1.11 1.03 1.15‡ 1.08 1.09 0.99 0.93 0.99 1.08 
 Medium metro 1.08 1.02 1.11** 1.10* 0.90* 1.06* 0.97 1.33‡ 1.00 
 Micropolitan 0.89* 1.06 0.9** 1.03 0.97 1.00 1.00 1.05 1.09* 
 Small metro 0.91 1.07 1.02 1.07 1.08* 1.03 0.99 1.05 1.09 
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  Non-core# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2000-2010 

 
ENSO          

 Neutral# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 El Niño 0.82‡ 0.74‡ 0.79‡ 0.70‡ 0.87‡ 0.69‡ 0.69‡ 0.9‡ 0.97 

 La Niña 1.20‡ 1.27‡ 1.27‡ 1.65‡ 1.37‡ 1.30‡ 1.21‡ 1.02 0.85‡ 

Season          

 Autumn# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 Winter 1.14‡ 1.21‡ 0.96* 0.8‡ 1.07‡ 0.85‡ 0.82‡ 0.64‡ 0.71‡ 

 Spring 1.25‡ 1.09** 1.01 0.96* 1.39‡ 0.82‡ 0.72‡ 1.15‡ 1.30‡ 

 Summer 1.27‡ 1.35‡ 1.25‡ 1.16‡ 1.18‡ 0.70‡ 0.54‡ 1.22‡ 1.05 

Urbanization          

 Large central metro 0.98 1.13* 1.01 1.01 1.28* 0.91 1.00 0.85* 1.19** 

 Large fringe metro 1.10 1.08 1.02 1.04 1.04 0.91** 0.89** 1.27‡ 0.98 

 Medium metro 1.02 1.10* 1.01 0.98 1.03 0.97 0.99 1.45‡ 1.11 

 Micropolitan 0.94 1.08 0.91** 1.03 0.97 0.99 0.98 1.07* 1.09 

 Small metro 0.93 1.14* 0.98 1.01 1.06 0.93** 0.96 0.93* 1.12* 

  Non-core# 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 *p<.05    ** p<.005   ‡ p<.001 #Reference Category      
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Discussion 

We developed a generic surrogate exposure metric (extreme heat events) based on 

climatology that has a broad spatial coverage for the contiguous US with a county level 

geographic resolution. This exposure metric can correspond to county-level end-points, 

including many health outcome data such as Behavioral Risk Factor Surveillance System 

(BRFSS), Centers for Medicare and Medicaid Services (CMS), Healthcare Cost and 

Utilization Project (HCUP), CDC’s Public Health Tracking data and others. We assessed the 

exposure metric for its ability to capture the ENSO events, while controlling for other 

temporal, seasonal, divisional, and urban-rural classification influences. The results showed 

the ability of the exposure metric to capture salient features of climate variability and change 

(long term change in the frequency of extreme heat events) including the effect of natural 

variability such as El Niño-Southern Oscillation (ENSO) patterns that have distinct 

heterogeneous effects across geographical regions. We also demonstrated how the exposure 

metric could provide flexibility in spatial and temporal aggregation of exposure—an ideal 

attribute for epidemiological studies. Our county level approach enables a straightforward 

linkage of the exposure metric to many publicly available national health outcome data 

collected at the county level, facilitating investigations of the possible impacts of climate 

change on chronic health outcomes (Akinbami, Lynch, Parker, & Woodruff, 2010; Parker, 

Akinbami, & Woodruff, 2009; Parker, Kravets, & Woodruff, 2008). 

The threshold method we used has been used for defining extremes in studies looking 

at temperature and precipitation extremes; however, exceedences have not been quantified on 

a county level for the entire US (Zhai & Pan, 2003; Alexander et al., 2006; Beniston, 2009; 
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Hao, AghaKouchak, & Phillips, 2013). The metric we developed captured the local impacts 

of ENSO. This oscillation between warm (El Niño) and cold (La Niña) conditions in the 

equatorial Pacific Ocean can alter weather patterns and latent heat release into the 

atmosphere. Such changes lead to widespread remodeling in atmospheric circulation patterns 

far removed from the Pacific Ocean (McPhaden, Zebiak, & Glantz, 2006). ENSO events 

have been linked to droughts, rainfall and the alteration of temperature and sunlight 

availability across the globe (Nils C. Stenseth et al., 2002; Nils Chr Stenseth et al., 2003; 

Wolff et al., 2011). In North America, the statistically significant relationships between 

ENSO and seasonal temperature extremes have occurred mostly in winter (Wolter, Dole, & 

Smith, 1999). In some divisions and times of year, El Niño and La Niña conditions modify 

the probabilities of very warm or very cold seasons (Wolter et al., 1999). The effects of 

climate change can manifest through natural forcing systems such as ENSO (Corti, Molteni, 

& Palmer, 1999). Globally, ENSO impacts are largely symmetric. The warm state (El Niño) 

is generally associated with increased precipitation and cooler temperature anomalies and the 

cold state (La Niña) changes the sign of the anomalies, to a decrease in precipitation and 

increase in temperature (“Climate Prediction Center - Global ENSO Temperature Linear 

Regressions Information,” n.d.). The known temperature-related impacts of ENSO were 

expressed in the results of our analysis. Though it should be noted that the surface 

expressions of the ENSO anomalies in the tropical Pacific are alleged to have changed since 

2000 (albeit with similar onsets (Ramesh & Murtugudde, 2012)) and the interconnectedness 

of these events (teleconnections) over the US appear to have changed (Larkin & Harrison, 

2005). On a continental scale, we found that La Niña periods were consistently associated 

with an increase in extreme heat events and El Niño periods led to a decrease in extreme heat 
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events. In certain region of the country, the magnitude as well as direction of the associations 

between ENSO periods and extreme heat events differed from this trend.  In this context, the 

effects of climate change may be local for health endpoints that may manifest via local 

weather changes (Murtugudde, 2009; Patz, Campbell-Lendrum, Holloway, & Foley, 2005). 

Land use factors are an important contributor to divisional climate. Urbanization 

affects divisional climates through changes in surface energy and water balance. The change 

in land use can alter the effects of net radiation through the division of energy into sensible 

and latent heat, and the partitioning of precipitation into soil water, evapotranspiration and 

runoff (Ramesh & Murtugudde, 2012). The urban “heat island” effect is an extreme case of 

how land use modifies divisional climate (Ganeshan, Murtugudde, & Imhoff, n.d.; George 

Luber & McGeehin, 2008). Previous studies have suggested that a major portion of the 

reduction in diurnal temperature range observed during the last several decades to 

urbanization and other land use changes (Kalnay & Cai, 2003; Zhou et al., 2004). In 

congruence with available literature, using the 2006 urban-rural classification, we found that 

more urbanized areas generally experienced relatively high proportional change in extreme 

heat events compared to the less urbanized areas. However, this pattern was not consistent 

across Census divisions and was only present during the latter 2 decades. These results may 

be due, in part, to the classification scheme used in this analysis. This scheme was developed 

based on the 2006 census statistics and applied in our study for time periods that span more 

than 4 decades prior. However, sensitivity analyses using the 1990 census scheme produced 

similar results.  
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More attention has been paid to the effects of extreme heat events in the summer and 

spring particularly because these changes can have an impact on biotic factors (e.g., pollen) 

and industrial air pollution along with heat waves (Cayan, Dettinger, Kammerdiener, Caprio, 

& Peterson, 2001; Leung & Gustafson, 2005; Menzel & Fabian, 1999; Westerling, Hidalgo, 

Cayan, & Swetnam, 2006; L. H. Ziska & Beggs, 2012). Using the metric, we identified larger 

differences in extreme heat events occurring during the winter, spring and summer months on 

a continental scale. Yet, at the divisional level, the patterns differ considerably, with the New 

England and Middle Atlantic divisions experiencing the largest differences in extreme heat 

events during winter and lowest level during autumn. In the Mountain and Pacific divisions, 

the largest differences in extreme heat events were observed during spring and lowest level 

observed during winter season. 

Overall, the exposure metric captured subtle variability across geographic division, 

season, and urban-rural categorization. More importantly, the exposure metric was sensitive 

to large-scale phenomenon such as ENSO that are known to govern local weather patterns. 

As stated previously, the flexibility of this exposure metric lends itself to epidemiological 

studies of both infectious and chronic diseases. For example, in a recent study investigating 

the link between changing climate and Salmonellosis, Jiang et al. (2015) showed that the 

frequency of extreme heat and precipitation event was directly related to increased risk of 

Salmonellosis in Maryland, and that the risk was more pronounced among the coastal 

communities compared to inland communities (Jiang et al., 2015). Since the precise date of 

disease onset in the Jiang et al. (2015) was not known, the authors linked monthly count of 

Salmonellosis with number of extreme heat and precipitation event on the same month and 

employed negative binomial regression for the statistical analysis. In the instances where the 
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precise date of onset is known (e.g., hospitalization for asthma, or stroke), investigators can 

use case-crossover approach looking at presence/absence of extreme events in the case period 

compared to control period with adequate lag structure that are determined based on current 

knowledge about the disease etiology. In addition, the frequency of extreme heat events can 

also be used to investigate the spatio-temporal pattern of vector borne diseases (e.g., Lyme 

disease) that are sensitive to temperature changes. Previous studies have shown that the 

frequency as well as intensity of extreme events will continue to rise in the near future (D. R. 

Easterling et al., 2000; McCarthy, 2001). The exposure metric we have presented in this 

manuscript allows investigators to document how increases in the frequency of extreme heat 

event impacts human health.  

 

Conclusion 

We report on the development of a novel temperature-related exposure metric and 

quantify its ability to capture small and large changes in climatic variability across the US 

and over time. Findings from this study suggest that natural modes of forcing, seasonality, 

urban-rural classification, and division of country have an impact on the number extreme 

heat events recorded. We observed that the increases in frequency of extreme heat events 

differ across the geographical region and time periods.  Likewise, we observed higher 

frequency of extreme heat events during La Niña period and lower frequencies during the El 

Niño. At regional level, exceptions to this trend were noted for El Niño years in selected 

geographical areas. This county level exposure metric generated based on location specific 

climatology data are versatile and can be easily extended to developing metrics for different 
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time periods and county based geographic aggregations. To facilitate research in this area, we 

will make this exposure metric freely available to potential users through a web portal.  
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Chapter 4: Geographic and Demographic Variability in County Level 
Exposure to Extreme Heat Events Using National Data Sets, 2010-

2013 

 

 

Abstract 

The aims of this paper are to characterize the US population in counties that have 

experienced extreme heat events and thus identify population groups likely to experience 

future events. This study evaluated exposure to anomalous hot weather, “extreme heat 

events” (EHEs), across the United States from 2010-2013. Approximately 120,000 adults 

were eligible for this study through the National Health Interview Survey. Climate data from 

the National Climatic Data Center was used to create the exposure metric (number of days 

with temperature above 95th percentile value for monthly baseline from 1960-1989) by 

county of residence. We described the respondents in the top quartile and top decile of 

exposure. The results show similar demographic patterns and prevalence of chronic diseases 

for areas with higher numbers of annual extreme heat events compared to the general 

population. The areas affected by extreme heat events have a variety of vulnerable 

populations including women of childbearing age, people who are poor, and seniors. The 

percentages of chronic health conditions in top decile for suburban and rural areas were 

larger compared to the population in the top quartile. These measures show that decision 

makers should look at chronic health outcomes along with the demographic and geographic 
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compositions of their jurisdictions in order to prepare for changes that may occur and in 

order to properly plan for the expansion of public health responses.  

 

Introduction 

Studies suggest that certain populations may experience illness or death from 

exposure to high temperature days (Semenza et al., 1996a; Dhainaut, Claessens, Ginsburg, & 

Riou, 2003; Braga, Zanobetti, & Schwartz, 2002; Vanhems, Gambotti, & Fabry, 2003; Lim, 

Hong, & Kim, 2012; Anderson et al., 2013; Bobb, Obermeyer, Wang, & Dominici, 2014). 

Other small-scale investigations show that living alone, low socioeconomic status, lack of air 

conditioning, high body mass index, and some chronic diseases (i.e., diabetes (J. Schwartz, 

2005), chronic obstructive pulmonary diseases (COPD) (Monteiro, Carvalho, Oliveira, & 

Sousa, 2012), depression and psychiatric disorders (Stafoggia et al., 2006), heart condition (J. 

Schwartz, Samet, & Patz, 2004), and cerebrovascular disease (Fuhrmann, Sugg, Konrad, & 

Waller, 2016)) are associated with the highest vulnerability of death or hospitalization due to 

exposure to high temperature days (Naughton et al., 2002; Davis et al., 2003; O’Neill, 

Zanobetti, & Schwartz, 2003; Stafoggia et al., 2006; Kovats & Hajat, 2008; Yang et al., 

2016; Semenza et al., 1996b; Curriero et al., 2002). For hypertension, the clinical impact 

during heat exposure is unknown and its ubiquity as a chronic disease is cause for further 

investigation(Kenny, Yardley, Brown, Sigal, & Jay, 2010). Additionally, physiological 

susceptibility to extreme heat events can arise for those on medication for a chronic illness 

(Bouchama & Knochel, 2002; Sharma & Hoopes, 2003; Maughan, Shirreffs, & Watson, 

2007; Childs, Jones, & Tyrrell, 2008; Kenny et al., 2010; Health Canada, 2011) and there is a 
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likely risk of preterm delivery during extreme heat events for pregnant women (Lajinian, 

Hudson, Applewhite, Feldman, & Minkoff, 1997; Strand, Barnett, & Tong, 2012). In the US, 

about one half of all adults—117 million people—have one or more chronic health 

conditions (CDC, 2016), and an estimated 26.2% of adults suffer from a diagnosable mental 

disorder in a given year (The Kim Foundation, 2014). Overall, treating chronic diseases 

accounts for 86% of the US health care costs (CDC, 2015).  

An increasing body of literature suggests that the frequency, intensity, and duration of 

extreme heat events will continue to rise in the near future (Edenhofer et al., 2014; Field, 

2012; G Luber et al., 2014). This is a public health concern because extreme heat events may 

worsen chronic disease morbidity or create more favorable conditions for other exposures 

that pose health risks, such as air pollution and pollen levels (NRDC, 2014). From a 

vulnerability perspective (demographic and health status), for the entire US, it is unknown 

whether adults living in areas that are experiencing the most impact from extreme heat days 

differ from those who are living in other areas. Presently and into the future, extreme heat 

events are an added concern for governments and public health responders because of their 

planning and prevention aims; typically, plans to prevent the onset of a health outcome, 

control the worsening of pre-existing illnesses. Local public health responders have the new 

challenge of strengthening their adaptive capacity for the health impacts of future excessive 

heat events (Health Canada, 2011; Marinucci & Luber, 2011; Hess, McDowell, & Luber, 

2012). A range of public health interventions—on health education about prevention and 

identification of heat stress—is likely needed to address the risk that extreme heat events 

pose. Moreover, these responses to extreme heat events will likely vary by geography and 

demographics.  
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Given the challenges of adapting the public health response to future excessive heat 

events, the goal of this study is to characterize the demographic and health characteristics of 

US adults living in counties that have experienced relatively higher numbers of extreme heat 

days. This study used data from the 2010-2013 NHIS, a representative sample of the civilian, 

noninstitutionalized population of the US, merged with weather data obtained from the 

National Climatic Data Center (NCDC) to answer the following questions: 2)  what is the 

proportion of adults living in counties that have experienced a high number of extreme heat 

days have chronic health conditions?; and, 2) do profiles of adult exposure to extreme heat 

days differ by geography (coastal vs. non-coastal, region, urban rural classification)? As 

adults with chronic diseases may require different services during extreme heat days, this 

study may help local planners with an improved understanding of likely resource needs when 

preparing for heat events.  

 

Methodology 

 

Meteorological Data 

Daily weather data was obtained from two systems within the National Climatic Data 

Center (NCDC) (National Climatic Data Center, n.d.) for the 1960-2013 period, including 

daily maximum temperature (TMAX). Data for the years 1960-2010 were extracted from the 

DSI-3200 data set. The DSI-3200 data set was discontinued in 2010 and replaced with the 

Global Historical Climatology Network (GHCN) data set that consists of additional stations 
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that are not part of the original DSI-3200 network. Therefore, for the 2011-2013 period, we 

identified the DSI3200 stations within the GHCN network using unique station identification 

and extracted information from this subset of stations to maintain consistency.  

 

Exposure Metric 

Using daily TMAX for the 1960-1989 reference period, county-specific 30-year 

baselines for each calendar month were computed. Based on the distribution of this data, we 

identified the 95th percentile values of TMAX, referred to as Extreme Temperature Threshold 

95th percentile (ETT95) as previously described(Romeo Upperman et al., 2015). Daily TMAX 

values for each county were compared to their respective calendar-month-specific ETT95 and 

assigned a value of “1” if they exceeded the thresholds, and “0” otherwise. The ETT95 

exceedences —referred to as extreme heat events (EHE95)— were summed over each 

calendar month for each county during the 2010-2013 period which the NHIS chronic 

disease prevalence data was available (Romeo Upperman et al., 2015).  

 

National Health Interview Survey (NHIS), 2010-2013 data 

We combined NHIS data for 2010-2013 for this analysis. The NHIS is a nationally 

representative cross-sectional household interview survey of the civilian non-institutionalized 

population of the United States that has been conducted since 1957, although the survey 

design and questionnaire have changed over time (U.S. CDC, 2015). The NHIS is conducted 
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continuously throughout the year. In 2010-2013, about 40,000 households were sampled each 

year, with some households having multiple families. In each family, a sample adult is 

selected for detailed questions on health and health care (U.S. CDC, 2015). During the 4-year 

period, the response rate for the household component of the survey ranged from 75.7% to 

82.0% and the unconditional sample adult response rates ranged from 60.8% to 66.3%. 

We used restricted-use NHIS files geocoded to county FIPS. These files are available 

through the NCHS Research Data Center (RDC). There are 137,008 sample adults 18 years 

of age or older in the 2010-2013 NHIS. A total of 17,299 (12.63%) of respondents were 

excluded from the analysis based on residence in a county that had less than 12 months of 

extreme heat data, had at least one non-valid month for the development of the baseline, 

resided outside the 48 contiguous states at the time of the, and had having missing data for 

any of the variables used in the analysis.  

Psychological distress was measured in the NHIS using the Kessler-6 (K6) scale 

(Weissman, Pratt, Miller, & Parker, 2015). The K6 measures psychological distress with six 

questions (e.g., How often did you feel nervous? How often did you feel hopeless? How 

often did you feel sad that nothing could cheer you up? How often did you feel restless or 

fidgety? How often did you feel that every thing was an effort? How often did you feel 

worthless?) scored on a five-point Likert scale ranging from “none of the time” to “all of the 

time.” Respondents with a score of 13 or greater on the K6 scale are identified as having 

serious psychological distress (SPD). Only participants who answered all six questions were 

included.  
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Heart disease is based on self-reported responses to survey questions about whether 

the respondent had ever been told by a doctor or other health professional that they had 

coronary heart disease, angina (angina pectoris), a heart attack (myocardial infarction), and 

any other kind of heart disease or heart condition. Stroke is based on responses to the 

question: “In the past 12 months have you been told by a doctor other health professional that 

you had a stroke?” Hypertension is based on responses to the question: “In the past 12 

months, have you ever been told by a doctor or other health professional that you had 

hypertension or high blood pressure?” Diabetes is based on self-reported responses to survey 

questions about whether the respondents have ever been told by a doctor or other health 

professional that they had diabetes or sugar diabetes. Chronic Obstructive Pulmonary 

Disease (COPD) is based on separate self-reported responses to survey questions about 

whether the respondents had been told by a doctor or other health professional that they had 

chronic bronchitis in the past 12 months or ever had emphysema.  

Demographic characteristics considered included age (18-34, 35-49, 50-64, 65+ 

years), race/ethnicity (Hispanic, non-Hispanic black, non-Hispanic white, all other races and 

ethnicities), sex (female, male), education level (less than high school/GED, high 

school/GED, some college, Bachelor’s degree, Graduate degree), family income relative to 

poverty threshold (US Census Bureau, n.d.) (less than 100%, 100% to less than 200%, 200% 

to less than 400%, 400% or above the poverty threshold), and body mass index (BMI) is 

calculated using the formula weight in kilograms/height in meters (underweight=<18.5; 

normal weight=18.5 -<25; Overweight = BMI 25 - <30; Obese = BMI ≥ 30). Race/ethnicity 

was coded based on responses to separate questions for race and ethnicity; available 

responses for these variables differed across survey years. Hispanics were assigned to the 
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Hispanic category, regardless of reported race; among non-Hispanics, multiple race 

responses were assigned to non-Hispanic black or non-Hispanic white, if provided as a 

primary race, and to the all other races and ethnicities category when primary race was not 

provided. We used the NHIS multiple-imputed income data to assign poverty status level to 

records with missing values (percent missing ranged from 4.50% to 10.01% over 1997-2013) 

using NCHS-recommended methods (NCHS, 2010).  

We also included a county-level geographical covariate describing urban-rural 

classification with four urban and two rural categories (urban: large central, large fringe, 

medium and small metro; rural: micropolitan and non-core) (Deborah D Ingram, 2012). 

Large central metro counties are counties in Metropolitan Statistical Areas (MSAs) of 1 

million or more population that contain the largest principal city of the MSA, are contained 

within the MSA’s largest principal city, or contain at least 250,000 residents of any principal 

city. Large fringe metro counties are counties in MSAs of 1 million or more population that 

do not qualify as large central metro. They are considered to be “suburbs” of large cities. 

Medium and small metro counties are counties in MSAs of 250,000–999,999 and less than 

250,000 population, respectively. Micropolitan and noncore counties are nonmetropolitan 

counties that are not in MSAs. Coastal classification is adpated from the National Oceanic 

and Atmospheric Administration’s list of coastal counties (U.S. NOAA / U.S. Census, n.d.). 
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Evaluation 

Weighted percent was calculated in SUDAAN which accounts for the complex 

clustered sample design of the NHIS (RTI International, 2014). The quartiles and deciles for 

exposure were based on the distribution of extreme heat events for all 3,109 counties in the 

continental United States. Approximate, rather than actual, quartiles by season were used for 

comparability of cut-points across season. Maps were created using ArcGIS 10 (esri, 

Redlands, CA) to display the annual average number of extreme heat events. 

 

Linkage of Extreme Heat Events and NHIS 

Extreme heat event values were assigned to individual NHIS records, from 2010 to 

2013, for each survey year by the cumulative number of extreme heat events for the county 

of residence in a 12-month window, which include the month of interview and the preceding 

11 months. We looked at the characteristics of counties that had 25 or more (top quartile) and 

38 or more (top decile) annual extreme heat events. 
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Results 

 

Demographics of Population with Top Quartile Annual Extreme Heat Events 

Close to one half (41.6%) of the US population resided in locations in the highest 

quartile of annual exposure of extreme heat events (see Table 5). The demographic 

distribution for those living in counties in the highest quartile of exposure for annual extreme 

heat events was similar to the demographics for the entire population of the continental 

United States. In the highest exposed counties, 66.1% were non-Hispanic white, 15.8% were 

Hispanic, 12.6% were non-Hispanic black and 5.5% were all other races and ethnicities. 

Among young adults (18-34 years of age), in counties with the highest annual exposure to 

annual extreme heat events, psychological distress was the leading chronic disease 

(Appendix B). Among adults 35 years and older, hypertension was the leading heat-sensitive 

chronic illness.  

The proportion of US adults living in the top decile of annual exposure to extreme 

heat was 18.8%. The demographic prevalence was similar to the entire study population and 

those of the top quartile of annual extreme heat events.   

 

Geographic Location of Top Quartile Annual Extreme Heat Events  

Nationally, those living in counties with the largest number of extreme heat events 

were disproportionality living in Southern states (40%), followed by the Northeast (21.4%), 
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Midwest (21.3%), and West (16.8%). Urban areas (large central metro, 30.49%; large fringe 

metro 24.2%; and, medium metro, 21.4%) made up the majority of counties that have 25 or 

more annual extreme heat events in the past year (see Table 6). Moreover, while noncoastal 

counties were the majority of high exposed counties (51.7%), the proportion of coastal 

counties was also substantial (48.3%). Over the four-year period, 1320 (42.5%) counties 

averaged 25 or more EHE95 (Figure 3).  

 

Preexisting Heat-Related Chronic Health Conditions of Populations with Top 

Quartile Annual Extreme Heat Events  

Among the counties with the largest annual exposure to extreme heat events, 

prevalence of preexisting chronic health conditions were similar to proportions nationally 

(Table 7). People living in counties with the top quartile of annual exposure of extreme heat 

events had hypertension (29.5%), heart disease (14.1%), and serious psychological distress 

(13.5%) at similar prevalence to levels nationally. The proportion of adults with diabetes, 

COPD and stroke were similar for those in the largest exposed group compared to the rest of 

the population.  

Among those living in counties with 25 or more (top quartile) extreme heat events 

annually, the South had a disproportionately high proportion of people with pre-existing 

chronic health conditions (42.0%). The South also had the largest proportion of people with 

hypertension, heart disease, diabetes, and stroke among people living in counties with 25 or 

more annual extreme heat events (see Table 8). However, the West had the largest 
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proportions of people with serious physiological distress (15.61%) among those living in 

counties that have 25 more extreme heat events annually.   

Table 8 shows the distribution of chronic health outcomes among the largest exposed 

quartile by the urban/rural classification of the county. While the majority of people with 

chronic health outcomes resided in urban areas, the proportions of chronic diseases were 

largest in the Noncore, Micropolitan and Small Metro. The proportions of chronic diseases 

were also higher in non-coastal counties, but not by much (see Table 8). 

 

Comparison of Characteristics Between the Populations with Top Quartile (25+) 

Versus Top Decile (38+) Annual Extreme Heat Days   

A total of 18.8% of the population lives in counties in top decile of annual extreme 

heat events (Table 5). The population characteristics of those living in counties in top decile 

of annual extreme heat events were also similar to the general population. However, these 

places may need to be more consistently prepared for extreme heat events. Again, the South 

made up the larger population portion of those exposed to the largest decile of heat events. 

One new revelation is that the nonmetropolitan and coastal areas made up a larger portion of 

the exposed population in the top decile of extreme heat events. 
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Table 5. Percent by demographic characteristics overall and in counties in top quartile of heat 
events, National Health Interview Survey 2010-2013. 

    All Top Quartile Top Decile 

  
(n=119,709; 100%1) (n=51,570; 41.6%1) (n=23,549; 18.8%1) 

    N %1 %(SE)1 %(SE) 1 
Race/Ethnicity     

non-Hispanic white 71,717 68 66.1 (0.5) 64.5 (0.7) 
non-Hispanic black 18,612 11.8 12.6 (0.4) 12.8 (0.5) 
Hispanic 21,313 14.5 15.8 (0.3) 17.5 (0.5) 
All other races and ethnicities 8,067 5.75 5.5 (0.2) 5.1 (0.2) 

Age (years) 

18-34 34,374 31.2 31.2 (0.4) 31.4 (0.6) 
35-49 30,689 26.4 26.4 (0.3) 26.3 (0.4) 
50-64 29,760 25.2 25.3 (0.3) 25 (0.4) 
65 and older  24,886 17.2 17.1 (0.3) 17.3 (0.4) 

Sex 

Male 54,268 49.2 49.1 (0.3) 48.8 (0.4) 
Female 65,441 50.8 50.9 (0.3) 51.2 (0.4) 

Marital status 

Singe 67,303 46.5 47 (0.4) 46.7 (0.6) 
Married 52,406 53.5 53 (0.4) 53.3 (0.6) 

Women of Childbearing Age 

No 35,956 52.9 53.1(0.4) 52.9(0.6) 
Yes 29,485 47.2 46.9 (0.4) 47.1 (0.4) 

Body Mass Index 

Underweight 2,171 1.74 1.7 (0.1) 1.7 (0.1) 
Normal weight 41,949 35.5 35 (0.3) 34.3 (0.4) 
Overweight 41,425 34.7 34.6 (0.3) 34.9 (0.4) 
Obese 34,164 28.1 28.8 (0.3) 29.1 (0.4) 

Education 

<High school/GED 16,494 11.7 11.9 (0.2) 12.3 (0.3) 
High school/GED 33,928 28.6 28.8 (0.3) 28.7 (0.5) 
Some college 36,408 31 30.8 (0.3) 31.4 (0.4) 
Bachelor's degree 21,102 18.6 18.5 (0.3) 18.1 (0.4) 
Graduate degree 11,777 10.1 10 (0.3) 9.5 (0.3) 

Poverty status 

<100% FPL 21,530 13.5 13.8 (0.3) 13.9 (0.4) 
100-<200% FPL 25,477 19.1 19.1 (0.3) 20 (0.4) 
200-<400% FPL 35,053 30.1 30.1 (0.3) 30.1 (0.4) 

  >400% FPL 37,649 37.3 37.1 (0.5) 36.1 (0.6) 
1 Weighted Percent: All percentages were weighted using NHIS survey weights. 
Body Mass Index (BMI) is calculated using the formula weight in kilograms/height in meters: 
underweight=<18.5; normal weight=18.5 -<25; Overweight = BMI 25 - <30; Obese = BMI ≥ 30. 
Note: FLP=federal poverty level  
Women of Childbearing Age: women between the ages of 18 and 45. 
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Annual Top Quartile=25 days or more EHE95  
Annual Top Decile=38 days or more EHE95 



 

 51

Table 6. Percent by residential characteristics overall and in counties in top quartile of heat 
event, National Health Interview Survey 2010-2013. 
   All Top Quartile Top Decile 
 

 (n=119,709; 100%1) (n=51,570; 41.6%1) (n=23,549; 18.8%1) 

 
 

N %1 % (SE)1 % (SE)1 

Region 
  

 Northeast 19,630 17.7 21.4 (0.5) 15.2 (0.7) 
 Midwest 26,084 23.2 21.3 (0.6) 23.2 (1.1) 
 South 44,278 36.3 40.6 (0.8) 48.6 (1.3) 
 West 29,717 22.7 16.8 (0.6) 13.1 (1) 
Urban-rural classification 

 
 Large central metro 37,694 29.4 30.5 (0.7) 29.2 (1) 
 Large fringe metro 24,031 24.6 24.2 (0.8) 21.5 (1.1) 
 Medium metro 24,548 20.8 21.4 (1.1) 22.7 (1.6) 
 Small metro 12,274 9.7 8.8 (0.9) 9.2 (1.3) 
 Micropolitan 12,017 9.2 9.5 (1.1) 10.9 (1.6) 
 Non-core 9,145 6.3 5.5 (0.8) 6.5 (1.1) 
Coastal classification 

 
 Noncoastal 60,605 49.3 51.7 (1) 59 (1.4) 
 Coastal 59,104 50.7 48.3 (1) 41 (1.4) 

1 Weighted Percent: All percentages were weighted using NHIS survey weights.  
SE: Standard Error  
Annual Top Quartile=25 days or more EHE95 | Annual Top Decile=38 days or more EHE95 
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Table 7. Percent by residential characteristics overall and in counties in top quartile of heat 
event, National Health Interview Survey 2010-2013. 

  All Top Quartile Top Decile 

Chronic Disease (n=119,709; 100%1) (n=51,570; 41.6%1) (n=23,549; 18.8%1) 

  N %1 % (SE)1 % (SE)1 
SPD 17,821 14.1 13.5 (0.2) 13.4 (0.3) 
Heart disease 18,255 14.2 14.1 (0.2) 14.6 (0.3) 
Stroke 3,722 2.7 2.7 (0.1) 2.8 (0.1) 
Hypertension 38,245 29.3 29.5 (0.3) 29.7 (0.4) 
Diabetes 12,278 9.2 9.4 (0.2) 9.4 (0.3) 
COPD 6,506 5.1 5.1 (0.1) 5.1 (0.2) 
1 Weighted Percent: All percentages were weighted using NHIS survey weights.  
SE: Standard Error | SPD: Serious psychological distress | COPD: Chronic Obstructive 
Pulmonary Disease 
Annual Top Quartile=25 days or more EHE95 | Annual Top Decile=38 days or more EHE95 
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Table 8. Percent by chronic health outcomes among population residing in counties with quartile top and top decile of annual 
extreme heat events with National Health Interview Survey 2010-2013. 

Annual SPD Heart Disease Stroke Hypertension Diabetes COPD 

Top Quartile  %(SE)1 
Region 

Northeast 12.3 (0.4) 12.9 (0.4) 2.3 (0.2) 27.3 (0.6) 8.3 (0.3) 4.3 (0.3) 
Midwest 14.3 (0.5) 15.1 (0.5) 2.6 (0.2) 29.5 (0.7) 9 (0.4) 5.7 (0.3) 
South 12.9 (0.3) 15.5 (0.4) 3.1 (0.2) 32.2 (0.5) 10.6 (0.3) 5.7 (0.2) 
West 15.6 (0.5) 11.3 (0.3) 2.3 (0.2) 25.8 (0.6) 8 (0.4) 3.7 (0.3) 

Urban-rural classification 

Large central metro 13.5 (0.4) 11.7 (0.3) 2.2 (0.1) 26.4 (0.5) 8.6 (0.3) 4.5 (0.2) 
Large fringe metro 12.8 (0.5) 13.7 (0.4) 2.3 (0.2) 28 (0.6) 8.2 (0.4) 4.5 (0.3) 
Medium metro 13.5 (0.4) 14.2 (0.4) 2.6 (0.2) 29.3 (0.6) 9.2 (0.3) 4.8 (0.2) 
Small metro 13.6 (0.8) 16.2 (0.9) 3.5 (0.3) 32.3 (1.2) 10.3 (0.6) 6.1 (0.5) 
Micropolitan 14.2 (0.7) 18 (0.8) 3.4 (0.4) 35.7 (1.1) 11.8 (0.5) 6.7 (0.5) 
Non-core 15.6 (1) 19.9 (1.1) 4.5 (0.5) 38.8 (1.2) 12.8 (0.7) 8 (0.7) 

Coastal classification 

Non-coastal 14.1 (0.3) 15.5 (0.3) 3.1 (0.1) 31 (0.4) 10 (0.3) 5.8 (0.2) 
Coastal 12.9 (0.3) 12.6 (0.3) 2.2 (0.1) 27.9 (0.4) 8.7 (0.2) 4.3 (0.2) 

Annual  SPD Heart Disease Stroke Hypertension Diabetes COPD 
Top Decile %(SE)1 

Region 

Northeast 11.3 (0.7) 12.2 (0.8) 2 (0.3) 25.6 (1) 7.8 (0.5) 4.2 (0.6) 
Midwest 14.3 (0.6) 14.9 (0.8) 2.4 (0.3) 28.1 (0.9) 8.4 (0.6) 5.6 (0.5) 

  South 13.3 (0.5) 15.8 (0.5) 3.2 (0.2) 32.5 (0.7) 10.8 (0.4) 5.6 (0.3) 
West 14.9 (0.7) 12.2 (0.6) 2.8 (0.4) 26.9 (0.8) 7.9 (0.6) 3.6 (0.4) 

Urban-rural classification 

Large central metro 13.5 (0.5) 11.9 (0.5) 2.1 (0.2) 26.5 (0.7) 8.6 (0.5) 4.5 (0.3) 
Large fringe metro 12.4 (0.8) 14.1 (0.8) 2.5 (0.3) 28.1 (1) 8.2 (0.7) 4.4 (0.5) 
Medium metro 13.2 (0.6) 14.6 (0.5) 3 (0.2) 29.3 (0.9) 10 (0.5) 5.2 (0.4) 
Small metro 13.4 (1) 16.2 (1.3) 3.1 (0.4) 31.6 (1.5) 8.9 (0.7) 5.8 (0.6) 
Micropolitan 14.3 (0.8) 18.5 (1.1) 3.7 (0.6) 35.4 (1.6) 10.9 (0.8) 6.4 (0.7) 
Non-core 16.2 (1.2) 19.6 (1.2) 4.5 (0.6) 38.9 (1.2) 12.8 (1) 7.5 (0.9) 

Coastal classification 

Non-coastal 14.1 (0.4) 15.6 (0.5) 3.2 (0.2) 31 (0.6) 9.6 (0.4) 5.7 (0.3) 
Coastal 12.5 (0.5) 13 (0.5) 2.3 (0.2) 27.8 (0.7) 9.1 (0.4) 4.3 (0.3) 
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1 Weighted Percent: All percentages were weighted using NHIS survey weights. 
SE: Standard Error | SPD: Serious psychological distress | COPD: Chronic Obstructive Pulmonary Disease 
Annual Top Quartile=25 days or more EHE95 | Annual Top Decile=38 days or more EHE95 
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Figure 3. 2010-2014 annual average extreme heat events (EHE95) for counties in the continental US 

 

 
Not shown counties were excluded because of incomplete monthly data for the 4-year period. 
EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and calendar month specific 95th 
percentile threshold calculated using a 30 year of baseline data. 
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Discussion 

The results show that demographic patterns for areas affected by extreme heat events 

are similar to the overall population. This is not surprising, however, given that 42% of the 

population lived in the counties with the top quartile of heat events in 2010-2013. The areas 

most affected by extreme heat events have a variety of vulnerable populations including 

women of childbearing age, people who are poor, and seniors. Also, there seems to be similar 

health patterns for areas affected by the largest numbers of extreme heat days when 

compared to the general population. Areas that are affected by extreme heat events show to 

have people with a variety of chronic conditions that could likely be exacerbated by heat, 

including COP, heart disease, hypertension, SPD, stroke, and diabetes. This remains true for 

all regions, levels of urbanizations, and coastal classifications.  

Past work on heat-related deaths from 1999-2003 showed that 70% of deaths that 

occurred were among persons with chronic ischemic heart disease, 3.2% on those with 

endocrine, nutritional and metabolic disorders, 3.1% on those respiratory disorders, and 2.4% 

on persons with metal and behavioral disorders (U.S. CDC, 2006). During this same time 

period, exposure to heat was higher for men, and persons 65 years of age and older (U.S. 

CDC, 2006). The associations between cardiovascular disease, diabetes, respiratory diseases 

and adverse events related to heat events are well established. In light of our results, there is a 

suggested need for additional investigations on hypertension, mental distress, stroke, and 

COPD (U.S. CDC, 2006; Wainwright, Buchanan, Mainzer, Parrish, & Sinks, 1999). 

Nationally, we see that the majority of high exposed populations do live in the southern 

counties. These southern counties are also leaders for the highest prevalence of heat-
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susceptible chronic diseases. Moreover, many of these southern counties also have some of 

the most rural populations that tend to lack access to care. Nationally, even though rural areas 

consist of about 20% of the United States’ population, less than 10% of physicians practice in 

these areas, and the majority of first responders in these areas are volunteers (Bull, Krout, 

Rathbone-McCuan, & Shreffler, 2001; Stanford University School of Medicine, 2016). 

This paper aims to be descriptive; we make no inference on the relationship between 

the exposure and each respective health outcome or the demographic and geographic 

variables. Instead, we focus on assessing the distribution of characteristics, at the population-

level, that can describe those in the largest exposed groups. We used the most recent years of 

data because they are the most relevant data that can inform national agencies on how to deal 

and prioritize resource allocation.  Also, the county level measure of temperature to assign 

possible extreme heat exposure is another limitation of this study. Due to limited availability 

of data we are not able to account for the likelihood that people are protected by adequate 

housing and proper cooling measures or are likely spending most of their time indoors, rather 

than outdoors. There are limitations that abound due to the sampling structure of the NHIS, 

which typically only changes its sample design approximately every 10 years. The 

questionnaire of the NHIS is subject to recall bias, however, many of the chronic health 

outcomes used are not likely to have such heavy bias as they reference diagnosis by a 

medical professional.  

Despite these caveats, we have described the national exposure of extreme heat 

events for the continental US. The results could mean that with the widespread exposure, that 

preparedness is needed in many places (e.g., 42% of the population live in areas with 
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frequent extreme heat events, coastal and noncoastal areas are involved, and rural areas may 

have more vulnerable people). The analysis suggests that future studies are needed for 

hypertension and psychological distress, which is missing in the national dialogue. These 

results may be used to initiate planning and preparedness of national and local public health 

entities. 
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Chapter 5: Frequency of Extreme Heat Events and Hay Fever 
Prevalence in the United States, 1997-2013  

 

 

Abstract 

Increasing temperature affects concentration as well as seasonality of pollen, and may 

impact allergic diseases. Hay fever affects 7.5% of US adults and costs ~$11.2 billion/year in 

medical expenses. It remains unclear if extreme heat events—expected to increase in 

frequency and intensity—are associated with hay fever burden. To investigate this 

association, we analyzed the National Health Interview Survey data (1997-2013) together 

with extreme heat event data, defined as days when the daily maximum temperature (TMAX) 

exceeded the 95th percentile values of TMAX for a 30-year (1960-1989) reference period. 

We show that adults in the highest quartile of exposure to extreme heat events had a 7% 

increased odds of hay fever compared to those in the lowest quartile. Our data suggest that 

exposure to extreme heat events increases risk of hay fever among US adults. 

 

Introduction  

Hay fever affects 17.6 million (7.5%) adults in the United States (US) annually 

(Blackwell, Lucas, & Clarke, 2014) and can have an impact on their quality of life 

(Schoenwetter, Dupclay, Appajosyula, Botteman, & Pashos, 2004). In 2005, hay fever 
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medical expenses amounted to $11.2 billion (The Lancet, 2008; Blaiss, 2010). Hay fever—a 

form of allergic rhinitis—is a chronic condition caused by an inflammatory response to 

allergens, and is characterized by nasal congestion, clear rhinorrhea (runny nose), sneezing, 

and itching (Bousquet et al., 2008; US EPA, 2008; Seidman et al., 2015; “WHO | Allergic 

rhinitis and sinusitis,” n.d.). The causes and triggers of hay fever are both outdoor (e.g., mold 

or trees, grass and weed pollens) and indoor allergens (e.g., animal dander, indoor mold, and 

house dust mites) (Bousquet et al., 2008; US EPA, 2008; Seidman et al., 2015; “WHO | 

Allergic rhinitis and sinusitis,” n.d.). Previous studies have linked rise ambient temperature 

with increases in respiratory diseases (Braga et al., 2002; Basu & Samet, 2002; Lin et al., 

2009; Michelozzi et al., 2009; Bhattacharyya, 2009; P. J. Beggs, 2010; Lim et al., 2012; 

D’amato et al., 2010), but no studies to date have investigated the role of extreme heat events 

on respiratory outcomes such as hay fever on a national scale. 

 An increasing body of literature suggests that the frequency, intensity, and duration of 

extreme weather events will continue to rise in the near future (Edenhofer et al., 2014; Field, 

2012; G Luber et al., 2014). The potential impact of these increases on allergic diseases is a 

growing concern that has not been empirically assessed for the contiguous US. Prior studies 

have shown that increases in temperature and CO2 concentrations affect plant phenology as 

well as concentration, distribution and allerginicity of pollen (Bortenschlager & 

Bortenschlager, 2005; Emberlin, Smith, Close, & Adams-Groom, 2007; Frumkin et al., 2008; 

L. Ziska et al., 2011; L. H. Ziska & Beggs, 2012; D’amato et al., 2010). This dynamic 

threatens to exacerbate the burden of hay fever by increasing both the window of exposure to 

pollen and the potency of pollen (Bortenschlager & Bortenschlager, 2005; Emberlin et al., 

2007; Frumkin et al., 2008; L. Ziska et al., 2011; L. H. Ziska & Beggs, 2012; D’amato et al., 
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2010). An increased burden may differentially impact people living in urban versus rural 

areas, and those of low socioeconomic status, children, and older adults (G Luber et al., 

2014)—because of the urban heat island effect (Patz et al., 2005), poor housing conditions 

with lower rates of access to air conditioning (Klein Rosenthal, Kinney, & Metzger, 2014) 

and limited adaptive responses (Basu & Samet, 2002).  

Using 17 years of health outcome data (NHIS 1997-2013), we explored the 

association between exposures to increased frequency of extreme heat events and hay fever 

among a nationally representative sample of the adult civilian non-institutionalized US 

population aged 18 years and older. We hypothesized that residents of counties with higher 

number of extreme heat events would have higher odds of hay fever and that the odds will 

vary by season.  

 

Methodology  

 

Meteorological Data 

Daily weather data was obtained from two systems within the National Centers For 

Environmental Information (NCEI)—formerly known as the National Climatic Data 

Center)—for the 1960-2013 period, including daily maximum temperature (TMAX) (U.S. 

NOAA, 2016). Data for the years 1960-2010 were extracted from the DSI-3200 data set. The 

DSI-3200 data set was discontinued in 2010 and replaced with the Global Historical 
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Climatology Network (GHCN) data set that consists of additional stations that are not part of 

the original DSI-3200 network. Therefore, for the 2011-2013 period, we identified the 

DSI3200 stations within the GHCN network using unique station identification and extracted 

information from this subset of stations to maintain consistency.  

 

Exposure Metric 

Using daily TMAX for the 1960-1989 reference period, county-specific 30-year 

baselines for each calendar month were computed. Based on the distribution of this data, we 

identified the 95th percentile values of TMAX, referred to as Extreme Temperature Threshold 

95th percentile (ETT95) as previously described (Romeo Upperman et al., 2015). Daily 

TMAX values for each county were compared to their respective calendar-month-specific 

ETT95 and assigned a value of “1” if they exceeded the thresholds, and “0” otherwise. The 

ETT95 exceedences —referred to as extreme heat events (EHE95)— were summed over each 

calendar month for each county during the 1997-2013 period for which NHIS hay fever 

prevalence data was available (Romeo Upperman et al., 2015).  

Extreme heat event values were assigned to individual NHIS records for each survey 

year in two ways: 1) the cumulative number of extreme heat events for the county of 

residence in a 12 month window, which include the month of interview and the preceding 11 

months; and, 2) the cumulative number of extreme heat events for the county of residence in 

each of the four complete seasons over the 12-month window preceding the month of 
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interview. Seasons were categorized as: Winter – December, January, February; Spring – 

March, April, May; Summer – June, July, August; Fall – September, October, November.  

 

National Health Interview Survey (NHIS), 1997-2013 Data 

We combined NHIS data for 1997-2013 for this analysis. The NHIS is a nationally 

representative cross-sectional household interview survey of the civilian non-institutionalized 

population of the United States that has been conducted since 1957, although the survey 

design and questionnaire have changed over (U.S. CDC, 2015). The NHIS is conducted 

continuously throughout the year. In 1997-2013, about 40,000 households were sampled each 

year, with some households having multiple families. In each family, a sample adult is 

selected for detailed questions on health and health care (U.S. CDC, 2015).  During the 17-

year period, the response rate for the household component of the survey ranged from 75.7% 

to 91.8% and the unconditional sample adult response rates ranged from 60.8% to 80.4%. 

We used the restricted-use NHIS files geocoded to county FIPS. These files are 

available through the NCHS Research Data Center (RDC). There are 516,140 sample adults 

18 years of age or older in the 1997-2013 NHIS. Respondents were excluded from the 

analysis if they: 1) resided in a county that had less than 12 months of extreme heat data and 

had at least one non-valid month for the development of the baseline (n=1,185); 2) resided 

outside the 48 contiguous states at the time of the interview (n=5,334); or, 3) had missing 

data for any of the variables used in the analysis (n=4,235), for a total of 10,754 (2%) 

excluded respondents.  
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Hay fever was identified using responses to the question: “During the past 12 months, 

have you been told by a doctor or other health professional that you had hay fever?” 

Demographic characteristics considered included age (18-34, 35-49, 50-64, 65+ years), 

race/ethnicity (Hispanic, non-Hispanic black, non-Hispanic white, all other races and 

ethnicities), sex (female, male), education level (less than high school/GED, high 

school/GED, some college, Bachelor’s degree, Graduate degree), and family income relative 

to poverty threshold (US Census Bureau, n.d.) (less than 100%, 100% to less than 200%, 

200% to less than 400%, 400% or above the poverty threshold (K. D. Jackson, Howie, & 

Akinbami, 2013). We used the NHIS multiple-imputed income data to assign poverty status 

level to records with missing values (percent missing ranged from 4.5% to 10.0% over 1997-

2013) using NCHS-recommended methods (NCHS, 2010).  

We also included a county-level geographical covariate describing urban-rural 

classification with four urban and two rural categories (urban: large central, large fringe, 

medium and small metro; rural: micropolitan and non-core) (Deborah D Ingram, 2012).  

Large central metro counties are counties in Metropolitan Statistical Areas (MSAs) of 1 

million or more population that contain the largest principal city of the MSA, are contained 

within the MSA’s largest principal city, or contain at least 250,000 residents of any principal 

city. Large fringe metro counties are counties in MSAs of 1 million or more population that 

do not qualify as large central metro. They are considered to be “suburbs” of large cities. 

Medium and small metro counties are counties in MSAs of 250,000–999,999 and less than 

250,000 population, respectively.  
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Statistical Analysis  

Micropolitan and noncore counties are nonmetropolitan counties that are not in 

MSAs. Associations between annual and seasonal total extreme heat events and adult hay 

fever were evaluated using logistic regression models in SUDAAN which accounts for the 

complex clustered sample design of the NHIS (RTI International, 2014). Unadjusted and 

adjusted models were fitted separately for each overall annual cumulative lag and seasonal 

cumulative lag of extreme heat events. We fitted additional models for seasonal extreme heat 

events separately based on interview season defined in the description of the survey (see 

Figure 4). The quartiles for exposure overall and season were based on the distribution of 

extreme heat events for all 3,109 counties in the continental United States. Approximate, 

rather than actual, quartiles by season were used for comparability of cut-points across 

season.  
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Figure 4. Flow chart of data analysis procedure 
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Results 

Among adults aged 18 and older, 8.43% (n=42,601) reported being told they had hay 

fever within the previous 12 months for the period 1997 to 2013 (Table 9). All characteristics 

shown in Table 9 except urban-rural classification, were significantly associated with hay 

fever status.  

Annual extreme heat events (approximate quartiles of the cumulative number of 

extreme heat events in the 12 months preceding the survey) were significantly associated 

with hay fever prevalence in an unadjusted analysis (Table 10, Model 1). When adjusting for 

demographic characteristics (Table 10, Model 2), the association between extreme heat 

events and hay fever persisted, i.e., compared to adults in the lowest quartile of exposure to 

extreme heat events (0 to 10 events), adults in the higher quartiles of exposures had higher 

odds of reporting a diagnosis of hay fever in the previous 12 months. This increase in odds 

ranged from 5% (OR 1.05, 95% CI: 1.01-1.09) for adults in the 2nd quartile to 7% (OR 1.07, 

95% CI: 1.03-1.11) for adults in the 4th quartile. Additional adjustment for urbanicity did not 

change the observed association (Table 10, Model 3).  

When we analyzed by timing (season) of extreme heat events, we observed a clear 

exposure-response relationship for associations between spring and winter extreme heat 

events and odds of hay fever (Ptrend <0.01, Table 11). For springtime extreme heat events, the 

increases in odds of hay fever ranged from 2% (OR 1.02, 95% CI: 0.98-1.06) for adults in the 

2nd quartile to 7% (OR 1.07, 95% CI: 1.03-1.12) for adults in the 4th quartile (Table 11). For 

extreme heat events that occurred during summer, the increase in the odds of hay fever was 
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significant only among those in the highest quartile of exposure (Table 11). Such associations 

were not observed for extreme heat events that occurred during fall. 

 Sensitivity analyses using both more liberal and more conservative exposure metrics 

using the 90th and 99th percentiles of distribution as cutoff thresholds for defining extreme 

heat events (EHE90 and EHE99) showed a positive association between exposure to extreme 

heat events and hay fever (see Table 12, Table 13, and Table 14). Seasonal extreme heat 

events for EHE90 and EHE99 showed similar trends in the relationship for hay fever although 

the quartile definitions contrasted between the three measures of exposure (i.e., there were 

fewer extreme heat events measure when using ETT99 cutoff). The effects of extreme heat 

events remained significantly associated with hay fever when all models were adjusted for 

the month or year of interview.
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Table 9. Characteristics of adults 18 years and older*, NHIS 1997-2013  

 Variables Categories All Hay Fever  EHE95 Quartiles§
 

    0-10 days 11-16 days  17-24 days 25 days or more 

   (n=505,386) (n= 42,601) (n=111,52
4) 

(n=113,255) (n=123,998) (n=156,609) 

Total Percent  100 8.43 21.91 22.49 24.65 30.94 
Hay Fever       
 No 91.57 ----- 21.99 22.47 24.66 30.88 
 Yes 8.43 ----- 21.05 22.72 24.61 31.61 
Race/ethnicity       
 non-Hispanic white 71.28 9.20 22.46 23.07 24.33 30.14 
 non-Hispanic black 11.50 6.78 22.55 20.99 24.81 31.66 
 Hispanic 12.52 5.73 18.98 20.65 25.81 34.56 
 All other races and 

ethnicities 

4.70 8.05 19.78 22.33 26.17 31.71 

Sex       
 Male 48.13 7.45 21.89 22.54 24.77 30.80 
 Female 51.87 9.35 21.93 22.45 24.55 31.08 
Age       
 18-34 years 31.27 6.21 21.69 22.58 25.04 30.69 
 35-49 years 29.40 10.34 21.86 22.50 24.76 30.88 
 50-64 years 22.86 10.07 21.66 22.59 24.31 31.43 
 65 years and older 16.48 6.98 22.78 22.16 24.21 30.85 
Education       
 <High school/GED 16.24 6.00 21.92 22.12 25.19 30.77 
 High school/GED 28.65 6.89 22.65 22.52 24.47 30.36 
 Some college 29.48 9.19 22.11 22.57 24.55 30.78 
 Bachelor’s degree 16.83 10.29 21.11 22.56 24.59 31.74 
 Graduate degree 8.79 11.88 20.36 22.7 24.75 32.19 
Poverty Status^        
 Less than 100% 12.33 6.92 21.99 21.92 24.88 31.22 
 100 to less than 200% 18.40 6.96 22.79 21.91 24.70 30.60 
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 200 to less than 400% 31.17 7.99 22.55 22.48 24.51 30.46 
 400% or greater 38.09 10.00 20.94 22.97 24.67 31.42 
Urban-rural 
classification+ 

      

 Large central metro 28.22 8.09 17.93 22.68 27.43 31.97 
 Large fringe metro 24.00 9.08 23.10 22.94 23.39 30.57 
 Medium metro 20.99 8.63 22.27 21.85 23.37 32.51 
 Small metro 10.13 8.56 23.00 23.26 24.63 29.12 
 Micropolitan 10.20 7.86 25.52 20.43 23.83 30.22 
 Non-core 6.46 7.55 26.34 24.14 22.76 26.75 
All percentages were weighted using NHIS survey weights. 
Poverty status is the poverty threshold percent is an imputed value  
* Includes sample adults 18 years and older with complete data for analytic covariates and who resided within the 48 contiguous 
states and within a county with complete exceedence and baseline data for daily maximum temperature. 
§The categories of days represent the quartiles of exposure based on county of residence 
+ Counties were classified into urbanization levels based on the 2006 NCHS Urban-Rural Classification Scheme for Counties. 
^Family income as a percent of Poverty Threshold 
EHE95= Extreme heat events – days where the daily TMAX value exceeded the county and calendar month specific 95th percentile 
threshold calculated using 30 year of baseline data. 



 

 71

Table 10. Unadjusted (Model 1) and adjusted (Models 2 and 3) odds ratios for hay fever among US adults*, NHIS 1997-2013. 
Variables   Categories Model 1 Model 2 Model 3 

  OR (95% CI) OR (95% CI) OR (95% CI) 
EHE95   Ptrend <0.001 Ptrend <0.05 Ptrend <0.05 

 Q1 (0-10 days)#            1.00 1.00 1.00 
 Q2 (11-16 days) 1.06 (1.02-1.10) 1.05 (1.01-1.09) 1.05 (1.00-1.09) 
 Q3 (17-24 days) 1.04 (1.00-1.08) 1.05 (1.00-1.09) 1.04 (1.00-1.09) 
 Q4 (≥25 days) 1.07 (1.03-1.11) 1.07 (1.03-1.11) 1.07 (1.02-1.11) 
Sex    Ptrend <0.001 Ptrend <0.001 

 Male#  1.00 1.00 
 Female  1.30 (1.27-1.33) 1.30 (1.27-1.33) 
Race/ethnicity    Ptrend <0.001 Ptrend <0.001 

 non-Hispanic white 1.42 (1.35-1.49) 1.44 (1.37-1.51) 
 non-Hispanic black 1.09 (1.03-1.15) 1.09 (1.03-1.15) 
 Hispanic#  1.00 1.00 
 All other races and ethnicities 1.19 (1.10-1.28) 1.19 (1.10-1.29) 
Age    Ptrend <0.001 Ptrend <0.001 

 18-34 years#  1.00 1.00 
 35-49 years  1.66 (1.61-1.72) 1.67 (1.61-1.73) 
 50-64 years  1.59 (1.53-1.65) 1.59 (1.53-1.65) 
 65 years and older 1.12 (1.08-1.17) 1.13 (1.08-1.18) 
Education    Ptrend <0.001 Ptrend <0.001 

 <High school/GED# 1.00 1.00 
 High school/GED 1.02 (0.98-1.07) 1.02 (0.98-1.07) 
 Some college 1.40 (1.33-1.46) 1.39 (1.33-1.45) 
 Bachelor’s degree 1.50 (1.42-1.57) 1.48 (1.41-1.56) 
 Graduate degree 1.68 (1.59-1.78) 1.67 (1.57-1.77) 
Poverty Status   Ptrend <0.001 Ptrend <0.001 

 Less than 100%#  1.00 1.00 
 100 to less than 200%  0.96 (0.92-1.00) 0.96 (0.92-1.00) 
 200 to less than 400%  0.98 (0.94-1.02) 0.98 (0.94-1.02) 
 400% or greater 1.05 (1.01-1.10) 1.04 (1.00-1.09) 
Urban-rural  

 
Ptrend <0.1 
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classification+ 
 Large central metro  0.99 (0.94-1.03) 
 Large fringe metro  1.00 (0.96-1.05) 
 Medium metro#  1.00 
 Small metro  0.99 (0.91-1.08) 
 Micropolitan  0.92 (0.85-1.00) 
 Non-core   0.89 (0.82-0.98) 
# Reference Category 
Poverty status is the percent of poverty threshold is an imputed value.  
* Includes sample adults 18 years and older with complete data for analytic covariates and who resided within the 48 contiguous 
states and within a county with complete exceedence and baseline data for daily maximum temperature. 
Model 1: Unadjusted model. 
Model 2: adjusted for gender, race/ethnicity, age, education and poverty threshold.   
Model 3: adjusted for gender, race/ethnicity, age, education, poverty threshold, and urban-rural classification.  
+ Counties were classified into urbanization levels based on the 2006 NCHS Urban-Rural Classification Scheme for Counties. 
The confidence intervals were calculated using standard methods to account for the survey design. 
EHE95=Extreme heat events – days where the daily TMAX value exceeded the county and calendar month specific 95th percentile 
threshold calculated using 30 year of baseline data. 
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Table 11. Adjusted odds ratios [AORs (95% CIs)] for hay fever in adults*, NHIS 1997-2013, 
by season 

Season  EHE95 Categories Ptrend AOR (95% CI) Percent 

Spring  <0.01   
 Q1 (0-2 days)#  1.00 32.19 
 Q2 (3-4 days)  1.02 (0.98-1.06) 20.49 
 Q3 (5-8 days)  1.04 (1.00-1.07) 28.25 
 Q4 (≥ 9 days)  1.07 (1.03-1.12) 19.07 
Summer  >0.05   
 Q1 (0-2 days)#  1.00 41.46 
 Q2 (3-4 days)  1.01 (0.97-1.05) 14.51 
 Q3 (5-8 days)  1.02 (0.99-1.06) 21.09 
 Q4 (≥9 days)  1.04 (1.00-1.07) 22.94 
Fall  >0.05   
 Q1 (0-2 days)#  1.00 35.14 
 Q2 (3-4 days)  1.01 (0.97-1.04) 19.99 
 Q3 (5-8 days)  1.00 (0.97-1.04) 29.63 
 Q4 (≥9 days)  1.02 (0.98-1.07) 15.24 
Winter   <0.01   
 Q1 (0-2 days)#  1.00 32.72 
 Q2 (3-4 days)  0.95 (0.92-0.99) 18.55 
 Q3 (5-8 days)  0.98 (0.94-1.01) 28.84 
 Q4 (≥9 days)  1.05 (1.01-1.09) 19.88 
Adjusted for sex, age, race/ethnicity, education, family income as percent of poverty 
threshold, urban-rural classification, and month of interview. 
# Reference Category  
* Includes sample adults 18 years and older with complete data for analytic covariates and 
who resided within the 48 contiguous states and within a county with complete exceedence 
and baseline data for daily maximum temperature. 
The confidence intervals were calculated using NCHS standard methods to account for the 
survey design. 
All percentages were weighted using NHIS survey weights. 
EHE95=Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 95th percentile threshold calculated using 30 year of baseline data.  
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Table 12. Unadjusted (Model 1) and adjusted (Models 2 and 3) [AORs (95% CIs] for hay 
fever in adults*, NHIS 1997-2013, sensitivity analysis for EHE90 
EHE90  Model 1 Model 2 Model 3 

Categories OR (95% CI) OR (95% CI) OR (95% CI) 
 Ptrend <0.05 Ptrend <0.05 Ptrend <0.05 

Q1 (0-23 days)# 1.00 1.00 1.00 
Q2 (24-34 days) 1.04 (1.00-1.09) 1.04 (1.00-1.09) 1.04 (1.00-1.08) 
Q3 (35-46 days) 1.06 (1.02-1.10) 1.06 (1.02-1.10) 1.06 (1.01-1.10) 
Q4 (≥47 days) 1.05 (1.01-1.10) 1.06 (1.01-1.10) 1.05 (1.01-1.10) 

# Reference Category  
Adjusted for sex, age, race/ethnicity, education, family income as percent of poverty 
threshold, and urban-rural classification.  
* Includes sample adults 18 years and older with complete data for analytic covariates and 
who resided within the 48 contiguous states and within a county with complete exceedence 
and baseline data for daily maximum temperature. 
The confidence intervals were calculated using standard methods to account for the survey 
design. 
EHE90=Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 95th percentile threshold calculated using 30 year of baseline data. 
 
 
 
 
 
Table 13. Unadjusted (Model 1) and adjusted (Models 2 and 3) [AORs (95% CIs)] for hay 
fever in adults*, NHIS 1997-2013 merged with meteorological data, sensitivity analysis for 
EHE99 
 EHE99 Model 1 Model 2 Model 3 

Categories OR (95% CI) OR (95% CI) OR (95% CI) 
Ptrend <0.001 Ptrend <0.001 Ptrend <0.001 

Q1 (0 days)# 1.00 1.00 1.00 
Q2 (1-2 days) 1.05 (1.00-1.10) 1.03 (0.98-1.08) 1.03 (0.98-1.08) 
Q3 (3-6 days) 1.11 (1.06-1.16) 1.09 (1.05-1.14) 1.09 (1.04-1.14) 
Q4 (≥7 days) 1.09 (1.04-1.14) 1.08 (1.03-1.13) 1.08 (1.03-1.13) 

# Reference Category  
Adjusted for sex, age, race/ethnicity, education, family income as percent of poverty 
threshold, and urban-rural classification. 
The confidence intervals were calculated using NCHS standard methods to account for the 
survey design. 
* Includes sample adults 18 years and older with complete data for analytic covariates and 
who resided within the 48 contiguous states and within a county with complete exceedence 
and baseline data for daily maximum temperature. 
The confidence intervals were calculated using standard methods to account for the survey 
design. 
EHE99=Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 99th percentile threshold calculated using 30 year of baseline data.
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Table 14. Adjusted odds ratios [AORs (95% CIs)] for hay fever in adults*, NHIS 1997-2013, 
sensitivity analyses for EHE90 and EHE99 by season  

   Hay Fever  
 

 
AOR (95% CI) 

  Quartiles Winter Spring Summer Fall 
EHE90   

Ptrend <0.001 Ptrend <0.01 Ptrend <0.5 Ptrend <0.05 

 Q1 (0-4 days)# 1.00 1.00 1.00 1.00 
 Q2 (5-6 days) 0.98 (0.93-1.02) 1.05 (1.01-1.10) 1.02 (0.97-1.06) 1.03 (0.99-1.07) 
 Q3 (7-13 days) 0.97 (0.93-1.00) 1.03 (0.99-1.06) 1.02 (0.99-1.06) 1.01 (0.98-1.05) 
 Q4 (≥14 days) 1.04 (1.00-1.08) 1.08 (1.04-1.12) 1.03 (1.00-1.07) 1.06 (1.02-1.11) 
     
EHE99   

Ptrend <0.5 Ptrend <0.01 Ptrend <0.05 Ptrend <0.5 

 Q1 (0 days)# 1.00 1.00 1.00 1.00 
 Q2 (1 days) 1.02 (0.99-1.05) 1.00 (0.97-1.04) 1.01 (0.97-1.06) 1.01 (0.97-1.05) 
 Q3 (2 days) 1.00 (0.96-1.05) 1.02 (0.98-1.07) 1.04 (0.99-1.09) 1.00 (0.95-1.05) 
 Q4 (≥3 days)  1.04 (1.00-1.08) 1.07 (1.04-1.11) 1.05 (1.02-1.09) 0.97 (0.94-1.01) 

# Reference Category  
Adjusted for sex, age, race/ethnicity, education, family income as percent of poverty 
threshold, and urban-rural classification. 
* Includes sample adults 18 years and older with complete data for analytic covariates and 
who resided within the 48 contiguous states and within a county with complete exceedence 
and baseline data for daily maximum temperature. 
The confidence intervals were calculated using NCHS standard methods to account for the 
survey design. 
EHE90=Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 90th percentile threshold calculated using 30 year of baseline data. 
EHE99=Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 99th percentile threshold calculated using 30 year of baseline data. 
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Discussion 

We evaluated the relationship between exposures to annual and seasonal extreme heat 

events and the prevalence of hay fever among a nationally representative sample of civilian 

non-institutionalized US adults during 1997-2013. This analysis builds upon previous work 

that has shown an association between increasing temperature and longer pollen seasons for 

important allergens such as ragweed (L. Ziska et al., 2011; L. H. Ziska & Beggs, 2012; L. H. 

Ziska, Epstein, & Schlesinger, 2009).  

The present study found a modest positive association between exposures to extreme 

heat events, particularly during spring, and the prevalence of hay fever. For the extreme heat 

events during summer and fall, only counties in the highest quartile of extreme heat events 

showed a significant associated between extreme heat events and hay fever. Our findings 

regarding exposures to extreme heat events and hay fever prevalence were not substantially 

affected by adjustment for demographic factors and county urbanicity. The exact mechanism 

by which long-term exposures to extreme heat events increase the risk of hay fever remains 

unclear. One potential explanation is changes in plant phenology. Higher frequency of 

extreme heat events, particularly those occurring in winter and spring season lead to earlier 

onset of greening and flowering of plants including trees that are major sources of pollen; 

similarly, extreme heat events in the summer could potentially affect the fall weed pollen 

season (L. Ziska et al., 2011). Likewise, historically, the spring flowering taxa has shown an 

increasing trend for producing more pollen than any other season (Zhang et al., 2015). 

 This earlier onset of spring effectively increases the duration of exposure to pollen, 

which is an important risk factor for hay fever (Emberlin et al., 2007; L. Ziska et al., 2011; L. 



 

 77

H. Ziska & Beggs, 2012). Others have shown higher pollen production associated with 

warmer temperatures (P. Beggs, 2004; Rogers et al., 2006). Increased frequency of extreme 

heat events may lead to higher concentration of pollen in the environment—in addition to 

increasing the possible duration of exposure (P. Beggs, 2004; D’amato & Cecchi, 2008; 

D’Amato, Cecchi, D’Amato, & Liccardi, 2010). Our findings that show a positive 

association between extreme heat events during winter and spring seasons and hay fever 

prevalence support the aforementioned two hypotheses of longer duration and greater 

concentration of pollen exposure. When temperatures in winter and spring are unusually 

warm, individuals may spend more time outdoors, bringing them in closer contact with 

outdoor pollen as well as other pollutants; however, national patterns of time spent outdoors 

are unknown. From the winter analysis, when there are fewer extreme heat events, a 

protective impact on hay fever is shown; however, this association is lost when the number of 

extreme heat events exceeds 9 days.  

Regardless of the exact underlying mechanism, our study is the first to link exposures 

to extreme heat events and increased odds of hay fever in the continental US. Previous 

studies have shown that the frequency and intensity of such extreme events are increasing 

and will continue to do so in the coming decades (Edenhofer et al., 2014). Our study relied 

on a large (n=505,386) nationally representative sample of the civilian non-institutionalized 

US population. Our county-specific and calendar month-specific exposure metric generated 

using the 30-year of baseline data (1960-1989) enabled us to focus on changes in frequency 

of extreme events relative to 30-year baseline rather than short-term weather phenomena. 

Furthermore, we were able to control for several socioeconomic characteristics including 

educational level, family income relative to the poverty threshold, and the urban-rural 



 

 78

classification of the county; but they were not sensitive to further adjustment for region. 

Finally, we performed several sensitivity analyses, which established the robustness of our 

findings. 

This study also has several limitations. The NHIS is a multipurpose health survey, 

and as such, lacked information needed to more fully examine the effects of extreme heat 

events on hay fever. For instance, the NHIS survey does not collect exact date of onset of 

outcomes, or degree of hay fever symptoms. In addition, we have no information on local 

pollen levels, which may have improved our understanding of the association between 

extreme heat events and reported allergies. From the cross-sectional design of the NHIS we 

cannot establish a clear temporality in exposure to extreme heat event and hay fever, and our 

results may be affected by the length of time between exposure to extreme heat events and 

the recall of hay fever (Rothman, Greenland, & Lash, 2008). Moreover, hay fever may not 

capture the full spectrum of allergic rhinitis—a more complete account of respiratory 

allergies could result in a different observed association. Another limitation is the use of 

county of residence to define exposure for the NHIS respondents. Ideally, exposure measures 

would be available for each adult, either from personal monitoring or from finer spatial 

scales, which would minimize potential exposure misclassification.  

 

Conclusion  

In summary, this study investigated the impact of extreme heat events on the 

prevalence of hay fever among a nationally representative sample of the civilian non-
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institutionalized US population from 1997 to 2013. We observed a modest, but significant, 

association between exposures to extreme heat events and hay fever prevalence. The findings 

were more pronounced for spring extreme heat events. A extreme heat events will continue 

to rise in the near future in response to our changing climate (Edenhofer et al., 2014; Field, 

2012; G Luber et al., 2014), these results can be an informative guide for policy, future 

epidemiological investigations, and efforts to understand the effects on chronic health 

outcomes. 



 

 80

Chapter 6: Conclusions  

 

This study set out to develop empirical models that can quantify the risks and 

vulnerability that the attributes of a changing climate may pose on the state of chronic 

diseases (particularly respiratory diseases) among US adults—using a 17-year time-period 

(1997-2013) on adults (18 years of age and older) linked to a novel county-level extreme heat 

event exposure metric. The general literature on this subject in the context of the US has 

grown in the recent decade. This study sought to create and verify an extreme heat event 

exposure metric; assess and describe the populations that are most susceptible to the highest 

levels of exposure in the US; and delineate the impact of exposure to extreme heat on chronic 

respiratory diseases.  

 

Major Findings 

The main empirical findings are chapter specific and were summarized within the 

respective experimental chapters: “Frequency of Extreme Heat Event as a Surrogate 

Exposure Metric for Examining the Human Health Effects of Climate Change,” “Geographic 

and Demographic Variability in County Level Exposure to Extreme Heat Events Using 

National Data Sets, 2010-2013,” and “Frequency of Extreme Heat Events and Hay Fever 

Prevalence in the United States, 1997-2013.” This section will summarize the observed 

findings to answer the study’s main research questions. The most interesting results from this 

research are:  
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Aim 1 Conclusion: Extreme Heat Exposure Metric 

In this study an extreme heat event exposure metric was created and showed the 

ability to capture salient features of climate variability and change, including the effect of 

natural variability such as ENSO patterns that have distinct heterogeneous effects across 

geographical regions. This research confirmed that the natural modes of forcing, seasonality, 

urban-rural classification, and division of country have an impact on the number of extreme 

heat events recorded. In addition, the data showed increases in the frequency of extreme heat 

events that differ across the geographical region and time periods. The metric also showed 

the ability to capture the dynamics between the higher frequency of extreme heat events 

during La Niña months and lower frequencies during the El Niño months. However, there are 

exceptions to the impact of ENSO on lowering and increasing the frequencies of extreme 

heat events in select geographical areas that were also shown with this metric.  

 

Aim 2 Conclusion: Extreme Heat Event Exposure Characterization  

In this study we saw that there are similar demographic patterns and prevalences of 

chronic diseases for areas with higher numbers of annual extreme heat events compared to 

the general population. Many of the areas affected by extreme heat events do have a variety 

of vulnerable populations including women of childbearing age, people who are poor, and 

older adults. Moreover, high chronic disease rates in rural communities that are in the top 

quartile, and top decile showed to be larger than any other urban-rural category.  
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Aim 3 Conclusion: Impact of Extreme Heat Events on Hay Fever 

This research showed that adults in the highest quartile of exposure to extreme heat 

events had a 7% significant increased odd of hay fever compared to those in the lowest 

quartile. The results of the research suggest that exposure to extreme heat events increases 

risk of hay fever among US adults. 

 

Theoretical Implication  

 

Extreme Heat Exposure Metric 

Environmental indicators are increasingly being used for the formulation of policy 

because they can simplify, describe, and analyze otherwise complicated environmental 

problems—allowing for the identification of trends and patterns and can drive policy action 

(U.S. EPA, 2016; Weber, Sadoff, Zell, & de Sherbinin, 2015). The indictors in this research 

showcase the value of ground-level metrological observations for the advancement of the 

national priorities on climate change. The United States National Climate Assessment 

(NCA), the United States Environmental Protection Agency (U.S. EPA), and the National 

Institute for Environmental Health Sciences (NIEHS) are a few of the governing bodies that 

have identified the need for a national system of indictors for physical exposure and 

ecological and societal impacts to help communicate aspects of the changing environment, 

call attention to vulnerabilities, and inform decision making at the local, state and national 
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levels. The results of the second chapter of this research bolster the unanimous support for 

exposure indictors. The exposure metric created and verified in this work is an answer to the 

national call for indicators to measure physical exposure to extreme heat as a means to 

identify the impact of climate change on human health outcomes. This work supports the use 

of ambient temperature measures as a good proxy for creating indictors for temperature 

exposure. These indictors can be used in all sectors to find out how historical climate shifts 

have impacted various outcomes of interest. Moreover, it adds to literature that has verified 

the impact of the ENSO on maximum temperatures across the US—which is work that has 

been done by the National Oceanic and Atmospheric Administration (NOAA) (U.S. NOAA, 

2012) .  

 

Extreme Heat Event Exposure Characterization 

Researchers and governmental entities have commented on the paucity of knowledge 

available to inform the extent to which populations in the US are being exposed to heat 

events that are related to climate change and variability. Existing studies have focused on 

select urban populations and have not looked at the entire US population. Those existing 

studies on smaller populations have identified older adults (and children), and those with heat 

sensitive chronic diseases, and outdoor workers, among others to be most vulnerable to heat 

episodes. This research supports the notion that there are vulnerable populations all across 

the US and not solely in urban areas. The results showed that vulnerability is not only a 

factor of being exposed but also the prevalence of disease in the base populations (along with 

adaptive capacity which is not discussed).   
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Impact of Extreme Heat Events on Hay Fever 

There is a mounting concern for the impact that extreme heat events (from climate 

change) is expected to have on air quality, on the increase of pollen production and 

allergenicity of allergens, and the increase in regional concentrations of ozone, fine 

particulate matter, and dust. Some of these pollutants can cause respiratory disease or 

exacerbate conditions in susceptible populations (National Institute of, 2013). Researchers 

have attempted to summarize the relationship between climate changes and the phenology of 

allergenic plants and pollen distribution that it leads to an:  

1) Increase in faster plant growth; 

2) Increase in the amount of pollen produced; 

3) Increase in the amount of allergenic proteins contained in pollen; 

4) Increase in the start time of plant growth and therefore the start of pollen production; 

and, 

5) Earlier and longer growing pollen seasons (D’amato & Cecchi, 2008; L. H. Ziska & 

Beggs, 2012; D’Amato et al., 2013).  

It is thought that meteorological factors, including temperature, along with warming 

climate regimes can affect the biological components of the interaction between climate 

change, increased warming, and allergic respiratory diseases. This work supports the 

aforementioned notion and shows the likely effect that warming can have on pollen season 

and production, subsequently leading to more hay fever. We were able to see a positive 
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relationship between extreme heat events during the spring and summer on hay fever 

prevalence nationally. In view of this, there are still gaping holes as to the mechanism behind 

this interaction.  

 

Policy Implication  

The methods developed in this research are applicable to future studies linking other 

attributes of a changing climate (extreme precipitation, etc.) to other diseases of concern—an 

added contribution to science that can lead to robust information to inform future policies. 

The nuanced impact of climate change identified in this research adds to the current literature 

on the impact of climate extremes. The logistic regression model provides a predictive 

equation for use in climate prediction and economic models to quantify the effects and costs 

of anthropogenic climate change.  

The extreme heat event metric serves as a human impact indicator to help provide a 

clue into the matter of climate variability and change in a way that makes the significance 

more perceptible and show trends that are not immediately tangible. Researchers in climate 

risk communication have shown that the most salient point of communicating climate change 

risk to the general public is though the identification of human health impacts (K. Akerlof et 

al., 2010; DeBono, Vincenti, & Calleja, 2012; K. L. Akerlof, Delamater, Boules, Upperman, 

& Mitchell, 2015). This metric is a significant addition to fill the void of national-level 

indictors that can be used to assess the attributes of a changing and its impacts on health 

outcomes at national, state, and local levels. This indicator does not serve as an end, but 
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rather a tool to be utilized with guidance and restraint in order to build support for policy 

changes. The extreme heat event indictor and the ensuing analyses is a product of observed 

data collected by the United States Federal Government and shows the utility of federal data 

for research purposes.   

This research highlights the characteristics of counties that have shown to have higher 

numbers of extreme heat events. This characterization of populations in counties with high 

exposure to extreme heat events show that there are a myriad of heat sensitive health 

outcomes that should be included the local and national emergency response and 

preparedness. Public officials should pay attention to this characterization to inform their 

future planning and implementation of adaptation and mitigation. The impact shown on hay 

fever is novel and is the first of its kind to support the educated assumptions of the impact of 

climate change on allergic diseases.  

 

Recommendation for Future Research  

A few future steps can progress the findings of this work. The first would be to verify 

that the results of this work are also valid at the local level. Being an ecological level 

analysis, future work can look at the variability between ambient temperature and actual 

exposure. This will help to assess direct exposure to extreme temperature.  

Future work should also consider homogeneity-adjusted metrics that can provide a 

better understanding of weather and climate anomaly’s variability and impacts on human 

health without the effects of non-climatic changes. Moreover, the impact of atmospheric 
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circulation on warm temperature events should be accounted for when calculating extreme 

weather and climate events. Future versions of this exposure metric should aim to account for 

the impact of natural modes of climate variability such as the El Niño-Southern Oscillation, 

the Pacific Decadal Oscillation, and the Northern Annular Mode circulation patterns 

(Gutowski et al., 2008). 

Another possibility for future work is to identify which biological process (air 

pollution, pollen, etc.) is most robust for many of the heat-sensitive health outcomes. This 

can support further targeted policies for air pollution and climate change. In this research, we 

do not show causality. It would be beneficial for future work to tighten this connection which 

can be done by adding a probability-based function employing the recommendations of 

Hannart et al., (Hannart, Pearl, Otto, Naveau, & Ghil, 2015). 

The preliminary work was not able to capture an association between 1 year of 

exposure to extreme heat events and other chronic respiratory diseases such as asthma; 

however, a five-year aggregate of this metric and these health outcomes showed a positive 

association. Future work should try to decipher the logic behind this association. With 

differing etiology and the possible lag in the genesis of these and other respiratory diseases, 

maybe the 5-year aggregate of the extreme heat exposure metric defines some unknown 

environmental dynamic that warrants future evaluation (see Appendix C). 

An investigation into the variability of counties in the NHIS can help to determine the 

consistency of warming at those locations. This will give some idea into the notion of locales 

that are experiencing continued warming versus those that are not. Another natural course for 

future work is to extend the use of the exposure metric to other heat-sensitive health 



 

 88

outcomes to further inform the need for public health preparedness and response. The results 

seen in the hay fever analysis can be expanded with additional data. Using the network of 

pollen monitoring data to re-evaluate this analysis can provide useful information. However, 

there is a paucity of pollen data due to the limited monitoring and funding of existing 

monitoring stations across the US. To fix this, funding of existing pollen monitoring stations 

and an expansion of pollen monitoring at existing National Ambient Air Quality Standards 

stations should be a future consideration. This can provide widespread data on pollen and its 

distribution. With this, such as in the case of air pollution, dispersion modeling can be done 

to fill in the gaps at locations without data. For the health data of the NHIS, having additional 

questions regarding length of time at residence would be useful in assuring that the analysis 

assigns exposure with less misclassification.  

 

Limitation of the Study  

This research had several limitations. First, in Chapter 2, the use of ambient 

temperature to create the metric is not the best measure due to the classical principles of 

exposure science; however, in this case it is the best available given the historical availability 

and measurement quality assurance. The exposure metric created relies on data from weather 

networks, changes in station locations, land use, instrument changes, and observing practices 

should be accounted for through proper adjustment to yield homogeneity-adjusted exposure 

metrics (Lead & Easterling, 2008).  
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The cross-sectional design of the National Health Interview survey is another 

limitation because the questioning precludes establishing a temporal relationship or inferring 

causality. Another limitation associated with the survey is that we are assuming that the 

person resided and spent the majority of time in their county of survey for the entire duration 

of the calculated exposure metric that is assigned. 

 

 

Conclusion  

Climate change will lead to a rise in extreme heat events across all seasons affecting the 

many atmospheric and biological processes that lead to environmental exposures to air 

pollution and pollen. This dissertation provides, for the first time, a comprehensive 

assessment of the impact of historical measures of extreme heat events and its impact on hay 

fever among the US population.  
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Appendices 
 
Appendix A. Supplemental Table for Chapter 3.   

Table 15. Relative percent change in extreme heat events with climate regions, by time 
period, for the continental United States, excluding Alaska and Hawaii. 

Parameter 

e(β) 

1960-1989 1990-1999 2000-2010 

Intercept 1.33‡ 1.68‡ 1.79‡ 
ENSO 

Neutral Reference 
El Niño 0.83‡ 0.88‡ 0.73‡ 
La Niña 1.2‡ 1.33‡ 1.31‡ 

Season 
Autumn Reference 
Winter 1.03‡ 1.31‡ 0.89‡ 
Spring 1.01**  1.00 0.93‡ 
Summer 0.96‡ 0.93‡ 0.96‡ 

County Urban-Rural Classification 
Large central metro 0.98 1.24‡ 1.04 
Large fringe metro 0.99 1.08‡ 1.02 
Medium metro 1.00 1.08‡ 1.05**  
Micropolitan 0.99 1.00**  0.99 
Small metro 0.99 1.05 1.00 
Non-core Reference 

Climate Regions 
Northeast Reference 
Central 0.94‡ 0.70‡ 0.73 
East North Central 1.00 0.75‡ 0.83‡ 
Northwest 0.99 0.95* 0.87‡ 
South 0.91‡ 0.72‡ 0.84‡ 
Southeast 0.89‡ 0.84‡ 0.81‡ 
Southwest 0.94‡ 0.88‡ 1.10‡ 
West 0.97* 0.81‡ 0.95* 

  West North Central 0.98**  0.76‡ 0.83‡ 

*p<.05 ** p<.005  ‡ p<.001 
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Appendix B. Supplemental Tables for Chapter 4  

Table 16. Weighted percent and standard error of chronic health conditions for highest quartile and decile of annual extreme heat 
events by age group, National Health Interview Survey 2010-2013. 

    Age in years  

Annual   18 to 34 35 to 49 50 to 64 65 and older 

Top Quartile (n=51,570; 41.61%1) 

   25 days or more EHE95 (n=14,894; 31.2%1) (n=13,193; 26.4%1) (n=12,865; 25.3%1) (n=10,618; 17.1%1) 

SPD 
 

13.2 (0.4) 14.1 (0.4) 14.8 (0.4) 11.4 (0.4) 
Heart disease 

 
5.3 (0.3) 9.1 (0.4) 17.7 (0.5) 32.8 (0.6) 

Stroke 
 

0.2 (0.1) 1.3 (0.1) 3.3 (0.2) 8.4 (0.4) 
Hypertension 

 
8 (0.3) 21.8 (0.5) 42.5 (0.6) 61.5 (0.7) 

Diabetes 
 

1.5 (0.1) 6.1 (0.3) 14.4 (0.4) 21.2 (0.5) 
COPD 

 
2.5 (0.2) 3.8 (0.2) 7 (0.3) 8.9 (0.4) 

Top Decile (n=23,549; 18.78%1) 
  

38 days or more EHE95 (n= 6,879; 31.4%1) (n= 5,980;26.3%1) (n= 5,865; 25%1) (n= 4,825;17.3%1) 

SPD 
 

12.9 (0.6) 14.4 (0.6) 14.3 (0.6) 11.8 (0.6) 
Heart disease 

 
5.6 (0.4) 9.2 (0.5) 17.9 (0.7) 34.2 (0.9) 

Stroke 
 

0.2 (0.1) 1.5 (0.2) 3.3 (0.3) 8.8 (0.5) 
Hypertension 

 
8.4 (0.4) 22.4 (0.7) 42.6 (0.9) 60.9 (0.9) 

Diabetes 
 

1.5 (0.2) 6.2 (0.4) 14.2 (0.6) 21.5 (0.8) 
  COPD   2.6 (0.3) 4.1 (0.3) 6.7 (0.5) 9.1 (0.5) 
SE: Standard Error  

SPD: Serious psychological distress 
COPD: Chronic Obstructive Pulmonary Disease 
EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and calendar month specific 95th 
percentile threshold calculated using a 30 year of baseline data. 
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Table 17. Percent by demographic characteristics overall and in counties in top quartile and 
top decile of summer extreme heat events, National Health Interview Survey 2010-2013. 

 

All 

 

  Summer  

 

(n=119,709; 100%1) 

  Top Quartile 
(n=44,613; 

36.5%1) 

Top Decile  
(n=26,565; 

21.36 %1) 
 n %1   %(SE)1 
Race/Ethnicity 

  
    

non-Hispanic white   71,717 68.0   64.9 (0.5) 63.3 (0.7) 
non-Hispanic black   18,612 11.8   13.9 (0.4) 13.9 (0.5) 
Hispanic   21,313 14.5   16 (0.4) 17.8 (0.5) 
All other races and 
ethnicities 

    8,067 5.8 
  

5.1 (0.2) 
5 (0.2) 

Age (years) 
  

    
18-34   34,374 31.2   31.2 (0.4) 32.4 (0.5) 
35-49   30,689 26.4   26.4 (0.3) 26.1 (0.4) 
50-64   29,760 25.2   25.2 (0.3) 24.8 (0.4) 
65 and older    24,886 17.2   17.2 (0.3) 16.7 (0.3) 

Sex 
  

    
Male   54,268 49.2   49.2 (0.3) 49.1 (0.4) 
Female   65,441 50.8   50.8 (0.3) 50.9 (0.4) 

Marital status 
  

    
Singe   67,303 46.5   46.5 (0.4) 47.2 (0.5) 
Married   52,406 53.5   53.5 (0.4) 52.8 (0.5) 

Women of Childbearing Age 
  

    
No  35,956 52.9   52.1 (0.5) 51.7(0.6) 
Yes   29,485 47.2   47.9 (0.5) 48.3 (0.6) 

Body Mass Index 
  

    
Underweight    2,171 1.7   1.7 (0.1) 1.8 (0.1) 
Normal weight   41,949 35.5   35.5 (0.3) 34.2 (0.4) 
Overweight   41,425 34.7   34.7 (0.3) 35 (0.4) 
Obese   34,164 28.1   28.1 (0.3) 29.1 (0.4) 

Education 
  

    
<High school/GED   16,494 11.7   11.7 (0.3) 12.7 (0.3) 
High school/GED   33,928 28.6   28.6 (0.4) 28.5 (0.4) 
Some college   36,408 31.0   31 (0.3) 30.7 (0.4) 
Bachelor's degree   21,102 18.6   18.6 (0.3) 18.5 (0.4) 
Graduate degree   11,777 10.1   10.1 (0.3) 9.7 (0.3) 

Poverty status 
  

    
<100% FPL   21,530 13.5   13.5 (0.3) 14.3 (0.4) 
100-<200% FPL   25,477 19.1   19.1 (0.3) 19.9 (0.4) 
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200-<400% FPL   35,053 30.1   30.1 (0.3) 30.1 (0.4) 
>400% FPL   37,649 37.3   37.3 (0.5) 35.8 (0.6) 

1 Weighted Percent: all percentages were weighted using NHIS survey weights.   
Body Mass Index (BMI) is calculated using the formula weight in kilograms/height in 
meters: underweight=<18.5; normal weight=18.5 -<25; Overweight = BMI 25 - <30; Obese 
= BMI ≥ 30. 
Note: FLP=federal poverty level 
Women of Childbearing Age: women between the ages of 18 and 45.  
Summer Top Quartile = 9 days or more EHE95; Summer (June, July, August) 
Summer Top Decile = 14 days or more EHE95; Summer (June, July, August) 
EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 95th percentile threshold calculated using a 30 year of baseline data. 
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Table 18. Percent by residential characteristics overall and in counties in top quartile and top 
decile of summer extreme heat event, National Health Interview Survey 2010-2013. 

  
  
  
  

All    Summer  

 
  Top Quartile Top Decile 

(n=119,709; 

100%) 

  

(n=44,613; 36.5%) (n=26,565; 21.4%) 

n %1   %(SE)1 %(SE)1 
Region       

Northeast 19,630 17.74   19 (0.6) 12.4 (0.7) 
Midwest 26,084 23.23   18.9 (0.7) 19.8 (1) 
South 44,278 36.29   48.3 (0.9) 54.8 (1.2) 
West 29,717 22.74   13.9 (0.6) 13 (0.8) 

Urban-rural classification   
Large central metro 37,694 29.38   30.7 (0.7) 33 (1) 
Large fringe metro 24,031 24.63   23.6 (0.9) 21.4 (1.1) 
Medium metro 24,548 20.88   23.2 (1.2) 22.5 (1.4) 
Small metro 12,274 9.65   7.8 (1) 8.1 (1.1) 

 
Micropolitan 12,017 9.16   9.4 (1.1) 9.7 (1.4) 
Non-core 9,145 6.31   5.4 (0.8) 5.3 (1) 

Coastal classification   

 
Noncoastal 60,605 49.27   53.1 (1) 57.5 (1.3) 
Coastal 59,104 50.73   46.9 (1) 42.5 (1.3) 

1 Weighted Percent: all percentages were weighted using NHIS survey weights.    
SE: Standard Error  
Summer Top Quartile = 9 days or more EHE95; Summer (June, July, August) 
Summer Top Decile = 14 days or more EHE95; Summer (June, July, August) 

EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 95th percentile threshold calculated using a 30 year of baseline data. 
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Table 19. Percent by residential characteristics overall and in counties in top quartile and top 
decile of summer extreme heat event, National Health Interview Survey 2010-2013. 

  All Top Quartile Top Decile 

Chronic Disease (n=119,709; 100%) (n=44,613; 36.5%) (n=26,565; 21.4%) 

  n % %(SE)1 %(SE)1 

SPD 17,821 14.05 13.3 (0.2) 13.1 (0.3) 
Heart disease 18,255 14.21 14.2 (0.2) 14.3 (0.3) 
Stroke 3,722 2.67 2.8 (0.1) 2.8 (0.1) 
Hypertension 38,245 29.28 29.6 (0.3) 29.6 (0.4) 
Diabetes 12,278 9.18 9.5 (0.2) 9.7 (0.2) 
COPD 6,506 5.05 5.2 (0.2) 5.1 (0.2) 
1 Weighted Percent: all percentages were weighted using NHIS survey weights.    
SE: Standard Error 
SPD: Serious psychological distress 
COPD: Chronic Obstructive Pulmonary Disease 
Summer Top Quartile = 9 days or more EHE95; Summer (June, July, August) 
Summer Top Decile = 14 days or more EHE95; Summer (June, July, August) 

EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 95th percentile threshold calculated using a 30 year of baseline data. 
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Table 20. Weighted percent and standard error of chronic health outcomes and demographic factors for top quartile and top decile 
of summer extreme heat event by geographic descriptors, climate data merged with National Health Interview Survey 2010-2013. 

Annual       SPD 
Heart 

Disease 
Stroke Hypertension Diabetes COPD 

Top Quartile (n=51,570) 

Region 
Northeast 7,548 19 (0.6) 12.6 (0.6) 12.9 (0.5) 2.5 (0.2) 27 (0.6) 8.8 (0.4) 4.5 (0.4) 
Midwest 7,721 18.9 (0.7) 14.4 (0.5) 15.3 (0.6) 2.7 (0.2) 29.6 (0.9) 9.3 (0.4) 5.9 (0.3) 
South 22,338 48.3 (0.9) 12.6 (0.3) 15.2 (0.3) 3.1 (0.1) 31.9 (0.5) 10.3 (0.2) 5.6 (0.2) 
West 7,006 13.9 (0.6) 15.3 (0.5) 11.4 (0.4) 2.5 (0.2) 25.4 (0.6) 7.8 (0.4) 3.7 (0.4) 

Urban-rural classification 
Large central 
metro 

14,849 30.7 (0.7) 13.5 (0.4) 12 (0.4) 2.3 (0.1) 26.3 (0.5) 8.6 (0.3) 4.6 (0.3) 

Large fringe 
metro 

8,370 23.6 (0.9) 12.4 (0.5) 13.5 (0.4) 2.6 (0.2) 28.3 (0.7) 8.7 (0.4) 4.3 (0.3) 

Medium metro 10,387 23.2 (1.2) 13.4 (0.5) 14.4 (0.4) 2.7 (0.2) 29.3 (0.6) 9.2 (0.3) 5.1 (0.3) 
Small metro 3,881 7.8 (1) 13.4 (0.8) 15.6 (1) 3.6 (0.4) 33.5 (1.2) 10.2 (0.7) 5.8 (0.6) 
Micropolitan 4,436 9.4 (1.1) 13.4 (0.7) 19 (0.9) 3.6 (0.4) 36 (1.3) 12.1 (0.6) 7.2 (0.6) 
Non-core 2,690 5.4 (0.8) 15.6 (1) 19.5 (1.1) 4.6 (0.5) 39.2 (1.4) 13.5 (0.8) 7.8 (0.7) 

Coastal classification 
Non-coastal 24,179 53.1 (1) 13.7 (0.3) 15.5 (0.3) 3.1 (0.1) 31.2 (0.5) 10.1 (0.3) 5.9 (0.2) 
Coastal 20,434 46.9 (1) 12.9 (0.3) 12.8 (0.3) 2.4 (0.1) 27.8 (0.4) 8.7 (0.2) 4.4 (0.2) 

Top Decile (n=23,549) 

Region 
Northeast 2,717 12.4 (0.7) 11.3 (0.8) 10.9 (0.6) 2.1 (0.3) 25.7 (0.8) 8.9 (0.5) 4.2 (0.6) 
Midwest 4,774 19.8 (1) 14.4 (0.6) 15.5 (0.8) 2.4 (0.3) 28.3 (1) 8.7 (0.5) 5.7 (0.5) 
South 14,981 54.8 (1.2) 12.6 (0.4) 15.1 (0.4) 3.1 (0.2) 31.6 (0.6) 10.6 (0.3) 5.5 (0.3) 
West 4,093 13 (0.8) 14.6 (0.6) 12.1 (0.6) 2.7 (0.3) 26.7 (0.7) 8.2 (0.6) 3.5 (0.4) 

Urban-rural classification 
Large central 
metro 

9,693 33 (1) 13.2 (0.5) 12.2 (0.5) 2.3 (0.2) 26.9 (0.7) 8.8 (0.4) 4.6 (0.3) 
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Large fringe 
metro 

4,332 21.4 (1.1) 11.3 (0.7) 13.4 (0.7) 2.5 (0.3) 27.8 (0.8) 8.8 (0.5) 4 (0.4) 

Medium metro 6,009 22.5 (1.4) 13.3 (0.5) 13.5 (0.5) 2.8 (0.2) 29.3 (0.8) 9.9 (0.4) 4.8 (0.3) 
Small metro 2,271 8.1 (1.1) 13.3 (1) 16.6 (1.3) 3.6 (0.4) 31.7 (1.3) 9.7 (0.8) 6.4 (0.7) 
Micropolitan 2,704 9.7 (1.4) 13.8 (1) 18.9 (1.1) 3.4 (0.5) 36.4 (1.7) 12 (0.8) 7.4 (0.8) 
Non-core 1,556 5.3 (1) 16.4 (1.4) 21.6 (1.2) 4.9 (0.6) 38.9 (1.4) 13.3 (1.1) 8.9 (1.1) 

Coastal classification 
Non-coastal 15,484 57.5 (1.3) 13.5 (0.4) 15.5 (0.4) 3.1 (0.2) 30.7 (0.6) 9.9 (0.3) 5.8 (0.3) 

  Coastal 11,081 42.5 (1.3) 12.4 (0.4) 12.6 (0.4) 2.4 (0.2) 28 (0.6) 9.5 (0.3) 4.3 (0.3) 

SPD: Serious psychological distress 
COPD: Chronic Obstructive Pulmonary Disease 
Summer Top Quartile = 9 days or more EHE95; Summer (June, July, August) 
Summer Top Decile = 14 days or more EHE95; Summer (June, July, August) 
EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and calendar month specific 95th 
percentile threshold calculated using a 30 year of baseline data. 
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Table 21. Weighted percent and standard error of chronic health conditions for highest quartile and decile of summer extreme heat 
events by age group, National Health Interview Survey 2010-2013. 

    Age in years 

Summer   18 to 34 35 to 49 50 to 64 65 and older 

Top Quartile   
 

9 days or more EHE95 (n=44,613; 31.9%) (n=13,063; 26.4%) (n=11,474; 24.8%) (n=11,022; 17%) 

SPD 
 

13.2 (0.4) 14.1 (0.4) 14.8 (0.4) 11.4 (0.4) 
Heart disease 

 
5.3 (0.3) 9.1 (0.4) 17.7 (0.5) 32.8 (0.6) 

Stroke 
 

0.2 (0.1) 1.3 (0.1) 3.3 (0.2) 8.4 (0.4) 
Hypertension 

 
8 (0.3) 21.8 (0.5) 42.5 (0.6) 61.5 (0.7) 

Diabetes 
 

1.5 (0.1) 6.1 (0.3) 14.4 (0.4) 21.2 (0.5) 
COPD 

 
2.5 (0.2) 3.8 (0.2) 7 (0.3) 8.9 (0.4) 

Top Decile 
     

14 days or more EHE95 (n= 8,026; 32.4%) (n=6,770; 26.1%) (n= 6,507; 24.8%) (n= 5,262; 16.7%) 

SPD 
 

12.9 (0.6) 14.4 (0.6) 14.3 (0.6) 11.8 (0.6) 
Heart disease 

 
5.6 (0.4) 9.2 (0.5) 17.9 (0.7) 34.2 (0.9) 

Stroke 
 

0.2 (0.1) 1.5 (0.2) 3.3 (0.3) 8.8 (0.5) 
Hypertension 

 
8.4 (0.4) 22.4 (0.7) 42.6 (0.9) 60.9 (0.9) 

Diabetes 
 

1.5 (0.2) 6.2 (0.4) 14.2 (0.6) 21.5 (0.8) 

  COPD   2.6 (0.3) 4.1 (0.3) 6.7 (0.5) 9.1 (0.5) 

SE: Standard Error  
SPD: Serious psychological distress 
COPD: Chronic Obstructive Pulmonary Disease 
EHE95 = Extreme heat events – days where the daily TMAX value exceeded the county and calendar month specific 95th 
percentile threshold calculated using a 30 year of baseline data.
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Appendix C. Supplemental Tables for Extreme Heat Events and Other Chronic Respiratory Health Outcomes. 

Table 22. Weighted percent of respondents by demographic characteristics, NHIS 1997-2010 merged with Climate Data. 

Characteristic 

All eligible 

adults    
By Race Ethnicity             

 
NH White NH Black Hispanic NH Other 

 (n = 411,493; 
100%)   

 (n = 263,802; 
72.0%) 

 (n = 59,684; 
11.5%) 

 (n = 70,807; 
12.1%) 

 (n = 17,200; 
4.4%) 

Sex             
 Male 48.1   48.2 44.5 50.9 49.0 
 Female 51.9   51.8 55.5 49.1 51.0 
Age              
 18-34 31.3   27.8 36.7 44.5 38.4 
 35-49 30.2   29.7 31.3 31.5 32.5 
 50-64 22.2   23.8 20.1 15.5 19.4 
  65+ 16.3   18.7 11.9 8.5 9.7 
Education             
 ≤High School/GED 46.0   42.2 52.8 67.5 32.3 
 >High School/GED 54.0   57.8 47.2 32.5 67.7 
Poverty Thresholdb             
    Less than 100% 11.8   8.3 22.5 22.3 14.0 
    100- <200% 17.6   14.9 23.0 29.2 17.5 
    200- <4000% 31.3   31.9 30.8 29.8 27.1 
    400% or greater 39.3   45.0 23.8 18.7 41.5 
Insurance Coverage             
    Not covered 13.7   10.1 15.2 33.2 15.2 
    Covered 86.3   89.9 84.8 66.8 84.8 
Smoking Status             
    Never Smoker 56.2   51.9 63.6 69.8 70.9 
    Current/Past smoker 43.8   48.1 36.4 30.2 29.1 
Level of urbanization             
 Large central metro 27.9   20.6 42.4 51.0 47.0 
 Large fringe metro 23.8   25.3 21.1 17.1 24.8 
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 Medium metro 21.0   22.3 18.0 18.3 14.4 
 Small metro  10.2   11.7 7.2 6.0 5.8 
    Micropolitan 10.5   12.3 7.0 5.3 5.1 
 Non-core 6.5   7.8 4.2 2.3 2.9 
Division             
 New England 5.0   6.0 2.4 2.4 3.7 
 Middle Atlantic 13.7   13.7 14.3 12.1 15.3 
 South Atlantic 19.3   18.1 33.3 15.2 13.3 
 East South Central 6.3   6.8 10.2 0.9 1.8 
 West South Central 10.9   9.2 13.6 19.4 8.7 
    East North Central 16.7   19.0 15.0 6.7 10.4 
 West North Central 7.9   9.7 3.6 2.1 5.5 
 Mountain 6.6   6.7 1.5 10.3 7.0 
 Pacific 13.7   10.7 6.1 30.8 34.5 

All percentages were weighted using NHIS survey weights.   
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Table 23. Characteristics of health outcome for top quartile of extreme heat events (47.5 or more EHE90 days) of exposed, by 
Race/Ethnicity, NHIS 1997-2010 merged with Climate Data. 

  Race/Ethnicity 
ALL  NH White NH Black Hispanic Other 

  Percent1 Percent1 Percent1 Percent1 Percent1 
Asthma 5.5 5.6 0.8 4.4 4.6 
ED Visit for Asthma  0.5 0.4 0.8 0.5 0.4 
ED Visit for Asthma (Asthma=Yes) 4.2 3.5 7.3 6.1 4.6 
Hay Fever 4.5 4.8 3.8 3.3 4.2 
Chronic Bronchitis 2.2 2.4 2.2 1.3 1.3 
1Weigthed percent: all percentages were weighted using NHIS survey weights.   
NH= non-Hispanic 
Other: All other races and ethnicities 
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Table 24. Crude and adjusted odds ratios for the impact of extreme heat events by quartile of 
exposure and asthma, 1997-2013. 

    Asthma 

   EHE90 
Crude OR  
(95% CI) 

 Adjusted OR*  
(95% CI) 

1 Year Lag Sum      
0 - ≤23.94 Reference Reference 
23.95 - 34.40 1.01 (0.97-1.04) 0.95 (0.91-1.00) 
34.41 - 47.5 0.99 (0.95-1.03) 0.95 (0.91-1.00) 
>47.5 1.00 (0.96-1.04) 0.96 (0.91-1.01) 

2 Year Lag Sum          
0 - ≤44.23 Reference Reference 
44.24 - 59.31 0.98 (0.95-1.02) 0.94 (0.89-0.99) 
59.32 - 76.63 1.02 (0.98-1.06) 0.98 (0.93-1.03) 
>76.63 1.01 (0.97-1.05) 0.97 (0.92-1.03) 

3 Year Lag Sum         
0 - ≤70.06 Reference Reference 
70.07 - 90.4 1.03 (0.99-1.07) 1.01 (0.96-1.07) 
90.41 - 111.9 1.04 (1.00-1.08) 1.02 (0.97-1.07) 
>111.9 1.03 (0.99-1.08) 1.01 (0.95-1.06) 

5 Year Lag Sum         
0 - ≤145.88 Reference Reference 
145.89 - 177.3 1.07 (1.03-1.12) 1.05 (1.00-1.10) 
177.31 - 211.82 1.10 (1.05-1.14) 1.06 (1.01-1.11) 
>211.82 1.11 (1.06-1.16) 1.08 (1.02-1.14) 

*Adjusted for age, sex, race/ethnicity, education, poverty status, health insurance coverage, 
smoking status, urban/rural classification, climate region. 
EHE90 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 90th percentile threshold calculated using a 30 year of baseline data. 
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Table 25. Crude and adjusted odds ratios for the impact of extreme heat events by quartile of 
exposure and asthma attack, 1997-2013. 

    Asthma Attack 

    EHE90 
Crude OR  
(95% CI) 

 Adjusted OR*  
(95% CI) 

1 Year Lag Sum     
0 - ≤23.94 Reference Reference 
23.95 - 34.40 1.02 (0.97-1.08) 0.96 (0.89-1.03) 
34.41 - 47.5 0.98 (0.93-1.04) 0.95 (0.87-1.03) 
>47.5 0.98 (0.92-1.04) 0.96 (0.89-1.05) 

2 Year Lag Sum         
0 - ≤44.23 Reference Reference 
 44.24 - ≤59.31 1.01 (0.96-1.07) 0.95 (0.88-1.03) 
59.32 - ≤76.63 1.05 (0.99-1.11) 1.04 (0.96-1.12) 
>76.63 1.00 (0.95-1.07) 0.99 (0.91-1.07) 

3 Year Lag Sum          
0 - ≤70.06 Reference Reference 
70.07 - ≤90.4 1.05 (0.99-1.11) 1.05 (0.97-1.14) 
90.41 - ≤111.9 1.09 (1.03-1.16) 1.08 (0.99-1.17) 
>111.9 1.01 (0.95-1.08) 1.02 (0.94-1.11) 

5 Year Lag Sum         
0 - ≤145.88 Reference Reference 
145.89 - 177.3 1.11 (1.04-1.18) 1.07 (0.99-1.16) 
177.31 - 211.82 1.10 (1.03-1.18) 1.07 (0.99-1.16) 
>211.82 1.09 (1.02-1.16) 1.08 (1.00-1.18) 

*Adjusted for age, sex, race/ethnicity, education, poverty status, health insurance coverage, 
smoking status, urban/rural classification, climate region. 
EHE90 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 90th percentile threshold calculated using a 30 year of baseline data. 
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Table 26. Crude and adjusted odds ratios for the impact of extreme heat events by quartile of 
exposure and asthma attack among asthmatics, 1997-2013. 

    Asthma Attack (Asthmatics) 

     EHE90 
Crude OR  
(95% CI) 

 Adjusted OR*  
(95% CI) 

1 Year Lag Sum     
0 - ≤23.94 Reference Reference 
23.95 - ≤34.40 1.02 (0.95-1.10) 1.00 (0.91-1.09) 
34.41 - ≤47.5 0.99 (0.92-1.07) 0.98 (0.89-1.08) 
>47.5 0.97 (0.90-1.05) 1.01 (0.92-1.12) 

2 Year Lag Sum         
0 - ≤44.23 Reference Reference 
 44.24 - ≤59.31 1.04 (0.97-1.11) 0.99 (0.90-1.09) 
59.32 - ≤76.63 1.04 (0.97-1.12) 1.08 (0.98-1.19) 
>76.63 1.00 (0.93-1.07) 1.01 (0.92-1.12) 

3 Year Lag Sum         
0 - ≤70.06 Reference Reference 
70.07 - ≤90.4 1.04 (0.96-1.12) 1.06 (0.96-1.17) 
90.41 - ≤111.9 1.08 (1.00-1.16) 1.07 (0.97-1.19) 
>111.9 0.98 (0.91-1.05) 1.03 (0.93-1.14) 

5 Year Lag Sum         
0 - ≤145.88 Reference Reference 
145.89 - ≤177.3 1.05 (0.98-1.13) 1.02 (0.92-1.12) 
177.31 - ≤211.82 1.02 (0.95-1.10) 1.01 (0.91-1.11) 
 >211.82 0.99 (0.91-1.07) 1.02 (0.93-1.13) 

*Adjusted for age, sex, race/ethnicity, education, poverty status, health insurance coverage, 
smoking status, urban/rural classification, climate region.  
EHE90 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 90th percentile threshold calculated using a 30 year of baseline data.
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Table 27. Crude and adjusted odds ratios for the impact of extreme heat events by quartile of 
exposure and emergency department visit for asthma, 1997-2013. 

    ED Visit for Asthma 

     EHE90 
Crude OR  
(95% CI) 

 Adjusted OR*  
(95% CI) 

1 Year Lag Sum     
0 - ≤23.94 Reference Reference 
23.95 - ≤34.40      1.03 (0.92-1.15) 0.92 (0.76-1.10) 
34.41 - ≤47.5      0.92 (0.82-1.03) 0.87 (0.74-1.03) 
>47.5      0.93 (0.83-1.05) 0.83 (0.70-0.99) 

2 Year Lag Sum        
0 - ≤44.23 Reference Reference 
44.24 - ≤59.31      0.98 (0.88-1.09) 0.93 (0.79-1.1) 
59.32 - ≤76.63      1.03 (0.92-1.16) 1.01 (0.85-1.2) 
>76.63      0.94 (0.84-1.05) 0.85 (0.71-1.01) 

3 Year Lag Sum       
0 - ≤70.06 Reference Reference 
70.07 - ≤90.4      1.05 (0.94-1.17) 1.08 (0.91-1.28) 
90.41 - ≤111.9      1.02 (0.91-1.15) 0.94 (0.79-1.11) 
>111.9      0.93 (0.83-1.05) 0.86 (0.73-1.02) 

5 Year Lag Sum       
0 - ≤145.88 Reference Reference 
145.89 - ≤177.3      0.95 (0.85-1.06) 0.83 (0.71-0.98) 
177.31 - ≤211.82      1.04 (0.92-1.17) 0.94 (0.79-1.12) 
 >211.82      0.97 (0.86-1.09) 0.84 (0.71-0.99) 

*Adjusted for age, sex, race/ethnicity, education, poverty status, health insurance coverage, 
smoking status, urban/rural classification, climate region. 
EHE90 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 90th percentile threshold calculated using a 30 year of baseline data.
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Table 28. Crude and adjusted odds ratios for the impact of extreme heat events by quartile of 
exposure and emergency department visit for asthma among asthmatics, 1997-2013. 

    ED Visit for Asthma  (Asthmatics) 

     EHE90 
Crude OR  
(95% CI) 

 Adjusted OR*  
(95% CI) 

1 Year Lag Sum    
0 - ≤23.94 Reference Reference 
23.95 - ≤34.40      1.13 (1.00-1.28)      1.08 (0.88-1.32) 
34.41 - ≤47.5      1.09 (0.96-1.25)      1.09 (0.90-1.31) 
>47.5      1.14 (1.00-1.31)      1.04 (0.85-1.28) 

2 Year Lag Sum       
0 - ≤44.23 Reference Reference 
44.24 - ≤59.31 1.00 (1.00-1.00)      1.08 (0.89-1.30) 
59.32 - ≤76.63      1.16 (1.01-1.33)      1.21 (1.00-1.47) 
>76.63      1.10 (0.97-1.26)      1.03 (0.84-1.26) 

3 Year Lag Sum       
0 - ≤70.07 Reference Reference 
70.07 - ≤90.4      1.13 (1.00-1.29)      1.25 (1.03-1.52) 
90.41 - ≤111.9      1.13 (0.99-1.28)      1.07 (0.88-1.29) 
>111.9      1.10 (0.96-1.26)      1.04 (0.85-1.26) 

5 Year Lag Sum       
0 - ≤145.88 Reference Reference 
145.89 - ≤177.3      0.85 (0.75-0.97)      0.75 (0.62-0.91) 
177.31 - ≤211.82      0.96 (0.84-1.09)      0.87 (0.72-1.06) 
 >211.82      0.82 (0.72-0.94)      0.70 (0.58-0.85) 

*Adjusted for age, sex, race/ethnicity, education, poverty status, health insurance coverage, 
smoking status, urban/rural classification, climate region. 
EHE90 = Extreme heat events – days where the daily TMAX value exceeded the county and 
calendar month specific 90th percentile threshold calculated using a 30 year of baseline data. 
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